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Preface

This volume advances numerical simulation, data assimilation, and multi-physics coupling

to address reservoir heterogeneity, fracture dynamics, and operational safety. Ensemble-based

algorithms like ES-MDA reduce reservoir uncertainties by 15–20% through 4D seismic

and production data integration, as demonstrated by 8% recovery gains in Middle East

carbonates. Fracture studies combine hydro-mechanical models with true triaxial experiments on

hydrate-bearing sediments, guiding discrete fracture network (DFN)-optimized completions that

boost shale gas productivity by 40% in China’s Sichuan Basin.

To enhance computational efficiency, proxy models such as INSIM-FT accelerate interwell

connectivity analysis by 90%, while physics-informed neural networks (PINNs) embed flow

equations into AI architectures for rapid production forecasting. Machine learning (XGBoost) resolves

permeability heterogeneity with a 92% accuracy in carbonates, and well-test analyses quantify

fracture-driven permeability contrasts exceeding 1,000x.

Geomechanical integrity frameworks address salt cavern storage risks, where coupled

creep-thermal stress modeling reduced cement sheath failure risks by 60% and poro-elastic simulators

optimize fracture networks under depletion. Cross-disciplinary trends fuse data-driven and

physics-based models, enabling digital twins for real-time field management. Challenges remain

in proppant transport modeling and sparse 4D data utilization. Emerging priorities include quantum

computing for fracture simulation and adapting reservoir engineering to carbon sequestration,

positioning the field as critical for sustainable energy transitions.

Haifeng Zhao and Yang Xia

Guest Editors
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Four-Dimensional History Matching Using ES-MDA and
Flow-Based Distance-to-Front Measurement
Eduardo Barrela 1,*, Philippe Berthet 1,*, Mario Trani 1, Olivier Thual 2 and Corentin Lapeyre 2

1 TotalEnergies S.E.—Centre Scientifique & Technique Jean Féger, Av. Larribau, 64000 Pau, France
2 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 42 Av. Gaspard Coriolis,

31100 Toulouse, France
* Correspondence: eduardo-jose.airoso-barrela@totalenergies.com (E.B.);

philippe.berthet@totalenergies.com (P.B.)

Abstract: The use of 4D seismic data in history matching has been a topic of great interest in the
hydrocarbon industry as it can provide important information regarding changes in subsurfaces
caused by fluid substitution and other factors where well data is not available. However, the high
dimensionality and uncertainty associated with seismic data make its integration into the history-
matching process a challenging task. Methods for adequate data reduction have been proposed in the
past, but most address 4D information mismatch from a purely mathematical or image distance-based
standpoint. In this study, we propose a quantitative and flow-based approach for integrating 4D
seismic data into the history-matching process. By introducing a novel distance parametrization
technique for measuring front mismatch information using streamlines, we address the problem
from a flow-based standpoint; at the same time, we maintain the amount of necessary front data at a
reduced and manageable amount. The proposed method is tested, and its results are compared on a
synthetic case against another traditional method based on the Hausdorff distance. The effectiveness
of the method is also demonstrated on a semi-synthetic model based on a real-case scenario, where
the standard Hausdorff methodology could not be applied due to high data dimensionality.

Keywords: four-dimensional seismic; history matching; ensemble smoother with multiple data
assimilation; distance-to-front; streamlines

1. Introduction

In this paper, we aim to explore and demonstrate the effectiveness of front re-parametri-
zation methods in the context of history matching for hydrocarbon reservoirs. Specifically,
we focus on a novel distance-to-front method using streamlines obtained from full physics
flow simulation aimed at enhancing the accuracy and efficiency of history-matching pro-
cesses in reservoir management. History matching is an important stage in the development
of every hydrocarbon field, playing a crucial role in both the modeling and simulation
phases. During the process of history matching, key properties of the reservoir model
are calibrated to match past production data. This not only allows inference of reservoir
properties from production data but also, ultimately, allows obtaining predictive model(s)
that reduce uncertainty in forecasting future production. The end goal is to use predictive
reservoir models to aid the development of future production strategies and support man-
agement decisions. The reliability of a reservoir model can be estimated when it is able to
reproduce all available data as accurately as possible. Currently, many oil and gas fields
have long historical data that can help constrain the history matching procedure, as well as
seismic data acquired during their production life.

The incorporation of time-lapse seismic data (4D seismic data) into the history-
matching workflow has been a topic of great interest over the years. Four-dimensional
seismic data can provide information in areas of the reservoir where no data are available;
more specifically, the data can be used as a tool to monitor changes in the subsurface
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originating from fluid substitution due to production [1–5] or changes in other subsurface
properties such as temperature or pressure [6]. These insights are vital for enhancing the
accuracy of history matching by aiding in more precisely calibrating reservoir models
to reflect actual conditions. Thus, the integration of 4D seismic data plays a pivotal role
in overcoming the limitations of conventional data, offering a more comprehensive un-
derstanding of the reservoir and ensuring more reliable and effective history-matching
outcomes.

From an industry standpoint, 4D seismic data have been primarily used as a qualitative
constraint on the reservoir model [7–12] as the understanding of the reservoir evolves and
revisions are made in a multidisciplinary framework, encompassing the domains of geology,
seismic, and reservoir engineering [13]. However, while it is possible to identify the changes
occurring on the subsurface, like saturation and pressure variations (e.g., [14,15]), using 4D
data in a qualitative way, we have no information on the magnitude of the change or with
what certainty.

On top of that, seismic interpretation can be subject to variations in its interpretation,
even when facing easy-to-interpret seismic data. In a study by Rankey and Mitchell [16],
the authors focus on the subjectivity of seismic data interpretation by presenting the same
seismic data to different interpreters. The interesting conclusion was that although the
data were unanimously considered easy to interpret, overconfidence in the interpreters
led to variations in the interpretation, which in turn reflected considerable differences in
volumetrics estimation. Apart from that, other uncertainties arising from non-repeatability
effects [17], noise, and imaging are present in 4D seismic data. On the plus side, this
can provide a great opportunity for the quantitative integration of 4D seismic data in
history-matching workflows as it allows access to uncertainty quantification over model
parameter estimates and fluid production forecasts analysis (e.g., [18–21]). Advancements
over the past decades, leading to the proposal and development of a range of stochastic
seismic inversion techniques, have provided ways of generating an ensemble of alternative
heterogeneous impedance representations that agree with the 3D seismic volume, account-
ing for the non-uniqueness of the inversion process. Nonetheless, the full integration
of quantitative 4D seismic data interpretation into the history-matching procedure is far
from straightforward, remaining a challenge to be addressed as well as a topic of great
interest. Several examples of quantitative approaches for integrating 4D seismic data exist
in the literature (e.g., [10,22–31]). Problems identified with the adoption of such techniques
on an industrial level are related to the practical feasibility and the inexistence of a fully
integrated software solution that can easily handle the integration of both production and
seismic data in a computer-aided history matching loop. However, the main concern is
related to the computational feasibility of incorporating the large amount of data associated
with seismic acquisition into existing workflows [32]. In particular, aspects related to the
high nonlinearity of the problem at hand include the limitation on the number of degrees
of freedom associated with the amount of data to be assimilated, questions on how to
address the contribution in the assimilation procedure of the different types of data in
consideration, how to elect relevant parameters for matching both seismic data and fluid
flow production while staying within the boundaries of a plausible geological and physical
model, over-conservative prior assumptions, and errors arising from the forward modelling
of seismic data and attributes [33]. Therefore, due to the complexity and computational cost
associated with the modeling of seismic attributes, presented workflows often fall into the
categories of either being able to provide only unique solutions to the problem or requiring
a significant reduction of the uncertainty space [34]. For this reason, alternative methods
for adding seismic data information to the history-matching procedure have been explored.
Recently, Rollmann et al. [35] presented a method using a convolutional neural network
trained to fit observed seismic history. However, results were only shown in a synthetic case,
and the overhead cost of gathering the necessary amount of training data (large amounts
of models that need to be classified) as well the time spent in appropriate architecture
development (which can be very case-specific) and computational costs associated with the
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training of the network are still big disadvantages. Furthermore, the integration of such
methods into the 4D history-matching workflow carries additional challenges (especially
under real or realistic case scenarios), remaining a topic for future research.

In an attempt to address the problem related to the varying nature of data within the
4D seismic history matching procedure, Tillier et al. [36] proposed a method based on the
local modified Hausdorff distance for measuring the dissimilarity between observed and
simulated seismic attributes. This idea was later expanded on by Abadpour et al. [37],
where coupled with an Ensemble Kalman Filter (EnKF) [38] workflow, the same Hausdorff
distance metric was used to compute the distance between observed and saturation fronts,
synthesized by binary image-based data reduction. The method showed promising results
in a synthetic case; however, unless some other precursory data reduction steps are consid-
ered, the direct application of this method, particularly within the scope of ensemble-based
workflows, becomes difficult to achieve in large-scale models as it implies computing the
inverse of a gain matrix that could be at least the square of the number of cells in the
model. There are also other issues related to binary image-based approaches, such as the
double-penalty effect (i.e., when a feature is predicted where it should not be and is not
predicted where it should), which, together with the amount and extension of data, add
complexity to the minimization procedure even if the mismatch can be easily quantifiable.

Other binary image-based methods have also been proposed over the past decade
(e.g., [39–43]). Similarly, such methods mainly focus on the conversion of hardening and
softening signals of 4D seismic data to a binary image. However, while providing an
effective and straightforward way of integrating 4D seismic information by reducing the
level of information in a continuous 4D signal into discrete states (0 and 1), the main
drawback is still related to the amount of data resulting from the computation of the
difference between observed and measured responses.

Observed seismic amplitude fronts can be compared to saturation fronts when under
cases where pressure variation or compaction effects [1,34] or the effect of variation in
porosity or net-to-gross ratio can be neglected [33]. These can capture the main information
related to the drained area of a reservoir under production. Like binary image-based
methods, they can be looked at as a solution for applying data reduction to the problem
at hand. This type of front re-parametrization reduces the amount of seismic data to be
used by representing swept regions through a saturation front, which can capture the most
significant 4D seismic information. A reduction in the nonlinearity of the problem is also
achieved since front positions are closely related to uncertain petrophysical parameters
of the model (before or after the front location). Finally, full seismic inversion procedures
are avoided, and the method remains an option even when facing low-quality seismic
data sets. All of these qualities place such methods as good candidates for application on
history-matching workflows with the potential for increasing the performance of history-
matching workflows.

Kretz [44] proposed a history-matching workflow to match front positions based on
streamlined simulation. In their proposal, model permeabilities along the streamlines were
modified in order to match observed and simulated saturation front positions derived from
4D seismic data. The discrepancy between front positions was provided by the difference
in time-of-flight measured from the streamlines. The method showed great promise and
served as a starting point for research on other front parametrization-based methods used
in 4D history-matching workflows (e.g., [34,39,45,46]). However, the main drawback with
this method relates to the properties being updated only along cells intersected by the
path of the streamlines. This leads to models that lose their geologic consistency, no longer
honoring geostatistical assumptions, and could also lead to overfitting of the matched
production data. Finally, the application of the proposed method to realistic 3D cases was
not discussed, and results were presented only in simple 2D synthetic examples.

Trani et al. [34] proposed the re-parameterization of saturations extracted from 4D
seismic data in terms of front arrival times. The main disadvantage of this method was the
need to run the fluid flow simulations beyond the update time at which the seismic data
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are available (i.e., until all cells of the observed front location have been flooded). Later,
Trani [47,48] concluded that an ensemble of complete predictions with extended simulation
times could be replaced by an approximation of late arrival time by an arbitrarily large
value. In an attempt to address the problem with extended simulation times and based
on the work by Tillier et al. [36], Leeuwenburgh and Arts [45] and Zhang and Leeuwen-
burgh [46,47] proposed re-parameterizating front time-of-arrivals into distance-to-fronts.
In the work presented by Leeuwenburgh and Arts [45], the authors assumed that uniform
velocities in a monotonically expanding 3D front could be converted to distances calculated
using a fast-marching algorithm [49] for the solution of Eikonal equations to cartesian
grids [50]. These computed distances were then used as innovations in an ensemble history-
matching framework using the EnKF. Later, Zhang and Leeuwenburgh [46,47] proposed an
improvement over the method presented by Leeuwenburgh and Arts [45], where the use
of the fast-marching method was extended for applicability on corner point grids, thereby
improving the overall accuracy of the method. They presented their method in a simple 2D
synthetic case and applied it to the Norne field using the ensemble smoother with multiple
data assimilation (ES-MDA) [51], Appendix A.

In this paper, we focus on the simplicity and applicability of front re-parametrization
methods and present a flow-based alternative to previous distance-to-front methods. For
this, based on the work presented by Kretz [44], we propose a distance-to-front method
using streamlines obtained from full physics flow simulation.

In the following section, we introduce the concept of distance-to-front measurement
(Section 2.1), then we introduce fluid flow streamlines as a post-processing of flow simula-
tion and propose a method for calculating distances to fronts using streamline information
obtained from full-physics flow simulation (Section 2.2). We then present a set of numerical
experiments on a 2D synthetic case (Section 3.1) and a realistic 3D case based on a real case
scenario (Section 3.2), where the proposed method is applied and the obtained results are
discussed. Finally, the main conclusions of the work are presented in Section 4.

2. Methodology
2.1. Distance-to-Front Measurement

Measuring the distance to a front requires front extraction, normally from a seismic
attribute that can capture spatial changes in saturation or pressure over the subsurface.
These changes can often refer to a timelapse confirmation on features related to the dis-
placement of oil by water and/or gas, dissolution effects, or significant pressure changes.
By posing the problem in this way, we assume that the shape or boundary of these features
is enough to capture the relevant phenomena as opposed to using the original individual
cell amplitudes of 4D seismic data. Added to that, reducing the information to a relevant
shape or boundary can often be more informative and reliable while being an advantage in
terms of computational cost and efficiency.

Normally, within the feature-based 4D history-matching domain, grid-based geomet-
rical distance measurements are used (e.g., Euclidean, Hamming, fast-marching methods,
Chain-Vese, Hausdorff, etc.). However, one should address the choice of measuring sub-
surface changes from a dynamic perspective, as subsurface changes derive from dynamic
mechanisms related to fluid production and subsurface geology.

2.2. Using Streamlines for Distance-to-Front Calculation

In this regard, streamlines can be a solution to link both subsurface geology and fluid
production. Streamlines and streamline-based properties are valuable tools for understand-
ing reservoir connectivity and fluid flow patterns for large, heterogeneous models and
can be easily obtained through the post-processing of full-physic simulations. In order to
define a fluid flow streamline, three key properties are necessary: flow rate, time of flight,
and a cell ID pointing to a given cell in the reservoir grid. The grid cell ID is used to extract
relevant information from the grid and map solution variables between the streamline and
the global numerical grid.

4
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Streamline geometries (used for visualization purposes only) are then obtained through
the Pollock method [52,53], starting from a single cell of the model with the calculation of
a flow rate calculated for each of the cell faces (assumed to be uniform along the faces).
Along with pressure, the total flow rate in and out of each of the faces can then be calculated
based on the total Darcy velocity:

→
v t = −λt

→
∇P0 +

(
∑ jλjρj

)→
g , (1)

where
→
v is the flow velocity, λ is the phase mobility,

→
∇P is the pressure gradient, ρ is the

mass density, and
→
g is the acceleration due to gravity.

To conform with the orthogonal grid assumptions of the Pollock method (Figure 1), an
isoparametric transformation is applied to all of the grid cells of the model onto a unit cube
grid [54]. Consequently, for visualization purposes, this representation can be transformed
back into the spatial coordinate system (e.g., corner point gridding format). This way,
by being able to obtain a set of streamlines branching all cells of the model where flow
is occurring from a given source to a sink, we can use streamlines as a flow-based real
coordinate system medium to measure the distance between the true location of water-
saturated fronts and simulated saturation fronts obtained from the flow simulation of
candidate models.
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Figure 1. Streamline tracing scheme where a single streamline enters the Y0 face of a single cell and
exits the X1 face through the exit point. The curvature along the cell is guided by the calculated
in/out flow velocities of all faces of the cell.

As shown in Figure 2a, a simple 2D five-spot reservoir model was used to illustrate
the method. Two fronts are presented, one originating from either the inversion or inter-
pretation of 4D seismic data (observed front, in black) and a second one representing the
same front on a given candidate model after flow simulation (simulated front, in grey).
By computing the fluid-flow streamlines over the simulation period, we obtained a set of
streamlines that connects both fronts. This way, it became possible to obtain the distance
between both features using flow-based distance measurement supported by streamlines
and to use the computed distance vector as an innovation in the history-matching workflow.
The same concept is shown for cases where the resulting simulated flow patterns were
obtained using an anisotropic permeability field (Figure 2b) and for the example of a more
heterogenous geological scenario representing a channelized structure (Figure 2c). From
Figure 2c, it also becomes clear that by applying this method, we gained added advantage
of capturing the distance between both fronts along the geological representation of our
model (grid geometry and petrophysical properties driving fluid flow) as opposed to using
a purely geometrical approach where such detail might be lost. A distance value of zero
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was assigned for all positions where both observed and measured front data coincided; for
the remaining unmatched locations, an added physical meaning was obtained by assigning
positive distances for locations where the measured front was ahead of the observed front
and vice versa.
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Under cases where geology is uncertain (e.g., multiple different geological scenarios),
the same distance metric can be used. For this case, we considered an uncertain geological
scenario where we took two different channelized structures, honoring the well data but
with different orientations.

Figure 3 illustrates the application of the proposed method, where we evaluated the
4D seismic distance between both model propositions on a given monitor date.

To obtain the waterfronts at a given time t f (Figure 3b,e), we calculated the difference
between the water saturation at t f (Figure 3a,d) with the initial water saturation at t0. A
threshold was applied to binarize the information into drained/undrained regions, and
finally, we extracted the contour of the drained region (a perimeter in 2D and a surface in
3D) (Figure 3c). Since different candidate models have different simulated front shapes (e.g.,
in 2D having smaller or larger perimeters over a different number of model cells), distances
must be computed from the location of the observed front, which should be sourced from
seismic 4D interpretation and expertise related to the mechanisms driving the production
of a given reservoir. This way, the observed front location, comprising a set of cells to
which the distances are to be computed, is input into the algorithm. The final innovation
vector is calculated by gathering all the distance measurements obtained from the set of
shortest distance paths provided by computed streamlines connecting the observed front
to the simulated front. For illustration purposes, Figure 4 is a spatial representation of the
obtained innovation vector on top of the observed front location.

The same calculation can be carried out for different models, with the result being
a vector of innovations with the size of the number of cells on the observed front. By
being able to obtain sets of equally sized innovation vectors for a variety of models, the
proposed method can be easily integrated into any ensemble-based assimilation approach.
Algorithm 1 summarizes the use of the innovation vector in the context of an ensemble-
based history-matching workflow.
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Algorithm 1: Four-dimensional distance-to-front using streamlines

FOR EACH ENSEMBLE UPDATE STEP

1. Input array(s) of cells representing observed front(s) in the model grid.

2. Full physics flow simulation of all candidate members of the ensemble.

3. Calculate the difference between saturation data from the date of the seismic survey(s) to t0.

4. Binarize the output of step 3 into flooded/non-flooded regions according to a threshold.

5. Calculate the contour of the flooded region at the date of seismic survey(s).

6. Matching locations for the output of step 5 and step 1 are assigned a distance of 0.

7. Post-processing of streamlines coming from step 2.

8.
Extract the shortest distance given by the streamlines (step 7) connecting the observed front
(step 1) with the simulated front (step 5).

9. Merge array(s) of distances computed at step 6 and step 8.

CONTINUE TO THE NEXT UPDATE STEP

3. Results and Discussion
3.1. Synthetic 3D Case

In this section, we resort to a simple 3D channel reservoir to showcase the performance
of the proposed method for 4D seismic history matching using streamlines for distance-to-
front measurement. The reservoir comprises an anticlinal trap with three facies, containing
a North-West to South-East trending leaking normal fault with a throw towards North-East.
It has an extension of 5900 × 3800 m with a thickness of 52 m and is discretized into a
60 × 39 × 5 grid with 11,682 active cells in total. The used model attempted to represent
the flow of two immiscible phases (oil and water) with a connate water saturation of 0.15,
residual oil saturation of 0.15, and initial formation pressure of 400 bar. Out of the three
facies in the model, two were permeable, and one acted as a horizontal barrier in the middle
layer of the reservoir. The model had two injectors and two producing wells located in the
best-quality facies. The true model was randomly sampled from an ensemble of realizations
generated through truncated Gaussian simulation (TGS) [55,56] and conditioned to the
information at well locations. The average permeability was 650 mD and 150 mD in the
best and background facies, respectively. The average porosity in the best facies was 0.3,
and in the background facies, it was 0.18. Field production spanned a total of 20 years, with
production occurring through the intervention of two producing wells located on each side
of the normal fault and an injector well located in the south.

The considered uncertain parameters in the reservoir were facies location, populated
by the respective spatial distributions of porosity, the permeability and net-to-gross ratio
(NTG) of each of the facies, and an ensemble of 100 realizations used to sufficiently avoid
sampling errors and rank deficiency in the updated procedure.

True front positions for dates were obtained by running a flow simulation on a model
outside of the ensemble until, respectively, 8 and 16 years after the initial production
date. The resulting saturation maps were then processed in order to extract waterfront
positions through the binarization of the saturation differences between monitor dates and
initial condition, with a threshold (a threshold of 0.02 was used for this case) to obtain
a swept region and interpretation of the front position over the binarized swept region
(Figure 5). The Bayesian formalism on data assimilation problems normally requires
the likelihood function to be responsible for assigning the weighting of data mismatch
terms [33]. Regardless, there are examples in the literature of 4D history-matching attempts
where observation errors were selected according to what the authors believed to be an
“acceptable” result in terms of match quality [47,57–59]. In our case, we considered the
interpreted front position to have an uncorrelated error with a standard deviation of 150 m,
which consisted of approximately the size of three grid blocks along the XY direction. The
resulting front positions for all seismic monitor dates, along with the historical production
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data, were used in an assisted history-matching scheme using ES-MDA with five iterations
and 100 candidate models per iteration to update the underlying uncertain parameters
towards matching both production and seismic data. For all candidate models, we resorted
to a full physic reservoir simulator to run fluid flow simulation and obtain saturation data
on monitor dates as well as average bottom-hole-pressure (WBPC3), flow rates (oil and
water), and water cut. A set of three experiments were run to show the capabilities of
the proposed method. We considered a scenario where only production data were used
for history matching (NO4D), a scenario where the Hausdorff distance [37] was used to
measure waterfront position mismatches (4DHDF), and finally, our proposed method,
using streamlines for distance-to-front measurement (4DSLN).
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Figure 5. Observed seismic information for the ground truth model (a) and initial ensemble grid block
average of swept area (b), where the spread of initial candidate solutions can be observed. Colormap
represents block average binarized ∆SW measured over the initial ensemble (dimensionless).

Figure 5a shows the observed seismic data in a binarized form (initial minus monitor
date saturation) for one of the provided seismic monitors of the experiment and also the true
front that we intended to match. Figure 5b shows the distribution of the simulated swept
regions provided by the same binarized saturation information but averaged over all grid
blocks for all members of the ensemble. We observed that there was a significant spread of
the simulated swept regions (blue to red variation, Figure 5b), especially to the north of the
reservoir where the model was less swept at this stage of the production schedule.

The synthesized results of the three ran experiments are presented in Figure 6, where
we can observe the match of the swept regions at the end of the update procedure. From the
obtained results, we can see that the absence of additional seismic information of the NO4D
method provided a poor match concerning the observed seismic data (Figure 6b). The
initial and final spreads of the swept regions also did not vary substantially, although we
arrived at a fairly good match concerning the production data (Figure 7a). This reinforces
the idea that seismic data integration is crucial for history matching as, while the solutions
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provided might be considered moderately accurate in terms of matching well production
data, they are, in fact, inaccurate in terms of matching real waterfront movement along the
reservoir as the reservoir is being produced, greatly reducing any forecasting capabilities
of the model. For the case of the experiment using 4DHDF, the final solution was a close
match when compared to the observed seismic information (Figure 6c). This was also
accompanied by a very good match in production data (Figure 7b). However, for cases
where the grid cell count is higher, the applicability of the method is debatable. In fact, we
were able to run the experiment on this simplistic and small 3D model, but the method
became more unfeasible with increased model sizes at operational levels (often in the order
of millions of cells). Under such conditions, calculating the ensemble update can rapidly
become computationally intractable as it requires the inversion of a square matrix at least
the size of the grid. Regarding the proposed method (4DSLN), we observed that the final
match of the swept regions was nearly identical to the one obtained by the 4DHDF method
(Figure 6d), with the same being observed on the match of production data (Figure 7c).
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Observed seismic information for the ground truth model (a) and final ensemble grid block average
of swept areas for NO4D (b), 4DHDF (c), and 4DSLN (d). Colormap represents block average
binarized ∆SW measured over the final ensemble (dimensionless).
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Figure 7. Evolution of production match quality from initial (blue) to final (red) ensembles, along
with the available observed production data and associated uncertainty (black error bars). NO4D (a),
4DHDF (b), and 4DSLN (c).
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Figure 8 further explores the obtained results by showing the difference (grid block
average) obtained between the swept regions of the final ensemble and the ground truth
for all three ran experiments. We can again see that not using seismic information renders
the final solution far from the truth (Figure 8a), whereas using seismic data provides a
much closer match (Figure 8b,c). Moreover, we can see that using the proposed streamlined
distance-to-front method provides very similar results when compared to 4DHDF, the
advantage of using a substantially reduced amount of data (Figure 9).
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Figure 9. Boxplot for RMSE of all production data mismatches (P1, P2 with WWCT, WWPR, and
WBPC3). The blue bounding boxes represent the 25 and 75% quantiles; the whiskers are the extremes,
the red line in the box is the median, the black dot is the mean, and the red plus signs are the outliers.

Regarding the production match of the field-producing wells (two producers and
one injector), Figure 8 shows the final obtained results in terms of well water cut (WWCT)
for producer P2. Well P2 can be taken as a sufficient example as in all cases, the same
match quality was observed for all present wells in the model. We can see that in all ran
experiments, a reduction of the production ensemble spread was observed. As mentioned
previously, and as can be observed in Figure 8, not using seismic data can potentially lead
to a final ensemble where production data matching is improved; however, the inclusion
of seismic information drastically increases the quality of the final match. In fact, both
experiments using seismic data information for the update procedure provided very good
matches with similar qualities when coupled with the 4DSLN method, obtaining residually
improved results when compared to 4DHDF.

11



Energies 2023, 16, 7984

The results for all ran experiments are further demonstrated in Figure 9, depicting the
root mean square error (RMSE) defined as follows:

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (2)

where n is the number of observations, and ŷ and y are, respectively, the predicted and ob-
served values. Figure 9 shows the minimization of the obtained production data mismatch
for all run experiments. Immediately, we can observe that although the incorporation
of production data considerably reduced production data mismatch relative to the prior
ensemble (NO4D), the added value for the inclusion of seismic data was reflected in the
ability to further improve predictions (4DHDF and 4DSLN). We also observed that the final
production match quality was similar for both methods using seismic information.

In order to examine the quality of the updates to the facies model, we compared the
obtained solutions to the elected ground truth model. In Figure 10, we show the probability
map for good facies (shown in dark red) in layer 3 of the reservoir for the initial and final
ensembles. Immediately, we can observe the potential for the inclusion of seismic data,
as the experiment that used only well production data to constrain the update (NO4D)
was unable to capture the spatial distribution patterns of the true model. Furthermore,
the convergence towards the optimum solution is hardly visible, as almost no change
occurred between the initial and final ensembles. This information, when considering the
somewhat satisfactory results for production mismatch shown in Figures 6b and 8a for
the same experiment, serves as a good example to stress the importance of using seismic
information, illustrating a case of non-uniqueness observed in history matching. In fact,
for the NO4D experiment, while many solutions may adequately fit the production data,
the lack of seismic information to further constrain the update procedure will render the
final ensemble of models less reliable for forecasting future production data. On the other
hand, we can observe that 4DHDF and 4DSLN are able to arrive at a final ensemble that
better resembles the true model. Using a full grid distance measurement, 4DHDF was able
to accurately capture the spatial distribution of the facies locations in the final ensemble.
Similarly, 4DSLN was able to arrive at a final ensemble that captured the most relevant
spatial distribution patterns for fluid flow prediction, namely the connection of the North-
East and South-East regions to the center of the model, with the advantage of using a much
lower amount of seismic data for this purpose.

3.2. Realistic 3D Case

For the final example, we applied the proposed method to a realistic 3D case based on a
real field, where the application of 4DHDF could not be achieved due to the large amount of
data. The reservoir is a turbiditic depositional environment located in offshore Africa. The
grid size was 194 × 203 × 48 with cell dimensions of 50 × 50 × 3 m on average over the i, j,
and k directions. The field was produced by eight producing wells, and five injector wells
provided pressure support. Twelve years of historical oil and water production, as well as
bottom-hole pressure, were available. The model had 13 different flow units (Figure 11)
populated by a total of three different facies types with different spatial continuity patterns
(realizations are obtained using the TGS algorithm), with each facies type having specific
petrophysical property distributions and dynamic parametrizations according to the quality
of the rock they represented (poor to good sands). The reservoir was compartmentalized
by a total of 25 faults with varying transmissibilities.

For our experiment, we considered both geological and engineering uncertain pa-
rameters. Facies locations over the different flow units were considered to be uncertain
geologic parameters, and a set of connectivity regulating parameters (fault transmissibili-
ties, sedimentological and aquifer connection, and region transmissibilities), pore volume
and productivity multipliers, were assumed to be uncertain engineering parameters, 28 in
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total. Table 1 presents a summary of the uncertain parameters as well as their assumed
uncertainty bounds.
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13 in total.
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Table 1. Uncertain parameters and their associated uncertainty bounds.

Parameter Type Count Minimum Maximum

Pore Volume Multipliers 13 0.85 1

Fault Transmissibility Multipliers 10 1 × 10−6 1

Region Transmissibility Multipliers 3 1 × 10−6 1

Productivity Index Multipliers 2 0.001 1

Total 28 Parameters

We generated an initial ensemble of 100 equiprobable candidate models using TGS
to model facies locations based on variograms estimated from well log data. To sample
over the uncertain engineering parameters, we resorted to Latin hypercube sampling based
on the available prior knowledge. An extra model, elected as the ground truth, was also
generated based on the same geological and engineering prior assumption. The location of
the true seismic fronts at both monitor dates was assumed to be obtained from a standard
seismic inversion procedure followed by additional processing and interpretation and
corresponding to the information obtained after 6.2 and 9.7 years of fluid flow simulation
on the ground truth model. The control parameters for the fluid flow simulation were set
to operate the producers at historic reservoir volume rates and the injectors at historic fluid
rates. The interpreted front locations were assumed to have uncorrelated errors with a
standard deviation of 200 m (around four grid blocks).

Figure 12 shows the initial water saturation on a randomly selected model from the
initial ensemble and the corresponding streamlines obtained on both monitor dates. The
interpreted waterfronts for the ground truth model are also superimposed on the image.
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Figure 12. Top view of the initial Sw (blue—0 to red—1) for a realization of the realistic 3D. Well
locations (circles with black borders) and two arbitrarily interpreted fronts (dashed black lines)
extracted at two different seismic monitoring dates (a). Post-processed fluid flow streamlines (colors
represent the time of flight) obtained at the dates of the first and second seismic monitors (b,c).

In the same randomly selected model from the initial ensemble, using a threshold
to binarize the change in saturation at the seismic monitor dates, we obtained the swept
regions on each monitor date. Figure 13 shows the swept regions and front locations of
the same randomly selected model on both monitor dates against the ones obtained from
the ground truth. The mismatch between the observed and simulated fronts was observed,
resulting from excessive water sweeping over the model.
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Figure 13. Top view of the front mismatch at monitor date one (a) and two (b). The property shown
(dark gray) is the simulated response in terms of binarized ∆Sw along with the associated simulated
front (red) obtained for this realization.

We set up the experiment using an ES-MDA update scheme of the 100 members of the
initial ensemble over five iterations. Figure 14 compares, at the first monitor date and on
layer 12 of the model, the true front location with a random unmatched realization from the
initial ensemble (center) and the best solution found on the final ensemble. We can observe
that the final best-matching solution is a clear improvement when compared to the initial
guess example. Further, we superimposed the water cut ratio of a producing well (PROD
4) associated with the front arrival at the date of the seismic acquisition. The best matching
realization (shown in red) was able to match the water cut ratio perfectly. We can also see
that the front arrival time, closely related to the date of the seismic monitor (red dashed
line), matches the water breakthrough of the well, meaning we successfully matched the
correct time of waterfront arrival and the correct water volume production.
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By comparing the swept regions and front location of the ground truth with the best-
obtained solution, we observed a very good match concerning the front location and the 
production data of an associated well at the true front location (PROD 6). 

A summary of the run, in terms of front location matches, from initial to final ensem-
ble is illustrated in Figure 16. We can see the average and standard deviations of the dis-
tances measured to the front at every grid block point where the true front is located (up). 

Figure 14. (a) Ground truth Sw along with the associated true front (black) for the first monitor date.
(b) Example of simulated Sw of a randomly selected model from the initial ensemble, highlighting an
excessive water sweep going over the front (red arrows). (c) Final best-matched model of Sw along
with WWCT production curves for PROD4 (c-top). Injectors producers are represented respectively
in blue and red circles.

The same match quality was observed for the second monitor date (Figure 15) on a
different layer of the reservoir (layer 14).

By comparing the swept regions and front location of the ground truth with the best-
obtained solution, we observed a very good match concerning the front location and the
production data of an associated well at the true front location (PROD 6).
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Figure 15. (a) Ground truth Sw along with the associated true front (black) for the second monitor
date. (b) Final best-matched model of Sw along with WWCT production curves for PROD6 (b-top).
Injectors producers are represented respectively in blue and red circles.

A summary of the run, in terms of front location matches, from initial to final ensemble
is illustrated in Figure 16. We can see the average and standard deviations of the distances
measured to the front at every grid block point where the true front is located (up). We
can also observe that before and after history matching, the final obtained front locations
much more closely matched the truth (as they are closer to 0) and that, at the same time,
the uncertainty over the final ensemble of solutions was substantially reduced.
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in regard to the mean distances measured over the ensemble is represented in gray shade. In the
bottom, the initial and final grid block average (red and black dots) and standard deviation (red and
grey area) of distance-to-front obtained for all layers of the model where a front was interpreted.

Regarding the convergence on uncertain parameters over the run, Figure 17 shows the
probability of facies locations from the initial to final ensemble, compared to the ground
truth. We can immediately observe that, for this particular model, the most predominant
facies type is facies 1 (in blue), taking the bulk of the task of governing fluid flow production
and reservoir connectivity. The final ensemble shows the convergence towards the true
locations of the three facies types, but most importantly, the correct spatial continuity and
connectivity patterns that can be observed in the true model.
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Figure 17. Summary of the probability of rock type obtained from the run experiment. The initial
(top) and final (middle) matches of facies type (blue, green, red) match are compared against the
ground truth (bottom).

An example of the convergence that can be observed on selected uncertain engineering
parameters for the experiment is shown in Figure 18. During the course of the run, we
observed the convergence of the parameter distributions towards true values at the same
time that the misfit was also being reduced.

The same can be seen for the production plots of water cut and bottom-hole pressure
for all producing wells of the model (Figure 19). We can clearly observe the gradual
reduction of the mismatch from the initial to the final iteration, with the final ensemble
providing good match quality over all wells.
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Figure 18. Scatter plot of the parameter value (x-axis) vs. misfit (y-axis) for the convergence of a
selected set of parameters (true value in green circle) from the initial (blue) to the final iteration (red).
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Figure 19. Run evolution in terms of production match for WWCT (first and second rows) and
WBPC3 (third and fourth rows) from the initial (blue) to the final iteration (red), along with the
observations (black error bars) and acquisition date of used seismic monitors (dashed green lines).
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4. Conclusions

A novel parametrization scheme was proposed to quantify the differences between
simulated and measured seismic data in terms of distances between fluid front positions
measured by streamlines. The methodology was presented with the help of a simplistic
2D case and applied both on a synthetic and realistic 3D case with seismic and production
data, highlighting the advantages and good performance of the proposed scheme when
compared to other commonly used schemes. Although the presented cases were of synthetic
and semi-synthetic nature, the application of the proposed method to real-case scenarios
should not inherently present any disadvantages. Naturally, the success in achieving
positive outcomes, as with all methods, hinges on the quality of the models and the data
at hand.

The obtained results show that the proposed parametrization can achieve similar
results when compared to other methods resorting to a reduced amount of data. The
streamlined information used for distance measurement can be easily obtained as post-
processing of standard full-physics simulation outputs.

Despite the advantages of using streamlines for distance measurement, there could
be some potential disadvantages when processing a large number of streamlines, as could
be the case with very large models. However, these challenges can be mitigated through
parallelization methodologies or, for example, by refining the way streamlines are post-
processed. For instance, focusing the processing on the cells where fluid fronts are located
can significantly speed up the process. Some limitations in terms of precision may poten-
tially arise when the models, and consequently the simulated fronts, are too far from the
ground truth. This is due to the inherent requirement of obtaining streamlines that intersect
both fronts in order to accurately compute distance data through them. Despite this, any
missing information can be easily complemented by other distance metrics.

The capabilities of the method were not only showcased on a simplistic 3D model
with simple reservoir conditions and production schedules but also on a more complex
and realistic 3D model, where the Hausdorff distance method becomes computationally
intractable, having obtained encouraging results both on fluid front and production data
match. The method is expected to be effectively applicable to a range of reservoir types
beyond those demonstrated in this study. Furthermore, the parametrization scheme is able
to be adaptable and functional across diverse geological settings.

While the application of the innovative parametrization scheme was showcased within
the framework of assisted history matching using an ensemble history matching method-
ology (ES-MDA), its application can be easily extended to any other history-matching
workflow or even to different domains of application other than hydrocarbon exploration,
e.g., CO2 monitoring.

Future areas of research may involve advancements in how streamlines are calculated
to be fit-for-purpose for the type of methodology presented here. This may include methods
relying on the focusing of information on regions pertaining to both the simulated and
real fronts. Another avenue of investigation that could prove interesting is implementing
localization techniques using information derived from streamlines. This approach could
potentially enhance the method’s performance by refining the accuracy and efficiency of the
parameterization scheme, especially in complex geological settings where the alignment of
simulated and real fluid fronts is critical. These developments could lead to more nuanced
and effective history matching in reservoir simulation, thus broadening the scope and
applicability of the proposed method.

5. Patents

Berthet, P., Trani, M. [60]. A method for obtaining at least one physical property of a
subsurface volume of a hydrocarbon reservoir over time (European priority Application,
filing date 4 December 2020, publication number EP4009086).
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Appendix A

First introduced by Emerick and Reynolds [51,52] as an extension to the standard ES
method, the multiple data assimilation (MDA) method was developed with the purpose of
enhancing the performance of the ensemble Kalman filter [38] and ensemblesmoother [58]
under nonlinear conditions. In this iterative approach, all data are assimilated multiple
times by applying an inflation parameter αk to the covariance matrix of measurement
errors. This was proven to be equivalent to the single data assimilation case for linear-
Gaussian systems, given that the measurement error covariance matrix is appropriately
scaled [51,52].

Therefore, considering the standard ES update equation, the inflation parameter αk is
included as follows:

mk+1
j = mk

j + Ĉk
md

(
Ĉk

dd + αkCd

)−1(
dobs − g

(
mk

j

)
+ ej

)
, (A1)

where k + 1 and k are the indexes of the iterative procedure, where k = 1, 2, . . . , Na with

Na being the total number of assimilations; Ĉf
md is the cross-covariance matrix between the

a priori vector of model parameters, mf, and the predicted data vector, g
(
mf); Ĉf

dd is the
covariance matrix of the predicted data of size Nd ×Nd; dobs is the vector of observed data;
ej is the perturbation vector added to the observed data; Cd is the covariance matrix of the
observed data error of size Nd ×Nd.

To implement ES-MDA, the values of the inflation factor αk in each iteration need to
be defined. The necessary condition for choosing the inflation factor is the following:

Na

∑
k=1

1
αk

= 1. (A2)

A lack of consensus exists on how to choose the values of αk, with αk = Na being
commonly used. On the same note, the number of iterations Na must be set beforehand,
with generally accepted values ranging from 4 to 10 iterations. Improved versions of
the method have been proposed where αk and Na are chosen automatically [59]. For the
present work, the authors opted to use αk = Na = 5.
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Abstract: This work presents an ensemble-based workflow to simultaneously assimilate multiple
types of field data in a proper and consistent manner. The aim of using multiple field datasets is to
improve the reliability of estimated reservoir models and avoid the underestimation of uncertainties.
The proposed framework is based on an integrated history matching workflow, in which reservoir
models are conditioned simultaneously on production, tracer and 4D seismic data with the help
of three advanced techniques: adaptive localization (for better uncertainty quantification), weight
adjustment (for balancing the influence of different types of field data), and sparse data representation
(for handling big datasets). The integrated workflow is successfully implemented and tested in a 3D
benchmark case with a set of comparison studies (with and without tracer data). The findings of this
study indicate that joint history matching using production, tracer and 4D seismic data results in better
estimated reservoir models and improved forecast performance. Moreover, the integrated workflow
is flexible, and can be extended to incorporate more types of field data for further performance
improvement. As such, the findings of this study can help to achieve a better understanding of
the impacts of multiple datasets on history matching performance, and the proposed integrated
workflow could serve as a useful tool for real field case studies in general.

Keywords: joint history matching; iterative ensemble smoother; production, tracer and 4D seismic data

1. Introduction

In the petroleum industry, reservoir simulation plays an important role for the decision-
making process of oil field developments, where a common practice is to apply a closed-loop
workflow [1] to develop and manage reservoir performance under different scenarios and
conditions, as shown in Figure 1. This type of simulation is commonly used to predict
and/or optimize future oil, gas, and water productions in a field (referred to as system).
However, uncertainties and simplifications are involved in the construction of reservoir
models (system models), due to the lack of sufficient information in, e.g., geology, seismic
data, well logs and tests. Consequently, reservoir parameters (e.g., permeability, and poros-
ity) are not accurately obtained, which makes reservoir models uncertain for production
forecasts, and the corresponding decision-making process unreliable for reservoir manage-
ment. In order to improve the reliability of production forecasts, one needs to condition
reservoir models on sensored field datasets, through a process known as history matching
in the literature. In this way, the estimated parameters of reservoir models can generate
simulated outputs that are as close as possible to the field datasets.

In a standard history matching process, the field data used to estimate uncertain reser-
voir model parameters are well production data, which include bottom hole pressure, and
oil, gas, and water rates. These kinds of measurements are frequent in time and relatively
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cheap in terms of acquisition cost, but their usefulness is often somewhat insufficient for
the purpose of reducing uncertainties in production forecasts, due to their limited spatial
coverage of the reservoir [2,3]. In addition to production data, other types of field data, e.g.,
inter-well tracer and 4D seismic data, can be used as complementary sources of information
to further reduce the uncertainties-hence improve the reliability-of reservoir models, which
constitutes the focus of the current study.

Figure 1. Closed-loop reservoir development and management [1].

Inter-well tracer test (IWTT) has been proven as an efficient technology to obtain
information of fluid dynamics, well-to-well communication, and heterogeneities such as
fractures and flow barriers (for a review of tracer studies see [4]). In the tracer technology,
inert compounds (e.g., radioactive, chemical, or natural tracers) are used to label water or
gas from specific wells, and trace fluid movements as the tracer flow moves through the
reservoir together with the injection fluid. After the first breakthrough in a producer, IWTT
provides a reliable and definite information of a well-to-well communication.

On the other hand, 4D seismic data contain much more information in space, especially
about pressure and fluid saturation changes. Therefore, seismic data provide another
useful source of information for understanding reservoir behavior, and identifying zones
of remaining oils [5]. When used in combination with production and tracer data, they
could further improve the qualities of reservoir models through history matching, and thus
generate more reliable production forecasts for better decision making.

Despite the appealing features of tracer and 4D seismic data, they are still often quali-
tatively employed for reservoir monitoring and management in the petroleum industry,
but are relatively less used in a quantitative way, due to various reasons arising from
both theoretical understandings and practical applications to jointly match both types of
field data in a coherent way. Tracer has been incorporated into history matching by a few
authors [3,5–10]. Meanwhile, recently, several authors have demonstrated the benefits of
incorporating seismic data into a history matching process [2,11–15]. Nevertheless, method-
ologies for jointly history matching production, tracer, and 4D seismic data have not been
previously studied in the literature yet. Thus, there is a potential to include both tracer and
4D seismic data into a history matching workflow to further reduce the uncertainties and
improve the reliability of reservoir models.

In the literature, there are different schools of approaches to tackling history matching
problems. For instance, history matching can be formulated as a conventional minimization
problem, in which an iterative algorithm is used, in combination with certain geoestatistical
modelling methods [16,17], to find the best matched model(s). Among the iterative history
matching algorithms, ensemble-based methods have received immense attention in the
petroleum industry, for their convenience in implementation and computational efficiency
to handle big models and big data sets when compared to other conventional methods [18].
For instance, the ensemble Kalman filter (EnKF) introduced by [19] was initially extensively
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used for history matching problems [20,21]. As a sequential algorithm, however, the EnKF
requires frequent simulator restarts, which may cause significant additional simulation
time and other practical challenges (e.g., more prone to failed reservoir simulations) [22].
To avoid these noticed issues, ensemble smoother (ES) [23] and its iterative versions [24–28]
can be adopted instead. In comparison to the EnKF, ES and iterative ES (IES) do not need
simulator restarts and have less model variables to update during history matching, and are
practically easier to implement than the EnKF for history matching problems. In addition,
various numerical results (e.g., [25,26]) indicate that the IES tends to perform better than
the EnKF and the ES. As a result, currently, the IES appears to be among the state-of-the-art
approaches to history matching problems, and is thus adopted in the current work.

The recent developments of ensemble-based history matching algorithms make the
quantitative use of multiple field data sets easier and faster. Despite this technological
advancement, to the best of our knowledge, there are no existing studies demonstrating
the benefits of simultaneously assimilating production, tracer and 4D seismic data into
reservoir models through an ensemble-based history matching algorithm. As a main
focus (and contribution) of this study, our primary objective is to demonstrate the benefits
of assimilating tracer and 4D seismic data (in addition to production) in an integrated,
ensemble-based history matching workflow, through a 3D field-scale case study.

This work is organized as follows: First, we provide details of the integrated ensemble-
based history matching workflow, which includes the formulation of an IES algorithm and
a correlation-based adaptive localization scheme. Second, we apply the history matching
workflow to a 3D field case, the Brugge benchmark [29], and examine the performance of
the proposed workflow. Finally, we conclude the work with some technical discussions
and our future research plan.

2. Ensemble-Based History Matching Workflow

Figure 2 illustrates the flowchart of the integrated history matching workflow using
multiple types of field data. To formulate the history matching problem, we assume there is
a forward simulator g (e.g., a numerical reservoir and/or seismic simulator) which outputs
a Nd-dimensional vector containing the simulated data dsim, given a Nm-dimensional
vector of reservoir model m as the input:

dsim = g(m). (1)

Note that, in Step 1 of Figure 2, the forward simulator generates an ensemble of simulated
production and tracer data, with an ensemble of input reservoir models, while the forward
seismic simulator produces an ensemble of simulated amplitude-versus-angle (AVA) data,
with the associated petro-elastic model (PEM) and AVA at Steps 2 and 3, respectively, based
on the simulated pressure and saturation profiles from the forward reservoir simulator, and
the simulated velocities and density profiles from the PEM, respectively. The formulation
of the forward seismic simulator is presented in Appendix A.

Furthermore, we have the observed (field) data do which are obtained through the
following noisy observation system:

do = g(mtrue) + δ, (2)

where mtrue stands for the ground-truth model (unknown in a real reservoir), g(mtrue) for
the true output of the forward model, and δ for a Nd-dimensional vector of contamination
noise that may be present in the course of field data acquisition, which are assumed to
follow a multivariate Gaussian distribution with zero mean and covariance (referred to as
measurement error-covariance matrix) represented by Cd, i.e., δ ∼ N(0, Cd).

With the above observation system, in Step 4 of Figure 2, a history matching algorithm
is then adopted to find one or multiple reservoir models m whose simulated output g(m)
matches the observed data do reasonably well. In practice, when the size of the observed
data is much smaller than of the reservoir model parameters (e.g., Nd � Nm), history
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matching is an under-determined and high-dimensional inverse problem, which makes
the history matching problem challenging, in the sense that in principle there could exist
an infinite number of reservoir models matching the observed data equally well (non-
uniqueness), due to the large degree of freedom (DOF) from the model side [30].

Figure 2. Integrated history matching workflow with multiple types of field datasets.

To mitigate this problem, one can either introduce a certain regularization term in
the form of a least-square problem, or increase the number of field data in history match-
ing [3]. Here we consider both aforementioned ideas, by including both a regularization
term into a relevant cost function (cf. Equation (3)), and multiple types of field data into
history matching.

Practical challenges may arise with multiple types of field data in history matching.
For instance, different from production and tracer data, 4D seismic data are less frequent in
time, but with a much larger size. Thus, when assimilating large datasets, computational
issues regarding storage memory and CPU time may emerge. Meanwhile, large datasets
could have a dominant influence on model updates in history matching. Moreover, with
large field datasets, ensemble-based history matching methods are often prone to ensemble
collapse (meaning that an ensemble of reservoir models also collapses into a single one,
with few varieties among reservoir models), and thus tend to under-estimate model uncer-
tainties [15]. Our approaches to handling the aforementioned issues include conducting
a sparse representation of seismic data for dimension reduction, adjusting the relative
weights among different types of field data to balance their influence on history matching,
and conducting correlation-based localization to mitigate the issue of under-estimated
uncertainties, which will be elaborated in Section 3 later.

2.1. Iterative Ensemble Smoother Based on a Regularized Levenburg–Marquardt Algorithm

As history matching problems are typically non-linear, a certain iterative method is
needed to deal with the non-linearity. In the current work, we adopt one such method,
called iterative ensemble smoother based on the regularized Levenburg–Marquardt algo-
rithm (IES-RLM) [26].

In IES-RLM, one aims to find an ensembleMi+1 ≡ {mi+1
j }

Ne
j=1 of reservoir models

that approximately minimizes a nonlinear-least-squares (NLS) cost function, as follows:

arg min
{mi+1
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where i stands for the index of iteration step, j for the index of ensemble member, Ne for
the ensemble size, and Ci

m for the sample model error-covariance matrix with respect to
the prior ensembleMi ≡ {mi

j}
Ne
j=1, in the form of Ci

m = Si
m(Si

m)T, with the squared-root

matrix Si
m defined in Equation (5).
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The NLS-type cost function in Equation (3) contains two terms: the first one (called
data mismatch term) calculates the difference between observed and simulated data, and
the second one (called regularization term) imposes a constraint that aims to prevent a large
deviation of the updated model mi+1

j from its predecessor mi
j. Here, the regularization

form is known as Tikhonov regularization [30], but one can also use other types of regu-
larization [27]. Meanwhile, γi > 0 in Equation (3) is a coefficient influencing the relative
weight between the data mismatch and regularization terms, whose value changes over
the iteration steps [26]. In this optimization problem, the goal is to minimize the average
of an ensemble of cost functions at each iteration step, until a certain stopping criterion is
reached. The stopping criteria used in this work consist of the following three ones: (1) the
maximum number of iteration is reached; (2) the relative change of data mismatch values
in-between two consecutive iteration steps is less than 0.01%; (3) the data mismatch value
at a given iteration step is lower than the number of observed data points (Nd) times a
factor (1 in this study).

By minimizing the cost function in Equation 3, one can obtain the following approxi-
mate model update formula:

mi+1
j = mi

j + Si
m
(
S̃i

d
)T
(

S̃i
d
(
S̃i

d
)T

+ γiI
)−1

∆d̃i
j, (4)

where the square root matrix Si
m in the model space is defined as

Si
m =

1√
Ne − 1

[
mi

1 −mi, · · · , mi
Ne −mi

]
; (5)

mi =
1

Ne

Ne

∑
j=1

mi
j. (6)

Similar to Equation (5), one can define a square root matrix Si
d in the data space as

Si
d =

1√
Ne − 1

[
g
(
mi

1
)
− g

(
mi), · · · , g

(
mi

Ne

)
− g

(
mi)]. (7)

In many practical history matching problems, the observations may contain different
types of field data in different orders of magnitudes. To mitigate potential issues related to
these imbalanced magnitudes, one can introduce a normalization procedure to quantities

in the observation space, so that Si
d and

(
do

j − g
(
mi

j
))

are normalized by a square root

C−1/2
d of Cd (Cd = C1/2

d (C1/2
d )T) to arrive at the following formulations:

S̃i
d = C−1/2

d Si
d, (8)

∆d̃i
j = C−1/2

d

(
do

j − g
(
mi

j
))

. (9)

In a practical implementation of the model update formula Equation (4), numerical sta-
bility could be an issue when inverting the matrix (S̃i

d
(
S̃i

d
)T

+ γiI) (especially when using
4D seismic data), since the data size Nd is typically much larger than the ensemble size Ne.
Therefore, a common procedure introduced in the literature to obtain a numerically more
stable algorithm is to carry out an inversion for a certain matrix with a lower dimension
(less than the ensemble size Ne) by applying a Truncated Singular Value Decomposition
(TVSD) to the matrix S̃i

d [24,31]. Suppose that, through the TSVD, one obtains

S̃i
d ≈ ÛiΣ̂i(V̂i)T, (10)

where Ûi ≡ [ui
1, · · · , ui

sv] and V̂i ≡ [vi
1, · · · , vi

sv] are unitary matrices consisting of the kept
left and right eigenvectors of S̃d, respectively, and Σ̂ ∈ Rsv×sv is a rectangular diagonal
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matrix containing in its diagonal a set of retained leading singular values. The integer sv is
chosen as suggested by [31] to keep the leading singular values that add up to at least 99%
of the total sum of squared singular values.

Inserting Equation (10) into Equation (4), one obtains a modified update formula

mi+1
j = mi

j + Si
mV̂i(Σ̂i)T

(
Σ̂i(Σ̂i)T

+ γiI
)−1

(Ûi)T∆d̃i
j. (11)

In the current work, the regularization parameter γi in Equation (11) is chosen as

γi = ηi × Tr
(
(Σ̂i)TΣ̂i

)
/Nsv, (12)

where ηi is a positive number that starts with a value of 1 and varies as a function of the
iteration step, following the rule in [26]; and the operator Tr calculates the trace of a matrix.

2.2. Correlation-Based Automatic and Adaptive Localization

In practical applications of ensemble-based methods, a limited number of reservoir
models is typically adopted to reduce computational cost. Under this setting, certain
numerical issues may arise when the number of reservoir models Ne is significantly smaller
than the sizes of reservoir model Nm and field data Nd. For instance, in the context of
ensemble-based history matching, the limited number of reservoir models can produce
spurious correlations between uncorrelated reservoir model parameters and observation
data, leading to unsatisfactory history matching performance due to the excessive reduction
of ensemble variability (e.g., ensemble collapse). To mitigate the negative effects of the
limited number of reservoir models, it is common to adopt an auxiliary technique, called
(Kalman gain) localization [32–35] for ensemble history matching algorithms.

For an easier explanation of the main idea behind localization, one can rearrange
Equation (11) as

mi+1
j = mi

j + Ki∆d̃i
j, (13)

with the Kalman gain matrix Ki ∈ RNm×Nd defined as

Ki = Si
mV̂i(Σ̂i)T

(
Σ̂i(Σ̂i)T

+ γiI
)−1

(Ûi)T. (14)

To conduct localization in Equation (13), one can replace the Kalman gain Ki by a Schur
product (element-wise product) between K and a localization matrix C, as in

mi+1
j = mi

j +
(

C ◦Ki
)

∆d̃i
j. (15)

Here, the localization matrix C is implemented as a tapering matrix, introduced to assign
different weights (tapering coefficients) for different combinations of reservoir model
parameters and field data points. Note that, in its conventional form, the Kalman gain
matrix needs to be computed at each iteration step, which could be a very high-dimensional
matrix, especially with big observation data (e.g., 4D seismic data) and big reservoir models.
To deal with the high dimensionality of Ki, one can choose to sparsely represent big
observation data in another domain, so as to obtain a much smaller number of data points
used in history matching, as will be explained later.

Equivalently, Equation (15) can be expressed as:

mi+1
j,k = mi

j,k +
Nd

∑
s=1

(ckski
ks)∆d̃i

j,s

= mi
j,k +

Nd

∑
s=1

ki
ks(cks∆d̃i

j,s).

(16)
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where cks ∈ [0, 1] and ki
ks stand for the elements of C and Ki on the k-th row and the s-th

column, respectively, ∆d̃i
j,s is the s-th element of ∆d̃i

j, and mi+1
j,k , and mi

j,k the k-th element

of the vectors mi+1
j , and mi

j, respectively.
There are different ways to compute the tapering coefficients, cks, in the literature.

Among them, a common approach appears to be distance-based localization [32,33,36],
in which the observations and reservoir model variables are assumed to have physical
locations, so that one can compute the distance between the physical locations of a model
variable and a field data point. This approach can work well in many situations. However,
there are some notable issues. For instance, the observation data need to have associated
physical locations, the tapering function is not adaptive to reservoir heterogeneities, and
the difficulty to “localize” non-local observations when there is a long range of correlations
between model variables and field data.

To deal with the aforementioned issues, ref. [35] proposed a correlation-based adap-
tive localization scheme. In this approach, the authors computed the tapering values
cks dependent on the sample correlation ρks between the k-th element of the initial en-
semble m0

j,k and the corresponding initial ensemble of the s-th innovation element ∆d̃0
j,s

(j = 1, 2, · · · , Ne). Then, they defined a threshold value θs dependent on the noise level
(standard deviation, STD) of the sampling errors. To compute the noise level, one can
assume that the members of the initial ensemble m0

j (j = 1, 2, · · · , Ne) are independent
and identically distributed (i.i.d). Due to the independence assumption, one can ob-
tain a new ensemble m̂0

j by randomly shuffling the indices j of m0
j . After that, one

can compute the sampling errors ρ̂s, which represents the correlation field between the
new ensemble m̂0

j (j = 1, 2, · · · , Ne) and the ensemble of the s-th innovation-data point

∆d̃i
j,s (j = 1, 2, · · · , Ne). Under the i.i.d assumption, m̂0

j and m0
j are independent. As a

result, one can take the correlation field ρ̂s as a realization of sampling errors of the sample
correlations between all model parameters and the s-th innovation-data point. Then, for
each type of petro-physical parameter and each field data point, one can estimate the noise
level σ̂s with respect to the sampling errors ρ̂s as follows [35]:

σ̂s =
median(abs(ρ̂s))

0.6745
. (17)

After that, one can further compute the threshold value θs by

θs = σ̂s

√
2 ln(#ρ̂s), (18)

where #ρ̂s is the number of elements in ρ̂s. Note that one should perform this procedure
for each type of petro-physical parameter and each field data point.

Finally, one can generate a smooth tapering function as in [35]

z =
1− abs(ρks)

1− θs
, (19)

where the k-th element ρks of ρs is the sample correlation between a k-th model variable
and the s-th field data point. Then, the variable z is used in the Gaspari–Cohn function
(Gaspari and Cohn, 1999)

cks = fGC(z) =





− 1
4 z5 + 1

2 z3 + 5
8 z3 − 5

3 z2 + 1, if 0 ≤ z ≤ 1
− 1

12 z5 − 1
2 z4 + 5

8 z3 + 5
3 z2 − 5z + 4− 2

3 z−1, if 1 < z ≤ 2
0, if z > 2,

(20)

to finally obtain the tapering coefficient cks.
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3. Application to the Brugge Field Case Study

The Brugge field model is a benchmark case based on a North sea field and developed
by [29], and it has the characteristics and complexities of reservoir models used in real
field case studies. The Brugge field consists of two zones, one with higher permeability
and porosity, and the other with lower permeability and porosity. The zone with high
permeability and porosity is located on layers 1–2 and layers 6–8, while the other with low
permeability and porosity is located on layers 3–5 and 9.

The dimensions of the reservoir model are 139 × 48 × 9, summing up to 60,048 grid-
block, in which 44,550 are active. Figure 3 shows the location of the field wells, including
30 wells (20 inner producers and 10 injectors). The producers are located more centrally in
the red area and labelled as BR-P-1-BR-P-20, while the injectors are located on the border
and labelled as BR-I-1-BR-I-10, with water being the only injected fluid.

The initial ensemble of this benchmark contains 104 realizations of reservoir mod-
els, from which we take the first realization (#1) as our reference (true) case to generate
the observed data. As for reservoir model variables, we consider porosity (PORO) and
permeability along x-, y-, and z- directions (denoted by PERMX, PERMY, and PERMZ),
summing up to 178,200 (4 × 44,550) uncertain petro-physical parameters to estimate in
history matching.

Figure 3. A numerical model of the Brugge field with initial oil saturation and distribution of
the wells.

For illustration, Figures 4 and 5 show the distributions of the porosity and the log
permeability (along the x-direction), respectively, on each layer from realization number
two (#2) of the initial ensemble. As reported in [29], the permeability and porosity are
linearly correlated, and the spatial distribution of the permeability is anisotropic, meaning
that permeability distributions along different directions may not be the same.

In history matching, we condition reservoir models on three types of field data, namely,
production, tracer, and 4D seismic data. The historical production data cover a period
of 3647.5 days, with production forecasts from 3647.5 to 9869.5 days, where reservoir
simulations are conducted using a black oil simulator (ECLIPSE©). The production data
include well bottom hole pressure (WBHP), well oil and water rates (WOPR, and WWPR),
summing up to 1400 data points. In addition, an injection of a water passive tracer pulse of
1.0 lb per STB is performed from day 749 to day 1812 in the injector well BR-I-6 (WTPCW06),
summing up to 400 data points. To mimic the presence of measurement noise in real
production data, here we also introduce certain zero-mean Gaussian white noise to the
reference production and tracer data, for which the STD of the noise is set as 10% of the

31



Energies 2022, 15, 6372

magnitude of each production or tracer data point, except for WBHP (for which the noise
STD is set as 50 psi for each data point instead).

Figure 4. Log permeability along the x-direction, with respect to realization #2 of the initial ensemble
from the Brugge field dataset.

Figure 5. Porosity with respect to realization #2 of the initial ensemble from the Brugge field dataset.

The 4D seismic data are obtained from three surveys: base (day 1), monitor #1 (day 991),
and monitor #2 (day 2999). From each seismic survey, the seismic attributes (AVA data) are
obtained using two different offset angles, near (10◦) and mid (20◦). The AVA data are in a
seismic domain and do not possess physical locations in the reservoir coordinate system,
meaning that the AVA data are in a different dimension compared to the dimension of the
reservoir model. In this work, the dimension of the AVA data is 139 × 48 × 176 for each
seismic survey, summing up to 7,045,632 data points in total [15]. We also introduce certain
zero-mean Gaussian white noise to the AVA data, with the STD of the noise set to 30% of
the magnitude as in [15].

In order to deal with the issue of big seismic data in history matching, and thereby
the required memory, we choose to sparsely represent the AVA data by first applying 3D
discrete wavelet transform (DWT) to the seismic data, and then (through a thresholding
operation) selecting a small set of the resulted leading wavelet coefficients as the observa-
tions in history matching. For brevity, we skip the details of the DWT-based sparse data
representation procedure. Readers are referred to [15,37] for more information.

From the algorithmic perspective, in the presence of the DWT-based sparse data
representation procedure, the effective observation system with respect to 4D seismic
data becomes

T (W(do)) = T (W(gs(mtrue)) +W(δ)), (21)

whereW and T denote wavelet transformation and thresholding operators, respectively,
and gs corresponds to the seismic forward simulator, as discussed in Appendix A. By
using the aforementioned formulation, we are able to represent the original 4D seismic
(7,045,632 data points) by a much smaller set of 1896 wavelet coefficients, as elaborated
in [15].
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Experiment Settings

In our previous work [3], we have shown that adopting both production and tracer
data in the Brugge benchmark helps improve the performance of history matching, in
comparison to the choice of using production data only. The current work can be considered
as a follow-up study, in which we aim to further examine the impacts of 4D seismic data
on history matching, and show the complexity of the joint history matching problem in
the presence of multiple types of field data. To this end, in the current work we conduct
two experiments complementary to those in [3]:

• Case 1: using production and 4D seismic data;
• Case 2: using production, tracer, and 4D seismic data.

In both cases, we apply the DWT-based sparse data representation procedure to the
seismic attributes obtained at three surveys for improved computational efficiency.

We use IES-RLM as the history matching algorithm, and equip it with the correlation-
based adaptive localization scheme described in Section 2.2. We start the IES-RLM algo-
rithm with η0 = 1, with the reduction and increment factor being, 0.9 and 2, respectively.
More specifically, if the average data mismatch is reduced at the current iteration step, then
the η value at the next iteration step is set to 0.9 times that at the current step; otherwise,
the next η value is set to 2 times the value of the current iteration step, and an inner loop is
then activated to search for lower data mismatch.

To simultaneously history match multiple types of field data, we introduce a normal-
ization procedure to adjust the relative weights assigned to different types of field data, as
in [2]. Following the formulation in [3], we substitute the measurement error-covariance
matrix Cd in Equation (3) by the Schur product diag(w) ◦ Cd, where w is a vector to be
specified later, and the operator diag(w) stands for a diagonal matrix whose diagonal
elements are taken from the vector w.

For production and tracer data, the elements of w are determined using the follow-
ing rule:

wk = (max(type(do
k))× p(type(do

k))/σk)
2, for k = 1, 2, · · · , Nd, (22)

where the operator max(type(do
k)) takes the maximum value of a given type of field data,

and type(do
k) stands for the type (WBHP, WOPR, WWPR or WTPCW06) of the k-th field-

data point. Note that the value max(type(do
k)) is normalized by the measurement-noise

STD σk associated with the data point do
k, aiming to mitigate potential problems caused by

the different orders of magnitudes of the field data. The notation p represents a percentage
value, which is set to 5% if do

k is a type of production data (WBHP, WOPR, or WWPR), and
to 20% instead if do

k is a tracer data point (WTPCW06).
For seismic data, the elements of w are determined using the following rule:

wk =

((
median(abs(Ŵ(do

k)))

0.6745

)/
σk

)2

, (23)

where Ŵ(do
k)) is the wavelet coefficient belonging to the finest sub-band ofW(do

k).
As aforementioned, 4D seismic data usually contain a large number of data points,

which can dominate the updates during history matching. To overcome this noticed issue,
a certain scaling factor s is introduced to adjust the relative weights assigned to production,
tracer and 4D seismic data during history matching. The scaling factor is determined using
data mismatch of the initial ensemble, which is computed using the following formula:

HMi
j = (∆d̃i

j)
T∆d̃i

j. (24)

By using Equation (24), one can compute the scaling factor as follows:

s = HM0
1/HM0

2, (25)
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where the overline denotes the mean value over the ensemble members, HM0
1 corresponds

to the mean data mismatch value of 4D seismic data, and HM0
2 to that of production data

(Case 1) or that of both production and tracer data (Case 2). Note that in Case 2, we group
production and tracer data together to compute the mean of data mismatch. To construct
the scaled observational data, one needs to multiply the observation data from group 2 by
the scalar s, so that ∆d̃i

j,2 is replaced by [∆d̃i
j,2 × s].

To assess uncertainty reduction for each type of petro-physical parameter (PERMX,
PERMY, PERMZ, and PORO) in the experiments, we use the Sum of Normalized Variance
(SNV) [38], as in

SNV =
Nm

∑
k=1

var(m f
k )

var(m0
k)

, (26)

where var(m0
k) and var(m f

k ) denote the variances of a particular type of petro-physical
parameter distributed on the k-th active reservoir gridblock of the initial and final ensembles,
respectively.

Finally, to assess and compare history matching performance, in terms of the discrep-
ancy between an estimated reservoir model m and the true one mtrue, we use the Root
Mean Squared Error (RMSE), as in

RMSE =
‖ m−mtrue ‖2√

Nm
. (27)

4. Results and Discussions

This section focuses on illustrating the performance of the history matching of the two
aforementioned experiments, in terms of data mismatch values during history matching
(which is calculated through Equation (24)) and forecast periods, and also uncertainty quan-
tification that is represented by mean, standard deviation, and RMSE of the final ensemble.

Table 1 summarizes the values of data mismatch (mean± STD) and RMSE (mean± STD)
with respect to the initial ensemble and the final ensembles of the two experiments’ settings
(Cases 1 and 2). In comparison with the initial ensemble, both experiments exhibit better
history matching performance, in terms of both lower data mismatch and RMSE values.
Comparing the results between the two different experiments shows that we achieve
slightly lower data mismatch for production data (−0.2389%), but at the cost of a slightly
higher data mismatch for 4D seismic data (+0.9862%), when jointly history matching
production, tracer, and 4D seismic data (Case 2). In terms of RMSE, Case 2 contains
lower average values for PERMY and PERMZ (−1.0565% and −3.3100%, respectively),
but slightly higher ones for PERMX and PORO (+1.6433% and +0.7905%, respectively). In
addition, the average RMSE values for all parameters together in Case 2 is slightly lower in
comparison with Case 1, which indicates that the overall history matching performance in
terms of RMSE tends to improve by adding more types of field data, but the complexity
of the history matching process tends to increase. Note that in Case 2, only inter-well
tracer from injector BR-I-6 was included in the history matching workflow, which provides
additional information regarding well-to-well connectivity for the producers (BR-P-3, BR-P-
4, BR-P-14, BR-P-15, BR-P-16, and BR-P-17), where tracer is detected. However, one cannot
expect a substantial reduction in the overall data mismatch and RMSE values due to the
use of the tracer data, as the inter-well tracer is usually detected in a limited number of
production wells in the reservoir and tracer from a single injector well may not be sufficient
to provide information to improve the connectivity of the entire reservoir. We discuss more
about reservoir connectivity in the forecast analysis.
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Table 1. Values of data mismatch and RMSE with respect to the initial ensemble, and the final
ensembles of Cases 1 and 2.

Initial Ensemble Case 1 Case 2

Production data mismatch (7.7861± 4.5592)× 103 1.1586× 103 ± 1.4297× 102

(−85.1196%)
1.1400× 103 ± 1.1465× 102

(−85.3585%)
Tracer data mismatch (3.9620± 2.6721)× 101 6.0112± 9.3504 (−84.8279%)

4D Seismic data mismatch (9.2270± 3.4727)× 103 (6.3050± 1.6124)× 103

(−31.6679%)
(6.3960± 1.6680)× 103

(−30.6817%)
RMSE (PERMX) 1.5578± 0.5356 1.0284± 0.2160 (−33.9838%) 1.0540± 0.2332 (−32.3405%)
RMSE (PERMY) 1.5524± 0.5315 1.0686± 0.2280 (−31.1646%) 1.0522± 0.2286 (−32.2211%)
RMSE (PERMZ) 1.7523± 0.5454 1.2992± 0.2620 (−25.8574%) 1.2412± 0.2276 (−29.1674%)
RMSE (PORO) 0.0253± 0.0039 0.0240± 0.0034 (−5.1383%) 0.0242± 0.0035 (−4.3478%)

RMSE (all parameters) 1.4067± 0.4634 0.9866± 0.2011 (−29.8642%) 0.9700± 0.1961 (−31.0443%)

For illustration, Figure 6 reports the ensemble of data mismatch values obtained at
each iteration step, in the form of box plots in Cases 1 and 2. In both cases, data mismatch
values tend to decrease over the iteration steps for all types of field data. In addition, one
can observe that main reductions of data mismatch values take place within the first few
iteration steps for production data, and afterwards the changes of data mismatch values
are less substantial. These main reductions in data mismatch are related to the changes of
well bottom hole pressure (WBHP), which is strongly reduced in the first few iterations
steps. Furthermore, the IES-RLM algorithm is close to convergence after 10 iterations steps,
which is the maximum number of iterations used in the case studies.

Similarly, Figure 7 shows box plots of RMSE values in the two case studies, for PERMX,
PERMY, PERMZ and PORO, respectively. As one can see, the average RMSE values also
tend to decrease over the iterations steps. Consistent with Table 1, the results show that
jointly history matching production, tracer and 4D seismic data (Case 2) tends to result in
lower mean RMSE values for PERMY and PERMZ, but slightly higher ones for PERMX
and PORO, in comparison with the choice of history matching both production and 4D
seismic data (Case 1).
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Figure 6. Box plots of data mismatch with respect to production (left), tracer (middle), and 4D
seismic (right) data at different iteration steps, where the vertical axes are in the logarithmic scale.
The experiment results are represented by a colour scheme, in which the results of Case 1 correspond
to red color; whereas those of Case 2 to green. Note that Case 1 does not use tracer data. Therefore,
there is no corresponding result (in red) in the middle sub-figure.
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Figure 7. Box plots of RMSE values at different iteration steps, with respect to porosity (upper left),
and permeability in x-, y-, and z-directions (upper right, bottom left, and bottom right, respectively).

Figure 8 presents the profiles of WOPR and WWPR from well BR-P-15 and BR-P-16,
with respect to the initial and final ensembles in the two case studies. In comparison to the
initial ensemble, both cases indicate significant improvements in terms of reduced data
mismatch and uncertainty (in terms of ensemble variability). For instance, compared to the
choice of history-matching production and 4D seismic data (Case 1), one can see that the
inclusion of tracer in Case 2 tends to slightly reduce the variability of the final ensemble of
WWPR in BR-P-16, which means that the final ensemble follows the observed data better.

Similar to Figure 8, Figure 9 shows the profiles of tracer data injected in well BR-I-6
and recorded at wells BR-P-15 and BR-P-16, with respect to the initial and final ensembles
in the two case studies. Here, the history matching performance is reasonably good in
terms of data mismatch, e.g., for both production wells, history matching helps reduce data
mismatch of the final ensembles, which is consistent with Table 1.

In addition, Table 2 provides an assessment of parameter uncertainty reduction (in
terms of SNV) in the two aforementioned experiments. As one can see, in both case studies,
the final ensembles maintain substantial variability, meaning that the localization scheme
is useful for preserving ensemble variability. Consistent with Table 1, Case 2 contains
slightly lower SNV values for PERMY and PERMZ, while slightly higher ones for PORO
and PERMX, in comparison with Case 1. As tracer data are more correlated to permeability,
one may expect more uncertainty reduction for permeability than porosity. This is partially
reflected by the results in Table 2, where there is a relatively stronger uncertainty reduction
for PERMY and PERMZ (−0.51% and −3.09%, respectively).

Table 2. Parameter uncertainty reduction assessment in the different experiments.

Experiments SNV (PORO) SNV (PERMX) SNV (PERMY) SNV (PERMZ)

Case 1 92.43% 69.13% 69.79% 75.02%
Case 2 92.94% 69.27% 69.28% 71.93%

Another important aspect is to inspect the spatial distributions and standard deviations
of the petro-physical parameters after history matching. Figures 10 and 11 report mean
and standard deviation maps of the petro-physical parameters on layer 2, with respect to
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the initial and final ensembles in Cases 1 and 2. After history matching, one can see that
there are minor changes among different experiment results. Relative to the mean maps,
our history matching workflow is able to capture the main aspects of the initial ensemble
in both experiments. Meanwhile, the standard deviation maps of the two experiments
indicate substantial variability after history matching, which means that the ensemble
collapse is avoided.

Figure 8. Profiles of WOPR (first and third rows) and WWPR (second and fourth rows) from well
BR-P-15 and BR-P-16, with respect to the initial ensemble (first column), and the final ensembles
obtained in Case 1 (second column) and Case 2 (third column), respectively. In all sub-figures, the
orange curves correspond to the production data (without measurement noise) generated by the
reference model, red dots to the noisy measurements used in history matching, and blue curves to
the forecast production data of respective ensembles of reservoir models.
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Figure 9. Similar to Figure 8, but for the profiles of tracer data (WTPCW06) in wells BR-P-15 and
BR-P-16, with respect to the initial ensemble (left) and the final ensembles obtained in Case 2
(right), respectively.
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Figure 10. Mean maps for permeability in x-, y-, and z-directions (first, second, and third rows,
respectively) and porosity (last row) with respect to the initial ensemble, and the final ensembles
obtained in Case 1 and Case 2, (first, second, and third columns, respectively), on Layer 2 of the
reservoir model.

Finally, we forecast the production data beyond the history matching period using
the final ensembles obtained in Cases 1 and 2. For comparison, we calculate the forecast
data mismatch for WOPR and WWPR, which is the difference between simulated data of
the reference model and an estimated ensemble of reservoir models at the forecast period,
normalized by the STD of the WOPR and WWPR.

As aforementioned, we observed better history matching performance in terms of
production data mismatch and RMSE values for PERMY and PERMZ parameters, when
using production, tracer, and 4D seismic data (Case 2) during the history matching period.
In terms of forecast mismatch, the comparison becomes a bit more complicated. As one
can see in Figure 12, in some wells (e.g., BR-P-3, and BR-P-16), we observe lower forecast
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mismatch for the experiment in Case 2. However, in some other wells (e.g., BR-P-6), the
situation is the opposite, and higher forecast mismatch is observed instead. The complexity
of performance comparison may be partially due to the geological structure of the reservoir
model. In this benchmark case, the presence of a fault could have a substantial influence
on intra-well fluid flows, which means that it could be relatively easy for the tracer to
flow to wells close to the fault and relatively difficult to more distant wells. By checking
the distances between the injector–producer pairs, one can obtain a clue for a possible
explanation for these noticed differences in the forecast performance. For instance, BR-P-6
is located close to the south-east boundary of the reservoir, so its communication to the
other parts of the reservoir may appear weaker, since tracer data from BR-I-6 is not detected.
Consequently, it could lead to lower correlations between production in BR-P-6 and the
petro-physical parameters in a large part of the reservoir, which makes it more difficult
to improve the qualities of estimated parameters close to BR-P-6, hence leading to higher
forecast mismatch.
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Figure 11. As in Figure 10, but for STD maps instead.

B
R
-P

-1

B
R
-P

-2

B
R
-P

-3

B
R
-P

-4

B
R
-P

-5

B
R
-P

-6

B
R
-P

-7

B
R
-P

-8

B
R
-P

-9

B
R
-P

-1
0

B
R
-P

-1
1

B
R
-P

-1
2

B
R
-P

-1
3

B
R
-P

-1
4

B
R
-P

-1
5

B
R
-P

-1
6

B
R
-P

-1
7

B
R
-P

-1
8

B
R
-P

-1
9

B
R
-P

-2
0

-200

-100

0

100

F
o

r
e
c
a
s
t 

m
is

m
a
c
th

WOPR forecast mismatch

Case 1 Case 2

B
R
-P

-1

B
R
-P

-2

B
R
-P

-3

B
R
-P

-4

B
R
-P

-5

B
R
-P

-6

B
R
-P

-7

B
R
-P

-8

B
R
-P

-9

B
R
-P

-1
0

B
R
-P

-1
1

B
R
-P

-1
2

B
R
-P

-1
3

B
R
-P

-1
4

B
R
-P

-1
5

B
R
-P

-1
6

B
R
-P

-1
7

B
R
-P

-1
8

B
R
-P

-1
9

B
R
-P

-2
0

-100

0

100

200

F
o

r
e
c
a
s
t 

m
is

m
a
c
th

WWPR forecast mismatch

Case 1 Case 2

Figure 12. Forecast data mismatch of WOPR and WWPR in production wells (P1–P20) with respect
to the two different experiments.
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Other than the history matching performance, we also report in Appendix B the overall
wall-clock time consumed in Cases 1 and 2. As one can see there, including seismic and/or
tracer data into the history matching workflow substantially increases the computational
time in our research environment. Nevertheless, the overall computational time is still at a
reasonable and acceptable level, meaning that our proposed workflow has the potential for
real field case studies.

5. Summary and Conclusions

In this work, we investigated a joint history matching problem with multiple types of
field data and proposed a coherent way to integrate production, tracer, and 4D seismic data
into a history matching workflow. The workflow is demonstrated in the Brugge benchmark
case using the IES-RLM algorithm, with two different experiment settings (Cases 1 and 2).

The main idea behind adding multiple types of field data is to improve the reliability
of reservoir models and consequently, the forecast performance. Through two different
experiments, it is shown that jointly history matching production, tracer, and 4D seismic
data results in lower data mismatch for production data and lower RMSE for PERMY and
PERMZ, but at the cost of slightly higher data mismatch for 4D seismic data and RMSE
for PORO and PERMX. In terms of the averaged RMSE over all estimated petro-physical
parameters, the reliability of the reservoir models is improved in Case 2 in comparison
with Case 1.

In both cases, adopting correlation-based adaptive localization helps to maintain
substantial ensemble variability even in the presence of multiple types of field data, and
ensemble collapse of reservoir models is avoided. Also shown in [3], the localization
scheme appears beneficial to achieve a better performance during the forecast period. By a
well-to-well analysis of the data mismatch during the forecast period, it is observed that
both experiments appear to have good data mismatch. Nevertheless, inter-well tracer data
seem to be helpful for further reducing data mismatch, which indicates a better inter-well
communication in the reservoir.

Although a better history matching performance (in terms of RMSE) is achieved with
the inclusion of tracer data in Case 2, the complexity of the history matching process is
increased by adding more types of field data. In the proposed workflow, we adopted a
scaling procedure to adjust the relative weights among production, tracer, and 4D seismic
data, which appears to work reasonably well. However, to further improve the history
matching performance, it could be beneficial to develop more sophisticated methods to
better balance the influence of multiple types of field data in ensemble-based history
matching. Other possible lines of future research would be to consider the use of multiple
tracer injectors at different reservoir locations, and to extend our proposed workflow
to hydraulically or naturally fractured reservoirs [39,40]. Such investigations will be
considered in our future work.
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Nomenclature

g Forward model
Nd Number of observed data points
Ne Number of reservoir models
dsim Vector of simulated data
m Vector of reservoir model parameters
do Vector of observed data
mtrue Vector of ground-truth model parameter
m Vector of mean reservoir model parameters
δ Vector of contamination noise
Cd Measurement error-covariance matrix
Nm Number of reservoir parameter datapoints
M Ensemble of reservoir parameters
Cm Model error-covariance matrix
Sm Squared-root matrix of reservoir parameters
Sd Squared-root matrix of simulated data
S̃d Normalized squared-root matrix of simulated data
I Identity matrix
∆d̃ Normalized innovation
Û Matrix of the left singular vectors of Sd
V̂ Matrix of the right singular vectors of Sd
Σ̂ Matrix of the kept leading singular values
sv Kept leading singular values
Nsv Number of kept singular values
K Kalman gain matrix
C Localization matrix
γ Regularization parameter
cks Elements of C at the k-th row and the s-th column
kks Elements of K at the k-th row and the s-th column
ρks Sample correlation of k-th element of the initial ensemble and s-th element of ∆d̃
θs Threshold value
ρ̂s Sampling error of correlations
i Index of iteration step
j Index of ensemble member
KHM Effective bulk of the reservoir rock
µHM Effective shear of the reservoir rock
φc Critical porosity
µs Gran shear modulus
vs Poisson’s ration
Peff Effective stress
Cp Average number of contacts per sphere
n degree of root
Keff Effective dry bulk modulus
µeff Effective shear modulus
φ Porosity values
Ks Grain bulk modulus
Kf Effective fluid bulk modulus
Kw Bulk modulus of water
Ko Bulk modulus of oil
Sw Saturation of water
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So Saturation of oil
ρsat Saturated rock density
ρm Mineral density
ρw Water density
ρo Oil density
Vp P-wave velocity
Vs S-wave velocity

Appendix A. Forward Simulation of 4D Seismic Data

The forward simulation of 4D seismic data goes through a few steps: reservoir simula-
tion, petro-elastic model (PEM), and computation of seismic traces for a given time window.
Starting from the initial ensemble containing the uncertain petro-physical parameters, i.e.,
porosity and permeability, one performs reservoir simulation to compute pore pressure and
fluid saturations. Once one generates the dynamic reservoir properties, the next step is to
compute the seismic elastic attributes, e.g., P-wave velocity, S-wave velocity, and formation
density, by using a PEM. Finally, one has to transform the acquired seismic elastic data into
another domain, e.g., amplitude-versus-angle (AVA), by using the AVA equation.

The PEM provides an important link to the reservoir model which governs the dy-
namics of fluid flow, and seismic elastic attributes which govern wave propagation. This
connection is needed to convert pore pressure and fluid saturation into seismic elastic
attributes for seismic interpretation or inversion. By far the most widely used method to
establish this connection is the soft-sand model [41], in which the first step is to estimate the
effective bulk (KHM) and shear modulus (µHM) of the reservoir rock through Hertz–Minlin
theory [42] as in

KHM =

[
C2

p(1− φc)2µ2
s

18π2(1− vs)2 Peff

]1/n

, (A1)

and

µHM =
5− 4vs

5(2− vs)

[
3C2

p(1− φc)2µ2
s

2π2(1− vs)2 Peff

]1/n

, (A2)

where φc, µs, vs, and Peff represent critical porosity, gran shear modulus, Poisson’s ratio,
and effective stress (e.g., lithostatic pressure minus pore pressure), respectively. In this
work, the coordinate number Cp, which denotes the average number of contacts per sphere,
is set to 9, the degree of root n is set to 3, and φc is set to 36%.

The modified Hashin–Shrikman model [43] is used to calculate the effective dry bulk
modulus (Keff) and the effective shear modulus (µeff) for porosity values (φ), as in

Keff =

[
φ/φc

KHM + 4
3 µHM

+
1− φ/φc

Ks +
4
3 µHM

]−1

− 4
3

µHM, (A3)

and

µeff =


 φ/φc

µHM +
µHM

6

(
9KHM+8µHM
KHM+2µHM

) +
1− φ/φc

µs +
µHM

6

(
9KHM+8µHM
KHM+2µHM

)




−1

− µHM

6
+

9KHM + 8µHM

KHM + 2µHM
, (A4)

where Ks is the grain bulk modulus.
Once one calculates the effective dry bulk modulus and the effective shear modulus

for each reservoir gridblock, the next step is to compute the saturated bulk modulus and
shear modulus (Ksat and µsat, respectively) by including the saturation effect with the
Gausmmann model [44], as in
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Ksat = Keff +

(
1− Keff

Ks

)2

φ
Kf

+ 1−φ
Ks −

Keff
Ks2

, (A5)

and
µsat = µeff, (A6)

where Kf is the effective fluid bulk modulus, in which the two-phase fluid mixture is
given by

Kf =

(
Sw

Kw
+

So

Ko

)−1
, (A7)

where Kw, Ko, Sw, So, are bulk modulus of water, bulk modulus of oil, saturation of water,
and saturation of oil, respectively. Further, one calculates the saturated rock density (ρsat),
as in [41]

ρsat = (1− φ)ρm + φSwρw + φSoρo, (A8)

where ρm, ρw, and ρo are the mineral density, water density, and oil density, respectively.
Finally, one can obtain P-wave and S-wave velocities (Vp and Vs), which can be expressed
as in [41]

Vp =

√
Ksat +

4
3 µsat

ρsat
, (A9)

and

Vs =

√
µsat

ρsat
. (A10)

After the seismic elastic attributes are calculated based on the outputs of reservoir
simulation, we can generate synthetic seismogram by using the Zoeppritz equation [41],
in which the reflection terms between two adjacent layers are defined as a function of
travel time. Then, one can obtain the desired seismic AVA data by applying a convolution
between the reflectivity series and a Ricker wavelet (with a dominant frequency of 45 Hz).
Here, the AVA attributes are obtained without involving any inversion process, which
avoids the introduction of biases and extra uncertainties into seismic history matching
later [45]. For more information regarding the procedure to generate AVA data, readers are
referred to, e.g., [37].

Appendix B. Comparison of CPU Time in Different Experiments

Table A1 reports the computational cost in terms of the total wall-clock time to run the
ensemble-based workflow in different experiments, with Intel(R) Core(TM) i9-10900K CPU
@ 3.70GHz and 64 GB memory. For the purpose of comparison, we include the CPU time
in a base case with only production data (referred to as Base case hereafter), in addition
to the two cases (Cases 1 and 2) performed in this work. The results shows that including
4D seismic data (Case 1) or tracer and 4D seismic data (Case 2) considerably increase the
computational time in the case studies. As one can see, in comparison to the base case, the
CPU time in Cases 1 and 2 are more than doubled (+111.08 % and +120.38%, respectively).
Meanwhile, in comparison to Case 1, one can also notice that the inclusion of tracer data
in Case 2 slightly increases the computational cost. Overall, all case studies are finished
within 30 h (108,000 s) in wall-clock time. Given that the Brugge benchmark is a field-scale
reservoir model, we conclude that the computational costs in all case studies are reasonable,
and that the application of the proposed workflow to other case studies at a similar scale
should be affordable in general. It is important to stress that in the current work we carry
out forward simulations and model updates only using a single processor. The proposed
history matching workflow is, however, highly parallelizable. This means that with the aid
of a high-performance-computing (HPC) facility and an optimization of our research code,
one can substantially improve the computational efficiency of our proposed workflow.
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Table A1. CPU time test through different experiments settings.

Experiments Base Case 1 Case 2

CPU time (in seconds) 43,308 91,417 (+111.08%) 95,444 (+120.38%)
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Abstract: Hydraulic fracturing is a complex nonlinear hydro‑mechanical coupled process. Accurate
numerical simulation is of great significance for reducing fracturing costs and improving reservoir
development benefits. The aim of this paper is to propose an efficient numerical simulation method
for the fracturing‑to‑production problem under a unified framework that has good convergence and
accuracy. A hydro‑mechanical coupled fracturing model (HMFM) is established for poroelastic me‑
dia saturated with a compressible fluid, and the local characteristics of the physical field are fully
considered. Each fracture is explicitly characterized using the discrete fracture model (DFM), which
can better reflect the physical characteristics near fractures. Based on the extended finite element
method (XFEM) and the Newton–Raphson method, a fully coupled approach named Unified Ex‑
tended Finite Element (UXFEM) is developed, which can solve the nonlinear system of equations
that describe the solution under a unified framework. UXFEM can accurately capture the local phys‑
ical characteristics of different physical fields on the orthogonal structured grids. It realizes the grid‑
fracture decoupling, and fractures can propagate in any direction, which shows greater flexibility
in simulating fracture propagation. The fully coupled approach can better reflect the essential re‑
lationship between pressure, stress, and fracture, which is beneficial to studying hydro‑mechanical
coupled problems. To validate the UXFEM, UXFEM is compared with the classical KGDmodel, ana‑
lytic solution, and COMSOL solution. Finally, based on UXFEM, the interference phenomenon and
fracturing‑to‑production study are carried out to prove the broad practical application prospect of
this new fully coupled approach.

Keywords: hydro‑mechanical; fracture propagation; production; fully coupled; stress interference

1. Introduction
Fracturing, as an effective technicalmeans, can significantly improve the development

efficiency of low‑permeability and ultra‑low‑permeability reservoirs, such as shale and
tight sandstone. The reservoir often develops various discontinuous structures such as
natural fractures, faults, and caves, resulting in significant multi‑scale characteristics of
the reservoir [1–3]. Moreover, all physical processes in the subsurface are highly nonlinear
and complexmultiphysics problems [4,5], which poses considerable challenges to studying
fracture propagation and other related research.

As the most traditional research method, experiments have played a considerable
role in promoting the study of fracture propagation [2,3,6–10]. However, the limitations
of physical simulation are also prominent, especially for complex multiphysics coupling
problems. The experimental cost is relatively high, and the results are often obtained at
the laboratory scale, which cannot accurately reflect the underground situation. Further‑
more, some complex problems are often unable to be experimentally studied. In this con‑
text, numerical simulation technology is applied to the design before fracturing, monitor‑
ing during fracturing, and post‑fracturing dynamic production studies. Many scholars
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have conducted extensive and meaningful research on the fracture propagation problem
in petroleum engineering and proposed some numerical simulationmethods. Thosemeth‑
odsmainly include the finite elementmethod (FEM) and its derivativemethods, the bound‑
ary element method (BEM), and the discrete element method (DEM).

FEM is a flexible, effective, and widely used numerical method [11–17]. Fractures are
highly coupled with grids, and fractures must be set along the boundary of mesh grids.
Therefore, fractures must propagate along the grid boundary or continuously reconstruct
mesh grids, which requires tremendous calculation. At the same time, the shape function
of FEM is continuous. It is often difficult to accurately describe various discontinuities
when describing the fluid pressure and the solid displacement fields. Thus, it is often
necessary to use local mesh refinement to achieve high‑accuracy calculations, which also
increases the calculation burden. The characteristics of fracture geometry and physical
field are challenging to characterize efficiently and accurately in traditional FEM, and the
limitations of FEM are significant.

Some FEM‑based extension methods have been proposed successively, such as node‑
splitting FEM [18,19], generalized FEM [20,21], and XFEM [22–27]. Node‑splitting FEM
allows FEM to describe the fracture width simply. Still, the fracture propagation path
must follow the grid boundary, which cannot accurately describe the fracture propaga‑
tion and interaction. XFEM is a method based on the partition of unity method (PUM),
which uses enrichment functions to capture the physical characteristics of fracture walls
and fracture tips. XFEM is an efficient method for solving discontinuous problems, which
canwell solve strong andweak discontinuity problems. The core idea is to capture various
discontinuities with the help of enrichment functions constructed based on analytical solu‑
tions or asymptotic analytical solutions, and fractures and grids are independent of each
other. XFEM, based on the discrete fracture model, can explicitly characterize each frac‑
ture. Many scholars have constructed enrichment functions to describe fracture surfaces,
fracture tips, and intersecting fractures based on physical field characteristics and analyt‑
ical solution characteristics, which can efficiently deal with complex fracture mechanical
behavior. However, most of the current XFEMmodels cannot accurately consider the fluid
flow and exchange between fractures and matrix, usually ignoring the fluid leak‑off term
during fracturing stimulation or replacing it with an empirical leak‑off equation, which
cannot meet the simulation requirements. Moreover, XFEM also has considerable trou‑
bles in the numerical simulation of complex fracture flow, and it is difficult to achieve a
fully coupled approach under a unified numerical framework.

BEM [28–34] is a dimensionality reduction researchmethod based onGreen’s formula.
It can calculate fracture aperture and stress more accurately and conveniently than FEM
and is suitable for simulating fracture propagationwith complex topologies. However, this
method faces two main problems. One is that it cannot accurately describe the influence
of fractures on fluid/solid physical fields. The other one is that it is difficult to consider the
leak‑off during fracture propagation [35,36].

DEM [37] is a numerical simulationmethod specially used to solve the problem of dis‑
continuous media. It can deal with fracture intersecting, branching, merging, and kinking
problems. However, calibrating/updating particle properties remains a complex technical
challenge. The particle number needs to be large enough to achieve sufficient accuracy,
which prevents this technique from being widely used in large‑scale models [36].

Different methods have different advantages and different defects. In order to syn‑
thesize their advantages and compensate for each other’s weaknesses, some hybrid nu‑
merical simulation methods are also widely used. Recently, Li et al. [36,38–40] developed
a meaningful thermal/hydro‑mechanical (THM) model. They solved it using the hybrid
numerical simulation method, realizing the two‑dimensional and three‑dimensional sim‑
ulation of the construction of a complex fracture network. Settgast et al. [41] developed
a fully coupled finite element/finite volume approach for simulating field‑scale hydrauli‑
cally driven fractures in three dimensions. Guo et al. [42] adopted the mixed finite ele‑
ment/displacement discontinuity method to solve for the spatial–temporal evolutions of
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pore pressure and in situ stress because of parent‑well production and injection and mod‑
els the fracture propagation during infill‑well completion based onupdated heterogeneous
in situ stresses. Recently, a coupled simulation strategy combining the embedded discrete
fracture method (EDFM) and the XFEM has been developed to simulate the fluid‑driven
fracture propagation process in porous media. EDFM and XFEM are used to simulate
fracture‑related fluid mechanics and solid mechanics, respectively, with information ex‑
changed under the iterative numerical coupling scheme, and it realizes two‑dimensional
and three‑dimensional hydraulic fracturing fracture propagation simulation [43–45]. Liu
et al. [46] developed a hydro‑mechanical model for non‑planar hydraulic fracture propaga‑
tion in ductile formations, which is solved by the hybrid extended finite element/finite vol‑
ume method. Zhang et al. [47] combined the extended finite element/phase‑field method
to solve the discontinuous and continuous hydraulic fracturing formulations.

However, there are still many insurmountable problems in developing realistic sim‑
ulation tools for the hydraulic fracturing process. The problems of numerical simulation
of fracture propagation are mainly reflected in the contradiction between calculation effi‑
ciency and calculation accuracy, reflected explicitly in several aspects: (1) There are strict
requirements for grid division; (2) The fracture propagation path is not arbitrary, and the
fracture morphology of simulation results is distorted; (3) Matrix flow, fracture flow, and
solid deformation coupling are challenging, and the leak‑off term during the fracturing
process is often ignored or simplified; (4) The nonlinearity is strong, and the fully coupled
approach is scarce; (5) There are still risks and challenges in the convergence and stabil‑
ity of numerical calculation. The reasons for this contradiction are complex and diverse,
such as rock heterogeneity, unclear mechanism of fracture propagation, and aggravation
of heterogeneity caused by the intersection of fractures and artificial stimulation measures.
In recent years, some new methods and models have been proposed and achieved good
results, such as Peridynamics [48–51].

This paper uses the discrete fracturemodel (DFM) to characterize each fracture [52–56].
A fully coupled numerical approach for solving nonlinear hydro‑mechanical coupledmod‑
els is established based on XFEM. In this method, the solid rock deformation obeys quasi‑
static linear elasticity, characterized by the stress balance equation. Thematrix flow follows
Darcy’s law, and the fracture fluid flow obeys the cubic law. In the derivation, this paper
uses the normal flow velocity discontinuity term in the weak form of matrix and fracture
flow equations to automatically characterize the fluid leak‑off term. This paper uses XFEM
to compile a fully coupled UXFEM solver for the abovementioned HMFM. This approach
solves the fluid pressure field and the solid displacement field under the same framework,
realizing the unification and full coupling of the model and solving.

According to the different physical characteristics of solid deformation and fluid flow,
UXFEMadopts different enrichment functions and successfully realizes the numerical sim‑
ulation of hydro‑mechanical fracture propagation. The advantages of XFEM are entirely
inherited in UXFEM. Fractures are decoupled from mesh grids, and fractures are allowed
to propagate in any direction and can be deflected at any angle without mesh reconstruc‑
tion or other special processing. In this paper, the maximum circumferential tensile stress
criterion is used as the fracture propagation criterion, the displacement‑based method is
used to calculate the stress intensity factors (SIFs), and fractures always propagate along
the direction of themaximum circumferential stress. WhenUXFEM solves nonlinearmath‑
ematical models, it adopts Newton–Raphson iterative linearization to deal with nonlinear
systems. With the advantages of XFEM, UXFEM can achieve the balance between calcu‑
lation efficiency and accuracy to a certain extent, which has practical significance for the
actual engineering‑scale fracturing simulation research.

2. Unified Extended Finite Element Method
2.1. Fracture Description

This paper uses pair of orthogonal level set functions f (x), g(x) to describe each frac‑
ture explicitly, and some enrichment functions are constructed based on level set func‑
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tions. The fracture surface is defined as f (x) = 0, and the fracture tip is defined as
f (x) = 0, g(x) = 0.

The core of XFEM is to capture the discontinuity of the physical field by using enrich‑
ment functions with discontinuous properties and enriched degree of freedoms (DOF) on
the basis of FEM, whichmakes the description of the physical field characteristics indepen‑
dent of grids, bringing a lot of conveniences. The fracture is a strong discontinuity for the
displacement field, while the fracture is a weak discontinuity for the fluid pressure field.
That means the pressure on the two sides of the fracture is continuous, but the pressure
derivative is discontinuous. In this paper, the set of all nodes is denoted as Nall , and the
enriched nodes, including surface nodes and tip nodes, are denoted as Ns and Nt, respec‑
tively (Figure 1).
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2.2. Solid Displacement Field Approximation and Enrichment Functions
In the XFEM framework, the displacement approximation is written as:

u(x) = ∑
i∈Nall

Ni(x)ui + ∑
j∈Ns

Nj(x)(H( f (x))− H(( f (xj)))aj + ∑
q∈Nt

Nq(x)
4

∑
l=1

(Fl(x)− Fl(xq))bl
q (1)

where Ni(x), Nj(x), Nq(x) are standard FEM shape function; ui is standard displacement
degrees of freedom (DDOF) for nodes Nall ; an

j , bm
ql are added enriched DDOFs for nodes Ns

and Nt respectively; H(·) is the Heaviside step function; Fl(·) is fracture tip displacement
enrichment function.

For expression brevity, we combine the last two terms in Equation (1) and rewrite
Equation (1) as:

u(x) = ∑
i∈Nall

Ni(x)ui + ∑
j∈Nenr

Ψj(x)ũj = N ·U (2)

where Nenr = {Ns, Nt × 4}; Ψj and ũj denote enrichment functions and its added enriched
DDOFs;N is the combination of standard FEM shape function Ni and enrichment function
Ψj; and U is the combination of standard DDOFs and added enriched DDOFs.

For the element completely penetrated by the fracture, the displacement field is dis‑
continuous on both sides, which is a strong discontinuity. The Heaviside step function is
used to enrich the surface nodes.

H( f (x)) =
{

1, f (x) ≥ 0
0, f (x) < 0

(3)
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For fracture tips, the stress has the singularity of O(r−
1
2 ). For isotropic linear elas‑

tic materials, tip nodes can be enriched by the fracture tip displacement enrichment func‑
tion [22,57,58]:

[Fl(r, θ), l = 1, 2, 3, 4] = [
√

r sin
θ

2
√

r cos
θ

2
√

r sin
θ

2
sin θ

√
r cos

θ

2
sin θ] (4)

where r, θ are polar coordinates with origin at the fracture tip and x1 axis oriented into the
body and parallel to the fracture surfaces (Figure 2).
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2.3. Fluid Pressure Field Approximation and Enrichment Functions
In the XFEM framework, the pressure approximation is written as:

p(x) = ∑
i∈Nall

Ni(x)pi + ∑
a∈Ns

Na(x)(ϕs(x)− ϕs(xa)) p̃a + ∑
b∈Nt

Nb(x)(ϕt(x)− ϕt(xb)) p̃m
b (5)

where Ni(x), Na(x), Nb(x) are standard FEM shape function; pi is standard pressure de‑
grees of freedom (PDOFs) for node Nall ; an

j , bm
ql are added enriched PDOFs for nodes Ns

and Nt respectively; ϕs(·) is the modified level set absolute value function; ϕt(·) is fracture
tip pressure enrichment function.

For expression brevity, we combine the last two terms in Equation (5) and rewrite
Equation (5) as:

p(x) = ∑
i∈Nall

Ni(x)pi + ∑
j∈Nenr

Φj(x) p̃j = H · P (6)

where Nenr = {Ns, Nt}; Ψj and ũj denote enrichment functions and their added enriched
PDOFs;H is the combination of standard FEM shape function Ni and enrichment function
Φj; and P is the combination of standard PDOFs and added enriched PDOFs.

For the fracture surface, the pressure is continuous, but the pressure gradient is dis‑
continuous. Moës [59] uses the modified level set absolute value function to capture the
fluid pressure characteristics, avoiding the appearance of blending elements.

ϕs(x) = ∑
j

∣∣ f (xj)
∣∣Nj(x)−

∣∣∣∣∣∑j
f (xj)Nj(x)

∣∣∣∣∣ (7)

According to the study by Chen et al. [60], the pressure gradient has the singularity
of O(r−

1
2 ). A new enrichment function was constructed based on the asymptotic analytic

solution [61–63].

ϕt(x) =
√

r cos
θ

2
(8)
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2.4. XFEM Discretization
This paper only considers the quasi‑static process with infinitesimal strain in porous

media, which is homogeneous, isotropic, and linearly elastic. The porous medium do‑
main Ω, with boundary Γ, Γt, Γu (Figure 3). The fracture Γ f consisting of two surfaces is
embedded in the domain Ω. In this paper, fluid flow and matrix deformation are coupled
based on poroelasticity [64], matrix and fracture flow are coupled based on discontinu‑
ous flow on the fracture surface, and fracture deformation and fracture flow are coupled
using the cubic law. The coupled governing equations are Equation (A4) and (A21) in
Appendix A. For the detailed formula derivation, please refer to the Appendix A.
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According to the basic theory of XFEM, the fracture opening can be expressed as:

w f = JuK · n f =

(
∑

i∈Ns

Ni(x)ai + 2 ∑
q∈Nt

√
rNq(x)bq

)
· n f = JNK ·U · n f (9)

where JuK denotes the displacement jump across the fracture; ai and bq are discontinuous
enriched DDOFs; JNK denotes the discontinuous shape function matrix.

By substituting the displacement and pressure approximation expressions into the
weak form of the governing equations, the discrete calculation format can be obtained
as follows:




0 0 0 0
0 0 0 0

Muu Muũ Mpp Mpp̃
Mũu Mũũ Mp̃p Mp̃ p̃







.
U
.

Ũ
.
P
.
P̃



+




Kuu Kuũ Kpp Kpp̃
Kũu Kũũ K p̃p K p̃ p̃

0 0 KKpp KKpp
0 0 KKpp KKpp







U
Ũ
P
P̃


 =




F1
F̃1
F2
F̃2


 (10)

Equation (10) can be simplified to the following form:

[
0 0
Mu Mp

][ .
U
.
P

]
+

[
Ku Kp
0 KKp

][
U
P

]
=

[
F1
F2

]
(11)

where
Ku =

∫

Ω
BT : C : BdΩ

Kp = −
∫

Ω
BTαςTHTdΩ −

∫

Γ f

JNKn fHTdΓ

F1 =
∫

Γt
N · σdΓ −

∫

Ω
N · (σ0 + αp0I)dΩ
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Mu =
∫

Ω
αρHςBdΩ +

∫

Γ f

ρHn f JNKTdΓ

Mp =
∫

Ω
ρQ−1HHTdΩ +

∫

Γ f

ρw
Kl
HHTdΓ

KKp =
∫

Ω

ρkm

µ
DTDdΩ +

∫

Γ f

ρw3

12µ
DsDs

TdΓ

F2 =
∫

Γ f

HQmdΓ −
∫

Γq
HqdΓ

ς = [1, 1, 0]

N = [NuNũ]
T

, B = [∇Nu ∇Nũ]

H = [Np Np̃]
T

, D = [∇Np ∇Np̃]

where Hs is the total shape function at the point source, Ds is the directional derivative
of Hs along the tangential direction of the fracture, i.e., Ds = ∂Hs/∂s. The superscripts
“u” and “ũ” correspond to standard DDOFs and enriched DDOFs, respectively, and the
superscripts “p” and “p̃” correspond to standardPDOFs and enrichedPDOFs, respectively.
Equation (11) is a set of coupled nonlinear equations, which are solved by the Newton–
Rapson method.

3. Fracture Propagation and Solution Strategy
3.1. Fracture Propagation Criterion

In practice, the hydraulic fracture usually propagates in a mixed mode. The maxi‑
mum circumferential stress criterion is adopted as the fracture propagation criterion. It
is assumed that the fracture propagates when the effective stress intensity factor Ke along
that direction reaches the fracture toughness KIC, and it will deflect by an angle of [65]:

θ = 2arctan


 −2KI I/KI

1 +
√

1 + 8(KI I/KI)
2


 (12)

The effective stress intensity factor Ke is expressed as:

Ke = cos
θ

2

(
KI cos2 θ

2
− 1.5KI I sin θ

)
≥ KIC (13)

The displacement‑based approach is used to calculate the SIFs. KI and KI I are de‑
termined by the discontinuous displacement of the fracture tip element. The relational
equation is [66]. 




KI =
0.806

√
πEDn

4(1−ν2)
√

r

KI I =
0.806

√
πEDs

4(1−ν2)
√

r

(14)

where E is Young’s modulus, ν is Poisson’s ratio, Dn and Ds are normal and tangential
discontinuous displacements of fractures. It should be noted that the calculation models
in this paper are all under the plane strain condition.

3.2. HMFM Fracturing Simulation Process
Fracture propagation is a highly nonlinear hydro‑mechanical coupled process. In this

paper, the fully coupled approach is implemented. The fully coupled approach forms a sin‑
gle large system of equations that solve for all of the displacement/pressure unknowns at
once. Figure 4 summarizes the fully coupled implementation of the solution of the HMFM.
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Figure 4. UXFEM flow chart.

4. Results and Discussions
4.1. Validation 1: Comparison between UXFEM and KGD Model

The KGD model is one of the most commonly used fracturing models. The viscosity‑
dominated hydraulic pressure is calculated using the approximate solution of the KGD
model derived by Detournay [67]. Table 1 lists the parameters used by the model. The
fracture length and width at the wellbore position are compared with those calculated
by UXFEM and plane strain KGD model, as shown in Figure 5. It can be seen that the
evolution of fracture length and width calculated by UXFEM in this paper can well fit the
KGD model. The calculation error increases with the fracture length because the infinite
reservoir assumption cannot be satisfied with the fracture propagation.

Table 1. Parameters for validation 1.

Parameters Value Unit

Young modulus 60 GPa
Poisson ratio 0.25 /

Fracture toughness 1.2 MPa·m0.5

Fluid viscosity 50 mPa·s
Injection rate 0.01 m2/s

Convergence tolerance 0.01 /
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4.2. Validation 2: Comparison of KI and KII in Numerical Simulation and Analytical Solution
Rice [68] deduces the analytical expressions of the SIFs at the fracture tip under hy‑

drostatic pressure and horizontal stress. For the single fracture propagation in an infinite
domain, the SIFs are expressed as:





KI =
√

πL f
[
p −

(
σH sin2 β + σh cos2 β

)]

KI I =

√
πL f
2 [σH − σh] sin 2β

(15)

where L f is the half length of the fracture; p is hydrostatic pressure in the fracture; S is the
inclination angle of fracture and maximum horizontal principal stress. σH and σh are the
maximum horizontal stress and the minimum horizontal stress, respectively.

In order to approximate the infinite formation and eliminate the influence of the bound‑
ary, the model size is set to 200 × 200 m, the initial half‑length of the fracture is 5 m, and
the domain is discretized into structured grids (159 × 159). Table 2 lists the parameters
used by the model. Calculate the SIFs (KI and KI I) of different inclination angles, and the
results are compared, as shown in Figure 6. By comparison, the SIFs calculated by UXFEM
in this paper can well fit the analytical solution. Themaximum error of KI is not more than
2%, which proves the method’s accuracy.

Table 2. Parameters for validation 2.

Parameters Value Unit

Young’s modulus 60 GPa
Poisson’s ratio 0.25 /

Maximum horizontal in‑situ stress 60 MPa
Minimum horizontal in‑situ stress 55 MPa

Hydrostatic pressure applied to the fracture surface 65 MPa
Half‑length of the fracture 5 m
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4.3. Validation 3: Comparison between UXFEM and COMSOL Multiphysics® 5.6
The purpose of this section is to show the accuracy and feasibility of our fully coupled

approach. We consider a quasi‑static mud loss case of a shale oil reservoir. The simulation
parameters are shown in Table 3. The geometry (Figure 7) is built to carry out the simu‑
lation process. The domain is discretized into 25,860 unstructured grids in COMSOL and
3481 structured grids in UXFEM. Figure 8 shows the displacement field, effective stress
component σ′

y, and pressure field calculated by COMSOL and UXFEM. In Figure 8, the
results calculated by UXFEM and COMSOL are in good agreement. From Figure 8a,d, the
displacement at the injection point is the largest, implying that the fracture width is the
largest at the injection point. Figure 8b,e shows that there is an obvious stress concentra‑
tion at the fracture tip. Figure 8c,f shows that the pressure is higher along the fracture, and
a small low‑pressure area appears around the tips. Figure 9 shows that fracture widths
calculated by UXFEM and COMSOL can be matched. Calculating the L2 error norm:

∥∥∥F − Fh
∥∥∥

L2
=



∫

Ω

(F − Fh)dΩ




0.5

(16)

where Fh is the COMSOL solution and F is the UXFEM solution.
The displacement L2 error, effective stress component σ′

y L2 error, and pressure L2
error are 0.0083%, 0.041%, and 0.078%, respectively. A very good agreement between the
results proves the effectiveness and accuracy of this fully coupled approach.

Table 3. Parameters for Validation 3.

Parameters Value Unit

Initial reservoir pressure 10 MPa
Pressure at injection point 25 MPa

Maximum horizontal in‑situ stress 20 MPa
Minimum horizontal in‑situ stress 15 MPa

Young’s modulus 40 GPa
Poisson’s ratio 0.2 /

Matrix permeability 1 × 10−18 m2

Initial matrix porosity 0.15 /
Bulk modulus of the solid 50 GPa
Bulk modulus of the fluid 2.5 GPa

Fluid density 1000 kg/m3

Fluid viscosity 10 mPa·s
Biot coefficient 0.85 /
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Figure 8. Distributions of the displacement, Effective stress component σ′
y and pressure at 1000 s,

(a) Displacement distribution calculated by COMSOL, (b) Effective stress component σ′
y distribution

calculated by COMSOL, (c) Pressure distribution calculated by COMSOL, (d) Displacement distri‑
bution calculated by UXFEM, (e) Effective stress component σ′

y distribution calculated by UXFEM,
(f) Pressure distribution calculated by UXFEM.
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4.4. Case Study1: Propagation of Three Parallel Fractures
A 200 m × 200 m two‑dimensional model is established to study the fracture deflec‑

tion propagation caused by the stress shadow effect. The initial half‑length of the fracture
was 5 m, the distance between the three fractures was 14 m or 21 m, and the midpoints of
the three fractures are the injection points. The injection rate at injection points is 0.01 m2/s.
Other parameters are listed in Table 4.

Table 4. Parameters for case study.

Parameters Value Unit

Initial reservoir pressure 50 MPa
Maximum horizontal in situ stress 60 MPa
Minimum horizontal in situ stress 55 MPa

Matrix permeability 1 × 10−17 m2

Initial matrix porosity 0.1 /
Initial fracture length 10 m

Injection rate at injection points 0.01 m2/s
Bulk modulus of the fluid 2.5 GPa

Fluid density 1000 kg/m3

Fluid viscosity 50 mPa·s
Fracture toughness KIC 5 MPa·m0.5

Biot coefficient 0.85 /

Thefinalmorphology of the simulated fracture, displacement field, and effective stress
component σ′

y are shown in Figure 10. For themodel of three fractures, themiddle fracture
is squeezed and suppressed by the same on both sides. The middle fracture almost propa‑
gates along a straight line, and its length is significantly shorter than the other two fractures.
Due to the stress interference between fractures, the side fractures deflect in the opposite
direction, away from the middle fracture [69]. Fractures will actively choose to propagate
along the path with the least resistance. As the fracture spacing is smaller, the fracture de‑
flection angle is larger, indicating that the fracture spacing is an important factor affecting
the stress interference intensity.
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4.5. Case Study2: Propagation in Multiple En Échelon Fractures
En échelon fractures are common in geology and are caused by the mechanical in‑

teraction between their near‑tip stress fields [36,70]. To study the evolution of En éche‑
lon fractures, a 200 × 200 m geometry model is built. The model contains three prefab‑
ricated fractures, with an initial fracture length of 10 m and a vertical spacing of 16 m.
The initial parameters of the three fractures are completely the same. The injection point
is located at the midpoint of the fracture (The red points in Figure 11), and the injec‑
tion rate is set to 0.01 m2/s. Other parameters of the model are the same as those in 5.4
(Table 4). See Figure 11 for the calculation results. It can be seen that after the fractures
overlap, the propagation of the middle fracture is restrained, and the tendency of mutual
attraction between adjacent fractures is becoming more and more obvious. Enhancement
or impediment of the growth ahead of an individual fracture front leads to asymmetric
fracture geometry [36].

The stress interference of parallel fractures has been studied previously, and the frac‑
tures tend to mutually repel each other. However, for such parallel fractures with incom‑
plete left‑right overlap, the stress shadow effect will cause the stress direction to change,
and the overlapping tips will appear as a phenomenon of mutual attraction. In the pro‑
cess of hydraulic fracturing, we hope that hydraulic fractures can form complex shapes.
However, this phenomenon may lead to fracture collision and reduce the fracturing effect,
which needs to be avoided. Therefore, the optimization of the overlapping length and
spacing of fractures is an important job.
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Figure 11. Sequential growth of En échelon fractures: trajectory, pressure, and effective stress com‑
ponent σ′

y after 20 s, 70 s, and 170 s.

4.6. Case Study3: Multi‑Well and Multi‑Cluster Simultaneous Fracturing and Production
The problem considered here is the fracturing‑production problem of 7 hydraulic frac‑

tures generated by two horizontal wells (#1 and #3) and one vertical well (#2), numbered
1 to 7, respectively. The schematic diagram of the initial fractures and the model is shown
in Figure 12. The size of the model is 200 m × 100 m. Two horizontal wells are along the
straight‑line x = 60 m and x = 140 m, respectively. The vertical well is located in the middle
of the model. Table 4 lists the detailed parameters.
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This study aims to analyze the interaction between evolved multi‑fractures and local
stress‑field‑pressure fields and help explore the interference phenomenon’s influence on
fracture morphology and production. Taking well #1 as an example, it can be seen that the
fractures are subject to obvious stress interference from Figures 13 and 14, and the stress
interference is manifested in two points:

(1) The fractures will undergo obvious diversion. For well #1, Frac. 1–3 have different
degrees of deflection. The deflection of the two Frac. 1 and 3 are more prominent.
In the early stage, the middle fracture Frac. 2 does not deflect obviously due to the
interference of superimposed stress. In the later stage of fracturing, Frac. 2 and 4
attract each other, showing En échelon fracture morphology [69].

(2) There are noticeable differences in fracture length and width. The length of Frac. 2
and 6 of the two horizontal wells is shorter, followed by Frac. 3 and 5, and the longest
is Frac. 1 and 7. Frac. 4 cannot propagate far enough and even the front edge of the
fracture tends to close. Although Frac. 1 and 7 have propagated long enough, one
side of the fracture tends to close under the effect of stress shadow. These phenomena
are very likely to lead to the reduction of fracturing efficiency and cost waste.

The complex morphology of fractures is the result of stress interference. Studies have
found that 25–30% of the fractures do not bring production [71,72], indicating that 25–30%
of the fractures are not opened or closed after being opened, which is also the effect of
stress interference. Therefore, stress interference has both positive and negative effects.
Numerical simulation can be used to find the best design for well placement, perforation,
and fracturing so that the fractures can be fully opened and stabilized to maximize the
benefits of fracturing.
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(2) There are noticeable differences in fracture length and width. The length of Frac. 2 
and 6 of the two horizontal wells is shorter, followed by Frac. 3 and 5, and the longest 
is Frac. 1 and 7. Frac. 4 cannot propagate far enough and even the front edge of the 
fracture tends to close. Although Frac. 1 and 7 have propagated long enough, one 
side of the fracture tends to close under the effect of stress shadow. These phenomena 
are very likely to lead to the reduction of fracturing efficiency and cost waste. 
The complex morphology of fractures is the result of stress interference. Studies have 

found that 25–30% of the fractures do not bring production [71,72], indicating that 25–30% 
of the fractures are not opened or closed after being opened, which is also the effect of 
stress interference. Therefore, stress interference has both positive and negative effects. 
Numerical simulation can be used to find the best design for well placement, perforation, 
and fracturing so that the fractures can be fully opened and stabilized to maximize the 
benefits of fracturing. 

 
Figure 13. Displacement field after 20, 50, 70, and 100 s. 

 

Figure 14. Fracture trajectory, effective stress component σ′
y, and fracture width distribution af‑

ter fracturing.
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Change the bottom hole condition to a constant pressure of 25 MP, and proppant in‑
stead of the hydraulic pressure supports the fracture. Assuming that the fracture has high
conductivity and obeys Darcy’s law, it is only necessary to change the fracture flow coef‑
ficient w2

12µ in Equation (A4) into the hydraulic fracture permeability. The stress‑sensitive
parameters are brought into the governing equation for calculation during production. For
the estimation method of stress‑sensitive parameters, see the study of Lu et al. [73]. The
pressure change in the production process is shown in Figure 15, which shows that there
is almost no production interference between fractures andwells within 30 days, and obvi‑
ous interference can be observed after 300 days. The calculated cumulative production is
shown in Figure 16, which clearly shows the rising pattern of the cumulative production.
The early production increases rapidly because the reservoir near the well is fully stimu‑
lated. However, the reservoir’s extremely low permeability makes it difficult to maintain
rapid production.
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Four calculation examples with different well‑spacing (40 m, 60 m, 80 m, and 100 m)
are simulated for comparison to verify the effect of well‑spacing on fracture morphology
and production. After 60 s injection, the fracture morphology and displacement field are
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as Figure 17. The final morphology of fractures under the stress interference is different
with different well‑spacing. Then, realize conversion from hydraulic fracturing to produc‑
tion, as shown in Figure 18, and the cumulative production curve after 2000 days is plotted
in Figure 19. Figure 18 shows that small well‑spacing will lead to slow pressure drop near
boundaries, resulting in a low production rate. Thus, the cumulative production of small
well‑spacing is smaller than that of largewell‑spacing, which can be explained by the small
well‑spacing leading to a poor fracturing effect. Therefore, reasonablewell‑spacing is a cru‑
cial factor affecting the formation of a complex fracture network and efficient production.
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5. Conclusions 
Aiming at solving the fracturing-to-production problem under the unified frame-

work, a fully coupled approach UXFEM for solving the HMFM under the same frame-
work is established based on the extended finite element method and Newton–Rapson 
method. This technology inherits all the excellent characteristics of XFEM and can fully 
reflect the mechanical mechanism of fracture propagation. Meanwhile, it also avoids some 
potential problems caused by the iterative coupling method, such as convergence reduc-
tion. The effectiveness and accuracy of UXFEM in HMFM research are validated by com-
paring it with the results of classical KGD models, analytical solutions, and COMSOL 
Multiphysics® 5.6. To study the interference problem during the fracturing process, three 
examples are used to illustrate the effect of stress shadow on fracturing. At the same time, 
after simultaneous fracturing, this paper also successfully realized the fracturing-to-pro-
duction analysis. The research shows that hydraulic fractures are interfered with by the 
stress between wells and fractures, which plays an essential role in forming the final frac-
ture network morphology and cumulative production. Proper well location design, per-
foration plan, and production plan are the keys to determining whether the stress inter-
ference can be used reasonably to increase the fracturing effects and reservoir develop-
ment efficiency. This research has certain practical significance for fracturing design and 
production prediction. 
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Appendix A
For a quasi‑static process, ignoring the effect of gravity, the stress balance equation of

the rock matrix is [74]:
∇ · σ = 0 (A1)
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where σ is the Cauchy stress tensor. Considering the effective stress, the Cauchy stress
tensor σ can be written as:

σ = σ′ + σ0 − α(p − p0)I (A2)

where σ0 is the initial total stress; p0 is the initial pressure; α is the Biot coefficient; I is the
identity matrix; σ′ is the effective stress; σ′ = C : ε. C is the elasticity tensor;ε is the strain,
which can be calculated from the geometric equation.

The boundary condition is:




u = u
σ · n = σ
σ · n f = −pn f

on Γu
on Γt
on Γ f

(A3)

where Γu, Γt and Γ f are displacement boundary, traction boundary, and fracture surfaces,
respectively; n and n f are the normal direction to the related boundary.

Taking δu as the trial function, the weak form of the solid matrix deformation govern‑
ing equation can be obtained from Equations (A1)–(A3),

∫

Ω

∇δu · (C : ε + σ0 − α(p − p0)I)dΩ −
∫

Γ f

JδuK · pn f dΓ −
∫

Γt

δu · σdΓ = 0 (A4)

The governing equation for mass conservation of a compressible‑fluid flow is:

dm
dt

+∇ · (ρvm) = 0 (A5)

where m denotes the fluid mass, vm is the matrix flux. ρ is the fluid density.
The constitutive relations for poroelasticity material are written as [64]

δm = ρ(αδe +
δp
Q

) (A6)

where e is the volumetric strain, e = ∇ · u; Q is the Biot modulus, Q =
[

ϕ
Kl

+ α−ϕ
Ks

]−1
.

where Kl is the fluid modulus; ϕ is the porosity of the matrix.
Combine Equation (A5) and (A6), the matrix fluid flow governing equation can ex‑

press as:

αρ∇ · .
u +

ρ

Q
∂p
∂t

+∇ · (ρvm) = 0 (A7)

The boundary condition is:
{

ρvm · n = q on Γq

Jρvm · n f K = ρvd on Γ f
(A8)

where Γq is the flow boundary, q is the mass flux; Jρvm · n f K denotes the normal discontin‑
uous flow on the fracture surface; vd denotes the fluid transfer from the fracture into the
matrix, which can be interpreted as the leak‑off effect.

Taking δp as the trial function, the weak form of the matrix flow governing equation
can be obtained from Equations (A7) and (A8),

∫

Ω
αρδp∇ · .

udΩ +
∫

Ω
ρQ−1δp

.
pdΩ +

∫

Γq
δpqdΓ −

∫

Γ f

δpρvddΓ −
∫

Ω
∇(δp)ρvmdΩ = 0 (A9)

Matrix flow obeys Darcy’s law, vm = − km
µ ∇p. Thus, Equation (A9) can be rewrit‑

ten as:
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∫

Γ f

δpρvddΓ =
∫

Ω
αρδp∇ · .

udΩ +
∫

Ω
ρQ−1δp

.
pdΩ +

∫

Γq
δpqdΓ +

∫

Ω

ρkm

µ
∇(δp)∇pdΩ (A10)

Compressible fluid flow in fracture satisfies mass conservation and cubic law [75]:

∂(ρw)

∂t
+∇ · (ρq f ) = Qm (A11)

q f = − w3

12µ

∂p
∂s

= v f w (A12)

where q f is the fluid flux in the fracture; w is the fracture aperture; v f is the average fluid
velocity of fracture section; and Qm is the mass source term in the fracture.

∂(ρw)

∂t
=

∂ρ

∂t
w + ρ

∂w
∂t

=
ρw
Kl

∂p
∂t

+ ρ
∂w
∂t

(A13)

where 1
Kl

= 1
ρ

∂ρ
∂p . Combine Equation (A11) and (A13):

ρw
Kl

∂p
∂t

+ ρ
∂w
∂t

+∇·
(

ρq f

)
= Qm (A14)

The boundary condition is:
q f · n f = wvd (A15)

Taking δp as the trial function, the weak form of the fracture flow governing equation
can be obtained from Equation (A14),

∫

Ω f

δp
ρw
Kl

∂p
∂t

dΩ +
∫

Ω f

δpρ
∂w
∂t

dΩ +
∫

Ω f

δp∇ · (ρq f )dΩ −
∫

Ω f

δpQmdΩ = 0 (A16)

The third term in Equation (A16) can be rewritten as:
∫

Ω f

δp∇ · (ρq f )dΩ =
∫

Ω f

∇ · (δpρq f )dΩ −
∫

Ω f

∇δp · ρq f dΩ =
∫

Γ f

δpρq f · n f dΓ +
∫

Ω f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΩ (A17)

For fluid flow in the fracture, the fluid exchange (leak‑off) term can be written as:
∫

Γ f

δpρq f · n f dΓ =
∫

Γ f

δpρwvddΓ (A18)

Thus,
∫

Γ f

δpρwvddΓ = −
∫

Ω f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΩ −
∫

Ω f

δp
ρw
Kl

∂p
∂t

dΩ −
∫

Ω f

δpρ
∂w
∂t

dΩ +
∫

Ω f

δpQmdΩ (A19)

Since the fracture aperture is much smaller than its length, the variation of fluid pres‑
sure across the fracture width can be ignored. The fracture flow governing equation can
be obtained from Equation (A19).

∫

Γ f

δpρvddΓ = −
∫

Γ f

∂(δp)
∂s

· ρw3

12µ

∂p
∂s

dΓ −
∫

Γ f

δp
ρw
Kl

∂p
∂t

dΓ −
∫

Γ f

δpρ
∂w
∂t

dΓ +
∫

Γ f

δpQmdΓ (A20)
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Based on Equation (A10) and (A20), the weak form of the coupled matrix‑fracture
flow governing equation is:

∫
Ω αρδp∇ · .

udΩ +
∫

Ω ρQ−1δp
.
pdΩ +

∫
Γq

δpqdΓ +
∫

Ω
ρkm

µ ∇(δp)∇pdΩ+
∫
Γ f

∂(δp)
∂s · ρw3

12µ
∂p
∂s dΓ +

∫
Γ f

δp ρw
Kl

.
pdΓ +

∫
Γ f

δpρ ∂w
∂t dΓ −

∫
Γ f

δpQmdΓ = 0 (A21)
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Abstract: More than 90% of the natural gas hydrate resources are reserved as marine clayey silt
sediments. It is of great significance to efficiently develop a clayey silt hydrate. At present, there
are problems of low single well production and small depressurization range in its production test,
which is still a long way from commercial exploitation. The combination of hydraulic fracturing
technology and other methods such as depressurization method is regarded as one of the potential
technical means to achieve the commercial exploitation of the hydrate. However, compared with
shale gas reservoirs and coalbed methane reservoirs, clayey silt hydrate reservoirs have special
mechanical properties, resulting in unique hydraulic fracturing processes. Therefore, it is necessary
to study the fracture initiation and propagation laws of clayey silt hydrate reservoirs. To this end,
we carried out large-scale (30 × 30 × 30 cm) true triaxial hydraulic fracturing experiments using a
simulated material with similar mechanics, porosity, and permeability to clayey silt hydrate-bearing
sediments. The effects of completion method, fracturing method, and fracturing fluid displacement
on hydraulic fracture propagation of clayey silt hydrate-bearing sediments were studied. The results
showed that a perforated completion can significantly increase the fracture reconstruction area and
decrease the fracture initiation pressure compared to an open hole completion. Due to the small
horizontal stress difference, it is feasible to carry out temporary plugging fracturing in clayey silt
hydrate reservoirs. Temporary plugging fracturing can form steering fractures and significantly
improve fracture complexity and fracture area. Increasing the fracturing fluid displacement can
significantly increase the fracture area as well. When conducting fracturing in clayey silt hydrate-
bearing sediments, the fracturing fluid filtration area is obviously larger than the fracture propagation
area. Therefore, it is recommended to use a high-viscosity fracturing fluid to reduce the filtration of
the fracturing fluid and improve the fracturing fluid efficiency. This study preliminarily explores the
feasibility of temporary plugging fracturing in clayey silt hydrate reservoirs and analyzes the effect
of completion methods on the propagation of fracturing fractures, which can provide a reference for
the research conducted on the fracturing stimulation of clayey silt hydrate reservoirs.

Keywords: clayey silt hydrate; perforated completion; temporary plugging fracturing; fracture
propagation; stimulated rock area

1. Introduction

Natural gas hydrate (NGH) is a clathrate crystalline compound generated from water
molecules and hydrocarbon gas molecules under suitable conditions of low temperature
and high pressure [1]. It exhibits a high energy density, an extensive distribution, and
abundant reserves [2–4]. NGHs are viewed as one of the most likely clean energies to
replace traditional fossil energy [5].

The existing hydrate exploitation technologies mainly include the depressurization
method [6], thermal stimulation method [7], chemical inhibitor injection method [8], CO2/N2
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replacement method [9], solid fluidization method [10], and combination method [11–13]. De-
pressurization and thermal stimulation methods are viewed as two kinds of methods with
high feasibility, which are the most used in laboratory research and field test production. As
for the NGH reservoir, effective permeability is an important property that would produce
a significant impact on the pressure drop diffusion and fluid migration of the depressuriza-
tion method and the heating efficiency of the thermal stimulation method [14]. Increasing
reservoir permeability has a significant impact on the NGH production [15]. However, the
NGH resources present as marine clayey silt sediments exceed 90% [16,17], and the stored
environment is characterized by high argillaceous content and low permeability [18–20].
At the same time, the hydrate dispersed in the sediment will cause a significant decline in
the reservoir permeability. These characteristics lead to an extremely low effective perme-
ability of this kind of reservoir, which limits the efficiency of depressurization and thermal
stimulation methods.

Hydraulic fracturing technology can increase the drainage area, enhance the reservoir
permeability, and improve reservoir seepage conditions. It has been widely applied in
unconventional low-permeability reservoirs such as coal and shale reservoirs [21–23]. It is
considered as one of the potential technical means to achieve the efficient development and
utilization of NGHs [24–27]. Relevant studies have proved that fracturing reconstruction
is an effective technique to improve the productivity of NGH reservoirs [28–32]. Thus,
it is meaningful to conduct extensive research on the hydraulic fracture initiating and
propagating law of NGH reservoirs. Researchers have begun to explore the fracability
and the hydraulic fracture initiation and extension law of NGH reservoirs. Too et al. [33]
confirmed by the injection pressure curve that the sandy NGH reservoir has a prefer-
able fracability when the hydrate saturation exceeds 50%. Liu et al. [34] put forward a
fracability estimation model applicable to hydrate-bearing sediments based on analytic
hierarchy process-entropy method. Its results suggested that a high-viscosity fracturing
fluid is supposed to be used when reconstructing hydrate-bearing sediments with a low
fracability index. Ito et al. [35] validated the possibility of forming hydraulic fractures in
unconsolidated sand–mud interbed sediments using a true triaxial loading experimental
equipment. The experimental results showed that the interface fracture between the sand
and mud layers is inclined to generate hydraulic fractures. Konno et al. [36] executed
hydraulic fracturing experiments based on the sandy sediment with a hydrate saturation
of 72%. The fractures perpendicular to the maximum horizontal principal stress were
observed through X-CT scanning. Furthermore, the gas production experiment using
depressurization after fracturing detected that the hydraulic fracturing can improve the
permeability of the sample, and the fracture could still maintain a high permeability during
the depressurization process. Taking the Alaska hydrate test area as the geological back-
ground, Zhang et al. [37] and Liu et al. [34] synthesized the NGH reservoir skeleton with
similar physical and mechanical properties to the reservoir samples in the laboratory, and
then synthesized CH4 hydrate in the skeleton. The impacts of the stress conditions and the
fracturing fluid performance on the hydraulic fracturing behavior of the hydrate-bearing
sediments were studied. The results showed that hydrate-bearing sediments are prone
to tensile failure to form a single fracture under the low-stress and high-stress difference
condition. Complex multiple fractures tend to form under the high-stress and low-stress
difference condition. Under a high in situ stress, increasing the fracturing fluid viscosity is a
feasible method to effectively create fractures. Yao et al. [38] established a discrete element
model, studied the fracturing behavior of sandy CH4 hydrate, and explored the effects of
hydrate saturation, hydrate microscopic distribution mode, and in situ stress conditions
on the fracturing behavior of hydrate-bearing sediments. The results showed that, with
the increase in hydrate saturation, the initiation pressure increases gradually. When the
hydrate saturation is less than 30%, the fracture-creating ability is poor, whereas when the
hydrate saturation is higher than 40%, a good fracture-creating ability and a preference
to form multiple main fractures are observed. As the in situ stress difference increases,
the fracture morphology becomes simple. Based on the extended finite element method,
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a multi-cluster fracture propagation model for horizontal wells in NGH reservoirs was
established to analyze the correlation between fracture propagating paths and fracture
spacing, hydrate saturation, and horizontal stress difference [39]. Lu et al. [40] conducted
hydraulic fracturing tests under different confining pressures for clayey silt sediments
in Shenhu area, and evaluated their mechanism of fracture initiating and propagating.
Ma et al. [24] built a three-dimensional hydraulic fracture propagating model on the basis
of cohesive elements. They studied the effects of flow rate, cluster spacing, and fracturing
methods (simultaneous fracturing and sequential fracturing) on the fracture morphology of
clayey silt hydrate reservoirs. Sun et al. [41] discussed the fracturing law of hydrate-bearing
clayey silt and frozen clayey silt. They evaluated the impacts of hydrate/ice saturation,
stress difference, fluid viscosity, and flow rate on the fracturing behavior. The consequences
indicated that the initiation pressure increases with the increase in hydrate/ice saturation,
flow rate, and fluid viscosity. Increasing fluid viscosity and flow rate would result in the
formation of complex fractures, and the stress difference is the main controlling parameter
of fracture propagating direction. Although the NGH resources present as marine clayey
silt sediments exceed 90%, few studies have explored the fracture propagating law of
hydrate-bearing clayey silt, and the existing research has mainly focused on numerical
simulation. There is no experimental study on conventional and temporary plugging
fracturing of large size samples.

Therefore, we prepared large size clayey silt hydrate-bearing sediment samples. Sub-
sequently, true triaxial physical simulation experiments of conventional and temporary
plugging fracturing were carried out. The fracture morphology of conventional and tempo-
rary plugging fracturing under different fracturing fluid displacements was explored, and
the impact of completion mode on fracture geometry was investigated. The findings could
provide fundamental understanding and reasons for the hydraulic fracturing of marine
clayey silt hydrate reservoirs.

2. Experiments
2.1. Experimental Sample Preparation

The large-scale true triaxial fracturing simulation test is a significant means to in-
vestigate the fracture initiating and propagating law. It has been used extensively in
unconventional reservoirs such as shale and coal seam [42–44]. There are two types of
samples in the experiments: one is the outcrop taken from the field, and the other is
the artificial simulated sample preparation in the laboratory. However, compared with
shale and coal, the clayey silt hydrate reservoirs are characterized by non-diagenesis. It is
very expensive and difficult to drill large-scale in situ hydrate-bearing sediments samples.
Therefore, artificially simulated samples are used to conduct indoor physical simulation
experiments [41]. Tetrahydrofuran (THF) hydrate sediment samples are currently being
utilized to carry out relevant studies [37]. Since the structure and mechanical properties
of the THF hydrate are close to those of the NGH and it can be dissolved in water in any
proportion, it is convenient to control the hydrate saturation in an experiment. The hydrate
formed after mixing with the porous medium sample can basically exist evenly between
the sediment particles within the sample [45]. The THF solution can synthesize a hydrate
at an atmospheric pressure and at 0~4 ◦C [46]. Therefore, THF is usually used to replace
methane to investigate the mechanical and physico-chemical properties of the generated
hydrate. The THF hydrate has also been studied to comprehend its fracture initiating and
propagating laws of hydrate fracturing [47]. The THF hydrate can exist stably at 0.1 MPa
and 4 ◦C [45,48]. The THF hydrate can maintain its stability during an experiment, and it
can be conveniently compacted into a sample for synthesis. The conventional fracturing
equipment can be upgraded to carry out THF hydrate fracturing experiments. Therefore,
we choose THF to prepare hydrate sediment samples for hydraulic fracturing experiments.

The target area of this paper is the exploration area of the GMGS1 voyage. GMGS1
voyage is a hydrate drilling project organized and implemented by Guangzhou Marine
Geological Survey in 2007. Eight stations were drilled based on the GMGS1 voyage, and
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hydrate samples were acquired at SH2, SH3, and SH7 stations [49,50]. The research data
in this paper are based on the logging data of SH2 borehole. The water depth of the
SH2 station is 1235 m, and hydrate samples were successfully acquired from 188 m to
228 m below the seafloor. After testing, the porosity of the hydrate sediment is 0.38, the
hydrate saturation range is 1.0~47.3%, and the inherent permeability of the reservoir is
approximately 10 mD [51]. In this experiment, the hydrate saturation was set to 45%. The
mineral composition of the target block is shown in Table 1 [52,53]. Based on these data,
sand, silt and clay are selected as hydrate host sediments. The proportions of each part
are detailed in Table 1. The results indicated that, when the mass fraction of THF is 19%,
the THF-H2O solution can be completely converted into a hydrate, and considering the
possible volatility of THF, we choose a THF-H2O solution with a 21% mass proportion [54].
The mass of deionized water and THF used in the experiments can be calculated using
Equations (1) and (2) [47].

mw =
306
378

ρhShVϕ (1)

mTHF =
306 × 21
378 × 79

ρhShVϕ (2)

mw and mTHF are the masses (g) of H2O and THF; ρh is the density of THF hydrate,
0.888 g/cm3 in our experiment; Sh is the hydrate saturation, 45% in our experiment; V
is the volume of the sample, 27,000 cm3 in our experiment; and ϕ is the porosity, 0.40 in
our experiment.

Table 1. The mineralogical components of clayey-silty sediments.

Grain Size (µm) Actual Mass Proportion (%) Average Value
(%) Experimental Mass Proportion (%)

Clay: <4 15–45 -- 21

Silt: 4–63 50–80 -- 75

Sand: >63 <5 -- 4

Clay minerals at SH2 site 11–27 19.64 21

Montmorillonite 33–59 47.04 45

Illite 22–39 29.28 30

Chlorite 9–17 13.17 15

Kaolinite 7–14 10.51 10

The procedure for the preparation of THF hydrate-bearing sediments sample is as
follows: (1) The required mass of silt, sand, and clay is calculated according to the sample
mineral composition ratio, and the amount of THF and water is calculated according to
the required hydrate saturation. (2) First, the silt, sand, and clay are thoroughly stirred
and mixed, and then, the THF solution is sprayed on the aggregate, stirred evenly with
a mixer, and then loaded into the sediment to prepare a mold. (3) The mold is placed in
a low temperature incubator for sample synthesis, and it is kept frozen at −9 ◦C for 48 h
to generate the THF hydrate, and then demolded to remove the sediment sample. The
wellbore is placed in the mold before loading, so that the wellbore can be consolidated
with the surrounding sediments during the sample freezing process. According to the
above method, 1~5 clayey silt hydrate-bearing simulation samples (30 × 30 × 30 cm)
are fabricated. To carry out the THF hydrate fracturing experiment, we upgrade the
experimental equipment for conventional fracturing physical simulation and place the
equipment in a sealed low and constant temperature environment. The entire fracturing
experiment is conducted in a low and constant temperature chamber. Before carrying
out large-scale fracturing physical simulation experiments, we first prepare a small size-
standard core using the method described above and test its rock mechanics, porosity, and
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permeability parameters. The porosity, permeability, and mechanical parameters of the
simulated samples are depicted in Table 2. The test results indicated that the mechanical,
porosity, and permeability parameters of the sample prepared by the above method were
in a good agreement with the values of the research block [51,55]. On this basis, large-scale
hydraulic fracturing physical simulation tests were carried out.

Table 2. The porosity, permeability, and mechanical parameters of the simulated samples.

Specimen
Number

Elastic Modulus
(MPa) Poisson’s Ratio Compressive Strength

(MPa)
Tensile Strength

(MPa)
Porosity

(%)
Permeability

(mD)

1 391.35 0.29 3.36 0.31 36.4 2.39

2 399.15 0.30 3.63 0.33 32.3 2.76

3 387.54 0.31 2.99 0.27 36.6 2.97

4 386.62 0.32 2.8 0.26 39.6 3.05

5 396.46 0.33 3.41 0.31 34.5 2.66

2.2. Experimental Apparatus

Hydraulic fracturing simulation device was used in the experiment (Figure 1). In
the experiment, the pressure plate is pushed by an oil pressure pump set and a hydraulic
cylinder to apply triaxial stress to rock samples in the core chamber. The maximum
loading stress of X-axis is 10 MPa, and the maximum loading stress of Y-axis and Z-axis is
20 MPa. After the stress loading is completed, the piston pump is used to push the piston
in the intermediate container to squeeze the fracturing fluid into the pipeline and enter
the wellbore fracturing rock sample through the fluid injection pipeline. The maximum
displacement of the piston pump is 1250 mL/min.
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2.3. Experimental Design

To analyze the effects of the completion method, fracturing method, and fracturing
fluid displacement on the fracture propagating of a clayey silt hydrate reservoir, we de-
signed the experimental scheme depicted in Table 3. Guar gum fracturing fluid is used
as the fracturing fluid in conventional fracturing, and fiber fracturing fluid is used as the
fracturing fluid in temporary plugging fracturing, as demonstrated in Figure 2a,b. Fiber
fracturing fluid is prepared by using guar gum solution as the base fluid, adding fiber (fiber
length: 6 cm) and cross-linking to form jelly. Figure 2c shows the wellbore for 4# and 5#
samples with an initial perforation interval of 2.5 cm.
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Table 3. Summary of experimental parameters.

Sample
Number Completion Method Fracturing Method (σv/σH/σh (MPa)) Displacement

(mL/min)
Fluid Viscosity

(mPa·s)

1#

open hole completion

conventional fracturing

4/2/1

100 100

2# temporary plugging
fracturing 50

100
3# temporary plugging

fracturing 100

4#
perforated completion

conventional fracturing 50
100

5# conventional fracturing 100
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2.4. Experimental Procedure

(1) Triaxial stress loading process

The sample was first placed in a triaxial stress loading chamber. To avoid the damage
to the rock sample due to unbalanced loads in different directions, the stress in different
directions was first applied at 1 MPa simultaneously in the experiment. Next, the vertical
stress and the maximum horizontal stress continue to increase synchronously to 2 MPa, and
then, the vertical stress gradually increases to 4 MPa. The specimen is stabilized under the
boundary stress for 10 min to ensure the stress balance in the specimen. As the strength of
the sample is much lower than that of conventional shale and sandstone samples, the stress
is gradually applied at an interval of 0.5 MPa to avoid sample damage during confining
pressure loading.

(2) Fracturing process with guar gum fracturing fluid injection

The guar gum fracturing fluid is pumped into the sample using a centrifugal pump,
and the change in pump pressure is recorded over time. The experiment is terminated
when the injection pressure drops suddenly or fracturing fluid leakage is observed.

(3) Fracturing process with fiber fracturing fluid injection

In the temporary plugging fracturing stage, a new fracturing fluid with a temporary
plugging agent is pumped into the sample. The test is terminated when the injection
pressure drops suddenly or the fracturing fluid leakage is observed.
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(4) Observation and recording of fracture morphology

After each test, the sample was removed from the true triaxial test frame. The sample
was then split along induced fractures using a hammer and chisel to observe and record
fracture morphology.

1#, 4#, and 5# samples shall be subject to conventional fracturing tests, and relevant
tests shall be carried out according to steps (1), (2), and (4). 2# and 3# samples were
subjected to the temporary plugging fracturing test, and relevant experiments were carried
out according to steps (1), (2), (3), and (4).

3. Experimental Results and Analysis
3.1. Influence of Completion Scheme

Stimulated rock area (SRA) was utilized to quantitatively evaluate the effect of hy-
draulic fracturing [56]. SRA refers to the total induced fracture area in a sample after
fracturing in the hydraulic fracturing simulation experiment. It is believed that the larger
the SRA, the larger the area of the reservoir that the hydraulic fracture can communicate
with after a reservoir reconstruction, and the better the effect of the increasing and stabi-
lizing output. In the actual hydraulic fracturing simulation experiment, the area of the
entire fracture plane is recorded as 1.00 (that is, close to 30 cm × 30 cm). In the actual
calculation, the distribution area of the tracer on the fracture plane is divided into grades of
0.25, 0.50, and 0.75, respectively. After the test, the fractures on the surface of the sample
were used to determine the fracture propagation direction. The approximate value of the
fracture volume was then determined from the distribution pattern of the tracer. Finally,
the complete fracture morphology is reconstructed using a drawing software.

The purpose of 1# and 5# samples is to investigate the effect of the completion method
on hydraulic fracture propagating and fracture geometry. The results demonstrated that
the completion method has a significant impact on the SRA.

As shown in Figure 3, although the fracturing experiments of different completion
methods finally formed approximately symmetrical double-wing vertical fractures, the
fracture communication area (SRA = 0.75) produced by the perforated completion sample
was significantly larger than that of the open hole completion sample (SRA = 0.5). At the
same time, the breakdown pressure of the perforated completion sample was lower than
that of the open hole completion sample. It was attributed to the prefabricated perforation
section playing similar roles like micro-fractures and induced hydraulic fractures.

3.2. Impact of Fracturing Scheme

To evaluate the impact of fracturing mode on the hydraulic fracture propagation,
the hydraulic fracturing experiment of 1# and 3# samples were conducted. The results
suggested that the fracture morphology and the SRA are affected remarkably by the
fracturing mode.

As depicted in Figure 4, a single vertical main fracture was formed in the conventional
fracturing experiments. In the temporary plugging fracturing experiment, a vertical main
fracture with an SRA of 0.75 was formed during the initial fracturing. In the subsequent
temporary plugging fracturing, a diverting fracture with an angle of nearly 90◦ to the
initial fracture was formed. Its fracture shape is obviously more complicated than that of
the conventional fracturing. The SRA of the temporary plugging fracturing experiment
(SRA = 1.5) is also significantly larger than that of the conventional fracturing (SRA = 0.5).

It should be pointed out that temporary plugging fracturing can increase the fracture
complexity and significantly enhance the volume of reconstruction, but it requires a high
treatment pressure, which is a problem. Meanwhile, it should be considered that the
clayey silt hydrate reservoir is not diagenetic, its strength is low, and it can easily lose
stability. Therefore, before a hydraulic fracturing construction, it is necessary to consider
the reservoir conditions comprehensively, and fracturing in the layer with high hydrate
saturation should be given priority.
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3.3. Impact of Displacement

The objectives of 2# and 3# samples and 4# and 5# samples are to explore the impact
of displacement on hydraulic fracture propagating and fracture geometry. The results
indicated that the SRA was affected deeply by displacement.

As demonstrated in Figure 5B, although the complex fracture morphology of main
fracture and steering fracture is formed in 2# and 3# samples after fracturing, the fracture
morphology is analogous, but increasing the displacement can significantly improve the
SRA. Owing to the increase in fracturing fluid displacement, the injection pressure and the
pressure in the fracture would increase, and the stress at the fracture tip would increase,
resulting in an increase in fracture propagation speed. Meanwhile, increasing the displace-
ment increases the initiation pressure. This can be attributed to the high fracturing fluid
displacement causing a high strain rate at the fracture tip, leading to an increase in the
strength and initiation pressure of the hydrate sediments. Similar experimental phenomena
are observed in the 4# and 5# samples. Although nearly symmetrical double wing vertical
fractures are formed after fracturing, and the fracture morphology is similar, and increasing
the displacement could significantly improve the SRA. Meanwhile, the increase in the
displacement could lead to an increase in the fracture initiation pressure.
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Figure 5. Fracture morphology comparison between low and high displacements: (A) fracture
morphology after hydraulic fracturing (2#), (B) fracture reconstruction diagram after hydraulic frac-
turing (2# and 3# samples), (C) fracture morphology after hydraulic fracturing (4#), and (D) fracture
reconstruction diagram after hydraulic fracturing (4# and 5# samples).

It is important to note that increasing the displacement can significantly increase
the reconstruction volume, but in actual construction, a higher fracturing fluid displace-
ment will increase the treatment pressure, thus improving the requirements for fracturing
construction equipment. Meanwhile, considering that the clayey silt hydrate reservoir is
not diagenetic, with a low strength and exhibiting an easy stability loss, the construction
displacement must be reasonably optimized before conducting hydraulic fracturing.

3.4. Fracturing Pressure Curve

As depicted in Figure 6a, the breakdown pressure of 1#sample is obvious, about
11.78 MPa, and the propagation pressure curve is relatively stable, revealing the fracture
geometry to be more regular. The result coincides with that of the single vertical fracture,
which is observed by splitting the sample after the fracturing experiment (Figure 3). The
breakdown pressure of 4# sample is obvious, about 7.53 MPa, and the propagation pressure
is relatively stable, manifesting a more regular fracture geometry, but the breakdown
pressure is significantly lower than that of 1# sample. This was due to the fact that the
prefabricated perforation interval plays a similar role to that of microcracks. In addition,
compared with 1# sample, 4# sample has a larger fluctuation after the breakdown point,
which may be due to the difference in perforation initiation time. The pressure curve of the
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5# sample resembles that of the 4# sample, but the breakdown pressure was higher than
that of the 4#sample, which is 8.39 MPa.
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Figure 6. Pressure curves of conventional fracturing. (a) 1#; (b) 4# and 5#.

The pressure curves of temporary plugging fracturing are illustrated in Figure 7. In the
fracturing process (q1) of 2# sample pump injection without a temporary plugging agent
fracturing fluid, there are obvious breakdown points, high fracture initiation pressure, and
low fracture propagation pressure, and this is similar to the pressure change law in the
conventional fracturing process. After pumping the fracturing fluid with a fiber temporary
plugging agent (q2), the treatment pressure gradually increases to 22.9 MPa, and the
pressure fluctuation is obvious. The pressure characteristics are caused by the temporary
plugging agent migrating into the fracture and compressing the new fracture. From the
pressure curve, the pressure rises and then falls many times, and each such process can
be regarded as a quasi-rupture process. As the fiber fracturing fluid is injected into the
wellbore, the fluid is filtered along the formed fracture, and the fiber slowly accumulates at
the beginning of the fracture, thereby creating a filter cake. When the filter cake reaches
a certain level, the rate of fluid filtration slows down, or the liquid can no longer enter
the fracture, causing a pressure rise. After the pressure has risen to a certain level, due to
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the formation of new fractures or the propagation of old fractures, the fluid is filtered into
the sample again, resulting in a rapid drop in pressure. When the new filter loss reaches
a certain extent, the fiber gathers again to form a filter cake, resulting in a new round of
pressure rise, and the injection pressure decreases again after the new fracture or the old
fracture propagates, and this process is repeated. The fracturing curve of 3# sample is
similar. The main difference is that the fluctuation is more obvious after pumping the
fracturing fluid with a fiber temporary plugging agent. The phenomenon indicates that
many new fractures are generated during the fracturing process, and the fracture area of 3#
sample is also significantly larger than that of 2# sample.
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3.5. Analysis of Filtration Area and Fracture Propagation Area

Fracture propagation area and fracturing fluid filtration area are be observed in the
fracturing physical simulation experiment. The Figure 8 shows the distribution of fracture
propagation area and fracturing fluid filtration area of 4# and 5# samples after fracturing. It
can be found that the fracturing fluid filtrate area is significantly larger than the fracture
propagation area under both low and high displacement conditions. Compared with tight
sandstone reservoir samples [57], the difference between fracturing fluid filtration area and
fracture propagation area is greater, as shown in Figure 9. The filtration area of fracturing
fluid is obviously larger than the fracture propagation area. Fracturing fluid can form a
large range of filtration area quickly, which may be due to the high argillaceous content of
clayey silt hydrate reservoirs. However, in the actual hydraulic fracturing treatment, we
should avoid the formation of a large range of filtration area, which is a waste of fracturing
fluid and fracturing fluid energy. Therefore, when performing the hydraulic fracturing in
clayey silt hydrate reservoirs, high-viscosity fracturing fluids should be used to reduce the
fracturing fluid filtration and increase the fracturing fluid efficiency.
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4. Conclusions

Based on a series of large-size (30 × 30 × 30 cm) laboratory physical simulation
experiments, the effects of the completion method, fracturing method, and fracturing fluid
displacement on the hydraulic fracture propagation behavior of clayey silt hydrate-bearing
sediments were studied. The drawn conclusions are as follows:

(1) Compared with the open hole completion, the perforated completion can result
in a significant increase in the fracture reconstruction area and a reduction in the fracture
initiation pressure. As the clayey silt hydrate reservoir is not diagenetic and has a low
strength, the perforated completion has obvious advantages. It is recommended to use the
perforated completion in the fracturing of this type of reservoir.
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(2) Due to the small horizontal stress difference, the temporary plugging fracturing is
feasible in clayey silt hydrate reservoirs. Temporary plugging fracturing can form steering
fractures and significantly improve fracture complexity and fracture area.

(3) The fracture area is significantly increased with the increase in fracturing fluid dis-
placement, but a higher fracturing fluid displacement will improve the treatment pressure,
thus increasing the requirements of fracturing construction equipment. Meanwhile, consid-
ering that the clayey silt hydrate reservoir is not diagenetic, its strength is low, and it can
easily lose stability, the displacement needs to be reasonably optimized before fracturing.

(4) When conducting the fracturing construction in a clayey silt hydrate reservoir, the
fracturing fluid filtration area obviously exceeds the fracture propagation area. Therefore, a
high-viscosity fracturing fluid should be selected to reduce the filtration and improve the
fracturing fluid efficiency.

(5) It should be pointed out that, in our research, we only considered the similarity of
the mechanical properties and porosity and permeability properties between the simulated
samples and the actual reservoir conditions. However, the actual fracturing of the NGH
reservoir also involves the decomposition and phase transformation of the hydrate. Hydrate
dissociation may lead to a rapid increase in pore pressure, and it also reduces the hydrate
formation. The change in formation characteristics will result in the change in reservoir
porosity and permeability. Those changes have an important impact on the safety and
fracture propagation behavior of the hydraulic fracturing construction. Therefore, it is
necessary to focus on this aspect in the future research.
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Abstract: This paper describes the further development of the virtual flow meter concept based
on the author’s simulator of an unsteady gas–liquid flow in wells. The results of comparison with
commercial simulators based on real well data are given as practical applications. The results of the
comparison of the simulators demonstrated high correspondence (<10% error) for a number of target
parameters. The description of the architecture and results of testing the algorithm for automatic
settings of the model parameters are given. Operating speed was the key criterion in the architecture
development. According to the test results, it became possible to achieve the adaptation accuracy of
5% specified.

Keywords: virtual flow measurement; multiphase flow; reservoir fluid; simulator; numerical methods

1. Introduction

The so-called digital-twin technologies designed to offer a commercial solution to a
number of process problems are being actively implemented in many industrial areas.

A simulator of an unsteady flow of a multiphase fluid in a reservoir, a well, and
surface gathering lines, which takes into account all the key physical processes occurring
during hydrocarbon production, is actually used as a twin for oil and gas fields. This
paper contains a brief description of the key features of the unsteady multiphase flow
simulator developed by the authors taking into account the choke and electric centrifugal
pump models.

Correlating the data obtained during the simulation with the actually measured data is
a necessary step when using a simulator in a digital twin. This process is called adaptation
or adjustment to an actual value.

The simulator parameters can be grouped according to two criteria: impact on the
result, i.e., sensitivity, and accuracy of their measurement in a real field.

The figure (Figure 1) shows some parameters for the black oil model. Adaptation
consists of selecting highly sensitive and weakly measured parameters so that the input
parameters sent to the simulator provide the output ones corresponding to the measured
ones with sufficient accuracy for a wide set of input data. Gas viscosity, gas compressibility,
and pipe roughness were used as adjustment parameters.
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It should be noted that it is incorrect to equate this process with the calibration of an
instrument because the development of an instrument concept consists in minimizing the
number of highly sensitive and weakly measured parameters, while calibration consists of
selecting highly sensitive and accurately measured parameters.

Two neural networks were used as the adaptation algorithm of the simulator. The first
was used to make a forecast of the simulator output parameters based on the input parameters.

The second was used to assess the optimal input parameters for the given output parameters.
The neural network implementations were taken from the TensorFlow software library.

2. Methodological Approaches
2.1. Mathematical Model of an Unsteady Flow of a Multiphase Fluid

The proposed simulator uses the systems of equations of continuity, conservation of
mass, energy, and momentum (for the gas and liquid phases) [1–4], as well as the equations
for the total enthalpy of a mixture in the allocated volume and for the mass of an individual
component taking account of friction, specific enthalpy, and heat exchange (gas/liquid,
wall/gas, liquid/gas, wall/liquid) in order to simulate the gas–liquid flows in a well and a
gas-gathering network.

The Peng–Robinson equation of state (modified Van der Waals equation) was used
as the equation of state, where p is pressure, T is temperature, V is molar volume, R is
the gas constant, and a and b parameters are the coefficients responsible for the forces of
attraction between molecules and the finite volume of the molecules calculated through the
parameters at the critical point:

p =
RT

V − b
− aα

V(V + b) + b(V − b)
(1)

.
It is necessary to take into account the temperature dependence of the a and b coeffi-

cients. If compressibility factor Z is introduced, then the Peng–Robinson equation of state
can be represented as a cubic equation of Z. After solving this equation, the maximum root
was selected for the gas phase, while the minimum root was selected for the liquid phase.
Additional ratios are required to determine a and b coefficients and the molar mass for a
mixture of several components, which are called blend recipes (Soave ratios).

The model for calculating the phase state of the mixture allows obtaining the quantities
(in moles) of the hydrocarbon liquid and gas coexisting in a tank or vessel at a given pressure
and temperature. These calculations also make it possible to define the composition of the
existing liquid and gas hydrocarbon phases.

In a multicomponent system, the separation of the components between the liquid
and gas phases is described by the equilibrium ratio (coefficient) for the given component.

The equilibrium coefficient is defined as the ratio of the molar fraction of the compo-
nent in the gas phase to the molar fraction of the component in the liquid phase. At low
pressures, Dalton’s law is applicable to a mixture of gases, and Raoult’s law is applicable to
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regular solutions. Raoult’s law allows the expression of the partial pressure of a component
in a solution through the pressure of saturated vapors of the given component. Dalton’s law
expresses the partial pressure of a component in a gas through the pressure in the system.

This model assumes that the value of the equilibrium coefficients for any component
does not depend on the total composition of the mixture, and since the saturation pressure
depends only on temperature, the equilibrium coefficients depend only on pressure and
temperature in the system.

The temperature of the mixture can be determined if the total enthalpy is known, and
the empirical Lohrenz–Bray–Clark formula was used to calculate the viscosities.

The Lee–Gonzalez–Eakin method was used to calculate the gas phase viscosity. This
method is a semi-empirical correlation in which the gas viscosity is expressed through
temperature, gas phase density, and molar mass. The proposed correlation predicts the
viscosity value with a standard deviation of 2.7% and a maximum deviation of 8.99%,
which is why this method cannot be used for sulfurous gases.

Calculation of friction with the channel walls for a Newtonian fluid is made using the
standard approaches as closing relations of the system.

For a single-phase liquid or gas flow, the friction pressure loss due to the wall friction
included in the momentum conservation equations is usually expressed through the specific
mass flow rate of the mixture with a density of the medium, while the friction coefficient
is a function of the Reynolds number at the fixed channel geometry. Various correlations
of the friction coefficient (in laminar or turbulent mode) are used to calculate the pressure
loss. Transition flow uses linear interpolation between the expressions for the laminar and
turbulent modes.

The situation is more complicated in the case of a two-phase flow. Here, the pressure
loss depends not only on the flow rates and Reynolds numbers of the individual compo-
nents but also on the structure of the two-phase flow. The Lockhart–Martinelli approach
is common for calculating friction in two-phase modes: according to it, a pressure loss in
a two-phase flow can be calculated as the product of the pressure loss of a single-phase
flow of any phase with the flow rate of the two-phase mixture and the two-phase friction
multiplier. Simpler, Hagedorn–Brown [2], Duns–Ros [3], and Orkiszewski [4] models can
be used to calculate the friction in a two-phase flow. There are also transient two-phase
flow models [5,6], but they are not covered in this article.

Heat fluxes coming from the wall into the liquid and gas phases were calculated in
order to determine the heat exchange with the wall in the proposed model (heat transfer
coefficients for each phase are calculated through the dimensionless Nusselt number).

The proposed mathematical models contribute to the development of the theoretical
aspects of time simulation of multiphase media, as well as the research into important
practical problems in the industry. In order to make a computational algorithm, all the
previous conservation equations were rewritten in a finite-difference form.

2.2. Choke Model

In the basic model, a choke is a local abrupt taper of a pipeline and then its abrupt
enhancer (Figure 2).
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In this case, the pressure loss at the choke is the sum of irreversible losses in case of
the abrupt taper of the pipeline from section A1 to section A0, irreversible losses in case of
the abrupt enhancer of the channel from section A0 to section A2, and local friction losses
in the narrow section of the channel:

∆p = ξ
ρu2

0
2

=

(
ξtaper + ξenhancer + ξ f riction

l0
D0

)
ρu2

0
2

(2)

where ρ is the fluid density, u0 is the fluid velocity, ξ is the loss factor, l0 is the choke length,
and D0 is its inner diameter.

The friction loss coefficient is calculated using the friction model [7]. The taper and
enhancer loss coefficients are calculated according to the ratios in [8].

The taper loss coefficient is calculated as follows:

• at Re < 10: ξtaper =
30
Re

• at 10 ≤ Re < 104: ξtaper = A·B
(

1− A0
A1

)

where A =
7
∑

i=0
ai(lgRe)i, a0 = −25.12458, a1 = 118.5076, a2 = −170.4147,

a3 = 118.1949, a4 = −44.42141, a5 = 9.09524, a6 = −0.9244027, a7 = 0.03408265.

B =
2
∑

i=0

{[
2
∑

j=0
aij

(
A0
A1

)j
]
(lgRe)i

}
, aij coefficients are presented in Table 1.

Table 1. Values aij.

i/j
10 ≤ Re ≤ 2 × 103 2E3 ≤ Re ≤ 4 × 103

0 1 2 0 1 2

0 1.07 1.22 2.9333 0.5443 −17.298 −40.715
1 0.05 −0.51668 0.8333 −0.06518 8.7616 22.782
2 0 0 0 0.05239 −1.1093 −3.1509

• at Re > 104: ξtaper =
1
2

(
1− A0

A1

)3/4

The enhancer loss coefficient is as follows:

• at Re < 10: ξtaper =
30
Re

• at 10 ≤ Re ≤ 500:

ξtaper = 3.62536 + 10.744a− 4.41041a2+
+b
(
−18.13 + 56.77855a + 33.40344a2)+

+b2(30.8558 + 99.9542a− 62.78a2)+
+b3(−13.217− 53.9555a + 33.8053a2)

where a =
(

1− A0
A2

)2
, b = 1

lgRe ;

• at 500 < Re < 3.3·103:

ξtaper = −8.44556− 26.163a− 5.38086a2 + c
(
6.007 + 18.5372a + 3.9978a2)+

+c2(−1.02318− 3.0916a− 0.680943a2)

where a =
(

1− A0
A2

)2
, c = lgRe;

• at Re ≥ 3.3·103: ξtaper =
(

1− A0
A2

)2
.
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2.3. ESP Model

The ESP model allows for defining the head created by the pump depending on the
flow rate of the mixture. Therefore, the momentum conservation equation is replaced by a
pressure differential equation:

Lc
∂p
∂l

= gρm∆H

where Lc is the length of the pump stage, ∆H is the pump head, and 〈ρ〉 is density of
the mixture.

∆H = ∆H∗BKH(2− q− A(1− q)2), KH = KQ = 1− 150
Re

, Kη = 1.08− 12Re−0.45

η = g〈ρ〉∆HQ
∆N , q = Q

Q∗= Q
(KqQB

∗)
, A = 0.66 + 16Re−0.68, Re = 4.3+0.816ns

0.274

ns0,575 Q∗B
〈ρ〉
〈µ〉
(
ω
Q∗B

)1/3
,

ns = 193ω(Q∗B)
0.5(g∆H∗B)

−0.75

where KQ, KH , and Kη are the supply, head, and efficiency coefficients; ω is the angular
speed of the shaft rotation; 〈µ〉 is the effective viscosity of the mixture; and ns is the
speed coefficient.

Q∗B = Q∗BH
ω

ωH
, ∆H∗B = ∆H∗BH

(
ω

ωH

)2
, ∆N∗B = ∆N∗BH

(
ω

ωH

)3

where Q∗BH , ∆H∗BH , and ∆N∗BH are the motor stage characteristics at the rated angular
velocityωH = 50 Hz.

3. Method of Automatic Adjustment to the Actual Data

The number of measured parameters of wells in the existing fields is less than neces-
sary for a comprehensive description of the physical system. In order to adjust the model
intended for forecasting and calculation, the unknown parameters should be as close as pos-
sible to the actual ones. An automatic adaptation algorithm based on neural networks was
used to identify any hidden dependencies between the measured and unmeasured values.

The adaptation algorithm consists of two main modules: a decision-making module
and an assessment module. The assessment module is used to approximate the aggregate
data specified by the objective function based on the data calculated by the hydrodynamic
simulator (Figure 3), whose computational kernel performs a deterministic calculation of
the multiphase fluid movement in the reservoir and the well [9]. The objective function
can be set arbitrarily based on the measured parameters and the simulator output so that
all values are within the [−1, 1] range, where higher values correspond to higher accuracy.
The decision-making module was used to determine the values of the adjusted parameters
of the simulator based on the approximation performed by the assessment module.

Since direct training of the network requires knowledge of the optimal set of param-
eters for each set of the input values, the network was trained by end-to-end gradient
propagation through the assessment module (Figure 4) by the chain rule formula:

δv
δw

=
δv
δa
· δa
δw

(3)

where v is the output value of the assessment module, a is the vector of the adjusted
parameter values, and w is the internal variables of the decision-making model.
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The architecture of a fully connected two-layer neural network (Figure 5) with Rec-
tifiedLinearUnit as an activation function was chosen for the decision-making module.
The output layer uses the hyperbolic tangent activation function. The network receives
measurement data from a real well as input. The network provides the values of the
parameters sent to the simulator as its output.
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This calculation can be performed directly since both modules were implemented on
the basis of the TensorFlow [10] computation graph. Adam from the TensorFlow package
was used as an optimizer that implements the backpropagation of the error algorithm
based on the calculated gradient value.

The architecture of a fully connected three-layer neural network (Figure 6) with
RectifiedLinearUnit as an activation function was chosen for the assessment module. The
output layer uses a single neuron with the hyperbolic tangent activation function. The
network receives measurement data from a real well and the vector of the simulator
parameters as input. The network provides the predicted value of the objective function
as its output. RectifiedAdam from TensorFlow Addons package with the mean-square
deviation as a loss function was used as an optimizer.
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3.1. Problem Statement

Two tasks were considered in this paper: validation of the correctness of the developed
simulator and assessing the quality of the automatic adaptation algorithms.

3.2. Validation of Correctness

In order to validate correctness, it is necessary to compare with a reference, with the
PIPESIM simulator used as one.

A deviated well (Table 2) with a maximum deflection angle of about 32◦ was adopted
as the input parameters for the model in PIPESIM software and the methodology used.
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Table 2. Well geometry.

Depth along the Wellbore, m Azimuthal Angle, ◦

0 1.9
270 2.0
400 0.9
820 0.7
950 0.9
2070 3.2
2220 11.9
2340 24.4
2470 29.0
2620 32.1
2770 28.5
2910 26.2
3060 28.9
3200 28.4
3350 23.8
3460 11.6
3580 1.3
3880 0.0

Fluid properties table (Table 3):

Table 3. Fluid properties.

Properties Density, kg/m3

Gas 0.8087
Liquid 765.8

The following table (Table 4) descibe boundary conditions were used for calculation:

Table 4. Reservoir conditions.

Pressure, Bar Mixture Temperature, K OGR Watercut, %

422 378.5 0.000715 0

Beggs and Brill’s methods were used to calculate the parameters in the well in the
author’s simulator and in PIPESIM software.

Two PVT models were used to compare the calculation results: the black oil model
and the compositional model. Compositional model was: N2, CO2, C1, C2, C3, C5+, C7+,
C11+, C19+, and C36+.

There was no surface or bottom hole equipment such as choke or ESP.
The graphs of the distribution of the parameters of pressure, temperature, gas mass

rate, and gas volume gate (Figures 7–10) along the wellbore are shown below.
As mentioned above, the proposed model of the gas–liquid flow is unsteady. Therefore,

the steady flow (stationary mode) (Figure 11) is adopted as a comparison of the method
developed with PIPESIM.
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Figure 11. Adjustment of the model to actual values in the virtual flow meter mode.

In addition to the above parameters, the proposed method allows calculating the param-
eters of density, velocity, volume fraction, and viscosity of each phase (liquid, water, gas), as
well as the mass, density, and inner radius of the layer of paraffin formed at any time.

3.3. Automatic Adjustment Quality

Quality was assessed based on two criteria: velocity and accuracy.
The velocity of the algorithm was determined by the speed of training and the speed

of picking. In the tests carried out on a PC with the following configuration: Intel Core
i5-7600 CPU at 3.5 GHz and 12 GB memory, the training took 5–7 min of real time, while
the time of the calculation itself was about 3 s.

In order to assess the accuracy of the adaptation algorithm, it is necessary to define the
accuracy of determining the measured parameters. In case of adjustment to actual values,
there is no need to achieve a mistie less than the measurement accuracy. A 5% accuracy for
the target parameters was used in this paper.

A set of input and output data divided into the training and test sets was used to
assess the quality of the automatic adjustment. In the case of the training set, the algorithm
was adjusted to the target parameters with an accuracy of 5%, then the adjusted model
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parameters were sent to the test set, and the target values were compared. The quality of
the adjustment was considered acceptable if the mistie in the test set did not exceed 5%.

A table (Table 5) comparing the target values on the training and test sets is shown below.

Table 5. Comparison of the target parameters on the training and test sets.

Parameter
Training Set Test Set

Simulator Experiment Error, % Simulator Experiment Error, %

Volume oil fraction 6.5 (%) 6.3 (%) 3.3 5.9 (%) 6.2 (%) 4.8
Volume gas fraction 93.5 (%) 93.7 (%) 0.2 94.1 (%) 93.8 (%) 0.3
Mass oil flow rate 0.87 (kg/s) 0.91 (kg/s) 4.4 0.85 (kg/s) 0.82 (kg/s) 3.5
Mass gas flow rate 20.12 (kg/s) 19.67 (kg/s) 2.23 19.12 (kg/s) 19.93 (kg/s) 4.0

4. Discussion

By using the example of modeling a part of an oil-gathering network, which includes a
number of sensors and measurement systems, this paper presented the concept of a virtual
measurement system based on a hydrodynamic simulator and a deterministic model of the
measurement system. The concept was tested on real experimental data and applied in
real time. Acceptable accuracy of predictions of gas and oil discharge rates was obtained.
Differences in calculated parameters are related to the difference in viscosity models [9,11].

It was found, based on the analysis, that the relations used to calculate friction of the
multiphase flow with the borehole walls are one of the main sources of uncertainty. An
exhaustive search of the typical friction models (in addition to the Beggs and Brill model
used in the calculations) with the remaining parameters fixed showed a spread of the mass
flow rate values most likely related to the use of the models outside the scope of their
application. The effect of the pipe wall roughness and the gas compressibility parameter
on the flow rate—due to its significant volume fraction of more than 89%—was also shown.
Thus, it is necessary to measure the properties of the multiphase mixture and to know
the process and design features of the well, as well as to understand the ranges within
which the measured parameters might vary in order to use the developed methods in real
situations to improve the prediction accuracy.

Further development of the methods will allow for fundamentally new opportunities
to improve the measurement systems created on the principle of multiple run metering
systems to appear, whose virtualization multiplies the density and reliability of data, to
practically implement the principles described in the above-mentioned patents, and to
significantly improve the quality of the information base for further development of the
smart field technologies.

5. Results and Conclusions

The results of the operation of the previous proprietary unsteady influx simulator were
compared with the results of the PIPESIM simulator based on actual data. The comparison
showed a satisfactory fit for a number of target parameters, such as pressure, mass flow
rate, and temperature.

An algorithm for the automatic adaptation of the model to actual data was developed
and tested. The selected algorithm architecture allows quick fine-tuning and retraining
neural networks to adjust to certain data types: GOR and WOR parameters of a well, typical
flow rates, borehole geometry, etc.

Assessment of the quality of adjustment showed that it is possible to achieve the
required level of reliability subject to a sufficient amount of data available in the training
set. However, further research using actual data is needed to determine the limits of the
applicability of this algorithm.
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Abstract: This paper describes testing of the INSIM-FT proxy simulation method (interwell-numerical-
simulation model improved with front-tracking method) to assess the dependencies between produc-
tion and injection wells, as well as to assess the forecast of oil/liquid production by wells depending
on their operation parameters. The paper proposes the approach of taking into account the influence
of various production enhancement operations. The method was tested on a synthetic hydrody-
namic model and on a sector of a real field. The results show a good match between historical
data and simulation results and indicate significant computational efficiency compared to classical
reservoir simulators.

Keywords: proxy modeling; ES-MDA; history matching; reservoir optimization

1. Introduction

Waterflooding of oil fields is used to displace oil with water from the formations and
maintain the formation pressure at a given level by injecting water. Water injection through
injection wells is the main and most common way to maintain reservoir pressure. In Russia
over 90% of oil fields are developed using this technology [1].

Mature oil and gas fields are characterized by a rapid increase in the water cut of
the produced liquid and a decrease in the oil flow rate. This stage is associated with
complications of the production process. The sweep efficiency and the oil recovery factor
can be improved by application of efficient waterflood systems, primarily, focal ones as
well as by changing the filtration flows [2]. Moreover, with the increase in the share of
hard-to-recover reserves under development, the task of increasing oil production rates
becomes relevant.

With the development of the oil industry, geological and hydrodynamic simulation
of hydrocarbon recovery has become one of the main tools for both predicting future
performance of the reservoir in either the long-term or short-term period and selecting a
reasonable development strategy for oil and gas fields. Moreover, it is an essential tool for
the decision-making process in field development and petroleum production optimization
where different operating conditions and actions are tested to increase productivity from
existing wells or well patterns [3].

Full-scale hydrodynamic models are usually built on poor, averaged, and roughened
geological models. Therefore, the insufficient accuracy of calculations performed on such
models is associated with a high degree of uncertainty of initial information, especially
of reservoir properties in the interwell space [4]. Moreover, to assess the efficiency of
development methods, it is necessary to be able to carry out operational multivariate
calculations. The use of three-dimensional hydrodynamic models in such cases is inefficient
due to the following reasons [5]:

1. Long duration of the simulation;
2. Need to use large computational resources;
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3. Complexity of modifying the model when making adjustments or changing various
parameters.

The use of machine-learning algorithms or simplified models (proxy models) based
on material balance methods and various analytical dependencies is practical, making
it possible to account for the most important factors affecting the calculated properties.
Such models are less time-consuming, adapt faster to actual data, and allow for quick
calculations while maintaining the required accuracy [6]. The advantage of proxy models
is historical data are used as the input, namely, production and injection data.

It is obvious that in the development of hydrocarbon fields, interconnection and
mutual influence of all wells must be taken into account. Under reservoir pressure mainte-
nance conditions, understanding the interaction between production and injection wells,
assessing the degree of injection impact on oil production, and plotting the dependencies
of recovery on water injection plays a key role in selecting the most optimal waterflood
strategy. The use of proxy modeling makes it possible to solve the problems of accounting
for the relationship and mutual influence of all wells.

Thus, a promising area of simulation of hydrocarbon recovery is the improvement of
approaches to the creation and implementation of proxy models, as well as the development
of methods for automated optimization of the oil field development system.

One of the important stages in proxy simulation is history matching, which solves
the inverse task of hydrodynamics, i.e., the main reservoir properties (porosity, perme-
ability, net pay thickness, heterogeneity, etc.) are adjusted to fit the actual field data with
certain accuracy [7]. These algorithms are used in predicting well performance and in
redistributing the volume of injected fluid between the injection wells with minimal costs
and high payback.

Currently, one of the most common proxy modeling approaches are based on reduced-
order models, data-driven models, physics-based models, and flow-network models. These
models provide for solving problems of waterflooding optimization, identifying the effi-
ciency of injection and production, assessing the interaction of wells, forecast fluid, and oil
production in a specific period of time [8].

Reduced-order models are used to replace large reservoir models by reducing high-
fidelity simulator models or by creating new reduced-order, data-driven models [9]. There
are different model reduction techniques in the literature [10–14]. The main disadvantage
of such models is that geologic data is required.

As opposed to reduced-order models, data-driven models require no prior knowledge
of petrophysical properties or other specific geological information. Recurrent neural
networks are common data-driven models used in the petroleum industry [15,16]. Because
these are data-driven models, the accuracy of these models solely depends on the quality
of the data used for training and can be affected by data noise. Moreover, these models are
difficult to train and have pitfalls, such as overtraining, extrapolation, or lack of validation.

One example of the physics-based approach is the capacitance-resistance model (CRM),
which uses production and injection rate data and bottomhole pressure to match the
model against a particular reservoir [17–19]. CRM is analogous to electrical circuits where
the compressibility and transmissibility, respectively, are analogous to capacitance and
resistance. It is based on a model of nonlinear signal processing in which injection rates are
treated as input signals and production rates are output signals [20]. The disadvantages
of the CRM method are the productivity of each production well is considered constant
throughout the entire history of production, which is not quite correct physically in the
conditions of multiphase filtration. Moreover, the saturation distribution in this model is
not calculated, and the oil production rate is adjusted indirectly through the displacement
characteristics [17].

Flow-network models represent reservoir flow by a coupled-network model in which
each pair of wells is connected with a one-dimensional (1D) finite-difference reservoir-
simulation model. Each reservoir is defined by two parameters: absolute permeability and
pore volume. The advantages of this approach are the construction of this model does not
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require a high-fidelity geological data and that it follows the physical laws of the realistic
multiphase system. In this approach, relative permeabilities are assumed to be known. This
model uses the true relative permeability curves, which is physically correct but requires a
priori knowledge of the relative permeability curves [21].

This paper focuses on the interwell-numerical-simulation model (INSIM-FT), which
is somewhat similar to the CRM and flow-network model. In the INSIM assumptions, a
reservoir is viewed as a series of units connecting well pairs, but instead of discretizing
those connections as in the flow-network model, INSIM only defines a pair of parameters
for each connection. That is a significant reduction in the number of parameters compared
to a set of 1D finite-difference reservoir models. The model uses the correct front-tracking
procedure to calculate water saturation [22]. A more detailed description and methods
used in the work are described in the next chapters.

This article presents software implementation of the method [4] and modification
of the method to account for the influence of geological and technical measures, and on
this basis, conducts a series of numerical experiments to assess the accuracy, convergence,
and sensitivity of the method to parameterization of the historical performance of the
hydrocarbon field.

2. Model Description
2.1. INSIM-FT: Theoretical Background

The interwell-numerical-simulation model (INSIM) is used as a tool to calculate the
approximation of the well production rate under waterflooding [23]. In INSIM, the reservoir
is characterized as a rough model consisting of several interwell control units (flow tubes),
where each unit has two specific properties: conductivity, Tij, and control pore volume, Vpij
(Figure 1).
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By solving the mass balance equation and front motion equations for each of the units,
it is possible to obtain the velocities and saturation of interwell fluids for further prediction
of the production rate. INSIM is used to adapt the model based on the available data to
estimate parameters and to determine interwell correlation and geological characteristics.
INSIM has the following advantages:

• The model parameters estimated based on historical data provide a relative character-
istic of the reservoir properties between the wells. The model can handle changes in
flow direction caused by well flow rate changes, including well shut-in or conversion
of production wells to injection wells;

• INSIM is able to calculate the oil and water flow rate and the adapted water cut data;
• It can be used to optimize waterflooding but with considerably less computational effort.
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In the described model, only a two-phase flow rate (liquid oil and water) is considered,
and the conductivity, Tij, is set as the average total permeability between the i-th and j-th
wells. INSIM-FT solves the material balance equation for the j-th well (without accounting
for capillary pressure and gravity):

∑nw
j=1 Ti,j(t)·

(
Pj(t)− Pi(t)

)
− qi(t) = ci(t)·Vp,i·

dPi
dt

(1)

where nw is the total number of wells; qi(t) is the flow rate of the i-th well at time, t, and is
positive for injection and negative for production; ci(t) is full compressibility, Vp,i. If well j
is not interlinked with well i, then Ti,j = 0 in the equation.

The physical meaning of the above-mentioned equation is that the change in the
control pore volume due to compressibility is equal to the difference between the injection
into the volume, ij, and the production from the volume, i. The equation is a combined
pressure equation. Approximation of the equation by the implicit finite difference scheme
used in reservoir simulation gives the following expression:

Pn
i − Pn−1

i =
∆tn

cn
t,iV

n
p,i

(
−
(
∑nw

j=1 Tn
i,j

)
Pn

i + ∑nw
j=1

(
Tn

i,jP
n
j

)
+ qn

i

)
(2)

for i = 1, 2, . . . , nw; where ∆tn = tn − tn−1 and t0 = 0. Throughput (capacity) (Tn
i,j) well

drainage pore volumes (Vn
p,i-th) and compressibility (cn

t,i-th) may change with time.
In INSIM, similar to the pressure equation in reservoir simulation, non-linear terms are

estimated at the previous time level, that is, terms that depend on the pressure and water
saturation estimated at the moment in time, tn−1, instead of tn. Accordingly, in Equation
(2) it is necessary to use:

Tn−1
i,j =

αki,j Ai,jλ
n−1
t,i,j

Lij
= T0

i,j

λn−1
t,i,j

λ0
t,i,j

(3)

Vn−1
p,i = V0

p,i

(
1 + cr

(
pn−1

i − p0
i

))
(4)

cn−1
t,i = Sn−1

o,i co + Sn−1
w,i cw + cr (5)

instead of Tn
i,j; Vn

p,i; cn
t,i, respectively. Here, So,i and Sw,i are the corresponding volumes of oil

and water saturation of the well i; co,cw, and cr, respectively, represent the compressibility
of oil, water, and rock; λt,i,j is the total mobility, which is calculated by upstream weighting.
If pn

i > pn−1
i , then λt,i,j is replaced by the overall fluidity of the well i, λt,i. It is assumed that

the viscosity of oil and water is constant. Weighing with an upward flow means pn
i < pn−1

i :

λn−1
t,i,j = λn−1

t,i =
kro

(
Sn−1

w,i

)

µo
+

krw

(
Sn−1

w,i

)

µw
(6)

Otherwise:

λn−1
t,i,j = λn−1

t,i =
kro

(
Sn−1

w,i

)

µo
+

krw

(
Sn−1

w,i

)

µw
(7)

where µo and µw are the viscosities of oil and water, respectively. As Vn−1
p,i,j changes, we use

the following equation:

Vn−1
p,i,j = V0

p,i,j

[
1 + cr

(
0.5
(

pn−1
i + pn−1

j

)
− p0

i

)]
(8)

We designate:

En
i =

∆tn

cn−1
t,i Vn−1

p,i

(9)
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Gn
i = En

i ∑nw
j=1 Tn−1

i,j (10)

Mn
i =

∆tnqn−1
i

cn−1
t,i Vn−1

p,i

(11)

Then, at each step t, the following system of equations is solved:



Gn
1 + 1 −En

1 Tn
1,2 · · · −En

1 Tn
1,nw

−En
2 Tn

2,nw
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1 Tn

1,nw
...

...
...

...
−En

nw Tn
nw ,1 −En

1 Tn
1,nw

· · · Gn
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pn
1

pn
2
...

pn
nw
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pn−1
1

pn−1
2
...

pn−1
nw


+




Mn
1

Mn
2

...
Mn

nw


 (12)

where Mn
i is positive for the injection well and negative for the production well.

The system of Equation (12) can be solved for pn−1
i on the assumption the necessary

saturations at tn−1 are known. After finding pn
i , it is necessary to solve the ‘fractional flow’

equations to obtain the water saturation at the moment in time, tn.
In Formula (12), the number of pressure equations is equal to the number of downhole

assemblies, while in traditional reservoir modeling, the number of pressure equations is
equal to the number of grid blocks. Therefore, the INSIM method requires considerably less
computational resources than 3D direct simulation of dynamic processes in the reservoir.
After the pressures are calculated, the saturation values are estimated. Further, it is easy to
calculate the flow rate between the pairs of wells, which can be used for further diagnostics
of downhole dynamics. Since the number of downhole assemblies is limited, the method-
ology may only give an approximate distribution of the formation fluid. However, the
results of the calculations to date show the saturation or pressure distributions calculated
by the INSIM model compared with historical data are sufficient to obtain a successful
production forecast.

The INSIM model was improved to become the INSIM-FT model—an interwell simu-
lation model with fluid front tracking. The key difference is the calculation of the water
cut distribution between the wells. Unlike INSIM, INSIM-FT also includes parameters that
define relative permeability power curves.

The distribution of water saturation between two wells is described by the following
form of the one-dimensional Buckley–Leverett equation [24]:

∂Sw(x, t)
∂t

+
qt,i,j(t)
φi,j Ai,j

∂ fw(x, t)
∂x

= 0, 0 ≤ x ≤ Li,j, tn−1 ≤ t ≤ tn (13)

f (Sw) =

krw
µw

krw
µw

+ kro
µo

(14)

The curves of relative phase permeabilities are set by analytical relations. In this paper,
we used the Corey correlation:

krw(Swn) = α·Snw
wn (15)

kro(Swn) = Sno
wn (16)

Swn =
Sw − Siw

1− Siw − Sor
(17)

To solve Equation (13), the front-tracking method is used, which is an adaptation of
the method [25]. This method is stable and has a relatively low variance.

The general idea of the solution is as follows:

• Each pair of wells is represented as a quasi-one-dimensional model. This model
is divided into cells in which the water cut value is set. The water cut function is
approximated as a sequence of constant values (Figure 2).
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Figure 2. Partitioning of the quasi-one-dimensional model.

• In each interval, the task of calculating the velocity of the shock wave cluster is solved.

Determination of the right and left boundary values of the water cut, as well as the
accuracy of the water cut determination is Swl , Swr, δSw

Calculation of the Rankine–Hugoniot condition is σtrial =
fw(Swl)− fw(Swr)

Swl−Swr

If f ′w(Swl) > σtrial > f ′w(Swr), then the result is asingle shock wave.
If f ′w(Swl) < f ′w(Swr) and f ′′w(Swl) f ′′w(Swr) > 0, then the result is a depression wave. It

is simulated as a sequence of shock waves connecting values Swl , Swr.
In other cases, a sequence of shock waves to approximate a depression wave connect-

ing values Swl , Sw∗ that follows the shock wave connecting the values Sw∗, Swr is used.
The value calculation, Sw∗, is based on the equation f ′w(Sw∗) =

fw(Sw∗)− fw(Swr)
Sw∗−Swr

.
For the calculation of the first intersections, in the x-t diagram, the calculated velocities

are straight lines with different slopes. As seen on Figure 3, the first intersections appear at
the boundaries of the primary areas.

Figure 3. Intersections of shock wave clusters.

• The point of intersection becomes a new boundary, and it is necessary to calculate new
velocities of the shock waves in new intervals. Then, the process continues until the
time value, ∆t, is reached.

• Go to the calculation in the next time interval.

2.2. Model Adaptation

As the model is adapted to history, interwell conductivity and interwell volumes
are selected, as well as parameters that determine the power functions of relative phase
permeabilities used in the calculation of saturation and other parameters required for
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solving the previously mentioned equations. The complete list of parameters used in
this paper is presented in Appendix A. The INSIM-FT model itself consists of at least 14
adaptation parameters.

Adaptation parameters are distribution functions having the following parameters:
minimum value, maximum value, mean value, distribution type, and value of dispersion
parameter, σ (Figure 4). During the adaptation period, the parameters variation intervals
may change. For correct calibration, it is necessary to determine the intervals of these
parameters’ variations with high accuracy.

Figure 4. Schematic distribution of the parameter in the model.

In adaptation, we use the ES-MDA method [26] (smoothing assembly with multiple
data assimilation). The task of adapting historical data in matrix form looks like:

O(m) =
1
2
[g(m)− dobs]

TC−1
D [g(m)− dobs] (18)

where CD is the covariance matrix that adjusts the sensitivity of the model. The general
view of the matrix is as follows:

CD =




cov
([

d1
calc − d1

obs
][

d1
calc − d1

obs
])
· · · 0

...
. . .

...
0 · · · cov

([
dn

calc − dn
obs
][

dn
calc − dn

obs
])


 (19)

Volumetric flow rates and water cut values are used as calculated and observed parameters.
In the task of historical data adaptation, it is necessary to minimize the discrepancy

between the observed and calculated data. The calculated data are calculated as a direct
hydrodynamic task based on the model parameters (capacity, drainage pores volumes,
compressibility, etc.). At the same time, it is necessary to periodically check and adjust the
model parameters for compliance with historical information. The model parameters are
restored from the inverse optimization problem, reducing the error with the observed data,
according to the following formula:

mu
j = mp

j +
[
CMD(CDD + αiCD)

−1
](

duc − dp
j

)
(20)

Ni

∑
i=1

1
αi

= 1, i = 1 . . . N (21)

The time interval of using the historical and calculated data is called the data assimila-
tion step N.
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2.3. Forecast of Oil and Liquid Flow Rate

The flow rate forecast is based on the Dupuis formula:

Qr =
2πkh(Pk − Pc)

µln Rk
Rc

(22)

where k is the permeability coefficient; h—reservoir capacity; Pk and Pc—pressure on the
feed loop and in the well, respectively; Rk and Rc—the radii of the feed loop and the
well, respectively; µ—the fluid viscosity; Qr—well flow rate. Assume all parameters are
constants except for the pressure difference. Then, the Dupuis formula can be rewritten
as follows:

η =
Q

∆P
(23)

where ∆P is pressure differential, Q—the flow rate, η—productivity index.
Then, the task of forecasting the flow rate is reduced to finding the productivity index

based on the known values of the flow rate and pressure difference. To solve the problem,
it is proposed to use the linear regression method.

Knowing the pressure, it is possible to predict the flow rate. Figure 5 shows the forecast
results: the blue curve is the initial flow rate; yellow is the initial pressure; the red section of
the pressure curve is the time interval, the points of which were used to plot the regression;
the green curve is the forecasted flow rate for the entire interval.
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3. Testing the Method on Synthetic Test Data

The main purpose of this section is to verify the correctness of the model adaptation
on synthetic data. In this paper, a hydrodynamic model in tNavigator format was used.
It represents a sector with geomechanical and filtration-capacitive properties. To assess
the quality of adaptation on synthetic data, four production and three injection wells were
added to the model, and calculations were performed with a period of 25 years.

Figure 6 shows the distribution of water saturation in the field, as well as the layout of
production and injection wells.

104



Energies 2023, 16, 1648

Energies 2023, 16, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. Forecast results.  

3. Testing the Method on Synthetic Test Data 

The main purpose of this section is to verify the correctness of the model adaptation 

on synthetic data. In this paper, a hydrodynamic model in tNavigator format was used. It 

represents a sector with geomechanical and filtration-capacitive properties. To assess the 

quality of adaptation on synthetic data, four production and three injection wells were 

added to the model, and calculations were performed with a period of 25 years. 

Figure 6 shows the distribution of water saturation in the field, as well as the layout 

of production and injection wells. 

 

Figure 6. Hydrodynamic model of the field (red vertical lines—production wells, blue—injection 

wells). 

Below are the results of the developed INSIM-FT prototype (Figures 7 and 8). 
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Below are the results of the developed INSIM-FT prototype (Figures 7 and 8).

Figure 7. Displaying the field map in the INSIM-FT prototype. The studied production wells 1 and 4
are marked with a red rectangle.

Figure 8. Approbation of the model on synthetic data.

The fluid flow rate and water cut were adapted using synthetic data for the time
period from 2020 to 2045. Based on the results of the adaptation, it can be concluded the
fluid flow rate is reproduced well, and the water cut is reproduced satisfactorily.
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To improve the results of water cut adaptation at well-4, sensitivity analysis was
carried out to the number of assimilation steps (Figure 9).

Figure 9. Analysis of the forecast sensitivity to the number of assimilation steps.

It was determined that the number of assimilation steps significantly affects the final result.
Increasing the number of steps to 16 reduced the average error from 17.51% to 11.65%.

It should also be noted that using the approach described in the article [27], the
adaptation rate directly depends on the number of assimilation steps. The increase in speed
is due to the decrease in the number of data assimilation steps since it is multiplied by the
sum of the reciprocal values of the MDA coefficients. Thus, it is necessary to select such a
number of assimilation steps that will maintain the quality of adaptation at the required
level but with minimal adaptation time. These algorithms require a more detailed study.

4. Methods of Accounting for Geological and Technical Measures
4.1. Hydraulic Fracturing

For the INSIM-FT model, we proposed the following solution: according to the
source [27], during the injection of water into the injection well, as well as during the forma-
tion and propagation of cracks, hydraulic auto-fracturing takes place due to several factors:

• Equality of pressure in the injection well and horizontal stress, which can cause the
formation of a developed pattern of cracks causing a high rate of pressure drop of the
injection fluid;

• Change in effective horizontal stress due to temperature change at the bottomhole;
• Change in effective horizontal stresses due to changes in pore pressure;
• Stress contrast in the rock between different geological layers (clays and sandstones);
• Difference between vertical and horizontal stresses (the stress anisotropy coefficient is

higher than 1.15).

It is assumed that during the hydraulic fracturing procedure or the occurrence of
auto-fracturing, there is a sharp increase in the absolute permeability parameter k, i, j of
the flow tube. However, over time, the parameter should return to the “shelf” (due to
natural contamination of the bottom hole zone). That is, it is necessary to multiply it by a
time-dependent monotonically decreasing function. The possible form of the additional
function will be exponential, and the following parameters may be present in the exponent
index:

• Borehole radius across the bit;
• Effective well radius;
• Reservoir permeability;
• Fluid viscosity;
• Geometric characteristics of the producing reservoir;
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The following type of additional function is proposed as the first approximation:

g(s, t) = a · e−stb + c (24)

where a, b, c are adaptable parameters that depend on the type of geological and technical
measures performed, s is skin factor, which is expressed by dependence s = ln

(
R
r

)
, r is the

wellbore radius across the bit, and R is the effective radius of the wellbore.
An illustration of this dependence is shown in Figure 10.

Figure 10. Effect of geological and technical measures on the hydraulic conductivity of the flow tube.

Thus, it is necessary to create a correspondence table “type of geological and technical
measures”—adaptable coefficients a, b, c.

In the case of hydraulic fracturing and hydraulic auto-fracturing, it is possible to
consider the formula for the skin factor, which takes into account the dimensionless con-
ductivity of the fracture, CFD, the value depending on the difference in permeability of the
proppant and the formation:

CFD =
k f · w
k · x f

(25)

where k f is proppant permeability (mD), k is formation permeability (mD), w is fracture
width (m), x f is the crack half-length (m).

The skin factor is calculated according to the following algorithm.

• Option 1:

CFD =
k f · w
k · x f

(26)

re f = rw +
x f

2
(

1 +
(

CFD
1.7

)−1.01
) (27)

S = −ln
( re f

rw

)
(28)

• Option 2:

CFD =
k f · w
k · x f

(29)

u = ln(CFD) (30)

107



Energies 2023, 16, 1648

f =
1.65− 0.328 · u + 0.116 · u2

1 + 0.18 · u + 0.064 · u2 + 0.005 · u3 (31)

S = f + ln

(
rw

x f

)
(32)

4.2. Hydraulic Auto-Fracturing

Assume that auto-fracturing occurs when the injection pressure exceeds the sum of
the formation pressure and horizontal stress of the formation:

Ph f r > Pf orm + σhor (33)

The horizontal rock stress can be expressed through the vertical stress as follows:

σhor =

(
1
3
÷ 1

2

)
σvert (34)

In turn, vertical intensity is related to geostatic pressure:

Pgeost = Pf orm + σvert (35)

Therefore:
σvert = Pgeost − Pf orm (36)

Geostatic pressure is calculated according to the following relationship:

Pgeost = ρprockgH (37)

The correction introduced during hydraulic auto-fracturing has the same structure as
in the case of hydraulic fracturing, but the point in time when this multiplicative additive
is introduced is determined by the condition recorded above.

The next step was to regulate the multiplicative additive: setting the exponent degree,
amplitude, and shift. As the first approximation, it is proposed to determine these parame-
ters manually for each type of geological and technical measures. In the INSIM-FT code,
these values were used as averages, after which they are edited and adapted.

5. Testing the Model on Real Data While Accounting for the Geological and
Technical Measures

Initially, calculations in the INSIM-FT model are carried out without accounting for
geological and technical measures. As mentioned in the previous paragraph, it is necessary
to introduce a multiplicative exponential additive, which, in fact, shows the pollution of the
bottomhole zone and decrease in water saturation. Figure 11 shows an illustration of the
real field sector. The wells for which the adjustment for geological and technical measures
have been introduced are shown in red.

Let us compare the influence of geological and technical measures on the calculation
of water cut. Let us consider two cases: neutral and positive effect of the amendment. The
results are presented below (Figures 12 and 13).

Despite a correction introduced on well 1 (hydraulic fracturing was performed on it),
the algorithm could not significantly reduce the error. This is probably due to the mutual
influence of various types of geological and technical measures. It may be necessary to
introduce additional corrections. Adaptation of water cut accounting for the geological and
technical measures at well 2 yielded a positive effect. It is clear to the naked eye (Figure 13)
that the calculated curve significantly approached the actual one and repeated its shape,
accounting for the features.
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Figure 11. Illustration of the field sector where the geological and technical measures effect was
tested. Production wells 1 and 2 are in red rectangles.
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Calculations have demonstrated the efficiency of this approach. Further, a software
realization of the algorithm is required, which will take into account all types of geological
and technical measures according to the input parameters. It is also necessary to create a
library of multiplicative correction parameters for various types of geological and technical
measures or to select coefficients in automatic mode.

6. Discussion

Our results showed the introduction of the geological and technical measures into the
approach described in the paper allows in several cases to significantly increase the design
parameters approximation accuracy. We associate the partial low sensitivity of the solution
to corrections for geological and technical measures with insufficient knowledge and
elaboration of the parameterization of certain types of geological and technical measures.
It is necessary to carry out a complex analysis of the mutual influence of various types of
geological and technical measures and analysis of certain geological and technical measure
zones of influence.

The choice of assembly and assimilation parameters, such as: expectation, dispersion,
number of iterations of the ES-MDA algorithm, and assembly size, plays a key role for fine
settings the model and predictive calculations. The search for balance between computa-
tional costs and procedure for approximating historical indicators makes it possible to find
sufficiently accurate and computationally efficient approaches to assessing the operating
parameters of the hydrocarbon field.

The results of the experiments along with the high computational efficiency of the
method showed good potential for parallel implementations since the operations of mul-
tithreaded computations on the CPU were used in the paper; it is reasonable to further
implement the method for GpGPU platforms using low-level languages, for example, C
++. It is also necessary to carefully consider the choice of a framework for the implementa-
tion of calculations on graphic cards; the largest modern vendors of graphic equipment
created software solutions only for their “hardware” components without the support of
competitors’ hardware and software.

The authors of the paper are convinced that the presented approach has rich oppor-
tunities for “tuning”, for example, building proxy connections of wells based on more
advanced algorithms, Voronoi diagrams, PEBI grids, etc., using optimized solvers or more
efficiently solving differential equations and SLAEs computational approaches.

7. Conclusions

The method of the field hydrodynamic model based on the data-driven (setting to
historical data) approach and the proxy model of fluid migration dynamic processes
in hydrocarbon reservoir was implemented. Based on efficient averaging of reservoir
hydrodynamic parameters for a finite set of production and injection wells, the method
shows significant computational efficiency compared to classical reservoir simulators
(Eclipse, tNavigator). The proposed additional adaptation of the model to the geological
and technical measures parameters has shown its efficiency in predicting the operating
conditions of the hydrocarbon field.

The use of multithreaded calculation technologies made it possible to significantly
reduce the simulation time for a particular case; in the future, it is planned to transfer
the algorithm to the GpGPU platform, which, according to preliminary experiments, will
increase the performance by at least an order of magnitude.

For the correct settings of water saturation and reservoir pressures, it is necessary to
fine-tune the model parameters: selection of the optimal interval of parameter variation,
selection of the parameter distribution function, selection of the initial geological and
technical measures adaptation coefficients while considering the interference of different
types of geological and technical measures.
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Appendix A

Table A1. List of adaptation parameters.

Parameter Symbol Units

Initial reservoir pressure P Pa

Oil viscosity µ0 Pa·s
Water viscosity µw Pa·s

Rock compressibility cr Pa−1

Water compressibility cw Pa−1

Oil compressibility co Pa−1

Residual water saturation Siw fraction

Residual oil saturation Sro fraction

Parameter in Corey correlation nw

Parameter in Corey correlation no

Parameter in Corey correlation α

Porosity of flow-tube ϕi,j fraction

Permeability of flow-tube ki,j mD

Cross-section area of flow-tube Ai,j m2
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Abstract: With the popularity of deep learning (DL), more and more studies are focusing on replacing
time-consuming numerical simulations with efficient surrogate models to predict the production of
multi-stage fractured horizontal wells. Previous studies on constructing surrogate models for the
prediction of the production of fractured horizontal wells often relied on directly applying existing
deep learning architectures without incorporating physical constraints into the model. When dealing
with the large number of variables necessary for characterizing the properties of fractures, the input
variables of proxy models are often oversimplified; meanwhile, lots of physical information is lost.
Consequently, predictions are sometimes physically inconsistent with the underlying principles of the
domain. In this study, by modifying the traditional Seq2Seq (LSTM–LSTM) deep learning architecture,
a physics-informed encoder–decoder (PIED) architecture was developed to surrogate the numerical
simulation codes for predicting the production of horizontal wells with unequal-length intersecting
hydraulic fractures on a 2D plane. The encoder is a LSTM network, and the decoder consists of LSTM
and fully connected layers. The attention algorithm is also applied in the Seq2Seq architecture. The
PIED model’s encoder is capable of extracting the physical information related to fractures. And the
attention module effectively passes on the most relevant physical information related to production
to the decoder during the training process. By modifying Seq2Seq architecture, the decoder of the
PIED incorporates the intermediate input, which is the constant production time, along with the
extracted physical information to predict production values. The PIED model excels in extracting
sufficient physical information from high-dimensional inputs while ensuring the integrity of the
production time information. By considering the physical constraints, the model predicts production
values with improved accuracy and generalization capabilities. In addition, a multi-layer perceptron
(MLP) which is broadly used as a proxy model; a regular Seq2Seq model (LSTM–Attention–LSTM);
and the PIED were compared via a case study, and their MAE values were shown to be 241.76, 184.07,
168.81, respectively. Therefore, the proposed model has higher accuracy and better generalization
ability. In the case study, a comparative experiment was conducted by comparing LSTM–MLP (with
an MAE of 221.50) and LSTM–LSTM to demonstrate that using LSTM as the decoder structure is better
for predicting production series. Moreover, in the task of predicting production sequences, LSTM
outperforms MLP. The Seq2Seq architecture demonstrated excellent performance in this problem, and
it achieved a 48.4% reduction in MSE compared to MLP. Meanwhile, the time cost for build datasets
was considered, and the proposed model was found to be capable of training in a small dataset
(e.g., in the case study, 3 days were used to generate 450 samples for training.); thus, the proposed
model has a certain degree of practicality.

Keywords: fractured well; production; proxy model; physics-informed neural network; deep
learning; machine learning
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1. Introduction
1.1. Traditional Numerical Simulation of Fractured Horizontal Well Production

Hydraulic fracturing is a treatment widely applied to enhance oil and gas recovery,
especially in low-permeability reservoirs. The artificial fractures created during hydraulic
fracturing substantially improve the seepage resistance of fluid flow in a reservoir. The
success of hydraulic fracturing in increasing production depends largely on the geometry of
the hydraulic fractures, so before fracturing is implemented, numerical simulation methods
are usually required to predict the geometry of the hydraulic fractures and the fracture
conductivity, as well as other parameters, and then calculate important indices such as well
production to evaluate or optimize the fracturing schemes.

Currently, the main method for fractured horizontal well production prediction is the
numerical simulation method. Numerical simulation methods usually include the finite
difference method (FDM), the finite element method (FEM), the boundary element method
(BEM), and the discrete element method (DEM). Due to the multiple parameters involved
(e.g., fracture permeability, fracture inclination, fracture length, etc.), it is time-consuming
to perform high-accuracy production prediction using numerical simulation methods. To
optimize hydraulic fracturing parameters and thus maximize production, traditional trial-
and-error methods tend to be very time-consuming and expensive. Therefore, there is
a need to develop some proxy models for numerical simulation methods for hydraulic frac-
turing production prediction. Proxy models are approximations of numerical simulation
models, usually based on machine learning algorithms, which map the inputs and outputs
of the numerical simulation model. Proxy models for fractured well production prediction
can be efficiently performed to significantly reduce computational costs and speed up the
optimization process in large-scale parameter space search and optimization.

1.2. Review of Research

In recent years, with the popularity of machine learning, many studies have been
performed on data-driven machine learning models to surrogate physically driven numer-
ical simulations for fractured well production. These studies simplify the input data or
output data of numerical simulators and then use them to build datasets and train ma-
chine learning models. Gaussian process regression (GPR), convolutional neural networks
(CNNs), and support vector machines (SVMs) have been used as proxy models for numeri-
cal simulation models of fractured horizontal wells with parallel, equal-length hydraulic
fractures. These proxy models have been used to predict gas production and to obtain
optimal fracture half-lengths and horizontal well lengths (Wang et al., 2021) [1]. Multi-layer
perceptron (MLP) can be used to construct surrogate models to predict the production
of gas wells with parallel, equal-length hydraulic fractures on a two-dimensional plane
(Wang et al., 2021) [2]. The tree-based ensemble method was used as a proxy model of
a numerical simulator of 2D discrete fracture networks. This proxy model can predict
5-year oil cumulative production (Xue et al., 2019) [3]. The regular neural network (NN),
random forests (RFs), adaptive boosting (AdaBoost), and support vector machines (SVMs)
were used to build several proxy models of numerical simulation codes which can predict
the production and the net present value (NPV) of a horizontal well with parallel and
unequal-length hydraulic fractures (Li et al., 2022) [4]. Transformer, a Seq2Seq DL model,
was used to predict the time series of production data based on the integration of geology
and engineering time series production data (Wang et al., 2023) [5].

However, the input variables of the proxy models mentioned in these studies are
often oversimplified. For example, among the previously mentioned proxy models, CNN,
GPR, and SVM (Wang et al., 2021) [1] require that the length of the hydraulically fractured
fractures in the dataset take only a fixed number of four values; the training set of the MLP
network (Wang et al., 2021) [2] contains only four variables, and these four features can
only take a fixed number of four values; the tree-based ensemble model (Xue et al., 2019) [3]
requires that the dataset can only have these four variables, which can only take a fixed
number of three values; and the input data of the transformer (Wang et al. [5]) need to be
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preprocessed by PCA (principal component analysis) to decrease its dimension, but the
variables generated by PCA often pose challenges in terms of interpretation. Although
reducing the dimensions of the input data or simplifying the input data can reduce the
complexity of machine learning models and make training easier, this also decreases the
performance of the proxy models.

Incorporating prior physical knowledge into neural networks empowers the proxy
model to be easily trained in the presence of numerous input variables, endowing it with
enhanced accuracy and generalization capabilities [6–8]. Physics-informed neural networks
have the advantages of increased learning efficiency [9], improved generalization [10],
enhanced interpretation, and improved robustness in solving physical problems [11], and
this is supported by relevant studies.

Therefore, the machine learning architecture of the proxy models for fractured well
production prediction needs to be adapted to the specific engineering problem by introduc-
ing physical information, rather than simply applying machine learning algorithms. For
example, a physics-constrained Bi-GRU-DHNN method was used to predict the production
of hydraulic fractured wells (Li et al., 2022) [12]. The model consists of two parts. The first
part consists of MLP, CNN, and Bi-GRU. Different network structures in the first part can
extract different kinds of features (i.e., ecological properties, logging curves, well informa-
tion, fracturing parameters, and field operations) and generate a preliminary prediction
value as well as two feature vectors of physical information. In the second part, a MLP
can establish a nonlinear mapping between the physical constraints and the production
target. The model can input very high-dimension features which include six numerical
variables and ten sequence variables. A physics-informed MLP (Li et al., 2021) [4] was
developed as a proxy model of numerical simulation codes which could predict the pro-
duction of a horizontal well with parallel- and unequal-length hydraulic fractures. The
proxy model was introduced to prior physical knowledge by pre-training it with a large
number of variables of all the fractures and then training the model with the small number
of input variables that remained. The authors of this study demonstrate in the paper that
the MLP integrated with prior physical knowledge has a stronger generalization ability
and higher accuracy than a normal MLP. Guevara et al. [13] used generalized additive
models (GAMs) to predict the cumulative production of fractured wells. By using GAMs,
they could modify the smooth functions of each input variable to align the relationship
between these input variables and the output with prior knowledge, thereby improving
the accuracy of the results. Qu et al. [14] proposed a physics-informed MLP which could
combine information regarding the static parameters of a fractured well with the input
variables to predict fracture parameters. Yang et al. [15] developed a hybrid NN called
GRU–MLP. They used MLP to combine the static parameters of hydraulic fractures with
the production predicted by GRU, so that the production predicted by MLP was physically
constrained and had a lower bias. Wang et al. [16] proposed a theoretical guide to CNN
to surrogate the numerical simulation of two-phase flow in fields by using the coupled
and discretized equations as loss functions in the training process. Cornelio et al. [17]
used an auto encoder (AE) to extract the physical information of the hydraulic fractures
and the reservoir properties. Then, they combined the physical information outputted
from AE with the production predicted by a numerical simulator into an MLP to predict
the production of fractured wells. Razak et al. [18] leveraged neural networks to rectify
the errors in production calculated by parsing formulas, thus constraining the model’s
predictive values with physical knowledge. These physics-informed models can exhibit
higher accuracy as well as learning significantly more features than ML models without
physical constraints.

1.3. A Novel Proxy Model

In these previous studies, the numerical simulations surrogated by neural networks
did not consider the influence of the geometry and permeability of each hydraulic fracture
on production. Therefore, their proxy models cannot be used for the optimization of the ge-
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ometric parameters of hydraulic fractures. In this study, we developed a physics-informed
neural network proxy model for a numerical simulator that can calculate production based
on the geometric parameters and permeability of each hydraulic fracture. The proxy model,
called a physics-informed encoder–decoder (PIED), was developed for the numerical simu-
lation of the production prediction of horizontal wells with non-equal-length intersecting
hydraulic fractures. The proxy model has a modified Seq2Seq architecture and consists of
an encoder and a decoder.

To develop this proxy model, the Seq2Seq structure was modified in this study so that
the decoder could have the intermediate input of a static time series.

The proxy model utilizes the encoder structure and the attention module to integrate
physical constraints into the decoder structure for predicting production, and it is robust
enough to handle fracture intersections, so that it can predict production accurately in
complex physical scenarios.

2. Data Preparation from Numerical Simulations

Before performing the machine learning model, the input and output data should
be carefully prepared, and a large dataset is required to mine the relationship between
the inputs and the outputs. In this section, the characterization of a fracture, a coupled
reservoir flow model, and the numerical simulation method are proposed to prepare the
required inputs and outputs.

2.1. Fracture Characterization

In the discrete fracture model, the fracture is modelled as a zero-thickness plate or
a slit [19]. The schematic diagram of the fractured horizontal well is shown in Figure 1. The
morphology of each hydraulic fracture is different, varying in two geometric parameters:
the half-length and dip angle, shown in Figure 1. During the fracturing process, the amount
of sand injected into each fracture is different, so the permeability of each hydraulic fracture
is different. Therefore, three parameters were selected to characterize the hydraulic fracture
and serve the inputs into the network. The dip angle, half-length and permeability of the
fracture were evaluated by a uniform variation of (60–120)◦, (5–75) m, (1–1000) D.

Energies 2023, 16, x FOR PEER REVIEW 5 of 24 

1.3. A Novel Proxy Model 
In these previous studies, the numerical simulations surrogated by neural networks 

did not consider the influence of the geometry and permeability of each hydraulic fracture 
on production. Therefore, their proxy models cannot be used for the optimization of the 
geometric parameters of hydraulic fractures. In this study, we developed a physics-
informed neural network proxy model for a numerical simulator that can calculate 
production based on the geometric parameters and permeability of each hydraulic 
fracture. The proxy model, called a physics-informed encoder–decoder (PIED), was 
developed for the numerical simulation of the production prediction of horizontal wells 
with non-equal-length intersecting hydraulic fractures. The proxy model has a modified 
Seq2Seq architecture and consists of an encoder and a decoder. 

To develop this proxy model, the Seq2Seq structure was modified in this study so 
that the decoder could have the intermediate input of a static time series. 

The proxy model utilizes the encoder structure and the attention module to integrate 
physical constraints into the decoder structure for predicting production, and it is robust 
enough to handle fracture intersections, so that it can predict production accurately in 
complex physical scenarios. 

2. Data Preparation from Numerical Simulations 
Before performing the machine learning model, the input and output data should be 

carefully prepared, and a large dataset is required to mine the relationship between the 
inputs and the outputs. In this section, the characterization of a fracture, a coupled 
reservoir flow model, and the numerical simulation method are proposed to prepare the 
required inputs and outputs. 

2.1. Fracture Characterization 
In the discrete fracture model, the fracture is modelled as a zero-thickness plate or a 

slit [19]. The schematic diagram of the fractured horizontal well is shown in Figure 1. The 
morphology of each hydraulic fracture is different, varying in two geometric parameters: 
the half-length and dip angle, shown in Figure 1. During the fracturing process, the 
amount of sand injected into each fracture is different, so the permeability of each 
hydraulic fracture is different. Therefore, three parameters were selected to characterize 
the hydraulic fracture and serve the inputs into the network. The dip angle, half-length 
and permeability of the fracture were evaluated by a uniform variation of (60–120)°, (5–
75) m, (1–1000) D. 

 
Figure 1. A schematic diagram of the fractured horizontal well. 

2.2. Reservoir Flow Model 
The basic governing equations for fluid flow in a fractured reservoir are [20]: 

∂(𝜌𝜙𝑚)
∂𝑡 + ∇ ⋅ (𝜌𝑣𝑚) = 0 (1) 

∂ 𝜌𝜙𝑓

∂𝑡 + ∇ ⋅ (𝜌𝑣𝑓) = 0 (2) 

Figure 1. A schematic diagram of the fractured horizontal well.

2.2. Reservoir Flow Model

The basic governing equations for fluid flow in a fractured reservoir are [20]:

∂(ρφm)

∂t
+∇ · (ρvm) = 0 (1)

∂
(

ρφ f

)

∂t
+∇ ·

(
ρv f

)
= 0 (2)

where ρ, φ, and v are the pore fluid density, porosity, and Darcy velocity, respectively. The
subscripts m and f represent the physical parameters of the matrix and fracture, respectively.
The Darcy velocity is given by:

vm, f = −
κm, f

µ
∇pm, f (3)
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where κ and µ are the reservoir permeability and fluid viscosity. The left sides of Equations
(1) and (2) can be rewritten as [21]

∂
(

ρφm, f

)

∂t
= ctm, f ρ0

∂pm, f

∂t
(4)

with the total compressibility ctm, f considered to be a lumped, constant parameter which con-
tains both the compressibility of the solid and the fluid. After substituting Equations (3) and (4)
into Equations (1) and (2), the governing equations for coupled flow in a fractured reservoir can
be obtained:

∂pm, f

∂t
= γm, f∇2 pm, f (5)

where γm, f = κm, f /µctm, f . The total compressibility can be related to the rock modulus
and fluid modulus:

ctm, f =
φ

K f f
+

1
Km, f

(6)

where Kff is the fluid modulus and Km,f is the modulus of the matrix or fracture. When
the reservoir is considered fully saturated, the total mass of the drained fluid, i.e., the
cumulative production, can be expressed by:

Mq =
∫

(ρ0φm0 − ρφm)dΩ (7)

where the subscript 0 represents the initial value. Using the state equations, the cumulative
mass production can be calculated by:

Mq = ρ0ctm

∫
(pm0 − pm)dΩ (8)

2.3. Weak Formulations

The Gauss divergence theorem is used for discrete formulations [22]:

∫

Ω
divFdΩ =

∫

Γ
F · nΓdΓ−

N

∑
i=1

∫

fΓi

F± · n fΓi
dΓ (9)

where F represents a discontinuous function, and nΓ and n fΓ are the outward normal
directions of the external boundary and fracture surface, respectively. The jump generated
by the discontinuous function at the fracture surface is denoted by F±, F± = F+ − F−. F+

and F− represent the function values on the positive and negative sides of the fracture,
respectively. To derive the weak form of the matrix flow equation, we multiply the strong
form by a test function δp and construct an equivalent integral form. Then, we utilize the
Gauss divergence theorem to derive the weak form.

∫

Ω
δp

∂pm

∂t
dΩ +

N

∑
i=1

∫

fΓi

γmδp
(
∇pm · n fΓi

)±
dΓ +

∫

Ω
γm∇(δp) · ∇pmdΩ +

∫

Γq

δpq
ctm

dΓ = 0 (10)

dΩ represents the reservoir domain, while Γq is a constant flow rate boundary. On
Γq, the flow rate q = q. The third term on the left side of the equation is the discontinuous
term. By combining with Darcy’s law, we can obtain the following:

∫

fΓi

γmδp
(
∇pm · n fΓi

)±
dΓ =

∫

fΓi

δp
ctm

(
κm

µ
∇pm)

± · n fΓi
dΓ = −

∫

fΓi

1
ctm

δp(n fΓi
· q f )dΓ (11)

where q f is used to characterize the fluid exchange between fractures and the matrix. The
exchange term q f can be obtained by solving the flow governing equation within the
fractures. To derive the weak form of the fracture flow equation, we multiply the strong
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form by a test function δp and construct an equivalent integral form. Then, we utilize the
Gauss divergence theorem to derive the weak form.

∫

Ω f i

δp
∂p f

∂t
dΩ +

∫

Ω f i

γ f∇(δp) · ∇p f dΩ−
∫

fΓi

γ f δp∇p f · n fΓi
dΓ = 0 (12)

Considering that the fracture’s width is significantly smaller than its length, the
pressure variation in the width direction can be disregarded. By combining this with
Darcy’s law, the expression for the exchange term q f can be derived as follows:

∫

fΓi

δp(n fΓi
· q f )dΓ = −ct f (

∫

fΓi

d fi
δp

∂p f

∂t
dΓ +

∫

fΓi

d fi
γ f

∂δp
∂x

∂p f

∂x
dΓ) (13)

By substituting the exchange term between the matrix and fractures (Equation (13))
into the weak form of matrix flow (Equation (10)), we can obtain the weak form of the
matrix fracture coupled flow equation.

∫
Ω

δp
γm

∂pm
∂t dΩ +

∫
Ω∇(δp)∇pmdΩ +

n
∑

i=1

∫
fΓi

(
di

f ki
f

κm

∂(δp)
∂xi

∂pm
∂xi +

di
f ct f

γmctm
δp ∂pm

∂t

)
dΓ

+
∫

Γq

δpq
γmctm

dΓ = 0
(14)

In Equation (14), a line integral along the fracture segment is performed (the third item
on the left of the equal sign); this action is related to the fracture length and fracture dip.

2.4. XFEM Solver

The discrete fracture model is commonly solved using the finite element method
(FEM), finite volume method (FVM), boundary element method (BEM) and extended finite
element method (XFEM). In the FEM and FVM, unstructured grids are used to discrete
the reservoir domain, and nodal points are set on the fracture segment to maintain the
flow consistency between the porous matrix and the fractures [23,24]. These methods
can discretize a geometrically complex reservoir when using mesh points optimally and
exactly represent the flow in the matrix and fractures; however, the fracture segment is
restricted to the inter-element boundaries and the problem of mesh dependency limits
their application [25,26]. The BEM can reduce the dimension of the problem, but the flow
distribution around the fracture junction always results in computational difficulties [27].
To eliminate the requirement for the mesh topology to conform with that of the fracture
network, an XFEM was developed that relies on adding enrichment functions to enhance
the conventional finite element interpolation [28]. In the XFEM, a structured mesh can be
used for explicit simulation on complex fracture networks; thus, the XFEM can overcome
the constraint of mesh conformity between the reservoir and the fractures [26,29]. During
the data preparation from numerical simulations, the fracture geometry changes in each
simulation example, it becomes convenient to run multiple simulations with different
fracture configurations without meshing the domain each time. Therefore, XFEM was used
in this study for the numerical simulation.

In our XFEM solver, a structured grid is employed to discretize the matrix. The
fractures in the computational domain are cut off by the element edges and the fracture
segments can be classified as belonging to two groups: (I) fracture segments that completely
cut an element and (II) fracture segments that partly cut an element, as shown in Figure 2.

Based on the partition of unit method, additional terms are added to the standard
finite element approximation of the pressure:

p = ∑
i∈Ns

Ni pi + Ψ(x) = ∑
i∈Ns

Ni pi + ∑
j∈Nenr

ϕj(x)
∼
p j (15)
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where Ni is the standard FEM shape function; pi represents the standard pressure degrees
of freedom for nodes Ns.

∼
p j is the added enriched degrees of freedom for nodes Nenr. ϕj(x)

is the superimposed enrichment function:

ϕj(x) = Nj(x)
[
Φn(x)−Φn(xj

)]
, n = I, I I (16)

where the corresponding enrichment functions for the two types of fracture segments are:

ΦI(x) = ∑
i
| f (x)|Ni(x)−

∣∣∣∣∣∑i
f (x)Ni(x)

∣∣∣∣∣ (17)

ΦI I(x) =
√

rcos
θ

2
(18)

where f is the level set function, and r and θ are the local polar coordinates near the fracture
tip. By substituting Equation (15) into the weak form (14), we obtain the discretized
governing equation:

[
Kpp

K
∼
pp

Kp
∼
p

K
∼
p
∼
p

](
p
∼
p

)
+

[
Mpp

M
∼
pp

Mp
∼
p

M
∼
p
∼
p

]( .
p
.∼
p

)
=

(
F
∼
F

)
(19)

where

Kmn
I J =

∫
Ωe Bm

I (Bn
J )

TdΩ+
N
∑

i=1

∫
fΓi

di
f ki

f
κm

Bmi
I (Bni

J )TdΓ(m, n = p,
∼
p)





Mpp
I J =

∫
Ωe 1

γm
NI NT

J dΩ +
N
∑

i=1

∫
fΓi

di
f ct f

γmctm
NI NT

J dΓ

Mp
∼
p

I J = (M
∼
pp
I J )

T =
∫

Ωe 1
γm

NI ϕT
J dΩ +

N
∑

i=1

∫
fΓi

di
f ct f

γmctm
NI ϕT

J dΓ

M
∼
p
∼
p

I J =
∫

Ωe 1
γm

ϕI ϕT
J dΩ +

N
∑

i=1

∫
fΓi

di
f ct f

γmctm
ϕI ϕT

J dΓ
{

FI =
∫

Γq NIqdΓ
∼
F I =

∫
Γq ϕIqdΓ

where B = ∇N.
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where 𝐵 = ∇𝑁. 

Figure 2. Two types of fracture segments and the enriched nodes (the green segment completely
crosses the element, and the red segment partly crosses the element).

2.5. Inputs and Outputs

Ten hydraulic fractures are simulated. During the simulations, the fracture geometry
and permeability change while the matrix and fluid properties are fixed. For all the
simulation cases, the fixed parameters are listed in Table 1, and the inputs and outputs
of a simulation example are listed in Table 2. Presentations of mesh discretization, the
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calculated pressure distributions at different times, and the cumulative production curve
are shown in Figure 3.

Table 1. Fixed parameters across all simulations.

Parameters Value Unit

Matrix permeability 5 × 10−18 m2

Fluid modulus 3 × 109 Pa
Matrix modulus 20 × 109 Pa

Fracture modulus 1.05 × 109 Pa
Fluid viscosity 3 × 10−3 Pa·s

Initial fluid density 1000 kg/m3

Porosity 0.15 /
Wellbore pressure 15 MPa
Reservoir pressure 20 MPa
Reservoir thickness 1 m

Table 2. Inputs and outputs of a simulation example.

Inputs Outputs
Fracture

Half-Length
(m)

Fracture
Dip

Fracture
Permeability

(m2)
Cumulative Production (kg)

62.03 69.45◦ 6.65 × 10−10 Day 1 1164.32 Day 120 7984.58
68.41 118.23◦ 1.25 × 10−10 Day 3 1905.52 Day 150 8567.65
13.89 117.43◦ 3.22 × 10−12 Day 6 2591.89 Day 180 9074.56
68.94 89.12◦ 1.37 × 10−12 Day 9 3086.58 Day 210 9527.55
49.27 108.01◦ 1.78 × 10−9 Day 15 3814.71 Day 240 9939.82
11.83 68.51◦ 7.59 × 10−10 Day 21 4359.01 Day 270 10,319.74
24.49 85.30◦ 6.56 × 10−10 Day 30 4990.75 Day 300 10,672.95
43.28 114.94◦ 3.54 × 10−11 Day 45 5775.01 Day 330 11,003.43
72.03 107.53◦ 8.60 × 10−12 Day 60 6374.02 Day 360 11,314.08
72.54 117.56◦ 1.28 × 10−12 Day 90 7283.71
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3. AI Methodology

In this study, three deep learning algorithms were used to construct three proxy
models. These three models included MLP, regular Seq2Seq (LSTM–Attention–LSTM), and
the PIED proposed in this study. MLP is widely used to construct proxy models, but MLP is
not the structure specific to the sequence problem. Meanwhile, LSTM–Attention–LSTM is
a common sequence-to-sequence model but does not have physical constraints integrated.
In this section, the functions, structures, and principles of these three models are introduced
in detail. And the training workflow of PIED is also elaborated.
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3.1. MLP

Many studies have utilized multi-layer perceptron (MLP) to predict the produc-
tion of hydraulic fracturing wells (Wang et al., 2019; Luo et al., 2018; Panja et al., 2018;
Li et al., 2022) [4,30–32]. In this study, we also adopted MLP as one of our alternative proxy
models. MLP consists of an input layer, hidden layers, and an output layer. Each hidden
layer is a fully connected layer. A fully connected layer, also known as a dense layer, is
a type of layer commonly used in neural networks. It connects every neuron from the
previous layer to every neuron in the current layer, creating a fully connected network
structure. The fully connected layers of the MLP are illustrated in Figure 4.
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The operation of the MLP is based on the forward propagation process. Input data
are passed through the input layer and transmitted to the hidden layers. Upon receiving
the input data, each neuron in the hidden layers performs a weighted sum and undergoes
a non-linear transformation through an activation function. The transformed results are
then propagated to the neurons in the next layer. The neurons in the output layer generate
the final prediction.

3.2. Seq2Seq Architecture
3.2.1. LSTM

Long short-term memory (LSTM) is a variant of recurrent neural networks (RNNs)
that addresses the issue of long-term dependencies in traditional RNNs (Hochreiter et al.,
1997) [33]. It provides powerful modeling capabilities for various sequence tasks. LSTM
utilizes memory cells to store and update information and employs gate mechanisms to
control the flow of information, effectively capturing long-term dependencies in sequences.
LSTM consists of input gates, forget gates, output gates, and candidate memory cells. The
input gate determines the relevance of the current input, the forget gate determines what is
retained or forgotten from the previous memory, and the output gate controls the output
of the memory. The candidate memory cell computes the candidate value for the current
time step. The structure of a LSTM cell is depicted in Figure 5. The computation process of
LSTM is as follows.

Input sequence: X = [x1, x2, . . . , xm]
Initial hidden state: h1
Initial cell state: c1
For each time step t,
yt, ht, ct = LSTM(xt, ht−1, cr−1)
Final hidden state at the last time step: hn
Final cell state at the last time step: cn
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The LSTM (long short-term memory) uses the following formulas:

Input gate: it = σ(Wi[ht−1, xt] + bi)
Forget gate: ft = σ(W f [ht−1, xt] + b f )

Output gate: ot = σ(Wo[ht−1, xt] + bo)

Candidate memory cell:
∼
c t = tanh (Wc[ht−1, xt] + bc)

Memory cell: ct = ft � ct−1 + it �
∼
c t

Hidden state (output): ht = ot � tanh(ct)

In the above formulas:
σ denotes the sigmoid activation function.
tanh denotes the hyperbolic tangent activation function.
The symbol� represents element-wise multiplication (also known as the Hadamard product).
Wi, Wf, Wo, Wc are weight matrices associated with input, forget, output, and candidate

memory cells, respectively.
bi, bf, bo, bc are bias vectors associated with input, forget, output, and candidate cell

states, respectively.

3.2.2. Regular Encoder–Decoder Architecture and Attention Mechanism

(1) Regular Encoder–Decoder architecture

The Seq2Seq (Sequence-to-Sequence) structure is a neural network model used to
convert one sequence into another (Sutskever et al., 2014) [34]. It is a special type of
encoder–decoder architecture. The encoder is used to map the input sequence into a fixed-
dimension vector, often referred to as a context vector. The decoder then uses the context
vector to generate the target sequence. When the Seq2Seq structure is used for regression
problems, it can learn the non-linear mapping relationship between the input and output
sequences.

In general, the encoder utilizes LSTM as the encoder model. The encoder processes
the input sequence step by step and performs recurrent computations to integrate the
information from each time step into the hidden state. The hidden states at each time step
are also passed through an attention module to obtain the most relevant information for
the prediction. These pieces of information are then fed into the decoder structure. The
decoder consists of an LSTM and a fully connected layer. It receives the feature vector ((hn,
cn) in Figure 6) generated by the encoder and the context vector (α in Figure 6) attention
module, and then computes the output sequence (h′ in Figure 6). At each time step, the
output sequence of the LSTM of the decoder is inputted into a fully connected layer of
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the decoder, and the fully connected layer can calculate a production value. The Seq2Seq
structure is illustrated in Figure 6.
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(2) Attention mechanism

When it comes to the sequence-to-sequence (Seq2Seq) architecture, the attention
mechanism is a crucial component that enables the model to selectively focus on different
parts of the input sequence (in this study, the fracture information at each time step) while
predicting each element of the target sequence (in this study, the predicted production at
each time step).

To achieve this, the attention mechanism introduces a learnable attention model that
calculates the relevance scores between the hidden states of the encoder at each time step
and the hidden state of the decoder at the current time step. These scores reflect the
importance of the fracture information processed at various time steps in the encoder for
the current decoding step.

Specifically, the computation process of the attention mechanism is as follows:
Given the decoder’s hidden state h′t−1 at time step t − 1 and the hidden state vectors

of the encoder H = (h1, h2, . . ., hn),

Q = h′t−1Wq
K = HWk

V = H = (h1, h2, . . . , hn)
scores = so f tmax

(
QKT/

√
n
)

αt = scores VT

Here, Wq and Wk are the learnable weight matrices used for linear transformations; ‘soft-
max’ is the softmax function commonly used in machine learning; and αt is the context vector.

As illustrated in Figure 6, the context vector αt is concatenated with the output of the
decoder at time step t − 1 and then serves as the input to the decoder at time step t. This
allows the decoder to receive the most relevant fracture information that needs attention at
time step t.
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3.2.3. Physics-Informed Encoder–Decoder Architecture

For horizontal wells with non-equal intersecting hydraulic fractures, the numerical
simulator considers many variables in predicting production. For example, geological
factors, fracture properties and distribution, production time, etc. For a horizontal well
which requires hydraulic fracturing, the geological information and information regarding
entrance hole have already been determined, and the factors influencing the production
are left to be considered, including fracture properties and production time. Therefore, the
PIED inputs include all hydraulic fracture lengths, permeability values, and dip angles,
while production times are used as intermediate inputs.

Since we have assumed that the fractures have different inclinations and lengths, there
are intersections between the fractures. Different orders of fractures will lead to different
intersections of fractures and thus, necessarily, different production rates. Therefore,
the order of the fractures is physically meaningful to the model, and we need to treat
the fractures as ordered sequential data. The predicted production is also a time series.
Therefore, we chose the Seq2Seq architecture to construct the proxy model.

However, we found that the regular Seq2Seq (LSTM–Attention–LSTM) has shortcom-
ings in solving the problem—the input of the decoder is automatically set to the output
of the previous time step. This leads to the problem that the production time has to be
input to the encoder together with the fracture parameters. However, in fact, in numerical
simulations, the properties of the fractures were not related to the production time, so it is
not reasonable to couple the time information with the physical information of the fractures
in the encoder. Since the encoder will extract the information of the input, if the production
time is input into the encoder structure, then the time information received by the decoder
will not be complete.

Based on the considerations mentioned above, PIED adopts a modified Seq2Seq
structure, which causes the decoder to have a constant intermediate input by manually
defining the input for each time step when constructing the decoder. The intermediate
input is the production time used in the numerical simulator. The PIED consists of an
encoder and a decoder. The encoder consists of an LSTM combined with an attention
module, while the decoder consists of an LSTM and a fully connected layer. The input
of the encoder is a sequence with a shape of 3× n consisting of the length, permeability,
and dip angle of n fractures (10 in this study). The intermediate input of the decoder is
a sequence consisting of 15 numerical type variables. The structure of the PIED is shown
in Figure 7.
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The encoder is able to extract the input (i.e., the sequence of 3× n fractures) to feature
vectors (i.e., the hidden states and cell states of the encoder at the last time step), and by
introducing the attention module, the proxy model can automatically extract the fracture
information, which has an impact on the decoder from all the hidden states of the encoder,
thus reducing the risk of overfitting. The LSTM of the decoder combines the feature
vector output by the encoder, the production time series (i.e., the intermediate input), and
the vectors output by the attention module to output a vector in each time step. And
after each time step, the fully connected layer inputs the vector to predict a production.
In detail, the hidden state and cell state of the encoder at the last time step will be used
as the initial hidden state and initial cell state of the decoder’s LSTM. And at each time
step of the decoder’s LSTM, the vector output from the attention module is combined with
the production time and then input into the LSTM. Thus, the decoder will be constrained
by physical information regarding the fractures in predicting the production. We also
compare the PIED with the regular LSTM–Attention–LSTM in Section 4 to demonstrate the
improvement in performance as a result of this modification.

In addition, we chose LSTM as the decoder because the output production is a time
series and LSTM, as a model specialized in sequential problems, can fully consider the
effect of the production in the earlier period on the production in the later period. The plot
of correlation coefficients among the variables in one case is shown in Figure 8, showing
a high correlation between the productions at different production times. We also show
the superiority of LSTM in this problem by comparing it with the widely used MLP proxy
model in Section 4.
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3.3. The Training Workflow of PIED

A schematic diagram of the training process of the PIED is shown in Figure 9.
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3.3.1. Data Preparation

The dataset used to train the proxy models is generated by the numerical simulator
mentioned in Section 2. For the horizontal wells that are required for production prediction,
some static parameters such as the geological parameters (e.g., permeability and porosity
of the matrix) and parameters of well completion (e.g., perforated interval) need to be
determined at first. Then, the number of hydraulic fractures as well as the ranges of values
of fracture parameters is set according to the engineering background and a series of time
points at which the production need to be predicted are determined. After that, the fracture
length, permeability, and dip angle are randomly generated using a uniform distribution.
Finally, the generated fracture parameters and the static parameters determined previously
are input into the numerical simulator. Finally, the generated fracture parameters and the
previously determined static parameters are input into the numerical simulator. Finally, the
numerical simulator predicts the production at each time point. As an example, a sample
of 10 fractures was generated with this method and is presented in Table 3.

Table 3. A sample generated by the numerical simulation.

A Sample Generated by the Numerical Simulator

Length Permeability Dip angel
(radian)

Generated randomly
according to the

uniform distribution

Fracture1 9.173320731 3.33587 × 10−13 1.737934557
Fracture2 52.73803329 4.45321 × 10−13 1.590268905
Fracture3 7.970179625 1.1239 × 10−8 2.066094122
Fracture4 10.00118252 8.87251 × 10−12 1.726819853
Fracture5 41.51548897 2.33735 × 10−9 1.88530177
Fracture6 11.7711018 1.84973 × 10−10 1.522413401
Fracture7 62.27039877 3.97928 × 10−11 1.499996875
Fracture8 62.22829645 2.58495 × 10−13 1.911464137
Fracture9 55.57077147 4.9175 × 10−10 1.134606937

Fracture10 15.49058097 3.71595 × 10−13 1.186653904

PRODUCTION
Series

[767.3, 1580.8, 2030.5, 3271.0, 4266.5, 4974.3, 5537.9, 6013.7,
6430.8, 6805.8, 7149.1, 7467.8, 7766.5, 8048.6, 8316.7]

Generated by the
numerical simulator

(in Section 2)

After the dataset is generated by the numerical simulator, the dataset will be randomly
split into a training set, a validation set, and a test set at a ratio of 8:1:1.
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3.3.2. Data Preprocessing

Normalization is a common method of data preprocessing. Normalization scales the
data so that different features have similar scales, thus removing the impact of scales on
the data and helping to speed up the convergence process of the model. This reduces the
sensitivity of the model to noise or outliers and improves the robustness and generalization
ability of the model.

Min–Max normalization has shown favorable results in data preprocessing. This
technique employs a linear transformation on the original data, mapping the minimum
value to 0 and the maximum value to 1, while scaling the remaining data proportionally
based on their relative positions. The advantages of Min–Max normalization are preserving
the original distribution shape of the data and ensuring a linear mapping of the data within
the specified range. Min–Max normalization is calculated as follows:

x_normalized = (x−min(x))/(max(x)−min(x))

In this representation, “x_normalized “ represents the normalized value, “x “ rep-
resents the original value, “min(x)” represents the minimum value in the dataset, and
“max(x)” represents the maximum value in the dataset.

3.3.3. Model Construction and Weight Initialization

The coding of the PIED and its forward propagation steps can be done using PyTorch
1.13.0 based on Python 3.9.

Before the forward propagation, Xavier initialization (Glorot et al., 2010) [35] is used
to ensure that the variances of the activation values and gradients remain roughly the same
across different layers, which helps effectively propagate gradients during the training
process. For the weight matrix of an LSTM unit, assuming the input dimension is nin and
the output dimension is nout, during Xavier initialization, the elements of the weight matrix
are still randomly sampled from a uniform distribution, and the range can be calculated
using the following formula:

a = sqrt
(

6
(nin+nout)

)

w = uni f orm(−a, a)

Here, nin is the input dimension and nout is the output dimension.
For LSTM, since it has complex structures such as input gates, forget gates, and output

gates, each gate has its own weight matrix. During Xavier initialization, the weight matrices
of each gate should be initialized based on the corresponding input and output dimensions.
This ensures that the weight initialization range for each gate is appropriate and facilitates
gradient propagation within the LSTM unit.

During the backward propagation process, the Adam optimization algorithm (Kingma et al.,
2014) [36] is Used. The Adam algorithm combines the characteristics of adaptive learning rate
and momentum, enabling effective learning rate adjustment and fast convergence.

3.3.4. Hyperparameter Optimization

Grid Search is a commonly used hyperparameter optimization method that aims to
determine the best combination of hyperparameters to optimize model performance. The
PIED hyperparameter space consists of the learning rate, the hidden size of LSTM, and the
batch size. For a more comprehensive search, additional parameters such as weight decay,
the number of fully connected layers, and the number of neurons can also be considered.

Once a promising combination of hyperparameters is found, learning curves can be
plotted for further fine-tuning. In this study, the training curve vs. validation curve method
was employed to evaluate model overfitting by simultaneously observing the learning
curves of the training and testing datasets. Typically, the x-axis represents the number of
iterations or epochs of training, while the y-axis represents the model’s loss or accuracy.
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When the training loss continues to decrease and the testing loss starts to increase, this
indicates the model is starting to overfit.

3.3.5. Model Evaluation

When solving regression problems, three commonly used model evaluation metrics
include mean absolute error (MAE), mean squared error (MSE), and root mean squared
error (RMSE). These model evaluation metrics can be calculated as follows:

MAE = 1
n

n
∑

i=1
|yi − ŷi|

RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)2

MSE = 1
n

n
∑

i=1
(yi − ŷi)

2

In the above formula, yi represents the true values (i.e., the production series calculated
by the numerical simulator mentioned in Section 2), ŷi represents the predicted values by
the DL proxy model, and n represents the number of samples.

4. Case Study
4.1. Data Preparation and Preprocessing

Based on the data generation method proposed in Section 3 and the numerical simula-
tor mentioned in Section 2, a dataset was created for predicting the cumulative production
of horizontal wells with unequal-length and intersecting hydraulic fractures on a two-
dimensional plane during depletion. Under the given geological static parameters and
perforation spacing conditions, we randomly generated 10 hydraulic fractures with differ-
ent lengths, permeabilities, and dip angles, as shown in Figure 10. The production was
then computed using the numerical simulator for the following time intervals: 1, 5, 9, 30,
60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and 360 days. The lengths, permeabilities, and
dip angles of these hydraulic fractures are uniformly distributed within specified ranges.
In the end, we generated 500 such samples as the dataset, and a sample is presented as
an example in Table 3. The distributions of each feature in the dataset are visualized in
Figure 11. Specifically, the range of fracture lengths is 5~75 m, the range of permeabilities
is 1 × 10−13~1 × 10−8 D, and the range of inclinations is π/6 ∼ 2π/3. After applying
Min–Max normalization, the dataset was split into training, validation, and testing sets at
a ratio of 8:1:1.
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4.2. Configuration of Proxy Models and Hyperparameter Optimization

Based on the “training workflow” described in Section 3, MLP, LSTM–LSTM, and the
PIED were constructed and optimized with hyperparameters. The hyperparameters used
for training the three surrogate models are presented in Table 4.

Table 4. The hyperparameters of the proxy models we trained in the case study.

Proxy Models Hidden Size
of LSTM

Fully Connected
Layers Dropout Activation

Function BatchNorm

PIED
Encoder: 13 Encoder: 0 — — —

Decoder: 13 Decoder: 1
(neurons: 13) — — Not Applied

Regular LSTM-
Attention-LSTM

Encoder: 12 Encoder: 0 — — —

Decoder: 12 Decoder: 1
(neurons: 12) — — Not Applied

MLP — 4
(neurons: 28, 24, 24, 16) 0.2, 0.1, 0, 0 Leaky Relu Applied

4.3. Evaluation of the Proxy Models

The performance of the three proxy models were evaluated based on the metrics
mentioned in the ‘model evaluation’ part of Section 3. By predicting the data from the
test set, the MSE, MAE, and RMSE values of these three models are shown in Figure 12.
The PIED achieved the best results regarding MSE, MAE, and RMSE, while regular LSTM–
Attention–LSTM outperformed MLP in all three metrics. The predictions of the three proxy
models for the test set are shown in Figure 13.
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4.4. Contribution of Physics Information and Seq2Seq Structure

(1) Superiority of the Seq2Seq Structure:

In terms of model performance, compared to MLP’s MSE, LSTM–Attention–LSTM’s
MSE decreased by 48.4%. Seq2Seq architecture outperformed MLP in predicting the
production sequence.

When analyzing the model structures, we first employed a multi-layer perceptron
(MLP) as the decoder and constructed an LSTM–MLP architecture for comparative ex-
perimentation in the test set. The comparative results of MLP, LSTM–MLP, and LSTM–
Attention–LSTM are illustrated in Figure 14. The superior performance of LSTM–MLP
over MLP demonstrates that the LSTM structure is better equipped to handle fracture
information. Given that fractures intersect and their positions and order affect production,
leveraging LSTM to process fissures as sequential features enhances its performance. The
fact that the performance of LSTM–Attention–LSTM surpassed that of LSTM–MLP further
validates its stronger performance in predicting production sequences using LSTM.
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From the perspective of the number of internal parameters (i.e., weights and biases),
in this case, MLP has 2557 internal parameters, while LSTM–Attention–LSTM has 3020 in-
ternal parameters. This is one of the reasons why MLP exhibits more severe overfitting
compared to LSTM–Attention–LSTM. Since MLP treats the input fractures as discrete input
features, while LSTM–Attention–LSTM treats them as a sequence, the internal parameters
of MLP increases with the number of fractures, whereas that of LSTM–Attention–LSTM
does not. In this case, where 10 fractures have 30 fracture variables and 15 time vari-
ables, the input dimension is high. This results in MLP having more internal parameters
compared to LSTM–Attention–LSTM. Consequently, training MLP requires more data
compared to training LSTM–Attention–LSTM, and it also implies that constructing the
MLP model incurs more costs to generate additional samples.

(2) Improvement of Seq2Seq Performance using Physical Information:

Compared to that of LSTM–Attention–LSTM, the PIED’s MSE decreased by 11.18%.
It is evident that by separately inputting the production time series into the decoder, the
PIED exhibits superior performance.

From the perspective of production calculation, the geometry attributes of fractures
and the set production time are independent in the XFEM numerical simulator when it is
calculating the production. the geometric parameters of the fractures remain unchanged,
and therefore, PIED has an encoder structure that can independently process all the fracture
information. Meanwhile, when it comes to calculating production, the time information
will be coupled with fracture information in the decoder. However, in the regular Seq2Seq
model, time information and fracture information are input together from the beginning.

From the viewpoint of model structure, the regular LSTM exhibits error accumulation,
while the PIED’s structure mitigates error accumulation. Specifically, for the regular LSTM,
it takes the output of the previous time step as the input for the current time step. As the
output of the previous time step contains errors, each LSTM at every time step is provided
with information containing accumulated errors. Therefore, the more time steps, the more
error accumulation in LSTM. However, in the PIED, at each time step, the input of the
decoder’s LSTM are the predetermined static values form the production time series and
the vectors outputted by the attention module, so that the accumulated error in the PIED
is reduced.

5. Conclusions

In this study, the PIED, a new physics-informed proxy model of numerical simulator
for fractured horizontal well production prediction, is proposed, and the Seq2Seq architec-
ture is initially used to do this. The encoder structure and attention algorithm successfully
extract physical information regarding intersecting hydraulic fractures, and the modified
decoder structure succeeds in predicting production series within the constraints of produc-
tion time and the fracture information outputted by the encoder and the attention module.
We also proved that the intersecting hydraulic fractures processed as the series type data by
the LSTM can enhance the performance of the proxy model. Finally, according to the case
study, the performance of the Seq2Seq architecture significantly surpassed the commonly
used MLP, highlighting its superiority. Furthermore, the performance of the PIED exhibited
further improvement upon the foundation of Seq2Seq.

In the case study, where the feature dimensionality was high, with 30 variables forming
a sequence of size 3 × 10 as the input and 15 fixed time values as the intermediate input for
the decoder, the PIED exhibited satisfactory performance in handling high-dimensional
features. The MAE of the PIED was 168.8, which is equal to 2.7% bias of the true cumulative
production values. Compared to the MSE values of MLP and LSTM–Attention–LSTM, the
MSE of PIED was 56.0% and 11.8% less, respectively. The PIED model demonstrates its
stronger generalization ability and higher accuracy. Only 500 samples need to be generated
over 3 days to build datasets, so that PIED exhibits practicality as it can be trained and
fine-tuned on small datasets, achieving satisfactory performance.
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6. Discussion

The physics-informed encoder–decoder (PIED) model, while capable of achieving
strong performance on smaller datasets, still exhibits some limitations. Firstly, the PIED
currently incorporates only two types of physical information, namely, the geometric fea-
tures of fractures and production time. However, incorporating more physical information,
such as the geological conditions of the matrix, should be considered. Secondly, while the
PIED performed well in the case of 10 hydraulic fractures, its encoder’s ability to handle
a much larger number of input variables, say a hundred fractures, needs to be validated.

Fortunately, the aforementioned limitations of the PIED can be addressed. To incor-
porate additional types of physical information, other network structures such as fully
connected layers can be employed to map the information into vectors, which can then be
used as input or hidden states in the PIED. Moreover, when dealing with a higher num-
ber of fractures, the encoder can be equipped with a self-attention mechanism to further
mitigate overfitting.
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Abstract: For highly heterogeneous complex carbonate reef reservoirs, rock typing with respect to
depositional conditions, secondary processes, and permeability and porosity relationships is a useful
tool to improve reservoir characterization, modeling, prediction of reservoir volume properties, and
estimation of reserves. A review of various rock typing methods has been carried out. The basic
methods of rock typing were applied to a carbonate reservoir as an example. The advantages and
disadvantages of the presented methods are described. A rock typing method based on a combination
of hydraulic flow units and the R35 method is proposed. Clustering methods for rock typing are
used. The optimum clustering method is identified, and for each rock type, the permeability–porosity
relationships are built and proposed for use in the geomodelling stage.

Keywords: permeability; porosity; complex carbonate reservoirs; rock typing; petrophysical correlations

1. Introduction

Carbonate reservoirs are characterized by a high heterogeneity of void space. The
heterogeneity is caused by both abrupt changes in facies depositional conditions and
widespread secondary processes that partially or completely rearrange the internal struc-
ture. The secondary changes are often selective. Reservoir properties can vastly vary both
vertically and horizontally. Predicting properties in the reservoir interwell space is very
important. Many studies address this issue, including facies analysis, determination of
depositional conditions, rock typing, and sequence stratigraphy [1].

Identifying zones with different secondary processes and, hence, with different reser-
voir properties is essential for understanding reservoir structure and its static modeling.
Detailed distribution of properties plays a significant role in calculating reserves, static
and dynamic reservoir model preparation, planning geological and engineering activities,
etc. The relationship between geological heterogeneity, reservoir quality, and reservoir
performance [2] is paramount. Understanding these key relationships enables effective
reservoir management [3].

The relationship between reservoir performance and quality is mostly fully reflected
by permeability. Permeability is the most important property that determines fluid filtration
in a reservoir. Many studies focused on permeability predictions in the interwell space [4,5].
For terrigenous reservoirs, permeability predictions in the interwell zone are simpler tasks
than for carbonate reservoirs [6–8]. For terrigenous reservoirs, the standard approach
with core-well-log correlation identification and property interpolation using geostatistic
methods usually shows satisfied results of permeability distribution across reservoir vol-
ume [9]. For a complex carbonate reservoir, the problem of permeability distribution across
the volume is extremely difficult [10,11]. Different approaches or their combinations are
used for complex carbonate reservoir permeability predictions: rock typing, multi-scale
data combining, seismotypes identification, scale effect estimation, anisotropy study, un-
certainties analysis, etc. [12–15]. The permeability parameter is determined from various
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sources: core samples, well-test studies, nuclear magnetic resonance, acoustic logging, and
others. The results of core studies are usually combined with logging curves to predict
permeability in intervals without coring. However, for carbonate reservoirs, this prediction
is generally ineffective. For more reliable predictions of permeability and reservoir quality,
rock typing is used [16–18].

G. Archie [19] was one of the first to propose the definition of a rock type: a rock strata
whose parts were deposited under the same conditions and were subjected to the same
secondary transformation processes (fracture, cementation, or dissolution). A particular
rock type must have a specific pore size distribution and, therefore, individual capillary
pressure curves. The pore size distribution controls porosity and is related to permeability
and water saturation [20].

There are many different approaches for typing carbonate reservoirs. The division
into rock types is based on different physical characteristics of the rock: its hydraulic flow
units (HFU), pore space geometry and structure, pore channel size, type and size of grains,
their relation to the binder mass, etc. [21]. The hydraulic flow unit method is widely used
for typing the carbonate reservoirs [22–24]. A hydraulic flow unit is an interval with certain
properties prevailing in a reservoir. These intervals are controlled by both geological and
petrophysical attributes that enable the prediction of reservoir characteristics. Accordingly,
the diagenetic transformations prevailing in a particular part of the reservoir are an essential
parameter controlling the hydraulic flow units [2]. The method is also applicable for rock
typing in geological and dynamic modeling [25,26]. The method is based on the calculation
of an integrated parameter—a flow zone indicator (FZI). However, there are uncertainties
associated with combining hydraulic flow units into classes. Various techniques, such
as GHE, machine learning, and the discrete rock typing (DRT) method, are used for this
purpose [21,22].

A rather common method is to identify rock types based on pore channel size (Win-
land) [27,28]. Typing by pore channel radius has been proposed [29]:

- Macropores (2 µm < R35 < 10 µm);
- Mesopores (0.5 µm < R35 < 2 µm);
- Micropores (0.1 µm < R35 < 0.5 µm).

In [30], it is proposed to distinguish rock types by calculating pore geometry (PG) and
pore structure (PS). The calculated parameters are plotted on one graph in a bi-logarithmic
scale, and the points lying on one straight line will correspond to one class. As the class
increases, the quality of the reservoir will increase. The classification of P.W. Choquette and
L.C. Pray is a classical lithological classification. It includes the following characteristics:
basic porosity types, genetic factors, grain size, and grain number factors [31]. Another
common classification is the approach developed by R.J. Dunham [32]. It is a structural
classification that considers the following factors: the presence and type of form elements
or grains, their relationship with the binder mass, and the structure of the binder mass.
The Archie classification is based on the study of the structural features of the rock matrix
and the nature of the visible void space. G.E. Archie studied a significant amount of actual
data to show that the rock types are characterized by certain petrophysical properties
(porosity, permeability, capillary pressure, and electrical resistivity), well-logging results,
and petrophysical relationships. In other words, a comprehensive approach to rock-type
identification is necessary [19]. The authors [33–35] have proposed an approach based on
the analysis of accumulated correlations between porosity and permeability, enabling the
estimation of the porosity–permeability relationship as the void space increases. Lorenz
curves have been successfully used to assess reservoir heterogeneity [36,37]. Lorenz curves
are also widely used in classifying reservoirs by void type. By highlighting sharp changes in
the plot, it is possible to account for the inclusion of highly permeable intervals or fractures.

Thus, a review of the main rock typing methods shows that for the purposes of
geological and dynamic models and permeability modeling in the reservoir volume, the
methods based on the permeability and porosity relationships are the most applicable.
These methods are based on hydraulic flow units, pore channel radius, and Lorenz curves,
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but the methods are rather generalized and need to be adapted to the peculiarities of a
particular reservoir.

This study will typify the reservoir of Alpha oilfield using different methods, perform a
comparison of these methods, propose an approach to rock typing using machine learning
methods (clustering), identify the best method, and build dependencies to predict the
permeability of different rock types.

2. Geological Settings

The Alpha field is located in the Timan-Pechora oil and gas province, on the territory
of the Denisovsky Depression (Figure 1). Reef structures were widespread in the area
during the Yelets and Zadonian times.
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Rocks of carbonate strata of the Yelets and Zadonian age (Devonian) are characterized
by core predominantly in their upper part (D3el) (Figure 2). According to the core, the
formation is mostly limestone with areas of abundant secondary dolomitization. Leaching
is widespread, with caverns of various sizes ranging from leaching pores to large voids
up to several centimeters in diameter. Leaching has also been observed in limestones, but
cavernosity is particularly strong in dolomites.

Tilting and sub-vertical fracturing are presented, but often, the tilting fractures are
resistive and impermeable, which are characterized by the upper part of the sequence.
Sub-horizontal fractures are abundant in the upper part of the sequence and mostly remain
open, even when naturally occurring.

The reservoir rocks are classified as fracture-cavernous and pore-cavernous. Given the
widespread development of leaching pores, all reservoirs in the section can be classified as
a pore-fracture-cavernous type (Figure 3). Accordingly, caverns are the main part of pore
space in the reservoir.
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The range of porosity varies from 1 to 18.3%. Permeability varies from 0.001 to
722.8 (mD), with an average value of 20.3 (mD).

According to the lithological description of the core samples, three lithotypes are
distinguished: microbial limestones, peloid limestones, and secondary dolomites (Figure 4).
Microbial limestones are characterized by a clotted granular microstructure and areas
with fenestrae and are partially dolomitized, stylolitized, porous, cavernous-porous, and
fractured. Secondary processes are noted—calcitization, recrystallization, sulfatization,
dolomitization, and rarely, pyritization. Peloid limestones consist of peloids, interclasts,
and ooids. Stylolitization and fracturing are observed. Secondary dolomites are medium-
coarse-grained, porous, and cavernous-porous.
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3. Materials and Methods

This study used various methods for rock typing of core samples (461 core samples)
based on the assessment of permeability and porosity relationships.

The hydraulic flow unit method is based on calculating a complex parameter—the
flow zone indicator (FZI) (1):

FZI =
RQI
ϕz

(1)

where RQI is the reservoir quality index, µm, and ϕz is the normalized porosity index, u.f.
RQI is defined by the equation:

RQI = 0.0314

√
Kpr

Kp
(2)

where Kpr is the permeability coefficient, mD, and Kp is the porosity coefficient, u.f.
Φz describes the ratio of the void volume to the solid rock volume and is defined by

the equation:

ϕz =
Kp(

1− Kp
) (3)
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It is assumed that when RQI and ϕz values are plotted on a bi-logarithmic scale,
sample points with close FZI values will be located near the same straight line and, thus,
be characterized by similar pore channel features and, thus, form a hydraulic flow unit.
Different approaches exist for combining and grouping points into one class: cluster
analysis, neural networks, cumulative frequency analysis, discrete type method, and
global hydraulic unit class method. In the first stage, the global hydraulic unit classes
(GHE) method is proposed, which suggests establishing class boundaries based on the
generalization of a large number of field studies [37].

The following DRT method is based on converting a continuous FZI value into a
discrete one, allowing the geological model’s grid cell value to be set and then the petro-
physical dependence for each rock type to be defined [38]:

DRT = 2 ln(FZI) + 10.6 (4)

A rather common method is to isolate rock types based on pore channel size (Win-
land) [27,28]:

lgR35 = 0.732 + 0.588lgKpr − 0.864lgKp (5)

where R35 is the pore channel radius corresponding to 35% pore volume saturation with
nonwetting phase, µm, Kpr is the permeability coefficient, mD, and Kp is the porosity
coefficient, %.

Next, the typing was performed using the Lorenz plots method. Lorenz curves are
an alternative graphical representation of the distribution function to estimate the degree
of heterogeneity of a reservoir [36,39,40]. The degree of heterogeneity is assessed by
comparing the areas under the curves with the area of a triangle cut off by a line of equal
values. The accumulated porosity values (Storativity) are plotted on the abscissa axis, and
the corresponding accumulated permeability values (Transmissivity) are plotted on the
ordinate axis.

The next applied approach is also based on the analysis of accumulated porosity
and permeability values. The approach allows evaluation of the relationship between
porosity and permeability as the void space increases [34,35]. The methodology consists of
sorting samples in ascending order of porosity values, calculating the correlation coefficient
between permeability and porosity parameters at value number n = 3, then at n = 4, and so
on, that is, the accumulated correlation coefficient between the parameters is determined,
and then this coefficient is plotted on ordinate axis, and porosity values on abscissa axis.

In the next stage of the research, clustering techniques were used to self-select the
classes that would be more adapted to the current properties of the field. Two basic
clustering algorithms are used in this work: k-means and EM.

The k-means method is a cluster analysis method that aims to divide m observations
(from space Rn) into k clusters, with each observation belonging to the cluster to whose
center (centroid) it is closest [41].

The Euclidean distance is used as a measure of proximity:

ρ(x, y) = ‖x− y‖ =
√

∑n
p=1

(
xp − yp

)2, where x, y ∈ Rn (6)

Let us consider a number of observations
(

x(1), x(2), . . . , x(m)
)

, x(i) ∈ Rn.
The k-means method divides m observations into k groups (or clusters) (k ≤ m)

S = (S1, S2, . . . , Sk), in order to minimize the total squared deviation of cluster points from
the centroids of these clusters:

min
[
∑k

i=1 ∑x(j)∈Si
‖x(j) − µi‖

2]
, where x(j) ∈ Rn, µi ∈ Rn (7)

µi—centroid for cluster Si.
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The work of the k-means algorithm can be roughly divided into four main stages [42]:
identifying the k centers of the clusters, determining whether objects belong to clusters,
identifying the centroids of k clusters, and comparing the cluster centers and centroids.

The algorithm is guaranteed to converge in a finite number of iterations. The clustering
error and the number of iterations depend on the initial choice of centroids, so it is common
practice to run k-means several times with different initial centroid candidates [43].

The EM (expectation–maximization) clustering method is an algorithm that allows
efficient handling of large amounts of data, unlike the previous method. The idea of the
EM algorithm is based on the assumption that any observation belongs to all clusters
but with different probabilities. Therefore, two additional columns are generated in the
output: cluster number and probability of belonging. The object must be assigned to the
cluster for which this probability is higher. Some of the advantages of the EM algorithm
are as follows [44]: efficient processing of big data, resistance to noise and data omissions,
possibility to build the desired number of clusters, and fast convergence with successful
initialization.

4. Results

Firstly, after the FZI calculation, rock typing was carried out using the Global Hy-
draulic Unit (GHE) and Discrete Rock Typing (DRT) methods. Figure 5 compares the GHE
and DRT classifications using the Alpha field as an example.
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In the DRT discrete rock type classification, a significantly higher number of rock
types is distinguished (19) compared to the GHE typing (10). This distinction results in
narrower rock types, while it succeeds in increasing the coefficient of determination for
certain classes. Table 1 presents a comparison of equations and coefficients of determination
by type. The DRT values from 5 to 23 correspond to classes 1–19. For classes 1–3 and 19, it
was impossible to build dependencies due to the small number of samples in the class.

Table 1. Comparison of GHE and DRT classifications.

GHE Classification DRT Classification

Class Regression
Dependence

Determination
Coefficient Class Regression

Dependence
Determination

Coefficient

2 y = 0.0003 × e71.888x R2 = 0.98 4 y = 0.0001 × e96.725x R2 = 0.93

3 y = 0.0008 × e66.062x R2 = 0.72 5 y = 0.0007 × e64.187x R2 = 0.85

4 y = 0.0065 × e49.341x R2 = 0.55 6 y = 0.0037 × e50.779x R2 = 0.90

5 y = 0.0047 × e70.066x R2 = 0.91 7 y = 0.005 × e54.849x R2 = 0.85

6 y = 0.0118 × e83.039x R2 = 0.78 8 y = 0.0049 × e68.011x R2 = 0.92

7 y = 0.0151 × e112.92x R2 = 0.81 9 y = 0.0103 × e76.634x R2 = 0.98

8 y = 0.0417 × e135.73x R2 = 0.61 10 y = 0.0107 × e105.42x R2 = 0.89

9 y = 0.0748 × e220.27x R2 = 0.65 11 y = 0.015 × e110.85x R2 = 0.82

10 y = 0.506 × e224.47x R2 = 0.78 12 y = 0.0328 × e135.02x R2 = 0.83

- - - 13 y = 0.0444 × e162.76x R2 = 0.88

- - - 14 y = 0.0386 × e293.85x R2 = 0.80

- - - 15 y = 0.2359 × e224.17x R2 = 0.97

- - - 16 y = 0.0865 × e523.56x R2 = 0.90

- - - 17 y = 0.3076 × e506.17x R2 = 0.98

- - - 18 y = 0.0451 × e890.15x R2 = 0.58

y—permeability coefficient, mD, x—porosity coefficient, u.f.

Table 1 shows an increase in the determination coefficients when using the DRT
approach. Determination coefficients for all classes, except for class 18, are higher than
0.8. For class 18, the determination coefficient is 0.58; however, this type belongs to the
fracture type and is characterized by a large scatter of properties, and the number of values
is only six. This methodology allows us to obtain high coefficients of determination but
distinguishes many classes, which will complicate the distribution of rock types in the
geomodelling process.

In the next stage of the work, the pore channel radius corresponding to 35% saturation
of the pore volume with a nonwetting phase was calculated using the Winland equation.
The reservoir was typified according to the method classification [16], i.e., four classes were
identified;

Class 1—micropores (0.1 µm < R35 < 0.5 µm);
Class 2—mesopores (0.5 µm < R35 < 2 µm);
Class 3—macropores (2 µm < R35 < 10 µm);
Class 0—caverns (>10 µm).

Figure 6 shows the results of rock typing using this method.
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Figure 6. Classification by pore channel radius. The Alpha field.

Apparently, distinguishing only four classes does not provide reliable reservoir typing
with high coefficients of determination between parameters in each class. However, the
pore channel radius parameter can be used as one of the rock typing criteria.

A typing exercise based on the results of the Lorenz curve is presented in Figure 7.
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Figure 7. Building a Lorenz curve for sample typing. The Alpha field.

Describing this plot (Figure 7), one can conventionally identify zones of sharp changes
in the trends of the curve of accumulated values. These changes are characterized by a
change in rock type.

Thus, the Lorenz curve method of rock typing distinguishes eight classes in petrophys-
ical dependency (Figure 8).
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Figure 8. Lorenz curve typing of reservoirs. The Alpha field.

Figure 8 identifies eight rock types, but the prevailing parameter in this classification is
rock porosity. It can be seen that within rock types, it is not possible to obtain high values of
the coefficient of determination between the parameters. Such an approach is appropriate
when justifying the boundary values of porosity in modeling. Often, in order to recreate a
cloud of petrophysical dependency values, the model is divided by porosity samples (bins),
and the dependencies are plotted within the resulting classes. Determination coefficients in
this approach remain low, but the model cubes allow to reproduction of the initial cloud of
petrophysical dependence points. The extended practice is to distinguish porosity intervals
based on arbitrary criteria, and this approach allows this to be conducted in a justified
manner.

The next applied approach is also based on the analysis of accumulated values of the
correlation coefficient between porosity and permeability as porosity values increase. The
typing using this methodology is shown in Figure 9.

In Figure 9, six types of rocks can be distinguished according to changes in trends.
Determination coefficients were calculated for the classes, ranging from 0.07 to 0.972.
The first class is characterized by a low coefficient of determination, as the relationship
between permeability and porosity values is practically absent and unstable. This class can
be attributed to the matrix component with the inclusion of samples with fractures and
samples with practically no reservoir properties. For the second class, there is an upward
trend in the correlation value between the parameters, but some samples, on the contrary,
are out of the trend, probably because of the inclusion of fractures in the matrix type of the
reservoir. For the third class, with increasing porosity values, there is a decreasing trend
in the correlation coefficient between porosity and permeability, i.e., there are samples
with fractured reservoir type—with generally low porosity, a number of samples have
high permeability. The next class, four, is characterized by a general growth trend in the
porosity–permeability relationship. This class may be classified as a pore reservoir. The
fifth class, on the contrary, manifests a general downward trend of porosity-permeability
relationship, and the cavernous component can be observed. The last class also belongs to
the pore-cavernous or pore-cavernous-fracture type.
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The results of rock typing are shown in Figure 10.
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bility relationship, and the cavernous component can be observed. The last class also be-
longs to the pore-cavernous or pore-cavernous-fracture type. 

The results of rock typing are shown in Figure 10. 
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Figure 9. Correlation coefficient between permeability and porosity versus porosity. The Alpha field.
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Figure 10. Rock typing by the accumulated correlation plot. The Alpha field.

The previous approach is based on accumulated parameter values; this approach
plots the division of samples into rock types predominantly by porosity. This approach
can be applied to reconstruct the petrophysical dependency cloud in a geological model,
but for correct rock typing, it is necessary to use the FZI parameter, which allows the
correct segregation of rock types based on both porosity and permeability values. This is
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especially relevant when separating low-quality and fractured reservoirs. Therefore, the
FZI parameter is the basis for rock typing in further study.

Previously, boundaries for rock types were calculated using the GHE and DRT meth-
ods, which provided fairly good results, but these boundaries are based on the experience
of researchers and are calculated for fields of different territories. It is proposed to se-
lect boundaries for rock typing of reservoirs of the fields of the Denisovsky Depression.
Machine learning methods have been used for this purpose.

The main indicators for clustering are the calculated FZI parameter and R35. Cluster-
ing was carried out for the calculated FZI values, as well as jointly for FZI and R35. The
k-means and EM methods were used for clustering.

Figures 11 and 12 below compare the two clustering methods, k-means and EM, by
FZI parameter.
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Figure 11. Comparison of: (a) k-means; (b) EM rock typing by FZI parameter.
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Figure 12. Comparison of: (a) k-means; (b) EM rock typing by FZI and R35 parameters.

Figure 11 shows that clustering by the FZI parameter does not reliably separate
samples into rock types. The first class has a dominant influence on clustering. Therefore,
it was decided to add the pore channel radius parameter calculated earlier to improve
clustering quality (Figure 12).

With the R35 parameter added for the k-means method, there is an improvement in
the classification of rock types, but the first class remains predominant. The EM algorithm
allowed the samples to be divided into almost equal parts, of course, with a preference for
the first class, but this was not critical. Therefore, it is proposed that the EM algorithm and
the distinguished criteria for FZI and R35 typing be used in further analysis. In the next
step, calculations with n = 10 and n = 12 were performed to select the optimal number of
clusters. The results of the classifications comparison are shown in Figure 13.
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Figure 13. Comparison of rock typing by EM method to select the number of clusters (rock types).
Number of clusters: (a) 8; (b) 10; (c) 12.
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As a result, clustering models have been derived that allow rock types to be distin-
guished with a high degree of confidence, as confirmed by the coefficients of determination
between permeability and porosity parameters within classes.

The comparison of the coefficients of determination for different numbers of clusters
is presented in Table 2.

Table 2. Comparison of determination coefficients for different numbers of clusters. EM algorithm.

Cluster
8 Clusters 10 Clusters 12 Clusters

Equation R2 Equation R2 Equation R2

1 y = 8902.5x − 17.533 R2 = 0.88 y = 0.3547 × e47.106x R2 = 0.77 (1 value) (1 value)

2 y = 3.3793x − 0.0587 R2 = 0.61 y = 0.002 × e60.971x R2 = 0.68 y = 0.2162 × e23.336x R2 = 0.57

3 y = 122.08x − 0.9967 R2 = 0.85 y = 0.0335 × e42.529x R2 = 0.87 y = 5.6505 × e45.206x R2 = 0.86

4 y = 48.027x − 0.5159 R2 = 0.89 y = 3.7495 × e181.16x R2 = 0.85 y = 8.0369x − 0.0742 R2 = 0.95

5 y = 3120.9x − 15.714 R2 = 0.88 y = 5.9112 × e26.089x R2 = 0.91 y = 3.7495 × e181.16x R2 = 0.85

6 y = 1099.4x − 4.7463 R2 = 0.70 y = 1557.2x − 12.372 R2 = 0.82 y = 2.6719 × e124.16x R2 = 0.93

7 y = 9.0492x − 0.083 R2 = 0.92 y = 0.0571 × e34.385x R2 = 0.65 y = 0.0018 × e63.192x R2 = 0.58

8 y = 383.7x − 3.6482 R2 = 0.94 y = 0.3547 × e47.106x R2 = 0.77 y = 649.79x − 16.278 R2 = 0.58

9 - - y = 9.0622x − 0.0838 R2 = 0.92 y = 153.37x − 0.3226 R2 = 0.82

10 - - y = 2.6729 × e124.89x R2 = 0.93 y = 18.335x − 0.0983 R2 = 0.80

11 - - - - y = 0.4716 × e214.35x R2 = 0.94

12 - - - - y = 0.1061 × e53.025x R2 = 0.86

From Table 2, it can be concluded that, in general, it was possible to improve rock
typing compared to standard approaches (GHE, DRT, R35). When using the EM clustering
algorithm, determination coefficients for all cases are higher than 0.57, even for classes
characterizing the fractured type of reservoir. Based on the analysis of Table 2, differences
in approximation formulas are observed. For calculation with the number of clusters equal
to eight, all dependencies by classes are approximated linearly with high coefficients of
determination. Essentially, this approach simplifies the dependencies between permeability
and porosity, but in the modeling phase, it can have the effect of overestimating the
permeability. Generally, exponential relationships are adopted to approximate porosity
and permeability relationships.

For a calculation with the number of clusters equal to 10, only two classes stand
out that need to be approximated linearly; the remaining dependencies are exponential.
Importantly, the linear dependencies are obtained only for classes that are characterized
by a high correlation between porosity and permeability. That is, when porosity increases,
permeability values also increase. The types of reservoirs are pore and pore-cavernous. For
more complex void space types, exponential relationships are used.

For calculations with the number of clusters equal to 12, the obtained coefficients of
determination are lower, but nevertheless not lower than 0.57. Three classes characterizing
pore, pore-cavernous, and cavernous-pore reservoir types are also distinguished, which are
approximated linearly.

The rock types corresponding to the main secondary rock transformations that have
influenced the change in void space structure have been identified. Rocks of rock types
4–5 are fractured, partly dolomitized; 6, 1, 5 fractured and leached, partly dolomitized; 7–8
mostly leached, partly dolomitized; rock types 3–9 are mostly porous, partly dolomitized;
rock type 2 is porous, occasionally cavernous, dolomitization and partial leaching processes
are present.

According to clustering algorithms implementation, two criteria for rock typing were
indicated: FZI and R35. The use of these criteria combination significantly enhances the
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rock classification through clustering methods. Table 3 shows the comparison between all
feasible rock typing methods for reservoir modeling.

Table 3. Comparison of different rock typing methods by statistical analysis of determination
coefficients.

Method Rock Types
Numbers Mean R2 Min R2 Max R2 Variance St.

Deviation
Variation

Coefficient

DRT 18 0.73 0.58 * 0.98 0.12 0.35 47.64

GHE 10 0.68 0.61 * 0.99 0.07 0.27 40.31

EM (8 clusters) 8 0.83 0.61 0.94 0.01 0.11 14.01

EM (10 clusters) 10 0.82 0.65 0.93 0.009 0.09 12.02

EM (12 clusters) 12 0.73 0.57 * 0.95 0.07 0.27 36.81

* Exclude zero values of R2 that characterize classes with 1–4 number of core samples.

In terms of comparison, the results indicate that the EM clustering algorithm with
10 clusters exhibits one of the highest mean and minimal values of R2, as well as the lowest
variance and coefficient of variation. This suggests the least difference in R2 between
rock types and enhances the reliability of predicting the correlation between porosity and
permeability. It is important to mention that, for the other methods, classes with a limited
number of values stand out, preventing a dependable identification of the parameter
correlation. Despite the high maximum R2 values for the DRT and GHE methods, these are
observed only for classes with a number of core samples less than 10 or due to the division
into a large number of classes. While the DRT and GHE methods are consistent, the EM
clustering algorithm is better suited to the geological settings of the Alpha oilfield.

Based on the study results, it is found that the FZI and R35 criteria, 10 clusters (classes),
and the EM clustering algorithm should be used for optimal and automatic rock typing.

5. Conclusions

A review of the main rock typing methods was carried out in this research. It was
found that a significantly higher number of rock types (19) is identified on the basis of
classification using the DRT discrete rock types method compared to GHE typing (10). This
separation makes it possible to identify narrower rock types while increasing the coeffi-
cient of determination for certain classes. The DRT method produces high determination
coefficients, but many classes are distinguished, which would make it difficult to distribute
rock types when averaging properties onto a model grid and upscaling it.

The pore channel radius corresponding to 35% saturation of the pore volume with the
nonwetting phase (R35) was calculated. A classification based on the R35 parameter has
been carried out, but the method will not produce a reliable reservoir typology with high
coefficients of determination between the parameters in each class.

Typing was carried out using the method of Lorenz plots. This method does not pro-
duce high permeability-porosity correlations between the parameters within the rock types.

Rock typing has been carried out based on the calculation of the accumulated correla-
tion coefficient. This approach can be applied to reconstruct the petrophysical dependence
cloud in the geological model, but in the authors’ opinion, for the most correct rock typing,
it is necessary to use the FZI parameter, which allows to distinguish rock types more
correctly, especially when separating low-quality and fractured reservoirs.

By using different rock typing methods and evaluating the relationship between
porosity and permeability, it was found that FZI and R35 are the necessary criteria for
selecting rock types, and their combination allows for improved quality of type predictions.
On the basis of these criteria, clustering was carried out using machine learning methods.
The clustering based on the EM algorithm allowed us to identify 10 rock types with high
coefficients of determination. The identified rock types corresponded to the main secondary
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rock transformations that affected the structure of the void space. Rocks of rock types
4–5 are prone to fracturing, partly dolomitized; 1, 5, 6 are fractured and leached, partly
dolomitized; 7–8 are mainly leached, partly dolomitized; rock types 3, 9 are mainly pore
type, partly dolomitized; rock type 2 is porous, occasionally cavernous, dolomitization and
partial leaching processes are present. These rock types have been chosen as the basis for
further geological and dynamic modeling.

In future research, the authors plan to use machine learning algorithms for combining
core and well-logging studies to determine rock types in intervals not characterized by
core sampling. This will allow rock types to be distributed in the reservoir volume in the
most reliable manner for both core-sampled intervals and the rest of the section. In the
intervals of rock types, it is proposed to propagate the obtained permeability–porosity
relationships for permeability array modeling, taking into account the high heterogeneity
of the reservoir.
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Abstract: For low-permeability reservoirs, water-flooding development is usually adopted, which
leads to induced fractures near the wellbore, increasing reservoir heterogeneity, and making water-
flooding development more complex. This paper focuses on low-permeability reservoirs, considering
the characteristics of induced fractures and elliptic-flow composite, and the well-test model for injec-
tion wells is established. The mathematical model in Laplace space is obtained through dimensionless
transformation and Laplace transformation. Subsequently, the Mathieu function is introduced to
obtain the bottom hole pressure, and the pressure response curve is drawn. The six flow stages of
the curve are defined, and the sensitivity of parameters such as half-length of induced fractures,
range of lateral-swept area, permeability in unswept area, and outer boundary distance at constant
pressure are analyzed. The results show that the half-length of the fracture mainly affects the linear
flow of the fracture, the range of the lateral wave-affected area mainly affects the radial flow of the
swept area, the permeability of the unswept area mainly affects the radial flow of the unswept area,
and the outer boundary distance at constant pressure mainly affects the boundary flow. Based on
the production performance of a certain injection well in J Oilfield, a series of key parameters are
obtained through analytical solution model inversion, including the induced-fracture half-length
of 10.32 m, the lateral-swept range of elliptic partition flow of 128.95 m, the permeability of the
swept area of 6.87 mD, and the mobility ratio of 119.92, which show the superiority of the analytical
solution model.

Keywords: low-permeability reservoir; induced fracture; elliptic-flow composite; well-test model

1. Introduction

For low-permeability reservoirs, although water-injection-induced fractures help to
improve the injection capacity, due to the contradiction between the low permeability
of the formation and the high conductivity of the induced fractures, the injected water
flows along the fractures at high speed, only affecting the narrow and long areas, resulting
in a serious imbalance of waterflooding, aggravating the dynamic heterogeneity of low-
permeability reservoirs, making the water-flooding process more complicated [1–4]. The
study of water-injection-induced fractures started in the 1980s. Hagoort [5] clearly put
forward the concept of water-injection-induced fractures in his doctoral thesis and proposed
that induced fractures will be formed when the injection pressure exceeds the formation
fracture pressure. Furthermore, he used the numerical simulation method to simulate
the fracture extension process caused by water injection. Liu et al. [6] believed that high
water-injection volume and injection pressure would lead to the opening, extension, and
connection of natural micro-fractures. They produced high-permeability strips in the
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direction of the connection line between the water-injection well and the oil-production
well, resulting in a one-way penetration of injected water, ultimately affecting recovery.
Guo et al. [7] took a water-injection well in the WY area as an example to analyze the
characteristics of bottom hole pressure response under different test times and found that
the cracks induced around the water-injection well were dynamic, reflecting the process of
cracks gradually extending under the action of continuous water injection. In the same year,
Wang et al. [8] and Xie et al. [9] considered that micro-fractured reservoirs are generally
developed in low-permeability conditions, and they are closed in the original formation,
which is not easy to identify in the early stage. These closed fractures will continue to open
and extend with the increase in water-injection pressure and formation pressure, forming
dynamic fractures.

In view of the well-test interpretation model for the formation of induced fractures in
water-injection wells, it is believed that due to the absence of proppant in water-injection-
induced fractures, when the well is shut down for a pressure test, the fracture will gradually
close with the decrease in bottom hole pressure. The water previously stored in the
fracture is squeezed into the formation, and the early pressure response after the well
shuts down presents a straight line with a pressure derivative unit slope [5]. Spivey and
Lee [10] proposed a dual-volume wellbore storage model considering fractures, wellbore
storage, and skin effects. The bottom hole pressure solution was given, two reservoir
sections were obtained, the pressure derivatives coincided, and the slope was one unit.
BinAkresh and Rahman [11,12] analyzed the test data of water-injection wells, verified
the law shown by the theoretical model, and clarified the reservoir effect of fractures
after shut-in. Koning [13,14] considered fracture closure because of the influence of well
storage and considered different fracture shapes under an elliptic coordinate system. The
pressure solution before fracture closure and the pressure solution after fracture closure
were obtained by partial integration. The mathematical model of fracture closure after the
injection-well shut-in was given in the form of a piecewise function.

For water-flooding reservoirs, the fluid in the formation changes from single-phase
flow to oil–water two-phase flow due to the injection of water. At this time, well-test data of
the injection wells need to be based on the mathematical model of oil–water two-phase flow.
The flow theory of composite reservoirs is usually used for well-test analysis. A composite
reservoir has the special characteristic that the discontinuity of the reservoir or the fluid’s
properties in the radial direction is caused by the injection of fluid so that the reservoir is
divided into two or more flow areas in the radial direction. In the 1950s, the water-flooding
well-test interpretation of water-injection wells was mainly based on the radial-composite
reservoir model. The reservoir was divided into two to three regions in the radial direction.
The reservoir and fluid properties were the same in a single region, but the properties
between regions were different [15]. Considering the wellbore storage and skin effect, Li
et al. [16] established a mathematical model of an oil–water two-phase unsteady flow well
test considering the influence of water cut and drew a new typical curve chart of oil–water
two-phase flow well test. Liu et al. [17] established a well-test mathematical model of
a two-zone composite reservoir with water-injection wells considering the influence of
water cut and solved it analytically. The effects of different water cuts, water saturations,
permeability ratios, water drive front radii, and other parameters on the well-test curve
were analyzed. Jia et al. [18] established a mathematical model of an oil–water two-phase
flow well test in dual-media reservoirs. Based on the B-L water-flooding theory, the water-
saturation distribution was obtained at any time, and the pressure solution model was
divided into multiple ring regions in the radial direction. Then, the model was solved
analytically, and the characteristics of the well-test curve of oil–water two-phase flow in
water-injection wells were analyzed. According to the one-dimensional B-L water-flooding
equation, the position of the oil–water two-phase interface could be obtained at any time,
and the water-saturation distribution during the water-injection process could be further
solved. In addition, Soliman et al. [19,20] and Craig and Blasingame [21,22] have also
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performed much research on the well-test interpretation model of water-injection wells in
low-permeability reservoirs.

At present, there are two main defects in the research of the well-test interpretation
model for water-injection wells in low-permeability reservoirs. Firstly, there is no effec-
tive method for characterization and inversion of water-injection-induced fractures. The
current research is mainly to analyze the influence of water-injection-induced fractures
on the development of low-permeability reservoirs. Although some scholars have pro-
posed mathematical models to characterize this process, it is still impossible to diagnose
and interpret the pressure data of most water-injection wells in the field. Secondly, a
circular partition is usually considered for the composite partition problem, while the
water-injection-induced fractures often form elliptic partitions, and there are no effective
diagnostic and discriminant criteria for fracture extension and propagation.

In order to make up for the shortcomings of the existing research, this paper will
establish a well-test interpretation model for water-injection wells considering induced frac-
tures and elliptic water-flooding zones on the basis of predecessors; analyze the influence
of well-test pressure template curve characteristics and sensitivity parameters; and form
a well-test interpretation method for induced fractures and elliptic water-flooding flow
characteristics, so as to realize quantitative characterization of fractures and quantitative
inversion of dynamic parameters. The key parameters of the reservoir are inverted by the
real dynamic data of a water-injection well in a low-permeability reservoir to verify the
model results.

2. Physical Model

There is a water-injection well in the center of the heterogeneous reservoir. After long-
term water injection, an oil–water two-phase zone is formed in the near-well waterflood-
swept area, and a single-phase oil zone is formed in the far-well waterflood-unswept area.
Due to the distribution of water saturation, the mobility of the swept area is different from
that of the unswept area, and the reservoir shows the characteristics of elliptic zone during
the shut-in test. At the same time, considering the dynamic change of fracture induced by
water injection, the pressure is conducted from the swept area to the unswept area, and the
outer boundary of the unswept area is disturbed by the adjacent injection well.

As shown in Figure 1, the basic assumptions of the model are:

(1) The formation in the two regions is horizontally homogeneous and isotropic;
(2) The outer boundary of the reservoir is a finite elliptic constant-pressure outer boundary;
(3) Vertical fractures with infinite conductivity are developed around the injection well,

which connect the reservoir and the wellbore, and the closure of fractures are not
considered;

(4) The formation fluid and rock are slightly compressible, and the compression coefficient
is constant. The inner area is oil–water two-phase, and the outer area is single-phase;

(5) The flow of formation fluid satisfies the linear Darcy’s law;
(6) The influence of wellbore storage and skin are considered, while the influence of

gravity and capillary force are ignored.
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Figure 1. Schematic diagram of physical model of induced fracture by injection-well and elliptic-
flow composite.
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3. Mathematical Model

For the elliptic partition characteristics, the mobility ratio is introduced to represent
the ratio of the flow coefficient between the near-well waterflood-swept zone and the
far-well waterflood-unswept zone, which characterizes the difference in physical properties
between the two zones. The larger the value, the greater the mobility difference between
the inner and outer zones [23,24].

M =
k1/µ1

k2/µ2
(1)

where k1 and k2 (mD) are the permeabilities of the swept zone and the unswept zone,
and µ1 and µ2 (mPa·s) are the viscosities of the fluid in the swept area and the unswept
area, respectively.

For the unsteady flow mathematical model of reservoir fluid with water-injection-
induced fracture and elliptic partition characteristics, according to the principle of conser-
vation of mass, the establishment of the basic differential equation for the unsteady flow
mathematical model needs to be integrated into the following equation [25].

For slightly compressible fluid, the two-dimensional flow equation in the rectangular
coordinate system is:

∂2 p
∂x2 +

∂2 p
∂y2 =

φµCt

k
∂p
∂t

(2)

By introducing two variables and using the Mathieu function, Equation (2) is trans-
formed into the elliptic coordinate system, which is defined as [26]:

z = x + iy = L cosh(ξ + iη) (3)

z = x− iy = L cosh(ξ − iη) (4)

The Mathieu function transformation generates the diffusion equation of the slightly
compressible fluid in the elliptic coordinate system:

∂2 p
∂ξ2 +

∂2 p
∂η2 =

L2

2
(cosh 2ξ − cos 2η)

φµCt

k
∂p
∂t

(5)

where ξ and η are the spatial coordinates in the elliptic-flow geometry as shown in the
schematic diagram of the elliptic coordinate system.

In order to obtain the transient pressure characteristics of water-injection wells and
reservoirs in a large time range under boundary conditions, the dimensionless solution of
the diffusion equation in the swept area and the unswept area is needed. Therefore, the
following dimensionless parameters are defined:

tD =
2.634× 10−4k1t

φ1µ1Ct1L2 (6)

D =
k1/(φ1µ1Ct1)

k2/(φ2µ2Ct2)
(7)

where tD is the dimensionless time; D is the pressure coefficient ratio; Φ1 and Φ2 are
the porosities of the swept area and the unswept area, respectively; Ct1 and Ct2 (MPa−1)
are the comprehensive compression coefficients of the swept area and the unswept area,
respectively; and L is the half-length of the water-injection-induced fracture.

According to the inner boundary conditions, the dimensionless pressure is defined as:

pDj =
k1h

qB1µ1
(pi − pj) (8)

where j = 1 and 2 represent the swept area and the unswept area, respectively.
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Then, the dimensional Equation (5) is transformed into the dimensionless form.
The mathematical model of the swept area is given by:

∂2 pD1

∂ξ2 +
∂2 pD1

∂η2 =
1
2
(cosh 2ξ − cos 2η)

∂pD1

∂tD
(9)

The mathematical model of the unswept area is given by:

∂2 pD2

∂ξ2 +
∂2 pD2

∂η2 =
D
2
(cosh 2ξ − cos 2η)

∂pD2

∂tD
(10)

The initial condition is given by:

pD1(ξ, η, 0) = pD2(ξ, η, 0) = 0 (11)

The inner boundary condition is given by:

∂pD1

∂ξ
(ξ, η, tD )|ξ=ξw

= 1 (12)

The continuity conditions are given by:

pD1(ξ0, η, tD) = pD2(ξ0, η, tD) (13)

∂pD2

∂ξ
(ξ0, η, tD) = M

∂pD1

∂ξ
(ξ0, η, tD) (14)

The constant-pressure outer boundary condition is given by:

pD2

(
ξ, η, tD)|ξ=ξe

= 0 (15)

4. Model Solving

Based on the Laplace transform of the above equations, we obtain:

p(s) =
∫ ∞

0
pD(tD)e−stdtD (16)

Since the pressure is only a function of the elliptic space variable u, the transformed
equation is solved by separating the variables:

pD(ξ, η) = X(ξ)Y(η) (17)

The following equations are obtained by this method [27]:

∂2Y
∂η2 + (a + 2λ cos 2η)Y = 0 (18)

∂2X
∂ξ2 − (a + 2λ cos 2ξ)X = 0 (19)

Equations (18) and (19) are called Mathieu differential equations [24]. Their solutions
are given by the Mathieu function. It should be noted that the solution under actual
production conditions should satisfy the following conditions:

(1) The solution must be periodic, and the period is π;
(2) The solution should be continuous along the orthogonal interval line:

pD(0, η) = pD(0,−η)
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At the same time, the pressure gradient should meet the following conditions:

∂

∂ξ
[pD(ξ, η)]

∣∣∣∣ξ→0 = − ∂

∂ξ
[pD(ξ,−η)]

∣∣∣∣
ξ→0

(3) The solution should be symmetric with respect to the long axis and the short axis of
the ellipse;

(4) The solution should be bounded.

The Mathieu function pairs satisfying these four conditions are:

Ce2n(ξ,−λ)ce2n(η,−λ), Fek2n(ξ,−λ)ce2n(η,−λ)

Then, the solutions of Equations (18) and (19) are given by this set of linearly indepen-
dent functions:

Y(η) = ce2n(η,−λ) (20)

X(ξ) = Ce2n(ξ,−λ) + Fek2n(ξ,−λ) (21)

Next, we substitute (20) and (21) into (17) to obtain:

pD1(ξ, η) = C2nCe2n(ξ,−λ)ce2n(η,−λ)
+F2nFek2n(ξ,−λ)ce2n(η,−λ)

(22)

For the swept area, C2n and F2n in Equation (22) are two separate Fourier coefficients
used to satisfy the internal and external boundary conditions. Due to being replaced, the
pressure solutions of the unswept area are slightly different, and the expression is:

pD2(ξ, η) = B2nCe2n(ξ,−q)ce2n(η,−q)
+E2nFek2n(ξ,−q)ce2n(η,−q)

(23)

Equations (22) and (23) represent the general solutions of the pressure in the swept
area and the unswept area, respectively, and then the special solutions are obtained by the
boundary condition.

For the internal boundary conditions, according to Darcy’s law, the flow rate from the
reservoir into the induced fracture is obtained by the following formula:

q =
kh
µ

∫ 2π

0
(

∂p
∂ξ

)
ξ=ξw

dη (24)

After dimensionless processing and Laplace transform, we obtain:

qD =
2
π

∫ 2π

0
(

∂pD
∂ξ

)
ξ=ξw

dη (25)

Then the derivation of (22) is substituted into (25), and the integration is carried out
according to the periodicity of the Mathieu function, and the following results are obtained:

∫ 2π

0
ce2n(η,−λ)dη =

π

2
A2n

0 (26)

The following expression of dimensionless yield can be obtained:

qD =
∞

∑
n=0

A2n
0
[
C2nCe′2n(ξw,−λ) + F2nFek′2n(ξw,−λ)

]
(27)
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According to Duhamel’s principle:

1/s2 = pwDqD (28)

In Laplace space:
1/(4λ)2 = pwDqD (29)

According to the Laplace transform, the solution of the model is obtained:

pwD =
s2

∑∞
n=0 A2n

0
[
C2nCe′2n(ξw,−s/4) + F2nFek′2n(ξw,−s/4)

] (30)

Considering wellbore storage and skin effect:

pwD =
spwD + S

s + CwDs2(spwD + S)
(31)

5. Model Verification

In order to verify the accuracy of the established model, the numerical well-test
module of the commercial software Saphir 5.10® was used to establish a constant-injection
production model of a water-injection well in the center of a circular formation with a
constant-pressure boundary. The formation was homogeneous and of equal thickness, with
induced fractures near the well; a radial-composite zonal flow was formed, and the fluid
was single-phase oil and slightly compressible. The relevant parameters of the reservoir
and fluid are shown in Table 1.

Table 1. Model input parameters.

Parameter Value

Initial pressure/MPa 25
Wellbore radius/m 0.15

Porosity 0.1
Oil viscosity/(mPa·s) 0.8

Half-length of induced fracture/m 20
Composite radius/m 120

Mobility 80
Distance of constant-pressure boundary/m 1000

Injection duration before shut-in/h 800
Injection rate before shut-in/(m3·d−1) 25

By changing the influence parameters, the log–log theoretical curves of pressure and
derivative under the analytical solution model are drawn and then compared with those of
the commercial software.

As can be seen from Figure 2, the analytical solution model fits well with the theoretical
curve drawn by the commercial software, and the log–log curve shows typical induced-
fracture and radial-composite characteristics, which verifies the reliability of the analytical
solution model. The analytical solution model can also explain the range of lateral sweep
of elliptic partition flow which cannot be obtained by commercial software, which shows
the superiority of the analytical solution model.
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6. Curve Analysis
6.1. Flow Regimes

For the analytical solution in Laplace space, the Stehfest numerical algorithm is used
for numerical inversion, and the solution in real space can be obtained. Thus, the dimen-
sionless well-test pressure pattern curve is drawn by programming. Finally, the dimen-
sionless time and dimensionless bottom hole pressure PwD of the water-injection-well
induced-fracture elliptic composite partition model and the double logarithmic curve of
the corresponding pressure derivative under dimensionless time are obtained, as shown in
Figure 2.

It can be seen from Figure 3 that there are six typical stages in the well-test pres-
sure pattern curve of the water-injection-well-induced fracture with elliptic composite
system model:
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Section I is the wellbore storage stage; the curve is two straight lines with a slope
of 1. The well-storage effect is expressed by the well-storage coefficient C, with the unit
m3/MPa, which reflects the volume change of the wellbore fluid affected by the elastic
compressibility with the increase or decrease in the pressure of the wellbore fluid;

Section II is the stage of induced-fracture linear flow. At this stage, the pressure
derivative curve presents a straight line with a one-half slope;

Section III is the radial flow stage of the swept area. The pressure wave spreads
outward in a circle, and the pressure derivative curve on the well-test pressure pattern
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curve is a horizontal line, which is the characteristic response of the radial flow in the
swept area;

Section IV is the transition flow stage. The pressure wave spreads from the swept
area to the unswept area, and the degree of change of the pressure curve depends on the
mobility ratio between the swept area and unswept area;

Section V is the radial flow stage of the unswept area. As the pressure wave in the
unswept area gradually spreads outward, the fluid of the matrix system in the unswept
area flows radially into the swept area. The pressure derivative curve on the well-test
pressure pattern curve is a horizontal line, which is the characteristic response of the radial
flow in the unswept area. The height of the two horizontal lines depends on the mobility
ratio between the swept area and unswept area.

Section VI is the constant-pressure boundary response stage. After the pressure wave is
transmitted to the adjacent water-injection well, the flow will eventually reach a stable flow
state due to the constant pressure. The pressure derivative curve on the well-test pressure
pattern curve drops sharply, which is the characteristic response of the constant-pressure
outer boundary.

The schematic diagram of each flow stage of the model is shown in Figure 4. The
arrows represent the direction of flow.
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6.2. Analysis of Influencing Factors

The well-test pressure response characteristics of the induced fractures and elliptic-
flow model mainly consider four influencing factors: the half-length of the induced fracture,
the range of the lateral-swept area, the permeability of the unswept area, and the outer
boundary distance of constant pressure. Figures 5–8 show the well-test pressure pattern
curves of each influencing factor. The lines refer to the dimensionless pressure curves and
the dashed lines refer to the pressure derivative curves.

Figure 5. The influence of half-length of induced fracture on well-test pressure curve.
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Figure 6. The influence of the range of lateral-swept area on well-test pressure curve.

Figure 7. The influence of the permeability of the unswept area on well-test pressure curve.

Figure 8. The influence of the outer boundary distance of constant pressure on well-test pressure curve.

(1) The half-length of induced fracture Lf

The half-length of the induced fracture mainly affects phase II of the fracture linear
flow, indicating that a fractured flow channel has been formed around the injection well,
injected water has been following unidirectional displacement along the fracture, and
the pressure wave has gradually propagated outward. As can be seen from Figure 5, the
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larger the half-length of the induced fracture, the more obvious the fracture linear flow
characteristics, and the shorter the radial-flow phase III duration in the corresponding
swept area.

(2) The range of lateral-swept area Ri

The range of a lateral-swept area mainly affects the radial-flow phase III in the sweep
area. The pressure wave propagates outward in a circle, and radial flow occurs in the near-
well area. As can be seen from Figure 6, the larger the range of lateral sweep, the longer the
duration of the radial-flow phase in the sweep region, and the earlier the occurrence of the
pressure derivative warping up.

(3) The permeability of the unswept area k2

The permeability of the unswept area mainly affects the radial-flow phase V in the
unswept region. As the pressure wave in the unswept region gradually diffuses outward,
the matrix system fluid in the unswept region flows radially into the swept region. As can
be seen from Figure 7, the greater the permeability in the unswept region, the lower the
pressure derivative of the radial flow in phase V in the unswept region.

(4) The outer boundary distance of constant pressure Re

The outer boundary distance of constant pressure mainly affects phase VI of boundary
flow. With the increase in time, after the pressure wave is transmitted to the nearby water-
injection well, the seepage will eventually reach a stable flow state. As can be seen from
Figure 8, the smaller the outer boundary distance is, the earlier the boundary-flow phase
VI appears, and the less obvious the characteristics of the corresponding radial-flow phase
V in the unswept region.

7. Application Analysis

A low-permeability reservoir in J Oilfield in northwest China was selected as the
research object. The buried depth of the reservoir in J Oilfield is 1500–1800 m, the average
effective thickness of the main reservoir formation is 15.6 m, the average porosity is 11.5%,
and the average permeability is 0.46 mD. It is a typical low-permeability reservoir with
poor reservoir physical properties, strong heterogeneity, and fracture. After the pressure
data points obtained from the production field are preprocessed, the pressure derivative
is solved by the Bourdet algorithm, and the actual curve is drawn. Finally, the theoretical
curve and the actual curve are fitted to perform parameter inversion by the least square
method and other algorithms.

After 351.3 h of performing the pressure drop test, the formation pressure of well
L28-38 decreased by 0.63 MPa. The basic data from the model are shown in Table 2, the
production performance of the test section of well L28-38 is shown in Figures 9 and 10, and
the fitting results of the analytical solution model are shown in Figure 11.

Table 2. Parameters input in model.

Parameter Value

Effective thickness/m 23.4
Initial pressure/MPa 21.86
Wellbore radius/m 0.108

Porosity 0.12
Viscosity/(mPa·s) 1.00

Crude oil density/(g·cm−3) 0.74
Volumetric coefficient/(m3·m−3) 1.00

Composite compressibility/MPa−1 1.05 × 10−3

Injection rate before shut-in/(m3·d−1) 27.8
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From Figure 11 and Table 3, it can be seen that the L28-38 well shows slight fracture
characteristics, the half-length of the induced fracture is 10.32 m, and the distance of the
lateral-swept area is 128.95 m. The reservoir permeability of the swept area is 34.65 mD,
and the mobility ratio of the inner and outer zones reaches 119.92. The physical properties
of the inner and outer zones are very different, indicating that waterflooding significantly
improves the reservoir’s physical properties near the wellbore. At the end, the pressure
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derivative curve began to fall, indicating that the constant-pressure boundary was reached.
This boundary effect may be due to the pressure-wave effect of the surrounding water-
injection wells, resulting in water overflow between the water-injection wells, and the
effective displacement between the injection and production wells could not be formed,
which had a great impact on the later development of the oilfield.

Table 3. Inversion results of analytical solution.

Parameter Inversion Results

Wellbore storage constant/(m3·MPa−1) 0.72
Permeability of the swept area/mD 34.65
Half-length of induced fracture/m 10.32
Distance of lateral-swept area/m 128.95

Area of lateral-swept area/m2 5.22 × 104

Mobility ratio 119.92
Distance of constant-pressure boundary/m 1180.22

Current formation pressure/MPa 23.51

8. Conclusions

In this paper, aimed at the well-test model of water-injection wells in low-permeability
reservoirs and considering the characteristics of the induced fractures and elliptic com-
posite partitions, respectively, we obtained the mathematical model in Laplace space by
dimensionless and Laplace transform. Then, the Mathieu function was introduced to obtain
the analytical solution of bottom hole pressure, and the reservoir parameters inversion
were realized by least square fitting.

There are six typical stages in the well-test pressure pattern curve of the model:
wellbore storage stage, induced-fracture linear flow stage, radial-flow stage of the swept
area, transition flow stage, radial-flow stage of the unswept area, and constant-pressure
outer boundary response stage.

The larger the fracture half-length is, the more obvious the linear flow is, and the
shorter the radial flow duration in the swept area is. The farther the range of the lateral
sweep is, the longer the duration of the radial flow is, and the earlier the pressure derivative
is upturned. The higher the permeability of the unswept area is, the lower the pressure
derivative is. The smaller the distance of constant-pressure outer boundary is, the earlier
the boundary flow appears, and the less obvious the radial flow in the unswept area is.

Based on a case study from J Oilfield, the dynamic production of a water-injection
well was inversely calculated by analytical model. The obtained key parameters include a
half-length of the induced fracture of 10.32 m, a range of the lateral-swept area of the elliptic
partition flow of 128.95 m, permeability in the water-flooding swept area of 34.65 mD, and
a mobility ratio of 119.92. Further validation of the application analysis demonstrates the
accuracy and superiority of the analytical model.
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Abstract: Maintaining the integrity of the cement sheath is essential for the sealing of underground
gas storage. The formation creep, temperature changes, and operating pressure changes during the
operation of underground gas storage can cause changes in the stress of the cement sheath, which
probably induces the failure of the cement sheath’s integrity. A creep model taking the effects of
stress and temperature into account is developed to study the cement sheath’s integrity in creep
formation, and the feasibility of creep simulation via finite element method is verified. The finite
element method is used to analyze the effects of formation creep, temperature, operating pressure,
and the cement sheath’s elastic modulus on the cement sheath’s integrity. The result shows that the
coupling effect of formation creep and temperature increases the cement sheath’s failure risk; both the
formation creep and the decrease in cement sheath temperature increase the Von Mises stress on the
cement sheath, increasing the risk of the cement sheath’s shear failure. The decrease in cement sheath
temperature decreases the circumferential compressive stress on the cement sheath and raises the
risk of the cement sheath’s tensile failure. Shear failure of the cement sheath occurs at high operating
pressure upper limits. The operating pressure is less than 70 MPa, or the cement sheath’s elastic
modulus is less than 3 GPa, which can prevent the failure of the cement sheath’s integrity during the
operation of underground gas storage.

Keywords: formation creep; downhole temperature change; finite element method; integrity of
cement sheath; operating pressure; elastic modulus of cement sheath

1. Introduction

Salt rock exhibits extremely low permeability and porosity [1], making it a commonly
employed choice as a sealing caprock for depleted oil and gas reservoirs [2]. Under
deviatoric stress, the salt rock formation will creep and compress the cement sheath,
potentially resulting in the failure of the cement sheath’s integrity (CSI). The operation of
underground gas storage (UGS) includes gas injection and gas production phases. The
gas injected into the wellbore undergoes heat exchange with the assembly comprising the
downhole casing, cement sheath, and formation. Alterations in the assembly’s temperature
can subsequently impact the stress state of the cement sheath [3], potentially leading to
compromised CSI. Variations in the operating pressure of UGS can also cause changes
in the stress state of the cement sheath, potentially leading to compromised integrity.
Weakening of the CSI will diminish its capacity to seal effectively. This could potentially
result in the escape of gas from the UGS, carrying negative consequences for safety, the
environment, and the economy [4]. The failure types of CSI include shear failure (i.e.,
compressive failure), debonding failure, and tensile failure (i.e., radial crack) [5–7]. The
Von Mises criterion [8–13], Tresca criterion [14,15], Mohr–Coulomb criterion [5,16,17], and
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Drucker–Prager criterion [18,19] are often used to judge the cement sheath’s shear failure.
The cement sheath’s shear failure can produce plastic strain. The cement sheath’s tensile
failure is evaluated by the maximum tensile stress criterion [20–22]. When the cement
sheath’s circumferential stress surpasses its ability to withstand tension, tensile failure
occurs. The cement sheath’s debonding failure is evaluated by the interfacial radial stress.
When the interfacial radial tensile stress surpasses its bonding strength, debonding failure
occurs [23,24].

Liu [25] and Orlic [26,27] studied the impact of formation creep on the closure of the
wellbore. Their research results indicated that wellbore closure can be triggered by salt
formation creep, and the greater the wellbore’s Von Mises stress, the faster the wellbore
closure rate. Melo [28], Yu [29], and Velilla [30] have investigated the effect of salt for-
mation’s creep on casing. The result indicated that salt rock creep can cause increased
casing stress and may cause casing yield failure. Jandhyala [9] investigated the effect of
formation creep on the cement sheath. The result indicated that the cement with a higher
elasticity has a stronger bearing capacity. Jesus [5], Raoof [31], and Yin [3] investigated the
effect of downhole temperature changes on CSI. The finding showed that the decrease in
temperature may cause the debonding failure. Zhang [16] analyzed the CSI during the
operation of UGS using elastoplastic theory. The findings indicated that shear failure may
occur when the casing is pressurized; during casing pressure relief, debonding failure may
occur. Yang [2] used the finite element method (FEM) to investigate the effect of the creep
of salt formation on CSI within UGS, considering non-uniform in situ stress conditions. The
finding showed that salt rock creep under non-uniform in situ stress can cause the cement
sheath’s shear failure. The greater the non-uniform in situ stress, the earlier the shear failure
occurs. In summary, scholars’ research mainly focuses on the influences of the salt forma-
tion’s creep on wellbore closure and casing failure. However, few studies have investigated
the failure of CSI in the salt formation of UGS. In investigations concerning the influence of
salt formation creep on CSI, the influence of downhole temperature fluctuations on both
formation creep and CSI has been overlooked. In investigations concerning the failure of
CSI during the operation of UGS, the impact of downhole temperature fluctuations on the
cement sheath’s integrity has been overlooked. Therefore, studying the effects of formation
creep, downhole temperature changes, and the operating pressure on CSI throughout UGS
operations holds immense importance in ensuring UGS safety.

In this study, a creep model for salt rock was developed by conducting creep exper-
iments that involved subjecting the salt rock to varying temperature and pressure loads.
The feasibility of simulating salt rock creep using the FEM is verified by comparing the
FEM-simulated steady-state creep rate of salt rock with the steady-state creep rate obtained
in actual salt rock creep experiments. By establishing an FEM model of casing–cement
sheath–creep formation assembly, the effects of salt rock formation creep, temperature
changes, and the upper limit of operating pressure on the CSI throughout the operation of
UGS were studied. The influences of these factors on the CSI were determined. By examin-
ing how variations in the cement sheath’s elastic modulus impact its integrity, measures
to avert the failure of the CSI during the operation of UGS were obtained. The findings
from this study offer valuable insights into the potential integrity issues concerning cement
sheaths in UGS wells. These results hold significant importance in terms of averting cement
sheath integrity failures and ensuring the secure and effective functioning of the operation
of UGS.

2. Establishment of FEM Model for Casing–Cement Sheath–Creep Formation Combination

In this section, a salt rock creep model is obtained from the salt rock creep experiments
at firs; then, the feasibility of salt rock creep simulations in FEM is verified by comparing the
steady-state creep rates between FEM simulations and salt rock creep experiments. Finally,
an FEM model of the combined casing–cement sheath–creep formation is developed based
on the salt rock creep model obtained from experiments.
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2.1. Salt Rock Creep Model

In order to develop the FEM model for the casing–cement sheath–creep formation
assembly, it is necessary to acquire the creep model of the creep formation. Consequently,
we conducted creep experiments on salt rock under various temperatures and pressures.
The salt rock creep model can be derived by fitting the results of salt rock creep experiments.
The experimental equipment used in the salt rock creep experiment is GCTS RTR-2000.
The length-to-diameter ratio for the experimental salt rock creep samples is 2:1, which is
consistent with the experimental criteria of rock mechanics. The temperature and pressure
loads applied to the samples are shown in Table 1. The deviator stress is determined as
the disparity between the axial pressure and the confining pressure. Sample numbers
1–5 refer to creep experiments conducted on salt rock under various deviatoric stress
conditions, and sample numbers 3, 6, 7, and 8 refer to creep experiments conducted on salt
rock under various temperatures. The figures illustrate the creep behavior of salt rock at
varying deviatoric stresses (Figure 1) and varying temperatures (Figure 2). As depicted in
Figure 1, higher deviator stress corresponds to increased axial strain. Moreover, elevated
deviator stress leads to a more rapid increase in axial strain. As depicted in Figure 2, higher
temperature corresponds to increased axial strain. Furthermore, elevated temperature
leads to a more rapid increase in axial strain. Table 2 displays the steady-state creep rates
for diverse samples. Higher deviator stress corresponds to an increased steady-state creep
rate, indicating that the deviator stress promotes creep. Higher temperature corresponds to
an increased steady-state creep rate, indicating that temperature promotes creep.

Table 1. Temperature and pressure loads in salt rock creep experiments.

Sample
Number

Confine
Pressure/MPa

Axial
Pressure/MPa

Deviatoric
Stress/MPa Temperature/◦C

1 5 30 25 24
2 10 30 20 24
3 15 30 15 24
4 20 30 10 24
5 25 30 5 24
6 15 30 15 50
7 15 30 15 70
8 15 30 15 90
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Table 2. Steady-state creep rates for diverse samples.

Sample Number Steady-State Creep Rate/s−1

1 1.782 × 10−7

2 1.192 × 10−7

3 4.199 × 10−8

4 3.687 × 10−8

5 2.543 × 10−9

6 6.655 × 10−8

7 3.753 × 10−7

8 8.534 × 10−6

During the long-term creep process, compared to transition and accelerated creep
stages, the duration of steady-state creep is the longest, and the creep strain of long-term
creep is mainly contributed by steady-state creep. Therefore, the salt rock creep model
mainly focuses on steady-state creep. Currently, the commonly used creep model that
represents the influences of temperature and stress on the steady-state creep rate is the
hyperbolic sine law model [30,32–38], as shown in Equation (1):

ε•cr = A(sinhBq)n exp(− ∆H
R(θ− θZ)

), (1)

where ε•cr represents the steady-state creep rate (−1); q represents the Von Mises stress
(MPa); θ represents the temperature (◦C); θZ represents the absolute zero in temperature
(−273.15 ◦C); R represents the universal gas constant (8314.3 mJ/(mol·◦C)); ∆H represents
the activation energy (mJ/mol); and A, B, and n are material parameters.

The Von Mises stress in Equation (1) equals to the deviator stress in the salt rock creep
experiment. We use MATLAB curve fitting tool to fit the data in Table 2, and the fitting
result is shown in Equation (2), where R2 = 0.9442 indicates that the goodness of fit is close
to 1, showing a favorable fitting outcome. Equation (2) effectively portrays the interplay
between temperature, stress, and the steady-state creep rate:

ε•cr = 32.31(sinh0.2186q)1.197 exp(− 6.097 × 107

8314.3(θ+ 273.15)
), R2 = 0.9442 (2)

2.2. Feasibility Verification of Salt Rock Creep Simulation in FEM

Using Equation (2), we establish an FEM model in ABAQUS that replicates the di-
mensions of the salt rock creep experimental specimen, as depicted in Figure 3. The entire
model is loaded with temperature load, the top surface is loaded with axial pressure, the
side surface is loaded with confining pressure, and the bottom of the model is immovable.
The steady-state creep rates of salt rock creep experiments and finite element simulations
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under different temperature and pressure loads are illustrated in Figure 4. The steady-state
creep rates of salt rock creep experiments and the steady-state creep rates of finite element
simulation have a good consistency, indicating that finite element simulation can well
reflect the steady-state creep rate of salt rock at varying temperatures and pressure loads,
verifying the feasibility of salt rock creep simulation in FEM.
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2.3. FEM Model of Casing–Cement Sheath–Creep Formation Combination

The FEM model of the casing–cement sheath–formation combination in a salt rock
formation at a well depth of 2500 m in an UGS is established. The axial strain of the
casing–cement sheath–formation combination is very small and can be ignored. Accord-
ing to the theory of elasticity, the casing–cement sheath–formation combination can be
simplified as a plane strain model [2], as illustrated in Figure 5. The model’s geometric
parameters are detailed in Table 3, and the model’s physical attributes are detailed in
Table 4. The mesh type is CPE4T. The contact methodology adopted for interactions be-
tween the casing and cement sheath, as well as for those between the cement sheath and the
formation, are as follows: normal behavior is hard contact; tangential behavior is friction-
less. The casing’s yield strength is 758 MPa. The cement sheath’s compressive strength is
42.13 MPa, along with a tensile strength of 3.99 MPa. The bonding strength between cement
sheath and casing is 1.23 MPa. The formation creep model is shown in Equation (2). The
formation temperature and uniform in situ stress are exerted onto the upper and right
boundaries of the model. The casing internal pressure (i.e., operating pressure) and gas
injection temperature are exerted onto the casing’s inner wall. Symmetric constraints
are exerted onto the model’s lower and left boundaries. The uniform in situ stress and
temperature of the model come from a real case. The uniform in situ stress is 50 MPa. The
formation temperature is 90 ◦C. The gas injection temperature is 20 ◦C. The model’s initial
temperature is 90 ◦C.
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Table 3. Model geometric parameters [2].

Material Inner Diameter/mm Outer Diameter/mm

Casing 247.94 282.58
Cement sheath 282.58 320

Formation 320 3200 × 3200

Table 4. Physical property parameters of the model [2,39].

Material Elastic
Modulus/GPa

Poisson’s
Ratio

Density/
(kg·m−3)

Coefficient of Expansion
/10−5 ◦C−1

Specific Heat/
(J kg−1·◦C−1)

Thermal Conductivity/
(W·m−1·◦C−1)

Casing 210 0.3 7800 1.22 460 45
Cement sheath 10.61 0.22 1800 1.05 865 0.9

Formation 1.80 0.38 2300 1.03 896 2.2

The operating pressure of UGS for one cycle is shown in Figure 6. The operating cycle
of UGS includes four stages: constant low pressure, pressurization gas injection, constant
high pressure, and depressurization gas production. The upper and lower limit operating
pressure are crucial parameters. The duration of one cycle of UGS operation is one year,
and the duration of each operation phase is three months.
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Figure 6. Change of casing internal pressure during one cycle of UGS operation. 
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exerting pressure on the cement sheath. This continuous pressure escalation on the cement 
sheath could potentially result in an eventual integrity failure. Therefore, it is imperative 
to investigate the variation of temperature and stress over time in the formation near the 
borehole during the operation of UGS to determine when the salt rock formation will 
creep during the UGS’s operation. 

The remaining parameters remain unchanged, regardless of formation creep. The 
UGS has an upper operating pressure limit of 40 MPa and a lower operating pressure limit 
of 20 MPa. To simulate a full UGS operation cycle, we study the temperature and stress 
changes in the formation near the borehole and determine when the salt rock formation 
will occur creep. Figure 7 illustrates the alteration in temperature within the inner wall of 
the formation over a duration of UGS operation, while Figure 8 presents the correspond-
ing changes in Von Mises stress. The observations from Figures 7 and 8 reveal that during 
the constant low pressure stage, the temperature and Von Mises stress acting on the for-
mation’s inner wall always remain unchanged. During the pressurized gas injection stage, 
the temperature of the formation’s inner wall rapidly decreases, resulting in a large ther-
mal stress and leading to a rapid escalation of Von Mises stress on the formation’s inner 
wall. Subsequently, with gradual stabilization of the formation temperature and a concur-
rent increase in casing internal pressure, the Von Mises stress on the formation’s inner 
wall gradually decreases. During the constant high pressure stage, the temperature of the 
formation’s inner wall gradually recovers and eventually reaches a stable state, leading to 
a gradual decline and subsequent stabilization of the Von Mises stress of the formation’s 
inner wall. During the depressurization gas production stage, the temperature of the for-
mation’s inner wall remains unchanged, while the casing internal pressure gradually de-
creases, resulting in a gradual increase in Von Mises stress on the formation’s inner wall. 
Based on the preceding analysis, it is evident that during the constant low pressure stage, 
the Von Mises stress of the formation always remain unchanged, so the formation will 
occur creep at this stage. During the pressurized gas injection stage, the formation’s Von 
Mises stress is not constant, so the formation will not occur creep at this stage. During the 
later period of the constant high pressure stage, the formation’s Von Mises stress remains 
unchanged, and the formation will occur creep during this time period. During the de-
pressurization gas production stage, the formation’s Von Mises stress is not constant, so 
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Figure 6. Change of casing internal pressure during one cycle of UGS operation.

3. Results and Discussion
3.1. Variation of Formation Temperature and Stress during Operation of UGS

Creep refers to the increase in the strain of an object over time under a fixed load.
The formation in the combination model in this paper is a salt rock formation with creep
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characteristics. When subjected to a constant load, the salt rock formation will undergo
creep, exerting pressure on the cement sheath. This continuous pressure escalation on
the cement sheath could potentially result in an eventual integrity failure. Therefore, it is
imperative to investigate the variation of temperature and stress over time in the formation
near the borehole during the operation of UGS to determine when the salt rock formation
will creep during the UGS’s operation.

The remaining parameters remain unchanged, regardless of formation creep. The
UGS has an upper operating pressure limit of 40 MPa and a lower operating pressure limit
of 20 MPa. To simulate a full UGS operation cycle, we study the temperature and stress
changes in the formation near the borehole and determine when the salt rock formation
will occur creep. Figure 7 illustrates the alteration in temperature within the inner wall of
the formation over a duration of UGS operation, while Figure 8 presents the corresponding
changes in Von Mises stress. The observations from Figures 7 and 8 reveal that during the
constant low pressure stage, the temperature and Von Mises stress acting on the formation’s
inner wall always remain unchanged. During the pressurized gas injection stage, the
temperature of the formation’s inner wall rapidly decreases, resulting in a large thermal
stress and leading to a rapid escalation of Von Mises stress on the formation’s inner wall.
Subsequently, with gradual stabilization of the formation temperature and a concurrent
increase in casing internal pressure, the Von Mises stress on the formation’s inner wall
gradually decreases. During the constant high pressure stage, the temperature of the
formation’s inner wall gradually recovers and eventually reaches a stable state, leading to a
gradual decline and subsequent stabilization of the Von Mises stress of the formation’s inner
wall. During the depressurization gas production stage, the temperature of the formation’s
inner wall remains unchanged, while the casing internal pressure gradually decreases,
resulting in a gradual increase in Von Mises stress on the formation’s inner wall. Based on
the preceding analysis, it is evident that during the constant low pressure stage, the Von
Mises stress of the formation always remain unchanged, so the formation will occur creep
at this stage. During the pressurized gas injection stage, the formation’s Von Mises stress is
not constant, so the formation will not occur creep at this stage. During the later period of
the constant high pressure stage, the formation’s Von Mises stress remains unchanged, and
the formation will occur creep during this time period. During the depressurization gas
production stage, the formation’s Von Mises stress is not constant, so the formation will not
occur creep at this stage.
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Figure 7. Temperature variation of formation inner wall of UGS during one cycle of operation with-
out formation creep. 
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Figure 8. Von Mises stress variation of formation inner wall of UGS during one cycle of operation 
without formation creep. 

The other parameters of the model remain constant, taking into account the for-
mation creep that occurs during the stages of constant low pressure and constant high 
pressure. The UGS is operated for one cycle; the comparison of the Von Mises stress of the 
formation’s inner wall with and without formation creep is illustrated in Figure 9. As de-
picted in Figure 9, in the case of formation creep, the formation’s Von Mises stress experi-
ences a decline during both the constant low-pressure and constant high-pressure stages, 
gradually converging toward zero. The formation creep compresses the cement sheath, 
which plays a resistance role to the formation creep, causing the radial stress of the for-
mation’s inner wall to increase, the Von Mises stress of the formation’s inner wall to de-
crease, and the ability of formation creep to decrease. 

Figure 7. Temperature variation of formation inner wall of UGS during one cycle of operation without
formation creep.
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Figure 8. Von Mises stress variation of formation inner wall of UGS during one cycle of operation 
without formation creep. 
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pressure. The UGS is operated for one cycle; the comparison of the Von Mises stress of the 
formation’s inner wall with and without formation creep is illustrated in Figure 9. As de-
picted in Figure 9, in the case of formation creep, the formation’s Von Mises stress experi-
ences a decline during both the constant low-pressure and constant high-pressure stages, 
gradually converging toward zero. The formation creep compresses the cement sheath, 
which plays a resistance role to the formation creep, causing the radial stress of the for-
mation’s inner wall to increase, the Von Mises stress of the formation’s inner wall to de-
crease, and the ability of formation creep to decrease. 

Figure 8. Von Mises stress variation of formation inner wall of UGS during one cycle of operation
without formation creep.

The other parameters of the model remain constant, taking into account the formation
creep that occurs during the stages of constant low pressure and constant high pressure. The
UGS is operated for one cycle; the comparison of the Von Mises stress of the formation’s
inner wall with and without formation creep is illustrated in Figure 9. As depicted in
Figure 9, in the case of formation creep, the formation’s Von Mises stress experiences a
decline during both the constant low-pressure and constant high-pressure stages, gradually
converging toward zero. The formation creep compresses the cement sheath, which plays a
resistance role to the formation creep, causing the radial stress of the formation’s inner wall
to increase, the Von Mises stress of the formation’s inner wall to decrease, and the ability of
formation creep to decrease.
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Figure 9. Comparison of Von Mises stress of formation inner wall with and without formation creep. 
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the combined influence of these two factors on the CSI during the operation of UGS, four 
different combination models were established, as shown in Table 5. Model A: the impact 
of downhole temperature changes and formation creep is not considered; Model B: not 
considering downhole temperature changes but considering the impact of formation 
creep; Model C: not considering formation creep but considering the influence of down-
hole temperature changes; Model D: considering the influence of downhole temperature 
changes and formation creep. The comparison between Model A and Model B can deter-
mine the impact of formation creep on the CSI. The comparison between Model A and 
Model C can determine the influence of downhole temperature changes on the CSI. The 
comparison between Model A and Model D can determine the impact of the combined 
effects of downhole temperature changes and formation creep on the CSI. In this study, 
the cement sheath’s shear failure is assessed by employing equivalent plastic strain 
(PEEQ) and Von Mises stress as evaluation criteria. The evaluation of the cement sheath’s 
tensile failure is conducted using circumferential stress. The evaluation of the cement 
sheath’s debonding failure is conducted using radial stress at the cement sheath interface. 
The UGS has an upper operating pressure limit of 40 MPa and a lower operating pressure 
limit of 20 MPa. We simulate the operation of the UGS for one cycle and assess the CSI 
failure of four different models. 

Table 5. Comparison of different models. 

Model Formation Creep Downhole Temperature Change 
Model A × × 
Model B  × 
Model C ×  
Model D   

During one complete UGS operational cycle, the temperature of the cement sheath’s 
inner wall (CSIW) of Model C and Model D varies over time, as depicted in Figure 10. The 
temperature curves of the CSIW of Model C and Model D overlap approximately, show-
ing that the formation creep has almost no influence on the cement sheath’s temperature. 
During the constant low pressure stage, the cement sheath’s temperature remains con-
stant. During the pressurized gas injection stage, the temperature of the cement sheath 
rapidly decreases and then stabilizes. During the constant high pressure stage, the cement 
sheath’s temperature gradually recovers and subsequently reaches a stable state. During 

Figure 9. Comparison of Von Mises stress of formation inner wall with and without formation creep.

3.2. Effects of Downhole Temperature Changes and Formation Creep on Integrity Failure of
Cement Sheath

To investigate the effect of downhole temperature fluctuations, formation creep, and
the combined influence of these two factors on the CSI during the operation of UGS,
four different combination models were established, as shown in Table 5. Model A: the
impact of downhole temperature changes and formation creep is not considered; Model B:
not considering downhole temperature changes but considering the impact of formation
creep; Model C: not considering formation creep but considering the influence of downhole
temperature changes; Model D: considering the influence of downhole temperature changes
and formation creep. The comparison between Model A and Model B can determine the
impact of formation creep on the CSI. The comparison between Model A and Model C can
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determine the influence of downhole temperature changes on the CSI. The comparison
between Model A and Model D can determine the impact of the combined effects of
downhole temperature changes and formation creep on the CSI. In this study, the cement
sheath’s shear failure is assessed by employing equivalent plastic strain (PEEQ) and Von
Mises stress as evaluation criteria. The evaluation of the cement sheath’s tensile failure is
conducted using circumferential stress. The evaluation of the cement sheath’s debonding
failure is conducted using radial stress at the cement sheath interface. The UGS has an
upper operating pressure limit of 40 MPa and a lower operating pressure limit of 20 MPa.
We simulate the operation of the UGS for one cycle and assess the CSI failure of four
different models.

Table 5. Comparison of different models.

Model Formation Creep Downhole Temperature Change

Model A × ×
Model B 3 ×
Model C × 3

Model D 3 3

During one complete UGS operational cycle, the temperature of the cement sheath’s
inner wall (CSIW) of Model C and Model D varies over time, as depicted in Figure 10.
The temperature curves of the CSIW of Model C and Model D overlap approximately,
showing that the formation creep has almost no influence on the cement sheath’s tem-
perature. During the constant low pressure stage, the cement sheath’s temperature re-
mains constant. During the pressurized gas injection stage, the temperature of the cement
sheath rapidly decreases and then stabilizes. During the constant high pressure stage,
the cement sheath’s temperature gradually recovers and subsequently reaches a stable
state. During the depressurization gas production stage, the cement sheath’s temperature
remains unchanged.
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Figure 10. Variation of temperature on the CSIW with time for diverse models. 

The Von Mises stress on the CSIW of different models fluctuates over time during 
the operation of the UGS for one cycle, as illustrated in Figure 11. As depicted in Figure 
11a, during the operation of UGS, the Von Mises stress on the CSIW for the four models 
remains below the cement sheath’s compressive strength, indicating that the cement 
sheath of the four models did not occur shear failure. The order of maximum Von Mises 
stress on the CSIW for the four models is Model D > Model C > Model B > Model A, which 
indicates that Model D carries the highest risk of the cement sheath’s shear failure. Com-
bining Figures 9 and 11b, it is evident that formation creep leads to an elevation in Von 
Mises stress on the CSIW during the constant low pressure stage. Subsequently, as the 
Von Mises stress on the formation’s inner wall decreases and reaches a stable state, the 
ability of formation creep weakens, leading to a gradually stabilization of the Von Mises 
stress on the CSIW gradually stabilizes. Combining Figures 10 and 11c, it is evident that 
during the initial stage of pressurized gas injection, there is a swift decline in the temper-
ature of the CSIW, leading to a pronounced surge in Von Mises stress on the CSIW. Sub-
sequently, the temperature of the CSIW stabilizes, while the casing internal pressure grad-
ually increases, consequently causing a sustained elevation in the Von Mises stress on the 
CSIW. During the constant high pressure stage, the temperature of the CSIW gradually 
increases and then stabilizes. Consequently, the Von Mises stress on the CSIW gradually 
decreases and then stabilizes. Combining Figure 11d with Figures 9 and 10, it can be seen 
that the formation creep that occurs during the constant low pressure stage causes the 
Von Mises stress on the CSIW to first increase and then stabilize. Moreover, the cement 
sheath’s temperature during the pressurized gas injection stage decreases, causing an in-
crease in Von Mises on the CSIW. Therefore, among the four models, Model D exhibits 
the highest Von Mises stress on the CSIW. 

Figure 10. Variation of temperature on the CSIW with time for diverse models.

The Von Mises stress on the CSIW of different models fluctuates over time during the
operation of the UGS for one cycle, as illustrated in Figure 11. As depicted in Figure 11a,
during the operation of UGS, the Von Mises stress on the CSIW for the four models remains
below the cement sheath’s compressive strength, indicating that the cement sheath of the
four models did not occur shear failure. The order of maximum Von Mises stress on the
CSIW for the four models is Model D > Model C > Model B > Model A, which indicates
that Model D carries the highest risk of the cement sheath’s shear failure. Combining
Figures 9 and 11b, it is evident that formation creep leads to an elevation in Von Mises stress
on the CSIW during the constant low pressure stage. Subsequently, as the Von Mises stress
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on the formation’s inner wall decreases and reaches a stable state, the ability of formation
creep weakens, leading to a gradually stabilization of the Von Mises stress on the CSIW
gradually stabilizes. Combining Figures 10 and 11c, it is evident that during the initial stage
of pressurized gas injection, there is a swift decline in the temperature of the CSIW, leading
to a pronounced surge in Von Mises stress on the CSIW. Subsequently, the temperature of
the CSIW stabilizes, while the casing internal pressure gradually increases, consequently
causing a sustained elevation in the Von Mises stress on the CSIW. During the constant
high pressure stage, the temperature of the CSIW gradually increases and then stabilizes.
Consequently, the Von Mises stress on the CSIW gradually decreases and then stabilizes.
Combining Figure 11d with Figures 9 and 10, it can be seen that the formation creep that
occurs during the constant low pressure stage causes the Von Mises stress on the CSIW
to first increase and then stabilize. Moreover, the cement sheath’s temperature during
the pressurized gas injection stage decreases, causing an increase in Von Mises on the
CSIW. Therefore, among the four models, Model D exhibits the highest Von Mises stress on
the CSIW.
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Figure 11. Variation of Von Mises stress on the CSIW with time for different models. (a) comparison 
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

The circumferential stress on the CSIW of different models fluctuates over time dur-
ing a complete cycle of UGS operation, as illustrated in Figure 12. As depicted in Figure 
12a, the circumferential stresses in all four models remain negative (indicating compres-
sive stress) and are below the cement sheath’s tensile strength. This observation implies 
that the cement sheath of the four models does not occur circumferential tensile failure. 
Among the four models, the maximum circumferential stress on the CSIW follows this 
order: Model C > Model D > Model A > Model B. This ranking indicates that Model C 
presents the greatest risk of the cement sheath’s tensile failure. As depicted in Figure 12b, 
during the constant low pressure stage, formation creep induces a 0.7 MPa increase in the 
circumferential compressive stress on the CSIW. Conversely, in Figure 12c, during the 
pressurized gas injection stage, the temperature of the cement sheath decreases, leading 
to a reduction of 7.8 MPa in circumferential compressive stress on the CSIW. Conse-
quently, Figure 12d shows a decrease in the maximum circumferential compressive stress 
on the CSIW. 

Figure 11. Variation of Von Mises stress on the CSIW with time for different models. (a) comparison
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and
Model C; (d) comparison between Model A and Model D.

The circumferential stress on the CSIW of different models fluctuates over time during
a complete cycle of UGS operation, as illustrated in Figure 12. As depicted in Figure 12a,
the circumferential stresses in all four models remain negative (indicating compressive
stress) and are below the cement sheath’s tensile strength. This observation implies that the

177



Energies 2023, 16, 7089

cement sheath of the four models does not occur circumferential tensile failure. Among the
four models, the maximum circumferential stress on the CSIW follows this order: Model C
> Model D > Model A > Model B. This ranking indicates that Model C presents the greatest
risk of the cement sheath’s tensile failure. As depicted in Figure 12b, during the constant
low pressure stage, formation creep induces a 0.7 MPa increase in the circumferential
compressive stress on the CSIW. Conversely, in Figure 12c, during the pressurized gas
injection stage, the temperature of the cement sheath decreases, leading to a reduction of
7.8 MPa in circumferential compressive stress on the CSIW. Consequently, Figure 12d shows
a decrease in the maximum circumferential compressive stress on the CSIW.
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Figure 12. Variation of circumferential stress on the CSIW with time for four models: (a) comparison 
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

The radial stress on the CSIW of different models varies over time during a complete 
cycle of UGS operation, as illustrated in Figure 13. As depicted in Figure 13a, the radial 
stresses in all four models are all negative (indicating compressive stress), showing the 
absence of debonding failure in the cement sheaths of these models. The maximum radial 
stress on the CSIW follows this order for the four models: Model C > Model A > Model D 
> Model B. Figure 13b shows that the formation creep increases the radial compressive 
stress on the CSIW. In Figure 13c, during the pressurized gas injection stage, the temper-
ature of the cement sheath decreases, resulting in decreased radial compressive stress on 
the CSIW. Conversely, during the constant high pressure stage, the temperature increase 
in the cement sheath elevates the radial compressive stress on the CSIW. Figure 13d shows 
that the combined influence of formation creep and temperature changes in the cement 
sheath leads to an increase in the radial compressive stress on the CSIW. 

Figure 12. Variation of circumferential stress on the CSIW with time for four models: (a) comparison
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and
Model C; (d) comparison between Model A and Model D.

The radial stress on the CSIW of different models varies over time during a complete
cycle of UGS operation, as illustrated in Figure 13. As depicted in Figure 13a, the radial
stresses in all four models are all negative (indicating compressive stress), showing the
absence of debonding failure in the cement sheaths of these models. The maximum radial
stress on the CSIW follows this order for the four models: Model C > Model A > Model D
> Model B. Figure 13b shows that the formation creep increases the radial compressive stress
on the CSIW. In Figure 13c, during the pressurized gas injection stage, the temperature
of the cement sheath decreases, resulting in decreased radial compressive stress on the
CSIW. Conversely, during the constant high pressure stage, the temperature increase in the
cement sheath elevates the radial compressive stress on the CSIW. Figure 13d shows that
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the combined influence of formation creep and temperature changes in the cement sheath
leads to an increase in the radial compressive stress on the CSIW.
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Figure 13. Variation of radial stress on the CSIW with time for four models: (a) comparison of all 
models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

To summarize, the Von Mises stress on the CSIW reaches its peak under the com-
bined effect of formation creep and downhole temperature changes, consequently posing 
the highest risk of shear failure for the cement sheath. The circumferential compressive 
stress on the CSIW is the lowest under the influence of underground temperature changes, 
thus elevating the risk of tensile failure for the cement sheath. 

3.3. The Influence of the Upper Limit of Operating Pressure of UGS on the Integrity of Cement 
Sheath 

Considering the comprehensive effect of formation creep and downhole temperature 
changes, while keeping other parameters constant, the impact of the upper limit of oper-
ating pressure on the CSI is investigated. Figure 14 illustrates the Von Mises stress and 
PEEQ on the CSIW with the different upper limits of operating pressure during a com-
plete cycle of UGS operation. As depicted in Figure 14, the higher the upper limit of oper-
ating pressure, the greater the maximum Von Mises stress and PEEQ on the CSIW. Nota-
bly, the Von Mises stress on the CSIW reached the cement sheath’s compressive strength 
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models; (b) comparison between Model A and Model B; (c) comparison between Model A and Model
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To summarize, the Von Mises stress on the CSIW reaches its peak under the combined
effect of formation creep and downhole temperature changes, consequently posing the
highest risk of shear failure for the cement sheath. The circumferential compressive stress
on the CSIW is the lowest under the influence of underground temperature changes, thus
elevating the risk of tensile failure for the cement sheath.

3.3. The Influence of the Upper Limit of Operating Pressure of UGS on the Integrity of
Cement Sheath

Considering the comprehensive effect of formation creep and downhole temperature
changes, while keeping other parameters constant, the impact of the upper limit of oper-
ating pressure on the CSI is investigated. Figure 14 illustrates the Von Mises stress and
PEEQ on the CSIW with the different upper limits of operating pressure during a complete
cycle of UGS operation. As depicted in Figure 14, the higher the upper limit of operating
pressure, the greater the maximum Von Mises stress and PEEQ on the CSIW. Notably, the
Von Mises stress on the CSIW reached the cement sheath’s compressive strength at upper
operating pressure limits of 70 MPa and 80 MPa, leading to shear failure for the cement
sheath. The variation of circumferential stress on the CSIW with the different upper limits
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of operating pressure over time is illustrated in Figure 15, and the variation of radial stress
over time is illustrated in Figure 16. The circumferential stress on the CSIW with different
upper operating pressure limits are all circumferential compressive stresses, and the tensile
failure for the cement sheath is not observed. Likewise, the radial stresses on the CSIW
with different upper operating pressure limits are all radial compressive stresses, and the
debonding failure for the cement sheath is not observed. In summary, under the high
upper limit of operating pressure conditions, the CSI will fail in the form of shear failure.
Therefore, to guarantee the safe and efficient operation of UGS, the upper limit of operating
pressure should be controlled to not exceed 70 MPa.
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3.4. Measure to Prevent the Integrity Failure of Cement Sheath

From the perspective of regulating the cement sheath’s elastic modulus to prevent
the cement sheath’s shear failure during the operation of UGS under the combined effects
of formation creep and downhole temperature changes, considering the formation creep
and downhole temperature changes, the upper limit of the operating pressure is 80 MPa,
keeping all other parameters unchanged. The UGS is operated for one cycle, and the cement
sheath’s elastic modulus varies at 3 GPa, 6 GPa, 9 GPa, 12 GPa, and 15 GPa, respectively.
We investigate how the cement sheath’s elastic modulus influences its susceptibility to
shear failure. After one cycle of operation of the UGS, Figure 17 shows the PEEQ cloud
diagrams of the cement sheath with different elastic moduli. As depicted in Figure 17, a
higher elastic modulus corresponds to a larger PEEQ in the cement sheath and a greater
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extent of failure area. When the elastic modulus is 3 GPa, the PEEQ of the cement sheath
registers at 0, indicating the absence of shear failure.
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The Von Mises stress and PEEQ on the CSIW with different elastic moduli vary over
time during the operation of the UGS for one cycle, as illustrated in Figure 18. In Figure 18,
increasing the cement sheath’s elastic modulus results in higher Von Mises stress and PEEQ
on its inner wall. A higher cement sheath’s elastic modulus leads to an earlier attainment of
Von Mises stress, approaching the cement sheath elastic modulus inner wall, thus resulting
in quicker PEEQ generation and earlier onset of cement sheath shear failure. In summary,
reducing the cement sheath’s elastic modulus can maintain the CSI during the operation of
the UGS.
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4. Conclusions

This study performs creep experiments on salt rock to acquire the steady-state creep
rate of salt rock across different temperatures and deviatoric stress levels. Experimental data
are fitted to obtain the hyperbolic sine law mode for salt rock creep, reflecting the influence
of temperature and deviatoric stress on the steady-state creep rate. Using the salt rock
creep model as a foundation, an FEM model of the casing–cement sheath–creep formation
assembly was developed in ABAQUS to study the effects of formation creep, temperature
changes, and the upper limit of operating pressure on the CSI. The results demonstrate
that both formation creep and a decrease in the cement sheath’s temperature increase the
cement sheath’s Von Mises stress, consequently elevating the risk of shear failure. Reduced
cement sheath temperature, conversely, diminishes circumferential compressive stress in
the cement sheath, thereby elevating the risk of tensile failure. Under a high upper limit
of operating pressure, shear failure manifests within the cement sheath. A higher cement
sheath’s elastic modulus leads to increased maximum Von Mises stress, larger shear failure
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area, and higher PEEQ values. Lowering the cement sheath’s elastic modulus and limiting
operating pressure can maintain the CSI under the combined effect of formation creep and
downhole temperature changes during the operation of the UGS.
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Abstract: Naturally fractured reservoirs are characterized by their complex nature due to the existence
of natural fractures and fissures within the rock formations. These fractures can significantly impact
the flow of fluids within the reservoir, making it difficult to predict and manage production. Therefore,
efficient production from such reservoirs requires a deep understanding of the flow behavior via
the integration of various geological, geophysical, and engineering data. Additionally, advanced
simulation models can be used to predict reservoir behavior under different production scenarios
and aid in decision making and effective management. Accordingly, this study presents a robust
mathematical two-phase fluid flow model (FRACSIM) for the simulation of the flow behavior
of naturally fractured reservoirs in a 3D space. The mathematical model is based on the finite
element technique and implemented using the FORTRAN language within a poro-elastic framework.
Fractures are represented by triangle elements, while tetrahedral elements represent the matrix.
To optimize computational time, short to medium-length fractures adopt the permeability tensor
approach, while large fractures are discretized explicitly. The governing equations for poro-elasticity
are discretized in both space and time using a standard Galerkin-based finite element approach. The
stability of the saturation equation solution is ensured via the application of the Galerkin discretization
method. The 3D fracture model has been verified against Eclipse 100, a commercial software, via a
well-test case study of a fractured basement reservoir to ensure its effectiveness. Additionally, the
FRACSIM software successfully simulated a laboratory glass bead drainage test for two intersected
fractures and accurately captured the flow pattern and cumulative production results. Furthermore,
a sensitivity study of water injection using an inverted five-spot technique was tested on FRACSIM
to assess the productivity of drilled wells in complex fractured reservoirs. The results indicate that
FRACSIM can accurately predict flow behavior and subsequently be utilized to evaluate production
performance in naturally fractured reservoirs.

Keywords: naturally fractured reservoirs; poro-elastic environment; finite element technique

1. Introduction

Complexity is the rule rather than the exception in naturally fractured reservoirs,
which are defined by the presence of natural fractures and fissures within the underlying
formations. These fractures can significantly impact the flow of fluids within the reservoir,
making it difficult to predict and manage production. Therefore, a thorough comprehension
of the flow behavior is required for efficient production from such reservoirs, which can be
achieved via the integration of multiple geological, geophysical, and engineering data.

The numerical modeling of naturally fractured reservoirs poses a real challenge to
reservoir modelers due to the complex geological nature and the associated uncertainties in
the characterization of existing fractures (i.e., the fracture attributes such as fracture network
density, orientation, and mechanical properties). The presence of natural fractures plays an
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important role in the ultimate recovery and has a great effect on the reservoir performance;
however, it is computationally expensive (if not technically infeasible) to take into account
all fractures or fracture networks in standard reservoir simulators. Therefore, many studies
have been published in the literature to propose different techniques on how to represent
the natural fractures in reservoir simulators [1–20]. These studies can be divided into
three groups based on how they account for the presence of natural fractures: 1—the dual
continuum approach, 2—the discrete fracture network, and 3—the hybrid approach.

In the dual continuum approach, the matrix and fractures are two separate con-
tinua, where the matrix is considered the primary medium. The matrix–fracture media
interact with each other via transfer functions that control their cross-flow and fluid ex-
change [21–24]. The main drawback of this approach is that it assumes an extremely simple
geometrical representation of matrix and fracture.

In the discrete fracture approach, each fracture and matrix are discretized as 3D
tetrahedral elements for matrix and triangle elements in a 2D space for fractures. The
mathematical flow equation via matrix and fracture is modeled using various numerical
approaches, such as finite element, finite volume methods, mixed finite element, and
boundary element methods.

The discrete fracture approach has many advantages, such as the explicit represen-
tation of individual fractures on fluid flow and the approach not being constrained by
grid fracture geometries; moreover, the fracture model is easily adjustable, and the fluid
exchange between the matrix and fracture depends on the fracture geometry, relative
permeability, and capillary pressure functions. Nevertheless, the main disadvantage of this
approach is the complexities associated with the implementation process and the computa-
tional cost (i.e., the discretization of fractures in the created mesh requires local refinement
and will most likely increase the computational time). To overcome such limitations, a
hybrid approach was adopted by many researchers [25–29]. In this approach, the concept of
effective permeability tensor is adopted, where the fractures are partitioned into short and
long fractures depending on the cut-off value determined via the reservoir modeler. Each
block with short fractures is replaced with a homogenous grid block with an equivalent
3D permeability tensor (i.e., the short fractures are considered local spatial heterogeneities
within the matrix block). On the other hand, the long fractures are explicitly discretized
and coupled with the 3D permeability tensor matrix.

The main objective of this study is to provide a simulation tool for discrete fracture
media using the finite element method (FEM) for simulating two-phase fluid flow in a
coupled poro-elastic framework. The simulation of the discrete fractured system contains
the interaction of two domains: the first domain is the porous medium, and the second
one is the fractures. In this study, the concept of effective permeability tensor to calculate
the 3D equivalent permeability of matrix and fractures for small to medium fractures
is used to save computational time by imposing the fracture elements into the matrix
elements, whereas large fractures are discretized explicitly. In this model, fractures are
discretized using triangle elements, while the matrix is represented by tetrahedral elements.
The poro-elastic governing equations are discretized in space and time using a standard
Galerkin-based finite element approach. The solution of the saturation equation in the finite
element approach is stabilized using the Galerkin discretization method. The structure of
this study is as follows: the derivation of the proposed coupled poro-elastic mathematical
model is presented in Section 2. Then, the validation of the in-house simulator against (1)
an exact analytical solution of a 2D poro-elasticity problem (Kirsch’s Problem), (2) a 3D
lab-scale drainage test of fractured micro-glass bead, and (3) history matching of real field
dynamic data (well-test data) of a fractured basement reservoir are presented in Section 3
of this study. Finally, the conclusions of the study findings are presented in Section 4.
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2. Derivation of Multiphase Flow Equations
2.1. Mass Conversation Equation

In porous media, the solid mass is represented as

Ms = (1− φ)Vρs (1)

ρs and φ are the density of solid constituents and sum of fracture–matrix porosity, respectively.
The conservation of solid mass in porous media can be written as

DMs

Dt
=

D
Dt

∫

v

(1− φ)Vρs =
∫

v

[
∂(1− φ)ρs

∂t
+

∂(1− φ)ρsus

∂x

]
dv = 0 (2)

Under continuum mechanism, Equation (2) is simplified to

∂(1− φ)ρs

∂t
+

∂(1− φ)ρsus

∂x
= 0.0 (3)

In the same manner, the fluid mass conversation (i.e., the two phases of mass: oil and
water) inside the matrix–fracture systems can be presented as follows:

Two-phase fluid mass:
MΨ = (φ)VρΨ (4)

In terms of fluid constituents Equation (4) will be as follows:

DMψ

Dt
=

D
Dt

∫

v
ϕSψρψ =

∫

v

[
∂ϕSψρψ

∂t
+

∂ϕSψρψuψ

∂x
− qψ

]
dv = 0 (5)

In Equation (5), ρ, S, and q are fluid density, fluid saturation, and the fluid exchange
rate between the matrix and fracture systems. Also, ψ refers to fluid phase (water or oil).

Assuming the existence of continuum state, Equation (5) can be written in terms of oil
and water as follows:

∂ϕSwρw

∂t
+

∂ϕSwρwUw

∂x
− qw = 0 (6)

∂ϕSoρo

∂t
+

∂ϕSoρoUo

∂x
− qo = 0 (7)

where U is the intrinsic fluid velocity.

qψ =
k1ρψ

µψ
krψ

(
p1ψ − p2ψ

)
(8)

where k1 is the matrix permeability, p1ψ is the matrix pressure, and p2ψ is the fracture pressure.
The matrix and fracture Darcy’s velocity in terms of oil and water is written as

uw = ϕSw(Uw − us)
uo = ϕSo(Uo − us)

(9)

By re-arranging Equation (9), the two-phase intrinsic velocity is written as

Uw = uw
ϕSw

+ us

Uo =
uo

ϕSo
+ us

(10)

Using the intrinsic oil and water velocities in Equation (10) in Equation (7) gives

∂

∂t
(ϕSwρw) +

∂

∂x
(ϕSwρw)

(
uw

ϕSw
+ us

)
− qw = 0.0 (11)
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∂

∂t
(ϕSoρo) +

∂

∂x
(ϕSoρo)

(
uo

ϕSo
+ us

)
− qo = 0.0 (12)

The expanded form of Equations (3) and (11) are as follows [30]:

∂ρs

∂t
− ϕ

∂ρs

∂t
− ρs

∂ϕ

∂t
− ϕρs

∂us

∂x
− usρs

∂ϕ

∂x
− us ϕ

∂ρs

∂x
+ ρs

∂us

∂x
+ us

∂ρs

∂x
= 0 (13)

ϕSw
∂ρw
∂t + ρw ϕ ∂Sw

∂t + Swρw
∂ϕ
∂t + ϕSwρw

∂us
∂x + ϕSwus

∂ρw
∂t + ϕusρw

∂Sw
∂x

+usSwρw
∂ϕ
∂x + uw

∂ρw
∂x + ρw

∂uw
∂x − qw = 0

(14)

The expanded form in Equations (13) and (14) can be re-arranged as
(

∂ρs

∂t
+ us

∂ρs

∂x

)
− ϕ

(
∂ρs

∂t
+ us

∂ρs

∂x

)
− ρs

(
∂ϕ

∂t
+ us

∂ϕ

∂x

)
+ (1− ϕ)ρs

∂us

∂x
= 0 (15)

ϕSw

(
∂ρw
∂t + us

∂ρw
∂x

)
+ ρw ϕ

(
∂Sw
∂t + us

∂Sw
∂x

)
+ Swρw

(
∂ϕ
∂t + us

∂ϕ
∂x

)
+ ϕSwρw

∂us
∂x +

uw
∂ρw
∂x − qw = 0

(16)

Total derivative is defined as

D(∗)
Dt

=
∂(∗)

∂t
+ u

∂(∗)
∂x

(17)

Direct application of Equation (17) into Equations (15) and (16) gives
(

Dρs

Dt

)
− ϕ

(
Dρs

Dt

)
− ρs

(
Dϕ

Dt

)
+ (1− ϕ)ρs

∂us

∂x
= 0 (18)

ϕSw

(
Dρw

Dt

)
+ ρw ϕ

(
DSw

Dt

)
+ Swρw

(
Dϕ

Dt

)
+ ϕSwρw

∂us

∂x
+ uw

∂ρw

∂x
− qw = 0 (19)

Using Equation (18), the porosity change with time can be as follows:

Dϕ

Dt
=

1
ρs

(
Dρs

∂D

)
− ϕ

ρs

(
Dρs

Dt

)
+ (1− ϕ)

∂us

∂x
(20)

Substituting Equation (20) into Equation (19) gives

ϕSw

(
Dρw
Dt

)
+ ρw ϕ

(
DSw
Dt

)
+ Swρw

(
1
ρs

(
Dρs
∂Dt

)
− ϕ

ρs

(
Dρs
Dt

)
+ (1− ϕ) ∂us

∂x

)

+ϕSwρw
∂us
∂x + uw

∂ρw
∂x − qw = 0

(21)

or

ϕSw

(
Dρw

Dt

)
+ ρw ϕ

(
DSw

Dt

)
+ (1− ϕ)

Swρw

ρs

Dρs

∂Dt
+ (1− ϕ)Swρw

∂us

∂x
+ ρw

∂uw

∂x
+ uw

∂ρw

∂x
− qw = 0 (22)

The rate of change in fluid and rock densities are related to the bulk modulus
as follows: 




Dρw
Dt = ρw

Kw
DPw
Dt

Dρo
Dt = ρw

Ko
DPo
Dt

Dρs
Dt =

ρs

[
(1−ϕ)

Ks
DP
Dt +

(1−ϕ)
Kns

DP
Dt −(1−α) ∂us

∂x

]

(1−ϕ)

(23)

where K is the bulk modulus, and the subscripts (o, w, and s) refer to water, oil, and
rock, respectively.
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Direct substitution of Equation (23) into Equation (22) will give

ϕSw
ρw
Kw

DPw
Dt + ρw ϕ

(
DSw
Dt

)
+ (1− ϕ)

Swρw
ρs

(
ρs

[
(1−ϕ)

Ks
DP
Dt +

(1−ϕ)
Kns

DP
Dt −(1−α) ∂us

∂x

]

(1−ϕ)

)

+(1− ϕ)Swρw
∂us
∂x + ρw

∂uw
∂x + uw

∂ρw
∂x − qw = 0

(24)

Equation (24) is the general form of the two-phase fluid flow equation; however,
this equation can be simplified by applying the total derivative presented earlier in
Equation (17), combining Equation (24) with Darcy’s law, and neglecting solid velocity
considering that it is small compared to other constituents; this will give a phase velocity
as follows:

uψ = − kψ

µψ
krψ

(
Pψ + ρψgh

)
(25)

where ψ is the phase symbol (oil or water phase), and krΨ and ρΨ are relative permeability
and density of the phase, respectively.

Accordingly, the water flow equation is written as [30]

ϕSw
ρw
Kw

∂Pw
∂t + ρw ϕ

(
∂Sw
∂t

)
+ Swρw






(1−ϕ)
Ks

(
So

∂Po
∂t + Po

∂So
∂t + Sw

∂Pw
∂t + Pw

∂Sw
∂t

)

+ (1−ϕ)
Kns

(
So

∂Po
∂t + Po

∂So
∂t + Sw

∂Pw
∂t + Pw

∂Sw
∂t

)





−ρw
kw
µw

krw
∂(Pw+ρwgh)

∂x − ρw
kw
µw

krw

(
Pwm − Pw f

)
+ (1− ϕ)Swρw

∂us
∂x − qw = 0

(26)

Pw is the water pressure, and the subscript terms (f and m) refer to the fracture and
matrix systems, respectively.

Similarly, the oil phase fluid flow is as follows [30]:

ϕSo
ρo
Ko

∂Po
∂t + ρo ϕ

(
∂So
∂t

)
+ Soρo






(1−ϕ)
Ks

(
So

∂Po
∂t + Po

∂So
∂t + Sw

∂Pw
∂t + Pw

∂Sw
∂t

)

+ (1−ϕ)
Kns

(
So

∂Po
∂t + Po

∂So
∂t + Sw

∂Pw
∂t + Pw

∂Sw
∂t

)





−ρo
ko
µo

kro
∂(Po+ρo gh)

∂x − ρo
ko
µo

kro

(
Pom − Po f

)
+ (1− ϕ)Swρw

∂us
∂x − qo = 0

(27)

2.2. Momentum Balance Equation

The total stresses σij in porous media can be written as a function of effective stresses
σ′ij as follows:

σij = σ′ij − αδijP (28)

δij and α are the Kronecker delta and the pore pressure ratio factor, respectively.
The effective stress can be written as a function of the elasticity matrix Dijkl as follows:

σ′ij = Dijklεkl (29)

For a certain traction vector F applied on a solid body under total stress σij, the
equilibrium of solid motion will be as follows:

σij + F = 0 (30)

where F is the vector of tractions applied on the body.
The relationship between displacement and strain can be written as follows:

εij =
1
2
(
uij + uji

)
(31)
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2.3. Finite Element Discretization

This section gives a brief explanation of the finite element method used to simulate
the coupled fluid flow and rock poro-elasticity equations. Moreover, the discretization
technique of the problem domain into nodal system is also explained.

The four-node tetrahedral element presented in Figure 1 has the following shape
functions in terms of local coordinate system (ξ, η, ζ) [30]:

N1 = 1− ξ − η − ζ
N2 = ξ
N3 = η
N4 = ζ

(32)
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Equation (33) can be used to transform the element geometry from the global coordi-
nates (x, y, and z) to the local coordinates (ξ, η, ζ) as follows:





∂Ni
∂ξ

∂Ni
∂η

∂Ni
∂ζ





=




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ








∂Ni
∂x

∂Ni
∂y

∂Ni
∂z





= [J]





∂Ni
∂x

∂Ni
∂y

∂Ni
∂z





(33)

In Equation (33), the Jacobin matrix J has the following form:

[J] =




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 =




∑ ∂Ni
∂ξ xi ∑ ∂Ni

∂ξ yi ∑ ∂Ni
∂ξ zi

∑ ∂Ni
∂η xi ∑ ∂Ni

∂η yi ∑ ∂Ni
∂η zi

∑ ∂Ni
∂ζ xi ∑ ∂Ni

∂ζ xi ∑ ∂Ni
∂ζ xi


 (34)

To determine how the element’s unknown variables vary, shape functions are utilized.
In finite element space, interpolation functions are usually used to approximate these
unknowns as follows:

u = Nuu (35)

Pw = Np
−
Pw (36)

Po = Np
−
Po (37)

ε = B
−
u (38)

−
u,
−
Pw, and

−
Po are the elements’ unknowns, and N is the corresponding shape function.
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The strain displacement matrix B is defined as

[
BT
]
=




∂Ni
∂x 0 0
0 ∂Ni

∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y 0 ∂Ni

∂z
∂Ni
∂x

∂Ni
∂z 0

0 ∂Ni
∂y

∂Ni
∂x


 (39)

The general equilibrium equation is defined as follows:
∫

v
BT∂σdv− ∂ f = 0 (40)

∂ f and V are the boundary load vector and the volume of the element, respectively.
Combining Equations (39) and (40) and dividing by ∂t will give the following equation:

∫

v
BT DBdv

∂u
∂t
−
∫

v
BTαNdv

∂P
∂t

=
∂ f
∂t

(41)

The average pore pressure is defined as

P = SoPo + SwPw (42)

Inserting the pressure term in Equation (42) into Equation (41) will give

∫

v
BT DBdv

∂u
∂t
−
∫

v
BTαNdv

(
So

∂Po

∂t
+ Po

∂So

∂t
+ Sw

∂Pw

∂t
+ Pw

∂Sw

∂t

)
=

∂ f
∂t

(43)

Adding the capillary pressure term to Equation (43) will give

∫

v
BT DBdv

∂u
∂t
−
∫

v
BTαNdv

(
So

∂Po
∂t − Po

∂Sw
∂Pc

∂Pc
∂t

+Sw
∂Pw
∂t + Pw

∂Sw
∂Pc

∂Pc
∂t

)
=

∂ f
∂t

(44)

The water flow equation inside the fracture system is discretized as follows:

−
∫

v∇NTρw
kw
µw

krw∇N(Pw + ρwgh)dv +
∫

v NT ϕSw
ρw
Kw

N ∂Pw
∂t + ρw ϕ

(
∂Sw
∂t

)

+
∫

v NTSwρwN






(1−ϕ)
Ks

(
Sw

∂Pw
∂t + (1− Sw)

∂Po
∂t − Po

∂Sw
∂t

∂Pc
∂t + Pw

∂Sw
∂t

)

+ (1−ϕ)
Kns

(
Sw

∂Pw
∂t + (1− Sw)

∂Po
∂t − Po

∂Sw
∂t

∂Pc
∂t + Pw

∂Sw
∂t

)



dv

−
∫

v NTρw
kw
µw

krwN
(

Pwm − Pw f

)
+
∫

v NT(1− ϕ)SwρwB ∂us
∂t dv−Qw = 0

(45)

Two-dimensional fluid flow inside discrete fracture is written as
∫ ∫

Ω
FEQ dΩ =

∫ ∫

Ωm
FEQ dΩm + b×

∫ ∫

Ωf

FEQ dΩf (46)

where Ω refers to the porous media domain, and the subscripts f and m refer to fracture
and matrix domains.

2.4. Evaluation of Non-Linear Coefficients and Computational Procedure

In this work, the model’s unknowns have been calculated at each time step using an
iterative methodology. With this method, nonlinear coefficients like capillary pressure,
relative permeability, and saturations can be evaluated. The primary unknowns affect these
coefficients. The most current fluid pressure computations are used to update the coeffi-
cients at each iteration level. Using the updated calculations of capillary pressures, the new
values of water saturation at matrix and fracture nodes are estimated from capillary pres-
sure and saturation relationships. Therefore, in order to arrive at a stable solution of fluid
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pressures and displacement, a convergence criterion is applied to Equations (44) and (45)
as follows: ∥∥∥∥∥

Rk
i+1 − Ri

k
Rk

i

∥∥∥∥∥ ≤ ε (47)

At each iteration number i, the convergence level of the nodal unknown R at the node
number k should be less than or equal to a convergence limit (ε = 0.01).

3. Results and Discussion

The verification of the presented in-house model is important to ensure that the devel-
oped 3D coupled poro-elastic concept is implemented correctly into the in-house model.
Therefore, in this section, the ability of the developed model (FRACSIM) to capture the com-
plex flow behavior of naturally fractured reservoirs under a poro-elastic environment was
validated against (1) an exact analytical solution of a 2D poro-elasticity problem (Kirsch’s
Problem), (2) a 3D lab-scale drainage test of fractured micro-glass bead, and (3) the history
matching of real field dynamic data of a fractured basement reservoir. The discerption and
analysis of each validation case will be presented next.

3.1. Validation Using Kirsch’s Problem in Poroelasticity

The Kirsch model was originally developed to estimate the tangential and radial
stresses around a hole in a homogenous infinite plate under unidirectional tension and
assuming a plane-strain case (Kirsch 1898) [31]. For the case of a vertical borehole in a
poro-elastic environment, Detournay and Cheng 1988 [32] presented an analytical solution
of the pore pressure, the stress, and the displacement induced by drilling, producing, or
pressurizing the borehole. In their study, they used the Laplace space transformation
to derive the analytical solution, which then was transformed to the time domain using
a numerical inversion technique. Herein, we present a verification of the poro-elastic
in-house model (FRACSIM) against the analytical solution presented by Detournay and
Cheng for a circular-shaped reservoir (see Figure 2).
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Figure 2. Two-dimensional circular reservoir used for validation of the poro-elastic in-house model
(FRACSIM) with maximum horizontal stress σH and minimum horizontal stress σh.

The pore pressure, radial stress, tangential stress, radial displacement, and tangential
displacement analytical solutions of a two-dimensional model of a circular-shaped reservoir
with a maximum horizontal stress σH, a minimum horizontal stress σh, an initial pore
pressure Pi, a wellbore pressure Pw, a wellbore radius rw, and a drainage radius re are
as follows [32]:
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Pore pressure:
p(r, t) = Pi + (Pw − Pi) g(r, t) (48)

Radial stress:

σrr(r, θ) = σH+σh
2

(
1− r2

w
r2

)
+ σH−σh

2

(
1 + 3 r4

w
r4 − 4 r2

w
r2

)
cos(2θ) + Pw

r2
w

r2

+2η(Pw − Pi)
rw
r h(r, t)

(49)

Tangential stress:

σθθ(r, θ) = σH+σh
2

(
1− r2

w
r2

)
− σH−σh

2

(
1 + 3 r4

w
r4

)
cos(2θ)− Pw

r2
w

r2

−2η(Pw − Pi)
( rw

r h(r, t) + g(r, t)
) (50)

Radial displacement:

ur(r, θ) = r
4G (σH + σh)

(
1− 2v + r2

w
r2

)

+ r
4G (σH − σh)

(
r2

w
r2

(
4− 4v− r2

w
r2

)
+ 1
)

cos(2θ)− Pw
2G

r2
w
r

− η
G rw(Pw − Pi)h(r, t)

(51)

Tangential displacement:

uθ(r, θ) = − r
4G

(σH − σh)

(
r2

w
r2

(
2− 4v +

r2
w

r2

)
+ 1
)

sin(2θ) (52)

In Equations (48)–(52), G is Young’s modulus, v is Poisson’s ratio, η is the poro-elastic
coefficient (η = α 1−2υ

2(1−υ)
) with a physical range of variation of [0–0.5], θ is the angle relative

to the direction of the maximum horizontal stress, and r is the radial distance from the
borehole to the point of calculation for stresses and displacements. Moreover, the Laplace
space transform of the functions g (r, t) and h (r, t) is as follows:

g̃(r, s) =
K0(ξ)

sK0(β)
and h̃(r, s) =

1
s

[
K1(ξ)

βK0(β)
− rw

r
K1(ξ)

βK0(β)

]
(53)

where K0 and K1 are the first-order modified Bessel functions of the first and second kind.
The results of the developed poro-elastic in-house simulator were compared to the

analytical solution presented in Equations (48)–(53) for a 2D circular reservoir with a
wellbore radius of 0.1 m and a drainage radius of 1000 m. The reservoir rock and fluid
properties used in this comparison are presented in Table 1.

Table 1. Parameters used in the verification of poro-elasticity solutions.

Parameter Value

Young’s modulus 40 GPa
Poisson’s ratio 0.2
Porosity φ 0.1
Water compresibility Cw 1.0 × 10−4 psi−1

Water viscosity µw 0.1 cp
Biot’s coefficient 1.0
Maximum stress 5800 psi
Minimum stress 5500 psi
Initial reservoir pressure 5500 psi
Wellbore pressure 1000 psi
Formation permeability Kx 0.01 md
Formation permeability Ky 0.01 md
Wellbore radius rw 0.1 m
Reservoir drainage radius re 1000 m
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Figure 3 presents a comparison of the tangential stress of the analytical solution and
the in-house simulator for different time steps (after one day, one month, and one year
of production). It can be seen from this figure that the poro-elastic in-house model is
in good agreement with the analytical solution. Furthermore, Figure 4A–C present the
tangential displacement of the analytical solution and the in-house model after one day,
one month, and one year of production; it is clear from this figure that the in-house code
results are in close agreement with the analytical solution. It should be noted that the same
level of agreement between the analytical solution and the in-house model was achieved
for the radial stress and displacement for this validation exercise. Such results highlight
the capability of the developed in-house model in capturing the stress redistribution and
displacement due to production or pressurizing the borehole under the assumption that
the rock behaves as a poro-elastic material with compressible constituents.
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Figure 3. Comparison of tangential stress (σθθ) of the analytical solution and the in-house simulator
(FRACSIM) under σH = 5800 psi and σh = 5500 psi, Pr = 5500 psi, Pw = 1000 psi, kx = 0.01 md, and
ky = 0.01 md.

3.2. History Matching of Two-Phase Flow Real Data—Laboratory Scale

The visualization experiments of the two-phase flow in fractured glass bead micro-
models are a good tool to observe the flow behavior of fractured media and understand
the interaction between matrix and fracture system as well as to investigate the effect of
fracture properties on fluid flow. In this section, the in-house poro-elastic model was used
to history match a drainage test result of a 200 mm × 100 mm × 2 mm multiple fractured
glass bead model reported by Fahad et al., 2012 [33]. The drainage test was conducted
on a homogeneous glass bead matrix with a mesh size range of 105 to 145 µm, while the
fracture was made up of thin glass strips placed at the center of the model with different
fracture orientations and densities. This drainage test studied the flow around two crossed
fractures placed at the center of the glass bead matrix. Figure 5 presents a schematic of
the experimental setup of the glass bead model used for the multiple crossed fracture
drainage test. The matrix and fracture permeabilities are 3.4 and 104 Darcy, respectively.
The experiment started with saturating the glass bead matrix with water, which has a
viscosity of 1.002 cp and a density of 0.998 gm/cm3. Then, a Soltrol-130 iso-paraffin oil,
with a viscosity of 1.4 cp and a density of 0.75 gm/cm3, was injected at the inlet of the glass
bead matrix to displace the water at a constant injection rate of 2 cc/min, effluent volume
produced from the displacement process are collected at the outlet of the glass bead model.
Moreover, the displacement front was recorded using a digital camera with the help of a
light source that was installed underneath the glass bead model to illumine the fractured
glass bead matrix.
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Figure 4. Comparison of tangential displacement (uθ) of the analytical solution and the in-house
simulator (FRACSIM) under σH = 5800 psi and σh = 5500 psi, Pr = 5500 psi, Pw = 1000 psi, kx = 0.01 md,
and ky = 0.01 md (A) after one day of production, (B) after one month, and (C) after one year.
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Figure 5. Schematic of the experimental setup of the glass bead model used for the multiple crossed
fracture drainage test.

The developed in-house model was used to simulate the fractured glass bead drainage
test. Figure 6A, top image, presents the generated in-house mesh to simulate the drainage
experiment of two-phase flow on crossed-fractures at the center of a glass bead matrix.
In this image, the tetrahedral elements of the mesh represent the matrix, while the fine
triangle elements are used for meshing the two-crossed fractures. In addition, Figure 6A’s
middle and bottom images represent the drainage test visualization at 0.4 pore volume
injected (0.4 PVI) and the simulated drainage test using the in-house poro-elastic model
at the same pore volume injected, respectively. It can be noted from Figure 6A (middle
and bottom images) that the in-house simulated drainage test image is in close agreement
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with the experimental drainage test image at the same pore volume inject (PVI = 0.4).
Furthermore, Figure 6B presents a comparison of the measured produced water volume of
the drainage experiment and that from the in-house model; it can be seen from this figure
that the in-house model produces an excellent match to the measured water volume from
the fractured glass bead experiment. Such results clearly highlight the capability of the
developed model to capture the flow behavior of fractured media at the laboratory scale
with a good level of accuracy. The validation of the in-house model with real field data will
be presented in the next section.
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Figure 6. ((A)—Top) presents the generated in-house mesh to simulate the drainage experiment of
two-phase flow on a crossed-fractures at the center of a glass bead matrix; ((A)—Middle) presents the
drainage test visualization at 0.4 pore volume injected (0.4 PVI); (light blue is water, and dark red is
Soltrol-130 oil); ((A)—Bottom) presents the simulated drainage test using the in-house poro-elastic
model at 0.4 pore volume injected (0.4 PVI). (B) History matching the drainage test produced water
volume using the in-house poro-elastic model.

3.3. History Matching of Real Dynamic Data—Field Scale

In this section, the developed in-house simulator is used to history match a well test
data of a fractured granitic oil-bearing basement reservoir located in Southeast Asia using a
hybrid discretization technique that couples the single continuum and the discrete fracture
method in a poro-elastic environment. The hybrid approach consists of three main steps:
1—stochastic generation of 3D subsurface fracture network map based on field static data,
2—calculation of grid-based 3D permeability tensors accounting for short fractures, and
3—coupling of single continuum (grid-based permeability tensor) and explicit discrete
long fractures. A brief description of the hybrid approach is given in the next paragraph.

In this study, the discrete fracture network map was generated via the statistical analy-
sis of field data (static data) procedures developed by Doonechaly and Rahman (2012) [34].
This technique integrates different field data to determine a distribution range of fracture
properties (fracture orientation, fracture density, and fractal dimension); the integrated field
data include core analysis, conventional well logs, seismic attributes, and wellbore images.
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The determined fracture density and fractal dimension distributions are used as an input to
an object-based stochastic sequential Gaussian 3D simulator to generate different random
realizations of fracture attributes. In this simulation, the fractures are treated as circular
disk objects, as shown in Figure 7. Each fracture is defined based on its orientation (i.e., the
dip and azimuth angles of the fracture), center point (i.e., fracture location), radius, and
aperture. Moreover, the random realization of fractures continues until the total fracture
intensity and fractal dimension of the studied area are met. At this point, the resulting
model is the 3D subsurface fracture map of the studied reservoir. Afterward, the generated
3D subsurface map is divided into a number of grid blocks (N grid blocks) in order to
calculate the grid-based permeability tensors, as shown in Figure 8A. For this purpose, a
threshold fracture length (LFmin) is defined. Accordingly, fractures with a length less than
the threshold fracture length that cut a certain block are used to calculate the permeability
tensors of that block (i.e., fractures that have a length less than (LFmin) are considered as
part of the matrix in the form of permeability tensor; in other words, the short fractures are
considered local spatial heterogeneities within the matrix block), as shown in Figure 8B.
Once the grid-based 3D permeability tensors are calculated, the matrix domain is coupled
with the explicitly discretized long fractures (i.e., fractures with fracture length > LFmin).
The matrix domain is discretized using four-node tetrahedral elements, while the triangular
elements are used for the discretization of explicit long fractures, as shown in Figure 8C.
The used grid blocks were built using an in-house developed mesh generator. It should
be noted that the grid-based permeability tensor calculations, which include diagonal
and off-diagonal terms, are performed using three-dimensional Darcy’s law and continu-
ity flow equations under pressure and flux periodic boundary conditions developed by
Durlofsky (1991) [35]. Once the hybrid permeability tensor and discrete fracture mesh is
ready, then it is used in the FRACSIM in-house poro-elastic model to simulate fluid flow
around the fractured well and history match the dynamic production data (well test data).
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Figure 7. (A) Three-dimensional fracture density distribution; the fracture density varies between
2.5 m−1 and 6.5 m−1. Red color indicates high fracture density. (B) Three-dimensional fractal
dimension distribution; the fracture density varies between 2.5 m−1 and 6.5 m−1. (C) Stochastic
realization of discrete fracture map using object-based simulator; hence, fractures are represented as
circular disk objects with their unique center point, dip, azimuth, and radius.
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via an explicit discretization the long fractures.

A complete algorithm of the well-test history matching process is summarized
as follows:

1. Generate the subsurface fracture realization using field data based on Doonechaly
and Rahman (2012) approach [34].

2. Utilizing periodic boundary conditions Durlofsky (1991) [35], calculate the block-based
permeability tensor of the single continuum taking into account the short fractures.

3. Couple the block-based permeability tensor with the discrete fracture network of long
fractures using the in-house mesh generator (hybrid approach).

4. Start FRACSIM in-house model to simulate pressure build-up and draw-down cycles.
5. Compare the FRACSIM results with that of the measured well test data to estimate

the error.
6. If the error from step 5 is less than the predefined error threshold, then stop and report

the optimum fracture realization with the pressure change and pressure derivative
results. Otherwise, go back to step 1 to modify the fracture attribute and generate a
new fracture realization. The simulated well-test results are compared with that from
the build-up and draw-down test data for each realization until the error is minimized.

Accordingly, the FRACSIM numerical model with the hybrid approach is used to
simulate single-phase fluid flow via the subsurface fracture realization, which was gen-
erated using field data of a fractured granitic oil-bearing formation located in Southeast
Asia. According to geological interpretation, the formation is highly fractured with an
extremely low matrix porosity and permeability. The network of fractures formed the
majority of storage spaces in the studied formation. A Drill Stem Test (DST) was conducted
in this formation with controlled flow periods before shutting to better understand the
reservoir extent and evaluate well deliverability. The reservoir and fluid input data of
the simulation study are presented in Table 2. Different subsurface fracture realizations
were generated using the available field data. A total of 3000 fractures were created, and
the minimum fracture length threshold was set to 40 m. The grid-based permeability
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tensors were generated accounting for fractures with a length < 40 m. Long fractures with
lengths > 40 m were discretized explicitly and coupled with the single continuum. The
different fracture realizations were fed to the in-house FRACSIM model to simulate the
main build-up and draw-down period of the DST test. Moreover, a commercial reservoir
simulator (Eclipse100) was used to simulate the build-up test and draw-down periods.
However, only the grid-based permeability tensor was passed to Eclipse100 since this
simulator lacks the ability to explicitly discretize fracture network. Figure 9 presents the
optimum coupled permeability tensor and explicit fracture network of the simulated area.

Table 2. Reservoir inputs data for a typical fractured basement reservoir.

Parameter Value

Reservoir dimensions 500 m × 500 m × 250 m
Wellbore entry partially penetration (90 m)
Matrix permeability 0.0095 mD
Matrix porosity 0.02
Initial water saturation 0.34
Fracture aperture 7.06 × 10−3 mm
Initial fracture intensity 0.15 m−1

Fractal dimension (D) 1.25
Fracture permeability 100 D
Fracture porosity 0.1
Initial reservoir pressure 4200 psi
Horizontal stresses 4400 psi
Vertical stress 6000 psi
Fluid viscosity 1.38 cp
Fluid compressibility 10−5 psi−1

Production time before shut in (tp) 72 h
Production flow rate before shut in 5571 bbl/d
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Figure 10 presents the simulated shut-in pressure using FRACSIM and Eclipse100
compared to the measured shut-in pressure. It can be seen from this figure that the
in-house simulator closely matches the measured shut-in pressure data. On the other
hand, the Eclipse100 failed to provide a good match and underestimated the measured
shut-in pressure. Similar to the in-house simulator, the simulated area in the Eclipse-100
model was divided into different grid blocks, and then the intersected fractures with each
block have been accounted for in the form of permeability tensors for each grid block
using the periodic boundary condition. However, the explicit discrete fracture approach
represents fractures as a 2D triangle surface sandwiched between the 3D tetrahedral
domain, giving it the flexibility to mesh any kind of fracture orientation and shape. Such
fracture representation is not available in the ECLIPSE simulator, as the fractures were
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presented with the stack of grid blocks, which is the main reason that the Eclipse-100 model
could not match the shut-in pressure as the effect of long fractures on pressure change is
neglected. Furthermore, Figure 11 presents the simulated draw-down cycle of the DST
using FRACSIM and Eclipse100 in comparison to the measured draw-down pressure. It can
be noted from this that the FRACSIM produced a good match to the measured draw-down
curve, while the Eclipse100 failed to match the measured draw-down pressure.
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Figure 10. The simulated shut-in pressure of FRACSIM in-house model and Eclipse100 compared to
the measured shut-in pressure.
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to the measured draw-down pressure.

Figure 12A presents the pressure change and pressure derivative of the finite-difference-
based reservoir simulator ECLIPSE-100 in comparison to the pressure change and pressure
derivative. It can be noted from this figure that, again, the Eclipse100 model could not
match the measured pressure change and pressure derivative data as a result of ignoring
the effect of long fractures. Figure 12B presents the pressure change and pressure derivative
results of the FRACSIM results compared to the measured data. It is clear from this figure
that the in-house model results have a good match with the measured results. Furthermore,
the FRACSIM in-house model and the measured data pressure derivative curves show
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similar flow regimes that include the spherical flow due to partial well penetration at early
time (characterized by a negative slope in the derivative curve), followed by a short radial
flow at middle time (characterized by flatness in the derivative curve with a zero slope) and
a late linear flow due to the effect of fractures (characterized by a positive half-slop of the
derivative curve). Such encouraging results highlight the good capability of the in-house
poro-elastic simulator in simulating fractured reservoirs. Finally, the in-house single well
model was run for one year under a natural depletion scenario in order to visualize the
change in fluid velocity and reservoir pressure in the fracture network. Figure 13A–D
present the velocity profile and the pressure profile of the single well model after one
month and one year of production under a constant bottom hole pressure of 2300 psi. It
can be noted from this figure that the permeability of the connected discrete fractures has a
significant effect on fluid velocity and reservoir pressure diffusion, almost all connected
fractures exhibit a high change in velocity, especially the fractures near the wellbore at the
early production time (one month), as production continues to one year the velocity change
is dominant in all fractures in the studied area. The same trend is present with the pressure
distribution: after one year of production, the pressure change reaches the boundary of the
studied area.
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Figure 12. (A) The pressure change and pressure derivative of the finite-difference-based reservoir
simulator ECLIPSE-100 and (B) the pressure change and pressure derivative of the FRACSIM in-house
model compared to measured data.
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Figure 13. (A) The velocity profile and (B) the pressure profile of the single well model after one
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after one year of production. The well is located at the center of the block.

3.4. Sensitivity Study of Full Field Development Plan

In this section, the developed in-house simulator was utilized to investigate the
performance of the reservoir (presented in Section 3.3) under two driving mechanisms:
natural depletion and water flooding. The reservoir dimension of 4000 m× 5000 m× 250 m
was used in the FRACSIM simulator with the fracture realization that was verified in
the previous section. The first step was to investigate the reservoir performance under
volumetric natural depletion since the reservoir does not have any aquifer support. The
reservoir rock and fluid properties are similar to those presented in Table 2 (Section 3.3),
and the relative permeability curves are shown in Figure 14A,B. Sixteen vertical producers
were placed across the reservoir (see Figure 15). These producers were run under constant
bottom hole pressure of 1000 psi, with a simulation period of 15 years. Figure 16 presents
the oil production rate of the highest and lowest producers among the sixteen wells after
15 years of production. From this figure, it can be seen that the well production shows
a typical production behavior of fractured reservoirs; that is, the wells start with a high
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production rate for a short period of time then production goes in a rapid decline. This is
primarily driven by the fact that fluids initially flow via fractures, which led to a significant
drop in wellbore pressure with a spike in fluid production. Then, the matrix begins to feed
the fracture network with fluid. During this flow period, oil production at the wellbore
drops to a steady low rate with a gradual decrease in wellbore pressure. The simulation
results show that Well-P16 was the highest producer among the sixteen wells with a
production rate of 13,146 bbl/day at the beginning of production; then, the production
rate declined to 70 bbl/day after 6 years of production. Well-P2 was the lowest producer
among all with an initial production of 4400 bbl/day; then, the production decreased to
20 bbl /day after 6 years of production. It should be noted that the flow rate profiles of
all other wells were bounded between the highest and lowest producer rate profiles and
followed the same trend as that seen in well-P6 and Well-P2 but with different ranges of
oil rates. Moreover, the water production was negligible because the simulation was run
with only connate water. The cumulative oil production ranges from 1.13 × 106 bbl at
well-P2 to 2.98 × 106 bbl at well-P16. The total oil production for the studied reservoir is
3.27 × 107 bbl after a simulation of 15 years.
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Figure 14. The reservoir relative permeability cures, (A) matrix relative permeability, and (B) fracture
relative permeability.
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Figure 15. The discreet fracture map with the location of the sixteen producers represented by a blue circle.
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Figure 16. The oil production rate of the highest and lowest producers among the simulated
sixteen wells.

In order to investigate the reservoir performance under water flooding, wells (P3, P7,
P9, and P13) were converted into injection wells; these wells were chosen as they are located
at the center of the studied area, as shown in Figure 17. The amount of water injected in
each well was 6000 bbl/d. The reservoir thickness is 250 m; water was injected into the
bottom region (the bottom 100 m of the reservoir thickness), while the oil was produced
from the reservoir top section (the top 90 m of reservoir thickness). Thus, there is around a
60 m zone separating the producing and injection sections.
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Figure 17. The discreet fracture map with the location of the twelve producers represented by a blue
circle and the four injectors (P3, P7, P9, and P13) represented by a blue circle with slanted arrow.

Figures 18–20 present the oil production rate, the water cut, and the water production
rates of the production wells, respectively. It can be seen from these three figures that
Well-P8 has the highest oil and water production rate. This is due to the fact that Well-P8
location is bounded by four injectors, which, in turn, creates a high sweep efficiency area
around Well-P8. Well-P5 has the lowest water production rate because the location of this
well is far from the injection area. Furthermore, the water saturation map after one year is
shown in Figure 21A, while the water saturation and pressure after five years of injection
are shown in Figures 21B and 22 respectively. Figure 23 presents a cumulative production
chart for each producer under the natural depletion and the water flooding mechanisms.
Furthermore, Table 3 presents the percentage change in each producer’s cumulative total oil
production following the water flooding procedure in comparison to the cumulative total
oil production due to natural depletion. It can be concluded from Figure 23 and Table 3 that
all producers (except Well-P8) show a certain degree of improvement in the cumulative
oil production due to water injection. For example, Wells P2, P4, P5, P6, P10, P12, and P14
show a promising percentage of improvement, reaching as high as 200% in the case of P2
and P4. The improvement in cumulative production is mainly attributed to the relative
location of the well and the intensity of the fracture network intersecting that well. Wells
that intersect high-intensity fractures will suffer from high water break though, such as
Well-P15, which has the highest water cut among all producers. Furthermore, Well-P8
showed a reduction in total cumulative production compared to the natural depletion
scenario due to the fact that it has the highest water production rate among all producers
because it was bounded by four injectors. In summary, the presented results indicate that
a comprehensive understanding of the geological characterization and fracture network
structure via the integration of different resources including static and dynamic field data,
will certainly help in achieving successful waterflooding in naturally fractured reservoirs.
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Figure 18. The oil production rate of the simulated twelve producers under water flooding.
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Figure 19. The water cut of the simulated twelve producers under water flooding.
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Figure 20. The water production rate of the simulated twelve producers under water flooding.
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Figure 22. The reservoir pressure map around the injection wells after five years of water injection.
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Figure 23. Total cumulative oil production bar chart for each producer under natural depletion and
water flooding mechanisms.

Table 3. Comparison between cumulative oil production of each well before and after water injection.

Well # Cumulative Oil
Production—Natural Depletion

Cumulative Oil
Production—Water Flooding

Difference
%

P1 1.78 × 106 2.44 × 106 37.43
P2 1.13 × 106 3.57 × 106 214.89
P4 1.20 × 105 3.72 × 106 210.00
P5 1.11 × 106 3.14 × 106 182.23
P6 2.70 × 106 5.17 × 106 91.49
P8 2.63 × 106 1.38 × 106 −47.55
P10 2.40 × 106 5.08 × 106 111.28
P11 1.98 × 106 2.20 × 106 11.37
P12 2.26 × 106 5.01 × 106 121.77
P14 2.95 × 106 5.35 × 106 81.06
P15 1.21 × 106 1.68 × 106 38.42
P16 2.98 × 106 3.04 × 106 2.06

Total 2.41 × 107 4.18 × 107 73.51

3.5. Limitation and Future Work Recommendation

This presented study has a few limitations that should be considered. Firstly, it only
simulates two-phase flow and does not account for other phases. Secondly, the long run
time is observed for large mesh cases, particularly those with high-intensity fractures. In
future research, efforts will be directed toward improving computational efficiency by
employing parallel computing methods and incorporating three-phase flow equations into
the model. Additionally, ongoing development aims to incorporate parameters such as
thermal stresses in fractured reservoirs and the combined effects of thermal and chemical
variations in fractured geothermal reservoirs.

4. Conclusions

This study presents a robust mathematical two-phase fluid flow model (FRACSIM)
for the simulation of flow behavior of naturally fractured reservoirs in a 3D space. The
mathematical model is based on the finite element technique and implemented using the
FORTEAN language within a poro-elastic framework. Fractures are represented by triangle
elements, while tetrahedral elements represent the matrix. To optimize computational
time, short to medium-length fractures adopt the permeability tensor approach, while
large fractures are discretized explicitly. The governing equations for poro-elasticity are
discretized in both space and time using a standard Galerkin-based finite element approach.
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The stability of the saturation equation solution is ensured via the application of the
Galerkin discretization method. The 3D fracture model has been verified against Eclipse
100, a commercial software, via a well test case study of a fractured basement reservoir to
ensure its effectiveness. Additionally, the FRACSIM successfully simulated a laboratory
glass bead drainage test for two intersected fractures and accurately captured the flow
pattern and cumulative production results. Furthermore, a sensitivity study of water
injection using an inverted five-spot technique was tested on FRACSIM to assess the
productivity of drilled wells in complex fractured reservoirs. The results indicate that
FRACSIM software can accurately predict flow behavior and subsequently be utilized to
evaluate production performance in naturally fractured reservoirs.
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