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Preface

Computer vision (CV) is a topic within artificial intelligence intended for the processing of image

or video data. CV aims to perceive, observe, and understand the physical world as humans do. While

the advances and new applications of computer vision in recent years have been significant, computer

vision faces several scientific and technological challenges related to the semantic understanding

of context from image or video analysis, as well as the trade-off between computational time

requirements and data quality and size. The semantic understanding of images and videos is

especially relevant to automating critical tasks such as autonomous drivers or other applications in

which humans are at risk. The contributions cover these challenges, aiming to move one step ahead

in the automation of different tedious human tasks.

Eva Cernadas

Guest Editor
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Applications of Computer Vision, 2nd Edition

Eva Cernadas

CiTIUS (Singular Research Center on Intelligent Technologies), University of Santiago de Compostela,
15782 Santiago de Compostela, Spain; eva.cernadas@usc.es

1. Introduction to the Applications of Computer Vision

Computer vision (CV) is a broad term mainly used to refer to processing image and
video data. CV aims to enable machines to perceive, observe, and understand the physical
world as if they have human eyes. While this area of knowledge began to develop during
the 1970s and 1980s, the last three decades have been characterized by the field maturing.
This progress can be seen in the increasing number of software and hardware products on
the market, the significant growth of active applications, and the rise in recent scientific
publications on this research area. The first applications of computer vision were in the field
of medical imaging and the processing of remote sensing data. Hence, the scientific journals
IEEE Transaction on Medical Imaging and IEEE Transactions on Geoscience and Remote Sensing
were created by the Institute of Electrical and Electronics Engineers (IEEE) association in
1982 and 1980, respectively, to manage the engineering aspects for medical imaging and
satellite data.

Remote sensing (RS) images are obtained using remote sensing technology such as air-
planes and satellites under long-distance conditions. The detection of targets in RS images
is very important in military applications, urban planning, resource exploration, agricul-
ture, and other fields. CV techniques like content-based image retrieval techniques [1],
semantic segmentation [2], scene classification [3], nonsupervised learning [4], and transfer
learning [4], among others, have been applied to RS images. One specific application is
cropland field identification, which is a key element of precision agriculture [5].

Common imaging techniques like X-ray radiographs, computed tomography (CT),
and/or magnetic resonance imaging (MRI) have revolutionized the field of diagnostic
medicine, providing non-destructive procedures for examining the interior of our bod-
ies. Due to overlaps between anatomical structures, interpreting medical images is very
challenging, even for experienced radiologists. The clinical interest in understanding
these medical images explains the interest in developing computer algorithms that can
aid experts in their clinical tasks. Across 40 years, the intersection of CV techniques and
medical imaging has provided many clinical solutions. Common CV tasks like feature de-
tection, recognition, segmentation, and three-dimensional modeling have been developed
for processing different types of medical images and solving specific clinical problems.
Some examples are chest radiograph analysis [6]; dental imaging (panoramic X-rays and
other imaging modalities), to aid dental experts in diagnosing various dental disorders [7];
brain MRI modalities, for identifying distinct features that characterize autism spectrum
disorder [8]; skin lesion analysis from RGB images to diagnosis skin cancer [9]; diagnosing
glaucoma by analyzing retinal imaging data [10]; and detecting lung and colorectal cancer
using CT imaging [11,12]. Recent advances in robotics now permit the acquisition of more
medical images that can help clinicians make diagnoses or guide surgeons, in which the
source and detector are positioned by robots with greater precision and accuracy [13,14].
Although X-ray imaging technology has been used in clinical tasks for decades, it has re-
cently been extended to industrial production and security applications, where it can detect
anomalies or defects inside products non-destructively and identify prohibited objects
inside baggage without opening it [15].

Electronics 2024, 13, 3779. https://doi.org/10.3390/electronics13183779 https://www.mdpi.com/journal/electronics1
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Machine vision systems make use of different processing stages like image pre-
processing, target image or video segmentation, feature extraction and selection, object
recognition, classification, and 3D modeling, among others. These different types of tasks
have typically involved different types of algorithms, with the classical CV techniques
using explicitly programmed algorithms to solve specific tasks [16,17]. In recent years,
deep learning (DL) models have yielded a new generation of CV methods [18] based on
multi-layered neural networks such as convolutional neural networks and transformers,
endowing computers with the ability to learn without them being explicitly programmed.
The most popular architectures for computer vision are convolutional neural networks
(CNNs) [19], which have become the standard DL-based approches for many recogni-
tion tasks due to their ability to learn high-level features in their convolutional layers;
generative adversarial networks (GANs) [20], which learn from a given training set to
generate new data; recurrent neural networks (RNNs), which have the capability to process
temporal information and sequential data; different versions of YOLO (You Only Look
Once) for object detection [21,22]; and transformers [23], which are primarily based on
self-attention mechanisms [24]. These have all found applications in numerous fields,
such as medicine [8,25–28], image generation [29], and remote sensing [2,4], among others.
In conclusion, several algorithms have emerged over time, each with its own set of advan-
tages and disadvantages. While DL models have good learnability, they often require a
substantial number of real labels for training, provide poor interpretability due to their
black-box structure, and require intensive computational resources or specific hardware.

As previously mentioned, the medical and remote sensing fields have used CV tech-
niques for the automation of different tasks extensively. Nevertheless, recent advances in
the image acquisition technology available, mainly due to research in optics and digital
sensing, as well as increasing computer power, have unleashed new opportunities to apply
CV techniques to new types of images, like microscopy imaging [30] or unmanned aerial
vehicle (UAV) acquisitions [31]. UAVs are flying robots either remotely controlled by some-
body or navigated autonomously using a computer system on board the vehicle or on the
ground. They are able to acquire images in complex applications due to their small size,
low cost, and high mobility. UAV systems enable the acquisition of real-time environmental
data for developing CV applications such as vehicle detection [32] and digital precision
agriculture [33–35], with the latter involving a variety of tasks, such as weed, crop pest,
and disease detection, in order to apply the right practice at the right place, the right time,
and the right quantity. Thus, UAVs are versatile, with the capacity for different kinds of
sensors to be boarded onto them [36]. In capturing both the spatial and spectral features of
an object’s surface, hyperspectral images are also used for agricultural tasks like disease
detection, weed, and stress detection; crop monitoring; applying nutrients; soil mineralogy
studies; yield estimation; and sorting applications [37,38].

Microscopy imaging has a prominent role in modern biology for the visualization of
tissues, cells, proteins, and macromolecular structures at all resolutions. Indeed, biopsy
diagnosis is the gold standard for cancer diagnosis in pathology. Machine vision has
recently been employed in the biomedical field to detect, measure, and recognize cells
and patterns in histopathology images or for target tracking and 3D reconstruction [28,39].
These biomedical applications can be grouped together on the basis of the tissue or organ
analyzed—for example, renal pathology [40,41], computational cytology [42], breast can-
cer [43], oral cancer [44], and intestine pathology [45], among others. However, microscopy
imaging has also found applications to pollen identification [46,47], microorganism recog-
nition [48], and estimating the fecundity of fish based on histological images of their
gonads [49,50].

CV techniques have also played an important role in the product life cycle across the
entire industrial manufacturing process, including product design, modeling and simu-
lation, planning and scheduling, the production process, inspection and quality control,
assembly, transportation, and disassembly [51,52]. Equally, they have been applied to
a myriad of domains: car parking lot management, detecting the positions of parking
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spaces [53] or used in autonomous driving [54]; the mushroom industry, for the identi-
fication of poisonous mushrooms, plucking cultivated mushrooms covered by the soil,
and mechanized grading of mushrooms [55]; continuous monitoring of beehives [56] and
beehive products such as honeybee pollen [57]; marine ecosystems, in monitoring fish
habitats using underwater videos or images [58] or estimating the fecundity of fish from
histological images of their gonads [50,59]; crop disease monitoring [35,60,61]; the iden-
tification of insects from digital images [62]; food quality assessments [63,64], covering
potatoes [65], fruit damage [66], and dry-cured ham [67,68]; automation within the chicken
farming industry [69]; and plant identification [70].

All of these computer vision applications involve the integration of the following elements:

1. Support for data recording: Microscopes; UAVs; satellites; robots; MRI, X-ray, and
CT devices; and others.

2. Type of input data: 2D images, videos, or other information, dependent on the high-
performance sensors used to perceive the given scenario, which could be RGB cameras;
multispectral, hyperspectral, thermal, and infrared sensors; synthetic-aperture radar
(SAR) cameras; Light Detection and Ranging or Laser Imaging Detection and Ranging
(LiDAR) sensors; or other cameras [71].

3. Machine vision-related aim of the application: Feature detection or recognition,
image segmentation, image classification, 3D modeling or reconstruction, object
tracking, defect detection, object counting or measurements from images, and visual
inspection, among others. The evaluation methodology used in CV techniques is
dependent on the aims and application in question.

4. Type of processing: CV methods can be roughly divided into three categories: non-
learning-based methods, learning-based methods, and hybrid methods. The first
types of methods are usually known as the classical methods, and these rely on
unsupervised, manually designed feature extractors or statistical models, in which
the output is calculated from direct processing of the input data. Currently, the second
types are methods based on deep learning, in which previous training with ground-
truth data is needed to compute the output. Hybrid strategies normally combine the
extraction of features from the input data with a subsequent machine learning stage.

5. Experimental testing: Using publicly available datasets or private data.

Despite the abundance of works and reviews published in this domain in recent years,
many challenges are still open questions. From a computational point of view, future work
should focus on designing more efficient algorithms that can operate in real time or run
on low-capacity devices such as UAVs. As mentioned, some machine vision techniques
require a substantial amount of ground-truth labeled data for training. Transfer learning or
unsupervised annotation algorithms have been proposed to alleviate the need for labeled
data, addressing domain shift or directly labeling the data, but there is still room for further
research on this aspect. At the same time, a considerable number of the studies in the
literature on CV only use private data or use public datasets with different experimental
setups, complicating comparison between algorithms. So, new data must be made public
in order for the field to mature.

For CV applications in which the decision-making involved affects people, there is
substantial evidence that AI-based systems take on race-, ethnicity-, culture-, age-, and
gender-based biases, among others, that disadvantage minority populations. Gender
bias typically intersects with other biases [72], and Natural Language Processing (NLP)
and facial analysis and recognition are research fields that feel greater effects of gender
bias—for example, gender bias in commercial facial recognition systems [73,74] or the
social impact of image generation models [75]. Machine vision systems perpetuated or
intensified social inequalities in recent applications of developing systems that integrated
NLP and CV [76,77], with biases introduced by both. Biases can be introduced into CV
systems in many different ways: the ground-truth labeling of the data, the selection of
the data included for training, the algorithm design, and evaluation of the prediction
quality, among other design decisions. Gender biases can be imbued into CV systems
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unintentionally due to our cultural experience or gender stereotypes. Therefore, CV system
developers should be aware of gender bias in their future work. Equally, some of the
images and videos used in CV research are obtained without the explicit consent of the
people photographed. Hence, recently, the IEEE announced that it will no longer allow
the use of the Lena image in its publications. Furthermore, in some CV applications,
such as emotional computing, people’s right to privacy and intimacy should be socially
debated [78].

2. Overview of This Special Issue

This Special Issue called for scientific articles related to the computer vision applica-
tions previously covered, and after a double-blind review process, nineteen articles were
published. This section provides a brief overview of each contribution in order to encourage
further exploration on the part of the reader.

The first contribution, entitled “A UAV Aerial Image Target Detection Algorithm
Based on YOLOv7 Improved Model”, proposes an enhanced YOLOv7 model for detecting
small targets in UAV images. Experiments were carried out on the UAV aerial photo dataset
VisDrone2019 and compared with the YOLOv7 model.

The second contribution, entitled “RN-YOLO: A Small Target Detection Model for
Aerial Remote-Sensing Images”, applies a new YOLO model based on YOLOv8, called
RN-YOLO, to detecting small targets in RS images. These experiments were conducted on
the TGRS-HRRSD and RSOD datasets and compared with the YOLOv8 model.

The third contribution, entitled “Dense Object Detection Based on De-Homogenized
Queries”, establishes a new method for dense object detection in images and videos.
Experiments were run on the CrowdHuman dataset and compared with other state-of-the-
art (SOTA) methods.

The fourth contribution, entitled “Multi-Scale Fusion Uncrewed Aerial Vehicle Detec-
tion Based on RT-DETR”, covers an enhanced model of a real-time detection transformer
(RT-DETR), a real-time end-to-end object detection model for detecting drones in images.
Two available UAV datasets were used for the experiments.

The fifth contribution, entitled “Efficient Vision Transformer YOLOv5 for Accurate
and Fast Traffic Sign Detection”, details a new model for detecting traffic signs, which is a
vital task in autonomous driving systems. It achieved faster and more accurate results than
the YOLOv5 model. Experiments were conducted on the 3L-TT100K traffic sign dataset.

The sixth contribution, entitled “Facial Beauty Prediction Combined with Multi-Task
Learning of Adaptive Sharing Policy and Attentional Feature Fusion”, presents a strategy
for improving facial attractiveness assessments, involving experimental testing on the
LSAFBD and SCUT-FBP5500 databases.

The seventh contribution, entitled “Two-Stage Progressive Learning for Vehicle Re-
Identification in Variable Illumination Condition”, elucidates a TSPL framework for rec-
ognizing vehicles in images acquired by surveillance cameras with varying viewpoints,
levels of illumination, and resolutions. A private large-scale dataset (VERI-DAN) and
the Vehicle-1M dataset were used for the experiments, and the framework proposed was
compared with other SOTA methods.

Inspired by the separation of luminance and chrominance information in the YCbCr
color space, the eighth contribution, entitled “DBENet: Dual-Branch Brightness Enhance-
ment Fusion Network for Low-Light Image Enhancement”, describes a new model for en-
hancing RGB images with low light, minimizing brightness, color distortion, and noise
pollution in the enhanced images. The experiments in this paper made use of multiple
publicly available low-light image datasets, and the results were evaluated against those of
classical algorithms.

The ninth contribution, entitled “RSLC-Deeplab: A Ground Object Classification
Method for High-Resolution Remote Sensing Images”, suggests a semantic segmentation
network for accurately segmenting remote sensing images. Experiments conducted using
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the WHDLD dataset demonstrated its outperformance of the PSP-NET, U-NET, MACU-
NET, and DeeplabV3+ networks.

The tenth contribution, entitled “YOLO-CID: Improved YOLOv7 for X-ray Contraband
Image Detection”, augments the YOLOv7 method for contraband image detection in X-
ray inspection systems in order to detect small objects under occlusion or low contrast.
Its results on the PIDray public dataset were an improvement upon the results of the
YOLOv7 algorithm.

The eleventh contribution, entitled “Enhancing the Accuracy of an Image Classifica-
tion Model Using Cross-Modality Transfer Learning”, proposes a cross-modality transfer
learning approach to shifting the knowledge when the source and target domains are
different, specifically from the text domain to the image domain.

The twelfth contribution, entitled “Three-Dimensional Measurement of Full Profile of
Steel Rail Cross-Section Based on Line-Structured Light”, solves the industrial problem of
improving railway operation safety by proposing a method for three-dimensional measure-
ment of the cross-sectional profiles of steel rails based on binocular line-structured light.
Private data were used in this paper.

The thirteenth contribution, entitled “A Workpiece-Dense Scene Object Detection
Method Based on Improved YOLOv5”, optimizes the YOLOv5 method for detecting
workpieces in dense images of industrial production lines, using a self-built artifact dataset
to compare the results with the original method.

The fourteenth contribution, entitled “Improving the Performance of the Single Shot
Multibox Detector for Steel Surface Defects with Context Fusion and Feature Refinement”,
devises a method for improving the ability to identify steel surface defects. Experiments
were run on the public NEU-DET dataset and compared with other SOTA methods (Faster
R-CNN, RetinaNet, and different YOLO methods).

The fifteenth contribution, entitled “Object Detection Algorithm of UAV Aerial Photog-
raphy Image Based on Anchor-Free Algorithms”, constructs an algorithm for anchor-free
target detection in UAV aerial photography images. In experiments performed on the Vis-
Drone dataset, it outperformed the fully convolutional one-stage object detection algorithm.

The sixteenth contribution, entitled “A Vehicle Recognition Model Based on Improved
YOLOv5”, in order to increase vehicle driving safety, validated the results of an improved
YOLOv5s algorithm for vehicle identification and detection on a self-built dataset against
the results of the YOLOv5 method.

The seventeenth contribution, entitled “Material-Aware Path Aggregation Network
and Shape Decoupled SIoU for X-ray Contraband Detection”, outlines a method, based on
variants of the YOLO model, for detecting and classifying contraband in X-ray baggage
images. They evaluated the method proposed on the public X-ray contraband SIXray and
OPIXray datasets and conducted a comparison of the results with those of other SOTA
X-ray baggage inspection detection methods.

The eighteenth contribution, entitled “Fast Adaptive Binarization of QR Code Images
for Automatic Sorting in Logistics Systems”, presents an adaptive binarization method for
reading unevenly illuminated QR codes in automatic sorting in logistics systems. The image
quality, recognition rate, and computation speed of the proposed method was tested against
other SOTA methods on different examples.

The nineteenth contribution, entitled “Surveying Racial Bias in Facial Recognition:
Balancing Datasets and Algorithmic Enhancements”, is a review on facial recognition sys-
tems that involve specific racial categories, discussing balanced facial recognition datasets,
addressing and analyzing the racial bias of the methods, and exploring the interrelation of
racial and gender bias.

Funding: This article received no external funding.
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Abstract: To address the challenges of multi-scale objects, dense distributions, occlusions, and
numerous small targets in UAV image detection, we present CMS-YOLOv7, a real-time target
detection method based on an enhanced YOLOv7 model. Firstly, the detection layer P2 for small
targets was added to YOLOv7 to enhance the detection ability of small and medium-sized targets,
and the deep detection head P5 was taken out to mitigate the influence of excessive downsampling on
small target images. The anchor frame was calculated by the K-means++ method. Using the concept
of Inner-IoU, the Inner-MPDIoU loss function was constructed to control the range of the auxiliary
border and improve detection performance. Furthermore, the CARAFE module was introduced
to replace traditional upsampling methods, offering improved integration of semantic information
during the image upsampling process and enhancing feature mapping accuracy. Simultaneously,
during the feature extraction stage, a non-strided convolutional SPD-Conv module was constructed
using space-to-depth techniques. This module replaced certain convolutional operations to minimize
the loss of fine-grained information and improve the model’s ability to extract features from small
targets. Experiments on the UAV aerial photo dataset VisDrone2019 demonstrated that compared
with the baseline YOLOv7 object detection algorithm, CMS-YOLOv7 achieved an improvement of
3.5% mAP@0.5, 3.0% mAP@0.5:0.95, and the number of parameters decreased by 18.54 M. The ability
of small target detection was significantly enhanced.

Keywords: UAV; small target detection; YOLOv7

1. Introduction

In today’s rapidly advancing technological landscape, UAV technology has also pro-
gressed swiftly. Unmanned aerial vehicles (UAVs) are now widely utilized across various
fields, including military, agriculture, emergency rescue, and geological surveys, owing to
their unique advantages. This has made UAV technology a prominent focus in modern
science and technology [1–3]. Target detection, an important research area in computer
vision [4], includes identifying and locating objects within images or videos. Traditional
target detection algorithms often fall short in effectively extracting features for accurate
detection. However, with advancements in deep learning technology [5], the performance
of target detection algorithms has significantly improved, enabling UAVs to perform target
detection in complex scenes [6].

There are four factors that cause various problems in UAV applications when perform-
ing target detection. First, UAVs typically shoot from an overhead perspective, resulting in
a too-singular angle for feature extraction, which may affect the detection algorithm’s ability
to identify and locate targets [7,8]. Second, UAVs may encounter complex background
environments during detection, including season, weather, target occlusion, lighting, and
similarly shaped objects, increasing the complexity of small target detection [9]. Third,
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during inspection or surveillance, targets often exhibit characteristics of small targets, with
fewer pixels and relatively simple features. This can lead to targets being easily overlooked
or misdetected during detection. Fourth, UAV target detection often needs to be performed
in real-time with high accuracy requirements.

At present, UAV target detection methods are usually used in specific scenarios, typ-
ically suitable for scenes where the background and target image sizes are similar and
uniform, such as maritime targets and agriculture. Therefore, in multi-class targets with
complex backgrounds, detection performance is reduced, and feature loss occurs at dif-
ferent scales, increasing the risk of missed detections. UAVs frequently detect numerous
small objects with limited detail, which can make them difficult to distinguish from the
background or from other similar objects. This challenge arises because the limited res-
olution and fine detail in the images can cause these small objects to blend in with their
surroundings or be easily misidentified.

To reply to these challenges, this paper introduces an enhanced model, CMS-YOLOv7,
which builds upon the YOLOv7 framework. The proposed algorithm was tested using the
VisDrone2019 dataset [10] and aims to advance UAV applications in small target detection
by improving both precision and efficiency. This study accomplished the following:

(1) The small target detection layer (P2) was added, and the deep detection layer (P5) was
eliminated. At the same time, the K-means++ method [11] was used to compute the
anchor frame after operation. This enhanced the performance of the model in detecting
small targets and reduced the possibility of false detection or missed detection.

(2) The Inner-MPDIoU loss function was constructed using the idea of Inner-IoU [12],
replacing the CIoU [13], to improve the detection capability of small target objects in
complicated surroundings.

(3) Introducing the CARAFE module [14] as a replacement for traditional upsampling
methods allowed for a larger field of view, effectively aggregating contextual informa-
tion to enhance the acquisition of target feature information.

(4) A new convolution module, SPD-Conv [15], was introduced to improve computa-
tional efficiency, enhance the model’s performance and generalization ability, re-
duce information loss, and strengthen the feature extraction capability for small
target objects.

2. Related Work

2.1. Common Target Detection Algorithms

Traditional target detection techniques are based on manually designed feature ex-
tractors [16,17]. While these methods offer the advantage of requiring fewer algorithm
parameters for specific detection tasks, facilitating their integration into various small plat-
forms, they also have notable drawbacks. Specifically, designing different feature extractors
for diverse target detection needs limits the algorithm’s adaptability. Despite their accuracy,
these traditional methods often suffer from the problems of too-complex computation, a
slow speed of processing tasks, insufficient adaptability, and reduced robustness.

Deep learning-based target detection frameworks are primarily classified in two
ways—anchor-based and anchor-free methods—depending on their approach to defining
ground truth. Within the anchor-based category, there are two primary types: multi-
stage and single-stage methods. Multi-stage approaches, including R-CNN [18], Fast
R-CNN [19], and Faster R-CNN [20], begin by generating region proposals and then apply
convolutional neural networks to categorize objects and perform boundary box regression.
These techniques are designed to improve detection accuracy and speed while addressing
issues such as class imbalance. Conversely, single-stage methods, for example, the YOLO
series [21–28], SSD [29], and RetinaNet [30], integrate feature extraction, classification,
and localization into a single process, which leads to faster detection times. Although
these single-stage detectors might have slightly lower accuracy compared with multi-
stage methods, they significantly reduce computational requirements and are thus more
suitable for real-time applications. However, despite the advancements offered by these
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deep learning techniques, their direct application to UAV aerial image detection may still
present challenges.

2.2. YOLO Architectures Suitable for Aerial Imagery

YOLO series algorithms have gained widespread recognition in academia and indus-
try for their excellent detection efficiency and accuracy in target detection. Among them,
YOLOv5 [25] and YOLOv7 [27] are currently two of the most widely adopted models.
YOLOv5 enhances real-time target detection tasks through advanced deep learning tech-
niques, boasting improvements over its predecessor, YOLOv4 [24], in model architecture,
training strategies, and overall performance. YOLOv5 integrates the CSP (Cross Stage
Partial) network architecture, which significantly mitigates redundant computations and
improves overall computational efficiency. Despite its advancements, YOLOv5 still faces
difficulties in detecting small and densely packed objects and grappling with occlusions
and pose variations. To overcome these challenges and boost the performance of real-time
object detectors, YOLOv7 introduces a novel training scheme known as the Trainable Bag
of Freebies (TBoF). This innovative approach has markedly enhanced the accuracy and
generalization capabilities of various object detection models.

Extensive research has made numerous advancements to improve YOLO models,
specifically for UAV target detection. Researchers have introduced multiple modifications
and improvements to optimize these models for the unique challenges associated with
aerial surveillance and detection tasks. Zhu et al. [31] proposed TPH-YOLOv5, a modi-
fication of YOLOv5 that substitutes the conventional prediction heads with Transformer
Prediction Heads. This adaptation improves the model’s capacity to handle complex scene
variations. Qin et al. [32] developed the MCA-YOLOv7 algorithm, an improvement on the
YOLOv7 model, by optimizing the Feature Pyramid Network (FPN) structure, incorporat-
ing attention mechanisms, and enhancing context aggregation blocks to better detect small
targets. Wu et al. [33] amended the spatial pyramid pooling framework by integrating
and cascading manifold pooling layers, which enhances the network’s capacity for feature
learning. Liu et al. [34] proposed EdgeYOLO, which features a lightweight decoupled
head for target detection, achieving faster inference speeds and higher accuracy. Similarly,
Zhao et al. [35] introduced the MS-YOLOv7 model, which leverages the Swin Transformer
and attention mechanisms to improve the feature extraction capabilities of the network’s
neck, strengthening detection precision.

These studies have successfully enhanced UAV target detection performance to a
certain extent. However, in practical UAV applications, target objects still face issues, such
as complex and variable backgrounds, small sizes, and mutual occlusion, leading to missed
and false detections. Constructing a more efficient target detection algorithm remains a
significant challenge.

2.3. YOLOv7 Network Structure

YOLOv7 [27] represents a sophisticated single-stage target detection model known
for its exceptional balance between speed and precision. Its advanced architecture ensures
versatility and effectiveness across various application contexts. YOLOv7 offers different
network configurations by adjusting width and depth parameters to address varying com-
plexity and performance needs. Each configuration provides a tailored solution for diverse
target detection tasks. The architecture of YOLOv7 is organized into three fundamental
components: Backbone, Neck, and Head.

The Backbone network performs feature extraction; it consists of two main com-
ponents: ELAN and MP. The ELAN module captures more contextual information by
expanding the convolutional layer’s receptive field, enhancing the network’s learning
ability. The MP module enhances feature extraction capability through multi-path con-
volution and receptive field expansion. The use of these two modules allows the back-
bone network to efficiently extract and represent image features while maintaining high
computational efficiency.
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To optimally merge feature information across multiple scales, the Neck network
employs both the Feature Pyramid Network (FPN) architecture and the SPP-PANet de-
sign. The SPPCSPC structure, which combines Spatial Pyramid Pooling (SPP) with Cross
Stage Partial Connections (CSPC), effectively enhances the network to extract and use the
feature information.

In the Head part, the Rep structure is used to flexibly regulate the number of image
channels in the output features. Then, through 1 × 1 convolution operations, the network
can accurately predict object confidence, class, and anchor box position.

3. Method

3.1. CMS-YOLOv7

In aerial small target detection, while YOLOv7 demonstrates impressive performance
due to its advanced network architecture, it faces challenges in extracting fine features from
small targets due to the limited pixel information available. Additionally, the restricted
receptive field of the model may impede its ability to capture comprehensive contextual
information, complicating detection in complex environments. To solve these problems,
we propose an enhanced model based on the YOLOv7 architecture named CMS-YOLOv7,
specifically designed for UAV aerial image target detection tasks. The network architecture
is depicted in Figure 1.

Figure 1. Network architecture of CMS-YOLOv7.

In this model, a small target detection layer is introduced while the deep detection layer
is removed, allowing for better extraction of target pixel information and improved accuracy
in detecting small targets. To enhance both regression and classification performance, we
propose the Inner-MPDIoU loss function and incorporate an auxiliary bounding box for
faster and more effective regression results. To overcome the limitations of traditional
upsampling methods and improve target feature retrieval, we replace them with the
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CARAFE module. Furthermore, the integration of the SPD-Conv module enhances the
network’s ability to obtain image features and minimize information loss, leading to
improved detection of small objects in images.

3.2. Small Target Detection Layer

In UAV images characterized by complex backgrounds, detecting ground objects can
be particularly challenging due to factors such as their small size, dense environments, and
occlusion. To address these issues, we integrated an additional detection head into the
baseline YOLOv7 framework, thereby enhancing its capability to more effectively identify
small objects within UAV imagery.

The benchmark YOLOv7 network effectively detects objects of different scales from
large to small using three different scale feature maps (80 × 80 × 255, 40 × 40 × 255,
and 20 × 20 × 255). By adding a small target detection layer P2 (160 × 160 × 255),
more small object feature information can be obtained from the shallow feature map,
significantly enhancing the network’s ability to capture medium and small object features.
By directly feeding the feature map obtained from this layer into the prediction module, the
accuracy of medium and small target detection is effectively improved, and the possibility of
detecting errors and detecting omissions is significantly reduced, enhancing the network’s
adaptability to target scales and detection robustness.

Downsampling in deep feature maps often leads to a significant loss of information for
small objects, making it difficult to capture their features effectively in the deep detection
layer and potentially impacting final predictions during feature fusion. To address this issue,
we introduce the P2 small target detection layer and remove the P5 deep detection layer.
While adding the P2 detection head increases the network’s parameter count, removing the
P5 head reduces the large number of parameters, achieving a balanced adjustment in the
overall parameter count.

However, eliminating the P5 detection head may also result in a partial loss of semantic
information. Therefore, we further optimized the connectivity channels in the neck network
to preserve more semantic information and strengthen the fusion of features.

Since YOLOv7 is an anchor-based target detection algorithm, its performance is
sensitive to the sizes of anchor boxes. To optimize the size of anchor boxes, we used the
K-means++ method [11]. Table 1 displays the optimized anchor box dimensions tailored
for the VisDrone2019 dataset, configured for an image resolution of 640 × 640 pixels.

Table 1. Anchor box size setting.

Detection Layer Feature Map Size Anchor Frame Setting

P2 160 × 160 [3, 4, 4, 8, 7, 6]
P3 80 × 80 [7, 12, 14, 8, 11, 17]
P4 40 × 40 [27, 15, 21, 28, 48, 38]

3.3. Inner-MPDIoU

In YOLOv7, the CIoU loss function [13] is employed to enhance the accuracy of
bounding box alignment evaluation. Unlike the traditional IoU loss, CIoU provides a more
nuanced assessment by incorporating the overlap area, the distance between box centers,
and the difference in aspect ratios. This detailed evaluation improves the precision of the
predicted bounding boxes. The calculation formula of CIoU is provided in Equation (1).

LCIoU = 1 − IoU +
ρ(b, bgt)

c2 + αv (1)

where IoU =
|B∩Bgt|
|B∪Bgt| indicates the extent of overlap between the predicted box and the

truth box, v = 4
π2

(
arcsinωgt

hgt − arcsinωgt

h

)2
is used to represent the aspect ratio, and
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α = v
(1−IoU)+v represents the balancing parameter. bgt and b represent the calculation results

of the truth box and the predicted box, respectively. The Euclidean distance between the
center points of the prediction box and the truth box is denoted by ρ(b, bgt). LIoU = 1− IoU
is defined as the loss corresponding to IoU.

Many IoU-based Bounding Box Regression (BBR) loss functions aim to enhance con-
vergence speed by incorporating additional loss terms, yet they frequently overlook the
intrinsic limitations of IoU loss. Inner-IoU [12] addresses these limitations by integrating
an auxiliary bounding box loss and applying a scaling factor to adjust the auxiliary bound-
ing box size. This approach refines the bounding box regression process and improves
detection accuracy. The detailed formulas are provided in Equations (2)–(6):

bl = xc − ω× ratio
2

, br = xc +
ω× ratio

2
(2)

bt = yc − h × ratio
2

, bb = yc +
h × ratio

2
(3)

inter = (min(bgt
r , br)− max(bgt

l , bl))× (min(bgt
b , bb)− max(bgt

t , bt)) (4)

union = (ωgt × hgt)× (ratio)2 + (ω× h)× (ratio)2 − inter (5)

IoUinner =
inter
union

(6)

where ratio ∈ [0.5, 1.5], and when ratio = 1, Inner-IoU can be considered identical to
ordinary IoU. When ratio > 1, the auxiliary bounding box is larger than the actual bounding
box, promoting the regression of low IoU, which is beneficial for detecting small objects in
the image. When ratio < 1, the auxiliary bounding box is smaller than the actual bounding
box, accelerating the convergence of high IoU samples, which is beneficial for detecting
large objects in the image.

MPDIoU [36] is an advanced evaluation criterion designed to improve the precision
of object detection tasks. Unlike traditional IoU, which measures the overlap between
predicted and truth bounding boxes, MPDIoU integrates probabilistic information to
provide a more nuanced assessment of localization accuracy. This metric helps address
challenges related to precise object boundary delineation and enhances the evaluation of
detection models, particularly in complex scenarios where traditional IoU may fall short.

d2
1 = (xprd

1 − xgt
1 )

2
+ (yprd

1 − ygt
1 )

2
(7)

d2
2 = (xprd

2 − xgt
2 )

2
+ (yprd

2 − ygt
2 )

2
(8)

MPDIoU = IoU − d2
1

w2 + h2 − d2
2

w2 + h2 (9)

LMPDIoU = 1 − MPDIoU (10)

The distance between the upper left and lower right corners of the predicted and
truth boxes is symbolized by d2

1 and d2
2. Building on the concept of Inner-IoU, MPDIoU is

enhanced by employing a scale factor to generate auxiliary boxes of varying scales for loss
calculation. This adjustment results in faster and more effective regression outcomes. The
Inner-MPDIoU calculation formula is shown in Equation (11).

LInner−MPDIoU = LMPDIoU + IoU − IoUinner (11)

3.4. CARAFE

Upsampling is a crucial operation in convolutional neural networks (CNNs) primarily
used in the feature fusion stage to improve feature resolution. This process increases the
size of feature maps, allowing for finer detail representation in images. In deep learning and
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computer vision, various methods for upsampling exist, including interpolation techniques
like nearest-neighbor, bilinear, and trilinear interpolation. YOLOv7 uses nearest-neighbor
interpolation for upsampling, which relies only on adjacent pixels and does not fully utilize
the semantic information within the feature map.

CARAFE, introduced by Wang et al. [14], represents a lightweight and resource-
efficient image upsampling technique designed to overcome the limitations of traditional
nearest-neighbor interpolation methods, particularly in handling small targets where
feature degradation often occurs. CARAFE enhances feature reconstruction by leveraging
larger receptive fields to incorporate a richer context of feature information, thus improving
the accuracy of upsampled images.

In this study, we integrated the CARAFE module into the neck region of our network,
replacing the previous upsampling component. The CARAFE module is composed of two
main parts: the upsampling prediction module and the feature reassembly module, as
depicted in Figure 2.

Figure 2. Structure of CARAFE.

In the upsampling prediction module, the process begins with input images of size
H × W × C. With an upsampling factor of σ, a 1 × 1 convolutional layer first reduces
the number of image channels. Next, a convolution kernel of size kup × kup performs
convolution operations, expanding the channel count to channels σ2 × kup

2 for content
encoding. To finalize the process, output normalization is applied to optimize the param-
eter count, ensuring efficient model performance. Next, the feature reassembly module
takes these features after processing and integrates them through an element-wise multi-
plication operation. This is performed between the prediction reassembly kernel and the
corresponding areas of the original feature map. This operation effectively reconstructs the
upsampling output, leveraging the preserved information from the original features. By
carefully reassembling and enhancing these features, the module achieves a high-quality
upsampling result that maintains fidelity and detail from the initial input.

3.5. SPD-Conv

In the domains of target detection and image classification, convolutional neural
networks (CNNs) have demonstrated exceptional performance and set new benchmarks.
However, for small target detection tasks, especially when these small objects overlap,
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occlude, or are very small and blurry in the image, traditional CNN architectures often
face challenges. These scenarios require the network to capture and retain fine-grained
image information, but current designs often struggle to handle these details, leading to
a decline in feature learning ability and significantly affecting model performance. To
tackle this challenge, the paper presents a novel convolutional neural network architecture,
SPD-Conv [15], integrated into the backbone network. The SPD-Conv structure is depicted
in Figure 3.

Figure 3. Structure of SPD-Conv.

The SPD-Conv architecture introduces an innovative approach to convolutional neural
networks by incorporating two key components: the SPD (space-to-depth) layer and a
non-strided convolutional layer. The SPD module ensures that all information within the
channel dimension is fully preserved during the downsampling process, avoiding any
information loss. A non-strided convolutional layer is added after each SPD module. This
convolutional layer reduces the number of channels by learning parameters, minimizing
non-discriminative information loss. This design is particularly advantageous for low-
resolution and small target detection tasks. It works by segmenting the original feature
map into multiple sub-feature maps, each downsampled at different scales. Then, the sub-
feature maps are connected by the channel dimension, and a feature map with reduced scale
but enhanced information richness. When the method is applied to the backbone, more
feature information in the image is preserved through the feature connection of multiple
sub-feature graphs. In the same downsampling process, the computational efficiency of the
model is improved, the model performance and generalization are significantly enhanced,
and the information loss is minimized.

4. Experiments

4.1. Dataset

To assess the ability of CMS-YOLOv7, we used the VisDrone2019 dataset [10], which
was compiled by the AISKYEYE team at Tianjin University’s Machine Learning and Data
Mining Laboratory. This dataset comprises 6471 training images, 548 validation images,
and 1610 testing images, all captured from a drone’s perspective. It includes ten kinds
of objects: pedestrians, people, bicycles, cars, vans, trucks, tricycles, awning-tricycles,
buses, and motors. The images feature numerous small to medium-sized objects, some
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of which overlap, and cover diverse scenes such as highways and intersections under
various weather conditions, like sunny, rainy, cloudy, and nighttime conditions. These
characteristics pose significant challenges for target detection. The VisDrone2019 dataset is
shown in Figure 4.

 

Figure 4. Partial image of the VisDrone2019 dataset.

4.2. Parameter Settings

The experiments were performed on a Windows 11 system featuring an Intel® Core™
i7-13700F CPU, an RTX 4090 24 GB GPU, CUDA 11.1, and Python 3.8, with PyTorch 1.13.0
as the deep learning framework. The training configuration included a batch size of 8 and
300 epochs and input image dimensions of 640 × 640 pixels. All other parameters were
configured to the default settings of YOLOv7.

4.3. Evaluation Metrics

Four metrics are used in this paper to evaluate the performance of the target detection
algorithm: mAP@0.5, mAP@0.5:0.95, Parameters, GFLOPs, and FPS.

In the context of object detection evaluations, mAP@0.5 refers to the mean average
precision (mAP) computed using a fixed IoU threshold of 0.5. This metric assesses the
accuracy of the model’s predictions by calculating how well the predicted bounding boxes
overlap with the truth boxes when this overlap is at least 50%.

By contrast, mAP@0.5:0.95 offers a more detailed performance assessment by averag-
ing mAP values over a range of IoU thresholds from 0.5 to 0.95, with 0.05 increments. This
broader evaluation captures the model’s performance across various levels of localization
accuracy, providing a more comprehensive picture of its robustness and effectiveness in
different detection scenarios. By incorporating multiple IoU thresholds, mAP@0.5:0.95
reflects how well the model performs under varying degrees of overlap, thus offering a
more nuanced understanding of its overall detection capabilities.

Precision (P) is used to measure the percentage of the predicted positive samples that
actually turn out to be positive. Essentially, it represents the number of samples that were
predicted to be positive that were actually positive. The formula for calculating Precision is
detailed in Equation (12).

Precision =
TP

TP + FP
(12)
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Recall (R) is used to indicate the percentage of actual positive samples that are correctly
predicted to be positive examples. In other words, it indicates how many of all the true
positive examples are correctly predicted as positive. The detailed formula for calculating
Recall is provided in Equation (13).

Recall =
TP

TP + FN
(13)

mAP is an integral metric for assessing the performance of object detection models across
a range of classes. It is calculated as the weighted average of the average precision (AP)
scores for each individual class within the dataset. The specific formula of mAP is detailed
in Equation (14).

mAP =

∞
∑

n=1

∫ 1
0 P(R)dR

N
(14)

Additionally, GFLOPs serve as a metric for evaluating the computational complexity
of a model, reflecting the volume of arithmetic operations required during inference. FPS
is employed to express the inference speed of the model when it actually performs the
detection task. The parameters can measure the size of the model.

4.4. Ablation Experiments

In order to further evaluate the effectiveness of the CMS-YOLOv7 model, ablation
studies were performed using the VisDrone2019 dataset.

4.4.1. Comparison with Baseline Model

The validation set of the VisDrone2019 dataset was used to assess the performance of
each component introduced. To effectively demonstrate changes in algorithm performance,
we measured metrics such as mAP@0.5, mAP@0.5:0.95, number of parameters, GFLOPs,
and FPS. All experiments were conducted under uniform conditions with consistent pa-
rameters to ensure accuracy.

Table 2 outlines the progressive introduction of several key improvement strategies
relative to the baseline YOLOv7. This detailed the development process of the CMS-
YOLOv7 on the VisDrone2019 dataset and analyzed the resulting performance changes.
The introduction of these strategies led to a significant enhancement in the model’s detection
performance.

Table 2. Experimental results on the VisDrone2019 dataset.

Add P2
Remove P5 with
Optimized Neck

Inner-
MPDIoU

CARAFESPD-Conv mAP@0.5 mAP@0.5:0.95
Params

(M)
GFLOPs FPS

48.8% 27.7% 36.53 103.3 119√
50.0% 29.5% 37.08 117.1 96√ √
50.3% 29.7% 17.71 116.9 102√ √ √
50.7% 29.9% 17.71 116.9 104√ √ √ √
51.1% 30.2% 17.84 117.9 88√ √ √ √ √
52.3% 30.7% 17.99 166.0 73

Initially, the addition of the P2 detection head resulted in notable improvements
in performance metrics, with mAP@0.5 and mAP@0.5:0.95 increasing by 1.2% and 1.8%,
respectively. Subsequently, removing the P5 detection head and optimizing the connectivity
channels in the neck network led to further gains, with mAP@0.5 and mAP@0.5:0.95
increasing by an additional 0.3% and 0.2%. These modifications significantly enhanced the
model’s capability to detect small objects, while resulting in an 18.82 M drop in parameters
and a small increase in GFLOPs compared with baseline YOLOv7.
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Next, the Inner-MPDIoU loss function was adopted in place of the original CIoU loss
function. This improvement strategy resulted in a successful increase of 0.4% in mAP@0.5
and 0.2% in mAP@0.5:0.95, without requiring any additional parameters or GFLOPs.

Following this, the use of the CARAFE module instead of traditional upsampling
methods slightly increased both parameter count and GFLOPs. This adjustment led to
enhancements of 0.4% in mAP@0.5 and 0.3% in mAP@0.5:0.95.

Finally, optimizing the network’s backbone with SPD-Conv was introduced to enhance
the detection of small objects. This addition led to a notable improvement in performance,
with mAP@0.5 and mAP@0.5:0.95 increasing by 1.2% and 0.5%, respectively. Although
this improvement made the parameters increase slightly and generated some additional
computational overhead, the impact on the detection performance and real-time ability of
the model was still small.

Overall, these four improvements resulted in a 3.5% increase in mAP@0.5 and a 3.0%
increase in mAP@0.5:0.95 for the model while reducing the parameter count by 18.54 M,
achieving a degree of lightweight model optimization.

4.4.2. Determining Parameters in Inner-MPDIoU

In Inner-IoU, the scaling factor ratio is used to adjust the size of the auxiliary bounding
box during loss calculation. Increasing ratio enlarges the auxiliary bounding box, which
helps the model better capture feature information for small and medium-sized targets,
thereby enhancing detection accuracy. To assess the effectiveness of this approach, an
empirical study was conducted to examine how varying ratio affects the performance of
the target detection algorithm.

Firstly, the P2 detection head was introduced into the YOLOv7 network, the P5
detection head was removed, and the neck connection channels were adjusted. Then,
on the basis of this, Inner-MPDIoU was introduced, and the network’s ratio value was
adjusted to adapt to the changes in feature map size brought by the previous improvements.
This adjustment ensured that the model could fully utilize the feature information of small
and medium-sized targets extracted by the previous improvements, further enhancing the
accuracy of target detection.

Table 3 indicates variations when adjusting within the range of ratio ∈ [1.30, 1.45],
affecting both mAP@0.5 and mAP@0.5:0.95. The optimal performance improvement was
observed at ratio = 1.33. Therefore, for subsequent experiments, Inner-MPDIoU was set
to 1.33.

Table 3. Effect of ratio values on experimental results.

Ratio mAP@0.5 mAP@0.5:0.95

1.30 50.6% 29.8%
1.33 50.7% 29.9%
1.35 50.7% 29.8%
1.37 50.6% 29.7%
1.40 50.5% 29.7%
1.41 50.5% 29.6%
1.45 50.3% 29.5%

4.5. Detection Results Visualization

From the detailed analysis of the experimental data, it is evident that the CMS-YOLOv7
model significantly outperforms the baseline YOLOv7 on the VisDrone2019 dataset. To
illustrate the performance differences between the two models in target detection, we
present predictions on three representative images. These examples offer an intuitive
comparison of their relative effectiveness.

Figure 5 presents the prediction results categorized into three groups—(a), (b), and
(c)—for comparative analysis. In each group, the left image shows the detection outcomes
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from the baseline YOLOv7 model, while the right image depicts the results from the
CMS-YOLOv7 model.

 

Figure 5. Comparative analysis of baseline YOLOv7 and CMS-YOLOv7 on VisDrone2019 dataset.

In group (a) images, the YOLOv7 baseline model detected 72 pedestrians, 10 individu-
als, 1 bicycle, 17 cars, 4 vans, 2 trucks, 1 tricycle, 1 tricycle with awning, and 5 motorcycles.
By contrast, the CMS-YOLOv7 model detected 85 pedestrians, 11 individuals, 2 bicycles,
19 cars, 4 vans, 2 trucks, 1 tricycle, 1 tricycle with awning, and 6 motorcycles.

In group (b) images, the baseline YOLOv7 model detected 1 pedestrian, 2 individ-
uals, 39 cars, 7 trucks, 2 buses, 2 motorcycles, and 3 other vehicles. The CMS-YOLOv7
model detected 1 pedestrian, 2 individuals, 43 cars, 9 trucks, 3 buses, 2 motorcycles, and
3 other vehicles.
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In group (c) images, the baseline YOLOv7 model detected 61 pedestrians, 10 individu-
als, 1 bicycle, 1 car, and 2 motorcycles. The CMS-YOLOv7 model detected 73 pedestrians,
10 individuals, 1 bicycle, 1 car, and 2 motorcycles.

The position marked in the red box in the figure shows more intuitively that CMS-
YOLOv7 can detect more small targets.

In summary, the CMS-YOLOv7 model exhibited markedly superior detection per-
formance compared with the baseline YOLOv7 on the VisDrone2019 dataset. The CMS-
YOLOv7 model not only detected a greater number of targets but also demonstrated
enhanced accuracy and improved capability in detecting small objects. These experimental
results strongly support the application of the CMS-YOLOv7 model for tasks such as drone
target detection.

4.6. Comparison with Other Algorithms

To thoroughly assess the performance of the CMS-YOLOv7 model for target detec-
tion, a comparative analysis was performed against several established models, including
YOLOv4, YOLOv5l, TPH-YOLOv5 [31], YOLOv6m, YOLOv7, and YOLOv8. Comprehen-
sive experiments were conducted on the VisDrone2019 dataset, focusing on key evaluation
metrics such as mAP@0.5 and mAP@0.5:0.95 to gauge detection accuracy across various IoU
thresholds. This comparative evaluation facilitates a nuanced understanding of the CMS-
YOLOv7 model’s effectiveness in target detection, with the detailed results summarized in
Table 4.

Table 4. Comparison between different models.

Model mAP@0.5 mAP@0.5:0.95

YOLOv4 47.5% 26.1%
YOLOv5l 39.8% 22.9%

TPH-YOLOv5 46.4% 27.6%
YOLOv6m 31.9% 21.8%
YOLOv7 48.8% 27.7%
YOLOv8 45.5% 27.8%

CMS-YOLOv7 52.3% 30.7%

The experimental findings reveal that the CMS-YOLOv7 model exhibits outstanding
performance on the VisDrone2019 dataset. It shows notable improvements in both mAP@0.5
and mAP@0.5:0.95, highlighting its effectiveness and superiority in target detection tasks.
Given that the VisDrone2019 dataset closely mirrors real-world scenarios in drone target
detection, these results underscore the practicality and effectiveness of CMS-YOLOv7 for
real-world applications.

5. Conclusions

Addressing prevalent challenges in UAV image object detection such as multi-scale
objects, dense distributions, occlusions, and the high prevalence of small targets, this paper
introduces the CMS-YOLOv7 algorithm. This novel approach enhances detection perfor-
mance by incorporating a specialized small target detection layer (P2), eliminating the
deep detection layer (P5), and adjusting the neck connection channels, thereby significantly
improving the detection of small objects in aerial imagery. Introducing Inner-MPDIoU to
replace CIoU accelerated the bounding box regression process by incorporating auxiliary
bounding boxes for loss calculation, thereby enhancing learning capabilities for small
target samples in complex backgrounds. Substituting the CARAFE module for traditional
upsampling modules effectively aggregates contextual information, improving feature
acquisition capabilities. Finally, integrating SPD-Conv into the backbone architecture miti-
gated information loss in images and bolsters the model’s capacity to extract features from
small targets, thereby enhancing overall detection performance. The experimental results
demonstrate that CMS-YOLOv7 achieves significantly higher accuracy in object detec-
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tion compared with other advanced algorithm models, particularly excelling in detecting
small targets.

In addition, CMS-YOLOv7 shows excellent detection performance, significantly re-
duces the model parameters, and realizes the light weight of the model. At the same
time, GFLOPs is added to enhance the computational power of the model and improve
the detection performance. In a word, the model meets the requirements of UAV image
detection accuracy and real-time detection.
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Abstract: Accurately detecting targets in remote-sensing images is crucial for the military, urban
planning, and resource exploration. There are some challenges in extracting detailed features from
remote-sensing images, such as complex backgrounds, large-scale variations, and numerous small
targets. This paper proposes a remote-sensing target detection model called RN-YOLO (YOLO
with RepGhost and NAM), which integrates RepGhost and a normalization-based attention module
(NAM) based on YOLOv8. Firstly, NAM is added to the feature extraction network to enhance the
capture capabilities for small targets by recalibrating receptive fields and strengthening information
flow. Secondly, an efficient RepGhost_C2f structure is employed in the feature fusion network to
replace the C2f module, effectively reducing the parameters. Lastly, the WIoU (Wise Intersection
over Union) loss function is adopted to mitigate issues such as significant variations in target sizes
and difficulty locating small targets, effectively improving the localization accuracy of small targets.
The experimental results demonstrate that compared to the YOLOv8s model, the RN-YOLO model
reduces the parameter count by 13.9%. Moreover, on the DOTAv1.5, TGRS-HRRSD, and RSOD
datasets, the detection accuracy (mAP@.5:.95) of the RN-YOLO model improves by 3.6%, 1.2%, and
2%, respectively, compared to the YOLOv8s model, showcasing its outstanding performance and
enhanced capability in detecting small targets.

Keywords: target detection; remote sensing; YOLOv8; attention mechanism; lightweight convolution

1. Introduction

Target detection in aerial remote-sensing images aims to identify and determine the
position and type of specific objects contained in the remote-sensing images. With the
rapid development of drone and satellite technologies, it has been widely applied in both
military and civilian sectors, playing a crucial role in various aspects, such as environmental
monitoring [1], urban planning [2], agricultural management [3], and disaster response [4].
As depicted in Figure 1, aerial remote-sensing images have many features, such as overhead
imaging, significant changes in object size, and many small targets. These features pose a
major challenge to aerial remote-sensing image detection.

In target detection for remote-sensing images, traditional approaches often rely on
specific feature selection [5] and hand-designed algorithms [6]. While these methods have
yielded some success in specific scenarios, they need help to adapt to the complexities
and variations inherent in remote sensing. Deep learning has provided a novel solution
to these challenges in recent years. The target detection model is categorized into two
main types: two-stage and one-stage. Two-stage detection involves generating candidate
regions within the image, which are fed into a convolutional neural network (CNN) for
target identification and localization through classification and regression. Representative
algorithms in this category include R-CNN [7], Fast R-CNN [8], and Faster R-CNN [9].
On the other hand, single-stage detection directly computes the coordinates and category
probabilities of target objects from the image features extracted using CNN, such as the
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algorithms in SSD [10,11] and the YOLO series [12–15]. Notably, while two-stage detection
algorithms necessitate sequential steps for region proposal and subsequent classification
and regression, they tend to be slower than their single-stage counterparts. Moreover, with
the introduction of the YOLO family of algorithms, single-stage detection methods have
significantly enhanced detection accuracy while maintaining high-speed performance.

(a) (b)

Figure 1. Remote-sensing image, red frames represent the identification box. (a) Large difference in
target size; (b) Numerous small targets.

Many researchers have made notable progress in refining YOLO models specifically
for detecting targets in remote-sensing images in recent years. Zhu et al. [16] proposed
TPH-YOLOv5, which integrates the transformer module to enhance the feature extraction
capability of the model but increases the number of parameters and the computational com-
plexity. Yang et al. [17] introduced RS-YOLOX, leveraging the ECA attention mechanism
and ASFF feature extraction algorithm to boost small targets’ detection accuracy effectively.
Yet, there remains room for improvement in terms of lightweighting. Yu et al. [18] lever-
aged the centralized feature pyramid (CFP) and the hybrid attention ACmix but encoun-
tered suboptimal enhancement accuracy and instances of missed detection. Liu et al. [19]
combined hybrid extended convolution with a self-designed residual network, bolstering
feature extraction for targets of varying sizes. However, their model’s scope could have
been broadened to localizing and classifying aircraft on the DOTA dataset, constraining
its generalization capability. Wang et al. [20] introduced a feature processing module in
YOLOv8 to integrate the superficial features and deep features.. Still, the target sizes in
the experimental dataset are more similar, and there is a certain degree of misdetection for
targets with a large span of size and missed detection.

From the collective efforts of the researchers above, it becomes evident that despite the
widespread adoption of YOLO models in remote-sensing target detection, significant op-
portunities for enhancement persist. Thus, this paper introduces the RN-YOLO (RepGhost
NAM YOLO) model, building upon the foundation of improved YOLOv8, and achieves
commendable detection results across the DOTAv1.5, TGRS-HRRSD, and RSOD datasets.
The main contributions of this study include the following:

(1) Tackling the difficulty of detecting small targets and extracting detailed features within
limitations is achieved by integrating NAM [21] between the feature extraction and fu-
sion networks. NAM optimally preserves small target features through its lightweight
design and enhances detection accuracy by adjusting the weight contribution factor.

(2) The RepGhost module [22] is introduced within the feature fusion network, creating
RepGhost_C2f. This innovation effectively tackles the issue of inadequate detection
capacity for targets spanning a wide range of sizes while significantly reducing
model parameters.
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(3) The WIoU loss function [23] replaces the CIoU in the original model, enhancing
detectors’ overall performance by assigning different weights to the targets with
various sizes and alleviating the challenge of localizing small targets.

2. Related Works

2.1. Machine Learning in Remote-Sensing Images

With the continuous evolution of machine-learning technology, feature-based clas-
sifiers have emerged as promising tools in remote-sensing target detection. Compared
to traditional approaches, these methods offer enhanced capability to handle intricate
data relationships, thereby improving detection robustness. Through meticulously crafted
features, these classifiers proficiently identify, classify, and localize targets. Support Vector
Machine (SVM) [24] stands out as a formidable classifier, partitioning data into distinct
classes by identifying optimal hyperplanes. Meanwhile, Random Forest (RF) [25] employs
an ensemble learning approach, constructing multiple decision trees and aggregating their
outputs through voting, ensuring high accuracy and resilience. On the other hand, Ad-
aBoost [26] iteratively enhances the classification performance by training a sequence of
weak classifiers and combining their outputs with appropriate weights.

These machine learning-based methodologies provide a robust framework for remote-
sensing target detection, facilitating accurate identification and localization of targets within
vast remote-sensing datasets. However, one limitation persists: the reliance on manual
feature engineering, which is intricate and laborious. This constraint hampers scalability for
target detection in extensive remote-sensing datasets and impedes real-time applicability
in remote-sensing image target detection.

2.2. Reinforcement Learning in Remote-Sensing Images

Reinforcement learning-based models typically involve the design of an intelligent
agent capable of interacting with its environment and learning optimal action strategies
based on feedback. In the context of target detection in remote-sensing images, the environ-
ment typically comprises the dataset of remote-sensing images containing the targets to be
identified. Following each action within this environment, the intelligent agent receives
a portion of the image and a corresponding reward. Subsequently, the model selects its
following action based on its learned strategy, such as zooming in on a specific image region
or shifting focus to another part of the image to pinpoint a particular detection target.

DQN [27] optimizes decision-making in target detection tasks by learning a value func-
tion that guides action selection. However, DQN utilized in target detection often demands
many samples and much training time, consuming significant computational resources.
Actor–Critic [28] integrates a policy gradient and a value function, allowing for updates to
both during the learning process, thereby enhancing stability. Nevertheless, Actor–Critic
methods typically necessitate well-designed reward functions and state representations,
which is usually tricky in remote-sensing image target detection.

2.3. YOLOv8 Model

Thus far, deep learning-based remote-sensing image target detection remains widely
utilized, with YOLO emerging as a frontrunner due to its faster speed and higher accu-
racy. YOLOv8 has swiftly become the prevailing model in target detection, leveraging
its robust generalization capabilities and enhanced accuracy. The network architecture of
YOLOv8 [29] comprises two key components: the backbone and the head part, with the
latter encompassing feature fusion and target detection. Breaking away from previous
iterations, YOLOv8 opts for the C2f module over the C3 module, enhancing the flow of
gradient information while still upholding its lightweight design. Additionally, YOLOv8
shifts from an anchor-based approach to an anchor-free mode, eliminating the necessity
for predefined bounding boxes and providing a more adaptable solution space. Finally,
YOLOv8 employs distribution focal loss, facilitating a quicker focus near the target and
expediting convergence.
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3. Methods

3.1. Overall Architecture

YOLOv8 has demonstrated significant success in various domains, owing to its robust
generalization and heightened accuracy. In addressing challenges such as wide-ranging ob-
ject sizes, numerous small targets, and limited network feature extraction in remote-sensing
images, this paper endeavors to enhance YOLOv8 for remote-sensing image detection. Ini-
tially, the NAM module is introduced after the C2f module within the backbone to bolster
the learning of crucial image features. This paper adopts three NAM modules, aiming to
subject the outputs of varying size dimensions in the backbone to comprehensive feature
learning. Furthermore, after conducting comparative experiments on both the backbone
and the head, this paper opts to substitute the C2f module connected to the detection
head in the head segment with RepGhost_C2f. This modification amplifies feature fusion,
enhances model detection accuracy, and streamlines the network model’s parameter count.
Lastly, the CIoU loss function is supplanted with WIoU in the detection head to further
refine small targets’ localization. The enhanced model structure, depicted in Figure 2,
incorporates improvements across three key areas: the backbone, head, and detection head,
with the subsequent Sections 3.2–3.4 elaborating on the respective ideas and methodologies
for enhancement.

Figure 2. RN-YOLO model structure for remote-sensing image detection, red dotted boxes represent
additional or modified parts of the model and the final arrow points to the eventual output of
the model.

3.2. Normalization-Based Attention Module (NAM)

The attention mechanism directs the network towards vital information within the
image, identifying critical features while filtering out non-essential ones. Therefore, incor-
porating such a mechanism into target detection can effectively retain the detailed features,
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bolster the model’s memory, and ultimately elevate the detection accuracy. This paper uses
the normalization-based attention module (NAM), which improves the convolutional block
attention module (CBAM).

CBAM represents a noteworthy attention mechanism model with versatile applica-
tions. It generates two sets of weights for each channel by employing global average pooling
and global maximum pooling. These weights then undergo a series of transformations,
including feedforward neural network processing with shared parameters, element-wise
summation, and softmax activation, yielding final channel-specific weights.

In contrast, NAM alters this intermediate process, as shown in Figure 3. Initially, the
individual channels undergo batch-wise normalization, and a scaling factor λi(i ≤ C) in
normalization is introduced. Since this scaling factor is learnable, the standard deviation
Wi of the scaling factor is used to represent the importance of each channel, as shown in
Equation (1), obviating the cumbersome parameters associated with fully connected and
convolutional layers.

Wi =
λi

∑C
j=1 λj

(1)

Figure 3. Normalization-based attention module structure diagram.

Subsequently, the channel weights are multiplied with each pixel point and activated
by the softmax function, akin to CBAM. Finally, the probabilities at the positions of each
pixel point are used as weights and multiplied with each pixel point to enable filtering of
the features represented by each channel. The NAM module ensures feature integrity by
reducing rather than deleting, and it also highlights specific features to capture details about
small targets. The subsequent experimental results can verify that NAM can enhance the
extraction of crucial information and lay a solid foundation for subsequent feature fusion.

3.3. RepGhost_C2f

In addition to enhancing the backbone’s feature extraction using NAM, this paper
further optimizes the C2f module in the head and proposes RepGhost_C2f. The RepGhost
module can achieve a simultaneous reduction in hardware computation and the model’s
parameters, as demonstrated by experiments showcasing its robustness.

Given that numerous similar feature maps are generated during convolution opera-
tions, GhostNet addresses this redundancy by employing inexpensive linear operations to
derive additional feature maps from a subset of the original ones, as depicted in Figure 4a.
Building upon GhostNet, RepGhost further refines this process by substituting concat
operations with addition operations, as illustrated in Figure 4b. RepGhost enhances the
feature fusion efficiency and reduces the computational overhead at the hardware level.
Moreover, RepGhost enhances the model parameter efficiency by repositioning the ReLU
activation function after the addition operation, ensuring that only genuinely influential
features undergo nonlinear transformation. Additionally, by halving the channels in the
middle of RepGhost compared to GhostNet, the model significantly reduces parameters
when traversing through the SE attention mechanism or the depth-divisible convolution
module, thereby reducing the parameter and computational load.
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(a)

(b)

Figure 4. GhostNet and RepGhost structure. (a) GhostNet structure; (b) RepGhost structure.

C2f stands out as the pivotal module within YOLOv8, offering lightweight charac-
teristics and the capability to amalgamate intricate abstract information from the deep
network with detailed information from the shallow network, thereby enhancing target
detection accuracy. This paper replaces the core bottleneck module in C2f with RepGhost
to construct the new RepGhost_C2f module, as depicted in Figure 5. This modification
amplifies the network’s feature extraction and fusion capabilities and further reduces the
network’s parameter and computational load. Thus, it accomplishes a dual enhancement
in both performance and efficiency.

Figure 5. RepGhost_C2f structure.

3.4. WioU (Wise Intersection over Union)

Choosing an appropriate loss function is crucial for accurately localizing the target
object and giving its coordinate position. IoU-based functions for calculating the bounding
box loss constantly develop and appear as SIoU, EIoU, and GIoU. In YOLOv8, the CIoU
(Complete Intersection over Union) loss function is employed to quantify the disparity
between the predicted and ground truth boxes, as depicted in Equations (2)–(4).

LCIoU = 1 − IoU +
ρ
(
b, bgt)

H2 + W2 + αν (2)

ν =
4
π

(
arctan

wgt

hgt − arctan
w
h

)2

(3)

α =
ν

(1 − IoU) + ν
(4)

where IoU represents the intersection over union ratio between the ground truth bounding
box and the predicted bounding box. b and bgt signify the center coordinates of the
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two bounding boxes, and ρ
(
b, bgt) denotes the Euclidean distance between the center

coordinates. αν indicates the aspect ratio similarity of the real frame and the bounding
box. In the last two supplementary formulas, wgt and hgt state the side length of the target
bounding box, w and h state the side length of the predicted bounding box, and H and W
mean the length of the outer sides of the two bounding boxes together.

However, the CIoU loss function solely considers the width and height factors and
lacks discrimination between large and small targets. The size of targets in remote-sensing
images varies greatly. Consequently, it employs the same computational approach for
any bounding box, which may not adequately distinguish between different target sizes.
Therefore, we introduce the WIoU loss function to sufficiently reduce the loss of easily
fitted large targets while prioritizing the loss associated with small targets.

Wise-IoU (WIoU) employs a combinatorial approach to calculate the loss function,
illustrated in Figure 6. First, as shown in Equation (5), WIoU adopts a multiplicative
approach to consider the width and height, effectively reducing the loss associated with
large targets in high quality.

LWIoUv1 = exp

(
(xa − ya)

2 + (xb − yb)
2

H2 + W2

)
(1 − IoU) (5)

where (xa, xb) and (ya, yb) means the center coordinate of the predicted bounding box and
the ground truth bounding box, and H and W mean the length of the outer sides of the
two bounding boxes together. IoU represents the intersection over union ratio between the
ground truth bounding box and the predicted bounding box.

Figure 6. The important symbols of WIoU and CIoU representation diagram.

Referring to focal loss, a monotone focusing mechanism LWIoUv2 for cross-entropy is
designed, which effectively reduces the contribution of simple examples to the loss value. This
enables the model to focus on difficult examples and improve the classification performance.

LWIoUv2 =

(
L∗

IoU

LIoU

)γ

LWIoUv1 (6)

where L∗
IoU is a dynamic gradient gain, LIoU is a momentum average value that slows

convergence in the latter stages of training by normalizing the loss function, and γ is the
dynamic update normalization factor.

Finally, to counterbalance the detrimental gradients produced by low-quality targets
and prioritize the detection of abundant small targets, WIoU uses β to construct non-
monotonic focusing coefficients, as depicted in Equations (7) and (8), where α and δ are
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hyper-parameters. This ensures that high-quality large and low-quality small targets
receive a low loss value.

LWIoUv3 =
β

δαβ−δ
LWIoUv1 (7)

where

β =
L∗

IoU

LIoU
(8)

4. Experiments

4.1. Experimental Datasets and Their Preprocessing

The RN-YOLO model is tested and evaluated using three aerial remote-sensing im-
age datasets: DOTAv1.5 [30], TGRS-HRRSD [31], and RSOD [32]. Primarily, DOTAv1.5
serves as the main dataset for this experiment, facilitating exhaustive comparisons and
ablation experiments. To ensure the model’s generalization, experimental validations and
comparisons are conducted on the TGRS and RSOD datasets respectively.

DOTAv1.5, provided by the China Resources Satellite Data and Application Center
(CRSDAC), encompasses 2806 super-large images spanning 16 categories and containing
403,318 instances. Due to its extensive coverage, this dataset is widely utilized across
various research domains. However, given the impractical size of the images—up to
20,000 × 20,000 pixels—they are unsuitable for direct model training. Hence, before
experimentation, we resized the images to 640 × 640. Subsequently, we used a variety of
techniques and pairwise combinations to enhance the dataset, including horizontal and
vertical flipping images, enhancing the brightness, adding Gaussian noise, and injecting
perceptual noise, as illustrated in Figure 7. The final dataset comprises 25,114 images,
divided into training, validation, and testing sets in a 6:2:2 ratio.

(a) (b) (c)

Figure 7. Sample image dataset enhancement. (a) Original image; (b) Image with horizontal flip and
pretzel noise; (c) Image with vertical flip and brightness boost.

Similarly, TGRS-HRRSD offers a sizable, high-resolution dataset. For our experiments,
we focused solely on comparison and validation tests, selecting images with dimensions
under 1000 × 1000, totaling 5406 images with 400 images per category. We partitioned this
dataset into training, validation, and testing sets following the same 6:2:2 ratio.

RSOD consists of 976 images spread across four categories, primarily sized at 1000 × 1000.
We applied identical image augmentation techniques to ensure dataset balance, resulting
in 1916 augmented images, with approximately 400 images per category.

Additionally, to visualize the distribution of object sizes in the image, we count the
percentage of each abscissa and divide the horizontal coordinate every 0.5%, as shown in
Figure 8. The figures clearly demonstrate that the majority of objects occupy less than 3%
of the total area, with those in DOTAv1.5 typically accounting for less than 1%, which will
validate the performance of our model in small object detection.
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(a) (b) 

 
(c) 

Figure 8. The percentage of each object in three datasets bar chart. (a) Bar chart with the percentage
of each object in RSOD; (b) Bar chart with the percentage of each object in TGRS-HRRSD; (c) Bar
chart with the percentage of each object in DOTAv1_5.

4.2. Experimental Environment and Training Setting

This study’s experimental hardware is Intel Xeon Platinum 8352V, with 120G memory
and NVIDIA GeForce RTX4090 GPU. The experimental software environment is Python
3.8, pythoch2.0.0, cuda11.8, and ubuntu22.04.1. In addition, the version of the ultralytics
package for YOLOv8 relied on was 8.0.212. In the experiment, we set the warm epochs
to 3 and the learning rate in this section to 0.1, and we put the learning rate to 0.01 in the
initial section and gradually changed it to 0.0001. The batch size is 16 to adapt the model
and avoid memory explosion. Furthermore, we adopt a cross-entropy loss function for
classification and distribution focal loss for bounding box regression. We also modified the
CIoU to WIoU, proving that it leads to a better performance.

4.3. Experimental Comparison and Analysis

In remote-sensing target detection, achieving a balance between model precision and
speed is often paramount. To comprehensively evaluate model performance, this paper
assesses accuracy using metrics such as P (Precision), R (Recall), mAP@50, and mAP@.5:.95.
Additionally, the number of parameters (Parameters) in the model is considered to eval-
uate the operational efficiency. This holistic approach provides a thorough and detailed
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assessment of both precision and efficiency, offering valuable insights into the model’s appli-
cability. By considering these metrics collectively, a more accurate evaluation of the model’s
performance is attained, thus facilitating informed decisions for further enhancement and
optimization. Definitions of these evaluation metrics can be found in the literature [17].

4.3.1. Comparative Experiments for Attention Module

To assess NAM’s efficacy, we conducted experiments incorporating various other
commonly employed attention modules for comparison. For instance, CBAM [33] uses
a sequential application of channel attention followed by spatial attention, exemplifying
a typical hybrid attention mechanism. Context aggregation [34] fuses pixel relationships
at multiple scales and in different spaces, thus weighting them separately. Shuffle atten-
tion [35] spatially divides the data and assigns attention weights separately for channel-wise
information exchange.

To ensure comparability across experimental results, all attention mechanisms in this
paper are positioned after C2f modules, which connect the backbone and head. Follow-
ing training and testing on DOTAv1.5, the results are summarized in Table 1. Based on
mAP@.5:.95, it is evident that the model augmented with the NAM module exhibits a
superior detection performance, boasting a 1.3% enhancement over the YOLOv8 bench-
mark model. Notably, the NAM module utilizes the fewest parameters, with virtually
no additional parameters added. This underscores the efficacy of the NAM module in
achieving significant improvement while maintaining parameter stability.

Table 1. Comparison of the effectiveness of different attention mechanisms.

Methods P (%) R (%) Paras (M) mAP@50 (%) mAP @.5:.95 (%)

Yolov8 85.0 81.6 11.13 86.2 60.2
+NAM 86.3 82.3 11.13 86.7 61.5
+CBAM 85.2 82.3 11.48 86.7 60.8

+ContextAggregation 86.9 82.0 11.82 86.9 61.3
+ShuffleAttention 87.2 82.6 11.13 87.2 61.2

Furthermore, comparison experiments were carried out on the RSOD and TGRS-
HRRSD datasets, as outlined in Table 2. The findings demonstrate that the model in-
tegrating the NAM consistently surpasses YOLOv8 across all three datasets, yielding
enhancements of 1.2%, 0.8%, and 1.3% on RSOD, TGRS-HRRSD, and DOTAv1.5, respec-
tively. This underscores the substantial influence of the NAM module in improving the
detection accuracy across diverse datasets.

Table 2. Performance of NAM attention mechanisms on three aerial remote-sensing datasets.

Methods

RSOD TGRS-HRRSD DOTAv1_5

P (%) R (%)
mAP@.5:.95

(%)
P (%) R (%)

mAP@.5:.95
(%)

P (%) R (%)
mAP@.5:.95

(%)

Yolov8 95.1 94.5 78.5 91.2 87.1 67.9 82.0 81.6 60.2
+NAM 95.4 95.7 79.7 91.6 87.2 68.7 86.3 82.3 61.5

4.3.2. Comparative Experiments for Lightweight Convolution

YOLOv8 utilizes C2f modules in both the backbone and the head section. The im-
proved C2f module in this paper can enhance model performance while maintaining gen-
eralization. This paper conducted comparative experiments on the RSOD and DOTAv1.5
datasets to ascertain the impact of integrating improved C2f modules. This paper re-
placed all C2f modules in the backbone and the head section to ensure the consistency
of the experiments. Furthermore, two lightweight modules, Scconv [36] and RepGhost,
are employed for comparison purposes, and the results are presented in Table 3. It is
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observed that although both lightweight modules can decrease the number of parameters,
the lightweight module is more effective in the head part. At the same time, its application
in the backbone may result in a decreased detection performance. Therefore, we decided
to improve and replace the C2f modules connected to the detector head to achieve an
optimal detection performance. The comparison with YOLOv8 reveals that the lightweight
module reduces the number of model parameters, and the RepGhost module demonstrates
a superior performance on RSOD and DOTAv1.5, improving by 1.0% and 2.1%, respectively.
Consequently, the RepGhost module was selected in this paper to enhance C2f, enabling
simultaneous enhancement of the model parameters and performance.

Table 3. Comparative experiments for lightweight modules used in different parts.

Position Methods
RSOD DOTAv1.5

P (M) mAP@50 (%) mAP@.5:.95 (%) Paras (M) mAP@50 (%) mAP@.5:.95 (%)

None YOLOv8 11.13 99.1 78.5 11.13 86.2 60.2

backbone
+Scconv 10.36 97.3 77.7 10.36 84.9 58.6

+RepGhost 9.59 97.5 78.2 9.59 86.6 60.4

head
+Scconv 10.51 98.0 79.4 10.51 86.7 60.9

+RepGhost 9.50 97.5 79.5 9.76 87.0 62.3

Table 4 shows the experimental results conducted on TGRS-HRRSD. Table 4 indicates
a significant reduction in the model’s parameter and a considerable improvement in perfor-
mance following the integration of RepGhost. This underscores the strong generalization
capability of RepGhost_C2f, prompting us to replace the C2f modules connecting the head
with the detection head with RepGhost_C2f modules.

Table 4. Performance comparison for RepGhost_C2f on different datasets.

Methods
RSOD TGRS-HRRSD DOTAv1_5

P (%) R (%) mAP@.5:.95 (%) P (%) R (%) mAP@.5:.95 (%) P (%) R (%) mAP@.5:.95 (%)

YOLOv8 95.1 94.5 78.5 91.2 87.1 67.9 85.0 81.6 60.2
+RepGhost 95.8 95.9 79.5 91.1 88.0 68.4 88.1 82.4 62.3

4.3.3. Comparative Experiments for Loss Function

YOLOv8 uses the CIoU loss function but only considers the width and height without
distinguishing between high and normal-quality targets. To address this limitation, WIoU
and GIoU were employed as replacements for the CIoU loss function in this study, and the
resulting experimental outcomes are summarized in Table 5. The tables show that the WIoU
achieves improvements of 0.9%, 0.6%, and 1.8% over the original YOLOv8 model across
the three datasets, respectively, with WIoU exhibiting further enhancement over GIoU.

Table 5. Performance comparison for three loss functions on different datasets.

Methods
RSOD TGRS-HRRSD DOTAv1_5

mAP@50 (%) mAP@.5:.95 (%) mAP@50 (%) mAP@.5:.95 (%) mAP@50 (%) mAP@.5:.95 (%)

YOLOv8 99.1 78.5 91.6 67.9 86.2 60.2
+WIoUv3 98.4 79.4 91.9 68.5 87.6 62.0

+GIoU 98.8 78.5 92.0 68.3 86.4 60.5

4.3.4. Ablation Study

We systematically integrated the enhancements above into the original YOLOv8 model
and evaluated its performance on the cropped and augmented DOTAv1.5 dataset. The
results are presented in Table 6. The accuracy mAP@.5:.95 of RN-YOLO is improved by
3.6% after modifying YOLOv8. Moreover, the parameter is reduced by 13.9%.
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Table 6. Ablation experiments.

Model RepGhost WIoUv3 NAM P (%) R (%) Paras (M) mAP@50 (%) mAP@.5:.95 (%)

Yolov8 85.0 81.6 11.13 86.2 60.2
Yolov8

√
88.1 82.4 9.76 87.0 62.3 (+2.1)

Yolov8
√ √

87.3 83.8 9.77 87.8 62.8 (+0.5)
Yolov8

√ √ √
87.9 84.9 9.77 87.8 63.8 (+1.0)

4.3.5. Comparative Experiments with Other Models

To thoroughly assess our proposed model’s target detection accuracy and generaliza-
tion capability, we conducted a comprehensive comparative analysis across three datasets,
employing state-of-the-art target detection algorithms for remote sensing as benchmarks.
The summarized results are presented in Table 7. It is clear from the table that our proposed
model consistently surpasses existing algorithms across all three aerial image datasets,
demonstrating a superior detection accuracy. Additionally, our model boasts a significantly
lower parameter than YOLOv8.

Table 7. Comparative experimental results with other models.

Dataset
Evaluation

Metrics
Improved Faster

R-CNN
YOLO

X
YOLO

v5
YOLO

v7
YOLO

v8
RN-YOLO

(Ours)

DOTA-v1.5
mAP@50 (%) 72.5 84.2 87.3 85.7 86.2 87.8

mAP@.5:.95 (%) 50.3 59.9 58.9 58.5 60.2 63.8
Param (M) 60.40 8.94 7.05 36.56 11.13 9.77

TGRS-HRRSD
mAP@50 (%) 74.3 77.4 91.7 92.0 91.6 92.5

mAP@.5:.95 (%) 53.2 58.9 66.3 67.5 67.9 69.1
Param (M) 60.42 8.94 7.04 36.54 11.13 9.77

RSOD
mAP@50 (%) 80.8 92.1 97.9 98.5 99.1 98.0

mAP@.5:.95 (%) 62.1 70.9 73.5 76.6 78.5 80.5
Param (M) 60.42 8.94 7.02 36.4 11.13 9.77

Finally, we comprehensively compared the YOLO series models and RN-YOLO on
the TGRS-HRRSD dataset. Table 8 presents the prediction accuracies for each category. Our
model demonstrates an absolute accuracy advantage in the majority of categories.

Table 8. Accuracy comparison for each categories in the TGRS-HRRSD dataset.

Categories YOLOv5 (%) YOLOv7 (%) YOLOv8 (%)
RN-YOLO
(Ours) (%)

ship 66.7 72.4 65.2 61.2
bridge 35.3 40.6 43.5 50.1

ground_track 74.5 79.9 77.5 81.1
storage_tank 84.2 84.1 85.4 88.3

basketball_court 67.9 71.9 69.0 63.9
tennis_court 87.5 87.7 88.2 89.2

airplane 86.2 87.6 85.5 83.5
baseball_diamond 63.4 63.1 65.8 70.3

harbor 73.9 71.3 80.6 82.8
vehicle 74.6 71.9 73.7 72.9

crossroad 53.5 52.7 54.9 58.1
T_junction 45.1 44.3 43.3 42.6
parking_lot 48.1 49.4 49.6 55.2

4.4. Visualization Experiments

To showcase the improved detection performance of the RN-YOLO model, we con-
ducted visualization experiments on representative scenes from the three datasets, as
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illustrated in Figure 9. The comparison images on the top row show the detection results
obtained using YOLOv8, while the bottom row demonstrates the enhanced detection per-
formance achieved by RN-YOLO. The comparison indicates that YOLOv8 still struggles
with significant leakage detection issues when detecting small targets. Conversely, RN-
YOLO exhibits a remarkable capability in detecting small targets, even amidst large image
size spans and many small targets. Moreover, the comparison images selected encompass
various datasets: the first from the DOTA dataset, the second from the RSOD dataset, and
the third from the TGRS-HRRSD dataset. This highlights the effectiveness of RN-YOLO in
detecting small targets and its robust generalization across diverse datasets.

(a)

(b)

Figure 9. Detection comparison for YOLOv8 and RN-YOLO. (a) Detection results using YOLOv8;
(b) Detection results using RN-YOLO.

5. Discussion

In remote-sensing image detection, there are problems with large target size spans
and many small targets. The existing models cannot extract detailed features, leading to
missing and false detection. This paper improves the feature extraction network, feature
fusion network, and location loss function of YOLOv8 and proposes RN-YOLO. RN-YOLO
improves the target detection accuracy while reducing the parameters. Firstly, we integrate
NAM into the feature extraction network to filter features. NAM can prioritize key features
and suppress insignificant features. Secondly, we introduce RepGhost_C2f in the feature
fusion network. RepGhost_C2f can boost the object detection accuracy while substantially
reducing the parameters. Lastly, we refine the localization loss function WIoU to mitigate
difficulties in localizing small targets and enhance the object detection accuracy. The
experimental results demonstrate that our model effectively enhances mAP@.5:.95 by 3.6%,
1.2%, and 2% on the DOTAv1.5, TGRS, and RSOD datasets, respectively, compared to
YOLOv8, while reducing the parameters by 13.9%, showcasing strong generalization. This
study underscores the effectiveness of lightweight convolution, attention mechanisms,
and appropriate loss functions in improving target detection algorithms, offering novel
methods and insights in remote-sensing target detection.

Future research will focus on optimizing the network structure and extensively ex-
ploring attention mechanisms to enhance the network detection accuracy further while
maintaining a lower number of parameters. Additionally, we aim to refine the loss function
to ensure a robust performance when encountering tilted bounding boxes. Lastly, leverag-

38



Electronics 2024, 13, 2383

ing the reasoning capabilities of multimodal macro models on detected images provides a
pathway for reflecting on and enhancing detection results.
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Abstract: Dense object detection is widely used in automatic driving, video surveillance, and other
fields. This paper focuses on the challenging task of dense object detection. Currently, detection
methods based on greedy algorithms, such as non-maximum suppression (NMS), often produce
many repetitive predictions or missed detections in dense scenarios, which is a common problem
faced by NMS-based algorithms. Through the end-to-end DETR (DEtection TRansformer), as a type
of detector that can incorporate the post-processing de-duplication capability of NMS, etc., into the
network, we found that homogeneous queries in the query-based detector lead to a reduction in
the de-duplication capability of the network and the learning efficiency of the encoder, resulting in
duplicate prediction and missed detection problems. To solve this problem, we propose learnable
differentiated encoding to de-homogenize the queries, and at the same time, queries can communicate
with each other via differentiated encoding information, replacing the previous self-attention among
the queries. In addition, we used joint loss on the output of the encoder that considered both location
and confidence prediction to give a higher-quality initialization for queries. Without cumbersome
decoder stacking and guaranteeing accuracy, our proposed end-to-end detection framework was
more concise and reduced the number of parameters by about 8% compared to deformable DETR.
Our method achieved excellent results on the challenging CrowdHuman dataset with 93.6% average
precision (AP), 39.2% MR−2, and 84.3% JI. The performance overperformed previous SOTA methods,
such as Iter-E2EDet (Progressive End-to-End Object Detection) and MIP (One proposal, Multiple
predictions). In addition, our method is more robust in various scenarios with different densities.

Keywords: object detection; dense detection; DETR; transformer

1. Introduction

Dense object detection is an essential task in computer vision, aiming at accurately
detecting and locating multiple mutually occluded objects from an image or video. There
is a trade-off in the design of dense object detection algorithms. On the one hand, the
detector has to integrate the coded information and regress each target as much as possible
to avoid miss detection. On the other hand, while pursuing a higher recall, it is important
to prevent causing duplicate predictions, i.e., multiple predictions corresponding to the
same GT (Ground Truth). This trade-off is fundamental in dense detection tasks.

Among the current detection methods, there are two main ways to solve the problem
of missed detection and repeated prediction as follows: (1) box-level post-processing de-
duplication strategy; (2) matching the strategy of candidate boxes to the set of GTs during
the training process, i.e., to determine which candidate anchor or query should predict
which GT, and which one should not. They correspond to detection algorithms based on
anchors and post-processing and end-to-end detection algorithms based on queries.

In the widely used anchor-based detection algorithms [1–4], training is conducted us-
ing manually set dense anchors for many-to-one matching with GTs. Each anchor predicts
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the nearest IoU distance to itself in the neighborhood, as shown in Figure 1a. The many-
to-one matching training strategy and the absence of additional penalties for repeated
predictions in these methods make the network inherently incapable of de-duplication.
This results in multiple neighboring anchors regressing to the same GT during the predic-
tion, so additional post-processing methods, such as non-maximum suppression (NMS),
are required to remove duplicate predictions. However, this greedy algorithm-based box-
level method, NMS, which sets a fixed IoU threshold for removing highly overlapping
predictions and adjusts IoU suppression thresholds to balance the contradiction between
repeated prediction and missed detection, is still unable to solve the contradiction in differ-
ent dense scenarios. In the subsequent improvement algorithms, SoftNMS [5] mitigates
this contradiction by setting the soft threshold for box suppression, and adaptive NMS [6]
adaptively changes the threshold for suppression. However, box-level NMS and other
greedy-based post-processing methods still perform poorly in dense scenes.

Figure 1. Current mainstream detection frameworks, different coloured arrows are matched with the
same coloured GTs. (a) Anchor-based detector; (b) query-based detector.

In the end-to-end query-based detection algorithm [7,8], as shown in Figure 1b, a
global one-to-one matching algorithm based on bipartite graph matching is used to replace
the previous many-to-one greedy matching algorithms in training, and a learnable sparse
query is used to replace the manually set dense anchors. During the training process, each
query learns to focus on objects of different regions and shapes according to statistical laws
and performs global scale segmentation matching on the set of GTs (the queries that should
predict which GTs should and should not be used). During training, the network learns the
one-to-one matching of queries for GTs, and there is a loss penalty for repeated predictions
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during training, so the model learns the de-duplication capability inside the network
through query location segmentation without additional post-processing de-duplication
such as NMS.

However, in query-based detection algorithms, queries with similar locations focus
on similar encoding information, and queries with similar content tend to make repeated
predictions after the same regression and classification headers, which means that such a
problem is worse in dense scenes. In addition, since similar queries do not have enough
differentiated information for the network to learn the ability of duplicate removal in
training, similar queries bring unstable backpropagation during the training, which reduces
the learning efficiency of the encoder in crowded scenarios.

1.1. Solving the Query Homogenization Problem

Query homogeneity is mainly the result of two reasons: content homogeneity and
location homogeneity. For location homogenization, DN-DETR, and DINO-DETR [9,10]
improve the convergence speed by limiting the distance of query fine-tuning in the training
phase so that the matching division between GT and the query becomes more stable. In the
work of DDQ [11], good results were achieved by adding non-maximal suppression (NMS)
to the initialized query process to filter the initialized positions and suppress the queries
with similar positions. However, due to the high density of GTs in dense scenarios, the
location similarity is very high, so the differentiation of query locations can only alleviate
the repetitive prediction in dense scenarios. Secondly, the computational cost of non-
maximal suppression (NMS) is too high, and the experiments in RT-DETR [12] demonstrate
the high time cost of NMS.

In this paper, we address this problem by differentiating the content of the query. When
query locations are close, the encoded content is homogeneous due to similar attentional
scopes. Therefore, we designed a learnable differentiated encoding for each query to
break the strong correlation between the content of the query and its location. In this way,
even if the predicted locations of the queries are close to each other, the model can adopt
different learning strategies with differentiated information. This can significantly improve
the de-duplication ability of the decoder and the encoder. As shown in Figure 2, the
colors of the query prediction boxes represent their content differences; we aim to propose a
detection framework based on content differentiation. Meanwhile, in generating differential
encoding, the query can exchange differential information with the surrounding prediction,
replacing the self-attention among the queries in the original decoder and simplifying the
network structure.

Figure 2. Our detection framework based on differentiated query. Different colored arrows are
matched with the same colored GTs, and different colored boxes represent differences in the encoded
content of the queries.
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1.2. Alligned Decoder

In DETR-like detectors, the encoder generates feature maps for the decoder to query,
allowing for layer-by-layer fine-tuning to achieve more precise predictions. However, the
structural differences between the encoder and decoder lead to disparities in their encoding
and decoding methodologies. Much work has been conducted to improve the end-to-end
detector by aligning the design of encoders and decoders, enabling the more effective
integration of information during cross-attention and enhancing model efficiency. For
example, DAB-DETR [13] and conditional DETR [14] add the same positional coding in the
decoder as in the encoder to align the coding and decoding methods, which reduces the
information discrepancy caused by the difference between the encoder and the decoder
methods and obtains an improvement in accuracy. Inspired by these papers, we designed
the decoder as a structure aligned with the encoder, eliminating the self-attention among
the queries in the decoder. At the same time, using the asymmetric difference aggregation
(ADA) mechanism in the difference encoding process can be a good substitute for the
communication between queries. Without decreasing the detection efficiency and accuracy
of the model, the method in this paper can reduce the number of parameters by about 8%.

1.3. Query Initialization Considering Both Position and Confidence

In a two-stage DETR-like detection model, the query is usually initialized using
the encoder’s output confidence score Top-K algorithm. Due to the separate setting of
confidence and location loss functions, there is a mismatch between the confidence score
and IoU when selecting the initialized query, i.e., there are candidate predictions with high
IoU but low confidence, resulting in them being filtered out by the Top-k algorithm. For
this reason, this paper proposes using the joint loss of confidence and GIoU to supervise
the training of the encoder output and to optimize the mismatch between the confidence
and IoU to initialize the query more efficiently and achieve better detection results with
fewer queries.

1.4. Our Contribution

In this paper, we address the problem of homogeneous queries in query-based de-
tectors by proposing learnable differential encoding to add to the query, which increases
the de-duplication capability in the network while improving the learning efficiency of
the encoder and decoder; secondly, we used a higher-quality initialization of the query by
taking into account both the positional and confidence losses; and finally, we optimized the
structure of the decoder to reduce the number of model parameters without significantly
affecting the model accuracy. With the proposed differential query learning strategy, the
method in this paper outperformed the recent SOTA methods of Iter-E2EDet (Progressive
End-to-End Object Detection) [15], MIP (One proposal, Multiple predictions) [16], and
AD-DETR (Asymmetrical Decoupled Detection Transformer) [17], while the parameters
were reduced by about 8% with fewer decoders.

2. Analysis of Similar and Differentiated Queries

This section mainly discusses how similar queries in query-based detectors can lead
to repeated predictions and training inefficiency in dense scenarios. Queries with similar
locations focus on similar encoded feature information, which results in content-similar
queries, and they are more inclined to make similar duplicate predictions when passing
through the same fully connected classification and regression heads.

In Figure 3, we statistically represent the query content’s similarity and relative IoU
distance in deformable-DETR. The vertical coordinate is the cosine similarity between the
queries, and the horizontal coordinate is the IoU distance between the queries. The encoded
content and location of the queries are strongly correlated. The closer the IoU distance
between queries, the greater the probability that they have high content similarity.
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Figure 3. Statistics of IoU distance and cosine similarity among queries.

Homogeneous queries can lead to duplicate prediction problems. We explain this
with an intuitive example, assuming that the two queries are very close to each other at
the initialization time; for the sake of generality, we adopt the binary cross-entropy loss as
the classification loss and the cross-entropy loss L for a single query can be expressed as
follows:

L = −[y· log(p) + (1 − y)· log(1 − p)] (1)

where y denotes the one-hot classification label corresponding to the GT and p denotes the
confidence score.

In the case of two queries, if one query q1 matches the target GT and the other query
q2 does not match the object, according to Equation (1), the total loss of the two queries is
the following:

L1,2 = L1 + L2 = −[log(p1) + log(1 − p2)] (2)

Assuming that the two queries are very close to each other at their initialization, due to
the strong correlation between the content similarity and the relative IoU distance, in the
extreme case where we assume that the two queries are the same, their confidence scores
have p1 = p2 = p, in which case the total loss in Equation (2) is the following:

L1,2 = −[log(p) + log(1 − p)] (3)

The gradient of the loss with respect to the confidence level is as follows:

∂L
∂p

=
1

1 − p
− 1

p
(4)

It can be seen that when the confidence score is p > 0.5, the gradient is positive, the loss
decreases with the decrease in confidence, and the network reduces the confidence of
both predictions; when p < 0.5, the loss decreases with the increase in confidence, so the
network increases the confidence of both predictions during training. Eventually, when
p = 0.5, the network reaches the equilibrium point of backward gradient propagation, at
which there is no updated gradient for both queries, and the local optimum point of the
loss function is reached. That is, in this case, the network prefers to keep the two low-
confidence predictions instead of a de-duplication strategy that increases the confidence of
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one prediction to eliminate the other. As queries become dense and similar, more similar
queries may correspond to a GT, generating duplicate predictions.

Homogeneous queries also bring unstable backpropagation during the training, which
reduces the learning efficiency of the encoder. As in Figure 4, we assume that there are two
queries that are close to the target GT, and in the two-part graph matching algorithm, query
q1, which matches GT produces a gradient update matrix M1 that increases the confidence
score of q1, while query q2 that matches no object produces a gradient update matrix M2
that decreases the confidence score of q2.

Figure 4. Network updates for different queries in training, and different colored boxes represent
differences in the encoded content of the queries. (a) Detection methods based on homogeneous
queries; (b) our proposed detection method based on de-homogenized queries.

As shown in Figure 4a, when the contents of two queries q1 and q2 are very similar,
the resulting updated matrix M1 and M2 has similar absolute values but opposite sign
directions. In the extreme case, when q1 = q2, the updated matrices M1 and M2 have
the same absolute value but an opposite sign, that is M1 = −M2. Such contradictory
updates make it difficult for the network’s encoder to learn efficiently in dense scenarios,
and the repeated predictions are difficult to be penalized by the back-propagation gradient
in training.

As shown in Figure 4b, after adding differential coding to q1 and q2, even when their
positions are almost coincident, the gradient update matrices M1 and M2 generated by the
backpropagation of different symbol directions are significantly different from each other
in absolute value. Such differentiated updates allow the encoder to learn more efficiently,
and this model can learn the de-duplication strategy better through the differentiated
information.
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3. Our Method

The general framework proposed in this paper is shown in Figure 5, where the
image is first passed through a feature extractor (including a backbone network and a
stacked encoder) to obtain multi-scale feature maps, and then a fixed number of queries are
initialized using our proposed GIoU-aware query selector, which is input to the subsequent
decoder, and output location predictions through the first layer of the decoder with auxiliary
prediction heads aligned to the encoder. Positional prediction is output through the first
layer of the decoder aligned with auxiliary prediction heads. Then, the De-Homo Coding
Generator (DCG) generates differentiated codes, which are added to the original query to
form a differentiated query, which is then passed to the subsequent decoder to obtain the
final confidence prediction.

Figure 5. Overall framework of our proposed detector.

3.1. De-Homo Coding Generator

As mentioned above, homogeneous queries make it difficult for the network to learn ef-
fective de-duplication strategies. In this paper, we design a DCG (De-Homo Coding Genera-
tor) module to generate differentiated coded information to add to the query, which enables
the network to learn the de-duplication ability through the differentiated information.

The DCG module, as illustrated in Figure 6, operates in two stages. In the first stage,
a De-Homo ID Encoder generates a unique De-Homo ID for each query to learn the
distinctions among them. The De-Homo ID for the ith query, eid

i , is calculated as follows:

eid
i = LN(H(qi)) (5)

where H(·) encodes the query using two fully connected layers and an activation func-
tion. LN represents layer normalization, which normalizes the encoded De-Homo ID for
subsequent difference computation.
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Figure 6. Structure of the DCG (De-Homo Coding Generator) module.

In the second stage, each query integrates the difference information from the De-
Homo IDs of surrounding queries through an asymmetric difference fusion mechanism,
producing differentiation encoding for de-duplication. This fusion mechanism also facil-
itates information exchange between queries, serving as an alternative to self-attention
among them. For the ith query, the differentiation encoding qDE

i is given as follows:

qDE
i = ADA

(
eid
)
= Maxpooling

({(
eid

i − eid
j

)
·I(cj > ci

)∣∣∣IoU(bj, bi) < 0.5, cj > Clow

})
(6)

where ci and bi represent the confidence and positional predictions of the ith query, respec-
tively. I is an indicator function that is 1 when cj > ci and is 0 otherwise. The minimum
threshold for confidence attention Clow is set to avoid the computational complexity increase
due to a large number of low-confidence predictions.

The asymmetric relationship based on confidence can further reinforce differentiated
information, allowing each query to integrate the information of predictions with higher
confidence scores from their surrounding. In traditional self-attention mechanisms among

queries, where qj = WT
N
∑

i=1
kiWqi, the focus is only on information that improves recall

without considering the differentiation from surrounding predictions to avoid redundancy.
Our paper introduces the asymmetric difference aggregation (ADA) mechanism, which is a
function that processes the difference of encoded content between queries qi − qj to encode
differentiated information.

The de-homogenized query is obtained by adding qDE
i to the original query, where

qDe−Homo
i = qi + f f n(qDE

i ). Here, f f n represents a fully connected feedforward network
consisting of two linear layers and an activation layer. qDe−Homo

i is then fed into subsequent
decoders to generate confidence predictions, addressing the issue of the network’s difficulty
in learning deduplication capabilities due to homogenized queries.

3.2. GIoU-Aware Query Selector

For the past two-stage query-based detectors [9,10,13,18], most algorithms use the
Top-K algorithm with confidence scores to filter the queries from the encoder’s predictions
for initialization. However, the quality of the query’s initialization is determined by the
combination of the position and the confidence level, which results in the initialized query
with a high IoU but a low confidence level being filtered out or a prediction with a low IoU
but a high confidence level being selected, leading to the degradation of the quality of the
query’s initialization.
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To solve this problem, we used a combined quality score that considered both con-
fidence and location for query initialization. At the same time, the GIoU [19] can better
reflect the overlap between prediction boxes based on IoU, so we use GIoU to indicate
the quality of location prediction. We finally used Top-K based on the combined scores of
GIoU and the Classification score to filter for query initialization. Meanwhile, we still used
bipartite graph matching for a one-to-one mapping between predicted and real boxes.

We propose supervising the training of the encoder’s output using GIoU-aware’s
combined predictive quality loss, which is as follows:

L(ŷ, y) = Lbox

(
b̂, b
)
+FLgiou−cls(ĉ, c, Giou) (7)

where ŷ and y denote the prediction and GT, ŷ consists of the position prediction b̂ and the
category prediction ĉ, y also corresponds to the position label b and the category label c of
the GT. We incorporate the idea of focal loss [20] to consider the loss that can focus more on
hard samples, and our proposed GIoU-aware loss is as follows:

FLgiou−cls(ĉ, c, Giou) =
{ −Giou·ω· log( p̂) if c = 1

−ω log(1 − p̂) if c = 0.
(8)

where ω is modulating weight, which is similar to the idea of focal loss, and is used to
determine the attention degree of difficult and easy samples, where the expression is as
follows:

ω = ( p̂·Giou + (1 − p̂)(1 − Giou))γ (9)

where γ > 0 is an adjustable factor. For simple samples where the predicted value is
already very close to the true value, ω tends to zero, and for hard-to-predict samples, ω is
given a higher weight.

In our test, we used the joint score Top-k for query initialization, which considers
both location and confidence, to avoid the filtering out of low confidence and high IoU
predictions caused by only confident scores so that we could achieve higher quality query
initialization and higher accuracy with fewer queries. As shown in Figure 7, the predicted
scores after using GQS have a better correlation with the IoU, resulting in higher IoU pre-
dictions when using the score Top-k algorithm, which corresponds to a better initialization
quality. In the decoder loss design, in order to maintain the convergence of the model loss
function, we still used the original discrete-label classification loss for supervised learning
to obtain the final predictions.

Figure 7. Statistics of score and IoU scores in initialized queries. The red line is the regression curve
after the use of the GQS, and the blue line is without it.
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3.3. Alligned Decoder

Many previous works attempted to reduce the differences between encoding and
decoding methods by aligning the encoder and decoder so the model could integrate the
information more efficiently in the cross-attention mechanism. Since the difference fusion
mechanism in our proposed DEG was also available to perform information fusion among
queries, we eliminated the self-attention module between the queries and used a decoder
aligned with the encoder. While maintaining the original method’s accuracy, we reduced
the number of parameters by about 8%. With the addition of differential coding, both the
encoder and decoder results improved because of the more stable one-to-one mapping
relationship obtained in training. We also found that using only the first few layers of the
trained decoder in the prediction stage reduced the number of parameters and maintained
a relatively high accuracy.

4. Experiment and Analysis

We focus on the experimental validation of our approach through a benchmark test
dataset, CrowdHuman [21], and compare it with SOTA’s anchor-based detection method
and query-based end-to-end detection method. We also performed ablation experiments for
our proposed components and tested their robustness in scenarios with different densities.

4.1. Experiment Dataset

The CrowdHuman dataset contains 15k training images and 4.4k validation images,
with an average of about 23 mutually occluded targets per image. We used the AP, MR−2

and JI as metrics as follows:

• Average precision (AP): Expressed by the area enclosed by the precision–recall curve
and coordinates. In object detection, AP is often used to reflect precision and recall,
and a larger AP indicates better detection performance.

• MR−2: The average missing detection rate is calculated on the logarithmic scale of the
false detection rate for each image. This metric is often used in pedestrian detection
because it reflects the false and missed detection, and a smaller MR−2 indicates better
detection performance.

• Jaccard index (JI): The index mainly evaluates the degree of overlap between the
predicted set and the GTs. It reflects the overall distribution similarity between the
prediction boxes set and the actual GTs, and a higher JI indicates better detection
performance.

4.2. Experiment Details

We used the standard ResNet-50 [22], pre-trained on ImageNet [23], as the backbone
for deformable DETR [18] and ran 50 epochs for training. We trained our model with the
AdamW optimizer, where the momentum was set to 0.9 and the weight decay to 0.0001.
The model’s learning rate was 0.0002, and the learning rate of the backbone network was
0.00002. The batch size was 8, the number of attention headers was set to 8, and 4 RTX
3090 GPUs were used for training.

The end-to-end detector DETR [7], deformable DETR [18], Iter-E2Edet [15], etc., em-
ployed in our experiments used the default 6-layer encoder and 6-layer decoder; our
method was implemented using only the 6-layer encoder and 3-layer decoder, and other
hyper-parameter settings are kept the same as deformable DETR.

4.3. Comparative Experiments with Other Advanced Detectors

Table 1 shows a comparison of the results of our method on the CrowdHuman valida-
tion set with those of several SOTA methods, including anchor-based detectors [3,4,6,16,20,
24–26] and query-based detectors [7,8,15,18,27,28]. It can be seen that the traditional anchor-
based methods perform poorly in dense and high occlusion scenarios because they need
to be de-duplicated by greedy algorithms such as NMS. In contrast, end-to-end detection
methods learn the de-weighting inside the network and perform better overall. However,
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query-based methods usually need to continuously increase the number of queries to adapt
to performance in dense scenarios, and most of the methods need to fine-tune the results
hierarchically by stacking the decoder structure to improve the detection effect.

Table 1. Comparative experimental results on the CrowdHuman validation set.

Method #Queries AP ↑ MR−2 ↓ JI ↑ Params

Anchor-based detectors
RetinaNet [20] - 85.3 55.1 73.7
ATSS [24] - 87.0 55.1 75.9
ATSS [24] + MIP [16] - 88.7 51.6 77.0
Faster R-CNN [3] - 85.0 50.4 -
Cascade R-CNN [4] 86.0 44.1 -
FPN [25] + Adaptive-NMS [6] - 84.7 47.7 -
FPN [25] + Soft-NMS [5] - 88.2 42.9 79.8
FPN [25] + MIP [16] - 90.7 41.4 82.3
PBM [26] - 89.3 43.3 -

Query-based detectors
DETR [7] 100 75.9 73.2 74.4
PED [27] 1000 91.6 43.7 83.3
Sparse-RCNN [8] 500 90.7 44.7 81.4
D-DETR (one-stage) [18] 500 89.1 50.0 37.7 M

1000 91.3 43.8 83.3 37.7 M
D-DETR (two-stage) [18] 500 92.6 43.1 82.9 37.7 M

1000 92.8 43.2 83.0 37.7 M
UniHCP (direct eval) [28] 90.0 46.6 82.2 109.1 M
UniHCP (finetune) [28] 92.5 41.6 85.8 109.1 M
Iter-E2EDet [15] 500 91.2 42.6 84.0 38.0 M

1000 92.1 41.5 84.0 38.0 M

Ours(6-3) * 500 93.6 39.2 84.3 34.6 M
Ours(6-3(2)) * 500 93.5 39.3 84.1 33.7 M

* The numbers in parentheses after the method name indicate the number of layers of the encoder and decoder
used for training and testing. X-Y (Z) indicates the X-layer encoder and Y-layer decoder for training and the
Z-layer decoder for testing. If no special instruction exists, other methods are 6-6 (6) by default.

Comparing these methods, using fewer queries, our method achieved higher accuracy
and lower miss detection rates. Our method reduced about 3.9% and improved AP by 1%
compared to the benchmark method of two-stage deformable DETR using six decoders,
while our model reduced the number of parameters by about 8% in the parameter scale.
UniHCP [28] was first trained across tasks on 33 datasets with about 109.1 million pa-
rameters, which were then fine-tuned on the Crowdhuman dataset. Our method still
outperformed them in AP and MR−2 metrics, using only about 32% of the parameters.

4.4. Ablation Experiment

To test the effectiveness of the different components in our proposed method, we
performed ablation experiments on Crowdhuman. As in Table 2, in the first row of the
table, we used six decoders of deformable-DETR (ResNet50 as the backbone network) as
the benchmark method for comparison, and three decoders were used by default in our
method. Our proposed De-Homo Coding Generator (DCG) significantly improved the
detector’s performance, with the leakage rate MR−2 reduced from the original 43.2% to
40.2%. After using the GIoU-aware query selector, GQS, the miss prediction was further
reduced because of the improved initialization efficiency of the query.
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Table 2. Ablation experiments on CrowdHuman validation set.

DCG AD GQS AP ↑ MR−2 ↓ JI ↑ Params(M)

92.8 43.2 83.0 37.7
� 93.3 40.2 83.8 35.4
� � 93.5 40.0 84.0 34.6
� � � 93.6 39.2 84.3 34.6

DCG—De-Homo Coding Generator. AD—aligned decoder. GQS—GIoU query selector.

At the same time, our method did not need a redundant layer fine-tuning structure
and obtained high accuracy at the early stage of the decoder, as shown in Figures 8 and 9.
We tested the AP and MR−2 of the prediction results in our method and the benchmark
method deformable DETR for different stages of the decoder. In the second decoder block,
our model achieved an accuracy of 93.5% for AP and 39.3% for MR−2, which basically
guaranteed accuracy while reducing the number of parameters. Comparing the outputs of
the encoder and the first decoder, our method significantly reduced the information gap
between the decoder and the encoder.

Figure 8. AP of detection results for each stage of the decoder.

Figure 9. MR−2 of detection results for each stage of the decoder.

It can also be seen that when the encoder’s structure is exactly the same, its perfor-
mance improves significantly due to the distinctive gradient update brought about by the
differentiated query.

4.5. Hyperparameter Analysis

Table 3 compares the model’s performance on the CrowdHuman validation set when
different decoders are assigned before and after the differential coding generator DCG. The
results are better when more decoders are used after differential coding.
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Table 3. Performance of the model when different numbers of decoders are used before and after the
DCG.

Decoders (before) Decoders (after) AP ↑ MR−2 ↓ JI ↑ Params (M)

1 1 93.3 40.1 84.1 33.7
2 1 93.4 40.3 84.2 34.4
1 2 93.6 39.2 84.3 34.6
1 2(1) 1 93.5 39.3 84.1 33.7

1 Here, 2(1) means that 2 decoders are used for training, but only 1 decoder is used for testing.

At the same time, we compared the impact of using different queries, as shown
in Table 4; our method improved the benchmark method when using various queries.
Figure 10 shows the performance trend of the model with different numbers of queries, and
it is clear that our method can perform better with fewer queries. Performance degradation
tends to be slower when the number of queries becomes smaller.

Table 4. Performance of the model with different numbers of queries in the Crowdhuman valida-
tion set.

#Queries
Our Method Deformable DETR

AP ↑ MR−2 ↓ AP ↑ MR−2 ↓
100 88.93 39.87 87.59 47.56
200 92.53 39.24 91.40 44.35
300 93.26 39.21 92.23 43.44
500 93.58 39.20 92.61 43.10

1000 93.75 39.20 92.77 43.19
2000 93.77 39.21 92.79 43.25

Figure 10. Comparison of model performance when using different numbers of queries. Comparative
analysis of differentiated queries.

To compare the effect of our method on query differentiation, as shown in Figure 11, we
computed the IOU distances and the cosine similarities between the queries with positive
predictive confidence in the deformable DETR and our method, respectively. Our method
can significantly reduce query homogeneity and break the strong correlation between query
location and the encoded content.
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Figure 11. Cosine similarity of query at different IoU distances (a) before de-homogenization, (b) after
de-homogenization.

4.6. Analysis of Detection Results

We analyzed the detection results of our method and the benchmark method two-stage
deformable-DETR in detail. We also made false positive (FP) and true positive (TP) statistics
at different confidence scores in the detection results of the CrowdHuman validation set.
The statistical results are shown in Figure 12, with the matching IOU threshold set to
0.8. Our method significantly improved the TP at each confidence level while largely
suppressing the FP of repeated predictions.

Figure 12. Comparing the relative improvement of our detection results in different confidence
scores.

To verify the generalization performance and robustness of our method in scenarios
with different densities, we statistically measured the changes in TP and FP between
our method and the benchmark method in scenarios with different densities, as shown
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in Figure 13; when we set the matching IOU threshold to 0.5, our method significantly
increased the TP and inhibited the repeated prediction of FP in various scenarios with
different densities. When the IOU threshold was set to 0.8, as shown in Figure 14, the
improvement of our method over the benchmark method was even more significant. Our
method can regress the target location more accurately and simultaneously reduce the FP
of repeated prediction and false detection.

Figure 13. The relative improvement of our method over deformable DETR in different dense
scenarios (the matching IoU threshold is 0.5).

Figure 14. The relative improvement of our method over deformable DETR in different dense
scenarios (the matching IoU threshold is 0.8).

4.7. Comparison of Actual Test Result Images

As shown in Figure 15, we compared the detection effect of two-stage deformable
DETR with that of our method and found that our method still performed well in dense
and heavily occluded scenes.
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Figure 15. Comparison of the actual detection results for (a) the two-stage deformable DETR (b) and
our method.

5. Discussion

In this paper, we propose a differentiated query strategy, which significantly increases
the de-duplication capability of the query-based detection model and improves the learning
efficiency of the encoder in dense scenarios; at the same time, we optimize the initialization
of the query and the structure of the decoder, which reduces the number of parameters in
the model while improving the accuracy of the end-to-end detector. Compared with the
current SOTA detection methods, this method achieves higher accuracy while keeping the
number of parameters lower, and its robustness in different dense scenes is experimentally
verified. Nevertheless, our proposed DCG (De-Homo Coding Generator) module leads to a
higher time complexity in the inference phase, especially in dense scenarios, because of the
computation of IoU among dense queries. In addition, to avoid excessive time complexity,
we limited the computational scope of the De-Homo Coding and the depth of the network
for the coding methods. Our approach still has potential for improvement in complex and
dense scenarios. Also, the initialization of the query using encoder features incurs an extra
high computational complexity in inference. Future work will further optimize the model
based on this to enhance its robustness in more complex scenarios and further optimize the
computational complexity of the model.
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Abstract: With the rapid development of science and technology, uncrewed aerial vehicle (UAV)
technology has shown a wide range of application prospects in various fields. The accuracy and
real-time performance of UAV target detection play a vital role in ensuring safety and improving the
work efficiency of UAVs. Aimed at the challenges faced by the current UAV detection field, this paper
proposes the Gathering Cascaded Dilated DETR (GCD-DETR) model, which aims to improve the
accuracy and efficiency of UAV target detection. The main innovations of this paper are as follows:
(1) The Dilated Re-param Block is creatively applied to the dilatation-wise Residual module, which
uses the large kernel convolution and the parallel small kernel convolution together and fuses the
feature maps generated by multi-scale perception, greatly improving the feature extraction ability,
thereby improving the accuracy of UAV detection. (2) The Gather-and-Distribute mechanism is
introduced to effectively enhance the ability of multi-scale feature fusion so that the model can make
full use of the feature information extracted from the backbone network and further improve the
detection performance. (3) The Cascaded Group Attention mechanism is innovatively introduced,
which not only saves the computational cost but also improves the diversity of attention by dividing
the attention head in different ways, thus enhancing the ability of the model to process complex
scenes. In order to verify the effectiveness of the proposed model, this paper conducts experiments
on multiple UAV datasets of complex scenes. The experimental results show that the accuracy of the
improved RT-DETR model proposed in this paper on the two UAV datasets reaches 0.956 and 0.978,
respectively, which is 2% and 1.1% higher than that of the original RT-DETR model. At the same time,
the FPS of the model is also improved by 10 frames per second, which achieves an effective balance
between accuracy and speed.

Keywords: UAV detection; DETR; attention mechanism; multi-scale fusion

1. Introduction

With the development of uncrewed aerial vehicle (UAV) technology and its wide
application, how to effectively monitor and control the flight of UAVs has become an
important topic. The flight of UAVs may affect airspace security, civil aviation, military,
government, public facilities, personal privacy, etc. And it may even be used for illegal or
malicious purposes [1]. In military terms, UAV detection can help the military find and
lock the enemy’s UAV or other targets [2] for accurate attack or interception. It can also
help the military protect its own UAV from being found or interfered with by the enemy
and improve the effectiveness and security of surveillance [3]. In areas such as airports,
drone detection can help airports prevent drones from entering no-fly areas and causing
flight delays or hazards. UAV detection can also help the airport to monitor and manage
UAV activities around the airport and maintain the order and safety of the airspace [4].
In areas with high confidentiality, such as government agencies or military bases, UAV
detection can help government agencies prevent UAV snooping or threats to important
people or occasions and protect the interests and security of the country [5]. Therefore,
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UAV detection is a key technology that can help us find, locate, track, and manage UAVs to
protect the interests and security of society and the country [6].

Traditional UAV detection methods mainly include methods based on radar, acous-
tic waves, electromagnetic, optical, infrared, and other sensors, but they all have some
shortcomings. For example, the disadvantage of radar is that it is easily affected by electro-
magnetic interference or reflection, and the disadvantage of an acoustic wave is that it has
a small detection range and is easily affected by environmental noise or wind speed [7].
The disadvantage of electromagnetic interference or reflection is that its detection range is
limited by signal strength and frequency, and it is vulnerable to encryption or spoofing [8].
The disadvantage of infrared is that its detection is affected by ambient temperature and
humidity, and it requires complex temperature calibration and analysis [9]. Therefore,
optical image-based detection methods can be used, and UAV detection methods using
image detection have many advantages that make them highly favored in various applica-
tion scenarios. For example, it can automate the monitoring process of the UAV and also
achieve accurate target detection and positioning in complex environments. Image-based
detection methods can be adjusted and optimized according to different environments and
weather conditions to ensure that UAVs can be effectively detected in various complex
environments [10]. This adaptability makes the image detection system widely applicable
in diverse application scenarios.

By using advanced object detection algorithms, we will be able to detect and identify
various types of UAVs more accurately, including small UAVs and high-speed vehicles.
This will not only help improve public safety but also promote the sustainable development
and application of UAV technology. UAV detection can help regulators detect and respond
to potential UAV threats in time to protect people’s lives and property. In the field of
commercial applications, it can provide UAV operators with more reliable monitoring
and management solutions to help them better plan flight paths and avoid collisions and
unexpected events between UAVs.

With the continuous development of machine learning and computer vision algo-
rithms, image-based detection techniques are constantly improving. Object detection
models such as Faster R-CNN [11], You Only Look Once (YOLO) family [12], SSD [13],
Mask R-CNN [14], RetinaNet [15], and EfficientDet [16] have been widely used and studied
in various object detection. However, these object detection models are rarely used in UAV
detection, which has only been commonly used in the last two years and is still limited by
factors such as data scarcity, complex environments, diversity of target categories, com-
putational resource requirements, and legal and privacy issues. UAV detection involves
various UAV morphologies, complex environmental conditions, and challenges such as
data acquisition and privacy protection. More research and resource investment are needed
to realize its wide application in practice.

In recent years, some works have been applied to UAV detection. The Facebook AI
research team proposed Detection Transformer (DETR) in 2020 [17]. The model uses the
Transformer architecture for object detection and realizes object detection and recognition
in an end-to-end manner without the use of traditional techniques such as prior boxes and
non-maximum suppression. The proposed DETR model has attracted extensive attention
and achieved remarkable results in the field of object detection. In 2023, Tushar Sangam et al.
improved DETR and Dogfight [18] and applied them to UAV detection. They proposed a
simple and effective improved DETR framework TransVisDrone [19], providing an end-to-
end solution with higher computational efficiency. The CSPDarkNet-53 network is used
to learn the spatial features related to the target. Then, the VideoSwin model is used to
understand the spatio-temporal dependencies of the UAV motion to improve the detection
ability of the UAV in challenging scenes.

At present, there is a lot of work on designing efficient DETR-based models that are
applied to other object detection tasks. However, the high computational cost of these
schemes limits the practical application of DETR, which cannot make full use of its ad-
vantages, such as non-maximum suppression (NMS). In 2023, Wenyu Lv proposed the
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real-time detection transformer (RT-DETR) [20], a real-time end-to-end object detector. In
particular, they designed an efficient hybrid encoder to process multi-scale features effi-
ciently by decoupling intra-scale interactions and cross-scale fusion. RT-DETR outperforms
comparably sized state-of-the-art YOLO detectors in both speed and accuracy. At the same
time, Xinyu Liu et al. [21] proposed a new Attention mechanism called Cascaded Group
Attention to solve the problems of computational efficiency and attention diversity in vision
transformers. By providing different input data segmentation for each attention head, the
Cascaded Group Attention reduces computational redundancy and improves attention
diversity. Haoran Wei et al. proposed the DWRSeg network [22] in 2023 to address the
efficiency of capturing multi-scale context information in real-time semantic segmentation.
They designed the dilatation-wise Residual module, which employs a well-designed two-
step feature extraction method aimed at capturing multi-scale information efficiently. The
module effectively obtains multi-scale context information through region residualization
and semantic residualization. Chengcheng Wang et al. [23] improved feature fusion by
globally integrating features from different levels using convolution and self-attention oper-
ations. They injected global information into features at various levels, thereby enhancing
information fusion capability. We are inspired by these works to propose the Gathering
Cascaded Dilated DETR (GCD-DETR) model for UAV detection, and we primarily make
the following contributions:

(1) First, we propose the DWR-DRB Module, which applies Dilated Re-param Block
in the Dilatation-Wise Residual module, uses large kernel convolution with parallel small
kernel convolution, and fuses multi-scale perceptual wild generated feature maps. The
feature extraction ability is greatly improved.

(2) Secondly, Cascaded Group Attention (CGA) and the Gather-and-Distribute Mech-
anism (GD) are applied to the RT-DETR model. The model provides complete feature
segmentation to each detection head, and the attention calculation is explicitly decomposed
to each detection head. Moreover, multi-scale fusion is carried out to save the computational
cost and improve the attention to the target feature region.

(3) We design new real-time Transformer models that strike a good balance between
efficiency and accuracy. The model has shown good detection ability in a variety of
comparative experiments.

The remainder of this paper is organized as follows: In Section 2, we will first review
the current state of the art in UAV detection technology to provide a deeper understanding
of the background and motivation of the research. In Section 3, we present the details of our
proposed novel UAV detection method, including the details of the adopted GCT-DETR
model and the modules in it. In Section 4, we will present and analyze the experimental
results to verify the effectiveness of our model. Finally, we summarize and discuss the
results of this study and suggest future research directions and improvements in Section 5.

2. Related Work

2.1. Drone Detection

UAV dataset has challenges such as high-altitude perspective, low resolution, motion
blur, illumination change, and occlusion. Therefore, there are few existing public and
recognized datasets that are faced with the problems of insufficient data volume and low
data quality. In recent years, deep learning has been widely used in the field of UAV
detection, but it uses non-uniform data sets. Therefore, there is still a lot of room for the
development of UAV detection, and it is necessary to gradually improve the quality of
various environmental datasets and use more efficient and accurate models.

In 2020, Ulzhalgas et al. embarked on the UAV detection challenge by dissecting it into
two distinctive subtasks: moving object detection and object classification. Their approach
was innovative as it leveraged background subtraction for moving object detection while
relying on the robust feature extraction capabilities of convolutional neural networks
(CNNs) for object classification [24]. This division of labor ensured a comprehensive and
efficient method for identifying UAVs amidst complex visual backgrounds.
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Aamish Sharjeel introduced a groundbreaking UAV detection methodology in 2021, merg-
ing Continuous Outlier Representation with Online Low-rank Approximation (COROLA)
alongside CNNs. The brilliance of this approach lay in COROLA’s adeptness at pinpoint-
ing small moving objects within scenes, complemented by CNNs’ prowess in accurately
classifying UAVs across diverse and intricate backgrounds [25]. This amalgamation not
only fortified the detection system’s resilience but also significantly elevated its efficacy. In
the same year, Muhammad et al. proposed “Dogfight” [18], a novel approach diverging
from conventional region proposal-based methods. Instead, they adopted a two-stage seg-
mentation technique grounded on spatio-temporal attention cues. Their method intricately
incorporated pyramid pooling to capture detailed contextual information within convolu-
tional feature maps, followed by pixel and channel-level attention mechanisms to precisely
localize UAVs. This sophisticated strategy underscored a paradigm shift in UAV detection
methodologies, prioritizing accuracy and adaptability. Yaowen Lv et al. introduced a
novel detection paradigm in 2022, intertwining background difference analysis with the
lightweight SAG-YOLOv5s network. By exploiting background difference, their method
effectively isolated potential UAV targets within high-resolution images while concurrently
minimizing computational overhead by eliminating extraneous background elements [26].
This innovative fusion of techniques showcased a leap forward in optimizing detection
efficiency while conserving computational resources. Yuliang Zhao’s 2023 proposal, the
information enhancement model TGC-YOLOv5, marked a significant advancement in
UAV detection methodologies. By integrating Transformer encoder modules and Global
Attention Mechanisms (GAMs) into YOLOv5, the model exhibited a twofold increase in
detection accuracy. This augmentation facilitated enhanced focus on the regions of interest
while mitigating information diffusion across layers, thus enhancing the model’s overall
effectiveness [27]. Jun-Hwa Kim’s 2023 contribution revolutionized UAV detection by
integrating multi-scale image fusion layers and P2 layers into the YOLO-V8 medium model.
This integration aimed at bolstering the model’s adaptability to diverse UAV scales, thereby
fortifying its robustness in detection scenarios [28]. This strategic enhancement underscored
a concerted effort towards ensuring comprehensive and accurate UAV detection across
varying environmental conditions. Qianqing Cheng’s 2023 innovation, the CA-PANet
multi-scale attention module, heralded a breakthrough in feature fusion for UAV detec-
tion. Leveraging improved MobileViT as a feature extraction network, the introduction
of coordinate attention within PANet facilitated enhanced fusion of low-dimensional and
high-dimensional features. This not only enriched location information capture but also
significantly augmented detection accuracy, highlighting a pivotal advancement in UAV
detection methodologies [29].

2.2. Detection Transformer

Conditional DETR makes an innovative improvement to solve the problem of slow
convergence speed of DETR. In particular, this method increases the number of queries
from 100 to 300 and optimizes the classification loss by adopting Focal loss to improve the
performance of the model. The key contribution of conditional DETR is the proposal of the
conditional attention mechanism. By decoupling content attention and location attention,
they implement a redesign of self-attention and cross-attention inputs. The original method
is to add query and query_pos and input them into the linear layer of the attention structure.
At the same time, Conditional DETR modifies it so that query and query_pos go through
different linear layers, respectively, and then aggregate the results, thereby improving the
effect of the attention mechanism of the model [30]. Deformable DETR proposes Multi-scale
Deformable Attention (MSDA) to replace Self-attention in the Encoder and Cross-attention
in the Decoder. The model of DETR multi-scale feature detection is designed, which not
only gives DETR the advantage of multi-scale but also reduces the amount of calculation.
In addition, it also proposes the idea of a two-stage DETR, which uses the encoder output
features to initialize the decoder query and its corresponding position [31]. Sparse DETR
offers an effective encoder token sparsification method for end-to-end object detectors, by
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which the attention complexity in the encoder is reduced. This efficiency allows Deformable
DETR to stack more encoder layers, thus improving performance with the same amount
of computation [32]. The end-to-end object detection algorithm DETR does not require
hand-crafted post-processing (NMS), but it requires longer training to converge. It is found
that one-to-one label matching makes DETR lack supervision signal in the training process
(because the number of positive object Queries is small), so it needs to extend the training
time to achieve good results.

Group DETR provides a new label assignment strategy for the DETR family of al-
gorithms: group-wise One-to-Many label assignment. The algorithm cleverly decouples
the “one-to-many allocation” problem into the “one-to-one allocation of multiple groups”
problem. It accelerates the convergence of DETR series algorithms, removes redundant
predictions while ensuring the support of multiple positive queries, and realizes end-to-end
detection [33]. In 2023, Decoupled DETR proposes the Task-aware Query Generation Mod-
ule: this module is responsible for initializing queries to match different visual regions, thus
providing more suitable features for classification and localization tasks. They also propose
a Disentangled Feature Learning Process: in this process, the classification and localization
tasks are spatially separated, allowing task-aware queries to be matched to different visual
regions. It solves the problem of space misalignment encountered in traditional DETR
training [34].

3. Proposed Methods

Figure 1 shows the network structure of GCD-DETR designed in this paper. In the
backbone part, we first propose the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB) module for feature extraction, which can reduce the difficulty of extracting
multi-scale context information and is an efficient multi-scale feature extraction method.
Next, we introduce the Cascaded Group Attention module (CGA). Cascaded Group At-
tention assigns different weights to the feature maps based on the relevance of different
positions in the input image. It can help the model better understand the features in
the image, thus improving the detection performance. In the Neck part, we use a novel
information interaction and fusion Mechanism: Gather-and-Distribute mechanism (GD).
The mechanism obtains global information by fusing features at different levels globally
and injects global information into features at different levels to achieve efficient informa-
tion interaction and fusion. It improves the detection ability of the model for objects of
different sizes.

 

Figure 1. The network structure of GCD-DETR.
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3.1. Dilation-Wise Residual and Dilated Re-Param Block Module

In this section, we propose the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB). We incorporate the Dilated Re-param Block into the dilatation-wise Residual
module and utilize a combination of large kernel convolutions and parallel small kernel
convolutions. Furthermore, we fuse multi-scale receptive field-generated feature maps,
thereby significantly enhancing the feature extraction capability.

3.1.1. Dilated Re-Param Block

In convolutional neural networks (CNNs), combining large kernel convolutions with
parallel small kernel convolutions helps capture features at various scales. Their outputs
are summed after two respective batch normalization (BN) layers [35]. The structural re-
parameterization method [36] can be employed to integrate BN layers with convolutional
layers, and after training, they can be merged effectively to incorporate small kernel
convolutions into large kernel convolutions for inference.

The main idea of Dilated Re-param Block (DRB) structure is to use the combina-
tion of large kernel convolution and dilated convolution to improve the performance of
convolutional neural network. By using large kernel convolutions and multiple dilated
convolutional layers in parallel, the “Dilated Re-param Block” structure is able to capture
both local fine features and widely distributed sparse features. This combination enables
the model to perceive the structural information of the input data more comprehensively.
The whole module is converted into a single non-dilated convolutional layer in the in-
ference phase. This step consists of converting each dilated convolutional layer into an
equivalent non-dilated convolutional layer and merging their output feature maps. The
performance of the structure can be flexibly controlled by adjusting the large kernel size K,
the dilation rate r, and the small kernel size k, as shown in Figure 2, K = 9, r = (1, 2, 3, 4),
and k = (5, 5, 3, 3) [37].

 

Figure 2. Dilated Re-param Block.

3.1.2. Dilation-Wise Residual and Dilated Re-Param Block Module

In this section, we introduce the Dilation-wise Residual and Dilated Re-param Block
(DWR-DRB) module, designed to efficiently acquire multi-scale context information, as
illustrated in Figure 3. This module effectively extracts and fuses feature maps gener-
ated from multiple receptive fields through a two-step multi-scale context information
acquisition method within the dilation-wise Residual (DWR) [22] in combination with the
previously mentioned Dilated Re-param Block.
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Figure 3. DWR-DRB module.

In particular, the first step involves generating region residual features from input
features through a regular 3 × 3 convolution combined with batch normalization (BN) and
ReLU activation. The second step employs multi-rate depth-wise deformable convolution
(DConv) and Dilated Re-param Block (DRB) modules to perform morphological filtering
on region features of different sizes, referred to as semantic residualization. This method
not only extracts multi-scale contextual information but also refines features and effectively
controls redundant receptive fields through the generation of region residual features and
reverse matching of receptive fields. Consequently, the model maintains simplicity while
dealing with complex semantic information and achieves significant improvements in
feature representation and model performance. Furthermore, aggregating multiple output
feature maps, employing batch normalization, and merging feature maps using pointwise
convolution enhance the model’s perception of multi-scale information, thereby improving
feature representation and performance.

3.2. Cascaded Group Attention

Cascaded Group Attention is based on the concept of group attention, dividing the
image into multiple groups or regions and focusing on features within each group. Unlike
traditional global attention mechanisms, Cascaded Group Attention achieves more intricate
feature focus by cascading multiple layers of attention.

In Cascaded Group Attention, the input image is first divided into groups, where each
group may contain specific semantic information or adjacent pixels in space. Subsequently,
a local attention mechanism is applied to each group, allowing the network to concentrate
more on the features within each group. This progressive focusing process enables the
network to refine feature representation at multiple levels, thereby enhancing the model’s
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perceptual ability and accuracy in feature representation [21]. This attention mechanism
can be described as follows:

X̃ij = Attn(XijW
Q
ij , XijWK

ij , XijWV
ij ) (1)

X̃i+1 = Concat[X̃ij]j = 1:hWP
i (2)

For the j-th attention head, it computes self-attention on the j-th split Xij of the
input feature Xi. The input feature Xi is divided into h different splits, with each split
corresponding to one attention head. This partitioning is achieved by projection layers
WQ

ij , WK
ij , WV

ij , which split the input feature Xi into different subspaces. The purpose of
splitting the input features into different subspaces is to compute the self-attention on each
subspace. WP

i is the linear layer. These projection layers map the input feature into different
subspaces, enabling self-attention computation in each subspace.

During the computation of the attention map for each head, a cascaded approach is
employed, where the output of each head is added to the subsequent heads’ inputs. This
cascading method facilitates gradual improvement in feature representation, enabling the
model to better capture the structure and relationships within the data, as shown in Figure 4.
This entails aggregating the output of each attention head with that of the following heads,
enabling the iterative enhancement of feature representation:

X′
ij = Xij + X̃i(j−1), 1 < j ≤ h (3)

the output X′
ij of each head is the addition of its input split Xij and the output X i(j−1)

of the previous head (j − 1), calculated by Equation (2). X i(j−1) replaces Xij as the new
input feature for computing self-attention in the j-th head. Additionally, after Q projection,
there is a flag indicating the inclusion of an interaction layer, enabling the self-attention
mechanism to simultaneously capture both local and global features.

 

Figure 4. Cascaded Group Attention module.

The introduction of the Cascaded Group Attention module allows the model to ef-
fectively focus on specific regions or features, thereby enhancing feature representation.
By iteratively refining feature representation at multiple levels, this module improves the
model’s perceptual ability and accuracy. Additionally, its adaptability to various datasets
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and scenarios further highlights its versatility and effectiveness in enhancing feature un-
derstanding and interpretation.

3.3. Gather-and-Distribute Mechanism

When detecting UAV targets, targets of different sizes are often generated due to the
distance between them. In order to improve the detection ability of these targets, we use the
low-stage gather-and-distribute branch (Low-GD) and the high-stage gather-and-distribute
branch (High-GD) [23]. The core idea of this method is to use different feature extraction
and fusion strategies for different sizes of objects to better adapt to various sizes of target
objects. Two key modules are included in both branch networks: feature alignment module
(FAM) and information injection module (IFM), as shown in Figures 5 and 6. These modules
are designed to efficiently extract and fuse feature maps from the backbone network in
order to better capture various size features of the target object. The inputs of these two
branch networks are the feature maps B2, B3, B4, and B5 output by the backbone network,
where Bi ∈ RN×CBi×RBi . Here, the batch size is denoted by N, the channel by C, and the
feature map size by R = H × W, where H and W denote the height and width of the
feature map, respectively. And the dimensions of RB2, RB3, RB4, RB5 are R, 1

2 R, 1
4 R, and

1
8 R, respectively.

 

Figure 5. Low-stage gather-and-distribute branch.

 

Figure 6. High-stage gather-and-distribute branch.

3.3.1. Feature Alignment Module

The main function of FAM module is to align the feature maps of different levels to
a uniform size and then merge these feature maps by the concatenation operation on the
channel. This reduces information loss and enhances the ability of the model to detect
objects of different sizes without significantly increasing the latency.

In particular, the FAM module will first adjust the input feature maps to the same
spatial resolution by average pooling operation, and then concatenate them in the channel
dimension. In this process, the feature map is resized to the smallest feature size within the
group in order to control the computation latency while preserving low-level information.
As shown in Figure 5, if the feature maps of B2, B3, B4, and B5 correspond to different
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dimensions, the FAM module will unify them to the dimensions of B4 and then concatenate
them on the channel. In Figure 6, the input feature maps are P3, P4, and P5, and the FAM
module will unify them to the dimensions of P3. There are several benefits to resizing
the feature map to the dimensions of B4. Firstly, B4 provides a balance point where it is
neither the largest feature map (as in B2) nor the smallest feature map (as in B5), which
means that it is able to preserve sufficient details while avoiding the computational stress
caused by processing overly large feature maps. Secondly, feature alignment using B4 as a
benchmark can better preserve the information of medium-size objects, which is especially
important for object detection, as it ensures that the model can effectively detect objects of
various sizes. Finally, selecting B4 as the benchmark for alignment can simplify the process
of information fusion. By resizing all feature maps to the size of B4, the concatenation can
be performed directly on the channel, which reduces the average pooling operation, which
helps to reduce the latency and makes the model more suitable for real-time application
scenarios. Therefore, B4 is chosen as the benchmark for feature alignment in order to find a
compromise between preserving critical information and controlling computational cost to
improve the performance and efficiency of the model.

3.3.2. Information Fusion Module

The Information Fusion Module (IFM) is designed to improve the ability of multi-
scale feature fusion. As shown in Figure 5, first, the low-stage IFM (Low-IFM) receives
the aligned feature maps from the FAM module. These feature maps have been unified
in spatial resolution for further processing. The aligned feature map goes through a
multi-layer Rep-Block structure, which is a combination of a series of convolutional layers
and activation functions to extract and enhance feature information. The feature maps
processed by Rep-Block will be split into two parts in the channel dimension, which can
provide more specialized information for feature maps at different scales. The segmented
feature maps are regarded as global information, and they will be used to inject features at
different levels to achieve effective information interaction and fusion. IFM is designed to
reduce information loss and enhance the model’s ability to detect objects of different sizes
without significantly increasing latency. This mechanism obtains global information by
fusing features at different levels globally and injects global information into features at
different levels to achieve efficient information interaction and fusion. The advantage of
this procedure is that it allows the model to make better use of the features extracted from
backbone and can be easily integrated into existing similar network structures. Through its
design, IFM improves the overall performance of the model, making it more accurate and
efficient when dealing with objects of different sizes.

The High-stage Information Fusion Module (High-IFM) is designed to improve the
accuracy of object detection while maintaining low latency. As shown in Figure 6, High-
FAM first receives feature maps from different layers of the network and aligns them to a
uniform spatial resolution. This step is carried out by FAM, which ensures that the feature
maps have the same dimensions before the subsequent fusion. The aligned feature maps
are then passed to High-IFM, where transformer modules are used for processing. Each
transformer module consists of a multi-head attention module and a feedforward network
module. These operations allow the model to combine features at a higher level, which
are typically more abstract but contain more semantic information. These modules work
together to capture long-distance dependencies between features. The High-IFM processed
feature maps are channel-simplified by the Conv 1 × 1 operation, which helps to reduce
the computational complexity and maintain the efficiency of the model.

Feature segmentation and fusion: The reduced feature map is segmented in the
channel dimension and fused with the horizontal features of the current stage. This step
ensures that the features of different levels can be effectively combined, thus improving the
model’s ability to detect objects of different sizes.
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3.3.3. Information Injection Module

To effectively utilize global information in images and inject it into different levels
of feature representations, we employ the information injection module for information
fusion, as illustrated in Figure 7.

Figure 7. Information injection module.

The information injection module is responsible for injecting global information into
different levels of features to enhance the ability of the model to detect objects. The informa-
tion injection module first receives global information from the Information Fusion Module,
which contains features fused from different levels of the network. The module uses the
attention mechanism to weight the received global information. This step highlights the
key information by calculating the importance of each feature while suppressing the unim-
portant information. The weighted global information is subsequently injected into the
local features at the current level. This process is accomplished by specific operations such
as addition or concatenation, which enables the effective combination of global information
with local features. By injecting global information, local features are enhanced, allowing
the model to better understand and recognize objects in the image. Finally, the information
injection module outputs feature representations that fuse global and local information,
and these features will be used in subsequent object detection layers.

4. Experiments

4.1. Datasets and Implementation Details

We utilized two UAV datasets in our experiments. We first utilized the Rotor UAV
dataset proposed by DASMEHDIXTR et al., which consists of 1360 images of drones.
All images are labeled with the class “drone” and include various complex backgrounds
and drone models. We randomly selected 1000 images as the training set, 200 images as
the validation set, and 160 images as the test set. The dataset we used can be found at
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav/data (accessed on 1
February 2024).

We also utilized an open-source, available military UAV dataset on Roborflow. This
dataset comprises multiple environments, including sky, city, countryside, and coastline.
It encompasses UAV images captured under different weather conditions and at various
times, covering a wide range of UAV use scenarios. The dataset can be found at https:
//universe.roboflow.com/military-drone/dronemil-u8fqk (accessed on 7 February 2024).
It consists of 5238 training images, 1345 validation images, and 678 test images.

For training and evaluation, we conducted numerous experiments using these two
UAV datasets. The model architecture was implemented using PyTorch 1.11.0 and Timm
0.5.4. The model was trained from scratch for 200 epochs on 2 Nvidia V100 GPUs using the
AdamW optimizer and cosine learning rate scheduler. The size of all the image is 640 × 640.
We used a batch size of 16. The input images were resized and randomly cropped to a size
of 640 × 640. The initial learning rate is 1 × 10−4, and the weight decay is 2.5 × 10−2.

4.2. Comparision Results
4.2.1. Comparison with Prior Works

To evaluate the performance of our UAV detection model, we conducted a series of
comparative experiments. Firstly, we compared the number of parameters and Floating
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Point Operations Per Second (FLOPs) across various models to evaluate their efficiency.
Subsequently, we evaluated the models using metrics such as Recall, AP@50, and AP@50:95.
Recall measures the proportion of correctly detected objects among all labeled objects.
AP@50 represents the Mean Average Precision for each class when the Intersection over
Union (IOU) threshold is set to 0.5. AP@50:95 calculates the average AP over different IOU
thresholds ranging from 0.5 to 0.95 with a step size of 0.05.

Our model was compared against several established models, including different
versions of YOLOv7 [12], YOLOv8, RT-DETR [20], and the latest Gold-YOLO [23]. The
comparison results on Rotor UAV dataset are presented in Table 1.

Table 1. Comparative experiments with prior works on Rotor UAV dataset.

Model Input Size Backbone Neck Layers Parameters GFLOPs Recall AP@50 AP@50:95

YOLOv7 [12] 640 CBS + ELAN SPPSCP + E-ELAN 415 37,196,556 105.1 0.814 0.858 0.476
YOLOv7x [12] 640 CBS + ELAN SPPSCP + E-ELAN 467 70,815,092 188.9 0.837 0.883 0.53

YOLOv7-w6 [12] 1280 CBS + ELAN SPPSCP + E-ELAN 477 80,944,472 102.4 0.824 0.924 0.57
YOLOv7-d6 [12] 1280 CBS + ELAN SPPSCP + E-ELAN 733 152,886,360 198.3 0.878 0.934 0.588

YOLOv8s 640 C2F + SPPF C2F 168 11,125,971 28.4 0.878 0.941 0.626
YOLOv8m 640 C2F + SPPF C2F 295 25,856,899 79.1 0.864 0.948 0.631
YOLOv8n 640 C2F + SPPF C2F 225 3,157,200 8.9 0.90 0.949 0.626

Gold-YOLO-s [23] 640 Efficient-Rep Gather-and-
Distribute / 21.5M 46.0 0.670 0.928 0.582

Gold-YOLO-m [23] 640 Efficient-Rep Gather-and-
Distribute / 41.3M 87.5 0.693 0.934 0.604

Gold-YOLO-n [23] 640 Efficient-Rep Gather-and-
Distribute / 5.6M 12.1 0.671 0.919 0.580

RT-DETR-r18 [20] 640 ResNet 18 AIFI + CCFM 299 19,873,044 56.9 0.941 0.936 0.621
RT-DETR-r34 [20] 640 ResNet 34 AIFI + CCFM 387 31,106,233 88.8 0.896 0.933 0.602
RT-DETR-r50 [20] 640 ResNet 50 AIFI + CCFM 629 42,782,275 134.4 0.878 0.905 0.581

GCD-DETR (Ours) 640 DWR-DRB +
CGB

Gather-and-
Distribute 494 23,262,488 61.0 0.93 0.956 0.624

We list the network structures used in the backbone and neck parts of all models. The
backbone of Yolov7 uses CBS (Conv + BN + SiLU) and ELAN modules, which are composed
of multiple CBS modules. The neck part is mainly composed of information fusion module
SPPCSP and ELAN module. The backbone and neck of YOLOv8 are mainly composed of
C2f (CSPLayer2Conv) module and SPPF (Spatial Pyramid Pooling Fast). C2f has more skip
connections and additional split operations. Gold-YOLO is mainly composed of Efficient
Repblock and Gather-and-Distribute (GD). The GD mechanism significantly enhances
the information fusion ability of the neck part and improves the detection ability of the
model for objects of different sizes. RT-DETR is mainly composed of Attention-based Intro-
scale Feature Interaction (AIFI) module and the CNN based Cross-scale Feature-fusion
Module (CCFM).

The backbone of our model mainly consists of the Dilation-wise Residual and Di-
lated Re-param Block Module (DWR-DRB) module and Cascaded Group Attention (CGB)
module, and the neck is mainly composed of GD mechanism. Despite variations in the
parameters of these aforementioned methods, the accuracy of the largest model from each
of these methods is consistently lower than that of our proposed GCD-DETR model.

On the rotor UAV dataset, our model achieves a 2% higher AP@50 compared to
the highest accuracies of RT-DETR prior to improvement and a 1% higher accuracy than
YOLOv8n. On the military UAV dataset, as shown in Table 2, our model exhibits a 1%
higher AP@50 than YOLOv8s and a 0.5% higher AP@50 than Gold-YOLO -s. These results
demonstrate that our model can achieve high accuracy with a parameter count similar to
other models. Our model showcases its lightweight nature by achieving higher accuracy
while having significantly fewer GFLOPs compared to YOLOv7-d6. It indicates that our
model can achieve precision while being lightweight and can be more easily deployed on
UAV equipment. The effectiveness of our model can be attributed to the multi-dimensional
feature extraction of the DWR-DRB module and the Gather-and-Distribute mechanism,
which efficiently combines features from different maps. Additionally, the skip connection
helps reduce computational requirements, further contributing to high precision with
minimal computation.
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Table 2. Comparative experiments with prior works on military UAV dataset.

Model Input Size Year Layers Parameters GFLOPs Recall AP@50 AP@50:95

YOLOv7 [12] 640 2022 415 37,196,556 105.1 0.914 0.955 0.624
YOLOv7x [12] 640 2022 467 70,815,092 188.9 0.919 0.958 0.631

YOLOv7-w6 [12] 1280 2022 477 80,944,472 102.4 0.92 0.954 0.633
YOLOv7-d6 [12] 1280 2022 733 152,886,360 198.3 0.922 0.964 0.657

YOLOv8s 640 2023 168 11,125,971 28.4 0.934 0.968 0.687
YOLOv8m 640 2023 295 25,856,899 79.1 0.946 0.959 0.658
YOLOv8n 640 2023 225 3,157,200 8.9 0.957 0.962 0.676

Gold-YOLO-s [23] 640 2023 / 21.5M 46.0 0.897 0.973 0.680
Gold-YOLO-m [23] 640 2023 / 41.3M 87.5 0.944 0.953 0.636
Gold-YOLO-n [23] 640 2023 / 5.6M 12.1 0.950 0.958 0.675
RT-DETR-r18 [20] 640 2023 299 19,873,044 56.9 0.954 0.953 0.692
RT-DETR-r34 [20] 640 2023 387 31,106,233 88.8 0.925 0.977 0.639
RT-DETR-r50 [20] 640 2023 629 42,782,275 134.4 0.927 0.967 0.657

GCD-DETR (Ours) 640 / 494 23,262,488 61.0 0.966 0.978 0.711

The DWR-DRB module has significant advantages in dealing with multi-scale in-
formation. Through deep-separated dilated convolution and a two-step residual feature
extraction method, it can effectively extract the features of small objects and perform well
in real-time semantic segmentation tasks. This allows the DWR-DRB module to outperform
traditional backbone networks such as Gold-YOLO and RT-DETR in terms of accuracy
and efficiency, especially in scenarios where large amounts of detail and dynamic range
need to be processed. In addition, the design of the DWR-DRB module also considers the
optimization of computing resources so that it can maintain high performance even in
resource-constrained environments. The advantage of the DWR-DRB module and the CGB
module is its advanced multi-scale feature extraction ability, especially for small object
detection and real-time semantic segmentation tasks, which provides more accurate feature
extraction than YOLOv7 and YOLOv8 through deep separation dilated convolution and
refined receptive field design, thereby improving the overall network performance.

4.2.2. Comparison of Evaluation Metrics

We conducted a comparison between the training process curves of the original RT-
DETR and our model in the military UAV detection task. Throughout the training process,
we recorded the precision and recall values of each model on the training set, as well
as AP@0.5 and AP@0.5:0.95. We plotted corresponding curves to observe their training
progress in Figure 8.

Our model demonstrates superior performance in terms of precision. The precision
curve of our model maintains a high level of stability during training and converges to
a high precision level. Conversely, while the precision curve for the original RT-DETR
starts with an increasing pattern, it experiences considerable fluctuations during training,
ultimately settling at a precision slightly inferior to that of our model.

Regarding recall, our model also surpasses the original RT-DETR. The recall curve
of our model exhibits early-stage growth, maintains a stable upward trend throughout
training, and finally converges to a high level. However, the recall curve of the original
RT-DETR demonstrates a slower growth rate and noticeable fluctuations in the later stages
of training. Overall, our model showcases higher precision and recall during training,
along with better stability and faster convergence speed.

In addition, we compare the AP@0.5 and AP@0.5:0.95 curves between our model and
the original RT-DETR for object detection. These metrics evaluate the detection accuracy
and robustness of the models at different confidence thresholds. In terms of AP@0.5, our
model outperforms the original RT-DETR at lower confidence thresholds. The curve shows
a faster upward trend and eventually reaches a relatively high average precision. Con-
versely, the AP@0.5 curve of the original RT-DETR exhibits slower growth, and the detection
performance at lower confidence thresholds is slightly lower than that of our model.
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Figure 8. Comparison of evaluation metrics between GCD-DETR and RT-DETR-r18.

When considering the AP@0.5:0.95 curve, the performance gap between our model
and the original DETR becomes more evident at higher confidence thresholds. Our model’s
curves maintain high stability and exhibit high average accuracy across a range of confi-
dence thresholds from 0.5 to 0.95. However, the AP@0.5:0.95 curve of the original RT-DETR
performs poorly at high confidence thresholds, with significantly lower average accuracy
compared to our model. Therefore, in a comprehensive sense, our model demonstrates
better detection performance not only at low confidence thresholds but also at high confi-
dence thresholds, showcasing better overall robustness. Overall, our model demonstrates
superior precision, recall, and detection accuracy during training when compared to the
original RT-DETR.

4.2.3. Comparison of Detection

We conducted a comparison of the images detected by the original RT-DETR-r18
model and our model. Figure 9a illustrates that the RT-DETR-r18 model fails to detect
multiple targets, while Figure 9b demonstrates that our GCD-DETR successfully detects
all targets. This discrepancy may arise from the fact that when neighboring targets are in
close proximity, the larger target can obstruct the detection of the smaller target, resulting
in missed detections. However, our model overcomes this limitation by incorporating
an attention module and performing multi-scale feature fusion. As a result, our model
accurately identifies objects of various sizes, hence achieving the detection of all objects in
the given scenario.
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(a) (b) 

Figure 9. Comparison of detection results between RT-DETR-r18 and GCD-DETR: (a) RT-DETR-r18
and (b) GCD-DETR.

4.2.4. Comparison of Heatmap

The heatmap is a visualization technique utilized in object detection to display the
intensity distribution of objects detected by a model in an input image. Heatmaps are
commonly employed to indicate the location and confidence of the detected target, with
brighter areas representing higher confidence in the detection. In Figure 10, we compare
the heatmaps generated by the RT-DETR-r18 model and our proposed model.

  
(a) (b) 

Figure 10. Comparison results of heat map visualization: (a) RT-DETR-r18 and (b) GCD-DETR.

The first heatmap corresponds to the RT-DETR-r18 model, revealing that the deeper
regions of intensity are concentrated only in a specific area of the UAV, while other regions
show lower levels of focus. Conversely, the second heatmap corresponds to our model,
where darker-colored areas are concentrated on the body and support parts of the UAV,
encompassing almost the entire UAV. Additionally, a high level of attention is observed
towards the overall structure of the UAV in our model’s heatmap, indicating a more
confident detection of the UAV target. These findings demonstrate the effectiveness of our
model in detecting UAVs compared to the RT-DETR-r18 model.

4.3. Training Metrics

During the training process of object detection models, loss functions are the key
indicators used to assess the accuracy of model predictions and guide model optimization.
The Generalized Intersection over Union Loss (giou_loss) is a metric for evaluating the
localization accuracy of object detection models. It measures not only the overlap between
the predicted and actual bounding boxes but also includes a penalty term that considers the
area of the smallest enclosing box containing both bounding boxes. The lower the giou_loss,
the more accurate the model is at localizing targets. Classification Loss (cls_loss) is used
to measure the model’s performance in recognizing and classifying targets. It calculates
the difference between the model’s predicted output and the actual target values. In object
detection, this often involves classification problems, and the lower the Classification Loss,
the more accurate the model is at classification tasks. The l1 loss is a method for measuring
the difference between predicted values and actual values. It works by calculating the
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average absolute difference between them. This method performs well when dealing with
outlier data because it does not allow individual extreme values to overly influence the
overall loss. The lower the l1_loss, the better the model’s performance.

Figure 11 shows the changes in the various metrics of our model during the training
process. We note that the GCD-DETR model not only exhibits smooth performance across
all evaluation indicators but also consistency. The steady decline in giou_loss indicates
a continuous improvement in the model’s accuracy in target localization. The reduction
in Classification Loss reflects an enhanced ability of the model to distinguish between
different categories of targets. The gradual decline in the l1_loss demonstrates a better
balance between precision and recall. These smooth curves of the indicators show that the
model exhibits stability and reliability during training, with no overfitting or underfitting
issues. Additionally, our model performs exceptionally well in AP@0.5 and AP@0.5:0.95,
meaning it maintains high-level performance in object detection tasks of varying difficulty
levels. These results indicate that the GCD-DETR model excels not only in single tasks but
also has strong adaptability and robustness when dealing with diverse and complex object
detection scenarios.

Figure 11. Training metrics over 200 epochs.

4.4. Ablation Results

In this section, we remove important design elements in our designed model for
ablation experiments. To amplify the difference and reduce the training time, all models
are trained 200 epochs.

First, we just use the original RT-DETR model for testing; then, we add our Cascaded
Group Attention (CGA), Dilation-wise Residual and Dilated Re-param Block Module
(DWR-DRB), and Gather-and-Distribute Mechanism (GD) in turn. The results are shown in
Table 3. It is shown that after adding Cascaded Group Attention, AP@50 improved by 1.3%,
and the FPS reached 52.5 frames per second with almost no increase in GFLOPs. It shows
that Cascaded Group Attention reduces the amount of computation with almost no increase
in cost, and the AP@50 is improved by 1% when only adding the DWR-DRB module. In
the case of adding only Gather-and-Distribute mechanism, the AP@50 is improved by
1.2%. With all modules added, our final model improves the AP@50 by 3% over the
original RT-DETR-r18 model and achieves 41.9 frames per second at almost no additional
computational cost, which is about 10 frames per second higher than RT-DETR-r18. It
shows that our model improves the inference speed while improving the accuracy and can
be better applied to UAV detection.
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Table 3. Ablation experiments.

RT-DETR DWR-DRB CGA GD Layers Parameters GFLOPs Recall AP@50 AP@50:95 FPS

299 19,873,044 56.9 0.941 0.937 0.621 31.7
330 19,703,192 57.0 0.94 0.95 0.629 52.5
328 21,048,084 57.9 0.953 0.947 0.625 29.8
434 22,257,300 59.9 0.92 0.949 0.624 27.9
463 23,432,340 60.9 0.899 0.952 0.635 25.0
494 23,262,488 61.0 0.93 0.956 0.624 41.9

4.5. Detection Results

We have used our model to detect UAV pictures with different scenes and sizes, and
the detection results are shown in Figure 12. Figure 12a shows that in the dusk scene, our
model can also accurately identify when there is less light and the UAV is dark. Figure 12b
shows that the sky color of the background and the color of the UAV are both white,
indicating that our model can still achieve accurate recognition when the color of the UAV
is similar to the sky background. In Figure 12c, it can be seen that the target UAV is very
small, and its color is almost integrated into the background sky. However, our model can
still recognize it, indicating that our model also has a good effect on detecting small targets.
Figure 12d is a picture of the UAV at a close distance, and the UAV takes up a large portion
of the picture, indicating that when using the UAV to detect the UAV, the recognition of a
nearby target can achieve a high accuracy rate. Figure 12e,f shows UAV detection under a
complex background. It can be seen that in the complex background, the UAV is easier to
integrate with the environment, and at the same time, it is more difficult to detect, but our
model can still achieve a high accuracy rate, indicating the effectiveness of our model in
the face of complex background detection. Figure 13 shows the detection results of more
complex scenes, which can be seen in the woods or on the road. Our model can detect
drones even when there are occlusions or complex backgrounds.

Figure 12. Detection results on rotor UAV dataset.(a) drones at dusk (b)drone is similar in color to
the sky (c) small target drone (d) large target drone (e) drone in complex background (f) drone in a
forest scene.
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Figure 13. Detection results on military UAV dataset.

5. Conclusions

The appearance of uncrewed aerial vehicles in images or videos is diverse and vari-
able, with their scale, angle, appearance, and other characteristics changing based on
distance and viewpoint. This variability greatly increases the complexity and challenges
of UAV detection algorithms. In complex backgrounds like the sky, trees, or buildings,
UAV detection algorithms must possess excellent object detection capability to exclude
interference information. Moreover, UAVs may also face occlusion from other objects,
further complicating detection.

Additionally, UAVs differ in morphology and appearance due to varying models,
manufacturers, and purposes. It requires detection algorithms to have strong adaptability
and accurately identify UAVs in different situations. Real-time detection and tracking of
UAVs are often required in applications like military surveillance and border monitoring.
As a result, detection algorithms must exhibit efficient computing performance and fast
response speeds. However, obtaining a representative UAV image dataset is challenging
due to the diverse operating environments and the substantial workload associated with
data collection and annotation.

To address these challenges, this paper proposes an improved transformer model
called GCD-DETR and conducts extensive experiments on two public datasets. The GCD-
DETR model introduces the DWR-DRB module, leveraging the Cascaded Group Attention
and Gather-and-Distribute mechanism to strike a balance between efficiency and accuracy.
In particular, the DWR-DRB module enhances adaptability to changes in UAV morphol-
ogy and appearance via a two-step multi-scale context information acquisition method.
Cascaded Group Attention assists the model in focusing on UAV targets and eliminating
interference information in complex backgrounds. The Gather-and-Distribute mechanism
further enhances detection accuracy through global information interaction and fusion. The
experimental results demonstrate significant performance improvements in the GCD-DETR
model in UAV detection tasks, particularly when dealing with complex backgrounds and
occlusions. The successful application of this model offers substantial support for the
intelligent development of UAVs, especially in areas such as military surveillance and
border monitoring.

However, practical applications of UAV detection technology still face limitations and
challenges, including computing resource constraints and real-time requirements. Future
research aims to improve the robustness and efficiency of UAV detection technology to
address even more complex and variable application scenarios. Additionally, with the
continuous development and popularization of UAV technology, the application of UAV
detection technology will witness further expansion and development opportunities.
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Abstract: Accurate and fast detection of traffic sign information is vital for autonomous driving sys-
tems. However, the YOLOv5 algorithm faces challenges with low accuracy and slow detection when
it is used for traffic sign detection. To address these shortcomings, this paper introduces an accurate
and fast traffic sign detection algorithm–YOLOv5-Efficient Vision TransFormer(EfficientViT)). The
algorithm focuses on improving both the accuracy and speed of the model by replacing the CSPDark-
net backbone of the YOLOv5(s) model with the EfficientViT network. Additionally, the algorithm
incorporates the Convolutional Block Attention Module(CBAM) attention mechanism to enhance
feature layer information extraction and boost the accuracy of the detection algorithm. To mitigate
the adverse effects of low-quality labels on gradient generation and enhance the competitiveness of
high-quality anchor frames, a superior gradient gain allocation strategy is employed. Furthermore,
the strategy introduces the Wise-IoU (WIoU), a dynamic non-monotonic focusing mechanism for
bounding box loss, to further enhance the accuracy and speed of the object detection algorithm.
The algorithm’s effectiveness is validated through experiments conducted on the 3L-TT100K traffic
sign dataset, showcasing a mean average precision (mAP) of 94.1% in traffic sign detection. This
mAP surpasses the performance of the YOLOv5(s) algorithm by 4.76% and outperforms the baseline
algorithm. Additionally, the algorithm achieves a detection speed of 62.50 frames per second, which
is much better than the baseline algorithm.

Keywords: traffic sign detection; attention mechanism; wise-IoU; YOLOv5; efficient vision transformer

1. Introduction

A crucial component of autonomous driving is the accurate and fast detection of traffic
signs [1]. The recognition of traffic signs is a deep learning-based procedure where the
detection algorithm learns from labeled signage data to extract important information
about the signage. The causes of 94% of these incidents, including human mistake and
inattentive driving, can be eliminated with autonomous vehicles [2]. Traffic accidents
caused by self-driving cars that are traveling too fast and lack information from signage for
decision-making judgement can be avoided by accurate and fast object detection algorithms
that capture signage information.

Deep learning-based traffic sign detection algorithms, shape-based traffic sign detec-
tion algorithms, and color-based traffic sign detection algorithms are the three basic types
of traffic sign detection algorithms [3,4]. For instance, one technique uses color features to
separate traffic signs by assessing color variances between the signs and the surrounding
environment and defining color thresholds [5]. However, weather and lighting changes
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might affect color-based techniques. Yakimov et al. use the Hough transform technique to
identify traffic signs based on their distinct shapes. However, when signs are partially hid-
den, this shape-based strategy is useless [6]. Balali et al. present a fusion strategy that uses
both color and form features in order to overcome the shortcomings of the aforementioned
methods. In comparison to applying each characteristic independently, the combination
of these factors improves detection performance [7]. However, multi-feature fusion-based
traffic sign recognition algorithms run into issues like the inability to recognize connected
traffic signs and subpar real-time performance.

Driven by the advancements in deep learning detection algorithms, traffic sign de-
tection algorithms have emerged as a powerful tool for extracting meaningful semantic
information from images using convolutional neural networks. These algorithms leverage
various detection frameworks to extract precise location and category information of traffic
signs. Broadly speaking, deep learning traffic sign detection algorithms can be categorized
into two types: two-stage region proposal (Two-Stage) and single-stage regression algo-
rithm (One-Stage) [8,9]. Two-stage algorithms, such as R-CNN, Fast R-CNN, and Faster
R-CNN, typically exhibit higher detection accuracy but slower speed [10–12]. Conversely,
single-stage algorithms, including SSD [13], RetinaNet [14], and YOLO series [15–17], treat
localization and classification as a regression problem, enabling end-to-end detection with
faster processing but comparatively lower detection accuracy.

With the growth of migration learning, it has become popular to integrate a trans-
former model into the field of vision in order to address the issues of low detection accuracy
and slow detection speed of existing detection algorithms [18]. The Vision Transformer (ViT)
proposal demonstrates the value of the transformer paradigm in the realm of vision [19].
The ViT model resolves the issue that convolutional networks are unable to extract informa-
tion about the global feature layer order and content, considerably enhancing the precision
of detection algorithms. A unique lightweight multi-scale attention technique is used in the
semantic segmentation model called the Efficient Vision Transformer (EfficientViT) [20]. The
issue of the ViT model’s big parameters and slow speed is resolved by the EfficientViT,
which also enhances the detection algorithm’s accuracy and speed in real time.

The mian contribution of this study is summarized as follows: (1) An EfficientViT
network is designed as the backbone of YOLOv5 to improve the accuracy and speed of
traffic sign detection. (2) The feature pyramid component’s incorporation of the CBAM
attention mechanism, which enables the feature map to self-correct, suppresses irrelevant
noise input and improves detection accuracy. (3) Making use of the WIoU (Wise IoU)
bounding box loss function, which prioritizes crucial image features, mutes pointless
regional replies and enhances the detection network’s overall performance.

The rest of the paper is structured as follows: The EffcientVit network’s fundamental
structure, the attention mechanism, and information on the bounding box loss function
are all introduced in Section 2. The experimental design and the experimental structure
assessment index are introduced in Section 3. The experimental results and analysis are
presented in Section 4. Finally, the conclusion is given in Section 5.

2. The YOLOv5-EfficinetViT Traffic Sign Detection Algorithm’s General Framework

Four primary components make up the YOLOv5(s) algorithm: input, backbone net-
work (Backbone), neck, and head. The Focus, Conv, CSP, and SPPF networks make up
the majority of the backbone network. The Focus structure separates the input image
into 16 identically sized blocks, then joins the blocks to create four identical images for
additional processing. The CSP network divides the input into two sections, stacking the
remaining blocks in the first and performing extra operations in the second. The 5 × 5 Max-
Pool layers are successively applied to the input by the SPPF structure, which then sums
the computed values from each layer. The output is then generated using a Conv+BN+Relu
structure. Figure 1 shows how YOLOv5(s) is structured.
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Figure 1. YOLOv5(s) object detection model structure.

The YOLOv5-EfficientViT traffic sign detection algorithm presented in this paper is
shown in Figure 2. The algorithm adds three crucial parts for a better performance. First
off, a more effective extraction of traffic sign features is made possible by the EfficientViT
network, which takes the place of the original YOLOv5 backbone CSPDarkNet network.
Second, the CBAM attention mechanism improves the FPN structure by adding more
refined characteristics and a stronger emphasis on non-noise information. Last but not
least, the algorithm integrates the dynamic non-monotonic focusing mechanism known
as the Wise IoU module to address the complementing balance between better and worse
quality samples in the CIoU bounding frame loss function.

Figure 2. YOLOv5 -EfficientViT (Ours) object detection model structure.

2.1. EfficientViT Backbone

The Vision TransFormer (ViT) architecture serves as the foundation for the image
categorization model known as EfficientViT. The DSConv structure, MBConv structure,
and EfficientViT module structure are only a few of the structures that this model comprises.
The full structure of EfficientViT is shown in Figure 3.
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The model first inputs the image and uses a convolution layer (Conv) to perform
feature extraction and dimensionality reduction procedures. The output is placed via a
depthwise separable convolution (DSConv) structure to boost performance and efficiency.
The point-by-point convolution convolves the depthwise convolution output with a 1 × 1
convolution kernel to produce the final output feature map, whereas the depthwise convolu-
tion just conducts convolutions within each channel. This strategy maintains computational
economy while improving the model’s performance.

Figure 3. EfficientViT general structure.

The MBConv network processes the DSConv output twice, using the L1 layer and
the L2 layer for feature extraction to obtain the P2 feature layer. The lightweight Inverted
Residual Bottleneck (MBConv) architecture that serves as the foundation of the MBConv
network starts with a 1 × 1 convolution. The SE (squeeze-and-excitation) module is also
incorporated into the MBConv module to increase the relevance of features and improve
the model’s overall performance. For a graphic illustration of the MBConv structure, please
see Figure 4.

Two MBConv modules are incorporated into the EfficientViT model to create a P2
feature layer. The L3 EfficientViT module structure and one MBConv module are then
applied to this P2 feature layer to produce the P3 feature layer. The input image and its
features go through dimensionality leveling using a linear layer inside the EfficientViT
module structure. Three containers (Q/K/V) with an equal distribution of the data
are used for three parallel operations. In the first operation, feature representation and
information fusion are immediately implemented using the global attention mechanism
with ReLU activation. In order to handle data about graph structure, the second operation
first performs a deep convolution operation using a 3 × 3 kernel. The output is then
activated by ReLU and sent into the global attention mechanism. The third step, which
processes data about graph structure, includes a deep convolution operation with a 5 × 5
kernel, followed by graph convolution. The output is then inputted with ReLU activation
into the global attention mechanism. The three parallel processes’ outputs are merged
and stitched together, and the finished product is then run through a linear layer. Finally,
the output’s dimensional representation is recovered by using the MBConv structure.
Figure 5’s representation of the EfficientViT module structure shows a network of self-
attentive mechanisms.

The input to the Relu-based global attention is x ∈ R
N× f , and the generalized self-

attention mechanism is formulated as follows:

Oi =
N

∑
j=1

Sim(Qi, Ki)

∑N
j=1 Sim(Qi, Ki)

Vj (1)
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where Q = xWQ, K = xWK, V = xWV , and WQ/WK/WV ∈ R
f×d is the linear projection

matrix, and Oi denotes the ith row of matrix Sim(., .), which is the similarity function.

When using the similarity function Sim(Q, K) = exp(QKT√
d
), Equation (1) is the original

self-attention mechanism.

Sim(Q, K) = ReLU(Q)ReLU(K)T (2)

Figure 4. MBConv structure.

With Sim(Q, K) = ReLU(Q)ReLU(K)T , Equation (1) can be rewritten as follows:

Qi =
N

∑
j=1

ReLU(Qi)ReLU
(
Kj
)T

∑N
j=1 ReLU(Qi)ReLU

(
Kj
)T Vj =

∑N
j=1

(
ReLU(Qi)ReLU

(
Kj
)T
)

Vj

ReLU(Qi)∑N
j=1 ReLU

(
Kj
)T

(3)

The L4 EfficientViT module structure processes the P3 special layer after it has been
input into an MBConv module, resulting in the derivation of the P4 feature layer. The P4
broad dimension is extended using a multiplication factor of 4, whereas the P3 wide
dimension is expanded using a factor of 2. The P2, P3, and P4 feature layers are additionally
concatenated, and the resulting cumulative outputs are then fed into L5 MBConv modules
for convolutional processing, producing the final output feature layer.
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Figure 5. EfficientViT module structure.

2.2. Attention Mechanism

The Attention Mechanism is a frequently used deep learning technique that improves
the model’s capacity to focus on incoming data and to selectively highlight important
information. By learning weights that only emphasize particular portions of the input
throughout the aggregation process, it simulates human attention.

2.2.1. CBAM Attention Mechanism

The Channel Attention Module and the Spatial Attention Module are the two sub-
modules that make up the CBAM (Convolutional Block Attention Module) attention
mechanism [21]. To capture various degrees of feature representation, these sub-modules
carry out attentional operations on several dimensions, namely the channel dimension and
the spatial dimension, respectively.

The purpose of the Channel Attention Module is to record the relationships between
the feature maps in the channel dimension. This is accomplished by using fully connected
layers and global average pooling to learn channel weights, allowing the module to se-
lectively enhance or suppress particular channels within the feature maps. This attention
mechanism focuses the model’s attention on important channel information, leading to the
extraction of representations that are more thorough and feature-rich.

The goal of the spatial attention module is to comprehend the spatial importance of
the feature map. This is carried out by applying a number of operations to the feature
graph, including maximum pooling, average pooling, convolution layers, and activation
functions, to create a spatial attention graph. The features at different positions within the
feature map are then given weights using this graph. As a result, the model may analyze
characteristics at many locations while concentrating on important spatial information.
Figure 6 provides a diagram of the procedure.
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Figure 6. CBAM attention mechanism.

2.2.2. CA Attention Mechanisms

The feature map’s channels can be selectively enhanced or suppressed using the
coordinate attention mechanism (CA). It makes it easier to extract richer and more important
characteristics by learning channel weights [22]. In order to allow the model to prioritize
important channel information during feature processing, CA primarily operates on the
channel dimension of the feature map. For a visual illustration, see Figure 7.

Figure 7. CA attention mechanism.
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2.3. IoU Loss

In many object detection tasks, the Intersection over Union (IoU) loss function is used,
as shown in Figure 8 below [23]. The overlap between the anticipated bounding box and
the actual labeling of the model output is measured by this loss function. The anticipated
bounding box and the ground truth box’s common area is indicated by the intersection,
while their combined area is shown by the union. By minimizing the IoU loss function
during training, the model modifies the location and dimensions of the predicted bounding
box with the goal of getting it to resemble the ground truth box as much as possible.
The model may better capture the shape and location of the item by optimizing the IoU
loss function, which raises the object detection accuracy.

G round truth:

Prediction:

Figure 8. IoU Loss.

2.3.1. EIoU Loss Function

The non-negativity, symmetry, triangle inequality, and scale insensitivity of the IoU
loss function are all positive qualities. The loss value is 0 because it is unable to accurately
gauge the distance between two boxes that do not intersect. A disadvantage of the IoU loss
function is its delayed convergence.

The GIoU loss function is proposed as an improvement over the IoU loss function,
which suffers from the limitation of always yielding a value of 0 when there is no inter-
section between two boxes [24]. Let A and B represent any two boxes and C represent
the smallest box that encloses both A and B. The IoU is calculated as |A ∩ B|/|A ∪ B|.
The GIoU loss function becomes valid when |A ∩ B| = 0. In such cases, the GIoU loss aims
to increase the area of the bounding box to ensure overlap with the object box, contrary
to the intuition of reducing the spatial location difference. When |A ∩ B| > 0, the area of
|C − A ∪ B| is always a decimal or zero (this term is zero when A contains B, and vice
versa). Consequently, the GIoU loss degenerates to the IoU loss in this scenario. As a result,
the convergence rate of the GIoU loss remains slow.

LGIoU = 1 − IoU +
|C − (A ∪ B)|

|C| (4)

The CIoU loss function takes into account three crucial geometric elements: overlap
area, center distance, and aspect ratio [25]. In this context, B represents the prediction
frame, Bgt denotes the object frame, and b and bgt represent the centroids of B and Bgt,
respectively. The Euclidean distance between b and bgt is denoted as ρ(·) = ‖b − bgt‖2.
Additionally, c represents the diagonal of the smallest box that covers both boxes. The aspect
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ratio difference is measured by v = 4
π2 (arctan wgt

hgt − arctan w
h )

2, and α is computed as
α = v

(1−IoU)+v .
The CIOU loss function is defined as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + av (5)

The EIoU (Efficient IoU) introduces improvements to the CIoU (Complete IoU) loss
by addressing the aspect ratio inconsistency issue. It replaces the aspect ratio-related
component of the CIoU loss with separate consistency losses for length and width. This
modification results in the EIoU loss, which provides a more reasonable and accurate
representation [26]. The definitions of the EIoU loss are as follows:

LEIoU = LIoU + Ldis + Lasp (6)

LEIoU = 1 − IoU +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)

(hc)2
(7)

The loss function is divided into three parts: IOU loss LIoU , distance loss Ldis, and
direction loss Lasp. In this context, hw and hc represent the width and height of the
minimum enclosing frame that covers the two boxes. Additionally, the EIOU loss is
introduced to directly minimize the disparity between the object and anchor boxes’ width
and height. This approach leads to faster convergence and improved localization.

2.3.2. SIoU Loss Function

The SIoU (SCYLLA-IoU) loss function incorporates traditional metrics such as distance,
shape, and IoU to calculate the penalty for mismatches between the true value in the image
and the model’s bounding box [27]. This addition significantly improves the training
process by causing the prediction frame to converge quickly towards the nearest axis,
allowing subsequent methods to rely on only one coordinate (X or Y) for regression.
In essence, the introduction of angular penalty effectively reduces the overall degrees of
freedom. The SIoU loss function comprises four cost functions: angle, distance, shape,
and IoU. The angular cost function allows the model to make predictions in the X and
Y axes first, and during convergence, attempts are made to minimize the value of α in
tanα = Y

X ; the value of β in tanβ = X
Y is minimized when α ≤ π

4 . The distance cost function
is defined taking into account the angular cost defined above. When α → 0, the contribution
of the distance cost is greatly reduced. Conversely, when α → π

4 , the contribution of the
distance cost is greater. The shape cost function is defined as

Ω = ∑
t=w,h

(1 − e−ωt)θ (8)

ωw =
|w − wgt|

max(w, wgt)
, ωh =

|h − hgt|
max(h, hgt)

(9)

and the value of θ defines the shape cost, and its value is unique for each data set. θ controls
the attention value required for the shape cost. If θ = 1, this will immediately optimize the
shape and thus affect the free motion of the shape.

2.3.3. Wise IoU Loss Function

A problem of including low-quality data in the training dataset is that geometric
measurements, such as distance and aspect ratio, might amplify the penalty applied to such
samples, causing the model’s generalization performance to degrade. To solve this problem,
an efficient loss function should reduce the penalty imposed by geometric metrics in cases
when the anchor frame and the object frame strongly overlap. The model can acquire
improved generalization skills by minimizing interference during training. A two-layer
distance attention mechanism loss function based on the distance metric is introduced
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in this context by WIoU [28]. The dynamic non-monotonic focusing mechanism uses
“outliers” as an alternative to IoU for quality assessment of anchor frames and provides a
judicious gradient gain assignment strategy. This strategy reduces the competitiveness of
high-quality anchor frames while reducing the harmful gradients generated by low-quality
examples. This allows the WIoU to focus on anchor frames of average quality, improving
the detection accuracy of the detector.

• RWIoU ∈ [1, e); this will significantly amplify the LIoU of the common mass an-
chor frame.

• LIoU ∈ [0, 1]; this will significantly reduce the RWIoU of high quality anchor frames
and significantly reduce their focus on the center distance when the anchor frame is
well overlapped with the object frame.

LWIoUv1 = RWIoULIoU (10)

RWIoU = exp

(
(x − xgt)2 − (y − ygt)2

(W2
g − H2

g)
∗

)
(11)

In the above equation, Wg, Hg are the length and width of the minimum outer bound-
ing box of the prediction and real boxes. In order to prevent RWIoU from generating
gradients that impede convergence, Wg, Hg are separated from the computational graph
(the superscript * indicates this operation). Because it effectively eliminates the factors that
hinder convergence, no new variables are introduced, such as the horizontal to vertical
ratio, so the convergence efficiency of the model is improved.

3. Experimental Design

3.1. Experimental Dataset

Six wide-angle DSLR cameras with large pixel counts were used to create the TT100K
traffic signs dataset [29], and various lighting and weather conditions were present at
each shooting location. The dataset’s final size is 2048 × 2048, with the original image’s
resolution being 8192 × 2048. The panorama was then divided into four pieces. There
are more thorough categories of traffic signs in the TT100K dataset, which has 221 distinct
categories overall and 128 tagged categories. This study randomly chooses 9050 photos with
traffic signs from the TT100K dataset and reclassifies the categories because the number
of categories in the dataset is seriously unequal. This study uses the CCTSDB dataset
categorization standard to divide the dataset into three categories: required directional
signs, prohibitory signs, and warning signs. Table 1 lists the numbers for each category
under the designation 3L-TT100K. The 3L-TT100K with dimensions 2048 × 2048 is used as
a model to accelerate model training and verify the model’s capacity to detect the target.
The size of the 3L-TT100K dataset is shrunk to 640 × 640 from 2048 × 2048.

Table 1. 3L-TT100K dataset.

Classification Quantity (pcs)

prohibitory 16,745
mandatory 4539

warning 1241

3.2. Evaluation Metrics

For assessing the consistency of test outcomes, the model assessment metrics utilized
in this article use fixed IoU and confidence levels. The determination of precision and recall
for the prediction outcomes allows for the measurement of the model’s object detection
and object categorization capabilities. Additionally, by varying the confidence thresholds,
precision–recall curves (P-R curves) can be created, providing a visual depiction of the
model’s detection efficiency. Based on the true labels, the detection results are divided into
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four groups when the precision and recall metrics are computed: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).

By evaluating the ratio of correctly predicted samples to all predicted samples in the
detection results, precision is a statistic that assesses a model’s capacity to categorize an
object. It is calculated as follows to indicate the ratio of successfully detected samples to all
detected samples:

Precision =
TP

TP + FP
(12)

Recall is a metric that gauges how well the model can identify the object. It is derived
by dividing the number of real samples overall in the detection results by the proportion
of samples that were correctly predicted. In other words, it symbolizes the proportion of
successfully recognized samples to all true samples, offering information on the model’s
detection abilities. It is calculated as follows:

Recall =
TP

TP + FN
(13)

Recall is a metric that gauges how well the model can identify the object. It is derived
by dividing the number of real samples overall in the detection results by the proportion
of samples that were correctly predicted. In other words, it symbolizes the proportion of
successfully recognized samples to all true samples, offering information on the model’s
detection abilities. It is calculated as follows:

The average precision (AP) value derived by averaging the precision values along the
precision–recall (PR) curve is represented by this term. It is computed by integrating the
PR curve’s area under the curve.

AP =
∫ 1

0
p(r)dr (14)

An essential evaluation statistic for object detection systems is the mean average
precision (mAP). It provides a thorough evaluation of the model’s performance and is
calculated as the average of the average precision (AP) values. To evaluate object detection
algorithms, the speed and accuracy (mAP) metrics are frequently used, providing a fair
knowledge of their capabilities. A more advanced object detection model for the particular
dataset under consideration is indicated by a higher mAP value.

Furthermore, the quantity of sent frames per second (FPS) is used to gauge how
quickly the algorithm detects motion. This statistic is a crucial gauge of how well the
algorithm works in real-time detection.

4. Analysis of Experimental Results

4.1. Experimental Environment

The experiment was carried out in a Linux environment using the Ubuntu 20.04
operating system. The experimental device has an NVIDIA RTX3090 GPU with 24 GB of
video RAM, Pytorch 1.11.0, Python 3.8, and CUDA 11.3 loaded to assist the experiment.

4.2. Experimental Setup

The network structure of both YOLOv5s and YOLOv5l models are shown in Figure 1,
and the resultant frameworks of the two models are the same, with the YOLOv5l model
having a parameter count that is about seven times larger than that of YOLOv5s by control-
ling the number of C3 modules. When the algorithm is trained, the parameters are tuned
using both manual and genetic algorithms to prove that the algorithm in this paper is the
optimal model. In the manual tuning experiment, the parameter optimiser, batch size, and
learning rate (lr) were tuned. optimizerSGD, Adam, and AdamW were tuned in the middle
of the three; the batch size was tuned between 32 and 64; and lr was tuned between 0.01
and 0.001, respectively. In the genetic algorithm (GA) evolutionary iteration of lr, a muta-
tion technique with a probability of 80% and a variance of 004 was used to generate new
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offspring based on the best parent in the previous generations.The YOLOv5-EfficientViT
algorithm migrated the weights of the EfficientViT network of ImageNet, and the model
was trained for a total of 500 rounds. The results of parameter tuning are shown in Table 2;
different optimizers have a greater impact on the model, and the optimal optimizer is
SGD. The batch size also has a certain impact on the model, and the smaller the batch-size,
the better the results. The size of the learning rate affects the convergence speed of the
model, and the optimal learning rate corresponding to different optimizers is also the
optimal learning rate for different optimizers.

Table 2. Algorithm tuning test table.

Optimizer Batch-Size Learning Rate mAp@0.5%

SGD 32 0.01 94.0%
SGD 64 0.01 93.9%
SGD 32 0.001 89.1%

Adam 32 0.01 84.1%
Adam 64 0.01 80.8%
Adam 32 0.001 92.5%

AdamW 32 0.01 93.2%
AdamW 64 0.01 92.9%
AdamW 32 0.001 92.0%
GA(SGD) 32 0.0136 94.1%

4.3. Algorithm Detection Performance Comparison Analysis
4.3.1. Algorithm P-R Curve Comparison

To assess the detection performance of the algorithm, we conducted tests comparing
YOLOv5-EfficientViT with YOLOv5(s), YOLOv5(l), YOLOv4-tiny, YOLOv7, and YOLOv8.
These three categories were used to validate the five methods on the TT100K dataset,
and Table 3 shows the experimental outcomes. Additionally, we produced P-R curves to
graphically display the algorithm’s effectiveness on this dataset. In Figure 9, below, these
curves are shown.

The self-attention mechanism from the transformer is used by the YOLOv5-EfficientViT
method to improve the analysis and processing of global characteristics in images. This
algorithm outperforms other widely used detection techniques in terms of recall rates
for the detection of the three item classes indicated in Table 3. In addition, it achieves
significant accuracy gains over YOLOv4-tiny, YOLOv7, and YOLOv8.

Table 3. Comparison table of P-R curves of algorithms.

Algorithm Parameters Prohibitory Mandatory Warning

YOLOv5(s) P 95.87% 94.64% 93.00%
R 80.08% 79.85% 73.23%

YOLOv5(l) P 96.05% 96.25% 95.54%
R 86.43% 87.01% 84.25%

YOLOv4-tiny P 76.72% 75.27% 81.73%
R 61.52% 65.35% 66.93%

YOLOv7 P 89.4% 91.7% 67.6%
R 68.7% 67.6% 73.3%

YOLOv8 P 92.8% 92.9% 87.4%
R 84.9% 84.9% 89.4%

YOLOv5-EfficientViT(Ours) P 93.50% 93.70% 88.10%
R 88.3% 90.6% 90.4%
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The P-R curve in Figure 9a indicates that the current approach outperforms two widely
used object identification algorithms, YOLOv4-tiny, YOLOv7, and YOLOv8, in terms of
detecting prohibitory category objects. This conclusion is supported by the rest of Figure 9.
Furthermore, the P-R curves shown in Figure 9b,c unmistakably show that the current
approach outperforms the YOLOv7 object detection algorithm in terms of recognizing
mandatory class and warning items. Notably, the 3L-TT100K dataset consistently performs
better than the other five object detection algorithms for all three classes of objects when
the precision is 0.9.

(a) prohibitory

(b) mandatory

Figure 9. Cont.
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(c) warning

Figure 9. P-R curve comparison. (a) is the Prohibitory traffic sign P-R curve; (b) is the Mandatory
traffic sign P-R curve; (c) is the Warning traffic sign P-R curve.

4.3.2. Comparative Analysis of Algorithm in Real-Time

A comparison and study of frames per second (FPS) between the algorithm described
in this research and the YOLOv5(s), YOLOv5(l), YOLOv4-tiny, YOLOv7, and YOLOv8 algo-
rithms are completed to verify the real-time performance of the approach. Table 4 presents
the outcomes. The fastest of these algorithms, YOLOv4-tiny, processes 122.06 images per
second, while YOLOv5(l) processes 39.30 images per second. The processing rate of the
algorithm used in this study is 62.50 images per second, which is slightly slower than the
YOLOv7 and YOLOv8 object detection algorithms. The approach presented in this study
accelerates feature map extraction and provides noticeably faster image processing speeds
than both the YOLOv5(s) and YOLOv5(l) algorithms by substituting the YOLOv5 back-
bone with the EfficientViT network. The technique described in this research ensures that
the required image processing speed for real-time detection while maintaining a balance
between detection accuracy and real-time performance when compared to several standard
object detection algorithms. Considering the lack of such a high-performance hardware
equipment configuration in the test in the application scenario, the algorithm in this paper
was verified in the test on the 2080 ti, which can process 57.80 pictures per second and can
meet the requirements of real-time detection, with good applicability.

Table 4. Algorithm inference speed comparison.

Algorithm FPS (frame/s)

YOLOv5(s) 44.47
YOLOv5(l) 39.30

YOLOv4-tiny 122.06
YOLOv7 64.52
YOLOv8 65.70

YOLOv5-EfficientViT(Ours) 62.50

4.3.3. Comparative Analysis of Algorithmic Ablation Experiments

A number of comparative ablation experiments were carried out in order to better
understand the internal network structure of the YOLOv5-EfficientViT algorithm and gauge
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the effect of modules with various architectures on its detection performance. The back-
bone network replacement, the insertion of attention mechanisms at various locations,
and the replacement of the IoU loss function were the three main focuses of the ablation
experiment design. Four network architectures were used for the backbone replacement:
Mobilenetv3, EfficientFormerv2, Efficient Model (EMO), and EfficientViT. We investigated
the impact of backbone model size on detection performance using the Mobilenetv3 net-
work, a lightweight network that has gained popularity recently, and the latter three models,
which are Vision Transformer models with improved detection performance.

The results of the ablation experiment are shown in Table 5, which contrasts the back-
bone replacements for the YOLOv5 model with the Mobilenetv3 network (which achieved
the fastest processing speed of 85.47 FPS for images) and the EfficientFormerv2 (l) network
(which produced the best detection performance with a mAP of 94.4%). The YOLOv5-
EfficientViT backbone was created by replacing the YOLOv5 backbone with the EfficientViT
(b1) network after taking into account both detection accuracy (mAP) and speed (FPS)
measures in comparison with YOLOv5. (From here on, EfficientViT will always refer to the
EfficientViT (b1) model).

An attention mechanism is introduced to improve attention to the input and selectively
focus on important information during feature extraction. As shown in Figure 10a–d, we
chose the CA attention network and the CBAM attention network for this study and
included them in the model. As shown in Table 5, when using EfficientViT as the backbone
and positioning the Tim CBAM attention network at position Figure 10d, the algorithm
achieves the best object detection results in terms of mAP and FPS. Notably, compared to
adding the CA attention network at the same site, adding the CBAM attention network
in Figure 10d results in a 1.8-point gain in object detection accuracy and a 9.75 images per
second increase in detection speed. Additionally, utilizing YOLOv5-EfficientViT without
the attention mechanism results in a 0.1% improvement in detection accuracy.

In order to improve the YOLOv5-EfficientViT algorithm, this work introduces four
loss functions, namely EIoU, SIoU, and WIoU. Table 5 makes it very evident that using
the WIoU loss function increases the algorithm’s detection accuracy in comparison to
YOLOv5-EfficientViT by 0.2 percentage points. Additionally, the technique improves speed
by 0.4 images per second. Incorporating the CBAM attention mechanism, the WIoU loss
function, and the replacement of the YOLOv5 backbone with EfficientViT at position (d) in
Figure 10 make up the entire algorithm structure of this study. The addition of the WIoU
loss function improves the accuracy of traffic signage by 0.2 percentage points and improves
the inference speed by 1 FPS. Table 5 displays the experimental findings. The algorithm
used in this study improves the detection accuracy in terms of mAP by 4.76 percentage
points in comparison to the YOLOv5s model and accelerates detection by 18.03 photos
per second.

(a) Position One

Figure 10. Cont.
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(b) Position Two

(c) Position Three

(d) Position Four

Figure 10. Comparison of total communication delay for different penetration rates of CAV.
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Table 5. Comparison of ablation experiment results.

Number Backbone Attention Mechanisms IoU Loss mAP@0.5% FPS (frame/s)

1 Mobilenetv3 - - 83.2 % 85.47
2 EfficientFormerv2(s1) - - 92.7 % 32.26
3 EfficientFormerv2(l) - - 94.4% 29.59
4 EMO(1M) - - 93.5 % 60.61
5 EMO(6M) - - 93.7 % 54.05
6 EfficientViT(b1) - - 93.7 % 62.89
7 EfficientViT(b2) - - 93.8 % 53.19

8 EfficientViT(b1) CA(a) - 92.5 % 56.50
9 EfficientViT(b1) CA(b) - 93.4 % 56.50
10 EfficientViT(b1) CA(c) - 92.5 % 55.56
11 EfficientViT(b1) CA(d) - 92 % 52.36

12 EfficientViT(b1) CBAM(a) - 93.7 % 54.64
13 EfficientViT(b1) CBAM(b) - 93% 57.14
14 EfficientViT(b1) CBAM(c) - 93.4 % 53.48
15 EfficientViT(b1) CBAM(d) - 93.8% 62.11

16 EfficientViT(b1) - SIoU 90.8 % 71.94
17 EfficientViT(b1) - EIOU 91.2% 67.57
18 EfficientViT(b1) - Wise IoU 93.9% 63.29

19 EfficientViT(Ours) CBAM(d) Wise IoU 94.1% 62.50

4.3.4. Comparative Analysis of Experimental Results of Algorithm Detection Accuracy

Using the 3L-TT100K dataset, the current algorithm is evaluated against the YOLOv5(s),
YOLOv5(l), YOLOv4-tiny, YOLOv, and YOLOv8 algorithms. The mean average precision
(mAP) for each algorithm is calculated after a thorough analysis of the average precision
(AP) of each algorithm for several categories, as shown in Table 6 below. For all three types
of tags in the 3L-TT100K dataset, the algorithm reported in this paper surpasses YOLOv5(s),
YOLOv4-tiny, YOLOv7, and YOLOv8 algorithms in terms of detection accuracy. Compared
with the method in this study, YOLOv5(l) has a higher detection accuracy, and according to
the comprehensive analysis of Tables 4 and 6, the algorithm in this paper has the advantages
of high detection accuracy and speed. In order to prove that the detection performance
of this paper’s algorithm is better than the existing state-of-the-art traffic sign detection
algorithms, the algorithm in this paper is compared with ETSR-YOLO [30], TRD-YOLO [31],
and CR-YOLOv8 [32], and the accuracy of traffic sign detection is better than the three
traffic sign target detection algorithms mentioned above.

Table 6. Comparison of algorithm detection accuracy results.

Algorithm Prohibitory AP Mandatory AP Warnin AP mAP

YOLOv5(s) 89.37% 91.33% 87.32% 89.34%
YOLOv5(l) 93.11% 94.51% 94.69% 94.1%

YOLOv4-tiny 60.29% 60.01% 67.76% 62.69%
YOLOv7 78.8% 81.6% 72.2% 77.6%
YOLOv8 91.7% 92.6% 92.5% 92.3%

ETSR-YOLO - - - 88.3%
TRD-YOLO - - - 86.3%
CR-YOLOv8 - - - 86.9%

YOLOv5-EfficientViT(Ours) 93.7% 95.4% 93.2% 94.1%
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4.4. Algorithm Detection Performance Comparison Analysis

This research assesses the algorithms by contrasting them with YOLOv5(s), YOLOv5(l),
YOLOv4-tiny, YOLOv7, and YOLOv8 on the validation set of the 3L-TT100K dataset. This
comparison helps to promote a more natural comparison of the detection performance
among methods. Only the prediction frames with a confidence level higher than 0.5 are
kept for the validation testing.

In the figures below, Figures 11–17, the validation findings are shown. The image
under detection is shown in Figure 11, where Figure 11a shows how the backdrop and
signage features are quite similar, interfering with the algorithm used to recognize the signs.
The YOLOv7 algorithm’s detection result, shown in Figure 15a, wrongly classifies back-
ground information as signage. On the other hand, Figure 17a shows the detection outcome
produced by the algorithm suggested in this study. This approach improves the extraction
of object information in the feature layer by including the CBAM attention mechanism,
considerably lowering the incidence of false detections by the detection algorithm.

The YOLOv5l algorithm fails to identify mandatory-type signs in Figures 12b, 14b, and 15b
when attempting to recognize the signage seen in Figure 11b. The detection results of
the YOLOv5l method, which successfully detects the mandatory class flag, are shown
in Figure 13b. However, compared to the 0.76 attained by the algorithm suggested in
this research, the confidence level of the algorithm’s detection is just 0.5. The algorithm
presented in this research makes use of the self-attention mechanism in the EfficientViT
backbone to extract information on the global feature layer order and content, enhancing
detection precision and decreasing the number of missed detection cases. The detection
effects of the YOLOv4-tiny algorithm and the YOLOv7 algorithm, respectively, are shown
in Figures 14b and 15b. The findings show unequivocally that both methods provide
prediction frames that considerably differ from the detection item, leading to subpar
detection performance. The technique suggested in this paper proposes the WIoU loss
function, which modifies the weights of superior and inferior prediction frames to minimize
the deviation value between the prediction frame and the detection object, in order to
address the problem of severe frame deviation.

(a) One (b) Two (c) Three

Figure 11. Original picture(Object detection model input image).

(a) One (b) Two (c) Three

Figure 12. YOLOv5(s) object detection model output results.
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(a) One (b) Two (c) Three

Figure 13. YOLOv5(l) object detection model output results.

(a) One (b) Two (c) Three

Figure 14. YOLOv4-tiny object detection model output results.

(a) One (b) Two (c) Three

Figure 15. YOLOv7 object detection model output results.

(a) One (b) Two (c) Three

Figure 16. YOLOv8 object detection model output results.

(a) One (b) Two (c) Three

Figure 17. YOLOv5-EfficienntViT (Ours) object detection model output results.
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Figure 16 shows the detection effect of the YOLOv8 algorithm. From Figure 16a,b,
it can be seen that the overall detection accuracy is worse than the model in this paper.
The methods suggested in this paper provide higher detection performance compared to
existing mainstream detection algorithms for the warning class signage, especially taking
into account the limited training samples available, as shown in Figures 12c–17c.

The YOLOv5-EfficientViT algorithm proposed in this paper, which effectively ad-
dresses the limitations of conventional networks, such as missed detections and errors,
by leveraging its strong feature extraction capabilities and precise object frame positioning,
has been verified through a comparative analysis of the aforementioned six groups of
detection models. The experimental findings show that the algorithm performs quite well
in terms of accuracy and real-time performance when it comes to detecting traffic signs. It
excels in real-time traffic sign detection and outperforms currently used techniques.

5. Conclusions

The identification of traffic signs is crucial for study in the areas of traffic asset exclusion,
aided driving, and autonomous driving. In this research, we offer an accurate and fast
traffic sign identification system based on the single-stage YOLOv5 algorithm and using
EfficientViT as the foundation. We overcome the problem of the CSPDarkNet network’s
failure to extract the global feature layer order and content information by relocating the
self-attention mechanism from the transformer to object detection. The detection accuracy
and real-time performance of traffic signage are both improved by this self-attention module.
In order to improve the FPN stage’s ability to extract features, we also incorporate the CBAM
attention method. In addition, the model’s convergence is sped up by using the WIoU loss
function. Ablation experiments that contrast the impacts of the backbone network, attention
mechanism, and loss function on the model serve to demonstrate the use of these modules.

On the 3L-TT100K dataset, our approach outperforms conventional mainstream tech-
niques by achieving an mAP of 94.1% and a frame rate of 62.50 frames per second (FPS) for
traffic sign detection. Our approach enhances the mAP by 4.76% when compared to the
YOLOv5s algorithm on the same dataset. To balance the quantity of labels in the dataset
and lessen the effect of label imbalances on accuracy, we plan to address the issue of label
proportions during model training in future research.
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Abstract: Facial beauty prediction (FBP) is a leading research subject in the field of artificial intelli-
gence (AI), in which computers make facial beauty judgments and predictions similar to those of
humans. At present, the methods are mainly based on deep neural networks. However, there still
exist some problems such as insufficient label information and overfitting. Multi-task learning uses
label information from multiple databases, which increases the utilization of label information and
enhances the feature extraction ability of the network. Attentional feature fusion (AFF) combines
semantic information and introduces an attention mechanism to reduce the risk of overfitting. In
this study, the multi-task learning of an adaptive sharing policy combined with AFF is presented
based on the adaptive sharing (AdaShare) network in FBP. First, an adaptive sharing policy is added
to multi-task learning with ResNet18 as the backbone network. Second, the AFF is introduced at
the short skip connections of the network. The proposed method improves the accuracy of FBP by
solving the problems of insufficient label information and overfitting issues. The experimental results
based on the large-scale Asia facial beauty database (LSAFBD) and SCUT-FBP5500 databases show
that the proposed method outperforms the single-database single-task baseline and can be applied
extensively in image classification and other fields.

Keywords: attentional feature fusion; facial beauty prediction; image classification; multi-task learning

1. Introduction

Facial beauty prediction (FBP) is a leading research subject in the field of artificial
intelligence (AI), in which computers make facial beauty judgments and predictions similar
to those of humans. With the development of AI, the applications of FBP are constantly
expanding, including virtual makeup, plastic surgery, portrait photography and other
fields. Research on FBP not only helps people understand and interpret beauty more
scientifically and objectively but also promotes the development of AI, which has important
significance. Currently, deep learning methods are generally used in FBP, which requires
large amounts of label information. Existing facial beauty databases have certain issues,
such as insufficient label information. Solving the aforementioned issue has become a
popular subject in the field of FBP research. At present, some progress has been made in
FBP research [1–7]. In [1], a novel personalized FBP approach based on meta-learning was
designed to apply in some small databases. In [2], a self-correcting noise labels method
was proposed. It can automatically select clean samples for learning and can make full
use of all data to reduce the negative impact of noise labels. In [3], a fusion model of
pseudolabel and cross-network was applied to solve the problems of weak generalization
ability and insufficient label information in FBP. In [4], an innovative method of broad
learning fused with transfer learning was applied in FBP, which received better performance
in prediction accuracy and training speed. In [5], an adaptive transformer with global and
local multihead self-attention was proposed for FBP, which achieved better performance
on several datasets of different scales. In [6], a dynamic convolution vision transformer
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named FBPFormer was proposed which aims to focus on both local and global facial beauty
features. Furthermore, an instance-level dynamic exponential loss function was designed
to adjust the optimization objectives of the model dynamically. In [7], a novel method
was proposed to improve the facial beauty feature extraction ability of CNNs, in which
generative adversarial networks (GAN) were used to generate facial data.

Although the research above improved the accuracy of FBP, it did not efficiently solve
the problems of insufficient label information and overfitting. Multi-task learning improves
the generalization ability of a network by training related tasks containing domain-specific
information. In the era of deep learning, multi-task learning has been transformed into
designing networks that can learn shared representations from the label information of
multiple tasks. Compared with a single-task learning network, a multi-task learning
network has greater advantages. For example, related tasks can share complementary
information or act as regularizers, thereby improving the network performance. FBP based
on multi-task learning has been extensively studied in recent years [8,9]. In [8], a neural
architecture search (NAS) was applied to FBP to automatically determine the backbone
network for multi-task learning. Moreover, a new preprocessing method was introduced
to enhance the diversity of data and a nonlocal spatial attention module was proposed
which further improved the performance of the network on the FBP task. By combining
ResneXt-50 and Inception-v3, the dual-branch network can extract more facial beauty
features and balance performance and parameter quantity [9]. Simultaneously, adaptive
and dynamic loss functions are introduced.

At present, multi-task learning networks can be generally divided into hard parameter
sharing and soft parameter sharing networks. In the hard parameter sharing network,
the parameters are divided into a shared parameter and a task-specific parameter, and a
hard parameter sharing network usually consists of several shared network layers and a
task-specific network layer. In the soft parameter sharing network, each task has a separate
feature extraction layer, with L2-norm or trace norms to constrain the parameters of the
shared feature extraction layer. However, these two kinds of multi-task learning mostly
set up the network layer statically. The method for adaptively training the network has
become one of the key issues of multi-task learning.

Adaptive training can be divided into three key methods. First, the optimal backbone
network is adaptively obtained according to different tasks through the NAS. Auto-multi-
task learning (AutoMTL) proposed an automatic and efficient multi-task learning network
framework for vision tasks, which takes a backbone network and a set of tasks to be learned
as input and automatically generates a high-precision multi-task learning model [10]. Al-
though NAS can automatically generate a high-precision multi-task learning network, it
requires high computing equipment and a long calculation time. Second, in the process of
parameter backpropagation for network optimization, adaptive task weights are learned
based on the importance of different tasks. A Bayesian task weight learner is used to adjust
the task weights and back-propagate the joint loss of different tasks [11]. The adaptive
weight learning method based on the verification loss trend can measure the importance
of different tasks and adjust the weights of different tasks [12]. In [13], a new training
algorithm was proposed to utilize the similarity between tasks to learn the task relationship
coefficients and neural network parameters. Although the optimization algorithm con-
sumed fewer resources, the improvement in the network performance was limited. Finally,
the network layer parameters that can be shared across tasks are determined. In adaptive
sharing (AdaShare) networks, researchers have investigated sharing policies between tasks
to achieve the highest accuracy and improve resource efficiency [14]. However, in an
AdaShare network, the atrous spatial pyramid pooling (ASPP) method loses local informa-
tion when extracting multiscale information from images. Attentional feature fusion (AFF)
combines local and global information with semantic information at different levels [15].

There were differences in the distributions of the means and variances in the dif-
ferent databases. Shared batch normalization (BN) layers tend to exhibit poor network
performance. A dataset-aware block (DAB) was applied to capture the homogeneous
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convolutional representations and heterogeneous statistics across different datasets, where
the dataset alternation training (DAT) mechanism was utilized to facilitate the optimization
process [16]. Reference [17] proposed a different training mechanism. Each batch of training
data consisted of data randomly selected from all the datasets for batch loss calculation.

The chief contributions of this study are summarized as follows:

• We extend the AdaShare network, introduce DAB to solve the issue of distribution
differences between different databases in multi-task learning on FBP and apply the
network in various databases.

• We propose multi-task learning of an adaptive sharing policy combined with AFF
to solve the issue of insufficient label information and overfitting for FBP, in which
the receptive field is expanded, and more semantic information is obtained from
the images.

• The experimental results show that multi-task learning of the adaptive sharing policy
combined with AFF outperforms the baseline model and the other method on FBP.

2. Methods

2.1. Network Model

A schematic diagram of the network model structure is shown in Figure 1, including
the pre-trained network module, multi-task learning of the adaptive sharing policy com-
bined with the AFF and classification module. The pre-training network module transfers
the parameters to multi-task learning of the adaptive sharing policy combined with the AFF
module through the ResNet18 [18] network trained by the ImageNet datasets. Multi-task
learning of adaptive sharing policy combined with the AFF module contains multi-task
learning of adaptive sharing policy with ResNet18 as the backbone network plus the AFF
introduced at the short-skip connection. It primarily performs sharing policy learning,
image feature extraction, and fusion. The classification module includes an average pooling
layer, a fully connected layer, a Dropout [19] layer and a softmax classifier. Database1 and
database2 are two different databases, task1 and task2 are two different tasks. First, the
parameters of the pretrained network module are transferred to the multi-task learning
of the adaptive sharing policy combined with the AFF module. Second, the images from
database1 and database2 are simultaneously entered into the multi-task learning of the
adaptive sharing policy combined with the AFF module. Meanwhile, the sharing policies
and image features of task1 and task2 are learned from the module. Finally, the features
are entered into the classification module, in which the categories of task1 and task2 are
the outputs.

2.2. Multi-Task Learning of Adaptive Sharing Policy Combined with AFF Module

The multi-task learning of the adaptive sharing policy combined with the AFF module
was extended with ResNet18 as the backbone network; its schematic is shown in Figure 2.
Among them, the multi-task learning of the adaptive sharing policy combined with the AFF
module contains four-layer blocks, and each layer block is composed of four BasicBlock
structures. First, the images from database1 and database2 are entered into the network
simultaneously. In the convolution, ReLU, and max-pooling layers, the network parameters
of the two tasks are shared. Second, the image features must pass through four-layer blocks.
The BasicBlock structure of each layer block includes an adaptive sharing policy and AFF. A
schematic of the layered block structure is shown in Figure 3, and the BasicBlock structure is
shown in Figure 4. Finally, the features produced by layer4 are entered into the classification
module and the classification results of task1 and task2 are produced.
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Figure 1. Schematic diagram of network model structure.

 

Figure 2. Schematic structure of multi-task learning of adaptive sharing policy combined with AFF module.
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Figure 3. Schematic diagram of layer block structure.
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Figure 4. Schematic diagram of BasicBlock structure.

In Figure 3, x1,i, x′1,i, out1,i, policy1,i are the variables of task1 in the i − th(2 < i < 17)
layer network. Among them, x1,i, x′1,i are feature maps with a resolution of m × n and
a channel number of l, that is x1,i, x′1,i ∈ R

m×n×l . policy1,i represents the sharing policy
of task1 on the i − th layer network. In Figure 3, the specific process can be described
as follows:

First, x1,i is changed into x′1,i through the BasicBlock structure. At the same time, x1,i
concatenates x′1,i and its result is multiplied by policy1,i. Finally, out1,i is obtained. out1,i
can be expressed as follows:

out1,i = [x′1,i x1,i]·policy1,i =⎧⎪⎪⎨⎪⎪⎩
x′1,i·0 + x1,i·1, when policy1,i =

[
0
1

]
x′1,i·1 + x1,i·0, when policy1,i =

[
1
0

] (1)

where policy1,i = [0 1]T indicates that the sharing policy of task1 in the i − th layer network
is skipped. policy1,i = [1 0]T indicates that the sharing policy of task1 in the i − th layer
network is implemented. The multi-task learning of adaptive sharing policy aims to learn
the sharing policy and network weights from the loss function through backpropagation.
But each policy1,i is discrete and non-differentiable so the gradient of the entire network
cannot be backpropagated. Therefore, the Gumbel Softmax [20] function is applied to solve
this non-differentiable problem to complete backpropagation and update the parameters.
x2,i, x′2,i, x′′

2,i, out2,i, policy2,i represent the variables of task2 in the i-th layer network,
which are the same as the variables of task1 in the network. The details of the adaptive
sharing policy are expressed in Algorithm 1.

Algorithm 1 Facial beauty prediction via adaptive sharing policy

Input: sample set x
Output: output set out
1: n is the number of layers in the backbone;
2: m is the number of blocks in each layer;
3: policy is the adaptive policy of the current layer;
4: ϕ indicates the BasicBlock structure;
5: φ indicates the concatenation and multiplication;
6: for i, i ≤ n do
7: for j, j ≤ m do
8: Calculate x′ = ϕ(x)
9: Calculate out = φ(x, x′, policy)
10: end
11: end
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To improve the convergence speed of the network, a multi-stage training method is
adopted during the training phase. Initially, the multi-task learning network shares all the
parameters. As the number of training epochs increases, the deep network adopts a shared
policy for training. In a deep convolutional network, the BN layer can be understood as a
simplified whitening operation on the input value of each layer of the deep network. This
whitening operation is significantly affected by the distribution of the databases. Therefore,
to apply the label information of multiple databases and to solve the issue of distribution
differences caused by different databases, DAB is introduced, which implies that different
tasks will use different BN layers. Figure 4 shows a schematic of the improved BasicBlock
structure proposed in this study, where input1 and input2 represent the Image features of
database1 and database2 in Figure 2, and the tasks of each database use different BN layers.
The AFF aims to extract features that are more relevant to the current task and fuse channel
features at different scales.

2.3. Attentional Feature Fusion

The AFF module was introduced to fuse the semantic information of different network
layers and generate the fusion weights for the mapping and residuals of the network [15].
Figure 5 shows a schematic of the AFF structure, where b, r ∈ R

C×H×W and C is the
channels, H is the height, and W is the width. In ResNet [18], b is the mapping and r is the
residual. Based on the multiscale channel attention module (MS-CAM), the AFF can be
expressed as follows:

z = c′ ⊗ b ⊕ (1 − c′)⊗ r (2)

where z ∈ R
C×H×W is the fusion feature of the i − th layer network, the ⊗ operation is the

multiplication of each element, the ⊕ operation is the sum of each element, and c′ = MS(c),
c = b ⊕ r, and 1 − c′ is obtained from c′ by passing it through the Diff operation. The
output c′ after the MS-CAM structure is a real number between 0 and 1, and 1 − c′ is also a
real number between 0 and 1. Therefore, the network can improve the feature extraction
ability by learning the fusion weight of the mapping and residual, thereby improving the
accuracy of the target task. Figure 6 shows a schematic of the MS-CAM structure.

r

b

c

c′

c′− z

Figure 5. Schematic diagram of AFF structure.

In AFF, MS-CAM fuses local and global features in the attention mechanism, which not
only assigns different weights to each channel but also gathers multi-scale feature context
information. Thus, it improves the network’s ability to extract the target task features. By
aggregating multiscale contextual information along the channel dimension, MS-CAM can
simultaneously emphasize global and local information [15]. Therefore, the MS-CAM was
utilized as a multiscale feature extractor. The local information extractor can be computed
as follows:

L(c) = B(PWConv2(δ(B(PWConv1(c))))) (3)

where PWConv1 indicates that the channels of the input feature c ∈ R
C×H×W are reduced

to the original 1/r by the point convolution of 1 × 1, B indicates the BN layer, δ indicates
the ReLU activation layer, PWConv2 indicates that the channels are restored to the original
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input channel by the point convolution of 1 × 1, and r is the channel-scaling ratio. The
global information extractor can be represented as follows:

G(c) = B(PWConv2(δ(B(PWConv1(A(c)))))) (4)

where A(c) denotes the global average pooling layer. The final output c′ can be calculated
as follows:

c′ = c ⊗ σ(L(c)⊕ G(c)) (5)

where σ is the Sigmoid activation function. Therefore, a network with AFF not only fuses
different semantic information but also introduces an attention mechanism that improves
the feature extraction ability of the network, reduces the risk of overfitting, and improves
the accuracy of the target task.

c

c′

×

× ×

×

 

Figure 6. Schematic diagram of MS-CAM structure.

2.4. Loss Function

In this study, cross-entropy was adopted as the loss function for task1 and task2, which
can be defined as follows:

L =
N

∑
i=1

yi∗ log(pi) (6)

where N is the number of categories in task1 or task2, yi is the label value of the i − th
category of the image, and pi is the probability value of the image being predicted as the
i − th category. The total task loss function can be formalized as follows:

Ltask = λ1L1 + λ2L2 (7)

where L1 and L2 represent the loss function value of task1 and task2, respectively; λ1 and
λ2 represent the weight coefficient of task1 and task2, respectively. In multi-task learning,
the weight ratio λ1 : λ2 of different tasks affects the accuracy of the target task.
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3. Experiments and Analysis

3.1. Experimental Databases
3.1.1. LSAFBD Database

The authors established the LSAFBD database with 20,000 labeled facial images (in-
cluding 10,000 male and 10,000 female facial images) and 80,000 unlabeled facial images,
with a resolution of 144 × 144. It is divided into five categories, including “0”, “1”, “2”, “3”
and “4”, which correspond to five attractiveness levels of facial beauty, with “0” being the
lowest level and “4” being the highest level. This study primarily focused on experiments
with 10,000 labeled female facial images from the LSAFBD database. The distribution
of facial beauty labels in the LSAFBD database and some image samples in the LSAFBD
database are shown in Figures 7 and 8, respectively.

Figure 7. Distribution of facial beauty labels on LSAFBD.

0 1 2 3 4

Figure 8. Facial images with different properties of LSAFBD.

3.1.2. SCUT-FBP5500 Database

The SCUT-FBP5500 database was established by the South China University of Tech-
nology and contains a total of 5,500 facial images with a resolution of 350 × 350. Each
facial image contained various label information, including gender (male or female), race
(Asian or White), and facial beauty. The facial beauty level of the SCUT-FBP5500 database
is divided into five levels, namely “0”, “1”, “2”, “3” and “4”, which correspond to the five
attractiveness levels of facial beauty, with “0” as the lowest grade, and “4” as the highest
grade. The facial beauty grade of each image was given by 60 volunteers; therefore, this
study takes the grade with the largest number of volunteers as the facial beauty grade of the
image. The distribution of the facial beauty labels in the SCUT-FBP5500 database and some
image samples of the SCUT-FBP5500 database are shown in Figures 9 and 10, respectively.
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Figure 9. Distribution of facial beauty labels on SCUT-FBP5500.

0 1 2 3 4

Figure 10. Facial images with different properties of SCUT-FBP5500.

3.2. Experimental Environment

Table 1 describes the experimental environment. In Figure 3, the variables x1,i, x′1,i,
and x′′

1,i have a resolution of 56 × 56, the number of channels is 64, the task weight ratio
λ1 : λ2 of the training phase is 1:0.6, the data batch size is 32, the initial learning rate is
0.001, and the optimizer is AdamW [21]. In this study, the accuracy (ACC) and F1 score
were applied as the performance evaluation metric.

Table 1. Experimental environment configuration.

Environment Parameters

Deep learning framework Pytorch1.12.1
Operating system Ubuntu20.04

Memory 64 G
Resolution m × n 56 × 56

Channels l 64
Task weight ratio λ1 : λ2 1:0.6

Learning rate 0.001
Batch size 32
Optimizer AdamW

The experimental setting in Figure 1, is shown in Table 2. Database1 and database2
represent the LSAFBD database and SCUT-FBP5500 database, respectively. Task1 and task2
represent the facial beauty prediction (FBP) and gender recognition (GR), respectively.
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Table 2. Explanation of the experimental setting.

Experiment Settings Explanation

Database1 LSAFBD
Database2 SCUT-FBP5500

Task1 FBP
Task2 GR

3.3. Comparison Experiment between the Proposed Method and the Baseline
3.3.1. Experiments Based on Different Databases

The experimental results of the proposed method and the baseline based on the
LSAFBD database are shown in Tables 3–5. The ratio of the training, verification and testing
set was 6:2:2, and the experiments included the training and testing phases. In the training
phase, the facial beauty-labeled data from the LSAFBD database and gender-labeled data
from the SCUT-FBP5500 database are used as an input of the network for the proposed
method. In the testing phase, the proposed method was based on the testing set of the
LSAFBD database for FBP. The baseline based on transfer learning was a single-database,
single-task method with ResNet18 as the backbone network. In the training phase, the
facial beauty-labeled data from the LSAFBD database are used as an input of the network of
baseline. During the testing phase, the baseline was based on the testing set of the LSAFBD
database for FBP.

Table 3. Experimental results based on LSAFBD (ACC(%), F1 score(%)).

Batch
Size Task

Method Baseline without AFF Baseline with AFF Ours without AFF Ours with AFF

ACC F1 Score ACC F1 Score ACC F1 Score ACC F1 Score

32 FBP 58.01 56.51 59.52 57.70 59.12 57.72 61.37 59.72

16 FBP 58.02 56.53 59.77 57.76 59.02 57.62 61.12 59.53

Note: The bold is the optimal value.

Table 4. Experimental results of the proposed method based on LSAFBD (ACC(%), time (s), difference
of ACC(%)).

Batch
Size

Task

Method Ours without AFF Ours with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32 FBP 2976.04 63.42 59.12 4.30% 3867.85 63.49 61.37 2.12%

16 FBP 3555.86 63.12 59.02 4.10% 4587.81 63.31 61.12 2.19%

Note: The bold is the optimal value.

Table 5. Experimental results of the baseline based on LSAFBD (ACC(%), time (s), difference of
ACC(%)).

Batch
Size

Task

Method Baseline without AFF Baseline with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32 FBP 637.23 65.03 58.01 7.02% 853.19 61.61 59.52 2.09%

16 FBP 800.91 65.28 58.02 7.26% 1154.07 61.72 59.77 1.95%

It can be observed from Table 3 that with AFF, the accuracy of the FBP in the proposed
method was 61.37%, which was 1.85% higher than the baseline accuracy of 59.52% and
the F1 score of the FBP in the proposed method was 59.72%, which was 2.02% higher than
the baseline F1 score of 57.70. Without AFF when the batch size was 32, the accuracy of
the FBP in the proposed method was 59.12%, which was 1.11% higher than the baseline
accuracy of 58.01% and the F1 score of the FBP in the proposed method was 57.72%, which
was 1.21% higher than the baseline F1 score of 56.51%. The experimental results showed
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that the proposed multi-task learning of the adaptive sharing policy outperformed the
baseline. In the current method, the accuracy of FBP with AFF was 61.37%, which was
2.25% higher than that without AFF (59.12%) and the F1 score of FBP with AFF was 59.72%,
which was 2.00% higher than that without AFF (57.72%). At baseline, the accuracy of FBP
with AFF was 59.52%, which was 1.51% higher than the accuracy of 58.01% and the F1
score of FBP with AFF was 57.70%, which was 1.19% higher than the F1 score of 56.51%.
The experimental results showed that AFF can improve the network’s ability to extract
facial beauty features, thereby improving the accuracy of FBP. When the batch size was 16,
the proposed method also achieved better performance than the baseline.

It can be observed from Table 4 to Table 5 that when the batch size was 32, the difference
between the training accuracy and testing accuracy of the proposed method with AFF was
2.12%, which is 2.18% lower than that of the proposed method without AFF of 4.30%. The
difference between the training accuracy and testing accuracy of the baseline with AFF
was 2.09%, which was 4.93% lower than that of the baseline without AFF of 7.02%. The
experimental results showed that the AFF truly reduces the risk of overfitting and improves
the feature extraction capability of the network. The improvement also can be seen when
the batch size was 16.

Table 6 shows the experimental results of the proposed method and the baseline
method based on the SCUT-FBP5500 database, respectively. In the training phase, the
facial beauty-labeled and gender-labeled data from the training set are used as an input of
the network of the proposed method simultaneously. In the testing phase, the proposed
method was based on a testing set for FBP and GR. In the training phase, the facial beauty-
labeled data and gender-labeled data from the training set are used as an input of the
network of baseline, respectively. In the testing phase, the baseline implemented FBP and
GR, respectively, based on the testing set.

Table 6. Experimental results based on SCUT-FBP5500 (ACC(%), F1 score(%)).

Batch
Size Task

Method Baseline without AFF Baseline with AFF Ours without AFF Ours with AFF

ACC F1 Score ACC F1 Score ACC F1 Score ACC F1 Score

32
FBP 73.41 70.64 74.50 71.72 74.23 72.02 75.41 73.82

GR 98.27 98.26 98.55 98.55 96.52 96.52 97.09 97.09

16
FBP 73.67 70.13 74.61 71.91 73.95 71.91 75.13 73.27

GR 98.45 98.45 98.73 98.73 96.43 96.40 96.89 96.88

It can be observed from Table 6 that with AFF, the FBP accuracy of the proposed
method was 75.41%, which was 0.91% higher than the baseline accuracy of 74.50% and the
F1 score was 73.82%, which was 1.1% higher than the baseline F1 score of 71.72%. Without
AFF when the batch size was 32, the accuracy of the FBP in the proposed method was
74.23%, which was 0.82% higher than the baseline accuracy of 73.41% and the F1 score was
72.02%, which was 1.38% higher than the baseline F1 score of 70.64. The experimental results
showed that the proposed multi-task learning of the adaptive sharing policy outperformed
the baseline. In the current method, the accuracy of FBP with AFF was 75.41%, which was
1.18% higher than the accuracy of 74.23% without AFF and the F1 score of FBP with AFF
was 73.82%, which was 1.8% higher than the F1 score of 72.02% without AFF. The accuracy
of the GR with AFF was 97.09%, which was 0.57% higher than the accuracy of 96.52% and
the F1 score of the GR with AFF was 97.09%, which was 0.57% higher than the F1 score of
96.52%. At baseline, the accuracy of FBP with AFF was 74.50%, which was 1.09% higher
than the accuracy of 73.41% without AFF, and the F1 score of FBP with AFF was 71.72%,
which was 1.08% higher than the F1 score of 70.64. The accuracy of GR with AFF was
98.55%, which was 0.28% higher than the accuracy of 98.27% without AFF and the F1 score
of GR with AFF was 98.55%, which was 0.29% higher than the F1 score of 98.26%. The
experimental results showed that AFF can improve the network’s ability to extract facial
beauty and gender features, thereby improving the accuracy of FBP in both the proposed
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method and the baseline. When the batch size was 16, the proposed method also achieved
better performance than the baseline.

It can be observed from Table 7 to Table 8 that when the batch size was 32, the difference
between FBP training accuracy and FBP testing accuracy of the proposed method with
AFF was 1.43%, which was 2.02% lower than that of the proposed method without AFF
of 3.45%. The difference between FBP training accuracy and FBP testing accuracy of the
baseline with AFF was 0.61%, which was 6.45% lower than that of the baseline without AFF
of 7.06%. The experimental results showed that the AFF truly reduces the risk of overfitting
and improves the feature extraction capability of the network. The improvement also can
be seen when the batch size was 16.

Table 7. Experimental results of the proposed method based on SCUT-FBP5500 (ACC(%), time (s),
difference of ACC(%)).

Batch
Size

Task

Method Ours without AFF Ours with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32
FBP

1587.81
77.68 74.23 3.45

2073.85
76.84 75.41 1.43

GR 97.36 96.52 0.84 97.63 97.09 0.54

16
FBP

1894.58
77.49 73.95 3.54

3076.09
76.44 75.13 1.31

GR 97.13 96.43 0.70 97.50 96.89 0.61

Table 8. Experimental results of the baseline based on SCUT-FBP5500 (ACC(%), time (s), difference of
ACC(%)).

Batch
Size

Task

Method Baseline without AFF Baseline with AFF

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

Training
Time

Training
ACC

Testing
ACC

Difference
of ACC

32
FBP 372.69 80.47 73.41 7.06 482.48 75.11 74.50 0.61

GR 362.23 98.49 98.27 0.22 484.57 98.64 98.55 0.09

16
FBP 442.85 79.49 73.67 5.82 653.17 75.24 74.61 0.63

GR 443.31 98.61 98.45 0.16 619.89 98.86 98.73 0.13

From the experimental results, it is observed that in FBP multi-task learning of the
adaptive sharing policy combined with AFF achieved the best results on the two different
databases. The proposed method not only effectively utilizes GR to improve the network’s
ability to extract facial beauty features, but also reduces the risk of overfitting through
attention feature fusion, thereby improving the accuracy of FBP. From the experimental
results in Table 6, it can be observed that the accuracy of the proposed method is lower
than that of the baseline method in terms of the GR. This is because the proposed method
improves the accuracy of FBP through GR. Therefore, when the task weight ratio λ1 : λ2
was 1:0.6, the network learned more facial beauty features, resulting in a lower extraction
ability for gender features than the baseline. From Tables 4, 5, 7 and 8, it can be observed
that the proposed method requires more time for training. This is because the proposed
method has a more complex network and more data to calculate.

3.3.2. Experiments with Different Weight Ratios Based on Different Databases

To study the effect of the weight ratio λ1 : λ2 on different tasks in FBP, the weight
ratios of the three groups of FBP and GR were explored. The experimental results for
different weight ratios based on the LSAFBD database are shown in Table 9. At a weight
ratio of 1:0.6, FBP achieved an accuracy of 61.37%, surpassing the 58.91% by 2.46% at a
weight ratio of 1:0.7, and exceeding the 58.62% by 2.75% at a weight ratio of 1:0.5. At a
weight ratio of 1:0.6, FBP achieved an F1 score of 59.72%, surpassing the 56.94% by 2.78%
at a weight ratio of 1:0.7, and exceeding the 56.70% by 3.02% at a weight ratio of 1:0.5. The
experimental results showed that different weight ratios have a significant influence on the
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FBP. When the weight ratio was 1:0.6, the proposed method achieved the best performance
on the LSAFBD database.

Table 9. Different weight ratios of the experimental results based on LSAFBD (ACC(%), F1 score(%)).

Batch Size
Task

λ1:λ2 1:0.7 1:0.6 1:0.5

ACC F1 Score ACC F1 Score ACC F1 Score

32 FBP 58.91 56.94 61.37 59.72 58.62 56.70

16 FBP 58.88 56.86 61.12 59.53 58.53 56.37

Note: The bold is the optimal value.

The experimental results for different weight ratios based on the SCUT-FBP5500
database of the proposed method are shown in Table 10. When the weight ratio was 1:0.6,
the accuracy of the FBP was 75.41%, which was 1.76% higher than 73.65% when the weight
ratio was 1:0.7, and 1.83% higher than 73.58% when the weight ratio was 1:0.5. When
the weight ratio was 1:0.7, the accuracy of the GR was 97.18%, which was 0.09% higher
than 97.09% when the weight ratio was 1:0.6, and 0.73% higher than 96.45% when the
weight ratio was 1:0.5. When the weight ratio was 1:0.6, the F1 score of the FBP was 73.82,
which was 2.40% higher than 71.42 when the weight ratio was 1:0.7, and 2.42% higher than
71.40% when the weight ratio was 1:0.5. When the weight ratio was 1:0.7, the F1 score
of the GR was 97.18%, which was 0.09% higher than 97.09% when the weight ratio was
1:0.6, and 0.77% higher than 96.41% when the weight ratio was 1:0.5. The experimental
results showed that different weight ratios have a significant influence on the FBP. When
the weight ratio was 1:0.6, the proposed method achieved the best performance on the
SCUT-FBP5500 database.

Table 10. Different weight ratios of the experimental results based on SCUT-FBP5500 (ACC(%), F1 score(%)).

Batch Size
Task

λ1:λ2 1:0.7 1:0.6 1:0.5

ACC F1 Score ACC F1 Score ACC F1 Score

32
FBP 73.65 71.42 75.41 73.82 73.58 71.40

GR 97.18 97.18 97.09 97.09 96.45 96.44

16
FBP 73.27 71.67 75.13 73.27 73.41 70.67

GR 97.15 97.14 96.89 96.88 96.35 96.31

From the experimental results, it is observed that when the weight ratio is 1:0.6, the FBP
accuracy of the proposed method based on two different databases reaches the highest value
in the existing experiments. When the weight ratio was 1:0.7, the gender features learned
by the network increased and the facial beauty features decreased, resulting in a slight
improvement in the accuracy of the FBP compared with the single-task network. When
the weight ratio was 1:0.5, the gender features learned by the network were insufficient,
and compared with the single-task network, it could only slightly improve the accuracy of
the FBP.

3.4. Comparison Experiments between the Proposed Method and Other Models

In this section, the proposed method is compared with other models based on the
LSAFBD database and SCUT-FBP5500 databases. The experimental results for the proposed
method and other models are shown in Table 11. Based on the LSAFBD database, during
the training phase, the facial beauty-labeled data from the LSAFBD database and the
gender-labeled data from the SCUT-FBP5500 database are used as an input of the network
of the proposed method simultaneously. In the testing phase, the proposed method was
based on the testing set of the LSAFBD database for FBP. In the training phase, the facial
beauty-labeled data from the LSAFBD database are used as an input of the other models. In
the testing phase, the other models were based on the testing set of the LSAFBD database
for the FBP.
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Table 11. Experimental results compared with other models (ACC(%)).

Method

Task LSAFBD SCUT-FBP5500

FBP FBP

GoogleNet [22] 56.06 72.77

MobileNetV2 [23] 50.70 72.13

MobileNetV3 [24] 52.35 72.31

ShuffleNetV2 [25] 59.97 75.14

DenseNet [26] 59.32 73.95

EfficientNet [27] 59.02 75.04

RegNet [28] 59.02 74.68

ConvNeXt [29] 60.67 75.32

Proposed method 61.37 75.41

Note: The bold is the optimal value.

Based on the SCUT-FBP5500 database, in the training phase, facial beauty labeled data
and gender labeled data of the SCUT-FBP5500 database are used as an input of the network
of the proposed method simultaneously. During the testing phase, the proposed method
was based on the testing set of the SCUT-FBP5500 database for FBP. In the training phase,
the facial beauty-labeled data from the SCUT-FBP5500 database are used as an input for
the other models. During the testing phase, the other models were based on the testing set
of the SCUT-FBP5500 database for FBP.

In Table 1, GoogleNet [22] improved the utilization of computing resources inside
the network through the inception structure. MobileNetV2 [23] introduced a residual
structure that ascended and descended the dimensions to enhance the propagation of
gradients and significantly reduce the memory footprint required during inference. Mo-
bileNetV3 [24] added a lightweight attention model Squeeze Excitation (SE) structure based
on MobileNetV2. ShuffleNetV2[25] proposed that the ratio of the input feature matrix
channel to the output matrix channel should be equal to or close to one. The input to
each network layer in DenseNet [26] is a concatenation of all previous network outputs.
EfficientNet [27] was proposed to keep the channels of features, depth of the network
model, and image resolution small, which can create a competitive and computationally
efficient CNN model. RegNet [28] aims to determine the optimal search space. Using the
search space, a series of design criteria for the model can be obtained and extended to
other scenarios. In ConvNeXt [29], better CNN structures and parameter settings were
determined through numerous experiments.

Based on the LSAFBD database, the FBP accuracy of the proposed method was 61.37%,
which was 5.31% higher than 56.06% on GoogleNet, 11.3% higher than 50.70% on Mo-
bileNetV2, 9.02% higher than 52.35% on MobileNetV3, 1.4% higher than 59.97% on Shuf-
fleNetV2, 2.05% higher than 59.32% on DenseNet, 2.35% higher than 59.02% on EfficientNet,
2.35% higher than 59.02% on RegNet, and 0.7% higher than 60.67% on ConvNeXt. The ex-
perimental results showed that the proposed method can effectively utilize GR to improve
the accuracy of FBP, which is better than other single-task network models.

Based on the SCUT-FBP5500 database, the FBP accuracy of the proposed method was
75.41%, which was 2.64% higher than 72.77% on GoogleNet, 3.28% higher than 72.13%
on MobileNetV2, 3.1% higher than 72.31% on MobileNetV3, 0.27% higher than 75.14%
on ShuffleNetV2, 1.46% higher than 73.95% on DenseNet, 0.37% higher than 75.04% on
EfficientNet, 0.73% higher than 74.68% on RegNet, and 0.09% higher than 75.32% on
ConvNeXt. The experimental results showed that the proposed method can effectively
apply GR to improve the accuracy of FBP, which is superior to other models.

3.5. Comparison Experiments between the Proposed Method and Other Methods

To further validate the effectiveness of the proposed method, we also compared the
proposed method with other methods based on the LSAFBD and SCUT-FBP5500. The
results are listed in Table 12. In [2], a self-correcting noise labels method was proposed,
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which can make full use of all data to reduce the negative impact of noise labels. In [3], a
fusion model of pseudolabel and cross-stitch network was applied to solve the problems
of weak generalization ability and insufficient label information in FBP. In [4], a network
named E-BLS fusing EffeicientNet and a broad learning system was applied in FBP. In [5],
a tiny network named TransBLS-T fusing transformer and broad learning system was
proposed to improve FBP. The performance of the proposed method surpasses that of
the other method. Based on the LSAFBD database, the method by way of self-correcting
noise labels achieves poor results. This is because the method is based on single-task deep
neural networks (DNNs) and does not utilize label information from multiple databases.
The experimental results of the cross-network based on multi-task learning illustrate the
superiority of multi-task learning. The methods by way of E-BLS and TransBLS-T are
better than those of DNNs based on the LSAFBD database, which is attributed to the
attention mechanism of the transformer. The proposed method in this paper combines the
advantages of multi-task learning and attention feature fusion to achieve the best results.

Table 12. Experimental results compared with other methods (ACC(%)).

Method

Task LSAFBD SCUT-FBP5500

FBP FBP

Noise Labels [2] 60.80 75.30

Cross Network [3] 61.29 -

E-BLS [4] 60.82 73.13

TransBLS-T [5] 61.27 75.23

Proposed method 61.37 75.41

Note: The bold is the optimal value.

In summary, multi-task learning of the adaptive sharing policy combined with AFF
utilizes the label information of two different databases, solves the problem of insufficient
label information on the single-task network for FBP, and improves the network’s ability to
extract facial beauty features. Simultaneously, the network combines AFF to reduce the
risk of overfitting, thereby improving the accuracy of the FBP.

4. Conclusions

To address the issue of insufficient label information and easy overfitting in FBP, multi-
task learning of an adaptive sharing policy combined with AFF based on the AdaShare
network is proposed. Among them, multi-task learning of the adaptive sharing policy
utilizes the label information of two different databases to improve the accuracy of FBP
by solving the insufficient label information issue. The AFF reduces the risk of overfitting
and improves the feature extraction capability of the network by adding a feature fusion
and attention mechanism at the short skip connections of ResNet. The experimental
results based on the LSAFBD database and SCUT-FBP5500 databases showed that the
multi-task learning of the adaptive sharing policy combined with AFF outperforms the
single-task baseline method. Future studies will be focused on label information from
multiple databases, how to set the weight ratio of different tasks adaptively, how to balance
the category of databases, and on continuously optimizing the current method to obtain
greater improvement.
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Abstract: Vehicle matching in variable illumination environments can be challenging due to the heavy
dependence of vehicle appearance on lighting conditions. To address this issue, we propose a two-
stage progressive learning (TSPL) framework. In the first stage, illumination-aware metric learning is
enforced using a two-branch network via two illumination-specific feature spaces, used to explicitly
model differences in lighting. In the second stage, discriminative feature learning is introduced to
extract distinguishing features from a given vehicle. This process consists of a local feature extraction
attention module, a local constraint, and a balanced sampling strategy. During the metric learning
phase, the model expresses the union of local features, extracted from the attention module, with
illumination-specific global features to form joint vehicle features. As part of the study, we construct
a large-scale dataset, termed VERI-DAN (vehicle re-identification across day and night), to address
the current lack of vehicle datasets exhibiting variable lighting conditions. This set is composed
of 200,004 images from 16,654 vehicles, collected in various natural illumination environments.
Validation experiments conducted with the VERI-DAN and Vehicle-1M datasets demonstrated that
our proposed methodology effectively improved vehicle re-identification Rank-1 accuracy.

Keywords: vehicle re-identification; dataset; illumination aware; detail aware; discriminative feature
learning

1. Introduction

Vehicle re-identification (re-ID) aims to match a target vehicle across multiple non-
overlapping surveillance cameras with varying viewpoints, illumination, and resolution.
The proliferation of surveillance cameras in urban areas has led to a significant increase
in the demand for vision-based re-ID techniques, which could facilitate the management
of smart cities [1–3]. While the development of deep learning and existing annotated
datasets have greatly facilitated vehicle re-ID research, vision-based vehicle re-ID still
suffers from low resolution, blurred motion, and extreme weather conditions, such as fog,
rain, and snow. Meanwhile, variations in viewpoint, illumination, and background can
pose significant challenges for vehicle re-ID. Specifically, illumination presents a major
challenge, as vehicle appearance can depend heavily on subtle changes in light intensity.
Existing models have been trained primarily using datasets that exhibit limited lighting
variability, while also ignoring the obstruction of notable visual cues caused by dramatic
fluctuations in illumination. Furthermore, the conventional approach of collecting images in
a single-feature space also underestimates the challenges posed by inconsistent lighting. As
shown in Figure 1, two vehicles of the same model in similar lighting conditions (Figure 1a)
may appear to be more similar than the same vehicle observed under different lighting
(Figure 1b). In addition, lower lighting levels may obstruct visual cues, such as logos,
stickers, and body features, as seen in Figure 1c. One possible solution to this problem is to
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enhance images featuring poor illumination. Although low-light enhancement techniques
have been successful in improving visual quality for classification tasks [4–8], extreme
variations in illumination still pose significant challenges. As part of this study, experiments
were conducted using images enhanced by a state-of-the-art (SOTA) method [6]. The results
are summarized in Table 1, which indicates that re-ID accuracy experience a significant drop-
off when images undergo enhancement. We suggest that some distinguishing details, which
are essential for differentiating similar vehicles, may have been lost during enhancement.
In addition, images containing unnatural noise may have further reduced re-ID accuracy.

(a) (b)

(c)

Figure 1. Challenges posed by variations in illumination. (a) Two different vehicles may appear to be
similar under consistent lighting, especially when they are of the same model. (b) In contrast, images
of the same vehicle may appear to be quite different if the illumination varies drastically. (c) Dramatic
changes in lighting may also alter distinctive visual cues, such as inspection marks on windshields,
headlights, and car logos.

Table 1. Re-ID performance with augmented images. Origin denotes the weight offered by the author.
Retrain denotes a weight retrained on VERI-DAN. The best results are given in bold.

Setting
Augment Origin Retrain

Query Gallery Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP

Baseline

× × 88.9 94.4 56.5 88.9 94.4 56.5
� × 75.8 87.0 48.7 75.5 85.2 41.4
× � 72.8 83.6 47.6 64.8 79.0 34.9
� � 84.0 91.0 52.1 81.1 90.2 47.2

Inspired by the manual process of recognizing vehicles, we propose to address
this problem by using a two-stage progressive learning (TSPL) strategy, consisting of
an illumination-aware metric-learning stage and a detail-aware discriminative feature-
learning stage. In the first phase, we used coarse-grained labels to describe the illumination
of each image (i.e., “daytime” and “nighttime”). Samples with the same illumination label
were then assigned as S-IL image pairs, and samples with different illumination labels were
assigned as D-IL image pairs, as illustrated in Figure 1. Two separate deep metrics were
then learned for the S-IL and D-IL images in the two illumination-specific feature spaces.
Specifically, we measured the similarity of images with the same illumination label in the
S-IL feature space and images with different illumination labels in the D-IL feature space.
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The within-space and cross-space constraints were then enforced to explicitly learn robust
visual representations against variations in lighting. In the second stage, we designed a
detail-aware discriminative feature learning process, which was learned with the guidance
of a local constraint, to extract distinguishing features among similar types of vehicles
(as shown in Figure 2). Specifically, a local feature extraction module was introduced to
generate local features, and a triplet loss, optimized by triplets of the same model, was
designed to enforce the local constraint. Experiments confirmed that both stages were
critical for improving re-ID accuracy (see Section 5.4.1).

(a) (b) (c)

Figure 2. Visual markers that could be used to distinguish similar vehicles under varying illumination,
especially when the negative sample includes the same model with a positive sample under similar
illumination. Personalized decorations on the windshield were of particular importance, as shown in
the blue boxes. (a) Anchor. (b) Positive. (c) Negative.

As part of the study, we constructed a comprehensive, large-scale dataset termed
VERI-DAN (vehicle re-identification across day and night) to address the lack of re-ID
datasets exhibiting significant changes in illumination across samples. VERI-DAN included
200,004 images from 16,654 vehicles, each of which was photographed at least 4 times in
variable lighting conditions using real-world cameras. The primary contributions of this
study can be summarized as follows:

• A large-scale dataset termed VERI-DAN is developed to facilitate vehicle re-ID in
various illumination conditions. VERI-DAN is the first dataset of its type to represent
changes in lighting on this scale. As such, it simulated a relatively challenging scenario
(matching D-IL pairs), which is both common and useful in real-world scenes.

• A two-stage progressive learning strategy is proposed for vehicle re-ID with variable
illumination. In Stage I, we introduced an illumination-aware network, which sig-
nificantly improved the learning of robust visual representations in extreme lighting
conditions. In Stage II, we developed a discriminative local feature learning process,
which facilitated the ability to distinguish among vehicles with a similar appearance.

• We assessed the effectiveness of this approach using two datasets involving obvious
lighting changes (VERI-DAN and Vehicle-1M). Despite only 12% of the training set
being usable in Vehicle-1M (due to insufficient lighting variability), the proposed
technique achieved SOTA performance for the original testing set.

2. Related Works

2.1. Vehicle Re-ID Methods

Vehicle re-ID, a variation of person re-ID [9], has received increasing attention in
recent years, as its viability continues to improve. Zapletal and Herout [10] were the
first to collect a large-scale dataset for this purpose, conducting a vision-based study by
utilizing color and oriented gradient histograms. Liu et al. [11] combined traditional
hand-crafted features with CNN-based deep features, thereby demonstrating that deep
features were more discriminative. Liu et al. [12] proposed “PROVID” and made progress
with the use of license plate information. Other studies [13,14] have shown that spatial
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and temporal information from vehicle images have contributed to improving vehicle
re-ID performance. For example, PROVID [12] re-ranks vehicles using spatio-temporal
properties based on a simple from-near-distant principle. Wang et al. [15] achieved spatio-
temporal regularization for vehicle re-ID by considering the delay time between cameras.
These techniques, however, are limited in their application because they require complex
spatio-temporal labels.

Several studies have described vehicle re-ID as a metric learning problem and have
introduced a series of metric losses to obtain better vehicle representations. Specifically,
triplet loss has achieved great success in person re-ID0 [16–18] and has been adopted
in vehicle re-ID. Zhang et al. [12] combined classification loss with triplet loss, pro-
viding further benefit. Yan et al. [19] proposed a multi-grain ranking loss to discrimi-
nate vehicles with a similar appearance. Studies have also shown that attributes, such
as color, brand, and wheel pattern, can further improve re-ID efficacy [1,20–22]. Other
strategies [20,21,23–27] have exploited the indirect attributes of a vehicle, such as camera
perspective information and background information, making considerable improvements.
These techniques, however, have overlooked valuable information present in the image
beyond the vehicle itself, such as lighting conditions. In this study, we have suggested that
the significance of an image extends beyond its perceptible features. By incorporating less
apparent elements, such as illumination, the proposed deep learning model can produce
more robust representations in a variety of lighting conditions. Table 2 summarizes related
work on vehicle re-ID.

Table 2. Summary of related works on vehicle re-ID.

Classification Basis Method Type References Advantage Limitation

Feature representation
approaches

Hand-crafted Refs. [10,11] Highly interpretable
High time complexity;

low recognition
accuracy

Deep learning Refs. [1,11–15,19–27] High recognition
accuracy

High cost; poor
interpretability 2

Key aspects

Spatio-temporal
information based Refs. [12–14] Works well for hard

samples
Need extra complex

spatio-temporal labels

Metrics learning based Refs. [12,19] High recognition
accuracy High cost

Multidimensional
information based Refs. [1,20–27]

Sensitivity to the
special appearance of

vehicles

Vulnerable to
variations in

viewpoints and
illuminations

2.2. Vehicle Re-ID Datasets

Re-ID algorithms that have been applied to public datasets, such as VehicleID [28],
VeRi-776 [12], VERI-Wild [29], and Vehicle-1M [30], have conventionally underestimated
the importance of illumination. These conditions are limited in existing datasets, as the
lighting in each image is typically consistent. For example, all of the samples in VeRi-776
were collected between 4:00 p.m. and 5:00 p.m. We inspected vehicle images in these
public datasets and counted the number of samples collected during both the daytime and
nighttime. This preliminary evaluation suggested that 90% of samples in VehicleID, 94%
of samples in VERI-Wild, and 70% of samples in Vehicle-1M exhibited little variation in
background luminance. In this paper, we propose a large-scale vehicle re-ID dataset termed
VERI-DAN, which provides a more challenging classification task because each vehicle
appears several times in different lighting conditions. The set contains 482 refined vehicle
models (e.g., MG3-2016) with highly similar features. As such, this set was more suitable
for evaluating the performance of vehicle re-ID methods in challenging scenarios.
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3. Methodology

The network architecture for the proposed algorithm is illustrated in Figure 3. This
framework constituted a two-stage progressive deep learning process involving illumina-
tion conditions and vehicle attributes. During the first stage (Section 3.2), we established an
illumination-aware network (IANet) consisting of two branches with identical structures
and applied it to both S-IL and D-IL image pairs. This two-branch network leveraged the
coarse-grained illumination labels to supervise the learning of illumination-specific features.
The Stage I model (IANet) then enabled the retrieval of samples under different lighting
conditions. During the second stage (Section 3.3), we introduced a guided local feature
extraction process to generate local features. This process included an illumination-aware
local feature extraction module (IAM) and a detail-aware local feature extraction module
(DAM). This attention mechanism facilitated the learning of distinguishing features among
different vehicles with similar appearances, under the supervision of fine-grained model
labels. The Stage II model was specifically designed to extract discriminative features from
local areas to distinguish among similar types of vehicles. We adopted triplet loss as a
learning baseline metric, as discussed in Section 3.1.

Figure 3. The TSPL architecture. The “branch_simi” and “branch_diff” modules accept the output
of “shared conv” and transform N images into 2N features (i.e., global_simi and global_di f f ). TSPL
then appends an attention process to the “shared conv” to generate 3N local features (i.e., local_simi,
local_di f f , and local f eatures). In the illumination-specific feature space, TSPL expresses the fusion of
local features extracted from the IAM (with global features extracted from the branch) as joint vehicle
features. TSPL also generates an N × N distance matrix using the local features and two N × N
distance matrices from the fusion features (i.e., matrix3, matrix1, and matrix2). In matrix3, TSPL
only uses distances from same-model pairs to calculate the loss function Ll . In matrix1 (matrix2),
TSPL only uses the green cells (brown cells) to compute the loss function LS (LD). In addition, TSPL
incorporates matrix1 and matrix2 into the fusion matrix to calculate LCROSS.
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3.1. Metric Learning Baseline

We adopted triplet loss to construct a metric learning baseline. Given an image pair
P = (xi, xj), distances were calculated using D(P) = D(xi, xj) = ‖ f (xi)− f (xj)‖2, where xi
and xj represent images from the dataset X and D denotes the Euclidean distance between
features. The function f then mapped raw images to their respective features. An example
is provided given three samples: x, x+, and x−, where x and x+ belong to the same class
(i.e., the same vehicle ID), while x and x− belong to different classes. A positive pair
P+ = (x, x+) and a negative pair P− = (x, x−) can then be formed, for which the triplet
loss is defined as follows:

LTri(x, x+, x−) = max{D(P+)− D(P−) + α, 0}, (1)

where α is a margin enforced between positive and negative pairs. Equation (1) aims to
minimize the distance between samples with the same ID while maximizing the distance
between samples with different IDs.

3.2. Illumination-Aware Metric Learning

Inspired by previous work [25], we propose an illumination-aware network that learns
two separate deep metrics for S-IL and D-IL samples. A coarse-grained classification was
included to divide the images into two distinct illumination types. We then employed IANet
to learn illumination-specific metrics via the explicitly modeling of lighting conditions.
Since it is difficult to manually annotate real-world environments with fine-grained labels,
coarse-grained labels were assigned to the images (i.e., daytime and nighttime). Images
including annotated timestamps ranging from 06:00 to 18:00 were labeled daytime, and
those spanning from 18:00 to 06:00 were labeled nighttime. Datasets lacking a timestamp
were categorized using an illumination predictor trained on VERI-DAN samples. Images
with the same illumination label were denoted as S-IL pairs, and those with different labels
were denoted as D-IL pairs. This convention produced four types of image pairs: P+

s (S-IL
positive), P+

d (D-IL positive), P−
s (S-IL negative), and P−

d (D-IL negative).
Images were mapped into two distinct illumination-specific feature spaces using two

convolutional branches with identical structures, which did not share any parameters.
Each branch layer could be viewed as a function for illumination-specific feature extraction
(i.e., fs and fd). For each image in a mini-batch, IANet generated two distinct features
using branch_simi and branch_di f f , as illustrated in Figure 3. Pair-wise distances in the
S-IL feature space were then calculated from DS(P) = || fs(xi)− fs(xj)||2, and distances
in the D-IL feature space were determined by Dd(P) = || fd(xi)− fd(xj)||2. Equation (1)
was decomposed into two types of constraints: within-space and cross-space constraints.
The within-space constraints expect Ds(P+

s ) to be smaller than Ds(P−
s ) in the S-IL feature

space, and Dd(P+
d ) to be smaller than Dd(P−

d ) in the D-IL feature space. The cross-space
constraints expect Dd(P+

d ) to be smaller than Ds(P−
s ), and Ds(P+

s ) to be smaller than
Dd(P−

d ).
Within-space constraints: Two triplet loss terms were introduced, one in each of the

S-IL and D-IL feature spaces, to ensure that positive samples were closer to each other than
negative samples. Triplet loss in the S-IL feature space was defined as follows:

Ls = max{Ds(P+
s )− Ds(P−

s ) + α, 0}, (2)

and in the D-IL feature space as follows:

Ld = max{Dd(P+
d )− Dd(P−

d ) + α, 0}. (3)

Within-space constraints were then implemented through a summation of Ls and Ld
as follows:

Lwithin = Ls + Ld. (4)
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Within each illumination-specific feature domain, the correlating loss function oper-
ated solely on illumination-specific samples. In other words, we used only S-IL pairs to
calculate Ls, while Ld was optimized solely by D-IL pairs.

Cross-space constraints: Focusing solely on single-feature spaces runs the risk of
underestimating the complex issue of illumination variability, which in turn could limit
re-ID accuracy. As such, we further proposed cross-space constraints between (P−

s , P+
d )

and (P+
s ,P−

d ), which were implemented using the following triplet loss function:

Lcross = max{Dd(P+
d )− Ds(P−

s ) + α, 0}
+ max{Ds(P+

s )− Dd(P−
d ) + α, 0}.

(5)

Loss functions in the Stage I model: The total triplet loss enforced in the first stage
can then be expressed as follows:

L = Lwithin + Lcross. (6)

3.3. Detail-Aware Discriminative Feature Learning

We observed that vehicles with similar appearances often exhibited differences in
localized regions, such as windshield decorations, as depicted in Figure 2. Thus, we
suggested that re-ID accuracy could be improved by enhancing an algorithm’s capacity
to capture these distinctive local details in the second stage. The neural network encoded
images in a progressive process [31,32], beginning with fine-grained details and gradually
expanding to local and global information. Thus, mid-level features from the middle layers
of the network facilitated the extraction of local area features for the vehicle. As such, based
on this approach, we proposed a detail-aware discriminative feature learning process for
vehicle re-ID. This process incorporated a local feature extraction module with attention
mechanisms included to extract local features. Local constraints were then introduced
to guide the generation of these features and devise an illumination-balanced sampling
strategy to optimize local constraints.

Attention-guided local feature extraction module (AG): Different vehicle parts play
varying roles in distinguishing among vehicles that are similar in appearance. Specifically,
areas such as a car logo or windshield, for which marked dissimilarities exist between
individual vehicles, are more important than common features, such as doors and hoods.
To this end, we introduced an attention mechanism to learn from these distinctive areas.
This attention-guided process consisted of a detail-aware local feature extraction module
(DAM) and an illumination-aware local feature extraction module (IAM), as illustrated in
Figure 4.

(a) (b)

Figure 4. The attention-guided local feature extraction module (AG). (a) The detail-aware local feature
extraction module (DAM). (b) The illumination-aware local feature extraction module (IAM).

The DAM generated detail-aware discriminative local features to enforce local con-
straints, as shown in Figure 4a. Mid-level features are denoted in the figure by F, with
dimensions H × W × C, where H, W, and C represent the height, width, and number of
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channels in the feature layer, respectively. The attention local feature map F′ was then
generated with the following equation:

F′ = A ⊗ F = σ(g(F)⊗ F), (7)

where g(·) is a convolution kernel, σ is the sigmoid function, and ⊗ denotes element-wise
multiplication between two tensors. Global maximum pooling was then applied to F′
to produce the final local feature vector (i.e., local f eatures in Figure 3). Each channel in
F′ represents a specific vehicle region, and spatial points within the vector indicate the
significance of each region. In this way, the incorporated attention map was able to guide
the network’s focus toward the significant areas of each vehicle.

As demonstrated in Figure 4b, IAM generated two different types of local features that
were discriminative in S-IL and D-IL feature spaces, respectively. The appearance of certain
distinguishing areas, such as headlights, differed significantly as the illumination changed.
In other words, specific visual cues may become more or less significant in different feature
spaces. To this end, we further introduced squeeze and excitation modules [33] to identify
illumination-specific local features for the S-IL and D-IL space. The corresponding feature
map F′′ is obtained as follows:

F′′ = A′ ⊗ F = FSE(A)⊗ F = σ(FSE(g(F))⊗ F), (8)

where FSE denotes the squeeze-and-excitation block. Consequently, we obtained two
different local features from IAM (i.e., local_simi and local_di f f ), as shown in Figure 3.
We then employed the union of illumination-specific local features with global features
(extracted from the branch network) to enforce within-space and cross-space constraints.
This process was distinguished from the formulation defined in Section 3.2 by using LS,
LD, and LCROSS to denote corresponding loss terms calculated from the fusion features.

Detail-aware local constraints: In real-world scenarios, differences between vehicles
of the same model were concentrated primarily in regions such as inspection marks and
personalized decorations. As such, training a triplet loss function using hard negatives from
the same vehicle model served as a guiding mechanism that directed network attention
toward relevant discriminative local regions. In the following notation, xm denotes a vehicle
belonging to model m. A typical triplet in the local constraints is denoted by (xm, x+m , x−m),
where xm and x+m exhibit the same ID, while x−m has a different ID but shares a model
type with xm and x+m . Following these definitions, P+

m (same-model positive pair) and P−
m

(same-model negative pair) are denoted as (xm, x+m) and (xm, x−m), respectively. Formally,
local constraints were enforced through triplet loss as follows:

Ll = Ll(xm, x+m , x−m) = max{D(P+
m )− D(P−

m ) + β, 0}, (9)

where β is a margin enforced between positive and negative pairs. All negative samples in
the proposed local constraints shared a model type with the anchor, which was conducive
to guiding the generation of discriminative local features. Note that L_l is an advanced
version of L_cross, since different vehicles of the same model were prone to generate the
hardest negatives in S-IL and D-IL feature spaces. Thus, we removed LCROSS from the final
model after introducing local constraints.

Loss functions in the Stage II model: The total triplet loss function in the Stage II
model can be expressed as follows:

L = LS + LD + Ll . (10)

Illumination-balanced sampling strategy: Maintaining a balance between S-IL and
D-IL pairs is necessary in a mini-batch to train an illumination-aware network against
variations in lighting. However, in most cases, the number of daytime images in each
mini-batch is much larger than that of the nighttime images. As a result, the network may
tend to learn from images captured in the daytime and may not be able to identify a robust
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correlation among samples with different illumination. To address this issue, we designed
a function to ensure that each vehicle provided an equal number of images for both types
of lighting. Specifically, the algorithm selected N daytime images and N nighttime images
for each vehicle ID in a minibatch. If a vehicle ID exhibited fewer than N daytime images,
the algorithm duplicated these samples to produce N images. The effectiveness of this
balanced sampling strategy will be illustrated in Section 5.4.2.

3.4. Training and Inference

TSPL expressed the fusion of local features with global features extracted from
“branch_conv” as joint vehicle features, as demonstrated in Figure 3. During training,
“branch_conv” output dual global features for each image in different feature spaces (i.e.,
global_simi in S-IL and global_di f f in D-IL). In contrast, IAM output dual illumination-
specific local features to form joint representation with global features (i.e., local_simi
and local_di f f ). DAM then output detail-aware local features to optimize the local con-
straints. Given N input images, TSPL generated two illumination-specific distance matrices
containing N × N distance value elements (i.e., matrix1 and matrix2). Only Ds(Ps) and
Dd(Pd) (denoted by the green and brown cells in Figure 3) contributed to LS and LD loss,
respectively. TSPL also generated a local distance matrix containing N × N distance value
elements calculated from local features. Distances from the same model (denoted by the
colored cells in matrix3) were then used to calculate the triplet loss Ll and to enforce
detail-aware local constraints.

Note that LCROSS was not incorporated into the final model but was a component of
the ablation study. The generation of LCROSS was illustrated by the red dashed line box
shown in Figure 3. In the f usion matrix, the green cells were related to S-IL pair distance
values in matrix1, while the brown cells were related to D-IL distance values in matrix2.
During the testing phase, a specific procedure was followed based on the illumination
conditions of query and gallery images. If these images were identified as a S-IL pair, their
distance was calculated by Ds(Ps) using a S-IL branch; otherwise, Dd(Pd) was employed
through a D-IL branch. Distances were also calculated from local features and the union of
these results provided joint distances between the query and gallery images.

4. The VERI-DAN Dataset

Existing re-ID datasets either exhibit limited illumination variability or lack annota-
tions to quantify luminance. Therefore, we carefully constructed the VERI-DAN dataset
to provide a variety of lighting conditions for each vehicle. The set included 200,004 total
images from 16,654 vehicles, collected by 120 cameras in a large urban district in natural
environments. Statistics for this dataset are provided in Figure 5 and sample images are
shown in Figure 6a. Table 3 presents a comparison of VehicleID [28], VeRI-776 [12], VERI-
Wild [29], Vehicle-1M [30], and VERI-DAN. The distinctive properties of VERI-DAN can be
summarized as follows:

Balanced illumination conditions: VERI-DAN was generated from 120 × 24 × 8 =
23,040 h of video footage collected in various illumination conditions. Specifically, every
vehicle appeared multiple times in both daytime and nighttime settings, as shown in
Figure 6b.

Refined model information: We meticulously annotated each image with one of
482 refined vehicle classes, denoting the make, model, color, and year (e.g., “Audi-A6-
2013”). VERI-DAN included many similar vehicles of the same model, which facilitated
the training of a network to differentiate hard negative samples.

Spatio-temporal geographic coordinate information (S-T): Details such as camera ID,
timestamp, and geodetic coordinates were provided to facilitate research based on camera
networks [34–36].
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(a) (b) (c)

Figure 5. VERI-DAN dataset statistics. (a) The number of identities collected by camera (i.e., 1–120).
(b) The number of IDs captured by hour. (c) The distribution of captured images by time of day.

(a) (b)

Figure 6. An overview of the VERI-DAN dataset, including (a) sample images and (b) examples of
changes in illumination.

Table 3. A comparison of re-ID datasets. S-T, spatio-temporal geographic coordinate information;
ID-DL, ID with diverse lighting.

Dataset VehicleID Vehicle-1M VERI-Wild VERI-DAN

Images 221,763 936,051 416,314 200,004
Identities 26,267 55,527 40,671 16,654
Models 250 400 153 482

S-T × × � �
ID-DL (%) 10.3% 29.9% 6.3% 100%

5. Experiments

5.1. Datasets

We evaluated the proposed method using the VERI-DAN and Vehicle-1M datasets,
both of which included vehicles exhibiting significant illumination changes. Following
a common practice [28], we divided VERI-DAN into a training set (141,470 images from
13,454 vehicles) and a test set, which contained the remaining 58,534 images from 4800 vehi-
cles. We further divided the test set into three subsets, denoted Small, Medium, and Large,
as shown in Table 4.
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Table 4. Division of the training and testing sets (IDs/Images).

Dataset Train
Test

Small Medium Large

Vehicle-1M 6448/525,808 1000/16,123 2000/32,539 3000/49,259
VERI-DAN 13,454/141,470 800/9723 1600/19,338 2400/29,473

5.2. Evaluation Protocols

During evaluation, we followed the protocol proposed by Liu et al. [12,28], in which
mean average precision (mAP) and cumulative matching characteristics (CMC) were used
as performance metrics. CMC estimates the probability of finding a correct match in the top
K returned results, while MAP is a comprehensive index that considers both the precision
and recall of the results. The final CMC and mAP values were averaged over 10 iterations.

5.3. Implementation Details

We adopted the InceptionV3 [37] network as the backbone model. All layers preceding
the Inception (7a) module were implemented as “share conv”, and layers ranging from
Inception (7a) to the global average pooling layer were appended as “branch conv”. Since
mid-level features facilitated the extraction of discriminative local vehicle features, we
added an attention module to the Inception (5d) layers to generate local feature maps
of dimensions 35 × 35 × 288. The input images were then resized to 299 × 299 without
augmentation, using processes such as color jitter and horizontal flip. The model was
trained for 120 epochs using the Adam optimizer with a momentum of 0.9 and a weight
decay of 0.05. The learning rate was initialized to 0.001, and decreased by a factor of 0.1
every 20 epochs. The margins α and β were both set to 1.0. Each mini-batch contained
128 images (32 IDS, each with 4 images) on VERI-DAN as well as on Vehicle-1M. We
adopted a batch hard-mining strategy to reduce the triplet loss.

The illumination predictor was trained using cross-entropy based on InceptionV3.
We coarsely categorized all images into two illumination classes: daytime and nighttime.
The daytime—daytime and nighttime—nighttime samples were then defined as the S-IL
pairs, and the daytime—nighttime samples were defined as the D-IL pairs. In addition
to triplet loss, we incorporated cross-entropy loss into the model to learn differences
between the individual vehicle models, drawing inspiration from several existing re-
ID methods [1,25,38]. Specifically, we appended the model classifier into the feature-
embedding layer. The classifier was then implemented with a fully connected layer and a
softmax layer. The output of the softmax was supervised by the model labels applied to
the training images, and optimized by the cross-entropy loss step.

5.4. Ablation Study

We conducted ablation studies on the two large-scale datasets to validate the effec-
tiveness of the proposed strategies both quantitatively and qualitatively. We provided a
detailed analysis of the impacts arising from constraints in Section 5.4.1 and the sampling
strategy in Section 5.4.2, respectively.

5.4.1. Constraint Influence

We conducted a series of comparison experiments to validate the effectiveness of
the included illumination-aware metric learning and detail-aware discriminative feature
learning. Specifically, we performed comprehensive ablation studies on combinations of Ll
with Lwithin and Lcross. This was carried out to verify the benefits of fusing global and local
features, as demonstrated in Table 5. Note that TSPL−

3 and TSPL3 used the same model
to generate features, although TSPL−

3 did not consider local features when calculating
distances. It is evident from the table that our proposed strategy significantly improved
vehicle re-ID performance over the baseline method.
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Table 5. Evaluation results for the small VERI-DAN and Vehicle-1M test sets (%). The best results are
shown in bold.

Method Lwithin Lcross Llocal
VERI-DAN Vehicle-1M

Rank-1 Rank-5 Rank-1 Rank-5

(a)Baseline - - - 96.26 99.23 85.86 96.67
(b)IANet � � 98.83 99.70 92.60 98.53
(c)TSPL1 � � � 99.55 99.93 96.29 99.13
(d)TSPL2 � � 99.40 99.94 95.51 98.65
(e)TSPL−

3 � � 99.52 99.95 96.59 99.18
( f )TSPL3 � � 99.54 99.95 96.97 99.18

IANet produced significant improvements despite relatively coarse-grained illu-

mination classification. Comparing IANet with the single-branch baseline demonstrated
Rank-1 accuracy improvements of +6.74% for Vehicle-1M and +2.57% for VERI-DAN. Con-
sistent performance improvements across both datasets confirmed the effectiveness of a
multi-branch network following the proposed progressive strategy.

Local constraints provide significant benefits for vehicle re-ID. Every variation of
IANet, with the introduction of local constraints (i.e., TSPL1, TSPL2, and TSPL3) produced
considerable improvements over IANet. Specifically, compared with IANet, local con-
straints yielded Rank-1 accuracy improvements of +3.69% for Vehicle-1M and +0.72% for
VERI-DAN. In addition, combining either Lwithin or Lcross with Llocal resulted in better
performance than the combination of within-space and cross-space constraints. Combining
cross-space constraints and local constraints resulted in Rank-1 accuracy increases of +2.91%
for Vehicle-1M and +0.57% for VERI-DAN. The joint optimization of within-space and
local constraints produced similar results, that is, +4.37% for Vehicle-1M and +0.71% for
VERI-DAN. TSPL3 achieved the best performance, while TSPL−

3 outperformed IANet by
∼1.8% (Rank-1 accuracy), even when local features were not involved in distance matrix
calculations during testing. This result suggested that local constraints, which focus on
extracting and leveraging local fine-grained visual cues, are also well suited for processing
the variations and challenges introduced by illumination.

Within-space constraints are critical for re-ID. We observed a performance degra-
dation when comparing TSPL2 with TSPL1 (−0.78% Rank-1 accuracy for Vehicle-1M and
−0.15% Rank-1 accuracy for VERI-DAN.) In contrast, either TSPL3 or TSPL−

3 achieved
better performance than TSPL2 and TSPL1. This was reasonable because without within-
space constraints, TSPL was not able to learn from two relatively common scenarios: both
the positive pairs and the negative pairs are observed under S-IL (or D-IL). We thus inferred
that within-space constraints played a critical role in enhancing the retrieval capacity.

5.4.2. Sampling Strategy Influence

We developed a special test set to validate the importance of maintaining a balance
between S-IL and D-IL pairs during training. All query and gallery samples were D-IL
pairs, as summarized in Table 6. For each individual in a mini-batch, a ratio of 1:3 indicated
that one image was captured during the daytime, while the other three images were taken
during the nighttime. As demonstrated in Table 6, both the baseline and IANet achieved
the best performance when this ratio was 2:2. This outcome suggested that maintaining
an illumination-balanced sampling strategy was beneficial for query retrieval from the
D-IL gallery.
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Table 6. The effect of sampling strategy (%).

Method
Daytime:

Nighttime

Test Size = 800

Rank-1 Rank-5 mAP

Baseline

Random 89.45 98.03 89.99
1:3 88.8 97.83 88.54
2:2 92.05 98.03 91.27
3:1 89.60 97.58 89.93

IANet

Random 96.30 99.20 96.16
1:3 96.37 99.35 95.41
2:2 96.82 99.40 95.82
3:1 96.15 99.23 95.02

5.5. Comparison with SOTA Methods

We compared the proposed method with a variety of SOTA vehicle re-ID methods
on VERI-DAN and Vehicle-1M. We used InceptionV3 [37] as our baseline model, which
was pretrained on ImageNet [39]. C2F-Rank [30] designed a multi-grain ranking loss to
efficiently learn feature embedding with a coarse-to-fine structure. GSTN [40] automatically
located vehicles and performed division for regional features to produce robust part-based
features for re-ID. DFR-ST [13] involved appearance and spatio-temporal information to
build robust features in the embedding space. DSN [41] utilized a cross-region attention to
enhance spatial awareness of local features. The comparison results on the two datasets are
detailed in Sections 5.5.1 and 5.5.2, respectively.

5.5.1. Evaluation with VERI-DAN

We verified the effectiveness of the proposed methodology in the presence of signif-
icant illumination changes by conducting comprehensive validation experiments using
the VERI-DAN dataset, while also drawing comparisons among the InceptionV3 [37],
IANet, and TSPL. As shown in Table 7, TSPL achieved significant improvements in Rank-1
accuracy and mAP over the baseline. The superiority of TSPL was evident through visual
inspection as well, as illustrated in Figure 7. When compared with the baseline, we ob-
served that TSPL could identify more correct matches among retrieved ranking lists in
which the correct matches had lower rank values.

Figure 7. A visual comparison of baseline (top) and TSPL (bottom) performance. Images with blue
contours show query vehicles, and images with green and red contours indicate correct and incorrect
predictions, respectively.
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Table 7. Performance with the VERI-DAN dataset (%). The best results are shown in bold.

Method
Small Medium Large

Rank-1 mAP Rank-1 mAP Rank-1 mAP

InceptionV3 [37] 96.26 93.59 93.27 89.25 91.10 85.36
IANet 98.83 97.65 98.42 96.31 98.03 95.35
TSPL 99.54 98.91 99.51 98.41 99.33 97.80

5.5.2. Evaluation with Vehicle-1M

We selected a group of 6448 (out of 50,000) vehicles in Vehicle-1M, whose images
involved a variety of illumination conditions, as the training set. TSPL was compared with
a variety of SOTA methods developed in recent years, including C2F-Rank [30], GSTN [40],
DFR-ST [13], and DSN [41], as shown in Table 8. Despite the limited utilization of training
samples, TSPL achieved remarkably competitive performance without any modified train-
ing strategies or additional detection modules. Specifically, compared with the second-place
method, TSPL achieved +1.83%, +1.46%, and +1.66% Rank-1 improvements for the small,
medium, and large test sets, respectively. This outcome demonstrated the superiority of the
proposed two-stage progressive learning framework. Re-ranking and data augmentation
may further improve performance.

Table 8. A comparison with SOTA algorithms applied to Vehicle-1M (%). The best results are shown
in bold.

Method Backbone
Training Set Small Medium Large

IDS Images Rank-1 mAP Rank-1 mAP Rank-1 mAP

C2F-Rank (2018) GoogLeNet 50,000 844,571 67.1 87.1 62.0 79.8 52.8 74.7
GSTN (2019) ResNet18 50,000 844,571 95.14 96.29 92.79 94.58 90.75 92.88

DFR-ST (2022) ResNet50 50,000 844,571 93.04 96.70 90.60 94.28 91.24 87.25
DSN (2023) ResNet50 50,000 844,571 92.9 93.7 91.8 92.7 90.4 91.5
TSPL (Ours) InceptionV3 6448 525,808 96.97 95.40 94.25 92.39 92.90 90.49

6. Conclusions

To address the challenging problem posed by dramatic changes in illumination, we pro-
posed a novel two stage-progressive learning (TSPL) strategy for vehicle re-identification.
This technique consisted of illumination-aware metric learning and detail-aware discrim-
inative feature learning. Unlike existing methods that only learn a single metric for all
types of lighting conditions, Stage I of TSPL aimed to learn proper vehicle representations
under different illumination conditions using a two-branch network called IANet, which
learned two separate metrics for images with similar and differing illumination conditions.
By enforcing corresponding constraints (i.e., within-space constraints and cross-space con-
straints), IANet improved re-ID accuracy when retrieving D-IL images. Stage II in TSPL
enabled the network to learn discriminative local features through an attention guided local
feature extraction module (AG), which was optimized by local constraints. The proposed at-
tention module not only facilitated the distinguishing of vehicles with similar appearances
but also increased the associated robustness against variations in illumination. Additionally,
the large-scale VERI-DAN was developed as part of the study, to provide images with
significant changes in lighting. VERI-DAN is expected to facilitate the development of new
re-ID methods by suppressing the distractions introduced by variable illumination. The
implementation of each proposed metric learning strategy consistently improved re-ID
performance with both VERI-DAN and Vehicle-1M, which further verified the effectiveness
of TSPL. Despite the limited number of training samples in Vehicle-1M, TSPL achieved
SOTA Rank-1 accuracy for the original test set, thereby demonstrating the superiority of
this approach.
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Abbreviations

The following abbreviations are used in this manuscript:

P = (xi, xj) An image pair consists of image xi and xj
D(xi, xj) Euclidean distance between xi and xj
x, x+, and x− x and x+ share the same vehicle ID, while x and x− have different vehicle ID
S-IL Similar-illumination
D-IL Different-illumination
P+

s S-IL positive
P+

d D-IL positive
P−

s S-IL negative
P−

d D-IL negative
P+

m same-model positive pair
P−

m same-model negative pair
AG Attention-guided local feature extraction module
CMC Cumulative matching characteristics
DAM Detail-aware local feature extraction module
IAM Illumination-aware local feature extraction module
IANet Illumination-aware network
mAP Mean average precision
re-ID Re-identification
SOTA State-of-the-art
S-T Spatio-temporal geographic coordinate information
TSPL Two-stage progressive learning
VERI-DAN Vehicle re-identification across day and night
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Abstract: In this paper, we propose an end-to-end low-light image enhancement network based on
the YCbCr color space to address the issues encountered by existing algorithms when dealing with
brightness distortion and noise in the RGB color space. Traditional methods typically enhance the
image first and then denoise, but this amplifies the noise hidden in the dark regions, leading to
suboptimal enhancement results. To overcome these problems, we utilize the characteristics of the
YCbCr color space to convert the low-light image from RGB to YCbCr and design a dual-branch
enhancement network. The network consists of a CNN branch and a U-net branch, which are used to
enhance the contrast of luminance and chrominance information, respectively. Additionally, a fusion
module is introduced for feature extraction and information measurement. It automatically estimates
the importance of corresponding feature maps and employs adaptive information preservation to
enhance contrast and eliminate noise. Finally, through testing on multiple publicly available low-light
image datasets and comparing with classical algorithms, the experimental results demonstrate that the
proposed method generates enhanced images with richer details, more realistic colors, and less noise.

Keywords: low-light image enhancement; YCbCr space; dual-branch network; feature fusion

1. Introduction

In recent years, with the continuous improvement of computer hardware and algo-
rithms, artificial intelligence has made remarkable progress in various fields, such as image
recognition [1], object detection [2], semantic segmentation [3], and autonomous driving [4].
However, these technologies are mainly based on the assumption that images are captured
under good lighting conditions, and there are few discussions on target recognition and
detection technologies under weak illumination conditions such as insufficient exposure at
night, unbalanced exposure, and insufficient illumination. Due to the low brightness, poor
contrast, and color distortion of images and videos captured at night (example shown in
Figure 1), the effectiveness of visual systems, such as object detection and recognition, is
seriously weakened. Enhancing the quality of images captured under low-light conditions
via low-light image enhancement (LLIE) can help improve the accuracy and effectiveness
of many imaging-based systems. Therefore, LLIE is an essential technique in computer
vision applications.

Currently, various methods have been proposed for LLIE, including histogram equal-
ization (HE) [5,6], non-local means filtering [7], Retinex-based methods [8,9], multi-exposure
fusion [10–12], and deep-learning-based methods [13–15], among others. While these ap-
proaches have achieved remarkable progress, two main challenges impede their practical
deployment in real-world scenarios. First, it is difficult to handle extremely low illumina-
tion conditions. Deep-learning-based methods show satisfactory performance in slightly
low-light images, but they perform poorly in extremely dark images. Additionally, due to
the low signal-to-noise ratio, low-light images are usually affected by strong noise. Noise

Electronics 2023, 12, 3907. https://doi.org/10.3390/electronics12183907 https://www.mdpi.com/journal/electronics134



Electronics 2023, 12, 3907

pollution and color distortion also bring difficulties to this task. Most of the previous
studies on LLIE have focused on dealing with one of the above problems.

Figure 1. The comparison effect of various images taken in different scenes. From left to right, these
images are derived from LOL, VE-LOL, LIME, and MEF datasets, respectively.

To explore the above problems, we counted the differences between 500 pairs of real
low-/normal-light image pairs captured in the VE-LOL dataset in different color spaces and
channels, as shown in Figure 2. In the RGB color space, all three channels exhibit significant
degradation. However, in the YCbCr color space, the chrominance channels show higher
PSNR and SSIM values compared to the luminance channel, indicating more severe image
quality loss in the luminance channel. The inherent characteristics of the YCbCr color
space indicate that the difference in luminance primarily resides in the Y channel, while
the Cb and Cr channels are more susceptible to noise contamination. To achieve the
goal of decoupling luminance distortion and noise interference, it is possible to employ
channel-wise processing to handle different channels more appropriately. Therefore, in
low-light image enhancement tasks, compared to the RGB color space, the YCbCr color
space provides a favorable potential candidate space for separating luminance distortion
and noise interference.

Figure 2. The difference between low-light images and normal images in RGB space and YCbCr
space under the VE-LOL dataset. (a) The average PSNR values for each channel; (b) The average
SSIM values for each channel.

In summary, the main contributions of this article are as follows:

• We propose a new hierarchical structure ( DBENet ) for enhancing low-light conditions
in the real world. This framework includes networks for enhancing illumination maps,
denoising chromatic information, and feature map fusion, respectively;

• We employed a CNN branch to predict the gamma matrix and utilized nonlinear map-
ping to regulate brightness variations, effectively suppressing overexposure during
the enhancement process;
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• Our method outperforms existing techniques on benchmark datasets, achieving signifi-
cant improvements in evaluation metrics such as MAE, PSNR, SSIM, LPIPS (reference),
and NIQE (no-reference), demonstrating its superior efficiency.

The rest of this paper is as follows: Section 2 introduces the proposed network frame-
work. Section 3 explains the loss function used in each component. Section 4 presents the
evaluation of our method via subjective and objective assessments of multiple datasets.
Sections 5 and 6 are dedicated to the discussion and conclusion, respectively

2. Related Works

In general, image enhancement methods can be roughly divided into two categories:
non-learning-based methods and learning-based methods.

2.1. Non-Learning-Based Methods

LLIE plays an irreplaceable role in recovering the intrinsic colors and details, as well
as compressing noise in low-light images. In the following, we provide a comprehensive
review of previous work on low-light image enhancement. Traditional LLIE methods
encompass techniques such as tone mapping [16], gamma correction [17], histogram equal-
ization [18], and those based on the Retinex theory [19–22]. Tone mapping is used to create
more detailed, colorful, and high-contrast images while maintaining a natural appear-
ance. However, linear mapping can lead to the loss of information in bright and dark
areas. Gamma correction employs nonlinear tone mapping to handle the shadows and
highlights in image signals, but selecting global parameters can be difficult and may result
in overexposure or underexposure. Histogram equalization enhances image contrast by
transforming the histogram, but it may yield unsatisfactory results in certain local regions.
Adaptive histogram equalization [23] can map the histogram of local regions to a simpler
distribution for improved effects. The Retinex theory [24] is a computational theory that
simulates human visual perception and can achieve color constancy, color enhancement,
and high dynamic range compression. However, there is still room for improvement in
its processing mechanisms and universality, and its effectiveness may vary in different
scenarios. In general, traditional model-based methods heavily rely on manually designed
priors or statistical models, which may limit their applications.

2.2. Learning-Based Methods

In the field of LLIE, methods based on deep learning have currently become the
mainstream research direction. LLNet [25] represents a seminal contribution from the LLIE
group, which focuses on contrast enhancement and denoising via a depth autoencoder-
based approach. However, it is worth noting that this work does not explore the intricate
relationship between real-world illumination and noise, consequently leading to persis-
tent issues such as residual noise and excessive smoothing. In contrast, Chen et al. [26]
introduced Retinex-Net, a method that decomposes the input image into a reflectance map
and an illumination map. It enhances the illumination map using a deep neural network
for low-light conditions and then applies BM3D [27] for denoising, while Retinex-Net
effectively enhances brightness and image details, it tends to suffer from inadequate image
smoothing and severe color distortion. Lv et al. [28] proposed a comprehensive end-to-end
multi-branch enhancement network (MBLLEN) encompassing feature extraction, enhance-
ment, and fusion modules to boost the performance of LLIE. Drawing inspiration from
super-resolution reconstruction techniques, UTVNet [29] and URetinex [30] introduced
an adaptive unfolding network tailored for robustly denoising and enhancing low-light
images. Another notable approach by Wang et al. [31] introduces a two-stage Fourier-based
LLIE network, FourLLIE. This method enhances the brightness of low-light images by
estimating amplitude transformation in the Fourier space. Furthermore, it leverages a
signal-to-noise ratio (SNR) map to provide a priori information regarding global Fourier
frequencies and local spatial details for image restoration. Notably, FourLLIE is both
lightweight and highly effective in terms of enhancement.
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Recently, zero-shot-learning-based methods has garnered substantial attention due to
their efficiency, cost-effectiveness, and ability to leverage limited image data. For instance,
Liu et al. [32] introduced Retinex-based Unrolling with Architecture Search (RUAS) and
devised a collaborative reference-free learning strategy to discover low-light prior archi-
tectures from a compact search space. Guo et al. [33] presented Zero-DCE, a technique
employing an intuitive nonlinear curve mapping. Subsequently, they improved upon this
method with Zero-DCE++ [34], which is faster and lighter. However, it is important to note
that Zero-DCE relies on multiple exposure training data and does not effectively address
noise, especially in extreme enhancement scenarios. Zhu et al. [35] introduced RRDNet, a
three-branch convolutional neural network designed for restoring underexposed images.
RRDNet employs an iterative approach to decompose input images into their constituent
parts: illumination, reflectance, and noise. This is achieved via the minimization of a
customized loss function and the adjustment of the illumination map via gamma correction.
The reconstructed reflectance and adjusted illumination map are then multiplied element-
wise to generate the enhanced output. In another development, Ma et al. [36] proposed
a learning framework called self-calibrating illumination (SCI) for rapid and adaptable
enhancement in real-world low-illumination scene images. This method estimates a con-
vergent illuminance map via a neural network and, following Retinex theory, divides the
input low-illuminance image element-wise with the estimated illuminance map to derive
an enhanced reflectance map. It is worth noting that while SCI achieves a convergence of
the illuminance map through iterations, it does not explicitly address noise interference
in the process. PSENet [37] offers an unsupervised approach for extreme-light image
enhancement, effectively addressing image enhancement challenges in both overexposure
and underexposure scenarios.

3. The Proposed Network

In the third section, we first introduced our proposed DBENet and provided a more
detailed explanation of the components we proposed in the following subsections.

The architecture of the proposed dual-branch enhancement network (DBENet) is
shown in Figure 3. DBENet consists of two branches (CNN branch and U-Net branch)
and a fusion module. The network follows a divide-and-conquer strategy, where the input
image is transformed from the original RGB color space to the YCbCr color space for
separate processing. The CNN branch handles the luminance component (Y) based on
the nonlinear function. The encoder–decoder branch network processes the chrominance
component (CbCr) starting from global features. Finally, the cascaded fusion features (Yres
and Wres) from both branches are fed into the fusion module to aggregate the enhanced
image.

Figure 3. The proposed network structure framework diagram.
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3.1. CNN Branch

The CNN branch based on the residual concept consists of three parts: the initial layer
Conv + ReLU, the middle layer Conv + BatchNorm + ReLU, and the final layer Conv +
Sigmoid. The convolutional kernel size is set uniformly to 3 × 3 with a dilation rate of 1,
which enlarges the receptive field of the convolutional network and enhances the feature
extraction ability without increasing the computational burden. The BatchNorm layer
normalizes each channel to reduce inter-channel dependencies and accelerate network
convergence. After obtaining the estimated gamma component γ through the network, we
employ the gamma adjustment scheme [38] to enhance the visibility of details in both dark
and bright regions. The nonlinear function is represented by the following equation:

Yres = 1 − (1 − Ylow)
1/γ (1)

In Equation (1), Yres represents the enhanced result, and γ and Ylow, respectively,
denote the predicted gamma map and the separated luminance component of the original
image. This function is designed to address the issue of overexposure that often occurs
when enhancing results in the presence of non-uniform lighting and complex light sources
in the original image. Unlike directly applying the gamma function to the original image,
we draw inspiration from dehazing techniques and apply it to the inverted image to obtain
the enhanced output. This approach arises from the shared characteristics of blurred and
low-light images, which often exhibit low dynamic range and high noise levels. Therefore,
dehazing techniques, such as using inverted images, can be employed to enhance and
alleviate this concern.

Within the CNN branch, the process begins by normalizing the image to a 0–1 range.
Subsequently, the network learns the intermediate parameter gamma for predicting the
mapping function and, finally, computes the predicted result. As illustrated in Figure 4’s
mapping curve, when the gamma value is less than 1, it brightens areas with underexposure,
while gamma values greater than 1 darken areas with overexposure. The purpose of this
function is to provide reasonable suppression, allowing the control and mitigation of the
local intensity increase, while simultaneously enhancing the overall image quality.
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Figure 4. Function mapping curves corresponding to different γ values.

3.2. U-Net Branch

Due to the influence of the acquisition environment and equipment, low-illumination
images often contain a lot of noise in dark areas. Noise will reduce image information and
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image quality. In order to better dealing with low-light images, it is necessary to achieve
better denoising and detail preservation effects.

In an effort to reveal the details while avoiding the increase in distortion, we propose
a chromaticity denoising module. The module uses the chrominance channel of the low-
illumination image to mainly reflect the chrominance information of the image, which can
be represented as W. Since the color information distortion is often non-local, in order to
obtain the global color information of the image, the classical U-Net network structure is
used to enrich the spatial information by extracting features of different sizes so that the
semantic information is more diverse. Through the encoder–decoder structure, the U-Net
branch can capture context information at different scales. In addition, the introduction
of skip connections enables U-Net [39] to make full use of feature information and restore
details and boundaries, as shown in Figure 5. In the U-Net branch, the encoder expands the
receptive field of convolution via layer-by-layer pooling operation. In the bottleneck layer
of the network, the larger receptive field can extract the non-local chrominance information
for contrast recovery, and the decoder expands the non-local information to the global via
layer-by-layer upsampling.

Figure 5. The structure of the U-Net Branch.

3.3. Fusion Module

In our method, we did not perform the corresponding transformation from YCbCr
to RGB color space on the returned three components. Instead, we did not design a
unique fusion rule but used a fusion module to generate the fused result Ires. As shown
in Figure 6, the architecture of the fusion module consists of 10 layers, with Yres and
Wres concatenated as inputs. Each layer has a convolutional operation, followed by an
activation function. The kernel size of all convolutional layers is set to 3 × 3, with a stride
of 1. The padding mode is set to “reflect” to prevent edge artifacts. No pooling layers
are used to avoid information loss. The activation function in the first nine layers is
LeakyReLU with a slope of 0.2, while the activation function in the last layer is Sigmoid.
Furthermore, studies [40] have shown that building short connections between layers
close to the input and layers close to the output can significantly deepen and effectively
train neural networks. Therefore, in the first seven layers, dense connection blocks
are utilized to improve information flow and performance. In these layers, shortcut
direct connections are established in a feed-forward manner between each layer and all
preceding layers, reducing the problem of vanishing gradients.
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Figure 6. The structure of the fusion module. Numbers are the channels of corresponding feature maps.

3.4. Loss Function

During the training phase, due to the similar degradation patterns of the Cb and Cr
chroma channels, for convenience, we use W to represent both the Cb and Cr channels
simultaneously. The loss function of the entire network as follows:

LTotal = L1(Yres, Yhigh) + L2(Wres, Whigh) + L3(Ires, Ihigh) (2)

Among these, I represents the output of the network, and Y and W represent the
outputs of the CNN branch and the U-Net branch, respectively. The subscripts “res” and
“high” indicate the enhanced result and the corresponding normal image.

In Equation (2), the three loss functions, L1, L2, and L3, share the same form. Taking
L1 as an example, we have L1 = L2 + Lssim. The two components represent the mean
square error loss and the structural similarity loss function, respectively. The first term of
the loss function aims to measure the reconstruction error, while the second term measures
the differences in brightness, contrast, and structural similarity between the two images.
Similarly, taking L1 as an example, the L2 loss is defined as shown in Equation (3), while
the definition of the Lssim is presented in Equation (4).

L2 =
∥∥∥Yres − Yhigh

∥∥∥2

2
(3)

Lssim = 1 − SSIM(Yres − Yhigh) (4)

where SSIM [41] is the structural similarity, the function is defined as follows:

SSIM(x, y) =

(
2 × ux × uy + c1

)(
2 × σxy + c2

)(
u2

x + u2
y + c1

)(
σ2

x + σ2
y + c2

) (5)

4. Experimental Results and Analysis

In this part, we describe the experimental results and analysis in detail. First, we briefly
introduce the experimental setting. Then, the qualitative and quantitative evaluation of
paired and unpaired data sets is described. Finally, the experimental results are analyzed.

4.1. Experimental Settings

Parameter Settings: Parameter Settings: All experiments in this paper were conducted
in the same configuration environment, i.e., training environment configuration: Ubuntu
system, 32 GB RAM, and NVIDIA GeForce RTX3090 GPU. The network framework was
constructed with the PyTorch framework and optimized using Admm [42] with parameters
β1 = 0.9, β2 = 0.99, ε = 0.95. In addition, the batch size was 16, the learning rate was 0.0002,
and the training sample size was uniformly adjusted to 256 × 256. A total of 485 randomly
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selected paired images from the LOL dataset were used to train our model. The training
epoch number was set to 3000.

Compared Methods: As for the low-light-level image intensifier, we conducted a
visual evaluation of our proposed network on classic low-light image datasets (LOL and
other datasets) and compared it with other state-of-the-art methods and available codes,
including the traditional methods HE [5] and tone mapping [16], deep-learning-based
methods Retinex-Net [26], RUAS [32], Zero-DCE [33], SCI [36], and RRDNet [35].

Evaluation Criteria: We employ quantitative image quality assessment metrics for
comparative analysis to illustrate the effectiveness of the algorithms presented in this paper.
To gauge the disparities in color, structural, and high-level feature similarity, we utilize
MAE, PSNR, SSIM [41], LPIPS [43], and NIQE [44] as measurement indices. In addition,
two paired data sets (LOL and VE-LOL) and two unpaired data sets (LIME and MEF) were
selected for verification experiments to test their performance in image enhancement.

4.2. Subjective Visual Evaluation

Figures 7 and 8 show some representative results of the visual comparison of various
algorithms. Figures 7 and 8 belong to the LOL and VE-LOL datasets, respectively. In
Figure 7, it can be seen that HE has obvious image distortion and color distortion; Retinex-
Net amplifies inherent noise, losing image details; SCI, Zero-DCE, and RRD-Net have
weak brightness enhancement capabilities; tone mapping, RUAS, and our method perform
extremely well in brightness and color aspects. From Figure 8, the enhanced results show
that HE can significantly increase the brightness of low-light images. However, it applies
contrast enhancement to each channel of RGB separately, causing color distortion. Retinex-
Net significantly improves the visual quality of low-light images, but it overly smooths
out details, enlarges noise, and even causes color deviation. Tone mapping can stretch the
dynamic range of the image, but it still has insufficient enhancement for the grandstand
seating section in the image. Although the image effect of RUAS is delicate and has no
obvious noise interference, it does not successfully brighten the image in extremely dark
areas (such as the central seat part). SCI and RRD-Net perform poorly in darker images
and cannot effectively enhance low-light images. Zero-DCE can preserve the details of
the image relatively completely, but the brightness enhancement is not obvious, and the
color contrast of the image is significantly reduced. Compared with the ground truth, our
method not only significantly improves brightness but also preserves colors and details to
a large extent, thereby improving image quality.

Figure 7. Visual comparisons of different approaches on the LOL benchmark.
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Figure 8. Visual comparisons of different approaches on the VE-LOL benchmark.

To comprehensively evaluate various algorithms, we also selected two unpaired
benchmarks (LIME, MEF) for the verification experiments. As shown in Figures 9 and 10,
we show the visual contrast effects produced via these cutting-edge methods under various
benchmarks. From these enhancement results, it is evident that HE greatly improves the
contrast of the image, but there is also a significant color shift phenomenon. Retinex-Net
introduces visually unsatisfactory artifacts and noise. Tone mapping and RRD-Net can
preserve image details, but the overall enhancement strength is not significant, and they
fail to effectively enhance local dark areas. RUAS and SCI can effectively enhance low-
contrast images, but during the enhancement process, they tend to excessively enhance
originally bright areas, such as the sky and clouds in Figure 10, which are replaced by an
overly enhanced white-ish tone. Among all the methods, Zero-DCE and our proposed
method perform well on these two benchmarks, effectively enhancing image contrast while
maintaining color balance and detail clarity.

Figure 9. Visual comparisons of different approaches on the LIME benchmark.
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Figure 10. Visual comparisons of different approaches on the MEF benchmark.

4.3. Objective Evaluation

We evaluate the results of the proposed method and seven other representative meth-
ods on the LOL and VE-LOL paired datasets. Table 1 shows the average MAE, PSNR,
SSIM, and LPIPS scores of these two public datasets. Among these evaluation indexes,
the higher the PNSR and SSIM values, the better the image quality. On the contrary, the
smaller the MAE and LPIPS, the better the image quality. From Table 1, it is evident that
our method outperforms other approaches significantly on both test sets, demonstrating
the effectiveness of the DBENet framework we proposed.

Table 1. Quantitative comparison on LOL and VE-LOL datasets. The best result is in bold, whereas
the second best results are in underline, respectively.

Dataset Method MAE↓ PSNR↑ SSIM↑ LPIPS↓

LOL

Input 0.3914 7.7733 0.1952 0.4191
HE 0.1879 12.918 0.3369 0.4376

Tone Mapping 0.1517 16.5034 0.5092 0.2312
RUAS 0.1534 16.4047 0.4997 0.1937

Retinex-Net 0.1255 16.7740 0.4196 0.3758
SCI 0.1912 14.784 0.5220 0.2385

Zero-DCE 0.1860 14.7971 0.5573 0.2368
RRDNet 0.2739 11.4037 0.4575 0.2480

Ours 0.1007 19.8625 0.8149 0.1152

VE-LOL (real)

Input 0.3131 9.7168 0.1989 0.3472
HE 0.4901 13.1314 0.3760 0.4140

Tone Mapping 0.1298 17.2469 0.5262 0.2349
RUAS 0.1621 15.3255 0.4878 0.2165

Retinex-Net 0.1313 16.0971 0.4011 0.4368
SCI 0.1470 17.3035 0.5336 0.2021

Zero-DCE 0.1320 17.9992 0.5719 0.2154
RRDNet 0.2089 13.9818 0.4832 0.1896

Ours 0.0099 19.8285 0.8437 0.1086
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In addition, we also evaluated these datasets using the non-reference image quality
evaluator (NIQE), as shown in Table 2. With the exception of Zero-DCE, which had the
best score on some datasets, our NIQE scores outperformed most of the other methods.
Overall, Tables 1 and 2 provide stronger evidence for the effectiveness and applicability of
our proposed method.

Table 2. NIQE scores on low-light image sets (LOL, VE-LOL, LIME, and MEF). The best result is in
bold, whereas the second best results are in underline, respectively. Smaller NIQE scores indicate a
better quality of perceptual tendency.

Method LOL VE-LOL (Real) LIME MEF

HE 8.1541 8.7654 6.8883 3.5638
Tone Mapping 7.8310 7.9683 3.9201 3.5254

RUAS 6.3400 6.5330 5.3642 5.4255
Retinex-Net 8.8781 9.4276 4.7669 4.4097

SCI 7.8766 8.0461 4.2064 3.6277
Zero-DCE 7.7925 8.0449 3.9733 3.3023
RRDNet 7.4777 7.7131 4.0689 3.4796

Ours 5.2485 5.0481 4.3475 4.2920

4.4. Ablation Study

We conducted ablation studies on the dual-branch network, and the data results are
shown in Table 3. The CNN branch is based on spatially extracting local features from
the image, which may overlook global contextual relationships that are crucial for under-
standing the overall representation. On the other hand, the encoder–decoder branch-based
method captures global contextual relationships via skip connections but may overlook
local features, which can affect the fusion outcome. We performed experiments on three
different methods, including a single branch and a combination of both branches. The
experimental results indicate that our proposed dual-branch fusion network outperforms
the CNN branch or U-Net branch methods in all metrics. Therefore, combining the capture
of global contextual relationships and local features can improve the fusion-enhancement
effect for low-light images.

Table 3. Data of ablation experiment.

Methods PSNR SSIM

CNN branch 18.6481 0.7128
U-Net branch 17.5846 0.7813

DBENet 19.8625 0.8149

5. Discussion

To shed light on the core mechanisms underpinning our model’s exceptional perfor-
mance, we introduce DBENet, a deep-learning framework designed explicitly for enhancing
and denoising low-light images. Our model adopts a divide-and-conquer strategy, breaking
down the intricacies into manageable components for separate handling. Furthermore, we
combine the improved gamma correction with deep learning, as illustrated in Figure 11.
The regions highlighted within the red boxes demonstrate that our approach avoids exces-
sive amplification of well-exposed parts of the input image. This approach enables us to
carefully balance image fidelity while enhancing brightness.
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Figure 11. Visual comparison examples of non-uniform illumination images. The top images
represent the input, while the bottom images depict the model’s output. In particular, within the red
rectangles, the light sources are not excessively enhanced.

Moreover, this research opens opportunities for future investigations. These prospects
include the reduction in model inference time, enabling the real-time processing of high-
resolution visuals, and exploring applications in low-light video enhancement. These
endeavors hold significant potential for advancing the frontiers of image and video en-
hancement across a diverse range of real-world scenarios.

6. Conclusions

We propose an end-to-end dual-branch low-light enhancement architecture network
based on the YCbCr color space, inspired by the separation of luminance and chrominance
information in YCbCr color space. This network aims to address the issues of brightness
distortion, color distortion, and noise pollution in enhanced images caused by the high
coupling between brightness and RGB channels in low-light images. The enhancement
network adopts a dual-branch structure to enhance the contrast of the luminance channel
and suppress the noise in the chrominance channel. The experimental results demonstrate
that our proposed method effectively enhances brightness, restores image textures, and
produces images with richer details, more realistic colors, and less noise. Compared to
classical low-light enhancement algorithms, our approach achieves significant improve-
ments in multiple metrics and multiple datasets, while being more lightweight and faster
in processing speed.
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FM Fusion Module
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SSIM Structural Similarity Index Measure
LPIPS Learned Perceptual Image Patch Similarity
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Abstract: With the continuous advancement of remote sensing technology, the semantic segmentation
of different ground objects in remote sensing images has become an active research topic. For complex
and diverse remote sensing imagery, deep learning methods have the ability to automatically discern
features from image data and capture intricate spatial dependencies, thus outperforming traditional
image segmentation methods. To address the problems of low segmentation accuracy in remote
sensing image semantic segmentation, this paper proposes a new remote sensing image semantic
segmentation network, RSLC-Deeplab, based on DeeplabV3+. Firstly, ResNet-50 is used as the
backbone feature extraction network, which can extract deep semantic information more effectively
and improve the segmentation accuracy. Secondly, the coordinate attention (CA) mechanism is
introduced into the model to improve the feature representation generated by the network by
embedding position information into the channel attention mechanism, effectively capturing the
relationship between position information and channels. Finally, a multi-level feature fusion (MFF)
module based on asymmetric convolution is proposed, which captures and refines low-level spatial
features using asymmetric convolution and then fuses them with high-level abstract features to
mitigate the influence of background noise and restore the lost detailed information in deep features.
The experimental results on the WHDLD dataset show that the mean intersection over union (mIoU)
of RSLC-Deeplab reached 72.63%, the pixel accuracy (PA) reached 83.49%, and the mean pixel
accuracy (mPA) reached 83.72%. Compared to the original DeeplabV3+, the proposed method
achieved a 4.13% improvement in mIoU and outperformed the PSP-NET, U-NET, MACU-NET, and
DeeplabV3+ networks.

Keywords: high-resolution remote sensing images; semantic segmentation; feature fusion; attention
mechanism

1. Introduction

High-resolution remote sensing images contain rich geographic information and
have many potential applications in areas including agricultural monitoring, land use,
and urban planning [1,2], making the intelligent analysis of remote sensing images a
topic of considerable interest. The semantic segmentation of remote sensing images is a
significant image processing task [3,4], aiming to categorize each pixel and mark it as the
corresponding category [5]. Remote sensing images are characterized by high quantities,
complex backgrounds, and large scale changes. The process of manually annotating data is
labor-intensive and prone to error. The rapid and accurate automatic extraction of object
information from remote sensing images has become an urgent need.

There are three main semantic segmentation methods used for remote sensing images:
traditional methods, machine learning, and deep learning. In the early days, traditional
remote sensing image segmentation mostly relied on shallow features of the image, includ-
ing the texture, edges, and geometric shapes of the target. Common segmentation methods
based on image pixels include thresholding, edge detection, and region-based segmentation.
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Cuevas et al. [6] presented an automatic image segmentation approach that implements
multi-thresholding through differential evolution optimization. This method is capable of
dynamically selecting optimal thresholds while maintaining the primary features of the
original image. Chen et al. [7] employed the Canny edge detector for edge detection on mul-
tispectral images and performed multi-scale segmentation on the detected edge features.
The integration of edge information and segmentation scale effectively controlled the merg-
ing procedure of neighboring image objects. Byun et al. [8] achieved initial segmentation
through an improved seed region-growing program and obtained segmentation results us-
ing a region adjacency graph to merge regions. To cope with complex remote sensing image
segmentation scenarios, the simple linear iterative clustering (SLIC) superpixel segmenta-
tion algorithm, which utilizes the K-means clustering algorithm, is widely utilized in the
remote sensing field. Csillik et al. [9] used SLIC superpixels to quickly segment and classify
remote sensing data. Model-based segmentation methods based on Markov random fields
are also widely used, which improve segmentation accuracy by introducing contextual
information. Sziranyi et al. [10] applied unsupervised clustering to fused image series
using cross-layer similarity measures and then performed multi-layer Markov random field
segmentation. To overcome the constraints of single shallow-feature-based segmentation
approaches, hybrid feature combination segmentation methods have been proposed, such
as combining edge detection with region-based segmentation to enhance the quality of the
segmentation outcomes. Zhang et al. [11] introduced a hybrid approach to region merging.
This method utilizes the globally most similar region to establish the initial point for region
growing and enhances the optimization ability for local region merging. These traditional
methods rely too heavily on shallow features of the image, and pixel features are easily
affected by factors such as the lighting, the presence of clouds and fog, and the sensors,
resulting in insufficient reliability. The ability of machine learning to learn features and
geometric relationships between images has received attention. Mitra et al. [12] used the
support vector machine (SVM) algorithm to solve the problem of insufficient labeled pixels
required for supervised pixel classification in remote sensing images. Bruzzone et al. [13]
introduced an enhanced support-vector-machine-based semi-supervised approach for re-
mote sensing image classification. By leveraging both labeled and unlabeled samples, this
method effectively tackles the ill-posed problem. Pal et al. [14] used a random forest classi-
fier to select the best category. Mellor et al. [15] used a random forest classification model to
classify forest cover areas on multispectral remote sensing images. These methods heavily
rely on handcrafted features, which result in a poor generalization capability [16,17].

With a high-resolution background, due to the impact of the spatiotemporal envi-
ronment, objects of the same type present different spectral features, and the utilization
of shallow features is inadequate for capturing the complexity of remote sensing images,
thereby leading to limited segmentation accuracy. Deep learning methods have begun to
attract attention as computing power has improved rapidly, since deep neural networks
can automatically learn features in large datasets and extract deep semantic features of im-
ages, showing excellent performance. Classic segmentation models have begun to emerge.
Long et al. [18] pioneered the fully convolutional network (FCN) semantic segmentation
model, enabling pixel-level image classification. In a FCN, the traditional fully connected
layer in the final layer of the network is replaced by a convolutional layer, allowing the
network to accept inputs of arbitrary sizes and produce feature maps of the same size as
the input. Zhong et al. [19] used an FCN to extract buildings and roads, which could better
capture ground target features compared to traditional neural networks, but the eight-fold
upsampling method lost image detail information. A series of segmentation networks using
an encoder–decoder structure have been proposed, such as SegNet [20] and U-Net [21].
Cao et al. [22] proposed the Res-UNet network, which addresses the problems of gradient
vanishing and feature loss in deep neural networks by introducing residual connections.
Although it has achieved high segmentation accuracy in high-resolution remote sensing
forest images, its segmentation performance for small target tree species is poor. Based
on U-Net, Li et al. proposed MACU-Net [23], which utilizes asymmetric convolutions to
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replace regular convolutions and enhance the feature extraction capability, thus improving
the utilization rate of features, but the segmentation of ground object boundaries is still
not clear enough. To avoid reducing the size of the receptive field when obtaining feature
maps at various scales, the utilization of dilated convolution [24] to perform convolution
operations on input images is widespread. PSPNet [25] is a model based on pyramid
pooling that implements the pyramid pooling module at the last layer to extract contextual
information at different scales. DeeplabV1 was proposed in [26], which utilizes dilated
convolution to perform convolution operations on input images in VGG [27] and then adds
a conditional random field (CRF) module at the output end for post-processing to obtain
relatively accurate contours. In DeeplabV2 [28], dilated convolutions are extensively ap-
plied to feature maps at multiple scales to capture contextual information at different levels,
thereby improving segmentation accuracy. DeeplabV3 [29] optimized the ASPP module by
adding average pooling and batch normalization operations to improve the feature repre-
sentation and model generalization capabilities. Removing the CRF as a post-processing
module still achieved good segmentation results. DeeplabV3+ [30] included a decoder
module to fuse shallow features in the encoder with deep features output by the encoder
in order to further optimize the edges and details of the segmentation results. Compared
with classical semantic segmentation methods, DeeplabV3+ can segment ground objects in
complex remote sensing images, but it still faces challenges such as the inaccurate segmen-
tation of small targets and blurred boundary information. Wang et al. [31] introduced a
class feature attention mechanism into the DeeplabV3+ network to enhance the correlation
between different categories and effectively extract and process semantic information of
diverse categories.

The attention mechanism holds great importance in the field of deep learning. It can
assist a model in identifying useful information within the input data, suppressing irrele-
vant information, and enhancing performance and efficiency. SENet [32] assigns different
weights to each channel by learning the correlation between feature channels. The Efficient
Channel Attention Network (ECA-Net) [33] models the interactions between convolutional
feature channels and introduces an adaptive channel attention mechanism, optimizing
the negative impact of dimensionality reduction in SENet. To account for information
interaction in the spatial dimension, Woo et al. [34] introduced the Convolutional Block
Attention Module (CBAM), which uses a channel attention module and a spatial attention
module in series to perform adaptive feature refinement, in contrast to methods that employ
costly and complex techniques such as non-local or self-attention blocks. The Coordinate
Attention (CA) mechanism [35] encodes each spatial position, which aids in capturing
global contextual information and long-range dependencies. It proves particularly effective
for remote sensing images, where spatial relationships and geometric information play
a crucial role, enabling neural networks to better comprehend input data and improve
prediction accuracy.

To address the intricate scenarios encountered in object classification for remote sens-
ing images, the proposed RSLC-Deeplab model was designed by combining attention
mechanisms and feature fusion methods to automatically extract different ground objects
from remote sensing images. To compare the segmentation performance, various segmen-
tation networks including RSLC-Deeplab, DeeplabV3+, U-Net, PSP-NET, and MACU-Net
were evaluated on the publicly available WHDLD dataset through experiments. The ex-
perimental results showed that RSLC-Deeplab outperformed other comparison networks,
effectively enhancing the segmentation ability and reducing the training cost.

2. Methodology

The traditional DeeplabV3+ model was proposed by a team at Google. On the basis of
DeeplabV3, DeeplabV3+ has undergone fundamental architectural changes. DeeplabV3+
uses Xception [36] as the backbone network, eliminates the use of fully connected Condi-
tional Random Fields (CRF), and uses DeeplabV3 as the encoder to design a new encoder–
decoder structure. In the encoder, a deep convolutional neural network is employed to
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extract features from the input image. Then, ASPP obtains rich contextual information by
utilizing multi-scale atrous convolution and pyramid pooling from the output features of
the backbone network. The semantic information features of various scales are integrated,
and the fused high-level semantic features with multiple scales are adjusted in terms of
channel number and upsampled using bilinear interpolation. In the decoder, the upsam-
pled high-level semantic features are used to restore spatial resolution. During the process
of feature map resolution recovery, the low-level features extracted from the backbone
network are concatenated with the high-level features. The low-level features possess
better perceptual abilities for capturing fine-grained details, such as small objects or edges,
resulting in improved accuracy when localizing and segmenting small objects within the
image. Finally, four-times bilinear interpolation upsampling is used to generate the final
prediction image.

The feature extraction process in the DeeplabV3+ network utilizes the Xception back-
bone network. The Xception backbone network possesses a substantial amount of layers
and parameters, resulting in high model complexity and a slow training speed. Based
on improvements made to the original DeeplabV3+ model, RSLC-Deeplab is proposed to
enhance the segmentation performance and training efficiency, as shown in Figure 1. The
main contributions of the RSLC-Deeplab model proposed in this paper are as follows:

1. In the encoder, ResNet-50 is used instead of the original Xception as the feature
extraction module, which can capture more refined features.

2. After the backbone network, the CA module is introduced to embed positional in-
formation into the channel attention mechanism, enabling neural networks to better
comprehend input data and improve prediction accuracy.

3. In the decoder, we designed an MFF module, which captures and refines low-level
spatial features using asymmetric convolution and then fuses them with high-level
abstract features to mitigate the influence of background noise and restore the lost
detailed information in deep features.

Figure 1. Structure diagram of RSLC-Deeplab.

2.1. Optimized Feature Extraction Module

In the encoder, the feature extraction network for RSLC-Deeplab is ResNet-50 [37], and
Table 1 depicts its structure. We know that the depth of a network is crucial for effective
feature extraction. Deep convolutional networks utilize an end-to-end multi-layer approach
to integrate features at different levels, achieved through the stacking of convolutional
layers and downsampling layers. When the network is stacked to a certain depth, gradient
vanishing and gradient explosion problems will occur. Data preprocessing and the incorpo-
ration of batch normalization (BN) in the network are effective solutions to address these
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issues. However, as the network depth increases and convergence is achieved, another
challenge emerges: the accuracy tends to reach a plateau and subsequently deteriorate
rapidly. Therefore, ResNet introduces a residual structure to alleviate the degradation
problem of network performance.

Table 1. ResNet-50 network structure.

Output Size Network Output Channel Module Repetitions

128 × 128 7 × 7, 64 64 1
64 × 64 3 × 3, max pool 64 1
64 × 64 Bottleneck 256 3
32 × 32 Bottleneck 512 4
16 × 16 Bottleneck 1024 6

8 × 8 Bottleneck 2048 3

Compared to traditional convolutional neural networks, the residual structure can
directly pass low-level features to high-level layers through shortcut connections, which
enhances the smooth flow of information within the network. This helps the network to
better capture details and local features and improves the reusability of features, thereby
enhancing the network’s performance. The shortcut connection skips the connection
of one or more layers and directly combines its output with the output of the stacked
layers. This approach not only avoids introducing additional parameters or computational
complexity, but also facilitates gradient propagation and enables feature reuse. The formula
is as follows:

y = F(x) + x (1)

where x and y represent the input and output features, respectively, and the function
F(x) represents the residual mapping composed of stacked nonlinear layers. For residual
networks with different network depths, there are two different residual structures. The
residual structure on the left of Figure 2 is suitable for networks with fewer layers, while the
residual structure on the right is more suitable for networks with more layers. In ResNet-50,
the F(x) function of the residual structure is composed of three stacked layers: 1 × 1, 3 × 3,
and 1 × 1 convolution. The channel number is first reduced by 1 × 1 convolution, then 3 × 3
convolution is performed, and finally the channel number is restored by 1 × 1 convolution.

Figure 2. A deeper residual structure. Left: ResNet-34 building block. Right: “Bottleneck” building
block for ResNet-50/101/152.

2.2. CA Module

The origin of attention mechanisms can be traced back to studies on human vision,
where researchers aimed to develop models of visual selective attention that could simulate
the intricate process of human visual perception. It has been empirically established that
incorporating attention mechanisms into convolutional neural networks enhances the
ability to capture crucial information. The core principle underlying attention mechanisms
entails learning the regions of interest in each image via the process of forward propagation
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and negative feedback, followed by the assignment of appropriate attention weights. In
order to effectively capture the relationships between channels, a Coordinate Attention
(CA) module is introduced subsequent to the feature extraction network module. The CA
module is mainly implemented through two steps: embedding coordinate information and
generating coordinate attention. The CA module dynamically adjusts weights to model
dependencies between different distances, enabling the model to better capture global
information within images. The specific structure is depicted in Figure 3.

Figure 3. The CA module.

Due to the prevalent utilization of global pooling in channel attention mechanisms
for the purpose of globally encoding spatial information, there exists a potential risk of
losing positional information. In the coordinate information embedding module, for the
input feature X, a pooling kernel of dimensions (H,1) and (1,W) is employed to encode
each channel along the horizontal and vertical coordinate directions, respectively. By using
a pair of one-dimensional features to encode the features of each location into a unique
vector, the network can better understand and utilize location information. Consequently,
the output of the c-th channel, characterized by a height (h) and width (w), can be expressed
as follows:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (2)

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (3)
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By combining features along both the horizontal and vertical directions, a set of feature
maps that are sensitive to directional information is generated. This pair of transforma-
tions helps the attention block gain the ability to apprehend distant correlations within a
particular spatial orientation while upholding the integrity of precise positional data in
the alternative spatial orientation. Consequently, such operations assist the network in
effectively locating desired objects. After performing cascaded operations on the aggre-
gated feature maps, they are further processed using a 1 × 1 convolutional transformation
function, F1, which is expressed as follows:

f = δ
(

F1

[
zh, zw

])
(4)

where [·, ·] denotes the concatenation operation along the horizontal and vertical coordinate
directions, δ denotes the non-linear activation function, and f represents the intermediate
feature map that encodes spatial information. Subsequently, f is partitioned into two
separate tensors, namely f h ∈ RC/r×H and f w ∈ RC/r×W , along the spatial dimension.
Here, the variable r specifically denotes the reduction ratio employed to regulate the block
size within the SE block. Subsequently, f h and f w undergo separate 1 × 1 convolutions,
denoted as Fh and Fw, respectively, to match the channel dimensions of the input tensor
X, as follows:

gh = σ
(

Fh

(
f h
))

(5)

gw = σ(Fw( f w)) (6)

where σ represents the sigmoid activation function. Then, gh and gw are expanded as
attention weights, and the final output Y of CA is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)

2.3. MFF Module

Due to the three downsampling operations in the feature extraction process of the
backbone network, the decrease in resolution leads to the loss of spatial information for
finer details. In the decoder part of the original DeeplabV3+ network model, the problem
of lost segmentation object detail is improved to some extent by directly concatenating the
deep features output by the encoder with the shallow features from the backbone network,
but it is still not precise enough for segmenting complex objects such as object boundaries
and small targets. To further improve segmentation accuracy, a multilevel feature fusion
module (MFF) is introduced, as illustrated in Figure 4.

Figure 4. Structure of the MFF.
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During the process of multilevel feature fusion, the shallow features. F1, obtained
from the third downsampling of the backbone network and the deep features, F2, from the
encoder output are used as inputs. To fuse the local spatial information in F1 with the global
semantic information in F2, asymmetric convolution is utilized to extract features from
the shallow features, F1, which are then concatenated and fused with the deep features,
F2. By effectively combining shallow and deep features, this method enhances the overall
accuracy of the segmentation model.

Compared to normal convolution, asymmetric convolution has a stronger feature
representation ability. The weights of the square convolution kernel are typically larger
than those of the corners, which can lead to uneven feature refinement. Asymmetric
convolution uses three parallel convolutional layers: 3 × 3 convolution, 1 × 3 convolution,
and 3 × 1 convolution. The 3 × 3 convolution obtains features from a larger receptive
field, while the 1 × 3 and 3 × 1 convolutions can obtain receptive fields in the horizontal
and vertical directions, respectively. This allows the network to effectively collect the
correlation information of different spatial scales, which is particularly useful for tasks
such as semantic segmentation, where capturing detailed spatial information is crucial.
Finally, the outcomes of three convolution operations are added to further enrich the spatial
features. The formula for asymmetric convolution is

x
′
i = F3×3(xi−1) + F1×3(xi−1) + F3×1(xi−1) (8)

xi = σ

⎛⎝γ
x
′
i − μ

(
x
′
i

)
√

υ
(
x′

i
)
+ εi

+ β

⎞⎠ (9)

where xi−1 is the input feature, xi is the output feature, υ is the expected value of the input,
εi is a small constant to ensure numerical stability, γ and β represent the two trainable
parameters of the BN layer, and σ represents the ReLU activation function.

3. Experiment

3.1. Experimental Data

The dataset used in this study was the publicly available remote sensing image dataset
WHDLD (https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0 (accessed
on 27 August 2023)), which was released by Wuhan University. It consists of 4940 images
captured by GF-1 and ZY-3, with each image being an RGB image and having a resolution
of 256 × 256 pixels. The pixel-level annotations of the dataset include six classes: water,
vegetation, building, road, bare soil, and pavement.

According to the statistics, the WHDLD dataset exhibits an issue of imbalanced pixel
distribution among different classes. Therefore, we employed augmentation techniques,
including horizontal flipping, vertical flipping, 90-degree rotation, 180-degree rotation,
270-degree rotation, and brightness adjustment, to enhance classes with a lower pixel count,
such as road, bare soil, and building. The dataset was expanded to a total of 6700 images,
and the augmented samples are illustrated in Figure 5. The dataset was divided into
training, validation, and testing sets in an 8:1:1 ratio. The example images and labels of the
WHDLD dataset are shown in Figure 6.
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Figure 5. The augmented samples.

Figure 6. Dataset samples.

3.2. Implementation Details

Experimental verification was conducted on the proposed algorithm, and the con-
figuration parameters of the experimental platform are shown in Table 2. The transfer
learning approach was used in the experiment, where the pre-trained model weights of the
backbone network were loaded before training to accelerate the model’s convergence. The
SGD optimizer was selected for network gradient updates. The initial learning rate of the
experiment was 0.007, the momentum coefficient was 0.9, the batch size was 12, and the
training epoch was 200.

The experiment utilized the cross-entropy loss function to quantify the disparity
between the model’s predictions and the actual results, a technique that is well-suited for
classification tasks. It has the benefits of being easy to compute and optimize and usually
produces good results in training neural networks, so it can effectively guide a model to
learn the task objectives. Since the pixels in the input image of this experiment had six
categories, the experiments used the following multi-category cross-entropy loss function:

Loss = − 1
N

N

∑
i=1

K

∑
k=1

yi,klog pi,k (10)
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where yi,k is the true class of the i-th sample, taking a value of 1 if it belongs to the k-th class
and 0 otherwise, with N samples and K classes in total. Meanwhile, pi,k is the probability
of the i-th sample being predicted as the k-th class.

Table 2. Information about the experimental platform.

Experimental Environment Configuration Information

Operating system Windows 10
CPU Intel(R) Core(TM) i7-11700F
GPU NVIDIA GeForce RTX 3060
Cuda Cuda 11.3

Framework Pytorch 1.10.0

3.3. Evaluation Metrics

After the model was trained, the trained weights were used for testing with the test
set. The accuracy of classification was analyzed using a confusion matrix, as shown in
Table 3. TP (true positive) represents correctly classified positive samples, while FP (false
positive) represents incorrectly classified negative samples. Conversely, FN (false nega-
tive) represents incorrectly classified positive samples, and TN (true negative) represents
correctly classified negative samples.

Table 3. Confusion matrix.

Predicted Label

True False

GT data
True TP (true positive) FN (false negative)

False FP (false positive) TN (true negative)

The experiment employed key metrics such as pixel accuracy (PA), mean pixel ac-
curacy (mPA), and mean intersection over union (mIoU) were used in the experiment to
measure the differences between the predicted and ground-truth images. The formulas are
as follows:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
(11)

mPA =
1
n

n

∑
i=0

pii

∑n
i=0 ∑n

j=0 pij
(12)

mIoU =
1
n

n

∑
k=1

TPk
TPk + FPk + FNk

(13)

where n is the number of classes including the background class, pii is the count of pixels
of class i predicted as class i, and pij is the count of pixels of class i predicted as class j.

3.4. Comparative Experiment of Different Backbone Networks

A backbone network is a pre-trained model utilized for extracting image features and
providing enhanced feature representation for subsequent semantic segmentation tasks. To
select an appropriate backbone network as the feature extraction network for the model,
five comparative experiments were conducted using different backbone networks within
the original DeeplabV3+ [30] network architecture. Table 4 presents the experimental data.
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Table 4. Comparative experimental results of different backbone networks.

Method Backbone mIoU (%)
Parameters

(M)
Flops (G)

Model Size
(M)

Scheme 1 Xception 68.50 54.71 41.72 209.70
Scheme 2 MobileNetV2 67.44 5.81 13.23 22.44
Scheme 3 EfficientNetV2 69.68 31.25 100.10 120.12
Scheme 4 ResNet-101 70.81 59.33 76.29 226.98
Scheme 5 ResNet-50 70.48 40.34 66.54 154.23

In Table 4, Scheme 5 used ResNet-50 [37] as the backbone network, with an mIoU of
70.48%, a parameter count of 40.34 M, a computational cost of 66.54 G, and a model size
of 154.23 M. Scheme 1 used Xception [36] as the backbone network, and Scheme 5 had
an mIoU increase of 1.98% compared to Scheme 1, with a significantly smaller parameter
count and model size. Scheme 2 used MobileNetv2 [38] as the backbone network, and
although the parameter count and model size were greatly reduced, its mIoU was 3.04%
lower than that of Scheme 5, indicating insufficient segmentation accuracy. Scheme 3 used
EfficientNetV2 [39] as the backbone network, and its mIoU was 0.80% lower than that
of Scheme 5, with a smaller parameter count but a much larger computational cost than
Scheme 5. Scheme 4 used ResNet-101 as the backbone network, and although its mIoU
was 0.33% higher than that of Scheme 5, its parameter count and model size were much
larger than those of Scheme 5. After a comprehensive analysis, ResNet-50 was chosen as
the feature extraction module of this task, not only improving the semantic segmentation
accuracy, but also optimizing the model complexity.

3.5. Ablation Experiment

To validate the efficacy of the ResNet-50 network, the CA module, and the MFF mod-
ule, a set of experiments were designed by gradually introducing the ResNet-50 backbone
network, CA attention module, and MFF module. Table 5 presents the experimental data.

Scheme 1: The original Deeplabv3+ network, which employed Xception as the feature
extraction network, was used as the baseline.

Scheme 2: ResNet-50 was used as the feature extraction network to replace Xception
in Scheme 1.

Scheme 3: The CA module was introduced on the basis of Scheme 2, which enhanced
the feature representation generated by the network, enabling neural networks to better
comprehend input data and improve prediction accuracy.

Scheme 4: The MFF module was introduced on the basis of Scheme 2, which captured
and refined low-level spatial features using asymmetric convolution and then fused them
with high-level abstract features to improve segmentation accuracy.

Scheme 5: On the basis of Scheme 2, both the CA module and the MFF module were
introduced simultaneously.

Table 5. Results of ablation experiments on different modules.

Method Backbone CA MFF PA (%) mPA (%) mIoU (%)

Scheme 1 Xception 80.38 80.47 68.50
Scheme 2 ResNet-50 81.92 81.89 70.48
Scheme 3 ResNet-50 � 82.63 82.45 71.67
Scheme 4 ResNet-50 � 82.78 82.86 71.73
Scheme 5 ResNet-50 � � 83.49 83.72 72.63

As shown in Table 5, the PA, mPA, and mIoU values of Scheme 1 were 80.38%,
80.47%, and 68.50%, respectively. Scheme 2 utilized ResNet-50 as the feature extraction
network, and its PA, mPA, and mIoU values were 81.92%, 81.89%, and 70.48%, respectively.
Compared to Scheme 1, the PA, mPA, and mIoU values improved by 1.54%, 1.42%, and
1.98%, respectively. Based on Scheme 2, Scheme 3 introduced a CA module, yielding PA,
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mPA, and mIoU values of 82.63%, 82.45%, and 71.67%, respectively. Compared to Scheme 2,
the PA, mPA, and mIoU values improved by 0.71%, 0.56%, and 1.19%, respectively. Scheme
4 introduced an MFF module to further restore the edge details of the segmentation image
by fusing low-level and high-level features, with PA, mPA, and mIoU values of 82.78%,
82.86%, and 71.73%, respectively. Compared to Scheme 2, the PA, mPA, and mIoU values
improved by 0.86%, 0.97%, and 1.25%, respectively. Scheme 5 simultaneously introduced
both the CA and MFF modules, with PA, mPA, and mIoU values of 83.49%, 83.72%, and
72.63%, respectively. Compared to the original DeepLabV3+ model, the PA, mPA, and
mIoU values improved by 3.11%, 3.25%, and 4.13%, respectively. The experimental results
indicate that RSLC-Deeplab exhibited impressive segmentation performance.

The experiments used SGD as the optimizer, which updated the model parameters by
computing the gradients of each training sample and gradually reducing the model’s loss
function. The performance variation of different approaches at different stages is depicted
in Figure 7. Using ResNet-50 as the backbone network, the mIoU value increased rapidly at
the beginning and then tended to converge, with a significant improvement in mIoU values.
After gradually introducing the CA and MFF modules, the model had the ability to fit the
training data faster and achieve better segmentation results, indicating that the design and
training methods of the model were effective. The training and validation loss values of
the RSLC-Deeplab algorithm on the WHDLD dataset are shown in Figure 8. During the
initial stages of the experiment, both the training and validation losses decreased rapidly;
then, the decreasing trend slowed down after a certain number of iterations, before finally
tending to converge.

Figure 7. The mIoU values of different schemes in ablation experiments.
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Figure 8. The loss values of RSLC-Deeplab on the training and validation sets.

3.6. Comparative Experiment of Different Methods

We conducted comparative experiments between RSLC-Deeplab and other models,
including DeeplabV3+ [30], U-Net [21], PSP-Net [25], and MACU-Net [23], on the WHDLD
dataset to verify the segmentation performance of RSLC-Deeplab. The experimental results
of different network models are shown in Table 6. The results obtained in this study reveal
that RSLC-Deeplab outperformed the other networks. The PA, mPA, and mIoU of the
proposed method were 83.49%, 83.72%, and 72.63%, respectively, which were 3.11%, 3.25%,
and 4.13% higher than those of DeeplabV3+ and 5.56%, 3.91%, and 4.99% higher than those
of MACU-Net.

Table 6. Comparative experimental results of different segmentation methods.

Method PA (%) mPA (%) mIoU (%)

DeeplabV3+ 80.38 80.47 68.50
U-Net 72.73 75.35 63.31

PSPNet 69.54 72.32 60.36
MACU-Net 77.93 79.81 67.64

RSLC-Deeplab 83.49 83.72 72.63

At the same time, the remote sensing image segmentation results produced by RSLC-
Deeplab and the comparative methods are presented in Figure 9. As illustrated in the
diagram, PSPNet, and U-Net could roughly segment large-scale ground objects, but their
segmentation ability for small-scale targets and object edges was poor, resulting in many
misclassifications and omissions. MACU-Net demonstrated a certain improvement in
segmentation ability compared to U-Net, but there were still problems of misclassification
and omission in categories such as buildings, vegetation, and water bodies. DeeplabV3+
showed a greater improvement in segmentation ability than the classical semantic seg-
mentation methods, but it still could not accurately segment the edge feature information
of small-scale categories such as buildings, water bodies, and bare soil. The proposed
RSLC-Deeplab improved the segmentation accuracy of small-scale landform targets, and
the edge segmentation of categories such as buildings, roads, and vegetation was clearer,
without many misclassifications and omissions. The experiment proved that RSLC-Deeplab
captured more detailed features and improved the segmentation accuracy of small targets.

160



Electronics 2023, 12, 3653

Figure 9. Diagram of the segmentation effect of different methods.

This study also took into account the metrics of parameter size and training time.
The parameter size and training time per epoch of the compared methods are presented
in Table 7. The parameter size of RSLC-Deeplab was 47.62M, and the training time was
239s. The experimental results demonstrated a significant reduction in both training time
and parameter size for RSLC-Deeplab compared to the original DeeplabV3+ network.
MACU-Net showed a smaller parameter size, but it had a more complex model structure,
resulting in a longer training time. RSLC-Deeplab used ResNet-50 as the feature extraction
network, which significantly reduced the model’s parameter size and computation amount.

Table 7. Comparison of training time and parameter size of different methods.

Method Training Time (s)/Epoch Parameters (M)

PSPNet 181 48.97
U-Net 217 34.53

MACU-Net 266 5.17
DeeplabV3+ 304 54.71

RSLC-Deeplab 239 47.62

4. Conclusions

This paper proposed RSLC-Deeplab for high-resolution remote sensing image se-
mantic segmentation. Firstly, ResNet-50 was used as the backbone network, which had
a stronger feature extraction ability while reducing the parameter size and computation
amount, providing better feature representation for subsequent segmentation. Secondly,
the CA mechanism was used after the feature extraction module to embed positional
information into the channel attention mechanism, enabling neural networks to better
comprehend input data and improve prediction accuracy. Finally, a multi-level feature
fusion (MFF) module based on asymmetric convolution was proposed, which captured
and refined low-level spatial features using asymmetric convolution and then fused them
with high-level abstract features. The MFF module effectively eliminated background noise
during feature extraction and improved the clarity of segmentation boundaries.
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On the WHDLD remote sensing image dataset, our model achieved an mIoU of 72.63%
and an mPA of 83.72%, which significantly improved issues such as mis-segmentation and
edge detail blurring. Compared with other methods, our model obtained more accurate
segmentation results. On this basis, we will further optimize the segmentation accuracy of
the model for categories with a low segmentation accuracy and continue to study how to
suppress the impact of interfering factors such as background noise and shadows in the
image to enhance the model’s overall segmentation capability.
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Abstract: Currently, X-ray inspection systems may produce false detections due to factors such as
the varying sizes of contraband images, complex backgrounds, and blurred edges. To address this
issue, we propose the YOLO-CID method for contraband image detection. Firstly, we designed the
MP-OD module in the backbone network to enhance the model’s ability to extract key information
from complex background images. Secondly, at the neck of the network, we designed a simplified
version of BiFPN to add cross-scale connection lines in the feature fusion structure, to preserve
deeper semantic information and enhance the network’s ability to represent objects in low-contrast or
occlusion situations. Finally, we added a new object detection layer to improve the model’s accuracy
in detecting small objects in dense environments. Experimental results on the PIDray public dataset
show that the average accuracy rate of the YOLO-CID algorithm is 82.7% and the recall rate is 81.2%,
which are 4.9% and 3.2% higher than the YOLOv7 algorithm, respectively. At the same time, the
mAP on the CLCXray dataset reached 80.2%. Additionally, it can achieve a real-time detection speed
of 40 frames per second and 43 frames per second in real scenes. These results demonstrate the
effectiveness of the YOLO-CID algorithm in X-ray contraband detection.

Keywords: contraband detection; X-ray images; YOLOv7; BiFPN; object detection

1. Introduction

In contemporary society, with the diversification of transportation modes and the
reduction of travel costs, the density of human traffic in public places is gradually increas-
ing. Therefore, it becomes more and more important to protect people’s personal safety
and property security in public places. X-rays have the qualities of high energy, a short
wavelength, and the ability to penetrate substances, which make them widely used in
the fields of video surveillance [1], drone cruising [2], image security inspection [3], etc.
At present, security work mainly relies on X-rays to identify contraband such as knives,
firearms, and flammable goods, but this identification method mainly relies on the anal-
ysis and judgment of the security inspector, so there is greater subjectivity, even among
experienced professionals, in the face of a constant stream of X-ray images. This will also
produce visual fatigue and thus, in the processing of complex scenes, to the phenomenon
of missed or mis-inspection. Therefore, in order to ensure the maximum possible safety of
individuals and accelerate the detection efficiency, it is necessary to devise an intelligent
detection algorithm with high accuracy and timeliness to identify contraband. However,
the poor recognition of objects in the X-ray imaging process, susceptibility to the imaging
environment, and high noise levels pose considerable challenges to the construction of
X-ray detection models.

There are several traditional methods for the detection of targets in infrared images,
including threshold detection [4], the Hough transform [5], and wavelet detection [6].
However, the sensitivity of these methods is influenced by thermal emissivity, making
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them vulnerable to interference from the specimen’s surface and background radiation.
Traditional X-ray detection methods also have two main drawbacks. Firstly, the resulting
images have complex structures, poor resolutions, and weak anti-interference abilities
and are easily damaged. This makes it difficult to determine the target’s shape, size,
and location using traditional methods, resulting in low detection accuracy. Secondly,
the imaging speed is slow and cannot meet practical demands.

In recent years, object detection algorithms based on deep learning have been widely used
in various industries. The YOLO family, a family of regression-based single-stage algorithms,
has played an important role in X-ray object detection. [7] YOLO’s regression method eliminates
the need for complex frameworks, thus reducing the detection time. However, the YOLO
algorithm struggles to perform optimally in complex backgrounds where objects overlap and
occlude each other. In addition, the problem of multiple color overlaps caused by objects made
of different materials when exposed to X-rays needs to be addressed.

YOLOv7 is the latest and most advanced object detection tool in the YOLO series.
Its exceptional performance has made it one of the leading real-time object detection
methods. Additionally, it has applications in fields such as healthcare, national defense,
and security [8–10]. It uses the scalable and efficient layer aggregation network E-ELAN
to accelerate model convergence. Rep [11] (RepVGG Block) reparameterization is used to
achieve the best trade-off between speed and accuracy during training. Label assignment
and auxiliary training heads improve the performance of object detectors in multi-task
training. These advantages enable the model to ensure good accuracy and timeliness when
detecting X-ray images. However, when directly applied to the X-ray suspected contraband
detection field, the YOLO algorithm may encounter some problems:

1. Compared with common scenes, most targets in X-ray images are placed arbitrarily and
have directional characteristics. However, the YOLOv7 network’s positioning of key
information is relatively vague, making it easy to lose key feature information about the
directionality of the target. This further increases the difficulty of contraband detection.

2. The objects in X-ray images form a complex background due to overlapping and occlusion.
However, there is no corresponding attention mechanism to deal with this complex
background, resulting in the inaccurate detection of contraband under such conditions.

3. Although the PAFPN structure in the feature fusion module can enhance the network’s
representation ability, it does not make full use of the feature map output of each
node and does not take into account the different fusion capabilities of each module
for features. In response to these challenges, this article targets improvements on the
basis of YOLOv7.

This paper proposes an X-ray contraband detection algorithm, YOLO-CID, based on
an improved version of YOLOv7 for use in complex scenes. Experiments demonstrate that,
in the challenging environment of contraband identification with complex backgrounds,
the algorithm can achieve high levels of detection speed and accuracy.

The main contributions of this paper are as follows.

1. This paper proposes the YOLO-CID algorithm for X-ray contraband detection. We
conducted ablation and comparative experiments of YOLO-CID on the PIDray [12]
dataset and CLCXray [13] dataset. The experimental results show that, compared with
current mainstream algorithms, our algorithm has significantly improved detection
accuracy and speeds.

2. We implemented a robust new architecture and an enhanced MP-OD model, which
builds upon and extends the original MPConv model. We added skip connections
between the models and completed the second part (ODConv [14]). This results in
a more accurate model with less redundant feature information, greater resilience
against background X-ray images, and a faster feature localization speed.

3. We designed the P3-BiFPN module by replacing the original model’s PAFPN [15]
network with a BIFPN [16] network while retaining the P3 feature fusion layer to
preserve shallow semantic information. This improves the network’s reasonable
application of path resources.
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4. We introduced the shuffle attention mechanism [17], an efficient spatial channel dual
attention mechanism, in the neck to improve the network’s focus on tiny features.

2. Related Works

2.1. Traditional Machine Learning Methods for Contraband Detection in X-ray Images

In early machine learning studies of X-ray detection using single-view correlation
detection, Turcsany et al. [18] proposed a visual bag-of-words model based on SVM and
SURF features. They used starter visual words obtained from clustering to identify contra-
band in X-ray images, demonstrating the effectiveness of large and distinctly characterized
datasets. Riffo et al. also achieved good results by designing an implicit shape model
(ISM) for single-view contraband recognition [19]. Kundegorski et al. conducted extensive
experiments on X-ray image classification and detection tasks using traditional manual
features [20]. By combining multiple manual features, they demonstrated the effectiveness
of traditional manual features in X-ray image detection tasks.

Later, multi-view detection techniques were developed to improve the object detec-
tion performance by compensating for the incomplete information of single-view imag-
ing. Franzel et al. introduced multi-view imaging for rotating objects and combined
SVM with gradient histograms in sliding window detection to improve detection [21].
Bastan et al.conducted a comprehensive evaluation of standard local features for image
classification and target detection using the visual bag-of-words model [22]. They extended
these features to obtain additional useful information from X-ray images, improving the
detection performance.

2.2. Deep Learning for Contraband X-ray Image Detection

In recent years, deep-learning-based target detection algorithms have been rapidly
developed and have played an important role in X-ray contraband detection, signifi-
cantly improving the detection accuracy and efficiency compared to traditional algorithms.
Mery et al. provided the GDXrays dataset, which contains 8150 X-ray luggage images with
guns, hand swords, and blades. The images in the GDXray dataset are grayscale maps
with clear target outlines, simple backgrounds, and low object overlap and occlusion [23].
Miao et al. (2019) introduced the larger SIXray dataset, with over 1 million X-ray images
containing six types of targets: guns, knives, wrenches, pliers, scissors, and hammers.
The SIXray dataset has 8929 labeled images containing targets and a high degree of ran-
domness in target object stacking [24]. Zhao et al. (2022) published the CLCXray dataset to
address the overlapping problem in X-ray security images [13]. This dataset has a large
amount of data with overlapping phenomena and more accurate annotations compared
to previous datasets. The paper also proposes a label-aware mechanism with an attention
mechanism that adjusts the feature map according to label information to distinguish
different objects in overlapping regions at the high-dimensional feature layer. These large,
publicly available datasets provide stable data support for deep learning experiments in
this domain and motivate continued development and progress.

In 2012, Krizhevsky et al. proposed the AlexNet network, which achieved excellent
results in image classification and demonstrated the potential of deep learning in image
processing [25]. Following the success of AlexNet, various classification networks, such
as VGG [26], GoogleNet [27], and ResNet [28], YOLOX[29], YOLOv5 [30], and YOLOv,
were developed, continuously improving deep learning’s classification performance. Ak-
cay [31] et al. applied the AlexNet network to X-ray luggage classification using transfer
learning and achieved excellent detection performance compared to traditional machine
learning methods. Mery et al. conducted experiments on the GDXray dataset, comparing X-
ray luggage classification using bag-of-words models, sparse representation, deep learning,
and classical pattern recognition schemes [32]. The results showed that both AlexNet and
GoogleNet achieved high recognition rates, indicating the feasibility of using deep learning
to design automatic contraband recognition devices. Xu et al. used an attention mechanism
to quickly locate unlabeled information in weakly supervised environments where image
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information labels were missing [33]. Liu et al. proposed the Faster R-CNN object detection
framework based on deep convolutional neural networks (DCNNs) to address detection
failures caused by complex image backgrounds [34]. Li et al. improved the YOLOv5 model
by compressing channels, optimizing parameters, and proposing a new YOLO-FIRI model
for infrared target detection problems such as low recognition rates and high false alarm
rates due to long distances, weak energy, and low resolutions [35]. Xiang et al. integrated
both MCA and SCA modules into the YOLOx framework, enabling the acquisition of
material information for contraband while expanding the model’s receptive field, thereby
enhancing the detection efficiency [36]. These improvements have significantly impacted
the detection quality of contraband detection algorithms. However, real-world contraband
detection still faces challenges such as varying item scales and complex backgrounds.

To address existing issues and leverage the unique characteristics of X-ray contraband
images, this paper introduces improvements to the MPConv module and feature pyramid
module of the YOLOv7 network. Additionally, we incorporate a shuffle attention mecha-
nism and propose the YOLOv7-based YOLO-CID network model. Through ablation and
comparative experiments, we demonstrate that the YOLO-CID model is more effective
and practical than current mainstream methods and has significant value in the field of
X-ray security.

3. YOLO-CID

3.1. Network Architecture

YOLOv7 is the most advanced object detector in the YOLO series. Its high accuracy
and real-time performance have garnered widespread recognition in the field of object
detection. In light of this, we propose the YOLO-CID algorithm for X-ray contraband
detection, which is based on YOLOv7.

The structure of the YOLO-CID model is shown in the figure below. The model consists
of three components: an efficient full-dimensional feature extraction network (MP-OD), an
improved bidirectionally weighted feature pyramid network (P3-BiFPN) for feature fusion,
and a neck component combined with a shuffle attention mechanism.

In Figure 1, the input image is resized to a uniform size of 640 × 640 pixels to meet
the format requirements of the entire network. The resized images are then fed into
the backbone network, where the BConv convolutional layer extracts image features at
different scales. The MP-OD convolutional layer adopts a parallel strategy to learn the four-
dimensional complementary attention of the input channel, output channel, kernel space,
and number of kernels without disrupting the original gradient path. This process quickly
locates effective features in the model feature map and improves its feature extraction
ability. The neck part uses an improved weighted bidirectional feature pyramid, BiFPN-P3.
The red line represents our improvement on the original PAFPN. We use the P3 layer, which
is the top layer of the neck E-ELEAN module and the MPConv module. The node is deleted,
and the root node and end node of the P3 and P4 layers are connected simultaneously.
Through a top-down and bottom-up model structure, semantic information of different
scales is transferred from shallow to deep layers, outputting three-layer fusion feature
maps of different scales. The SA mechanism redistributes the weights in the fused feature
map to suppress irrelevant features while enhancing contraband features for more robust
representations. Finally, four detection layers at the prediction end predict the confidence,
category, and anchor box of the result to obtain the final detection outcome.

Compared to the original YOLOv7 network, this network has shown significant
improvements in detection accuracy, speed, and model parameters.
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Figure 1. YOLO-CID network architecture.

3.2. MP-OD Module

The diversity of items in contraband recognition images and their random and variable
stacking positions pose a major challenge for the network to effectively extract feature
information. To maximize the extraction of key features for X-ray dangerous goods image
detection, it is necessary to increase the parameters, depth, and number of channels of
the network. However, this leads to increased computational complexity and a larger
model size, making deployment more difficult. In the field of contraband identification, it
is essential to control the number of model parameters and the amount of computation to
ensure timely detection. To solve this problem, we improved the MPconv module of the
backbone network and created the OD-MP module, enabling the YOLOv7 model to locate
valid features in images more quickly. This improves the timeliness of feature extraction
and enhances the object detection performance in complex situations.

In Figure 2, we replace the convolution (CBS) module of the lower branch of the
central module with a full-dimensional dynamic convolution (ODConv) module. This
allows the model to increase its complexity without increasing the network depth or width,
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reducing resource waste. We added a skip connection to the lower branch. When the
network generates gradient dispersion due to the introduction of the ODConv module, it
can independently select an appropriate path during the backpropagation of the gradient,
avoiding branches that produce gradient dispersion. This makes the network fitting more
stable and rapid. The specific ODConv structure diagram is shown in Figure 3.

Figure 2. Structural comparison of MPConv and MP-OD modules.

Figure 3. ODConv module.

In the convolution kernel Wi, αwi represents the attention scalar, while αsi , αci , and α fi
represent the attention weights along the spatial dimension, input channel dimension,
and output channel dimension, respectively. The input feature vector X has a uniform
length through GAP. As shown in the figure, ODConv compresses X into a feature vector of
the input channel length through channel average pooling GAP. The feature vector is then
mapped to a low-dimensional space through the fully connected layer (FC). After being
activated by the ReLU function, it is divided into four head branches. The sigmoid or
SoftMax function normalizes it to generate four different types of attention values: αwi , αsi ,
αci , and α fi

. Its working principle is shown in Formula (1).

Zn = αwn

⊙
α fn

⊙
αcn

⊙
αsn

⊙
Wn (1)

Zn =
n

∑
i=1

Zt ∗ X (2)
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In the equation, Zn represents the final weight obtained by multiplication in each
of the four dimensions of the dynamic convolution kernel. The input feature vector X is
length-unified by GAP.

Unlike conditional parameter convolution (CondConv) [37] and dynamic filter convo-
lution (DynamicConv) [38], which only focus on the weight ratio of a single dimension,
ODConv uses SE’s multi-head attention module to emphasize the importance of the spatial
dimension, input channel dimension, and output channel dimension of the convolution
kernel space for feature extraction. This module multiplies different attentions along
the dimensions of the position, channel, filter, and kernel by progressively multiplying
the convolution, providing better performance in capturing rich contextual information.
As a result, ODConv greatly improves the feature extraction ability of convolution. More
importantly, ODConv achieves better performance with fewer convolution kernels than
CondConv and DyConv. Its high-efficiency and lightweight features enable the model to
improve its perception of direction, position, and channel information without sacrificing
accuracy or incurring a significant computational overhead.

3.3. BiFPN-P3 Module

Due to the varying scales of targets to be detected in images, a feature pyramid model
(FPN) is commonly used in the feature fusion process of target detection to improve the
situation wherein key information from small target objects is ignored during deep convolu-
tion. This approach utilizes hierarchical semantic information for feature fusion. The pixel
aggregation network (PAFPN) used in the YOLOv7 model adds a low-dimensional to
high-dimensional network layer on top of the FPN and transfers semantic information
of different scales from shallow to deep. This enriches the semantic information transfer
without affecting the location information of the fused feature map, enhancing the net-
work integration effect. However, PAFPN does not fuse the original feature information,
resulting in the partial loss of this information and affecting the model’s detection accuracy.
To address this issue, this paper introduces a bidirectional feature pyramid network (BiFPN)
network based on the neck part of the original model. This is a weighted bidirectional
(top-down and bottom-up) feature pyramid network, as shown in Figure 4b.

(a) PAFPN (b) BiFPN

Figure 4. Structural comparison of PANFPN and BiFPN modules.

Compared to PAFPN, BiFPN can enhance network feature fusion through a simple
residual operation by adding a residual link to the original feature. This strengthens the
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network’s representation ability. At the same time, BiFPN recognizes that input feature
maps of different scales have varying contributions to the network. Therefore, single-input
edge nodes that contain less information and have lower contributions to feature fusion are
removed from the PAFPN network. This reduces the computational overhead and allows
for the better adjustment of each scale feature map’s contribution by increasing the weight
value after fusion, thereby improving the network’s detection speed.

Similar to traditional target detection networks, the feature fusion layer of the YOLOv7
original network is its third layer. Although the BiFPN network adds a new fusion step to
the original features and carefully optimizes the network structure to enhance its feature
fusion and representation capabilities, the actual detection process of prohibited objects is
affected by complex environments. The chaotic placement of contraband and small target
objects that are easily obstructed by obstacles during the shooting process can result in the
low efficiency of feature fusion and false or missed detections. This paper improves upon
the BiFPN network and proposes the BiFPN-P3 model to enhance its ability to locate high-
quality features, accelerate the flow of semantic information at different scales, and improve
the detection accuracy.

In Figure 5, we retain the feature fusion layer of P3 in the original BiFPN network
to preserve its shallow semantic information. Although this approach resulted in a slight
increase in computational cost, the improved network architecture enhanced the attention
to key information during feature fusion. This made the model more suitable for detecting
contraband in complex scenarios.

Figure 5. The BiFPN-P3 module.

3.4. SA Module

Channel attention and spatial attention are used to capture the dependency rela-
tionships between image channels and the pixel-level relationships in space, respectively.
The SA module efficiently combines these two attention mechanisms without increasing
the computational requirements. By adding the SA module to the neck module of YOLOv7,
the efficient spatial channel dual attention mechanism (SA) can be fused simultaneously
to effectively improve the model’s detection performance. As shown in Figure 6, the SA
module first groups image channel feature maps to obtain grouped sub-feature maps.
The shuffle unit [39] is then used to apply the channel attention mechanism and spatial
attention mechanism to each sub-feature map to extract features and capture feature map
dependencies. Finally, the channel shuffle operation is used to fuse the summarized feature
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maps, establish information communication between sub-feature maps, and use the fused
feature maps as the output of the SA module.

G

C

Figure 6. Shuffle attention mechanism structure.

The processing steps of the SA mechanism in the network are divided into the follow-
ing three steps.

1. Feature grouping: The feature map S ∈ RCHW of a given length, width, and channel
number W, H, and C is divided into G groups along the channel dimension, denoted
as X = [X1,. . . ,XG], Xk ∈ RCHW . Each sub-feature Xk will gradually capture specific
semantic information with training. This part corresponds to the section marked as
Group on the leftmost side of the figure above.

2. Attention mixing: The generated feature Xk is divided into two branches along the
channel dimension. The two sub-features are denoted as Xk1, Xk2 ∈ RCHW , as shown
in the section marked as Split in the middle of the figure. During the processing
of feature Xk1, a group normalization operation is used to accelerate convergence
and avoid excessive differences in the values of different features, which can lead to
confusion in the learning of lower layer networks. The representation of the enhanced
input is then transformed through Fc(·). The specific formula is as follows:

X
′
k1 = σ(W1GN(Xk1) + b1)Xk1 (3)

In the equation, GN represents group normalization; W1 and b1 denote the scaling
and shifting of the processed feature map. The enhanced feature representation is
obtained through the sigmoid activation function.
For feature Xk2, the channel attention mechanism is employed. To reduce the complexity
of the module and improve the processing efficiency, a fast and effective single-layer
transformation mode consisting of global average pooling (GAP), scaling, and sigmoid
activation is utilized for feature processing. First, channel statistics are generated through
GAP to produce channel-level statistics. The specific formula is as follows:

s = Fgp(Xk2) =
1

H × W

H

∑
i=1

W

∑
j=1

Xk2(i, j) (4)

In the equation, 1
H×W ∑H

i=1∑W
j=1Xk2(i, j) denotes the contraction calculation of Xk2

along the spatial dimension HW. The generated S is then screened to obtain the final
feature map X

′
k2. The specific formula is as follows:

X
′
k2 = σ(W2 · (s) + b2) · Xk2 (5)

Finally, the results of the two types of attention are combined through a concatenation
layer to obtain X

′
k = [X

′
k1,X

′
k2].
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3. Feature aggregation: Similar to ShuffleNetv2, a channel shuffle operation is employed
to aggregate all features and facilitate cross-group information exchange along the
channel dimension, resulting in the final output feature map.

The aforementioned operations on the feature maps effectively integrate semantic and
spatial information across different scales. The terminal attention mechanism improves the
model’s focus and enhances its detection efficiency in complex scenes.

4. Experimental Results and Analysis

4.1. Dataset

In order to verify the practicality and effectiveness of YOLO-CID in the field of X-ray
contraband detection, we used two public datasets: PIDray and CLCXray. PIDray is a
large-scale X-ray benchmark dataset for real-world contraband item detection, covering the
detection of prohibited items in various situations, especially intentionally hidden items.
The dataset contains more than 47,000 images of prohibited items in 12 categories with pixel-
level annotations, including high-quality annotated segmentation masks and bounding
boxes. It is currently the largest prohibited item detection dataset. The distribution of each
class is shown in Figure 7. The test set is divided into three subsets, easy, hard, and hidden,
with the hidden test set focusing on detecting contraband intentionally hidden in clutter.
We used the hidden test set as our experiment’s test set and divided the PIDray dataset
into a training set and a test set at a ratio of 8:2.

Figure 7. Class distribution of the PIDray dataset. The red bar represents the number of each class in
the PIDray dataset.

CLCXray was jointly constructed by Tongji University, Beijing University of Posts and
Telecommunications, and the University of the Chinese Academy of Sciences. It contains
9565 X-ray security images in 12 categories, including five types of knives (blades, daggers,
knives, scissors, Swiss Army knives) and seven types of liquid containers (cans, beverage
cartons, glass bottles, plastic bottles, vacuum cups, spray cans, tin cans). The distribution
of each class is shown in Figure 8. In our experiment, we used 6696 images as the training
set and 2869 images as the test set. Our partitioning of the modified dataset was consistent
with that of PIDray.
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Figure 8. Class distribution of the CLCXray dataset. The blue bar represents the number of each class
in the CLCXray dataset.

We demonstrated the superiority of the YOLO-CID algorithm through ablation and
comparative experiments on the PIDray dataset and CLCXray dataset. The experiments
were conducted on a Windows 10 64-bit operating system with an Intel i7-9700k processor
and GeForce GTX3060 GPU. The acceleration environment was CUDA 11.6, the deep
learning framework was Pytorch 1.12.1, and the programming language was Python 3.7.17.
The experimental parameter settings are presented in Table 1.

Table 1. Configuration parameters of the experimental platform.

Parameters Settings

Weights Yolov7.pt
Epochs 300

Batch size 16
Hyperparameter file hyp.scratch.p5.yaml

4.2. Analysis of Ablation Experiments

Three improvements were proposed for the original YOLOv7 algorithm. To verify the
value of the proposed modules, ablation experiments were designed by gradually adding
the improved modules. The model was trained and tested; ‘

√
’ indicates the use of this

modular approach. The results are shown in Table 2.

Table 2. Experimental results of MCS algorithm ablation on the test set of the PIDray dataset and
CLCXray dataset.

Group MP-OD BiFPN-P3 SA
mAP (%) F1 Score (%)

PIDray CLCXray PIDray CLCXray

G1 64.2 75.2 72.7 78.5
G2

√
66.1 77.8 73.4 80.4

G3
√ √

69.3 78.7 75.3 81.9

G4
√ √ √

70.3 80.2 77.4 82.5
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The results show that all three improvement points of the YOLO-CID algorithm
improved the model’s detection performance. In scheme 1, the MP-OD module was used in
the backbone network to improve the model’s positioning rate. Compared with the original
model, the mAP increased by 1.9% and 2.6%, and the F1 score increased by 0.6% and 1.9%.
In scheme 2, the PAFPN network of the original model was modified. The results show that
the mAP increased by 5.1% and 3.5%, and the F1 score increased by 2.6% and 3.4%. Finally,
the shuffle attention mechanism was introduced to increase the detection accuracy by 6.1%
and 5.0%, and the F1 score increased by 4.7% and 4.0%. These three changes effectively
increased the network’s accuracy in identifying contraband.

4.3. Algorithm Performance Analysis

According to the experimental results of scheme 1 and scheme 4, under the same
conditions, the evaluation index of YOLO-CID exceeded that of the original YOLOv7
algorithm. The mAP50 values on the PIDray and CLCXray datasets reached 70.3% and
80.2%, respectively. The YOLO-CID algorithm significantly improves the detection ability
of contraband in complex situations and effectively addresses the issues of missed and false
detections in X-ray object detection.

Figure 9 compares the detection accuracy of each category between YOLO-CID and
the original YOLOv7 algorithm on the PIDray dataset. As shown, the detection accuracy
of our proposed algorithm is higher than that of the original YOLOv7 for all categories.
In particular, the detection of lighters, sprayers, and knives has been significantly improved
compared to the original model.

Figure 9. Single-class average precision comparison.

Figure 10 presents the confusion matrix for the PIDray dataset using the YOLOv7
model, while Figure 11 displays the confusion matrix for the same test set using the YOLO-
CID model. A comparison of the two figures reveals that the detection accuracy for each
class has been significantly improved with the YOLO-CID algorithm relative to the original
algorithm. This suggests that the YOLO-CID model places greater emphasis on feature
information and exhibits superior performance.
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Figure 10. Confusion matrix for YOLOv7 network model.

Figure 11. Confusion matrix for YOLO-CID network model.
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Figure 12 presents the detection results for the YOLO-CID network model and the
original YOLOv7 network model on the hidden test set, while Figure 13 presents the
detection results for the YOLO-CID network model and the original YOLOv7 network
model on the CLCXray test set. It can be seen that YOLO-CID exhibits stronger adaptability
and generalization ability in detecting X-ray contraband under simulated real conditions.
Compared to the YOLOv7 algorithm, YOLO-CID displays a higher level of confidence when
detecting the same object. Additionally, the YOLO-CID algorithm has greatly improved the
issues of missed and false detections in contraband detection, demonstrating its superiority
and practicality.

Figure 12. Some examples of the detection result on the test set of the PIDray dataset. The first row is
the result of YOLOv7, and the second row is the result of YOLO-CID. We used the same four images
to compare the performance of the detection models.

Figure 13. Some examples of the detection result on the test set of the CLCXray dataset. The first
row is the result of YOLOv7, and the second row is the result of YOLO-CID. We used the same four
images to compare the performance of the detection models.
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4.4. Comparative Experimental Analysis

Table 3 shows the experimental results of different algorithm models on the test set of
the PIDray dataset, while Table 4 presents the results on the test set of the CLCXray dataset.
The average accuracy of the YOLO-CID algorithm is 70.3% and 80.2%, which are 6.1% and
5.0% higher than in the case of YOLOv7, respectively. The real-time detection speed is
40 frames per second and 43 frames per second, respectively. These results demonstrate
that the YOLO-CID algorithm outperforms both single-stage and two-stage algorithms,
exhibiting high detection accuracy while meeting the requirements of real-time detection.

Table 3. Experimental results comparing different algorithmic models on the PIDray dataset test set.

Model AP50 (50%) FPS

Faster R-CNN [40] 42.1 13.9
SSD512 [41] 43.8 16.1

YOLOv3 [42] 69.0 34.9
YOLOv5s [30] 65.5 39.2

YOLOv7 64.2 39.0
Ours 70.3 40.6

Table 4. Experimental results comparing different algorithmic models on the CLCXray dataset
test set.

Model AP50 (50%) FPS

Cascade R-CNN [43] 71.4 18.0
SSD512 [41] 66.4 21.6

YOLOv3 [42] 67.2 36.7
YOLOv6s [44] 71.2 39.9

YOLOv7 75.2 41.2
Ours 80.2 43.3

Figure 14 illustrates the convergence of the loss functions for various models on
the PIDray dataset. As depicted, the bounding box loss of the YOLO-CID algorithm
decreased more rapidly during training and it exhibited lower loss values compared to
other algorithms. Additionally, its mean average precision (mAP) value was higher. These
results demonstrate that the improved algorithm converges more quickly and exhibits a
higher degree of alignment between predicted and ground truth frames, thereby proving
its effectiveness and superiority.

(a) box Loss (b) mAP

Figure 14. Comparison of evaluation indexes under different models: (a) bounding box loss curve,
(b) map curve.
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5. Conclusions

To perform real-time X-ray contraband detection, we improved the original YOLOv7
network. We designed the MP-OD module in the backbone of YOLOv7 to enhance the
timeliness of feature extraction, optimize the convolutional layer structure of the network,
improve the model’s ability to extract key information from complex background images,
and reduce resource waste. In the neck component, we replaced the path aggregation
network of the original model with a simplified version of BiFPN-P3, a bidirectional
weighted feature pyramid network, and removed single-input edge nodes containing less
PAN information to reduce the computational overhead. We also added an SA mechanism
to enhance the model’s attention to effective feature information without increasing the
computational complexity. Ablation experiments on the extended PIDray and CLCXray
datasets showed that these strategies effectively improved the timeliness and detection
accuracy in complex background scenes. Comparative experiments with other classic
object detection algorithms showed that under the same conditions, our improved YOLOv7
model achieved the highest F1 score and AP value and had a faster detection speed than the
other five algorithms, demonstrating its effectiveness for real-time contraband detection.
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Abstract: Applying deep learning (DL) algorithms for image classification tasks becomes more
challenging with insufficient training data. Transfer learning (TL) has been proposed to address these
problems. In theory, TL requires only a small amount of knowledge to be transferred to the target
task, but traditional transfer learning often requires the presence of the same or similar features in
the source and target domains. Cross-modality transfer learning (CMTL) solves this problem by
learning knowledge in a source domain completely different from the target domain, often using a
source domain with a large amount of data, which helps the model learn more features. Most existing
research on CMTL has focused on image-to-image transfer. In this paper, the CMTL problem is
formulated from the text domain to the image domain. Our study started by training two separately
pre-trained models in the text and image domains to obtain the network structure. The knowledge
of the two pre-trained models was transferred via CMTL to obtain a new hybrid model (combining
the BERT and BEiT models). Next, GridSearchCV and 5-fold cross-validation were used to identify
the most suitable combination of hyperparameters (batch size and learning rate) and optimizers
(SGDM and ADAM) for our model. To evaluate their impact, 48 two-tuple hyperparameters and two
well-known optimizers were used. The performance evaluation metrics were validation accuracy,
F1-score, precision, and recall. The ablation study confirms that the hybrid model enhanced accuracy
by 12.8% compared with the original BEiT model. In addition, the results show that these two
hyperparameters can significantly impact model performance.

Keywords: batch size; cross-modality; deep learning; image classification; learning rate; overfitting;
text classification; transfer learning

1. Introduction

Image classification problems have been leading research in computer vision. With the
continual development of the Internet in recent decades, people can easily create, access,
and analyze all types of images, which has resulted in the rapid expansion of the number of
images. Images are an important way of carrying information and are essential in all aspects
of people’s daily communication, life, and work. In this context, there has been an emphasis
on finding accurate and valuable images in a short amount of time from many images.
The potential of machine learning algorithms (particularly deep learning algorithms) is
increasingly being explored as technology advances, and it has produced beneficial effects
in various sectors, including, but not limited to, natural language processing (NLP), traffic
prediction, medical diagnosis, and image classification [1]. Attention is drawn to image
classification problems because of their state-of-the-art performance in the field. However,
machine learning must improve with lengthy training times, the large sample sizes required,
and limited computer ability [2].

With the advent of deep learning algorithms, automatic feature extraction from images
can be achieved. Convolutional neural networks (CNNs) [3] are one of the most mainstream
image analysis methods [4]. Regarding deep learning models, it is desirable to have
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sufficient labeled training data to achieve promising model performance (e.g., accurate
and unbiased classification). However, some real-world problems are linked to small-scale
labeled datasets, such as rare diseases [5], mental health [6], and legal areas [7]. Transfer
learning has recently been suggested as a solution to this issue, which has several benefits
for enhancing the performance of target models from single or multiple source models [8,9].
The general idea of transfer learning is to transfer knowledge learned from the source
domain to the target domain, speeding up training and lowering the requirement for
sample size in the target dataset. Some studies have demonstrated the improvement of
transfer learning on image classification accuracy and the effect of transfer learning on CNN,
which performs better in image classification after pre-training compared to traditional
CNN [10,11]. In the methodologies of [12–14], including another domain as the source
domain becomes redundant if the training samples are large enough and an impressive
performance can be achieved while restricted in the target domain. There are various levels
of disagreement between different source and target domain data pairs. Regardless of
their disagreement, imposing knowledge from the source domain into the target domain
can lead to some performance degradation or, in worse cases, disrupt data consistency in
the target domain [15]. On the other hand, traditional transfer learning is only partially
applicable to some tasks and requires a good degree of similarity or common information
between the source and target domains. As mentioned above, the key part of the transfer
learning algorithm is to discover the similarity between the source domain PS(X, Y) and
the target domain PT(X, Y). When the labeled target data are not available (nl = 0), one
has to resort to the similarity between the marginal PS(X) and PT(X); although this does
have a theoretical limitation [14]. In contrast, this problem can be solved if a significant
number of samples (xl , yl) ∼ PT(X, Y) and (xs, ys) ∼ Ps(X, Y) are available. Thus, a
reasonable migration learning algorithm may be able to use datasets with labeled target
domains to mitigate the negative impact of irrelevant source information [16]. In other
words, transferring learning between domains with low similarity will be prone to negative
transfer [16–18], i.e., resulting in degradation of the performance of the target model.

Such a problem of transfer learning between domains with low similarity is known
as cross-modality transfer learning, which involves transfer learning between heteroge-
neous datasets [19]. In this paper, a breakthrough is desired to alleviate the limits of
traditional transfer learning when the source and target domains differ. A cross-modality
transfer approach from text to images is chosen. It is believed that the machine learn-
ing methods used for text classification could be used for image classification, known as
cross-modality transfer.

1.1. Related Work on Cross-Modality Transfer Learning

The discussion of existing works includes only research studies using cross-modality
transfer learning, i.e., existing works using traditional transfer learning with high similarity
between the source and target domains are not considered. Therefore, cross-modality trans-
fer learning was proposed to tackle the issue of negative transfer between heterogeneous
source and target domains [20–25].

Image to Image. Lei et al. [20] performed cross-modality transfer learning using
ResNet-50 with three convolutional layers from ImageNet (the source dataset) to the
ICPR2012 dataset or the ICPR2016 dataset (the target datasets). The ratio between the
training and testing datasets was 80:20. The model achieved an accuracy of 97.1% (an
improvement of 6.12%) for the ICPR 2012 dataset and an accuracy of 98.4% (an improvement
of 0.163%) for the ICPR 2016 dataset. In another work [21], knowledge was transferred
from the NPHEp-2 dataset (source dataset) to the LSHEp-2 dataset (target dataset) using a
parallel deep residual network with a two-dimensional discrete wavelet transform. The
training-testing dataset was in an 80:20 ratio. The proposed method enhanced the accuracy
by 0.417% (from 95.9% to 96.3%). Hadad et al. [22] proposed using cross-modality transfer
learning to improve the recognition rate of masses in breast MRI images. They trained
a network on X-ray images and then transferred the pre-trained network to the target
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domain (MRI images). Performance evaluation revealed that cross-modality transfer
learning improved the classification performance from an overall accuracy of 90% to 93%.
Their study’s limitation is that it involves transferring between different types of images,
specifically from X-ray images to MRI images. While X-ray images have a relatively small
dataset compared to other domains (e.g., the text domain), the transfer process still fails
to fully utilize the benefits of CMTL due to the relatively large amount of data in MRI
images. Another work [23] proposed a cross-modality transfer learning approach from
2D to 3D sensors in which different modalities shared the same observation targets. They
employed a pre-trained model network based on 2D images and then transferred the
pre-trained model to the visual system of 3D sensors. The model achieved an average
precision improvement of 13.2% and 16.1% compared to ConvNets and ViTs, respectively.
A cross-modality transfer learning algorithm was proposed for transferring a network
trained on a large dataset in the source domain (RGB) to the target domains (depth and
infrared) [24], which was used for the task of transferring knowledge from one source
modality to another target modality without accessing task-related source data. The model
achieved an accuracy of 90.2% in the single-source cross-modality knowledge transfer task
from RGB to NIR using the RGB-NIR dataset without task-related source data and 92.7%
from NIR to RGB. However, their designed model has yet to be tested in tasks with larger
modality gaps as it was only applied in cases with smaller modality differences.

Text to Image. Du et al. [25] described a chest X-Ray quality assessment method that
combined image-text contrastive learning and medical domain knowledge fusion. The
proposed method integrated large-scale real clinical chest X-rays and diagnostic report text
information and fine-tuned the pretrained model based on contrastive text-image pairs.
The model yielded an accuracy of 89.7–97.2% for 13 classes. Another work [26] proposed a
zero-shot transfer learning model that can recognize objects in images without any training
samples available. The model acquired knowledge by learning from an unsupervised,
large-scale text corpus. In the performance evaluation, the images were split into visible
and invisible categories. The model achieved about 80% accuracy in the training categories.
The research study also suggested that if two zero-shots had no remote similarity with
any visible class, the performance was relatively poor, resulting in suboptimal zero-shot
classification. Chen et al. [27] presented a history-aware multimodal transformer (HAMT)
approach for visual linguistic navigation (VLN). The HAMT encoded all past panoramic
observations by a hierarchical visual transformer, which can effectively incorporate far-
future history into multimodal decision-making. The model joins text, history, and current
observations to predict the following actions. Another work [28] compared pre-trained
and fine-tuned representations at the visual, verbal, and multimodal levels using a set
of detection tasks and introduced a new dataset specifically for multimodal detection.
While their visual-linguistic models could understand color at the multimodal level, they
relied on biases in the textual data concerning object position and size. This suggests that
fine-tuning the visual-linguistic model in a multimodal task does not necessarily improve
its multimodal capabilities. In [29], a new efficient and flexible multimodal fusion method
called prompt-based multimodal fusion (PMF) was proposed that utilized a unimodal
pre-trained transformer. The authors presented a modular multimodal fusion framework
that enabled bidirectional interactions between different modalities to dynamically learn
different objectives of multimodal learning. The proposed method is memory-efficient,
which can significantly reduce the use of training memory and achieve comparable per-
formance to existing fine-tuning methods with fewer trainable parameters. However, the
performance of PMF on all three datasets still lags behind the baseline tuning with the same
pre-trained backbone and no tuning of hyperparameters. In addition, CLiMB consisted
of several implementations of CL algorithms and an improved visual language translator
(ViLT) model that could be deployed on both multimodal and unimodal tasks [30]. It
was found that common language learning methods could help mitigate forgetting in
multimodal task learning but did not enable cross-task knowledge transfer.
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Other. Falco et al. [31] collected a visual dataset and a tactile dataset to form the nature
of the distant source and target domains. Cross-modality transfer learning was supported
by subspace alignment and transfer component analysis for dimensionality reduction and
a geodesic flow kernel for characterizing geodesic flow. The model achieved an accuracy of
89.7%. A multimodal transformer framework with variable-length memory (MTVM) was
proposed for VLN [32]. The framework also included an explicit memory bank for storing
past activations. It enabled the agent to easily update the temporal context by adding
the current output activation corresponding to the action at each step to learn a strong
relationship between the instruction and the temporal context, thus further improving
navigation performance.

1.2. Research Limitations of Existing Works

By analyzing existing research papers, we can identify their limitations. Most current
research involves similar domains, such as cross-domain studies within the Image-to-
Image field. In the Text-to-Image field, good performance can be achieved by making
an ideal model if the data in the source and target domains are similar [25]. However,
considering the zero-shot transfer learning problem [26], when the data in the source and
target domains are dissimilar or have low similarity, the performance of the target model is
poor, which illustrates that the current research in the Text-to-Image field is still limited by
the similarity between the source and target domains. In other fields, such as the previously
mentioned research from the visual to the tactile domain, the performance is good, with
high accuracy. However, the applicability is limited, making it suitable for niche areas but
not widely applicable.

1.3. Our Research Contributions

Cross-modality transfer learning is considered for text-to-image classification prob-
lems. First, we adopt bidirectional encoder representations from the transformer (BERT)
model, typically trained in two stages [33]. The first stage uses MaskLM to train the lan-
guage model, mask a random portion of words in a sentence, and predict the masked
words by understanding the context. In the second stage, the BERT model predicts the
following sentence, which helps it better understand the relationship between individual
sentences. We used BERT to train text sentiment classification on the IMDb reviews dataset,
which contains 25,000 movie reviews for training and 25,000 movie reviews for testing,
explicitly used for sentiment classification. In addition, we employ a bidirectional encoder
representation from the image transformer (BEiT) model [34]. This self-supervised learning
model applies a similar idea to the BERT model to the image classification task. The idea
is to obtain image features by masking the image modeling pre-training task, achieving
an accuracy of 83.2 in the ImageNet-1K classification task, which we used to train on the
ImageNet-1K dataset for image classification. Finally, a novel hybrid model is designed
by joining the first ten layers of the pre-trained BERT model and the last two layers of the
pre-trained BEiT model. An ablation study showed that the contribution of the BEiT model
enhanced accuracy by 12.8%.

Regarding the performance evaluation of the hybrid model, we have conducted an
in-depth analysis of the model’s performance with the batch size, learning rate, and types
of optimizers.

1.4. Organization of the Paper

The rest of the paper is organized as follows: Section 2 introduces the datasets and
illustrates the methodology of the novel hybrid model. Then, a performance evaluation
of the proposed model is conducted, comparing the proposed work with existing work.
To study the contributions of the standalone BERT model and the standalone BEiT model,
an ablation study is carried out in Section 4. Finally, a conclusion is drawn, and research
implications and future research directions are discussed.
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2. Materials and Methods

In this section, all stages of cross-modality transfer learning are illustrated. First, two
datasets are used to train the models in two different domains, i.e., the image and text
domains, and save the training results as the pre-trained models for the next stage. In
the second stage, we combined the two pre-trained models and selected CIFAR-10 as the
dataset for the next stage of training. In the third stage, to obtain the most suitable optimizer,
batch size, and learning rate for the model, we used both GridSearchCV and K-Fold cross-
validation methods. The performance is evaluated using different hyperparameters and
optimizers by calculating the F1-score, precision, and recall. The whole process of cross-
modal transfer learning will be summarized. Following the workflow, the BERT and BEiT
models are first pretrained using the IMDb reviews and ImageNet-1K datasets, respectively.
Then, the knowledge is transferred to the novel hybrid model. Afterward, the CIFAR-
10 dataset is pre-processed to determine whether the 5-fold cross-validation has been
completed. If it is not yet complete, the combination of optimizers and hyperparameters is
fed into the unique hybrid model, and if it is, training and testing are finished using the
best optimizer and hyperparameters. In the 5-fold cross-validation process, the dataset is
first divided into five parts, with one part selected as the testing data and four parts as
the training data for each training session. Each set of hyperparameters is cross-validated
five times, and the mean result is calculated. The results were then compared to select the
best combination of hyperparameters. In normal model training, we calculated the results
without averaging them.

2.1. Pre-Training Models

The main objective of this section is to use the pre-trained model as a feature extractor
by pre-training the model on a large dataset. We first trained the model on a large under-
lying dataset; in the text domain, we chose to use the BERT model on the IMDb review
dataset, a widely used sentiment binary classification dataset, as a benchmark for sentiment
classification, which consists of 100,000 text reviews of films. Half (50,000) of the reviews
contained no labels, and these were used for testing, with the other 50,000 reviews paired
with labels of 0 or 1, representing negative and positive sentiment, respectively. These
reviews with tags were split into two groups, with each group having 12,500 positive and
12,500 negative reviews to keep the data balanced. These labels are linearly mapped from
IMDb’s star rating system, in which critics can rate a film with a certain number of stars
from 1 to 10 [35]. Figure 1 shows the split of the IMDb review dataset and two examples
of reviews. The BERT model is a pre-trained model proposed by the Google AI Institute
that has demonstrated impressive performance in all aspects, using a network architecture
with a multi-layer transformer structure, which is most distinctive in that it does not use
traditional recurrent neural networks (RNNs) and CNNs; instead, it uses an attention
mechanism to convert the distance between two arbitrarily placed positions. This solves
the problem of long-term dependency in NLP. It has already achieved wide application in
the field of NLP.

 

Figure 1. The split of the IMDb review dataset and two examples of reviews.

In the image domain, we chose to use the BEiT model for training on the ImageNet-
1K dataset, which is currently the largest image recognition dataset in the world and is
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mainly used in machine vision, target detection, and image classification. The ImageNet-1K
dataset introduced for the ILSVRC 2012 visual recognition challenge has been at the center
of modern advances in deep learning. ImageNet-1K is the primary dataset for pre-training
computer vision migration learning models, and improving the performance of ImageNet-
1K is often seen as a litmus test for general applicability to downstream tasks. ImageNet-1K
is a subset of the full ImageNet dataset, which consists of 14197122 images divided into
21841 classes. We will refer to the full dataset as ImageNet-21K, and ImageNet-1K was
created by selecting a subset of 1.2 million images belonging to 1000 mutually exclusive
classes from ImageNet-21K [36]. In contrast, the BEiT model is a self-supervised visual
representation model proposed by Microsoft, which is similar to BERT in that it uses the
transformer’s masked image modeling task. Specifically, in pre-training, each image has
two views. The developer converts the original image into a tokenizer, then randomly
masks some patches and feeds them into the transformer. Experimental results in image
classification and semantic segmentation show that the BEiT model achieves better results.
Figure 2 shows the whole process of pre-training the BERT and BEiT models. The BERT
model was trained using the IMDb Reviews dataset as an input, whereas the BEiT model
was trained using the ImageNet-1K dataset. Their weights and network structures after
pre-training are saved, and some of them (knowledge) will be transferred to a novel hybrid
model in a later step, which is known as knowledge transfer. The selection of the number
of layers from the pre-trained BERT and BEiT models will be elaborated in Section 2.2. The
left half of Figure 3 illustrates the pre-training process for BERT and BEiT, with BERT being
pre-trained in the IMDb reviews dataset and BEiT being pre-trained in ImageNet-1K.

Figure 2. The process of pre-training the BERT and BEiT models.
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Figure 3. The process of pre-training and transfer learning for BERT and BEiT and the structure of
the new hybrid model.

2.2. Design of a Novel Hybrid Model

To achieve cross-modal transfer learning, we combined the BERT and BEiT models.
By merging the two models, we can transfer a large amount of knowledge learned by
the BERT model in the source domain to the task in the target domain to compensate for
the lack of data in the target domain. The first ten layers of the BERT model and the last
two layers of the BEiT model are retained. The last few layers of a neural network are
usually specialized; Yosinski et al.’s study [37] claims that the last layer allows features to
transition from general to specific with some specificity. In contrast, the first few layers
are usually not specific to a particular dataset or task but generic as they apply to many
datasets and tasks; therefore, we chose to retain the last two layers of BEiT, which would
make the novel hybrid model better suited to image classification tasks. The other layers
are frozen and are not used for training. Liu et al. [38] showed that the transformer-based
structure is more transferable to other tasks in the middle layer, while the higher layers are
more task-specific. Kirichenko et al. [39] demonstrated that the retraining of the last layer
improves the performance of the model and improves its robustness. This suggests that the
results are heavily influenced by the last linear layer of the model and that even though
the model has acquired the features of the data in the previous layers, the last layer can
still assign higher weights to the data. Kovaleva et al.’s study [40] calculated the similarity
between pre-trained and fine-tuned BERT weights by finding that the weights of the last
two layers changed the most after fine-tuning. This suggests that the last two layers of
the BERT model learn the most information in a given task and that the previous layers
mainly capture more underlying base information. Based on these studies, we believe that
removing the last two layers of BERT can help the new hybrid model better learn the basics
of BERT while retaining the specificity of the BEiT model for better classification tasks.
Then, we add the corresponding network structures and weights of the pre-trained BERT
and BEiT models to a new hybrid model for the next stage of training. Cross-modality
transfer learning is used to extract information features from the pre-trained datasets, which
could be used to extract deep features from new images. Therefore, these models may help
accomplish image classification tasks. Our novel hybrid model processes the input image
through 3 convolutional layers and the ReLU activation function; then, the processed image
is considered a tensor with shape (batch size, 512, 768); next, this tensor is passed into the
first ten layers of the BERT encoder, and the output tensor is passed as an input to the
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BEiT model; then, using the interpolation method, the output tensor is resized to (batch
size, 2048) using interpolation; the elements of the first dimension are extracted; finally,
these elements are passed to the fully connected layers; the final output with shape (batch
size, 10) is obtained through the fully connected layers. The right half of Figure 3 shows
the transfer learning process of the two pre-trained models and the structure of the new
hybrid model, where the knowledge of the first ten layers of BERT is transferred to the new
model. In contrast, the first ten layers of BEiT are frozen, keeping the last two layers for the
image classification task. Table A1 (Appendix A) explains the detailed structure of our new
hybrid model, including the layer’s type, output shape, and parameters, and concludes
with a summary of the model’s parameters and sizes.

2.3. GridSearchCV and K-Fold Cross-Validation

To find the best combination of batch size and learning rate for the new hybrid model,
the traditional GridSearchCV method is used to find the best hyperparameters. In this
process, the CIFAR-10 dataset is trained using 48 combinations of BS (4, 8, 12, 16, 20, 24,
28, and 32), LR (0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001), optimizers (stochastic
gradient descent with momentum (SGDM), and adaptive moment estimation (ADAM)).
Because of the momentum involved, SGDM is faster than SGD, training will be faster
than SGD, and local minima can be an escape to achieve global minima. Simply put,
momentum enables SGD to locate the global minima more quickly and precisely. Both
SGDM and ADAM are two of the most popular optimizers. In typical applications, the
ADAM optimizer takes advantage of faster initial learning, whereas the SGDM optimizer
yields a more accurate model in the later stage. It can be explained by the fact that the
ADAM optimizer has added the adaptive learning rate mechanism on top of the SGDM
optimizer, which enables the ADAM optimizer to increase the optimization speed by
assigning different learning rates for different parameters. Being an adaptive learning rate
algorithm, ADAM determines unique learning rates for various parameters. RMSprop and
stochastic gradient descent with momentum can be combined to form ADAM. Similar to
RMSprop, it scales the learning rate using gradient squaring, and like SGDM, it leverages
momentum by utilizing a moving average of the gradient rather than the gradient itself.
Figure 4 illustrates this process and all combinations of the hyperparameters used in the 5-
fold cross-validation. Figure 5 illustrates the CIFAR-10 dataset with 5-fold cross-validation
and training in our novel hybrid model.

 
Figure 4. All combinations of hyperparameters were used in the 5-fold cross-validation.
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Figure 5. CIFAR-10 dataset with 5-fold cross-validation and training in novel hybrid model.
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The performance of this hybrid model is then evaluated using K-fold cross-validation
with K = 5 [41], which divides the dataset into K groups, with each subset of data serving
as a separate validation set and the remaining K-1 subset of data serving as the training
set. Each fold takes 10 epochs to complete. The reason for this design is that we found in
the training of our previous hybrid model that the model was usually overfitted at around
10 calendar hours. The validation set results are evaluated separately, and the final mean
squared error (MSE) is summed and averaged to obtain the cross-validation error. Figure 6
shows the process of 5-fold cross-validation. Cross-validation efficiently uses the limited
data available, and the evaluation results are as close to the model’s performance on the
test set as possible. Unique values for the optimal hyperparameters batch size and learning
rate were determined by comparing the F1-score (Equation (1)), precision (Equation (2)),
and recall (Equation (3)) of each set of hyperparameters after K-fold cross-validation [42].
When the hybrid model is used to classify the CIFAR-10 dataset, we obtain the optimal
hyperparameter values (BS = 24 and LR = 0.0005) for the SGDM optimizer, which results in
an F1-score of 57.79%, a precision of 59.6481%, and a recall of 61.6944%.

F1 − score = 2 × Recall × Precision
Recall + Precision

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Figure 6. Process of 5-fold cross-validation.

3. Experimental Setup and Results Analysis

The experimental setup is based on the methodology described in Section 2. All
simulations are conducted using a PC with NVIDIA GEFORCE GTX 3090—24 GB Graphics,
a 15 vCPU AMD EPYC 7543 32-Core Processor, and Python 3.8.

3.1. 5-Fold Cross-Validation

Regarding 5-fold cross-validation, the dataset was divided into 80% and 20% for
training and testing of the model, respectively. To evaluate and validate the impact of
both hyperparameters, we increased the number of samples in the specified ranges of
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the LR (Equation (4)) and BS (Equation (5)) to obtain a detailed output distribution for
better interpretation. In determining the range of LR, we found that both optimizers were
prone to non-convergence when they used LRs greater than 0.005, so the maximum LR is
set at 0.005. For other specific values of LR, they refer to Usmani et al.’s research [43] to
finalize the range of LR. For the range of BS, we chose the most common from 4 to 32, with
BS increasing by eight at a time. This study used an extended Cartesian product matrix
consisting of 48 two-tuple hyperparameters generated from the following two vectors:

LRε[0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.0001] (4)

BSε[4, 8, 12, 16, 20, 24, 28, 32] (5)

In addition, the model is evaluated using SGDM and ADAM. Table 1 summarizes
the performance of each set of hyperparameters, including the average of all parameters
and standard deviation of validation accuracy for 5-fold at each cross-validation. The
summarized parameters are used in addition to the validation accuracy, and we use three
measures: F1-score, recall, and precision.

Table 1. The performance of each set of hyperparameters.

BS LR Optimizer
Standard

Deviations (%)
Validation

Accuracy (%)
F1-Score (%) Recall (%) Precision (%)

4

0.00001
SGDM 1.5727 56.32 32.889 34.667 33.833
ADAM 3.0496 59.18 32.333 33.999 31.500

0.00005
SGDM 0.9613 61.31 41.667 43.333 40.833
ADAM 0.2296 9.97 4.666 11.666 2.916

0.0001
SGDM 1.9611 59.15 36.333 37.333 36.833
ADAM 0.2872 9.91 3.775 14.167 2.239

0.0005
SGDM 24.8728 40.49 34.444 38.333 32.500
ADAM 0.3000 9.95 4.000 10.000 2.500

0.001
SGDM 0.1523 9.95 6.444 11.667 4.583
ADAM 0.3968 9.95 6.444 11.667 4.583

0.005
SGDM 0.2340 10.00 4.444 6.667 3.333
ADAM 0.2028 10.12 2.000 5.000 1.250

8

0.00001
SGDM 1.0712 51.43 40.444 41.845 43.155
ADAM 0.3269 57.49 47.500 50.575 50.238

0.00005
SGDM 0.5180 44.00 43.996 46.607 47.698
ADAM 0.3088 9.96 2.222 10.000 1.250

0.0001
SGDM 3.5695 60.03 44.978 48.714 47.000
ADAM 0.3309 10.05 2.222 10.000 1.250

0.0005
SGDM 18.3248 45.78 42.306 45.250 44.806
ADAM 0.2555 10.15 3.704 14.000 2.167

0.001
SGDM 21.3882 26.95 13.534 23.048 11.869
ADAM 0.2740 9.96 3.111 14.000 1.750

0.005
SGDM 0.2279 10.04 2.182 4.000 1.500
ADAM 0.2098 10.03 3.111 14.000 1.750

12

0.00001
SGDM 0.8184 48.61 35.667 36.167 36.667
ADAM 0.9671 57.77 53.299 55.867 53.001

0.00005
SGDM 1.3184 59.23 42.667 42.000 44.000
ADAM 24.6269 29.94 12.667 12.000 14.000

0.0001
SGDM 1.5544 60.93 40.899 42.107 42.024
ADAM 0.2972 9.99 4.444 6.667 3.333
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Table 1. Cont.

BS LR Optimizer
Standard

Deviations (%)
Validation

Accuracy (%)
F1-Score (%) Recall (%) Precision (%)

12

0.0005
SGDM 0.7146 59.27 37.133 35.833 40.333
ADAM 0.1212 9.93 10.444 21.667 7.083

0.001
SGDM 0.1469 10.01 4.667 11.667 2.917
ADAM 0.1937 10.09 4.667 11.667 2.917

0.005
SGDM 0.1754 10.06 6.444 11.667 4.583
ADAM 0.2196 10.02 2.000 5.000 1.250

16

0.00001
SGDM 1.3853 44.46 28.779 32.283 29.200
ADAM 0.5009 56.74 52.315 56.839 53.749

0.00005
SGDM 1.5716 58.73 42.184 47.870 43.685
ADAM 24.3304 39.23 36.593 42.256 37.370

0.0001
SGDM 1.9416 58.47 51.295 54.241 55.635
ADAM 0.2595 9.87 3.257 11.944 1.910

0.0005
SGDM 2.1745 60.06 50.436 53.204 53.153
ADAM 0.0963 9.88 2.795 11.944 1.667

0.001
SGDM 24.2741 39.84 31.150 35.167 32.365
ADAM 0.2001 10.11 1.373 9.444 0.747

0.005
SGDM 0.1659 9.92 1.373 7.222 0.764
ADAM 0.0508 9.87 1.987 9.413 0.908

20

0.00001
SGDM 0.9337 41.47 32.568 36.577 34.750
ADAM 1.1632 57.38 47.456 50.374 50.921

0.00005
SGDM 1.2411 58.17 49.420 52.798 55.075
ADAM 20.2989 50.38 43.375 48.237 44.785

0.0001
SGDM 1.2448 57.15 49.800 55.042 50.093
ADAM 0.2402 10.08 1.070 6.944 0.583

0.0005
SGDM 1.9982 59.45 47.849 49.890 51.778
ADAM 0.0837 9.76 1.575 9.722 0.861

0.001
SGDM 19.3078 48.44 38.313 40.950 41.583
ADAM 0.0989 10.11 2.334 11.944 1.319

0.005
SGDM 0.3008 10.00 0.666 4.722 0.361
ADAM 0.2338 10.17 1.530 9.444 0.847

24

0.00001
SGDM 1.3658 38.26 30.969 36.472 32.122
ADAM 0.4772 57.42 45.392 49.330 47.431

0.00005
SGDM 1.1611 54.64 51.796 57.306 55.889
ADAM 0.7211 59.47 52.799 59.652 56.463

0.0001
SGDM 1.3350 58.77 52.867 56.043 54.927
ADAM 0.1209 9.68 1.638 1.638 0.903

0.0005
SGDM 2.2888 60.47 57.789 61.694 59.648
ADAM 0.2597 10.01 2.160 11.944 1.198

0.001
SGDM 19.1042 46.75 39.269 43.170 41.476
ADAM 0.1559 10.01 1.634 9.444 0.903

0.005
SGDM 0.1629 10.09 1.078 6.944 0.590
ADAM 0.3708 10.24 1.837 8.615 1.031

28
0.00001

SGDM 2.8993 36.81 14.667 14.000 16.000
ADAM 0.4116 57.33 32.667 32.000 34.000

0.00005
SGDM 0.9147 54.74 34.667 33.167 37.667
ADAM 20.0329 50.07 36.667 39.000 37.250
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Table 1. Cont.

BS LR Optimizer
Standard

Deviations (%)
Validation

Accuracy (%)
F1-Score (%) Recall (%) Precision (%)

28

0.0001
SGDM 1.3348 56.45 38.167 39.167 40.333
ADAM 0.1785 10.02 2.000 5.000 1.250

0.0005
SGDM 2.1328 58.73 30.556 33.000 30.167
ADAM 0.1679 9.96 0.000 0.000 0.000

0.001
SGDM 19.4801 49.05 26.190 27.524 25.524
ADAM 0.2318 9.80 0.000 0.000 0.000

0.005
SGDM 0.1875 10.02 2.667 6.667 1.667
ADAM 0.2691 9.94 0.000 0.000 0.000

32

0.00001
SGDM 1.8973 35.88 22.401 26.796 23.499
ADAM 0.9375 56.38 42.033 46.230 42.611

0.00005
SGDM 0.9352 52.98 48.248 51.367 55.033
ADAM 2.5092 59.13 46.719 51.293 48.148

0.0001
SGDM 1.2391 57.47 47.486 50.344 50.344
ADAM 0.1832 10.00 1.868 9.444 1.059

0.0005
SGDM 0.2294 59.84 49.280 53.456 51.630
ADAM 0.1931 10.14 1.866 9.444 1.042

0.001
SGDM 1.7214 58.68 43.959 49.241 44.963
ADAM 0.2317 9.88 3.444 11.944 2.049

0.005
SGDM 0.1667 9.98 1.634 9.444 0.903
ADAM 0.1481 9.76 1.863 10.743 1.125

Table A2 in Appendix B details all the results of GridSearchCV and 5-fold cross-
validation for various combinations of optimizers and hyperparameters, including mean
validation accuracy, F1-score, precision, and recall.

In addition, the distribution of the results collected by the optimizer SGDM and
ADAM is shown on the new hybrid model retrained on the CIFAR-10 dataset. On the left
side of the table, the distribution of the measurement accuracy for a given BS ranges from
0.00001 to 0.005 for each specific LR. On the right side of the table, the distribution of the
validation accuracy, F1-score, precision, and recall for a given LR range starting from 4 to
32 for each specific BS is shown.

When using SGDM with BS = 24 and LR = 0.0005, a maximum accuracy of 60.474%,
an F1-score of 57.79%, a recall of 61.6944%, and a precision of 59.6481% were observed. In
ADAM, the maximum accuracy = 59.47% was observed for BS = 24 and LR = 0.0005, while
the maximum F1-score was 52.8%, recall was 59.6519%, and precision was 56.463%. Thus,
using our new hybrid model on CIFAR-10, SGDM has better performance compared to
ADAM as it achieves the maximum accuracy and F1-score, while also performing better in
terms of recall and precision.

Figure 7a,b, Figure 8a,b, Figure 9a,b and Figure 10a,b depict the resulting curves of
the validating accuracy, F1-score, recall, and precision for all parameters of SGDM and
ADAM, respectively. The numerical labels of the best-performing dataset will be labeled
with the specific values of BS = 24 and LR = 0.0005 in the SGDM optimizer and BS = 24 and
LR = 0.00005 in the ADAM optimizer.

When using the SGDM optimizer, we observed that the difference in validation
accuracy between different batch sizes was not significant when the learning rate was
less than or equal to 0.005. However, when the learning rate was greater than or equal to
0.005, the difference in validation accuracy was more sensitive to changes in the learning
rate. The F1-score, recall, and precision remained regular and stable across different batch
size combinations.
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(a) (b) 

Figure 7. Validation accuracy. (a) SGDM optimizer. (b) ADAM optimizer.

  
(a) (b) 

Figure 8. F1-score. (a) SGDM optimizer. (b) ADAM optimizer.

  
(a) (b) 

Figure 9. Recall. (a) SGDM optimizer. (b) ADAM optimizer.

  
(a) (b) 

Figure 10. Precision. (a) SGDM optimizer. (b) ADAM optimizer.
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When using the ADAM optimizer, we found that the difference in validation accuracy
between different batch sizes was most significant when the learning rate was set to 0.0005.
However, when the learning rate was greater than 0.001, the change in validation accuracy
was negligible. The F1-score, recall, and precision showed some changes but not significant
ones. Previous research has shown the use of an exponential moving average of the squares
of the gradients generated by previous iterations [44]. This moving average is used to scale
the current gradient after taking the square root of the average to update the weights. The
contribution of the exponential mean is positive, and this approach should prevent the
learning rate from becoming nearly infinitesimal during the learning process, which is
a key drawback of the ADAM optimizer. However, the short-term memory capacity of
this gradient becomes an obstacle in other cases. During the convergence of the ADAM
optimizer to a suboptimal solution, it has been observed that some small batches of data
provide large and informative gradients. Since these small batches occur very rarely,
exponential averaging will reduce their impact. As a result, the ADAM optimizer corrects
the gradient only when the learning rate is high, which can cause the algorithm to converge
to suboptimal minima or even fail to converge, resulting in skipping local minima. The
derivative can become too large, resulting in an infinite loss. This shows that ADAM does
not generalize as well as SGDM.

3.2. Ablation Study between the Novel Hybrid Model and Original BEiT Model

We trained and tested the original BEiT model for 50 epochs on the CIFAR-10 dataset
using the official default hyperparameters and optimizer configuration (batch size = 64,
optimizer = ADAM, optimizer Epsilon = 1 × 10−8, and learning rate = 5 × 10−4). We then
trained and tested our hybrid model for 50 epochs on the same dataset using the optimal
configuration (batch size = 24, optimizer = SGDM, and learning rate = 5 × 10−4). Table 2
shows the loss and test accuracy for each epoch and the test accuracy for both models.
Figure 11 illustrates the process of training CIFAR-10 in the original BEiT model.

Table 2. The loss, testing accuracy for each epoch, and test accuracy for the original BEiT model and
novel hybrid model.

Epoch

Original BEiT Model Novel Hybrid Model

Epoch

Original BEiT Model Novel Hybrid Model

Loss
Training
Accuracy

Testing
Accuracy

Loss
Training
Accuracy

Testing
Accuracy

Loss
Training
Accuracy

Testing
Accuracy

Loss
Training
Accuracy

Testing
Accuracy

0 4.457 4.00% 4.27% 1.987 24.23% 37.80% 25 3.078 32.80% 44.57% 0.000 100.00% 64.70%
1 4.224 7.47% 8.93% 1.547 43.26% 47.09% 26 3.059 33.41% 44.72% 0.000 100.00% 64.72%
2 4.121 9.49% 11.64% 1.353 51.38% 54.00% 27 3.041 34.02% 45.54% 0.000 100.00% 64.70%
3 4.066 10.49% 15.29% 1.211 56.45% 56.46% 28 3.045 34.07% 45.94% 0.000 100.00% 64.70%
4 4.026 11.27% 18.78% 1.085 61.25% 59.58% 29 3.034 34.12% 47.23% 0.000 100.00% 64.66%
5 3.973 12.52% 20.79% 0.956 66.00% 61.15% 30 2.826 34.67% 47.23% 0.000 100.00% 64.63%
6 3.913 13.60% 24.13% 0.837 70.27% 62.09% 31 2.780 35.00% 48.02% 0.000 100.00% 64.60%
7 3.856 14.74% 25.46% 0.715 74.53% 63.20% 32 2.735 35.33% 48.64% 0.000 100.00% 64.57%
8 3.803 15.94% 27.54% 0.588 79.06% 63.51% 33 2.689 35.66% 48.89% 0.000 100.00% 64.54%
9 3.747 17.04% 29.12% 0.468 83.28% 61.87% 34 2.643 35.99% 48.89% 0.000 100.00% 64.51%

10 3.710 17.90% 30.36% 0.355 87.26% 61.76% 35 2.597 36.32% 49.18% 0.000 100.00% 64.48%
11 3.651 18.94% 32.30% 0.258 90.74% 61.89% 36 2.551 36.65% 50.02% 0.000 100.00% 64.45%
12 3.608 20.04% 33.48% 0.191 93.38% 61.89% 37 2.505 36.98% 50.02% 0.000 100.00% 64.42%
13 3.561 21.15% 34.45% 0.150 94.72% 62.38% 38 2.459 37.31% 50.02% 0.000 100.00% 64.39%
14 3.517 22.23% 35.51% 0.105 62.38% 62.92% 39 2.413 37.64% 50.39% 0.000 100.00% 64.36%
15 3.476 23.36% 36.29% 0.084 97.10% 62.20% 40 2.368 37.97% 50.63% 0.000 100.00% 64.37%
16 3.423 24.35% 37.22% 0.072 97.48% 61.98% 41 2.322 38.30% 50.98% 0.000 100.00% 64.40%
17 3.379 25.34% 38.95% 0.055 98.17% 62.96% 42 2.276 38.63% 50.98% 0.000 100.00% 64.41%
18 3.332 26.46% 39.29% 0.045 98.53% 62.57% 43 2.230 38.96% 51.41% 0.000 100.00% 64.38%
19 3.286 27.87% 40.51% 0.041 98.67% 62.69% 44 2.184 39.29% 51.41% 0.000 100.00% 64.38%
20 3.243 28.71% 41.20% 0.019 99.41% 63.57% 45 2.138 39.62% 51.63% 0.000 100.00% 64.39%
21 3.193 29.72% 41.71% 0.011 99.68% 63.47% 46 2.092 39.95% 51.63% 0.000 100.00% 64.42%
22 3.147 30.53% 42.28% 0.005 99.86% 64.37% 47 2.046 40.28% 51.65% 0.000 100.00% 64.43%
23 3.100 31.30% 43.16% 0.001 100.00% 64.78% 48 1.977 40.61% 51.65% 0.000 100.00% 64.42%
24 3.054 32.42% 43.91% 0.000 100.00% 64.67% 49 1.928 40.94% 51.65% 0.000 100.00% 64.42%
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Figure 11. Process of training CIFAR-10 in the original BEiT model.

During training, the new hybrid model achieved 100% accuracy in 23 calendar hours,
with loss dropping to 0. During validation, overfitting occurred in 10 epochs, with little
improvement in accuracy during the subsequent validation process. On the other hand, the
original BEiT model consistently improved in accuracy and decreased in loss during the
training period. During validation, the original model never overfitted, but the performance
improvement became smaller and smaller as the epochs increased. Due to the nature of
cross-modality transfer learning, our model is pre-trained in the source domain using
a completely different dataset from the target domain, which is a necessary condition
for cross-modality transfer learning. In the comparison session, we do not compare the
training accuracy of the two models but rather the testing accuracy. From the training
results, the accuracy of our new hybrid model at the beginning of training was 12.77%
higher compared to the original BEiT model. This is mainly due to pre-training; as the
number of training sessions increased, both the original BEiT model and our hybrid model
showed overfitting, but our hybrid model showed overfitting earlier, which made the
difference between the accuracy of the original BEiT model and our model smaller. We
performed Wilcoxon rank-sum tests between the novel hybrid model and the original BEiT
model using training accuracy and testing accuracy. The null hypothesis H0: accuracy
of the novel hybrid model < accuracy of the original BEiT model is being rejected for all
experimental settings (Table 2). Therefore, it is concluded that the novel hybrid model is
statistically outperforming the original BEiT model. Figure 12 compares the accuracy of
the two models tested over 50 epochs. The graph clearly shows that our model appears
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to overfit earlier and that the difference between the accuracy of the two models becomes
smaller and smaller until they both seem to overfit.

 

Figure 12. Comparison between the original BEiT model and the novel hybrid model.

4. Conclusions and Future Works

In this work, we propose a cross-modal transfer learning algorithm from the text
domain to the image domain for image classification problems to solve tasks in the image
classification domain. In the first phase of our work, two pre-trained models from different
domains are trained on different source domains, and a new hybrid model is designed
based on them. In the second phase of the work, we used GridSearchCV and 5-fold
cross-validation to determine the best combination of hyperparameters by evaluating the
validation accuracy, F1-score, precision, and recall of the model for different combinations.
The results of the experiments not only allowed us to select the most efficient hyperpa-
rameters from various combinations of optimizers (SGDM, ADAM) and hyperparameters
but also showed us that the optimizers and the two hyperparameters (BS and LR) had a
significant impact on our model. In addition to these results, after several comparisons of
BS and LR, we found that each hyperparameter affected our model’s performance indepen-
dently, suggesting that trade-offs should be made in the selection of BS and LR to obtain
the highest F1-score. In the third stage, after our tests, we showed that, compared to the
traditional BEiT model, the new hybrid model we designed had a higher accuracy.

It is worth noting that CMTL can facilitate knowledge transfer between the source
and target domains of different modalities (low similarity between domains), where some
knowledge cannot be learned from traditional transfer learning (domains with high sim-
ilarity) [16,45,46]. Therefore, a comparison with non-CMTL approaches is not included
in Section 3. Intuitively, combining traditional transfer learning with CMTL will further
enhance the performance of the target model because more knowledge (from similar and
dissimilar source domains) can be transferred, given that the issue of negative transfer is
suppressed. We have thus suggested future work in this area. In future work, we would
like to consider the application of migration learning to more different pre-trained models
of text domains for image classification tasks, allowing a broader range of application
scenarios for migration learning to occur. We believe that it is possible to study the effect of
different layers on the results by adjusting the number of layers of the retained or frozen
pre-trained model to study the importance of the last few layers in the overall model as well
as the performance of the model on new datasets by reducing or increasing the number of
layers in which the original model is retained, an approach that is considered an interesting
direction for improving the effectiveness of migration learning in the future. Indeed, in
addition to the text domain, many different source domains can be migrated to the image
domain. In the future, higher accuracy can be achieved in the image classification domain
by migrating to other domains. Furthermore, in our work, the evaluation of batch sizes
larger than 32 is a current limitation due to GPU performance limitations. More analysis can
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be conducted to evaluate the performance of the novel hybrid model using other datasets,
such as the Visual Question Answering (VQA) 2.0 dataset [47].
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Appendix A

Table A1. The table explains the detailed structure of our new hybrid model, including the types of
layers, output shapes, and parameters, in order from left column to right column, and concludes with
a summary of the model’s parameters and sizes.

Layer (Type) Output Shape No. of Params Layer (Type) Output Shape No. of Params

Conv2d-1 [−1, 64, 32, 32] 1792 Linear-127 [−1, 512, 768] 590,592
Conv2d-3 [−1, 128, 32, 32] 73,856 Linear-128 [−1, 512, 768] 590,592
Conv2d-5 [−1, 384, 32, 32] 442,752 Linear-129 [−1, 512, 768] 590,592
Linear-7 [−1, 512, 768] 590,592 Linear-130 [−1, 512, 768] 590,592
Linear-8 [−1, 512, 768] 590,592 Linear-131 [−1, 512, 768] 590,592
Linear-9 [−1, 512, 768] 590,592 Linear-132 [−1, 512, 768] 590,592

Linear-10 [−1, 512, 768] 590,592 Linear-135 [−1, 512, 768] 590,592
Linear-11 [−1, 512, 768] 590,592 Linear-136 [−1, 512, 768] 590,592
Linear-12 [−1, 512, 768] 590,592 LayerNorm-139 [−1, 512, 768] 1536
Linear-15 [−1, 512, 768] 590,592 LayerNorm-140 [−1, 512, 768] 1536
Linear-16 [−1, 512, 768] 590,592 Linear-141 [−1, 512, 3072] 2,362,368

LayerNorm-19 [−1, 512, 768] 1536 Linear-142 [−1, 512, 3072] 2,362,368
LayerNorm-20 [−1, 512, 768] 1536 Linear-145 [−1, 512, 768] 2,360,064

Linear-21 [−1, 512, 3072] 2,362,368 Linear-146 [−1, 512, 768] 2,360,064
Linear-22 [−1, 512, 3072] 2,362,368 LayerNorm-149 [−1, 512, 768] 1536
Linear-25 [−1, 512, 768] 2,360,064 LayerNorm-150 [−1, 512, 768] 1536
Linear-26 [−1, 512, 768] 2,360,064 Linear-151 [−1, 512, 768] 590,592

LayerNorm-29 [−1, 512, 768] 1536 Linear-152 [−1, 512, 768] 590,592
LayerNorm-30 [−1, 512, 768] 1536 Linear-153 [−1, 512, 768] 590,592

Linear-31 [−1, 512, 768] 590,592 Linear-154 [−1, 512, 768] 590,592
Linear-32 [−1, 512, 768] 590,592 Linear-155 [−1, 512, 768] 590,592
Linear-33 [−1, 512, 768] 590,592 Linear-156 [−1, 512, 768] 590,592
Linear-34 [−1, 512, 768] 590,592 Linear-159 [−1, 512, 768] 590,592
Linear-35 [−1, 512, 768] 590,592 Linear-160 [−1, 512, 768] 590,592
Linear-36 [−1, 512, 768] 590,592 LayerNorm-163 [−1, 512, 768] 1536
Linear-39 [−1, 512, 768] 590,592 LayerNorm-164 [−1, 512, 768] 1536
Linear-40 [−1, 512, 768] 590,592 Linear-165 [−1, 512, 3072] 2,362,368

LayerNorm-43 [−1, 512, 768] 1536 Linear-166 [−1, 512, 3072] 2,362,368
LayerNorm-44 [−1, 512, 768] 1536 Linear-169 [−1, 512, 768] 2,360,064

Linear-45 [−1, 512, 3072] 2,362,368 Linear-170 [−1, 512, 768] 2,360,064
Linear-46 [−1, 512, 3072] 2,362,368 LayerNorm-173 [−1, 512, 768] 1536
Linear-49 [−1, 512, 768] 2,360,064 LayerNorm-174 [−1, 512, 768] 1536
Linear-50 [−1, 512, 768] 2,360,064 Linear-175 [−1, 512, 768] 590,592

LayerNorm-53 [−1, 512, 768] 1536 Linear-176 [−1, 512, 768] 590,592
LayerNorm-54 [−1, 512, 768] 1536 Linear-177 [−1, 512, 768] 590,592

Linear-55 [−1, 512, 768] 590,592 Linear-178 [−1, 512, 768] 590,592
Linear-56 [−1, 512, 768] 590,592 Linear-179 [−1, 512, 768] 590,592
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Table A1. Cont.

Layer (Type) Output Shape No. of Params Layer (Type) Output Shape No. of Params

Linear-57 [−1, 512, 768] 590,592 Linear-180 [−1, 512, 768] 590,592
Linear-58 [−1, 512, 768] 590,592 Linear-183 [−1, 512, 768] 590,592
Linear-59 [−1, 512, 768] 590,592 Linear-184 [−1, 512, 768] 590,592
Linear-60 [−1, 512, 768] 590,592 LayerNorm-187 [−1, 512, 768] 1536
Linear-63 [−1, 512, 768] 590,592 LayerNorm-188 [−1, 512, 768] 1536
Linear-64 [−1, 512, 768] 590,592 Linear-189 [−1, 512, 3072] 2,362,368

LayerNorm-67 [−1, 512, 768] 1536 Linear-190 [−1, 512, 3072] 2,362,368
LayerNorm-68 [−1, 512, 768] 1536 Linear-193 [−1, 512, 768] 2,360,064

Linear-69 [−1, 512, 3072] 2,362,368 Linear-194 [−1, 512, 768] 2,360,064
Linear-70 [−1, 512, 3072] 2,362,368 LayerNorm-197 [−1, 512, 768] 1536
Linear-73 [−1, 512, 768] 2,360,064 LayerNorm-198 [−1, 512, 768] 1536
Linear-74 [−1, 512, 768] 2,360,064 Linear-199 [−1, 512, 768] 590,592

LayerNorm-77 [−1, 512, 768] 1536 Linear-200 [−1, 512, 768] 590,592
LayerNorm-78 [−1, 512, 768] 1536 Linear-201 [−1, 512, 768] 590,592

Linear-79 [−1, 512, 768] 590,592 Linear-202 [−1, 512, 768] 590,592
Linear-80 [−1, 512, 768] 590,592 Linear-203 [−1, 512, 768] 590,592
Linear-81 [−1, 512, 768] 590,592 Linear-204 [−1, 512, 768] 590,592
Linear-82 [−1, 512, 768] 590,592 Linear-207 [−1, 512, 768] 590,592
Linear-83 [−1, 512, 768] 590,592 Linear-208 [−1, 512, 768] 590,592
Linear-84 [−1, 512, 768] 590,592 LayerNorm-211 [−1, 512, 768] 1536
Linear-87 [−1, 512, 768] 590,592 LayerNorm-212 [−1, 512, 768] 1536
Linear-88 [−1, 512, 768] 590,592 Linear-213 [−1, 512, 3072] 2,362,368

LayerNorm-91 [−1, 512, 768] 1536 Linear-214 [−1, 512, 3072] 2,362,368
LayerNorm-92 [−1, 512, 768] 1536 Linear-217 [−1, 512, 768] 2,360,064

Linear-93 [−1, 512, 3072] 2,362,368 Linear-218 [−1, 512, 768] 2,360,064
Linear-94 [−1, 512, 3072] 2,362,368 LayerNorm-221 [−1, 512, 768] 1536
Linear-97 [−1, 512, 768] 2,360,064 LayerNorm-222 [−1, 512, 768] 1536
Linear-98 [−1, 512, 768] 2,360,064 Linear-223 [−1, 512, 768] 590,592

LayerNorm-101 [−1, 512, 768] 1536 Linear-224 [−1, 512, 768] 590,592
LayerNorm-102 [−1, 512, 768] 1536 Linear-225 [−1, 512, 768] 590,592

Linear-103 [−1, 512, 768] 590,592 Linear-226 [−1, 512, 768] 590,592
Linear-104 [−1, 512, 768] 590,592 Linear-227 [−1, 512, 768] 590,592
Linear-105 [−1, 512, 768] 590,592 Linear-228 [−1, 512, 768] 590,592
Linear-106 [−1, 512, 768] 590,592 Linear-231 [−1, 512, 768] 590,592
Linear-107 [−1, 512, 768] 590,592 Linear-232 [−1, 512, 768] 590,592
Linear-108 [−1, 512, 768] 590,592 LayerNorm-235 [−1, 512, 768] 1536
Linear-111 [−1, 512, 768] 590,592 LayerNorm-236 [−1, 512, 768] 1536
Linear-112 [−1, 512, 768] 590,592 Linear-237 [−1, 512, 3072] 2,362,368

LayerNorm-115 [−1, 512, 768] 1536 Linear-238 [−1, 512, 3072] 2,362,368
LayerNorm-116 [−1, 512, 768] 1536 Linear-241 [−1, 512, 768] 2,360,064

Linear-117 [−1, 512, 3072] 2,362,368 Linear-242 [−1, 512, 768] 2,360,064
Linear-118 [−1, 512, 3072] 2,362,368 LayerNorm-245 [−1, 512, 768] 1536
Linear-121 [−1, 512, 768] 2,360,064 LayerNorm-246 [−1, 512, 768] 1536
Linear-122 [−1, 512, 768] 2,360,064 LayerNorm-247 [−1, 197, 768] 1536

LayerNorm-125 [−1, 512, 768] 1536 Linear-249 [−1, 197, 768] 590,592
LayerNorm-126 [−1, 512, 768] 1536 LayerNorm-252 [−1, 197, 768] 1536

Total params: 152,928,522
Trainable params: 152,928,522

Non-trainable params: 0
Input size (MB): 0.011719

Forward/backward pass size (MB): 1562.278091
Params size (MB): 583.376015

Estimated Total Size (MB): 2145.665825

Linear−253 [−1, 197, 3072] 2,362,368
Linear−256 [−1, 197, 768] 2,360,064

LayerNorm−259 [−1, 197, 768] 1536
Linear−261 [−1, 197, 768] 590,592

LayerNorm−264 [−1, 197, 768] 1536
Linear−265 [−1, 197, 3072] 2,362,368
Linear−268 [−1, 197, 768] 2,360,064
Linear−271 [−1, 10] 20,490
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Appendix B

Table A2. This table shows all results for GridSearchCV and 5-fold cross-validation for various
combinations of optimizers and hyperparameters, including mean validation accuracy, F1-score,
precision, and recall.

SGDM

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

4

0.00001

1 53.52% 33.33% 40.00% 30.00%

8

0.00001

1 49.53% 43.33% 45.83% 43.75%
2 57.86% 33.33% 30.00% 40.00% 2 51.91% 61.90% 64.29% 64.29%
3 57.3% 66.67% 75.00% 62.50% 3 52.70% 63.89% 66.67% 66.67%
4 55.7% 20.00% 20.00% 20.00% 4 51.87% 8.33% 6.25% 12.50%
5 57.22% 11.11% 8.33% 16.67% 5 51.13% 24.76% 26.19% 28.46%

Mean 56.32% 32.89% 34.67% 33.83% Mean 51.43% 40.44% 41.85% 43.15%

0.00005

1 62.00% 33.33% 33.33% 33.33%

0.00005

1 61.63% 54.76% 61.90% 57.14%
2 60.55% 50.00% 50.00% 50.00% 2 61.62% 52.38% 57.14% 57.14%
3 61.33% 66.67% 75.00% 62.50% 3 60.74% 74.44% 75.00% 77.78%
4 60.01% 33.33% 33.33% 33.33% 4 60.70% 23.81% 28.57% 21.43%
5 62.68% 25.00% 25.00% 25.00% 5 61.98% 14.58% 10.42% 25.00%

Mean 61.31% 41.67% 43.33% 40.83% Mean 44.00% 44.00% 46.61% 47.70%

0.0001

1 56.5% 16.67% 16.67% 16.67%

0.0001

1 61.92% 34.26% 33.33% 35.71%
2 59.8% 50.00% 50.00% 50.00% 2 61.26% 40.48% 42.86% 42.86%
3 62.45% 41.67% 50.00% 37.50% 3 60.67% 55.56% 58.33% 58.33%
4 58.63% 60.00% 60.00% 60.00% 4 53.09% 28.57% 35.71% 31.43%
5 58.36% 13.33% 10.00% 20.00% 5 63.20% 66.00% 73.33% 66.67%

Mean 59.15% 36.33% 37.33% 36.83% Mean 60.03% 44.98% 48.71% 47.00%

0.0005

1 61.17% 33.33% 33.33% 33.33%

0.0005

1 55.87% 39.58% 41.67% 43.75%
2 62.00% 50.00% 50.00% 50.00% 2 56.74% 58.33% 56.25% 62.50%
3 10.22% 0.00% 0.00% 0.00% 3 47.04% 80.00% 83.33% 77.78%
4 59.19% 66.67% 75.00% 62.50% 4 59.18% 29.17% 25.00% 37.50%
5 9.88% 22.22% 33.33% 16.67% 5 10.06% 4.44% 2.00% 2.50%

Mean 40.49% 34.44% 38.33% 32.50% Mean 45.78% 42.31% 45.25% 44.81%

0.001

1 10.2% 0.00% 0.00% 0.00%

0.001

1 9.69% 0.00% 0.00% 0.00%
2 9.92% 0.00% 0.00% 0.00% 2 45.19% 40.48% 50.00% 40.48%
3 9.74% 10.00% 25.00% 6.25% 3 59.85% 19.05% 28.57% 14.29%
4 10.01% 0.00% 0.00% 0.00% 4 9.98% 3.70% 16.67% 2.08%
5 9.88% 22.22% 33.33% 16.67% 5 10.03% 4.44% 20.00% 2.50%

Mean 9.95% 6.44% 11.67% 4.58% Mean 26.95% 13.53% 23.05% 11.87%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.33% 0.00% 0.00% 0.00% 2 10.33% 0.00% 0.00% 0.00%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 0.00% 0.00% 0.00%
4 9.68% 0.00% 0.00% 0.00% 4 9.68% 0.00% 0.00% 0.00%
5 9.88% 22.22% 33.33% 16.67% 5 10.10% 10.91% 20.00% 7.50%

Mean 10.00% 4.44% 6.67% 3.33% Mean 10.04% 2.18% 4.00% 1.50%

12

0.00001

1 48.55% 33.33% 33.33% 33.33%

16

0.00001

1 44.38% 38.52% 43.33% 41.67%
2 48.11% 66.67% 62.50% 75.00% 2 46.77% 46.87% 56.25% 45.00%
3 47.46% 33.33% 40.00% 30.00% 3 44.78% 30.50% 32.50% 29.17%
4 49.04% 20.00% 20.00% 20.00% 4 43.87% 14.00% 15.00% 15.83%
5 49.87% 25.00% 25.00% 25.00% 5 42.51% 14.00% 14.33% 14.33%

Mean 48.60% 35.67% 36.17% 36.67% Mean 44.46% 28.78% 32.28% 29.20%

0.00005

1 57.77% 60.00% 60.00% 60.00%

0.00005

1 58.00% 41.48% 48.89% 43.52%
2 61.49% 100.00% 100.00% 100.00% 2 61.71% 66.93% 66.67% 69.44%
3 59.22% 20.00% 20.00% 20.00% 3 58.89% 31.69% 44.44% 26.30%
4 59.59% 20.00% 20.00% 20.00% 4 57.47% 27.67% 37.50% 29.17%
5 58.08% 13.33% 10.00% 20.00% 5 57.58% 43.15% 41.85% 50.00%

Mean 59.23% 42.67% 42.00% 44.00% Mean 58.73% 42.18% 47.87% 43.69%

0.0001

1 61.68% 14.29% 14.29% 14.29%

0.0001

1 57.37% 55.37% 62.22% 53.70%
2 62.67% 66.67% 62.50% 75.00% 2 63.05% 59.26% 57.41% 62.96%
3 58.44% 33.33% 40.00% 30.00% 3 61.01% 49.01% 56.48% 53.17%
4 62.01% 65.21% 68.75% 65.83% 4 61.52% 45.00% 42.50% 50.00%
5 59.87% 25.00% 25.00% 25.00% 5 59.38% 47.83% 52.59% 58.33%

Mean 60.93% 40.90% 42.11% 42.02% Mean 60.47% 51.29% 54.24% 55.63%

0.0005

1 59.34% 33.33% 33.33% 33.33%

0.0005

1 63.73% 61.46% 70.00% 63.54%
2 58.71% 33.33% 33.33% 33.33% 2 60.60% 41.67% 50.00% 37.50%
3 59.36% 45.67% 42.50% 55.00% 3 57.44% 48.89% 52.78% 46.76%
4 60.51% 40.00% 40.00% 40.00% 4 58.33% 45.67% 42.50% 55.00%
5 58.44% 33.33% 30.00% 40.00% 5 60.22% 54.50% 50.74% 62.96%

Mean 59.27% 37.13% 35.83% 40.33% Mean 60.06% 50.44% 53.20% 53.15%
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Table A2. Cont.

SGDM

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

12

0.001

1 10.11% 10.00% 25.00% 6.25%

16

0.001

1 10.01% 5.95% 12.50% 3.91%
2 10.14% 0.00% 0.00% 0.00% 2 58.75% 70.42% 70.83% 72.92%
3 10.00% 0.00% 0.00% 0.00% 3 59.32% 34.05% 45.00% 30.00%
4 9.73% 0.00% 0.00% 0.00% 4 60.89% 45.33% 47.50% 55.00%
5 10.06% 13.33% 33.33% 8.33% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.01% 4.67% 11.67% 2.92% Mean 39.84% 31.15% 35.17% 32.36%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.33% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 1.31% 11.11% 0.69%
4 9.98% 10.00% 25.00% 6.25% 4 9.68% 0.00% 0.00% 0.00%
5 9.88% 22.22% 33.33% 16.67% 5 9.88% 2.78% 12.50% 1.56%

Mean 10.06% 6.44% 11.67% 4.58% Mean 9.92% 1.37% 7.22% 0.76%

20

0.00001

1 42.66% 35.19% 41.85% 33.33%

24

0.00001

1 40.49% 32.08% 43.75% 31.67%
2 42.15% 59.26% 65.63% 62.50% 2 38.41% 52.28% 51.85% 60.00%
3 40.08% 31.33% 37.50% 29.17% 3 38.54% 22.52% 32.50% 18.33%
4 41.68% 19.60% 19.76% 29.00% 4 37.56% 18.33% 25.00% 18.33%
5 40.76% 17.46% 18.15% 19.75% 5 36.32% 29.63% 29.26% 32.28%

Mean 41.47% 32.57% 36.58% 34.75% Mean 38.26% 30.97% 36.47% 32.12%

0.00005

1 56.44% 58.81% 65.83% 58.33%

0.00005

1 55.67% 44.81% 57.78% 49.07%
2 59.93% 67.10% 71.88% 76.88% 2 52.94% 63.81% 64.58% 71.67%
3 58.99% 44.36% 47.50% 44.33% 3 54.86% 52.65% 58.33% 50.37%
4 57.21% 31.67% 32.62% 38.33% 4 56.01% 28.00% 32.50% 33.33%
5 58.30% 45.17% 46.17% 57.50% 5 53.71% 69.71% 73.33% 75.00%

Mean 58.17% 49.42% 52.80% 55.08% Mean 54.64% 51.80% 57.31% 55.89%

0.0001

1 60.15% 56.16% 60.00% 60.37%

0.0001

1 59.66% 45.33% 51.00% 42.50%
2 62.88% 63.65% 66.67% 62.04% 2 58.20% 67.56% 68.75% 73.75%
3 59.50% 47.35% 51.85% 44.44% 3 60.64% 38.70% 47.22% 34.26%
4 61.04% 37.12% 40.95% 39.17% 4 58.66% 52.00% 52.50% 56.67%
5 62.16% 44.71% 55.74% 44.44% 5 56.70% 60.74% 60.74% 67.46%

Mean 61.15% 49.80% 55.04% 50.09% Mean 58.77% 52.87% 56.04% 54.93%

0.0005

1 57.81% 53.41% 56.67% 55.56%

0.0005

1 59.01% 53.39% 60.00% 53.70%
2 58.31% 54.29% 55.00% 59.17% 2 62.81% 65.21% 68.75% 65.83%
3 63.36% 57.17% 60.00% 61.00% 3 62.92% 67.65% 72.22% 64.44%
4 59.04% 37.00% 35.95% 41.67% 4 56.93% 37.00% 37.50% 46.67%
5 58.73% 37.38% 41.83% 41.50% 5 60.70% 65.70% 70.00% 67.59%

Mean 59.45% 47.85% 49.89% 51.78% Mean 60.47% 57.79% 61.69% 59.65%

0.001

1 57.07% 37.08% 42.50% 35.42%

0.001

1 59.05% 53.70% 56.67% 58.33%
2 58.38% 61.57% 60.00% 69.17% 2 61.08% 57.78% 57.41% 62.96%
3 9.86% 2.02% 11.11% 1.11% 3 9.86% 1.31% 11.11% 0.69%
4 59.46% 40.33% 40.95% 46.67% 4 46.66% 38.89% 41.67% 38.89%
5 57.43% 50.56% 50.19% 55.56% 5 57.11% 44.67% 49.00% 46.50%

Mean 48.44% 38.31% 40.95% 41.58% Mean 46.75% 39.27% 43.17% 41.48%

0.005

1 9.73% 2.27% 12.50% 1.25%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 10.46% 0.00% 0.00% 0.00% 2 9.93% 2.78% 12.50% 1.56%
3 9.91% 1.06% 11.11% 0.56% 3 9.86% 1.31% 11.11% 0.69%
4 9.68% 0.00% 0.00% 0.00% 4 10.23% 1.31% 11.11% 0.69%
5 10.24% 0.00% 0.00% 0.00% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.00% 0.67% 4.72% 0.36% Mean 10.09% 1.08% 6.94% 0.59%

28

0.00001

1 31.34% 0.00% 0.00% 0.00%

32

0.00001

1 36.77% 21.11% 32.22% 23.52%
2 37.39% 0.00% 0.00% 0.00% 2 39.12% 31.10% 37.50% 31.25%
3 38.16% 40.00% 40.00% 40.00% 3 34.83% 27.46% 33.33% 24.81%
4 39.94% 20.00% 20.00% 20.00% 4 34.98% 15.67% 15.00% 18.33%
5 37.20% 13.33% 10.00% 20.00% 5 33.69% 16.67% 15.93% 19.58%

Mean 36.81% 14.67% 14.00% 16.00% Mean 35.88% 22.40% 26.80% 23.50%

0.00005

1 56.21% 33.33% 33.33% 33.33%

0.00005

1 52.80% 55.24% 60.00% 66.67%
2 53.35% 66.67% 62.50% 75.00% 2 52.40% 62.14% 62.50% 71.67%
3 54.51% 20.00% 20.00% 20.00% 3 53.83% 39.52% 47.50% 35.83%
4 54.93% 40.00% 40.00% 40.00% 4 51.65% 43.33% 42.50% 55.00%
5 54.70% 13.33% 10.00% 20.00% 5 54.21% 41.00% 44.33% 46.00%

Mean 54.74% 34.67% 33.17% 37.67% Mean 52.98% 48.25% 51.37% 55.03%

0.0001

1 61.51% 33.33% 33.33% 33.33%

0.0001

1 56.69% 57.22% 62.22% 59.26%
2 59.69% 66.67% 62.50% 75.00% 2 58.72% 72.92% 75.00% 75.00%
3 60.92% 40.00% 40.00% 40.00% 3 57.91% 29.10% 41.67% 23.15%
4 58.24% 37.50% 50.00% 33.33% 4 55.45% 52.00% 47.50% 66.67%
5 61.90% 13.33% 10.00% 20.00% 5 58.58% 26.19% 25.33% 35.00%

Mean 60.45% 38.17% 39.17% 40.33% Mean 57.47% 47.49% 50.34% 50.34%
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Table A2. Cont.

SGDM

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

28

0.0005

1 56.86% 16.67% 16.67% 16.67%

32

0.0005

1 59.85% 58.20% 60.00% 63.89%
2 61.44% 50.00% 50.00% 50.00% 2 60.23% 57.30% 61.11% 54.63%
3 63.29% 41.67% 50.00% 37.50% 3 59.80% 44.71% 50.00% 42.96%
4 61.54% 33.33% 40.00% 30.00% 4 59.51% 46.67% 52.50% 48.33%
5 60.50% 11.11% 8.33% 16.67% 5 59.82% 39.52% 43.67% 48.33%

Mean 60.73% 30.56% 33.00% 30.17% Mean 59.84% 49.28% 53.46% 51.63%

0.001

1 58.72% 14.29% 14.29% 14.29%

0.001

1 60.31% 36.67% 42.22% 34.81%
2 59.69% 50.00% 50.00% 50.00% 2 60.94% 37.50% 50.00% 33.33%
3 58.04% 33.33% 40.00% 30.00% 3 58.44% 39.00% 43.33% 40.00%
4 58.68% 33.33% 33.33% 33.33% 4 56.43% 40.33% 42.50% 46.67%
5 10.10% 0.00% 0.00% 0.00% 5 57.29% 66.30% 68.15% 70.00%

Mean 49.05% 26.19% 27.52% 25.52% Mean 58.68% 43.96% 49.24% 44.96%

0.005

1 10.20% 0.00% 0.00% 0.00%

0.005

1 10.20% 0.00% 0.00% 0.00%
2 9.70% 13.33% 33.33% 8.33% 2 9.70% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.91% 1.31% 11.11% 0.69%
4 10.17% 0.00% 0.00% 0.00% 4 10.01% 1.31% 11.11% 0.69%
5 10.10% 0.00% 0.00% 0.00% 5 10.06% 2.78% 12.50% 1.56%

Mean 10.02% 2.67% 6.67% 1.67% Mean 9.98% 1.63% 9.44% 0.90%

ADAM

Batch
size

LR Fold
Val

Accuracy
F1-score Recall Precision

Batch
size

LR Fold
Val

Accuracy
F1-score Recall Precision

4

0.00001

1 58.63% 40.00% 40.00% 40.00%

8

0.00001

1 56.96% 63.81% 66.67% 64.29%
2 65.19% 20.00% 20.00% 20.00% 2 57.84% 45.83% 43.75% 50.00%
3 57.11% 41.67% 50.00% 37.50% 3 57.31% 40.00% 42.86% 38.10%
4 57.33% 40.00% 40.00% 40.00% 4 57.54% 29.52% 35.71% 32.14%
5 57.64% 20.00% 20.00% 20.00% 5 57.80% 58.33% 63.89% 66.67%

Mean 59.18% 32.33% 34.00% 31.50% Mean 57.49% 47.50% 50.58% 50.24%

0.00005

1 9.73% 0.00% 0.00% 0.00%

0.00005

1 10.20% 0.00% 0.00% 0.00%
2 10.17% 13.33% 33.33% 8.33% 2 10.14% 3.70% 16.67% 2.08%
3 10.25% 10.00% 25.00% 6.25% 3 10.25% 3.70% 16.67% 2.08%
4 9.68% 0.00% 0.00% 0.00% 4 9.73% 3.70% 16.67% 2.08%
5 10.03% 0.00% 0.00% 0.00% 5 9.46% 0.00% 0.00% 0.00%

Mean 9.97% 4.67% 11.67% 2.92% Mean 9.96% 2.22% 10.00% 1.25%

0.0001

1 9.94% 10.00% 25.00% 6.25%

0.0001

1 10.20% 0.00% 0.00% 0.00%
2 10.17% 3.70% 16.67% 2.08% 2 9.93% 3.70% 16.67% 2.08%
3 9.73% 3.70% 16.67% 2.08% 3 10.25% 3.70% 16.67% 2.08%
4 9.46% 1.47% 12.50% 0.78% 4 10.40% 3.70% 16.67% 2.08%
5 10.24% 0.00% 0.00% 0.00% 5 9.46% 0.00% 0.00% 0.00%

Mean 9.91% 3.77% 14.17% 2.24% Mean 10.05% 2.22% 10.00% 1.25%

0.0005

1 9.94% 10.00% 25.00% 6.25%

0.0005

1 10.37% 3.70% 16.67% 2.08%
2 9.92% 0.00% 0.00% 0.00% 2 9.70% 6.67% 16.67% 4.17%
3 10.03% 0.00% 0.00% 0.00% 3 10.22% 0.00% 0.00% 0.00%
4 10.40% 10.00% 25.00% 6.25% 4 10.40% 3.70% 16.67% 2.08%
5 9.46% 0.00% 0.00% 0.00% 5 10.06% 4.44% 20.00% 2.50%

Mean 9.95% 4.00% 10.00% 2.50% Mean 10.15% 3.70% 14.00% 2.17%

0.001

1 10.37% 10.00% 25.00% 6.25%

0.001

1 9.72% 3.70% 16.67% 2.08%
2 9.60% 22.22% 33.33% 16.67% 2 10.46% 0.00% 0.00% 0.00%
3 9.86% 0.00% 0.00% 0.00% 3 9.86% 3.70% 16.67% 2.08%
4 10.44% 0.00% 0.00% 0.00% 4 9.73% 3.70% 16.67% 2.08%
5 9.46% 0.00% 0.00% 0.00% 5 10.03% 4.44% 20.00% 2.50%

Mean 9.95% 6.44% 11.67% 4.58% Mean 9.96% 3.11% 14.00% 1.75%

0.005

1 10.03% 0.00% 0.00% 0.00%

0.005

1 10.11% 3.70% 16.67% 2.08%
2 10.14% 0.00% 0.00% 0.00% 2 10.33% 0.00% 0.00% 0.00%
3 10.22% 0.00% 0.00% 0.00% 3 9.86% 3.70% 16.67% 2.08%
4 10.40% 10.00% 25.00% 6.25% 4 9.73% 3.70% 16.67% 2.08%
5 9.79% 0.00% 0.00% 0.00% 5 10.10% 4.44% 20.00% 2.50%

Mean 10.12% 2.00% 5.00% 1.25% Mean 10.03% 3.11% 14.00% 1.75%

12

0.00001

1 57.81% 33.33% 33.33% 33.33%

16

0.00001

1 56.61% 58.33% 62.22% 64.81%
2 57.96% 100.00% 100.00% 100.00% 2 56.60% 66.55% 68.75% 67.71%
3 59.22% 33.33% 40.00% 30.00% 3 56.23% 50.51% 50.44% 50.67%
4 56.18% 60.00% 60.00% 60.00% 4 57.70% 41.00% 45.00% 38.33%
5 57.68% 39.83% 46.00% 41.67% 5 56.55% 45.19% 57.78% 47.22%

Mean 57.77% 53.30% 55.87% 53.00% Mean 56.74% 52.31% 56.84% 53.75%

0.00005

1 9.73% 0.00% 0.00% 0.00%

0.00005

1 60.28% 41.00% 46.00% 41.00%
2 9.82% 0.00% 0.00% 0.00% 2 59.55% 70.71% 75.00% 73.96%
3 10.00% 0.00% 0.00% 0.00% 3 57.40% 65.33% 66.67% 68.33%
4 58.26% 50.00% 50.00% 50.00% 4 9.44% 4.44% 11.11% 2.78%
5 61.87% 13.33% 10.00% 20.00% 5 9.46% 1.47% 12.50% 0.78%

Mean 29.94% 12.67% 12.00% 14.00% Mean 39.23% 36.59% 42.26% 37.37%
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Table A2. Cont.

SGDM

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

12

0.0001

1 10.20% 0.00% 0.00% 0.00%

16

0.0001

1 9.94% 2.78% 12.50% 1.56%
2 9.60% 22.22% 33.33% 16.67% 2 9.82% 2.78% 12.50% 1.56%
3 10.03% 0.00% 0.00% 0.00% 3 10.25% 3.51% 11.11% 2.08%
4 9.73% 0.00% 0.00% 0.00% 4 9.44% 4.44% 11.11% 2.78%
5 10.41% 0.00% 0.00% 0.00% 5 9.88% 2.78% 12.50% 1.56%

Mean 9.99% 4.44% 6.67% 3.33% Mean 9.87% 3.26% 11.94% 1.91%

0.0005

1 10.11% 10.00% 25.00% 6.25%

0.0005

1 10.01% 5.95% 12.50% 3.91%
2 9.93% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.74% 10.00% 25.00% 6.25% 3 9.91% 1.31% 11.11% 0.69%
4 9.98% 10.00% 25.00% 6.25% 4 9.73% 2.47% 11.11% 1.39%
5 9.88% 22.22% 33.33% 16.67% 5 9.93% 1.47% 12.50% 0.78%

Mean 9.93% 10.44% 21.67% 7.08% Mean 9.88% 2.80% 11.94% 1.67%

0.001

1 10.20% 0.00% 0.00% 0.00%

0.001

1 10.20% 1.47% 12.50% 0.78%
2 9.93% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 9.86% 1.31% 11.11% 0.69%
4 10.40% 10.00% 25.00% 6.25% 4 10.17% 1.31% 11.11% 0.69%
5 10.06% 13.33% 33.33% 8.33% 5 10.41% 0.00% 0.00% 0.00%

Mean 10.09% 4.67% 11.67% 2.92% Mean 10.11% 1.37% 9.44% 0.75%

0.005

1 10.37% 10.00% 25.00% 6.25%

0.005

1 9.94% 2.78% 12.50% 1.56%
2 10.14% 0.00% 0.00% 0.00% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 0.00% 0.00% 0.00% 3 9.96% 1.31% 11.11% 0.69%
4 9.73% 0.00% 0.00% 0.00% 4 9.82% 0.00% 0.00% 0.00%
5 9.93% 0.00% 0.00% 0.00% 5 9.95% 1.47% 12.50% 0.78%

Mean 10.02% 2.00% 5.00% 1.25% Mean 9.87% 1.99% 9.41% 0.91%

20

0.00001

1 57.32% 68.81% 69.58% 80.21%

24

0.00001

1 57.68% 39.83% 46.00% 41.67%
2 59.61% 62.78% 62.96% 63.89% 2 57.35% 45.93% 50.00% 46.30%
3 56.62% 61.48% 69.44% 59.26% 3 57.34% 43.46% 48.15% 41.48%
4 56.34% 41.94% 37.38% 50.00% 4 56.63% 28.00% 30.00% 31.67%
5 57.02% 2.27% 12.50% 1.25% 5 58.08% 69.74% 72.50% 76.04%

Mean 57.38% 47.46% 50.37% 50.92% Mean 57.42% 45.39% 49.33% 47.43%

0.00005

1 60.15% 48.24% 49.00% 60.33%

0.00005

1 60.55% 63.54% 70.00% 66.67%
2 61.36% 70.63% 71.13% 70.33% 2 60.09% 49.63% 51.85% 48.15%
3 59.93% 42.95% 53.33% 38.17% 3 59.16% 68.52% 76.85% 72.22%
4 60.65% 52.59% 56.61% 53.70% 4 58.80% 39.26% 47.22% 44.44%
5 9.79% 2.47% 11.11% 1.39% 5 58.76% 43.05% 52.33% 50.83%

Mean 50.38% 43.38% 48.24% 44.79% Mean 59.47% 52.80% 59.65% 56.46%

0.0001

1 9.72% 2.27% 12.50% 1.25%

0.0001

1 9.72% 1.47% 12.50% 0.78%
2 10.33% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.86% 2.02% 11.11% 1.11% 3 9.74% 2.47% 11.11% 1.39%
4 10.23% 1.06% 11.11% 0.56% 4 9.68% 0.00% 0.00% 0.00%
5 10.24% 0.00% 0.00% 0.00% 5 9.46% 1.47% 12.50% 0.78%

Mean 10.08% 1.07% 6.94% 0.58% Mean 9.68% 1.64% 1.64% 0.90%

0.0005

1 9.72% 2.27% 12.50% 1.25%

0.0005

1 10.37% 2.78% 12.50% 1.56%
2 9.70% 2.27% 12.50% 1.25% 2 9.92% 2.78% 12.50% 1.56%
3 9.91% 1.06% 11.11% 0.56% 3 10.22% 1.31% 11.11% 0.69%
4 9.68% 0.00% 0.00% 0.00% 4 9.73% 2.47% 11.11% 1.39%
5 9.79% 2.27% 12.50% 1.25% 5 9.73% 1.47% 12.50% 0.78%

Mean 9.76% 1.58% 9.72% 0.86% Mean 10.01% 2.16% 11.94% 1.20%

0.001

1 10.11% 3.26% 12.50% 1.88%

0.001

1 10.11% 2.78% 12.50% 1.56%
2 10.14% 3.26% 12.50% 1.88% 2 9.82% 2.78% 12.50% 1.56%
3 10.22% 2.90% 11.11% 1.67% 3 9.86% 1.31% 11.11% 0.69%
4 10.17% 1.06% 11.11% 0.56% 4 10.01% 1.31% 11.11% 0.69%
5 9.93% 1.19% 12.50% 0.63% 5 10.24% 0.00% 0.00% 0.00%

Mean 10.11% 2.33% 11.94% 1.32% Mean 10.01% 1.63% 9.44% 0.90%

0.005

1 10.37% 2.27% 12.50% 1.25%

0.005

1 9.73% 2.78% 12.50% 1.56%
2 10.46% 0.00% 0.00% 0.00% 2 10.17% 1.47% 12.50% 0.78%
3 9.81% 1.06% 11.11% 0.56% 3 10.78% 4.44% 11.11% 2.78%
4 10.17% 1.06% 11.11% 0.56% 4 9.94% 2.78% 12.50% 1.56%
5 10.03% 3.26% 12.50% 1.88% 5 9.86% 1.31% 11.11% 0.69%

Mean 10.17% 1.53% 9.44% 0.85% Mean 10.24% 1.84% 8.61% 1.03%

28

0.00001

1 57.46% 40.00% 40.00% 40.00%

32

0.00001

1 54.92% 43.17% 46.00% 43.33%
2 57.47% 50.00% 50.00% 50.00% 2 57.72% 39.31% 42.59% 45.19%
3 56.73% 40.00% 40.00% 40.00% 3 56.87% 42.59% 55.56% 37.04%
4 57.94% 20.00% 20.00% 20.00% 4 55.91% 42.00% 45.00% 40.00%
5 57.05% 13.33% 10.00% 20.00% 5 56.46% 43.10% 42.00% 47.50%

Mean 57.33% 32.67% 32.00% 34.00% Mean 56.38% 42.03% 46.23% 42.61%

0.00005

1 10.01% 10.00% 25.00% 6.25%

0.00005

1 60.60% 41.67% 51.11% 41.67%
2 60.19% 50.00% 50.00% 50.00% 2 60.71% 42.67% 48.33% 44.17%
3 60.61% 50.00% 50.00% 50.00% 3 65.97% 59.26% 68.52% 57.41%
4 59.38% 40.00% 40.00% 40.00% 4 59.06% 30.00% 27.50% 35.00%
5 60.15% 33.33% 30.00% 40.00% 5 59.31% 60.00% 61.00% 62.50%

Mean 50.07% 36.67% 39.00% 37.25% Mean 59.13% 46.72% 51.29% 48.15%
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Table A2. Cont.

SGDM

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

Batch
Size

LR Fold
Val

Accuracy
F1-Score Recall Precision

28

0.0001

1 10.03% 0.00% 0.00% 0.00%

32

0.0001

1 10.20% 0.00% 0.00% 0.00%
2 9.92% 0.00% 0.00% 0.00% 2 9.70% 2.78% 12.50% 1.56%
3 9.74% 10.00% 25.00% 6.25% 3 9.91% 1.31% 11.11% 0.69%
4 10.17% 0.00% 0.00% 0.00% 4 10.17% 1.31% 11.11% 0.69%
5 10.24% 0.00% 0.00% 0.00% 5 10.03% 3.95% 12.50% 2.34%

Mean 10.02% 2.00% 5.00% 1.25% Mean 10.00% 1.87% 9.44% 1.06%

0.0005

1 10.20% 0.00% 0.00% 0.00%

0.0005

1 10.20% 0.00% 0.00% 0.00%
2 9.93% 0.00% 0.00% 0.00% 2 9.82% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 10.22% 1.31% 11.11% 0.69%
4 9.73% 0.00% 0.00% 0.00% 4 10.40% 2.47% 11.11% 1.39%
5 10.10% 0.00% 0.00% 0.00% 5 10.06% 2.78% 12.50% 1.56%

Mean 9.96% 0.00% 0.00% 0.00% Mean 10.14% 1.87% 9.44% 1.04%

0.001

1 9.69% 0.00% 0.00% 0.00%

0.001

1 10.11% 2.78% 12.50% 1.56%
2 9.82% 0.00% 0.00% 0.00% 2 9.93% 2.78% 12.50% 1.56%
3 9.86% 0.00% 0.00% 0.00% 3 10.02% 4.44% 11.11% 2.78%
4 10.17% 0.00% 0.00% 0.00% 4 9.44% 4.44% 11.11% 2.78%
5 9.46% 0.00% 0.00% 0.00% 5 9.88% 2.78% 12.50% 1.56%

Mean 9.80% 0.00% 0.00% 0.00% Mean 9.88% 3.44% 11.94% 2.05%

0.005

1 9.94% 0.00% 0.00% 0.00%

0.005

1 9.72% 1.47% 12.50% 0.78%
2 10.17% 0.00% 0.00% 0.00% 2 10.17% 1.47% 12.50% 0.78%
3 10.22% 0.00% 0.00% 0.00% 3 9.86% 1.31% 11.11% 0.69%
4 9.92% 0.00% 0.00% 0.00% 4 9.94% 2.68% 12.42% 1.57%
5 9.46% 0.00% 0.00% 0.00% 5 9.86% 2.14% 10.21% 1.38%

Mean 9.94% 0.00% 0.00% 0.00% Mean 9.76% 1.86% 10.74% 1.12%
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Abstract: The wear condition of steel rails directly affects the safety of railway operations. Line-
structured-light visual measurement technology is used for online measurement of rail wear due to
its ability to achieve high-precision dynamic measurements. However, in dynamic measurements,
the random deviation of the measurement plane caused by the vibration of the railcar results in
changes in the actual measured rail profile relative to its cross-sectional profile, ultimately leading to
measurement deviations. To address these issues, this paper proposes a method for three-dimensional
measurement of steel rail cross-sectional profiles based on binocular line-structured light. Firstly,
calibrated dual cameras are used to simultaneously capture the profiles of both sides of the steel rail
in the same world coordinate system, forming the complete rail profile. Then, considering that the
wear at the rail waist is zero in actual operation, the coordinate of the circle center on both sides of
the rail waist are connected to form feature vectors. The measured steel rail profile is aligned with the
corresponding feature vectors of the standard steel rail model to achieve initial registration; next, the
rail profile that has completed the preliminary matching is accurately matched with the target model
based on the iterative closest point (ICP) algorithm. Finally, by comparing the projected complete rail
profile onto the rail cross-sectional plane with the standard 3D rail model, the amount of wear on the
railhead can be obtained. The experimental results indicate that the proposed line-structured-light
measurement method for the complete rail profile, when compared to the measurements obtained
from the rail wear gauge, exhibits smaller mean absolute deviation (MAD) and root mean square
error (RMSE) for both the vertical and lateral dimensions. The MAD values for the vertical and lateral
measurements are 0.009 mm and 0.039 mm, respectively, while the RMSE values are 0.011 mm and
0.048 mm. The MAD and RMSE values for the vertical and lateral wear measurements are lower than
those obtained using the standard two-dimensional rail profile measurement method. Furthermore, it
effectively eliminates the impact of vibrations during the dynamic measurement process, showcasing
its practical engineering application value.

Keywords: steel rail wear; dynamic measurement; line-structured light; binocular vision; ICP algorithm

1. Introduction

The surface wear condition of a rail directly affects the stability and safety of train
operation. With the continuous development of railway transportation towards heavier
loads and higher speeds, the surface wear of rails exhibits characteristics of shorter cycles
and more severe wear. Therefore, higher requirements are placed on the accuracy and
efficiency of online rail profile measurement. Currently, railway maintenance departments
primarily rely on measuring the cross-sectional profile of rails to assess their wear condition.
Rail wear measurement methods are mainly divided into two categories: contact-based and
non-contact-based methods [1]. Contact-based measurement methods include mechanical
gauges such as the P110B and SKM by Vogel and Plötscher from Germany, as well as the
Miniprof profilometer by Greenwood Engineering from Denmark [2]. This type of equip-
ment has mature technology but has the disadvantages of low measurement efficiency and
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difficulties in equipment maintenance. Compared to contact-based measurement methods,
non-contact measurement methods have the advantages of fast measurement and high
accuracy [3,4]. They mainly utilize laser displacement sensor and structured-light vision
measurement. The laser displacement sensor is based on the principle of triangular ranging.
The position of the rail profile can be determined according to the geometric relationship
between the laser and the camera and the imaging position on the laser line array CCD,
for example, the laser displacement sensors developed by Optimess in Switzerland and
the laser portable track inspection instrument. This type of equipment offers simple op-
eration and rapid measurement. However, the obtained rail cross-sectional profiles may
have sparse sampling points, and the measurement data can be affected by ambient light
interference. Additionally, these devices can be expensive [5]. Structure light photogram-
metry technology is used to extract rail cross-sectional profiles from captured images of
line-structured light on the rail surface. This method involves system calibration, image
extraction, and coordinate transformation [6,7]. Examples of such measurement systems
include KLD Labs’ ORIAN™ (optical rail inspection and analysis) optical inspection and
analysis system for rails, and the rail full-profile onboard measurement system by MER-
MEC. These measurement methods provide more detailed rail cross-sectional profile data,
higher system flexibility in setup, and are relatively cost-effective [8].

To achieve dynamic measurement of the full cross-sectional profile of a rail using
line-structured light, the use of binocular line-structured-light technology is a prevalent ap-
proach. In order to dynamically obtain rail cross-sectional profile data, the line-structured-
light measurement system is typically installed on the underside of a rail inspection vehicle
or grinding vehicle positioned close to the inner side of the rail. This allows for continuous
acquisition of the cross-sectional profile of one side of the rail [9,10]. The railhead of the
track undergoes deformation due to long-term train pressure, and the detection of one
side profile cannot accurately assess the condition of rail usage. Moreover, the vibrations
during the vehicle’s motion cause the plane of the line-structured-light measurement
to deviate from the vertical cross-section of the rail. To address the vibration issue, re-
searchers have proposed various methods, including dynamic vibration correction based
on multiple line-structured lights [11–13], estimation of vibration deviation by measuring
the variation in the rail profile features compared to the standard rail profile [14–16],
and combining multiple rail cross-sections for three-dimensional global registration to
measure wear [17]. The multi-line-structured-light measurement method proposed by
Wang Chao and Sun Junhua [12,13] involves extracting feature points from the measured
cross-section to calculate an auxiliary projection plane. The distorted rail section is then
projected onto the auxiliary plane to correct the deviation; however, inaccurate feature
point extraction may occur due to the presence of outliers in the measured cross-section
and inherent geometric distortions in the rail profile. Zhan dong [16] proposed a vehi-
cle multiple degrees-of-freedom vibration decoupling and compensation method based
on orthogonal decomposition. It corrects the deviations caused by vehicle vibrations
by considering the changes in the rail waist profile; however, the rail profile after the
deviation correction is not the cross-sectional profile that is perpendicular to the radial
direction of the rail, which can still lead to measurement errors. Yang Yue [17] proposed
merging multiple rail sections into a three-dimensional surface of the rail and aligning the
measured three-dimensional profile with a standard rail model using global registration
methods to calculate rail wear; however, merging the sections into a three-dimensional
profile can introduce deviations in the radial direction of the rail.

To address the issue of low measurement accuracy in rail section profiles caused by
the deviation of the line-structured-light measurement plane due to vehicle vibrations,
this paper proposes a three-dimensional measurement of the full profile of the rail cross-
section based on line-structured light. The proposed method begins by establishing a
measurement model based on dual-camera vision with line-structured light and calibrating
the line-structured-light measurement plane. Next, a two-step railhead profile measurement
method is introduced, which starts with a coarse measurement and gradually refines the
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measurement to obtain the complete rail profile. The measured rail profile is then compared
with a standard rail 3D point cloud model in three-dimensional space to quantify the rail
wear. Finally, the line-structured-light dual-camera rail full-profile vision measurement
system is tested and validated at a railway infrastructure maintenance base to assess the
measurement accuracy of the proposed method.

2. Rail Cross-Section Full-Profile Measurement System Based on Binocular
Line-Structured Light

2.1. Binocular Measurement System and Model

The structure of the binocular-structured light-based steel rail cross-section full-profile
measurement system is shown in Figure 1. The system consists of a measurement unit
comprising two sets of line lasers and CCD cameras, a data switch, an odometer, and a
data processing computer. The structured light vision acquisition front-end uses a Basler
acA1600-120uc CCD camera with an image resolution of 1600 × 1200. The lens used has
a target size of 1/1.8′′ and a resolution of 5 million, and the accuracy of the image can be
guaranteed. During the inspection, the line lasers are projected vertically onto the surface
of the steel rail, forming a curve of full-profile light stripes on the rail section. The odometer
triggers the cameras at a fixed frequency to capture the images of the rail profile light stripes.
The computer, using an established binocular vision imaging model based on structured
light, reconstructs the full profile of the rail section from the captured light stripe images.

Figure 1. Steel rail full-profile measuring system based on binocular-structured light.

The binocular-structured-light vision system model is shown in Figure 2. OwXwYwZw

is the world coordinate system, OcXcYcZc and O
′
cX

′
cY

′
cZ

′
c are the camera coordinate system,

ocxy and o
′
cx

′
y
′

are the camera imaging plane coordinate system, o1uv and o
′
1u

′
v
′

are the
camera imaging plane pixel coordinate system, [R t] and [R′ t′] are the transformation
matrix between the camera coordinate system and the world coordinate system. Suppose
point PM = (xw, yw, zw)T is an intersection point M between the light plane and the surface
of the steel rail in the world coordinate system, then Pc = (xc, yc, zc)T and p

′
c = (x

′
c, y

′
c, z

′
c)

T

are the coordinates of point M in the camera coordinate system, pm = (um, vm)T and
p
′
m = (u

′
m, v

′
m)

T are the pixel coordinates of the point imaged by the camera. Taking the
OcXcYcZc camera as an example, a camera is modeled by the usual pinhole: the relationship
between a 3D point M and its image projection m is given by

sp̃m = Apc = A[R t]P̃M (1)

where s is the scale factor, A is the matrix of the camera’s intrinsic parameters, R and t are
the rotation matrix and translation vector from the world coordinate system to the camera
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coordinate system, and p̃m and P̃M are the homogeneous coordinates of pm and PM. In
addition, PM satisfies

axc + bxc + czc + d = 0 (2)

where (a, b, c, and d) are the parameters of the light plane in the camera coordinate system.
The light plane in the world coordinate system satisfies

ZW = 0 (3)

Referring to (1) to (3), the binocular-structured-light vision model can be represented as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sp̃m = APc = A[R t]P̃M

axc + bxc + czc + d = 0
s
′
p̃
′
m = A

′
p
′
c = A

′
[R

′
t
′
]P̃M

a
′
x
′
c + b

′
x
′
c + c

′
z
′
c + d

′
= 0

ZW = 0

(4)

where the camera’s intrinsic parameters A and A
′

can be obtained using the chessboard
calibration method [18]. If the external parameters [R t] and [R

′
t
′
] of the transformation

from the line-structured-light plane ZW = 0 in the world coordinate system to the OcXcYcZc

and O
′
cX

′
cY

′
cZ

′
c camera coordinate systems can be obtained, the unique coordinates of the

complete rail profile on the line-structured-light plane PM in the world coordinate system
can be determined.

Figure 2. Binocular-structured-light vision model.

2.2. Determination of the Measurement Plane for Line-Structured Light

To achieve simultaneous calibration of the cameras on both sides of the rail, the
checkerboard calibration board is adjusted so that it is within the common field of view of
the two cameras. Then, the line projectors on both sides are adjusted to align the light planes,
as shown in Figure 3. The cameras and projectors are symmetrically distributed on both
sides, and the angle between the camera optical axis and the light plane is approximately
β = 60◦. The vertical distance d between the projectors and the cameras is

d = f H/h × sinβ (5)
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where f is the focal length of the camera, H is the height of target, and h is the optical
size of camera.

Figure 3. Line-structured-light plane calibration model.

The target plane is fixed in the common viewing area of the cameras on both sides. An
image of the target plane is captured, denoted as image Fi, and an image of the intersection
between the target plane and the line-structured-light plane is captured, denoted as image
F
′
i . Image Fi is used to extract corner points, while image F

′
i is used to extract feature points

formed by the intersection between the line-structured-light plane and the calibration
board, the images captured by the cameras on both sides are shown in Figure 4. Then,
the target plane is moved i (≥3) times, and the above steps are repeated to obtain i pairs
of images.

Figure 4. Calibration images.

The chessboard calibration method [18] is used to solve the external parameters [Ri, ti]
and [R′

i, t′i] that transform each set of captured target planes from the world coordinate
system ZW = 0 to the coordinate systems of the cameras on both sides; the origin of the
world coordinate system is set to the top-left corner point of the target plane. The feature
points formed by the intersection of the light stripes and the chessboard target plane are
shown in Figure 5 as points Pi

1 and Pi
2.
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Figure 5. Feature points extraction on the light plane.

In the figure, points P1, P2, P3, and P4 represent the four corner points of the target
plane, in the image, the corresponding corner points are denoted as Pm1, Pm2, Pm3, and Pm4.
By moving the target plane times, the line-structured-light plane will generate a total of 2m
feature points in the coordinate systems of the cameras on both sides. The coordinates of
feature points pi

1, pi
2 in the camera coordinate system are as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pi
c1 = [Ri ti]Pi

1

Pi
c2 = [Ri ti]Pi

2

P
′i
c1 = [R′

i t′i]P
i
1

P
′i
c2 = [R′

i t′i]P
i
2

, i = 1, 2 . . . m (6)

In the equation, points Pi
1 and Pi

2 are unknown and can be obtained through the
processing of images Fi and F′

i . In image F′
i , the pixel coordinates (uj, vj), j = 1, 2 . . . , n that

correspond to the light stripe satisfy the following condition:

v = mu + c (7)

The pixel points (uj, vj), j = 1, 2 . . . , n occupied by the light stripe can be extracted
from images Fi and F′

i using the differential method. Then, the line parameters of the light
stripe in the images can be solved using the least squares method:⎧⎪⎨⎪⎩

m =
n(∑ ujvj)−(∑ uj)(∑ vj)

n(∑ u2
j )−(∑ uj)2

c =
(∑ u2

j )(∑ vj)−(∑ uj)(∑ ujvj)

n(∑ u2
j )−(∑ uj)2

(8)

The subpixel coordinates of the Pm1Pm2Pm3Pm4 corner point can be obtained from the
F′

i image [19]. Using line intersection calculations, the intersection points Pi
m1 and Pi

m2 can
be determined for the lines formed by the corner points Pm1Pm4 and Pm2Pm3 in the image,
and the lines representing the structure of the light stripe. The chessboard target plane has
a square size of 15 mm, according to the projective transformation and the principle of
invariant ratios [20], the points Pj

m1 and Pj
m2 in the image and their corresponding feature

points Pi
1 and Pi

2 in the world coordinate system satisfy the following relationship:

Pi
1 − P1

Pi
1 − P4

=
Pi

m1 − Pm1

Pi
m1 − Pm4

,
Pi

2 − P2

Pi
2 − P3

=
Pi

m2 − Pm2

Pi
m2 − Pm3

(9)
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From (6) to (9), by applying the singular value decomposition (SVD) method to the
feature points Pi

c1, Pi
c2 and P

′i
c1, P

′i
c2, i = 1, 2 . . . m, we can individually fit the equations of the

line-structured-light plane in the coordinate systems of the two cameras:{
axc + bxc + czc + d = 0
a′xc

′ + b′xc
′ + c′zc

′ + d′ = 0
(10)

Based on Equations (3) and (10), and using the Rodrigues transformation [21], we can
calculate the external parameter matrices [R t] and [R′ t′], which represent the transforma-
tion from the line-structured-light plane to the coordinate systems of the two cameras.

3. Full-Profile Wear Measurement of Rail Section Based on Binocular
Line-Structured Light

3.1. Extraction of Full Profile of Steel Rail Section

The rail geometry information can be obtained by means of distance measuring equip-
ment such as rail height, rail waist height, rail waist width, and rail waist inclination, and
the curve shape information can be obtained using a laser scanner. First, the contour images
of the inner and outer sides of the steel rail are captured. Then, the subpixel coordinates
of the center points of the steel rail contour light stripes are extracted [22,23]. Based on
the established dual-camera vision model and the calibration of the line-structured-light
plane’s external parameters, the steel rail contour points on the line-structured-light plane
are calculated using Equation (11):{

P̃M = s[R t]−1 A−1P̃m

P̃
′
M = s[R

′
t
′
]−1 A−1P̃

′
m

(11)

To convert the subpixel coordinates of the center points of the rail profile light stripes
in the image to the coordinates of the actual rail profile points on the measured light plane
in the world coordinate system, the curved shape information of the rail is obtained using
a laser scanner. The two locations on the top and bottom of the rail can be marked as
“right” and “left”, respectively. Then, the image undergoes median filtering and subpixel
processing to obtain the contours of one side of the rail. Based on this, the complete contour
of the rail on both sides is merged, as shown in Figure 6.

Figure 6. Full-profile collection of railway tracks.
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3.2. Measurement of Railhead Contour Based on Two-Step Method

According to the “Maintenance Rules for Ballastless Track of High-speed Railway” [24],
the measurement of vertical wear on the rail is taken at a width of one-third of the rail’s
top surface, and the measurement of side wear on the rail is taken 16 mm below the rail’s
running surface. As shown in Figure 7, WV represents the vertical wear of the rail, and WH
represents the side wear of the rail. In general, by comparing the measured rail profile with
the standard 2D profile, we can obtain WV and WH . However, the visual measurement
system is installed on a moving train, and the vibrations of the train body can cause the
random deflection of the line-structured-light measurement plane.

Figure 7. Rail vertical wear and horizontal wear.

As shown in Figure 8, a yaw angle deviation around the Y-axis, denoted as α, results
in the measured rail profile being horizontally stretched compared to the standard rail
profile. Similarly, a pitch angle deviation around the X-axis, denoted as β, leads to the
measured rail profile being vertically stretched compared to the standard profile. Directly
comparing the measured rail profile obtained under the train’s vibration with the standard
2D rail profile will introduce measurement deviation. Therefore, the two-step method for
measuring the railhead profile is adopted, which involves comparing the measured full rail
profile with a standard 3D steel rail point cloud model in three-dimensional space. This
approach helps to eliminate the influence of vibrations during the measurement process.
Please refer to Sections 3.2.1 and 3.2.2 for detailed procedures.

Figure 8. Measuring the plane pitch and heading offset.
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3.2.1. Step 1: Initial Alignment of Rail Waist Contour Based on Rail Waist Feature Vectors

Due to the random deviation of the line-structured-light plane, the initial position
of the measured steel rail profile in three-dimensional space differs significantly from the
standard rail model. This misalignment prevents accurate alignment, requiring adjustment
of the initial position of the measured rail profile to achieve initial registration with the
standard rail model. By analysis, the complete rail profile can be divided into the railhead
and rail waist sections, with the rail waist section experiencing no wear during actual
operation. Therefore, the rail waist profile can be used as the reference. Two different
feature vectors are formed by connecting the centers of the small circular arcs on both
sides of the rail waist profile of the measured rail profile and the standard rail model,
respectively, and the initial registration of the measured rail profile and the standard rail
model is realized by aligning the two feature vectors. The specific process is as follows:

First, to minimize interference during the alignment between the measured rail profile
and the standard rail model, the railhead bottom surface and rail bottom surface data of
the standard steel rail model are removed before matching with the measured rail profile.
Then, the standard rail model is transformed into a point cloud model. Specifically, for
each triangle in the standard steel rail model with three vertices A, B, and C, a random
uniformly distributed point cloud Qk, k = 1, 2 . . . is generated on the surface of the triangle.

Qk = A + s
−→
AB + t

−→
AC (12)

where s and t are random numbers in [0, 1], if s + t > 1, then s = 1 − s and t = 1 − t [25].
Establish a Kd-tree index for the measured rail profile points to enable fast searching based
on neighborhood relationships. Specifically, the measured rail profile points are denoted as
Q, with the railhead contour points represented by QH , and the rail waist contour points
represented by QW . Due to the significant distance between QH and QW , we can use
Euclidean clustering to segment and extract them.

Then, as shown in Figure 9, the approximate centroid coordinates of the small arc
contours on both sides of the steel rail waist can be extracted using techniques such as
Hough circle detection. The radius of the small arc contour is r = 20 mm. The centroid
coordinates or and ol can be obtained, and the position of the centroid can be determined
based on the grayscale values in the image. Specifically, in the steel rail waist curve, where
each pixel point represents 1 mm, we can draw a circle with radius r = 20π centered at
the steel rail waist contour point, and the value of the corresponding pixel point increases
by 1 when the arc passes through the pixel point. The approximate coordinates of the
maximum pixel value point correspond to the centroid coordinates or and ol of the small arc
contour;the resulting steel rail waist feature point vector is denoted as −→olor. Furthermore,
for the standard rail model, the corresponding approximate coordinates on both sides of
the rail waist contour are denoted as OR and OL, and the corresponding rail waist feature
point vector is

−−−→
OROL. The corresponding points of the measured steel rail contour after

initial registration are denoted as Q′, the rail waist contour points become Q′
W , the rotation

matrix and translation vector for the initial registration are represented as R1 and t1, the
detailed solution process can be found in Equations (13)–(15).{

Q′ = R1Q + t1

QW
′ = R1QW + t1

(13)

{
R1 = I + sin(θ)K + (1 − cos(θ))K2

t1 = OL − ol
(14)

⎧⎪⎨⎪⎩
k = −→olor ×−−−→

OROL

θ = acos
−→olor ·−−−→OROL

‖−→olor‖∗
∥∥∥−−−→OROL

∥∥∥ (15)
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In this formula, k represents the rotation axis vector for the rotation transformation, θ
represents the rotation angle, K represents the cross-product matrix of k, and I represents
the identity matrix.

Figure 9. Rail waist feature point extraction.

3.2.2. Step 2: Accurate Measurement of Railhead Profile Based on ICP Algorithm and
Model Registration

Using the initially aligned measured contour as a reference, and using the the ICP
(iterative closest point) algorithm to achieve precise registration of the measured contour
and the standard rail model, this ultimately enables the measurement of the railhead
profile. In the ICP algorithm for precise registration, the total number of iterations [26],
total deviation, and threshold for the difference between consecutive deviations are set to
limit the number of iterations. The algorithm utilizes singular value decomposition (SVD)
to estimate the rigid transformation. The rotation matrix and translation vector for precise
registration are denoted as R2 and t2, respectively, to achieve the following transformation:

f (R2, t2) = ∑
∥∥Qk − (R2Q′ + t2)

∥∥2
= min (16)

Finally, the transformation of the measured full rail contour points Q is given by:

Q′′ = R2(R1Q + t1) + t2 (17)

Projecting the full rail contour points Q′′ onto a plane perpendicular to the longitudinal
direction of the rail and establishing a Kd-tree index, we can use the nearest neighbor point
search to find the distances between the measured rail contour and the standard rail contour.
This allows us to calculate the rail’s overall wear condition based on the contour.

In summary, the alignment and comparison process between the measured rail contour
points and the standard rail point cloud is shown in Figure 10. The process involves two
steps: initial alignment and precise alignment. (a) The measured steel rail’s full contour
points are imported into the initial state of the standard steel rail point cloud in 3D space;
(b) based on the feature vector formed by connecting the centers of the small circular arcs
on both sides of the steel rail contour, the initial alignment between the measured steel
rail contour and the standard steel rail model is performed; (c) the precise alignment is
achieved by aligning the measured steel rail’s full contour points with the standard steel rail
point cloud model. The measured steel rail’s waist section fits perfectly with the standard
steel rail point cloud model, enabling accurate measurement and detection of railhead
contour wear.
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Figure 10. The process of steel rail full−profile measuremen (a–d).

4. Experiment and Analysis

4.1. Test Experiment Platform

The measurement system was tested at the railway maintenance base of the railway
bureau, as shown in Figure 11. The vision sensor was installed on the upper side of the
railhead, about 70 mm above, and the vision sensor and line laser were fixed at a certain
relative angle. The resolution of the vision sensor was 1600 × 1200 , and the system was
capable of capturing and processing rail contour images, system calibration, and measuring
rail wear on the entire contour. The experimental process included the following steps:
first, verifying the accuracy of the system’s stereo calibration method [27]; then, using the
proposed binocular vision measurement system and wear gauge measurement, comparing
the vertical and side wear of the same rail to validate the measurement accuracy.

Figure 11. The experimental platform built on the rail inspection vehicle.

4.2. Calibration of Measurement System and Accuracy Analysis

The line-structured-light binocular camera system employs a 9 × 12 chessboard
calibration board with square size of 15 × 15 mm. Thirteen sets of images of light stripe
targets are captured using the two cameras. The method described in Section 2.2 is used to
extract feature points at the intersections of the light stripes and the chessboard grid. The
fitted equations of the light planes in the coordinate systems of the left and right cameras
are as follows: {

−0.476xc − 0.543xc + 0.692zc − 196.001 = 0
0.391xc

′ − 0.528xc
′ + 0.754zc

′ − 202.922 = 0
(18)
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The calculated internal parameters A and A′ of the two cameras, as well as the external
parameters [R, t] and [R′, t′] of the line-structured-light plane, are shown in Table 1.

Table 1. Results of camera calibration parameters of left and right cameras.

Name Solution Results

Internal External A =

⎡⎣1899.792 0 785.809
0 1898.065 621.232
0 0 1

⎤⎦
A′ =

⎡⎣1904.880 0 804.499
0 1904.684 613.186
0 0 1

⎤⎦
External Parameters [R, t] =

⎡⎣ 0.877 −0.236 0.418 −52.677
−0.064 0.806 0.588 8.064
−0.476 −0.543 0.692 253.306

⎤⎦
[R′, t′] =

⎡⎣ 0.920 0.240 −0.309 −95.225
−0.018 0.815 0.579 −24.717
0.391 −0.528 0.754 301.256

⎤⎦

In order to evaluate the calibration accuracy of the line-structured-light stereo camera
system, and to verify the feasibility of the system, this paper proposes an analysis of
the calibration errors of the cameras’ internal parameters and the fitting degree of the
line-structured-light plane. By using the calibration of the planar target, the cameras’
internal and external parameters are obtained. The corner coordinates of the planar target
in the world coordinate system are projected onto the images and compared with the
corresponding corner coordinates in the images. The deviations of each image captured
by the left and right cameras are shown in Figure 12. The overall average deviations are
0.0149 px and 0.0118 px, respectively.

Figure 12. Camera calibration deviation.

In the coordinate systems of the left and right cameras, the distance deviations between
the line-structured-light plane fitted using SVD decomposition and the feature points are
shown in Figure 13, and only the edge points within the plane have relatively larger errors
due to the quality of the projected line-structured light. The evaluation parameters for
the fitting of the line-structured-light plane are shown in Table 2, where a determination
coefficient close to 1 indicates a good fitting degree of the line-structured-light plane.
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Figure 13. Analysis of fitting plane error.

Table 2. Fitting plane evaluation parameters.

Coordinate System of the Coordinate System of the
Left Camera Right Camera

Sum of squared errors (SSE) 2.358 1.761
Coefficient of determination 0.9999 0.9999

(R-square)
Standard deviation (RMSE) 0.3202 0.2767

4.3. Analysis of Rail Wear Measurement Accuracy

For the measurement of one section of the 60# steel rail at 20 different positions,
the rail wear gauge, the standard rail-based 2D contour measurement and the proposed
method in this paper were used. Among them, the cameras used in this experiment
have a resolution of 1600 × 1200. The field of view of each camera is approximately
167 × 122 units, and the pixel accuracy is 0.1 mm/pixel. The measurement accuracy for
rail wear using the gauge is 0.01 mm, which is one order of magnitude higher than the
image accuracy. The vertical wear and side wear obtained based on the rail wear gauge
measurement are shown in Table 3.

There was no obvious data fluctuation in the two groups of data. Therefore, the rail
wear gauge measurement data are taken as the reference standard, and the measurement
results obtained from the standard rail-based 2D contour measurement and the proposed
method in this paper are compared with it. The measurement results are shown in Table 3.

Table 3 shows that compared to the measurement results of the rail wear gauge, the
average absolute errors of vertical wear for the two methods are 0.038 mm and 0.009 mm,
and the average absolute errors of the side wear measurements are 0.086 mm and 0.039 mm,
respectively. The root mean square errors of the vertical wear measurements are 0.046 mm and
0.011 mm, and the root mean square errors of the side wear measurements are 0.097 mm and
0.048 mm, respectively. The proposed method in this paper exhibits smaller average absolute
deviations and root mean square errors for both vertical and side wear measurements
compared to the results obtained from the standard rail-based 2D contour measurement.

Furthermore, the measurements using the proposed method are closer to the standard
measurements obtained from the rail wear gauge, as shown in Figures 14 and 15.

The method proposed in this paper for measuring the railhead contour, has the ability
to correct measurement errors caused by random deviations in the measurement plane of
the line-structured light. By bringing the measured steel rail’s complete contour into a 3D
space and comparing it with the standard 3D point cloud model of the steel rail, the wear
can be accurately measured. This approach eliminates the influence of vibrations during
the measurement process, and obtains more precise wear measurements.
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Table 3. Results of wear measurement for 60 kg/m rail.

Results by Standard
Results by Standard 2D Profile Results by the Proposed Method

Rail Wear Gauge

No
Vertical

Wear
Side
Wear

Vertical
Wear

Deviation
Side
Wear

Deviation
Vertical

Wear
Deviation

Side
Wear

Deviation

1 0.020 −0.390 0.011 −0.009 −0.601 −0.211 0.021 0.001 −0.455 −0.065
2 0.020 −0.410 0.013 −0.007 −0.511 −0.101 0.017 −0.003 −0.402 0.008
3 0.060 −0.350 0.024 −0.036 −0.461 −0.111 0.065 0.005 −0.353 −0.003
4 0.070 −0.320 0.044 −0.026 −0.428 −0.108 0.062 −0.008 −0.305 0.015
5 0.110 −0.340 0.037 −0.073 −0.408 −0.068 0.090 −0.020 −0.350 −0.010
6 0.070 −0.300 0.033 −0.037 −0.428 −0.128 0.065 −0.005 −0.301 −0.001
7 0.060 −0.310 0.028 −0.032 −0.399 −0.089 0.045 −0.015 −0.286 0.024
8 0.080 −0.230 0.004 −0.076 −0.261 −0.031 0.076 −0.004 −0.173 0.057
9 0.110 −0.350 0.035 −0.075 −0.441 −0.091 0.104 −0.006 −0.340 0.010

10 0.060 −0.390 0.004 −0.056 −0.490 −0.100 0.048 −0.012 −0.305 0.085
11 0.140 −0.220 0.074 −0.066 −0.292 −0.072 0.108 −0.032 −0.244 −0.024
12 0.030 −0.260 0.004 −0.026 −0.365 −0.105 0.036 0.006 −0.264 −0.004
13 0.080 −0.240 0.039 −0.041 −0.296 −0.056 0.070 −0.010 −0.190 0.050
14 0.010 −0.430 0.001 −0.009 −0.474 −0.044 0.006 −0.004 −0.383 0.047
15 0.020 −0.440 0.001 −0.019 −0.469 −0.029 0.028 0.008 −0.374 0.066
16 0.050 −0.380 0.001 −0.049 −0.375 0.005 0.037 −0.013 −0.292 0.088
17 0.040 −0.210 0.004 −0.036 −0.248 −0.038 0.050 0.010 −0.177 0.033
18 0.030 −0.050 0.012 −0.018 −0.128 −0.078 0.020 −0.010 −0.002 0.048
19 0.050 −0.180 0.002 −0.048 −0.316 −0.136 0.055 0.005 −0.267 −0.087
20 0.060 −0.310 0.033 −0.027 −0.428 −0.118 0.056 −0.004 −0.361 −0.051

MAD (mm) 0.038 0.086 0.009 0.039
RMSE (mm) 0.046 0.097 0.011 0.048

Figure 14. The measured values of side wear obtained from different methods.
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Figure 15. The measured values of vertical wear obtained from different methods.

5. Conclusions

In this paper, a full profile of rail cross-section measurement method based on line-
structured light was established, and further, a coarse alignment and precise registra-
tion approach was proposed for measuring the railhead contour. The method involved
comparing the measured rail contour with a three-dimensional point cloud model of a
standard steel rail to obtain rail wear measurements and mitigate the influence of light
plane deviations caused by vibrations during the measurement process. The experi-
ments demonstrated the following conclusions: (1) The establishment of the binocular
line-structured-light vision system model, with a camera’s internal parameter calibration
deviation of approximately 0.01px and a fitting degree of the line-structured-light plane
reaching 0.9999, validated the feasibility of the binocular calibration method. (2) The pro-
posed full profile of rail cross-section measurement method based on line-structured light
and stereo vision achieved accurate measurement of the railhead contour in a two-step
process. The on-site comparative measurement tests showed that the average absolute
error in the vertical wear measurement obtained through this method was 0.009 mm, and
the average absolute error in the side wear measurement was 0.039 mm. This measure-
ment method effectively corrected measurement plane deviations and met the accuracy
requirements for rail wear measurement.
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Abstract: Aiming at the problem of detection difficulties caused by the characteristics of high
similarity and disorderly arrangement of workpieces in dense scenes of industrial production lines,
this paper proposes a workpiece detection method based on improved YOLOv5, which embeds a
coordinate attention mechanism in the feature extraction network to enhance the network’s focus on
important features and enhance the model’s ability to pinpoint targets. The pooling structure of the
space pyramid has been replaced, which reduces the amount of calculation and further improves the
running speed. A weighted bidirectional feature pyramid is introduced in the feature fusion network
to realize efficient bidirectional cross-scale connection and weighted feature fusion, and improve the
detection ability of small targets and dense targets. The SIoU loss function is used to improve the
training speed and further improve the detection performance of the model. The average accuracy of
the improved model on the self-built artifact dataset is improved by 5% compared with the original
model and the number of model parameters is 14.6MB, which is only 0.5MB higher than the original
model. It is proved that the improved model has the characteristics of high detection accuracy, strong
robustness and light weight.
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1. Introduction

Workpiece sorting is a common task in manufacturing and industrial production. Due
to its high repeatability, workpiece sorting has become one of the important application
scenarios of industrial robots [1]. Traditional sorting robots are pre-programmed. Although
they can carry out repetitive actions, such robots cannot be adjusted according to the
actual situation and must strictly set the location of the sorting workpiece. Therefore,
the robots lack the ability of independent identification and have low requirements for
object detection technology, leading to an increase in the error rate and lower production
efficiency [2]. Hence, in the automatic production line, improving the speed and accuracy
of workpiece positioning and identification has important research significance for sorting
robots. However, the problem of small and dense workpieces and workpieces blocking
each other in industrial automation scenarios poses a greater challenge for workpiece
inspection.

The disadvantages of the traditional object detection method are that it requires a large
amount of manpower to extract effective features, the model lacks generalization ability
when the target features change, and the detection algorithm of single feature or multiple
features loses most of the feature information of the object, which cannot be applied to the
actual industrial detection scene. Liu et al. [3] used the improved SURF-FREAK algorithm
to recognize and grasp the workpiece. The algorithm adopted the improved SIFT for
feature extraction but the experimental results of the algorithm were poor under complex
illumination conditions. Jiang et al. [4] used the contour Hu moment invariant characteristic

Electronics 2023, 12, 2966. https://doi.org/10.3390/electronics12132966 https://www.mdpi.com/journal/electronics224



Electronics 2023, 12, 2966

to match and recognize the workpiece image but this algorithm needs to manually design
the feature extraction algorithm, which has some shortcomings in universality. In recent
years, deep learning has been widely applied in object detection. Luigi Bibbo et al. [5]
have developed a facial expression recognition system based on the Ensemble AI model
that could help improve healthcare. Wang et al. [6] proposed the Faster R-CNN algorithm
for identification and classification of small automotive parts under complex working
conditions, which can accurately detect scattered parts, but there is a problem of missed
detection for mutually occluded parts. Gong et al. [7] applied the YOLOv3 algorithm to the
part recognition model, which solved the problem that it was difficult for stacked board
parts to identify the blocked parts and improved the detection accuracy. However, when the
workpiece was densely stacked, false detection and missed detection would also be caused.
In most production lines, there are many kinds and irregular quantities of workpieces and
they are placed randomly, which requires that the designed object detection algorithm and
network not only have good robustness for workpiece detection in complex situations, but
also have strong detection ability for dense small targets, so as to reduce the rate of missed
detection.

In this paper, aiming at the problem that it is difficult to identify a large number of
small targets in the industrial production line due to the dense workpieces, we compare
the widely used object detection algorithms at present, and choose to improve the YOLOv5
algorithm with both speed and precision. The detection effect of the original YOLOv5
model is slightly insufficient in the detection of small targets, which are easy to miss, and
false detection. Moreover, it has a large positioning error when there are many targets and
dense distribution. To solve the above problems, a workpiece detection method based on
improved YOLOv5 is proposed in this paper. Firstly, the coordinate attention mechanism
is embedded in the backbone feature extraction network to make the network pay more
attention to the region of interest and increase the feature extraction capability of the
network. Secondly, the space pyramid pool structure is replaced to reduce the computation
and improve the running speed. Secondly, BiFPN is used as the feature fusion network
to enhance the feature fusion capability of the network, so that the location information
and semantic information are fully integrated. Finally, the SIoU loss function is used
to replace the CIoU loss function in the original model to accelerate the training speed
and increase the convergence of the network. The comparison of multiple existing object
detection algorithms shows that the improved algorithm in this paper has a higher detection
accuracy for dense workpieces and can achieve accurate detection effects.

2. Workpiece Detection Algorithm Based on the Improved YOLOv5

2.1. YOLOv5 Object Detection Algorithm

YOLOv5 has high detection accuracy and speed, more flexible network deployment,
and is widely used in real-time object detection research [8].

The network structure of YOLOv5 is shown in Figure 1, which is composed of the
backbone, neck and head. The backbone mainly performs feature extraction and is com-
posed of structures such as the Focus layer, CBS layer, C3 layer, SPP layer [9] and Bottleneck
layer. The neck network adopts the structure of FPN (Feature Pyramid Network) [10] +
PAN (Path Aggregation Network) [11], which can fuse shallow position features and deep
semantic features of images, and enhance the feature fusion capability of the network, and
generate feature maps of different sizes. The head part obtains the feature maps extracted
from the backbone or fused from the neck to obtain the location and class of the detected
targets.

As shown in Figure 2, the recovery and reuse of workpieces has become increasingly
important in industry [12], for example, automobile workpiece recycling, including screws,
bearings, bolts, etc. These parts come from a variety of different automobile brands
and models, and are in large and disorganized quantities, making the identification and
classification of the parts in recycling extremely time-consuming and labor-intensive.
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Figure 1. YOLOv5 network structure.

Figure 2. Workpiece sorting robot operation diagram.

In order to improve efficiency and accuracy, an efficient object detection algorithm is
needed to identify and classify workpieces. However, the YOLOv5 model used has poor
generalization for dense and small volume workpieces under different illumination; it is
not suitable for practical application, so it has to be improved.

2.2. Improvements to the YOLOv5 Model

In order to solve the problem that it is difficult to accurately identify a large number of
small targets formed by dense workpieces, the following improvements are made to the
YOLOv5 model in this paper.

1. The coordinate attention mechanism is integrated into the backbone feature extraction
network to increase the network’s interest in important features and improve the
feature extraction capability of the network.

2. The SPP in the original model is improved to SimSPPF, which reduces the computation
and increases the running speed.

3. BiFPN structure is used for cross-layer feature fusion, which fully combines semantic
information and location information to enhance the feature fusion capability of
the network.
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4. The CIoU loss function in the original model is improved to the SIoU loss function, and
the direction matching between the real box and the predicted box is fully considered
to improve the convergence performance of the model.

2.2.1. Coordinate Attention Mechanism

In view of the density and small size of some parts in industrial sorting, coordinate
attention (CA) was introduced into the feature extraction network of YOLOv5 [13], which
could effectively extract the feature information of small and dense targets of the workpiece
and further improve the accuracy of detection.

Different from most attention mechanisms [14,15], which use maximum pooling or
average pooling to process channels, the coordinate attention mechanism introduced in this
paper adds location information to channel attention; the mobile network can participate in
a larger area under the premise of avoiding a large number of calculations, so as to avoid
the loss of location information. The introduced attention mechanism decomposes channel
attention into two parallel one-dimensional feature coding processes, which aggregate
features in two directions: one direction to obtain remote dependence, the other direction
to retain accurate location information, and then encode the generated feature maps to
form a pair of direction-aware and position-sensitive feature maps. The structure of the
introduced CA module is shown in Figure 3, which uses coordinate information embedding
and coordinate attention to generate the relationship between the channel and the position
of the captured features.

Figure 3. CA module structure.

In order to obtain the attention in the horizontal and vertical directions of the image
and encode the exact position information, CA first divides the input feature graph x into
horizontal xc(h, i) and vertical xc(i, w) directions for global averaging pooling. The two
directions of the output zh

c (h) at the height h of channel c and the output zw
c (w) at the width

w of channel are obtained.

zh
c (h) =

1
W

W

∑
i=0

| xc(h, i) (1)

zw
c (w) =

1
H

H

∑
j=0

| xc(j, w) (2)
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Next, the horizontal feature graph zh and vertical feature graph zw obtained from the
global receptive field are stitched together, and then they are sent into the shared 1 × 1
convolution transform F1 to reduce their dimensions to the original c/r, and then the batch
normalized feature graphs are sent into the nonlinear activation function δ to get the shaped
1 × (W + H)× c/r feature graph f .

f = δ(F1(|zh, zw|)) (3)

Then, the feature graph f is divided into two feature vectors f h and f w according to
the original horizontal and vertical directions, and two 1 × 1 convolution transform Fh and
Fw, respectively, to get the feature graph with the same number of channels. After sigmoid
activation function, the attention weight gh of the feature graph in the horizontal direction
and the attention weight gw in the vertical direction are obtained.

gh = σ(Fh() f h) (4)
gw = σ(Fw() f w) (5)

Finally, the feature graph with attention weights in both horizontal and vertical
directions will be obtained through multiplication weighting on the original feature graph.

yc(i, j) = xc(i, j)× gc
h × gw

c (j) (6)

The CA module is a novel attention mechanism for mobile networks. It has the
characteristics of being simple, flexible, and plug and play, which can improve the accuracy
of the network without any extra computing overhead.

2.2.2. Simple and Fast Space Pyramid Pool

In traditional convolutional neural networks, the size of the input image must be
fixed. However, in practical applications, the size of the input image is often uncertain,
while the spatial pyramid pooling (SPP) [16] can flexibly obtain the output of any available
dimension by increasing the number of layers of the feature pyramid or changing the size
of the window. Its structure is shown in Figure 4. If the convolutional feature map of
size (w, h) is input, the spatial pyramid of the first layer uses a 4 × 4 scale to divide the
feature map into 16 pieces and the size of each piece is (w/4, h/4). The second layer uses a
2 × 2 scale to divide the feature map into four blocks; the size of each is (w/2, h/2). The
third layer directly takes the whole feature map as a block, carries on the feature extraction
operation and finally gets the feature vector of 21 = 16 + 4 + 1 dimensions. SPP can not
only solve the problem of inconsistent input image size, but also carry out multi-angle
feature extraction and reaggregation of the feature map after convolution and pooling. SPP
can significantly improve model performance and detection accuracy when used for target
detection, while reducing the risk of over-fitting.

SimSPPF uses a cascade of multiple small-sized pooling kernels instead of a single
large-sized pooling kernel in the SPP module while increasing the perceptual field of view.
Specifically, it serial processing inputs through multiple maximum pooling layers of 5 × 5
size, replacing a 9 × 9 convolution operation with two 5 × 5 convolution operations and a
13 × 13 convolution operation with three 5 × 5 convolution operations. This design can not
only retain the original function, but also reduce the amount of computation, improve the
running speed and make the SimSPPF structure more efficient. The specific structure of
SimSPPF is shown in Figure 5.
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Figure 4. SPP structure diagram.

Figure 5. Structure diagram of SimSPPF.

2.2.3. Bidirectional Feature Pyramid

The purpose of the feature pyramid structure FPN is to fuse shallow position informa-
tion and deep semantic information, as shown in Figure 6a. The original pyramid structure
adopts the information fusion from top to bottom, which improves the information extrac-
tion ability of the network, but the fusion process will also lead to the loss of information.
YOLOv5 adopts PANet structure, as shown in Figure 6b. Based on the idea of an FPN image
feature pyramid, PANet not only carries out feature fusion from top to bottom but also
adds feature fusion from bottom to top, so as to reduce information loss and achieve good
detection results. However, the number of parameters in network training is increased.
For workpiece detection, the original model has the problem of low detection accuracy
due to the presence of more small target objects. Bidirectional Feature Pyramid Network
(BiFPN) [17], as shown in Figure 6c, enhances the information extraction capability of
the network, so that low-level position information can better combine with high-level
semantic information, thus further improving the detection performance of the network
for targets. The PANet structure of the original network is only stacked on the channel,
while the BiFPN takes the weight information into account and implements bidirectional
cross-scale feature fusion.

In this paper, BiFPN is integrated into the YOLOv5 structure to reduce the loss of
feature information, improve the extraction efficiency of position information and enhance
the detection ability of the network for small targets. Meanwhile, this improvement hardly
increases the cost and has little impact on the size of model parameters.
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Figure 6. Schematic diagram of FPN, PANet and BiFPN structures.

2.2.4. SIoU Loss Function

The traditional object detection loss function relies on the aggregation of boundary
box regression indicators [18], such as the distance between the predicted box and the
real box, and the overlap area and the aspect ratio, but it ignores the direction of the
mismatch between the desired real box and the predicted box. This deficiency leads to a
slow convergence rate and correspondingly low efficiency of the model. For this SIoU loss
function [19], the vector angle between the real box and the predicted box is introduced,
and the angle, distance, shape and intersection ratio losses are redefined.

1. Angle cost
The model first makes predictions on either the X or Y axes, and then approximates
along the correlation axis. To achieve this, the convergence process will first attempt
to minimize the angle, so the angle costing formula is introduced and defined.

Λ = 1 − 2 ∗ sin2
(

arcsin(x)− Π
4

)
(7)

2. Distance cost
Angle cost is introduced into distance cost and distance cost is redefined.

Δ =
y

∑
t=x

(1 − e−γρt) (8)

3. Shape cost
Shape cost is defined.

Ω =
h

∑
t=w

(1 − e−wt)
θ (9)

4. Cross and compare costs
The crossover cost is defined.

LIoUCost = 1 − IoU (10)

Finally, the SIoU loss function is defined.

Lbox = 1 − IoU +
Δ + Ω

2
(11)

3. Experimental Research and Result Analysis

3.1. Workpiece Dataset Establishment
3.1.1. Workpiece Data Acquisition

The sample types are common parts (screws, nuts, washers and wire screw sleeves)
in industrial sorting. Taking into full account the interference brought by the external
environment, different numbers and types of workpieces are randomly placed for collection
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in the actual environment, so as to improve the robustness of the model. The size of the
image is uniformly processed into 640 × 480; part of the image dataset is shown in Figure 7.

Figure 7. Part of image dataset sample.

In the training process of the deep learning network model, it is necessary to obtain
the information of the target in the image accurately. In this paper, LabelImg is used to
mark the image. After marking, the number, type and four vertex positions of the target
can be obtained, and the corresponding .xml format tag file can be generated. The file
contains the category, length, width and height information of the marked target, which is
convenient for decoding and parsing.

3.1.2. Data Enhancement

A total of 1000 pictures were collected in this paper. In order to enrich the dataset,
data enhancement strategies such as horizontal flip, vertical flip, cropping, affine transform,
Gaussian blur, translation, adaptive Gaussian noise and brightness change were randomly
introduced for the scenes of workpiece contamination, motion blur and brightness trans-
formation in industrial sorting. And the above data enhancement strategies are randomly
combined to process the training samples. After processing, the number of datasets in-
creased to 18,000. Some random data enhancement samples are shown in Figure 8. The
training set, test set and verification set were divided in a ratio of 8:1:1.

Figure 8. A sample of partial random data enhancement.

Figure 9 shows the visualization analysis results after dataset enhancement, where
Figure 9a represents the distribution of object classes in the dataset, Figure 9b represents the
distribution of object sizes, and horizontal and vertical represent the width and height of
objects. It can be seen that the size distribution of small targets in the dataset is concentrated
and occupies a large proportion.
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Figure 9. Data and analysis. (a) category distribution of objects in the data set; (b) size distribution of
objects.

3.2. Experimental Environment and Evaluation Indicators
3.2.1. Setting the Experimental Environment and Parameters

The CPU model of the computer used in the experiment is i9-10900k, the GPU model is
NVIDI A RTX3080 and the video memory size is 10 GB. The operating system is windows11
and the deep learning frame is Pytorch. In the comparison experiment of object detection
algorithms, all algorithms are trained with the same dataset and the same parameter.
Settings are at the same stage to ensure the comparability of experimental results. In
the training process, the learning rate was set as 0.01, the momentum gradient descent
algorithm was adopted for optimization, the momentum parameter was 0.937, the batch
of each iteration was 16, the weight attenuation coefficient was 0.0005 and the number of
iterations was uniformly set to 300.

3.2.2. Evaluation Index

In this paper, evaluation indexes such as recall, precision, AP (average precision) and
mAP (mean average precision) were used to verify the accuracy of the model.

The precision rate refers to the probability that all predicted positive samples are
actually positive samples, which can be calculated by

Precision =
TP

TP + FP
(12)

The recall rate represents the probability of being predicted as a positive sample in the
actual positive sample, calculated by

Recall =
TP

TP + FN
(13)

The average accuracy refers to the area under a curve drawn with the recall rate as the
axis and the accuracy rate as the axis, given by

AP =
∫ 1

0
p(r)dr (14)

where p represents the accuracy rate, r represents the recall rate and the larger the area
surrounded by the PR curve the higher the average accuracy.

The mean average precision represents the average precision of all categories in the
dataset, which can reflect the accuracy and robustness of the model in target detection of
different categories.

mAP =
1
m

m

∑
i=1

APi (15)
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3.3. Experimental Research
3.3.1. Contrast Experiment

Comparison experiments are conducted to better demonstrate the advantages of the
improved model. In this experiment, the performance of Ours-YOLOv5 model, Faster-
RCNN [20], SSD [21] and YOLOv5s model was compared on the self-built workpiece
dataset. Table 1 shows the comparison results of each model in mAP@0.5, weight size,
parameter number and reasoning time. In addition, Figure 10 shows the curve comparison
of mAP@0.5.

Table 1. Comparison of experimental results.

Model Weight/MB mAP@0.5/% Params/106 Inference/ms

SSD 100.3 77.8 23.7 123
Faster-RCNN 159 84.6 136.0 207

YOLOv5s 14.1 89.3 7.0 12
Ours-YOLOv5 14.6 94.3 (↑ 5.0) 7.1 13

Figure 10. mAP@0.5 curve comparison.

By comparing the experimental results of different algorithm models in Table 1 and
Figure 10, it can be seen that the model proposed in this paper has the highest detection
accuracy compared with other mainstream models in the self-built dataset. Compared
with the two-stage Faster-RCNN and first-stage SSD, the YOLOv5s model is a lightweight
network model, while the improved model Ours-YOLOv5 proposed in this paper has a
weight only 0.5 MB higher than that of YOLOv5s and 5.0% higher than that of YOLOv5s in
mAP@0.5. Moreover, the reasoning speed is similar. The improved model in this paper has
the highest detection accuracy while maintaining light weight and the original detection
speed at the same time. Compared with Faster-RCNN, the average duration of reasoning
video per frame is 194 ms faster and the overall performance is relatively outstanding, thus
proving the superiority of the performance of Ours-YOLOv5 proposed in this paper.

In order to more intuitively evaluate the performance of the improved model proposed
in this paper, Figure 11 shows the comparison of the detection effect of the model of Faster-
RCNN, SSD and Ours-YOLOv5 in the actual scene. As can be seen from the figure, the
Ours-YOLOv5 model has the best detection effect without missing or false detection, while
the Faster-RCNN and SSD models have multiple missing and false detections.
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Figure 11. Comparison of different model detection results.

Next, the detection effects of the YOLOv5s model and Ours-YOLOv5 model in different
scenarios are compared, as shown in Figure 12a; the figure represents the detection of
occluded targets; the left figure is the detection result of the YOLOv5s model; the white
circle is the false detection target in the left figure; the right figure is the detection result
of the Ours-YOLOv5 model. It can be seen that, in the white circle, parts of nuts were
mistakenly detected in the left figure, while in the right figure they were successfully
detected. Figure 12b shows the detection of cross-dense targets. In the left picture, when
screws and nuts overlap, the original YOLOv5s model produces false detection, while, in
the right picture, the improved model detects normally. Figure 12c shows the detection
of small targets in a scene of strong illumination. The gasket was not identified in the
left image due to the influence of illumination, while in the right image it was accurately
identified successfully. To sum up, compared with the original YOLOv5s model, the
improved Ours-YOLOv5 shows advantages in terms of performance, but the YOLOv5s
model has poor performance in complex and diverse detection scenes, and there are cases
of missing and false detection in the detection of small targets and dense targets. The
Ours-YOLOv5 model has a better detection effect on small targets and dense targets, and
has better robustness to different scenes, thus showing superior performance and more
accurate positioning accuracy.

(a)

(b)

(c)

Figure 12. Comparison of test results before and after improvement. (a) Detection of occluded targets.
(b) Detection of intersecting dense targets. (c) Detection of strong light scenes.

3.3.2. Ablation Experiment

The ablation experiment was conducted to verify the optimization effects of each
improved module. The experimental results are shown in Table 2, where AAM represents
adding an attention mechanism to the backbone network, RSP represents replacing the
spatial pyramid pool structure, MFP represents modifying the feature pyramid structure
and MTF represents modifying the loss function. Models 1 to 4 correspond to the addition
of the AAM, RSP, MFP and MTF modules. Figure 13 shows the comparison of mAP@0.5
curves of the ablation experiment. All the improvements are combined into the model. The

234



Electronics 2023, 12, 2966

improved model is 5% higher than the original model mAP@0.5, and the detection of small
targets and dense targets is greatly improved.

Table 2. Ablation experiment comparison results.

Model AAM RSP MFP MTF mAP@0.5/%

YOLOv5s × × × × 89.3
Model 1

√ × × × 91.2 (↑1.9)
Model 2 × √ × × 90.1(↑0.8)
Model 3 × × √ × 91.5 (↑2.2)
Model 4 × × × √

91.0 (↑1.7)
Ours-YOLOv5

√ √ √ √
94.3 (↑5.0)

Figure 13. Ablation experiment mAP@0.5 curve comparison.

1. Analysis of the model test of increased attention mechanism
In this paper, the CA module is added to the backbone network after feature extraction,
so that it has clearer low-level contour information and coordinate information but
also contains rich high-level semantic information. It can not only ensure the integrity
of the feature information, but also improve the information expression ability of
the feature map. According to the data in Table 2, it can be found that the index of
mAP@0.5 of the model with the introduction of the attention mechanism is 1.9% higher
than that of the original model, which indicates that adding the attention mechanism
after the backbone network can effectively enhance the feature information.
The accuracy rate–recall curve of the model introduced with the attention mechanism
and the original YOLOv5s model on the self-built dataset is shown in Figure 14. In
Figure 14a on the left, the area surrounded by the YOLOv5s blue curve is smaller than
that surrounded by the axes, while in Figure 14b on the right, the area surrounded by
the YOLOv5s-CA blue curve is larger than that surrounded by the axes, indicating
that the classification performance of the model with the attention mechanism on the
self-built dataset is improved compared with that of the YOLOv5s model.
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Figure 14. PR curve comparison.

Figure 15 shows the comparison of detection effects between the model with attention
mechanism proposed in this paper and the YOLOv5s model. It can be seen that some
wire sleeves are very small and dense, and the YOLOv5s model fails to correctly
detect the targets and produces some false detections, while the YOLOv5-CA model
can successfully detect these targets, indicating that it has become more accurate in
the detection of small targets and dense targets after the introduction of the attention
mechanism.

Figure 15. Test performance comparison.

2. Improved spatial pyramid pool model test analysis
In this paper, SPP in YOLOv5 was replaced by SimSPPF to increase the receptive field
and uses multiple small-size pooling kernel cascades instead of a single large-size
pooling kernel. Table 3 shows the comparison of the parameters of SPP and SimSPPF.
Compared with SPP, the number of parameters and the amount of computation for
SimSPPF decreased.

Table 3. Parameter comparison 1.

Model Params/106 GFLOPs

SPP 7,225,885 16.5
SimSPPF 7,030,417 16.0

According to Table 2, the improved spatial pyramid pool model mAP@0.5 has an
improvement of 0.8% over the original. The models configured with YOLOv5 and
YOLOv5+simSPPF were, respectively, subjected to 50 times of reasoning and a com-
parison test of 100 images. The experimental comparison index was reasoning time,
which could reflect the speed of image reasoning by the image processing module.
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Figure 16 shows the curve comparison of reasoning time. It can be seen that the
improved spatial pyramid pool model reasoning was faster than the original model.
This proves that, while retaining the original function, SimSPPF reduces the amount
of computation, further improving the speed and efficiency of operation.

Figure 16. Inference time curve comparison plot.

3. Improved feature pyramid model test analysis
In order to verify the performance of BiFPN added in this paper, the number of model
parameters, model weight, and mAP@0.5 of FPN, PANet and BiFPN in the mainstream
feature pyramid network are compared. The results are shown in Table 4. It can be
seen that the detection accuracy of the FPN network in the top-down single-order
direction is not high. Adding the bottom-up path on the basis of FPN improves the
detection performance of the PANet network; adding the cross-layer BiFPN network
on the basis of PANet has the best detection performance; mAP@0.5 increased by
2.2% compared with PANet. At the same time, the number of parameters and the
weight of the BiFPN network do not increase greatly, which proves that it enhances
the information extraction ability of the network, so that the low level of location
information can better combine with the high level of semantic information.

Table 4. Parameter comparison 2.

Model Params/106 Weight/MB mAP@0.5/%

FPN 6.2 13.2 87.4
PANet 7.0 14.0 89.3
BiFPN 7.1 14.6 94.3

Figure 17 shows the comparison between the test effect of the improved feature
pyramid model and the original model. It can be seen that the improved feature
pyramid model has a better detection effect on small targets and less false detection.
Therefore, it is proved that the BiFPN can extract position information more fully,
reduce the loss of feature information and increase the ability of the network to detect
small targets.
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Figure 17. Comparison of test effects.

4. Improved loss function model test analysis
In this paper, the SIoU loss function is used to replace the CIoU loss function in the
original model. According to Table 2, after using the SIoU loss function, mAP@0.5
improves by 1.7% compared with using CIoU. Meanwhile, Figure 18 shows the
comparison of loss curves before and after the improvement of the loss function.
After the improvement, the convergence speed of the model is faster, the loss value
is gradually reduced and the convergence ability is enhanced. This indicates that
SIoU is used instead of CIoU in this paper to solve the problem of direction matching
between the real box and the predicted box, and the convergence performance of the
model is improved.

Figure 18. Improved before and after loss curve comparison.

4. Conclusions

In order to solve the problem of difficult identification caused by small and dense
workpieces in industrial production lines, a workpiece detection method based on an
improved YOLOv5 is proposed in this paper. Corresponding improvements are made in
the backbone network, spatial pyramid pool structure, feature fusion network and loss
function. The experimental results show that, compared with the current mainstream object
detection algorithms, the improved model has the characteristics of small volume, high
detection accuracy and fast reasoning speed, and can accurately detect the target and meet
the real-time detection. Compared with the original YOLOv5s, the average accuracy of
dense workpiece detection by the improved model is increased by 5% in the case of a small
volume increase. In the industrial production line, sorting errors, missed inspection and
other problems can cause great losses to the assets of the factory; increasing the accuracy
by 5% can improve the assets of the factory, by providing a feasible method for actual
workpiece detection.
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Abstract: Strip surface defects have large intraclass and small interclass differences, resulting in the
available detection techniques having either a low accuracy or very poor real-time performance.
In order to improve the ability for capturing steel surface defects, the context fusion structure
introduces the local information of the shallow layer and the semantic information of the deep
layer into multiscale feature maps. In addition, for filtering the semantic conflicts and redundancies
arising from context fusion, a feature refinement module is introduced in our method, which further
improves the detection accuracy. Our experimental results show that this significantly improved the
performance. In particular, our method achieved 79.5% mAP and 71 FPS on the public NEU-DET
dataset. This means that our method had a higher detection accuracy compared to other techniques.

Keywords: context fusion; feature refinement; steel defect detection; SSD

1. Introduction

For various reasons, including continuous casting billets and the production equip-
ment and process, strip steel surfaces may have defects, such as surface pitting, rolled
scale, scratches, and so on. These defects seriously affect the strip steel quality and may
even destroy the subsequent production object. Therefore, the efficient detection of surface
defects is pivotal for strip steel production.

Surface defect detection is essentially a kind of target detection, to which various
convolutional neural network methods have been applied. Nonetheless, the surface defects
of a strip steel differ significantly from other types of target. They are usually characterized
by large intraclass and small interclass differences, resulting in the existing convolutional
neural network methods failing to achieve a good balance between detection accuracy
and efficiency.

To solve this problem, we propose a single-stage target detection method based on the
single-shot multibox detector (SSD) [1]. The method consists of three stages, as follows:
The first is the feature extraction stage. As the residual structure helps to build a deep
network that can extract high-dimensional semantic features, ResNet50 [2] is used as the
feature extraction network, and the feature maps extracted from its fourth residual block
are sequentially downsampled by five additional layers, to construct five feature maps of
different scales to detect defective targets of different sizes.

The second is the encoding stage. A context fusion structure was designed to introduce
more contextual information for the multiscale feature maps, which increases the inference
speed, while improving the ability of the model to capture defects.

The third is a decoding stage. A feature refinement module is added to the predicted
feature map. Via the channel and spatial attention mechanisms, the model is guided to
better integrate the context information, which solves the semantic conflict and redundancy
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caused by the context fusion, and the detection accuracy of the model is thus further
improved. Finally, six simple predictors are used to predict the six predicted feature maps,
respectively. We evaluated our method with the NEU-DET [3] dataset. The results showed
that our method significantly outperformed the other methods. Moreover, our method
achieved a better balance between accuracy and efficiency.

We summarize our contributions below:

1. We propose a novel method based on the framework of the SSD, which achieves a
better balance between detection accuracy and efficiency. For instance, on the NEU-
DET dataset, our method achieved an accuracy of 79.5% mAP at a speed of 71 FPS,
thereby outperforming other methods.

2. We designed a context fusion structure for the framework, which is able to more closely
capture the surface defects, while maintaining the inference speed. Our structure is
simpler than that in [4,5], as we only use a dilated convolution to transfer location
information from the bottom to the top and a deconvolution to transfer semantic
information from the top to the bottom.

3. We introduced a feature refinement module into the framework, which efficiently
rules out the semantic conflicts and redundancies that result from context fusion. This
improved the resulting detection accuracy. This idea stemmed from [6,7], where we
combine the channel and spatial attention mechanisms for adaptive feature refinement
and replace the fully connected layer in channel attention with 1 × 1 convolution.

2. Related Works

Early rolling steel enterprises generally used manual methods to detect defects. These
methods obviously had a poor efficiency [8–10] and could suffer from poor performance
caused by fatigue. However, nondestructive testing technologies have been used to detect
surface defects (e.g., ultrasonic flaw detection), these methods present shortcomings, such
as a high equipment installation cost and energy consumption and slow detection speed.
With the combination of computer technology and vision, detection methods based on
machine vision have been proposed [11–15]. However, their defect features need to be
manually extracted and the resulting low-dimensional artificial features are difficult to
generalize to complex strip surface defects. Therefore, the application of these methods
needs to be combined with specific scenarios [15,16].

With the increase of computing power, detection methods based on convolutional
neural networks have gradually become mainstream and can mainly be divided into two
categories: The first is a two-stage target detection method, and the second is a single-stage
target detection method. The two-stage target detection method includes a region proposal
stage and a target bounding box regression and classification stage. While this has high
accuracy, it generally has slow inference, because of its complex structure. Typical examples
include the RCNN [17], Fast R-CNN [18], and Faster R-CNN [19]. The single-stage target
detection method has a higher inference speed and integrates these two stages into an
end-to-end network. Thus, its accuracy is slightly lower than that of a two-stage target
detection method. Typical examples of single-stage target detection methods include the
SSD [1], RetinaNet [20], YOLOv3 [21], YOLOv4 [22], YOLOv5 [23], YOLOX [24] and so on.

Since surface defects are characterized by large intraclass and small interclass dif-
ferences, these classic target detection methods cannot usually be applied directly, as the
targets in applications differ significantly from the surface defects in this study, as shown
in Figure 1.
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Figure 1. Samples of targets: (a–c) are sample Classic dataset. (d–f) are sample steel surface defects.

While these classic methods cannot be applied directly, they provide deep insights for
detecting the surface defects of strip steel. We direct the readers to references [25–29] for
detailed introductions to these methods.

To improve the performance of the Faster-RCNN in surface defect detection, Zhao
et al. [25] proposed a refined Faster-RCNN method, which is a two-stage target detection
model that first extracts the target region with a RPN network and achieved 75% mAP on
the NEU-DET dataset. While this performance is excellent, the detection speed is still slow
and insufficient to cope with practical demands. Moreover, Hatab et al. [26] designed a
defect detection method based on the YOLO network and obtained 70.66% mAP on the
NEU-DET dataset. Thereafter, Kou et al. [27] proposed a defect detection model based
on anchor-free YOLO-v3 and achieved 72.2% mAP. He et al. [28] then proposed a two-
stage defect detection model based on multifeature map fusion and achieved 82.3% mAP.
However, when the model increased the detection speed to 20 FPS, the mAP dropped
to 70%. In addition, Cheng et al. [29] recently proposed a single-stage defect detection
method based on RetinaNet, which exhibited 78.25% mAP. Although the accuracy has been
improved with these models, their detection speed cannot meet the requirements of an
actual production line.

While there are various methods for strip surface defect detection, they are still unable
to achieve a good balance between detection accuracy and efficiency. Thus, this remains
an open technical problem. The method proposed in this study provides insights into this
challenge, by achieving a good balance when using the NEU-DET dataset.

3. Model

We use the SSD as the overall framework. Compared to the Faster R-CNN, RetinaNet,
YOLOv3, YOLOv4, YOLOv5, YOLOX, and so on, the SSD has a simple structure and fast
detection speed. In particular, it is easy to deploy and integrate with industrial equipment.

Our model consists of three stages. The first stage is a feature extraction stage, which
includes a feature extraction network with additional layers, as shown in Figure 2. From
this network, six feature maps of different scales can be obtained (L0∼L5 layer feature
maps in Figure 2). The second stage is a coding stage, which builds a context fusion
structure (CFS) based on six feature maps and introduces more contextual information into
the model through a location augmentation module (LAM) and semantic augmentation
module (SAM), to obtain the final predicted feature maps (P0∼P5 layer feature maps in
Figure 2). The third stage is a decoding stage, which adds a feature refinement module
(FRM) after the first four predicted feature maps (P0∼P3 layer feature maps in Figure 2),
to filter out the semantic conflicts and redundancy caused by contextual feature fusion.
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Finally, we use six predictors to regress the offset of the defect target location and classify
the defect targets.

´ ´

´ ´

´ ´

´ ´

´ ´

´ ´

´

´

´

´

´3

´ ´

´3

´ ´

´ ´

´ ´

´ ´

´ ´

´ ´

´ ´

Figure 2. Model structure.

3.1. Feature Extraction Stage

The feature extraction stage first extracts a high-dimensional feature map from a
300 × 300 image using a feature extraction network and then obtains five different scales
of feature maps (L1∼L5 layer feature maps in Figure 2) using five additional layers on this
high-dimensional feature map, before finally sending this to the encoding stage. It should
be noted that we use ResNet50 [2] instead of VGG16 [30] in the feature extraction network.
ResNet50 is better than VGG16 in terms of its computational power and characterization
ability. We only use the first seven layers of ResNet50 as the feature extraction network.
Moreover, we refer readers to NVIDIA’s code (available online at https://github.com/
NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD (accessed on 8
December 2021)), where the stride of the first residual block of the Conv-4x layer is modified
to 1 to improve the resolution.

Although multiscale feature maps can improve the performance for detecting targets
of different sizes, these predictive feature maps (L0∼L5 layer feature maps in Figure 2) can
only be obtained with a series of additional layers of recursive relationships on top of the
feature extraction network. Therefore, they differ only in the size of the receptive fields and
cannot make good use of the multiscale features, whose receptive field sizes are defined as:

RL = RL−1 +

[
FL−1 ×

L−1

∏
i=1

Si

]
(1)

where L represents the number of layers (0 <= L <= 5); RL denotes the receptive field
size of the Lth layer, which is related to the receptive field size of the preceding layer; FL
denotes the size of the pooling or convolution kernel of the L-th layer; and Si denotes the
stride of the ith layer.

According to the definition of the receptive field size, we assume that the receptive
field size of the L0 layer is 1. We can then derive the receptive field expansion multipliers
of the feature maps extracted from the additional layers (L1∼L5 layer feature maps in
Figure 2), as shown in Table 1. It can be seen that the receptive field size of the last layer
is 58-times larger than that of the first layer and it can therefore extract richer and more
concise semantic features compared to the L0 layer and detect large targets better. However,
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it also weakens the ability to perceive more local information compared to the L0 layer,
thus influencing the detection of small targets.

Table 1. Expansion of receptive field relative to the L0 layer.

Feature Map L1 L2 L3 L4 L5

Multiplier 4 10 22 40 58

3.2. Encoding Stage

As shown in Section 3.1, the L0∼L5 layer feature maps do not make good use of the
contextual information. For this, Fu et al. [4] used deconvolution and skip connections on
the basis of SSD to transfer the semantic information of deep layers to shallow layers using
element-wise multiplication. Meanwhile, Jeong et al. [5] not only used deconvolution to
directly connect the semantic information of deep layers with the shallow feature map in
a stacked manner in the channel dimension, but also used the pooling layers to stack the
local information of shallow layers to the deep feature map in the same way.

To introduce context information, our method not only transfers the semantic infor-
mation of deep layers to shallow layers, but also transfers the local information of shallow
layers to deep layers. At the same time, in the process of transmitting local information, we
do not use pooling layers, as in [5], but replace them with dilated convolution.

We therefore designed a CFS that contains a LAM and a SAM, as shown in Figure 3.
The CFS fuses the rich and concise semantic information in the deep layer together with
the relatively accurate local position details in the shallow layer into the predicted feature
map. This improves the ability to capture the surface defects, while maintaining the
inference speed.
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Figure 3. Context fusion structure.

As shown in Figure 3, the LAM transfers the relatively accurate local position infor-
mation in the L0 layer to the deep layer. This makes the feature map size of the L0 layer
consistent with the L1 layer through a downsampling operation. The L1 layer then joins
to obtain the C1 layer. After that, the L0 layer continues to downsample and the L2 layer
joins to obtain C2. By repeating this, we eventually obtain {C3∼C5}. Note that the C0 layer
is obtained by the L0 layer without any other operations. Although traditional downsam-
pling (pooling or convolution) can increase the receptive field, it might raise the problem
of spatial resolution degradation, which does not transfer the rich position information of
the L0 layer to subsequent layers well. Therefore, we use dilated convolution with kernels
of size 3 × 3, a stride size of 2, and a dilation rate of 2 for downsampling. For the last two
downsampling operations, the stride size is adjusted to 1, since the feature map is small
and a larger stride size may lead to information loss.
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The SAM transfers the rich and concise semantic information from the C5 layer to
the shallow layer, which makes the feature map size of the C5 layer consistent with the
C4 layer through a upsampling operation. The C4 layer is then summed, to obtain the
P4 layer, after which the C5 layer continues to be upsampled and summed with the C3
layer to obtain the P3 layer. By repetition, we eventually obtain {P0∼P2}. Note that the
P5 layer is obtained from the C5 layer without any operations. Here, we do not use the
same nearest-neighbor upsampling as the feature pyramid network [31]. In its place, a
deconvolution operation with learning capability is applied, which has a stronger ability to
reduce the resolution than nearest-neighbor upsampling and has shown effectiveness in
detection and segmentation [4,32–34]. All deconvolution kernels have a size of 3 × 3 and a
stride size of 2. For the first two upsampling operations, we use a stride size of 1.

3.3. Decoding Stage

The decoding stage contains a FRM and a predictor. After passing through the FRM,
the predicted feature maps are fed into six predictors that do not share parameters and are
independent. Here, each predictor contains two branches. One is for regressing the offset
of the defect target location and the other classifies the defect target.

In context fusion, although the CFS introduces more contextual information for pre-
dicting feature maps, directly fusing feature information of different scales will result in
semantic conflicts. This reduces the characterization ability of multiscale feature maps and
influences the resulting defect detection.

For this, Woo et al. [6] used an spatial attention mechanism and a channel attention
mechanism for adaptive feature refinement. However, in the channel attention mecha-
nism, two of these fully connected layers were used as features after average pooling and
maximum pooling, to learn a set of mappings. At the same time, in order to reduce the
parameters of the fully connected layers, the dimensions of these two fully connected
layers were reduced. In [7], it was found that the dimensionality reduction of these fully
connected layers had a negative impact on the channel attention mechanism, and 1 × 1
convolution was used to solve this problem.

Inspired by CBAM [6] and ECANet [7], we add a FRM after {P0∼P3} to refine the
channel and spatial information of the predicted feature maps fused with the contextual
information, and use 1 × 1 convolution to replace the fully connected layers in the channel
attention mechanism, so as to guide the contextual fusion and filter out the semantic
conflicts and redundancies brought by direct information fusion of different scales.

As shown in Figure 4, given the prediction feature map Pi ∈ RH×W×C, (0 ≤ i ≤ 3) as
input, the channel and spatial refinements Fc ∈ R1×1×C and Fs ∈ RH×W×1 are obtained in
turn and then the final prediction feature map P

′′
i ∈ RH×W×C using the following steps:

P
′
i = Fc × Pi (2)

P
′′
i = Fs × P

′
i (3)

where × is the element-wise multiplication, and Fc and Fs can be regarded as weights in
the channel and space dimensions, respectively.

As shown in Figure 5, channel feature refinement uses the channel attention mecha-
nism to obtain the weights of the feature maps, so that the model gives more attention to
the information that should be learned and filters out the semantic conflicts and redun-
dancies. Given a prediction feature map Pi ∈ RH×W×C, (0 ≤ i ≤ 3) as input, the feature
map is squeezed into two feature longs with dimensions 1 × 1 × C by global average and
global maximum pooling operations, respectively. These two feature longs are then fed
into Conv1 with a convolution kernel size of 1 × 1, compressing its channel number to
C × 1

ratio , and activated by the activation function φ : ReLU() to obtain F
′
c ∈ R1×1×C× 1

ratio

and F
′′
c ∈ R1×1×C× 1

ratio :
F
′
c = φ(Conv1(AvgPooling(Pi))) (4)
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F
′′
c = φ(Conv1(MaxPooling(Pi))) (5)

Figure 4. Feature refinement module.

Figure 5. Channel refinement.

Finally, F
′
c and F

′′
c are fed into Conv2 with a convolution kernel of size 1 × 1 and their

channel numbers are reduced back to 1 × 1 × C. These two are then summed to obtain
Fc ∈ R1×1×C using the activation function θ : Sigmoid():

Fc = θ(Conv2(F
′
c) + Conv2(F

′′
c )) (6)

As shown in Figure 6, the spatial feature refinement uses a spatial attention mechanism
to obtain the weights of the feature maps in the spatial dimension, so that the model gives
more attention to the information learned in the spatial dimension and filters out the
semantic conflicts and redundancies brought by the direct fusion of the feature maps in the
spatial dimension. Given a prediction feature map P

′
i ∈ RH×W×C, (0 ≤ i ≤ 3) as input, this

is squeezed into two eigenfaces of dimensions H × W × 1 using an averaging operation
and a maximizing operation in the channel dimension, respectively. Moreover, the process
stacks them together in the channel dimension, restores the number of channels using a
convolution kernel of size 3× 3, and then activates them again using θ : Sigmoid() to obtain
Fs ∈ RH×W×1:

Fs = θ(Conv(Concat(Avg(P
′
i ), Max(P

′
i )))) (7)
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Figure 6. Spatial refinement.

4. Experiments

4.1. Experimental Settings and Dataset
4.1.1. Experimental Platform

Pytorch v1.7, 4-core CPU and 2 NVIDIA RTX 3090 GPUs.

4.1.2. Training Parameter Setting

The input image size was 300 × 300 and the total iteration number was set at 1500.
The first 500 iterations were trained by freezing the feature extraction layer and the ad-
ditional layer, with a batch setting of 8 and a learning rate of 0.01. We then thawed the
additional layer for another 500 training sessions, with a batch setting of 16 and a learning
rate of 0.001. Finally, we thawed the feature extraction layer for global fine-tuning training,
with a batch setting of 32 and a learning rate 0.0001. To optimize the training process, the
momentum method was used, with a momentum parameter of 0.9 and a weight decay
parameter of 0.3. The decay frequency was once per 30 iterations. To prevent overfitting,
image augmentation methods, such as random cropping and flipping, were also used.

4.1.3. Evaluation Metrics

In classification tasks, Params is the total number of parameters that need to be trained
during model training, and floating point operations (FLOPs) were used to measure the
computational performance of the model, with the smaller the better. Accuracy was used to
measure the prediction accuracy of the model, as shown in Table 2. Taking the classification
result of the binary classification model as an example, the calculation formula of accuracy
was as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

For the target detection task, not only the classification accuracy, but also the accu-
racy of the target frame positioning must be considered. This study considered the IoU
coincidence degree between the target frame predicted by the model and the real frame
as a measure. When the IoU threshold between the target frame and the real frame was
greater than 0.5, the model prediction was positive (TP); otherwise, it was negative (TP).
The precision and recall were then calculated as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)
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Precision and recall were then calculated according to different classification probabili-
ties, by taking recall as the abscissa and precision as the ordinate and plotting the obtained
values to obtain the P-R curve. The area under this curve is the average precision (AP).
Finally, the mAP was obtained by averaging the AP of each class.

Table 2. Model prediction results.

True Value

Positive Negative

Predicted value
Positive TP FP

Negative FN TN

4.1.4. Dataset

We used the NEU-DET [3] steel surface defect detection dataset created by Northeast-
ern University, China. As shown in Figure 7, this dataset contains six types of hot-rolled
strip steel surface defects; namely, crazing (Cr), inclusion (In), patches (Pa), pitted sur-
face (Ps), rolled-in scale (Rs), and scratches (Sc). Each of these classes has 300 images.
The dataset thus has 1800 images in total. For each target detection task in this study, we
randomly chose 80% of the images as the training set (i.e., 1440 images) and 20% of the
images as the test set (i.e., 360 images).

Figure 7. NEU-DET dataset.

4.1.5. Experiment Design

Our experiment consisted of three steps. In first step, we used an extensive experi-
mental study to show why we used ResNet50 as our feature extraction network. The corre-
sponding experiment results are reported in Section 4.2.

We then report the experimental performance of our framework in Section 4.3. The re-
sults showed that our framework outperformed the other methods in detection accuracy
and efficiency.

In the third step, we reported a more detailed comparison with other methods. The cor-
responding experiment showed that our method achieved a much better average perfor-
mance (Section 4.4).

Finally, we performed an ablation experiment. In our ablation analysis, we showed the
impacts of distinct components of the CFS and FRM on the performance of our framework.
With this experiment, we eventually chose dilated convolution and deconvolution as

249



Electronics 2023, 12, 2440

the respective downsampling and upsampling methods, and used element-by-element
addition to fuse the two feature maps, which, together with FRM and a compression ratio
of 32 in layers P0∼P3, achieved an optimal balance between the detection accuracy and
efficiency. The details regarding the ablation experiment are presented in Section 4.5.

4.2. Selection of Feature Extraction Network

A good feature extraction network is very important for the performance of a defect
detection model. We divided the NEU-DET dataset, according to the defect categories, into
six classes, with 10% of the images in each class selected for the test set. This resulted in a
steel defect classification dataset with 1620 images in the training set and 180 images in
the test set. Different classification models were then applied to classify this steel defect
classification dataset, and all models were trained using weights loaded with pretrained
weights on the ImageNet [35] dataset. The results are shown in Table 3. Only Resnet50 [2]
achieved 100% accuracy. Although Params was 0.53M larger than Resnetxt50 [36], it had
the smallest computational effort (FLOPs).

Table 3. Performance of the different classification models.

Models VGG16 [30] Resnet50 [2] Resnet101 [2] Resnetxt50 [36]

Accuracy(%) 97.2 100 99.4 98.9
Params(M) 138.36 25.56 44.5 25.03
FLOPs(G) 15.61 4.14 7.87 4.29

We used Resnet50 and VGG16 for the feature extraction network, where the details
are described in Section 3.1 for Resnet50 and in the original study of the SSD [1] for VGG16.
Table 4 shows the depths of the feature maps (i.e., the L0∼L5 layer feature maps in Figure 2)
in the network derived from the feature extraction stage. Here, only the convolutional and
pooling layers were considered when we calculated the depths. The results show that the
feature map had the deepest network depth at the same resolution while using Resnet50.
This means that the semantic information characterized by Resnet50 was stronger than
VGG16, while the improvement in the prediction performance was greater.

Table 4. Depth of feature maps composed of VGG and Resnet.

L0 L1 L2 L3 L4 L5

Resolution 38 × 38 19 × 19 10 × 10 5 × 5 3 × 3 1 × 1
VGG 13 20 22 24 26 27

Resnet50 41 43 45 47 49 51

In summary, both the Params and FLOPs of Resnet50 were smaller, and the resulting
semantic information at the same resolution was stronger. Thus, we used Resnet50 in this
study as the feature extraction network.

4.3. Detection Performance of the Model
4.3.1. Detection Accuracy of Model

As mentioned above, we used the SSD as the overall framework and Resnet50 as
the feature extraction network. In addition, a CFS was used in the encoding stage to
introduce more contextual information into the multiscale feature map. This ensured a
higher inference speed and improved the characterization ability of the multiscale feature
map. Furthermore, in the decoding stage, in order to filter out the semantic conflicts and
redundancies brought by feature fusion, a FRM was added after the first four layers of
predicted feature maps, to further improve the detection accuracy. The results are shown in
Figure 8.

Our model achieved 79.5% mAP and 71 FPS on the NEU-DET dataset. Our accuracy
outperformed those of SSD-resnet50 and SSD-vgg16 at rates of 7.4/72.1 and 7.5/72.0,
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respectively. Compared to the other methods, our model achieved the best accuracy (mAP)
and had a sufficient detection speed (FPS).

Figure 8. Model detection performance.

4.3.2. Efficiency

The inference of the image, including the execution of non-maximum suppression,
took only 0.014 s and the detection speed reached 71 FPS. In a real production line, a single
camera has a range of 50–100 cm and the maximum production speed is usually 30 m/s,
which requires a detector speed of at least 30∼60 FPS [37]. Therefore, the detection speed
of our model meets such requirements of practical applications.

4.4. Detailed Comparison with Other Models

To further evaluate its effectiveness, we compared our model with several existing meth-
ods using the NEU-DET dataset. For a comprehensive comparison, we considered both two-
and single-stage target detection methods. We used Faster R-CNN [19] as an example two-
stage target detection method, which uses a region proposal network to generate candidate
target frames. For the single-stage target detection method, we chose RetinaNet [20] config-
ured with the feature pyramid network and different YOLO methods, namely YOLOv3 [21],
YOLOv4 [22], YOLOv5 [23], YOLOX [24], YOLOv8 [38], and SSD [1]. The comparison results
are shown in Table 5. Compared to these existing methods, our model again achieved the best
accuracy. Moreover, the detection speed was only poorer than the SSD and YOLOv8.

Table 5. Comparison results with other models.

Methods Backbone mAP(%) FPS Cr(%) In(%) Pa (%) Ps(%) Rs(%) Sc(%)

Faster R-CNN [19] Resnet50+FPN 73.2 38 33 79 92 84 54 95
RetinaNet [20] Resnet50+FPN 72.6 35 38 78 94 85 54 84
YOLOv3 [21] Darknet53 67.4 65 29 73 89 79 50 85
YOLOv4 [22] CSPDarknet53 23.9 44 5 24 43 46 5 20

YOLOv5-s [23] CSPDarknet 59.6 68 17 72 86 68 37 77
YOLOv5-m [23] CSPDarknet 63.8 50 19 73 89 75 46 81
YOLOv5-l [23] CSPDarknet 69.6 44 32 75 91 75 58 88
YOLOv5-x [23] CSPDarknet 69.9 32 28 76 92 76 57 90
YOLOX-s [24] CSPDarknet 71.2 60 35 73 92 82 56 90
YOLOX-m [24] CSPDarknet 74.1 45 38 80 91 84 57 96
YOLOX-l [24] CSPDarknet 73.8 41 39 76 92 86 57 93
YOLOX-x [24] CSPDarknet 73.5 30 37 78 93 84 58 93
YOLOv8-n [38] CSPDarknet 72.0 144 33.7 78.1 89.9 79.7 56.7 93.6
YOLOv8-s [38] CSPDarknet 69.8 116 28.0 74.8 89.9 80.6 54.5 91.0
YOLOv8-m [38] CSPDarknet 71.8 103 35.6 78.1 91.2 77.6 57.3 91.1
YOLOv8-x [38] CSPDarknet 72.3 56 35.9 77.8 90.8 79.3 59.5 90.2

SSD [1] VGG16 72.0 105 37 76 91 86 61 77
SSD Resnet50 72.1 101 37 76 91 81 60 86
Ours Resnet50 79.5 71 48 82 94 86 73 92
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4.5. Ablation Experiments

Finally, we conducted ablation experiments for further evaluation of the CFS and
FRM.

4.5.1. CFS

The CFS involves information fusion of two feature maps of different sizes and needs
to use upsampling and downsampling to adjust the sizes of the feature maps. We designed
two different strategies for upsampling and downsampling. One was dilated convolution
and deconvolution with a LAM and a SAM, as discussed in Section 3.2. These are self-
adaptive and so can optionally fuse two feature maps during training. The other was
a combination of a LAM-S and a SAM-S. As in the method in [5], the LAM-S uses a
maximum pooling as downsampling, so as to pass the local position detail information to
the rest of the layers. The SAM-S uses a nearest neighbor interpolation as upsampling, to
pass the semantic information to the rest of the layers. In addition, we needed a suitable
fusion approach to fuse feature maps after their sizes become identical. Figure 9 shows
the performance of three fusion methods in the CFS. The first was element-by-element
addition (Add) fusion. The second was element-by-element multiplication (Multiply)
fusion. The third stacks two feature maps in the channel dimension and then downscales
them to the original channel number using 1 × 1 convolution and is usually shorted
as Concat.

Figure 9. Three types of feature map fusion in CFS.

Table 6 shows the experimental results. Add achieved the best performance for both
upsampling and downsampling. Furthermore, the performance of LAM and SAM was
better than the LAM-S and SAM-S. Hence, the combination of Add with upsampling and
downsampling with a learning capability was a good choice.

We eventually choose the combination of Add with LAM and SAM as the two optional
components of the CFS. Table 7 shows the resulting effectiveness of the four possible
combinations of these two components in terms of mAP and FPS.
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Table 6. Three types of feature map fusion and two strategies of downsampling and upsampling. �
represents the use of this module.

Module Add Concat Multiply mAP

LAM � 76.8
LAM � 55.0
LAM � 76.5

LAM-S � 75.7
LAM-S � 71.6
LAM-S � 39.3

SAM � 76.2
SAM � 47.5
SAM � 73.9

SAM-S � 55.7
SAM-S � 46.2
SAM-S � 53.4

Table 7. Components of the CFS module. � represents the use of this module.

LAM SAM mAP FPS

72.1 101
� 76.4 90

� 76.2 91
� � 78.5 89

Without the LAM and SAM, our method degenerated to the baseline model SSD-
resnet50, which had a detection accuracy of 72.1 mAP on the NEU-DET dataset. With
only the LAM or the SAM, the detection accuracy was improved by 4.3 and 4.1 percentage
points, respectively. Moreover, the LAM improved the performance more significantly,
especially for small instances, see, for example, Figure 10.

When the LAM and SAM were used together, the mAP was improved by 6.4 percent-
age points compared to the baseline model and the detection accuracy of small targets was
improved by 7 percentage points. This means that introducing contextual information into
the prediction feature maps indeed improved the detection accuracy, especially for small
targets. In particular, the inference speed reached 89 FPS and was still comparable with
that of the baseline model.

Figure 10. Detection accuracy of multiscale targets.
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4.5.2. FRM

Our model used the CFS to introduce more contextual information to the multiscale
feature map, to improve its detection capability. Then, we validated the effectiveness of the
FRM in filtering out semantic conflicts and redundancies.

Table 8 shows that we obtained a 1 percentage point improvement when we combined
the CFS with the FRM. This achieved a 7.4 percentage point improvement compared to the
baseline model (without the CFS and FRM).

Table 8. CFS and FRM modules. � represents the use of this module.

CFS FRM CBAM mAP FPS

72.1 101
� 78.5 89
� � 75.6 71
� � 79.5 71

We also implemented a comparative experimental study to show the effectiveness of using
1 × 1 convolutional layers to replace the fully connected layers in CBAM, see the results in
Table 8. With 1×1 convolution, the detection accuracy of our model was considerably improved.

In the channel refinement part of the FRM, we had to feed the channel weights
obtained from pooling into Conv1 to compress the number of channels and then reduced
them in Conv2. The choice of compression ratio thus affected the detection performance.
Figure 11 shows a plot of accuracy over compression ratio. The detection accuracy gradually
increased but the detection speed decreased. Therefore, a different ratio can be chosen
according to the actual production needs. To balance accuracy and speed, a final ratio of 32
was chosen here, which was compressed to 1/32 of the original.

Figure 11. Different compression ratios.

As shown in Figure 12, we extracted the same layers in the CFS and FRM to generate
the feature class activation map Eigen-CAM [39] and visualize the features learned by
both. We can see that the features learned by CFS were more scattered, due to the semantic
conflict and redundancy brought by the fusion of different scale feature maps and the
features learned by the FRM being more focused after filtering and guiding, which also
proved the effectiveness of our FRM.

Our model only adds the FRM in layers P0∼P3 (as shown in Figure 2), while the FRM
is not applied in layers P4 and P5, since the feature maps of these two layers are small (3 × 3
and 1 × 1, respectively) and they do not have much conflict and redundant information
by themselves. If the FRM was added in this case, then it would reduce the detection
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performance. As shown in Table 9, we added the FRM to P4 and P5 layers after adding the
FRM to P0∼P3 but the results became worse.

Table 9. Results of adding FRM in order from P0 to P5 layers.

Layer Ratio mAP FPS

P0∼P3 8 79.0 72.8
P0∼P4 8 78.7 70
P0∼P5 8 78.8 67

P0∼P3 16 79.2 71.7
P0∼P4 16 78.7 69
P0∼P5 16 78.9 67

P0∼P3 32 79.5 71.3
P0∼P4 32 78.8 68
P0∼P5 32 78.3 65

Figure 12. Comparison of the effects of the class activation map of FRM and CFS.
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5. Discussion

While our model achieved a very good average performance on NEU-DET, there were
still a few cases of detection failure. In Table 5, the accuracy of Cr and Rs was the lowest,
followed by In. In particular, the accuracy of Cr was only 47%. Therefore, the model had
different degrees of detection errors in these categories, as shown in Figure 13. The main
reason for this was that with a low resolution and low contrast, the objects are smaller and
widely scattered, which is difficult for anchor-based models to detect. In particular, the
shape of crazing is very thin and widely distributed, which caused great difficulties for the
target positioning of the model.

Some possible methods we can develop to improve the performance include the
following: First, expand the data set, to enable the model to learn more information.
Second, use anchor-free techniques for detection. Third, combine a transformer model to
extract global features, which would help the model to better locate target defects.

Figure 13. Examples of failed detection with our model on NEU-DET, where the first line is the
ground truth. Cr: crazing, Rs: rolled-in scale, In: inclusion.

6. Conclusions

Steel defects with small interclass and large intraclass differences and the high require-
ment for detection speed in industrial production raise significant challenges regarding
their detection. These are the two main problems that hinder the development of strip
steel surface defect detection. In order to solve these issues, this study proposed a new
detection method, which is a lightweight model with high detection accuracy and speed.
We followed the classic frame of the SSD. We design a CFS in the encoding stage, which
introduced more contextual information for the multiscale feature map and improved the
detection accuracy, while maintaing the speed. In the decoding stage, a FRM was used after
the predicted feature map, in order to filter out the semantic conflicts and redundancies
brought by the feature map fusion of different scales. This further improved the detection
accuracy. Our experiments validated our method. In particular, our experiments showed
that our method achieved a comparatively better performance than the other methods, in
terms of both accuracy and efficiency.
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Abstract: Aiming at the problems of the difficult extraction of small target feature information,
complex background, and variable target scale in unmanned aerial vehicle (UAV) aerial photography
images. In this paper, an anchor-free target detection algorithm based on fully convolutional one-
stage object detection (FCOS) for UAV aerial photography images is proposed. For the problem of
complex backgrounds, the global context module is introduced in the ResNet50 network, which
is combined with feature pyramid networks (FPN) as the backbone feature extraction network to
enhance the feature representation of targets in complex backgrounds. To address the problem of the
difficult detection of small targets, an adaptive feature balancing sub-network is designed to filter
the invalid information generated at all levels of feature fusion, strengthen multi-layer features, and
improve the recognition capability of the model for small targets. To address the problem of variable
target scales, complete intersection over union (CIOU) Loss is used to optimize the regression loss and
strengthen the model’s ability to locate multi-scale targets. The algorithm of this paper is compared
quantitatively and qualitatively on the VisDrone dataset. The experiments show that the proposed
algorithm improves 4.96% on average precision (AP) compared with the baseline algorithm FCOS,
and the detection speed is 35 frames per second (FPS), confirming that the algorithm has satisfactory
detection performance, real-time inference speed, and has effectively improved the problem of missed
detection and false detection of targets in UAV aerial images.

Keywords: object detection; drone aerial photography; global context block; multi-scale feature
fusion; adaptive equalization network

1. Introduction

In recent years, Unmanned aerial vehicles (UAVs) have been widely used in traffic
monitoring, sea area search and rescue, aerial photography, and other fields due to their
small size, convenient operation, and high imaging resolution. UAV object detection is one
of the important branches of computer vision tasks, and the target instances in the images
can be captured efficiently by processing the images captured by UAVs.

The design of traditional object detection algorithms is mainly based on artificially con-
structed features, such as scale invariant feature transform (SIFT) [1], Haar-like (Haar) [2],
Deformable Part Model (DPM) [3], etc.

However, its limitations are that the manually designed features require a large amount
of prior knowledge, fail to make full use of deep semantic information, and have weak
generalization ability. In recent years, with the rise and development of deep learning
technology, the use of Convolutional Neural Networks (CNNs) has been applied to object
detection tasks.

CNN-based object detection algorithms are generally divided into two categories,
namely, two-stage algorithms and single-stage algorithms. The two-stage algorithm is to
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first generate a series of candidate frames as samples by the algorithm, and then classify
the samples through CNNs. The single-stage object detection algorithm does not need
to generate a candidate frame, but directly predicts the bounding box and target type
of the object. Typical representatives of two-stage algorithms include region-CNN (R-
CNN) [4], Faster R-CNN [5], Mask R-CNN [6], etc. Typical representatives of single-
stage algorithms include You Only Look Once (YOLO) [7], single shot multi-box detector
(SSD) [8], RetinaNet [9], etc. Aiming at the problems of object detection in UAV aerial
images, many scholars have carried out a series of studies. Liu et al. [10] designed and
added a multi-branch parallel feature pyramid network (MPFPN) on the Faster R-CNN
and introduced a supervised spatial attention module (SSAM) to effectively improve the
detection performance of UAV image targets in complex backgrounds, but the detection of
small targets still needs to be improved. Liang et al. [11] proposed a spatial context analysis
method for object re-inference based on the SSD algorithm, which greatly improves the
detection accuracy of small targets, but there are false detection cases for targets in complex
contexts. Zhou et al. [12] designed a metric-based object classification method to solve
the classification problem of untrained subclass objects and modified the localization loss
function to improve the localization performance of small objects.

As for the object detection algorithm, it can be divided into anchor-based algorithm
and anchor-free algorithm according to the setting of anchor frame or not. The anchor-
based method needs to pre-set a certain number of anchors at each position in the feature
map of the image, and then classify and regress each anchor. The anchor-free method
does not need to pre-set the anchor and directly detects the object on the image. The
main difference between the two methods is whether to use anchor to generate proposal.
Compared with the anchor-based algorithm, the anchor-free algorithm can greatly reduce
the amount of additional parameters and reduce the memory occupied by the calculation.
Many anchor-free networks that have emerged in recent years are also suitable for object
detection of UAV aerial images. For example, CornerNet [13] proposed for the first time
to predict the target as a pair of key points through a single neural network, using box-to-
corner prediction instead of anchor for localization and target detection. CenterNet [14]
models the detection object as a single center point of the bounding box and uses the heat
map generated by the convolutional network to predict and classify the single centroid.
Zhang et al. [15] improved on the basis of YOLOX network and proposed the skip scale
feature enhancement module BiNet, which effectively improved the detection accuracy
of small targets. Inspired by FoveaBox, Liu et al. [16] reset the target detection layer and
proposed a HollowBox algorithm for multi-size features, which effectively reduces the false
detection probability of drone detection. Hou et al. [17] applied the fully convolutional
one-stage object detection (FCOS) algorithm to ship detection to further improve the
detection performance of ship targets. Mao et al. [18] proposed ResSARNet based on the
improvement of FCOS to obtain powerful detection performance by compressing the model
parameters. The above anchor-free frame algorithm, in which FCOS performs detection
by pixel-by-pixel point-wise regression, not only gets rid of the anchor frame but also
outperforms most target detection algorithms in terms of performance. However, it still has
limitations. Although the algorithm uses feature pyramid network (FPN) for multi-level
prediction, the detection effect is still unsatisfactory for targets with large scale changes and
cases where different targets overlap each other.

Therefore, this paper uses the single-stage target detection algorithm FCOS without
anchor frames as the benchmark algorithm to improve it. The main contributions of
the article are as follows: (1) To improve the backbone network, introduce the Global
Context Block (GC-Block) into the residual block of the ResNet50 network, and improve the
network’s capture of UAV targets in complex backgrounds ability. (2) Propose the Adaptive
Feature Balancing Subnet (AFBS) structure, which can effectively balance the low-level and
high-level features from the multi-level feature map, avoiding the dilution of its information
flow when passing across layers, thus effectively improving the detection accuracy of small
targets. (3) Use complete intersection over union (CIOU) Loss to optimize the regression
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loss, thus giving the model regression process scale sensitivity and strengthening the
algorithm’s ability to detect multi-scale targets.

2. Materials and Methods

2.1. Baseline

FCOS is a single-stage anchor-free object detection algorithm based on FCN proposed
by Tian Z et al. [19], which detects by means of pixel-by-pixel regression. The specific
method is that FCOS performs a regression operation on each feature point on the feature
map to predict four values (l,r,t,d), which, respectively, represent the distance from the
feature point to the upper, lower, left, and right sides of the target boundary frame. As
shown in Figure 1, the network consists of three parts: the backbone network (Backbone),
the feature pyramid (Feature Pyramid Network, FPN) [20], and the output section Detection
head, which includes Classification, Regression, and Center-ness branches.

Figure 1. FCOS network architecture.

FCOS mainly has the following advantages: (1) By getting rid of the anchor box, it
avoids the complex intersection over union (IOU) calculation and reduces the training
memory footprint. (2) It can be used as a Region Proposal Network (RPN) for two-stage
detectors, and its performance is significantly better than anchor-based RPN. (3) Strong
universality, the improved model can be applied to other visual tasks. In summary, this
paper chooses the FCOS algorithm as the benchmark algorithm.

2.2. Algorithm of This Paper

The algorithmic network architecture of this paper is shown in Figure 2.
The model uses the ResNet50 network for feature extraction of the input image to

obtain the initial features, selects the obtained C3, C4, and C5 features to send to FPN
for feature fusion, and then uses the outputs P3, P4, and P5 as the input feature map
of adaptively spatial feature fusion (ASFF) [21]. Firstly, ASFF adjusts and integrates the
features of other levels to the same resolution and then multiplies and, finally, sums the
fusion with the corresponding weights of the feature maps at each level, and the features
of different levels are adaptively fused to achieve the purpose of filtering conflicting
information. The output feature maps from this network are M3, M4, M5, and M5 are
down-sampled twice to obtain M6 and M7, respectively. The five-level features of M3, M4,
M5, M6, and M7 are used as the input of balanced feature pyramid (BFP) [22], which first
integrates the five-level features to generate more balanced semantic features and then
refines to obtain the more differentiated feature maps N3, N4, N5, N6, and N7. Finally,
the identity (layer-by-layer addition) operation is executed to add M3~M7 to N3~N7,
correspondingly, to enhance the original features. The detection head located at the end
of the network detects the enhanced 5-layer features, which enter the detection head first
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through 4 H×W×256 convolutional layers for feature enhancement and then upstream in
parallel through H×W×C and H×W×1 convolution to obtain two branches of classification
and center-ness. The center-ness reflects the distance of a point on the feature map from the
target center. By multiplying the predicted category probability with the corresponding
center-ness, the bounding boxes with high scores are kept in order according to their scores,
so that low-quality bounding boxes are filtered out in the non-maximum suppression
(NMS) process, and the regression detection results are obtained by H×W×4 convolution
in the downstream.

Figure 2. The algorithm network architecture of this paper.

2.2.1. Improved Backbone Network

The general target detection model uses convolution operation to extract image fea-
tures, but, since the convolution kernel only acts on the local receptive field, only the depth
stacking of the convolution layer can associate all the regional information of the image.
Multiple convolution stacking will increase the difficulty of training, and the network learn-
ing efficiency will be low, which will greatly reduce the positioning accuracy of the model
for UAV image targets. In order to solve the above problems, this paper introduces the
global context block (GC-Block) [23] to improve the residual block of ResNet50, strengthens
the ability of ResNet50 to capture long-distance dependencies, and uses the self-attention
mechanism in the module to model the dependencies between long-distance pixels on the
image. The improved backbone network is shown in Figure 3.

262



Electronics 2023, 12, 1339

Figure 3. Improved backbone network structure.

2.2.2. Adaptive Feature Equalization Subnetwork

Adaptive Feature Balancing Subnet (AFBS) consists of two parts: ASFF and BFP. The
sub-network can not only adaptively learn the spatial weight of the multi-scale feature map,
but also use the deeply integrated balanced semantic features to balance and strengthen
the multi-level feature information, thus the information of small objects can be completely
displayed. The network structure is shown in Figure 4.

Figure 4. Architecture diagram of Adaptive Feature Equalization Subnetwork.

Adaptive Spatial Feature Fusion Module

The key idea of adaptive spatial feature fusion is to learn the fused spatial weights
of features at different scales. multiply the learned parameters of each weight with the
input to filter conflicting information and retain useful information to solve the problem of
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conflicting information when multi-layer features are fused. The specific implementation
steps of this method are as follows:

(1) Feature input. Input the feature maps of different scales in the backbone network.
(2) Feature scaling. Scaling is to keep the channel of feature fusion the same. For the

feature layer that needs to be upsampled, first use 1 × 1 convolution to adjust the
number of channels to be consistent with the target layer, and then use interpolation
to increase the resolution and adjust the size. For the 1/2 scale downsampling layer, a
convolution of size 3 × 3 with stride 2 is used. For the 1/4 scale downsampling layer,
it is necessary to add a maximum pooling layer with a stride of 2 to the convolution
with a size of 3 × 3 and a stride of 2.

(3) Feature Fusion. Assuming that the target layer is l, xn→l
i,j represents the feature vector

adjusted from layer n to layer l at feature map (i, j), and αl
ij, βl

ij, and γl
ij are the spatial

weight parameters of features x1→l , x2→l , and x3→l fused to layer (i, j) at l, respectively.
The feature vectors of different feature maps at (i, j) are multiplied with their respective
weights and then summed. l layer fusion outputs the following equation:

Fl
ij = al

ij · x1→l
ij + βl

ij · x2→l
ij + γl

ij · x3→l
ij (1)

where the weights α, β, γ represent the spatial importance of the features at different
levels, ranging from [0, 1] and summing to 1, generated using the Softmax function
and with λl

αij
,λl

βij
,λl

γij
as control parameters, calculated as follows:

al
ij =

eλl
aij

eλl
aij + eλl

βij + eλl
γij

(2)

Balanced Feature Pyramid

The balanced feature pyramid fully fuses the multi-dimensional features of different
depth feature maps; thus, the fused features take into account both powerful semantic
information and rich geometric information. The work process is divided into four steps:

(1) Feature size adjustment

The five features M3, M4, M5, M6, and M7 participating in feature fusion are adjusted
to the same resolution through interpolation and maximum pooling operations. Because
choosing a larger resolution will increase the network computing burden, a smaller resolu-
tion will be detrimental to small target detection. Therefore, this paper uniformly adjusts
the same size as M5, and this process can avoid the input of additional parameters.

(2) Feature fusion

Feature fusion is to integrate features of different sizes and resolutions to remove
redundant information, as to obtain better feature expression. The fusion is performed as
follows to obtain balanced semantic features:

C =
1
L

max

∑
min

Cl (3)

Among them, Cl represent the l layer feature, lmin and lmax denote the highest and
lowest layer features, respectively.

(3) Feature refinement

The Gaussian non-local module [24] is used to refine the fused features. This module
can refine the fused semantic features to make them more distinguishable, thereby further
improving the performance of object detection in the UAV scene.

(4) Feature enhancement
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The idea of strengthening comes from the design concept of the residual structure.
M3~M7 are added correspondingly to the optimized features through cross-connection
and finally output N3~N7.

2.2.3. Loss Function

The loss function, as the basis for the deep neural network to judge the false detection
samples, largely influences the model’s convergence effect, while providing optimization
direction for the training of object detection network. The loss function of the algorithm
in this paper contains three main components: Focal Loss is used as the classification loss
function, Binary Cross Entropy (BCE) is used as the loss function of center-ness branch,
and CIOU [25] is used as the regression loss function. The total loss L is defined as follows:

L = Lcls + Lcenter + Lreg (4)

Lcls is the classification loss, Lcenter is the loss of center-ness branch, and Lreg is the
regression loss.

(1) Classification loss function

Focal Loss is a loss function used to deal with unbalanced sample classification. When
there are too many negative samples, the classification accuracy will be reduced. By
reducing the weight of easily classified samples, Focal loss enables the model to learn
difficult classified samples in a centralized manner, as to prevent a large number of easily
classified negative samples from dominating model training in the training process. The
formula is as follows:

LFocal =

{−(1 − α)y ∗γ log(1 − y∗), y = 0
−α(1 − y∗)γ log y∗, y = 1

(5)

Among them, y is the real value, y* is the predicted value, which α is a balance factor
to balance the importance of positive and negative samples, and the value range is [0, 1],
which γ is an adjustable focal length parameter.

(2) Binary Cross Entropy loss function.

FCOS uses the center-ness branch to suppress low-quality detection frames in UAV
image samples. The regression object’s center-ness of a certain position in the sample is
defined as follows:

Centerness * =

√
min(l*, r*)
max(l*, r*)

× min(t*, b*)
max(t*, b*)

(6)

Among them, the l∗, r∗, t∗, b∗ represent vertical distances from the point to the upper,
lower, left, and right boundaries of the ground truth box, respectively.

(3) Improved regression loss function

The regression loss is mainly used to train the ability of the model to accurately locate
the small target of the UAV. The benchmark algorithm uses IOU Loss as the regression loss.
The value of IOU is 0 when the two boundary frames do not overlap. It is effective only
when the two boundary frames overlap, the actual distance between the predicted frame
and the real frame cannot be judged.

Therefore, this paper adopts CIOU Loss instead of IOU Loss. CIOU not only considers
the overlap area and center point distance but also the aspect ratio in the process of
bounding box regression, CIOU Loss can overcome its own defects while making full
use of the advantages of IOU Loss and is sensitive to the transformation of the target’s

265



Electronics 2023, 12, 1339

bounding box shape, which is more conducive to the detection of UAV multi-scale targets.
The expressions of IOU and CIOU are as follows:

IOU =
B ∩ Bgt

B ∪ Bgt (7)

LCIOU = 1 − IOU +
ρ2(B, Bgt)

C2 + βv (8)

Among them:

β =
v

(1 − IOU) + v
(9)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)

β is a positive trade-off parameter, and v is used to measure the consistency of the
aspect ratio. B is the predicted frame, Bgt is the ground truth, and C is the minimum frame
diagonal length containing two frames.

2.3. Experimental Conditions
2.3.1. Dataset

The data used in this paper comes from the VisDrone [26] image target detection
public dataset. The dataset includes 10 categories: pedestrians (people with walking or
standing posture), people (people with other posture), cars, vans, buses, trucks, motorcycles,
bicycles, awning tricycles, and tricycles. The VisDrone dataset is composed of 288 video
clips, providing a total of 10,209 static images captured by drones of different heights,
including 6471 images for training, 548 images for validation, and 3190 images for testing,
totaling 2.6 million target instance samples.

2.3.2. Experiment Settings

The experimental platform in this paper used the Ubuntu 18.04 operating system. The
GPU was an RTX A4000 16 G, and the CPU was an Intel(R) Xeon(R) Gold 5320 CPU @
2.20 GHz. The deep learning framework chosen was PyTorch, and the input image size was
512 × 512. When building the network, the batch size was 8, the training was 100 epochs,
the initial learning rate was set to 0.001, and the Adam optimizer was used.

2.4. Evaluation Metrics

In order to verify the effectiveness of the algorithm in this paper, evaluation was
performed from both qualitative and quantitative aspects. Qualitative analysis was mainly
evaluated from a subjective perspective, and quantitative analysis was mainly evaluated
from objective evaluation indexes as a reference.

In this paper, comprehensive average precision AP (Average Precision), APS, APM,
APL, FPS (Frame Per Second), Params (Parameters), and FLOPs (Floating Point Operations)
indicators are used to evaluate the performance of the model. AP means that the IOU
is within the range of [0.50, 0.95], with a step of 0.05. A total of 10 thresholds are used
to change the comprehensive average precision. The higher the AP value, the better the
detection effect of the algorithm. The formula is shown in (11).

AP =
1

classses∑
c
(

1
|thresholds|∑t

TP(t)
TP(t) + FP(t)

) (11)

In the formula, classes and thresholds represent the number of target categories and
the IOU threshold, respectively. c is the element in classes, and t represents the value in the
threshold interval. TP is True Positives, representing positive samples that are correctly
classified. FP stands for False Positives, which represent positive samples that have been
misclassified. FPS is used to evaluate the real-time performance of the model, and the
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higher the value the better the real-time performance of the algorithm. According to the
COCO evaluation system, APS, APM, and APL, respectively, represent the absolute pixel
area of the object under small (area less than 322), medium (area greater than 322, less than
962), and large (area greater than 962) average precision.

Params is the total number of parameters in the network layer including parameters,
which measures the space resource occupation of the model, the formula is shown in (12).

Params =
D

∑
l=1

K2
l × Nl−1 × Nl (12)

Among them, D represents the total number of layers of the network, Kl, Nl − 1, and
Nl are the convolution kernel size, the number of input and output channels, respectively.

FLOPs measure the number of floating-point operations of the model, reflecting the
computational complexity of the model. The formula is shown in (13).

FLOPs =
D

∑
l=1

Hl × Wl × K2
l × Nl−1 × Nl (13)

In the formula, D represents the total number of layers of the network, Hl, Wl represent
the height and width of the output feature map of the layer, and Kl, Nl − 1, and Nl are the
convolution kernel size and the number of input and output channels, respectively.

3. Results

3.1. Module Ablation Experiment

Baseline is FCOS algorithm, M1 is FCOS + GC-Block, M2 is FCOS + GC-Block +
AFBS, M3 is FCOS + GC-Block + AFBS + CIOU, which is the algorithm in this paper. All
experiments are tested on the VisDrone dataset, using AP, FLOPs, Params as metrics. The
final performance comparison results are shown in Table 1.

Table 1. Comparison of ablation experiments.

Model Baseline GC-Block AFBS CIOU AP (%) FLOPs (G) Params (M)

FCOS
√

18.86 77.79 32.02
M1

√ √
19.95 77.83 34.12

M2
√ √ √

23.43 82.73 39.32
M3

√ √ √ √
23.82 82.73 39.32

According to the experimental results in Table 1, compared with the baseline algorithm,
it can be seen that, the AP of M1 has increased by 1.09%, and the Params increased by
2.1 M, the FOLPs have only increased by 0.04 G, which shows that the introduction of GC-
Block increased the detection accuracy while generating negligible computational overhead.
Compared with the baseline algorithm, M2 has increased AP by 4.57%, FLOPs increased
by 4.94 G, and Params increased by 7.3 M, which shows that although AFBS improves
the detection accuracy of the model through a stronger ability to adaptively fuse different
feature information, the complex network structure increases the computational complexity
of the model. M3 is the algorithm proposed in this paper, and the overall performance of
the network reached the highest gain. Compared with the baseline algorithm, it increased
AP by 4.96%.The values of the two evaluation indicators PLOPs and Params are basically
the same as those in M2, which also shows that changing the loss function does not affect
the calculation amount of the model.

In order to further evaluate the detection effect of the improved algorithm proposed in
this paper in real special scenes, UAV aerial images with dense distribution of small targets,
multi-scale targets and complex backgrounds are selected in the VisDrone dataset, and the
FCOS algorithm and the algorithm in this paper are tested. The effect comparison is shown
in Figure 5.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Visual comparison of detection effect between the FCOS algorithm and the improved
algorithm in this paper. (a,c,e) are the detection results of FCOS ; (b,d,f) are the detection results of
the algorithm in this paper.

Comparing Figure 5a,b, in the case of dense distribution of small targets, the FCOS
algorithm mistakenly recognizes the school uniforms stacked next to the basketball poles as
people, while the algorithm in this paper does not have this error. Comparing Figure 5c,d,
there are a large number of targets of different scales in the figure. The FCOS algorithm
did not recognize the cars on the river bank, the people in the grass, and the tricycle
driving on the sidewalk on the right, and missed detection. The algorithm in this paper
can better adapt to the change in the target size and thus accurately identify it. Comparing
Figure 5e,f, in the case of complex background environments, the algorithm in this paper
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can still identify vehicles farther away on the road, and it can also detect overlapping
targets normally, while FCOS misses detection. According to the comparison, it can be seen
that the algorithm in this paper can better combine the superior information in high-level
features and low-level features by adaptively fusing multi-layer features and has stronger
identification and positioning capabilities for small targets and multi-scale targets.

3.2. Comparative Experiment

In order to verify the effectiveness of the algorithm in this paper, the model in this
paper is compared with the current classic model. All experiments are trained on the
VisDrone dataset and tested under the same hardware conditions. The experimental results
are shown in Table 2.

Table 2. Performance comparison of each algorithm.

Method Backbone AP (%) APS (%) APM (%) APL (%) FPS FLOPs (G) Params (M)

Faster
R-CNN ResNet50 16.49 7.25 25.32 37.73 16 79.21 41.18

SSD VGG-16 12.03 5.75 20.12 35.04 40 37.60 26.47
RetinaNet ResNet50 16.85 7.91 23.97 36.82 23 84.35 37.03

R-FCN ResNet101 19.65 9.89 26.35 41.28 19 132.38 78.16
YOLOV3 CSPDarkNet 15.05 6.28 21.45 36.18 38 75.14 61.50

FCOS ResNet50 18.86 8.65 25.01 36.32 25 77.79 32.02
Proposal ResNet50 23.82 14.11 27.25 41.85 35 82.73 39.32

As can be seen from Table 2, the Params of the single-stage target detection algorithm
SSD is 26.47 M, the FLOPs are 37.60 G, and the AP value is 12.03% lower than other
algorithms, but this algorithm has a greater advantage in Params. It can also be seen that
although the R-FCN algorithm has relatively high detection accuracy, its computational
complexity is also the highest. Compared with several other classical algorithms, the
proposed algorithm has achieved the best detection effect. Among them, the improvement
of small target detection accuracy is the most evident. Compared with the suboptimal
R-FCN algorithm, the AP has increased by 4.22%, and the inference speed is relatively high.
The FPS value is 35, and the FLOPs and Params are 82.73 G and 39.32 M, respectively. To
sum up, the proposed algorithm achieves better detection performance on the premise of
maintaining a small computational overhead, and it has great advantages compared with
other algorithms in processing UAV aerial photography image target detection tasks.

Figure 6 is a visual comparison between the algorithm in this paper and other main-
stream algorithms, which more intuitively reflects the detection accuracy and speed of each
algorithm.

Figure 6. VisDrone test comparison visualization.
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It can be seen from Figure 6 that the SSD algorithm has the highest inference speed,
and the detection time of a single picture is only 50 ms. Faster R-CNN has the lowest
detection efficiency, and the reasoning time for a single image takes 63 ms. Compared with
several other algorithms, the reasoning efficiency of the algorithm in this paper is relatively
high, and it has good real-time performance.

This paper also compares the three classic target detection algorithms selected on the
VisDrone dataset, and the detection effect is shown in Figure 7:

    

    
(a) Proposal   (b) RetinaNet (c) Faster R-CNN (d) YOLOV3 

Figure 7. Comparison chart of the detection effect between the algorithm in this paper and some
classic algorithms. (a) Proposal; (b) RetinaNet; (c) Faster R-CNN; (d) YOLOV3.

This paper extracts target sample instances during the day and night, respectively,
and compares the detection results of the four algorithms. It can be seen that RetinaNet,
Faster R-CNN, and YOLOV3 have different degrees of missing detection for small targets
and targets with similar distances, while the algorithm feature learning in this paper is
relatively sufficient. Compared with the other three algorithms, there were no missed
or false detections. In summary, the detection accuracy of the proposed algorithm for
all kinds of targets is higher than the other three, especially for small targets. This is
because AFBS can better combine the superior information of high-level features and
low-level features in the feature map through the adaptive fusion of multi-layer features
and has stronger identification and localization ability for small targets and multi-scale
targets. In the case of low illumination at night, the other three algorithms also have some
missing detections. The algorithm in this paper weakens the background noise interference
and strengthens the multi-scale features of interest in the network, showing strong anti-
interference ability in the face of complex background information and effectively improves
the missed alarm situation. In general, it has stronger recognition ability for small-scale,
complex backgrounds and large scale transformation UAV image targets when processing
UAV image target detection tasks, and it effectively avoids false alarms and missed alarms.

4. Conclusions

In this paper, we made improvements based on the FCOS algorithm to improve the
effect of target detection for UAV aerial images. (1) Improvements were made to the
backbone network by embedding the global context module in the backbone network
and combining it with the FPN to enhance the algorithm’s perception and understanding
of the relevance of the environment in which the target is located and to improve the
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detection accuracy of small UAV targets in complex backgrounds. (2) An adaptive feature
balancing sub-network was designed to effectively balance the dominant information in
multi-layer features and reduce the false detection probability of the algorithm for small
targets. (3) Finally, CIOU Loss was used to improve the regression loss function to enhance
the detection capability of the algorithm for targets with larger scale transformations. The
results show that the algorithm in this paper has a better detection effect on different scale
targets in different aerial photography scenes. Compared with the baseline algorithm, the
algorithm in this paper improves the AP by 4.96%. Compared with other mainstream
algorithms, the algorithm in this paper has strong competitiveness and reduces the cases
of missing detection and false positives. It is an effective aerial image target detection
algorithm. In addition, the proposed algorithm has good real-time performance, which is
far better than Faster R-CNN, and the detection speed is comparable to that of YOLOV3.
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Abstract: The rapid development of the automobile industry has made life easier for people, but
traffic accidents have increased in frequency in recent years, making vehicle safety particularly impor-
tant. This paper proposes an improved YOLOv5s algorithm for vehicle identification and detection
to reduce vehicle driving safety issues based on this problem. In order to solve the problems of a
disappearing model training gradient in the YOLOv5s algorithm, difficulty in recognizing small ob-
jects and poor recognition accuracy caused by the boundary frame regression function, it is necessary
to implement a new function. These aspects have been enhanced in this article. On the basis of the
traditional YOLOv5s algorithm, the ELU activation function is used to replace the original activation
function. The attention mechanism module is then added to the YOLOv5s algorithm’s backbone
network to improve the feature extraction of small and medium-sized objects. The CIoU Loss function
replaces the original regression function of YOLOv5s, thereby enhancing the convergence rate and
measurement precision of the loss function. In this paper, the constructed dataset is utilized to
conduct pertinent experiments. The experimental results demonstrate that, compared to the previous
algorithm, the mAP of the enhanced YOLOv5s is 3.1% higher, the convergence rate is 0.8% higher,
and the loss is 2.5% lower.

Keywords: deep learning; vehicle detection; YOLOv5; attention mechanism; artificial intelligence

1. Introduction

In recent years, with the rapid development of China’s industrial modernization, the
number of Chinese automobiles has far surpassed the initial development of the industry.
However, the frequency of traffic accidents has made the issue of safe driving one of the
major research foci. Increasing attention has been paid to the development of Advanced
Driver Assistance Systems (ADAS) [1] in an effort to reduce the number of accidents.
ADAS systems primarily evaluate and predict the driving environment of vehicles by
combining a number of sensors; in the event of a hazardous situation, the signal can be
transmitted to the driver in a timely manner to ensure safe driving. Increasing numbers
of people are becoming devoted to the research and development of ADAS systems as
society evolves. Current ADAS systems include numerous subsystems, including Forward
Collision Warning (FCW) [2]. The FCW system is an important functional component of the
ADAS system, providing warning messages when a potential collision hazard is imminent,
thereby preventing or reducing the severity of accident-related damage. Computer vision
technology can now use advanced algorithms to detect, identify, and track objects in
video [3–7] as a result of the ongoing research into computer vision by domestic and
international researchers in recent years. Vehicle detection technology is a vital component
of the system, and at present computer vision is primarily used to detect domestic and
international targets. Using various advanced algorithms, computer vision identifies and
detects objects in video [8–10].

In 2012, the proposal of the AlexNet [11,12] network sparked a new wave of deep
learning algorithms, which became the predominant object detection algorithms at that
time. Since then, improved object detection algorithms such as Fast RCNN [13,14], Faster
RCNN [15], and R-FCN [16] have emerged. The accuracy of these proposed algorithms
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has reached the optimal level, but in some instances the recognition speed falls short of the
requirements. In 2016, Redmon J. proposed the YOLO [5] algorithm to improve calculation
speed and ensure calculation accuracy. In the same year, the SSD [17] (Single Shot Multibox
Detector) algorithm based on VGG16 (Visual Geometry Group Network) was proposed to
achieve multi-scale Feature Map prediction. The algorithm employs the feature layer to
detect and enhance YOLO’s inadequate detection of small targets. In 2018, the Redmon
J. team improved YOLOv2 [18] and obtained YOLOv3 [19] algorithm, enhanced YOLO’s
inadequate detection of small targets.

Zhang Fukai et al. [20] enhanced the YOLOv3 algorithm to detect vehicles. Wang
Fujian et al. [21] accomplished the enhancement of the YOLO algorithm dataset’s target
detection. By screening VOC datasets, Ding Bing et al. [22] improved the YOLOv3 algorithm
and implemented the detection of parking in highway tunnels. On the basis of the concept
of transfer learning, Fu Jingchao et al. [23] enhanced the adjustment learning strategy of
YOLO to improve its target detection capability. YOLOv4 [24] and YOLOv5 [25] were born
in 2020. The speed and accuracy of image recognition have been significantly enhanced,
and the size of the YOLOv5 model has been reduced, allowing for improved detection
results in the current environment. This paper employs the YOLOv5 algorithm as its
starting point for vehicle target detection.

YOLOv5’s engineering practicability has improved with each iteration of the YOLO
series, making it the most widely used target detection algorithm at present. According
to model size, YOLOv5 is available in four variants: YOLOv5s, YOLOv5m, YOLOv5l
and YOLOV5x. The only difference between the Backbone and the Neck and Prediction
settings is the model’s depth and width settings. More feature maps are available the
deeper the backbone network, and a deeper network is more complex. In addition, the
YOLOV5s network has the narrowest depth feature map width and the fastest processing
speed. This paper proposes an enhanced vehicle detection algorithm based on YOLOV5s,
which improves the detection accuracy of small targets and accelerates the convergence
rate in response to the issues of low detection accuracy and the gradient disappearance of
small targets.

2. Materials and Methods

2.1. Development of Experimental Datasets

Currently, the most popular databases for vehicle detection are the KITTI database,
the general dataset VOC and COCO dataset, and the general dataset VOC. In order to
improve the applicability of the model, this paper combines the KITTI open-source dataset
and Internet-collected road images to create a traffic target dataset. The dataset’s format
is VOC, and it contains images captured from various viewing angles and orientations.
Figure 1 is a schematic representation of a portion of the dataset. This article selects the
three dataset categories of Car, Van, and Trunk.

Python and Qt are used to develop labeling tools. When labeling datasets, rectangular
boxes are used to frame vehicles and vehicle information is noted. The precise labeling
procedure is depicted in Figure 2.

Once the annotation is complete, you must use the split.py file for classification,
followed by the txt2yolo_label.py file to finish the conversion from .xml to .txt. You need to
use the split.py file for classification, and then use the txt2yolo_label.py file to complete the
conversion from .xml to .txt. The five values represent object-class, x_center, y_center, width
and height attributes. In the end, 5000 images were used for training. The experiment
has a training set of 4500 and a test set of 500. The ratio of the two sets was 9:1, with
approximately 12,000 vehicle targets.
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Figure 1. Portioned images extracted from the dataset.

 
Figure 2. Vehicle identification interface.

2.2. YOLOv5s Network Design

The YOLOV5s model is an improvement over its predecessor. The adaptive anchor
frame is utilized, initially. In the training process, an expected frame is created to roughly
estimate the target’s position, which is then compared to the actual frame. The coordinate
algorithm is used to iteratively calculate their difference. Based on this calculation, reverse
update is conducted. As depicted in Figure 3, the initial predicted anchor coordinates of
YOLOv5 can be obtained after multiple iterations.

Figure 3. Initial predicted coordinates for the anchor box.

YOLOv5s will optimize the algorithm so that the network’s backbone can adapt to
various image inputs. Before training, the majority of algorithms will, thus, unify and
standardize the input images. For instance, the image size can be scaled or expanded to the
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sizes that YOLO uses most frequently, which significantly reduces the interference caused
by the picture’s unnecessary information to the running speed.

Additionally, YOLOv5s includes the CBL module, the Focus module, the SPP module,
and the CSP module. It firstly performs convolution, batch standardization, and activation
functions, which are then transferred to the Focus module for slicing processing, thereby
minimizing the loss of image data. Then, it performs downsampling and the SPP module
combines all parts, integrates the extracted features, and sends them to the CSP module for
integration processing. The YOLOv5 network model is depicted in Figure 4.

Figure 4. Size drawing after scaling.

YOLOv5s also adds CBL, Focus, SPP and CSP modules to the previous version. The
CBL module mainly carries out convolution, batch standardization and function activation,
and then gives it to the Focus module for slicing processing, which will greatly reduce the
loss of picture information. Next, it carries out down sampling. SPP module pools all parts,
fuses the extracted features, and finally sends it to CSP module for integration processing.
The network model of YOLOv5 is shown in Figure 5.

Figure 5. YOLOv5 network model diagram.
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3. Methods

Due to the fact that the YOLOv5s algorithm is suitable for deployment on embed-
ded devices with limited memory, while also meeting the accuracy requirements of the
algorithm during driving and the algorithm’s response speed, the YOLOv5s algorithm is
currently a popular object detection algorithm. However, the YOLOv5s algorithm has nu-
merous drawbacks: (1) YOLOv5s combines multiple activation functions in the activation
function section. When multi-activation functions are combined, the training model will
exhibit gradient disappearance and other issues that will further reduce its accuracy. (2)
YOLOv5s has trouble identifying small objects that require identification; therefore, the
algorithm’s precision must be improved. (3) When a particular case exists between the
detection box and the prediction box, the convergence speed of the loss function is slowed.
Based on the aforementioned issues with the YOLOv5s algorithm, this chapter is based on
the YOLOv5s method for vehicle detection. The activation function of YOLOv5s is first
replaced. The attention mechanism module is then introduced to the backbone network in
order to improve the extraction of features by YOLOv5s. The algorithm’s loss function is
optimized, utilizing complete intersection ratio function. Experiments were carried out to
examine the algorithm’s performance before and after its enhancement.

3.1. Activation Function Improvements

The CSP module of the original YOLOv5s used the Leaky ReLU function [26] and the
Mish function as activation functions. When these two activation functions are utilized
concurrently, the gradient will gradually diminish during back propagation and may
eventually disappear. The Exponential Linear Units (ELU) activation function replaces the
Leaky ReLU function and Mish function to tackle this issue. The formula for calculating
the ELU activation function is depicted in the figure:

ELU(s) =
{

x
α(ex − 1)

x > 0
x ≤ 0

(1)

The ELU function curve is depicted in Figure 6.

Figure 6. ELU function diagram.

The ELU function has a better linear distribution on the right side of the coordinate axis
than the Leaky ReLU function, which effectively mitigates the disadvantage of gradient
descent of the Leaky ReLU function. The left side of the coordinate axis is nonlinear,
which may improve noise input robustness. In order to demonstrate the benefits of ELU
function in a more intuitive manner, this activation function is compared to other activation
functions in the COCO dataset and the results are presented in Table 1.
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Table 1. Comparison table of activation functions under the COCO dataset.

Mosaic
Label

Smoothing
Leaky
ReLU

Mish ELU
Top-1 Err

(%)
Top-5 Err

(%)
√ √ √

22.4 5.8√ √ √ √
21.5 5.4√ √ √
21.0 5.1

Table 1 demonstrates that the first and fifth error rates decreased by 0.9% and 0.4%
when the Leaky ReLU function and Mish function were combined as compared to the
Leaky ReLU function alone, and that the first and fifth error rates decreased by 0.5% and
0.3% when the ELU function was utilized alone. According to the experimental findings, it
is possible to achieve the gradient descent caused by the combination of the two activation
functions. The enhanced activation function can decrease the error rate and increase the
calculation’s precision.

3.2. Enhanced Attention Mechanism Module

The attention process resembles the attention mechanism used by humans for object
recognition. The primary information is gained by allocating sufficient resources. Important
data are collected and retrieved using a convolutional neural network, which significantly
enhances the precision of data collecting. The attention mechanism module may typically
be added to the backbone network, and the module’s parameters are simple to alter,
which significantly improves the model’s performance. Currently, the attention mechanism
is primarily separated into two types: a channel attention mechanism represented by
SE [27] (Squeeze and Excitation) and a spatial attention mechanism represented by the
Convolutional Block Attention Module (CBAM [28]).

In this paper, CBAM modules were added to three main parts of YOLOv5, as shown
in Figure 7. In Figure 7a, the module is added to CSP1_3(feature fusion); in Figure 7b, the
CBA module is added to the Neck part of YOLOv5s after the Concat layer; in Figure 7c, the
CBMA module is added before the convolution of YOLOv5’s prediction module.

 
(a) 

Figure 7. Cont.
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(b) 

 
(c) 

Figure 7. Network comparison before and after introducing CBMA attention mechanism. (a) CBAM
YOLOv5s-Backbone, (b) CBAM YOLOv5s-Neck, (c) CBAM YOLOv5s-Prediction.

The comparison results of three CBAM modules in different positions and unfused
YOLOv5s are shown in Table 2.

Table 2. Comparison of CBAM modules after fusion.

Network Model
AP 50% P

(%)
R

(%)
mAP
(%)Small Goal Medium Goal Big Goal

YOLOv5s 83.0 97.9 99.3 76.4 92.5 92.7
CBAM_YOLOv5s-Backbone 90.4 98.2 99.4 81.2 93.8 94.1

CBAM_YOLOv5s-Neck 80.3 96.4 99.0 71.7 93.7 91.6
CBAM_YOLOv5s-Prediction 82.7 97.1 99.1 75.9 92.8 92.4

As can be seen from the table, not every fusion mode’s accuracy is improved after
CBAM module fusion is performed on different components of YOLOv5s. When CBAM
modules are integrated into Backbone, the detection capability of small targets is greatly
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improved and mAP is increased by 1.4%. Since the semantic information in Backbone
networks is not rich, CBAM is added to these modules to improve the accuracy. However,
for Neck and Prediction, there is no improvement in accuracy. Therefore, this document
adds the CBAM module to Backbone.

3.3. Improvement of CIoU Loss Function

An Intersection over Union (IoU) [29] is typically utilized to calculate the location
relationship between the predicted and actual boxes in target detection using the follow-
ing formula:

IoU =
A ∩ B
A ∪ B

(2)

As depicted in Figure 8, the original IoU formula includes several weaknesses that
have been rectified. In Figure 8a, when there is no intersection between the prediction
box and the real box, the result of IoU computation is 0, impeding further training and
algorithm execution. In Figure 8b,c, when the prediction box is the same size as the actual
box, the IoU calculation yields the same result; therefore, no judgment can be formed.

 
(a) (b) (c) 

Figure 8. Network comparison before and after introducing the CBMA attention mechanism.

Therefore, in this paper, GIoU [30] (Generalized Intersection over Union) is used
instead of IoU, In Figure 8, B is the yellow box, A is the blue box, and C is the red box
(Figure 9). And the formulas for GIoU are shown in Equations (3) and (4):

GIoU = IoU − |C − (A ∪ B)|
|C| (3)

GIoU_loss = 1 − GIoU = 1 − (IoU − |C − (A ∪ B)|
|C| ) (4)

Figure 9. Schematic diagram of GIoU calculation.
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GIoU introduced the test box C, which consisted of the combination of the yellow
prediction box B and the blue actual box A. The GIoU calculation diagram is shown in
Figure 9. In addition to considering the relationship between the prediction box and the
actual box, GIoU also introduces the test box. Nevertheless, GIoU cannot play the actual
effect while the two boxes are in the horizontal state. Here, the CIoU [31] function is
substituted by the GIoU function, and the loss function equation for DIoU [32] is given in
Equation (5):

DIoU_Loss = 1 − IoU +
ρ2(b, bgt)

c2 (5)

here, b, bgt denotes the center points of the prediction box and the real box, respectively,
ρ represents the distance between the two center points, and c represents the diagonal
distance of the minimal closure region that can encompass both the prediction box and
the real box. In addition, the impact factor av is introduced, along with the horizontal to
vertical ratio.

The improved formulas of GIoU and CIoU_Loss are shown in Equations (6) and (7).

CIoU = IoU − ρ2(b, bgt)
c2 + αvzt = σ(Wz·[ht−1, xt]) (6)

CIoU_Loss = 1 − IoU +
ρ2(b, bgt)

c2 + αv (7)

The parameter expression representing the penalty in the formula α is shown in
Equation (8), and v represents the standard that can measure whether the aspect ratio is
consistent, and the expression is shown in Equation (9):

α =
v

(1 − IoU) + v
(8)

v =
4

π2 (arctan
ωgt

hgt − arctan
ω

h
)2 (9)

The modified formula demonstrates that the convergence rate of CIoU is substantially
faster than that of IoU.

4. Test and Result Analysis

4.1. The Experiment Platform

Ubuntu18.06 is the operating system version of the training experiment machine for
the model presented in this paper. Tables 3 and 4 detail the experimental setting and
hardware and software configurations.

Table 3. The development environment.

Hardware Name Version Number

Processor AMD Ryzen 5 5600X 6-Core Processor (3701 MHz)
Graphics card NVIDIA GeForce RTX 3060 12G

Memory 16 GB

Table 4. Software environment.

The Specific Environment Version Number

Python Python3.8
CUDA 11.1

CUDNN 11.3

4.2. Comparison of Training Results

Beginning with an initial learning rate of 0.01, SDG was used to optimize algorithm
parameters and the cosine annealing approach was employed to dynamically modify the
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learning rate. The weight attenuation coefficient was set to 0.0005, the learning momentum
was set to 0.937, and the Batch-Size to 8. In this experiment, 300 epochs were trained to
examine the overfitting issue in the training process. Model A is denoted by the black
curve, while model B is defined by the red curve. Models A and B are trained together, and
the training outcomes are depicted in Figure 10.

 
(a) (b) 

Figure 10. Comparison of AB model training parameters before and after improvement.

Figure 10a demonstrates that, compared to the loss value before improvement, the im-
proved model exhibits a more pronounced drop and a faster convergence speed. Figure 10b
demonstrates that the mAP value of the enhanced model is 3.1% greater than that of the
previous model. Overall, the new model is more precise and has a faster convergence rate.
The comparison of model performance before and after loss function enhancement is shown
in Table 4. As shown in the Table 5, the loss value of model B’s parameter was lowered by
2.8% compared to the model before improvement, showing that the convergence speed
of the revised model was greatly increased. The mAP% value of the new model was 2.1%
greater than previously, and its accuracy was enhanced. Furthermore, both Recall and
Precision are greatly enhanced following enhancement. In conclusion, the enhancements
to the YOLOv5 model presented in this research greatly increase the performance and
convergence speed and precision.

Table 5. Performance comparison between model A and model B.

Model Loss mAP@0.5:0.95 Precision (%) Recall (%)

Model A 0.0068 0.651 91.9 92.5
Model B 0.0070 0.672 93.9 94.5

4.3. Algorithm Improves Visual Contrast

The same image is used to examine the effect difference of the activation function
of YOLOv5’s algorithm improvement before and after, in order to more intuitively illus-
trate the improvement of the algorithm’s accuracy and speed in image recognition. As
shown in Figure 11a depicts the original input image, Figure 11b depicts the accuracy
of vehicle recognition before the activation function is enhanced, and Figure 11c depicts
the vehicle recognition after the activation function has been enhanced. After an object is
discovered, there will be text indicating the sort of object detected, along with a recognition
accuracy indicator.
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(a) (b) (c) 

Figure 11. Visualization comparison before and after activation function improvement.

As shown in the picture above, the confidence level increases when the activation
function in YOLOv5’s algorithm is enhanced, the accuracy of target recognition is enhanced,
and the model’s performance is further enhanced.

The diagram depicts the experimental outcomes of adding the CBAM module to
the YOLOV5s network architecture. As shown in Figure 12, Figure 12a is the original
image, Figure 12b is the detection image before CBAM improvement, and Figure 12c is the
detection image after CBAM improvement. The results indicate that the modified CBAM
algorithm has significantly enhanced the detection of small objects. Tiny items that were
previously undetectable can now be detected, and the confidence level has been increased;
nevertheless, the improvement effect on the identification of large objects is not readily
apparent. Hence, the algorithm’s performance is further enhanced with the addition of the
CBAM module.

   
(a) (b) (c) 

Figure 12. Visualization comparison before and after CBAM function improvement.

Figure 13 is a comparison of the experimental outcomes before and after the improve-
ment of the loss function. Figure 13a is the original picture, Figure 13b is the detection
graph before the improvement of the loss function, and Figure 13c is the detection graph
after the improvement of the loss function. The preceding graph demonstrates that the
modified algorithm increases the accuracy of vehicle detection, as well as the convergence
speed of the loss function and the recognition speed.

   
(a) (b) (c) 

Figure 13. Visual comparison of loss function before and after improvement.
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4.4. Experimental Verification of the Improved Algorithm

To further demonstrate the superiority of the enhanced algorithm, an ablation ex-
periment was undertaken to evaluate the model’s performance. The enhanced activation
function, attention mechanism and loss function were utilized to validate the model’s
performance.

Table 6 demonstrates that after the activation function was enhanced the mAP value
grew by 2.1%, while Precision and Recall also increased slightly. Adding the attention
mechanism to the Backbone network increased the mAP value by 2.9%. mAP value
increased by 1.5%, Precision increased by 0.9%, and Recall increased by 1.1% after the loss
function was adjusted. After enhancing the three algorithmic components, the algorithm’s
Precision and Recall are enhanced by 2% and 2%, respectively. In conclusion, based on
the ablation experiment conducted after the algorithm improvement, it can be concluded
that the improved model performance was significantly enhanced in terms of confidence,
precision, and recall compared to that of the previous model, thereby effectively improving
the model performance.

Table 6. Comparison table of ablation experiments.

YOLOv5s
Activation
Function

Mechanism of
Attention

Loss Function
mAP@

0.5:0.95(%)
P (%) R (%)

√
65.1 91.9 92.5√ √
66.5 92.2 92.8√ √
67.0 93.1 94.1√ √
66.1 92.8 93.6√ √ √ √
67.2 93.9 94.5

In addition, YOLOv5s is compared to YOLOv4, YOLOV4-Tiny, and Faster-RCNN,
which are typically used to evaluate the performance of each algorithm. Table 7 compares
the performance of several algorithms.

Table 7. Performance comparison of different detection methods.

Method
Model Storage

Size (MB)
mAP@0.5

(%)
P (%)

Faster-RCNN 186 83.7 83.8
YOLOv4 113.9 93.1 93.3

YOLOv4-tiny 30 83.4 87.3
YOLOv5s 24.5 87.4 91.9

Our approach 24.7 91.5 94.5

As seen in the table above, the YOLOv5s algorithm requires the minimum amount of
memory to operate and performs well in terms of confidence level and precision. Following
the enhancement of the experimental algorithm, the mAP@0.5 value and accuracy have
been further enhanced and the method’s overall performance has been enhanced.

In conclusion, the improved algorithm is superior to the previous algorithm in terms
of object recognition speed and accuracy, effectively addresses the disadvantage of low
accuracy in the recognition of small objects, and improves the shortcomings of the previous
algorithm, such as vanishing gradient and low confidence, making the algorithm more
practical and efficient.

5. Conclusions

In this paper, the original YOLOv5s algorithm was enhanced in order to address
the issues present in the basic YOLOv5s algorithm, including the disappearing model
training gradient, tiny target object recognition accuracy and poor convergence speed of
loss function. First, the new activation function is substituted for the old model’s activation
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function, which successfully mitigates the gradient descent of the Leaky ReLU function.
Then, to address the issue that the YOLOv5s algorithm has a low recognition rate for
small objects, the CBAM module is included to improve the algorithm’s feature extraction
for small and medium-sized objects. Lastly, the CIoU loss function replaces the original
YOLOv5s loss function. The improved detection algorithm proposed in this paper is
superior to the YOLOv5s algorithm prior to the improvement in terms of accuracy, mAP,
Recall, etc., so the improvement of the algorithm can effectively solve the problems of
gradient loss, low accuracy of small object recognition, and slow reasoning speed in the
original algorithm, and the improved method has clear benefits.
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Abstract: X-ray contraband detection plays an important role in the field of public safety. To solve the
multi-scale and obscuration problem in X-ray contraband detection, we propose a material-aware path
aggregation network to detect and classify contraband in X-ray baggage images. Based on YoloX, our
network integrates two new modules: multi-scale smoothed atrous convolution (SCA) and material-
aware coordinate attention modules (MCA). In SAC, an improved receptive field-enhanced network
structure is proposed by combining smoothed atrous convolution, using separate shared convolution,
with a parallel branching structure, which allows for the acquisition of multi-scale receptive fields
while reducing grid effects. In the MCA, we incorporate a spatial coordinate separation material
perception module with a coordinated attention mechanism. A material perception module can
extract the material information features in X and Y dimensions, respectively, which alleviates the
obscuring problem by focusing on the distinctive material characteristics. Finally, we design the
shape-decoupled SIoU loss function (SD-SIoU) for the shape characteristics of the X-ray contraband.
The category decoupling module and the long–short side decoupling module are integrated to the
shape loss. It can effectively balance the effect of the long–short side. We evaluate our approach on
the public X-ray contraband SIXray and OPIXray datasets, and the results show that our approach is
competitive with other X-ray baggage inspection approaches.

Keywords: X-ray images; contraband detection; atrous convolution; attention mechanism; regression
loss function

1. Introduction

With the development of the transportation industry, transportation security has
become a key area of concern, where contraband detection is an important measure to
maintain public safety and transportation security. However, the current excessive reliance
on the experience and energy of security personnel has decreased the accuracy of manual
reviews, and the accuracy rate of contraband detection by security personnel is generally
between 80% and 90% [1]. Therefore, automatically searching for prohibited items in
passenger packages from X-ray images is essential for reducing labor costs and improving
efficiency and reliability.

Through the analysis of the dual-energy X-ray scanning contraband dataset and
operation of related experiments, it is found that they compared with the photographic
(optical) object detection dataset, MS-COCO [2] (Microsoft Common Object in Context), and
the dataset PASCAL VOC [3]. In the past few years, artificial intelligence technology based
on the neural network has been applied to X-ray contraband detection [4–6]. However,
these algorithms have not yielded satisfactory achievements in contraband detection.
Contraband security screening remains an open challenge for several key reasons [7]:

1. Multi-scale detection in X-ray datasets: Due to the scanning angle of the dual-energy
X-ray scanner and the physical characteristics of the contraband, there is a seriously
uneven scale, which includes an uneven scale between the different categories, an
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uneven scale between the same categories, and an uneven scale between the long–
short sides, rendering it difficult to detect the contraband.

2. Extreme clutter and occlusion: Pieces of information obscure each other because of
the penetrating nature of the X-ray scanning equipment and the resulting overlap
between the deep and shallow high-density image. This has a negative impact on the
accuracy of X-ray contraband detection.

To solve the above problems, this paper proposes a material-aware path aggregation
network for X-ray object detection and shape-decoupled SIoU (SD-SIoU), which can not
only detect items of contraband in common but also detect difficult samples in extreme
cases, such as small objects and obscured items. Our model takes the YoloX [8] object
detection network as the baseline and modifies its neck part for the differences between the
X-ray images and the natural images in the OPIXray [9] dataset. Figure 1 shows the images
of the dataset with the above problem.

Figure 1. Problem description in X-ray contraband dataset. The first three images show the scale
difference problem caused by different views of the same type of contraband and its uneven aspect
ratio, and the last image shows the complex occlusion and clutter problem.

Our main contributions are listed below:

1. Constructing a novel material-aware path aggregation network, which includes a
smoothed atrous convolution module (SAC) and material-aware coordinate attention
mechanism (MCA). The SAC is to handle the multi-scale problem by combining
smoothed atrous convolution using separate shared convolutions with a parallel
branching structure. The SAC effectively mitigates the grid effect caused by the
atrous convolution, while improving the model’s multi-scale detection capability. The
MCA is designed to address the clutter and occlusion problem by incorporating a
spatial coordinate separation material perception module with a coordinate attention
mechanism. The MCA mitigates contraband obstruction by focusing deeply on the
contraband material information.

2. A new shape-decoupled SIoU (SD-SIoU), based on the SIoU, is constructed for the
uneven aspect ratio problem. First, we optimize the normalized penalty factor; a cen-
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trosymmetric normalization function is constructed. Then, we decouple the predicted
bounding box long–short side length information to construct a long–short-shape
loss branch. Finally, we introduce the category long–short side coefficient, which is
determined by category prior knowledge of the contraband datasets. The category
long–short coefficient is embedded in the long–short-shape loss branch to handle the
uneven aspect ratio by utilizing the category prior knowledge.

3. We evaluate our module on the OPIXray [9] and SIXray [10] datasets, then compare
it to recent high-performing object detection networks and contraband detection
networks. The experimental results confirm the superiority of our model over other
contraband detection models.

2. Relate Work

X-ray security inspection task. Compared to the traditional photographic imagery
generated by light reflection, an X-ray image is based on X-ray properties (penetrating,
fluorescent and photographic effects). In X-ray images, the brightness and color of the
pictures represent the density and material of the detected items, respectively. Therefore,
objects scanned by X-ray lose their texture and original color information.

Traditional feature detection methods. X-ray contraband detection belongs to the category
of object detection, and the early object detection feature extractors were mostly designed
manually and purposefully. Turcsany et al. [11] used a Support Vector Machine (SVM) and
SURF features (Speeded-UP Robust Features) to build a visual bag-of-words; Zhang et al. [12]
extracted potential features of the image, such as the edges and color, by traditional image
processing methods, and obtained a good detection performance improvement.

Deep learning detection methods. Deep learning comprises multiple layers of neural
networks that outperform traditional machine learning algorithms. Akcay [13] et al. first
introduced deep learning to luggage classification detection of X-ray images using transfer
learning. Li et al. [14] combined a semantic segmentation network with Mask R-CNN [15]
into a two-stage CNN model, using the semantic segmentation network as Mask R-CNN
soft-attention coding to improve the performance degradation caused by overlapping
objects in X-ray images. Zhang et al. [16] used an XMC R-CNN model, consisting of a
material classification algorithm and an organic-inorganic separation algorithm, for object
detection to mitigate the accuracy degradation caused by the occlusion problem effectively.

Multi-scale problem in contrabands detection. Few research studies focus on X-ray
baggage threat detection in complex scenarios, including multi-scale detection. Wang
et al. [17] utilized a dense attention module to contribute to SDANet, and Cascade Mask
RCNN is used as the baseline for the extracted multi-scale features. Tao et al. [18] utilized
bidirectional propagation to filter out the impact of the noisy region in the key part by
constructing multi-scale features links. Chunjie et al. [19] proposed EAOD-Net, utilizing
the learnable Gabor convolution and deformable convolution. ResNeXt is also used to
improve the representative ability of multi-scale features. Nguyen et al. [20] used a task-
specific deep feature extractor to reduce the multi-scale X-ray images to the same aspect
ratio in the same size. This can enable a more efficient deep-detection pipeline. Chunjie
et al. [21] constructed a global context feature extraction (GCFE) module and learnable
Gabor convolution layer for the high-level and low-level features, which facilitates the
detection of bands of different sizes while suppressing background noise.

Obscuration problem in contrabands detection. The obscuration problem has also
been widely studied by many scholars. Gas et al. [22] explored the ability of the traditional
CNN model to adapt different properties of the scanner and evaluated the prohibited
items predicted result on the Dbf3 and SIXray datasets. Hassan et al. [23] obtained dual
tensors with improved contour information in X-ray baggage images by levering the
intensity transit transitions in low- and high-energy scans. Those contour features were
then put into an edge suppression model to filter the noise information to a normal level. Li
et al. [24] proposed a method based on GANs with a generator architecture with Res2Net
for the natural occurrence problem. Hassan et al. [25] proposed a tensor pooling strategy to
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decompose the scans across various scales and then fuse them via a single multi-scale tensor
to obtain more salient contour maps for boosting a framework’s capacity for handling
the overlap problem. Wei et al. [9]. proposed the de-occlusion module (DOAM), which
combines the edge and material information of the contraband to refine the feature map,
which enhances the detection performance.

However, edge information contains too many irrelevant gradients [26]. Therefore, it
has a limited improvement in the model localization and classification; this leads to poor
discrimination by the detection model in the case of occlusion and a multi-scale task. In
addition, the above model does not take into account the effect of a severely unbalanced
aspect ratio on the model predictions, which prevents the model from using the contraband
shape information distribution to improve the model’s prediction performance.

3. Method

The anchor-free detection method is able to learn multi-scale features better than the
anchor-based method [27]. Therefore, the YoloX model using the anchor free detection
method is chosen as the baseline model in this paper. A new shape-decoupled SIoU loss is
also designed for YoloX’s unique decoupling.

The block diagram of the proposed framework is depicted in Figure 2. The input
origin image is fed into the CSP-DarkNet53 [28] backbone for multi-scale feature extraction.
The extracted multi-scale features are separately fed into the material-aware coordinate
attention mechanism (MCA) for recalibration. In the MCA, the material information related
to the contraband can be extracted and integrated more accurately by utilizing a spatial
coordinate separation material perception module. Afterward, these features containing the
aggregated material information are then fed into an improved path aggregation network
(PAN) [29], which is embedded in the multi-scale smoothed atrous convolution module
(SAC), with the SAC levering the ability of the smoothed atrous convolution to increase
the field of perception for further extraction and fusion of multi-scale object information.
Finally, in the training stage, the contraband prediction results are output by the decoupling
head. SD-SIoU is used in the bounding box loss calculation, which decouples the shape
loss of the prediction box into the long-side and short-side shape loss. The specific details
will be described in the following sections.

 

Figure 2. Overall architecture diagram. The network backbone for the feature extraction is CSP-
Darknet53, which is the same in the detection network. The feature-enhanced network is a path
aggregation network with a SAC module.
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3.1. Material-Aware Path Aggregation Network

To further address the problem of multi-scale detection and occlusion in contraband
images, a Material-aware Path Aggregation network is proposed, which consists of multi-
scale smoothing atrous convolution (SAC) and a material-aware coordinate attention
mechanism module (MCA).

3.1.1. Multi-Scale Smoothing Atrous Convolution (SAC)

Compared to the traditional convolutional method, atrous convolution increases
the receptive field of the convolution kernel while keeping the number of parameters
unchanged [30]. However, atrous convolution faces a serious grid effect, weakening the
proximate connections while gaining long-distance dependence. To address this problem,
inspired by the smoothed atrous convolution [31], a multi-scale parallel smoothed atrous
convolution structure is designed, which is shown in Figure 3.

 

Figure 3. Smoothed atrous convolution (SAC) structure diagram.

As shown above, to limit the impact of the grid effect, this paper constructs parallel
atrous convolution branches; each branch uses a different expansion rate to minimize the
grid effect. Figure 4 shows the visualization of the atrous convolution grid effect rendering.

 

Figure 4. Visualization of receptive fields and grid effects.

A smoothed dilated residual block can effectively prevent the grid effect [31]; it
addresses the gridding effect by levering separable and shared convolutions (SS), based
on the idea of separable convolutions [32]. In SS convolutions, sharing means that the
filters are the same and shared by all the input and output channel pairs. For both the
input and output channels, the SS convolution uses only one filter to obtain all the spatial
information and shares that filter over all the channels. Therefore, smoothed dilated
convolutions can effectively amplify the receptive field to make this branch pay more
attention to style features(e.g. edges and global colors) [33]. We therefore apply this module
to our parallel multi-scale architecture. Finally, inspired by ResNet [34], the residual
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information is summed with the fused information in Pixel-Wise and activated by the SiLU
activation function.

Although the use of null convolution is effective in reducing the computational effort,
the model itself increases some of the parameters and computational effort because of the
addition of extra convolution

By using the SAC in the path aggregation network, the weight of the contraband
material information can be augmented, which significantly increases the capability of the
features to describe the important objects.

3.1.2. Material-Aware Coordinate Attention Mechanism (MCA)

Due to the unique physical characteristics of the X-ray scanner, the material infor-
mation of the contraband is greatly diminished and is ultimately represented as color
information. This means that channel information has a greater contribution to the detec-
tion of contraband in X-ray scanned images. The channel attention mechanism can learn
different weights of channel dimensions, so that the information from the key channels
can be utilized to a greater extent. The coordinate attention (CA) mechanism [35], as a
kind of channel attention module, embeds the spatial location information into the channel
attention, which means adding extra information into the channels.

However, due to the weakness of spatial information in X-ray images, the original CA
attention mechanism cannot fully extract the comprehensive spatial information of images.
For this problem, inspired by SRM [36], a material-aware coordinate attention mechanism
is designed, and the specific structure is shown in Figure 5.

 

Figure 5. Material-aware coordinate attention (MCA) structure diagram.

First, the input feature maps are put into the material-aware extraction module, which
is constructed by average pooling and standard pooling in the width and height directions,
to obtain four feature maps, respectively. Specifically, given the input X, two special two-
dimensional convolution kernels, (H,1) and (1, W), are used to encode the input data, and
four different pooling methods are used to obtain the horizontal and vertical coordinate
encoding information. The output of the height, h, at the c-th channel can be presented as

Avgh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

Stdh
c (h) =

√
1

W ∑
0≤i<W

(xc(h, i)− Avgh
c (h))

2 (2)
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Similarly, the output of width, w, at the c-th channel can be formulated as

Avgw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (3)

Stdw
c (w) =

√
1
H ∑

0≤j<H
(xc(j, w)− Avgw

c (w))2 (4)

The above four branches integrate the information of two spatial dimensions, encoding
the spatial information and channel information together. This serves as a summary
description of the material information for each example, n, and channel, c.

After that, we enter the coordinate information embedding layer to splice and convolve
the channel dimensions of the width and height feature information, which embeds the
width and height information with the channel information into one feature map. Two
feature maps with scales of H × 1 × C and 1 × W × C are obtained. These two directional
feature maps of the width and height of the obtained global receptive field are put together
according to the spatial dimension. Then, in the coordinate attention generation part, the
two feature maps are fed into a convolution module with a shared convolution kernel of
1 × 1 to scale the dimension to C/r and, finally, to the sigmoid activation function and the
BatchNorm operation.

3.2. Shape Decoupling SIoU (SD-SIoU)

In addition to the anchor-free detector, YoloX also introduces a decoupled head.
The decoupled head decouples the classification task and the regression localization task
into two separate branches for separate outputs. This enables the model to focus on the
classification and localization tasks separately and improve the model performance. We
further improve the decoupled localization task by introducing the SioU [37] loss function
and improving it for the physical properties of the X-ray scanning object, which include the
shape-decoupling module and normalized optimization algorithm

3.2.1. Revisit SIoU Loss Function

Traditional IoU losses, such as DIoU, CioU [38] and GioU [39], only consider the
distance, overlap area and aspect ratio information, and do not consider the angle and ratio
between the shape and the predicted bounding box and the target bounding box, resulting
in a slight overlap. However, SIoU redefines the penalty matrix by considering the angle
and shape. SIOU regression loss consists of four components: distance loss, IOU loss, angle
loss and shape loss. The total loss is defined as:

Lbox = 1 − IoU +
Δ + Ω

2
(5)

The angle loss is defined as:

Λ = 1 − 2 ∗ sin2(arcsin(x)− π

4
) (6)

x =
max(bgt

cy, bcy)− min(bgt
cy, bcy)√

(bgt
cx − bcx)

2
+ (bgt

cy − bcy)
2

(7)

The distance loss is defined as:

Δ = ∑
t=x,y

(1 − e(Λ−2)ρt) (8)
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where

ρx = (
bgt

cx − bcx

max(w, wgt)
)

2

, ρy = (
bgt

cy − bcy

max(h, hgt)
)

2

(9)

The shape loss is defined as:

Ω = ∑
t=w,h

(1 − e−ωt)
θ (10)

where

ωw =

∣∣w − wgt
∣∣

max(w, wgt)
, ωh =

∣∣h − hgt
∣∣

max(h, hgt)
(11)

bgt
cy and bcy represent the y coordinates of the center point for ground truth and

prediction. w and h represent the width and height of the bounding box.
SIoU has been widely used in recent networks and has proven to be a key component

in the implementation of advanced detectors [40–43]. However, although SIoU takes
shape loss into account, it couples the long- and short-side information of the prediction
bounding box together and assigns the same computational weight to them, which ignores
the proportional relationship between the long and short sides. In addition, SIoU limits the
shape loss to [0, 1] by dividing by the maximum of the predicted and true values, which
causes asymmetry in the parameter convergence curve and convergence difficulties due to
low proximity gradients.

In the following, we will reconsider the shape loss part for the above problem.

3.2.2. Shape Decoupling Module

In the X-ray contraband images, the distribution of the long side and short side is
always not equal, and the aspect weight of contraband varies greatly among different cate-
gories. Giving the same weight to the long side and short side will affect the optimization
of the model for the contraband shape information. Figure 6 shows the scatter plot of the
OPIXray dataset consisting of information on the long side and short side of different types
of contraband.

     

    

Figure 6. Comparison of length ratio of different categories under SIXray and OPIXray datasets.

As shown in Figure 6, there is a significant difference between the long–short sides
of the target box. To address this problem, we designed the long–short side decoupling
module and the category information embedding module, based on the special structure of
the YoloX decoupling head. The detailed structure is shown in Figure 7.
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Figure 7. SD-SIoU structure diagram.

In the long–short side decoupling module, the length and width information of the
input prediction bounding box is separated, and the lengths of the long side and the short
side are extracted, respectively. Therefore, a new shape loss penalty factor is decoupled for
the long length, l, and short length, s, as follows.

ωl =

∣∣l − lgt
∣∣

max(l, lgt)
, ωs =

∣∣s − sgt
∣∣

max(s, sgt)
(12)

In the category information embedding module, we collect the long and short side
information of the dataset by category and perform a cluster analysis to obtain the gathering
point information. Finally, we construct the long–short scale matrix, Mn×1, which can be
represented as follows.

M= [α1, α2, α3, · · · , αn]n×1 (13)

where n is the number of categories, and αi is the aspect ratio of i-th category clustered.
Then, multiplying the category prediction matrix, Cm×n, with the long–short scale matrix,
Mn×1, yields the category long–short side coefficient matrix, Am×1.

Then, we embed the category information into the shape loss by dividing the long-side
penalty factor by the category long–short side coefficient matrix, Am×1. The equation is
shown below.

ωl+ = ωl/Am×1 (14)

The above formula realizes the decoupling of the shape information and the embed-
ding of the category information, effectively alleviating the impact of the long–short sides
on detection accuracy.

3.2.3. Normalized Optimization Module

As we continue our research, we find that, in shape loss, the range of values is restricted
to R ∈ (0, 1) by dividing by the maximum value of the ground truth box width and height
and the predicted box width and height in Equation (7). However, this method leads to
a symmetry problem. It can be seen, in Figure 8, the maximum normalization does not
work consistently for the same distance gap between the target and predicted bounding
box sizes in the positive and negative directions, and the optimized gradient is worse as
distance between the target and prediction gets closer. Although the function has a very
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fast convergence speed in the early stage of training, the convergence ability of the model
decreases as the prediction results approach.

 
(a) (b) 

Figure 8. Comparison of shape loss and normalized penalty factor before and after improvement.
(a) Shape loss; (b) normalized penalty factor.

To address this problem, we designed a symmetric normalization method for the
shape loss part of the SIoU. The new shape loss composition is shown below.

Ω = ∑
t=w,h

(1 − e−ϕt)
θ (15)

where the novel penalty factor is:

ω+
t = b × ek×|w−wgt | − e−k×|w−wgt |

ek×|w−wgt | + e−k×|w−wgt | (16)

As shown above, the improved normalization function solves the left–right asymmetry
problem caused by the max function and optimizes the penalty factor regularization
algorithm, so that the loss decreases more smoothly during the training process and still
has a certain descent gradient in the late training period.

4. Experiment

In this section, we conduct comprehensive experiments on OPIXray and SIXray
datasets to evaluate the effectiveness of our method. OPIXray and SIXray are the common
datasets for X-ray contraband images.

4.1. Experiment Setting Details

This paper is implemented by a Windows 10 64-bit operating system, 12th Gen Intel
Core i9-12900K@3.2 GHz CPU, 32 GB RAM, NVIDIA 3080ti GPU with CUDA Toolkit
11.4 and Torch 1.11 in Python 3.8. As the benchmark of our model, YoloX uses the most
primitive parameter settings. The backbone of YoloX uses CSP-Darknet53.

All the experiments of our model and baselines are optimized by an Adam optimizer.
The initial learning rate is set to 0.001, and the Cosine Annealing learning rate reduction
strategy is used. The momentum and weight decay are set to 0.93 and 0, respectively. The
batch size is set to 16. We evaluate the mean Average Precision (mAP) to measure the
performance of all the methods. In addition, the IoU threshold measuring the accuracy of
the predicted bounding box is set to 0.5.
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4.2. Comparing with SOTA Detection Methods

To verify the effectiveness of the proposed methods in this paper, as shown in Tables 1
and 2, we compared the mainstream contraband detection models and object detection
models in the last two years on the OPIXray and SIXray datasets, respectively. The method
involved included object detection models such as Swin Transformer [44], RetinaNet [45],
DetectoRS [46], Yolov5 and baseline YoloX. It also includes the most advanced contraband
detection models in the last two years such as CHR [10], FBS [47], CFPA-Net [48], MCIA-
FPN [49] and POD-Y [21].

Table 1. Performance comparison results using different object detection methods on the OPIXray dataset.

Model Year Backbone
Category

mAP
FO ST SC UT MU

Swin Trans [44] 2021 Swin Trans 82.14 42.77 95.75 69.60 84.84 75.04

CHR [10] 2019 Resnet-50 87.94 84.53 95.23 50.99 74.47 78.63

RetinaNet [45] 2017 Resnet-50 89.27 55.66 98.15 79.79 85.27 81.63

FBS [47] 2022 CSPDarknet53 86.38 88.29 95.45 57.99 80.62 81.75

CFPA-Net [48] 2021 Resnet-50 87.72 76.10 90.52 85.94 84.87 81.84

DetectoRS [46] 2021 Resnet-50 88.51 64.01 89.86 81.02 86.59 82.00

DOAM [9] 2020 Resnet-50 86.71 68.58 90.23 78.84 87.67 82.41

Yolov5 2021 CSPDarknet53 90.36 64.85 97.69 80.93 94.44 85.65

MCIA-FPN [49] 2022 ResNet-101 89.08 74.48 89.99 86.13 89.75 85.89

ATSS-Lacls [50] 2022 ResNet-50 92.31 72.04 96.58 80.23 91.67 86.59

Chang et al. [5] 2022 Resnet-50 90.42 75.95 91.46 84.31 91.29 86.69

YoloX [8] 2021 CSPDarknet53 91.84 77.53 97.89 89.22 92.79 89.85

LIM [18] 2021 Resnet-50-FPN 94.79 77.66 98.20 88.92 93.75 90.43

POD-Y [21] 2022 CSP-
Darknet53 94.5 77.8 98.2 89.5 94.5 90.9

Ours N/A CSPDarkNet53 94.53 86.68 98.88 89.56 94.96 92.92

Table 2. Performance comparison results using different object detection methods on the SIXray dataset.

Model Year Backbone
Category

mAP
Gun Knife Wrench Pliers Scissors

CHR [10] 2019 Resnet50 79.22 63.77 73.77 71.55 65.55 70.77
RetinaNet [45] 2017 Resnet-50 81.16 77.27 33.24 66.87 22.61 81.50

FBS [47] 2022 CSP-DarkNet53 79.72 64.14 74.96 71.19 66.17 71.24
DetectoRS [46] 2021 Resnet-50 81.61 80.52 84.48 87.40 81.4 83.10
CFPA-Net [48] 2021 Resnet-50 86.07 86.33 72.44 87.28 75.95 81.61

DOAM [9] 2020 CSP-Darknet53 81.37 64.25 73.26 70.17 61.98 70.21
MCIA-FPN [49] 2022 Resnet101 85.75 83.75 81.50 86.79 88.34 85.23

Yolo v5 2021 CSP-Darknet53 97.36 84.60 90.00 85.56 85.20 88.55
YoloX [8] 2021 CSP-Darknet53 96.74 85.94 91.48 86.94 87.89 89.80

POD-Y [21] 2022 CSP-Darknet53 92.6 87.9 87.6 92.1 91.8 90.4
Ours N/A CSP-Darknet53 97.01 87.63 88.66 92.48 89.70 91.10

As Tables 1 and 2 show, the proposed model can achieve the optimal detection perfor-
mance on the OPIXray and SIXray datasets; the mAP values are 2.02% and 0.71% higher
than those of the state-of-the-art model on the OPIXray and SIXray datasets. Compared
with the existing one-stage prohibited items detection network, our model can achieve an
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optimal detection performance. Especially for the small target category “Straight Knife”
in OPIXray, which faces the problem of obscuration and small scale, and its aspect ratio
is extremely uneven, our model achieves an 8.88% improvement compared with POD-y.
The above experimental results fully demonstrate that our proposed method is effective
and efficient.

4.3. Comparing with Different Attention

To verify the effectiveness of the improved attention mechanisms in this paper, we
compare the mainstream attention mechanisms, including the SE [51], GAM [52], CA [35]
and PSA [53] attention mechanisms. The specific results are shown in Table 3, below.

Table 3. Comparison of different attention mechanism modules.

Model MAP GFLOPs Parameters (M)

YoloX 90.45 155.331 54.152
YoloX + SE 90.75 156.017 54.383
YoloX + GAM 89.87 218.954 88.624
YoloX + CBAM 91.18 156.013 54.383
YoloX + CA 91.49 156.032 54.342
YoloX + DOAM 92.24 175.362 54.290
YoloX + MCA (ours) 92.36 156.037 54.382

It is obvious that our method performs better on the OPIXray dataset compared
to the other methods, with results 2.11%, 1.81%, 2.69%, 1.38%, 1.17% and 0.21% higher
than the other attention mechanisms, respectively. We also compare DOAM, an attention
mechanism for contraband detection, and see that our model is 0.12% more accurate than
DOAM, with a smaller number of computations and parameters than DOAM. It can be
seen that our model maintains a high level of detection accuracy and speed without a
significant increase in the number of computations and parameters.

4.4. Comparing with Different Receptive Field Enhancement Module

We further verify the effect of our multi-scale smoothed atrous convolution (SAC). As
we can see in Table 4, we compare different receptive field enhancement modules include
ASPP [54] and RFB [55]. Our method shows an improvement of 1.80% and 0.34% over the
ASPP and RFB modules.

Table 4. Comparing with different receptive field modules.

Method
Category

mAP FLOPs Paras (m) FPS
FO ST SC UT MU

Baseline 91.84 77.53 97.89 89.22 92.79 89.85 155.331 54.152 89.834
Baseline + ASPP 91.74 78.42 97.87 91.36 92.09 90.03 238.416 100.955 74.567
Baseline + RFB 89.83 86.04 99.3 87.4 94.91 91.49 209.604 83.812 79.058

Baseline + SAC (our) 89.71 88.68 99.32 86.67 94.29 91.83 233.403 96.834 74.350

To better show the superiority of our proposed model, we plot the P-R curves for
different receptive field modules, as shown in Figure 9. The P-R curve of our module is
closer to the upper right position compared to the other models, which means that our SAC
has a better performance.
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Figure 9. Comparison of P-R curves of different receptive field enhancement modules.

4.5. Ablation Study

To verify the effect of each module on the model performance, we perform ablation
experiments on the OPIXray and SIXray datasets. The results are shown in Table 5. We
compare the mAP of the model with different combinations of components. The same
parameters were used for all the experiments performed in the ablation study to ensure
the validity of the comparison. The SD-SIoU increases the mAP of the baseline from
89.85% to 91.76% and 89.80% to 90.94% on OPIXray and SIXray, respectively. This result
shows that the SD-SIoU has considerably improved the detecting performance. Then, we
split the material-aware path aggregation network into SAC and MCA, which represent
the Smoothed Atrous Convolution and Material-aware Coordinate Attention. The MCA
increases the mAP of the baseline with SD-SIoU by 0.29% on OPIXray and 0.18% on
SIXray. SAC increases the mAP of the baseline with SD-SIoU by 0.60% on the OPIXray
and 0.33% on the SIXray. The experiments shows that the SAC and MCA modules are
helpful for the model to detect contraband accurately. Finally, when all the methods are
used together, our model mAP achieves 92.65%and 91.31%. These are 2.80% and 1.51%
higher than the YoloX baseline on OPIXray and SIXray, respectively. Each method can
improve performance individually, and combining these methods results in the optimal
performance. It is worth mentioning that the improvement on the OPIXray dataset is
greater than on the SIXray dataset. The main gap is in the SD-SIoU section. It will be further
investigated in the following.

Table 5. Ablation study on OPIXray and SIXray.

SD-SIoU MCA SAC
mAP (%)

GFLOPs Parameters
OPIXray SIXray

89.85 89.80 156.011 54.209√
91.76 90.94 156.011 54.209√ √
92.05 91.12 156.037 54.385√ √
92.36 91.27 256.835 109.284√ √ √
92.65 91.31 256.860 109.460

To further visualize the effectiveness of our SD-SIoU, we perform detailed ablation
experiments on the SD-SIoU part, which we illustrate by two parts of the mAP and loss
function curves.

As can be seen in Table 6, we compared the mAP of the SIoU loss function under
different conditions. ON denotes the optimized normalized curve; LSside denotes the long–
short side decoupling module. “Decoupling” means the category information embedding
module. The optimized normalized curve improves the mAP of the model by 1.38%
and 0.95%, which means this normalized method can improve the convergence results
of the model. It is worth noting that, when introducing the long–short side decoupling
module without the category information embedding module, the accuracy of the model
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decreases by 0.16% and 0.21%. The reason for this phenomenon is that there is a serious
maldistribution after the construction of the long–short side shape loss. The weight of the
long-side loss is not balanced with the weight of the short-side loss. Therefore, we continue
to add the category length ratio decoupling module. It increases the mAP by 0.69% and
0.50% and achieves higher AP detection performance.

Table 6. Ablation study for OD-SIoU.

Method
mAP (%)

OPIXray SIXray

SIoU 89.85 89.70
SIoU-ON 91.23 90.65

SIoU-ON-LSside 91.07 90.44
SIoU-NO-LSside-Decoupled 91.76 90.94

We recorded the shape loss curves and long–short loss curves of the SD-SIoU under
different conditions. Since the loss data under different conditions varied widely and had
small fluctuations, we normalized and denoised all the curves and indicated their validity
by observing the decreasing trend of loss. The specific images are shown in the Figure 10.

   

Figure 10. Ablation experiments on loss reduction curves for SD-SIoU.

The first figure shows the SD-SIoU loss curves under the ablation experiment. The
loss value drops lower after improving the normalization function of the shape loss factor,
but the trend is almost the same at the beginning of the training. This is because our
new normalization method still has a good gradient in the late training period, while
the gradient of the traditional normalization method is not significant in that period.
We also find that the downward trend does not change significantly after adding the
long–short side decoupling module, but there is a significant improvement after adding
the category information embedding module. To address this issue, we conduct more
detailed experiments.

Figure 10 splits the long side and short side from the shape loss. This represents
the long-side loss and short-side loss before and after adding the category information
embedding module. We can see that the addition of this module directly affects the
decreasing trend of the long-side loss, while the decreasing trend of the short edge does
not change significantly. This means that adding the classification module can effectively
improve the convergence of the long side without affecting the short-side loss. In other
words, this module alleviates the problem of uneven weights between the long–short sides.

Finally, we use the model proposed in this paper for visual inspection of the OPIXray
and SIXray datasets, as shown in Figure 11 below.
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Figure 11. Detection performance in OPIXray and SIXray. The first line is the detection performance
of OPIXray and the second line is that of the SIXray.

5. Conclusions

In this paper, a new feature extraction network is designed considering the specific
physical characteristics of X-ray images. For the X-ray contraband multi-scale problem,
a multi-scale smoothing atrous convolution module is designed to capture multi-scale
contraband features by acquiring different sizes of the receptive field. For the occlusion
and weak textural information in X-ray contraband images, we design a material-aware
coordinate attention mechanism to enhance the material features’ extraction ability in
obscured X-ray images. In addition, an improved SIoU was designed, named SD-SIoU,
which addresses the problem of inconsistent aspect ratios in contraband images. Through
a large number of experiments and visualization results, we determine that the feature
extraction and enhancement strategies proposed in this paper can effectively strengthen
the ability of the model to detect contraband. Its validity is reflected in the evaluation index
mAP. Our experimental results, based on the OPIXray and SIXray datasets, show that our
method achieves an average accuracy of 92.65% and 91.31%, with a computational volume
of 256.86G for 109.46M parameters, respectively. From the quantitative point of view,
the proposed method has excellent performance in the field of contraband detection. The
comparison results show that the method outperforms other contraband detection methods.
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Abstract: With the development of technology, QR codes play an important role in information
exchange. In order to work out the problem of uneven illumination in automatic sorting in logistics
systems, an adaptive method in binarization is presented. The proposed method defines the block
windows’ size adaptively for local binarization based on the traits of the QR code. It takes advantage
of integral images to calculate the sum of gray values in a block. The method can binarize the QR code
with high quality and speed under uneven illumination. Compared with several existing algorithms,
it is shown that the proposed method is more effective. The experimental results validate that the
proposed method has a higher recognition accuracy and is more efficient in binarization.

Keywords: binarization; QR code; integral image; logistics

1. Introduction

Shortly, the IoT will affect many fields, such as retail, agriculture, and transportation [1].
To be more specific, people may control the heating, lighting, and other home equipment
by constructing intelligent home systems using IoT technologies [2]. Moreover, the IoT may
boost logistics systems’ flexibility, robustness, and productivity [3,4]. While building the IoT
ecosystem, the QR code, the entrance to the Internet of Things, plays a significant role. QR
codes can not only store a large amount of information but also have vital error correction
functions and low production costs, which makes them very valuable. In logistics systems,
the packages are transmitted onto the conveyer belt. When the scanner near the conveyer
belt recognizes the QR code on the packages, the local computer will upload information
to the cloud and obtain a response to change the moving direction of parts of the belt
to sort the packages. Then, the packages with the same destination will be put together
and delivered.

It can be seen from Figure 1 that the sorting operation depends on the QR code.
Combined with QR code technology, it is possible that logistics companies then implement
the unmanned management of sorting and package tracking. The accuracy and speed of QR
code recognition will directly affect sorting efficiency. However, in complex environments,
QR code recognition is often affected by other factors, such as uneven lighting. There
are several ways to deal with this factor. Wellner [5] proposed a method that used an
average of surrounding pixels as a threshold to segment the image. Sauvola [6] devised a
way of utilizing the average and deviation of gray values in an area to set the threshold.
Zhang and Yang [7] proposed an improved algorithm based on that of Sauvola to speed
up the calculation process, but the size of the processing window limited the algorithm.
Di et al. [8] proposed an improved method based on Wellner’s, and the results can be
obtained through simple calculations. However, the algorithm is not effective in the case of
severe unevenness of light. Yang and Feng [9] came up with an algorithm combining the
methods of Bersen [10] and Otsu [11]. The algorithm will modify the threshold to prevent
misclassification. However, several parameters in the algorithm need to be set manually,
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lacking some adaptive ability. Wu et al. [12] found a method of using BTC to segment
an image into multiple blocks for binarization. This method is computationally intensive,
and its effect depends on the number of segmented blocks. Chen et al. [13] proposed a
window-adaptive binarization algorithm before; the proposed method has a favorable
adaptive ability. The algorithm meets the requirements of the warehouse sorting systems,
but it cannot meet the needs of the logistics sorting system because the automatic scoring
in the logistics system has a higher requirement for efficiency.

Figure 1. Workflow of automatic sorting in Logistics Systems.

In addition, feature extraction is a standard method in image processing. Ren et al. [14]
presented an automatic end-to-end supervised deep learning framework to improve the
accuracy of object segmentation and extraction. Sun et al. [15] proposed a novel SpaSSA
approach for effective extraction and classification accuracy. Although there are substantial
binarization methods in the QR code image, few feature extraction methods are utilized in
QR code image processing.

Considering the needs of the logistics sorting system while extracting the features of
the QR code, we propose a fast adaptive binarization algorithm, which solves the problem
of difficult window definition and achieves a high recognition rating. The algorithm first
determines the window size by searching for the position detection patterns and then
combines the improved local binarization algorithm for processing. The experimental
results show that the algorithm can not only process QR codes with different degrees of
uneven illumination but also improve the quality of the fast-processed images.

2. Related Work

2.1. Features of QR Code

In the QR code, the information is encoded in a binary representation. As shown
in Figure 2, the dark modules, or black modules, usually represent “1”, while the light
modules, or white modules, often represent “0”. In the upper left, lower left, and upper
right corners of the QR code are the position detection patterns. When the mobile device
detects the three modules, it can determine the position and direction of the QR code and
prepare for decoding. The three position-detection patterns in the QR code have the same
size and are composed of three concentric squares. The width ratio of the dark module to
the light module of the position detection pattern is 1:1:3:1:1.
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Figure 2. Position detection patterns in QR code.

2.2. Some Binarization Algorithm

At present, traditional binarization algorithms can be divided into two categories.
One is the global threshold algorithm, which divides the image according to a specific
gray value. The most commonly used global threshold algorithm, the Otsu algorithm,
determines the threshold T by calculating the maximum between-class variance and then
calculates the gray value f (x, y) of each pixel on the image according to Equation (1) to
obtain the final value g(x, y) of the pixel. The calculation process of this kind of algorithm is
relatively simple, and the calculation speed is fast. However, because the algorithm uses
a uniform threshold, image details and information are seriously lost in more complex
environments, and the processing effect is poor.

g(x, y) =
{

255, f (x, y) > T
0, f (x, y) ≤ T

(1)

The other is a local threshold algorithm. The core of this algorithm is to use different
thresholds to binarize the pixels in the image. The processed image can well restore the
details of the image. Similar to the idea of Sauvola’s algorithm, first take one pixel as the
center and create a local window of w × w size; second, calculate the average gray value
m(x, y) in the window, and then calculate the gray value standard deviation σ(x, y) of the
pixel in the window according to Equation (2); then calculate the threshold value T(x, y) of
the pixel according to Equation (3); afterward perform the same operation on each pixel to
obtain the respective threshold value; finally, segment each pixel.

σ(x, y) =

√√√√√ 1
w2

x+ w
2

∑
i=x− w

2

y+ w
2

∑
j=y− w

2

( f (i, j)− m(x, y))2 (2)

T(x, y) = m(x, y)
[

1 + k
(

σ(x, y)
R

− 1
)]

(3)

Although the processing effect of such algorithms is relatively sound, the amount of
calculation is often too large, resulting in slow operation speed. More importantly, the
algorithm is often affected by the size of the processing window. If the window definition
is too small, a block phenomenon will occur. On the other hand, if the size is too large, the
algorithm’s effectiveness will be reduced, and the amount of calculation will be further
increased to reduce the processing speed.

Under complex lighting conditions, the traditional global binarization algorithm lacks
advantages in recognition rate. At the same time, the traditional local binarization algorithm
is also not ideal for processing speed and image segmentation effect. In order to accurately
binarize QR codes under complex illumination, many researchers have proposed their
methods. Zhou et al. [16] made improvements based on Sauvola’s method, combined
with the QR code feature definition parameter R in Equation (3). However, the problem
of defining the window size was not resolved. Zhang’s team [17] proposed an improved
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binarization method based on background grayscale. This method combines the joint
interpolation algorithm and uses the Otsu method to segment the image. Nevertheless, the
effect is general in the case of multiple light sources. Yao’s team [18] proposed an algorithm
that fuses the improved Niblack algorithm with Otsu’s algorithm. The algorithm is faster
than traditional local binarization methods but is not able to binarize QR code images
under different degrees of uneven illumination.

Based on the analysis of the above methods, there is still a lack of an efficient and
high-quality binarization algorithm, even under complex lighting conditions. Therefore, in
this paper, we bring forward an adaptive fast binarization method combined with QR code
features and an integral image method.

3. Method

Most local threshold binarization algorithms have the problems of slow operation
speed and obstacles in window definition. In order to solve the problems above, we
conducted research based on Sauvola’s algorithm. In this paper, the problem of window
selection of the local threshold algorithm is solved by combining the features of the QR
code image. The method in this paper first finds the position detection pattern through pre-
liminary binarization, then obtains the window size of the local threshold algorithm. Then,
it uses Sauvola’s and the integral image algorithm to accelerate the threshold calculation of
the QR code image and finally reconstructs the image based on the threshold to obtain the
binarized image.

3.1. Preprocessing

In daily life, the quality of the unprocessed QR code image is affected by the camera
quality of the mobile device, the algorithm processed after shooting, and the environment.
Due to these various factors, the image will be disturbed by noise, and the image will likely
add noise, so we need to perform median filtering on the QR code image to eliminate the
influence of noise.

Because the window size of the algorithm in this paper depends on the central black
module of the position detection pattern, we need to pre-process the QR code image to
enhance the contrast to ensure the integrity of the position detection pattern after the initial
binarization. Top-hat transform and histogram equalization are commonly used methods
to enhance contrast.

The top-hat transform can extract the image’s dark features or bright regions [19]. So
using top-hat transform, the dark module in the position detection pattern can be extracted
from the QR code with uneven lighting. The top-hat transformation of the grayscale image
I is performed according to

That = I − (I � b) (4)

where I � b represents the open operation and b is a structural element.
Because there is a width ratio of 1:1:3:1:1 between the modules in the position detection

pattern, the size of the structure element is defined as follows:

b =
max(h, w)

7
(5)

where h is the height of image I and w is the width. After obtaining the top-hat transformed
image That, we use Otsu algorithm to perform preliminary binarization processing on the
image That. The pre-processing flowchart is shown in Figure 3.

3.2. Define Window Size Adaptively

In order to solve the problem of window size selection, we performed a series of
studies. Initially, we processed the QR code image P1 (Figure 4) with a size of 300 × 300
and iterated from a window size of 1 pixel until the window size was 1/4 of the image width.
When the window size exceeds 1/4 of the image width, this will be too time-consuming
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to use in reality. Sauvola’s algorithm was used for binarizing the QR code image. After
obtaining several binarized QR code images after processing, we used two objective quality
evaluation standards, peak signal-to-noise ratio (PSNR), to judge the results. The larger the
calculated value of the evaluation standard, the higher the image quality after binarization.
Based on the evaluation of the processed pictures, we have drawn Figure 5.

Figure 3. Flowchart of pre-processing.

Figure 4. Image P1.

Figure 5. PSNR values after P1 processing.

From the figure, we found that when the window size is set to about 30, the values of
PSNR reach the highest, after which the PSNR values remain stable. At the same time, by
analyzing the QR code image in Figure 4, we found that the size of the middle black module
in the position detection pattern of P1 is 30 × 30, as shown in Figure 6. When the size of the
window is the same as the size of the middle black block of the position detection pattern,
the PSNR values reach the highest after the QR code is binarized. Finally, in order to further
verify the relationship between the window size and the position detection pattern, we
performed the same experiment on five 300 × 300 size samples (as shown in Figure 7) and
obtained the results shown in Figure 8.
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Figure 6. The size of middle module.

Figure 7. Experimental samples: (a) P2; (b) P3; (c) P4; (d) P5; (e) P6.

Figure 8. PSNR value curves of five 300 × 300 samples after processing.

As Figure 8 shows, when the window size increases, the image quality after binariza-
tion also increases. When the window size is close to the middle black module size of the
position detection graphic, the binarized image quality effect reaches the best. As men-
tioned earlier, most local threshold algorithms currently have the problem of complicated
window definitions. Therefore, the size of the black module in the center of the position
detection pattern is used as the window size of the local threshold algorithm, which can
effectively implement the adaptive selection of the processing window.

Subsequently, we used Adobe Photoshop to enlarge the proofs in Figure 7 to 450 × 450
and 900 × 900, two sets of samples, and gradually increased from a window size of 1, and
then binarized the samples to obtain Figure 9.

When the size of the sample is 450 × 450, the middle dark module is close to 45 × 45.
While the dark modules are near 90 × 90 in the 900 × 900 samples. From the processing
results of the two sets of samples, it can be seen that when the window is close to the
dark module in the middle of the position detection pattern, the PSNR values of the
image tend to be stable. However, the PSNR values tend to decline as the window size
becomes extensive. For each pixel, there is a local threshold algorithm with different
thresholds. When traversing each pixel to calculate the threshold, the window size will
affect the calculation speed. The larger the window, the slower the calculation speed.
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Therefore, the size of the dark module can be defined as the window size of the local
binarization algorithm.

(a) (b)

Figure 9. PSNR value curves of five samples in the same size: (a) 300 × 300; (b) 450 × 450.

As we know, an image can be viewed as a two-dimensional array. Therefore, in order
to find the position detection pattern according to the characteristics of the module width
ratio 1:1:3:1:1, after obtaining the preliminary binarized image, we transform the image
into a one-dimensional array to obtain the array S. We can obtain the gray difference of the
adjacent pixels according to

Graydi f f = S(i + 1)− S(i) (6)

where i ≥ 1. When Graydi f f �= 0, we record the current value of i to obtain the index array
Index_Array. Then, traverse Index_Array and find the 1:1:3:1:1 relationship. If the above
proportional relationship is found, the window size can be determined according to the
value of Index_Array.

3.3. Window Size Correction

It is found through experiments that in the case of slightly uneven illumination, the
initial binarized image after the top-hat transformation sometimes has the situation that the
position detection pattern cannot be determined. In order to improve the success rate of
finding the position detection pattern, when the above method fails to obtain the window
size, we try another method to obtain the window size again. Histogram equalization is an
adaptive contrast enhancement tool [20]. We can use it on the grayscale image I to enhance
its contrast and then perform preliminary binarization processing. Next, use the method
of Section 3.2 to obtain the window size value again. If there is still no way to obtain the
window size value for the histogram-equalized image, set the window size according to

window size =
min(h, w)

10
(7)

Finally, the method flowchart for obtaining the window size is shown in Figure 10.
We used the window size definition method just mentioned in combination with

Sauvola’s algorithm to select several samples of different sizes for the binarization experi-
ments. The original image and processing results are shown as follows.

It can be seen from Figure 11 that no matter what size the QR code image is, this
window definition method is effective and can accurately segment the image.
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Figure 10. Flowchart of obtaining the window size.

 

Figure 11. The original image and processing result: (a) 300 × 300; (b) 50 × 450; (c) 600 × 600;
(d) 900 × 900.

3.4. Threshold Calculation and Binarization

As we all know, the operation speed of the local binarization algorithm is relatively
slow. Therefore, we use the integral image algorithm to speed up the operation speed
of the algorithm. The integral image is mainly used to calculate the sum of gray values
in a rectangular area [21]. Therefore, during the integral image algorithm of the QR
code, an integral image needs to be created—the pixels on the integral image store the
corresponding total gray values in the QR code. The values on the integral image are
obtained by the formula

Inte(x, y) =
x

∑
i=1

y

∑
j=1

G(i, j) (8)
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where G(i, j) represents the image That obtained by the top-hat transformation or the image
Hist obtained by the histogram equalization.

Suppose there is an image A, the gray values of its image pixels are shown in Figure 12a,
and the corresponding integral image is shown in Figure 12b.

(a) (b)

Figure 12. The gray values of image A and its integral image: (a) image A; (b) integral image.

Generally, if you want to calculate the sum of gray values in the circled window in
Figure 13a, you need to use

S(x, y) =
x+ w

2

∑
i=x− w

2

y+ w
2

∑
j=y− w

2

I(x, y) (9)

for calculation.

(a) (b)

Figure 13. Pixel used to calculate the total gray value: (a) 9 pixels; (b) 4 pixels.

When using the local threshold algorithm, each time the threshold is calculated, the
pixel values in the accumulation window need to be traversed, which is a time-consuming
operation. In the case of using the integral image, the workload of the calculation is greatly
reduced. We can just process by the formula as follows:

S(x, y) = Inte(x + d − 1, y + d − 1) + Inte(x − d, y − d)− Inte(x − d, y + d − 1)− Inte(x + d − 1, y − d), (10)

where and d = w/2. Therefore, the calculation of the sum of gray values in the window in
Figure 13a only needs to be calculated as follows:

S(3, 3) = Inte(4, 4) + Inte(1, 1)− Inte(1, 4)− Inte(4, 1) = 40 + 1 − 10 − 4 = 27, (11)

According to Equation (11), only four calculations are needed to obtain the result,
while Equation (10) requires nine calculations. Therefore, calculating the sum of the gray
values using the integral image algorithm is more straightforward and faster than the
original Equation (10).

Because the method in this paper uses Sauvola’s method to binarize the QR code image,
when calculating the sum of the gray values in the window, combined with the integral
image, the calculation amount can be effectively reduced and increase the calculation speed.
Furthermore, the image can be binarized after the thresholds of all pixels are calculated
using the improved Sauvola’s algorithm.

We selected 30 proofs and used two methods for experiments. One is to use Sauvola’s
algorithm, and the other is to use Sauvola’s algorithm combined with the integral image
algorithm. Table 1 shows the result of the experiments.
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Table 1. Average consume time of the two algorithms.

Algorithm Average Time Consuming/s

Sauvola’s 4.2544
Savuola’s combined with integral image 0.0157

What can be learned from Table 1 is that the time consumption of Savuola’s algorithm
is far greater than that of another method. It proves that using the integral image algorithm
can improve binarization efficiency.

3.5. Morphological Processing

Using the localized binarized image will inevitably lead to some loss of image detail
and information, sometimes causing a pseudo-boundary. We can perform an opening
operation on the image to reduce the impact. The opening operation smooths the outline of
the image, breaking the narrow necks and eliminating fine protrusions. According to

A ◦ B = (A � B)⊕ B (12)

The opening operation can be understood as the structure element B is first used to
corrode the image A, and then the structure element B is used to expand the result.

4. Experiments

In order to verify the effectiveness of the proposed method, we tested it in relation to
image quality, recognition rate, and computation speed and used the methods in [6,8,13,18],
for comparison. The parameters of the test environment are shown in Tables 2 and 3. The
software used in the experiments was ZXing and WeChat. ZXing is an open-source project
by Google. Most of the QR code identification software is improved based on this project.
Moreover, WeChat is the most widely used QR identification software in China.

Table 2. Hardware parameters.

Hardware Parameters

Processor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz (8 CPUs)
Memory 16 GB SAMSUNG DDR4 2133 MHz

Smart Phone OnePlus 3 64 GB

Table 3. Software parameters.

Software Versions

Operating System Windows 10 Pro 64-bit (10.0, Build 18362)
MATLAB R2016a 64-bit

ZXing AndroidSDK 3.4.0
WeChat 7.0.10

4.1. Image Quality

The experiments used two standards, PSNR and the measure of structural similarity
(SSIM), to objectively evaluate the quality of the processed image. SSIM is the same as
PSNR, the more significant the value, the better the image quality. Moreover, SSIM is
well-matched to perceived visual quality [22]. We conducted the experiments with several
types of uneven illumination QR code images.

(1) Figure 14 shows the effect of different algorithms in processing the QR code, which
had a soft light in the lower right corner. We can still see the most details through
our eyes.
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(2) Figure 15 shows the effect of different algorithms in processing the QR code. Due to a
beam of light passing through in a diagonal direction, the QR code had an increased
uneven illumination phenomenon.

(3) Figure 16 shows the effect of different algorithms in processing the QR code. Two
strong lights focused on the QR code made it have different illumination acquisition
in different areas.

(4) Figure 17 shows the effect of different algorithms in processing the QR code. What
caused the uneven illumination phenomenon was that a local highlight stayed in the
middle part of the QR code. In this case, we can hardly see the modules in the image.

(5) Figure 18 shows the effect of different algorithms in processing the QR code. The
original image was shot under the environment where a glare gathered in the lower
right corner of the image. As a result, it is hard to recognize the position detection
patterns with our eyes.

Figure 14. The original image and experimental results of different algorithms: (a) Original image;
(b) Sauvola’s algorithm [6]; (c) Yao’s algorithm [18]; (d) Di’s algorithm [8]; (e) Chen’s algorithm [13];
(f) Proposed method.

Figure 15. The original image and experimental results of different algorithms: (a) Original image;
(b) Sauvola’s algorithm [6]; (c) Yao’s algorithm [18]; (d) Di’s algorithm [8]; (e) Chen’s algorithm [13];
(f) Proposed method.

Figure 16. The original image and experimental results of different algorithms: (a) Original image;
(b) Sauvola’s algorithm [6]; (c) Yao’s algorithm [18]; (d) Di’s algorithm [8]; (e) Chen’s algorithm [13];
(f) Proposed method.

Figure 17. The original image and experimental results of different algorithms: (a) Original
image; (b) Sauvola’s algorithm; (c) Yao’s algorithm; (d) Di’s algorithm; (e) Chen’s algorithm;
(f) Proposed method.
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Figure 18. The original image and experimental results of different algorithms: (a) Original image;
(b) Sauvola’s algorithm [6]; (c) Yao’s algorithm [18]; (d) Di’s algorithm [8]; (e) Chen’s algorithm [13];
(f) Proposed method.

According to the groups of experiments above, we obtained the values of PSNR and
SSIM of different QR codes after using different algorithms. The exact data values are
shown in Table 4. In order to compare the values more intuitively, we drew Figure 19 based
on the data in Table 4.

Table 4. The values of PSNR and SSIM of different QR codes after using different algorithms.

Sample Standard Sauvola Yao Di Chen Proposed Method

(1)
PSNR 6.4850 6.3371 6.3560 6.5013 6.6319
SSIM 0.1583 0.1611 0.1505 0.1540 0.1619

(2)
PSNR 7.4802 8.5616 8.0232 8.8290 8.8727
SSIM 0.3377 0.3590 0.3415 0.3625 0.3649

(3)
PSNR 6.7898 6.4156 7.1323 7.2810 7.4410
SSIM 0.2698 0.2650 0.2941 0.2999 0.3042

(4)
PSNR 4.0721 4.2207 4.6880 5.5986 5.6867
SSIM 0.1101 0.1167 0.1072 0.1368 0.1371

(5)
PSNR 4.0956 4.2298 5.0369 4.5181 5.3828
SSIM 0.1061 0.1058 0.1245 0.1028 0.1404

(a) (b)

Figure 19. Curves of PSNR and SSIM values of different QR codes after using different algorithms:
(a) PSNR; (b) SSIM.

From Figure 14 to Figure 18 above, we can see that the algorithm in this paper is
significantly better than several other comparison algorithms. The algorithms of Sauvola
and Yao can restore most of the image details in scenes with uneven lighting caused by dim
light. However, unrelated dark modules are often introduced in more complex lighting
scenes. Furthermore, the QR code processed by the algorithms of Sauvola and Yao has
lower image quality. Di’s algorithm has a better processing effect on the types mentioned
above of QR codes, but occasionally details will be lost at the part that the light focuses
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on. The algorithm that we proposed previously can effectively deal with various types
of QR codes, but in the case of identifying position detection patterns difficultly in the
image, there will be a small number of details lost. It is worth noting that the PSNR and
SSIM values of sample QR codes after using the proposed method in this paper are the
largest, according to Table 4 and Figure 17. This proposed method gains an advantage
over other comparison algorithms in the image quality of the QR code after binarization.
Moreover, the proposed method hardly caused black blocks or information missing, even
in the complex lighting environment.

4.2. Recognition Rate and Processing Speed

In order to test the recognition rate and processing speed of various algorithms, the
experiment used 30 samples with slightly uneven illumination and 50 samples with strong
uneven illumination. The size of the samples is 300 × 300. The results of the five algorithms
are shown in Table 5.

Table 5. Recognition rates after processed by different algorithms.

Algorithm Average Time Consume/s
Recognition Rate

ZXing WeChat

None —— 35% 48.75%
Sauvola [6] 4.3871 37.5% 37.5%

Yao [18] 0.0113 37.5% 42.5%
Di [8] 1.5310 53.75% 71.25%

Chen [13] 0.1715 88.75% 92.5%
Proposed Method 0.0611 92.5% 97.5%

It is shown in Table 5 that the recognition rate of Sauvola’s algorithms and Yao’s are
shallow, and the recognition rate of Sauvola’s is even less ideal than when no algorithm
is applied. The algorithm in this paper uses the integral image algorithm to speed up the
threshold value calculation, and the processing speed has been greatly improved, making
the processing efficiency much better than Sauvola’s. Surprisingly, it is faster than the
algorithm we proposed before. Compared with other methods, the algorithm proposed in
this paper has the highest recognition rate on ZXing V3.4.0 and WeChat Version 7.0.10.

In a word, the algorithm proposed in this paper has advantages in terms of processing
quality, speed, and recognition rate.

5. Conclusions

A new adaptive binarization method was put forward in this paper. This method,
combined with the features of the QR code, looked for the position detection patterns to
solve the problem of window size definition and dynamically define the size. In addition,
using an integral image algorithm in the method significantly improved the speed of
threshold calculation. After a lot of experiments and comparison with some excellent
current algorithms, the algorithm in this paper has advantages in processing speed and
quality of QR codes with uneven illumination. It meets the need for automatic sorting in
logistics systems and can also be applied there.
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Abstract: Facial recognition systems frequently exhibit high accuracies when evaluated on standard
test datasets. However, their performance tends to degrade significantly when confronted with more
challenging tests, particularly involving specific racial categories. To measure this inconsistency,
many have created racially aware datasets to evaluate facial recognition algorithms. This paper
analyzes facial recognition datasets, categorizing them as racially balanced or unbalanced while
limiting racially balanced datasets to have each race be represented within five percentage points
of all other represented races. We investigate methods to address concerns about racial bias due to
uneven datasets by using generative adversarial networks and latent diffusion models to balance the
data, and we also assess the impact of these techniques. In an effort to mitigate accuracy discrepancies
across different racial groups, we investigate a range of network enhancements in facial recognition
performance across human races. These improvements encompass architectural improvements, loss
functions, training methods, data modifications, and incorporating additional data. Additionally, we
discuss the interrelation of racial and gender bias. Lastly, we outline avenues for future research in
this domain.

Keywords: biometrics; deep learning; deep learning bias; facial recognition; race bias

1. Introduction

Although current facial recognition systems achieve high average accuracy, numerous
current improvements are directed towards addressing the disproportionate accuracies
across different categories, including race [1–4]. Many attribute the majority of these issues
to unbalanced datasets [5–8]. Suresh and Guttag [9] from MIT explore the factors contribut-
ing to data bias. They categorize biases into five subcategories: historical, representational,
measurement, evaluation, and aggregation. These biases frequently arise unintentionally,
often remaining unnoticed by researchers and consequently impact results [9].

In an attempt to quantify and mitigate varying accuracy across race in facial recognition
systems, many researchers have encouraged the use of racially balanced datasets over the
use of those that are racially unbalanced [10–13]. When a racially balanced dataset is not
available for training, a racially balanced evaluation is encouraged [14–17]. The use of
racially balanced facial recognition systems is critical to applications that require high
security, regardless of race. As such, we examine publicly available datasets and provide
information on whether they are racially balanced or unbalanced.

Recently, large improvements have been made in the field of image generation [18].
The effects of these generated images on facial recognition tasks are now emerging. We
provide a discussion on how image generation has impacted deep learning systems corre-
sponding to the face in cross-race transformation. Many use this cross-race transformation
to generate or balance through augmentation datasets that were originally racially unbal-
anced to be racially balanced. This is accomplished by transforming the race of individuals
in the images through the use of generative adversarial networks (GANs) or latent diffu-
sion models.

Electronics 2024, 13, 2317. https://doi.org/10.3390/electronics13122317 https://www.mdpi.com/journal/electronics319
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Various tradeoffs come from balancing datasets and point to the need for other im-
provements besides only balancing the dataset. In response to this need, various network
improvements were developed that reduce variability in performance across different
races. These improvements vary from loss functions and architectural changes to data
modification and the use of additional data. We compile and analyze these contributions to
demonstrate the field’s current state of overcoming racial bias in facial recognition.

In summary, our contributions are as follows:
1. An analysis of both racially balanced and unbalanced datasets reveals significant

imbalance across race in numerous widely used facial recognition datasets. Additionally,
a list of the datasets that are racially balanced is included.

2. An examination of dataset balancing techniques through data generation, accompa-
nied by an exploration of the implications of these methods.

3. Discussion on various network enhancements that effectively narrow the error gaps
between different racial groups in facial recognition tasks.

Additionally, as gender bias is greatly interrelated with racial bias, we discuss gender
bias in the context of these three contributions.

The rest of this paper is structured as follows: In Section 2, we present our methods.
In Section 3, we discuss the differences between various facial recognition datasets compar-
ing those that are racially unbalanced with those that are racially balanced. In Section 4, we
discuss balancing datasets through image generation and the impact of data generation.
In Section 5, we discuss various network improvements to decrease the skew of accuracies
of facial recognition across race. We recommend future research directions in Section 6 and
conclude in Section 7.

2. Methods

This section describes the approach for our survey paper for the dataset comparison
in Section 2.1, balancing datasets through data generation in Section 2.2, the network
improvements across the human race in Section 2.3, and our decision on terminology in
Section 2.4. We consulted the PRISMA review methodology [19] and incorporated the
majority of its checklist items to enhance the organization and clearly demonstrate the
contributions of this work.

2.1. Datasets Methods

In this work, we selected 22 datasets for comparison in Section 3 based on Google
Scholar searches for facial recognition datasets and selected the most popular datasets as
defined by Serna et al. [20]. We analyzed the 22 datasets by reviewing the title, the abstract,
and the dataset collection description. Each paper was initially reviewed by a single re-
searcher. If inconsistencies or questions arose, a second researcher conducted an additional
review. To maintain consistency and minimize bias, the primary researcher performed all
initial reviews. Although this does not eliminate all potential biases, it ensures consistent
biases throughout the analysis. Any papers that contained grayscale image datasets, such
as that from the work of Samaria and Harter [21], were removed from the analysis.

After the datasets were selected, we compiled the racial and gender distributions for
each dataset using the original publication of the dataset. When these distributions were not
provided by the original publication, we referenced Serna et al. [20] to report the available
distributions. When neither source provided the required data, we extracted the racial and
gender labels directly from the dataset to obtain the distributions. These three methods
allowed us to identify each dataset’s racial and gender distributions without the need for
hand labeling. We acknowledge that the varying methods may result in inconsistencies in
race classification.

We then determined which racially balanced datasets contained overlap with racially
unbalanced datasets, as discussed in Section 3.3. Our definition of a racially balanced
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dataset is when the proportionate difference between the most and least represented races
in the dataset does not exceed 5 percentage points. As described by the following equation:∣∣∣∣nmax − nmin

N

∣∣∣∣ ≤ 0.05 (1)

where nmax is the number of samples of the most represented race, nmin is the number of
samples of the least represented race, and N is the total number of samples in the dataset.
This definition is based on the principle of an alpha value of 0.05 in statistics. Our decision
on the 0.05 alpha value is discussed more in depth in Section 3. The papers for the racially
balanced datasets were further analyzed to determine the details of creation, benefits,
tradeoffs, and what overlap exists with other popular datasets.

2.2. Dataset Balancing through Generation Methods

One of the first papers to propose generating a balanced dataset through generation
was the work by Yucer et al. [22] as discussed more fully in Section 4.2. For this work, we
examined all papers on Google Scholar that cited the work of Yucer et al. [22] and addi-
tionally searched for works that balance datasets through generation for facial recognition.
The titles and abstracts were used to identify papers of interest. Papers were removed
that did not focus on generating faces for creating a racially balanced dataset for facial
recognition. Each paper’s contributions were retrieved and reported in this work.

As the impact of generating images is a growing research field with the growth of
additional image generation platforms and networks, we chose to include a discussion
on the impacts of data generation. We acknowledge that entire survey papers are made
to discuss the impact of data generation. This paper provides a small sample from the
literature to highlight the use and benefits of data generation to reduce racial bias. Not
including this small sample of data generation impacts would do the reader a disservice by
not demonstrating the tradeoffs of the given approach.

2.3. Network Improvements across Human Race Methods

Upon reviewing various network improvements using Google Scholar we chose
to focus our review of network improvements across the human race on loss/training,
architecture, dataset modification, and the use of additional data. To compare works
that made network improvements, we focus on works that were trained on the BUPT-
Balancedface dataset while using the ArcFace loss and evaluated on the RFW dataset.
The only exceptions are when the improvement is an adjustment to the loss function. This
limitation allows for accurate comparison on the RFW dataset.

As we reviewed the articles surveyed in this paper, we discovered many approaches
benefit from race classification. As such, we discuss the field of racial classification with
articles found through Google Scholar. These articles were analyzed and the split between
the two-class and multiple-class race classification categories.

2.4. Terminology

Across the facial recognition literature, the terms “race” and “ethnicity” are used
interchangeably. For example, the work by Wang et al. [15] uses the term “race” while
the work by Li et al. [16] uses the term “ethnicity” to define the same concept—varying
physical appearance that comes from ancestral heritage. In our work, we use the similar,
but distinct definitions of race and ethnicity provided by the Merriam-Webster Dictionary.
Race is defined as “any one of the groups that humans are often divided into based on
physical traits regarded as common among people of shared ancestry” [23], and ethnicity
is defined as “ethnic quality or affiliation” [24] with ethnic being defined as “of or relating
to large groups of people classed according to common racial, national, tribal, religious,
linguistic, or cultural origin or background” [25]. Thus, we refer to “race” as the physical
characteristics of the face and “ethnicity” as the cultural aspects of the individual. This
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clarification is provided to shed light on the use of these terms throughout the paper,
acknowledging that others may use different definitions for these terms.

Notably, this survey paper’s referenced works refer to 2–7 racial classifications. We
acknowledge that there are many more racial classifications than these 2–7 categories and
that many individuals identify as multicultural. As evident by the publication of a statistical
policy directive defining what classifications and definitions of race ought to be used
throughout the United States by the Office of Information and Regulatory Affairs and the
Office of Management and Budget, racial classification best practices are still evolving [26].
This lengthy report discusses the various intricacies of racial identification, and includes
multiple recent changes that demonstrate the complexity of classifying racial groups.

While we acknowledge the complexities of racial classification, in this work, we
maintain the 2–7 categories used in previous racial facial recognition scholarships for
consistency’s sake. In line with one of the first racially balanced datasets, RFW, which
created the standard across the field of racially aware facial recognition tasks [15], we
primarily use the following ordering and groupings for racial classification: Caucasian,
African, Indian, and Asian. In addition, throughout this paper, various approaches refer to
“White” and “Non-White” classifications. We acknowledge that this definition may vary
depending on where the authors of the various approaches reside. However, the use in this
paper is primarily to emphasize the differing accuracies between different races.

Overall, our method is centered around using Google Scholar’s search to find relevant
papers. Titles and abstracts were manually checked to identify articles of interest. Further
analysis of the articles was then performed to remove any articles that did not meet the
focus of this work. Finally, for a paper to be included, a complete analysis of the paper was
performed to identify contributions, results, and any pertinent background information.
We used the PRISMA checklist [19] as a guide in the process of the creation of this paper
with many of the checklist items included throughout the content of this paper.

3. Facial Recognition Dataset Comparison

Early facial recognition datasets often implemented constraints for what variation was
acceptable in lighting, head pose, background, and facial expression. One early dataset,
the AT&T Database of Faces (originally known as the ORL Database of Faces), incorpo-
rated several of these constraints [21]. Although this was a novel task in 1994, after only
two years researchers shifted towards performing facial recognition in an unconstrained
fashion seeking a model to increase generalization beyond the specified constraints [27].
In 2007, the Labeled Faces in the Wild (LFW) dataset was released with images containing
a variety of head poses, lightings, camera parameters, and resolutions moving toward
generalization across more scenarios [28]. However, in the last 5 years, the racial imbalance
of these web-scraped datasets and the overfitting to the distribution of these datasets were
demonstrated [15]. To overcome these datasets’ inaccurate distributions, recent datasets
synthetically generate images to enforce the prior of proper data distributions [29].

A recent dataset, Digi-Face 1M, released in 2023, is generated with synthetic images
with a focus placed on previously overlooked biases such as race, lighting, and even
make-up [29]. Although synthetic image generation has advanced significantly, authentic
images remain essential in certain aspects of deep learning training pipelines [30]. Al-
though approaches have identified the need for proper racial distributions across training
datasets [15,29], there is no standard criteria to measure racial equality in deep learning
systems [31].

To address the absence of criteria for measuring racially balanced datasets, we define
a racially balanced dataset as a dataset with a 5 (or less) percentage point difference in the
proportion of images from the highest to the lowest represented racial categories. This
5 percentage point difference is chosen based on statistics containing a p-value of less
than 0.05 considered statistically significant for an alpha of 0.05. The 0.05 alpha value was
originally proposed by Fisher [32] and was adopted as the default alpha value across many
statistical approaches [33]. Following this trend, we set our alpha value to 0.05 resulting in
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the 5 percentage point maximum difference between race distributions to be considered a
racially balanced dataset. A graph demonstrating the racial distribution across prevalent
datasets is given in Figure 1.

Figure 1. Dataset Racial Distributions: Visualization of racial distributions across prevalent facial
recognition datasets. Consistent with the literature, we report only the races included in the RFW
dataset [15].

3.1. Unbalanced Datasets

The pursuit to improve facial recognition led to the creation of many datasets. To cre-
ate the largest datasets possible, web scraping Yahoo, Flickr, and other internet platforms
are popular methods for compiling datasets. Some of the prevalent datasets include
LFW [28], BioSecure [34], PubFig [35], YouTube Faces [36], CASIA [37], CelebA [38], VG-
GFace [39], MegaFace [40], MSCeleb1M [41], UTKFace [42], VGGFace2 [43], IJB-C [44], and
FRVT2018 [45]. Each of these datasets was collected using different methods. However,
each of these datasets was collected with a focus on obtaining the most images in the most
cost-effective and efficient method available. Convenience sampling is defined as a method
of focusing on ease of access when selecting participants from a target population [46].
When the population of interest is the entire human race, these datasets can be considered
a convenience sample. The racial distribution of each of these datasets is provided in
Table 1. We define a racially unbalanced dataset as a dataset that contains larger than a
five percentage point difference from the most represented race to the least represented.
As such, we define each of these datasets as racially unbalanced.

Despite being unbalanced, some racially unbalanced datasets remain valuable for
racially focused facial recognition systems. These racially aware datasets employ targeted
data collection methodologies. One of these datasets is the BUPT-Globalface dataset. Rather
than basing the racial distribution on maintaining equal proportions across the dataset,
they base their distribution on the worldwide distribution of race [10].

323



Electronics 2024, 13, 2317

Table 1. Dataset Distribution Information: Descriptions of various racially balanced and unbalanced
datasets. The datasets are sorted chronologically by release year, then alphabetically by dataset name.
For those papers that did not originally report the race distribution, the distribution was taken from
the work of Serna et al. [20].

Dataset Year
Number of
Images (In
Thousands)

Number of
Identities (In
Thousands)

Average
Images Per
Identity

Caucasian African Indian Asian
Racially
Balanced/
Unbalanced

LFW [28] 2008 13 5.7 2 77.6% 12.9% ** Combined
In African 9.4% Unbalanced

BioSecure [34] 2009 2.7 0.667 4 86.1% 5.2% ** Combined
In African 8.8% Unbalanced

PubFig [35] 2011 58 0.2 294 85.0% 12.0% ** Combined
In African 3.0% Unbalanced

YouTube Faces [36] 2011 621 1.6 390 77.2% 11.7% ** Combined
In African 10.9% Unbalanced

CASIA [37] 2014 500 10.5 48 82.0% 12.9% ** Combined
In African 5.2% Unbalanced

CelebA [38] 2015 203 10.2 20 75.4% 14.6% ** Combined
In African 9.9% Unbalanced

VGGFace [39] 2015 2600 2.6 1000 82.3% 12.7% ** Combined
In African 5.0% Unbalanced

MegaFace [40] 2016 4700 660 7 70.3% 10.9% ** Combined
In African 18.7% Unbalanced

MSCeleb1M [41] 2016 10,000 100 100 71.6% 16% ** Combined
In African 12.2% Unbalanced

UTKFace [42] 2017 24 - - 46.2% 37.8% ** Combined
In African 16.0% Unbalanced

IJB-C [44] 2018 21 3.5 6 70.5% 17.8% ** Combined
In African 11.6% Unbalanced

VGGFace2 [43] 2018 3300 9 370 76.1% 16.8% ** Combined
In African 7% Unbalanced

DemogPairs [14] 2019 10.8 0.6 18 33.3% 33.3% ** Combined
In African 33.3% Balanced

FRVT2018 [45] 2019 2700 1200 2 64.9% 27.3% ** Combined
In African 1.6% Unbalanced

RFW [15] 2019 40 12 3.3 25% 25% 25% 25% Balanced

BUPT-
Balancedface [10] 2020 1300 28 46.4 25% 25% 25% 25% Balanced

BUPT-Globalface [10] 2020 2000 38 52.6 38% 13% 18% 31% Unbalanced

CeFA [16] 2020 23.5 1.6 14.7 N/A 33.3% 33.3% 33.3% Balanced

DiveFace [11] 2020 125 24 5.2 33.3% 33.3% ** Combined
In African 33.3% Balanced

FaceARG [12] 2021 175 - - 24.42% 24.02% 25.94% 25.60% Balanced

FairFace [13] 2021 108 - - * 29.7% * 29.5% * 26.6% * 14.2% * Unbalanced

BFW [17] 2023 20 0.8 25 25% 25% 25% 25% Balanced

* The FairFace dataset [13] distributions are 14.1% Black 19.0% Caucasian, 14.1% East Asian, 14.2% Indian, 15.3%
Latino, 10.7% Middle Eastern, and 12.5% Southeast Asian. Despite its emphasis on capturing diverse racial
distributions, we classify this dataset as unbalanced due to the maximum difference of 8.3 percentage points.
** The Indian column is classified along with the African column.

In contrast to the majority of racially aware datasets that collected their images by
subsampling existing facial recognition datasets, the FairFace dataset [13] collected new
images for facial recognition. FairFace used a large public dataset not originally designed
for facial recognition purposes, Yahoo YFCC100M [47], and detected faces in the images.
They note that another dataset, Diversity in Faces (DIF) [48], also created a dataset in this
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manner. However, DIF does not focus on racial distribution. Additionally, FairFace varies
from other racially aware datasets as they used seven race classifications based on the
accepted race classification from the U.S. Census Bureau: Black, East Asian, Indian, Latino,
Middle-East, South East Asian, and White. While we acknowledge that the U.S. Census
Bureau’s definition of race is not based on entirely visual aspects, the FairFace dataset is
based on visual aspects as the race, gender, and age groups were manually labeled using
images that were labeled on Amazon’s Mechanical Turk. The racial distribution proportions
for the FairFace dataset found in Table 1 were derived from the dataset labels as they were
not specified in the original work. Despite the FairFace dataset’s clear emphasis on racial
equality, it is classified as unbalanced according to our criteria due to a maximum racial
disparity of 8.3 percentage points, which exceeds the limit of 5 percentage points.

3.2. Balanced Datasets

While there are many scenarios in which convenience sampling is sufficient to rep-
resent a population of interest, strata sampling is a more structured approach to ensure
proportionate representation. Strata sampling is defined as taking proportionately equal
samples from each category or stratum from the population of interest [49]. Many assert
that strata sampling is optimal for facial recognition datasets, as it employs proportional
sampling from each race [10–15,48].

One of the first datasets presented with relatively proportionally equal distributions
across race was the Racial Faces in the Wild (RFW) dataset. The RFW dataset was created
by subsampling the MS-Celeb-1M dataset [50] with an equal proportion of images across
the Caucasian, African, Indian, and Asian races. To identify the race, the researchers used
the nationality attribute in FreeBase celebrities [51] to select individuals of Asian or Indian
race. Then, they used the Face++ API [52] to estimate race for Caucasians and Africans.
Afterward, the dataset was manually and thoroughly cleaned. This resulted in a dataset of
four racial subsets (African, Asian, Caucasian, and Indian), each with 10K images of 3K
individuals [15]. We acknowledge that their race labels came from the “nationality” label,
and nationality is defined as “a people having a common origin, tradition, and language
and capable of forming or actually constituting a nation-state” [53]. The nationality label
is not equivalent to a race label but is more in line with the ethnicity of an individual.
While the nationality label is not directly correlated to race, we acknowledge their manual
cleaning to ensure the racial labels’ accuracy. The racial distribution of the RFW dataset is
compared with other unbalanced and balanced datasets in Table 1.

Released in the same year as the RFW dataset, the DemogPairs dataset followed a similar
pattern of taking a subsample of unbalanced datasets [14]. However, instead of taking the
samples all from one dataset, samples were taken from the CWF, VGGFace, and VGGFace2
datasets. The DemogPairs dataset is designed to be a validation dataset that can be used to
evaluate model performance across the full spectrum of human racial diversity. If a model is
trained on CWF, VGGFace, or VGGFace2, and validated on DemogPairs, the overlapping images
must be removed from the training dataset to prevent polluting the test set. The DemogPairs
dataset contains 0.13% of VGGFace2, 0.02% of VGGFace, and 1.27% of CWF [14].

In a trend to increase the size of racially balanced datasets, DiveFace [11] was assem-
bled as a subset of the Megaface datasets MF2 [11]. This sampling brought variation in
head pose, lighting, age, facial expression, and quality from the Flickr scraped images.
However, they limit their racial categories to three races: combining the Indian and African
categories. In Table 1, we have placed the African and Indian categories into the African
category as African falls before Indian in alphabetical order.

Among the largest racially balanced datasets to date are the BUPT-Globalface and BUPT-
Balancedface datasets. BUPT-Balancedface follows our racially balanced definition while the
BUPT-Globalface represents each race according to the global proportions of that race and is
racially unbalanced by our definition [10]. Both are subsets of the MS-Celeb-1M dataset and
are extended using the one-million FreeBase celebrity list [50] and used the nationality labels in
the FreeBase celebrities [51] along with the Face++ API [52], similar to RFW [15]. In addition,
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they removed any overlapping images with RFW, allowing for models that are trained on
BUPT-Balancedface and BUPT-Globalface to be evaluated on the RFW dataset.

Another racially balanced dataset is the CASIA-SURF Cross-ethnicity Face Anti-
spoofing (CeFA) dataset. The CeFA dataset was designed as an anti-spoofing dataset
with 3 races, 1607 subjects, 3 modalities, and 2D plus 3D spoofing attack types [16]. This
dataset was designed to counteract spoofing attacks by providing balanced races and depth
information collected by infrared sensors.

The FaceARG dataset was collected by scraping the web for pictures of celebrities
and resulted in over 175,000 facial images. The individuals’ race was assigned labels
corresponding to four main races, following the RFW split [12]. This dataset is referred
to as an “in the wild” dataset due to the variety of head poses and orientations of the
individuals’ faces. More information about the racial distribution of the FaceARG dataset
is given in Table 1.

The Balanced Faces in the Wild (BFW) dataset [17] was released recently in 2023 as a
subset of the VGG2 dataset [43]. The BFW dataset was balanced across identity, gender,
and race. The BFW dataset demonstrates the ongoing research on racially aware facial
recognition systems along with the need to balance across multiple attributes in addition
to balancing across race. However, to achieve the desired balance, the BFW dataset is less
than 1% the size of the VGGFace2 dataset. Balancing datasets across race often requires
significantly reducing the size of large datasets, resulting in a severe tradeoff.

In this work, we focus on datasets with images of individuals taken from monocular
and stationary cameras. It is important to acknowledge other datasets exist with different
emphases, such as those stated in past review articles [54]. Since the introduction of the
RFW and DemogPairs datasets in 2019, there has been an ongoing effort to create racially
balanced datasets. We emphasize that although using an authentic racially balanced
dataset for training is ideal, the tradeoff tends to decrease the overall size of the dataset.
To overcome this tradeoff, dataset balancing through data generation and various network
improvements have been developed; these are discussed in Sections 4 and 5.

3.3. Evaluating Networks Trained on Unbalanced Datasets

The impact of training on a racially unbalanced dataset is best seen when evaluated on
a racially balanced dataset. To properly evaluate network performance on facial recognition
across race, it is crucial to have no overlap between the training and testing datasets.
As many of the racially balanced datasets contain overlap with frequently used training
datasets, we analyze which data should be partially excluded to ensure valid evaluation,
as detailed for each of the racially conscious datasets in Table 2.

Table 2. Dataset Overlap: To properly use the racially conscious datasets as a test dataset, there needs
to be no overlap between the training dataset and the test dataset. This table lists what racially balanced
datasets contain overlap with popular racially unbalanced facial recognition datasets. We note that
BUPT-Balancedface and BUPT-Globalface do not supply what percentage came from MS-Celeb-1M.

Dataset Overlaps with Other Datasets Percentage Overlap

DemogPairs [14] VGGFace2, VGGFace, and CWF 0.13%, 0.02% and 1.27%
RFW [15] MS-Celeb-1M 0.4%

BUPT-Balancedface [10] MS-Celeb-1M Not Available
BUPT-Globalface [10] MS-Celeb-1M Not Available

DiveFace [11] Megaface dataset MF2 2.7%

In addition to publishing the RFW dataset, Wang et al. [15] also evaluated many state-
of-the-art facial recognition methods on the RFW dataset. They demonstrated that certain
races had lower individual accuracies, as seen in Table 3. For example, African individuals
had nearly twice the average error rate than their Caucasian counterparts. To simplify
comparison, we also report the skewed error ratio (SER) as defined by SER = MaxErrorr

MinErrorr
with r being the races: Caucasian, Indian, Asian, and African.
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Table 3. Commercial API comparison: This table compares commercial APIs and popular algorithms
trained on racially unbalanced datasets and evaluated on racially unbalanced (Labeled Faces in the
Wild (LFW)) and racially balanced (Racial Faces in the Wild (RFW)) datasets as reported by Wang
et al. [15]. The algorithms that are trained on racially unbalanced datasets have high accuracies
on unbalanced datasets. Their generalization to balanced datasets such as RFW is limited. These
accuracies and skewed error ratio (SER) values can be compared to the results of networks trained on
racially balanced approaches discussed in Section 5. Reprinted/adapted with permission from Ref.
Wang et al. [15]. 2019, IEEE.

Model LFW
Verification

RFW

Accuracy Caucasian Indian Asian African SER (↓)

Commercial API Microsoft [55] - 87.60% 82.83% 79.67% 75.83% 1.95
Face++ [52,56] 99.5% 93.90% 88.55% 92.47% 87.50% 2.05
Baidu [57] - 89.13% 86.53% 90.27% 77.97% 2.26
Amazon [58] - 90.45% 87.20% 84.87% 86.27% 1.58

mean - 90.27% 86.28% 86.82% 81.89% 1.96

Algorithms trained on Center-loss [59] 99.0% 87.18% 81.92% 79.32% 78.00% 1.72
racially unbalanced Sphereface [60] 99.42% 90.80 87.02 82.95 82.28 1.93
datasets Arcface [61] 99.40% 92.15% 88.00% 83.98% 84.93 2.04

VGGface2 [43] 99.0% 89.90% 86.13% 84.93% 83.38 1.64

mean 99.21% 90.01% 85.77% 82.80% 82.15% 1.83

3.4. Intersection of Racially Balanced Datasets and Gender Bias

As our survey focuses primarily on racial bias, we do not conduct an in depth analysis
of gender bias across the datasets. However, as gender and race bias intersection is well
known [62], we provide an analysis of the gender bias that remains in multiple racially
balanced and racially unbalanced datasets.

In Table 4, we provide the distribution across race of both racially balanced and racially
unbalanced datasets. We note that the BUPT-Balancedface and BUPT-Globalface datasets are
not presented in the table as the initial work, nor subsequent works, have published labels for
gender across these two datasets. In addition, the CeFA dataset only provides the distribution
across gender and not the gender across the different races. We obtained the gender distributions
for the FaceARG, DiveFace, and FairFace datasets by manually analyzing the datasets’ provided
gender labels. The RFW dataset distribution was obtained from Sarridis et al. [63]. We note that
the BFW dataset is the most gender-balanced network that is also racially balanced. In contrast,
the RFW dataset’s gender distribution contains the greatest unbalance across gender for racially
balanced datasets. In the discussion of racially balanced datasets, it is critical to understand
which datasets are also balanced across gender.

Table 4. Dataset Gender Distributions: In the discussion of racial bias, gender bias is closely related.
The gender distribution across multiple datasets is presented in this table. The table is sorted initially
by the difference in percentage points between the overall Male and Female distributions (labeled in
the table as Δ) and then by publication year. Although certain datasets are racially balanced, many
remain unbalanced across gender.

Dataset Racially Caucasian African Indian Asian Overall Δ
Balanced Female Male Female Male Female Male Female Male Female Male |F − M|

LFW [28] � 18.7% 58.9% 3.3% 9.6% – – 2.2% 7.2% 24.2% 75.7% 51.5%
RFW [15] � 7.9% 17.2% 1.3% 24.4% 9.1% 14.7% 7.7% 17.6% 26.1% 73.9% 47.8%
YouTube
Faces [36] � 20.3% 56.9% 4.0% 7.7% – – 3.0% 7.9% 27.3% 72.5% 45.2%

FRVT2018 [45] � 16.5% 48.4% 7.4% 19.9% – – 0.4% 1.2% 24.3% 69.5% 45.2%
MSCeleb1M [41] � 19.2% 52.4% 3.9% 12.1% – – 4.5% 7.7% 27.6% 72.2% 44.6%
VGGFace2 [43] � 30.2% 45.9% 6.3% 10.5% – – 3.6% 3.4% 40.1% 59.8% 19.7%

CASIA [37] � 33.2% 48.8% 5.7% 7.2% – – 2.6% 2.6% 41.5% 58.6% 17.1%
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Table 4. Cont.

Dataset Racially Caucasian African Indian Asian Overall Δ
Balanced Female Male Female Male Female Male Female Male Female Male |F − M|

PubFig [35] � 35.5% 49.5% 5.5% 6.5% – – 1.0% 2.0% 42.0% 58.0% 16.0%
IJB-C [44] � 30.2% 40.3% 6.0% 11.8% – – 6.2% 5.4% 42.4% 57.5% 15.1%

BioSecure [34] � 36.0% 50.1% 2.1% 3.1% – – 4.5% 4.3% 42.6% 57.5% 14.9%
MegaFace [40] � 30.3% 40.0% 4.7% 6.2% – – 8.1% 10.6% 43.1% 56.8% 13.7%
FaceARG [12] � 14.5% 9.8% 10.3% 13.8% 15.7% 10.3% 16.2% 9.5% 56.7% 43.3% 13.4%

CeFA [16] � – – – – – – – – 43.9% 56.1% 12.2%
CelebA [38] � 41.5% 33.9% 8.2% 6.4% – – 5.5% 4.4% 55.2% 44.7% 10.5%

UTKFace [42] � 20.0% 26.2% 16.3% 21.5% – – 8.9% 7.1% 45.2% 54.8% 9.6%
FairFace [13] � 12.3% 17.4% 14.8% 14.7% 6.8% 7.3% 13.1% 13.6% 47.0% 53.0% 6%

VGGFace [39] � 38.6% 43.7% 6.9% 5.8% – – 2.9% 2.1% 48.4% 51.6% 3.2%
DiveFace [11] � 19.7% 20.2% 14.0% 15.0% – – 16.3% 14.8% 50.5% 49.5% 1.0%

DemogPairs [14] � 16.7% 16.7% 16.7% 16.7%% – – 16.7% 16.7% 50% 50% 0%
BFW [17] � 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 50.0% 50.0% 0%

3.5. Discussion on Racially Balanced Datasets

As the field of facial recognition continues to grow, certain biases, such as bias across
race begin to be more understood. Many point to the unbalance of training and validation
datasets as the cause for this bias. We provide a definition for racially balanced and racially
unbalanced datasets based on statistical principles. We define racially balanced datasets
as those datasets that contain less than a 5 percentage point difference between the least
represented race and the most represented race. In contrast, a racially unbalanced dataset
contains a greater than five percentage point difference.

The first racially balanced dataset was released in 2019, with continual releases of
additional racially balanced datasets. We provide a list of racially balanced datasets in
Table 1 and describe the overlap between racially balanced and racially unbalanced datasets
in Table 3.

As racially balanced datasets are becoming more available, the intersection of race
and gender is highlighted. We identify that although many racially balanced datasets are
created to decrease the racial bias, the gender bias often remains. The most recently released
racially balanced dataset, BFW, is not only balanced across race but also gender.

4. Balancing Datasets through Data Generation

While there are various datasets that are balanced [10–12,14–17], many of the largest
datasets remain unbalanced [39–41,43,45]. One method for obtaining racially balanced
datasets from a racially unbalanced dataset is to augment the dataset through race trans-
formations. The concept is centered around taking all images of people in one race and
transferring the images to also be in all other races, creating an equally balanced dataset.
Facial recognition focused on racially balancing datasets through race transformation fre-
quently uses generative adversarial networks (GANs) [64] and diffusion models [65,66] to
perform this augmentation.

Since the original publication of the GAN by Goodfellow et al. [64] in 2014, GANs
have continued to increase in complexity and ability. Some of the top research papers on
GANs are written on topics including adding details to segmentations or outlines of items
such as handbags or cars [67], style-based networks that generate human faces [68] and
even creating anime characters simply off of a list of attributes given in text [69]. In this
paper, we focus on the effect that GANs have on increasing and decreasing racial equality
as well as cross-race transformation.

Although stable diffusion was created in 2015 [65], it significantly grew in popularity
and performance in 2022 with the release of stable diffusion in the latent space [66]. Latent
stable diffusion is currently the leading method for image generation in various applica-
tions [70]. A recent variant, the diffusion transformer [71], has shown promising results in
further enhancing this technology’s capabilities.
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4.1. Understanding the Impact of Data Generation

As GANs and latent stable diffusion continuously improve, many users remain un-
aware of the unintended consequences of data generation. One team of researchers demon-
strated unintended consequences by using headshots of engineers to train a deep donvo-
lutional GAN [72], resulting in the majority of GAN-produced images having white skin
tones and masculine facial features [73]. They point out that GANs can increase data biases
that are already in the dataset if GANs are used to generate facial data.

Before the publication of the work by Jain et al. [73], another team used a GAN to
attempt to lower racial inequality with their focus on quantifying attractiveness to simulate
equality of opportunity [74]. To accomplish this, they trained a network to take a subset
of images, such as one gender, and be able to distinguish whether they are attractive or
not. They then compared across the different subsets using publicly available datasets:
CelebA [38], Soccer (many analysts, one dataset) [75], and Quick Draw! [76]. They designed
their generator and discriminator network structures based on previous works [77–79]
and used conditional batch normalization [80]. Overall, they improved on the simulated
equality of opportunity with their GAN-based approach [74].

A larger example of a GAN demonstrating racial inequality is seen with a team that
created a face-generating GAN [81]. The GAN was used to generate faces that would pass
on multiple individuals when compared using top-performing face authentication systems
such as DLib [82], FaceNet [83], and SphereFace [60]. They termed these faces “master
faces” [81]. To generate face images, they use Dlib’s embedding representation as the input
to their network. Their network has a linear layer and four de-convolutional layers, based
on the DC-GAN architecture [72]. They trained on DLib’s embedding representations of
the FFHQ dataset [68]. Upon inspection of the faces generated that are displayed in their
paper, the highest proportion of any race of generated images is Caucasian [81]. Examples
of generated images are shown in Figure 2.

(a)

9.39% 7.00% 5.53% 4.94% 4.71% 3.62% 2.04% 1.70% 0.85%

(b)

11.39% 6.45% 4.84% 4.82% 3.81% 3.32% 2.89% 1.67% 0.97%

(c)

9.22% 6.98% 6.94% 6.60% 6.57% 6.14% 3.88% 3.25% 1.84%

(d)

16.81% 5.50% 4.83% 3.42% 3.40% 3.09% 3.00% 1.60% 1.49%

(e)

16.28% 5.70% 4.40% 3.56% 3.30% 2.90% 2.61% 1.91% 1.39%

(f)

17.30% 9.84% 7.70% 6.39% 6.11% 5.29% 4.85% 3.45% 2.29%

(g)

17.17% 4.75% 4.63% 4.45% 3.65% 3.23% 2.20% 2.10% 1.97%

(h)

15.85% 5.05% 4.85% 4.00% 3.84% 3.67% 3.35% 1.61% 1.58%

(i)

23.92% 7.07% 6.60% 6.01% 5.53% 5.34% 5.06% 2.80% 1.59%

Figure 2. Example Images of MasterFace: MasterFace is an adversarial approach to the facial
recognition task where a high proportion of generated images pass for the majority of faces on
many facial recognition models [81]. The (a–i) rows demonstrate 9 different sets of Masterfaces. We
include this figure to demonstrate the highest proportion of any race generated is Caucasian faces,
demonstrating the skew across race in many facial recognition models. Reprinted/adapted with
permission from Ref. [81]. 2021, IEEE.
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While there are various examples of GANs having large racial biases, there are also
GANs that display the ability to decrease racial biases. One such work used a classical
GAN-based approach to lower the racial bias in machine learning. Their approach con-
sisted of training a network to identify race using California Census data, followed by
an adversarial network to train against the identifying network. Their method increased
race identification accuracy from 39% to 76% on their dataset [84]. This demonstrates the
ability of GANs to greatly increase the ability of classification networks particularly with
race. It also demonstrates that improvements continue to be made with GANs to decrease
racial inequality.

4.2. Cross-Race Transformation

While using a racially balanced dataset to train a facial recognition model is beneficial,
it often results in a tradeoff with decreasing the size of the datasets. To continue the use
of large-scale facial recognition datasets, a beneficial method is race transformation. This
method augments datasets to be racially balanced by transforming the race of images to
other races.

Yucer et al. [22] overcomes the issues of racially unbalanced datasets using a racial
transformation data augmentation approach. They used a four-race dataset: African, Asian,
Caucasian, and Indian to compare more easily with the RFW (Racial Faces in the Wild)
dataset. For the racial transformation, they trained six CycleGAN models [85] on the BUPT-
Transferface dataset [15]. For facial recognition, they trained a common DCNN, Resnet [86],
and used a ResNet100 [61] to obtain the final 512-D feature space representation. They
experimented with various loss functions: Softmax [60], CosFace [87], and ArcFace [61].
They trained on a subset of 1200 images from VGGFace2 [43] with 300 images for each of
their four races. Each of these 300 images was then transferred to the other 3 races using
the CycleGANs for the augmented dataset. Their results not only improve accuracy on
the RFW dataset but also the overall accuracy on the LFW (Labeled Faces in the Wild)
dataset [22]. Example images of the transferred race images are available in Figure 3.

A similar approach was taken by Ge et al. [88] as they use a Fan-Shaped GAN (FGAN)
to also transfer the race of an individual to another race. Their network structure is a com-
bination of previous architectures [85,89] with the addition of spectral normalization [78].
For the dataset, they note that RFW is collected from MS-Celeb-1M. So, they collect their
images from MS-Celeb-1M with 5000 images in each racial subset for their dataset. They
compare their network against the StarGAN [89] and CycleGAN [85]. In doing so, they
displayed that their approach was more accurate in all races for FID and received a better
inception score on all races besides African [88].

One recent work in racial image generation transforms gender and age in the same
system [90]. Their pipeline takes the input image, detects the faces and eyes, crops, nor-
malizes, generates the face image by GRA-GAN, and estimates gender/race/age using a
CNN. This pipeline creates a method to control for extra variation that is outside the scope
of the GRA-GAN. They demonstrate that their GRA-GAN outperforms or has comparable
results to top image-to-image GANs such as Pix2Pix [67], CycleGAN [85], Modified Cycle-
GAN [91], and Enhanced CycleGAN [92]. They state that their network could be used to
augment data to prevent training from overfitting to certain genders, races, or ages [90].

While many methods for balancing datasets through data generation have focused
on training a new model for transferring race, the work by Jain et al. [93] uses an existing
Style GAN to perform the generation. Previous methods identified the need to scale
their method up with additional subjects and computational power, the work by Jain
et al. [93] provides a method for transferring style to an image to transfer the race. Using
this method, Jain et al. [93] pre-trained a facial recognition network on the augmented
dataset, which outperforms corresponding models not pre-trained with their augmented
dataset. Their approach demonstrates a solution to previous methods’ need to scale up the
transformation approaches.
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Figure 3. Example Images of Transferring Race: The top images demonstrate successful race transfers
while the bottom images demonstrate failures. The green and red bounding boxes demonstrate the
original image. As observed in the bottom images, the GAN struggles with extreme head poses and
varying lighting [22].

While racial transformation sounds promising to balance a dataset, there remain many
problems. Some of these problems include whether or not the images of a person that has
been racially transformed to a new race should be considered as positive, negative, or not
even considered to the original image or other images of that same person [94]. In contrast,
the approach of limiting the dataset to only use an equal number of images from each race
is a more defined approach to the solution. However, it does limit the size of the dataset
instead of increasing the size. The benefits and the problems of each of these approaches
are an open research question.

One of the most recent image generation methods has generated an entire dataset for
the use of overcoming the skew across race in facial recognition. DigiFace 1M provides
1 million synthetically generated faces that are balanced across race and adds various
accessories to make the datasets encompass a larger spread of data. Using only their
dataset, they were able to achieve a 95.82% on the LFW dataset without using any of the
LFW training images. As opposed to other methods of using GANs or stable diffusion,
DigiFace 1M was created using a computer graphics pipeline [29]. Training on this racially
balanced dataset resulted in a high accuracy on the LFW dataset, demonstrating promise
for racially aware facial recognition systems. An example from the DigiFace 1M dataset is
provided in Figure 4.
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Figure 4. DigiFace 1M Example Image: DigiFace 1M [29], one of the most recent image generation
datasets, generates the face and then changes lighting, background, and pose.

4.3. Intersection of Racial Dataset Balancing and Gender

As we discuss racially balancing datasets through data generation, we note that similar
responses have also been proposed for balancing across gender. Previously, we discussed
the GRA-GAN approach that uses the same network to generate gender, race, and age [90].
While other works had transferred across race and age [92], the GRA-GAN was the first
approach to also transfer across gender. Previous related approaches classified gender for
tasks such as face aging [95].

The results of the GRA-GAN demonstrate the improvement over multiple biases
when training to overcome the biases in the same network. Their work shows the large
interrelation between racial and gender bias.

4.4. Discussion on Balancing Datasets through Data Generation

Balancing datasets through data generation to minimize racial bias is relatively new
to the field of image generation. Preliminary methods published in 2020 demonstrated
the success on samples of larger datasets [22], while recent publications have scaled to full
datasets by using pre-existing networks [93]. In addition, the benefit of training a network
to not only transfer across race but also gender and age demonstrates an improvement over
only transferring across race [90].

The field of racially balancing datasets through data generation has followed the pro-
gression of GANs using both CycleGANs and FanGANS. Other image networks mitigating
racial bias in related tasks [96] have used diffusion to generate images while balancing
datasets through data generation for facial recognition has turned to using computer
graphic pipelines [29]. One of the next steps for balancing datasets through data generation
for facial recognition is to use latent diffusion models as various other fields of image
generation have.

5. Network Improvements across Human Race

Efforts to mitigate the performance disparities across different races in facial recogni-
tion systems continue to evolve with various innovative approaches. This work focuses
on approaches that include refining loss functions, optimizing training methodologies,
modifying datasets, and novel network architectures. In addition, as various methods rely
on race recognition within the overarching solution, we include a discussion on identifying
race. As gender bias is interrelated with racial bias, we discuss network improvements
that decrease both racial and gender bias. We provide a brief discussion on related tasks’
network improvements and an overall discussion on network improvements in facial
recognition across human races.
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5.1. Network Improvements on the RFW Dataset

This section focuses on improvements measured on the RFW dataset [15], a popu-
lar racially balanced test dataset. Table 5 compares various improvements discussed in
this section. The SER (as defined in Section 3) is also reported in this table to facilitate
straightforward comparison to methods trained on unbalanced datasets shown in Table 3.

Table 5. RFW Accuracies Across Network Improvements: This table presents the accuracies, in per-
centages, achieved by state-of-the-art (SOTA) methods on the RFW dataset. Each method is trained on
the BUPT-Balancedface dataset and uses the ArcFace loss, except for IMAN and CosFace approaches.
The highest accuracy in each column is bolded and enclosed in brackets. “STD” denotes the standard
deviation and “SER” represents the skewed error ratio. “↓” describes that a smaller value is an
improvement while “↑” demonstrates that a larger value is an improvement.

Method Loss-
ArcFace

White Black East
Asian

South
Asian

Average (↑) STD (↓) SER (↓)

IMAN [15] � 93.92 92.98 90.60 90.98 92.12 1.38 1.55
CosFace [87] X 95.12 93.93 92.98 92.93 93.74 0.89 1.45
ArcFace [61] � 96.18 94.67 93.72 93.98 94.67 0.96 1.64
ACNN [97] � 96.12 94.00 93.67 94.55 94.59 0.94 1.63
PFE [98] � 96.38 95.17 94.27 94.60 95.10 0.80 1.58
DebFace [99] � 95.95 93.67 94.33 94.78 94.68 0.83 1.56
GAC [100] � 96.20 94.77 94.87 94.98 95.21 0.58 1.37
RL-RBN [10] � 96.27 94.68 94.82 95.00 95.19 0.63 1.43
MBN [101] � 96.25 95.38 95.32 94.85 95.45 0.51 1.37
Rethinking [102] � 89.1 85.5 71.8 75.8 80.55 7.01 2.59
PCT [103] � 97.00 [96.22] 95.73 96.38 96.33 0.52 1.42
Sensitive Loss [20] X [97.23] 95.82 [96.50] [96.95] [96.63] 0.53 1.51
GABN [104] � 95.78 94.71 94.51 95.21 95.05 [0.49] [1.30]

Accompanying the RFW dataset, Wang et al. [15] provides an initial baseline method
for the dataset. This baseline, the Information Maximization Adaptation Network (IMAN),
has two main stages: pseudo-adaptation and a custom mutual information loss. The pseudo-
adaptation focuses on pre-clustering to obtain initial improvement in the target domain.
Then, the mutual information loss uses the distribution of the target classifier to obtain
larger decision margins.

The CosFace solution presents a loss function that incorporates a cosine margin to the
distances between intra-class and inter-class face representations [87]. This margin increases
inter-class pair distances and decreases intra-class pair distances. Although CosFace was
released prior to the RFW dataset, results are included from Gong et al. [100] in Table 5 that
evaluated the CosFace loss with a ResNet34 architecture.

A pivotal improvement on the RFW task and facial recognition in general is the
ArcFace (Additive Angular Margin) loss [61]. Instead of relying on direct distance mea-
surements, the innovative ArcFace loss uses the angle of the arc between the two facial
representations. This puts the facial representations along the exterior of the arc in multidi-
mensional space. Inserting this defined embedding representation prior allows for a more
robust facial representation. This has become widely adopted across facial recognition
with the majority of the following methods within this section using the ArcFace loss as
illustrated by the Loss-ArcFace column in Table 5. It is important to note that ArcFace is
now a popular loss function used in various applications [105–108].

Along with updating loss functions, there is an additional focus on incorporating
conventional methods with deep learning techniques, specifically hand-crafted features.
Some of these hand-crafted features are crowd counting, camera angle, camera height,
appearance, and scale of the individuals. The ACNN method applies these hand-crafted
features to the neural network facial recognition approach [97]. This extra information
outperforms a similar-sized CNN without the hand-crafted features. This approach was
also released before the RFW dataset, Gong et al. [100] evaluated the ACNN method on the
RFW dataset, and we include these results in Table 5.
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The use of conventional methods to overcome racial bias in facial recognition shifted
towards using probabilistic approaches. The Probabilistic Face Embeddings (PFE) approach
learns a Gaussian latent space representation of the face [98]. While most facial recognition
approaches use neural networks to separate the multi-dimensional representation of the
face, the PFE uses a variational auto-encoder, similar to image generation methods such as
latent diffusion models [66], to encode the face into a latent space representation with a
mean and a variance. The latent space Gaussian representations are compared to determine
whether the facial representations correspond to the same individual. Although this
approach is not widely adopted, it remains competitive with other racially aware methods,
as seen in Table 5.

Architectural advancements have been developed to further improve facial recogni-
tion across race. One such improvement, the debiasing adversarial network (DebFace), uses
an image-to-feature encoder, four attribute classifiers, a distribution classifier, and a feature
aggregation network [100]. The four classifiers—gender, age, race, and identity—turn
potential biases into informed features, thus improving performance across underrepre-
sented groups.

Continuing in architectural improvements, the Group Adaptive Classifier (GAC)
method uses an adaptive classification within the network structure to obtain higher accu-
racies [100]. They use a group of adaptive classifiers that assign the individual to a demo-
graphic group. A demographic-specific kernel then performs the final classification. These
demographic-specific kernels learn unique racial characteristics, thus improving accuracy.

Recent studies have explored significant enhancements in training methodologies. One
notable approach, the Reinforcement Learning-based Race Balance Network (RL-RBN) [10],
uses reinforcement learning as a novel method for training facial recognition. They deliber-
ately pick the action, reward, and objective functions to ensure balanced learning across
race. The action function permits three outcomes: keeping the margin between classes
the same, shifting the margin to a larger value, and shifting the margin to a smaller value.
The reward model aims to standardize distances and mitigate skew across racial groups.
To achieve this the reward is calculated using the distance between the Caucasians and the
race of the individual [10]. The objective function is a deep Q-Learning function [109,110]
which learns the optimal policy for the agent [10]. While reinforcement learning is not fre-
quently used in facial recognition tasks, this study underscores the importance of enhancing
training methods beyond merely refining datasets, losses, and architectures.

Wang et al. [101] proposes another significant improvement in training methodology
with the introduction of the Meta Balanced Network (MBN), a meta-learning method that
improves fairness across skin tones. The MBN uses two loss functions: training loss and
meta loss. The meta loss weights the training loss to ensure equal weight adjustment across
all skin tones during backpropagation. While other studies emphasize the necessity of
balanced training data, this approach is able to use skewed datasets without skewing the
final result.

Coe and Atay [1] investigates the optimal network architecture to minimize racial
bias in facial recognition systems. To demonstrate that each model learns different races
in different proportions, they compare AlexNet [111], VGG16 [112], and ResNet50 [113].
Their results demonstrate that VGG16 outperforms both AlexNet and ReseNet50 in terms
of accuracy across different races [1]. This indicates that the performance across race varies
based on network architecture, despite being trained on the same data. As their approach
did not report their results on the RFW dataset, the results are not included in Table 5.

A not-expected approach is seen as the researchers claim that training only on one
race is not inherently disadvantageous [102]. They demonstrate that by training only
using African faces, they achieved less skew across race than by training with a balanced
dataset. They also found that they obtained higher accuracy across race by using additional
images for an individual instead of adding more identities. To come to their findings
they performed their testing on four recent top facial recognition models: VGGFace2 [43],
CenterLoss [59], SphereFace [60], and ArcFace [61]. They note that training on one race
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decreases the overall size of the dataset and emphasize that having a larger dataset would
result in even higher metrics [102]. Their experiments and findings result in a new and
unique method for obtaining higher accuracies across race.

Serna et al. [20] proposed Sensitive Loss, a modification of a sensitive triplet generator
and the triplet loss function [114]. Their approach emphasized how transfer learning a
racially skewed facial recognition model can decrease the skew across race. To demonstrate
the performance of the sensitive loss, they evaluated their loss function across three baseline
models: VGG-Face [39], ResNet-50 [113], and ArcFace [61]. Their loss greatly improved the
Equal Error Rate and decreased the standard deviation across the DiveFace dataset, RFW
dataset, and the BUPT-Balancedface dataset.

An additional method returned to the architectural improvements in the Adversarial
Information Network (AIN) approach. Here, they minimize the target classifier and maxi-
mize the feature extractor. Then, they use a graph neural network to find the likelihood of
the target data [115]. As the AIN approach reported the RFW results in a non-conventional
method, we do not include the AIN results in Table 5.

Research has shown that networks tend to focus on varying facial regions based
on the individual’s race. To address this issue, Li et al. [103] introduced the Progressive
Cross Transformer (PCT). This innovative approach employs a dual transformer arrecogni-
tion process.

Introduced in 2023, the Gradient Attention Balance Network (GABN) is a facial recog-
nition model designed to analyze the same facial regions regardless of the race of the
individual [104]. They use attention masks to enforce structured regions of interest, ef-
fectively minimizing racial disparities, as illustrated by the results in Table 5.Introduced
in 2023, the Gradient Attention Balance Network (GABN) is a facial recognition model
designed to analyze the same facial regions regardless of the race of the individual [104].
They use attention masks to enforce structured regions of interest, effectively minimizing
racial disparities, as illustrated by the results in Table 5.

5.2. Racial Classification

Various facial recognition approaches require racial classification methods, either di-
rectly [10,20,99,101,102,104,115] or indirectly [100,103]. Thus, discussing racial classification
methods and their improvements is crucial. In 2014, a review article [54] cited the highest
accuracy for identifying race as nearly 99% [116], misleading some to consider race classifi-
cation as a solved problem. However, this impressive accuracy used 3D imaging techniques
to identify race [117], whereas this work focuses exclusively on race identification with
monocular images—a significantly more challenging task.

5.2.1. Two-Class Race Classification

Instead of focusing on classifying across many races, initial research focused on
distinguishing between two races. One such group focused on distinguishing Black and
White individuals in one network and in another network distinguishing Chinese and Non-
Chinese [118]. Their network was based on the CIFAR-10 network [119]. For their datasets,
they collected images from various sources. From the MORPH-II dataset [120], they used
43,130 face images of Black and White individuals, from the Casia-Webface dataset [37], they
used 101,771 images of Black and White individuals, from the CASIA-PEAL dataset [121]
they chose 5429 images of Asian individuals, from the FERET dataset [122] they used 3407
images of Black and White individuals [118]. The reported overall accuracy was 100%
for identifying Black individuals and 99.4% for White individuals [118]. On the Chinese
and non-Chinese classification task, they achieved 91.6% accuracy for identifying Chinese
individuals, and 93.5% for non-Chinese individuals. These high accuracies demonstrate a
strong ability to identify race in a narrow scope of Chinese and non-Chinese individuals or
Black and White individuals.

Some may argue that identifying just a few races is oversimplifying a complex task.
Within one race or demographic category, there may be significant racial variation. To ex-
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plore intra-racial performance, one group of researchers developed a network to identify a
face as either from northern India or from southern India. Upon collecting and labeling
a custom dataset, the method achieved human-level accuracy but with different error
patterns [123]. Their findings demonstrate the ability of neural networks to classify race at
a more precise level, even within a specific race.

Vo et al. [124] based their racial recognition model on the VGG architecture [112]. They
scraped individuals’ profile pictures and race from Facebook. This was done to obtain
images at different poses, lighting, accessories, and imaging conditions. They then used a
Haar Cascade classifier [125] to crop, and label 6100 faces with 2892 Vietnamese and 3208
images in other races, creating their VNFaces dataset. They obtained an 88.87% overall
accuracy using this model [124]. This dataset contains increased variation across lighting,
accessories, and image conditions, resulting in a more difficult classification task.

5.2.2. Multiple-Class Race Classification

While various methods focus on differentiating between two races for race classifica-
tion, many facial recognition models require multiple races for their approach. One method
that identifies race across the four labeled races in the UTKFace dataset [42] based their
network architecture on ResNet V1 [126] followed by L2 normalization and fully connected
layers achieved an average race classification of 90.1% [127].

One set of researchers focused their neural network on identifying the race of individu-
als that are Chinese, Japanese, or Korean [128]. To collect a dataset to train on, they scrapped
Twitter, specifically the followers of Asian celebrities. They used the username and the
primary language of the profile description to label the race. Then, their approach predicted
the correct race of 78.21% Chinese, 72.80% Japanese, and 73.80% Korean [128], demonstrat-
ing great success in race classification while also demonstrating that race classification
remains unsolved.

As researchers published the FaceARG dataset, they also trained and compared four
unique SOTA convolutional neural networks on the task of recognizing race [12]. They
chose to include VGG19 [112], Inception ResNet v2 [126], SE-ResNet24 [129], and Mo-
bileNetV3 [130]. The results of each of these four networks are shown in Table 6. Their
MobileNetV3 achieved their highest overall F1 score at 96.64 on the four-class human
race classification [12]. To test the robustness of their system, they altered the images
with experiments including eye blur, eye occlusion, nose blur, nose occlusion, mouth blur,
mouth occlusion, grayscale, increasing brightness, decreasing brightness, and image blur.
For overall accuracy in identifying race, all robustness experiments maintained over 90%
accuracy, except for eye occlusion, which dropped to 80.74% accuracy [12]. All of this
demonstrates the ability of CNNs to classify race at a fairly high accuracy, even with some
important parts of the face occluded.

Table 6. Race Classification Results: This table presents the results of human race classification
obtained by four networks on the FaceARG dataset [12]. The maximum value of each metric within
its respective row is highlighted in bold and enclosed in brackets.

Race Metric VGG-19 Inception ResNet-v2 SeNet MobileNetV3

Afro-American Pr 96.68 96.88 95.27 [96.97]
Afro-American Re 97.96 98.20 98.32 [98.44]
Afro-American F1 97.32 97.54 96.77 [97.70]

Asian Pr 98.27 98.43 97.94 [98.52]
Asian Re 97.76 97.92 96.96 [98.20]
Asian F1 97.32 98.18 97.45 [98.36]

Caucasian Pr 94.91 95.61 95.43 [96.20]
Caucasian Re 94.00 [95.00] 94.28 94.12
Caucasian F1 94.45 [95.30] 94.85 95.15
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Table 6. Cont.

Race Metric VGG-19 Inception ResNet-v2 SeNet MobileNetV3

Indian Pr 94.37 94.51 [94.95] 94.89
Indian Re 94.52 94.32 94.00 [95.80]
Indian F1 94.44 94.41 94.47 [95.34]

Overall Pr 94.06 96.36 95.90 [96.64]
Overall Re 96.06 96.36 95.89 [96.64]
Overall F1 96.06 96.36 95.89 [96.64]

5.3. Related Tasks

While there are various network improvements that are being accomplished in facial
recognition to decrease the variance across race, other tasks also benefit from focusing
on race. One similar task is race, gender, and age classification. In the release of the
FairFace dataset, Karkkainen and Joo [13] trained four different classification networks
all with the same setup: DLib’s face detector [131], a ResNet-34 [113], and the ADAM
optimizer [132]. The difference between the four networks was what dataset they were
trained on: UTKFace [42], LFWA+, CelebA [133], and their new racially aware dataset,
FairFace. They took these four trained networks and evaluated them. The cross-dataset
accuracy findings on the White race vs. Not White race are shown in Table 7a for race
classification, Table 7b for gender classification, and Table 7c for age classification. They
note that the model trained on the FairFace dataset outperforms all others. The results
emphasize the benefit that comes from focusing on race while training not only facial
recognition or race classification tasks but also gender and age classification. Their findings
demonstrate the need for generalization across race on more tasks than facial recognition.
We acknowledge that the White vs. Not White definitions are used although the definition
of White or Not White will vary across which country the labeler resides in or cultural
backgrounds that the labeler has.

Table 7. (a) Race Classification: Race classification accuracies are presented as percentages for White
and Not White categories, emphasizing the differences across racial groups [13]. We note that the
balanced dataset achieves the highest accuracies for most test datasets. The highest accuracy in
each column is highlighted in bold and enclosed in brackets. (b) Gender Classification Across Race:
Gender classification accuracies are presented as percentages for White and Not White categories,
emphasizing that race has lower accuracies across various tasks [13]. We note that the balanced
dataset achieves the highest accuracies for most datasets tested. The highest accuracy in each column
is highlighted in bold and enclosed in brackets. (c) Age Classification Across Race: Age classification
accuracies are presented as percentages for White and Not White categories, emphasizing that race
has lower accuracies across various tasks [13]. The highest accuracy in each column is highlighted in
bold and enclosed in brackets. Reprinted/adapted with permission from Ref. [13]. 2021, IEEE.

(a)

Tested on (White Accuracy—Not White Accuracy):

FairFace
(Balanced)

UTKFace
(Unbalanced)

LFWA+
(Unbalanced)

Trained FairFace
(Balanced) [93.7%]–[75.4%] 93.6–80.1% [97.0%]–[96.0%]

on: UTKFace
(Unbalanced) 80.0–69.3% 91.8%–[83.9%] 92.5–88.7%

LFWA+
(Unbalanced) 87.9–54.1% [94.7%]–38.0% 96.1–86.6%
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Table 7. Cont.

(b)

Tested on (White Accuracy—Not White Accuracy):

FairFace
(Balanced)

UTKFace
(Unbalanced)

LFWA+
(Unbalanced)

CelebA
(Unbalanced)

Trained FairFace
(Balanced) [94.2%]–[94.4%] [94.0%]–[93.9%] 92.0%–[93.0%] [98.1%]–[98.1%]

on: UTKFace
(Unbalanced) 86.0–82.3% 93.5–92.5% 91.6–90.8% 96.2–96.2%

LFWA+
(Unbalanced) 76.1–73.8% 84.2–83.3% [93.0%]–89.4% 94.0%–94.0%

CelebA
(Unbalanced) 81.2–78.1% 88.0–88.6% 90.5–90.1% 97.1–92.1%

(c)

Tested on (White Accuracy—Not White Accuracy):

FairFace
(Balanced)

UTKFace
(Unbalanced)

Trained FairFace
(Balanced) [59.7%]–[60.7%] 56.5–61.6%

on: UTKFace
(Unbalanced) 41.3–41.8% [57.6%]–[61.7%]

Another example of benefiting performance based on race is seen with the Inclusive-
FaceNet solution. Their model is used to detect face attributes. It does this by using the
race and gender representations that are transfer-taught to the model. To transfer-learn
race and gender, they train a FaceNet model [83] and extract features from the avgpool
layer. This layer learns race and gender. Then, to further learn race, they obtained over
100,000 images from famous individuals [134–136]. Then, after combining these transfer
learnings, they obtained higher results in face attribute detection across race and gender
than the network without the transfer learnings [137].

Pastaltzidis et al. [138] explored the bias in the RWF-2000 dataset [139], a law enforce-
ment project created for violent activity recognition. They note that certain demographics
are over-represented in the training dataset. To counteract this bias, they implemented a
unique data augmentation method that force-balances the dataset to be more representative
of the population. They achieved this by modifying videos that over-represent minority
groups, using body movement tracking to replace the individual with others from a differ-
ent race. This resulted in a more balanced dataset, and their results show promise for using
synthetically generative models to balance various datasets. These examples of network
improvements across related tasks demonstrate the improvements that come from focusing
on race during trainings.

These three studies demonstrate the benefit of a racially balanced dataset, race classifi-
cation pre-training, and force balancing a dataset through augmentation are beneficial to
more than only facial recognition. These improvements also transfer to other classification
and detection tasks by decreasing the disproportionate accuracies between races. This
improvement is critical for the integration of systems in real-world applications.

5.4. Intersection of Network Improvements across Race and Gender

Many of the network improvements across human races could also be applied to
improving the bias across gender. Our work separates network improvements across
race into four categories: loss/training, architecture, dataset modification, and the use
of additional data. Each of these four categories not only decreases racial bias but also
has been seen to decrease gender bias. The improvement in loss/training can be seen
with Conti et al. [140] presenting the use of a von Mises–Fisher mixture model, which
takes a trained facial recognition model and trains a shallow network with the fair von
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Mises–Fisher loss. The improvement across architecture can be seen with the work of Gwyn
and Roy [141], which focuses on analyzing different architectures to identify the optimal
architecture for minimizing gender bias. They find that VGG-16 is one of the architectures
with the least amount of gender bias. This is the same conclusion that Coe and Atay [1]
concluded was optimal for reducing racial bias. From these two studies, we see the VGG-16
network minimizing not only racial bias but also gender bias.

Just as dataset modifications decrease the racial bias in facial recognition, Tian et al. [142]
demonstrates that data augmentation affects gender bias as well. Similar results are seen
with the use of additional data. The BFW dataset [17], demonstrating that having additional
data to balance datasets benefits not only race bias but also gender bias. As the discussion
around minimizing racial bias through network improvements begins to grow, the overlap
between minimizing gender bias also grows. The decrease in racial bias and gender bias
are connected, allowing improvements from one to be modified to benefit the other.

5.5. Discussion on Network Improvements

General trends emerge in the analysis of the varying network improvements for de-
creasing the skew across race in facial recognition. In Table 8, we classify each improvement
into one or more of the following categories: loss/training improvements, architectural
changes, dataset modification, and using additional data.

Table 8. Network Improvements Discussion: While there are various improvements that are made
in overcoming racial bias in facial recognition, we classify these improvements into four categories:
loss/training, architecture, dataset modification, and additional data. We also define which methods
are improved from further race classification research. The table is sorted by publication year and
then alphabetically by method. The checkmark (�) defines when it is categorized into each column.

Method Year Loss/Training Architecture
Dataset

Modification
Additional Data

Benefits from
Race

Classification

ACNN [97] 2017 �
InclusiveFaceNet

[137] 2017 � � �

CosFace [87] 2018 �
ArcFace [61] 2019 �
IMAN [15] 2019 � � �

PFE [98] 2019 �
DebFace [99] 2020 � � �
RL-RBN [10] 2020 � �
GAC [100] 2021 � �
MBN [101] 2021 � � �
PCT [103] 2021 � �

Rethinking [102] 2021 � � �
Using VGG16 [1] 2021 �

AIN [115] 2022 � �
Fairness aware
augmentation

[138]
2022 � �

Sensitive Loss
[20] 2022 � �

GABN [104] 2023 � � �

The loss and training improvements began with the CosFace loss [87] and then was
built on by the IMAN approach with its custom mutual information loss [15]. But the
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most commonly used loss for facial recognition, particularly for racially balanced facial
recognition, is the ArcFace loss [61]. Other losses have been developed [104]; however,
none have been as widely accepted as the ArcFace loss [61]. Along with adapting new loss
functions, there was also a focus on improving training approaches such as new attempts
to use reinforcement learning [10] or losses that force the network to focus on the same
parts of the face regardless of race [104].

Most publications on improvements for mitigating the skew across race for facial
recognition focus on improving the architecture of the neural network. Initial methods
were built to learn the race and gender initially and then learn the facial recognition
task [137]. These methods were followed by having multiple stages of the network to learn
the race and the face separately [15] or within the same architecture [99]. Other methods
learned a probabilistic latent space representation of the face [98] or compared different
popular architectures on the task [1]. Most recently, the contributions have focused on
architectures that can compare skin tone [101] and approaches that focus on maintaining
the networks focus on the same parts of the face, regardless of race [104,115].

There have also been improvements in modifying the dataset with novel ideas such
as only training on one race that improves cross-race results [102] or more common ideas
of force balancing datasets [138]. Other approaches have attempted to include previous
methodologies, such as using hand-picked features [97] and incorporating different tasks
(gender, age, race, and identity) [99].

Overall, many of the methods are centered around inserting prior information within loss
functions [15,61,87,104], modifying architectures to learn additional tasks [15,99,101,104,115],
and modifying the dataset or incorporating additional data [97,99,102]. Each method
contributes to mitigating the skew across race in facial recognition.

6. Future Work

The field of facial recognition focusing on substrata, such as the human race, is a
growing field. There are many methods where future work could be created and added
upon. As discussed previously, much work has been carried out to create racially balanced
datasets. This approach offers multiple benefits. It primarily enhances the ability of a
system to achieve high accuracy in realistic, generalized scenarios. This area of research
is still lacking as the number and size of racially unbalanced datasets greatly dwarf those
of racially balanced datasets. Future work could focus on making larger datasets with the
intent to have equal sampling from the stratum of the human race.

Another future work was discussed previously in race transformation. This would be
used to take an image of an individual in one race and transfer it to all other races that we
are interested in. Then, doing that with all the images for that individual would create a
new individual that could be used as an additional training sample. With high quality race
transformation, one could take any racially unbalanced dataset and augment the dataset to
have an equal distribution across all racial groups. This could be carried out by replacing
GAN racial transformation networks with diffusion racial transformation networks. While
GANs were originally used as the SOTA generative deep learning approach, diffusion has
surpassed GANs in many categories and shows promise for the ability to create a race
transformation network [143].

To better aid racially balanced performance across human races, race recognition using
monocular images must be improved. With certain strata outperforming other strata in
classification, it is difficult to scrap images for races with lower classification accuracies.
To create the optimal racially balanced dataset, the race classification of human faces must
also be improved.

As this work focuses on comparing racially unbalanced/balanced datasets, balancing
datasets through data generation, and network improvements across the human race using
monocular cameras there are limitations to our study. Some of these limitations include that
bias across datasets is not limited to race, but rather also is connected or even interconnected
with other biases such as gender or age. We recognize that gender [62,144,145] and age [146]
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are not covered in great detail within this survey. Future survey papers could center around
the conjugation of race, gender, and age in facial recognition.

7. Conclusions

Understanding bias in deep learning is a widespread and evolving field, presenting
complex challenges. We provide an analysis of race imbalance across many popular facial
recognition datasets and the increasing trend of new facial recognition datasets to be racially
balanced. We discuss the promising attempts to balance datasets through data generation
accompanied by a discussion on the impact of data generation. We discuss various network
improvements that aim to reduce racial bias in facial recognition systems. These include
loss modifications, training methods, architecture improvements, data modification, and in-
corporating additional data. Finally, we provide a list of future work that researchers can
follow. Overall, the skew across race in facial recognition is decreasing but requires further
research to mitigate the problem fully.
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