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Preface

This Special Issue gathers the best papers from EVS36, the 36th International Electric Vehicle

Symposium and Exhibition, which was held from 11 to 14 June 2023 in Sacramento, California, USA.

The International Electric Vehicle Symposium (EVS) is the world’s longest, largest, and

highest-spec event in the field of electric vehicles, covering areas including pure electric vehicles,

hybrid vehicles, fuel cell vehicles, and core components. With the support of the World Electric

Vehicle Association, the symposium is hosted by three regional professional organizations under

the World Electric Vehicle Association in North America (Electric Drive Transportation Association,

EDTA), Europe (The European Association for Electromobility, E-Mobility Europe), and Asia (Electric

Vehicle Association of Asia Pacific, EVAAP), in turn. EVS has already had a long history since its birth

in Phoenix, Arizona, USA, in 1969.

The theme of EVS36 is “Driving the Transition to E-Mobility”. The papers cover research, market,

and government activities across all fields related to hybrid, battery, and fuel cell technologies,

associated infrastructure, and services.

The authors of the best papers presented at EVS36 were invited to further extend their EVS36

paper, including their most recent research findings. After a second thorough round of peer review,

these papers were published in this Special Issue of the World Electric Vehicle Journal (WEVJ), the

official journal of the World Electric Vehicle Association (WEVA).

Joeri Van Mierlo and Genevieve Cullen

Guest Editors
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Article

Demonstrating the Lessons Learned for Lightweighting EV
Components through a Circular-Economy Approach
Floris Teunissen * and Esther van Bergen

Cenex Nederland, Overhoeksplein 2, 1031 KS Amsterdam, The Netherlands; esther.van.bergen@cenexgroup.nl
* Correspondence: floris.teunissen@cenexgroup.nl; Tel.: +31-6-1547276017897982

Abstract: LEVIS is an innovation project funded by the EU Horizon 2020 program. Its main objective
is to develop lightweight multi-material solutions based on bio-based materials and carbon fiber ther-
moplastic composites for electric vehicle components and demonstrating the technical, operational,
and economic feasibility of applying eco-design and circular-economy principles into the design
process. The project demonstrates the application of these materials in four case studies: a suspension
control arm, a battery box, a battery module housing, and a cross-car beam. All demonstrators
achieved a 20%-to-40% reduction in component weight, but environmental assessment results varied
significantly, with emissions changes ranging from an increase for suspension control arms to a 65.5%
decrease for battery modules. Efficient use of materials, particularly in the battery box using hybrid
solutions and bonding technologies, showed notable emissions reduction. In contrast, replacing steel
with CFRPs in suspension control arms led to increased emissions, suggesting that CFRPs are more
effective for replacing high-polluting materials like aluminum. Recycled carbon fibers proved more
beneficial for low-polluting materials like steel. The environmental performance of technologies
depends on the expected use of EVs and the electricity grid mix, with better outcomes in coal-reliant
grids. Finally, no single recycling method is universally superior; the optimal method depends on the
specific technologies and the energy required for recycled materials.

Keywords: lightweight materials; circular economy; electric vehicle; life-cycle assessment; life-cycle
costing; bio-based materials; carbon fiber-reinforced plastics; recycling; pyrolysis; eco-design

1. Introduction

The concept of a circular economy is gaining significant traction within the automotive
industry, emerging as a crucial and strategic focus area. This shift is driven by concerns
over resource scarcity, the need to control manufacturing and operational expenses, and
the increasing emphasis on sustainability.

Given that a vehicle’s weight directly impacts its energy efficiency and driving range,
lightweight construction has become a key factor in accelerating the market expansion of
electric vehicles (EVs). This, in turn, plays a vital role in achieving the greenhouse gas
emission-reduction targets set for 2050 [1]. Additionally, the European Union has intro-
duced regulations that establish environmental, social, and circular-economy standards
pertinent to the automotive sector, with further regulations currently in the pipeline [2].

Fiber-reinforced polymers (FRPs) are lightweight structural materials extensively
used in the automotive sector, primarily in sports and high-end luxury vehicles. Despite
their benefits, challenges such as cost efficiency, production scalability, and end-of-life
(EOL) management hinder their adoption in low-cost vehicle segments. Addressing these
challenges could bridge the industrial gap, enabling mass production of FRPs for more
affordable vehicles and thereby reducing EV production costs. Additionally, developing
multi-material components that combine FRPs with metals offers a promising approach
to lightweighting while maintaining necessary mechanical and functional performance.

World Electr. Veh. J. 2024, 15, 415. https://doi.org/10.3390/wevj15090415 https://www.mdpi.com/journal/wevj
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These innovations are crucial in meeting the automotive industry’s stringent CO2 emission
and recyclability requirements, especially under increasingly rigorous EU directives.

Building on previous Horizon projects, such as ALLIANCE [3], LoCoMaTech [4],
ALIVE [5], ENLIGHT [6], GREENLIGHT [7], and ECOXY [8], LEVIS aims to further advance
lightweighting and circularity in automotive manufacturing. For instance, ALLIANCE
demonstrated significant weight reductions, which LEVIS aims to surpass by focusing on
vehicle chassis components to achieve a 30% structural weight reduction. LoCoMaTech’s
advancements in low-cost aluminum body structures complement LEVIS’s focus on multi-
material parts combining thermoplastic composites with metals. ALIVE and ENLIGHT
highlighted the potential of composite materials, and LEVIS extends it by integrating real-
case demonstrators across the entire product value chain. GREENLIGHT and ECOXY’s
work on bio-based materials and recyclable composites inform LEVIS’s cradle-to-cradle
approach, targeting the recovery and reuse of materials to enhance sustainability.

Das (2011) [9] conducted a life-cycle assessment (LCA) of carbon fiber-reinforced poly-
mer (CFRP) composites, demonstrating their potential to reduce the weight of automotive
components while also considering the environmental impacts of their production and
disposal. Despite the higher energy consumption in manufacturing compared to traditional
materials like steel and aluminum, the overall life-cycle benefits—particularly in terms of
fuel savings and reduced emissions during vehicle operation—could justify their use in
lightweight applications, especially when higher weight savings could be achieved.

Agarwal et al. (2020) [10] and Gonçalves et al. (2022) [11] expanded on this by reviewing
the progress and challenges in adopting lightweight materials for automotive applications.
Agarwal et al. (2020) emphasized the potential of eco-friendly composite materials, particu-
larly those combining lightweighting with environmental sustainability through the use of
bio-based and recycled materials. Gonçalves et al. (2022) highlighted the need for comprehen-
sive life-cycle evaluations of lightweight materials to fully understand their environmental
implications, recommending future studies to improve inventory data, address greenhouse
gas break-even points, and incorporate uncertainty and sensitivity analyses.

Prochatzki et al. (2023) [12] critically reviewed the state of the circular economy in
the automotive sector, noting that both industry and research often equate circularity
with recyclability, overlooking higher-quality strategies like reuse and repurposing. Their
study emphasized the need for integrating circular-economy principles early in product
development. This project addresses these gaps by applying eco-design principles during
the design phase, aiming to enhance the circularity of automotive components.

The goal of this project is to showcase the viability of circularity within the automo-
tive industry through the EU-funded initiative LEVIS. LEVIS has created multi-material
solutions that utilize eco-friendly materials and carbon fiber thermoplastic composites,
which are seamlessly integrated with metals. These materials are produced using scalable
and cost-efficient manufacturing techniques. The project partners are demonstrating the
effectiveness of these new technologies by applying them to four electric vehicle (EV)
components: a suspension control arm (case study 1), a battery box (case study 2A), a
battery module (case study 2B), and a cross-car beam (case study 3).

The primary focus of this study is to compare the environmental performance of the
solutions developed during the LEVIS project. By conducting a thorough environmental
assessment, this paper seeks to determine the environmental viability of these technologies.
While cost-effectiveness assessments were also conducted during the project, they are
mentioned only briefly here due to the confidentiality of detailed financial information.

In summary, this paper provides insights into the environmental benefits of the LEVIS
project’s multi-material solutions and their potential to contribute to a more sustainable
and circular automotive industry.
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2. Materials and Methods
2.1. Case Study 1: Suspension Control Arm

The suspension control arm connects movable parts like the wheel and knuckle to fixed
parts such as the vehicle body and frame. It allows for vertical movement for suspension
and rotation for steering. Its design and function vary based on vehicle handling and
comfort targets. Each car has two front suspension control arms with bushings and a ball
joint connecting them to the cradle and steering knuckle. Typically, these components are
pressed in; however, the ball joint can also be screwed or riveted.

The conventional suspension control arm (Figure 1a) is predominantly constructed
from steel, featuring aluminum inserts and bushings. The objective of the redesign was
to preserve durability and safety while achieving a reduction in weight. The original
suspension control arm, designed for a traditional internal combustion engine (ICE) vehicle,
has been in production for 15 years. This component serves as a benchmark in a LCA
within the context of an EV to compare the use-phase emissions of the new design.

In the new design, the metal body is replaced with CFRP, utilizing acrylic-based
resins and a combination of bio-derived and PAN-based carbon fibers through the Resin
Transfer Molding (RTM) process (Figure 2b). RTM involves the injection of a monomer and
catalyst into a mold filled with reinforcement material, leading to in situ polymerization.
The project focuses on using polyamide and acrylic-based resin, along with bio-based
carbon fiber, and optimizing mechanical performance with specific sizing compositions.
The optimization methodology involves several advanced simulation methodologies and
workflows. This includes an initial CAD design, after which conceptual prototypes will be
manufactured to assess the final geometry of the part. Once the geometry is defined based
on developments in materials, fabrication processes, and structural integrity, integrated
simulation workflows will be applied to verify design compliance with specifications.
These simulations include process simulations to optimize manufacturing and reduce
waste; initial structural simulations to analyze stiffness and stress under critical loads; and
advanced structural simulations to predict failure, fatigue, and the impact of environmental
factors like temperature and humidity.

The preforming stage is optimized to achieve productivity goals by utilizing Auto-
mated Tape Layering (ATL) technology and developing binders that are compatible with
thermoplastic matrices, RTM processes, and ATL heating methods.

The reengineered suspension control arm incorporates metal inserts for bushings
through co-molding, with bushings press-fitted afterward. This approach achieves up to a
30% reduction in weight while maintaining structural integrity.

Similar to the original design, the metal components in the new suspension control
arm are recycled. However, to improve recyclability, the CFRP components are recycled
using pyrolysis. This process involves heating the CFRP in an oxygen-free environment,
which breaks down the resin matrix and recovers carbon fibers, along with gas and oil
byproducts that can be used as chemical feedstock. Despite the production of byproducts,
pyrolysis preserves the carbon fibers’ high mechanical properties [13].

2.2. Case Study 2A: Battery Box

The battery box houses 10 battery modules, providing protection during operation
and accidents and supporting these modules by integrating them into the vehicle frame
for safety. Its internal structure facilitates wiring and heat dissipation. This project fo-
cuses specifically on the structural design of the battery box, aiming to optimize weight
reduction while maintaining or enhancing the mechanical strength and durability of the
components. The study does not include the development of an active cooling system or
wiring. However, the battery box must meet the same requirements as the benchmark
battery box, meaning the demonstrator must be capable of supporting the same wiring and
cooling system as the benchmark vehicle.

3
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Figure 1. Demo 1—suspension control arm: (a) benchmark product and (b) new design. (Reprinted
with permission from Ref. [14]. Copyright 2024 LEVIS project).
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Figure 2. Demo 2A—battery box: (a) benchmark product and (b) new design. (Reprinted with
permission from Ref. [14]. Copyright 2024 LEVIS project).

The benchmark battery box (Figure 2a) is primarily constructed from aluminum, with
some plastic and rubber components. It is used in a D-class EV from China, with a battery
capacity ranging from 80 to 100 kWh.

To achieve weight reduction, hybrid solutions were implemented. CFRP patches and
structures were bonded to aluminum beams and profiles to maintain structural integrity
while reducing weight. Multi-material designs optimize performance and costs, with ther-
moplastic materials being a preferred solution. In situ consolidation enables composite and
metal–composite joint development in a single step, enhancing stress distribution, fatigue
strength, and production rates, without adding weight. Laser texturing on metallic parts
is used for surface treatment, studied in EU projects [15–17], and currently at Technology
Readiness Level 5 [18–20].

The original upper cover design combines aluminum and plastics, whereas the new
version utilizes compression-molded CFRP with recycled carbon fibers. Compression
molding of carbon fiber non-woven mats enables the production of high-strength, complex
parts by molding chopped or continuous reinforced prepreg sheets under compression.
Given that this component has lower mechanical requirements, short, chopped carbon fibers
are sufficient, leading to a 30% weight reduction without compromising structural integrity.

The metal components of the new design (Figure 2b) are recycled similarly to the
benchmark, but the CFRP components use different recycling methods: chemical recycling
for the upper cover and pyrolysis for other CFRP parts. To facilitate recycling, debonding
on-demand technologies are employed. Various joining technologies and surface treat-
ments, such as adhesive tape layers and laser texturing, are used to enhance disassembly
capabilities for maintenance, repair, and overhaul (MRO). A heating-activated on-demand
disassembly technique optimizes recovery and recyclability for metal–composite joints.
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2.3. Case Study 2B: Battery Modules

The primary role of the battery module is to store and distribute energy, with the
module housing providing thermal, mechanical, and electrical protection for the cells, while
also facilitating electrical distribution through the busbar system. The benchmark design
(Figure 3a) uses plastics and epoxy glass, while the new design (Figure 3b) introduces a
modular box made from Glass Fiber-Reinforced Plastics (GFRPs) with recycled polymers
(PA6) and integrated sensors for health monitoring. The Structural Health Monitoring
(SHM) system includes piezoelectric and temperature sensors to detect potential failures,
thereby extending the module’s service life.
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Figure 3. Demo 2B—battery module: (a) benchmark product and (b) new design. (Reprinted with
permission from Ref. [14]. Copyright 2024 LEVIS project).

The busbars use novel lamination processes that reduce energy consumption during
production. Aluminum tools optimize heat transfer between the press and busbar, saving
90% of the time taken compared to standard processes. GFRP modules are recycled
mechanically by shredding the fibers and incorporating them into new composites. The
new design achieves a 47% weight reduction.

2.4. Case Study 3: Cross-Car Beam

The cross-car beam, located in the dashboard area, focuses on the steering column
carrier (Figure 4a, golden part). The benchmark is entirely steel, with welded brackets.
The new design (Figure 4b) is a one-piece CFRP part using recycled carbon fibers through
injection molding, achieving a 28% weight reduction. CFRP is mechanically recycled at the
end of life.
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2.5. Environmental and Economic Assessment
2.5.1. Methodology

The environmental performance of the newly designed EV components is assessed
against current industry standards using a life-cycle assessment (LCA). A life-cycle costing
(LCC) methodology is employed to provide insights into the cost implications of material
choices, production, manufacturing, and end-of-life processes, comparing them to current
equivalents to determine financial feasibility.

A comparative LCA is conducted to evaluate the environmental performance of the
newly designed EV components relative to existing industry applications. This LCA adheres
to the framework set out in the ISO 14040–14044 standards [21]. The initial step in the
analysis involves defining a benchmark product and conducting a sustainability assessment,
which considers the environmental impact throughout the product’s life cycle—from material
extraction and component production to transportation, use, and end-of-life processes.

The new EV components are then analyzed using the same LCA methodology. Since
the technologies are in early development stages, the initial LCA relied on laboratory-
scale data provided by industry partners, which may not fully represent industrial-scale
applications. Consequently, the initial analysis used laboratory data, which often yield
lower production efficiency per unit of energy used, or estimates to simulate industrial-
scale production. To enable a fair comparison, further research was conducted to predict
the environmental impact of these new components at the industrial level, incorporating
more comprehensive and representative data, as well as advanced modeling techniques.
The results presented are based on industrial-scale data that were modeled and calculated
rather than directly measured.

2.5.2. Functional Unit

The lifespan of the vehicle may vary for each benchmark vehicle; however, for the
purposes of this study, it is kept consistent across all demonstrators. The functional unit is
defined as follows:

The functional unit for this study is the installation and usage of a product that lasts the
entire lifespan of a C-class electric vehicle driving a WLTP cycle, maintaining the vehicle’s
functionality and occupant safety. The average lifespan is considered to be 160,000 km.

This definition means that, for the suspension control arm, the LCA assumes that two
products are needed to perform the function of the EV, while for the battery module, ten
products are required. All other components are considered single products.

2.5.3. Life-Cycle Inventory
Raw Materials and Manufacturing

The raw materials are directly linked to the Bills of Materials (BOMs) of the designs.
These BOMs, provided by the project partners, detail the various parts of the demonstrators
and benchmark products, along with the types of materials used. Additionally, the BOMs
include the manufacturing processes employed to shape the parts from the raw materials.
All materials are associated with datasets from the GaBi database. It is assumed that all
materials used in the benchmark and demo are sourced from the EU-28. These datasets
cover the extraction of raw materials. Material flows representing less than 1% of the total
mass are excluded.

Data on energy consumption, resource utilization, waste generation, and emissions
from manufacturing processes are obtained from project partners or the relevant literature.
When primary data are unavailable, GaBi datasets are utilized to estimate manufacturing
emissions. If neither primary nor GaBi data are available, the analysis follows a hierarchical
approach: it first relies on the literature data, then calculations, and finally estimates, with
processes potentially being omitted only if no other data source is sufficient.
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Use Phase

The benchmark demonstrators do not have a “direct” use phase where they consume
energy independently. However, they influence the energy consumption of a vehicle by
their weight. The energy consumption associated with the benchmark demonstrator is
calculated using the following formula:

EC = (ERV ×m ×mileageuse)/1000

where ERV = energy reduction value (kWh/(100 km × 100 kg)), m = vehicle mass reduction
(kg), EC = energy consumption through mass (kWh), and mileageuse = lifetime vehicle (km).

The ERV values (see Table 1) are extracted from the literature based on Del Pero et al.
(2020) [22] and are determined by the vehicle class and driving cycle. For this study, the
World Light Test Procedure (WLTP) is used. Key assumptions made are the vehicle class
for each specific demo case and the lifespan of the vehicle (160,000 km).

Table 1. ERV values for vehicle demonstrators.

Demonstrator Vehicle Class Milage ERV (kWh/100 km ×
100 kg)

Suspension control arm B 160,000 0.56
Battery-holding set D 160,000 0.66

Cross-car beam C 160,000 0.58

End of Life (EOL)

Data for the EOL processes are collected similarly to the manufacturing processes.
The allocation of recycling and reuse of materials is performed using the “value-corrected
substitution” method. This method addresses the downcycling issue in LCA when dealing
with products with high scrap ratios. To that end, key assumptions based on the price ratio
are made regarding the recycling rate for each material mentioned below.

During production and EOL, large volumes of scrap are produced and recycled.
However, the quality of recycled material is often lower than that of virgin material,
meaning that scrap material cannot always replace virgin material on a one-to-one basis.
The “value-corrected substitution” method uses the price ratio between different grades of
scrap (based on their quality) and virgin material. The price ratios for the materials used in
the model are as follows:

• ABS scrap ratio: 0.264 [23].
• Steel industrial scrap ratio: 0.21 [24].
• Pyrolysis ratio: 0.85.
• Mechanical ratio: 0.24 [25].
• Chemical ratio: 0.989 [25].
• Steel post-consumer ratio: 0.33 [24].
• Aluminum ratio: 0.42 [24].
• Copper ratio: 0.75 [24].

The energy requirements for the EOL processes for metals are sourced from GaBi
datasets, which provide average values for energy use and emissions during the decon-
struction of passenger vehicles. For the CFRPs and GFRPs used in the demonstrators,
energy and emissions data for the pyrolysis process were supplied by project partners. For
other EOL processes, such as chemical recycling, mechanical recycling, and incineration,
the literature data [25] were utilized to determine the energy requirements, emissions, and
scrap ratios.

2.6. Application of This Method to Other Vehicle Components

The project focuses on practically demonstrating technologies in specific case studies
while also theoretically analyzing their potential impact on other vehicle components,
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in particular the Body-In-White (BIW), battery cells, and electrical motor. These replica-
tion studies systematically explore and validate innovative materials and manufacturing
processes in BEV components through seven steps:

1. Establish criteria for component applications: Identify BEV components that can
benefit from LEVIS materials for weight reduction without compromising struc-
tural integrity.

2. Identify alternative applications: Conduct workshops with LEVIS experts to brain-
storm potential applications, classified by technical and economic feasibility.

3. Rank solutions with modified QFD: Use a Quality Function Deployment model to rank
and score the top three material and manufacturing combinations for each component.

4. Material properties analysis: Compare functional requirements of selected compo-
nents with LEVIS materials’ capabilities to finalize suitable candidates.

5. Estimate weight reduction: Model the anticipated weight reduction for each compo-
nent and the entire vehicle.

6. Emission reduction calculation: Calculate emission reductions based on the weight
savings, considering the vehicle’s life cycle.

7. Consolidate results: Summarize the selected solutions, estimated weight and emission
reductions, and overall impact on vehicle performance and sustainability.

Steps 1 to 4 focus on identifying feasible LEVIS technologies for other vehicle com-
ponents, leveraging the expertise of the LEVIS project partners. Once suitable candidates
were identified, calculation methods were employed to estimate potential weight reduction
and emission savings (steps 5 and 6).

To determine the weight of the replication components, an assumption was made
where the average percentage reduction of the demonstrators was calculated. This varied
according to different solutions (material + manufacturing process). Further weight reduc-
tion is possible, considering the impacts of the initial weight reduction of the Body-In-White
due to lighter components. The initial weight reduction positively impacts the vehicle’s
range, allowing for a smaller battery pack, which in turn saves weight in battery cells. This
also reduces motor torque and power requirements, enabling motor weight reduction. This
also has been taken into account for the replication studies [26].

The emission reduction calculation in the replication studies focuses on quantifying
the potential environmental benefits achieved through weight reduction. Baseline emis-
sions are calculated based on the initial weight of the fully loaded vehicle (2230 kg) and
its components, using conventional materials and manufacturing processes. This includes
emissions from material extraction, manufacturing, vehicle operation, and disposal. Each
component’s weight reduction contributed to lowering overall emissions. The LCA results
are used to calculate potential emission reductions. The expected emissions per kilogram of
produced product encompass emissions associated with material use, manufacturing, and
end-of-life processes and credits. The potential total emission reduction for the BIW was
calculated using the weight reduction values and the Global-Warming Potential (GWP) per
kilogram reduction. Similarly, the potential emission reduction from the weight reduction
in the battery cells is calculated using a combination of EcoInvent data [27] and LCA re-
sults [28]. Emissions per kilogram for each component of the battery structure are provided
by the LCA, and by applying the weight reduction values and the GWP per kilogram
reduction, the potential total emission reduction for the battery structure is determined.

Use-phase emissions are calculated based on LEVIS motor efficiency studies [26],
showing that the benchmark vehicle uses an average of 183.5 Wh per km. With a 2%
increase in motor efficiency per 100 kg of vehicle weight saved, this leads to a total of 4.34%
potential increase in motor efficiency. Emissions per Wh of electricity are derived from the
GaBi database [24], indicating 0.33 kg CO2 equivalent per Wh of electricity. The formula to
calculate the CO2 reduction is as follows:

GWPusephase = 0.33 × 183.5 × Vehiclelifespan

8



World Electr. Veh. J. 2024, 15, 415

GWPreduction = GWPusephasebenchmark − (GWPusephasedemonstrastor × (1 – 0.0434))

The vehicle lifespan (Vehiclelifespan) is assumed to be 160,000 km.
The total emissions saved (GWPreduction) are then compared against the total emissions

of an electric vehicle [27,29].

3. Results

This paper presents the environmental results from the project.

3.1. Life Cycle-Assessment Results

This study aims to achieve a 25% reduction in greenhouse gas (GHG) emissions at the
component level by utilizing new materials, advanced manufacturing processes, weight
reduction strategies, and end-of-life (EoL) approaches. The weight reduction targets for
all components have been successfully met, and the study now focuses on evaluating the
potential GHG emissions savings resulting from these changes. The outcomes of the climate
change impact assessment, conducted using the ReCiPe method, are detailed in Table 2.

Table 2. Results LCA, life-cycle emission savings of components in percentage. New design compared
to benchmark product [30].

Modifications Compared
to Benchmark Changes in Weight

Changes in Climate
Change Impact

(kg CO2-eq)

Changes in Climate
Change (%)

Demo 1. Suspension
control arm

Body material was
replaced with CFRP. −26% +3.9 +12.1%

Demo 2A. Battery box −31% −400.16 (EU)
−1196.17 (CN)

−28.7% (EU)
−54.6% (CN)

Demo 2B.
Battery module

Redesign and use of GFRP
with recycled polymers. −47% −656.8 −65.5%

Demo 3. Cross-car
beam

Replacing several different
parts of the steering

column carrier with a
one-piece solid part made

from CFRP through
injection molding.

−26% −1.32 −11.6%

Suspension control arm:
The GHG emissions of the suspension control arm increased by 12.1% compared to

the benchmark product (see Table 2). Figure 5 compares the benchmark and demonstrator
suspension control arms in terms of their impact on climate change across various life-
cycle phases. As illustrated, the demonstrator has a slightly higher overall impact on
climate change. The reduction in climate change impact during the use phase, due to
weight reduction, is negligible when compared to the significant increase in impacts caused
by material flows. The amount of aluminum and rubber has remained the same in the
suspension control arm demonstrator. However, a significant portion of the steel in the
benchmark model was replaced with CFRP, which contains 5% bio-carbon fiber. Although
this change has resulted in approximately a 26% weight reduction (see Table 2), the climate-
change impacts of carbon fibers are significantly higher than those of steel. This results
in a 73.51 kg CO2-eq impact on climate change for the demonstrator, compared to a
16.86 kg CO2-eq impact for the benchmark (for the environmental impact of raw materials
phase). The substantial impact of carbon fiber is primarily due to the significant amounts
of electricity required for its production [30].
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It is noteworthy that the suspension control-arm LCA was based on theoretical indus-
try data. When laboratory data were used for the LCA on a pilot scale, the manufacturing
phase, particularly the RTM manufacturing process, emerged as the most dominant source
of climate-change emissions. A previous analysis based on lab data projected that the
suspension control arm would emit more than twice as much GHG emissions as the bench-
mark. This highlights the significant positive environmental impact achieved through the
optimization of materials and manufacturing processes.

Battery box:
The battery box of an automotive vehicle was analyzed to evaluate its environmental

impact. For the battery box, two benchmark scenarios were considered: one where the
production takes place in China (using only Chinese datasets from GaBi, Benchmark-
CN) and one where the production takes place in Europe (where only European datasets
from GaBi were used, benchmark EU). The sensitivity analysis contemplates the effect
of relocating the manufacturing phase to Europe instead of China. The results indicate a
significant decrease of 28% when using EU datasets and 54% when using Chinese datasets
(Table 2) of GHG emissions over the entire life cycle. The emissions from the Chinese
benchmark are a lot greater compared to the EU version, which highlights the importance
of location and clean energy production for manufacturing and mining materials.

The reduction in emissions is primarily attributed to the manufacturing phase, with
a decrease in emissions during the use phase also observed (Figure 6). The emissions
during the production of the battery box demonstrator (including material mining, etc.) are
significantly lower than those during the production of the benchmark product. Several
factors contribute to this reduction. Firstly, the demonstrator uses less material, resulting in
lighter aluminum, which in turn requires less aluminum for production, thereby reducing
emissions. Secondly, the end-of-life procedures applied to the CFRP hybrid solutions and
the upper cover yield relatively high credits during the end-of-life phase.
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Battery Module:
The battery module demonstrates a substantial 47% reduction in GHG emissions

over its entire life cycle, as shown in Figure 7. This reduction is primarily due to the
improvements in the manufacturing and material phases. While some of the savings are
attributed to the use phase, the battery module’s design achieves the most significant
weight reduction among all components, significantly contributing to its overall impact.
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The primary material contributing to the total emissions of the demonstrator battery
module is the PA6 used for the GFRP. Glass fiber has a significantly lower carbon foot-
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print compared to carbon fiber, thus explaining the relatively low emissions contribution
compared to other demonstrators in this report. The battery module achieves substantial
emission reductions primarily due to the improved design of the busbars, as it significantly
reduces copper usage. In the benchmark LCA, the main contributor to emissions is the
amount of copper used. Therefore, the significant reduction in copper for the demonstrator
results in a substantial decrease in emissions.

For the manufacturing of the battery module, the lamination process is clearly the
main contributor to emissions. This process requires a significant amount of electricity and
is associated with the busbars. The demonstrator’s busbars feature an efficient design that
significantly reduces the amount of copper needed for both the busbars and the lamination
process. Consequently, the demonstrator requires substantially less energy for this process
compared to the benchmark.

Cross-car beam:
The cross-car beam shows a slight 10% reduction in GHG emissions (Figure 8) over

its entire life cycle. While use-phase emissions have decreased, material emissions have
increased due to the use of carbon fibers. A significant portion of steel in the benchmark
was replaced by CFRP, resulting in a 28% weight reduction. However, the climate-change
impacts of carbon fibers are much higher than those of steel, leading to a 10.80 kg CO2-eq
impact on climate change compared to the benchmark’s 6.20 kg CO2-eq (for the mate-
rial phase). This high impact is primarily due to the significant amounts of electricity
required for carbon fiber production, particularly during the oxidation and carbonization
processes [22]. Although a large part of the material impact is offset during the EOL
phase, the overall climate-change impact of the demonstrator remains higher than that of
the benchmark.
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Figure 8. Impact on climate change over life-cycle phases of cross-car beam demo vs. benchmark.
(Reprinted with permission from Ref. [14]. Copyright 2024 LEVIS project).

The injection molding process is the largest contributor to the demonstrator’s emis-
sions. Despite CFRP not being the largest part of the cross-car beam by mass, its processing
contributes more emissions per kilogram compared to the stamping and bending of steel.

3.2. Sensitivity Analysis
3.2.1. Electricity Grid Mix

The summarized impacts in Table 2 are based on the electricity grid mix in the EU. All
demonstrators and benchmarks were also evaluated using the electricity grid mixes of the
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US and China. Among these, the Chinese electricity grid mix resulted in the highest total
impact for both the benchmark and the demonstrators across all components. However,
the benchmark was more significantly affected. This suggests that the improvements in the
demonstrators compared to the benchmark would be greater than those shown in Table 2
when considering the Chinese electricity grid mix. Specifically, for the suspension control
arm (Demo 1), the demonstrator even shows an improvement compared to the benchmark
(Figure 9). For the US electricity grid mix, the improvements fell between those observed
for the EU and China. Thus, it can be concluded that manufacturing and using electric cars
in China and the US has even more positive climate-change impacts than in the EU.
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3.2.2. Lifespan

The baseline calculations were based on a 160,000 km lifespan. In the sensitivity
analysis, increasing the lifespan resulted in a lower rate of increase in climate-change
impact for all demonstrators compared to the benchmarks. This implies that, for lifespans
exceeding 160,000 km, the net reduction in GWP will be greater than the values shown
in Table 2, favoring the demonstrator. For Demo 1, specifically, a lifespan of more than
328,900 km will result in a lower climate-change impact than the benchmark (see Figure 10).

3.2.3. End-of-Life Methodologies

This study examined how different recycling methods could impact the overall climate-
change effects for each demonstrator. Table 3 lists the recycling methods employed for
each demonstrator. For the suspension control arm, the choice of recycling method notably
affects the climate-change impacts. Incineration and mechanical recycling result in much
higher environmental impacts compared to pyrolysis, which was used in the baseline
calculations. Conversely, chemical recycling results in an end-of-life impact that is nearly
equivalent to the benchmark. Specifically, incinerating CFRP increases the total global-
warming impact of Demo 1 by 188% (see Figure 11).
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Table 3. Recycling methods used per demonstrator.

Recycling Method Pyrolysis Chemical Recycling Mechanical
Recycling Incineration

Demo 1. Suspension control arm X

Demo 2A. Battery box Patches and
internal beams Upper cover

Demo 2B. Battery module X
Demo 3. Cross-car beam X

In Demo 2A, although changing the recycling method increases the total climate
change impact, it still remains significantly lower than the benchmark. For Demo 2B,
mechanical recycling was used in the baseline calculations. In this scenario, both pyrolysis
and chemical recycling slightly increase the total impact, while incineration reduces it (see
Table 4). Pyrolysis and chemical recycling are both energy-intensive processes that yield
high-quality recycled materials. However, when the emissions associated with producing
the recycled material are relatively low, the energy required for these processes might not
justify their use. In such cases, it might be more efficient to incinerate the material at the
end of its life.

Table 4. Results of LCA and sensitivity analysis. CR = chemical recycling, L = LEVIS EOL process,
and I = incineration. For the battery box, only the EU demonstrator was used for comparison.

Recycling Method LCA
Grid Mix Lifespan (Break-Even

Point in 1000 km)
Recycling Method (Recycling
Method with Best Outcome)US CN

Demo 1. Suspension
control arm +12.1% +5.0% +3.8% 328.8 +1.5% (CR)

Demo 2A. Battery box −28.7% (EU) −29.6% −30.8% N/A −28.7% (L)
Demo 2B. Battery module −65.5% −62.7% −59.0% N/A −67.1% (I)
Demo 3. Cross-car beam −11.6% −13.6% −17.5% 29.7 −36.7% (CR)
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3.3. Replication Studies Results

The replication studies reveal significant potential for both weight reduction and
environmental improvements. The final results indicate that the selected materials and
processes can achieve a substantial weight reduction of 30.85% for the BIW. This weight
reduction translates to a 4.25% decrease in energy consumption, alongside a reduction in
battery and motor capacity by 16 kg and 9 kg, respectively (see Table 5).

Table 5. Results of the replication studies, showing the weight reduction and the emission reduction.

Component Weight Reduction (kg) Weight Reduction (%) Emission Reduction
(kg CO2 eq.)

Emission Reduction
(%)

BIW 107.80 30.85 415.66 22.04
Battery structure 37.76 31.00 186.15 1.44
Battery module 48.43 47.00 507.86 17.45
Battery cells 16.05 3.50 179.08 3.50
Electric motor 8.97 9.02 102.16 5.98
Use phase - - 419.68 4.34
Total EV 219 9.82 1810.57 5.98

Additionally, the application of these technologies significantly reduces the GWP
of the vehicle structure. Although the GWP per kilogram is higher for most solutions
compared to the benchmark, this is expected because these values do not account for the
emission savings from weight reduction during the use phase. Due to the lighter weight of
the new solutions, the overall emissions are generally lower compared to the benchmark.
The current results indicate a notable 5.98% reduction in total emissions.

4. Discussion

Industry vs. Lab data
It is important to note that the current LCA results are based on modelled and calcu-

lated data. Future research should focus on implementing these technologies at a higher
technology readiness level, with an LCA based on measured data to ensure more accurate
and reliable results.

Life-Cycle Costing
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An economic assessment was conducted as part of the project, but the details of this
private report cannot be shared. One of the main goals of the project was to develop
cost-efficient technologies that offer comparable economic results to currently available
solutions. An LCC analysis was performed to study the economic performance of the
demonstrators. The same model used for the LCA was applied here, with different inputs
including raw material costs, manufacturing, use-phase savings, and end-of-life costs and
credits. The results varied significantly: two demonstrators showed considerable cost
savings, one showed cost increases, and one had similar economic performance to current
solutions. Most cost increases were due to the relatively high prices of Elium resin and
carbon fiber, as well as the expensive RTM process, which involves high labor and tooling
costs. However, many cost savings were achieved through efficient design, resulting in
less material use and therefore lower processing costs. Notable savings were also made
from reduced electricity usage during the use phase. Shadow costs, which account for
ecological effects, made up about 15% of the total LCC for some demonstrators and about
5% for others. These shadow costs were considered to evaluate the economic viability
from an ecological perspective. Despite these findings, the results can vary greatly due
to limitations in the assessment, particularly due to the lack of data. The demonstrators
also have greater uncertainties in costs due to missing information on labor and tooling
expenses. A more detailed economic analysis is necessary before commercializing these
technologies or implementing them into other car components.

Eco-design
One of the key contributions of this project was the integration of eco-design principles

into the design process of the demonstrators. To achieve this, a new toolkit, iEDGE
(integrated Eco-Design Guideline and Evaluator) [31], was developed to assist designers
in their assessments. iEDGE is designed to incorporate eco-design and circular-economy
principles into the early stages of product design. Before starting the life cycle-assessment
activities, the project partners set eco-design objectives for each component using the
iEDGE toolkit. This toolkit was instrumental in defining requirements and key performance
indicators (KPIs) across four critical areas: environmental, economic, technical, and social.
Unlike traditional approaches that focus solely on improving environmental and social
impacts, the iEDGE toolkit provides a comprehensive framework for identifying design
improvements by considering all four main aspects of product design: environmental,
economic, technical, and social. The toolkit is based on established methods and tools
developed by universities and researchers specializing in eco-design, offering a balanced
approach to achieving the project’s goals. While it is challenging to measure the exact
impact of the eco-design method on the final design and product circularity, comparing
LCA results against the design objectives set by iEDGE provides some insights. The results
indicate that the iEDGE toolkit effectively guided the design of the four demonstrators
by highlighting key areas for environmental improvement. The areas identified by the
toolkit were also the ones that showed the most improvement according to the LCA results.
However, the project environment, while ideal for developing and testing the toolkit,
may not have been perfect for its practical implementation. The toolkit was created in
collaboration with the partners, incorporating their insights and needs. Yet, since the
solutions were largely predetermined from the start of the project, it is unclear whether
the toolkit had a significant effect on the outcome or if these outcomes would have been
achieved regardless. To fully measure the toolkit’s effectiveness, it should be used in a
new design project from the very beginning of its development process. This would allow
for a more accurate assessment of the toolkit’s impact on the design and environmental
performance of the products.

Data accessibility
Data accessibility posed a significant challenge in this study, particularly for the

detailed modeling of EV components. To address this, a data-collection strategy (see
Section 2.5.3) and sensitivity analyses were conducted to assess the robustness of our
results under different scenarios. For example, the lifespan of the vehicle and the electricity
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grid mix for charging were addressed to evaluate how these changes might influence the
overall environmental impact. While these strategies help to mitigate uncertainties, they
also highlight the need for more comprehensive data collection in future research to further
refine the conclusions drawn from this study.

5. Conclusions

All demonstrators achieved the goal of reducing component weight by 20% to 40%.
However, the environmental assessment results showed significant variation, with emis-
sions changes ranging from an increase for the suspension control arms to a 65.5% decrease
for the battery module. Careful conclusions can be drawn from these results regarding the
applied technologies:

Efficient use of materials
The hybrid solutions and bonding technologies used in the battery box demonstrated

significant potential, achieving a total emission reduction of 28.7%. By strategically placing
a small amount of carbon fiber in crucial parts of the battery box, the redesign reduced
the need for a significant amount of high-polluting aluminum. In contrast, the suspension
control arm showed an increase in emissions, suggesting that CFRPs are more effective
when used to replace high-polluting materials like aluminum rather than relatively low-
polluting materials like steel.

Recycled material use
Both the suspension control arm and the cross-car beam were initially made mostly

of steel for the benchmark and were fully replaced with CFRPs for the demonstrator. The
primary differences between them were the manufacturing technologies (RTM vs. injection
molding) and the use of virgin versus recycled carbon fibers. The cross-car beam showed a
better relative performance compared to the suspension control arm. This indicates that
using recycled carbon fibers is more effective for replacing materials like steel, which have
relatively low pollution levels.

Expected use of EV
According to this LCA model’s assumptions, the solutions applied to the suspension

control arm do not show a positive environmental performance compared to the bench-
mark. However, extending the lifespan of the demonstrator to over 328,800 km reduces
its total climate change impact below that of the benchmark. Additionally, the type of
electricity grid mix used for charging the EV significantly influences the climate-change
impact. For instance, coal-reliant grids like China’s show better a relative performance
for the demonstrator. Therefore, the technologies implemented for the demonstrator are
not necessarily worse than the benchmark; their performance depends on the specific
circumstances and expected use of the EVs.

Recycling method
The sensitivity analysis revealed that no single recycling method is universally bet-

ter than the others. The best method depends on the specific technologies used for the
demonstrators. Notably, when the recycled material itself does not require much energy
to produce, energy-intensive end-of-life processes with high-quality recycled materials
(such as chemical recycling and pyrolysis) are not necessarily preferred over processes
with low energy requirements and higher degradation, such as mechanical recycling or
even incineration.
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Abstract: Rapid advancements in lithium-ion battery (LIB) technology have paved the way for the
electrification of diverse applications, with continuous improvements in performance, substantial
cost reductions, and the emergence of new manufacturers, formats, and cell chemistries. However,
this diversity poses challenges in identifying the most suitable battery cells for specific applications.
Here, we present a high-level techno-economic framework for cell selection, leveraging an extensive
database of over 500 real-world cells, techno-economic analyses of emerging applications, and a
Python-based modeling approach. We apply this method to three electrifiable mobile applications
with distinct characteristics: battery electric cars, industrial forklifts, and regional passenger trains.
Our results emphasize substantial variations in technical requirements, from power capability to
energy density or longevity. We observe no particular differentiation according to cell formats, but
tendencies for most suitable chemistries per application. No cell is suitable for all applications,
particularly regarding the required maximum cell costs to ensure profitability, ranging from a few to
several hundred Euros per kWh to achieve cost parity with a state-of-the-art reference technology.
These findings highlight the importance of tailored cell selection strategies for decision makers to
optimize performance and cost-effectiveness across different applications.

Keywords: battery cell selection; battery electric vehicle (BEV); techno-economic assessment; cost
modeling; passenger trains; forklifts

1. Introduction

Batteries are central to reducing greenhouse gas (GHG) emissions in various sectors.
Accordingly, the global demand for lithium-ion batteries (LIBs) has substantially increased
and reached an estimated 1000 GWh market in 2023 [1], with annual growth rates of ap-
proximately 30–40% and projections for 2030 approaching over 4–6 TWh [1,2]. Herein, the
electrification of passenger cars (i.e., battery electric vehicles (BEVs) and plug-in hybrid ve-
hicles (PHEVs)) is widely recognized as the key driver and enabler of future developments
worldwide, while stationary storage systems from home to industrial scales are gaining
momentum. The resulting battery innovations, such as rapidly decreasing production costs,
increasing energy densities, longer lifetimes, and improved fast-charging capability, already
allow for the technically feasible and economically viable electrification of an increasing
number of mobile and stationary applications [1,3,4].

Increasing electrification also entails increasing complexity, specialization, and hetero-
geneity, since each application has specific requirements and particularities that must be
considered when selecting battery cells and designing battery systems. On the one hand,
cell suppliers are aiming to find new applications for their battery portfolio, but can barely
keep track of all the applications and their specifics. On the other hand, manufacturers and
cell integrators for various applications are searching for the most suitable batteries among
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many choices; however, they can barely keep track of all the available LIB cells and their
characteristics. In the future, a wide choice of alternative battery technologies could further
increase the variety of cell chemistries and formats [5].

This paper builds on an approach presented at the EVS36 Symposium 2023 [6]. It
proposes a techno-economic framework that enables high-level yet tailored cell selection for
different applications. This approach relies on a Python-based model in which cell-specific
cost-parity prices (CPP) can be determined for different applications. The cost-parity price
of a battery cell is defined as the maximum cell price to achieve cost parity with an existing
reference technology [7]. A battery cell with a cost-parity price that exceeds its actual price
offers the potential for significant economic benefit through its implementation [6]. These
results can be compared to those of an alternative, e.g., combustion-based applications [7].
The main benefit of this approach is that the same cell can be examined for its suitability in
several applications very easily, instead of studying applications isolated and independently.
Plus, it allows for more tailored and specific cell selection rather than universal selection
methods, such as the well-known Ragone plot [8] or the ENPOLITE tool [9].

This paper is structured as follows. Section 2 introduces our three selected applications
and identifies the current research gap. Section 3 starts with presenting the methodology in
general and then examines the particularities per application and ecological considerations.
Section 4 presents the results, while Section 5 complements the discussion. Section 6 closes
with summarizing the results, and provides key implications and recommendations.

2. Background and Research Gap

In the literature, the costs of internal combustion engine vehicles (ICEV) and battery-
electric vehicles (BEV) are typically compared and evaluated using lifetime analysis ap-
proaches, i.e., total cost of ownership (TCO) or Life Cycle Costing (LCC). Recent TCO
calculation discussions for BEVs are shown in [10–12], for instance. As a standard, the
result is a monetary price (TCO) or CO2 footprint (LCA) per kilometer driven. The TCO
results vary depending on the type of application being compared and the assumptions
made, for example, regarding driving cycles [13] or cost estimations with high influence
and sensitivity of battery costs in BEVs [14,15]. Generic price projections are often used
for the battery costs on cell or pack level [10]. Moreover [7], for long-haul trucks, there
is currently no study in place to determine which cells at what price can support a (cost)
parity with a reference application in comparison with the battery-electric alternative (i.e.,
ICEV with BEV) while incorporating the technical suitability. With this paper, we intend to
fill this gap by presenting a method to determine the cost parity for three selected mobile
applications. The applications of battery-electric vehicles, trains, and forklifts were selected
to represent the highly diverse requirements for the battery in mobile applications, while
keeping the complexity within reasonable limits.

The electrification of passenger cars through battery-electric vehicles is very likely a
no-regret policy to decarbonize individual transport [16], with a promising outlook due
to continued advancements in technology, supportive policies, and increasing consumer
acceptance. However, challenges remain for single-battery technologies, necessitating
tradeoffs regarding battery performance, life, cost, and safety [17], as well as advanced
system integration [17,18]. To reach competitiveness with ICEV, the EUCAR stats cell-
level target costs of 70 EUR/kWh by 2030 [19], while the BATT4EU Strategic Research
and Innovation Agenda sets 75 to 100 EUR/kWh as pack-level target costs for mobility
applications by 2030 [20]. BNEF [21] found that volume-weighted average prices in 2023
were 89 USD/kWh (cell-level) and 128 USD/kWh (pack-level).

To decarbonize rail transport, diesel multiple units are being replaced with battery
electric multiple units (BEMUs). Modern BEMUs use combined battery–catenary power,
drawing energy from overhead catenary or lithium-ion batteries if no overhead catenary
is available. They charge while under catenary, or at stops and during braking, mak-
ing them efficient on routes with mixed electrification, particularly with non-electrified
sections below 100 km [22]. Battery requirements are high, balancing energy density to
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maximize passenger capacity, power density for fast recharging, safety characteristics,
and long lifetime, making lithium-iron-phosphate (LFP) an attractive cell chemistry as
the cathode-active material. However, different manufacturers also rely on lithium-metal
oxides like nickel–mangan–cobalt (NMC) as the cathode material or lithium–titanate (LTO)
as a substitution of the commonly used anode material graphite [23,24].

For industrial applications and logistics, the economic comparison of forklift trucks
over its lifecycle is key in the consideration for decision-makers [25]. In the past, the method-
ological focus was on comparing battery-powered and fuel-cell-powered forklift trucks
from a technical point of view [26,27], in an economic or ecological utilization compari-
son [26,28–30], on impacts from the technology selection of the warehouse economics [31]
and handling activities [32], or a combination of such different aspects [33]. Furthermore,
different battery technologies are employed for the evaluation and comparison of forklift
trucks. This entails a techno-economic comparison of the LIB with a conventional lead-acid
battery (LAB) [31,34,35], life-cycle costing [36], as well as analyzing the utilization of LIBs
in a second life use-case [37]. For several years, there has been a notable increase in the
proportion of LIBs in the product portfolios of original equipment manufacturers (OEMs)
of industrial applications and forklift trucks.

A review of the recent techno-economic analyses reveals a notable absence of consid-
eration given to the large range of battery cells available. There is a paucity of analyses that
take into account not only LIBs with defined cost and performance indicators, but also the
broad array of (real-world) battery cell data based on their individual product specifications
to make an economical best-fit technology selection for individual applications. At the
same time, the total cost of ownership (TCO) metric is commonly used as an indicator for
the cost-competitiveness of a technology [10,11,13–15,34,36,38], but cannot clearly answer
the question of the price threshold at which a single cell becomes economically viable in
battery-electric applications. It is our intention to address this gap by proposing a novel
methodology for cell selection based on cost-parity pricing. In addition to the analysis in [6],
this paper also presents a cross-application comparison of the results in three different
mobile applications, and further supplements the CPP analysis with a calculated CO2
footprint for each cell in the aforementioned applications.

3. Methodology
3.1. General

Our systematic approach involves three steps, as shown in Figure 1: energy simulation,
battery sizing, and cost calculation.

First, we define the input data used in our energy simulation. This comprises the
technical specifications of the respective product (e.g., passenger car, train, or forklift),
synthetic and real-world load profiles (e.g., time-based standard speed profiles such as
the WLTP driving cycle for cars or processed distance-based speed profiles from real
driving conditions for trains), and other application-specific requirements that may affect
energy consumption. Technical product specifications depend on the application and may
involve information such as weight, rated power, or number of passengers. Given these
input values, the energy simulation determines the respective energy consumption for an
electrified product version. The input data are derived from public information based on
desk research and assumptions based on expert consultations with various stakeholders in
the car, train, or forklift truck industry, e.g., application manufacturers and operators.

Second, over 500 battery cells and their specific technical capabilities are fed into the
battery sizing algorithm, which determines the required number of cells and the final battery
system’s capacity to fulfill all of the requirements and load profiles. The sizing algorithm
from cell to pack level was implemented in accordance with [7]. Technical capabilities
include, among others, battery chemistry, cell format, volumetric and gravimetric energy
density, and C rates for charging and discharging. The cell database is generated based on
publicly available data sheet information, and is available for download [39].
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Third, the total cost of ownership (TCO) or levelized cost of energy (LCOE) are
calculated based on the chosen battery capacity and simulated energy needs. These results
are then compared to the TCO/LCOE of the next best alternative (e.g., gasoline cars).
From a first-user perspective, cost calculations cover all relevant capital expenditures
(CAPEX) and operational expenditures (OPEX). The cost-parity price for the battery system,
including eventual replacements and battery scrappage, is then obtained using the TCO
delta between the battery version and the respective alternative. The cost-parity price per
cell is calculated based on the number of cells, including potential replacements. If the cost
parity was negative, this battery cell would not be suitable for this application. A positive
cost-parity price indicates that at this cost, given the specifications stated in the database
and the assumed use-case conditions and load profiles, this cell would perform as well
as the corresponding alternative. Thus, the cost-parity price indicates a techno-economic
upper price limit. If the cell was available at a lower price, there would be an advantage for
the user and thus an incentive to buy, making these battery cells more attractive.
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Figure 1. Schematic structure of the cost-parity model.

While the general methodology is described in Figure 1, the detailed procedure for each
application is quite different and is described below. However, there are some similarities
between the applications in the calculations. For instance, the battery size is mainly affected
by weight and energy consumption for most mobile applications. Table 1 shows the main
sources that are used for our calculations for the different steps in the cost-parity model.
The calculations were carried out in accordance with [7] and with the relevant data for each
application. For instance, the energy consumption during operation differs greatly, the
battery capacity required for a driving profile taking into account the available installation
space is highly application-individual, and costs like taxes for BEVs or worktime in logistics
for forklift operation are added or even eliminated compared to the reference application.
As generalized use-cases are required for this analysis, the limited data availability on
typical driving scenarios and use-cases had to be filled by assumptions based on various
studies and expert consultancy, as discussed in the following subchapters.

The methodology is applied to the three distinct mobility applications with different
requirements to determine whether there are cells that are suitable for all the applications
under consideration or whether different cells should be selected for these specific applica-
tions. This allows for an economic selection on the basis of the cost-parity price, taking into
account the technical suitability of an LIB’s cell chemistry and format.
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Table 1. Main sources and model input data for own calculations in accordance with [7], adapted for
each application use case.

Main Sources for Each Application Type
Passenger Car Train Forklift

I Energy simulation [40] [24,41,42] [27,43]
II Battery sizing algorithm [39,40,44] [39,44] [34,39,44]
III Cost model [15,45,46] [24] [31,34]

3.2. Particularities for Passenger Cars

The passenger car model is built on the WLTP driving cycle as a global standard for
measuring energy consumption, pollutant levels, CO2 emissions, or the all-electric nature
of fully electric cars. This driving cycle specifies a target speed over time, road gradients,
and duration of stops along the route, covering urban, rural, and highway operations.

The vehicle simulation uses a quasi-static longitudinal dynamics model to determine
the energy consumption and average speed for a range of vehicle masses based on the
vehicle parameters and the WLTP driving cycle. The VW ID.3 is the reference vehicle,
leading to 408 km as the target range. Given this target range and the mass-dependent
energy consumption, the battery sizing algorithm determines the required battery size
based on the cell-specific properties defined in the cell database. The cost model uses the
VW Golf VIII to determine cost-parity prices.

3.3. Particularities for Passenger Trains

The passenger train model mimics a route-specific application and train configuration,
since no standard case exists. Thus, we reference the commuting service from Nuremberg
to Hof and vice versa, which is not yet electrified and also represents a typical route
that would be suitable for battery operation (in terms of length, topography, and traffic
frequency). This covers the full operation schedule such as four stops, idle times (1 min
each), and station waiting times for turning around (20 min); route characteristics, such as
section distances, speeds (max. 160 km/h), gradients, and maximum permissible weights
(22.5 tonnes); and other characteristics, such as the number of daily runs (3), operating days
per year (320), and the existence of overhead lines. The total distance is 167 km, which
equals 95–105 min, while the middle section of approximately 90 km is not electrified.

Similar to cars, the vehicle simulation determines the energy consumption for a range
of vehicle masses for this route using a quasi-static longitudinal dynamics model. A three-
unit train with 115 tonnes of curb weight, an overall length of 70 m, a capacity for 410 people
(220 seated and 190 standing), 1000 kW constant power, and 2600 kW peak serves as a
reference. The combined installation volume (i.e., subfloor and rooftop) equals 7500 L
as a reasonable installation space volume. Given the non-electrified middle section, the
initial and final sections for charging via the overhead line, and the mass-dependent energy
consumption, the battery sizing algorithm determines the required battery size based on
the cell-specific properties defined in the cell database. Additionally, battery sizing covers
the restriction that potential battery replacements must occur within the revision cycles
of the train (every 8 years) to avoid unplanned downtime. Finally, the cost model uses an
equivalent diesel train to determine cost-parity prices.

3.4. Particularities for Forklifts

The maximum load capacity of forklift trucks plays a decisive role in their utilization
and energy consumption. In a preliminary step, we evaluated 30 publicly available VDI
Guideline 2198 [43] type sheets from LAB counterbalanced forklift trucks and found an
energy consumption of 4 to 10 kWh per hour for class 1 trucks [33] with 1 to 3 tonnes in
maximum lift load. This value is not specifically tailored to real use-cases, as the guideline
is primarily aimed at comparing the energy consumption of different vehicles, but it shows
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a linear increase in energy consumption when the lift load increases. We have therefore
recreated a use-case from a study with original vehicle data [27].

Firstly, we defined a concrete use-case for class 1 forklifts trucks. As the driving cycles
vary strongly from use-case to use-case and battery sizes are not tailored to specific driving
cycles, a hypothetic cycle was defined. It involves realistic stand-by times, characteristics,
energy consumption within a single shift, and a 15 shift week, 3 shifts per working day,
respectively. Instead of mimicking an actual driving cycle, it was defined to cover various
aspects of characteristic forklift driving cycles simultaneously. The basis of battery dimen-
sioning is the characteristic energy consumption in terms of the timeframe of operation
and possible downtime periods needed to charge the forklift battery. Considering the cell
properties, the required battery size is determined, as well as the resulting battery volume
and lifetime with respect to the forklift lifetime and battery installation space. Forklifts
are one of the few rare cases where the gravimetric energy density of the battery is not
only irrelevant, but rather is inverse to other mobile applications. As the battery is used
as a counterweight, a large battery mass is desired. The cost of additional counterweight
for low-weight battery systems were also implemented in the model. Compared to other
mobile applications, the cost-parity comparison of an LIB electric forklift truck is compared
to that of a status quo lead-acid (LAB) electric forklift truck with a maximum load capacity
of 2 tonnes. As LABs require regular battery swapping in these use-cases, whereas LIBs can
be easily charged in stand-by times, the model was extended by additionally including a
measure for the economic benefit of the working time saved, in accordance with the finding
of [31].

3.5. Ecological Considerations

The life cycle assessment (LCA) of batteries and mobile applications is an essential
tool for the analysis and comparison of technologies in terms of greenhouse gas (GHG)
emissions and the individual carbon footprint. One of the most discussed use cases for LCA
approaches in recent times is that of the lithium-ion battery [47] in electric vehicles [48–51],
for instance, with cradle-to-gate results ranging from 12 to 313 kg CO2eq per kWh of battery
capacity [51]. One limitation of the LCA approach is that, for the purpose of comparing
battery-electric applications with other technologies, it is necessary to include differing
components and to consider all parts of the application in a whole life cycle assessment
LCA [49].

In favor of our systemic view on different applications, real-world cell datasheets, and
cost-parity comparisons, we state the carbon footprint of the batteries for the considered
applications. This encompasses, i.e., how often a cell has to be replaced or if it has reached
its calendric or cycling end of life. We compare this impact to the cost-parity price or
technical characteristics. Our environmental assessment includes only battery-related GHG
emissions depending on (1) cell materials, (2) production, and (3) formation (cf. Figure 2).
We disregard other GHG emissions, comparisons to the next best alternative, or potential
credits from recycling and reuse. The carbon footprint (in kg CO2eq per kWh) for each
individual cell is calculated as a function of cell chemistry, cell format, specific energy (in
Wh/kg) or cell weight (in kg), and capacity (in Ah).

Finally, the overall CO2 footprint at the application level (in kg CO2eq) is calculated as
a function of battery size (in kWh) and possible battery replacements in accordance with
the lifetime determined in each cell data sheet.
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4. Results
4.1. Energy Consumption and Battery Dimensioning

The energy consumption of a passenger car (apart from its use) depends particularly
on its vehicle weight. A vehicle simulation was carried out for different vehicle weights
to determine the influence of weight on consumption. The energy consumption ranges
from 0.133 kWh/km with a vehicle weight of 1435 kg to 0.197 kWh/km with a weight
of 3000 kg. As the vehicle weight increases, the energy consumption increases due to the
increased rolling and acceleration resistance. A consumption of 0.149 kWh/km for the BEV
was calculated with a battery size of 64.3 kWh, which fits well with measured real-world
data for this kind of vehicle [40]. The consumption of the reference vehicle, Golf VIII, is
approximately 5.6 L per 100 km [52].

The energy consumption of a passenger train at 25 ◦C is approximately 4.6–5.3 kWh/km,
depending on the train mass and direction of travel. Recent studies and industry values
indicate a range from 3 to 4 kWh/km in standard operations to 5–6.5 kWh/km in de-
manding operations, including all auxiliary consumers and heating in winter [24,41,42],
indicating the good representativeness of our simulation model. In contrast, the simulated
energy consumption of the diesel train is between 9.5 and 10.1 kWh/km, which equals
approximately one liter per kilometer. The calculated gross battery capacity is typically
approximately 800 kWh and 4500–11,700 kg. The median was 8200 kg, while the lower
quartile was 6000 kg and the upper quartile was 9800 kg.

The energy consumption of a forklift truck depends on the maximum load capacity
of a counterbalance forklift truck. As the maximum load capacity increases, the energy
consumption increases partly due to the higher lifting load and the total weight of the
forklift truck. A characteristic energy consumption of 3 kWh/h was derived from [27,53]
for the battery dimensioning. The battery is dimensioned so that the LIB forklift truck can
fulfill the same operating conditions as an LAB forklift truck. Considering a shift with 8 h of
working time, the operative usage time of the forklift truck in a warehouse was estimated to
be a maximum of 5 h [27]. Our model assumed that half of the remaining 3 h are available
for charging, as usually charging stations have to be shared among the different forklifts
of the fleet. While specific time losses (e.g., driving to a charging station, connecting the
charging wire) were subtracted, only a time of 90 min per shift was considered to be used
for charging. The required battery capacity is thus dependent on the charging rate of the cell
and the available charging power. As the volumetric energy density of LIBs is much greater
than that of LABs, the battery volume seems less important for battery dimensioning in
electric forklift trucks. Nevertheless, a space requirement of 341 L was assumed, as derived
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from a commonly used 48 V 6 PzS 540 Ah lead-acid battery, i.e., [54], for 2-tonne forklift
trucks. This serves as an installation space limit for the volumetric dimensioning of the LIB.

4.2. Cost Parity Analysis

For the cost comparison, a BEV similar to the VW ID.3 is compared with a corre-
sponding combustion engine vehicle, the VW Golf VIII. The cost model considers all cost
components of BEVs that differ from those of the VW Golf VIII: powertrain costs, taxes,
maintenance, energy consumption, and battery costs. The first three cost components are
independent of the cell selection. The specific energy of the cell influences the energy
consumption. The costs for the battery depend on the required battery size, cycle stability,
calendar life, and cell price.

The TCO breakdown in Figure 3 shows that the costs for the conventional vehicle
amount to just over EUR 25,000. Assuming an average annual mileage of ~13,600 km in
Germany, a large part of this cost is related to energy costs of approximately EUR 9700 as
well as maintenance costs (EUR ~ 7850) and powertrain costs (EUR ~ 6900). Considering
the tax advantage for BEVs, there is a remaining budget of almost EUR 15,000 for the
battery layout to reach cost parity with the ICV. Above all, the maintenance and energy
costs are significantly lower for BEVs.
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For trains, the cost model compares the battery-electric version to its diesel equivalent
over 30 years of service life (cf. Figure 4). Cost factors include powertrain (incl. chassis),
maintenance, energy costs, and battery costs. Lower powertrain costs result from the cost
advantages of electric versus diesel powertrains and are independent of cell selection. In
contrast, energy consumption is influenced by the battery weight and thus depends on the
cell selection. Battery costs depend on the calculated battery size, cycle stability, calendar
life, and cell price. Finally, the cell-specific cost-parity price is calculated so that the total
costs for the diesel equivalent version are matched by considering the total number of
required cells.
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For forklifts, the cost parity analysis takes into account the cost components of a
battery-electric counterbalance forklift that change when comparing a lithium battery (LIB)
to a lead-acid battery (LAB) forklift truck: battery maintenance, energy efficiency, labor time
losses, (additional) counterweight, and the cost of the battery itself, as shown in Figure 5.
The LAB’s cost includes three battery replacements of the LAB and the initial purchase price.
This corresponds to the assumed lifetime of the LAB of 6000 operating hours compared to
the expected lifetime of 20,000 operating hours for an electric forklift [27]. The LIB’s cost is
determined by the required battery size (influenced by the charging power), cycle stability,
calendar life, and cell price.
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Since no specific maintenance is required for LIBs compared to the maintenance of
lead-acid batteries after every 1000 operating hours [27], cost benefits can be expected.
Additional maintenance costs for the forklift itself (e.g., tire repair) were neglected, as
this similarly affects both LIB and LAB forklifts [34]. The energy consumption during
operation is considered equivalent for both technologies, but is influenced by the round-
trip efficiency of each battery technology. The LIB technology eliminates the monetized
loss of working time due to the necessary swapping of lead-acid batteries in three-shift
operations. LIB forklifts need a counterweight for safe load handling because of the higher
gravimetric energy density of LIBs, which is usually not needed for LABs. The costs of
the counterweight are simplified, as the additional pure steel weight is multiplied by the
weight difference that results from comparing the LAB and LIB.

4.3. Cost Parity and Technical Considerations

The following section shows exemplary cost-parity assessment results for passenger
cars, trains, and forklifts. Although the weight of a battery system usually determines the
additional energy demand, the available space for the battery is typically more limiting.
Therefore, the plots show the cost-parity prices in EUR/kWh versus the required battery
system volume in Figures 6–8. A dashed line indicates the available space from the reference
case to facilitate comparison. Shapes and colors mark different cell formats and chemistries.
For interpretation, the typical target direction to optimize is toward the top left quadrant,
which signifies a high cost-parity price (indicating that the cell may be expensive due
to its superior performance) while simultaneously requiring as little installation space
as possible.

Figure 6 shows the results for the passenger car, considering all of the cells listed in the
cell database. The battery volume of the VW ID.3 is plotted as a reference (dashed orange
line). Different cell chemistries and cell formats are marked in color and with different
markers. The differentiation of the cell chemistries could only be undertaken based on the
nominal voltage of the cells, as further details are not included in the datasheet. In addition,
the VW ID.3 cell is highlighted to indicate the status quo of the cells used in passenger cars.
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The results show that LFP and LTO cells have the highest cost-parity due to their long 
battery life. However, these cells also require significantly more installation space. Very 
few cells require less installation space than the cell installed in the VW ID.3. Cost parity 
is reached for the VW ID.3 cell at approximately 60 EUR/kWh. This result is consistent 
with the higher prices for battery electric vehicles than for vehicles with combustion en-
gines. 

Figure 7 shows the final cost-parity-based cell assessment results for passenger trains. 
The black line indicates a reference volume of 7500 L. LTO cells have the highest cost par-
ity due to their long lifetime and high C-rate, resulting in up to 900 EUR/kWh. LFP cells 
reach up to 680 EUR/kWh. In contrast, Ni-rich cells dominate the results, but only reach 
around 150–500 EUR/kWh. The available installation space is sufficient for many cells, 
indicating high practical feasibility. Assuming a cost parity price of 500 EUR/kWh for a 
battery size of approximately 800 kWh, the calculated acquisition costs would be approx-
imately EUR 5.8 million, which is close to that reported in the other literature [24,41,42], 
which is approximately EUR 6.0–6.5 million. 

Figure 6. Results of the cost parity-based cell assessment for passenger cars. X-axis: required battery
volume in liters. Y-axis: cost-parity price in EUR/kWh. Cell formats are represented by different
shapes: pouch (diamond), cylindrical (circle), and prismatic hard-case (square). Cell chemistries are
color-coded: Ni-rich cells (i.e., NMC and NCA) are in blue, LTO cells are in red, and LFP cells are
in gray.
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parity. Some LFP and most LTO cells with lower energy densities are partly unsuitable 
for modeling, as a system-side fit is not always given concerning the available installation 
space. Thus, the battery cannot be sufficiently dimensioned with these cells to meet the 
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The results show that LFP and LTO cells have the highest cost-parity due to their long
battery life. However, these cells also require significantly more installation space. Very
few cells require less installation space than the cell installed in the VW ID.3. Cost parity is
reached for the VW ID.3 cell at approximately 60 EUR/kWh. This result is consistent with
the higher prices for battery electric vehicles than for vehicles with combustion engines.

Figure 7 shows the final cost-parity-based cell assessment results for passenger trains.
The black line indicates a reference volume of 7500 L. LTO cells have the highest cost parity
due to their long lifetime and high C-rate, resulting in up to 900 EUR/kWh. LFP cells reach
up to 680 EUR/kWh. In contrast, Ni-rich cells dominate the results, but only reach around
150–500 EUR/kWh. The available installation space is sufficient for many cells, indicating
high practical feasibility. Assuming a cost parity price of 500 EUR/kWh for a battery
size of approximately 800 kWh, the calculated acquisition costs would be approximately
EUR 5.8 million, which is close to that reported in the other literature [24,41,42], which is
approximately EUR 6.0–6.5 million.

Figure 8 shows the results of the cost-parity-based cell assessment for forklifts. The
dashed purple line indicates the available installation volume of 341 L. The relative differ-
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ences in the required installation space concerning the volumetric battery size are signifi-
cantly greater. Only cells with medium to high energy densities can be accommodated in
the installation space available for the battery. The suitable cells achieve cost-parity prices
of less than 100 EUR/kWh for NMC cells and even 700 EUR/kWh for an LTO pouch cell.
LFP cells are in the range of 200–600 EUR/kWh. This means that a broad range of LIB
cells can achieve cost parity for forklift trucks in warehouse operation if these cells can be
sourced at that price.
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Figure 8. Results of the cost-parity-based cell assessment for forklifts. X-axis: required battery
volume in liters. Y-axis: cost-parity price in EUR/kWh. Cell formats are represented by different
shapes: pouch (diamond), cylindrical (circle), and prismatic hard-case (square). Cell chemistries are
color-coded: Ni-rich cells (i.e., NMC and NCA) are in blue, LTO cells are in red, and LFP cells are
in gray.

We found that LFP cells can be more expensive than NMC cells for achieving cost-
parity. Some LFP and most LTO cells with lower energy densities are partly unsuitable
for modeling, as a system-side fit is not always given concerning the available installation
space. Thus, the battery cannot be sufficiently dimensioned with these cells to meet the
needed capacity of 20 kWh. Although the methodology was only applied to a specific fork-
lift application, it confirms the market’s tendency to use LFPs instead of NMCs in industrial
applications [55]. Since LFP cells and packs are already available on the market at a price of
less than 150 EUR/kWh [21], using these cells for forklift applications may be more econom-
ically advantageous than using LABs. This result is also in accordance with recent studies
on the economic competitiveness of LIB and LAB forklift trucks, which demonstrates that
LIB generally offers economic benefits during the utilization phase [31,34].

4.4. Cost Parity and Ecological Considerations

Figure 9 shows the application-specific differences for cost-parity prices versus eco-
logical footprint (CO2eq). The actual battery size and the number of required batteries (i.e.,
battery replacements) strongly affect the results. The latter is affected by both calendar
aging and the limited cycle life. We accumulate the total carbon footprint for each applica-
tion to address the application-specific performance indicators, for instance, the size of the
battery or accounting the entire application lifetime. For BEVs and forklifts, the impact is
quite similar, from up to a few tonnes to approx. 50 tonnes CO2eq absolute, whereas the
operating lifetime and the required size of the battery in trains greatly multiplies its impact.

29



World Electr. Veh. J. 2024, 15, 401

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 12 of 18 
 

recent studies on the economic competitiveness of LIB and LAB forklift trucks, which 
demonstrates that LIB generally offers economic benefits during the utilization phase 
[31,34]. 

4.4. Cost Parity and Ecological Considerations 
Figure 9 shows the application-specific differences for cost-parity prices versus eco-

logical footprint (CO2eq). The actual battery size and the number of required batteries (i.e., 
battery replacements) strongly affect the results. The latter is affected by both calendar 
aging and the limited cycle life. We accumulate the total carbon footprint for each appli-
cation to address the application-specific performance indicators, for instance, the size of 
the battery or accounting the entire application lifetime. For BEVs and forklifts, the impact 
is quite similar, from up to a few tonnes to approx. 50 tonnes CO2eq absolute, whereas the 
operating lifetime and the required size of the battery in trains greatly multiplies its im-
pact. 

We highlight the high spread in CO2eq for Ni-rich cells (NMC and NCA) due to the 
large heterogeneity in their technical performance. However, Ni-rich cells can reach good 
trade-offs between high cost-parity and low CO2 footprint. Ni-rich cells and LFP represent 
the best economic-ecologic trade-off for cars, reaching approximately 80–100 EUR/kWh 
and 4.3–5.6 tCO2eq, respectively. In contrast, LTO cells swing at approximately 40–80 
EUR/kWh and over 18 tCO2eq. LFP and LTO cells become favorable over longer time win-
dows for trains and forklifts since fewer replacements are needed. 

Ca
rs

 

 

Tr
ai

ns
 

 

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 13 of 18 
 

Fo
rk

lif
ts 

 

Figure 9. Comparison of cost-parity versus CO2 impact on battery production. Upper: cars; middle: 
trains; lower: forklifts. X-Axis: CO2 footprint in tonnes of CO2eq. Y-Axis: cost-parity price in 
EUR/kWh. Cell formats are represented by different shapes: pouch (diamond), cylindrical (circle), 
and prismatic hard-case (square). Cell chemistries are color-coded: Ni-rich cells (i.e., NMC and 
NCA) are in blue, LTO cells are in red, and LFP cells are in gray. 

4.5. Cross-Application Comparison for Selected Cells 
Figure 10 compares cell-specific cost-parity prices (CPP), highlighting that the same 

cell might require cost-parity prices ranging from a few to several hundred Euros for dif-
ferent applications. It should be noted that only those cells are plotted that do not exceed 
the volumetric limitation of the application, especially for trains and forklifts (for further 
details, please refer to Section 4.3). It becomes obvious that the CPP of trains and forklifts 
are consistently observed to be in close proximity to one another. The CPP of the LTO cells 
for trains is slightly higher than that for forklifts. In the case of NMC and LFP cells, there 
is minimal differentiation in the application comparison. However, when comparing cars 
and trains, the pronounced economic constraints on cell prices for battery-electric passen-
ger cars is noteworthy. This aligns with the postulated significance of battery costs for EV 
market diffusion [19,20] and simultaneously demonstrates that trains and forklifts can 
achieve cost parity with current reference applications, even with elevated LIB cell costs 
[34]. 

 
Figure 10. Left and middle: comparison of cell-specific cost-parity (CP) prices for forklifts and cars 
(x-axis) versus trains (y-axis). Cell formats are represented by different shapes: pouch (diamond), 
cylindrical (circle), and prismatic hard-case (square). Cell chemistries are color-coded: Ni-rich cells 
(i.e., NMC and NCA) are in blue, LTO cells are in red, and LFP cells are in gray. Right: cell-specific 
cost-parity price ratios for forklifts/cars versus trains. 

Figure 9. Comparison of cost-parity versus CO2 impact on battery production. Upper: cars; middle:
trains; lower: forklifts. X-Axis: CO2 footprint in tonnes of CO2eq. Y-Axis: cost-parity price in
EUR/kWh. Cell formats are represented by different shapes: pouch (diamond), cylindrical (circle),
and prismatic hard-case (square). Cell chemistries are color-coded: Ni-rich cells (i.e., NMC and NCA)
are in blue, LTO cells are in red, and LFP cells are in gray.

We highlight the high spread in CO2eq for Ni-rich cells (NMC and NCA) due to the
large heterogeneity in their technical performance. However, Ni-rich cells can reach good
trade-offs between high cost-parity and low CO2 footprint. Ni-rich cells and LFP represent
the best economic-ecologic trade-off for cars, reaching approximately 80–100 EUR/kWh and
4.3–5.6 tCO2eq, respectively. In contrast, LTO cells swing at approximately 40–80 EUR/kWh
and over 18 tCO2eq. LFP and LTO cells become favorable over longer time windows for
trains and forklifts since fewer replacements are needed.

4.5. Cross-Application Comparison for Selected Cells

Figure 10 compares cell-specific cost-parity prices (CPP), highlighting that the same
cell might require cost-parity prices ranging from a few to several hundred Euros for
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different applications. It should be noted that only those cells are plotted that do not exceed
the volumetric limitation of the application, especially for trains and forklifts (for further
details, please refer to Section 4.3). It becomes obvious that the CPP of trains and forklifts
are consistently observed to be in close proximity to one another. The CPP of the LTO
cells for trains is slightly higher than that for forklifts. In the case of NMC and LFP cells,
there is minimal differentiation in the application comparison. However, when comparing
cars and trains, the pronounced economic constraints on cell prices for battery-electric
passenger cars is noteworthy. This aligns with the postulated significance of battery costs
for EV market diffusion [19,20] and simultaneously demonstrates that trains and forklifts
can achieve cost parity with current reference applications, even with elevated LIB cell
costs [34].
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A comparative analysis between forklifts and trains reveals similar required cost-parity
prices (median: 93%). In contrast, when comparing cars to trains, cell-specific cost-parity
prices must be substantially lower than for trains (median: 22%) to render them attractive
for the automotive sector. However, we observe no particular differentiation according to
cell chemistry or format.

5. Discussion

We extend the TCO to include the technical aspects of the application with the techni-
cal aspects of each individual LIB cell. Cell chemistry and formats are crucial due to their
impact on performance, costs, and application suitability. As a result of the comparison,
this not only provides a comparative value for an economic assessment, but also enables
the economic selection of a technology—in this case, the battery cell—based on its technical
suitability for an individual application and usage scenario in a techno-economic assess-
ment approach. This supports cell integrators in their technology management, as well as
providing insights for the further optimization of cell technologies for specific applications.

While our systematic approach involves the same three steps for each application, spe-
cific adaptations are necessary to tailor the procedure to certain particularities; see Section 3.
First, load profiles for cars and forklifts are derived from existing standardized driving
cycles, whereas a custom load profile imitating a specific route is devised for passenger
trains. Second, train and car applications are compared against conventional vehicles with
internal combustion engines as a reference, while a reference vehicle equipped with lead-
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acid batteries is employed for forklifts. Third, vehicle weight is the most influential factor
on energy consumption for trains and cars, whereas this is the maximum lifting capacity
for forklifts. Fourth, cost considerations vary, since CAPEX and OPEX items depend on
the application.

Although we determine the cost-parity price specifically for each application, we note
that there may be countless load profiles and utilization patterns behind each application
instead of just one. We also refer to real-world uncertainties and usage patterns, leading
to different energy requirements, as witnessed with the standard WLTP driving cycle [56].
Thus, future studies may include more differentiation within an application. However,
our approach is effective for application-specific cell selection, aligning with common cost
thresholds and industry trends, such as 100 EUR/kWh as the common threshold for BEV
battery cells [1] or the extinction of LAB-powered forklifts. Our results indicate that the
discussed BEV to ICEV parity from 2026 [15] or 2030 [19,20] onwards could already be met,
especially with today’s cell prices of below 100 EUR/kWh [21], which is significantly lower
than the calculated prices for some suitable cells in the database.

Other limitations involve our battery cell database, assumptions for cost parity, and
the variability of final retail prices. Firstly, our database relies on publicly available battery
cell datasheets, encompassing only a fraction of all available cells. Some cells may already
be outdated, while the latest cell generation is likely underrepresented due to unpublished
data. Additionally, we highlight potential uncertainties when utilizing datasheet informa-
tion. The values presented are mainly obtained from standardized test environments and
conditions, which may not precisely depict real-world cell performance due to variable
ambient conditions and specific charge–discharge load profiles inherent to applications
and embedded use-cases. Secondly, our approach required us to scale cell-level costs
to the system level and vice versa. However, no information was available on battery
chemistry or format dependency, and we used the same scaling for all applications. The
advanced system integration and engineering per application, potentially also cell-format-
and chemistry-specific, is, however, a decisive aspect to enhance battery performance and
lower costs [17,18]. Third, we emphasize that the calculated cost-parity price (i.e., the
maximum allowed cell price) may substantially differ from cell retail prices that are affected
by purchase quantities or supplier contracts.

6. Conclusions and Outlook

In this paper, a methodical approach for a cell assessment based on cost parity was
presented and demonstrated using three different mobile applications: passenger cars,
passenger trains, and forklifts with highly specific characteristics. The developed method-
ology allows for a high-level yet tailored matching of publicly available technical cell data,
application-specific requirements, and use-case conditions to determine the cost parity
price for each specific cell for a certain application. We draw three main conclusions from
our analysis.

First, only a certain number of the considered battery cells are suitable for all applica-
tions. On the one hand, this is mainly related to low energy densities, meaning that the
available installation space could be exceeded. On the other hand, low specific energies
may lead to weight-based limitations. However, suitable cells have been identified for all
of the considered applications.

Second, the calculated cost-parity prices differ greatly for different applications. We
emphasize that costs are the primary criterion in selecting battery cells, but technical aspects
are gaining importance. While prices well below 100 EUR/kWh are required for passenger
cars, prices for trains and forklifts can be substantially higher, reaching up to 950 EUR/kWh
or 750 EUR/kWh, respectively. There are fewer format-specific dependencies, but there
are major differences between the chemistries. Herein, we showcase LTO chemistries with
high lifetimes (cyclic and calendar) but low energy densities versus NMC chemistries with
higher energy densities but usually lower lifetimes.
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Third, ecological considerations during the battery cell selection depend on the
application-specific lifetime (i.e., the number of required batteries) and battery size. The
former is affected by both calendar aging and the limited cycle life, whereby different
formats and chemistries may reach similar levels in long-term applications (i.e., forklifts
and trains). In comparison, LFP and NMC batteries dominate LTO for cars by achieving
substantially lower CO2 footprints. The CO2 footprint is employed solely for the purpose
of relative comparison between the cells. With a view to global CO2 labeling, a CO2 price
could be incorporated into the cost parity price at a subsequent stage. This becomes partic-
ularly pertinent when alternative battery technologies with high sustainability promises
are included in the analysis and assessment alongside different LIB cells.

We highlight that the proposed cell selection methodology is a valuable decision-
support tool for manufacturers/cell integrators and cell suppliers to solve the trade-off
between technical restrictions and economic considerations for specific applications. For
cell suppliers, this approach facilitates comparisons of their cells with others, enabling them
to identify potential new applications or assess the impact of performance enhancements.
For manufacturers and cell integrators, this approach facilitates the comparison of available
cells, enabling them to identify the most suitable cells for their applications. Finally, we
emphasize that our analysis is based on a single underlying usage pattern per application
so that future studies may include more distinctions within an application, which is likely
to cause even greater variation.
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Abstract: This article presents the design and production work carried out jointly by Vitesco Technolo-
gies and the CEA in order to build a Self-Reconfigurable Battery (SRB) demonstrator representative
of an electric vehicle traction battery pack. The literature demonstrates that the use of an SRB allows
for individual bypassing or serialization of each cell in a battery pack, enabling control of the voltage
output and dynamic balancing of the battery pack during all phases of vehicle use. The simulations
and tests presented in this article confirm that the use of an SRB results in a 6% reduction in energy
consumption compared to a Conventional Battery Pack (CBP) on a driving profile based on WLTP cy-
cles. Additionally, an SRB enhances fast charging performance, with a charging time that is 22% faster
than a CBP. Furthermore, it is shown that an SRB without a voltage inversion capability can still be
connected directly to the AC grid for charging without the need for a dedicated converter, using only
a single diode bridge rectifier for the whole system.

Keywords: battery management system; electric vehicle (EV); fast charge; self-reconfigurable battery

1. Introduction

As shown in many articles [1], battery-switching technologies of Self-Reconfigurable
Batteries (SRBs) promise significant improvements in terms of autonomy and battery life,
cell balancing [2–7], recharging capacity [8–11], improving the efficiency of vehicle drive
trains [12–14] and even cell aging [15–17]. Their operating principle is as follows: switches
are added to the power paths linking the cells to enable the number of active stages in series
and parallel to be modulated dynamically [18], depending on the type of SRB. Some systems
even incorporate H-bridges to enable the generation of alternating voltages, opening the
way to motor control without an inverter [19–21] and direct recharging on the AC grid
without a charger [10,22,23]. However, the increase in the number of switches raises the
question of safety impact [24–27].

The aim of this study is to highlight the benefits of a simplified and cost-effective SRB
architecture adapted from the design presented in [28]. The benefits include improved
motor inverter efficiency, reduced charging time for DC fast charging and AC charging on
the electricity grid.

In this study, fulfilling Vitesco Technologies requirements, the SRB architecture dy-
namically generates a strictly positive DC voltage to optimize the efficiency of the motor’s
inverter. It also allows the absorption of a rectified AC current to enable the battery to be
charged from an AC voltage source without a charger, by means of a simple rectifier. Hence,
only the dynamic modulation of the number of series stages is implemented. To maintain
the capability of recharging on the AC grid, a simple rectifier diode bridge is added at the
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head of the architecture instead of H-bridges on cells, as it is not necessary to generate a
sinusoidal waveform when discharging.

To assess the benefits, a Conventional Battery Pack (CBP) and the SRB system are
compared by simulation in a complete simulation environment incorporating the various
components of an electric vehicle power train. In addition, these simulations are validated
on a real demonstrator. The comparison is based on different use cases. The first use case
is a battery discharge following a driving profile based on cycles from the Worldwide
harmonized Light vehicles Test Procedure (WLTP). Different batches of cells are used such
as new and aged cells with 5% to 10% loss of State Of Health (SoH) in order to introduce
dispersion conditions representative of an aged vehicle pack [29]. It is therefore possible to
study the benefits of SRBs using an end-of-life battery pack or even a second-life battery
pack. A comparison is then made using a fast charging use case to assess the benefits in
terms of stored energy and charging time.

Finally, a direct charging experiment using a rectified AC current from the AC grid is
presented to demonstrate the possibility of charging directly from the AC grid without an
intermediate converter, despite the absence of the voltage inversion capability in the SRB
architecture implemented.

The SRB demonstrator developed by Vitesco Technologies and the French Alternative
Energies and Atomic Energy Commission (CEA) integrates a maximum of 120 cells in series
with a maximum current of 125 A for charging and discharging. The system consists of a
main controller that communicates with 20 modules. These modules are connected to each
other in series in the power path. Each module independently controls the switching of
six cells, each of which can be dynamically connected in series or bypassed. The system is
flexible, making it easy to add or remove modules in series to adjust the maximum voltage.
Initially, the system is composed of 14 Ah NMC cells. Then, in a second phase, 90 Ah
cells are used. The total number of modules used is adjusted to match the number of cells
available for each batch of cells. This setup makes it possible to validate the operation of
cell switching in an electric vehicle application.

This article is an expansion of the work presented in EVS36 [30] with additional
experimentations based on the introduction of a fourth batch of cells from a used BMW-i3
battery pack that has traveled 25,000 km. The different geometry of these cells meant
that the demonstrator had to be modified. The driving profiles also had to be adapted to
the new cell capacities. This expansion made it possible to present the results of an SRB
system integrating cells directly representative of a real battery pack in use and resulting
from a large-scale industrial process, which is unprecedented in the state of the art of
reconfigurable battery packs.

2. Simulation

The main objectives are to demonstrate the benefits of the different capabilities listed
in the introduction to this paper, by comparing the proposed SRB solution with equivalent
CBP. With regard to optimizing the efficiency of the motor inverter, it is necessary to
consider an SRB capable of supplying the necessary voltage up to the end-of-discharge
conditions of the system. Thus, compared with a CBP for a given segment, the equivalent
SRB to be considered must be made up of a larger number of cells in series. Lower-capacity
cells are then required to maintain the relevance of the comparison from an energetic
point of view. A process of adaptation is therefore necessary. This is why different battery
configurations are simulated, in an environment representative of electric vehicles, to carry
out the comparison.

The two batteries are dimensioned in order to provide the same energy at the wheel at
the beginning of life, taking into account a capacity dispersion of 2% within the cells. In
this simulation, the reference CBP is a 96S3P battery with 60 Ah cells, while the SRB has
a 144S2P architecture with the same 60 Ah cells. To reduce the cost of this technology, a
grouping of cells in series is also considered: instead of having one cell for each bypass
switch/serial switch entity, groups of four cells in series for each bypass switch/serial
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switch entity are used. Consequently, the SRB in this simulation has 36 groups with each
group consisting of four 1S2P cells and one bypass switch/serial switch entity.

2.1. Driving Simulation

The simulation environment representative of electric vehicles is described in detail in
a previous study [31], where it was used to compare balancing solutions during driving
cycles. For this study, the simulation model is improved by the use of representative
energetic cells based on actual parameters as well as a representative dispersion of the cells
in the pack.

Figure 1 highlights the benefits, in terms of driven distance, of the aged SRB compared
with the aged CBP. The comparison is made based on a capacity reduced to 70% of the
nominal capacity and a capacity dispersion of 4.8%. The cumulated losses in the battery
pack are detailed for the SRB values, while the values in brackets correspond to the
difference SRB minus CBP. Due to the control DC link voltage capability, one can see
that a better global powertrain efficiency is achieved with a reduction of 51 Wh per 100 km.
This increased efficiency and the SRB’s ability to manage the dispersal of capacity result in
a 6% (+24 km) increase in range, which is of the same order of magnitude as the gains seen
in [13].
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Figure 1. Sankey diagram for SRB/CBP comparison—driving use case.

2.2. Fast Charging Simulation

The CBP and SRB system configurations used for the previous driving profile are
this time used to simulate 130 kW DC fast charging. This time, the nominal capacities are
used to compare the solutions at the beginning of their lifetime. With regard to the SRB
configuration defined above, the voltage set point of the DC bus output is fixed to 450 V.
To take better account of the constraints of fast charging, the simulation model is updated
with an improved thermal representativeness.

Figure 2 illustrates this comparison. By convention, the charging current and power
are positive, as they are considered from the charger point of view. The power curves show
that the maximum charge power can be maintained for a much longer time with the SRB
system than with the CBP system. This is due to the faster rise in cell temperature in the
CBP configuration, which leads to the limitation of the charging current.
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Figure 2. Simulation of fast DC charging for CBP and SRB.

At the beginning of the charge, almost all of the SRB cells are set in serial to reach
the DC link voltage set point. Consequently, the cell-to-cell dispersion within the SRB is
higher than the CBP’s one when the charging power remains high. Nevertheless, when the
charging power decreases, a smaller number of cells is required in serial. Then, power cell
balancing is possible again, resulting in a very low cell-to-cell dispersion. This illustrates
the great effectiveness of SRB power cell balancing.

Table 1 highlights the energies and losses involved in fast charging for both CBP and
SRB. The losses are increased by 40% in the SRB compared to the CBP because of the
additional electronic components and the higher recharging power allowed. Assuming
identical charger efficiency, the DC charging efficiencies are, respectively, 97.0% and 98.2%
for SRB and CBP. However, despite this increase in losses, the charging time from 20% to
80% state of charge is reduced from 37 min (2234 s) to 28 min (1687 s) due to the reduction in
current required to charge the battery, which delays the rise in cell temperature. Charging
time is therefore 24% faster with the SRB based on a battery capable of undergoing the
same WLTP test than with the CPB configuration. This reduced fast charging time is a key
element in the competitive BEV market [32]. In addition, the maximum current required
from the charger is reduced.
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Table 1. Energies and losses for fast DC charging.

Battery
Chemical

Energy
[kWh]

Battery
Losses
[kWh]

MosFet
Losses
[kWh]

BusBar
Losses
[kWh]

Battery
Energy
[kWh]

CBP −50.20 0.80 0.00 0.12 −51.11

SRB −50.19 0.83 0.60 0.10 −51.72

3. Experimental System Overview

The experimental system is an adaptation of the presented system in [28]. It consists
of one master and twenty modules, each composed of 6 switchable cells. The modules
provide voltage and temperature measurements through an isolated RS485 bus to the
master. The master controller measures the overall voltage and current, processes the
cell voltage and temperature measurements received from the modules and sends back
the switching orders to be applied. In addition, this master controller includes high-level
application management capabilities such as battery pack voltage regulation, dynamic cell
balancing and safety features. Dynamic cell balancing is performed by alternating the cells
used on the power path in order to manage the current drawn on each cell to provide the
output power [33]. The state of charge of each series level is assessed by coulomb counting
using a single current sensor located at the battery pack, combined with information on
the bypass or series states of each level. For the test carried out in this study, the global
amount of energy exchanged when operating WLTP cycles, or during the fast charging test,
is assessed using the current sensor of the power lab equipment of the climatic chamber.

The architecture of the experimental SRB is illustrated in Figure 3. Unlike many
reconfigurable batteries that rely on a phase-shifting carrier, this implementation uses a
true real-time process to control the output voltage while using low-cost local controllers.
This enables a faulty cell to be removed and replaced by the master controller in less than
100 µs from the time it is detected. It also allows the shape of a signal such as a disturbed
electrical grid to be tracked as closely as possible, thereby reducing the size of the filtering
components. In the case of DC discharge and DC fast charge, switch SW1 is closed and
switch SW2 is open. For AC charging, switch SW1 is open and switch SW2 is closed to
connect the SRB to the electrical grid via a rectifier diode bridge. The SRB then generates a
rectified signal adjusted in real time to follow the waveform of the rectifier bridge with a
slightly lower amplitude to create a charging current flowing through the cells. The internal
global current sensor is used to control the current exchanged by adjusting the voltage
differences between the SRB and the output of the rectifier diode bridge.

The CBP and SRB are compared using, for both cases, the self-reconfigurable electrical
architecture, in order to use the same experimental setup. Hence, by serializing all the
cells, the demonstrator behaves like a CBP, where all the cells of the batch are serialized
without possible modification, while the SRB can control its output voltage by bypassing
some cells. As the first cell in each module is used to power the switching electronics, the
related serial levels are constantly bypassed from the power path to avoid interference in
the comparison between SRB and CBP, in end-of-charge or end-of-discharge conditions
and in the energy balance.

To charge and discharge the system, a secure test chamber with an 800 V 400 A power
supply serving as both a source and sink is employed. Figure 4 shows the test bench setup
in operation inside the test chamber. The experimental comparison enables the results
obtained by simulation to be verified.
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4. Experimental Comparisons with a Driving Profile Based on the Worldwide
Harmonized Test Cycles for Light Vehicles (WLTC)

In the case of discharge comparisons over a driving cycle, one of the main objectives
is to demonstrate the feasibility of optimizing inverter efficiency with a real SRB system.
To this end, the inverter model is considered reliable and the simulation of its efficiency
is used to generate the power profiles applied to the experimental configurations as well
as the battery voltage set point profile for the SRB. The aim of the experiment is then to
verify that the SRB is indeed capable of responding to the dynamic profiles of the voltage
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set point and that the gain in autonomy compared with a real CBP corresponds to those
observed in the simulation. Additionally, another objective of the experiment is to compare
the behavior of a CBP (in which cells cannot be bypassed) and that of an SRB with regard
to cell-to-cell dispersion. Indeed, cell-to-cell dispersion has a significant impact on the
performance of electric vehicles [34–36]. The comparison is carried out during a discharge
imposed by a driving profile, which consists of several consecutive WLTCs.

Four batches of cells are created to address different use case scenarios. For each
comparison, the same batch is used in both the CBP and the SRB. The first batch comprises
72 new NMC 14 Ah CALB cells. The second batch consists of 36 NMC 14 Ah CALB
cells artificially aged by a laboratory cycling process. The aging process was carried
out individually for each cell and therefore does not incorporate the aging divergence
phenomenon that can be observed in a Conventional Battery Pack. The third batch is made
of 36 cells from a mix of new NMC 14 Ah CALB cells and new NMC 14 Ah CALB cells
slightly discharged to give a lower initial capacity. This batch is used to emulate a second
life scenario using cells from different States Of Health (SOHs). The fourth batch is made of
42 NMC 94 Ah SDI cells from a real BMW i3 battery pack of around 25,000 km, in order
to assess the benefits associated with the characteristics of the cells in a real commercial
battery pack. A first batch of 60 new cells, a second and third batch of 30 cells and a fourth
batch of 35 cells are finally used for comparison, considering that the first cell of each
module is permanently bypassed from the power path. The characteristics of the different
batches are summarized in Table 2.

Table 2. Batch characteristics.

Cell Batch ID Use Case Cell Details Nb of Cells Nb of Modules Nb of Cells Used
for Comparison

1 Beginning of life New NMC 14 Ah
(CALB) 72 12 60

2 Aged cells
Artificially aged

NMC 14 Ah
(CALB)

36 6 30

3 Second life

Mix of full and
partially

discharged NMC
14 Ah (CALB)

36 6 30

4
Cells with a

lifetime of around
25,000 real-life km

BMW-i3 NMC
94 Ah (SDI) 42 7 35

To assess the dispersions involved in the experimental comparisons, cell capacities
are estimated by coulomb counting with a specific charge and discharge cycle at a rate of
0.1 C between a minimum voltage of 3 V and a maximum voltage of 4.18 V. A dispersion of
0.95% for batch 1 of the new cells is observed, which remains realistic compared with what
can be classically assessed for other cell references in the literature [37]. The dispersion of
artificially aged cells in batch 2 is of the same order at 1.1%, which is quite low for cells
representative of an aged pack [38]. This can be explained by the use of an individual aging
process rather than a group process as in a Conventional Battery Pack where discrepancies
can be observed with the increase in the number of cycles. The capacities of cells constituting
batches 1 and 2 are, respectively, presented in Figure 5a,b, while the capacities of the cells
in batches 3 and 4 are shown in Sections 4.3 and 4.4. The distinctive colors of each cell serve
to enhance contrast during reading and have no other significance.
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The power profile generated from the simulation corresponds to the power consumed
at the wheel. It takes into account the number of cells included in each batch to provide
the corresponding power set point to be applied to the CBP and SRB packs. The optimum
voltage set point for SRB tests is also generated for each batch according to the number of
cells to be used.

Unlike the CBP, the SRB has the ability to balance the cells during charge and discharge.
As the cells are always balanced, the SRB allows all the energy to be extracted from all the
cells in the pack. In a CBP, this is not possible because the pack discharge must stop when
a cell reaches its lower voltage limit, even if other cells still have energy. To ensure a fair
comparison between CBP and SRB, all cells are fully charged and properly balanced before
each test. All cells start at 4.18 V, and the test stops at the end of the driving profile or when
the first of the cells under consideration reaches 3 V.

4.1. Driving Profile with New Cells (Batch 1)

Figure 6 shows the result of the driving profile with new cells (batch 1) in the SRB
(top) and CBP (bottom) configurations. On the SRB profile, the battery output voltage
set point (in orange) is perfectly stable at around 125 V, with the exception of two slots of
around 200 s at times 1540 s and 3320 s, where the set point voltage changes dynamically to
follow the parts of the WTLP cycle where power requirements are greater. The SRB voltage
measurement (in blue) shows that the battery is perfectly in line with the set voltage, even
during the most dynamic periods of the WLTP cycle, demonstrating the SRB’s ability to
generate the voltage profile required to optimize the inverter’s efficiency in various driving
phases. This optimization enables the SRB to complete the entire driving profile, unlike the
CBP, which stops prematurely at 4364 s because a cell reaches the low voltage limit of 3 V.

Over a discharge period of 4364 s, which marks the end of the CBP’s discharge,
the SRB discharged 2886 Wh, while the CBP discharged 3060 Wh. The SRB therefore
consumed 5.7% less energy than the CBP for the same distance traveled. The fact that
the observed difference in consumption corresponds to the difference predicted by the
simulation shows that the power profiles imposed are consistent with the simulation. At
the end of the CBP driving profile, we observed that the cells were not well balanced, with
a VCellMax–VCellMin difference of 180 mV, due to the dispersion of the cells’ capacity
in batch 1. In contrast, the SRB was able to balance the cells at all times, resulting in a
VCellMax–VCellMin difference of less than 5 mV at the end of the driving profile. The
figures of this test are reported in Table 3.
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Table 3. Figures of WLTC test with new cells (batch 1).

CBP SRB

Run time 4364 s 4458 s

Remaining energy at end of cycle 0 Wh 104 Wh

Cell balance at end of cycle ∆ = 180 mV ∆ < 5 mV

Discharged–charged energies @4364 s: 3060 Wh (batt low) @4364 s: 2886 Wh
@4455 s (end cycle): 2981 Wh (104 Wh left)

4.2. Driving Profile with Artificially Aged Cells (Batch 2)

Figure 7 shows the result of the driving profile with aged cells (batch 2) with the SRB
(top) and CBP (bottom) configurations. The power profiles and the SRB set point profile are
updated to take into account the reduction in the number of available cells compared to the
first batch discharge experiment. The cells in batch 2 exhibited a lower average capacity,
which resulted in neither the CBP nor the SRB configuration reaching the end of the test.

During a discharge period of 4027 s, the SRB discharged 1388 Wh while the CBP
discharged 1468 Wh. The SRB consumed 5.45% less energy than the CBP for the same
period, which once again shows that the power profiles applied are consistent with the
simulation. The 1.1% capacity dispersion of artificially aged cells is not sufficient to
introduce an additional gain in favor of the SRB, especially if the end of the CBP and SRB
discharge occurs in a moderate power section of the WLTP cycle. Nevertheless, it can be
observed that the emergence of cell voltage dispersion in the CBP occurs concurrently with
the end of the second high-power phase of the WLTP cycle at 3500 s. The cell voltage
imbalance of the CBP is also increased, as shown in Figure 7d. This suggests that a slightly
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greater dispersion in cell capacity could have had a greater impact on the results. The
figures of this test are presented in Table 4.
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Table 4. Figures of WLTC test with new cells (batch 2).

CBP SRB

Run time 4027 s 4329 s

Remaining energy at end of
cycle 0 Wh 0 Wh

Cell balance at end of cycle ∆ = 220 mV ∆ < 5 mV

Discharged–charged energies @4027 s: 1468 Wh @4027 s: 1388 Wh
@4329 s: 1436 Wh

4.3. Driving Profile with Second-Life Heterogeneous Cells (Batch 3)

The reparability of battery packs is becoming increasingly of interest to industry for
the purpose of maintenance and optimizing system lifespan [39,40]. Heterogeneous cells
in terms of capacity, and even different chemistries, can then constitute a reconditioned
battery pack. To illustrate this, the operations of the CBP and the SRB are compared by
conducting a driving profile with cells of heterogeneous capacities. Hence, a third batch
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of 30 cells is made using a mix of new cells at 100% state of charge and new cells with a
downgraded capacity, as shown in Figure 8. Eight cells in batch 1 are slightly discharged
to present a reduced capacity, introducing a dispersion of 3.15% for batch 3. For accuracy,
the lowered capacities are set before each test using a voltage threshold and a discharging
current below C/10.
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The power profiles and the SRB set point profile are identical to those of the second
batch discharge experiment, which had the same number of cells. The results of the driving
profile applied to batch 3 are illustrated in Figure 9.
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In the CBP configuration, the weakest cell voltage drops before the others during the
second high-power period of the WTLP cycle, causing the cycle to be halted at 3514 s, as
shown in Figure 9c,d.

Figure 9a shows that the SRB is able to generate the output voltage corresponding to
the voltage set point profile despite the use of a group of heterogeneous cells. The cells of
the SRB are well balanced during the driving profile, while the battery voltage is controlled
to maximize the inverter yield. The SRB allows weaker cells to be set aside while energy is
extracted from all the other cells. Additionally, perfect balancing helps to avoid voltage
drop due to high discharge current peaks, allowing the driving profile to continue. Hence,
the system stops at 4347 s with perfectly balanced cells as shown in Figure 9b. The SRB
consumes 5.3% less energy than the CBP for the same period of 3514 s. The figures of this
test are presented in Table 5.

Table 5. Figures of WLTC test with cells from batch 3.

CBP SRB

Run time 3514 s 4347 s

Remaining energy at end
of cycle 0 Wh 0 Wh

Cell balance at end of cycle ∆ = 428 mV ∆ = 21 mV

Discharged–charged energies @3514 s: 1416 Wh @3514 s: 1341.5 Wh
@4347 s: 1437 Wh

4.4. Driving Profile with Cells from Real Battery Pack (Batch 4)

In industrial battery packs, cells with similar characteristics are assembled together to
obtain the most homogenous batches possible during the manufacturing phase in order
to maximize battery life [41]. In this test, the comparison is made using cells from a real
25,000 km industrial battery pack to show the benefits obtained from the slight dispersion
of cells that can be found in real life. The driving profile is extended by repeating the same
profile several times to match the increase in the battery capacity. The duration of the
discharge process is calibrated to achieve a depth of discharge of approximately 10% of
the battery’s capacity for the two use cases where the discharged energies are compared.
The profile is then repeated to fully discharge the battery in order to assess the energy
remaining in each case.

The capacities of the fourth batch’s cells used for this test are shown in Figure 10. The
dispersion in capacity between cells in batch 4 is 0.37%. The capacity of the worst cell is
approximately 91.67 A·h (98.57% of nominal capacity) with an average cell capacity of
92.29 A·h (99.23% of nominal capacity).

Test results are shown in Figure 11 with the SRB in the top part and the CBP in
the bottom part. In both cases, the end of discharge is reached during a high-power
phase. A state of charge of 10% is reached in 21,023 s in the CBP configuration, whereas
the SRB configuration reaches 10% SOC in 21,869 s. In terms of energy, this leads to
a reduced consumption of 4% when considering the energy consumed at 21,023 s for
both configurations.

Regarding the total run time, the CBP configuration stops at 22,693 s, whereas the SRB
configuration stops at 23,524 s, despite the fact that the SRB had to handle an additional
power peak. In this context, the performance of the SRB dynamic balancing had no impact
due to the very low imbalance of the cells from batch 4. Nevertheless, in terms of time
duration, this leads to a gain of 3.66%, which is far from being insignificant considering the
limited age of the battery pack. The figures of this test are presented in Table 6.
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Table 6. Figures of WLTC test with new cells (batch 4).

CBP SRB

Run time to 10% 21,023 s 21,869 s

Total run time 22,693 s 23,524 s

Remaining energy at end of cycle 989 Wh 976 Wh

Cell balance at end of cycle ∆ = 82 mV ∆ = 15 mV

Discharged–charged energies @21,023 s: 10,192 Wh
@22,693 s: 10,959 Wh

@21,023 s: 9783 W.h
@21,869 s: 10,320 Wh
@23,524 s: 11,076 Wh

4.5. Conclusion on Driving Profile

For each batch of cells tested, the conclusion is that the SRB manages to provide the
dynamical output voltage corresponding to the voltage set point required to optimize the
efficiency of the motor inverter. The fact that the observed difference in energy consumption
corresponds to the difference predicted by the simulation shows that the imposed power
profiles and the optimized voltage profile are consistent with the simulation presented in
Section 2. In addition, good reproducibility is obtained with the different battery sizes.

Finally, the dynamic balancing capabilities of the SRB enable additional autonomy
gains to be achieved by allowing the weakest cells to be set aside while energy is extracted
from all the other cells. Perfectly balancing cells avoids voltage drop due to high discharge
current peaks, enabling greater autonomy to be achieved with the driving profile.

5. Experimenting with Direct Charging of SRB on Electrical Grid

Removing the AC–DC inverters permits us to increase the charge yield [42]. To charge
the Self-Reconfigurable Battery directly from the electrical grid without a charger, it is
necessary to generate a perfectly synchronized voltage waveform. Furthermore, the voltage
waveform of the electrical grid is never a perfect sinusoid; it has unpredictable distortions
that must be taken into account when controlling the current exchanged with the battery.
Due to the high control frequencies of the master controller, the SRB can produce an
arbitrary voltage at its output. Hence, the output voltage of the SRB is directly adjusted
in real time from the output of a charge current control loop that regulates the current
exchanged with the electrical grid.

A Simulink algorithm is created to allow the SRB to be charged without a dedicated
charger through a standard 16 A single-phase grid. The master controller contains a charge
controller block based on this algorithm. This block receives as input the mean charge
current set point and the instantaneous values of the grid voltage and the current exchanged.
The output of this block is the number of cells to be connected in series, used to drive the
output voltage in accordance with current regulation.

As the SRB developed for this study does not have the capacity to generate a negative
voltage, a rectifier diode bridge is used to interface with the electrical grid. Filtering and
safety elements are also added in series to the power circuit. The components used to
connect the SRB to the power grid are illustrated in Figure 12, while the SRB architecture is
illustrated in Figure 3.

At the beginning of the charging phase, the algorithm controls the SRB pack voltage
until it matches the rectified grid voltage. When the signals are properly synchronized, a
relay is closed to start charging. The start of SRB charging is shown in Figure 13 with the
grid voltage (blue curve), the rectified grid voltage (green curve) and the charge current
(pink curve). The test was carried out with a charging current of 3 A mean on a real
electrical grid, so the sinusoidal curves are not perfect; nevertheless, the algorithm was
able to perfectly match this voltage and its imperfections. Figure 14 shows a charge at
16 A. The shape of the current is always rectified and sinusoidal, regardless of the value of
the current.
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6. Fast Charge Comparison

The objective of this test is to compare the behavior of the CBP and SRB during fast
charging on a DC link. A first comparison is carried out with the same 12 modules using
the batch 1 cells previously used for the WLTP tests. The first cell of each module is still
permanently removed from the power path. A second comparison is carried out with eight
modules from batch 4b, this time including the first stage of each module in the power
path. Table 7 shows the batch characteristics used for each fast charge comparison.
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Table 7. Batch characteristics used for fast charge comparison.

Cell Batch ID Use Case Cell Details Nb of Cells Nb of Modules Nb of Cells Used for
Comparison

1 Beginning of life New NMC 14 Ah
(CALB) 72 12 60

4b
Cells with a lifetime

of around
25,000 real-life km

BMW-i3 NMC 94
Ah (SDI) 42 8 42

The charging current profile applied to the cells is adjusted according to the cell
voltage, decreasing as the voltages approach end-of-charge conditions. To simplify control,
the adjustment consists of three constant current amplitudes.

The Self-Reconfigurable Battery has the capability of individually bypassing cells at
the end of their charge, whereas the Conventional Battery Pack must stop charging the
whole system at the first cell in the end-of-charge state. Therefore, the criteria used to
select the charging current level for each system must be different to take account of the
differences in operation.

In the case of the CBP, the charging current level is affected by the voltage of the
most charged cell, with different voltage thresholds to distinguish each level. However, a
part of the cell voltage measured is related to the instantaneous current flowing through
it due to its impedance. This voltage therefore decreases when the charging current is
reduced. Hence, a hysteresis is added to the voltage thresholds to prevent a return to a
higher charging current.

In the case of the SRB, only the highest voltage threshold 4.18 V is used to trigger a
bypass of cells exceeding this value. The charging current level is then adjusted according
to the number of cells remaining to be charged. The cells in bypass are put back into
series when their voltage drops due to the relaxation effect. A hysteresis is applied to the
voltage threshold used to reconnect the cells in series. This hysteresis is proportional to the
amplitude of the charging current according to (1).

Bypass to series Hysteresis [mV] = Current [A]/1000 (1)

The amplitude of the charge current for each level is adjusted between batch 1 and
batch 4b to take account of the differences in terms of cell capacity. The cells in batch 1 are
intended for power applications and accept a maximum continuous C-rate charge current
of 10 C. Such a current is not recommended to preserve the health of the cells, but it is
used in this study to illustrate the capabilities of the SRB electronics. It should be noted
that in the case of batch 4b, the maximum current is limited by the current capacity of the
test chamber. When the batch 4b cells are used, the experimental set-up has to change
the test chamber, which reduces the capacity in terms of maximum current. As a result,
the charge current rate is reduced for this batch, especially as the cells in batch 4b have a
capacity 6.7 times greater than that of the cells in batch 1. This reduced charge rate enables
the use of higher voltage thresholds for the CBP configuration. The fast charge conditions
are summarized in Tables 8–10.

Table 8. Fast charge conditions for CBP using cells from batch 1.

CBP Condition Batch 1 Charge Current (A)

VcellMax < 4.1 V 125 (8.9 C)

4 V < VcellMax < 4.15 V 24 (1.78 C)

4.14 V < VcellMax < 4.18 V 12 (0.86 C)
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Table 9. Fast charge conditions for CBP using cells from batch 4b.

CBP Condition Batch 4b Charge Current (A)

VcellMax < 4.15 V 90 (0.96 C)

4.05 V < VcellMax < 4.16 V 24 (0.25 C)

4.14 V < VcellMax < 4.18 V 12 (0.08 C)

Table 10. Fast charge conditions for SRB using cells from batch 1 and batch 4b.

SRB Condition Batch 1 Charge Current (A) Batch 4b Charge Current (A)

Series cell > 10 then 24 A 125 (8.9 C) 90 (0.96 C)

Series cell > 10 then 12 A 24 (1.78 C) 24 (0.25 C)

Series cell > 10 then stop 12 (0.86 C) 12 (0.08 C)

6.1. Comparison of Fast Charging with New Cells (Batch 1)

Figure 15 shows a comparison between the CPB and SRB during the fast charge phase
with cells from batch 1.
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With the cells from batch 1, the state of charge 80% is reached before the first cell
voltage threshold. Therefore, both the CBP and SRB reach this state of charge in around
332 s with a constant charging current of 125 A. The SRB is capable of bypassing a cell that
reaches a voltage of 4.18 V and of reconnecting it in series when its voltage falls below a
predefined threshold. In Figure 15a, the SRB voltage drops as cells are removed from the
supply circuit when they reach this voltage threshold. When the number of cells in series
falls below the 10-cell threshold, the charging current is reduced, which enables the SRB to
return all cells to the power path, thus increasing the output voltage. One can note that the
SRB takes advantage of the 80% to 100% state of charge interval to reach the full charge
state in 22.8% less time than the CBP.

The total energy consumed by the charger is 3418 Wh for the SRB compared with
3342 Wh for the CBP, which represents a difference of 2.27%. This is due to the additional
losses introduced by the series switches on the SRB. The figures of this test are presented in
Table 11.

Table 11. Results of fast charging time for batch 1.

CBP (s) SRB (s)

SOC 20% 87 87

SOC 80% 332 334

Vcell max = 4.1 V 338 347

Vcell max = 4.15 V 502 366

SOC 100% 776 599

6.2. Comparison of Fast Charging with Cells from Real Battery Pack (Batch 4b)

Figure 16 shows a comparison between the CPB and SRB during the fast charge phase
with cells from batch 4b. With the cells from batch 4b, the state of charge 80% is still reached
before the first cell voltage threshold. Therefore, both the CBP and SRB reach this state of
charge in 2908 s with a constant charging current of 90 A. It can be seen in Figure 16a that a
longer time is needed for the SRB to fall below the 10-cell threshold, due to the reduced
ratio between charging current and cell capacity. This longer time allows the discarded cells
to be reconnected, resulting in a noisier SRB output voltage corresponding to alternating
serial and bypass phases.

In this comparison, the SRB still takes advantage of the 80% to 100% state of charge
interval to reach the full charge state 15.4% faster than the CBP. The total energy consumed
by the charger is 17,645 Wh for the SRB compared with 17,007 Wh for the CBP. This
represents a difference of 3.75%, this time including the first cells of each module from
which energy is drawn to power the switching electronics. The figures of the fast charge
comparison of batch 4b are presented in Table 12.

Table 12. Results of fast charging time for batch 4b.

CBP (s) SRB (s)

SOC 20% 727 727

SOC 80% 2908 2908

Vcell max = 4.15 V 2959 2978

Vcell max = 4.16 V 4069 3012

SOC 100% 6012 5087
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7. Discussion

The experimental system is not far from being able to be integrated into a demonstrator
vehicle, given the level of maturity above TRL 4 achieved by the developments initiated
since 2012 at the CEA [43], as well as the size of the demonstrator in terms of on-board
battery as well as power, current and voltage capacity.

The experimental validation of the results obtained by simulation demonstrates that
it is possible to simulate the behavior of a real SRB device at vehicle scale with a good
level of representativeness. This demonstration is especially important as it was car-
ried out using the models and simulation tools developed by Vitesco for its industrial
development processes.

With regard to the results obtained with the different batches of cells, it can be seen
that the disparities between the cells do not affect the ability of the experimental SRB to
generate the voltage profile required to optimize the inverter’s efficiency.
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The results also show that the impact of an SRB’s balancing performance depends
on the unbalanced characteristics of the cells and the power rating used at the end of
the discharge. It can be seen that the higher the power demand at the end of discharge,
the greater the impact on the SRB’s balancing capacity. In this respect, it is important to
note that perfectly balancing cell voltage before a power peak is not necessarily sufficient.
Managing the voltage drops of the cells with the highest impedance during the power peak
is also significant. In the case of this study, the proposed SRB system is able to replace in
real time an active cell reaching its end-of-discharge voltage threshold. The swap with an
inactive cell of any local controller is performed in a time interval of less than a few tens
of microseconds, so that no disturbance of the output voltage occurs. In addition to the
gains in autonomy presented in this study, we can therefore expect to see interesting gains
in terms of power availability.

With regard to fast charging on a DC source, the main contribution of SRB systems is
made from the time at which the conventional system reaches the first conditions requiring
a drop in charging current. In this study, the conditions are voltage conditions, but they
could also be over-temperature conditions in certain contexts as seen in the simulation or
even conditions related to model-based parameters that the state of the art is beginning to
use to optimize fast charging in conventional systems [44]. In this area, SRBs could gain an
advantage from the prospect of improved cell parameter identification capabilities [45–47].

Despite all the advantages mentioned above, the adoption of reconfigurable batteries
in the industrial sector is currently limited to start-up companies such as SwitchESS, with
which the CEA has collaborated [48], or Bavertis [49]. The integration of reconfigurable
batteries involves concentrating responsibility for a range of functions, such as the battery,
the BMS, the charger and even the motor inverter. For Tier 1 manufacturers, this represents
an important challenge, both economically and technically. Recently, the industry has taken
a close interest in this technology, as shown by the interest expressed by Vitesco [50] and
Stellantis [51].

8. Conclusions

This paper reports the results of simulation and experimentation of the advanced
capabilities of a Self-Reconfigurable Battery, including battery output voltage control,
active balancing during operation, AC grid charging without an inverter and fast DC
charging. The performance of the SRB as a DC–DC power source is compared to that
of a Conventional Battery Pack, revealing improved efficiency and faster charge rates.
Specifically, the SRB increased the driving range by 6% and reduced charging time by 22%.
In addition, the experimental results demonstrate the SRB’s ability to operate heterogeneous
cells correctly and extend battery life by reproducing the aging observed in real automotive
batteries. It also demonstrates the capability of using unsorted cells or heterogeneous cells
for second life.

To extend this study, given that the SRB introduces many more electronic components
than the CBP, elements other than performance need to be taken into account to make a fair
comparison between the two solutions, such as cost, reliability and safety.

As far as the cost aspect is concerned, estimating the economic benefit of reconfigurable
batteries is complex because it has to integrate the benefits at the level of the overall system
to be relevant. For example, improving the energy efficiency of the powertrain as a whole
can reduce the cost of the battery for an equivalent range. Additionally, this improvement
can also reduce the amount of CO2 equivalent consumed, which is a very important cost
criterion for manufacturers because of the regulations introduced in recent years. The cells
are also less susceptible to aging, which extends the life of the pack and therefore saves
the consumer a certain amount of money. Still on the economic aspect, the SRB’s ability
to integrate heterogeneous cells opens the way to the use of batteries that could be less
expensive to produce because they would be less constrained in terms of homogeneity,
or even could be from second life. In all the cases mentioned, dedicated detailed studies
would be required to estimate the savings made.
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From a reliability point of view, the large number of components used for switching
raises questions, especially when SRBs are paradoxically highlighted for their ability to
improve battery reliability by isolating faulty cells. However, SRBs have a certain potential
because, although they use a large number of components, the mature manufacturing
process of MOSFET and limited voltage range required make them more reliable than
the increasingly sophisticated power components such as SIC and GAN switches used in
power converters, even more so as the voltage levels of battery packs are becoming higher
and higher to meet the constraints of rapid charging. The number of components used
must therefore be considered in light of the Mean Time Between Failures (MTBF), by means
of a rigorous analysis of the system’s fault tree.

From the point of view of software constraints, the greater the complexity of the code,
the more difficult and costly it is to ensure. The use of a distributed system such as the one
presented in this study makes it possible to partition the software functions. In this way,
the role of the software corresponding to the local controllers can be limited to ensuring
the translation of the serial/bypass commands received from the central controller into
local switch control with the appropriate transitions. In this way, it is possible to simplify
the software used by the local controllers as much as possible in order to guarantee a
satisfactory level of reliability and safety. This allows for mitigating the level of criticality
applied to the central node software.

This project is a unique opportunity to work on these points, and the initial analysis
shows that an SRB designed to automotive standards in a robust and safe manner could be
a competitive solution if the powertrain is considered as a whole, including throughout
its lifetime. Overall, this study highlights the impressive capabilities of an SRB and its
potential for use in a variety of applications.
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Abstract: This paper is based on the work presented at EVS36 in Sacramento. The core of the
work deals with the cabin climate control of battery electric vehicles (BEV) using model predictive
control (MPC) approaches. These aim to reduce the energy demand for cabin air conditioning
while maintaining comfort and air quality. The first step briefly overviews model predictive control
approaches and the respective fundamentals. Afterward, the modeling for the system dynamics
is explained. The challenge for the system model considering humid air is discussed, and the first
implementation method is presented. With the added equations for the air quality and humidity, a
logic to prevent window fogging was developed to improve safety. Ultimately, model-in-the-loop
(MiL) investigations identified an energy-saving potential of up to 15.4% for cold and 39.7% for hot
conditions compared to a rule-based strategy. In addition, the investigations carried out showed
that it was also possible to improve indoor comfort by specifically influencing the air quality and
humidity. Together with the safety criteria introduced to prevent window fogging, it was possible to
present a strategy that can significantly improve thermal management for the cabin in modern BEVs.

Keywords: BEV; air conditioning; control system; energy efficiency; MPC; cabin comfort; air quality

1. Introduction

At the UN Climate Change Conference in September 2015, 197 countries committed to
limiting global warming to 1.5 ◦C compared to the pre-industrial age [1]. The steps required
to achieve this were set out by the European Union (EU) in its Green Deal. This postulates
the goal of reaching climate neutrality by 2050 [2]. Individual countries in Europe have set
even stricter targets. The German government wants to achieve greenhouse gas neutrality
by 2045. This is linked to the planned reduction of relevant emissions by 65% compared to
1990 levels until 2030 [3]. Many Europeans currently support the measures presented to
achieve the targets [4].

Nevertheless, the planned projects will majorly impact mobility in Europe. In addition
to revising CO2 restrictions, investments in charging infrastructure are also intended to
boost emission-free mobility in Europe [2,5]. In Germany, electric and fuel cell vehicles are
also specifically promoted via an environmental bonus. In addition, the number of public
charging points is to be increased to 1 million by 2030. The measures aim to bring up to
15 million fully electric cars onto German roads by 2030 [6].

Even if the development of the registrations for electrified vehicles within Europe
(EU-27) looks very positive at first glance, they still fall short of expectations. Figure 1
shows these for the years 2010 to 2021. The number of battery electric vehicles (BEV)
and plug-in hybrid electric vehicles has increased from around 7000 in 2011 to around
1.7 million in 2021 for the EU-27 states [7]. Despite the positive development, the share of
electric vehicles will have to rise further to meet the EU’s self-imposed targets. Customer
acceptance and enthusiasm for electrified mobility must be further improved to achieve
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this. In particular, the range must be increased and charging times shortened to generate
new purchasing impulses [8].
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In particular, the cabin conditioning of BEVs strongly impacts the achievable driving 
range under hot and cold ambient conditions. In winter, heating the cabin can cause the 
achievable driving distance to deviate by up to 50% from the manufacturer’s specifications 
[9–11]. The losses for short trips can increase to up to 70% [12,13]. This is mainly because 
the energy required must be taken directly from the battery to provide the necessary heat-
ing or cooling performance [14,15]. This further underlines the importance of an opti-
mized thermal management strategy for the cabin conditioning of BEVs. The challenge is 
to minimize the energy required for cabin air conditioning while at the same time meeting 
the comfort requirements of the occupants. 

One way of further developing the control system for heating and cooling the vehicle 
cabin is to use model predictive control approaches. These allow the control variables for 
a planned route to be calculated in advance and aim to achieve the desired interior tem-
perature while minimizing energy consumption. A large amount of current research is 
mainly aimed at reducing energy requirements. Other important aspects, such as indoor 
air quality, passenger comfort, and humidity, should be considered. Nevertheless, using 
MPC has made it possible to demonstrate initial energy-saving potential [16–18]. This pa-
per presents a model predictive control strategy for the energy-efficient air conditioning 
of BEVs. In this approach, the air quality is measured regarding CO2 concentration, and 
comfort inside the cabin is ensured by evaluating the equivalent temperature. In addition 
to the already published investigations [19,20], a method is presented to consider air hu-
midity and thus actively avoid windshield fogging. Comparable studies on model predic-
tive control of cabin conditioning taking into account humidity were also presented in 
[21]. In contrast to the approaches presented there, using the acados framework [22–24] 
ensures that the MPC is suitable for vehicle operation. This was already demonstrated in 
the CEVOLVER project [25–28]. Furthermore, combining the consideration of humid air 
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Figure 1. New registrations of electric cars, EU-27 (2011–2021) [7].

In particular, the cabin conditioning of BEVs strongly impacts the achievable driving
range under hot and cold ambient conditions. In winter, heating the cabin can cause the
achievable driving distance to deviate by up to 50% from the manufacturer’s specifica-
tions [9–11]. The losses for short trips can increase to up to 70% [12,13]. This is mainly
because the energy required must be taken directly from the battery to provide the nec-
essary heating or cooling performance [14,15]. This further underlines the importance
of an optimized thermal management strategy for the cabin conditioning of BEVs. The
challenge is to minimize the energy required for cabin air conditioning while at the same
time meeting the comfort requirements of the occupants.

One way of further developing the control system for heating and cooling the vehicle
cabin is to use model predictive control approaches. These allow the control variables
for a planned route to be calculated in advance and aim to achieve the desired interior
temperature while minimizing energy consumption. A large amount of current research is
mainly aimed at reducing energy requirements. Other important aspects, such as indoor
air quality, passenger comfort, and humidity, should be considered. Nevertheless, using
MPC has made it possible to demonstrate initial energy-saving potential [16–18]. This
paper presents a model predictive control strategy for the energy-efficient air conditioning
of BEVs. In this approach, the air quality is measured regarding CO2 concentration, and
comfort inside the cabin is ensured by evaluating the equivalent temperature. In addition to
the already published investigations [19,20], a method is presented to consider air humidity
and thus actively avoid windshield fogging. Comparable studies on model predictive
control of cabin conditioning taking into account humidity were also presented in [21]. In
contrast to the approaches presented there, using the acados framework [22–24] ensures
that the MPC is suitable for vehicle operation. This was already demonstrated in the
CEVOLVER project [25–28]. Furthermore, combining the consideration of humid air and
the evaluation of the influence of the radiant surfaces through the equivalent temperature
(EQT) ensures that many vehicle configurations can be investigated.

This publication focuses on expansion of the MPC by introducing a strategy to prevent
window fogging. First, the basic principles of MPC controls are explained. Then, the
necessary adaptations for implementing air humidity are presented. Finally, the first
investigations on the control strategy are shown and evaluated. This conference paper
is based on a contribution to the EVS 36 [29] and was significantly reworked for the
publication within this journal. With the additions made, this publication addresses the
challenges associated with humid air and shows ways in which these can be overcome
efficiently and safely through an MPC strategy.

2. Fundamentals of the Model Predictive Control Approach

In engineering, model predictive control (MPC) is gaining popularity. It offers math-
ematical solutions for optimizing precisely formulated problems. Different decisions,
consequences, and constraints can be considered to determine a suitable operating strategy
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for a defined system. The objective evaluation criterion is expressed by a cost function J
and minimized [30]. This section briefly discusses the basic principles of MPC approaches.
Afterward, the scope and specifications of the control strategy are explained.

This paper uses an MPC as an online optimization that determines the required control
signals at a defined time step ∆τs. The optimization problem must be set up to satisfy the
real-time constraints. This implies that the time between the initiation of the optimization
process and the output of the control signals must be correspondingly short to the selected
step size ∆τs [30–32]. The standard formulation of this optimization problem is presented
in the following equations:

min
c

J(c) =
N−1

∑
k=0

l(x(k), u(k), k) Cost function (1)

under consideration of the following:

x(k + 1) = f(x(k), u(k), k), k = 0, . . . , N− 1 System dynamic (2)

h(x(k), u(k), k) ≤ 0, k = 0, . . . , N− 1 Inequality constraint (3)

G(x(k), u(k), k) = 0, k = 0, . . . , N− 1 Equality constraint (4)

x(0) = x0 Initial conditions (5)

The complexity of the stated problem does not allow the optimization to be solved
efficiently by analytical methods. For this reason, as is typical for many other technical
applications, numerical solution methods are used [30]. A direct solution method was
selected, characterized by the fact that the optimization problem is initially discretized
on a defined time domain and can then be solved with static optimization methods. This
solution method is widely used in MPC applications [30,33,34]. The multi-shooting method
was chosen from the direct methods for its high accuracy while being well suited for real-
time optimization [30,34]. This solution method includes a discrete dynamic optimization
problem whose formulation is shown in Equations (1)–(5) [30]. This specific form of
problem formulation is also known as non-linear programming (NLP) and is often used in
this context. It considers the starting conditions of the system and the system dynamics,
which a mathematical model and the constraints represent. These can be utilized, for
example, to limit the state or control variables [35].

Cabin conditioning can be defined as a nonlinear multivariable system under con-
straints. For these kinds of systems, the nonlinear MPC approach is suitable. Considering
the control objectives, the problem is solved on a fixed prediction horizon Np. These include
achieving a target temperature in the interior and minimizing the energy demand in the
case of cabin air conditioning. For the entire prediction horizon, the vectors for the control
variables are calculated for each time step. However, only the vector with the values for the
current time is passed to the system to be controlled. After one time step ∆τs, the controller
is reinitialized, and the optimization problem is solved again. It also shifts the prediction
horizon at this time, which is why it is also called the sliding prediction horizon [35].

The acados [24] framework was used to implement the MPC in MATLAB Simulink.
This approach has already been used for applications of nonlinear MPC in the field of
powertrain conditioning, and its functionality has been proven [36].

3. Realization of the MPC Control Strategy in a Model-in-the-Loop (MiL) Environment

After a short introduction to the basics of MPC, this section describes its implemen-
tation in MATLAB Simulink. For this purpose, the structure of the model-in-the-loop
environment will be discussed first. Subsequently, the system dynamics modeling is
explained for the cabin conditioning, and a method to include air humidity is presented.
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3.1. Structure of the MiL Environment

The MiL environment consists of three core elements—the plant model, the prediction
function, and the MPC. The plant model represents the system behavior outside the control
structure and provides important state variables to the MPC and the prediction function.
The sensor interfaces replace the plant model during later implementation in the vehicle
and are no longer needed. For this purpose, the interface must be adapted accordingly. The
plant model contains the same mathematical descriptions as the MPC for the simulative
considerations presented in this work. The model was validated using measurement data
for a class A vehicle in different environmental conditions.

In the prediction function, the external conditions, such as the weather data, the route
information, and the vehicle state, are determined and predicted for the planned trip. The
predicted signals are then sent to the MPC along with the associated trajectories for the
future. The latter is calculated from the current time step until the end of the prediction
horizon. For the current executions, a perfect prediction is assumed. This means the
actual system behavior does not deviate from the predicted behavior. This simplification is
acceptable for the current evaluation of the potential of the functions. However, the effects
cannot be neglected in principle [30–32,35]. This still needs to be investigated before the
planned vehicle implementation.

The MPC processes the received information and sets up the optimization problem for
the current time step using the acados framework [24]. After the optimization is successful,
the control signals for the current time step are forwarded to the plant model.

3.2. Modelling of the System Dynamics—Cabin Conditioning

The MPC approach is mainly characterized by the fact that the system behavior
is known and can thus be predicted. It follows that modeling the system dynamics is
of the highest importance for the quality of the control strategy. On the one hand, the
system’s behavior must be reflected as accurately as possible; on the other hand, the
computing time must be short; otherwise, the real-time capability cannot be guaranteed. In
previous publications [19,20], the basic modeling of the cabin conditioning and the special
features have already been discussed. For this reason, these shall be briefly summarized.
Subsequently, the extension for the consideration of the air humidity is presented.

The overall objective of the model is to determine the heat-up and cool-down behavior
of a vehicle cabin and the energy required. For this purpose, a single-zone model of
the vehicle cabin was built. The selection of the modeling approach was based on an
evaluation of different possibilities. The most complex but accurate way to describe the
system characteristics of a vehicle cabin is through a CFD analysis [37,38]. The significant
effort required for data processing and the high computing times make it impossible to
use in an MPC control strategy. Multi-zone models are the second option for modeling the
system behavior. These are mainly used to evaluate the vehicle cabin’s energy consumption
and calibrate the control approaches. This method also has computing times that cannot
meet the real-time criteria for mathematical optimization [39,40]. A disadvantage of this
simulation method is that the spatial resolution of the air flows and the temperature
distribution cannot be investigated. This also means that more detailed analyses of occupant
thermal comfort cannot be carried out. However, these disadvantages can be accepted,
as the main purpose of the models is to determine the energy requirements for cabin air
conditioning. The statements conclude that the one-zone models are the most suitable
of the standard methods for modeling a vehicle cabin using an MPC. A vehicle cabin
from an A-segment vehicle with an internal air volume of approximately 2 m3 was used
for this publication. The integrated interior corresponded to that of a basic model in the
vehicle series.

The connection of the thermal masses in the interior is characteristic of the heating and
cooling behavior of the air inside a vehicle cabin. Due to the chosen modeling approach,
it is impossible to differentiate locally between the individual components (for example,
steering wheel, dashboard, seats, etc.) in the simulation. For this reason, all thermal masses
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of the vehicle cabin are combined into one resulting mass. They are connected to the cabin
air via convection with the heat flow

.
QInterior. In addition, the total losses via the vehicle

shell
.

QAmb and the solar radiation
.

QSolar entering via the window surfaces must also be
taken into account in the model. Finally, the incoming and outgoing air mass flow

.
mAir,i

and the heat flow emitted by the passengers
.

QPass are accounted for. An overview of
the considered boundaries is shown in Figure 2. The validation basis for this model was
available measurement data for a class A vehicle.
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Figure 2. Schematic overview of the simulation model for the air volume of the vehicle cabin.

The representation of the HVAC extended the model. The airflow provided by the
HVAC can be taken from the environment (fresh air mode) or the cabin interior (recircula-
tion mode). The user can continuously adjust between the two modes. In addition to the
described relationships, the impact of passengers on the cabin in terms of heating and CO2
production is also considered. The latter influences the air quality. For the investigations in
this work, a limit value of 1200 ppm in the interior was selected according to the recom-
mendations in [41]. In the work published, the assumption was made that the air is always
dry. For real systems, however, it significantly influences energy demand and comfort [42].
Preventing window fogging is also crucial due to its relevance to safety [21,42]. For this
reason, the system modeling was extended by considering air humidity, which is explained
in the following section.

In the first step, the state variables for the cabin were extended by modeling the
air humidity and the amount of water inside. The water quantities of the incoming and
outgoing airflow account for this. In addition, it must be considered that the occupants also
emit water into the interior through breathing and sweating. The necessary parameters
and formulas were taken directly from [42,43]. The biggest challenge in implementing the
humidity was adapting the HVAC model. The active heating and cooling of the airflow
directly affects the humidity. For example, cooling the air can cause water to precipitate
and thus actively reduce the humidity of the air stream after the subsequent heating [42,43].
The extended functionality of the HVAC model is described in more detail below and
visualized in Figure 3.
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within the HVAC system. The summary of all control signals for the HVAC is presented
in (6). The airflow itself is provided by a blower fan (~300 W), which is actuated by rBlower.
The control values for rCooling and rHeating determine to which extend the air is heated
up or cooled down by the system. The modeled vehicle was equipped with a direct air
heater with a maximum output of 5 kW. The compressor within the refrigerant circuit for
cooling the cabin has a maximum performance of 8 kW. The last variable rRedirect expresses
which proportion of the air flow is redirected from the cabin to the HVAC. If the value is
rRedirect = 1, the cabin conditioning is running in recirculation mode. In contrast, a value of
rRecirc = 0 indicates a fresh mode operation of the HVAC.

uHVAC =
[
rBlower rRecirc rCooling rHeating

]
(6)

For the simplification of the calculations, the relation between the current air mass
flow and the control variable is linearized to the following equation:

.
m =

.
mmax × rBlower (7)

The value
.

mmax is defined as the maximum mass flow the blower can provide. The
energy consumption of the blower PBlower is defined by the following equation:

PBlower = PBlower,Max × rBlower
2 (8)

The relationship between the increased mass flow and energy consumption is quadratic
due to the kinetic energy [21].

The airflow provided by the blower consists of a mixture of ambient and cabin air,
which is determined by the control variable rRecirc. The calculations used to determine
the changes in the temperature of the mixed air flows TAir,mix as well as the resulting CO2
concentration xmix,CO2 and water concentration xmix,H2O are shown below [21].

TAir,mix =
rRecirc × cp,1+x,Cbn × TAir,Cabin + (1− rRecirc)× cp,1+x,Amb × TAir,Amb

rRecirc × cp,1+x,Cabin + (1− rRecirc)× cp,1+x,Amb
(9)

xmix,H2O = rRecirc × xAir,Cabin,H2O + (1− rRecirc)× xAmb,H2O (10)

xmix,CO2 = rRecirc × xAir,Cabin,CO2 + (1− rRecirc)× xAmb,CO2 (11)

The specific heat capacity cp,1+x,i the heat capacity of humid and the other parameters
are determined for either the ambient or the cabin proportion of the air flow [21,43]. All
fluid properties for the model were taken from [44] or [45]

In addition, to calculate the values at the evaporator, a distinction was needed be-
tween the case with condensation and the case without condensation. Therefore, no direct
calculation of the resulting temperature was possible. Instead, in the first step, the enthalpy
of the exiting airflow was calculated [43].

hcool,out = hcool,in −
.

Hcool,Max × rCooling
.

m
(12)

The enthalpy of the entering air hcool,in is calculated using the following
general formula [43].

hi = cp,1+x,i × (Ti − T0) + xH2O,i ×H0 (13)

To determine if condensation occurs within the evaporator, the water load of the incoming
stream xH2O,in is compared to the maximal water load at the evaporator outlet xH2O,dew [43].

xH2O,out =

{
xH2O,in if xH2O,in < xH2O,dew
xH2O,dew else

(14)
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Using this relationship, the amount of condensing water can also be calculated. It is
assumed that the liquid water

.
mH2O,liquid instantly leaves the system and can therefore not

be reabsorbed later [43]. The variable xH2O,dew is dependent on the enthalpy at the evapo-
rator outlet. Using lookup tables, a function can be fitted to approximate the relationship
between xH2O,dew and hcool,out [21].

xH2O,dew = a1 × exp(−a2 × hcool,out) + a3 + a4 × hcool,out (15)

The temperature of the airflow leaving the evaporator can now be calculated
with Equation (18) [43].

TAir,Evap = T0 +
hcool,out − xH2O,out ×H0

cp,1+x,i
(16)

After the evaporator, the airflow enters the heater. The temperature changes within
the heater are calculated using Equation (17) [43].

TAir,Heater =

.
hHeating,Max

.
mmax × cp,1+x,Heating

× rHeating + TAir,Evap (17)

The evaporator determines the temperature, the concentrations of CO2, and the
amount of water within the airflow, although they typically do not change during the
heating process. The airflow properties entering the cabin can be calculated using these
calculations. A typical function of the HVAC, which was not implemented in the model
version presented, is an additional mixing chamber after the air heater. Together with
an air bypass, this allows unconditioned air to be mixed with conditioned air and then
enter the cabin. It represents an additional option for achieving the desired humidity and
temperature. However, the elimination of this option does not mean a reduction in possible
applications and was not featured in the HVAC system of the selected target vehicle. For
future applications, this option can be added at any time.

As mentioned before, window fogging shall be prevented at any time. An obstructed
view due to condensation on the windshield is a safety-related issue. Therefore, cabin
humidity must be kept below the critical humidity for condensation on the windshield.
This limit is calculated based on the windshield’s temperature and external boundaries.
The windshield temperature must be calculated using an approximation based on the heat
flow between cabin air and the ambient [21].

For such an evaluation, the windshield heat transfer must be analyzed. As illustrated in
Figure 4, the air flows inside and outside the glass area must be considered. The conductive
heat transfer through the glass itself must also be calculated. For the condensation on the
inside of the windshield, only the inner surface temperature TWin,Internal is relevant. This
temperature can be determined with the following formula [21]:

TWin,Internal =
(αWin,External + λWin)αWin,InternalTAir,Cbn + αExternallλWinTAir,Amb

(αWin,External + λWin)αWin,Internal + αExternalλWin
(18)World Electr. Veh. J. 2024, 15, 224 8 of 17 
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It uses the conductive heat transfer coefficient for glass λWin and the convective
heat transfer at the outside (αWin,External) and the inside (αWin,Internal) of the windshield. To
include the new variable in the optimization, a state variable for the windshield temperature
has to be added to the system dynamics model. After that, the proper boundaries of the
connected airflows must be represented. Therefore, ambient and cabin airflows define the
air velocities inside and outside the windshield. Balancing the heat transfers between the
external and internal air is critical to modeling the temperature of the cabin windshield.
Comparing the internal surface temperature to the dew point limits the humidity to a level
where window fogging is prevented [21].

A more detailed study of the mechanisms behind windshield fogging by Leriche et al. [46]
showed that solar radiation is a significant impact factor. However, the influence of
solar radiation is neglected in this first approximation. This is possible without risking
unexpected condensation since solar radiation can only result in an increased window
temperature compared to no solar radiation. Therefore, solar radiation should be addressed
in this part of the model. The correlations of the windshield temperatures lead to a critical
humidity value, which is then used as a threshold for the MPC strategy [21].

The methods presented here show some adjustments made to account for humidity.
In addition, adaptations to the cost functions and the calibration of the models were also
necessary. In the first step, limitations of the cabin air humidity were introduced to prevent
window fogging. Therefore, the cost function was extended by a term calculating the
difference between the dew point temperature at the current cabin conditions and the
introduced internal windshield temperature. The difference is involved in a cost function
term and calibrated with a scaling factor. As window fogging is relevant to safety, the
scaling factor was initially set to a value that prioritizes humidity reduction quite early.
In addition, an offset to the temperature differences between the dew point and the glass
surface temperature was implemented to have an extra safety margin.

Furthermore, the model was extended by radiant panel heating. It was already
demonstrated in [10] that this can save energy during heating. Therefore, it is necessary to
evaluate the interior comfort separately in addition to the air temperature. This was fulfilled
by the implementation of the equivalent temperature (EQT). The equivalent temperature
can be understood as a theoretical evaluation parameter for thermal comfort in a defined
environment. It describes the perception of a room climate, considering the air temperature,
the effect of radiation, and the air velocity. This is essential to evaluate the influence of
radiant heating on indoor comfort. For this purpose, a mean radiant temperature tmr must
first be determined (19) [47]:

tmr =
4

√
(tsen + 273.15)4 +

hConv
εσSB

(tsen − ta) +
msencp,sen

εσSB A
dt
dτ

(19)

When determining this value, it is important to use a specific sensor and to have
precise knowledge of its properties about radiant (ε) and convective (hConv) heat transfer.
Together with the Stefan–Boltzmann (σSB) constant, the thermal capacity (msencp,sen), and
the surface area (A), such a value can be calculated [47]. The evaluations in [10] show
an example of how such a sensor is constructed and what properties it must have. These
findings were used with existing measurement data to transfer this relationship in the
simulation model.

To determine the equivalent temperature (20), the air velocity (va) inside the cabin and
a clothing factor Icl for the virtual occupants are also required. The latter describes how
well they are insulated against heat transfer. The numerical values for the clothing factor
can be taken from the tables in [48], for example.

teq = 0.55× ta + 0.45× tmr
0.24− 0.75

√
va

1 + Icl
× (36.5− ta) (20)
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All necessary correlations can be found in [47–50]. Implementing the equivalent
temperature to the system dynamics model can also be utilized for the MPC control strategy;
by doing that, the cabin can be conditioned to a targeted perception of the environment
instead of a fixed air temperature. For a more detailed description of the modeling, please
refer to [19,20].

4. Investigations to Determine the Effectiveness of the MPC Approach

This investigation aims to demonstrate the operation of the MPC with humid air. Both
cold and hot ambient conditions were considered. The focus should be on compliance with
the fogging limits and the impact of humidity on energy consumption. For this purpose,
the MPC was compared with a rule-based strategy. The exact boundary conditions are
described below before the results are presented.

4.1. Description of the Rule-Based Control Strategy (RB) Used as the Basis for the Assessment

In [21], an operating strategy was presented based on the current state of the art. It
can deal with the CO2 concentration inside the cabin and adjust the recirculation rate
accordingly. This was used as a basis and implemented for the comparison carried out. The
principles of operation are briefly summarized in the next section.

In the first step, the airflow is controlled based on the deviation of the current cabin
temperature from the desired set point temperature. The smaller the deviation, the lower the
actuation of the cabin blower. However, a minimum airflow is always ensured. Reducing
the air mass flow when the desired temperature is reached ensures stable control. The
baseline control strategy aims to operate the system in recirculation mode as long as
possible. It is possible to vary the recirculation rate between 0.1 and 0.9 continuously. The
maximum value is maintained until the CO2 limit of 1200 ppm is reached. From this point
on, 90% of the air is drawn from the ambient. This means that the system is in fresh air
mode. In this phase, the fan speed is also increased again to improve air quality. After
reaching a lower threshold of 600 ppm, the system switches back to recirculation mode
and resumes the original fan strategy. A PID control ensures the cooling and heating of
the airflow.

4.2. Simulation Results at Cold Ambient Conditions

For cold ambient conditions, a heat-up of the cabin at −10 ◦C was simulated. For the
duration, a period of 3600 s was selected. This equals a drive of two consecutive WLTC
cycles. The desired temperature in the cabin was set to 20 ◦C, and as a target for the CO2
concentration, 1200 ppm was chosen. A deviation from both target values was penalized
by the cost function. The temperature set point was a target value for the equivalent
temperature. The radiant heating panels were not activated for this first investigations. As
additional ambient conditions, a relative humidity of 0.9 and a solar radiation of 0 W/m2

were assumed.
Due to the different nature of the MPC and the RB strategy, it is not possible to ensure

that the same temperature prevails in the interior at all times during the investigation. Both
reached an indoor temperature of 18 ◦C within a short and comparable time. However, it
can be seen that the MPC took longer to overcome the remaining 2 ◦C to reach the control
target. Another aspect that stands out when comparing the temperature signals is that
the MPC always remained slightly below the targeted 20 ◦C (control deviation less than
0.3 ◦C), while the RB approach sometimes exceeded this. This definitely has an influence
on the energy and heating demands for cabin air conditioning. However, due to the
small differences over time and the relatively low remaining control deviation of the MPC,
this is accepted for this study. In future investigations, however, the cost function could
be adjusted to achieve the target temperature more precisely, and additional rule-based
comparison strategies could be used for the evaluation.

Figure 5 shows an overview of the control signals for the cabin blower (black), the
recirculation rate (red), and the heating (blue). The individual signals are normalized to
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their maximum value and given as a percentage. The values of the MPC strategy (MPC)
are shown with solid lines and those of the rule-based strategy (RB) with dashed lines.
When examining the blower behavior, it is apparent that the RB variant reduces the fan
output and therefore the air mass flow earlier, keeping it at a lower level on average. The
recirculation rate for RB is almost always at the maximum value of 0.9, except for the phases
in which the system switches to fresh air mode to improve air quality. These are also the
only phases in which the fan output is increased slightly. In comparison, the MPC keeps
the recirculation rate constant at a very high level. The somewhat higher fan speed ensures
the required air quality. It can also be seen that the MPC generally requires less heating
power. The heating requirement for the RB strategy is significantly higher, particularly
during the fresh air operation phases. Similar observations were also made in [51].
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Figure 5. Comparison of the control signals for a cabin heat-up at −10 ◦C between the MPC and the
RB approach.

The control signals’ observations are confirmed when analyzing the energy demand
for cabin conditioning in Figure 6. It is clear that energy can be saved by using the MPC.
Overall, the savings amount to approximately 15.4%. Although more energy is invested
in the fan’s operation and thus in an increased air mass flow, significant benefits can be
achieved by reducing the cooling requirement.
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Figure 6. Comparison of the energy demand for a cabin heat-up at −10 ◦C between the MPC and the
RB approach.

Figure 7 shows the CO2 concentration curves inside the cabin for both strategies. The
limit (red) can be adhered to by the MPC (blue) and the RB variant (black) for the majority
of the scenario. When the recirculation rate (Figure 5) and the CO2 concentration (Figure 7)
for RB and the MPC are compared, the difference between the two approaches becomes
clear. The maximum for the recirculation rate of the MPC is not limited to 0.9 and goes
up to 1. The CO2 concentration at the start rose faster due to the higher recirculation than
the rule-based approach. After the limit of 1200 ppm was exceeded, the recirculation rate
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remained high for a certain period. After that, the MPC slowly reduced it to fall below the
limit again. The MPC valued the energy costs at the beginning of the heat-up process higher
than maintaining the CO2 limits. This could be adapted by changing the cost function to
meet higher requirements for air quality. Nevertheless, this is not considered efficient, as a
slide overrun of the threshold should be classified as not critical for the passengers [41,52].
The CO2 level for the rule-based approach increased much slower due to the maximum
recirculation rate of 0.9. The fresh air mode was activated as soon as the limit was reached.
The process was repeated multiple times during the simulation.
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Figure 7. Comparison of the CO2 concentration for a cabin heat-up at −10 ◦C between the MPC and
the RB approach.

Due to the low response time of the electric air heaters, the air entering the cabin was
already quite dry at the start of the simulation. Therefore, the humidity remained below the
threshold value, indicating the risk of windshield fogging. In both cases, the humidity in
the cabin was reduced quickly. Therefore, no other actions have to be considered. In other
use cases, it could be observed that the MPC uses active dehumidification to stay below
the humidity threshold. This method is very energy-intensive and only used when other
measures cannot prevent window fogging. The results can also be seen in Figure 8. It can be
noted that the humidity for the MPC application was slightly lower at the beginning of the
simulation. This can be explained by the rule-based approach, obtaining 10% of the airflow
from the environment at the start. The ambient humidity was very high. Therefore, the
humidity inside the cabin also remained higher at this time. This effect could be neglected
if the upper limit for the rule-based approach could also be set to 1. For more critical
boundary conditions, this could lead to an increased risk of windshield fogging.
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Figure 8. Humidity inside the cabin and upper humidity limit for a cabin heat-up at −10 ◦C.

4.3. Simulation Results at Hot Ambient Conditions

For hot conditions, an ambient temperature of 35 ◦C, relative humidity of 0.4, and
solar radiation of 800 W/m2 were chosen. All additional settings and boundaries were kept
unchanged compared to the cold conditions. Once again, both control approaches could
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condition the cabin to the desired target temperature comparably quickly. The average
control deviation required was below 0.3 ◦C for both methods. The differences between
the indoor temperatures during the conditioning phase can also be identified for the hot
scenario. However, these are even smaller than in the heating operation and are therefore
also accepted for this publication.

Figure 9 shows the control signals for the control-based approach (RB) and the MPC
for the cabin cooling process at 35 ◦C outside temperature. Similar to the cabin’s heating, it
is clear that the MPC approach used a higher fan speed. However, this was accompanied
by a constantly higher recirculation rate, resulting in a lower power requirement for cabin
cooling. Once again, it is noticeable that the cooling demand for RB rose sharply during the
fresh air operation phase. As these tended to become longer in the course of the simulation,
they had a significant effect on the system behavior.
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Figure 9. Comparison of the control signals for a cabin cool-down at 35 ◦C between the MPC and the
RB approach.

This is also reflected in the energy demands for cabin air conditioning, illustrated in
Figure 10. The MPC also used an increased air mass flow and a higher average recirculation
rate for hot ambient temperatures to reduce the energy requirement. The simulation
identified a savings potential of 37.9%.

World Electr. Veh. J. 2024, 15, 224 13 of 17 
 

 
Figure 9. Comparison of the control signals for a cabin cool-down at 35 °C between the MPC and 
the RB approach. 

This is also reflected in the energy demands for cabin air conditioning, illustrated in 
Figure 10. The MPC also used an increased air mass flow and a higher average recircula-
tion rate for hot ambient temperatures to reduce the energy requirement. The simulation 
identified a savings potential of 37.9%. 

 
Figure 10. Comparison of the energy demand for a cabin cool-down at 35 °C between the MPC and 
the RB approach. 

Figure 11 shows the CO2 concentration for the MPC (blue) and the rule-based ap-
proach (black) in comparison to the limitation (red). Observing the CO2 concentration and 
the respective recirculation rates presented in Figure 9, it becomes evident that the rule-
based approach is forced to switch to fresh air mode more often than for cold conditions. 
This is an additional reason for the additional energy demand for the cabin’s heating. 
Nevertheless, both strategies are capable of maintaining the limitation for the air quality 
at any time.  

0 %

50 %

100 %

150 %

0 600 1200 1800 2400 3000 3600C
on

tr
ol

 S
ig

na
l /

 -

Time / s

Blower MPC Recirc MPC Cooling MPC

Blower RB Recirc RB Cooling RB

0.0

0.5

1.0

1.5

2.0

2.5

MPC RBEn
er

gy
 D

em
an

d 
/ k

W
h

Blower Cooling

Figure 10. Comparison of the energy demand for a cabin cool-down at 35 ◦C between the MPC and
the RB approach.

Figure 11 shows the CO2 concentration for the MPC (blue) and the rule-based approach
(black) in comparison to the limitation (red). Observing the CO2 concentration and the
respective recirculation rates presented in Figure 9, it becomes evident that the rule-based
approach is forced to switch to fresh air mode more often than for cold conditions. This is an
additional reason for the additional energy demand for the cabin’s heating. Nevertheless,
both strategies are capable of maintaining the limitation for the air quality at any time.
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Figure 11. Comparison of the CO2 concentration for a cabin cool-down at 35 ◦C between the MPC
and the RB approach.

When looking at the humidity (Figure 12), the threshold values for preventing wind-
shield fogging cannot be seen, as they are higher than 1. This seems unconvincing at
first sight, as the relative humidity is limited to 1. The values must be interpreted as a
theoretical representation of the limit value. It symbolizes that the humidity must theo-
retically exceed one at the given windshield temperature to cause window fogging. That
means it is practically impossible to have window fogging at this status because of the
high windshield temperature. In addition, it can be observed that the humidity inside the
cabin increases every time the fresh air mode is engaged. Although this does not impact
the windshield fogging for the investigated use case, it could be an issue for scenarios with
more passengers or critical ambient conditions.

World Electr. Veh. J. 2024, 15, 224 14 of 17 
 

 
Figure 11. Comparison of the CO2 concentration for a cabin cool-down at 35 °C between the MPC 
and the RB approach. 

When looking at the humidity (Figure 12), the threshold values for preventing wind-
shield fogging cannot be seen, as they are higher than 1. This seems unconvincing at first 
sight, as the relative humidity is limited to 1. The values must be interpreted as a theoret-
ical representation of the limit value. It symbolizes that the humidity must theoretically 
exceed one at the given windshield temperature to cause window fogging. That means it 
is practically impossible to have window fogging at this status because of the high wind-
shield temperature. In addition, it can be observed that the humidity inside the cabin in-
creases every time the fresh air mode is engaged. Although this does not impact the wind-
shield fogging for the investigated use case, it could be an issue for scenarios with more 
passengers or critical ambient conditions.  

 
Figure 12. Humidity inside the cabin and upper humidity limit for a cabin cool-down at 35 °C. 

5. Summary and Outlook 
This paper presented a model predictive approach for the cabin conditioning of 

BEVs. The focus was on considering the air humidity in the control strategy and prevent-
ing windshield fogging. The necessary steps to change the existing system dynamics 
model were explained. The changes to the calculations within the air path and the imple-
mentation of the windshield area as an indication of the risk for window fogging were 
discussed in detail. It was shown that it is possible to include the air humidity appropri-
ately and thus add a safety level for optimizing the control strategy for cabin conditioning. 
Also, the impact of air humidity on the energy demand was examined. In the presented 
MiL investigations, energy-saving potentials of up to 15.4% for cold and 37.9% for hot 
ambient conditions were achieved.  

0

500

1000

1500

0 600 1200 1800 2400 3000 3600
C

O
2-C

on
ce

nt
ra

tio
n 

/ p
pm

Time / s

CO2 Limit CO2 MPC CO2 RB

0.0
0.2
0.4
0.6
0.8
1.0

0 600 1200 1800 2400 3000 3600

H
um

id
ity

 / 
-

Time / s

RB Humidity RB Humidity Threshhold

MPC Humidity Threshhold MPC Humidity
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5. Summary and Outlook

This paper presented a model predictive approach for the cabin conditioning of BEVs.
The focus was on considering the air humidity in the control strategy and preventing
windshield fogging. The necessary steps to change the existing system dynamics model
were explained. The changes to the calculations within the air path and the implementation
of the windshield area as an indication of the risk for window fogging were discussed
in detail. It was shown that it is possible to include the air humidity appropriately and
thus add a safety level for optimizing the control strategy for cabin conditioning. Also,
the impact of air humidity on the energy demand was examined. In the presented MiL
investigations, energy-saving potentials of up to 15.4% for cold and 37.9% for hot ambient
conditions were achieved.

The presented findings show that the use of an MPC control strategy has a positive
effect on the energy consumption of the cabin air conditioning and the thermal comfort in
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the passenger compartment. By using external information sources for the control strategies,
future BEVs can benefit from the growing connectivity. Particularly in the important area
of thermal management, MPC strategies can generate an increase in driving range, which
can contribute to improving the acceptance of electric mobility.

Future studies should therefore be extended to other areas of thermal management,
such as battery conditioning or the operation of complex heat pumps, in order to identify
further energy-saving potential. The growing possibilities for creating powerful and fast-
calculating models through the advance of machine learning and other methods could be
further levers for potentiating the effectiveness of MPC in the future.
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Abstract: In this paper, we present an approach to the price-optimized charging of electric vehicles
(EVs) based on energy flexibility. Fleet operators determine the minimum and the maximum power
demand to charge EVs at a specific time and share this information as so-called power corridors
(PCs) with an energy aggregator. The energy aggregator collects the predicted PCs from the fleet
operators located in the same market area and aggregates the PCs. The energy provider periodically
sends energy prices from the market to the energy aggregator, which purchases energy when its price
is opportune. The energy aggregator calculates and delivers charge plans for each fleet operator
involved and thus can pass along the purchase prices. The incentive design must ensure that fleet
operators are better off by disclosing their flexibility data to the aggregator. This study can contribute
to a new data-driven energy market communication system by providing insights on how to leverage
the energy flexibility that EVs can offer to the energy system.

Keywords: EV; energy; optimization; smart charging; aggregator; flexibility

1. Introduction

In 2020, the road transport sector was responsible for 11.9% of greenhouse gas emis-
sions worldwide [1]. To combat human-made climate change, a reduction in these emissions
is urgently necessary. One possible strategy to reduce these emissions is the electrification
of this sector, resulting in a yearly electrical energy demand of several hundred GWh in
Europe [2]. Due to the generally high idle times of passenger cars, this total demand can
be flexibly shifted. The charging processes can be scheduled when energy from volatile,
renewable energy sources is available or when electricity prices are low. However, the
question remains of how this can be implemented in practice. The major challenges are the
determination of energy flexibility that fleet operators can offer and the optimization of
the EV charging process according to the objective. Current research shows that existing
policies of many countries prevent innovative approaches for flexibility trading [3]. Smart
charging, i.e., advancing charging processes to times when electricity prices are low or
renewable energy is available, is a common approach to running managed charging infras-
tructures. There are publications that examine smart charging on a theoretical [4–6] and
practical basis [7]. The authors of [5] predict potential cost savings of 200 EUR/EV/year if
smart charging based on variable prices is applied. Approaches to avoid over-coordination
and herding effects have been discussed in the literature on price-based EV charging coor-
dination [8]. One such approach, proposed by [9], involves spatial price differentiation to
effectively incorporate distribution grid limitations into charging schedules. Another study
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by [10] emphasizes potential cost savings achieved by smart EV charging and the ability to
feed energy back into the power grid (vehicle to grid, V2G). Various research projects have
been working on the aggregation of vehicle fleets’ energy consumption to charge them in a
price-optimized way. The projects BDL and LamA in Germany can be mentioned [11] as
examples. V2X Suisse is another example project in Switzerland [12]. Apart from research
institutions, various companies are working on the development of commercial solutions
for smart charging. Octopus Energy, for example, has implemented smart charging based
on variable electricity tariffs for its customers in the UK using its platform Kraken [13]. The
company enel X developed a platform-based solution for smart charging [14]. However,
the aggregation process used by these companies is not transparent, and the solutions are
proprietary. Open systems are not in the focus of related work.

This paper shows how power demand aggregation can be achieved and how it can be
implemented independently of proprietary systems. Improving electrical fleet performance
requires a clear objective and measurable variables. The concept of flexibility in general
is considered domain-specific and thus difficult to define. In the case when systems
should adapt to an external environment, like in our case, adapting the EV fleet to the
price of energy, they can adapt better if the variables include flexibility in one or more
dimensions [15].

Energy flexibility in our paper is considered as the possibility to adapt the power
demand over time. Other definitions for energy flexibility are characterized by static
approaches, considering the composition of parameters at a given time instant [16]. Ap-
proaches toward a dynamic flexibility function to control demand with penalty signals [15]
are a common way to influence consumption behavior and propagate the paradigm shift
toward a demand control energy system. The critics argue that penalty-based flexibility in-
dexes depend on the interpretation of the energy providers. These improve their objectives
with regard to CO2 emissions or real-time prices without considering the actual amount of
energy demanded by the consumers. Our approach presented in this paper is based on
a bidirectional communication and data exchange between fleet operators, energy aggre-
gators, and energy providers. Based on the information that the energy provider receives
from energy suppliers and the grid operators, like market energy prices and grid peak
times, the aggregated energy orders are being optimized. The goal is to better manage the
overall energy and power demand of fleet operators by actively reacting to day-ahead and
intraday market prices. This is realized by increasing and decreasing the fleet consumption
over the day by controlling the individual charging sessions attuned. The availability of
data is the key enabler for our approach to improve power-corridor predictions and the
basis for a level playing field for exchanging flexible services between EV fleet operators
and energy providers. Our research focuses on the utilization of information to improve
the charging processes and costs of commercial EV fleet operators. For this purpose, we
address the following research questions:

• What is the optimized usage of EVs in different scenarios like company fleets or
rental fleets?

• How can our definition of the power corridor help optimize the energy consumption
of EV fleets?

• What are the processes and algorithms required to aggregate and monetize flexible
loads of EV fleets?

• What data need to be made available and by whom to feed the algorithms?
• What is required so that our results have an impact on the existing energy landscape?

2. Materials and Methods
2.1. Project Setup

A major goal of the project “TRADE EVs II” was to define a framework for addressing
the above-mentioned questions. The project, with a duration of three years, was initiated
by Elektrizitätswerke Schönau (EWS), Forschungsstelle für Energiewirtschaft e.V. (FFE),
nextmove, and SAP in 2021. It involved three fleets with more than 400 EVs driven by
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employees of the project partners. The project built on the experience and results gained
in the predecessor project, “TRADE EVs I” (TRADE EVs I, funding code: 01MX16002C),
in which a charge schedule heuristic was deployed to optimize energy consumption [16]
and a charging system prototype based on Open E-Mobility [17] was set up. TRADE
EVs II extends the setup with an energy–flexibility aggregation system to establish the
demand-side management for EV charging. In the project, we assessed two approaches for
capturing EV data: the hardware-based approach used onboard units, and the software-
based solution utilized telemetry services. Based on the accessible EV data, the charging
system calculates the energy demand within the respective charging period. The data
points considered are, for example, the state-of-charge (SoC), the battery model, and the
charging priority of EVs.

The project was divided into two main work-streams called Concept and Application,
as shown in Figure 1. The conceptual work started with the definition of use cases for
controlled charging. The focus was thereby set on the use case of spot-market-optimized
charging, in which charging processes are influenced by the current electricity spot-market
prices. Subsequently, the concept was extended by integrating it with day-ahead markets,
which resulted in the design of an aggregation algorithm and the interfaces required to
establish a market communication process.

Figure 1. Sequence of project steps.

The application workstream started with the collection of charging data from the
participating EVs. We developed a method to determine the flexibility of energy and
power consumption of the EV fleets, which we termed “power corridor”. In addition, we
developed an algorithm to aggregate data about energy demand from different fleets and
EV charging sites and to exchange price-related information.

2.2. Definitions and Basics

We assume that only the unidirectional charging of EVs is possible in the system.
Hence, the power demand P ≥ 0 holds at any point in time and energy consumption E ≥ 0
for any time interval. For the mathematical modeling, we introduce the specific terms
“power corridor” PC, “energy segment” ES, and “energy demand” ED. The charging
system C can serve n (nϵN) electrical vehicles at the maximum (e.g., limited by the number
of installed connectors). Accordingly, at any point of time t, kt (0 ≤ kt ≤ n | ktϵZ) vehicles
are supposedly connected. For example, in practice, it could be of interest to know or
predict the number of charging EVs at C every 15 min. The connected (i.e., charging)
vehicles are denoted as vi (i ≤ k | iϵN).

Pmin
t is the minimum power required by C to charge all connected EVs at time t

(Equation (1)). Pausing/stopping all charging sessions at time t is equal to Pt
min = 0 kW.

Note that in practice, unused charging stations, e.g., while in stand-by-mode, could still
draw power and consume energy:

Pmin
t = ∑k

i=1Pvi
t |min

(
Pt

vi

)
. (1)
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Pmax
t ≥ Pmin

t is the maximum power that can be consumed by C while charging all
connected vehicles at time t (Equation (2)). Note that Pmax

t can basically be limited by
the connected EVs’ aggregated maximum power demand to charge batteries but also by
infrastructure restrictions at C, such as transformer capacity, fuse hierarchies, etc.

Pmax
t = ∑k

i=1Pvi
t |max

(
Pt

vi

)
. (2)

The power corridor PCt is defined as a set of tuples that contain the maximal con-
sumption power Pmax

t and the minimum required power Pmin
t of C at specific points in

time (Equation (3)):

PCt = (Pmin
t, Pmax

t). (3)

The energy segment ES is defined as the maximum amount of energy, given the
maximum and minimum power over time, Pt

max and Pt
min, that can be consumed within

the time interval ts (start) and te (end):

ES =
∫ te

ts
Pmax

t − Pmin
tdt , ES ∈ R+

0 . (4)

The energy demand EDvi foreseen for vehicle vi is defined as the difference between
the required SoC at departure SoCreq and the initial SoC upon arrival SoCstart within the
time interval from connecting tsi and disconnecting tei the vehicle vi. Note that the SoC is
measured in kWh:

EDvi = (SoCte i
req − SoCts i

start). (5)

The total energy demand ED of the charging infrastructure C within the time interval
[ts, te] is calculated as the accumulated demands EDvi of the vehicles vi that are connected
to C:

ED =
k

∑
i=1

EDvi | tsi, tei ∈ [ts, te]. (6)

Figure 2 shows an example power corridor for charging a single EV. The EV is expected
to be connected to the charging system between start time ts and end time te. Within this
time range, the required amount of energy for charging can be consumed, depicted as
“Energy Demand” (in green). The illustrated power corridor defines boundaries of power
that can be drawn by the EV during its stay. As the exemplary corridor has static Pmin and
Pmax values at each point of time, the energy segment (in blue) has the shape of a regular
rectangle. This would allow the fleet operator to delay (shift) the start of actual charging,
as shown in Figure 2, depending on, e.g., the actual price of energy.

Power

Time

Pmax

Pmin
ts te

Energy Demand

Power
Corridor

Energy
Segment

Car
connects

Car
disconnectsstart SoC required

SoC

Figure 2. Schematic illustration of a power corridor. The power demand for charging the EV’s
battery starting by SoCstart to the required SoCreq level can be set between Pmin and Pmax within the
time interval ts and disconnection te of the EV.
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As shown in Equation (7), the amount of demanded energy ED of C must be between 0
and ES for any time interval of interest. Otherwise, the charging demand cannot be fulfilled.

0 ≤ ED ≤ ES f or [ts, te]. (7)

Based on (predicted or otherwise known) ES and ED values in a given scenario and
situation, we consider the operator’s Flexibility F of shifting demand as

F =

{
ES−ED

ES if ES ̸= 0
0 if ES = 0∨ ED = 0.

(8)

Accordingly, F = 0 if ED = ES holds. The flexibility is increasing if

0 < ED ∧ ED < ES −→ F > 0 f or [ts, te]. (9)

Table 1 shows two example calculations of two energy demands, ED1 and ED2,
distributed over a seven-hour energy segment ES, accumulated from ESt for each hour.
The power of the charging sessions can be adapted dynamically. In both cases, the energy
segment is ES = 104 kWh. In case F = 0, the power limit 30 kW of the infrastructure is the
restricting factor at t = 3 and t = 4, so F = 0 because ES < ED. In the case F = 0.33, the
energy demand EDvi of the vehicles vi is lower, so ED < ES applies.

Table 1. Example illustration of two cases of how flexibility is calculated based on the given PC [Pmin,
Pmax] in kW, energy segment ES in kWh, two different energy demands ED1 and ED2 in kWh, and
flexibility F. The infrastructure has a power limit of 30 kW.

Time ES ED1 ED2
PCt

vi 1 2 3 4 5 6 7 F = 0 F = 0.33
PCt

v1 [0, 0] [0, 0] [11, 11] [11, 11] [11, 11] [0, 11] [0, 11] 44 34
PCt

v2 [0, 0] [0, 11] [0, 11] [0, 11] [0, 11] [0, 0] [0, 0] 30 20
PCt

v3 [0, 11] [0, 11] [0, 11] [0, 11] [0, 0] [0, 0] [0, 0] 30 16
PCt [0, 11] [0, 22] [11, 30] [11, 30] [11, 22] [0, 11] [0, 11]
ESt 11 22 19 19 11 11 11 104 104 70

Energy segments ES forecasted with long timeframes hence hold a larger flexibility
potential than ES with short timeframes and might be of substantial value for energy
providers to realize demand-side management. The interface for exchanging this flexibility
information is the precondition to create insights into how charging can be improved to
save costs by grid-friendly operation.

Equations (7)–(9) are valid under the conditions that P, ED, ES ≥ 0. By including
renewable energy sources and bidirectional charging into the mathematical model, there is
also the negative flexibility case imaginable if the energy demand is ED < 0:

0 > ED ∧ ED > −ES −→ F > 0 f or [ts, te], (10)

PC = −ED ∨ ED = −ES −→ F = 0 f or [ts, te]. (11)

Other definitions of energy flexibility focus on the responsiveness of consumer behav-
ior to signals like CO2 intensity or the energy price. For example, they define a dynamic
flexibility function to evaluate consumer behavior and how they react to the real-time
energy situation. The calculated flexibility index can be used to apply penalties to influence
the behavior of the consumers [15]. Our approach, in contrast, focuses on the transparent
communication of energy demands and the power consumption the fleet operators are able
to adjust for time. This enables the energy provider to allocate and plan the consumption
and allows the aggregated fleets to receive the demanded power and energy by adapting
consumption plans within their self-defined possibilities.
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2.3. Challenges

Besides difficulties in predicting a fleet’s energy consumption, the forecasting of
local energy supply—especially for renewable energies—comes with challenges as well.
This is partly due to analog measuring technology (missing digital data) and weather
influences on energy generation. On the other hand, it is also due to static electricity
tariffs, which cannot reflect the share of renewables and conceal information about the
consumed energy. Providing dynamic tariffs can motivate fleet operators to shift demands
and improve the sustainable charging behavior of self-interested charge point operators.
In our setup, fleet operators need to specify the extent to which their power demand is
defined with the PC, and the energy demand ED for the EVs. This holds another challenge
because rational participants cannot be expected to prioritize the performance of the system
over their own interests. Therefore, it is crucial to establish incentives that encourage
the revelation and provision of flexibility among the participants. The incentive design
must ensure that all are better off by disclosing their flexibility data, which means that
they should receive benefits for revealing their information compared to withholding it.
This allows the participants to adapt their behavior more flexibly while maximizing their
utility. Ultimately, to ensure everyone’s participation in the mechanism, it is essential to
guarantee individual rationality, as well as the appropriate incentive and coordination
mechanisms [15]. Data availability is the basis for improving the forecasting quality of
the PC, as seen in the manufacturing industry, wherever even minor process adjustments
can generate substantial value [18]. Slight variations in the power system’s flexibility can
also have a significant impact on economic results. To make the most of this flexibility, it is
essential to have a clear understanding of the available flexibility resources.

2.4. Implementation Approach

Addressing the challenges according to flexible energy demand, we evaluate three
different controlling scenarios, one for each of the three fleet types, small company fleet,
rental car fleet, and large company fleet. All scenarios interact with the central aggregation
system. The aggregator system transfers information between consumption facilities,
generation facilities, and authorized market partners to generate value via the deliberate
placement of energy purchase orders influenced by the different interests of the actors.
Figure 3 shows the flow of actions that are conducted on a daily basis. The value is
generated by the allocation of the forecasted energy demand within the flexible time range
of the three consumers. With the incentive to charge when energy prices are low, the overall
energy costs should be lowered.

In the first scenario, a smaller fleet with 15 EVs of the German energy provider EWS is
involved. The EVs can use 10 AC charging points located at a company parking space. Each
charge point (CP) is managed solely by its charging controller, which only communicates
with the charging EV. In this scenario, the total load is set by the consumption of the EVs
connected to the charging stations onsite. The forecast of the demanded charging energy at
the site is trained based on the consumption data from the EV charging sessions on a daily
basis. The prediction functions were continuously applied to increase the overall accuracy
of the charging forecasts, for example, if new charging points and EVs are connected. EV
drivers are aware that the charging session can be shifted to different timeslots during the
parking period to avoid charging during price peaks.

The second scenario is the load-management scenario at nextmove, which has imple-
mented peak shaving to operate more charge points in sequence than would be possible in
parallel. The limitation of the connected load and local energy shortages have also been
considered. The nextmove dataset has been provided from a rental fleet that contains
320 EVs of different usage types, such as business, private, and test drives. Currently, the
fleet consists of 245 midsize battery EVs (35 kWh up to 64 kWh) and 75 large battery EVs (up
to 120 kWh). The journeys were planable, and especially the business customers used the
cars for frequent traveling. Most drivers use the rental to test an EV before buying it, which
includes pushing it to its limits. For example, we observed that at the beginning of the
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rental period the SoC is much lower when the first charging session starts compared to the
other charging sessions for the rest of the rental period. Within this scenario, we conducted
experiments with push notifications and suggested charging when energy prices were low.
In return, the EV drivers received a discount per kWh for their charging session. Wherever
possible, in-car data have been used for the charging power prediction of individual cars.
In the next step, these data were combined for several locations equipped with nextmove
charging sites to calculate the energy demand for day-ahead activities. The rental station
charging sites were already operated with a load management system to reflect the local
grid’s limitations and to adapt to the charging schedule received from the aggregator.
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Figure 3. Flow chart of the solution approach per phase and actor of the demonstrator.

The third scenario at SAP is a smart-grid scenario, which integrates information from
the local grid to actively steer the total consumption of a charging system with 81 installed
charge points [17] serving 400 long-range employee EVs. This scenario integrates informa-
tion from the local energy management system, which controls onsite photovoltaic (PV)
and battery storage. Every 15 min, an optimization of the local consumption is triggered
by a heuristic-based optimization model to minimize peak demand, load imbalance, and
electricity costs [16]. The functionality to minimize the cost of electricity considers the
availability of onsite photovoltaic energy generation as a complementary energy source
but does not integrate external energy prices yet. This function requires additional data
about fine-grained energy prices from the aggregator, which is planned as a prospective
feature. The entire site can offer, by a simple estimation, a flexible energy potential from
+20% to −20% of the planned fleet consumption (limited by the maximum allowed load of
the site, 680 kW). The total charging capacity of all charge points is 1020 kW. Therefore, the
infrastructure is always operated according to the site’s maximal load. Additional local PV
generation of 80 kWp and a 150 kWh stationary battery offer additional flexibility. Figure 4
shows a single charging plan for an EV, which is created by the optimizer to reduce the
peak load in the grid at the SAP site.
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Figure 4. Definition of a CP charging plan based on the charging optimizer of a changing system. The
CP charging plan provides the power limitation per charge point for every minute of the charging
session. The actual power drawn from the EV for charging the battery is below the limitation.

For the implementation of the charging systems, we use open-source software [17].
All software systems are deployed as containerized applications on web services. The user
interfaces are realized as desktop web applications, and there is also a mobile app for EV
drivers. Each system runs independently of the other systems with separate persistence
and application layers, therefore we are following decentralized architecture principles,
which allows more specific conversions into marketable solutions.

2.5. Data Access for Optimization Data

Three different interfaces have been used by the fleet operators during the project
to access real-time information from the charging sessions. Figure 5 shows the interfaces
implemented for the charging system.

Aggregator kennt die Flex Korridore 
Aggregator kennt den Retailer Price

Fleet Operators

Charging Systems aggregieren 
den Bedarf

Retailer gibt Preise für Energiemengen aus

Charging 
System

EV Onboard Unit by Nextmove 

Charger Infrastructure Interface 
by SAP and EWS

OEM EV Data 
Integration via 

Telemetry
Statisch / dynamisch : Florian

• Data Collection
• Charging Control

Figure 5. Different interfaces that are evaluated to access real-time charging session information.

2.5.1. Operations Based on Charge Point Data

All three scenarios use the open charge point protocol (OCPP) version 1.6. to exchange
charging parameters for authentication and real-time charging session information to
deploy charge plans. With data augmentation from an EV database and a user database,
heuristical optimization problems like prioritization and the load management of charging
sessions are implemented in the charging system [7,16]. The charge point data source is the
basic data source for the charging systems in all three scenarios.
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2.5.2. Hardware-Based Onboard Units for Real-Time Data

The onboard unit used for the project consists of a transmitter module using onboard
diagnostics (OBD) as a data interface. During the project the onboard units support 51
different EV models from nextmove for real-time monitoring. The transmitter was imple-
mented to be capable of obtaining over-the-air updates from the monitoring backend via
its mobile connection to access the EV data interface. The price estimate for the developed
onboard unit is approximately EUR 450 plus an additional data plan for connectivity. Due
to firmware updates in the EV regarding in-car energy management, it was necessary to
update during the project 300 units over-the-air. The availability of in-car real-time data
depends on the car’s state to prevent potential vampire losses during parking periods.

2.5.3. Software-Based Telematic Services for Real-Time Data

The enabling technology for software-based EV data access was realized with a teleme-
try service providing integration into the cloud services of the EV manufacturer for pro-
cessing SoC information in real time. EV drivers from the SAP site in Mougins/France
provided their consent for using the charging data for research purposes. For a yearly fee
of EUR 60 per car, the service can be used without any hardware dependencies. Figure 6
shows a charging session with real-time optimization considering the SoC is provided by a
telemetry service.

Figure 6. Example of a charging session in the demonstration charging system of SAP [17]. An
increasing state of charge lowers the power consumption, and at 80%, the charging session ends.

3. Results

In this chapter, we detail the results of our experimental system setup. First, we outline
the system architecture. Afterward, we present the evaluation process and describe the
usage of EVs within the project.

3.1. System Architecture

The system mainly serves the needs of three types of entities called “fleet operator”,
“aggregator”, and “energy provider”. Each of these has its responsibilities and tasks. The
architecture of the demonstrator in Figure 7 shows the entities’ connected systems in
a cascading pattern. Each fleet operator runs a charging system to control the energy
consumption based on the charge plan for the own EV fleet. The aggregator operates
an aggregation system that accumulates the demands from the connected fleet operators
and communicates the aggregated flexible loads to the energy provider. In the trading
system of the energy provider, the respective purchase orders are created and placed in the
energy market.
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Figure 7. High-level architecture and main information flows between the involved roles within the
demonstrator system.

Fleet operators have the task of charging the EVs of the users in an acceptable time
while minimizing the cost of charging by considering CO2 emissions, energy prices, and
the local infrastructure situation. For the experimental setup, the fleet operators are obliged
to share their flexible energy demand and corresponding power corridors in a given
timeframe with the energy aggregator. In exchange, the fleet operator receives an EV
charging plan from the energy provider, which is cost-optimized. This incentives the
fleet operators to adapt the charging sessions of their fleets. The energy provider has
the task of aggregating the power corridors and identifying the energy demand of the
affected segments. On the energy provider level, the estimated power corridors received
from the connected fleet operators are aggregated. Here, the aggregation includes the
summation of power maxima and minima, as well as energy demands over the respective
periods of time. Furthermore, the aggregation system generates a consistent view of
flexibility originating from fleet operators, including slicing of energy demand segments
appropriately (which may potentially overlap in different source fleets) and feasibility
checking. A technical interface offers aggregated flexibility potentials to the trading system
for corresponding procurement on electricity spot markets. According to the flexible energy
demand, the trading system finally identifies current price levels and shifts the demand
within the flexible range to make the best procurement decision. The best ordering decision
is determined by input parameters, such as the current energy price, the grid capacity, and
the situation of the charging systems, which are encoded in the aggregated representation
of the received power corridors. The result of a procurement decision is a set of orders
to be placed on the market and, in response, a set of transactions (trades) executed. All
transactions on the market referring to the energy demand are ultimately composed into
a schedule, which includes all the charge plans for the fleet operators. For each time slot
(typically 15 min), the charge plans contain the total power to be delivered to the fleet
operators. After obtaining the pool schedule from the trading system, the aggregation
system disaggregates the pool charge plans according to the individual fleet operators’
power corridors and energy demands. Herein, the result is a separate charge plan for each
fleet operator, which will be propagated to the charging systems. In the next step, the
energy provider will also be able to receive real-time consumption data from the charging
systems to react to unforeseen changes in consumption, either by shifting loads between
fleet operators or placing short-term order decisions on the intraday energy spot market.
This mechanism helps minimize the imbalance (i.e., the mismatch between actual energy
consumption and the charge plan backed by trades on the market), which would otherwise
result in higher overall energy costs. Figure 8 shows an overview of the aggregation,
trading, and disaggregation processes. The diagrams show the fleet charging power on the
y-axis and the time on the x-axis. Summing up the flexible fleet demands results in the total
energy demand of the aggregator (in green). Pmin and Pmax display the limits of power
consumption that the fleet operators communicate to the aggregator. Based on the price
signal and grid power peak information provided by the energy provider, the aggregator
creates the price-optimized energy purchase orders according to the communicated power
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corridors (light blue). From the accumulated ordered energy, the charge plans for the fleet
operators (black lines) are being disaggregated and sent to the fleet operators.

Figure 8. Energy aggregation process. The energy demand is aggregated to place purchasing orders,
preferably at times with low prices and no peak loads. The disaggregation considers the minimum
and maximum power values communicated by the fleet operators’ charging systems.

3.2. Evaluation

The assessment of the implemented system is organized in three steps. The initial step
focuses on testing the charging optimization for EVs to align with the local circumstances
of the charging systems. The second step involves the collection of data from the charging
systems, which will facilitate the forecast and the creation of a power corridor that is
realistic to the EV fleet consumption toward the placement of an aggregated energy order
in the energy market. In the third step, the breakdown of the centrally ordered energy
quantity with real-time allocation processes for flexible demands is outlined. The first
evaluation is the optimized usage of EVs in different scenarios depending on the usage of
the EVs. In a large-company scenario (SAP), the EVs are regularly available, which leads
to similar daily load profiles. For the rental-fleet scenario (next move), the fluctuation of
the created monetary value by smart charging depends on the rental behavior and the
battery size of the EVs, which are connected to the CPs onsite. For example, groups of
transporter EVs are sometimes booked by customers for several weeks and are therefore
not available for optimization of the fleet’s charge plans. When the EV transporters are
returned to the site again, this increases the flexibility of the load profile of the charging
system significantly compared to proportionally more passenger EVs charging. Second,
our definition of the power corridor allows the purchase of energy for fleet operators in
the day-ahead market. Due to the day-ahead charging plan for the fleets, more market
transparency can be provided and the aggregator has the possibility to place additional
orders on the intraday market. The data created throughout the aggregation processes
being evaluated and first simulations show the value of this approach [19]. Third, the
algorithms and data required for aggregation and monetization of flexible loads are field-
tested. The aggregation algorithm aggregates the data of the fleet consumption forecasts.
The algorithm optimizes energy purchasing according to low-cost energy segments and
peak windows in the power grid, and the disaggregation algorithm [19] that creates the
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charge plans for the fleets by calculating the amount of required power to serve the planned
fleet demand. Finally, we proposed an overall approach that is already under more specific
evaluations by other means and projects from [11–14].

3.3. Discussion

Optimizing the energy consumption of EV charging systems is not a trivial task. The
difference between the grid limit and the grid power in Figure 6 shows that EVs do not
simply charge up to the power of the assigned charge profile. Instead, each EV has its
power plateaus on which it charges. These power plateaus, which are vehicle-model-
dependent, are considered in the optimizer of the large-company scenario [7]. However,
the power plateaus were not implemented in the rental-fleet and small-company scenarios.
The differences in power plateaus allow the classification of EVs into three categories: small
(with less than 35 kWh battery capacity), standard (35 kWh up to 64 kWh), and long-range
(up to 120 kWh). These categories allow the further analysis of different consumption
patterns. Further data analysis shows interdependencies with charge point models, car
types, and real-time data to improve the optimization capabilities of the system. To identify
the reasons for these different patterns, a survey has been conducted. Based on the test
scenarios to forecast the flexible energy demand, customers have been surveyed on how
their behavior affects the charging processes. The clustering of the data showed that
most EV drivers picked the car to fit their driving scheme. The interview questions were
as follows:

• Where is your main location to charge your EV?
• To what extend is your charging behavior affected by energy prices?

The analysis of the results shows that smaller EVs charge up to 80% at home, while
standard EVs charge only up to 60% and long-range EV only up to 40% at home. According
to these results, long-range EVs are the most relevant EVs for aggregation purposes at
charging sites. However, most long-range EV users are not interested in electrical cost
optimization at all because they do not need to charge offsite from home. These drivers are
often business users and are triggered only by their individual charge demands, which the
company pays. They usually use high-performance chargers during travel. The drivers of
smaller EVs, on the other hand, are permanently looking for the next charging opportunity.
This user group is really interested in the incentives a charging shift would offer them on
a daily basis. But the greatest potential is among the standard EV users, which can delay
a charging session to the next day. They have a larger battery but still connect often to
the grid. Their battery size allows them to dynamically change their charging behavior, if
there is a sufficient incentive available. This promises a potential field for development to
provide end-user services and products offering optimized energy flexibility.

4. Conclusions

Our approach provides a framework that holds clearly defined areas of optimization
for each in our research participating role: “fleet-operator”, “aggregator”, and “energy
provider”. Data availability has been identified as the limiting factor during the project
to create substantial value from the data. The evaluation is performed based on the data
transmitted from three charging systems which cover the presented scenarios: “small
company fleet”, “rental fleet”, and “large company fleet”. Data collection was implemented
via OCPP, which provided 40,000 charging sessions over the last three years. We could
record 8200 charging sessions that were optimized with SoC information that was gathered
from OBD devices or telemetry services. Even when applying the load profile from the day
ahead as an estimation of the power corridor, the purchase decisions of energy could already
be improved by the aggregator by considering peak windows and prices, as described in
Section 2.4.

The next step is to identify the predictors for charging behavior to improve the pre-
diction accuracy for the power corridors and the flexible energy demand. Potential data
sources could be booking systems with travel data, human resource systems with location
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and business car data, or facility management systems with data about the site infrastruc-
ture. Another open problem is to compare the data from the charging system forecasts with
the actual energy consumption and the trading data, which can provide insights into how
much value can be created with flexible energy consumption and how effective incentive
systems can be designed. Viewing it from the business perspective, the consumption of
cheaper energy is a promising result because the power corridor as a means for exchanging
information between the roles of the fleet operator, aggregator, and energy provider creates
transparency that shows improvement potentials of operational processes.
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Abstract: Electric vehicle (EV) adoption grows steadily on a global scale, yet there is no consistent
experience for EV drivers to charge their vehicles, which hinders the important EV mass market
adoption. The Open Charge Point Protocol (OCPP) is the solution to this challenge, as it provides
standardization and open communication between EV infrastructure components. The interplay
of the OCPP with open cross-functional communication standards boosters driver experience on
the one hand, while the charging station itself is integrated into a renewable energy ecosystem.
This paper presents a deep dive into the combination of the OCPP with the OpenADR protocol,
the Open Smart Charging Protocol (OSCP), the ISO 15118, and eRoaming protocols to explore
possibilities and limitations. Furthermore, we suggest LoRa communication as an alternative to IP-
based communication for deep-in building applications. Hence, this paper reveals the next important
steps towards a successful EV mass market transition powered by user-friendliness and green energy.

Keywords: EV infrastructure; standardization; interoperability; communication protocols; NEVI

1. Introduction

User-friendliness and large scale zero-emission vehicle infrastructure deployment is
critical to achieving the White House net-zero emissions target by 2050 [1]. However, a
recent survey of EV users reported substantial frustration with chargers being too slow, too
crowded, or not operable [1,2]. In combination with range anxiety during long distance
travel [3], a skeptical attitude toward EVs has evolved, which hinders a commitment to
private or commercial EV ownership and prevents a profitable EV mass market adoption.

Interoperability within the EV infrastructure provides the solution to that challenge by
nurturing a consistent and familiar EV driver experience powered by a reliable and green
‘distributed energy resources’ (DERs) energy ecosystem [4].

Interoperability in this case is two dimensional:

(1) Consumer facing;
(2) Technical or systems facing.

Consumer-facing interoperability includes the physical accessibility of a charger, uni-
versal payment methods at every charging station (CS), or ‘one-matches-all’ coupler hard-
ware to be consistent with current re-fueling experiences for internal combustion engine
(ICE) vehicles.

Technical interoperability encompasses standardized technical protocols and testing
procedures with the aim of achieving consumer-facing interoperability and excellent user
experience on a large scale. Standardized and generic data communications between
different chargers and their respective central management systems (CMSs), together with
a uniform data exchange between CMSs and third-party backends, such as e-mobility
service providers (eMSPs) and capacity providers (CP) (counting utilities, distributed
systems operators (DSOs), and cloud-based energy management systems (EMSs)), are the
heart of interoperability.

It is with this consideration that Ampure (formerly Webasto Charging Systems) charg-
ers strongly support and utilize the major de facto open-charger-to-cloud communication
protocol in the US, the Open Charge Point Protocol (OCPP). Ampure chargers provide an
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interoperable, flexible, and expandable infrastructure platform that can integrate with a
broad range of eMSPs, charging station operators (CSOs), automakers (OEMs), and CPs,
fostering critical consumer interoperability and friendliness (Figure 1).
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2. Overview of Today’s EVSE Protocol Landscape

This paper provides a unique and important overview of the Open Charge Point
Protocol (OCPP) [7] by the Open Charge Alliance (OCA), and the interaction of the OCPP
with cross-functional open standards, such as the OpenADR protocol [8], the Open Smart
Charging Protocol (OSCP) [9], the ISO 15118 standard series [10], and eRoaming protocols
(Figure 2) [11–14].
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Figure 2. Communication protocols at a glance. The OCPP is the major open de facto communication
protocol for charger-to-backend communication. Cross-functional backend communication is multi-
faceted and facilitates different protocols for different needs. For the communication between capacity
providers (CPs) and central management systems (CMSs), protocols such as the OpenADR protocol
or the Open Smart Charging Protocol (OSCP) are in place. For eRoaming, which requires CMS
to CSO/eMSPs backend communication, the Open Charge Point Interface (OCPI) protocol, the
Open Clearing House Protocol (OCHP), the eMobility Interoperation Protocol (eMIP), and the Open
InterCharge Protocol (OICP) can be used to serve hub-based or bilateral eRoaming structures. The ISO
15118 is an international standard series that contains specifications for secure, local, and bidirectional
communication between EVs and chargers.

The intention is to facilitate an understanding of how the landscape of open and
standardized application protocols boosts driver experience, while the growing EV in-
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frastructure is integrated into a green and stable energy ecosystem. This review outlines
the relevant characteristics of a protocol for its mass adoption success, possibilities, and
limitations of open standards.

3. An Excerpt of Today’s Leading Communication Protocols in the EV Industry
3.1. The OCPP, the OpenADR Protocol, and the OSCP Are Fundamental Contributors to a
Scalable and Clean Electric Transportation Ecosystem

The major de facto and open protocol for charger-to-backend communication in the
US (and globally) is the Open Charge Point Protocol (OCPP), which was initiated and has
been maintained by the Open Charge Alliance (OCA).

The large-scale electrification of vehicles, fleets, and marine ports presents a threat
to the grid, and as such it is crucial to bring chargers into the equation of energy demand
and response systems. The combination of the OCPP with the Open Automated Demand
Response (OpenADR) protocol or the Open Smart Charging Protocol (OSCP) turns a
charger into a flexibility provider that can react to changes in demand response (DR)
within a distributed energy resource (DER) energy ecosystem. Accordingly, an uninformed
charging process can be converted into a smart technique, which is able to throttle or
postpone a charging process based on currently and locally available grid capacity.

3.1.1. The Open Charge Point Protocol (OCPP)

The IP-based Open Charge Point Protocol (OCPP) is the major de facto and open com-
munication protocol between a charging station (CS) and its respective central management
system (CMS, Figure 3). The kick-off of a global and open protocol to standardize charger-
to-backend communication in the EV industry was initiated by the E-Laad Foundation
(now ElaadNL) in the year 2009, and it has been maintained and continuously developed
by the members of the Open Charge Alliance. Due to the active support and contribution of
major stakeholders and experts in the industry over decades, the open protocol has grown
into a globally acknowledged communication protocol.
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CMS in the US and globally. The OCPP enables any CMS to connect with any charger, regardless of
the vendor or manufacturer, if the CMS and the charger are compliant with the same OCPP version
1.6J or 2.0.1.

The OCPP enables any central management system to connect with any charger,
regardless of the vendor or manufacturer, if both are compliant with the same OCPP
version 1.6J or 2.0.1 [7]. This key attribute allows for a “mix and match” of chargers and a
vendor agnostic infrastructure deployment, which is required for a rapid and sustainable

92



World Electr. Veh. J. 2024, 15, 191

growth of the charging industry. In addition, the real-life application of the OCPP with
versatile charger networks gives insight into potential interoperability gaps, which can be
flushed out and improved by the ongoing development of the protocol. The advantage of
the Open Charge Alliance and the OCPP is the constant development and integration of
new features and improvements based on real-world desires, needs, and lessons learned
within the EV community. At the same time, this advantage also brings challenges and
limitations. In comparison with proprietary and closed communication protocols, the
OCPP does leave some room for technical interpretation between participants. Test tools,
test labs, and global interoperability testing events, such as the “Plugfest” organized by the
Open Charge Alliance and CharIn, mitigate the interoperability risk and are on the rise.

The dominant protocol version in the field is 1.6J; however, the industry has moved
on to version 2.0.1 to benefit from the extended feature set such as demand response, load
balancing, and tariff management, which are crucial functionalities of a modern and stable
EV infrastructure. The OCPP 2.0.1 was released in March 2020 and serves Level 2 and
DCFC techniques (GB/T, CHAdeMO, and CCS). It enables extended functionalities in the
availability of chargers, payment, and reservation methods, smart charging options, and
certificate management [7]. In addition, version 2.0.1 is required for a successful connection
to the important ISO 15118 standard series [10], which enables Plug and Charge, and
vehicle-to-grid applications. While the OCPP 1.6J and 2.0.1 are not backward compatible,
all new versions, such as OCPP 2.1, which is in the release pipeline and includes for
example generic interfaces for payment terminal integration, will be backward compatible
moving forward.

OCPP interoperability unifies the charger network and, as such, substantially enhances
the driver experience, with less stranded assets within a charging radius. Any stranded
charger can be picked up by any operator using the same OCPP backend configuration.

Furthermore, an operator has the flexibility to purchase equipment from multiple
vendors, which allows the operator to be manufacturer agnostic. Such interoperability
fuels a fair market competition in the EVSE space, granting access to newcomers and not
being solely dominated by a few established majority holders in the market.

3.1.2. Combining the OCPP with the OpenADR Protocol to Convert a Charger into a Smart
Load Flexibility Provider

The production of renewable energy has become more and more decentralized, with
individual businesses or households contributing to energy production through solar, wind
turbines, and electric energy storage (EES) systems. An energy consumer has become an
energy “prosumer”, who produces and consumes renewable energy. In general, with so
many active and different energy contributors, there is a huge desire for all of them to
communicate and work together effectively to ensure grid safety and reliability [8,15].

To that aim, capacity providers—including utilities or distribution systems operators
(DSOs)—use the OpenADR standard, which is maintained by the OpenADR Alliance, to
enable a bidirectional IP-based communication between their top node(s) and aggregators
or end devices.

The OpenADR protocol allows the coordination of end device responses to changes
in currently and locally available energy supply/demand [16]. The protocol encompasses
event messages, reports, and registration services, as well as availability schedules for
dynamic price- and capacity-based programs [17]. The combination of the OCPP and the
OpenADR protocol equips EV chargers with the capability to react to locally and currently
available DER grid capacity, and makes a charging process flexible and smart (Figure 4).

While the OpenADR protocol standardizes the messaging and DR information ex-
change between a capacity provider’s backend and the charger’s central management
system, the OCPP contains all required action commands to trigger the desired charger
reaction. Such a charger reaction can be postponing a charging process, the consideration
of priority charging, and the optimization of charging schedules [17].

93



World Electr. Veh. J. 2024, 15, 191

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 5 of 12 
 

event messages, reports, and registration services, as well as availability schedules for dy-
namic price- and capacity-based programs [17]. The combination of the OCPP and the 
OpenADR protocol equips EV chargers with the capability to react to locally and currently 
available DER grid capacity, and makes a charging process flexible and smart (Figure 4).  

While the OpenADR protocol standardizes the messaging and DR information ex-
change between a capacity provider’s backend and the charger’s central management sys-
tem, the OCPP contains all required action commands to trigger the desired charger reac-
tion. Such a charger reaction can be postponing a charging process, the consideration of 
priority charging, and the optimization of charging schedules [17].  

On the consumer side, the interaction of the OCPP and the OpenADR protocol saves 
cost per consumed energy unit (kWh) while maximizing the amount of renewable energy 
used for EV charging. 

 
Figure 4. The line-up of the OCPP and the OpenADR standard turns a charger into an efficient load 
flexibility provider, which is integrated into a green DER energy ecosystem. While the OpenADR 
protocol standardizes the messaging and DR information exchange between a capacity provider’s 
backend and the charger’s central management system, the OCPP action commands initiate the de-
sired reaction of the charger. 

3.1.3. Combining the OCPP with the OSCP to Convert a Charger into a Smart Load  
Flexibility Provider 

Similar to the OpenADR protocol, the Open Smart Charging Protocol or OSCP [9] 
takes the integration of EVs into a larger, dynamic, and flexible energy ecosystem (includ-
ing photovoltaics, stationary batteries, heat pumps, etc.) into consideration. The OSCP 
standardizes the communication between the capacity provider, which can be a cloud-
based EMS for example, and the charger’s central management system, while also taking 
a 24 h prediction of the local available grid capacity into consideration [9]. Such commu-
nication capabilities of a charging station with the grid turns an operator into a flexibility 
provider, capable of matching charging profiles within local capacity trendlines, e.g., ca-
pacity-based smart charging (Figure 5). Additionally, the operator can request the optimal 
EV charging energy demand, to prevent line or grid overloading. 

Figure 4. The line-up of the OCPP and the OpenADR standard turns a charger into an efficient load
flexibility provider, which is integrated into a green DER energy ecosystem. While the OpenADR
protocol standardizes the messaging and DR information exchange between a capacity provider’s
backend and the charger’s central management system, the OCPP action commands initiate the
desired reaction of the charger.

On the consumer side, the interaction of the OCPP and the OpenADR protocol saves
cost per consumed energy unit (kWh) while maximizing the amount of renewable energy
used for EV charging.

3.1.3. Combining the OCPP with the OSCP to Convert a Charger into a Smart Load
Flexibility Provider

Similar to the OpenADR protocol, the Open Smart Charging Protocol or OSCP [9]
takes the integration of EVs into a larger, dynamic, and flexible energy ecosystem (including
photovoltaics, stationary batteries, heat pumps, etc.) into consideration. The OSCP stan-
dardizes the communication between the capacity provider, which can be a cloud-based
EMS for example, and the charger’s central management system, while also taking a 24 h
prediction of the local available grid capacity into consideration [9]. Such communication
capabilities of a charging station with the grid turns an operator into a flexibility provider,
capable of matching charging profiles within local capacity trendlines, e.g., capacity-based
smart charging (Figure 5). Additionally, the operator can request the optimal EV charging
energy demand, to prevent line or grid overloading.
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Figure 5. Impact of EV adoption on household electricity. Left: EV adoption (week 0) increases
household electricity consumption by 0.12 kWh hourly or ca. 3 kWh per day. Right: effects are
concentrated between 10 p.m. and 6 a.m., when vehicles are plugged in overnight to recharge.
Reprinted from Ref. [18]. Services, such as capacity-based smart charging, help optimize energy
consumption in the case of multi-dwelling unit applications, where multiple drivers might demand
electricity at the same time.
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3.2. Combining the OCPP with the ISO 15118 Standard Series for a Safe, Sustainable, and
Automated Charging Network

The ISO 15118 “Road vehicles—vehicle to grid communication interface” is an inter-
national standard series, which contains specifications for the bidirectional communication
between an electric vehicle and a charging station (CS) [10]. The ISO 15118 has been
developed by the “International Organization for Standardization” (ISO) and represents
a significant milestone in the advancement of electric vehicle technology. The standard
addresses and solves the challenges that are associated with the interoperability and com-
munication between EVs and the charging infrastructure, such as cybersecurity, ease of
use for the driver, and smart dis-/charging technology. The series provides a comprehen-
sive framework for the communication protocol between electric vehicles and chargers,
converging seamless, green, and automated charging processes [10].

The ISO 15118 consists of multiple parts, each focusing on different aspects of the
communication interface between electric vehicles and the charging infrastructure. Part
1, for example, serves as an introduction to the series, outlining general principles and
defining use cases for vehicle-to-grid communication, such as the Plug and Charge use case.
Part 2 of the series delves into the technical specifications of the network and application
protocols. This includes the definition of the communication architecture, data formats,
and security mechanisms, which are necessary for secure and reliable communication
between electric vehicles and the charging infrastructure. The ISO 15118 standard series is
designed to be scalable and adaptable to evolving technologies and industry requirements.
Its modular structure allows for updates and additions to accommodate emerging features
and advancements in electric vehicle technology.

The ISO 15118 addresses the security aspects of communication between electric vehi-
cles and chargers, which is key to data security. It specifically outlines the security measures
necessary to protect the communication interface from potential cyber threats. This includes
authentication and authorization mechanisms, data integrity protection, and encryption
techniques to ensure the confidentiality of the exchanged information. The Transport Layer
Security (TLS v1.2) protocol is used to establish the encrypted communication session,
while elliptic curve Diffie–Hellman (ECDH) is used to validate the process for one charging
session [10]. AES-128-GCM (ISO 15118-20) is utilized to encrypt and decrypt instructions
during a charging session using the TLS session key. The elliptic curve digital signature
algorithm (ECDSA) will further verify the authenticity of the sender and the integrity of
the received message (via SHA-256 as a cryptographic hash). These industry standard
protocols ensure the charging process is secured, and minimize the risk of damaging the
charger or vehicle from compromised devices [10,19].

Two major use cases of the ISO 15118 are Plug and Charge (PnC), i.e., automatic
authorization and payment upon connecting an EVSE with the car, and vehicle-to-grid
(V2G), i.e., a vehicle can supply energy back to the grid during down times. The PnC
use case catalyzes the user experience, as a driver can simply plug the coupler into the
vehicle and the necessary communication and initiation of the charging process occurs
automatically, provisioning customer excellence without the necessity to rely on a secondary
digital or physical payment option. The V2G functionality allows electric vehicles not
only to receive power from the grid but also to feed stored energy back into the grid,
contributing to grid stability and potentially creating new revenue streams for EV owners.
This application is particularly important for fleet scenarios, which run on predicable
schedules and thus can potentially support the demand during peak hours with the
V2G technology.

3.2.1. The ISO 15118 Plug and Charge (PnC) Use Case

The ISO 15118 PnC use case provides an automated charging and payment process
upon plugging the charger into the EV. The charging authentication and authorization
is accomplished using digital certificates that are exchanged between the EV and the
charger [10,19] (Table 1). No form of active consumer involvement is required, and the
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billing process happens in the back without any actions required by the driver (other than
initially adding the payment to their platform).

Table 1. Basic certificate fields for a typical X.509v3 certificate, as used in ISO 15118 [10]. The EV’s
certificate is called the identity certificate, and is used to authenticate the EV to the charger. Similarly,
the charger’s digital contract certificate is used to authenticate itself to the EV.

Certificate Field Description

Version Version of certificate

Serial number Unique number of certificate

Signature algorithm Used signature algorithm

Issuer Entity, who has issued and signed the certificate

Validity period Time period, in which the certificate is valid

Subject Entity, to which the certificate is issued

Public key Public key corresponding to a private key

Issuer UID Optional issuer unique identifier

Subject UID Optional subject unique identifier

Extensions Optional

Signature Signature of the certificate generated by the issuer

The digital certificates are stored in the onboard system of the EV and then provided
to the charger once plugged in. The certificates are signed by a third-party certificate
authority (CA), and, in combination with encryption methods, the ISO 15118 ensures secure
EV–charger communication and protected user contract data [20].

The vehicle’s certificate is the identity certificate, which is used to authenticate the
EV to the charging station. Similarly, the charger’s digital contract certificate is used to
authenticate the charger to the EV. By exchanging these two certificates through local
charging cable communication, the EV and the charger can negotiate charging parameters,
charging rates, and billing details agreed upon by the EV owner and the operator [10].

3.2.2. ISO 15118 Vehicle-to-Grid (V2G) Use Case

Electrical energy storage (EES) is one of the most effective support systems for bal-
ancing a green and dynamic DER grid [15]. EV traction batteries can be mobile resources,
with typical capacities of 30–100 kWh of electrical energy [21]. For reference, an average
household in the US consumes 30 kWh electrical energy per day [22]. Fleet applications,
such as school buses, can be a predictable energy prosumer. The vehicles feed energy
back to the grid during peak demand time when they are not in use and charge again
off peak before they are required to dispatch. This technological milestone shall have a
major positive impact on grid stabilization, while offsetting running costs, and help make
electrification transformation sustainable and scalable. In a complete green energy cycle,
the charger’s central OCPP management system can be connected via OpenADR or OSCP
to a capacity provider to receive dynamic updates on DER power availability.

The ISO 15118 provides the communication protocol between vehicle and charger.
This communication solution together with further inverter requirements equips a charger
with the potential to bring back green electrical energy from the vehicle’s traction battery
(originating from photovoltaics or wind power for example) to the grid (Figure 6) [10]. This
energy can be used to power homes and businesses during peak demand periods, during
emergencies, or when renewable energy sources are not active. In addition, EV owners can
potentially generate an additional income stream by providing power to the grid, which
reduces the cost of electrification [10].
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Figure 6. Electrical energy storage (EES) refers to the process of converting electrical energy into a
stored form that can later be converted back into power when needed. Reprinted from Ref. [15]. The
ISO 15118 V2G provides the communication basis between a vehicle and an EVSE to sell back (green
or cheap) electrical energy from the EV’s traction battery to the grid when demand is high.

In the ISO15118 V2G application, the EV and the charger authenticate each other by
exchanging their identity and contract certificate, respectively. The charger must be able to
support the bidirectional V2G data transfer and electricity flow between the EV and the
grid. For data communication, the ISO 15118-20 can be implemented, which is currently in
the process of being extended to AC bidirectional use cases. The technical specifications of
the converter depend, among other things, on the on-board charger as well as the local grid
requirements. We see V2G as a critical future use case to be established in the market and
rolled out to a large customer base. As technical solutions are only at the beginning and the
cost of investment is relatively high, the successful mass adoption of V2G will most likely
be a few years from now. There is more work still to be done by authorities to establish a
unified certification procedure for a bidirectional charging system.

In summary, the ISO 15118 standard series plays a crucial role in establishing a
common and interoperable communication framework for electric vehicles and charging
infrastructure (Figure 7). By addressing technical specifications, security considerations,
and enabling advanced features like Plug and Charge and vehicle-to-grid capabilities,
these series of standards contribute to the widespread adoption of electric vehicles and the
development of a more efficient and sustainable transportation ecosystem.
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3.3. eRoaming: Charge Anywhere with a Single Mobile App

The idea behind eRoaming is that a driver can “charge anywhere” at any destination
charger using only one mobile app. As such, eRoaming contributes to a user-friendly
driving experience and is a critical player in achieving EV mass adoption. It has been
reported that the download of multiple apps for different destination chargers is one of the
most dominant barriers that hinders a driver from purchasing an EV [1].

From a technical perspective, eRoaming requires the integration of a charger’s cloud-
based management system into an eRoaming hub or bilateral eRoaming platforms. These
platforms store the needed EV certificates and payment options and allow the charger to
validate the EV with their database. Globally leading eRoaming hubs include, for example,
“e-clearing.net”, “GIREVE”, and “Hubject”, while the “EVRoaming Foundation” supports
bilateral webbing as well as the integration with hubs.

3.3.1. Hub-Based eRoaming

The largest hub-based eRoaming structure is Hubject [23]. The network originates
from a joint venture between BMW, Bosch, EnBW, Enel X, Mercedes Benz, Innogy, Siemens,
and Volkswagen, and is present around the globe, including US, Europe, and China. The
roaming hub encompasses more than 300,000 charging stations, leading to a global user
base of more than 10 M drivers. To connect a backend to the Hubject network the Open
Inter Charge Protocol (OICP) or the Open Charge Point Interface (OCPI) are required.

GIREVE [24] and e-clearing.net [14] are two large European eRoaming hubs, maintain-
ing their respective eRoaming networking protocol, the eMobility Interoperation Protocol
(eMIP) and the Open Clearing House Protocol (OCHP), respectively. Both hubs also support
the EV Roaming Foundation’s protocol OCPI, which allows OCPI supporters peer-to-peer
eRoaming networking as well as hub network relations to GIREVE and e-clearing.net.

3.3.2. Bilateral eRoaming

The non-profit EV Roaming Foundation maintains the free and independent Open
Charge Point Interface (OCPI) protocol required to join its network [12]. Members of the
global foundation are Google Maps, Last Mile Solutions, Freshmile, and more. The OCPI
protocol supports bilateral as well as hub-based roaming. As such, the OCPI supports
hybrid eRoaming network structures globally. Service functionalities of the OCPI protocol
include authorization, reservation, tariff information, billing, real-time session information,
etc. [12].

4. Practical Possibilities and Limitations of the Protocols

This review evaluates the possibilities and opportunities of combining the OCPP with
open, cross-functional communication standards, such as the OpenADR, the ISO 15118
standard series, or eRoaming protocols. The goal of standardizing the communication
between different players is to solve the major barriers to technical interoperability and
capture the opportunities that come with a widespread EV adoption. Current examples
of EV charging frustrations are chargers being too slow, too crowded, or not operable [1].
Governmental institutions and funding incentives, such as the National Electric Vehicle
Infrastructure (NEVI) Program Formula by the U.S. Department of Transportation’s (DOT)
Federal Highway Administration (FHWA), strongly support a unified charging experience
through their funding requirements [25].

Interoperability with the leading communication protocol for charger-to-backend com-
munication, the OCPP by the Open Charge Alliance, and the ISO 15118 is a strong first step
towards a user-friendly, consistent, and familiar charging experience. In a second phase,
the integration of an EV infrastructure into a reliable, smart, and green DER/DR energy
ecosystem can be realized by energy communication protocols, such as the OpenADR or
OSCP [7,9,10,17].

The improvement of the OCPP relies on open-source development, so the protocol can
be continuously updated as lessons are learned from real-world applications. Open-source
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application protocols have been proven to provide content that is more correct and reliable
than proprietary implementations [16]. We believe the openness of a protocol, paired
with the spirit of shared responsibility, will lead to a democratized and fair EV charging
infrastructure characterized by high quality, convenience, and reliability. Limitations of
the open protocol are the risk of technical interpretation between stakeholders, which
have different technical solution approaches. This can lead to implementation friction and
delayed roll outs of a standardized infrastructure platform. Testing tools, labs, and events
are on the rise to speed up the interoperability process [26].

The OpenADR and OSCP protocols provide a standardized framework for communi-
cation between utilities and end users, ensuring interoperability across different systems
and devices. This standardization streamlines the implementation of demand response
programs. IP-based protocols encompass the capability to support large-scale deployments
and the real-time feedback on currently and locally available grid capacity, which allows
end nodes to quickly respond to changes in demand and grid conditions [10,16,17]. On
the other hand, protocol implementations can be complex and require the orchestration of
utilities, aggregators, and end users. Furthermore, the implementation of the protocol on
older infrastructure may pose challenges.

Just like any IP-based protocol, the OCPP and the OpenADR rely on internet con-
nectivity, which can be challenging for areas with unreliable or limited internet access. In
addition, these protocols might raise security concerns regarding data privacy and network
vulnerabilities. It is important to acknowledge that the protocols ensure high-level secu-
rity mechanisms against cyber threats and are globally established for a safe widespread
adoption [7,17].

In bilateral eRoaming agreements, such as the OCPI protocol, network providers and
manufacturers sign peer-to-peer agreements to create a web of interoperable chargers. This
process can be time- and resource-intensive, and the continuous maintenance of multiple
bilateral agreements can introduce novel challenges. In addition, a bilateral roaming
solution makes it harder for smaller players to enter the eRoaming market.

In central roaming hub solutions, eMSPs or operators can join an established network
in the form of a hub organization. The hub director typically charges a fee for membership,
which can potentially be re-directed to the end user. The hub-based eRoaming approach
makes it easier for new and smaller players to enter the market against a fee without
having to build, accumulate, and manage a large database of EVs and their payment
preferences [12,14,23,24].

5. Outlook

Standardized communication in the EV industry enables long-term solutions, along
with data sharing and diagnostics to enhance charger availability and uptime. Databases,
e.g., the Alternative Fuels Data Center (DOE), display charger locations and availability
across the US, fostering charger access and operability information [27]. While availabil-
ity and downtime minimization are crucial, a standardized shared charger data forum
also allows for the analysis of current charger status and consumer behavior, as well as
energy usage forecasts, which are particularly important for the aim of fleet electrification
(Figure 8).
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Furthermore, the precise orchestration of energy consumption will be key to the
success of mass electrification. Smart charging applications, such as described in the
OCPP and OpenADR, allow for load balancing within an EVSE site to minimize energy
consumption during peak hours or maximize usage within the limitations of a location’s
power systems (such as at an apartment building or place of business). Importantly, they
can also assist with pushing greater capacity to charging systems when grid capacity is
high or supported through active DER contribution, such as solar or wind.

Finally, standardized data sharing supports the development of new energy services
and business models such as virtual power plants (VPP) and peer-to-peer energy trad-
ing forms.

Global Consortia of public and private EV infrastructure leaders, such as the Open
Charge Alliance or the OpenADR Alliance, nurture the development, update, and adaption
of international open communication protocols to standardize the EV charging industry and
energy ecosystem. The success of a protocol is driven by market dynamics and stakeholder
acceptance, together with regulated top-down decision by authorities.
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Abstract: This study of patent applications and scientific publications related to batteries is unique
as it includes the volume of as well as qualitative indicators for both types of publications. Using
carefully elaborated strategies to identify publications relating to batteries, this study provides data to
discuss the critical balance to strike between investments in research and the more innovation-related
aspects. The results show that China’s dominance in publication volumes increases and that research
with Chinese involvement is highly cited, whereas patent applications are slightly less valued than
the world average. Quality-related indicators for Canada and the United States are very high for
both scientific publications and patent applications. National differences in the proportions of patent
applications and scientific publications are large, with Japan at one end with three patent applications
per scientific paper and Canada at the other with almost seven scientific papers per patent application.
On an actor level, data for Sweden indicate how the automotive industry started to file many patent
applications in the decade starting in 2010. Finally, it is noted that this new approach to study a
technological field appears promising as it gives new perspectives of relevance for policy actors
and others.
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1. Introduction

Battery business is expanding rapidly. There is a global race to gain leadership along
the whole battery value chain. Interestingly, even though production capacity is being
scaled very rapidly, the investments in research are still also expanding dramatically. Many
companies and countries are trying to gain market shares by developing competitive battery
solutions. One decisive aspect is knowledge. With superior knowledge and associated
intellectual property rights, the chances to gain and maintain a strong position increase.

The purpose of this study was to develop and test a method to analyze battery-related
research and innovation. In this study, batteries include all types of electrochemical devices
to store electrical energy, as well as super-capacitors. Through the use of two types of
publications, patents and papers, this study addressed two steps in the value chain: research
and innovation. By patents we mean patent applications as well as granted patents, and
papers are here equal to articles, conference papers, books, book chapters, and reviews
indexed in Scopus.

One challenge associated with investments in research and innovation is to find a
balance between research-oriented more basic knowledge production and innovation-
oriented activities leading to commercial development. Heavy investment in research but
limited efforts to make use of the knowledge in new or improved products or services
might lead to knowledge being wasted or exploited in other firms or countries. On the
other hand, a limited involvement in research compared to subsequent steps toward the
market might lead to a situation when the actors or the country is being surpassed by
others working with superior technologies. In this study, we used scientific publications as
a proxy for research and patent applications as an innovation indicator.
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In addition to the development of a new method, we tested the method on data
covering approximately two decades from 2000. For a selection of countries including
Canada, China, France, Germany, Japan, Republic of Korea, Sweden and the United States,
the following questions were studied:

• How do the volumes of patents and papers develop?
• How does the ratio of patents to papers develop?
• What is the share of academic–corporate papers?
• How is the quality of the patents and papers?

Moreover, but only for Sweden given the large efforts of manual work needed, it was
also investigated on an actor and individual level to what extent patenting and academic
publishing goes hand in hand.

Existing studies of patents and papers on batteries and vehicle electrification seldom
combine and compare these two types of publications. One exception is [1], which used
both types of publications to identify emerging trends. As highlighted by [2], actual patents
form a small part of the total innovation activities, and by adding papers we cover a wider
scope. The main contribution of our study is the combination and comparison of patent
and paper data, including both volumes of publications and elaborated indicators related
to their quality.

The methodology developed in this study is unique, at least in the context of batteries
and vehicle electrification, and it delivers new insights relating to how different countries
strike the balance between research and innovation.

The approach forwarded in this study can be used for any technology provided that
it generates sufficient volumes of patents and papers. Given the broader perspective on
innovation offered, it provides insights of relevance, not least for policy makers interested
in the development of the innovation system.

The remainder of the paper is structured as follows. A review of previous literature
follows; thereafter the methodology is described. The results section includes three sub-
sections, with volumes and quality indicators on a national level in the first two sub-sections,
followed by one sub-section on the actor level using data for Sweden. Finally, discussions
and conclusions follow.

2. Quantitative Studies of Batteries and Vehicle Electrification

A background to the use of patent data and how it refers to papers is given in [3].
The study argues that patentometrics started to become important in the 1980s and that
citations from patents to papers were used to better understand the links between science
and technology.

In [1], the broader scope of energy storage was studied using both types of publications
to identify emerging topics. Based on rather short search queries, publications were
identified and clustered to find emerging topics. The number of citations was used to assess
the relevance of each cluster, both for patents and papers. Papers were retrieved from Web
of Science whereas patents were obtained from Derwent Innovation, a collection of patent
data from 44 patent authorities. It can be noted that patent data for this study published in
2020 started to drop dramatically in 2016, as there is a time lag until patent applications
are published. Within the battery domain, lithium–sulfur technologies were identified as
emerging on the academic side, whereas multi-power systems where emerging within
industry research.

Several papers use patent data for the study of batteries or their use in battery-electric
vehicles. In [4], networks between organizations involved in electric and hybrid-electric
vehicles were studied based on co-authorships of the patent applications. The search
method was based on patent classes and patent data were from the European Patent
Office’s Global Patent Index Database. For the paper published in 2016, patent data until
and including 2010 were used. One of their findings is that the networks toward the end of
the period center around the large original equipment manufacturers, which could indicate
that electric-vehicle technologies are maturing.
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Using the same data source, another paper from the same year [5] addresses electric-
vehicle technologies and presents which countries are most active in patenting. It also
identifies some technological fields within electric-vehicle patenting. A small selection of
patent classes was used to find relevant publications. Among the findings are that patenting
activity within the electric-vehicle field has increased and that many innovations originate
from Asian countries.

In an ambitious patent study of three energy-related technologies, li-ion batteries,
hydrogen production and thermochemical conversion of biomass, the five largest countries
in terms of patenting activity were covered [2]. Relevant patents were extracted using
a combination of patent classes and keyword search from the European Patent Office’s
database. In the literature review, a good explanation of how patent applications relate to
innovations is given, arguing that only a small part of all inventions is patented and thereof
only a part is becoming innovation. A total of 5822 patents relating to li-ion batteries were
found for the period 1995–2018. Japan dominated with approximately 50% of the total
followed by China.

There have also been several studies that used scientific publications. One such
study addressed the thermal management of li-ion batteries [6]. It used keywords to
identify relevant publications in Scopus, but the development of the search string was not
described. For the period 2000–2021, 983 papers were identified, and Chinese institutions
dominated in terms of publication volumes, followed by a Canadian university. Volumes
per country, institution, journal, and author were described, as well as total citation numbers
per publication.

A study on a similar topic with the same approach had an explicit very short query to
identify relevant papers in the period until 2018 [7]. It used clustering to identify trends
and the distribution of keywords over time to study research trends, concluding among
other conclusions that thermal management for li-ion batteries was a research gap. In terms
of publication volumes, Chinese institutions dominated.

Another recent study used papers from Scopus to investigate electronic waste from
electric vehicles [8]. A very short query was used to identify 593 publications during the
period 2015–2023. These publications were then analyzed in different dimensions such
as institutions, authors, collaborations, and networks. Batteries were among the most
researched topics and Chinese institutions dominated in terms of volume. The citation
count was used to investigate the importance of research.

Using Web of Science and a query with approximately 10 search terms, li-ion battery
subfield fault diagnosis was studied [9]. The results indicate China’s rapid growth in
publication volumes since 2015, surpassing the United States to become clearly the largest
producer of such papers in 2021. Vosviewer and other tools were used to analyze co-
citations and collaboration networks.

A different approach to identify relevant papers is to use clusters generated based on
citation relations [10]. A database with a Web of Science origin was used to study six sub-
fields within battery research, as well as the whole scope of the European initiative Battery
2030+. The standing of Europe was compared with other countries or groups of countries
in terms of volumes of papers as well as their field-normalized citation impact. It was noted
that Europe was similar to China but well below North America in citation impact.

In a study of grid-connected Li-ion batteries, a five-step search strategy was deployed
to discover the 100 most-cited papers in Scopus during the period 2010–2021 [11]. The
study used search terms and the language of English and used subject filters as exclusion
criteria. The United States had the highest number of publications in this top list followed
by China.

A very short query “electric vehicle” was used to analyze relevant themes within
battery-electric-vehicle research during the period 2000–2021 using data from Web of
Science [12]. China was found leading in electric-vehicle research. In [13], a search query
from a previous study from 2011 was reused to study li-ion battery research in India.
Different types of electrified vehicles were studied using a query with search terms such as
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“hybrid NEAR/2 vehicle” and data from Web of Science [14]. Some patent data were also
used, and whereas Japan was found to be most active in hybrid-electric-vehicle patenting,
the United States led in paper volumes. Relating to electric vehicles, China produced the
highest volume of papers.

Finally, to some extent representing the future of publication studies, a paper used
text mining to shed some light on the content in battery-related publications [15]. This
approach, which makes use of the full content in papers, is an interesting example of the
opportunities and challenges with artificial intelligence tools.

This brief review of literature using patent and or paper data to study vehicle electrifi-
cation and, in most cases, batteries, highlights from a methodological perspective that a
combination and comparison of both types of publications is not common. None of the
studies reviewed included attempts to analyze links between patents and papers, such as
citations or having the same author. Moreover, more advanced quality-related indicators
are not so common. If used, a direct citation count dominates, which has limitations, as the
number of citations relates to the publication year as well as to the scientific field. Clustering
and network analyses were often used to identify research and innovation trends.

Search strategies for patent studies were mainly based on patent classes, whereas
papers typically were identified using queries. The development of the search strategy is
not always explained, and the number of search terms is often limited.

Many of the papers reviewed include large sections with descriptive data covering the
papers identified. In these sections, Chinese institutions often dominate, at least in terms
of volume. A rapid growth starting in the period 2010–2015 is depicted, leading to China
being the largest contributor of papers.

3. Methodology and Data

Critical for the study was to identify relevant publications. Patents were selected using
patent classes, in line with a method described and used in an ambitious recent project led
by the IEA [16]. The Swedish Intellectual Property Office was, in April 2022, commissioned
to retrieve all battery patents from the global patent database DocDB, which then were
further analyzed in a database for patent value assessment. Patent data until and including
2019 were considered sufficiently complete to be used in the analysis. This approach is in
line with previous literature, which often uses patent classes to identify data and illustrates
the significant lag between the year of study and the availability of complete patent data,
c.f. [4,5].

Papers were selected using search terms in Scopus to be matched in the title or abstract
of the paper. Scopus is the broadest abstract and citation database [17]. The query was
developed in an iterative process, involving manual scrutiny of randomly selected papers
to ensure that only relevant papers were selected. Papers from six productive battery
researchers in Canada, the United States, Japan, and Sweden were used to test whether the
query covered a sufficiently large share of these researchers’ battery-related papers. The
iterative process is described with some details in [18]. At the time of the study (June 2022),
volume data for papers were almost complete until and including 2021.

The format of the query was: (A OR (B AND C)) AND NOT D, where

• A equals search terms specific for battery research, such as “electrochemical cell”;
• B equals search terms often related to battery research, such as “battery”;
• C equals a high number of search terms which in combination with B make it very

likely that the publication deals with battery research, such as many different battery
chemistries;

• D equals search terms in neighboring fields, such as “fuel cells”, and words such as
“batteryless”.

The resulting query included hundreds of search terms. This approach led to an
unexpected problem, as the standard query looks for matches in the title, abstract, and
keywords. It was noted that the keywords include both the keywords given by the author(s)
and other keywords, probably added by the journal. The latter keywords were in some
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cases broader, thus covering related fields not addressed in the paper. They did not work
in combination with the “AND NOT” part of the query and thus a query only looking in
the title and abstract was used.

In comparison to previous studies, the use of search terms to identify relevant publica-
tions is a dominating approach. However, three aspects differ. The first one is that previous
studies do not always explain the strategy as to how the query was developed and how
the precision of it was verified. A second difference is the use of only the title and abstract
to search for relevant publications. Most other studies use the standard TITLE-ABS-KEY
approach, which might work very well if “AND NOT” arguments are not used. Thirdly,
the query developed differs substantially in size. Our query involved around 170 search
terms plus the use of countries/regions and years to identify subsets. It is not always an
advantage to use a very long query, but, for the purpose of this study, it was considered
essential to ensure a reasonable coverage of all battery technologies over the 20-year period.

It is very difficult to capture all “battery-related” papers as blue-sky research, for
example, does not always mention potential applications. Therefore, the resulting query
underestimates the total volume and has a bias toward more applied battery research. A
team of three battery experts from academy, business, and government supported in the
development of the query.

The technical and economic value of patents was assessed using a composite in-
dex, the Technology Business Index (TBI), which combines several indicators, among
them the patent’s scope, family size, originality, generality, and backward and forward
citations [19–21]. Percentiles were used to differentiate the patents, top 30% and top 10%.

We used a “full count” approach when a publication had several authors, both on
individual and national levels. For example, this means that a publication with two authors,
one from China and one from the United States, is counted fully for both countries. Various
types of fractionalization constitute the main alternative, which, at least on the individual
level, would have been rather confusing. Moreover, there are very few battery-related
papers with many co-authors, which means that a full count approach does not lead to a
severe bias in terms of volumes and citations.

For papers, standard citation indicators such as percentiles and the field-weighted
citation impact, FWCI, were used. The latter is a normalized indicator based on the field,
year, and type of publication. An average paper has FWCI 1.00 and if the paper has FWCI
equaling 1.50, it is cited 50% more than the average publication.

This quality dimension was only used in a few previous studies and, typically, only
with basic citation counts. To our knowledge, the quality indicator for patents has never
been used in combination with different elaborated quality indicators for papers.

Given the sponsor of the project, the Swedish Energy Agency, the analysis had a
focus on Sweden and the selection of countries for comparison was made from a Swedish
perspective. In total, 11 countries were covered, some of which are not included in this
paper, as they have relatively low patent volumes.

This study also included attempts to study institutions and individuals. For example,
do researchers with many papers also have patents? This part of the study, which is unique
in comparison to previous literature, was associated with a lot of manual work, and it
was only carried out for Sweden. The main reason why this was laborious was the patent
data quality, which made it difficult to identify people and institutions, as the names were
indicated in many ways.

4. Results
4.1. National Level—Volumes of Patents and Papers

In Figure 1, the annual volumes of patent applications are indicated for all eight
countries. Since 2011, China has had tremendous growth, becoming the largest patenting
nation in 2014 and thereafter continued to increase the volume at the same pace. The dip in
2019 is probably due to incomplete data. Republic of Korea and Japan alternated as the
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number one until 2014 and thereafter as the number two. Since 2012, the United States has
been in fourth place when it comes to battery-related patenting.
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A closer look at the countries with lower volumes, see Figure 2, shows that Germany
started patenting at an increasingly higher frequency in 2006, leaving the other countries
included far behind. Sweden is clearly the country with the lowest volumes in the sam-
ple. Canada has, since 2012, developed to have approximately twice the annual volume
compared to Sweden.
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On average there are approximately the same volumes of scientific publications relat-
ing to batteries as there are patent applications. When comparing Figure 1 with Figure 3
(below), it can be noted that China took the lead earlier in papers, in 2005, and that the
United States since then has been the number two.
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When China and the United States are removed, see Figure 4, the steep trajectory of
Republic of Korea’s papers becomes visible, overtaking Japan in 2011 and ten years later it
had approximately twice the volume. A similar dramatic increase is also valid for Germany,
which has more than quadrupled its paper volume in the last decade.
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A final times series is presented in Figure 5. Here the development of the volumes of
patents and papers are possible to compare for China and the United States.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. Development of paper volumes (excluding China and the United States). 

A final times series is presented in Figure 5. Here the development of the volumes of 
patents and papers are possible to compare for China and the United States. 

 
Figure 5. Development of patent and paper volumes for China and the United States. 

The two countries show very different developments. China’s paper volumes are 
much larger than the patent volumes until 2012, and thereafter the patent volumes after 
only a few years surpass the paper volumes. The United States had in the beginning of the 
period higher volumes of patents than papers. In 2010, the paper volumes started to 
increase more rapidly, and in the last period it clearly had higher volumes of papers. The 
dip in patent volume for China 2019 is probably due to incomplete data. 

Three six-year periods were used to obtain a sufficient volume of patents for each 
period. In Table 1, the volumes of patents and papers for these three periods are presented. 

Figure 5. Development of patent and paper volumes for China and the United States.

The two countries show very different developments. China’s paper volumes are
much larger than the patent volumes until 2012, and thereafter the patent volumes after
only a few years surpass the paper volumes. The United States had in the beginning of
the period higher volumes of patents than papers. In 2010, the paper volumes started to
increase more rapidly, and in the last period it clearly had higher volumes of papers. The
dip in patent volume for China 2019 is probably due to incomplete data.

Three six-year periods were used to obtain a sufficient volume of patents for each
period. In Table 1, the volumes of patents and papers for these three periods are presented.

Table 1. Comparison of paper and patent volumes.

2002–2007 2008–2013 2014–2019
Paper Patent Paper/Patent Paper Patent Paper/Patent Paper Patent Paper/Patent

Canada 389 194 2.01 849 240 3.54 2619 390 6.72
China 2717 479 5.67 10,937 3,772 2.90 48,138 54,485 0.88
France 778 274 2.84 1452 845 1.72 2572 1188 2.16
Germany 499 915 0.55 1582 4391 0.36 5604 6608 0.85
Japan 1862 4349 0.43 2621 11,117 0.24 4643 14,300 0.32
Republic
of Korea 1076 4267 0.25 2813 9590 0.29 7788 17,026 0.46

Sweden 159 43 3.70 284 97 2.93 988 149 6.63
United
States 2984 2818 1.06 7182 5489 1.31 17,216 9796 1.76

World 13,775 14,939 0.92 33,831 38,541 0.88 102,132 111,518 0.92

Globally, the number of battery patents is slightly higher than the number of papers
leading to a ratio around 0.9. A similar ratio applies for China in the last period included.
In some countries, patent production dominates, among them Japan, Republic of Korea,
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and Germany. In others, the volumes of papers are clearly larger. Canada, Sweden, France,
and the United States appear to focus more on research than patenting. For China, the
share of patents per paper has increased over the periods, whereas, in Canada and the
United States, the trend has been in the opposite direction. Globally, the ratio has been
rather stable.

When looking at the period 2014–2019, Canada and Sweden are rather extreme with
almost seven scientific papers per patent, whereas Japan is extreme in the other direction
with approximately three patents per paper.

Another type of innovation indicator is academic–corporate co-publications, which
are defined as scientific publications with at least two co-authors and at least one with
an academic and one with a corporate affiliation. A high share of such publications is
considered positive for innovations to materialize.

In Table 2, all countries except China have a higher share of academic–corporate
papers within the battery field than the average for all papers in the country. In Canada,
Germany, and Japan, the share is around twice as high.

Table 2. Academic–corporate collaboration (2014–2019).

Academic–Corporate Co-Publications (Share of)

Batteries All

Canada 9.0% 4.3%
China 2.0% 2.7%
France 8.3% 6.3%
Germany 11.4% 6.5%
Japan 11.8% 6.4%
Republic of Korea 5.9% 4.9%
Sweden 9.3% 7.5%
United States 5.8% 4.7%

4.2. National Level—Quality-Related Indicators

In Table 3, two citation-based indicators for papers are presented, as well as TBI
percentiles for patents. These indicators are explained above in the Section 3. Among the
listed countries, battery papers are clearly more cited than all papers. The United States
had the highest field-weighted citation impact, FWCI, as well as the highest share of papers
in the top 10% citation percentile. Canada had the second highest FWCI and China the
second highest share of papers in the top 10% percentile. Given China’s dominance in
paper production, it is interesting that the quantity does not come at the expense of quality,
rather the opposite.

Table 3. Comparison of quality-related indicators for papers and patents (2014–2019).

Paper Citation Data Patent TBI Value
FWCI Top 10% Top 10% Top 30%

Canada 2.47 43% 25% 54%
China 2.30 44% 7% 28%
France 1.89 32% 9% 24%
Germany 2.10 37% 6% 16%
Japan 1.60 29% 12% 34%
Republic of
Korea 1.89 39% 8% 25%

Sweden 2.24 40% 16% 29%
United States 2.79 46% 23% 50%

Red (high value) to blue (low value).
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The patent TBI values differ more between the countries than the citation impact
indicators. Canada had the highest TBI values in both percentiles followed by the United
States. Germany and China had the lowest TBI values. Japan, which was active in patenting,
did so with a slightly better than average patent value.

A high share of academic–corporate papers is, as stated above, considered positive
for innovation and it is also of interest to study whether the papers are cited. In Table 4,
the citation impact for all battery papers and battery papers with academic–corporate
collaboration are compared.

Table 4. Comparison of different types of battery papers.

Field-Weighted Citation Impact (2014–2018)
All Academic–Corporate Collaboration

Canada 2.47 2.89
China 2.30 1.89
France 1.89 2.20
Germany 2.10 2.85
Japan 1.60 1.54
Republic of Korea 1.89 2.17
Sweden 2.24 1.49
United States 2.79 2.68

On a global level, academic–corporate co-publications are typically more cited [22]. In
the battery field, this was also the case in four of the eight countries, with Germany exhibit-
ing the largest positive difference. Sweden had a relatively large difference in the other
direction; here, the academic–corporate collaboration clearly did not bring citation benefits.

4.3. Actor Level—Sweden

The number of patent applications and Scopus publications for the most recent period
with reliable data is presented in Figure 6. The volumes vary between the years, but it is
rather clear that both types of publications increase. The ratio between them is approxi-
mately 0.2, which means that for every patent application there are five scientific papers.
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The gross list with patent applications for Sweden included more than 5000 items.
It was associated with a lot of work to take care of all the name variants for people and
organizations. Approximately 600 people and 124 companies had at least one patent
application. Among them, 137 had both patent applications and scientific papers in the
period 2000–2021. In Table 5, all people with at least 5 patent applications or 60 papers
are included. Whereas all people with patent applications also have at least one paper in
Scopus, the opposite is not always the case.

Table 5. Individuals with patent applications and/or papers.

Battery Researchers in Sweden with Minimum 5 Patents or 60 Papers 2000–2021
Battery Related

Name Patents Papers Affiliation
Legnedahl, Niklas 7 3 CEVT
Sturk, David 7 3 Autoliv
ASP, Leif 6 26 Chalmers University of Technology
Leijonmarck, Simon 6 13 KTH
Lindbergh, Goeran 5 116 KTH
Bryngelsson, Hanna 5 8 AB Volvo
Edstrom, Kristina 2 203 Uppsala University
Brandell, D. 0 150 Uppsala University
Johansson, P. 0 140 Chalmers University of Technology
Strömme, M. 0 73 Uppsala University
Younesi, Reza 2 62 Uppsala University
Matic, A. 0 62 Chalmers University of Technology

A long time series for companies is presented in Figure 7. During the oil crises
in the 1970s, battery patenting was rather intensive. Since 2010, patenting activity has
increased again.
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In Table 6, all companies with at least five patent applications during 2000–2020 are
listed and divided into two time periods.

Table 6. Companies with patent applications in Sweden.

Battery Related Patents in Sweden (Minimum 5)

Company 2000–2010 2011–2020

AB Volvo 5 34
Husqvarna 4 31
Scania CV 4 28
Nilar 16 5
Volvo Car Corporation 2 18
Ericsson Mobile
Communications 7 7

Autoliv Development 3 8
Alelion Batteries 3 6
Effpower 5 1
Sony Mobile Communications 4 2
Lunalec 1 4

The automotive industry with AB Volvo, Scania CV, and Volvo Car Corporation ap-
pears to have increased its patenting activity substantially. Husqvarna, a company making
garden equipment, has also intensified patenting. There are some battery manufacturers in
Sweden, Northvolt probably being the most famous. Nilar, a battery company, filed for
bankruptcy in December 2023. Another battery maker is Alelion Batteries, which also filed
for bankruptcy in the autumn of 2023. Effpower terminated their operations in 2012.

Another very manual step in the analysis was to check which scientific publications
were referenced in the patent applications. Slightly more than 100 papers could be identified
in Scopus, where 92 were published in 1996 or later. In Table 7, the affiliations of the authors
in these 92 papers are listed, including countries with at least 3 papers.

Table 7. Where scientific publications referenced in patent applications come from.

Papers Country

32 United States
19 China
13 Sweden
10 Germany
8 United Kingdom
7 Australia
3 France
3 Italy
3 Taiwan

The United States dominates with one-third of the papers, followed by China and then
Sweden. As the references are largely added by the reviewers of the patent applications,
this reflects which literature they consider relevant.

Among the institutions affiliated in the papers, Linköping University in Sweden is
included in seven papers, followed by institutions in the United States and the United
Kingdom, see Table 8.

113



World Electr. Veh. J. 2024, 15, 193

Table 8. Which institutions scientific publications referenced in patent applications come from.

Papers Institution Country

7 Linköping University Sweden
4 Drexel University United States
4 Imperial College London United Kingdom

4 United States Department of
Energy United States

3 CNRS France
3 RWTH Aachen University Germany

3 University of New South
Wales Australia

3 University of Wollongong Australia

5. Discussion—What Do the Numbers Say?

Quantitative studies have limitations and should be interpreted with care. It is often a
good idea to use them as an input to generate an informed discussion among the actors in
the field.

From a methodological perspective, the chosen approach appears promising. It is
important to select a technological field that is large enough to result in reasonable volumes
of publications. Analyses based on small numbers of publications seldom lead to solid
results. One critical ingredient in the method was to involve experts in the battery field. The
methodology for this study was developed in line with previous studies but added several
unique or at least not so common features as explained in the Section 3. Among them, the
combination of patents and papers to cover a broader range of innovation activities and
the use of elaborated quality-related indicators are probably the most important ones.

The study confirms the massive development of Chinese patenting and research within
the battery field. Whereas this has been indicated in several studies of papers, c.f. [6–9],
the development in patenting activity is new to some extent. It is somewhat surprising
how different the proportions of patents versus papers are in the countries studied and
the diverging trends. The linear innovation model suggests a gradual development from
research toward innovation, which in terms of patents and papers would mean that the
ratio of patents per paper increases over time as the field matures. Data do not indicate
such a trend, even though some countries, not least China, clearly had an increasing share
of patents from 2002 to 2019. One possible interpretation is that the battery field is still
developing rapidly with many new questions arising relating to everything from new
chemistries to production methods.

The citation indicators and TBI percentiles highlight that the United States and Canada
are strong in both patents and papers. China is stronger in papers, whereas Japan is
somewhat stronger in patents. It should be noted that high quantity does not necessarily
mean low quality. China, which made almost 50% of the global volume of battery papers
in 2014–2019, did so with a high citation impact. Japan, which made three times more
patents than papers in the same period also managed to achieve higher TBI values than the
global average.

Academic–corporate collaboration is more frequent in the battery field than in general,
at least when it comes to such co-publications. The associated citation impact varies
between countries; some result in higher values and some in lower values than for all
battery papers. As the citation impact is an important indicator for researchers, countries
with a lower citation impact for academic–corporate papers might consider a closer study
of how the collaborations are performing.

The actor level analysis focusing on Sweden provides interesting perspectives. Links
between research and innovation are important and papers and patents provide data for a
quantitative analysis of such links. It could be expected that a certain type of paper is more
frequently referenced in patent applications. Potentially, it could be possible to trace an
innovation from the original paper to one or several patent applications. In this study, we
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have not managed to make such a chronological ordering of the publications. But partly
linked to the topic is the data for individuals with both patent applications and papers.
Some individuals, but not many, carry out battery research resulting in many papers in
combination with the writing of a few patent applications.

One policy implication of the study is that the battery field attracts large investments
in knowledge production. Several countries show ambitions to secure a dominant position
in the production of batteries for automotive and other applications. China dominates.
Given the parallel investments in battery knowledge development and battery production,
there appears to be an intricate balance between launching products onto the market and
betting on the right technology. What if the massive investments in battery production
become obsolete because they are not compatible with a new battery technology?

On a lower level, it appears rather easy to identify productive researchers. It might be
relevant to nurture a dialogue with them to understand how research can be implemented.
Even though there is a no right or wrong mix of patents and papers, a heavy focus on the
latter indicates that there might be some missed opportunities.

In the case of Sweden, the battery companies with several patent applications since
2000 have not been successful. None of them were in operation in December 2023. This
is worrying but should not be given too much emphasis. The battery industry is in a
formative stage and a lot of changes are to be expected.

6. Conclusions

The purpose of this study was to develop and test a method to analyze the volumes
of as well as qualitative aspects of patent applications and scientific publications. Battery
development in several countries was used as a case. One conclusion is that this approach
gives perspectives on battery research and innovation that are new and constitutes a
valid starting point for further discussions on a policy level. For example, the substantial
variations between countries in the volumes of papers versus patents triggers questions.
What is the correct balance? How should we interpret China’s rapidly increasing share of
patents? By including the quality dimension for both types of publications, an estimation of
whether it is only quantity or also quality is enabled. For clarity, we do not think that there
is one ideal balance between the volumes of patents and papers. The balance depends on
many factors, not least the speed of technology development. A publication study has many
limitations, and one natural next step would be to discuss the findings with practitioners
in the battery field. By doing so, the results can be scrutinized, and more nuances can be
added. At the same time, the results have been communicated and potentially implemented
to some extent. The results show that China during 2014–2019 dominated quantitatively
and increasingly in both types of publications with a development toward a higher ratio of
patent applications per scientific publications. The quality-related indicators show that the
United States and Canada during the same period made highly cited scientific publications
as well as patent applications with leading Technology Business Index values. On an
actor level, the study illustrated how Swedish individuals and companies publish patents
and papers. Automotive companies have recently started to file many patents relating
to batteries.
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Abstract: With more electric vehicles introduced in society, there is a need for the further imple-
mentation of charging infrastructure. Innovation in electromobility may result in new charging and
discharging strategies, including concepts such as smart charging and vehicle-to-grid. This article
provides an overview of vehicle charging and discharging innovations with a cable connection. A
MATLAB/Simulink model is developed to show the difference between an electric vehicle with
and without the vehicle-to-grid capabilities for electricity grid prices estimated for Sweden for three
different electric vehicle user profiles and four different electric vehicle models. The result includes
the state-of-charge values and price estimations for the different vehicles charged with or without
a bidirectional power flow to and from the electric grid. The results show that there is a greater
difference in state-of-charge values over the day investigated for the electric vehicles with vehicle-to-
grid capabilities than for vehicles without vehicle-to-grid capabilities. The results indicate potential
economic revenues from using vehicle-to-grid if there is a significant variation in electricity prices
during different hours. Therefore, the vehicle owner can potentially receive money from selling
electricity to the grid while also supporting the electric grid. The study provides insights into utilizing
vehicle-to-grid in society and taking steps towards its implementation.

Keywords: battery ageing; charging; simulation; smart charging; V2G (vehicle-to-grid); electric
vehicle; infrastructure; electromobility; MATLAB/Simulink model

1. Introduction

The increased number of electric vehicles (EVs) in society suggests the further de-
velopment and implementation of new charging infrastructure and charging strategies,
as well as the development of charging standards [1]. New ways of using and charging
EVs may drive the transition towards electromobility. This article aims to provide an
overview of the concepts of smart charging, vehicle-to-grid (V2G), vehicle-to-home (V2H),
and vehicle-to-everything (V2X) [2]. An example of modeling EV charging and discharging
to a grid in MATLAB/Simulink is presented. The analysis of the charging and discharging
strategies includes potential pros and cons for different actors and what data could be
of particular interest. The main goal is to contribute to the ongoing research discussion
on future charging strategies of EVs. While there are many different types of charging
strategies [3], this study is focused on cable charging (i.e., conductive charging), and it
does not include an analysis of, e.g., wireless charging or battery swapping. While many
previous studies focus on a larger international perspective on V2G, this study focuses on
the modeling of V2G for the charging and discharging of new EVs to the Swedish electricity
market as there has been a significant variation in electricity prices for the Swedish market
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recently, a strong interest in renewable energy sources (RES), as well as an ongoing trend
toward introducing more EVs and implementing national charging infrastructure.

1.1. Charging Strategies for Electric Vehicles

Controlling the charging or discharging of EVs can potentially provide benefits in
terms of, for example, lower charging costs, environmental aspects if charging occurs when
there is a significant amount of RES feeding electricity to the grid, and providing grid
balancing or ancillary services. However, a drawback of utilizing variable energy sources
is a lower degree of utilization due to the intermittent nature of the RES, and therefore,
energy storage could be used together with RES, as highlighted in, e.g., [4]. In [5], the
different types of EV charging strategies are described as either uncontrolled or controlled
charging and discharging strategies, where the controlled strategies are further divided
into the subgroups: (i) indirect control, (ii) intelligent control, (iii) bidirectional control, and
(iv) multistage control [5].

Controlled (unidirectional) charging, where the charging event is controlled in time,
is often called smart charging. This is in contrast to uncontrolled charging, where the
EV user charges whenever it is suitable based on the driving pattern [6]. In this context,
the willingness of the driver to utilize, or not utilize, controlled charging is of interest [6].
One main benefit of smart charging for the EV owner is economical, which entails charging
the vehicle when the cost of electricity is low rather than charging directly when the EV is
connected to the charger. Smart charging could include starting and stopping the charging
at certain times, or the power level of the charging is decreased or increased over the
charging period. Depending on whether a customer has a variable or fixed-rate tariff, the
cost optimization will look a bit different—but the fundamental purpose is the same: to
minimize the total costs of charging. Smart charging could be beneficial for the grid owners
too if the loads of the grid would be adapted to contribute to load balancing rather than
charging all vehicles simultaneously. Controlled charging would therefore limit power
peaks in the grid. This in turn could result in a limited need to reinforce the distribution
grid and thus save money on installations and maintenance. However, controlled charging
may affect the lifetime of the EV battery if the charging includes variable power levels.
Smart charging may also include enhanced data-sharing. This suggests a concern for data
protection and safety aspects in charging [7].

1.2. Vehicle-to-Grid

Bidirectional power flow between EVs and the distribution grid is often referred to as
V2G. Certain EV models may provide discharging capabilities, such as the Nissan Leaf and
Mitsubishi Outlander [8]. V2G operation is dependent on the inverter of the battery energy
storage system (BESS), which has to be able to feed the current back to the grid [2]. There
are several potential benefits of V2G considering the services provided to the grid [9]. V2G
could potentially support the grid with ancillary services such as frequency regulation or
peak shaving. The operation strategies may be differently applicable to various types of
EVs, where V2G may be an interesting opportunity, e.g., for commercial EV fleets [10].

Recent research supports the fact that V2G technology has the potential to benefit
electric utilities and microgrids, facilitating the integration of RES. Uncoordinated EV
charging has a crucial impact on power systems [11], and extensive research has been
conducted to analyze opportunities for the smart charging and discharging of EVs. V2G
scenarios have been examined on a university campus [12], concluding that both V2G
and stationary battery systems can be economical if the battery cost and electricity rates
are considered.

From the user perspective, V2G functionality may contribute to extra revenue if
the electricity can be sold back to the grid, especially during periods of electricity price
peaks [13]. Looking at the techno-economic assessment of V2G in a microgrid, the authors
in [14] highlight that several parameters impact the feasibility of V2G, e.g., the price
of the chargers and the available capacity per car. Moreover, there are sociotechnical
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aspects of V2G that need to be further investigated, including, e.g., aspects regarding the
motivation of the drivers in utilizing V2G and the driver’s view on data sharing in the
charging/discharging events [15]. For example, a comprehensive survey concluded that
the income of users highly affects EV ownership and public interest in participating in
V2G services [16]. The safety aspects of both charging and discharging to and from the
grid are important to consider to ensure the protection of both the electric grid and the EV.
Furthermore, the lack of concrete business models slows down V2G adoption [17]. V2G
was investigated for the New York electricity market in [18] based on economic aspects and
the availability of time for the charging.

When it comes to V2H, this concept enables house owners to utilize their EVs for
energy storage at their homes. The EV would be both charged and discharged at the
household. V2H could be an opportunity for EV owners to be more self-sustained, for
example, when used together with photovoltaic (PV) systems on the roof of the house, and
to ensure access to electricity even if the electric grid is not functioning properly. Vehicle-
to-vehicle (V2V) enables charging and discharging between different EVs, whereas V2X is
a broader concept including charging, discharging, and communication with EVs to the
surrounding environment and society.

There are several safety and security aspects to consider for future EVs, especially if
V2G is utilized. The risk of cyberattacks when utilizing EVs for load frequency control,
and the need to detect and mitigate attacks, has been highlighted and modeled to support
resilience [19,20]. Moreover, sensor attacks of the adaptive cruise control of vehicles could
cause severe issues, as analyzed along with a proposed model in [19]. A recent review
article discusses the benefits, challenges, and limitations of bidirectional charging and
suggests research development directions [20]. In conclusion, the need for further research
to address these challenges is compelling if the aim is to unleash the full potential of V2G.
Technical aspects and also environmental, social, economic, and legal aspects need to be
considered to make V2G a reality [21].

1.3. Resilience of the Grid and Ancillary Services

The main objective of vehicles is traditionally to transport people or goods if they are
larger vehicles. Thus, EVs are typically treated as loads in power system analysis. Due
to the possibility of utilizing EVs as mobile energy storage, it is of interest and relevance
to investigate how EVs could increase resilience and manage distribution in grids and
microgrids. Resilience includes the ability of a system to readapt after some disturbance [22].
In power systems, resilience is the capability of the system to prepare, adapt, withstand,
and recover from any power outage [23]. In this regard, EVs can contribute to more reliable
power systems by supporting the grid during typical outages and also support a more
resilient power system that can sustain high-impact events [24]. These resilience-oriented
events are generally known as low-probability high-impact events (for example, natural
disasters and extreme weather events). Nowadays, such events may be increasing due to
climate change, and the increase may be in both intensity and frequency, posing challenges
to power systems. During certain events, the public might be evacuated. If so, EVs may
not be available on-site, but EVs from nearby areas—not affected by the event—may be
used [25]. During outages, EV batteries can be used as a backup resource, while after
outages, EV batteries can be used to restore normal operation. The reliable charging of EVs
during unusual events, including crises or natural disasters, could be analyzed more in
future research. On a smaller scale, microgrids can be utilized for resilient power systems
as long as they can survive critical loads and recover to normal operation after the events.
Microgrids may provide good conditions for the development and implementation of
solutions for grid resilience enhancement [26].

There are several interesting cases where EVs are used for grid applications. Firstly,
EVs can be used efficiently for peak shaving and load to reduce the grid impact from a larger
load. If the load has a high load factor originally, it could be reduced by implementing
controlled charging and V2G. This is illustrated and analyzed in [27,28]. Secondly, EVs
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could also be used strategically in smaller energy systems consisting of one or a few loads
together with local generation from, e.g., solar PV, potentially operating in island mode
using the car batteries to balance the system. This would require an efficient and reliable
control strategy for the inverters of the batteries in order to maintain the local grid’s stability.
Furthermore, if a large amount of EV chargers is operated by an aggregator, the cumulative
capacity could be used strategically for more extensive grid applications. The capacity
could be provided to the distribution system operator (DSO) or traded in available markets
for ancillary services for power system stability or balancing purposes, e.g., frequency
regulation services or balancing reserves.

It needs to be highlighted that EV batteries have a non-negligible cost. Also, EV
owners may show a certain degree of skepticism in participating in ancillary services. EV
batteries are considered degraded and not suitable for EVs when their capacity is reduced
by 20–30%. However, the remaining 70–80% capacity can be used, after refurbishment, for
less demanding purposes as a stationary storage system [29]. Thus, EV battery packs can
contribute to grid resilience during their so-called second-life. Reusing batteries does not
only enhance resilience, but it is also an environmentally friendly choice that can recover
up to 20% of the initial battery cost [30]. However, there may be relevant aspects with
regards to, e.g., the safety of the system or environmental aspects when refurbishing the
batteries that need to be investigated further for second-life applications, and appropriate
performance tests of retired batteries are important before reuse in other applications [31].

1.4. Vehicle Batteries and Stationary Batteries: Ageing

Providing V2G may result in the increased cycling of EV batteries depending on
the use case, and this is relevant to estimate. However, if the vehicle battery is cycled
more times, battery degradation becomes relevant to consider [13], and EV battery packs
constitute a major part of the EV cost. Hence, it is important to evaluate battery aging when
investigating V2G or V2X technology implementation. To ensure a long lifetime for the
batteries and ensure safe usage, the state of charge (SOC) should be carefully estimated,
as described, e.g., in [32], as well as the state of health (SOH) to better understand the
aging process of the battery. The aging of the battery depends not only on how many times
it has been charged and discharged but also under what circumstances it was charged
and discharged (i.e., temperature, power level, etc.), and this relates to the cycle aging.
When evaluating the aging of batteries in EVs due to increased cycling, it is often relevant
to separate calendar aging from cycle aging. Gaining knowledge about the health of a
used or retired EV battery can open up opportunities for the safe reuse of EV batteries in
second-use applications [31]. In [33], empirical tests for capacity life loss were conducted
on Li-ion cells for a selection of scenarios with varying C-rates, depth of discharge (DoD),
and cell temperature. The results include several interesting aspects: first, the authors
conclude that for lower C-rates the aging is not as dependent on the DoD effect as for higher
C-rates. Second, capacity life loss models are presented for the chosen C-rates which can
be implemented to estimate the capacity life loss for given conditions. According to [33],
the capacity life loss can be estimated by Equation (1) when discharging with a current
corresponding to C/2, that is

Qloss = 30.330· exp
(−31500

8.314·T

)
A0.552

h (1)

In Equation (1), Qloss is the estimated capacity loss (%), T is the absolute cell temper-
ature, and Ah the energy throughput which is the product of the cycle number, DoD for
the considered cycle (%), and the cell energy capacity (ampere hours). This is shown in
Equation (2):

Ah = cycle number·DoD·Cell capacity. (2)
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Furthermore, when the current corresponds to C-rates higher than C/2, the capacity
life loss model becomes more complex and can be described as

Qloss = B·exp
[−31700 + 370.3·Crate

R·T

]
(Ah)

0.55. (3)

In Equation (3), R is the gas constant, T is the absolute temperature, and B is a pre-
exponential factor which decreases with increased C-rates and is determined in the fitting
process of the capacity life loss model estimation. The values of B can be found in [33].
Another parameter relevant when modeling EV charging and discharging is the SOC in
percentage. The method of SOC estimation includes the initial energy capacity E0(t) as the
motor capacity of an EV is measured in kW. In this way, the relationship is given in [15] as

SOC(t) = SOC(t0)−
1

E0(0)
·
∫ t

0
Pi(t)dt, (4)

where E0(0) and Pi(t) are the initial energy capacity and the instantaneous power fed from
the battery into the load, respectively.

2. Methodology

The research design includes simulations in MATLAB/Simulink with study cases
on the unidirectional charging and bidirectional charging of EVs in Sweden. The cases
modeled in the simulations are based on the ongoing electrification in Sweden, where the
electricity prices were significantly volatile at the end of 2022, resulting in higher household
electricity costs during the winter months in 2022. Also, there is a significant number of EVs
in Sweden. The novelty and the contribution of the model include an investigation of V2G
charging based on estimated electricity prices in Sweden for several different EV owner
user profiles in comparison to EV charging without V2G capabilities. The aim of the model
is to gain knowledge on charging and discharging several EVs to the grid, with a control
based on estimated local electricity prices. The objective of the V2G model is to investigate
how V2G could function for a system of different vehicles, to compare the potential of EVs
with and without V2G compatibilities, and to potentially enhance the economic revenue
from charging and discharging EVs with V2G due to price variations.

2.1. Modeling Charging and Discharging of Vehicles in MATLAB/Simulink

The electric grid is represented in MATLAB/Simulink as a three-phase AC grid. The
EV can be modeled in MATLAB/Simulink as a battery system. Therefore, the AC from the
grid needs to be converted to DC for the battery, utilizing a converter. Thus, the converter
system needs to be bidirectional to ensure a power flow in both directions. Input data
to the model includes, for example, available data on EVs from [8]. To illustrate how EV
chargers could operate dynamically by responding to an external control signal, the system
is shown in Figure 1, where an aggregator plans the charging and discharging.

A set of chargers was modeled with varying characteristics. The EV charging was sim-
ulated for 24 h. The flowchart in Figure 2 presents the model with the different algorithms
divided into different functions. An overview of the functionality of the proposed V2G
model is also provided in Table 1.

Function 1 describes the initial conditions, including, e.g., the initial SOC value of
each EV, as well as the electricity price set-point for when to sell or buy electricity (meaning
when to charge or discharge the EV). The estimated electricity price in Sweden during a
day with large hourly fluctuations was chosen to show how the chargers would operate
during significantly different conditions. A price set-point was chosen in this simulation as
3 SEK/kWh (in Function 1), according to which the chargers would evaluate their operation
mode. If the estimated electricity price exceeded the set-point, the chargers promoted the
V2G mode, and for low prices, the chargers promoted the charging mode, as shown in
Function 1 in the flowchart in Figure 2. Five of the vehicles in the simulation model could
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use the V2G mode (meaning that these vehicles could buy and sell electricity from or to
the grid based on the estimated electricity price), and another five vehicles did not have
this capability.
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Table 1. Overview of the functionality of the proposed V2G model.

Function Functionality

Function 1

• Presents the initial parameters for the EVs, e.g., initial SOC, SOC limits,
charging and discharging power, and electricity price set-point;

• Evaluates current estimated electricity price to decide if the value is above
or below the electricity price set-point.

Function 2 • Identifies if the EV is parked and connected to a charger or if the EV is
being driven, with a limitation in time.

Function 3 • Summarizing the results from Functions 1 and 2 in order to set a power
reference for the battery.

Function 4 • Identifies the current SOC value and evaluates this based on SOC limits;
• Determines whether the EV should be charged or discharged.

Function 5 • A new SOC value is calculated.

In Function 2, it is determined whether the EV is parked and connected to a charger or
not. If the EV is connected to a charger, there is an opportunity to use it for V2G with a set
value of nominal power for charging and discharging, provided that the overall conditions
(e.g., limits on SOC value, estimated electricity price, etc.) are fulfilled. If the EV is not
parked, i.e., not connected to a charged, during the hours: 08:00 to 21:00, it is assumed that
the EV is being driven and that the SOC value is dropping based on a set value.

In Function 3, the results from Functions 1 and 2 are summed up to decide whether
the vehicle can be used for V2G or not.

In Function 4, the SOC of the EV is analyzed to find out if it is below or above the
lower or upper SOC limits, set to 20% and 80%, respectively. The decision on whether to
charge or discharge the EV depends also on the results from the previous functions.

Finally, in Function 5, the SOC of the EV battery is calculated based on Equation (4).
The overall decision making for the vehicles in the model depends on all five functions
described in the flowchart.

2.2. Input Data to the Case Study

The first version of the MATLAB/Simulink model for charging and discharging
includes ten EVs, each with different estimated and assumed values regarding their battery
systems (note that these values could vary), namely, three Nissan Leaf cars with BESS
capacities of 40 kWh and an assumed 10 kW rated power for charging and discharging;
two Mitsubishi Outlander, plug-in hybrids, with battery capacities of 13.8 kWh and a
3.7 kW rated power for charging and discharging; three Volvo cars, with a battery capacity
of 69 kWh and an assumed 11 kW rated power for charging; and two Tesla cars with
batteries of 57.5 kWh and an assumed 11 kW rated power for charging. The modeled EVs
can be changed in user profiles (if the EVs are at home or away), initial SOC, maximum
and minimum SOC, rated power for the charging and discharging, and battery capacity, to
name a few configuration possibilities. This enables the modeling of different user profiles
and different types of EVs. There is a trade-off between utilizing the car for personal
transportation needs and enhancing the economic revenue from charging and discharging
when there is a significant fluctuation in the electricity price.

The simulation model is a charging and discharging model of EVs based on a design
approach, using MATLAB/Simulink in the phasor simulation type in 50 Hz for 24 h. This
includes four different types of EVs, two of them in the charging and discharging mode
(V2G) and the other two types in only the charging mode (EV). Three different user profiles
are distributed among the vehicles. The model takes the estimated electricity price and
user profile as input and generates the command to the vehicle. The case study focuses
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on the Swedish energy system. The electricity price over one day estimated for Sweden
is used as input data to the model, and the estimation is shown in Figure 3. Electricity
prices for different regions can be found on, e.g., Nord Pool [34] and in publications. The
electricity price is based on the demand for electricity during the different hours. Based on
Figure 3, the set-point of 3 SEK/kWh was chosen for this simulation (indicated by a dashed
line). The high values of the estimated electricity price match a high national electricity
demand, and the EVs could, at these moments, possibly contribute by selling additional
electricity to the grid for support. Also, the opposite could occur, where the EV owner buys
electricity from the grid when the estimated price is lower. The electricity price in Sweden
varies with the days and seasons. The estimated price in Figure 3 varies over different days,
where generally the prices are higher in the winter than in the summer. The electricity
prices relate to the electricity production, with a significant amount of variable RES such
as hydropower, wind power, and solar power in Sweden [35]. For a household with a PV
system installed, the electricity purchased from the grid could be reduced in the summer,
due to more sunlight and longer days, than in the winter.
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or at work during some hours, and in between, it is driven a certain distance between the 
two locations. Profile 2: the car is parked at home in the morning and the evening, but 
during the daytime, there is no charging possibility at work. Profile 3: this profile 
corresponds to persons who work night shifts, where the car is parked at home during 
the daytime and parked at work during the nighttime with no charging possibilities. The 
three profiles are distributed among the ten EVs as follows: Profile 1 is added to Users 1, 
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Figure 3. The electricity price estimated for a day in Swedish krona per kWh (SEK/kWh).

The user profile of the EV owner decides when the EV is at home, where an available
bidirectional charger is assumed, or when the EV is not at home. The typical charging
profiles of EVs vary (for example, if it is a weekend or weekday, the season, and type of life
of the EV owner). Three user profiles utilized in this model are shown in Figure 4.

Considering the user profiles in Figure 4, the profiles follow patterns according to
the following description; Profile 1: the car is parked for charging/discharging either at
home or at work during some hours, and in between, it is driven a certain distance between
the two locations. Profile 2: the car is parked at home in the morning and the evening,
but during the daytime, there is no charging possibility at work. Profile 3: this profile
corresponds to persons who work night shifts, where the car is parked at home during
the daytime and parked at work during the nighttime with no charging possibilities. The
three profiles are distributed among the ten EVs as follows: Profile 1 is added to Users 1, 6,
8, and 10; Profile 2 is added to Users 3, 7, and 9; and Profile 3 is added to Users 2, 4, and 5.
The initial SOC is set to 50% for all ten cars, and the maximum and minimum SOC limits
are set to 80% and 20%, respectively.
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3. Results and Discussion

The results from the simulations include, e.g., the SOC when using the EVs for bidirec-
tional or unidirectional charging strategies, presented in Figures 5 and 6. The SOC values
estimated for the EVs of the types Nissan Leaf and Mitsubishi Outlander, for different user
profiles, are modeled and shown in Figure 5. These EVs are simulated to both charge from
and discharge back to the grid, with V2G capabilities.
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The SOC values estimated for the EVs of the types Volvo and Tesla are modeled and
shown in Figure 6. It is noted that these EVs are only charged from the grid, with no
V2G capabilities.

The different time periods of Figures 5 and 6 can be analyzed. According to Figure 3,
before 07:00, the electricity price is below 3 SEK/kWh, allowing the vehicles only to charge
until reaching the upper limit of the SOC. If the vehicle is not charging during this period,
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this is because of the user profile, meaning a car that is not connected to the charging station.
This is the case for User 2, User 4, and User 5 (Profile 3 in Figure 4), presented in Figure 5.
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During the period 07:00 to 13:00, the vehicles only discharge as the electricity price
is above 3 SEK/kWh, selling electricity to the grid until reaching the lower limit of SOC.
However, it can be noticed that User 1, User 3, User 6, User 7, User 8, User 9, and User
10 in Figures 5 and 6 are discharging, even though the vehicles are not at the charging
station. This occurs due to the vehicles traveling and discharging at an assumed 10% of the
nominal power.

During the period 13:00 to 16:00, the vehicles only charge as the electricity price is
below 3 SEK/kWh, buying the electricity from the grid until reaching the upper limit of
SOC. However, it can be noticed that User 3, User 7, and User 9 (Profile 2 in Figure 4) are
discharging because each vehicle is not connected to the charger and traveling, discharging
at 10% of the nominal power.

From 16:00 to 21:00, the vehicles only discharge as the electricity price is above
3 SEK/kWh, selling the electricity to the grid until reaching the lower limit of SOC. From
21:00 to 07:00, the vehicles only charge as the electricity price is below 3 SEK/kWh, buying
the electricity from the grid until reaching the upper limit of SOC. It can be noted that
when the vehicle is not at the charging station, the SOC is constant, different from the other
scenarios where the vehicles were traveling and discharging at 10% of the nominal power.
This is due to the possibility of traveling during a certain period (from 08:00 to 21:00).

Aggregating the ten EVs to the grid, where half of the EVs provide V2G, the estimated
cost of the charging or revenues from discharging and the power (kW) to and from the grid
over one day are shown in Figure 7a,b.

From hour 00:00 to 07:00, in Figure 7a, the electricity price is below 3 SEK/kWh, and
the EVs are charging (buying electricity from the grid). The negative signal represents that
the grid is earning money from EV users. From hour 07:00 to 13:00, the electricity price
is above 3 SEK/kWh, meaning that some of the EVs (i.e., the EVs with V2G capabilities
parked at the charging station—User 1, 2, 3, 4, and 5) will sell electricity back to the grid, as
can be indicated by the rise of the red curve in Figure 7a. But, the curve is still negative
due to an imbalance between the electricity being sold to and bought from the electric
grid. This variation (i.e., imbalance) in buying and selling electricity from and to the grid
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with all the EVs in the model is also shown in the final hours 13:00 to 24:00 in Figure 7a.
Figure 7b shows the power to and from the electric grid based on the rated power for each
EV for charging and discharging, presented in Section 2.2. The grid sells more electricity
for charging the EVs than buys electricity from the EVs, which is reasonable since the grid
buys only when the electricity price in this model is higher than 3 SEK/kWh, and only
half of the EVs have V2G capabilities in the model. Charging and discharging based on
the electricity price could be controlled by an aggregator to provide support to the electric
grid. The charging and discharging of EVs will affect the power system. EV charging at
high power levels, to provide a short charging time, can create power peaks in the electric
grid. To use V2G on a large scale in society requires a robust electric grid, and V2G can also
support the electric grid with balancing services and enhanced flexibility.
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While the main objective of this study is to investigate the potential economic revenues
from V2G based on estimated local electricity price variations, future research could include
an in-depth investigation of how the large-scale adoption of V2G may impact the electric
grid (including, e.g., the load profiles of the grid). The benefits from utilizing V2G may
not only be the economic revenues for each EV owner. V2G could potentially also support
the local electric grid with grid balancing services, contribute with additional electricity at
remote locations, or support the self-sufficiency of the EV owner if charged and discharged
to a household.

However, the EV battery could be affected by this new bidirectional charging strat-
egy. The lifetime of the EV batteries is affected by several factors, such as the ambient
temperature and charging/discharging power levels. It is complex to estimate the SOH
of an EV battery. Thus, the potential economic revenue from different charging strategies
such as V2G is hard to estimate and varies from different specific cases. From the Swedish
perspective, winters often provide negative ambient temperatures, and the charging or
discharging of EVs outdoors may degrade the batteries faster, especially if the charging or
discharging is carried out at high power levels (i.e., fast charging).

It is a challenge to propose a suitable economic compensation to an EV owner utilizing
V2G as it should include both economic compensation for the electricity sold to the grid
and for the potential EV battery wear. The opportunity to use V2G may also affect the
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warranty time of the EV, as well as the price of the EV on the second-hand market. The
opportunities and challenges with implementing V2G in Sweden require further research,
including both modeling and experimental work, to provide a deeper understanding of
V2G from technical and economic perspectives.

As described in Section 2, the results presented are based on the charging and dis-
charging of the ten vehicles during 24 h modeled in the MATLAB/Simulink simulation
framework, with a phasor simulation type with 50 Hz. The model includes an algorithm
for deciding when to charge or discharge the EV, including input data, e.g., SOC, estimated
electricity price, EV type, and charging and discharging power levels. The simulation
model is still at an early stage of development. In this first version of the model, all EVs
have the same initial SOC, the analysis is only conducted for one day, the SOC lowered due
to driving the EV is only roughly estimated, etc. This can be modified for in future versions,
to simulate EVs driving a certain distance when it is not parked at home. Additional
functionality can be included and added to the model to better simulate different types of
EVs and V2G. Future simulations will be conducted with a real-time simulator, and so far,
only first trials have been carried out to, for example, simulate transients. Choosing an
appropriate control signal for V2G can sometimes result in a conflict of interest, e.g., if the
estimated electricity price is low during local high-demand hours, which would suggest
charging when the grid is already stressed. Therefore, it may be a good idea to prioritize
the order of objectives if the chargers target both economic and technical objectives.

4. Conclusions

There are different charging and discharging strategies presented in the scientific
literature, including smart charging strategies such as V2G, where the EV is not only
charged from the electric grid but also discharged back to the grid. A simulation model
of the charging and discharging of ten vehicles has been designed in MATLAB/Simulink.
The model includes an algorithm for deciding when to charge or discharge the EV. The
charging strategy for V2G capability in the model is related to the estimated electricity
price, with the goal to charge the EV when the price is low and discharge when the price is
high. The model also includes EVs with no V2G capabilities, meaning that these can only
be charged from the grid. The results show how the SOC for different user profiles could
vary over a day.

The maximum SOC value for using V2G was set to 80%, whereas the minimum value
was 20%, and the starting value of each EV was 50%. The value 3 SEK/kWh was chosen
as a set-point for when to charge (if the price was lower than 3 SEK/kWh) or when to
discharge if V2G was an option (if the price was higher than 3 SEK/kWh). It was concluded
that the model of V2G resulted in larger SOC differences (from 20% to 80% SOC) than if the
V2G capability was not included. V2G can potentially support the power grid with grid
balancing services.

The electricity price can vary with, e.g., different seasons and days due to the amount
of RES connected to the electric grid. Therefore, the revenue from using the V2G will vary
with different seasons and days. The electricity usage pattern may, however, be more or
less similar for a workday in any season. If there are great variations in the electricity prices
due to, for example, seasons with significant variations in electricity production from RES,
the economic revenue from V2G will increase as the EV owner can buy electricity when
the price is low and sell when the price is high. If the electricity price is more or less stable,
which could be the case during some seasons, the financial incitements from using V2G
will decrease. Generally, the electricity need in Sweden is greater in the winter than in the
summer, and therefore, the V2G could be more important in the winter than in the summer.

While the estimated electricity price and variations over the day provide opportunities
to create additional revenues, the battery system of the EV may be aged faster due to
additional battery cycling. The results from the simulation show that the grid sells more
electricity, due to EV charging, than buys electricity from the EVs due to V2G. There are
limitations with this study, e.g., it is only based on MATLAB/Simulink simulations with

128



World Electr. Veh. J. 2024, 15, 153

no real experimental data from EV charging, and no experiments are included, and there
are assumptions made on the type of EVs and the charging and discharging rates. Future
research can include, e.g., improved estimations on discharging during driving, include a
validation of simulated values in comparison to real-life data from EV charging, or include
experiments on V2G in society. There are several barriers limiting the acceptance of V2G
technologies, such as technical, economic, regulatory, social, political, and environmental
challenges. Additionally, other important issues need to be addressed for the successful
implementation of V2G, such as coordination among stakeholders, standardization, the
deployment of charging stations, and the design of public policy incorporating EVs. This
study investigates some of these aspects, bringing V2G technologies one step closer to more
widespread implementation. This is the first step in modeling and understanding more
about the opportunities and challenges with the charging and discharging of future EVs.
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Abstract: The ever-increasing electrification of society has been a cause of utility grid issues in many
regions around the world. With the increased adoption of electric vehicles (EVs) in the Netherlands,
many new charge points (CPs) are required. A common installation practice of CPs is to group
multiple CPs together on a single grid connection, the so-called charging hub. To further ensure EVs
are adequately charged, various control strategies can be employed, or a stationary battery can be
connected to this network. A pilot project in Amsterdam was used as a case study to validate the
Python model developed in this study using the measured data. This paper presents an optimisation
of the battery energy storage capacity and the grid connection capacity for such a P&R-based charging
hub with various load profiles and various battery system costs. A variety of battery control strategies
were simulated using both the optimal system sizing and the case study sizing. A recommendation
for a control strategy is proposed.

Keywords: electric vehicle; battery energy storage system; optimisation; genetic algorithm; charging
hub

1. Introduction

With the increased uptake of electric vehicles (EVs), the need for charging infrastruc-
ture is surging [1]. EVs are a part of a wider transition to electricity as an energy transmitter.
Globally different economic sectors such as transportation, industry, and the heating of
buildings are quickly being electrified [2]. Countries and cities that have historically relied
on fossil fuels as the primary energy supply are facing issues as the electricity grid becomes
congested, thus hampering the energy transition. For charging infrastructure, this implies
that new grid connections or expansions are not available or a significant waiting list exists
until grid expansion has been realised [3]. Charge point operators (CPOs) are looking for
innovative ways to continue operations. These include battery-supported charging hubs.

Recently, a large number of sites have been installed with a battery energy storage
system (BESS) at DC charging stations. Projects and studies with a BESS at large AC
charging hubs have been missing. These projects are, however, more complex in terms
of determining the optimal sizing of the system, as well as operating the system in the
most efficient manner. These systems often require a lower, but more continuous, power
than high-power DC systems. A temporary reduced power does not always have to be
problematic. Inverter dimensioning and smart operation play a large role in the efficiency
of the system. These unique features make dimensioning and the optimisation of these
systems a different problem.

This paper is an expansion of the work presented at the EVS 36 conference [4].

1.1. Literature Review

There have been many studies that look into the use of batteries in combination with
EV charging stations. Ref. [5] investigated the potential of a solar photovoltaic (PV) and
BESS combination in a grid-tied, urban EV charging system. They optimised BESS and
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PV array sizing, but failed to consider the space requirements for such a large PV array
and the shading effects from surrounding buildings. They used hourly time resolution,
which is not fine enough for such a volatile source as PV, nor for an EV charging station.
Ref. [6] included a diesel generator as a back-up power source for peak times. Whilst this
can work as a viable solution for grid-limited locations, it failed to consider the idea that
many urban environments are aggressively cutting back on diesel engines to improve air
quality and citizen health. The more suitable 15 min data resolution was used in this study,
but failed to consider conversion losses for any source or the BESS and did not specify the
power per charge point. Ref. [7] looked at the use of a PV + BESS combination to support
a grid-connected EV fast-charging station under a few scenarios. Again, the size of a PV
system, especially if it is to have any impact on a fast charger, would need to be very large;
they stated in the paper that this would have to be between 0.5 MWp–24 MWp for different
scenarios. A 0.5 MWp PV array would require 1000 PV modules, and an array that is any
larger would not be suitable for most urban environments.

The research on a BESS in combination with EV chargers has focused on fast charg-
ers [8–10], and with good reason, given the grid volatility associated with the short duration
and high power peaks from fast chargers. Again, refs. [8,9] did not use measured data and,
instead, simulated EV loads; ref. [8] focused on plug-in hybrid EVs (PHEVs), a shortcoming
given the prevalence of battery EVs (BEVs) nowadays, whilst [9] used four representational
BEVs. Ref. [10] presented the optimal sizing of a BESS on a DC network with multiple fast
chargers, a PV array, and industrial load. They used measured EV data; however, it is a
general EV travel database and not specific to the case study. They do, however, investigate
the charge scheduling of EVs and bi-directional charging to support the industrial load.

Access to reliable EV charging data is problematic. Refs. [5,8,9] simulated data using a
mathematical formula. Ref. [6] derives data from another study. Ref. [7] uses data from a
Dutch distribution network operator but included data from only two fast chargers and is,
therefore, highly location specific.

Many other studies look into battery sizing optimisation in other applications, such as
for prosumers in renewable energy communities [11], as neighbourhood-level storage at a
low-voltage distribution level [12,13], and as storage in a microgrid setting [14–16].

Popular optimisation methods are the particle swarm optimisation algorithm, used
in [5,7], and genetic algorithms (or variants thereof) such as in [11–13,17]. The objective
function often seeks to minimise the annual investment cost, although other objective
functions may include maximising self-consumption from PV production or minimising
grid interaction.

1.2. Case Study

In a bid to further incentivise and provide for EVs whilst minimising the grid impact,
Amsterdam, in partnership with local energy service provider Vattenfall and maintenance
provider Heijmans, has installed a charging solution at a Park and Ride (P&R) facility. Thus,
in order to be considered a small consumer, and therefore benefit from a faster connection
time and reduced connection costs [18], a maximum grid connection capacity of 3 × 80 A
was imposed. This pilot project serves as a learning opportunity for BESS-supported AC
charging hubs. To further limit grid interaction, there was to be no energy flowing back to
the grid from the BESS. This clause prevents profiting from energy arbitrage and limits the
business case of this system.

Smart-charging strategies are often thought of as a first potential solution to grid-
limited CPs, such as load shifting by suspending charge sessions or scaling current delivery
with total CP power demand. In a P&R charging hub, smart charging can offer an improved
charging efficacy both for the users and for the network operator. However, to ensure
the user experience is not negatively impacted in the coming years due to increased EV
penetration, this pilot project sought to investigate the use of a BESS.
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1.3. Contribution

To the authors’ knowledge, there have been no studies or projects besides the case
study that supplied a charging hub using only a grid connection and BESS with the intention
that the BESS limits grid loading during peak grid-load hours. This work uses measured
data from the case study to address the oversized BESS and optimise the BESS and grid
connection capacity using a variety of load profiles and 5 min time resolution. The model
developed is a generalisable model of a BESS-supported type-2, level-2 charging hub, and
is easily scalable for any number of CPs, grid connection capacity, BESS capacity, and load
profile. The optimal system size was compared against the case study system for a number
of BESS control strategies to form recommendations on sizing and control.

1.4. Structure

The paper is structured as follows: Section 2 introduces the optimisation problem,
Section 3 describes the case study and details the model development, and Section 4
describes the chosen control strategies. Section 5 presents the optimal BESS and grid
connection sizing for the case study and compares this against the currently installed case
study sizing for a variety of control scenarios. For three different monthly loads, the change
in the loss of load is plotted against the BESS capacity. Section 6 discusses the results in a
broad and generalised frame, offering recommendations to future system developers and
proposals for future work. Finally, Section 7 concludes the study.

2. Optimisation Problem

The sizing of a BESS in a grid-limited AC charging hub should be large enough to aid
in supplying demand but not oversized such that there is an excess of capacity. A BESS
remains an expensive investment so the intention is to keep the storage capacity minimal.

The Pymoo Python library [19] was used to form and solve the optimisation problem
using a (µ + λ) genetic algorithm. The optimisation problem considered mixed variables:
integers over a range and the set of four discrete grid connection values. The Pymoo library
only offers a genetic algorithm to solve such a mixed variable problem. Furthermore, future
work will consider a multi-objective optimisation problem for which the NSGA-II algorithm
can be used. The developers of the NSGA-II algorithm developed the Pymoo library, hence
its choice. It is important to note that a genetic algorithm will find near-optimal solutions,
and other algorithms may arrive at a more optimal solution.

The BESS control will have an effect on the optimisation process. In this optimisation
problem, the standard ‘base-case’ control was used, which was derived from the case study.
It is assumed that, in a newly installed and optimal system, the BESS would have individual
phase power delivery, and, thus, phase imbalance and grid feedback would not be an issue.
This means that the grid delivers up to the full connection capacity, and, if the BESS delivers
power, it delivers only the remaining load above the maximum grid capacity.

The objective function is presented in Equation (1):

min f (x) =
CB·EB,max

Lexp
+ CG + 12·PS·

LL
ηRT

(1)

where CB is the cost of the BESS installation, currently approximately 650 €/kWh [20,21]. CG is
the cost of installation per grid connection capacity as presented in Equation (2) [18]. PS
is the profit from the electricity sale, assumed to be 0.1 €/kWh. The battery investment is
annualised by dividing by the expected system lifetime Lexp, 10 years as per the battery
supplier capacity warranty. Similarly, the monthly loss of load, LL, is annualised by multi-
plying by 12. ηRT is the mean battery round-trip efficiency. Operational and maintenance
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costs of the BESS are not included in this objective function since it is assumed that they
would remain similar for a BESS regardless of its capacity.

CG(PG) =





346 €/year , PG = 3x25 A
1459 €/year , PG = 3x35 A
2148 €/year , PG = 3x50 A
3533 €/year , PG = 3x80 A

(2)

The case study system had a BESS power–energy ratio of 0.71. The constraint repre-
sented by Equation (3) was implemented to maintain a similar power–energy ratio. This
allowed for some tolerance around the target value. To ensure a high quality of service, the
constraint represented by Equation (4) was implemented, limiting the lost potential load,
LL, to 100 kWh. This is equivalent to approximately 1.5% of the 7 MWh load profile used in
the optimisation.

0.65·EB,max ≤ PB,max ≤ 0.75·EB,max (3)

LL = ∑T
t0

PEV,D(t) + PBase(t) + PB(t)− PG(t)
12

≤ 100 kWh (4)

where PEV,D(t) is the total EV power demand at time t, PBase(t) is the base load at time
t, PB(t) is the power supplied by or delivered to the battery at time t, and PG(t) is the
power supplied by the grid at time t. The battery current convention employed is a
negative battery power for discharging. The sum of power over the entire time-series is
then multiplied by 1/12 to convert from the 5 min time step to hours. T is the total time
period of 1 month. All other constraints, Equations (5)–(8), were internal to the system
model and were handled during simulation runtime. These included the power balancing,
the battery state-of-charge (SOC) limits, and the battery charge/discharge power limits.

PBase(t) + PEV,D(t) + PB(t) = PB(t) + PG(t), ∀t ∈ T (5)

0.10·EB,max < EB(t) < 0.95·EB,max (6)

0 ≤ PB,ch,t ≤ PB,ch,max (7)

0 ≤ PB,dch,t ≤ PB,dch,max (8)

Due to the stochastic nature of the model, a single month-long load profile was formed
and repeatedly used for the simulations in the optimisation process:

• A parent population of potential solutions was generated containing the decision
variables EB,max, PB,max, and IG,max;

• A simulation was performed for a single potential solution, and the outputs LL and
ηRT were retrieved;

• Using these five decision variables, the objective function was evaluated and the
results saved;

• This process was repeated for all possible solutions in the population of the current
generation;

• A new parent population was created for the next generation, as the GA describes,
allowing for crossover and mutation.

This study optimised the BESS capacity and grid connection capacity for a monthly
load of 7 MWh (28 kWh/CP/day). Various BESS costs have been considered that span costs
of up to the expected 2030 cost per kWh. The problem considered the base-case control strat-
egy, defined in Section 4, and the discrete grid connection capacities of 3 × 25 A, 3 × 35 A,
3 × 50 A, and 3 × 80 A. The algorithm used a population size of 50 for 10 generations.
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Additionally, the capacities were optimised for both a 5 MWh monthly load and a
6 MWh monthly load. All feasible solutions were plotted as the loss of potential load
against the BESS capacity. These figures clearly illustrate the relationship between the BESS
capacity and the loss of load.

3. Case Study

The main characteristics that define the BESS and CPs are presented in Figure 1 and
Table 1. A 3 × 80 A grid connection is fed into the container housing the BESS, point
a in Figure 1. The BESS is compiled from four battery stacks connected in parallel via
four separate inverters, each fitted with a 100 A breaker. There is an air-conditioning unit
within the BESS container to ensure a safe operating temperature is maintained. Leaving the
container is the AC feeder line, point b in Figure 1, to which each of the eight dual-connector
CPs are connected in parallel. Each dual-connection CP has had the phase connections
rotated, as is standard [22]. In Case 2, single-phase EVs connect to the same CP, and phase
rotation ensures they do not load the same phase. Each CP is fitted with a 35 A fuse per
phase and each socket within the CP is fitted with a 20 A fuse per phase. This setup allows
for the CPs to draw power from the grid, from the BESS, or a combination of the two.
Similarly, the grid connection can feed power to both the CPs and the BESS given the
available capacity. Conventional load sharing is applied when necessary [22]. The BESS
is a commercially available system supplied by BECK [23]. The BESS uses lithium-ion
technology, the common choice given its high cycle-life, high round-trip efficiency, and fast
response time [24].
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Figure 1. Schematic depicting the BESS and CPs. Point a is the grid connection rated at 3 × 80 A at
400 V, 55.4 kW. Point b is the output of the AC feeder line to the CPs from the BESS container.

Table 1. System components.

Component Brand and Model Specifications

Battery BECK BESS Big Box 240 kW, 336 kWh

Charge points Alphen Twin Public 3 × 35 A, 400 V, 24.2 kW per CP
3 × 20 A, 400 V, 13.75 kW per socket

The battery is considered to be oversized for the current operation. In the 6 months
of data used to build the model, the BESS dropped below 50% SOC 15 times and the
battery is cycled too frequently for low energies, as depicted in Figure 2. Frequent and
small discharge/charge cycles are detrimental to battery lifetime [25,26]. Additionally, the
battery is being charged and discharged at very low powers, resulting in low conversion
efficiencies and high energy losses. Considering that the grid connection capacity could
still be increased further from the programmed 3 × 25 A up to the physical connection of
3 × 80 A, which remains a cheaper option than the annualised battery system costs, the
battery energy storage capacity could be reduced.

135



World Electr. Veh. J. 2024, 15, 133
World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 6 of 18 
 

 
Figure 2. BESS state of charge over 4 weeks. 

3.1. Model Development 
The months of January–June 2022 were used to develop the model, with the month 

of July 2022 used to validate it. Individual charging sessions were identified and various 
session parameters determined, namely, the day of week, entry time, exit time, end of 
charging time, power delivery per time step, number of phases it is connected to, and the 
current per phase. The maximum charging power, total energy delivered, and connection 
and charging duration per charging event were deduced. The charging sessions were then 
filtered for charging duration and energy transfer, with limits of [0.5 h, 25 h) and [1 kWh, 
80 kWh), respectively. 

The entry events were separated by day since Friday, Saturday, and Sunday experi-
enced different usage patterns than the working weekdays Monday–Thursday, as pre-
sented in Figure 3. This was to be expected, since, on Monday–Thursday, people generally 
follow similar work–life patterns. The peak connection time on weekdays is around 07:00–
09:00, in line with commuter usage. There is also a second, smaller peak in the late after-
noon from residents and evening visitors. It appears that a higher proportion of people 
arrive late on a Friday, to then park for the night or weekend. Saturday is a day in which 
people travel to the city for social/leisure purposes, whilst Sunday may still be regarded 
as a day of rest and, therefore, reduced P&R activity. 

 
Figure 3. Probability density function of car arrival at a given time per day of week. 

The charge sessions were then clustered into user groups using the Bayesian Gauss-
ian Mixture Model (BGMM) from the Python scikit-learn library. When handling data 
with a distribution as visualised in Figure 4a, which plots the connection duration against 
the time of connection, a Gaussian Mixture Model (GMM) was found to be most suitable. 
BGMM performed better than a standard GMM due to the function’s ability to minimise 
the number of clusters, resulting in two clusters per day type. The time of connection and 
connection duration were determined to be the best indicators of conscious user behav-
iour and are more strongly correlated than other variables. Including more than these two 
variables did not yield improved clustering performance. 

Figure 2. BESS state of charge over 4 weeks.

3.1. Model Development

The months of January–June 2022 were used to develop the model, with the month
of July 2022 used to validate it. Individual charging sessions were identified and various
session parameters determined, namely, the day of week, entry time, exit time, end of
charging time, power delivery per time step, number of phases it is connected to, and the
current per phase. The maximum charging power, total energy delivered, and connection
and charging duration per charging event were deduced. The charging sessions were then
filtered for charging duration and energy transfer, with limits of [0.5 h, 25 h) and [1 kWh,
80 kWh), respectively.

The entry events were separated by day since Friday, Saturday, and Sunday experi-
enced different usage patterns than the working weekdays Monday–Thursday, as presented
in Figure 3. This was to be expected, since, on Monday–Thursday, people generally follow
similar work–life patterns. The peak connection time on weekdays is around 07:00–09:00,
in line with commuter usage. There is also a second, smaller peak in the late afternoon
from residents and evening visitors. It appears that a higher proportion of people arrive
late on a Friday, to then park for the night or weekend. Saturday is a day in which people
travel to the city for social/leisure purposes, whilst Sunday may still be regarded as a day
of rest and, therefore, reduced P&R activity.
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The charge sessions were then clustered into user groups using the Bayesian Gaussian
Mixture Model (BGMM) from the Python scikit-learn library. When handling data with
a distribution as visualised in Figure 4a, which plots the connection duration against the
time of connection, a Gaussian Mixture Model (GMM) was found to be most suitable.
BGMM performed better than a standard GMM due to the function’s ability to minimise
the number of clusters, resulting in two clusters per day type. The time of connection
and connection duration were determined to be the best indicators of conscious user
behaviour and are more strongly correlated than other variables. Including more than these
two variables did not yield improved clustering performance.
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Figure 4a displays the clustered charge sessions on weekdays (Monday–Thursday).
Cluster 1, in blue, shows the group of users dominated by commuters who typically arrive
and depart on the same day. Cluster 2, in orange, represents a higher proportion of visitors
who arrive in the late afternoon to evening, and park for longer durations. It is clear that
the duration of connection has the largest influence on the clustering process.

The time of entry for the two clusters was plotted as a Kernel Density Estimation (KDE)
curve with an independently normalised axis, as presented in Figure 4b for weekdays. A
KDE plot introduces a normal Gaussian distribution per data point, and sums the curves to
produce the density curve presented.

The model had a 5 min resolution. At each time step, the associated probability that
a car would connect, as shown in Figure 3, was compared against a randomly generated
number between 0–1. Upon connection, the charge session was assigned to a cluster by
choosing between the normalised weighted probability of entry at that time step per cluster,
as shown in Figure 4b. With the cluster determined, the nominal charging power was
sampled, as was the energy demanded and connection duration. The number of phases
it connected to was estimated from the nominal charging power. In this model, the line
voltage was assumed to be constant at 230 V. Some noise was added to the charging power
at each time step by sampling a normal distribution (σ = 0.025) to use as a multiplicative
factor. A base load (system electronics and CP electronics), inverter self-consumption,
and auxiliary battery load (air conditioning) were added. These were all sampled from
distributions formed from the measured data. If the energy delivered in a charge session
reached 75 kWh, then the charge session came to an end and the charge duration was
updated. The maximum observed energy delivery in the measured data was 68.9 kWh.

The power was delivered by either the grid, the battery, or a combination of the two. In
the case that the load was less than the maximum grid capacity, any residual grid capacity
would charge the battery. If the load was greater than the maximum grid capacity and the
battery was empty, conventional load sharing of the available grid capacity was employed,
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ensuring base loads were also provided for. Thus, assuming the base load was split evenly
across the three phases, the power delivered to each EV at time t was calculated using
Equation (9).

PEV,G,x(t) =
IPh1,x(t) + IPh2,x(t) + IPh3,x(t)
IPh1,T(t) + IPh2,T(t) + IPh3,T(t)

·(PG(t)− PBase(t)) (9)

where PG(t) is available power from the grid at time t and PBase(t) is the total base power
at time t. The numerator consists of the current draw per phase for EV x at time t, and the
denominator consists of the total current demand per phase at time t.

For battery charging and discharging, the inverter efficiency was sampled from the
efficiency curve depicted in Figure 5. The curve was fitted to the filtered data using
Equation (10), and initial values a = 0.95, b = −0.9, and c = 0.25.

y = a + b·e−c·x (10)
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3.2. Model Validation

By comparing a ‘base-case’ simulation to the July 2022 data, the model was validated.
The system usage in both the case study and simulation are presented in Figure 6a,b,
respectively. A direct comparison of the system metrics is presented in Table 2, which
shows that the fit of the model was in line with the measured data.

Table 2. Performance metrics of the case study and the simulation.

Measured Data Model Validation

Total load demand [kWh] 4869 4958
Number of charge events 219 221

Mean energy per charge event [kWh] 22.2 22.5
Mean charging power [kW] 7.8 7.7

Mean connection duration [hours] 12.2 14.9
Mean charging duration [hours] 3.9 3.7

The measured battery system round-trip efficiency was found to be 71.7%, and was
influenced by the battery energy storage efficiency of 95.6% and the inverter efficiency for
charging and discharging, as depicted in Figure 5.
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4. Control Scenarios

The installed battery system round-trip efficiency was low due to the conversion losses
across the inverter at low charging and discharging powers. Additionally, the battery made
frequent and small discharge/charge cycles. Finally, there was no consideration for the
power imported from the grid during peak grid-load hours. Given the current state of the
power grid, it is logical to limit the power drawn from the grid during the peak grid-load
hours of approximately 17:00 to 20:00. The following control scenarios were therefore
decided upon:
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1. The base case in which the grid supplies all load up to the maximum capacity. The
battery supplies the remaining load above the maximum grid capacity.

2. During the peak grid-load hours of 17:00–20:00, all load is supplied by the battery. If
there is no EV load, the grid will supply the base load. If the battery is drained, the
grid will supply the load.

3. Charging/discharging the battery deadband of 10 kW and 15 kW. If the EV load is
above this deadband, the battery supplies the entire load.

4. The combination of limited peak hour power draw and battery charge/discharge
power deadband of both 10 kW and 15 kW.

Each scenario was simulated using the optimal sizing described in Section 2 and
compared against the case study sizing. Due to the randomness in the stochastic model,
each scenario was simulated five times and averaged. The chosen performance metrics
were as follows:

• Potential load not delivered (lost load);
• BESS round-trip efficiency;
• Energy drawn from the grid during peak hours;
• Percentage of total load supplied by the BESS;
• Percentage of users still charging at the end of their session.

5. Results
5.1. Optimal System Sizing

Table 3 presents the optimal system sizing for three different BESS costs using the
monthly load profile of 6899 kWh, which approximated the intended 7 MWh. The three
costs span the current approximate cost of €750/kWh up to the expected cost of €250/kWh
in 2030 [27]. Alongside this is the case study system sizing for which a simulation using
the same load profile was performed, resulting in the higher monthly lost load and higher
annual cost.

Table 3. Performance of the optimal sizing compared to the case study sizing, for a 7 MWh
load profile.

Case Study Optimal System
(€250/kWh)

Optimal System
(€500/kWh)

Optimal System
(€750/kWh)

Grid connection capacity, IG 3 × 25 A 3 × 80 A 3 × 80 A 3 × 80 A
Battery energy storage capacity, EB 336 kWh 100 kWh 69 kWh 49 kWh
Battery power capability, PB 240 kW 71 kW 45 kW 34 kW
Annualised investment €9518/year €6115/year €7101/year €9340/year
Loss of potential load, LL 452 kWh 56 kWh 81 kWh 99 kWh

Clearly, a larger grid connection is preferable. Higher BESS costs result in an optimal
sizing that favours a higher loss of load and smaller BESS capacity. However, the effect is
minimal since the grid connection capacity cannot be increased further. If the LL constraint,
Equation (4), were removed such that any LL was acceptable, then the BESS may not be
included and LL may be much higher. However, such a system would be unsuitable as a
charging hub. The optimal BESS sizing for a 7 MWh monthly load with at least one high-
energy-demand day tends to become very small given that the average battery capacity of
a newly available BEV is around 60 kWh [5].

The optimal system sizing, regardless of the BESS cost, delivers a much better quality
of service to system users when compared to the case study system, for a reduced annual
investment. For the highest BESS cost of €750/kWh, the loss of load was reduced from 6.5%
of the total load to 1.5%, and the annual investment remained comparable. The predicted
2030 BESS cost of €250/kWh resulted in a loss of potential load of less than 1% of the total
load, and the annual investment fell by 36%.
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Figures 7–9 plot the BESS capacities against the loss of load for the three load profiles of
5 MWh, 6 MWh, and 7 MWh. They were each compiled from four optimisation calculations
amounting to 200 feasible solutions. There are many more feasible solutions not shown.
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The relationship between LL and annual investment is linear for all load profiles and
grid connection capacities. The gradient differs for load profiles but appears to be consistent
across grid connection capacities. These figures show the BESS capacity that is required for
each grid connection capacity to ensure no loss of load.

For a 5 MWh monthly load and a 3 × 50 A grid connection, a BESS capacity of
approximately 60 kWh is required to ensure no loss of load. For a 6 MWh monthly load
and a 3 × 50 A grid connection, a BESS capacity of approximately 70 kWh is required to
ensure no loss of load. For a 7 MWh monthly load and a 3 × 80 A grid connection, a BESS
capacity of approximately 180 kWh is required to ensure no loss of load.

5.2. Comparative Analysis of Optimal Sizing and Case Study Sizing

The optimal system sizing calculated in Section 5.1 for a BESS cost of €500/kWh
was used with a variety of control strategies, described in Section 4, for a monthly load
profile of 5 MWh. These were then compared against the case study system sizing for the
same scenarios. The abbreviations BDB and PHBDB refer to the control strategies Battery
Deadband and Peak Hour Battery Deadband, respectively.

Figure 10 shows the loss of potential load. In every control strategy except the base
case, the optimal sizing performed better than the case study sizing. All battery control
strategies that imposed a battery charge/discharge deadband experienced a higher loss of
potential load than the respective base case. This is because the battery, after supplying the
full load for an extended period, will be drained, and, in some cases, the grid capacity is
not enough to supply the full load.
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Figure 10. Potential load not supplied in different scenarios.

When using the optimal sizing, the battery system round-trip efficiency was increased
for all control strategies with the exception of the base case, as depicted in Figure 11. The
base case round-trip efficiency is lower with the optimal sizing because the battery would
discharge at low powers; the maximum EV load was not much higher than the 55 kW grid
connection. In fact, in some simulations, the battery would not be used at all.

A larger capacity grid connection can charge the BESS at relatively higher powers,
resulting in a higher charging efficiency. The battery discharge deadband ensured the
battery discharged at powers above the requirement, leading to an increased discharging
efficiency. A higher charging/discharging battery power has a higher inverter conversion
efficiency, as observed in Figure 5.
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Figure 11. Battery system round-trip efficiency in different scenarios.

Figure 12 shows the volume of energy drawn from the grid during hours of peak grid
load. Scenarios in which the grid exchange was limited still drew some power to cover
base loads. This prevented the battery from discharging at low powers, thus maintaining a
higher round-trip efficiency. By allowing the grid to supply the load during peak hours if
the BESS was drained, the Peak Hours scenario had a negligible increase in energy drawn
from the grid with respect to the 10 kWh PHBDB and 15 kWh PHBDB scenarios, from
approximately 85 kWh to 110 kWh.
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Figure 12. Energy imported from the grid during peak grid-load hours in different scenarios.

With the optimal sizing, an imposed battery deadband resulted in an increased grid
import during peak hours, with respect to both the optimal base case and case study sizing.
Above the deadband, the battery delivered the full load; therefore, at the end of the day, the
battery was more depleted with respect to the base case. This is consistent with the P&R
usage pattern which tends towards a high EV load in the morning and early afternoon due
to commuters. With the optimal grid connection capacity, the high battery-charging power
could fully recharge the battery in the three-hour window. Furthermore, the low battery
utilisation in the optimal base case means the battery is not often recharged during these
peak hours, hence the decrease with respect to the case study sizing.

The total load supplied by the BESS, displayed in Figure 13, is as expected. By enabling
the battery to supply the full load during battery discharge periods, the battery will, of
course, deliver more energy than the base case. Limiting the power draw during peak
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hours forces the battery to supply the load when otherwise it would not, namely, when the
EV load is less than the grid capacity. In all cases, the optimal sizing resulted in a reduced
battery utilisation with respect to the case study sizing.
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Figure 13. Total load supplied by the BESS in different scenarios.

The percentage of users that ended the charging session while the vehicle was still
charging was fairly consistent across all scenarios and for both systems, as can be seen
in Figure 14. Regardless of the system sizing, some users are simply not parked long
enough to fully charge their cars. However, as shown in Figure 10, the optimal system
sizing experienced less loss of load, meaning fewer times of insufficient capacity. Therefore,
having a higher capacity grid connection and lower BESS capacity tends to result in the
ability to deliver more energy and, therefore, generate higher revenue.
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6. Discussion

The model presented in this study is for the charging of EVs in a charging hub with a
stationary BESS and grid connection. The model is easily scalable for any number of CPs,
BESS capacity, grid connection capacity, and load profile. The charge session data used in
these simulations were measured at a P&R charging hub. Given the appropriate data, for
example, from a workplace charging hub or shopping centre charging hub, the model is
easily transferable.

The power grid difficulties faced across the Netherlands have the same basis—there
is too little capacity to transmit and distribute power. The supply of power from dis-
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tributed renewable energy resources to the grid during times of peak generation (high
irradiance/high wind) is a problem in rural areas where such renewable energy farms are
located. The installation of new wind and PV farms has been suspended due to a lack
of capacity at peak power generation. Nationwide, in both rural and urban settings, the
electrification and digitalisation of society has resulted in a rapid increase in the electric
power demand. Stedin and Enexis, two other distribution network operators in the Nether-
lands, confirm this issue is present in other regions. For example, in the Province of Utrecht,
651 consumers are waiting to be connected to the grid with a total purchase capacity of
155 MW [28]. In Eindhoven Oost, there are 78 open connection requests with a total
purchase capacity of 52.3 MW [29].

Therefore, one must consider what the goals of such a solution like a BESS are. A
limited loss of load, limited grid interaction, and high BESS round-trip efficiency are all
considered in this study.

The choice of load profile used in solving the optimisation problem had a large effect
on the outcome. The simulated load profile used in the optimisation was chosen over other
~7 MWh profiles because it included a high demand day—a peak power demand of 81 kW
which lasted over 3 h. This high demand day served to stress-test the sizing and ensures
the optimal sizing is capable of serving future loads.

The control method used in solving the optimisation problem also had a large effect.
For instance, if the system was optimised using the 15 kW PHBDB control strategy, the
BESS would inevitably require a larger energy storage capacity to satisfy the constraint
represented by Equation (4), the volume of potential load lost. Furthermore, these are only
a selection of specific, yet limited, control strategies that were intended to address specific
performance metrics. The optimal power dispatch and charge session scheduling which
would result in an improved system performance were outside the scope of this study.

The control strategies investigated generally perform better with the optimal sizing
rather than the case study sizing for the frequently observed 5 MWh monthly load. When
the monthly load increases, the disparity between the performance of the optimal sizing
and the case study sizing will increase. This is made clear in Table 3, where the loss
of potential load was less than 1.5% for the optimal sizing and over 6.5% for the case
study sizing.

The control strategy that limited grid interaction during peak grid-load hours yielded
the most desirable results with the optimal sizing. The BESS round-trip efficiency was
increased with respect to both the optimal sizing base case and the case study sizing, to 79%.
Energy losses were kept low since the load was mostly supplied via the grid connection;
the battery supplied only 12% of the load. The grid interaction during peak evening load
hours was reduced to 110 kWh, compared to 713 kWh for the optimal sizing base case.
Finally, there was no loss of potential load.

If the battery were to be used for grid ancillary services, such as frequency response
and voltage control, then an additional revenue would be available for the battery, and the
optimisation problem would be reformed. The optimal sizing would likely tend towards
a larger battery to benefit from the ancillary service revenue whilst still maintaining the
security of supply for the P&R users.

Dynamic charging tariffs are thought to be a good method for incentivising users
to charge their EVs at low grid-load times and reduce the disruption to the power grid.
This would have little effect in a P&R since the intended user groups associated with a
P&R charging hub, namely, commuters and visitors, are not as flexible in their arrival and
connection time as resident CP users.

Vehicle-to-Grid (V2G) is another rapidly progressing technology. During times of
high electricity price, the EV can act as a battery and deliver power to a household when
connected and laying idle on the driveway. In an urban neighbourhood that relies on
public CPs, a fleet of EVs could be used to reduce evening peak residential loads behind
the substation. V2G may be feasible in a P&R charging hub but only for specific users
who meet certain criteria, such as commuters who park for the full working day. However,
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transferring energy from one commuter to another commuter may result in unsatisfied
users. How V2G would be implemented in a P&R charging hub is yet unknown.

Whilst DC fast chargers are becoming more prevalent, their installation at a P&R is not
necessary. They are suited for rapid turnover charge sessions, such as along motorways or
in taxi ranks, or for high-battery-capacity vehicles, such as at bus depots or for heavy goods
vehicles. Typical user connection durations are multiple hours at P&Rs. The measured
data indicated the average connection duration to be 13 h. Therefore, level-2 charging will
remain applicable for coming years.

Larger EV batteries are, of course, to be expected in the coming years; battery capacities
greater than 100 kWh are already on the market. This study assumed a maximum charging
demand of 75 kWh since the largest measured charge session was 68.9 kWh. It is hard
to predict how larger EV battery capacities will affect charging behaviour since it is so
highly dependent on social demographics, the availability of charging infrastructure, social
and cultural norms, and personal preference. Considering the price of BEVs with large
capacities and the rate at which EVs are penetrating the car fleet, it will be many years
before such large-capacity BEVs are the norm.

Finally, it is clear that a multi-objective optimisation is required, in which grid interac-
tion during peak hours is minimised, as well as the annual system cost. The intention of
this system is to reduce grid loading for large charging hubs, especially during peak grid
hours. Thus, the BESS should be adequately sized and appropriately controlled to service
all EV users whilst maintaining a high round-trip efficiency and keeping grid interaction to
a minimum. This could best be integrated using electricity pricing, such that the BESS is
prioritised during times of high electricity price and the grid is prioritised during times of
low electricity price.

Perhaps the most practical recommendation is that the battery be installed with
individual phase control or to ensure an energy contract with the distribution network
operator to allow power flow back to the grid. These design considerations will allow for
power to be delivered individually and unevenly on separate phases.

7. Conclusions

This study used measured data from an installed EV charging hub with an on-site
stationary battery (336 kWh/250 kW) and limited capacity grid connection (17.4 kW) to
develop and validate a computer model in Python. A genetic algorithm was used to
minimise the annual costs of the system by optimising the battery energy storage capacity
and the grid connection capacity for a monthly load of 7 MWh. Three different battery
costs were evaluated; the approximate current cost of €750/kWh, the expected 2030 cost
of €250/kWh, and the middle €500/kWh. The optimal sizing, with the €500/kWh cost, a
55.4 kW grid connection, and a 69 kWh/45 kW battery, was then assessed using a variety
of simple control strategies; namely, limiting grid power draw during peak evening grid-
load hours, and implementing a battery charge/discharge deadband, and comparing this
against the case study sizing. The limited peak hour grid interaction control strategy was
determined to perform best with the optimal sizing.

The feasible solutions to the optimisation problem for three load profiles, 5 MWh,
6 MWh, and 7 MWh, were plotted as the battery capacity against the loss of potential
load. These figures illustrated what battery capacity was required at each grid connection
capacity to ensure no loss of potential load.

Finally, the limitations of this study were addressed and ideas for future work
were presented.
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Abstract: Further advances in hardware and software features are needed to optimize battery and
thermal management systems to allow for the execution of longer trips in electric vehicles. This
paper assesses the economic and environmental impacts of the following features: eco-charging,
eco-driving, smart fast charging, predictive thermal powertrain and cabin conditioning, and an
advanced heat pump system. A Total Cost of Ownership (TCO) and externalities calculation is
carried out on two passenger cars and one light commercial vehicle (LCV). The energy consumption
data from the vehicles are based on experiments. The analysis shows more benefits for the LCV,
while the smart fast-charging feature on the car shows a slight increase in TCO. However, negative
results did not contribute significantly compared to the ability to install a smaller battery capacity for
similar use.

Keywords: battery electric vehicle (BEV); driver experience; environment; extended range electric
vehicle; energy consumption

1. Introduction

One of the challenges for battery electric vehicle (BEV) acceptance is autonomy for
long trips, also known as “range anxiety”. To tackle this issue, new hardware and software
features providing strategies to enable the execution of long trips by BEVs were developed
within the Connected Electric Vehicle Optimized for Life, Value, Efficiency and Range
(CEVOLVER) project. More specifically, the project tackled the challenge of executing
long trips in a reasonable time with a small battery capacity. This was achieved by using
the features under study to try to increase battery autonomy and therefore optimize the
execution of long trips without changing the battery itself. Such features are user oriented,
such as eco-routing, eco-charging, and eco-driving. The project considered an approach
based on users’ experiences in different use cases to improve the comfort and usability of
BEVs for long day trips. While it can be beneficial for reducing range anxiety, adding such
features might have an impact on the overall cost of ownership and on the environmental
performance of the vehicle. If not beneficial, especially in terms of cost, it could hinder
the acceptance of BEVs with such solutions. This paper therefore focuses on the economic
and environmental impacts of the features during the vehicle’s ownership. The assessment
includes the total cost of ownership (TCO) and external costs analysis regarding greenhouse
gas emissions. The technological developments are compared to the baseline vehicles.

1.1. Range Anxiety and Technological Developments to Increase Battery Autonomy

While BEVs could help improve the environmental performances of the transport
sector, their growth is facing some challenges. The main reasons hindering BEV accep-
tance from consumers’ perspectives are range anxiety and the potential lack of charging
infrastructure [1–7].

Range anxiety is a challenge that starts with its own definition, which can vary
from one study to another, leading to different interpretations of how to tackle it. While
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Liu et al. (2023) state that range anxiety refers more to “energy replenishment” anxiety and
estimate that it is the main problem to solve [1], Rainieri et al. (2023) mention that one of
the main sources of range anxiety is individual characteristics [5]. Regarding Franke et al.
(2016) [2], the study defines range anxiety as “range stress”, which is related to the fact
that the resources to overcome the range are insufficient. However, these studies tend to
agree on the fact that most BEVs available on the market can meet most consumers’ travel
needs [1,2,4,5,8]. Liu et al. (2023) go even a bit further by stating that ultra-long-range BEVs
are actually not needed as they does not solve the problem of energy replenishment anxi-
ety [1]. Furthermore, such cars raise the cost of BEVs due to high purchase and insurance
costs, which can also hinder their acceptance. Using TCO and considering range anxiety,
the study establishes that the optimal range would be 400 km. The study therefore states
that the current BEV market could be sufficient for more than 98% of consumers’ needs.
Needell et al. (2016) also found that most existing and affordable vehicles can be sufficient
to meet the energy needs of 87% of vehicle days in the United States [8]. Such findings are
contradictory to the trend from the transport sector to produce BEVs with longer ranges [1].
Indeed, to face range anxiety issues, automotive companies are increasing the range of
BEVs by increasing battery capacity and developing charging infrastructure, including
fast charging. Those solutions come with some burden. Increasing battery capacity comes
with different issues such as the rising cost of BEVs and also an increasing demand for
critical materials such as cobalt, nickel, graphite, and lithium [1]. Regarding improving
charging infrastructure, He et al. (2023) also pinpoints the fact that its growth depends
on the adoption of EVs, as stakeholders are more reluctant to develop charging facilities
without growing demand [3].

Several other solutions exist to tackle range anxiety challenges that do not necessarily
involve changing the cars on the market. When range anxiety is defined by range stress or
individual characteristics, the consensus is that learning experiences and range tolerance
help to overcome the stress of not being able to reach a destination [2,3,6]. Other solutions
are more technical and practical and are the focus of this paper. One main reason for range
anxiety is the unreliability of autonomy and the variation of driving range throughout
the usage of the vehicle [4,6]. Predictive models that can provide a more accurate range
prediction for vehicles will help in that context. The accuracy is enhanced by collecting
more parameters such as on-route data on traffic conditions and battery conditions [7,9,10].
In CEVOLVER, the feature that tackles a part of this issue is eco-charging, which uses
real traffic conditions and is explained in more detail in Section 1.2. Another solution
is to reduce the energy consumption of the vehicle. It can be achieved through thermal
management systems that also help to enhance the life span of the battery. As assessed
by Biswas (2020) [11], such systems generally include Heating, Ventilation and Air Condi-
tioning (HVAC); Battery Management System (BMS); and Traction Cooling System (TCS).
They ensure the optimal operating condition of the components based on their thermal
efficiencies. Finally, eco-driving also helps reduce energy consumption for a certain trip [12].
It can be achieved through learning experiences and/or with advice while driving, such
as suggested speed [13–15]. As for the driving range estimations, such add-on’s accuracy
benefit from on-route information and battery parameters [14,15]. Another possibility for
enhancing eco-driving is vehicle platooning [16,17], but such technological advancement is
still at an experimental stage.

When analyzed in the literature, the solutions’ effectiveness in the studies is assessed
through energy consumption gains, tested or simulated. It is not evaluated in terms of
cost or environmental performances, which could be helpful to assess the effects on overall
usage and to quantify possible burdens. When considering TCO and externalities analysis,
the method is often used to compare costs of BEVs or alternative vehicles with equiva-
lent Internal Combustion Engine Vehicles (ICEVs) [18–24]. However, some studies [1,25]
quantified the economic performances to qualify the necessity of longer-range BEVs. As
mentioned, Liu et al. (2023) calculated the TCO of BEVs with different ranges [1]. The
study considers the battery replacement needs for a certain usage, which will differentiate
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between smaller and bigger EVs. The study shows that despite the battery replacement,
the TCO is higher for higher electric range BEVs. Pfriem et al. (2013) found similar results
for commercial fleet usage [25]. The TCO for the fleet is beneficial compared to commercial
ICEVs when using small-range BEVs. Such studies used the TCO to promote the cost
benefit of short-range BEVs and to question the actual need of long-range BEVs.

In this paper, the features under study are assessed in terms of economic and environ-
mental aspects, also including the use of energy consumption data from testing under real
driving conditions on open roads or test benches. This is because while the features might
be successful in terms of executing longer trips without additional time, some burden in
terms of costs or environmental performances might appear and hinder the application
of such features. The quantification of the effect on costs will allow assessment of the
significance of the potential burdens or benefits compared to the objectives of executing the
longer trips on time. Furthermore, the emphasis on the cost and environmental potential
benefit might help with the overall acceptance of BEVs with smaller battery sizes.

The next section will present the features and the system evaluated during the project.

1.2. System Description

The system includes three different parameters: the vehicle, the features tested and
the use case. During the CEVOLVER project, six features were tested on three different
vehicles in different use cases:

• One light commercial vehicle (LCV) with a 68 kWh battery;
• One passenger car with a 24 kWh battery (car 1);
• One passenger car with a 42 kWh battery (car 2).

The two passenger cars are identical except for the battery capacity. The baseline
vehicle is defined as the vehicle without the CEVOLVER features switched on. Table 1
summarizes the systems considered for the experiments with the baseline vehicles, the
corresponding use case, and the specific features switched on during testing. Each line
of the table refers to one test that has been performed, once with the features not used
and once with the features switched on. Thermal-related features have been tested on test
benches and the others on open roads.

Table 1. Summary of baseline vehicles, the use cases and features. Legend: LCV—light commercial
vehicle, NEDC—New European Driving Cycle.

Vehicle Use Case Feature

LCV Parcel service daily job Eco-charging
LCV Parcel service daily job Eco-driving

Car 1 Regular commute from home to work
Predictive thermal powertrain

conditioning and predictive thermal
cabin conditioning

Car 1 NEDC Hardware changes in the heat pump
Car 2 Private visit of 350 km Eco-charging
Car 2 Private visit of 350 km Eco-charging and eco-driving

Car 2 Private visit of 350 km Eco-charging and eco-driving and
smart-fast charging

The use case describes the type of usage the vehicle faces and sets the boundaries of
the experiments (i.e., the type of trips completed). The “parcel service daily job” means the
vehicle is used for parcel delivery, mainly in urban areas. The charging of the vehicle is
performed after returning to the distribution center. The “Regular travel to and from work”
refers to a short-range trip from work to home, with a distance of 30 km. The charging is
executed after arriving home at a charging station. The “private visit of 350 km” refers to
occasional visits to relatives during the weekend or holiday trips. Since the trip is long,
this use case assumes that one fast charging is required at a public charging station and
one home charging during the visit.
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As for the features, eco-charging determines the most energy- and time-efficient
charging and routing strategy for the trip based on traffic conditions. Different parameters
are considered, including traffic and weather conditions, which enhance the accuracy of
such development. Still, the real value-add comes with the intelligent recommendation for
fast charging that is optimized based on the assessment of the overall trip and not just the
need to find the next charging station when the state of charge drops below a set value. The
functionality of the feature is detailed in De Nunzio et al. (2020) [7]. Eco-driving ensures
the speed recommendation to optimize energy consumption according to an analysis
of the route and traffic conditions. The specificities are detailed in Ngo et al. (2021) [26].
In addition, smart fast charging conditions the battery before a fast charge to ensure
the full charging power is available. It prevents the battery from overheating, which
would lead to a longer charging time. The driving and charging conditions are based
on the data gathered from the eco-charging features. The predictive thermal powertrain
optimizes the use of the powertrain components based on their thermal efficiency, and
the predictive thermal cabin conditioning ensures a comfortable cabin temperature while
reducing the energy consumption from the climatization system. The software development
is detailed in Wahl et al. (2022) [27] and in Chen et al. (2020) [28]. Finally, the advanced
heat pump system developed in the project OPTEMUS allows the use of heat from electric
components and batteries to warm up the cabin as described in the project website and in
Ferraris et al. (2020) [29,30].

2. Materials and Methods

The assessment is based on the TCO and the assessment of external costs, focusing
on greenhouse gas (GHG) emissions. TCO is a widely applied and accepted methodology
to assess the economic impacts of a product. For all the vehicles, the TCO and external
costs of the baseline vehicle will be compared to the TCO and external costs with the
added developments. The geographic scope of the study is Belgium. However, Italy and
Sweden conditions are also considered to cover different climate conditions for assessing
the predictive thermal powertrain, cabin conditioning, and heat pump hardware changes
since these goals are related to extreme weather conditions.

2.1. Total Cost of Ownership

The TCO methodology [31] compares the affordability of the vehicles by summing all
costs that occur during the ownership of a vehicle. It can be defined as a tool to support
understanding the actual cost of buying and using a particular good or service.

When calculating the TCO of a vehicle, there are two aspects to consider: Capital
Expenditure (CAPEX), which are the one-time costs occurring to acquire fixed assets
(e.g., the vehicle), and operating expenses (OPEX), which are the expenditures occurring
during the operation of the vehicle at the present value (e.g., operational costs and non-
operational costs). For vehicles, the TCO accounts for purchase costs, fuel, operating costs,
and non-fuel operating costs. The TCO is based on the net present value of the vehicle’s
lifetime [32]. Therefore, Equation (1) is used for the one-time cost, and Equation (2) is used
for recurring costs.

PV = At
1

(1 + r)t , (1)

PV = A0 ×
(1 + r)t − 1

r× (1 + r)t (2)

where:
PV is the present value given in EUR.
At is the one-time cost at time t.
A0 is the annual recurring cost.
r is the real discount rate.
t is the time expressed as the number of years.
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The real discount rate can be retrieved from the European Central Bank, considering
the years 2011 to 2021. The critical assumptions for the TCO calculation are related to the
vehicle’s lifetime of ownership and are shown in Section 3.

2.2. Externalities

Externalities can be defined as uncompensated social or environmental effects due to
social or economic activities [33]. In this study, the focus is on the climate change impact
category. Therefore, externalities are based on the environmental impacts of the electricity
consumed by the vehicles, which depends on the country-specific electricity production
mix. The average carbon price for 2021, equivalent to 53.45 EUR/ton CO2 [32,34], is
considered. The carbon footprint is calculated with the Intergovernmental Panel on Climate
Change (IPCC) characterization factors [35] with electricity mix data from the Ecoinvent
3.8 database [36]. Table 2 summarizes the carbon footprint and external costs for each
country considered.

Table 2. Carbon footprint and external costs of electricity production per country.

Country Carbon Footprint (kgCO2 Eq/kWh) External Cost (EUR/kWh)

Belgium 0.220 0.018
Sweden 0.022 0.001

Italy 0.395 0.021

2.3. Data Collection

The critical assumptions for the TCO calculation are related to the vehicle’s lifetime
of ownership (Table 3). The ownership of the vehicle is set to 10 years [37]. The discount
rate is set to −3% [38]. The distance driven for the use cases does not necessarily cover the
entire annual distance traveled with the vehicle. Therefore, additional kilometers are added
to reach the average annual distance traveled in Belgium [39]. The impacts of the features
are applied only to the distance the use case covers. This method allows an economic and
environmental analysis of the developments per use case assessed during the experiments.

Table 3. Key assumptions for the vehicle life cycle. LCV—light commercial vehicle, NEDC—New
European Driving Cycle.

Parameters Value Unit Reference

Duration of ownership 10 Years [37,39]

LCV annual distance 21,000 km
Aligned with the corresponding use
case and the annual distance driven

by a LCV in Belgium in 2019 [40]

Car 1 annual distance for the use case:
regular travel to and from work 7500 (out of 15,000) km Aligned with the use case

Car 1 annual distance for the NEDC 15,000 km Aligned with the distance driven per
year in Belgium

Car 2 annual distance for the use case:
private visit of 350 km 4200 (out of 15,000) km Aligned with the use case considering

a once-a-month visit to relatives

Real discount rate −3 % [38]

2.3.1. Experimental Data

The energy consumption data presented (Figure 1) and duration of the trip are primary
data obtained during the CEVOLVER experiments. Each feature was tested for the corre-
sponding use case. First, the baseline vehicles were driven on a specific trip corresponding
to the use case. Then, the same vehicles were driven using the additional project features.
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Eco-charging, eco-driving, and smart fast charging were tested on open roads while the
others were tested on test benches.
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Regarding the LCV, eco-charging and eco-driving were tested separately, which means
that the open road trips were slightly different for the two tests. For eco-charging, the
trip with the baseline vehicle was the recommended one by the GPS to go from point
A to point B. Then, eco-charging was used to define the most optimized road to take.
Therefore, the two trips were not similar. For eco-driving testing, both trips were the same
and corresponded to the optimized one provided by the eco-charging feature.

Specific Case of the Predictive Thermal Powertrain and Cabin Conditioning Features and
the Hardware Changes in the Heat Pump

The experiments to reach the objectives set for thermal-related features are based
on extreme weather scenarios. The features are indeed expected to help with energy
consumption and the time to reach a certain temperature within the car during extreme
temperature conditions. The provided data show the energy consumption for different trips
for a certain ambient temperature (either −10 ◦C or +35 ◦C). Therefore, the extrapolation of
these data and scenarios is slightly different than for the rest of the experiments.

As mentioned earlier, three countries with different temperature distributions are
assessed for the boundaries: Belgium, Italy, and Sweden. Belgium is supposed to represent
a middle-temperature condition, whereas Italy represents a hotter country and Sweden
a colder one. The data were then adapted to each country. For Sweden, when necessary,
the conversion rate taken is based on the one used by the European Alternative Fuels
Observatory (EAFO), which is SEK 1 = EUR 0.097 [41].

The Open Power System Data provided an hourly temperature distribution for
2019 [42]. It helped to determine a percentage of time (Table 4) when the temperature is
either above 28 ◦C or below 0 ◦C in a year. For the hardware changes, only the percentage
related to cold temperatures is considered as only cold temperature conditions have been
tested. This percentage is applied to the distance driven for the use case, and the changes in
electricity consumption (Figure 1) are then applied to the corresponding kilometers. While
it is difficult to predict the behavior of the developments and the savings potential under
different temperature levels, the differences between the different predictions are expected
to be marginal. Therefore, for simplification reasons, it is assumed that the potential saving
from the experiment is the same for all ambient temperatures considered within “extreme
weather conditions”.
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Table 4. Distribution of the temperature in a year for Belgium, Italy, and Sweden.

Country Temperature below 0 ◦C (%) Temperature over 28 ◦C (%)

Belgium (BE) 4.23 1.28
Italy (IT) 0.27 6.95

Sweden (SE) 18.46 0.01

2.3.2. Cost at Purchase Time

This section provides all purchase costs. It must be highlighted that the purchase
price of a car in Table 5 can vary from region to region because of the choice of additional
equipment consumers choose. These costs would affect the TCO by increasing or reducing
the overall cost for both the use case with and without features. However, despite these
price differences, the percentage changes between the two scenarios will stay the same.

Table 5. Summary of the costs at purchase time.

Costs Value Unit Reference

LCV purchase cost 39,210 EUR [43]
Car 1 purchase cost 29,424 EUR [44]
Car 2 purchase cost 24,900 EUR [45]

Registration costs
Belgium 0 EUR Flanders, Belgium [46]

Italy 150 EUR Italy [47]
Sweden 0 EUR Sweden [46,47]

Features’ cost
Eco-driving 0 EUR Assumed to be

included in the car
purchase price.

Eco-routing 0 EUR
Smart-fast
charging 0 EUR

2.3.3. Operational Costs

All operational costs, including electricity, are summarized in Tables 5–8. The cost of
home charging is based on the average European price of electricity in the year 2019 [35],
before the actual context of the energy crisis and geopolitical conflicts. This cost is con-
sidered constant for all ten years in this study. Given the actual context, the future and
even actual electricity costs are very unstable and thus very difficult to predict. It will
also impact the TCO. However, this TCO assessment focuses more on developing saving
potential. Therefore, the results will still allow a first understanding of the economic impact
of the features even without considering the situation at the time of writing.

Table 6. Operational costs for Belgium.

Operational Costs Specificity Value Unit Reference

Electricity cost at public charging Chargers 0.32
EUR/kWh [41]Fast chargers 0.60

Electricity cost at home charging all 0.22 EUR/kWh [48]

Table 7. Operational costs for Italy.

Operational Costs Specificity Value Unit Reference

Electricity cost at public charging Chargers 0.45 EUR/kWh [41]

Electricity cost at home charging all 0.22 EUR/kWh [48]
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Table 8. Operational costs for Sweden.

Operational Costs Specificity Value Unit Reference

Electricity cost at public charging Chargers 0.29 EUR/kWh [41]

Electricity cost at home charging all 0.22 EUR/kWh [48]

2.3.4. Non-Operational Costs

All non-operational costs, including road tax, insurance, maintenance, tire replacement,
and technical control are summarized in Table 9. Maintenance, tire replacement, and
technical control are vehicle specific. In addition, to estimate the real insurance cost in
Belgium, a simulation was made for insurance costs with a specific person profile for both
baseline vehicles. It is assumed that the person subscribed to the two types of insurance:
the civil liability with basic protection rights and full omnium, which is a type of insurance
in Belgium covering most car issues.

Table 9. Non-operational costs per vehicle.

Non-Operational Costs Vehicle Value Unit Reference

Small maintenance Car 1 and 2 63 EUR/year [49]
Large maintenance Car 1 and 2 157.00 EUR/2 years [49]

Maintenance before 5 years LCV 185 EUR/year [50]
Maintenance after 5 years LCV 199 EUR/year [50]

Tire replacements LCV 591 EUR/40,000 km [51–53]
Car 1 and 2 234.44 EUR/40,000 km [51–53]

Road tax
Belgium All 0 EUR [54]

Italy All 39.99 EUR/year after 4 years [54]
Sweden All 35.55 [54]

Technical control
Belgium LCV 59.80 EUR/year [55]

Car 1 and 2 45.10 EUR/year, after 4 years [55]
Italy Car 1 and 2 79.02 EUR/every 2 years after 4 years [56]

Sweden Car 1 and 2 58.20 EUR/year after 4 years [57]

Insurance costs: civil liability
Belgium LCV 655.96 EUR/year [54]

Car 1 and 2 248.19 EUR/year [55]
Italy Car 1 and 2 344 EUR/year [56]

Sweden Car 1 and 2 248.19
EUR/Once in year 3

Once in year 5
And once a year after

[57,58]

3. Results and Discussion

Figure 2 depicts the overall results from the TCO and externalities assessment compar-
ing the use cases with or without the features. All developments considered resulted in
rather small changes in the cost assessment. The changes ranged from −4% to +0.11%. The
most significant and beneficial changes appeared for eco-charging and eco-driving with
the LCV. These results are explained by the reduction in energy consumption. However, it
is difficult to compare all vehicles and their respective results and confirm that the biggest
changes would always be for vehicles like LCVs. Indeed, these differences may be due to
one vehicle itself and the usage scenario differences that affect the direct extrapolation and
boundaries of the TCO.

For the LCV, in both scenarios, the use of the developments reduces the TCO. A
greater benefit is observed for the eco-charging features than for eco-driving; however, it is
expected that the combination of the two would lead to an even bigger reduction of the
energy consumption and therefore the overall TCO.

Cost savings were observed for cars but to a lesser extent. Regarding car 2, adding
smart fast charging shows a slight reduction of benefit compared to the two other scenar-
ios. It means that conditioning the battery to gain charging time also increases energy
consumption for long-distance trips and, subsequently, the car TCO. Still, this negative
environmental and cost effect is small and therefore remained less important than the fact
that the driver can reach the destination on time for a long trip. The burden is also overcome

156



World Electr. Veh. J. 2024, 15, 128

using the other features. As expected, and shown by the results on car 1, the hardware
changes are even more beneficial for countries with colder weather conditions. Small
increases in energy consumption were observed for the thermal predictive conditioning
features. Energy savings were actually shown regarding the powertrain energy efficiency,
but it overlapped with other effects specific to the experiment. While the increase itself is
also small, these additional costs are also neglectable as they depend on the experiment
type and the drivers.
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Overall, the results show that TCO and externalities reductions obtained by gains in
energy efficiency are very small. This is because all demonstrator vehicles have the same
battery capacity for the baseline tests and tests with enabled features. However, many
features developed in CEVOLVER contribute to installing batteries with smaller capacities
by ensuring outlier behavior (long trips, under severe ambient climate conditions), which
typically determines the battery size and can be covered by smaller batteries with intelligent
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strategies, and as shown by the TCO and external costs, with no additional economic or
environmental burden and even some small benefits. Therefore, greater differences are
expected when comparing the TCO of the vehicle with CEVOLVER features to the TCO of
a vehicle with the actual battery size required for similar usage.

4. Conclusions

This study examined the environmental and economic impacts of using features
developed in the CEVOLVER project to reduce range anxiety in BEV drivers by improving
the execution of long trips. While their effects are usually assessed in terms of energy
consumption, this study took the approach to quantify the impacts in terms of costs for
the overall usage. The features were of two kinds: hardware and software. They are
related either to the driving and charging behavior or the thermal management system.
A TCO and externalities approach has been carried out to understand their effects by
comparing vehicles with and without the developed features. Several parameters including
the duration of the trip or the energy consumption of the vehicles were retrieved from
experiments performed during the project.

The use of the hardware and software features tested in CEVOLVER led to small
environmental and economic impacts compared to the baseline vehicle. However, it proved
that longer trips with the same vehicle are doable, with only a neglectable effect on TCO
and no unexpected burden that could hinder their usage. The main advantage lies in the
potential to reduce the vehicle’s battery capacity for similar use. This would benefit the
energy consumption in the use phase, costs, and also materials demand. Therefore, greater
benefits are expected when considering the production phase in the externalities assessment.
However, such benefits are not shown by the TCO and would require further research.

A limitation of the assessment was that extrapolating the experiments’ results for the
overall usage of the vehicle was in some cases not possible. As mentioned above, some
use cases do not necessarily cover the entire usage of the vehicle. Further research to
understand the effects on the additional distances could help show the full potential of the
features on energy consumption reduction.
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Abstract: In this study, we present an innovative, fully automated, and digitalized methodology
to optimize the energy efficiency and cost effectiveness of Li-ion battery modules. Advancing on
from today’s optimization schemes that rely on user experience and other limitations, the mechanical
and thermal designs are optimized simultaneously in this study by coupling 3D multi-physical
behavior models to multi-objective heuristic optimization algorithms. Heat generation at various
loading and ambient conditions are estimated with a physics-based, fractional-order battery cell-level
model, which is extrapolated to a module that further accounts for the interconnected cells’ heat
transfer phenomena. Several key performance indicators such as the surface temperature increase,
the temperature variations on the cells, and heat uniformity within the module are recorded. For the
air-cooled study case, the proposed coupled framework performs more than 250 module evaluations
in a relatively short time for the whole available electro-thermal-mechanical design space, thereby
ensuring global optimal results in the final design. The optimal module design proposed by this
method is built in this work, and it is experimentally evaluated with a module composed of 12 series-
connected Li-ion NMC/C 43Ah prismatic battery cells. The performance is validated at various
conditions, which is achieved by accounting the thermal efficiency and pressure drop with regard to
power consumption improvements. The validations presented in this study verify the applicability
and overall efficiency of the proposed methodology, as well as paves the way toward better energy
and cost-efficient battery systems.

Keywords: lithium-ion; electro-thermal model; battery thermal management; multi-physics and
multi-objective optimization; particle swarm optimization; energy storage; structural design;
battery module

1. Introduction

Currently, lithium-ion batteries (Li-ion) are utilized in many electro-motive applica-
tions and in grid support due to their good operating efficiency and lifetimes [1,2], and
they are also used in attempts to reduce greenhouse emissions, as well as in attempts to
transition from the fossil fuel era [3,4]. Nonetheless, to obtain the optimal performance of
Li-ion cells, they have to be monitored and preserved within a safe operating area (SoA) [5].
The thermal, safe-operating window is defined by the manufacturer according to the cell’s
chemistry and shape. Moreover, it depends on the current rate and it is usually between
20 ◦C to 40 ◦C [6]. For multi-cell designs, the cell-to-cell interactions, enclosure shields,
and high-power demands (e.g., fast charge) can increase the cells’ temperature or create
heat non-uniformities with severe safety and performance implications. Hence, a battery
thermal management system (BTMS) is always utilized to maintain a predefined SoA [7,8].

Various approaches for a BTMS can be found in the literature and in real-life applica-
tions, and they are categorized based on thermal resistance (direct/indirect cooling/heating
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inter-phase) or the cooling mediums (water-based/dielectric/air/phase-change, etc.) that
are implemented in electric vehicles to preserve the temperature. In addition, they are
typically tailor based, and they are used to account for low costs, good performance, scala-
bility, modularity, etc. [9,10]. Many studies have been carried out that have evaluated and
optimized air-based cooling BTMSs [11]. The air cooling module is the simplest in terms
of mechanical and thermal design, and it was selected in this study for a proof-of-concept
of our proposed methodology; however, it was also used without limiting the proposed
method to air-based applications.

In [12], the optimal configuration of a battery pack composed of cylindrical Li-ion cells
was proposed, whereby the authors showed that a cell arrangement with a small length-
width ratio, in addition to an inlet/outlet configuration that facilitates the air flow over
most of cells, can significantly improve cooling efficiency. Park [13] evaluated several air-
cooled BTMS designs for Li-ion cells by theoretical investigations on a proposed numerical
model. The aforementioned author showed that BTMS efficiency is highly dependent on
the uniform distribution of the air passage, which can be achieved by adding a tapered
manifold and pressure relief ventilation to the BTMS.

Chen et al. [14] proposed a flow resistance network model to capture the friction
pressure loss along the BTMS channel, which was seen as the frictions between air and
channel wall in air-based BTMSs. By these means, they calculated the velocities of the
cooling channels and modeled the heat transfer and temperature distribution of the battery
cells. The coupling of these models showed improvements in the thermal management
efficiency of the BTMSs. Optimization of the air-cooled modules was also performed in [15],
where tje authors investigated the influence of the air inlet/outlet angles and the width of
the air flow channels between the battery cells. Similar assessments were performed in [16]
for both a U-type and Z-type air-based BTMS, where it was also concluded that the cooling
efficiency and power consumption can be improved by optimizing the aforementioned
parameters. Moreover, experimental and numerical evaluations on air-cooled BTMSs were
performed in [17]. Those authors investigated various performance parameters, such as
the channel size, channel locations, mass flow rates, and temperature influence, and they
calculated the pressure drop during constant current operation. They proposed a J-type
BTMS by integrating the Z- and U-type designs, as well as by means of surrogate modeling,
and through this approach they optimized the heat distribution in the battery module.

In order to estimate the optimal channel position on air-cooled BTMSs, the authors
in [18] investigated several BTMS types with different input and output channels topologies,
albeit with the same design parameters such as cell spacing, channel size, air flow rate,
and temperature. They performed a numerical study on various designs and concluded
that the cooling efficiency was improved if the channel regions were in the middle of the
plenums. Li et al. [19] evaluated the effect of the manifold size and mass flow rate on a
U-type Li-ion module that was composed of 36 battery cells. The authors of the current
study concluded that increasing the channel size of the mass flow rate can deteriorate the
temperature uniformity of the cells; in addition, an optimization was suggested to balance
the air flow density and rate with the cell-to-cell variations and energy cost.

Among the research that has been already performed in the field, to the best of
our knowledge, there has been limited information presented on performing co-design
optimizations with a combination of multi-objective and multi-physics models.

Hence, in this study, we investigated the modeling capabilities of a physics-based,
fractional-order electro-thermal model that was coupled to a 3D multi-physics module
model. This model was used to evaluate the cooling performance of a proposed optimized
BTMS, which was composed of 12 Li-ion prismatic cells. The methodology was initially
presented in our previous study [20], where the optimized battery module was compared
to the baseline model. The selected solutions of the co-design optimization model were
thoroughly presented and evaluated, and this was achieved by taking into account the
multi-objective optimization methods presented here [21] without the performance of
laboratory assessments on the developed battery modules.
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In this work, the design space from the optimization was built and evaluated to
bring validity to our proposed methodology. The findings from [20] indicated that, over a
broad design space with various parameters to account for (i.e., geometrical and perfor-
mance indicators), a unique battery module design can be selected. Meanwhile, from over
250 structural and performance investigations, the algorithm was able to propose a single
battery module that simultaneously minimizes all the selected objectives.

In this paper, we built the proposed battery module in our labs, and we tested it
with various current profiles for functional assessments. A detailed comparison between
the experimental and modeling performance was further performed to assess and vali-
date the proposed design optimization methodology. Moreover, we performed a second
step optimization study to evaluate and maximize the cost effectiveness of the proposed
methodology. In this work, we evaluated the performance with both static and dynamic
loading profiles to generate various heat profiles on the battery cells and modules.

Three cases were utilized to assess the applicability of the method, i.e., high heat-
generation static currents, a conventional discharge/charge cycle, and a dynamic loading
profile, according to the worldwide harmonized light vehicle test procedure (WLTP).
Once the single cell and the module models were validated, the proposed BTMS was
strategically optimized to balance between the temperature management and pressure
drop, which was achieved by exploring various mass flow rates, inlet/outlet channel sizes,
and geometrical parameters.

The introduction is followed by Section 2, in which the experimental methodology is
described. Thereafter, we have Section 3, which details the single cell physics-based model
and multi-cell module model development. In Section 4, the electro-thermal experimental
validation is performed at three loading conditions. Section 5 details the numerical opti-
mization that was conducted on the proposed air-cooled BTMS. Lastly, in Section 7, the
paper is concluded and a discussion on future steps is conducted.

2. Experimental Setup
2.1. Li-Ion Cell Properties

A prismatic NMC/C lithium-ion cell was used in this study, as shown in Figure 1. The
cell was designed for high-energy applications with a nominal capacity at 43 Ah, and it is
capable of a current rate (C-rate or C) of up to a 2C constant loading.

(a) (b)
Figure 1. (a) CAD cell design. (b) The actual NMC/C prismatic cell.

The main electrical and mechanical parameters of the Li-ion prismatic cell used in this
study are displayed in Table 1.

Table 1. Electro-mechanical properties of the Li-ion cell.

Main Characteristics Value Unit

Chemistry NMC/C (-)
Shape Prismatic (-)

Nominal voltage 3.65 (V)
Nominal capacity * 43 (Ah)
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Table 1. Cont.

Main Characteristics Value Unit

End-of-charge maximum voltage 4.2 (V)
End-of-discharge cut-off voltage 3 (V)

Volumetric energy density * 424 (Wh/L)
Specific energy density * 186.8 (Wh/kg)

Specific power * >1200 (W/kg)
AC impedance (1 kHz) <1 (mOhms)
Recommended charge 1 C (-)current rate (continuous) *

Maximum charge C-rate 2 C (-)
Cell dimensions 148 × 91 × 27.5 (mm)

Positive tab 6 × 18 × 22 (mm)
Negative tab 6 × 18 × 38 (mm)

Weight 0.840 (kg)
* At 1 C and 25 ◦C.

2.2. BTMS Configuration

A Z-type BTMS with parallel air flow to the cells is proposed in this study. Figure 2
shows the design configuration of the proposed air-cooled BTMS.

Air-inlet

Air-outlet

(a) (b)

(c) (d)

1

2

3

4

5

6x7

Figure 2. (a) Side view. (b) Top view. (c) The proposed BTMS inlet/outlet channels. (d) The BTMS
cell configurations with the cells placed in the module (cell 1 to cell 12).

In Figure 2a, the inlet/outlet orientation and size is shown; in this study, this is
denoted as Lcha, and it is approximately equal to a third over the total channel’s area, which
is denoted as Lmod. The inlet and outlet channels are, respectively, represented by blue
and orange colors. In Figure 2b, the top view of the BTMS is shown, with the BTMS total
length and width dimensions being denoted as x1 and x2, respectively. Meanwhile, x3
represents the space from the cells to the BTMS’s side wall. In Figure 2c, the proposed
Z-type parallel-flow BTMS is shown with air inlet and outlet channels, whereas Figure 2d
shows the internal configuration of the cells with respect to the BTMS boundaries, where
x4 is the height of the BTMS; x5 and x6 are the distances between the outer cells to the x-
and y-axis side walls, respectively; and x7 is the cell-to-cell distance. Lastly, it should be
noted that the symmetries for all sides were considered. The proposed dimensions for the
implementation of the BTMS were gathered and are shown in Table 2.
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Table 2. Mechanical parameters of the proposed air-based BTMS.

Main Parameter Implemented Value Unit

x1 201.2 (mm)
x2 412.9 (mm)
x3 26.6 (mm)
x4 152.6 (mm)
x5 20 (mm)
x6 30.8 (mm)
x7 3.9 (mm)

2.3. Test Bench

For the implementation of the BTMS, we initially electro-thermally characterized
the prismatic cell. The electrical process included the capacity test that was conducted
to obtain the actual cell’s value at various temperatures and current rates. Also, it in-
cluded impedance measurements, which were performed with the hybrid pulse power
test (HPPC), as well as with measurements, to obtain the open-circuit voltage of the cells
at different states of charges (SoCs). The raw data obtained from the tests were used to
map the proposed modeling behavior. A particle swarm optimization (PSO) was utilized
to extract the model parameters, the detailed experimental characterization process of
which can be found in [22]. The cooling efficiency of a BTMS is often described with
the maximum temperature (Tmax), the temperature difference among the cells (DT), the
temperature difference on the cell surface (CellT), and the total volume (V) that the battery
module occupies. The primal objective, serving as an attempt through which to improve
the volumetric and gravimetric energy densities of the modules, is to keep the cells within
a safe operation temperature area but simultaneously minimize the volume or the weight.
The significance of these KPIs is related to temperature management, which plays a crucial
role in assessing the safety, reliability, and efficiency of Li-ion batteries. The maximum
temperature rise observed on the outer casing or surface of the various form factors or
formats during its operation is referred to as surface temperature increase (Tmax). Elevated
levels may signal operational inefficiencies, including internal resistance rise, poor power
capabilities, overcharging, or excessive current consumption. These inefficiencies could
serve as early warning signs of thermal runaway, which is a dangerous scenario charac-
terized by a rapid escalation in battery temperature that could potentially result in the
venting, fire, or explosion of the cells. The temperature difference (DT) among the cells
is also referred as thermal uniformity in a multi-cell topology. Non-uniform temperature
distribution can lead to localized hotspots, which accelerate degradation and reduce the
overall lifespan of the battery. Monitoring temperature variations helps in identifying
potential thermal management issues, such as poor heat dissipation, uneven cooling, or
cell-to-cell variations in performance. Last but not least, the temperature difference on
the cell surface (CellT) indicates the heat generation from the core of the cells to the outer
casing, which can lead to uneven heat distribution and to local hot spots that affect the
efficiency and reliability of Li-ion batteries (as it induces thermal stress on individual cells
and increases the risks of thermal runaway).

In this method, the objective of the algorithm was defined so as to minimize these four
parameters, and this was achieved by taking into account the complex multi-variable and
multi-physical requirements of the design. The multi-objective particle swarm optimization
algorithm (MOPSO) was developed in MATLAB (and was published in our previous
work [21]). It is linked here to the 3D model created in Comsol to solve the multidisciplinary
costs, which can mathematically be expressed as in Equation (1):

min
i

F(xi) =
[

Ti
max, DTi, Celli

T , Vi
]
, ∀ i = 1 ≤ x9 ≤ 9

s.t. = [x1, x2, x3, x4, x5, x6, x7, x8]

at
[
v, Cr, Tamb, vtemp

]
.

(1)
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The mass flow rate v will be further examined in this work as a second-optimization
step that accounts for cost efficiency.

The thermal properties of the cell were found with a micro-pulse heat profile that
was injected into the cell, whereby the same number of Ah was extracted and injected
in order to be SoC-independent, which could result in influencing electrical and thermal
parameters such as the cells’ resistances. The extracted specific heat and the convection
transfer coefficient were found in our previous work [23]. Once the cells were characterized,
the module development took place, which was based on the optimized selected geometry
presented in Table 2. For the 12S1P module implementation, an electrical characterization
of more than 100 cells was performed to select the ones with the closest values in a Ragone
plot in terms of capacity and impedance. A variation of up to 3% and 11% was exhibited
at the beginning of life (BoL) and at the same testing conditions, respectively. A total of
12 cells were selected that showed similar performance in terms of cycle capacity and
impedance at the various conditions, whereas the BTMS design that was implemented
was based on BTMS 5, which showed—in simulation—a potential 15% decrease in the
maximum temperature increase on the cells, a 5% decrease in the required volume, a 70%
decrease in the temperature uniformity among the cells, and approximately a 40% decrease
in the better heat distribution on a cell [20]. The selected battery module was constructed
with a plexi glass that iwass precisely manufactured to follow the optimized dimensions.
In addition, three fans were placed in the proposed inlet location with a variable mass flow
rate and power consumption. The battery module was placed in a room with a control
ambient temperature at 25 ◦C and a specific convection rate.

The hardware setup for the testing included a climate chamber to preserve the cells’
surface temperatures, which were close to the various environmental conditions. The single
cells were connected to a PEC ACT0550 tester, (PEC, Leuven, Belgium) which is capable of
up to DC 5 V measurements. In addition, the module was connected to a PEC SBT8050,
which is capable of up to 80 V DC. Both of the testers had a ±0.005% voltage accuracy.
The module was connected to a pre-charge circuit and a fuse relay safety box, and it was
monitored by a commercially available battery management system (BMS). An anemometer
and a temperature data logger were used to measure the mass flow rates and to obtain
the cells’ surface temperatures in the module. The overall test bench is shown in Figure 3,
where the green and blue paths indicate the cell and module level testing, respectively.

Figure 3. Experimental setup during the cell- (green) and module-level (blue) characterizations
and validations.
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3. Model Development

Physically meaningful battery models can be employed by means of differential
equations and fractional order calculus (FOC), where the lumped capacitor of the ECM [22]
is replaced with constant phase elements (CPE), which can greatly improve the modeling
accuracy [24,25]. A Thevenin FOC model was presented in [26] that can achieve significant
improvements on its electrical behavior compared to an empirical model. The modeling
impedance was correlated to the actual cells by way of comparisons to the electrochemical
impedance spectroscopy (EIS) results at various cell aging states. Several FOC models can
be found in the literature. However, the Thevenin equivalent with a current dependency
on a charge transfer resistance that is based on the Butler–Volmer approximation (BVE) [27]
combined with a diffusion element (Warburg) [28] has shown a good performance and
balance between computational burden and accuracy. An R-(BVE//CPE)-W FOC coupled
to a thermal model is thus proposed in this study.

3.1. The Physics-Based FOC Electro-Thermal Model
3.1.1. Electrical Part

The FOC model describes the impedance behavior according to the CPE elements, as
expressed in Equation (2):

ZCPE( f ) =
1

Q(j2π f )α , (0 < α < 1), (2)

where j is the imaginary part, and α and Q are the variables used to obtain the CPE. An ideal
capacitor can be represented in case α is equal to 1; when α is equal to 0, it is instead treated
as a pure resistor. Moreover, α can be obtained directly from the EIS measurements [29],
or it can be numerically calculated with FOC calculus, where the real-order differential
operator can be defined as in Equation (3):

αDα
t =





dα

dtα , α > 0
1, α = 0
t∫

α
(dτ)α, α < 0,

(3)

where the fractional order in a real domain is denoted as α. The discrete form of the FOC
can be numerically solved according to the Grünwald–Letnikov (GL) definition in fractional
calculus [30]:

Dα f (t) = lim
∆t→0

1
(∆t)α

[t/∆t]

∑
j=0

(−1)j
(

α

j

)
f (t− j∆t), (4)

where the sampling time is represented with ∆t; the user-defined memory length is denoted
as [t/∆t]; and (α

j) is the Newton binomial coefficient, which is calculated as in Equation (5):

(
α

j

)
=

{
1, j = 0

α!
j!(α−j)! =

Γ(α+1)
Γ(j+1)Γ(α−j+1) , j > 0.

(5)

The proposed FOC model was depicted based on Kirchhoff’s voltage law in accordance
with the following expressions:





Ubatt = VOC − ηOhmic − ηct − ηdi f f
Ubatt = f (Cr, SoC, θ)

Dαηct = Ibatt
Qct
− ηct

QctRBVE
Dβηdi f f = 1

Qdi f f
ηdi f f ,

(6)
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where VOC represents the open-circuit voltage of the cells; ηOhmic is the voltage drop of
the Ohmic resistance; and ηct and ηdi f f represent the voltage across the CPE and diffusion
elements, respectively. The terminal voltage of the cell is denoted as Ubatt and is depen-
dent on the SoC, current rates (Cr), and temperature (θ). The fractional orders α and β
were assigned to the CPE elements for the polarization effects with factors Qct and Qdi f f ,
respectively. RBVE shows the activation polarization resistance, which was based on BVE
approximation [31,32].

RBVE,s = α0,s ·
ln

[
1

α1,s
Ibatt,s+

√(
1

α1,s
Ibatt,s

)2
+1

]

1
α1,s

Ibatt,s

(7)

where s is the SoC counterl α0,s and α1,s are fitting parameters; and Ibatt,s is the current
passing through the cell at every sample. In using the GL from Equations (3) and (4), we
obtain the following transformations (Equations (8) and (9)):

Dαηct =
1

Tα
s

[k]

∑
j=0

(−1)j
(

α

j

)
ηct,k−j =

Ibatt,k

Qct,k
− ηct,k

Qct,kRBVE,k
, (8)

Dβηdi f f =
1

Tβ
s

[k]

∑
j=0

(−1)j
(

β

j

)
ηdi f f ,k−j =

1
Qdi f f ,k

ηdi f f ,k, (9)

where k is the time step. The solutions of these two formulas were derived from the battery
voltage Ubatt at the discrete time domain, as in Equation (10):

Ubatt,k = VOC,k − ηOhmic,k − ηct,k − ηdi f f ,k, (10)

where the corresponding voltage drops are calculated as (Equations (11)–(13))

ηOhmic,k = Ibatt,k−1ROhmic, (11)

ηct,k =

(
α− Tα

s
QctRBVE

)
ηct,k−1

+
Tα

s Ibatt,k−1

Qct
−

[Ns ]

∑
j=2

(−1)j
(

α

j

)
ηct,k−j,

(12)

ηdi f f ,k =
Tβ

s Ibatt,k−1

Qdi f f
− 1

Tβ
s

[Ns ]

∑
j=0

(−1)j
(

β

j

)
ηdi f f ,k−j. (13)

3.1.2. Thermal Part

For the thermal branch, and in order to obtain the heat dissipation rates, the tempera-
ture gradient was calculated as in Equation (14) [33]:

{
dUcell

dt = Qgen(t)−Qloss(t) = m Cp
dT
dt

Qloss(t) = Qconv(t),
(14)

where Ucell represents the internal energy of the Li-ion and Qgen is the generated heat rate
based on the cell’s Joule losses. Qloss represents the heat loss expressed by the convective
heat transfer to the environment. Also, m is the cell mass, Cp is the heat capacity, and T is
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the surface temperature. The heat transfer to the ambient temperature was calculated as
shown in Equation (15):





Qgen(Cr, SoC, θ) = ROhmic(Cr, SoC, θ) I2
batt

+RBVE(Cr, SoC, θ) I2
ct

Qloss(Cr, SoC, θ) = hconvS(Tamb − Tcell),
(15)

3.1.3. Coupled Electro-Thermal Model

Where hconv is the cell-level convection heat transfer coefficient and S is the cell cross-
section area. The thermal properties of the model were calculated in our previous work [23].
Figure 4 shows the coupled 1D electro-thermal model.

(a)

(b)

Rohmic

RBVE

Qct

Qdiff

Ubatt

SoC – Ah counting
Uoc

Qct

Qdiff

Ibatt

SoCinit ηohmic

ηct

ηdiff

Tamb

Cp

Qgen

T

(c)
Figure 4. (a) The electrical FOC model. (b) The thermal branch (c) The coupling of the electrical FOC
with the thermal 1D model.

3.2. 3D Numerical Model

The proposed 1D electro-thermal model derived the heat losses of the cell over time,
which were fed to the 3D model as an input to further evaluate the temperature gradients
at the module level. The 3D models’ thermal properties, such as conductivity, cell density,
and specific heat, were obtained from a characterization process that was presented in our
previous work [23], whereas the rest domain parameters were found in the literature from
the study of [34], and they are gathered in Table 3.
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Table 3. Input parameters of the multi-physics model.

Main Parameter Air [34] NMC/C [23] Aluminum Tabs [34]

Density ρ (kg/m3) 1.165 2268 2700
Specific heat Cp (J/kg·K) 1005 933.7 900

Thermal conductivity 0.0267 0.82 (λx)
238λ (W/m·K) 4.43 (λy)

2.72 (λw)
Electrical resistance R′ (Ω) 9.97 ×10−6

The model was developed with a COMSOL computational fluid dynamics (CFDs)
simulation tool, whereas the temperature and fluid fields were solved with a finite el-
ement method. We used a turbulent, single-phase, and incompressible fluid, the mass,
momentum, and energy conservation of which were described according to the Reynolds
average Navier–Strokes equations with a k-ε turbulence model [34,35] for the air flow area
(Equations (16)–(18)) and the battery cells (Equation (19)):

ϑρ f

ϑt
+∇·

(
ρ f v̄
)
= 0, (16)

ρ f
ϑv̄
ϑt

+ ρ f
(−→v · ∇

)
v̄ = ∇ p̄ + [∇· (µ∇v̄)− ϕ], (17)

ρ f Cp
ϑTf

ϑt
+
(

ρ f Cp
−→v
)
∇Tf = ∇·

[(
λa +

µt

σt

)
∇Tf

]
, (18)

ρcCp, c
ϑTc

ϑt
= ∇·

[−→
λc∇Tc

]
+ Q̇gen + Q̇tab, (19)

where ρ f represents the fluid density; v shows the average velocity; and the viscosity,
pressure, and Reynolds stress are denoted by µ, p, and ϕ, respectively. Also, the time-
dependent heat dissipation created an unsteady temperature in the airfield region, which is
described by Equation (18). In this case, the fluid temperature is denoted as Tf , the thermal
conductivity of air is λa, and µt is the turbulent dynamic viscosity. The temperature
equation for the battery module is described in Equation (19), with ρc, Cp, c, and Tc the

cell’s density, specific heat, and surface temperature, respectively, and where
−→
λc is the

thermal conductivity at each direction.
The heat generation included the losses generated from the aluminum cell’s tabs in

accordance with the following formula:

Qtab =
R′ · I2

batt
Vltab

∗ N, (20)

where N is the 24 accounted tabs in a 12S1P topology. The boundary conditions for a cell
were between the cell’s surface and the ambient temperature, as calculated in Equation (15).
For the module level, the heat convection transfer coefficient varied during testing time,
and it was calculated by the software based on the air properties at the selected design
(mass-flow speed, channel sizes, temperature, etc.). The model was solved with COMSOL
software v5.5 using the MUMPS solver with a default physics-controlled unstructured
tetrahedral mesh, as well as with the non-slip boundary conditions being imposed to the
walls and the initial temperature being set at the ambient temperature i.e., 25 ◦C.

4. Experimental and Numerical Studies

The BTMS evaluations were performed at a 25 ◦C ambient temperature for a constant
current discharge, as well as with maximum allowed C-rates (2 C), a discharge/charge
cycle at the recommended rates (1 C), and a dynamic loading profile (WLTC). For each case,
the single cell electrical validation is shown with the modeling voltage in comparison with
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the experimentally obtained results. In addition, their relative error Verr is used as a model
accuracy indicator as follows:

Verr =
Vexp −Vbatt

Vexp
∗ 100%. (21)

Furthermore, the single-cell temperature behavior was evaluated and the correspond-
ing heat generation was obtained based on Equation (15). The analysis was continued for
the multi-cell model by comparing the modeling to the experimental temperature behav-
iors, which was measured at two different locations. The first thermocouple was placed in
the outer area of the first cell (noted as T1) and the second (noted as T2) between the fifth
and sixth cells of the 12S1P module. Both were placed in the center of the cells, and, by
these means, the thermal uniformity among the cells could be monitored and assessed.

For the module assessments, the initial SoC of the cells was 85% and this decreased
by up to approximately 20% in order to bypass any of the balancing processes from the
BMS. During the experimental implementation, a velocity of 1 m/s was measured via an
anemometer, which corresponded to an approximately 0.012 m3/s mass flow rate for a
channel size Lcha that was set at 60 mm.

4.1. Maximum Static Discharge

A 2 C constant current profile over the whole available SoC was loaded to the battery
for single-level electrical validation.

4.1.1. Cell-Level Static Evaluation

The single-cell model voltage behavior is shown against the experimental behavior
along with their relative errors in Figure 5. It was observed that the proposed model
can map a high accuracy with the voltage behavior over the whole SoC range. Only a
slight deviation occurs during the last steps of the discharge, and this is possibly due
to the unexplored lithium diffusion processes that occur simultaneously in the cells [36],
which could have been better captured with extra CPEs in the model. Nonetheless, for the
proposed model, the relative error stayed below 4% over the whole experiment.
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Figure 5. (a) Static single cell voltage behavior. (b) Relative error.

The thermal validation of the model can be seen through a comparison of the exper-
imental with the simulation results. The temperature behavior for this case is shown in
Figure 6 with the corresponding heat generation. To accord with the real conditions of the
air flow in the thermal chamber, in a single-cell model, the heat transfer coefficient was set
to 10 W/(m2·K).

The abovementioned diffusion effect did not highly affect the temperature accuracy in
the simulation. A good agreement was achieved over the whole experiment, which helped
with verifying the proposed process and allowed it to proceed with multi-cell assessments.

171



World Electr. Veh. J. 2024, 15, 115

0 500 1000 1500 2000
25

30

35

40

45

50

(a)

0 500 1000 1500 2000
0

5

10

15

20

25

(b)
Figure 6. (a) Single cell temperature behavior at a constant current profile. (b) Heat generation.

4.1.2. Module-Level Static Validation

The module was validated for a static current with an initial SoC at approximately
85%, which was then discharged by up to 20%. Figure 6b shows, with solid lines, the heat
generation input to the CFD model. The experimental and numerical results are shown at
the locations of T1 and T2 in Figure 7. In the same figure, the blue line shows the behavior
of a natural convention model (NC BTMS) without any cooling, and it was obtained from
the numerical solution.
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Figure 7. Constant current BTMS validation.

It was observed that the proposed BTMS model fit, with a good agreement, the
experimental data and could keep the maximum temperature lower than 36 ◦C, which
is approximately 9 ◦C lower than what was encountered with the NC-BTMS. Also, the
heat uniformity was below 3 ◦C, which signifies the efficiency of the proposed air-based
BTMS under this demanding loading. The selected battery module presented in Figure 8a
is a result of the digitalized methodology over the various available designs with respect
to inlet/outlet topology, cell spacing, etc. More details can be found in our previous
publication [20]. The heat distribution at the end of the test profile is shown in Figure 8 for
the proposed thermo-mechanical design (a), as well as the solution and natural convection
(b), at the end (1200 s) of the discharge. The maximum temperature evolution was improved
by approximately 10 ◦C, while the thermal uniformity among the cells was improved by
approximately 4 ◦C with a maximum deviation of 1 ◦C (as can be further investigated
here [20]).
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(a) (b)
Figure 8. (a) The proposed BTMS. (b) The natural convection heat distribution.

4.2. Discharge–Charge Cycle

The current profile of a constant discharge–charge cycle that was applied on both
topologies is shown in Figure 9.

The cells were charged to an approximate 85% SoC, and they were then discharged
with 1 C for 2000 s. They experienced an immediate charge with the same C-rate until the
SoC had reached the initial level.
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Figure 9. The discharge-charge cycle with a 1 C rate.

4.2.1. Cell-Level Cycle Evaluation

The experimental and modeling voltages are shown with the respective relative errors
in Figure 10.
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Figure 10. (a) The discharge-charge single cell voltage behavior. (b) The relative error.

The activation and concentration polarization effects are shown with higher and lower
time constants in the model. They can be tracked with high accuracy, as indicated by the
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relative error that stayed below 1.5% for the whole test. The corresponding temperature
behavior, validation, and heat generation are illustrated in Figure 11.
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Figure 11. (a) The single cell temperature behavior with a current cycle. (b) Heat generation.

Compared to the previous case, it was observed that the voltage could be realized with
a single diffusion element. Hence, a good thermal agreement was achieved, whereas it was
also observed that the charge resistance was slightly higher than discharge, as indicated by
the heat dissipation curve.

4.2.2. Module-Level Cycle Validation

A time-dependent heat generation was supplied to the CFD model. Even though, for
the two current pulses, the test time was higher and the heat generation was based on the
impedance data from both charge and discharge profiles, the temperature behavior can be
tracked with a high accuracy, as shown in Figure 12.
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Figure 12. The discharge–charge current BTMS validation.

Also, the proposed module was capable of keeping the maximum temperature below
35 ◦C when compared to the NC-BTMS, while the heat uniformity was established with
thermocouples T1 and T2, as well as by the good agreement between the experimental and
CFD values.

4.3. Dynamic Loading—WLTC

In the last study case, the WLTC dynamic current profile, as shown in Figure 13, was
applied to the cells. It was based on a mixture of low and more demanding current pulses
with the maximum C-rate being limited at 1.5 C (60 A).

The applied profile was composed of four consecutive WLTC cycles that discharged
the cells for an approximate 60% SoC. Similar to previous cases, to avoid the balancing
effects of the BMS, the initial SoC was set at around 85% and the test was conducted in
25 ◦C ambient conditions.
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Figure 13. The dynamic cycle based on the WLTC profile.

4.3.1. Cell-Level WLTC Evaluation

The R-(BVE//CPE) branch was found to be very efficient for the fast dynamics that
were mainly accounted for in this profile. Throughout the whole test, the relative error did
not exceed 0.5% of the actual voltage value, as shown in Figure 14.

Hereafter, the proposed electro-thermal model captured the temperature behavior
with high accuracy, the corresponding heat generation of which is shown in Figure 15.
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Figure 14. (a) The dynamic profile single cell voltage behavior. (b) The relative error.
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Figure 15. (a) The single cell temperature behavior with a WLTC profile. (b) The heat generation.

4.3.2. Module-Level WLTC Validation

The dynamic profile was applied to the 12S1P air-based module, and the experiment
data when compared against the CFD are shown in Figure 16.

A good agreement was achieved both on the maximum temperature and heat distri-
bution for the proposed module. It was observed that the consecutive current cycles could
elevate the maximum temperature at the end of the experiment (approx. 20% SoC) to 38 ◦C.
Based on the NC-BTMS model, which is indicated with the blue line, the temperature had
an increasing rate of change. This could lead to surpassing the safety window if no cooling
solution is applied. However, the proposed BTMS showed a stable thermal trend without
exceeding 28 ◦C.
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Figure 16. The dynamic current BTMS validation.

5. BTMS Cost-Effectiveness Study

The proposed module was strategically optimized, as detailed in this section. For
this purpose, the validated numerical model was used to help visualize and predict the
temperature behavior when using various structural designs.

5.1. The Inlet Coolant Flow Rate

Different inlet coolant flow rates were evaluated to help determine the influence on the
temperature evolution of the proposed BTMS. The coolant was set at the same temperature
as the ambient, i.e., 25 ◦C, whereas, for the evaluation and validation steps, a 0.012 m3/s
flow speed was selected. Figure 17a demonstrates the temperature contours of 0.01 m3/s
to 0.04 m3/s. It was observed that the temperature declined when increasing the flow rate.
With the coolant rate increasing from 0.01 m3/s to 0.04 m3/s, the maximum temperature
dropped to 8 ◦C at the end of a 2 C static discharge loading, and this was as a result of
the enhanced convective heat transfer between the cells and the air coolant. However, the
increased flow rate could proportionally increase the hot spots on the cells and deteriorate
the uniformity in the module. The local hotter zones could create a higher localized negative
aging effect on the cells as a faster degradation was expected at those points. Operations
outside the SoA can jeopardize the safety and performance of the module. To find the
optimal flow rate, the pressure drop was plotted with the temperature behavior, as shown
in Figure 17b. It was evident that the higher the flow rate, the steeper the temperature drop
and the cooling speed. The results depicted in the figure verified the fact that a non-linear
relationship was obtained between the coolant rate and the pressure drop. To balance
between the pressure loss and the thermal management, a mass flow rate at the intersection
of those curves, at approximately 0.023 m3/s, was selected.
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Figure 17. (a) Temperature behaviors. (b) The pressure drop at various mass flow rates.
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5.2. Channel Size

The design of the channels’ input and output played an important role in managing
the temperature and pressure losses of the proposed BTMS. In this part, the evaluation was
performed with channel sizes of 20 mm to 60 mm. The symmetries of the input and output
channels were recorded, whereas, for the main case study and experimental validation, the
channels were designed with an approximately 55 mm size. It is shown in Figure 18 that,
from increments in the channel size, the monitored maximum temperature decreased by up
to 2 ◦C. On the other hand, the pressure drop showed a sharp increase that was up to four
times higher as the channel size increased. The study was performed with the previously
optimized mass flow rate (0.023 m3/s).
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Figure 18. The pressure drop and maximum temperature at various channel sizes.

Hence, the optimized BTMS was to be implemented with a trade-off value, for which
the temperature and the cost could be balanced, of approximately 30 mm for the chan-
nel size.

5.3. Cell-to-Cell Space

The last key parameter to be optimized based on the pressure drop and the heat
distribution was the cell-to-cell distance. The optimal flow rate and channel size obtained
in previous sections were now accounted for. In the following Figure 19, it is clearly shown
that, when increasing the cell’s intermediate distances, the cell’s maximum temperature at
the end of a 2 C discharge process was decreased by up to approximately 4 ◦C. It was also
observed that the drop decreased from 75 Pa to 45 Pa. This meant that, by increasing the
cell-to-cell distance, not only did the temperature decline, but a pressure drop reduction
was also observed, as illustrated in Figure 19b. Nonetheless, increasing the distance by
more than 4 mm could lead to extra costs when the temperature is not proportionally
dropped. An approximate 4 mm distance was hence selected as the optimized value for
the proposed BTMS.
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Figure 19. (a) Temperature behaviors. (b) The pressure drop at various cell-to-cell distances.

6. Discussion

While the design optimization method presented in this work can significantly en-
hance the performance, efficiency, and safety of Li-ion battery systems, several constraints
may affect its broader adoption across diverse applications. In this section, we try to
elaborate on the challenges that might arise during the design optimization method for
the purposes of future consideration and wider adoption. The first challenge was com-
putational power and efficiency. We demonstrated that our method required a non-stop
optimization process of approximately 5 days [20]. Hence, the multi-objective design
optimization methods implemented in 3D environments involved complex mathematical
models, simulations, and algorithms, which were used to analyze various design param-
eters and optimize performance criteria, as was presented in our work. Implementing
these methods requires substantial computational resources, including high-performance
computing systems, advanced software tools, and expertise in the numerical methods.
With the trade-off that can be made on the various modeling approaches, the modeling
accuracy of the battery systems can vary significantly. An accurate battery behavior is
essential for effective design optimization. However, developing accurate battery models
that can capture the internal electrochemical processes, the thermal behavior at various
conditions, and mechanical interactions can be challenging. Furthermore, the validation
of these models against experimental data is crucial but often time-consuming and costly.
Such model inaccuracies or uncertainties can lead to suboptimal designs or unexpected
performance issues, thereby undermining the reliability and effectiveness of design op-
timization methods. This is one of the main purposes that validations were presented
after the construction of the proposed module design, as well as after further analyses,
in the current work. Moreover, a global implementation of the proposed method should
concern the numerous interdependent parameters, including the cell chemistry, geometry,
materials, thermal management strategies, and operating conditions of the various cell
chemistries and formats. Exploring this vast design space to identify optimal solutions
while considering trade-offs between conflicting objectives might be challenging. An extra
important constraint that one should consider is that the optimized designs generated
through computational methods may not always be readily manufacturable or scalable to
large-scale production. Design constraints imposed by manufacturing processes, material
availability, supply chain logistics, and cost considerations may limit the practical feasibility
of implementing optimized designs in real-world applications. Bridging the gap between
design optimization and manufacturability is essential for ensuring the broader adoption
of the proposed method.

7. Conclusions and Future Work

In this work, the performance of an air-cooled, battery thermal management system
(BTMS) was studied for a battery module composed of 12 high-energy, prismatic Li-ion
cells connected in series.
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A physically meaningful electrical model was built based on fractional-order calculus,
which helped to map the impedance of the cells with high accuracy. The single cell electrical
model was coupled to a thermal branch, and it was evaluated with three different current
profiles, a maximum static discharge current, a discharge–charge cycle, and a consecutive
dynamic profile. A good agreement between the modeling and the experimental values
was achieved, and this was underlined with the low relative errors obtained in each study
case. Hence, the heat generation was derived and supplied to an efficient three-dimensional
model, which was also validated against the experimental results obtained from various
current profiles. The roles of natural convection (NC-BTMS) and forced convection were
studied separately for the proposed BTMS under intense static and dynamic loads.

By optimizing the key performance parameters, such as the mass flow velocity and the
channel size, one can conclude that their increment leads to a maximum temperature reduc-
tion. Also, the cell-to-cell distance increase had a reverse impact on the temperature and
the pressure drop. By these means, the thermal management of the proposed architecture
was enhanced while the pressure drop was kept at a minimum range.

A significant improvement can be concluded from this study—one that is related to
the overall physics-based structural optimization of the battery modules. The coupling
of high-fidelity models with global optima multi-objective algorithms could consider the
following: (1) a wider design space with many objectives (which is proven in this study,
i.e., that co-design electrical-thermal and mechanical objectives can be solved at the same
time); (2) the optimization steps that are evaluated can be significantly increased when
compared to user-based or single-objective solutions (i.e., the sampling time related to the
computational time and step-time related to the amount of derived solutions that could
be set accordingly); and (3) the optimization results presented in this paper are accurate
versus the real-life experiments for various loading scenarios.

The method we have presented here was studied with a air-cooled battery module
design. To optimize this design, we used a multi-objective optimization that used four
objectives and several constraints, as presented in Equation (1). By changing the cost
functions and the constraints, the use case could be adapted to other designs and bat-
tery configurations, such as when investigating the liquid channel sizes, mass flows, and
pressure drops, in order to provide the most suitable solutions. We are currently work-
ing on such investigations, and future publications will present the performance of the
proposed methods to a different design set. Forthcoming works might include a study
on the proposed BTMS when it is applied to a higher energy and power battery pack, as
well as an evaluation of different thermal management solutions for different objectives
and constraints.
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Abstract: The objectives of this research were to develop simulation models for agricultural tractors
with different powertrain technologies and evaluate the energy consumption in typical agricultural
operations. Simulation models were developed for conventional, parallel hybrid electric, series
hybrid electric, fuel cell hybrid, and battery electric powertrains. Autonomie vehicle simulation
software (version 2022) was used for the simulations and the tractor models were simulated in
two tilling cycles and in a road transport cycle with a trailer. The alternative powertrains were
configured to have at least the same tractive performance as the conventional, diesel engine-powered
tractor model. The simulation results showed that the potential of the parallel and series hybrid
powertrains to improve energy efficiency depends heavily on the tractor size and the operating cycle
conditions. The fuel cell hybrid and battery electric powertrains have a higher potential to reduce
energy consumption and emissions but still have inherent technical challenges for practical operation.
The battery-powered electric tractor would require improvements in the storage energy density to
have a comparable operational performance in comparison to other powertrains. The fuel cell hybrid
tractor already provided an adequate operating performance but the availability of hydrogen and
refueling infrastructure could be challenging to resolve in the farming context.

Keywords: energy consumption; agricultural tractor; modeling; alternative powertrain; simulation

1. Introduction

Alternative powertrains have been increasingly implemented in different types
of on-road vehicles for increasing energy efficiency and reducing emissions [1,2] and
electrification is also on the way for off-road machinery [3,4]. The recent technological
developments in powertrain electrification [5] and increased fossil fuel prices are also
starting to make alternative powertrains and fuels relevant options for agricultural
tractors. Unlike passenger vehicles, agricultural tractors have not yet been the most
interesting application for powertrain electrification. The uncertainties about future
developments regarding fossil fuels, environmental legislation, and emission standards
have increased interest in the development of hybrid electric, fully electric, and fuel cell
hybrid powertrain solutions [6]. Therefore, it is reasonable to believe that powertrain
electrification will also be one of the major technology trends for agricultural tractors
in the coming years. Recent scientific research results indicate that there could be a
significant potential to increase energy efficiency with alternative powertrains [7]. The
main architectures for suitable alternative electrified powertrains have been studied
and the benefits of using electric power for numerous agricultural implements have
been well recognized [8,9]; however, most of the existing research studies evaluating
alternative powertrains for agricultural tractors focus only on single powertrain options
and, therefore, a balanced comparison between the different technologies is required.
This research presents a comparison—in terms of energy consumption and operational
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performance—by taking into account the most relevant alternative powertrain options
for agricultural tractors. This article is a revised and expanded version of a paper entitled
“Simulation of Alternative Powertrains in Agricultural Tractors” [7], which was presented
at EVS36 in Sacramento on 12 June 2023.

Some agricultural tractor manufacturers have introduced new concepts for alternative
powertrains and have launched prototype tractor models; they are even starting to produce
versions of hybrid electric powertrains, but large-scale electrification still has many chal-
lenges to overcome. Several companies and research institutions are working on prototype
battery electric tractors to reduce greenhouse gas emissions and dependence on fossil fuels
in agriculture. John Deere has planned to launch an electric tractor by 2026, the small
electric tractor by Fendt (e100 V Vario) has already been launched, and CNH Industrial
is developing the New Holland T4 Electric Power and Farmall 75C Electric, which are
both lithium-ion battery-powered all-electric utility tractors. Research has been ongoing to
improve battery technologies for electric tractors. Increased energy density, longer battery
life, and faster charging times are crucial aspects of the success of electric agricultural
tractors [10]. The integration of electrified tractors with precision agriculture technologies
is also a growing area of interest for manufacturers. Some governments have been offering
incentives and subsidies to encourage the adoption of electric vehicles in agriculture. These
policies aim to reduce emissions, promote sustainable farming, and support the transition
to cleaner energy sources.

Powertrain electrification has spread steadily from passenger cars to utility vehicles
and, today, even to heavy on-road vehicles [11,12]. There is also increasing development
for off-road machinery, especially since 2021 as energy costs have increased exceptionally
and there are many uncertainties surrounding the use of fossil fuels in the future. Higher
technology costs can be a major barrier to using alternative powertrains in agricultural
tractors, although previous research on heavy vehicles and off-road machinery suggests that
the higher development and component costs can be paid off with benefits when assessing
the cost on a lifecycle basis [13,14]. The electrification of farm vehicles started with small-
sized machines, for example, there are already electrified versions of telehandlers and
small loaders available for purchase [15]. Because modern agricultural tractors are used
for a wide variety of field operations, road transport, and other supporting work such as
front-end loading or mixer wagon operation, there are several different variants of basic
agricultural tractors. However, from very small-sized tractors (engine power < 50 kW)
up to very large tractors (engine power up to 300 kW), conventional agricultural tractors
have quite a similar powertrain topology [16]. This similarity might limit the opportunities
to introduce new powertrain designs and favor the minimal modification of the existing
layout to avoid too many modifications in the production lines. This is also the case due to
the multipurpose aspect of agricultural tractors, providing a universal operator for a vast
variety of farm purposes.

Over the last few years, research studies have been carried out to estimate the benefits
and feasibility of hybrid electric powertrains in agricultural tractors. For many reasons,
compact and medium-sized tractors (engine power between 50 and 100 kW) have often
been the baseline for hybridization studies. Troncon et al. (2019) studied the feasibility of
hybridization for specialized orchard and vineyard tractors using a mild parallel-hybrid
system [17,18]. The challenge was to fit the electric system in a rather limited space
and deliver an adequate performance. Their simulated research results indicated that
fuel consumption would be 15–35% lower depending on the duty cycle operation. In
another study, an ICE-based platform was converted to a parallel hybrid powertrain with a
downsized engine and electric motor [19]. The downsizing was about 29% (from 77 kW to
55 kW of engine power), the electric motor maximum power was 60 kW, and the battery
size was 25 kWh. The fuel economy savings were evaluated using simulations of high
and low power duty cycles, which clearly showed that hybridization had only a marginal
benefit on high power cycles (on average about a 5% reduction) and a significant benefit on
low power cycles, having a reduction of over 30% on average [19]. Mendes et al. (2019)

183



World Electr. Veh. J. 2024, 15, 86

investigated the hybridization of a tractor backhoe loader by focusing on using electrical
power produced by a generator for the hydraulic system with supercapacitors as the energy
storage [20]. Simulations on real-world recorded duty cycles indicated over a 50% reduction
in fuel consumption. Mocera and Martini (2022) proposed a hybrid eCVT power-split
hybridization for a specialized agricultural tractor [21]. Their performance simulations
showed that the hybrid tractor would have a comparable performance in typical use of the
tractor and fuel savings of 10–20%.

Alternative fuels, such as biodiesel, biogas, e-fuels, or hydrogen for internal combus-
tion engines, have the potential to lower greenhouse gas emissions compared to traditional
fossil fuels. This can contribute to mitigating environmental impacts associated with agri-
cultural activities. Some alternative fuels are derived from renewable sources, offering
the advantage of sustainability. For instance, biofuels can be produced from crop residue
or organic waste, providing a renewable and potentially carbon-neutral energy source.
Certain alternative fuels, like biogas, can be produced locally, promoting regional economic
development. The adoption of alternative fuels is hindered by the lack of widespread
infrastructure for production, distribution, and refueling [22]. Establishing a robust in-
frastructure is crucial for the successful integration of alternative fuels into agricultural
practices. Some alternative fuels have a lower energy density than traditional fossil fu-
els, which can impact the overall range and efficiency of agricultural tractors [23]. This
challenge requires advancements in fuel storage and utilization technologies.

Considering off-road vehicles and machinery in general, agricultural tractors differ
from other machinery because they are often used for various purposes and many different
types of field operations. Therefore, it is important to develop methods that provide the
tools for evaluating the benefits of powertrain electrification of agricultural tractors [24].
Vehicle modeling and simulation methods are a practical and rather fast way of analyzing
and comparing different powertrain solutions. Different from many other vehicles, agri-
cultural tractors are used on different types of field surfaces and in different conditions,
which creates specific challenges for modeling [25]. Reliably and accurately simulating
tire–soil interactions need high-fidelity models, e.g., FEM—(Finite Element Method) or
DEM—(Discrete Element Method) based models, that need laborious development and
require significant amounts of computational capacity [26,27]. In addition, acquiring reli-
able validation data for high-fidelity tire–soil interaction models from field operations can
be rather challenging [28]. For effectively comparing and evaluating the performance of
alternative powertrains, less computationally intensive models are typically used, such as
numerical simulation.

This research presents a numerical modeling and simulation approach for evaluating
alternative powertrains in agricultural tractors using Autonomie vehicle simulation soft-
ware [29]. Off-road vehicles and machinery are typically simulated in a different way to
on-road vehicles because they usually perform repetitive tasks and do not have a traditional
speed profile to follow. Instead, agricultural tractors are simulated based on distance, by
giving a target speed based on the distance traveled. Also, as these types of machines often
do heavy work, the resistance force from implements must be integrated into the model by,
for example, simulating agricultural field work such as plowing or harrowing. Naturally,
in typical field work, like field cultivation, the power requirement can consist of a passive
draft force or an active power that uses the power take-off (PTO) or hydraulic power in
an implement. For evaluating alternative powertrains in agricultural tractors, numerical
modeling and simulation provide an effective approach to generating different simulation
cases, comparing component sizing, and then evaluating the benefits in several use cases.

In this research, conventional, parallel hybrid electric, series hybrid electric, fuel
cell hybrid, and battery electric powertrains were modeled and simulated in dedicated
operating cycles. The powertrain models were parametrized based on the performance of
a conventional tractor with a diesel engine and dual-clutch transmission. The operating
cycles were generated based on field measurements carried out in the Viikki Research
Farm at the University of Helsinki, Finland. According to the simulation results, the
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benefits of hybridization and electrification were evaluated and the operating performance
was analyzed.

2. Materials and Methods
2.1. Simulation Model Development

Autonomie software (version 2022) [29] was used for the tractor model development
and for running the simulations in multiple cycles. This software has been developed
by the Argonne National Laboratory (ANL), to be used as a vehicle system simulation
tool for assessing the energy consumption, performance, and cost of advanced vehicle
powertrain technologies in various types of vehicles [12]. The simulations and model
configurations can be executed in a dedicated interface called AMBER, which has been
developed as a universal graphical user interface for multiple simulation applications
and allows workflows to be run with different software developed by ANL [30]. All
the simulations were carried out by using AMBER and, thus, the model development
was performed in Autonomie, and configuration and parametrization were performed
in AMBER. Autonomie was originally designed for on-road vehicle simulations and,
therefore, implementing off-road simulation models with distance-based cycles required
some modifications to the driver and vehicle control systems. Otherwise, the software is
well suited to off-road vehicle simulation as long as a representative operating cycle can be
generated. The first versions of the agricultural tractor models with a time-based simulation
approach were developed during previous research, which focused on conventional tractor
model development and the electrification of agricultural tractors [31]. The previously
developed simulation models were updated by modifying them to be suitable for distance-
based cycle simulations. Also, more representative operating cycles were developed based
on the measurements carried out in an agricultural field environment and during road
transport tractor tests.

The modeled powertrain options included diesel-powered conventional, parallel
hybrid electric, series hybrid electric, fuel cell hybrid, and battery electric powertrains. The
conventional and parallel hybrid models have a diesel engine as a power source and a dual-
clutch transmission; dual-clutch transmission was chosen for its high energy efficiency [32].
The parallel hybrid has a pre-transmission layout with an electric drive and uses a battery
pack for electrical energy storage. The series hybrid tractor model also has a conventional
diesel engine attached to a generator, one electric drive motor, and a three-speed gearbox.
The fuel cell hybrid and electric tractor models have a fully electric powertrain consisting
of a battery, one electric drive motor, and a three-speed gearbox. The fuel cell hybrid
model has a fuel cell stack as the primary power source and a small battery pack for power
load leveling. The electric tractor has a large energy-type battery pack for energy storage.
A lithium-ion battery model was used for energy storage in all of the electrified simulation
models. Figures 1 and 2 present the powertrain layouts of the different tractor models in
the Autonomie software. The vehicle dynamics block is illustrated in Figure 2 and includes
a transfer case, front and rear final drives, wheels, and chassis model. The transfer case
splits the driving power between the front and rear axles. All the tractor models have the
same driver model, which determines the speed and acceleration demand. The external
loads generated by an implement or trailer are taken into account in the chassis block of
the models. The hybrid powertrains have dedicated energy management strategies (EMSs)
for ensuring driving performance and minimizing energy consumption when possible.
Power-following and charge-sustaining EMSs were used for all the hybrid powertrains to
ensure performance and keep the battery state of charge within predetermined limits.
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2.2. Model Parameters

Two different baseline tractor sizes were chosen for the conventional tractor models—a
medium size with an engine-rated power of 112 kW, and a large size with an engine-rated
power of 225 kW. The tractor models were configured using the Autonomie libraries that
provide component initialization data for a wide range of components used in light- and
heavy-duty vehicles. The powertrain component sizing was determined in a way that the
alternative powertrains had at least the same tractive performance in comparison to the
conventional, diesel-engine-powered tractor models. The total weight of each powertrain
was estimated based on the main component weights, and the results indicated that no
major differences in total weight needed to be considered. Therefore, all the models were
simulated with the same total weights of 5000 kg (medium size) and 10,000 kg (large size).
The size of the battery in the electric tractor model was limited to less than 200 kWh for
the large-sized tractor and 100 kWh for the medium size tractor to not exceed the total
tractor weight. Table 1 presents the general technical specifications of the conventional
tractor models and, thus, the engine and transmission parameters. The general technical
specifications include the front and rear axle gear reductions, tire sizes, and total weights,
which were the same for all the tractor models.
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Table 1. Conventional tractor powertrain and general technical specifications.

Component Medium-Sized Tractor Large-Sized Tractor

Diesel engine maximum power 112 kW, maximum
torque 580 Nm

maximum power 225 kW, maximum
torque 1154 Nm

Transmission eight-speed dual-clutch transmission
(DCT) with three ranges

eight-speed dual-clutch transmission
(DCT) with three ranges

Rear axle 1 bevel set ratio of 2.93:1 and planetary
gear ratio of 6:1

bevel set ratio of 3.28:1 and planetary
gear ratio of 6:1

Front axle 1 bevel set ratio of 2.30:1 and planetary
gear ratio of 6:1

bevel set ratio of 2.48:1 and planetary
gear ratio of 6:1

Tires 1 front: 380/85R28, rear: 460/85R38 front: 540/65R30, rear: 650/65R42

Weight 1 5000 kg 10,000 kg
1 Same parameters for all tractor models.

Tables 2 and 3 show the powertrain specifications for the parallel hybrid, series hybrid,
fuel cell hybrid, and battery electric tractor models. Parallel and series hybrid types have
a downsized diesel engine. The parallel hybrid has a similar dual-clutch transmission to
the conventional tractor but needs only two ranges for the same driving performance. All
the hybrid models have a rather small battery pack because this is mostly used for peak
power shaving and storing regenerated braking energy. Based on the evaluation of the
typical field and road operations, it was determined that a three-speed gearbox is sufficient
to cover the typical agricultural tractor operations and provide high energy efficiency. The
electric driving motor was dimensioned based on the performance requirement set by the
baseline conventional tractor. Depending on the different duty cycles and operations, an
optimization study could be carried out to evaluate the influence of the component sizes
on the operating performance. However, this would be more interesting if the design and
operating costs were included in the analysis.

Table 2. Specifications for the hybrid and electric powertrains of the medium-sized tractor models.

Component Parallel Hybrid Series Hybrid Fuel Cell Hybrid Electric

Diesel engine/Fuel cell
stack

Diesel engine: power
90 kW, torque 466 Nm

Diesel engine: power
92.5 kW, torque 480 Nm

Fuel cell stack: max
power 80 kW ---

Transmission Eight-speed (DCT)
with two ranges Three-speed gearbox Three-speed gearbox Three-speed gearbox

Battery configuration
6 Ah cell, 180 cells in

series in a pack, 648 V,
3.9 kWh

6 Ah cell, 180 cells in
series in a pack, 648 V,

3.9 kWh

6 Ah cell, 180 cells in
series in a pack, 648 V,

3.9 kWh

33 Ah cell, four packs
in parallel, 192 cells in
series in a pack, 720 V,

95 kWh

Electric motor
max power 50 kW, max

torque 201 Nm, max
speed 4400 rpm

max power 112 kW,
max torque 304 Nm,
max speed 8000 rpm

max power 112 kW,
max torque 304 Nm,
max speed 8000 rpm

max power 112 kW,
max torque 304 Nm,
max speed 8000 rpm

Table 3. Specifications of the hybrid and electric powertrains of the large-sized tractor models.

Component Parallel Hybrid Series Hybrid Fuel Cell Hybrid Electric

Diesel engine/Fuel cell
stack

Diesel engine: power
175 kW, torque 898 Nm

Diesel engine: power
185 kW, torque 949 Nm

Fuel cell stack: max
power 160 kW ---

Transmission Eight-speed (DCT)
with two ranges Three-speed gearbox Three-speed gearbox Three-speed gearbox
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Table 3. Cont.

Component Parallel Hybrid Series Hybrid Fuel Cell Hybrid Electric

Battery configuration
6 Ah cell, 180 cells in

series in a pack, 648 V,
3.9 kWh

6 Ah cell, 180 cells in
series in a pack, 648 V,

3.9 kWh

6 Ah cell, 180 cells in
series in a pack, 648 V,

3.9 kWh

33 Ah cell, eight packs
in parallel, 192 cells in
series in a pack, 720 V,

190 kWh

Electric motor
max power 100 kW,
max torque 542 Nm,
max speed 4400 rpm

max power 225 kW,
max torque 611 Nm,
max speed 8000 rpm

max power 225 kW,
max torque 611 Nm,
max speed 8000 rpm

max power 225 kW,
max torque 611 Nm,
max speed 8000 rpm

2.3. Operating Cycles

Experimental measurements were carried out in the Viikki Research Farm at the
University of Helsinki using a typical agricultural tractor (Valtra N141) and a chisel plow
to acquire data to evaluate different levels of load resistances for the operating cycles. The
measurements were made in October 2022 in a stubbled field, as presented in Figure 3. The
tractor data were measured from the CAN bus by a developed data logger consisting of a
mini-computer, CAN shield logger, and a GPS module. Location data were logged using a
u-blox ZED-F9P GPS module, which was connected to a u-blox ANN-MB-00 GPS antenna.
The operational data that were recorded from the CAN bus included, among other things,
engine data, vehicle speed, and the linkage draft force.
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Figure 3. Field measurements with a tractor and chisel plow.

Two tillage cycles were generated with target speeds of 8 and 12 km/h. For both cycles,
three levels of load resistance were defined—light, medium, and high. The resistance load
was applied only when the implement was in use during operation. The tillage cycles
are illustrated in Figure 4 with the target speed and the different levels of force as load
resistances for the large-sized tractor. For the medium-sized tractor, the target speed and
the lowest load resistance were the same as for the large-sized tractor. The higher loads
were gradually lowered, being approximately 50% of the load resistance in comparison to
the large-sized tractor cycles.

Figure 5 shows the 27 km long measured road cycle with the elevation profile and the
20 km long generated road cycle. The measured road cycle corresponds to a typical road
transport operation performed with agricultural tractors with a trailer between fields and a
farm. The 27 km roundtrip cycle was measured from the route that has been used for tractor
comparison tests by a Finnish magazine. The road cycle data included multiple tractor test
recordings containing tractor operational data. The large-sized tractor was simulated in the
measured cycle and the medium-sized tractor in the generated cycle, which has a lower
top speed and elevation. Simulations were carried out with a trailer, having total weights
of 10,000 kg and 15,500 kg for the large-sized tractor, and 6400 kg and 10,000 kg for the
medium-sized tractor. These loads correspond to payloads of 30% and 60% for 18 t (large
tractor) and 12 t (medium tractor) trailers.
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3. Results
3.1. Driving Performance

MATLAB software (version 2021b) was used for analyzing the simulation results.
Overall, all the simulations were successfully carried out and it was concluded that all the
models were operating correctly. It was observed that the target speed was followed quite
well, without any major deviations in all cycles, although the electrified powertrains did
have more precise control for following the target speed, especially during slow-speed
driving that did not need gear changes. The speed traces in the Tillage A cycle for all the
large tractor models are illustrated in Figure 6. The conventional tractor did not follow the
lower target speed very closely, but at higher speeds, the speed control worked fine. Also,
the load resistance in the tillage cycles had some influence on the driving dynamics, and
this will be a focus point in future research when developing more advanced driver models
for agricultural tractors. In the road cycles, there was very little difference in the driving
speeds between the tractor models due to the more dynamic nature of the cycle. Only the
hard acceleration phases generated some lagging for the conventional and parallel hybrid
tractor models, because of the consecutive gear shifting.

189



World Electr. Veh. J. 2024, 15, 86

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 9 of 18 
 

have more precise control for following the target speed, especially during slow-speed 

driving that did not need gear changes. The speed traces in the Tillage A cycle for all the 

large tractor models are illustrated in Figure 6. The conventional tractor did not follow the 

lower target speed very closely, but at higher speeds, the speed control worked fine. Also, 

the load resistance in the tillage cycles had some influence on the driving dynamics, and 

this will be a focus point in future research when developing more advanced driver mod-

els for agricultural tractors. In the road cycles, there was very little difference in the driving 

speeds between the tractor models due to the more dynamic nature of the cycle. Only the 

hard acceleration phases generated some lagging for the conventional and parallel hybrid 

tractor models, because of the consecutive gear shifting. 

 

Figure 6. Speed traces of large tractor models in Tillage A cycle. 

3.2. Energy Consumption 

Energy consumption was calculated as on-board energy use and, therefore, no charg-

ing losses were considered. Figures 7 and 8 present the cumulative energy consumption 

for the simulated tractor models in the Tillage A and road cycles. The results correspond 

to the medium workload for the Tillage A cycle and the higher payload for the road cycle. 

The cumulative energy consumption illustrates that there was a gradual energy-saving 

potential along the tillage cycle due to the higher powertrain efficiency. Only the series 

hybrid powertrain was less efficient than the conventional powertrain under the higher 

load situations. In the road cycle, the advantage of regenerating braking energy increased 

energy savings, especially for tractor models that had the fully electric powertrain. The 

alternative powertrains showed better performance (in terms of energy consumption) for 

the medium-sized tractor compared to the large-sized tractor. 

 

Figure 7. Cumulative energy consumption in the Tillage A and Road cycles for the large-sized trac-

tor models. 

Figure 6. Speed traces of large tractor models in Tillage A cycle.

3.2. Energy Consumption

Energy consumption was calculated as on-board energy use and, therefore, no charg-
ing losses were considered. Figures 7 and 8 present the cumulative energy consumption
for the simulated tractor models in the Tillage A and road cycles. The results correspond
to the medium workload for the Tillage A cycle and the higher payload for the road cycle.
The cumulative energy consumption illustrates that there was a gradual energy-saving
potential along the tillage cycle due to the higher powertrain efficiency. Only the series
hybrid powertrain was less efficient than the conventional powertrain under the higher
load situations. In the road cycle, the advantage of regenerating braking energy increased
energy savings, especially for tractor models that had the fully electric powertrain. The
alternative powertrains showed better performance (in terms of energy consumption) for
the medium-sized tractor compared to the large-sized tractor.
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tractor models.

A comparison of the energy consumption between the different cycles was made using
the units of kWh/km. These units are not necessarily useful in terms of agricultural work
but allow a comparison of the results obtained from different simulations. Figures 9 and 10
show the calculated energy consumption results for all the simulated cycles. The highest
consumption was obtained in the Tillage A cycle with the high workload. The consumption
increased quite rapidly in the function of the workload in both tillage cycles. Only for the
electric tractor model was the increase less strong. Distance-based energy consumption
was much lower in the Road cycle, which is due to the much higher driving speed. The
payload increase had less influence on the energy consumption in the road cycle than the
increase in the workload in the tillage cycles.
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Depending on the workload, the fuel consumption of the large conventional tractor
model was 12.7–23.0 L per hour (L/h) in the Tillage A cycle, 14.9–27.1 L/h in the Tillage
B cycle, and 18.2–20.9 L/h in the Road cycle. For the medium-sized tractor, the fuel con-
sumption values were 8.6–13.8 L/h (Tillage A), 11.6–15.7 L/h (Tillage B), and 9.5–10.5 L/h
(Road cycle). These values correspond to typical the fuel consumption of diesel-powered
tractors in tillage operations. The hydrogen consumption of the large fuel cell hybrid tractor
model was 2.4–5.4 kg per hour (kg/h) in the Tillage A cycle, 3.0–7.3 kg/h in the Tillage B
cycle, and 3.7–4.5 kg/h in the Road cycle. For the medium-sized fuel cell hybrid tractor,
the hydrogen consumption was 1.5–2. 7 kg/h (Tillage A), 1.9–3.7 kg/h (Tillage B), and
1.5–1.8 kg/h (Road cycle).
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The reduction potential in the energy consumption of the alternative powertrains
is shown in Figures 11 and 12. These results clearly show that there is a significant
potential for reducing energy consumption with the battery electric powertrain. The
average reduction potential was 60–70% in the tillage and road cycle. The potential to
reduce energy consumption with the fuel cell hybrid varied from 20% to 30% for the large
tractor and from 35% to 45% for the medium-sized tractor. The parallel hybrid had on
average 10–15% higher energy efficiency than the conventional tractor, but the gain was
reduced with higher load resistance so that the variation in the potential was due to the
operating conditions; thus, less reduction can be achieved with higher workload cycles
with the hybrid powertrains. The series hybrid powertrain has a much higher potential
to reduce energy consumption with the medium-sized tractor than with the large-sized
tractor; however, not all the electrification benefits can be demonstrated with the passive
duty cycle and, therefore, the powertrain benefits should also be evaluated in different
types of operating cycles. There were no major differences in simulation results between
the two tillage cycles, with the Tillage B cycle being slightly more demanding due to the
50% higher target speed.
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3.3. Distribution of Losses

From the simulation results, the breakdown of powertrain losses was calculated for
all simulations in order to evaluate the energy losses between the different powertrains.
Figures 13 and 14 present the distribution of the powertrain losses of the large-sized tractor
models in the Tillage A and Road cycles. The presented bar diagrams illustrate the total
energy consumption in units of kWh. For the conventional, parallel hybrid, and series
hybrid tractors, the major energy losses were generated by the heat losses of the power
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source (PS), i.e., the diesel engine. Depending on the cycle and workload, the energy
loss portion of the power source was 65–70% for the conventional, parallel hybrid, and
series hybrid tractor, 44–48% for the fuel cell hybrid, and 7–10% for the electric tractor. It
is important to notice that the portions of the auxiliary loads in the energy losses were
significant, especially when compared to the transmission losses. The increase in workload
in the tillage cycles significantly increased the overall energy consumption. The highest
increase occurred in the work and power source losses, especially for the conventional,
parallel hybrid, and series hybrid tractor models. The increase in the payload in the Road
cycle had much less of an influence on the overall energy consumption than the increase in
the workload in the tillage cycles.
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3.4. Operating Time

The operating performance was evaluated based on the calculated operating times in
the simulated cycles. The fuel tank size for the conventional large-sized tractor was 500 L
and 350 L for the parallel and series hybrid. The hydrogen storage was assumed to be 36 kg
of compressed hydrogen at 700 bars. This is comparable to the amount of hydrogen storage
capacity in the fuel cells of hybrid city buses. The on-board energy capacities were 50%
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less for the medium-sized tractor model. The operating time variations in the simulated
cycles are presented in Figures 15 and 16. It can be observed that there were no major
differences between the cycles but very significant differences between the tractor models.
The conventional, parallel, and series hybrid tractors had very long operation times without
refueling, which is typical nowadays for agricultural tractors. The fuel cell hybrid already
offers quite a reasonable operating time without refueling, from 5 h up to 15 h. The major
challenge for battery electric tractors is the low energy density of the energy storage and,
therefore, the operating time remained very low in comparison to the other tractor models.
The operating time could be increased by adding battery capacity, but this is challenging in
terms of weight and available volume. Another solution could be fast charging, but access
to high-power charging in the farming context could prove difficult.
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4. Discussion

The research results clearly indicate the significant potential to reduce the energy
consumption of agricultural tractors by powertrain electrification. Over the years, different
electrified powertrain topologies have been proposed for vehicles, and as with other types of
vehicles, such as city buses [14], the benefit of electrified powertrains for agricultural tractors
is typically dependent on the duty cycle or work task carried out with the vehicle. In many
scientific and practical research studies [17–19,33,34], parallel hybrid electric powertrain
topology has been recognized as being suitable for agricultural tractors. One of the main
reasons for this could be that it would not need any major modifications to conventional
tractor designs but, instead, could be implemented by adding a motor/generator in the
place of the flywheel along with a small battery pack or even supercapacitors [20]. The
results indicate that the parallel hybrid electric powertrain would provide meaningful
energy savings for medium-sized tractors and, when operating with lighter loads, large-
sized tractors. Similar conclusions were drawn in recent research by Beligoj et al. (2022),

194



World Electr. Veh. J. 2024, 15, 86

who evaluated the feasibility and life-cycle cost of a parallel hybrid powertrain for different
sizes of agricultural tractors [35]. They concluded that very little energy consumption
reduction or cost saving would be attained with large-sized tractor (engine power of
210 kW) hybridization, but small-sized orchard tractors and medium–large-sized tractors
with medium workloads would provide considerable savings in life-cycle costs. The lower
fuel consumption would offer reductions in operational costs and decrease the carbon
footprint of these tractors.

The series hybrid electric powertrain has shown to be less interesting for vehicle
applications that do not have very repeatable duty cycles or for which there are several use
cases. This is the case for passenger vehicles and for agricultural tractors because these
are used for a wide variety of purposes by different types of professional and individual
users. The simulation results showed the variable potential of a series hybrid electric
powertrain, including notable benefits for the medium-sized tractor but less encouraging
results in the case of the large-sized tractor. Nevertheless, more detailed simulations should
be performed to evaluate the potential of the series hybrid powertrain for different types
of agricultural tasks. In comparison to parallel hybrid powertrains, the series hybrid
powertrain could provide the possibility of using the electric power take-off (ePTO) and
electrified implements, which would be much harder to accomplish with the parallel hybrid
due to the limited amount of on-board electric power [35].

Hydrogen as a vehicle fuel is gaining more and more interest as a method for reducing
the use of fossil fuels and harmful emissions. Fuel cell systems have been used as the
main power sources in vehicles for a long time, but the technological cost and lack of
fueling infrastructure are still barriers that have not been fully resolved. Even though fuel
cells can be considered as a mature technology, it is not technologically easy to design
an agricultural tractor with a fuel cell system because of the spatial requirements for the
stack, hydrogen storage, and auxiliary systems. Recent research by Ahluwalia et al. (2022)
concluded that the fuel cell system could be cost competitive for agricultural tractors if the
targeted improvements to the cost, performance, and durability of the technology could
be achieved [36]. Much more research is needed to find the best solutions for alternative
fuels for use in agricultural vehicles. For example, methane or methanol might be preferred
over hydrogen because of its low volumetric energy density and adapted infrastructure
requirements [37]. As a potential fuel for internal combustion engines, burning hydrogen
in an engine also has some challenges in terms of NOx emissions and engine knocking [38],
and the storage challenge would remain the same as for the fuel cell systems.

Adopting alternative fuels allows for a diversification of energy sources in agriculture.
This reduces dependency on a single energy resource by enhancing energy security and
resilience in the face of changing market conditions. Using alternative fuels may reduce
reliance on imported fossil fuels, providing a pathway towards greater energy indepen-
dence for agricultural operations. However, implementing alternative fuel technologies in
agricultural tractors may require substantial upfront investments. Farmers may be hesitant
to adopt these technologies due to concerns about costs and the need for specialized equip-
ment. The compatibility of alternative fuels with existing tractor engines and performance
characteristics is a critical consideration. Adapting engines to run efficiently on alternative
fuels without compromising power output and durability is still a technical challenge.

The batteries in electric vehicles have seen tremendous technological development
and market success, essentially in all on-road vehicle categories; even for 40 ton heavy-
duty trucks and battery-powered tractors have been designed and manufactured. Hence,
battery and power electronics technology is certainly mature enough even for heavy-duty
machinery. The simulation results show that energy consumption could be reduced by
up to 70%, which comes from a much higher powertrain efficiency. However, this higher
powertrain efficiency does not mitigate the fact that many agricultural field operations
require high power or high workload operation. This ultimately leads to high energy
requirements and, therefore, the focus must be on the total amount of required on-board
energy. The simulations in this research were performed with the consideration that all
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the tractor models have the same performance and, therefore, the total weight was limited.
It could be said that a higher battery capacity than was used in this research could be
installed into battery-powered electric tractors [39]. In this case, the tractor weight would
increase, which would have some influence on performance and energy consumption,
but this influence would need to be evaluated with more detailed simulations. Another
challenge that remains to be resolved is battery charging; it is not clear whether every
farm could have access to high-power fast charging. Thus, preliminary studies on the fully
electrification of agricultural tractors have concluded that it would be more profitable to
have a battery exchange system rather than high-power charging systems [40].

Overall, electrification is being applied to agricultural tractors and there are more
possibilities than challenges. More research is needed to evaluate the different use cases,
namely duty cycle operations, and, especially, life-cycle energy consumption, emissions,
and cost [41]. Available electric power would allow the electrification of many auxiliary
devices that could lead to additional savings by reducing the idling losses that are quite
important for agricultural tractors [42]; Molari et al. (2019) stated that agricultural tractors
may remain idle from 10% to 43% of their entire operating time [43]. This would provide
additional savings with electrification because unnecessary idling could be easily avoided
by shutting down the engine.

5. Conclusions

Simulation models for conventional, parallel hybrid electric, series hybrid electric, fuel
cell electric, and battery electric agricultural tractors were developed using Autonomie
software. Simulations of three different work cycles were carried out with different work-
loads to evaluate energy consumption and operating performance. The results show that
the battery electric powertrain provided the most energy-efficient powertrain option for
agricultural tractors. However, the operating performance was relatively poor because
the energy density of lithium-ion batteries does not provide a long enough operating time
without fast charging. Furthermore, providing fast charging in agricultural contexts could
prove challenging. The simulation results indicate that fuel cell hybrid tractors could
provide substantial energy savings in comparison to the diesel-powered, conventional
powertrain. The major advantage is the much higher efficiency of the fuel cell system
compared to diesel engines. A reasonable amount of hydrogen storage would provide
an adequate operating performance of more than 10 h of operation without refueling.
It remains to be validated whether the fuel cell system with storage tanks would be a
feasible solution, especially for larger-sized tractors. The parallel hybrid powertrain does
not provide significant energy savings with high workloads, but medium-sized parallel
hybrid tractor models show relatively good performance in terms of energy consumption
and operating time.
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Abstract: Battery-electric trucks offer a high battery capacity and good predictability, making them
attractive for the implementation of bidirectional charging strategies. Nevertheless, most of the
previous charging strategy studies focus on electric passenger cars. These charging strategies are
usually formulated as separate use cases like tariff-optimized charging, arbitrage trading, peak
shaving, and self-consumption optimization. By combining different use cases, their economic
potential can be increased. In this paper, we introduce a model to optimize charging processes in
depots for electric vehicles considering the combination of different use cases. This model is applied
to a depot for battery-electric trucks. The savings obtained through optimized bidirectional charging
highlight the enormous potential of this technology for the future, especially in the heavy-duty sector.

Keywords: bidirectional charging; smart charging; vehicle to grid; modeling; optimization; electric
vehicles; battery electric trucks

1. Introduction

Controlled and bidirectional charging has recently become an extensively discussed
topic. A variety of publications that deal with this technology predict its high relevance in
the near future [1,2]. The Original Equipment Manufacturers (OEMs) have discovered its
importance as well, and the first bidirectional vehicles are on the market [3]. Nevertheless,
past considerations have mostly revolved around battery-electric vehicle (EV) passenger
cars and not focused on battery-electric heavy-duty trucks (BETs). However, taking into
account that heavy-duty and bus traffic is responsible for 6% of all European greenhouse
gas emissions, a major wave of electrification in this area is necessary [4]. Registration
statistics show that this area is still dominated by diesel vehicles, while BETs represent
only 1.5% of the current truck market [5]. Various challenges impede the market roll-out of
BETs. These challenges include the high acquisition costs and the limited availability of
grid connection capacity in depots [6]. The use of controlled and bidirectional charging
can address these challenges by reducing operating costs and the required grid connection
capacity [7]. When evaluating the requirements for controlled and bidirectional charging,
BETs offer several advantages over passenger cars. Due to the higher charging power
and the bundling of many vehicles in one depot, a high marketable capacity can quickly
be achieved at one location. The use of bidirectional charging in BET depots can exploit
these advantages and support the roll-out of BETs, making the research topic of this paper
highly relevant.

Previous work on BETs typically covered a comparison of the technology with diesel
or hydrogen-based power trains in terms of CO2 emissions, cost, and technical feasibil-
ity [8–10]. Those studies usually acknowledge the advantages of BETs in tons of emission
reductions and cost, but the availability of BETs with sufficient battery capacity for long-haul
transport is noted as an issue [9,11]. Apart from limited real-world observations [10], most
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of those studies are assumption-based and use synthetic driving profiles. When it comes to
the optimization of charging processes for BETs, there is a lack of existing knowledge.

A study that already examines the optimization of charging processes for BETs is [12].
While the routes of the BETs are optimized, variable prices are not considered. In [13],
the charging processes for trucks in a depot are optimized based on charging costs, and
bidirectional charging is included. However, the authors used assumed driving profiles
and price time series. Furthermore, the considered optimization period is only two days.
These simplifications eliminate high price fluctuations, which are particularly important to
determine the revenue of arbitrage trading [14].

Even though most of the prior work on the topic of charging management and op-
timization of charging strategies excludes BETs, there is a large amount of literature fo-
cusing on passenger cars. Related prior work distinguished between different use cases
of controlled and bidirectional charging. These use cases have mostly been considered
separately in previous studies [15]. For the use case self-consumption optimization, the
self-consumption rate is maximized by shifting charging processes to times of PV genera-
tion [2,16]. Minimizing the peak load at a grid connection point is the objective of the use
case peak shaving [7]. The optimization of charging with a variable electricity tariff, where
charging processes are shifted to times of low prices, can be referred to as tariff-optimized
charging [17]. The batteries are charged at times when electricity prices are low, and they
feed the electric energy back into the grid at times when electricity prices are high, such
as in the use case arbitrage trading [14]. To increase the economic efficiency, use cases can
also be combined as a so-called multi-use objective, which has already been investigated
for stationary storage facilities [18,19]. Apart from [15], this methodology has not yet been
applied to EVs.

There already exist various publications on the optimization of charging processes
in bus depots. The use cases defined above can also be found in these publications.
The authors of [20,21] include the peak-shaving use case in their optimization. Tariff-
optimized charging is examined in [21–23]. A few publications have already addressed the
combination of different use cases for charging optimization in bus depots. The authors
of [21] combine peak shaving with tariff-optimized charging and additionally include
timetable shifting in the optimization problem. In [24], a depot is integrated into a virtual
power plant, and arbitrage trading is combined with the provision of power system services.
However, even for bus depots, the combination of all four use cases introduced above has
not yet been examined.

While the optimization strategies developed for passenger cars or buses can be adapted
for BETs, the results are expected to differ due to changes in battery capacities, charging
power, and parking duration. Therefore, we see a need for further research in optimizing
charging processes for BETs, especially with regard to multi-use optimization. In this paper,
we tackle this gap by developing a model that supports the combination of the use cases
self-consumption optimization, peak shaving, tariff-optimized charging, and arbitrage
trading within a multi-use optimization. This model is then applied to a real depot for
BETs. The combination of different use cases and their application to BETs is the novelty
value of this work. The developed model and input data are described in Section 2. By
using the model, possible savings from bidirectional charging of the BETs are determined
and presented and discussed in Section 3. The final conclusion and an outlook are given
in Section 4. The results of this study can be used by freight forwarders and OEMs as
an orientation for expectable savings and for the prioritization of charging strategies. A
preliminary version of this study has already been presented in [25].

2. Materials and Methods
2.1. Optimization Model

The optimization model eFlame was primarily developed to optimize several use
cases for bidirectional charging separately. In [14,26], the use cases arbitrage trading and
self-consumption optimization are elaborated upon. The use case peak shaving is dealt with
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in [7]. The novelty of the present paper is the combination of the use cases in the context
of a multi-use optimization that was not implemented before. Figure 1 shows all power
flows relevant to the optimization. At this point, we describe the optimization problem
covering decision variables, objective function, and constraints. Linear optimization is a
method that can be used to solve problems where the objective function and constraints are
linear functions of the decision variables. The constraints can be formulated as equalities or
inequalities. A mixed-integer linear program (MILP) problem includes integer decision
variables. A comprehensive introduction to linear optimization is given in [27]. Since
the model was primarily developed for optimizing battery-electric cars, the vehicles are
generally referred to as EVs in the following model description.

2

GridTrucks

Journey Consumption

Grid Connection 

Point (GCP)
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Figure 1. Schematic representation of interrelations in the optimization model.

For all decision variables, the non-negativity constraint applies. The constraint is
exemplarily defined in Equation (1) for the received power PGCP,in

t , and the feed-in power
PGCP,out

t at the Grid Connection Point (GCP), but it can be applied to the remaining decision
variables. The total number of time steps t in the observation horizon is represented by n.

PGCP,in
t ⩾ 0, PGCP,out

t ⩾ 0 ∀ t ∈ T = {1, ..., n} (1)

The photovoltaic (PV) generation is not a decision variable, but it may be influenced
during the optimization via the curtailment Pcurt

t . With this optimization variable, the
generation of the PV system can be reduced, e.g., to prevent feed-in at negative prices.
Using the decision variable PGCP,peak

t , the maximum power at the grid connection point is
determined. The charging power Pcharge

t and discharging power Pdischarge
t and the energy

capacity of the battery EEV
t are further decision variables that are related to the EVs.

Furthermore, there is the decision variable Pv2g
t , which is used to observe how much energy

from the vehicles is fed back into the grid. The remaining decision variables bcharge
t , bdischarge

t ,
bout

t , and bin
t are boolean variables, which are used to ensure that the power flow exchanges

with the vehicles and the grid connection point are only in one direction at any time instant.
The objective of the optimization model is to maximize the revenue. The established

objective function shown in Equation (2) consists of four terms: the cashflow from arbitrage
trading at the spotmarket CFspot, costs through levies Clevies, costs through grid fees Cgrid f ee,
and a term that evaluates the opportunity costs due to battery degradation Cbat,deg. The
different terms are defined in the following.

max
(

CFspot − Clevies − Cgrid f ee − Cbat,deg
)

(2)
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The cash flow, the difference between cash in- and outflows, from arbitrage trading at
the spot market CFspot is calculated in Equation (3). Different market data can be selected
for the price time series pin

t and pout
t , but constant values may also be used.

CFspot =
n

∑
t=1

(
Pt

GCP,in · pin
t · ∆t− Pt

GCP,out · pout
t · ∆t

)
∀ t ∈ T (3)

Consumers have to pay a gridfee Cgrid f ee to the Distibution System Operator (DSO)
for the use of the grid infrastructure. In Germany, the grid fee for commercial customers is
divided into a usage price pusage and a capacity price pcap. The usage price depends on the
energy consumed, whereas the capacity price depends on the annual peak power. The grid
fee is included in the objective function of Equation (4).

Cgrid f ee =
n

∑
t=1

Pt
GCP,in · pusage · ∆t + PGCP,peak

t=n · pcap ∀ t ∈ T (4)

Additionally, various taxes and levies are charged on electricity, and those are summa-
rized through Clevies and shown in Equation (5). Stationary battery storage may be partially
exempt from levies, and such an exemption is also being discussed for bidirectional vehicles.
The problem is to determine how much energy is actually fed back into the grid. This is
especially problematic in combination with PV systems. Via the subtrahend of Equation (5),
a partial exemption from the levies on energy fed back into the grid is implemented. The
decision variable Pv2g

t represents the power the vehicles feed into the grid and is introduced
later in (17) and (18). It is an auxiliary variable calculated from the other power variables
and is therefore not directly included in the power balance following in Equation (7). A
partial exemption may be dynamically parameterized via the levies on V2G plevies,v2g that
are still charged even if the energy is fed back into the grid. If plevies,v2g is set equal to plevies,
no exemption occurs. A full exemption can be achieved by setting plevies,v2g equal to zero.

Clevies =
n

∑
t=1

Pt
GCP,in · plevies · ∆t−

n

∑
t=1

Pt
v2g ·

(
plevies − plevies,v2g

)
· ∆t ∀ t ∈ T (5)

The opportunity costs from battery degradation Cbat,deg are included in the optimiza-
tion problem by using Equation (6) based on [28]. The calculation of the degradation costs
Cbat,deg is based on the use of the battery and determined by the decrease of the available
capacity Closs from a cycling aging model. The costs result primarily from the total charge
quantity throughput, which is defined by the charging and discharging power. The price of
the battery is represented by cbat,buy, and EEV,max is the capacity of the battery. The used
model assumes the end of life of the battery at a loss of 20% of the initial capacity.

Cbat,deg =
cbat,buy · EEV,max

20%
Closs(PEV,charge

t , PEV,discharge
t ) ∀ t ∈ T (6)

The optimization model is restricted by several constraints concerning the GCP and
the EVs. We start by introducing the boundary conditions of the GCP. According to the
law of conservation of energy, the incoming power flows at the GCP must be equal to the
outgoing power flows. This is ensured by Equation (7). The load profile of the building
Pbuild

t is integrated into the optimization as a static time series.

PGCP,in
t +

nEV

∑
i=1

PEV,discharge
t + PPV

t =

PGCP,out
t +

nEV

∑
i=1

PEV,charge
t + Pcurt

t + Pbuild
t ∀ t ∈ T

(7)
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For the determination of the grid fee Cgrid f ee in Equation (4), the annual peak power at
the GCP PGCP,peak

t is required. Using Equation (8), the power peak is updated continuously
during the optimization. Thus, the last time step n contains the annual power peak.

PGCP,peak
t ⩾ PGCP,in

t , PGCP,peak
t ⩾ PGCP,peak

t−1 ∀ t ∈ T (8)

Equations (9) and (10) are introduced to prevent energy from being purchased and fed
in simultaneously at the GCP. In consequence, the boolean decision variables bin

t and bout
t

are used. PGCP,max describes the maximum grid connection capacity, which results from
the transformer and structural conditions at the grid connection point. The combination of
Equations (8) and (9) ensures the grid connection capacity PGCP,max is always greater than
or equal to the annual power peak PGCP,peak

t .

PGCP,max · bin
t ⩾ PGCP,in

t , PGCP,max · bout
t ⩾ PGCP,out

t ∀ t ∈ T (9)

bout
t + bin

t ⩽ 1 ∀t ∈ T (10)

The following constraints are related to the EVs and apply separately for each EV.
The energy balance of the vehicle battery must be maintained to preserve the physical
consistency of the EVs. The energy stored in the EV battery in the first time step is defined
by the constraint Equation (11). For the first time step, this equation defines the stored
energy as equal to the initial stored energy plus the charged energy at the GCP minus the
discharged energy and the energy consumed during trips EEV,trip

t plus the energy charged
at public stations EEV,public

t=1 . Constant efficiencies for charging ηEV,charge and discharging
ηEV,discharge are considered.

EEV
t=1 = SOCEV

t=1 · EEV,max + PEV,charge
t=1 · ηEV,charge · ∆t

−PEV,discharge
t=1 · ηEV,discharge · ∆t− EEV,trip

t=1 + EEV,public
t=1

(11)

For the remaining time steps, Equation (12) applies, where the initially stored energy
is replaced by the stored energy of the previous time step.

EEV
t = EEV

t−1 + PEV,charge
t · ηEV,charge · ∆t

−PEV,discharge
t · ηEV,discharge · ∆t− EEV,trip

t + EEV,public
t ∀ t ∈ {2, ..., n}

(12)

Equation (13) ensures that the vehicles are always charged with a minimum State of
Charge SOCEV,dep,min at departure. The condition is only valid for the time steps in which
a vehicle departs, as indicated by the boolean variable bEV,dep

t . This variable is determined
before the optimization based on the driving profiles and is only equal to one if the vehicle
departs. To ensure that the condition can also be met if the vehicle is only plugged in for
a short time and thus the minimum SOC cannot be reached, a buffer Ebu f f er

t is integrated
into the condition. This buffer is also determined before the optimization.

EEV
t + Ebu f f er

t = SOCEV,dep,min · EEV,max · bEV,dep
t ∀ t ∈ T (13)

Apart from public charging, each EV can only be charged or discharged if it is con-
nected to a charging point at the GCP, and this is ensured by Equations (14) and (15). The
boolean variable bEV

t is determined before the optimization based on the driving profiles. If
the vehicle is plugged in, the variable is one, and otherwise it is zero. We assume that each
vehicle has its own charging point. To prevent the EVs from charging and discharging at the
same time, the decision variables bcharge

t and bdischarge
t are added to Equations (14) and (15).

Equation (16) prevents both variables from being equal to one simultaneously. If only uni-
directional charging is considered, the Equations (15) and (16) are omitted, and PEV,discharge

t
is set to zero via a further boundary condition.
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bEV
t · bcharge

t · PEV,charge,max ⩾ PEV,charge
t ∀ t ∈ T (14)

bEV
t · bdischarge

t · PEV,discharge,max ⩾ PEV,discharge
t ∀ t ∈ T (15)

bcharge
t + bdischarge

t ⩽ 1 ∀ t ∈ T (16)

Finally, boundary conditions are required to determine the power fed back from the
EVs into the grid Pv2g

t . This variable is necessary to calculate the exemption from levies
in Equation (5). Therefore, we choose a power balance based approach and rearrange
Equation (7) according to the discharged energy. Since power can only be fed into the grid
if no energy is purchased, PGCP,in

t is set to zero. The discharged power is replaced by the
introduced decision variable Pv2g

t , resulting in Equation (17). The boundary condition in
Equation (18) ensures that Pv2g

t cannot become greater than the feed-in power.

Pv2g
t ⩽ PGCP,out

t − PPV
t + Pcurt

t + Pbuild
t +

nEV

∑
i=1

PEV,charge
t ∀ t ∈ T (17)

Pv2g
t ⩽ PGCP,out

t ∀ t ∈ T (18)

Since the model is intended to examine entire years and since the use of boolean
variables makes it a mixed-integer optimization problem, the computational effort required
to solve the problem is rather high. In order to be able to solve it with a reasonable
computational effort, the model is computed as a rolling optimization. The determination
of the annual power peak is a special aspect of the rolling optimization, which will be
explained in the following using the schematic diagram in Figure 2. For rolling optimization,
the whole optimization period is divided into m smaller optimization time periods of
uniform size. In individual optimization steps, each of the smaller optimization periods is
optimized one after the other. The results of an optimization step are passed as start values
to the next step. By using an overlapping period, we increase the prediction horizon for the
optimization. After the m-th step, the first run of the optimization is finished. According
to Equation (8), the power peak is continuously updated as shown in Figure 2 below. As
can be seen in the figure, the first optimization steps are limited by a lower power peak
compared to the later steps. Therefore, in a second optimization run, the affected steps
before the occurrence of the annual power peak are optimized again with the updated
power peak.
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Figure 2. Schematic diagram explaining the used rolling optimization process.
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The sequence of the used optimization model eFlame is illustrated schematically in
Figure 3. After importing the input parameters and input data described below, the opti-
mization problem is set up. The optimization problem is solved sequentially considering
the charging strategies: uncontrolled charging (ref), unidirectional charging (uni), and
bidirectional charging (bidi). The results are examined separately for each charging strategy.

8

Definition of scenarios

Optimization problem

Optimization

Solve the optimization problem

Analysis

Charging profiles Charging costs Power peak

Charging strategies

Reference: uncontrolled charging (Ref) Unidirectional charging (Uni) Bidirectional charging (Bidi)

General

Input parameters

GCPBET PV-System

Input data

Driving profiles Load profiles Price time series

max 𝐶𝐹𝑠𝑝𝑜𝑡 − 𝐶𝑙𝑒𝑣𝑖𝑒𝑠 − 𝐶𝑔𝑟𝑖𝑑𝑓𝑒𝑒 − 𝐶𝑏𝑎𝑡,𝑑𝑒𝑔

Figure 3. Schematic diagram explaining the used methodology.

2.2. Input Data

As mentioned in Section 1, prior research on the topic of BETs has relied on assump-
tions regarding driving profiles. In this paper, we had the opportunity to use real-life
data from a depot of a freight forwarding company in Germany. The company primarily
operates in the short-haul segment. The data were provided within the framework of the
project NEFTON in which partners from industry and science jointly develop a Megawatt
Charging System (MCS) for BETs. Mobility data of the company’s trucks, historical load
profiles of its buildings, and information about the PV system are included in the data. The
selected depot can serve as a real-life example.

In the project NEFTON, driving data from several fleets of German fleet operators
were recorded using high-resolution GPS data loggers. The recorded dataset includes
1.26 million km of driving data and is openly available in anonymized form in [29]. Only
the driving data of the depot under consideration were extracted from this dataset. Since the
data were recorded for trucks using diesel fuel, our investigation builds on the observation
that the company desires to keep its services in the same way with electric trucks. The data
are available for different lengths of time and were extended to uniform periods using a
Markov process. To avoid oversizing the vehicle batteries, the missions in the dataset are
divided into two clusters depending on the distance traveled. Missions with a distance
of more than 200 km are grouped into the cluster regional transport and those with less
than 200 km into the cluster local transport, which is similar to the classification of [30].
The annual driving profiles are taken as given and are presented in the following. Figure 4
shows the average percentage of vehicles in different locations for the two clusters. It can
be seen that especially the mobility profiles from the Local Transport cluster have very
high idle times at the depot and that at least 50% of the BETs are always present at the
depot. On weekends and at night, most of the vehicles are located at the depot. The driving
profiles of the cluster Regional Transport show significantly lower idle times at the depot.
During daytime on weekdays, 80% of the vehicles are absent. On weekends, almost 40%
are not at the depot. In addition, the driving profiles of the Regional Transport cluster show
high parking durations in industrial areas and other locations. The difference between the
two clusters is also evident from the characteristic values included in Table 1. The annual
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kilometrage of the Local Transport cluster is about 14,000 km. This is significantly lower
than the kilometrage of the Regional Transport cluster of about 66,000 km. The electrical
energy consumption for the driving profiles is determined using the model from [31]. The
average annual consumption determined in this way is also included in Table 1. The
variables bEV,dep

t , Ebu f f er
t , bEV

t , EEV,trip
t and EEV,public

t are determined based on the driving
profiles and serve as inputs for the optimization model.

(a) (b)

Figure 4. Layered percentage of BETs at different locations over the week. (a) Local Transport cluster,
(b) Regional Transport cluster.

Table 1. Characteristics of the used driving profiles.

Characteristics Local Transport Regional Transport

Daily kilometrage
(Weekdays/Weekends) 53.8 km/0.75 km 250 km/4.2 km

Percentage at depot
(Weekdays/Weekends) 78.20%/95.19% 37.80%/63.40%

Annual kilometrage 14.382 km 65.750 km
Average consumption per km 1.1 kWh/km 1.26 kWh/km
Annual energy consumption 14.9 MWh 83.4 MWh

In addition to the driving profiles, the load profile of the building of the depot Pbuild
t is

another important input for the optimization. The used load profile shown in Figure 5b for
an average week relies on real data of the depot. From the annual time series, the average
was determined for each quarter-hour of the week as well as the ranges in which 80% and
100% of the values lie. The plot shows that there are significant load peaks in the evening
hours on weekdays, indicating suitability for peak shaving. The load is significantly lower
at weekends and at night than it is during the day on weekdays.

We assume that the depot pays variable electricity prices based on the prices of the
electricity exchange. Therefore, we used the intraday auction prices as electricity prices pin

t
and pout

t for the optimization. In Europe, there are various short-term markets on the power
exchange. One of those markets is the intraday auction. Due to the shorter time slices of
quarter hours compared to the day-ahead market, in which hourly products are traded,
this market offers higher price spreads. Thus, the revenue opportunities for flexibilities like
bidirectional EVs are increased. The development of the prices of the intraday auction from
the beginning of 2019 to the end of 2022 is shown in Figure 5a. As a consequence of the
energy crisis, the price has risen from around 4 ct/kWh to a maximum of over 70 ct/kWh,
and also the price spreads increased significantly.

The PV generation is determined as a time series depending on the historical irra-
diation data on CAMS level as a function of the orientation of the PV plant and its peak
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power [32]. The irradiation data are used for the location of the depot for the weather year
2012. The weather year is chosen based on the recommendation in [33].

(a) (b)

Figure 5. Visualization of input data: (a) electric load profile of the depot building, (b) daily average
price intraday auction.

2.3. Input Parameters

After introducing the data source and the model in the previous sections, the input
parameters are presented in the following. For this purpose, we define a base scenario for
which the input parameters are listed in Table 2. By varying different parameters of this
base scenario, various sensitivities are examined. For the sensitivity analysis, one parameter
of the base scenario is changed, while the rest of the parameters are left unchanged. The
varied parameters of the sensitivity analysis are also included in the table. The base year is
2021, and the optimization is performed at a time step size of 15 min. As Figure 2 illustrates,
we use a rolling approach and divide the examined years into 61 optimization steps. The
observation period of each step is seven days, consisting of the optimization period of
six days and one day of overlap. In contrast to real-world charging management systems
that apply forecasts, we assume perfect foresight for each optimization step. In the base
scenario, no exemption of levies on energy fed back into the grid is assumed. Therefore,
plevies is set to be equal to plevies,v2g. However, the exemption is considered in the sensitivity
analysis. In the base scenario, no limitation of the grid connection capacity is considered.
Thus, PGCP,max is set to the oversized value of 5 MW. A limitation of PGCP,max is examined
in the sensitivity analysis. The grid connection capacity is minimally limited to 700 kW,
since a lower capacity would result in the curtailment of the PV system in times of high
irradiation. The feed-in tariff of 0.06 EUR/kWh is an assumed value suitable for Germany
and is only used in the reference simulation as pout

t . It is also assumed that 30 BETs of the
depot are electrified. The number of electric vehicles is one of the sensitivities examined.
According to the distribution from the dataset, 30% of the vehicles are used for regional
traffic and 70% are used for local traffic. The appropriate driving profiles are divided
among the BETs according to the distribution, and a battery capacity of 250 kWh for local
and 500 kWh for regional traffic is assumed. Based on [34], the price of the vehicle battery
cbat,buy is set to 139 EUR/kWh. The parameters of the PV system are selected according to
the system of the real depot.
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Table 2. Parameters of the base scenario and sensitivities.

Category Parameter Symbol Unit Value Sensitivities

General Year 2021 2019, 2020, 2022
Time step size t h 0.25
Optimization period h 168
Overlapping period h 24

GCP Levies on V2G plevies,v2g EUR/kWh plevies 0.02, 0
Price for public charging ppublic EUR/kWh 0.50
Max. grid connection capacity PGCP,max MW 5 0.7, 1, 1.5, 2
Feed-in remuneration PV (ref) EUR/kWh 0.06

BETs Number of vehicles nEV 30 20, 40, 50
Efficiency of charging ηEV,charge 0.926
Efficiency of discharging ηEV,discharge 0.921
Capacity of vehicle battery EEV,max kWh 250/500
Minimum SOC at departure SOCEV,dep,min 1
Maximum charging/
discharging power PEV,max kW 100 50, 200, 300

Price of battery cbat,buy EUR/kWh 139

PV system Peak power kW 1000 0, 2000
Azimuth angle ° 0
Tilt angle ° 35

In addition to the year 2021 of the base scenario, the years 2019, 2020, and 2022 are also
examined. For the optimization of the different years, several parameters have to be varied.
In contrast, only one parameter is changed at a time in the sensitivity analysis presented
below. The other parameters remain unchanged. In consequence, these year-dependent
parameters are separated in Table 3. For the reference simulation, a constant price based on
the average day-ahead price is assumed for pin

t [35]. For the levies, the real historical values
for Germany from [36] are used. The prices for the grid fees are also based on historical
values of the grid operator Netze BW, where the depot under consideration is located [37].
We use the prices for medium voltage networks and consider an annual usage time of less
than 2500 h.

Table 3. Year-dependent parameters.

Year pre f
t (EUR/kWh)

plevies

(EUR/kWh)
pusage

(EUR/kWh) pcap (EUR/kW)

2019 0.038 0.131 0.047 16.37
2020 0.030 0.135 0.052 18.36
2021 0.097 0.133 0.054 18.65
2022 0.245 0.495 0.056 19.20

3. Results and Discussion

In order to better understand the results presented in the following, we first look
at a single example day. A sunny weekday in August from the base scenario in 2021 is
chosen. Figure 6 is intended to explain the charging strategies and shows the important
time series from the optimization results for the example day. The results for the reference
with uncontrolled charging are shown on the left, and those for bidirectional charging
are shown on the right. In the upper diagram, the power of the different components
is plotted as a stacked area diagram. The resulting power at the grid connection point
PGCP

t = PGCP,in
t + PGCP,out

t is shown as a black line. The center diagram illustrates for
each time step how many vehicles are attendant and how many of them are charging or
discharging. The given prizes are shown in the lower diagram. Levies and grid fees are not
included in the prices.
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With uncontrolled reference charging, the vehicles are charged immediately when
they arrive at the depot. Even though some vehicles arrive and charge at midday, this leads
to charging processes in the evening and at night where the power of the PV system is
unavailable. The unused energy from the PV system is fed into the grid for the low feed-in
tariff, and more expensive energy is purchased from the grid in the evening hours. The
situation is different with the bidirectional charging strategy. According to the optimization
problem presented in Section 2.1, the objective of the optimization is to maximize the
revenue. One way to achieve this is to shift the charging process to times when PV power is
available, since this power is not priced in the optimization problem. This shifting is clearly
visible in the diagram because the area of the BET charging matches the PV generation.
Energy can also be fed into the grid to maximize the revenue. Such a feed-in takes place on
the example day from around 6 PM, when many vehicles are available and high energy
prices are reached. Due to the oversized grid connection capacity of 5 MW, a large number
of BETs discharge at the same time, resulting in a high feed-in power of over 2 MW. Because
of the power price integrated in Equation (8), the annual power peak of the reference
of 1.3 MW is lowered in the optimization to 0.4 MW. The power price only affects the
purchased power, which allows the feed-in with a higher power. Figure 6 also clearly
shows that outside the times with PV generation, the vehicles supply each other and also
the building with energy.

(a) (b)

Figure 6. Results for an example day for different charging strategies.: (a) reference, (b) bidirectional.

The results of the base scenario are compared with those of the other examined years in
Figure 7. Figure 7a shows the annual savings for the optimization with unidirectional (uni)
and bidirectional (bidi) BETs. The savings are calculated from the difference between the
costs in the reference simulation and the respective charging strategy and are normalized
per vehicle. Before 2021, the savings are modest at about 2000 EUR/BET even with
bidirectional vehicles. As energy prices rise from 2021 (cf. Figure 5), savings also increase
significantly. Thus, almost 3300 EUR/BET can be achieved in 2021 with the bidirectional
and 1500 EUR with the unidirectional charging strategy. In 2022, the savings skyrocket
up to more than 10,000 EUR/BET. On the one hand, this can be explained by the fact that
the reference costs in 2021 and 2022 rise due to the higher prices. On the other hand, the
increasing price spreads and falling levies are responsible for the high savings, as this
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makes arbitrage trading significantly more attractive. In comparison, the authors of [13]
estimate lower savings of 1515 EUR/BET. The deviation mainly results from the simplified
price time series they use, which does not adequately reflect realistic price spreads of the
spot market.

(a) (b)

Figure 7. Results of the analyzed years: (a) annual savings, (b) discharged energy.

A corresponding observation can be made in Figure 7b, where the average discharged
energy per BET and year is illustrated. It only represents the results from the bidirectional
charging strategy, because only here can discharging occur. The diagram contains infor-
mation on how much energy is fed back to the building (V2B), to other vehicles (V2V),
or to the grid (V2G). Discharging into the grid takes place in order to generate revenues.
V2G dominates the discharged energy in 2022. This explains the high revenues discussed
above. Since the load of the building cannot flexibly respond to prices and PV generation,
the BETs can, through discharging, supply the building with cheaper energy from the PV
system or the grid in time steps with high electricity prices. Furthermore, V2B can serve
to reduce the annual power peak. The same applies for V2V, where vehicles with high
parking duration can supply frequently driving vehicles with cheap energy. V2V is thus
another way to reduce charging cost. The share of V2B is relatively similar in all years and
is slightly higher in 2021 and 2022 than in previous years. V2V takes the smallest share of
the discharged energy in all years. In the reference scenario, the self-consumption rate is
around 50% in all the examined years. The optimization increases this ratio to almost 65%
with unidirectional BETs and 95% with bidirectional BETs.

To examine the influence of individual parameters on the results, the results of the
sensitivity analysis for the bidirectional charging strategy are shown in Figure 8. In the
sensitivity analysis, we varied various parameters that could impact the savings. Depend-
ing on the results, the values of these sensitivity parameters are selected iteratively. The
diagram shows the percentage deviation of the sensitivity parameters from the parameters
of the base scenario on the x-axis and the annual savings on the y-axis. The absolute
values of the sensitivity parameters are provided in the last column of Table 2. The point
in the diagram where the parameter variation is zero contains the savings of the base
scenario already shown in Figure 7 (2021). The reduction of the grid connection capacity
PGCP,max has the least impact on the savings. With the limitation of 700 kW (parameter
variation = 86%), the grid connection capacity is still large enough and the savings decrease
only minimally. A reduction of PGCP,max below 700 kW would reduce the savings more
significantly, but then the PV system (1 MW peak) has to be curtailed. More points are
calculated for this parameter to determine the boundary where no curtailment occurs. The
savings decrease without a PV system but increase with a larger PV system. With higher
charging and discharging power, savings can be increased. In the analysis, the charging
power of 300 kW (parameter variation = 200%) leads to increased savings above 3700 EUR
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per BET. A larger number of vehicles reduces the savings per vehicle. The parameter with
the strongest impact on the savings is the levies on the energy fed back. In the base scenario,
we assume the worst case for V2G without any exemption from levies for energy fed back
into the grid. Therefore, plevies,v2g is set equal to plevies. With full exemption (plevies,v2g = 0),
the annual savings per BET strongly increase to 5300 EUR. However, these savings are only
possible with a significantly higher, discharged energy from the BETs to the grid.

Figure 8. Results of the sensitivity analysis for the bidirectional charging strategy.

4. Conclusions and Outlook

This study presents a model to optimize charging processes in depots for EVs. In
addition to the chargers, the depots may be equipped with a PV system and an inflexible
load, e.g., from a building. The objective of the optimization is to minimize the charging
cost. The cost reduction is achieved by increasing the self-consumption rate, reducing the
annual peak load, shifting charging processes to time steps with low energy prices, and
arbitrage trading. Through this combination of different use cases, a multi-use optimization
is implemented. The optimization is implemented on a rolling basis. Despite a higher
computing effort, even large depots with hundreds of vehicles can be optimized using
this method. The economic benefits of V2G can be compromised by levies on purchased
energy fed back into the grid. A full or partial exemption from levies for bidirectional EVs
could solve this problem in the future. The implementation of this exemption is difficult, as
it may only apply to the energy fed back into the grid. Energy consumed while driving
must be taxed. If EVs feed into the grid and are charged by energy from the grid plus a
PV system, then no exemption may apply to fed-in energy provided by the PV system.
A partial exemption from levies is therefore implemented in the presented model. The
amount of the exemption from levies can be chosen freely, and the approach even works
with PV systems.

The model presented is used to optimize a depot for BETs. The study shows that the
examined depot is very well suited for implementing bidirectional charging strategies.
The operator of the depot can benefit monetarily from it. Due to the large PV system
and the long duration of attendance of the BETs, the depot under consideration offers
excellent conditions for optimization. In the base scenario, the bidirectional charging
strategy can save 3300 EUR per vehicle and year compared to uncontrolled charging. A self-
consumption rate of 95% can be achieved and the peak load can be significantly reduced.
Arbitrage trading is only worthwhile when price spreads are high like in the examined
years 2021 and 2022. Levies on fed-back energy impede arbitrage trading. According to
the results of the sensitivity analysis, the exemption from levies can significantly increase
savings. We examined the exemption from levies within a sensitivity analysis. At least a
partial exemption from levies would be a precondition for the successful operation of V2G.

For further research, we propose a three-step strategy: Firstly, the model can be readily
adapted to include additional use cases, e.g., providing frequency control. Secondly, instead
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of solely decreasing charging costs, it could be further developed to minimize the total cost
of ownership (TCO) of the depot. Thirdly, the method can be applied to examine other
depots by simply exchanging the database. The model is not limited to depots for BETs
and can also be used to optimize depots for passenger cars or buses. This paper is therefore
a basis for further research on the topic of bidirectional charging in depots for EVs.
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Abstract: The core goal of the BANULA research project is to combine customer-oriented and
grid-compatible charging of electric vehicles. It addresses the current challenges of the e-mobility
ecosystem from the perspective of grid operators and charging infrastructure users and creates added
value for every mass market role involved. In the project, the idea of a virtual balancing group based
on blockchain technology is implemented. Thereby, it enables extended data acquisition, a real-time
data exchange between grid and market participants, proper balancing and grid node-specific load
flow determination and, thus, load management.

Keywords: charging; power supply infrastructure; mass market; data acquisition; load management

1. Introduction

One of the major challenges on the pathway to a high penetration of electric vehicles
(EV) is the ramp-up of a widespread and reliably available charging infrastructure. Due
to the need to significantly expand the number of charging stations, the construction of
public charging stations has been strongly promoted in Germany and other European
countries over the course of recent years. In this context, various publicly funded programs,
such as “Publicly accessible charging infrastructure for electric vehicles in Germany” [1],
have been established to create incentives for the erection of charging infrastructure. As a
result, the number of charging points in Germany has steadily and significantly increased.
Quantitatively, the number of public charging points has increased from 17,108 in 2018
to 77,191 in 2022. In 2022 alone, over 28,000 charging points were installed. The strong
expansion of public charging infrastructure affects both AC charging as well as DC fast-
charging stations. Some 20% of the expansion of charging stations in 2022 in Germany were
DC fast-charging stations [2].

Despite this rapid growth in the number of public charging points, great efforts still
have to be made to further increase the number of accessible charging points in order to
meet an ever-increasing demand from the sharply rising number of electric vehicles in
the German market. Estimates for the required number of public charging points range
from 350,000 [3] to one million [4] in 2030. Similar developments with respect to the need
for charging stations and growth of the latter, as well as the EV market, can be observed
in other European countries, such as France and the Netherlands [5,6]. The US is also
planning a significant expansion of charging infrastructure in the upcoming years [7] and,
hence, has also allocated a significant amount of government funds.

In addition to a high number of charging points, easy and, most of all, reliable access
to charging infrastructure for end customers is an indispensable requisite for the success
of e-mobility as a whole. In order to use public charging stations, consumers currently
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conclude charging contracts with e-mobility providers (EMPs), thereby gaining access to
all available charging stations within their direct charging network. Most providers offer
roaming contracts so that their customers are capable of charging their electric vehicles
using the infrastructure of other third-party providers [8]. Moreover, the EMP is responsible
for pricing and billing of charging processes as a service towards end users as well as third
party CPOs. These CPOs are responsible for operating their charging stations and able
to exert influence on the operation, taking legal, economic and factual circumstances
into account. Both market players, therefore, enable users to charge electric vehicles as a
combined service.

However, there is significant potential to improve the current charging and billing
processes between the market participants involved. Users often lack certainty about
the exact roaming and billing conditions for charging stations of third-party providers in
general and whether they can use their charging contract with a specific charging station at
all. In addition, users are forced to conclude specific charging contracts—just like gasoline
charge cards nowadays– and cannot use their household electricity contract. Moreover,
the lack of usage of forecast data places a disproportionate burden on CPOs regarding the
acquisition of the correct amount of energy for their charging stations—unless they are
eligible for balancing using synthetic profiles. This, however, is not a feasible pattern for a
full-scale market penetration of EVs for various reasons.

Finally, distribution grid operators (DSO) need full transparency in terms of location,
power and energy load with regard to occurring charging processes in their grids, all
of which are not available at the time being. This will dramatically gain importance, as
millions of charging points are to be accommodated by power grids.

This paper proposes a solution to the issues raised. We present a block-chain approach,
building upon distributed ledger technology and yielding solutions to the challenges of all
players involved: costumers, charging point operators, distribution as well as transmission
system operators, e-mobility providers and balancing group managers.

In June 2023, parts of this research were presented at the EVS36 Symposium in Sacra-
mento, USA.

Past and Ongoing Research Activities

Within the BANULA project, the authors are particularly addressing the development
and applicability of a novel and innovative e-mobility ecosystem from the perspective of
a multitude of stakeholders. It also focuses on the applicability of communication and
control of charging points of the current system in the BANULA ecosystem via blockchain.
From today’s perspective, the charging electricity is allocated on the balance sheet of the
supplier of the charging infrastructure operator. In this model, the charging station of the
charging infrastructure operator fills the role of the final consumer. However, completely
removing the e-mobility provider from responsibility for the balancing and forecasting of
charging processes is neither goal-driven for a correct balancing group management nor
does it reflect reality. The first, as yet imperfect, approaches to a solution are offered by
the German E-Mobility network usage contract [9]. In essence, this involves the allocation
of the electricity quantities drawn from the grid to the balancing group of the respective
e-mobility provider rather than to the balancing group of the charging infrastructure
operator in accordance with MaBiS (Market rules for the execution of balancing group
settlement electricity). In addition to the costs of the charging current, this also affects the
network charges, in particular the provision of corresponding power, as well as the costs of
construction, maintenance and upkeep of the actual infrastructure. Our research includes
the creation of transparency for the availability of measurement and billing data in real
time, the reduction of contractual complexity with roaming providers or in the context of
roaming, the simple routing of costs for the construction and operation of the infrastructure
and network charges, and the allocation of costs according to the source.

Many of these issues have been addressed in recent years, but the challenge of a
comprehensive and user-friendly charging infrastructure has so far only been inadequately
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solved (Triebke et al. [10]). Kihm and Trommer [11] model the future market for electric
vehicles as well as the associated substitution of conventional energy sources with respect
to the use of electric vehicles. The authors have emphasized that both the charging in-
frastructure and a coherent regulatory framework for corporate customers are important
elements for the diffusion of electromobility. However, the study merely considers financial
aspects from the user’s perspective and, thus, does not address either local or system-
allocated effects of the diffusion of electric vehicles. In general, electric vehicles for load
management are widely viewed positively. Lopez et al. [12] simulate the load shifting of
individual electric vehicles and the resulting load-smoothing possibilities incentivized by
minimizing the purchase costs for electricity. By doing so, they demonstrate the suitability
of electric vehicles for load management. Babrowski et al. [13] analyze the load-shifting
potential of electric vehicles and additional implications due to the availability of charging
infrastructure at the workplace. The authors conclude that load-shifting potential exists and
discuss the consequences of load management deployment of electric vehicles on electricity
generation. However, specific system-wide impacts are not analyzed nor quantified in de-
tail. Also, the applicability and potential for load shifting using decentralized technologies
are neither considered nor compared to centralized technologies.

Other projects focus on a large variety of aspects with regard to charging station
rollout (LamA—Laden am Arbeitsplatz [14]), charging pattern optimization (eFlotten-
und Lademanagement [15], Shared E-Fleet [16], eMobility-Scout [17], ChargeLounge [18],
InFlott—Integriertes Flottenladen [19]), inclusion of smart meter gateways into the charging
IT landscape (LamA-connect [20]), various boundary conditions of charging (C/sells [21],
SPARCS [22], IMEI—Erforschung integrierter Mobilitäts- und Energieinfrastrukturen [23],
GeMo—Gemeinschaftliche Mobilität [24]) and charging infrastructure as a fundamental
pillar of a smart grid (Charge@Work [25]).

In the referenced projects, the existing roles, involved parties and systems of electro-
mobility have been used and the functions have been embedded within the framework of
the current ecosystem. This existing ecosystem is to be expanded and combined with the
ecosystems of the energy grids and markets. For this purpose, new roles, processes, respon-
sibilities and systems are to be defined and developed, and a new approach—based on
blockchain technology—is tested to carry out charging processes. The topics of balancing
group management (both technical and legal aspects) and the consideration of flexibility
have also not yet been integrated into electromobility ecosystems nor implemented in
blockchain approaches so far. Finally, regulation has to be adapted, very much the way
the German regulator has recently put thoughts into this process of “Netzzugangsregeln
zur Ermöglichung einer ladevorgangscharfen bilanziellen Energiemengenzuordnung für
Elektromobilität” [26]. All these aspects are taken into consideration within the work
presented as follows.

2. Materials and Methods

One objective of the project is to implement the BANULA concept in the current energy
and electromobility market. Therefore, it is necessary to adapt to the methods, processes,
software systems and regulations in the German energy market. In 2020, the German federal
network agency (Bundesnetzagentur), as the responsible regulation authority, passed a
regulation—BK6-20-160 [27]—to improve and enhance access to the electrical grid.

For electromobility, as one of the biggest new use cases in the electrical market, the
NZR-EMob [26] is part of this framework. It contains cornerstones for energy quantity
balancing for specific charging processes and the associated and necessary gird access rules.
These new grid access rules for electromobility enable an alternative settlement model for
energy quantity allocation in the balance sheet compared to the approach used today.

The BDEW-German Association of Energy and Water Industries (Bundesverband
der Energie- und Wasserwirtschaft) is the largest energy industry association in Germany
and represents the interests of the electricity and energy sector. The BDEW published
applications rules [28] for the implementation of the above-mentioned NZR-EMob in the
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German energy sector. These application rules are a current vehicle for the BANULA
ecosystem and will be laid out below. The BDEW has formulated a process description
entitled “Model 2 for balancing energy quantity allocation options for specific charging
processes”. Within the BDEW application rule, Model 1 (Figure 1) describes the current
balancing model and Model 2 (Figure 2) describes the options under the NZR-EMob.
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Figure 1. Model 1 is based on NZR-EMob and within the BDEW application rule, Model 1 describes
the current balancing model in the actual energy market where the charge point is handled as a
usual consumer. Two charging processes (1, 2) are carried out at charging station 1 and one charging
process at charging station 2 (3). Each charging process is measured by the charge point register and
the complete energy is measured by the measurement location. The energy of each charging process
is balanced by the charge point owner via standard load profile [28].

As a basis for the description of Model 2, the BDEW used the already established
market communication processes for business processes for the supply of electricity to
customers (GPKE) [29], switching processes in electricity metering (WiM Strom) [30] and the
market rules for the implementation of balancing group billing for electricity (MaBiS) [31],
which were adapted in relation to electromobility. Only a few new market communication
processes were introduced for Model 2. It also only describes the processes of the energy
industry, not specifically related to the electromobility sector.

While the energy quantity of the market location is balanced in the already established
settlement model, Model 2 provides for a charging process-specific energy quantity allo-
cation on the balance sheet. In Model 2, the energy quantity of the market location is no
longer balanced, but treated like a grid time series in terms of balancing and a charging
process-specific balancing energy quantity allocation takes place in the balancing area of
the charging point operator. This means that the charging point operator must ensure a
balancing group allocation for each charging process in its balancing area. The distribution
system operator no longer has balancing responsibility for the market location registered
in Model 2. The charging point operator is, therefore, obliged to register a balancing area
in the corresponding control area with the balancing coordinator. The balancing area of
the charge point operator is not limited to the grid area of a distribution grid operator.
Balance discrepancies (delta quantities) must be borne by the balancing group manager of
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the balancing area and market locations that are to be settled in accordance with Model 2
must be reported to the respective distribution system operator.
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Figure 2. Model 2 describes the options under the NZR-EMob, which are balancing energy quantity
allocation options for specific charging processes. The charge points are removed from the balancing
area of the DSO 1 and added to the balancing area of the CPO. Two charging processes (1, 2) are carried
out at charging station 1 and one charging process at charging station 2 (3). Each charging process is
measured by the charge point register and the complete energy is measured by the measurement
location. The energy of each charging process is balanced by the charge point operator, based on the
measurements of the new meter [28].

General rules for both models:

• A market location can only be assigned to one model at a time, either Model 1 or
Model 2.

• The following applies to the commissioning of a market location with the consumption
type “e-mobility charging station”.

• The nonstandardized “new installation” process is carried out as for any other market
location according to the principles of the respective distribution system operator.

• In the new installation process, the market location is initially assigned to Model 1 by
the DSO.

• To participate in accordance with Model 2, the charging point operator must apply for
and use the IDs relevant to the corresponding role (market partner ID and electricity
grid operator number) from BDEW.

• The ID of the market location and the ID of the metering location remain unchanged
regardless of the model assignment.

Additional regulations for Model 2

• Balancing of the energy quantity of the market location in the balancing area of the
distribution system operator does not take place. Instead, the energy quantity of the
market location is balanced via a grid time series between the balancing areas of the
distribution system operator and the charging point operator.

• The distribution grid operator is the grid operator responsible for the grid time series.
The charging point operator is the neighbouring grid operator.
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• The energy quantities of the charging processes in the balancing area of the charging
point operator are balanced.

• The charging point operator has the aggregation responsibility for the energy quantity
of the charging processes in the charging point operator’s balancing area.

• The energy quantity of a charging process can only be allocated to one charging point
operator’s balancing area.

• The change of supplier within Model 2 is currently not procedurally structured and
must be carried out bilaterally.

As the BANULA concept deals with personal data between multiple parties that
may not trust each other, a distributed and trustworthy technology is to be used for data
access and proof of validity: Distributed ledger technology (DLT). DLT is a concept that
aims to store and manage data in a decentralized manner. Unlike traditional centralized
systems, where a central authority or institution has utter control over the data, DLT
enables distributed storage and processing of information across a network of participants.
This is achieved through the use of cryptography and consensus-based mechanisms that
allow participants to agree on a common data consensus without the need for a central
authority. As a result, DLT offers a high level of transparency, security and resistance to
failure and tampering.

A well-known example of DLT is blockchain technology, which was first introduced
in Satoshi Nakamoto’s white paper “Bitcoin: A Peer-to-Peer Electronic Cash System” [32].
In addition to the public blockchain, there is also the so-called permissioned blockchain, in
which network participants must be approved in advance. This ensures a certain degree of
privacy and control over the network. Permissioned blockchains are used in sectors such
as financial services and corporate environments where special compliance requirements
and data protection regulations apply.

3. BANULA’s Concept

The fundamental concept of the BANULA ecosystem is a holistic approach to combine
energy economic processes and energy balancing, on the one hand, with the commercial
processes in the e-mobility framework on the other hand to make them both more effi-
cient in favor of the end customers and the electricity market roles. BANULA provides
correct accounting between all parties involved as they have to implement a new common
communication network.

Within this new ecosystem, charging point operators provide their infrastructure to
e-mobility service providers and do not need to procure the charging electricity. This may
sound arbitrary at first; however, the consequences are profound. The e-mobility providers
have to procure the necessary charging electricity for their own customers while at the
same time benefiting the system as a whole, they are able to create much better energy
procurement forecasts than charging station providers. This decreases the overall energy
grid imbalances as the correct amount of energy can be purchased. Distribution system
operators can use this approach to gain full transparency of the charging loads within their
grid, reduce imbalances within balancing groups and improve overall energy grid stability.
Moreover, balancing errors are no longer to be covered by grid operators. In short, errors
that are the responsibility of the e-mobility service providers are to be met physically or
financially, the latter imposing a strong incentive for correct balancing.

Operationally, in order to meet current regulations, within BANULA, a virtual grid
area is implemented in which all charging points relevant operated through an EMP are
aggregated by the charging processes of its customers.

BANULA acts as the operator of this virtual grid area and is in direct exchange with
the adjacent physical distribution system operators in order to coordinate grid operator
processes directly with each other. The management of the charging energy (in terms of
energy balancing groups) is carried out by any number of EMPs and not by a single supplier
who supplies the physical grid connection point to which the charging infrastructure is
connected (An example from the concrete application would be a charging process at a
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LamA charging point on the campus of a Fraunhofer institute by any EMP. This EMP now
manages this charging point in the virtual grid for the charging time of its customer, even
if the charging point is located on the Fraunhofer campus). By enabling a mechanism to
decouple the supplier of the charging station and the supplier of a specific charging process,
customers can choose a specific EMP for a charging process, completely independent of
the CPO of the charging infrastructure and EVSE they want to use. Thus, an EMP always
balances the charging current withdrawals of its customers based on the authentication at
the charging station (e.g., by means of RFID) in terms of a different accounting allocation.
Against the background of this approach, it becomes necessary for the EMP to ensure correct
balancing group management—with regard to the charging processes of its customers. This
is a major contribution to ensuring system stability while further increasing the charging
capacities of electric vehicles through a proper allocation of balancing responsibility. As
stated earlier, by shifting the balancing responsibility to the EMP, the costs of balancing
errors are reduced for the grid operator. In this way, costs and risks can be allocated
appropriately. The EMP’s designated balancing group is assigned the withdrawals of a
large number of charging points depending on the usage behaviour of its customers.

To implement BANULA’s novel ecosystem, blockchain technology is used to provide
a data architecture that all participants in the ecosystem can use and build upon (For more
properties that distinguish a blockchain, see Section 4). This corresponds to a back-end
system of market communication in order to be able to allocate charging energy quantities
to the supplier or suppliers of charging electricity within the 15 min period relevant for
balancing. Blockchain technology, as a decentralized medium, manages and regulates the
interaction of the different parties involved. It enables a timely, accurate, tamper-proof and
transparent allocation of the

• charged energy quantities per charging pole,
• customers to the balancing groups,
• balancing areas,
• duration of use as well as data necessary for the billing of the grid usage.

It also offers the opportunity to integrate information about the network status into
the charging management of the EMPs.

For grid operations, it offers opportunities to balance the provision of flexibility on
a plant-by-plant basis, to assign these to corresponding market roles, and to assign the
intended use of flexibility usage. The coupling of the grid (transmission system operator,
distribution system operator) and the market (electric mobility provider, balancing group
coordinator), thus, provides a data and information interface to communicate grid events
and restrictions directly to the market in accordance with German regulation (§ 13(2)
EnWG). The overall system with the interfaces and information to be exchanged is shown
in Figure 3.

As far as the issue regarding customers of an arbitrary EMP charging at any charging
infrastructure of a given CPO is concerned, in the novel BANULA ecosystem, a charging
process works as follows:

1. A given client establishes a contract with fixed terms (i.e., cost per kWh) with an
arbitrary EMP. The client’s authentication dataset is assigned to its respective EMP in
a decentralized DLT/blockchain network. The client is now capable and eligible to
use any charging point, which is part of the decentralized virtual grid area.

2. In order to start a charging process, the client carries out the authentication process
either via presenting an RFID, registering in a mobile app or through “plug and
charge” building upon an implementation of the ISO 15118-1:2019 standard [33].
Through the DLT network, the client’s authentication and eligibility to be granted
access to the charging point in question are verified. If all criteria are met, the charging
process is enabled, and the respective kWh are assigned to the EMP’s energy economic
balancing sheet.
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3. The charging process starts, in parallel, the BANULA-DLT network aggregates all
relevant data, e.g., typical charge detail records for other participants in the ecosystem,
such as charged energy, time stamps, etc. The respective EMP as well as the distribu-
tion system operator (DSO) in whose grid area the event takes place are both provided
with the time series data of the charging process. The CPO whose charging point
was used is provided with the data needed in order to bill the use of the charging
infrastructure, i.e., the contribution margin to its fixed costs.

4. Following this process, the DSO has complete knowledge of all charging processes
within its grid. Moreover, this information is available for each charging point in real
time, which in turn enables the DSO to gain a better understanding of load flows in
the grid.

5. In order for this concept to work, all charging points are to be balanced in a so-called
virtual grid, although physically, they are clearly and obviously part of a DSO’s real
distribution grid.

6. In complete analogy to existing processes in Germany’s energy economic regulatory
framework, the virtual system operator establishes a summarized load time series
on a monthly basis for each EMP in a temporal resolution of 15 min. This time
series data are used for an exact ex post balancing of the charged kWh for each EMP.
Where applicable, upstream and downstream grid operators can tap the same kind of
summarized load time series data for their balancing purposes. If applicable, EMPs
are subject to financial punishment for any physical deviations compared to their
balancing sheets.

7. Because real-time charging information is available, grid congestion can be determined
in time and further developments using i.e., artificial intelligence farther down the
road will allow for predictive grid management e.g., by establishing incentives to
charge at different times or locations.
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Figure 3. Brief overview of the EV charging ecosystem and the operational steps carried out during
charging processes. Within the context of the BANULA ecosystem, these processes are significantly
enhanced using a blockchain-based approach employing distributed ledger technology for the benefit
of all participants of the system.

Figure A1 displays the proposed charging progress in the new ecosystem as a swimlane
process diagram (Business Process Model and Notation 2.0/BPMN 2.0, https://www.
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omg.org/spec/BPMN/, accessed on 23 March 2023). The Figure A1 shows the market
participants involved and their interactions during the charging process. As indicated, data
are exchanged between market participants of the energy market and the electromobility
ecosystem during the charging process.

3.1. Respective Perspectives of Each Market Participant

In the current energy market and electromobility ecosystem, each market participant
has its own defined role with its respective tasks, advantages and disadvantages—for its
role and the entire system. The roles in the current ecosystem are defined for the time
being and the companies fill these roles as their business cases. As the BANULA ecosystem
aims to reduce the disadvantages of the system, it must also maintain and improve the
advantages. Based on the respective role of the market participant, different perspectives
need to be considered to leverage the new ecosystem in the current market.

3.1.1. End Customer

Currently, customers are free to choose any EMP, but they cannot charge with certainty
after finding a charging point at a previously agreed-upon price; even at the same charging
point, the costs of a comparable charging process can differ significantly depending on
the EMP. In practice, users would have to check before each charging process whether
they want to accept the price or continue the quest for the next charging point. If the user
has explicitly concluded a contract with an EMP that includes, for example, 100% green
power for charging, the guarantee of this power quality cannot, under the current regime,
be mapped independently in the roaming case. In addition, it is currently not possible for
customers to reliably use all available charging stations with just one charging contract.

Thus, the addressed needs for action from the customer’s perspective are:

• Removal of access barriers and creation of price transparency;
• Sourcing of advertised and purchased “quality” charging power, e.g., regional, green, etc.;
• Reliable access to all available charging stations with just one charging contract,
• Usage of their own energy provider at every charging station: charge your own PV

electricity—even on the road.

3.1.2. E-Mobility Provider

EMPs that enable their customers to charge on the basis of a peer-to-peer contract with
a CPO or in the context of roaming have been insufficiently involved to date in the correct
balancing of charging processes. Particularly in the case of roaming, there is no need for
the EMP that enables its customer to charge at charging infrastructure, to make an accurate
forecast under the current regime. Suppliers who provide electricity to charging stations of
CPOs balance for annual withdrawals of up to 100,000 kWh using synthetic load profiles
(SLP). However, proper SLPs that sufficiently consider the various use cases of the charging
infrastructure and, in particular, the frequently spontaneous charging do not yet exist; even
if they did, they would very likely reflect reality poorly.

Thus, the addressed needs for action from the EMP’s perspective are:

• Enable access to any charging infrastructure under transparent and simple conditions;
• Establish a system that solves the access deficits of today’s roaming;
• Introduce a central energy balancing group forecast of all customers across Germany

or a control zone by the EMP (establishment of reliable forecasts of charging energy to
be procured).

3.1.3. Charge Point Operator

The charging energy is currently assigned to the supplier of the CPO in the balance
sheet. In this picture, the charging station of the CPO fills the role of the final consumer.
However, completely removing the EMP from responsibility for the balancing and forecast-
ing of charging processes, as has been the case to date, is not expedient and is the subject
of heated debate within the industry. The first, as yet imperfect, approach to a solution is
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offered by the E-Mob network usage contract [9]. In essence, this involves the allocation of
the electricity quantities drawn from the grid on a balancing group basis according to the
MaBiSF, not to the balancing group of the CPO, but to balancing groups designated by the
respective EMP. However, neither essential details have been specified yet, nor are technical
solutions available. In addition to the costs of the charging current, this also affects the
network charges, in particular the provision of corresponding power, as well as the costs of
the construction, maintenance and repair of the actual infrastructure.

Thus, the addressed needs for action from the CPO’s perspective are:

• Create transparency for the availability of measurement and billing data in real time;
• Reduce contract complexity with roaming providers;
• Wire through simply the costs for infrastructure construction, operation as well as

network charges;
• Allocate costs according to the originator;
• Procuring and balancing of charging electricity in line with the polluter-pays principle.

3.1.4. Distribution System Operator

DSOs bear a significant balancing group deviation risk of their network groups due
to the current balance sheet mapping of charging processes and have to expect high
consumption peaks in distribution network strands that are currently merely inadequately
measured. Furthermore, distribution grid operators do not know the charging load at
certain grid points and install sensor technology to operate the grid safely.

Thus, addressed needs for action from the DSO’s perspective are:

• Exploiting synergies and creating transparency: what happens where in the grid, in
real time (so that grid stability measures can be initiated to minimize balancing group
deviations and the necessary risk capital);

• Form appropriate aggregation points that can be forecasted and managed;
• Create incentives for EMPs to make predictable withdrawals and avoid power peaks.

3.1.5. Transmission System Operator

If the existing system is continued, the TSOs will also be increasingly exposed to
uncontrolled and hard-to-predict use of balancing energy in the physical balancing of
their networks. This would result as a direct consequence of schedule deviations in the
downstream distribution networks.

Thus, addressed needs for action from the TSO’s perspective are:

• Increase in balancing group reliability;
• Support system security through the systemic use of flexibility by managing the load

in the distribution network and its IT-based proof of delivery.

4. Implementational Questions

The BANULA project initiative develops a blockchain-based data platform that en-
ables a tamper-proofed and German-regulated billing of charging processes for all market
participants. The overall purpose is to establish a new ecosystem, which will be of benefit
to all players involved. The question as to who will eventually operate the system is yet to
be resolved.

The main objective of the project is to make public charging points accessible to all
end consumers in the most transparent terms and to best prepare all parties involved for
the mass market penetration of electric cars. For this purpose, the ecosystem proposed
aggregates charging points of a charging station operator in a specific grid area into a virtual
charging point network. It integrates all involved market roles and enables trustworthy
data exchange. Blockchain technology manages and regulates the interaction of the various
players. In addition, EMPs, CPOs, DSOs and TSOs gain full transparency as to occurring
charging events. This provides an accurate, tamper-proof and transparent allocation of the
charged energy per charging point, per customer and balancing group, per usage period as
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well as the data required for the grid fees. Within our contribution to EVS 37, we would
like to further discuss this approach with specialists from around the world. Within the
project team, we raise the following five questions during the project duration and create
guidelines for the technical implementation.

4.1. Reasoning for Blockchain-Based Approach

As an underlying communication platform, the blockchain as a distributed ledger
offers security, full transparency and auditable traceability over all interactions of the
participants. In addition, the blockchain is not operated by a single party, but rather
operates in the form of a distributed network that “belongs” equally to all stakeholders and
to rules that all stakeholders have jointly defined (governance model). New participants
(market parties) can join at any time, but they can only use the system if they submit
to the common set of rules (based on the rights defined by the stakeholders, e.g., by
means of previously defined rights for the individual roles). By introducing digital market
roles (identities), blockchain technology can be used to include market parties in their
role deposited by an authority in an automated as well as standardized manner via an
“authority” model. Based on the best fitting governance model for the ecosystem—which is
also part of our research—a blockchain-based approach delivers the technological aspects
for each role to interact with each other.

4.2. Is a Blockchain Performing Well Enough to Deliver Real-Time Results Even with a High
Number of Participants?

Depending on the use case, different blockchain technologies and concepts are avail-
able. Permissioned Blockchains are only accessible to consortia and also offer transaction
times for high-performance requirements that enable almost real-time processing (a few
milliseconds) compared to previous matching mechanisms (approx. 15 min). However, de-
pending on the project requirements, the use of public blockchains may also be appropriate,
e.g., to ensure easy access by the public (the end users). Deciding which blockchain concepts
(or combinations of them) are suitable for operational use is also part of our research. As for
now, the current plan is to implement a blockchain-based approach where the blockchain
itself only holds a limited set of data but offers an up-to-date lookup table for each role of
the system. The blockchain—let it be called BANULA Data Hub (DHB) for now—knows
all the application programming interfaces (API) for each party in the ecosystem and also
the necessary rights to interact with this party, as indicated in Figure 4 below.

4.3. Can All Data in the Blockchain Be Viewed by All Actors and How Do We Ensure Data
Protection and Privacy?

Depending on the blockchain technology used, there are various options for protecting
sensitive data. Following the governance model mentioned above and the associated
different roles, access to the data available in the BDH network and its processing options
can be comprehensively regulated. For example, in Hyperledger Fabric, it is possible
to separate different parts of the distributed ledger network for different use cases. In
addition, encryption can be used to secure the transmission of data within these subareas.
The project also investigates the possibilities for controlling access to the protection and its
suitability for the different use cases. In any case, it is important that market players or all
participants are only allowed to see the data in plain text for which they have authorization
(e.g., EMP A only sees the measurement time series of its assigned customers and EMP B
does not see these data in plain text, but only as an encrypted value for consensus building,
which cannot be deciphered by EMP B). As shown in Figure 4, the blockchain works as a
gatekeeper and permission management system with suitable smart contracts programmed
by the government organization in the ecosystem.
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4.4. What Is the Strategy for Existing Hard- and Software Systems?

The project will develop an integration concept for existing charging points as well as
new charging hardware to be set up by the Fraunhofer charging network “LamA” and the
Lidl/Schwarz Group as a blueprint for the scalability of the project architecture solutions. In
total, the participating project partners can so far integrate up to 10,600 charging points into
the BANULA network. The solution explicitly aims to make a further inventory (outside
the partners’ charging networks) integrable. Overall, there are two starting points here.

Top-down: On the one hand, regulatory requirements are needed for later imple-
mentation, e.g., on the part of the regulation authorities of the German federal network
agency (Bundesnetzagentur) with regard to virtual network areas concerning the network
connection of charging stations. Discussions are planned here on the part of the transmis-
sion system operators. Furthermore, the topic is to be discussed within the framework of
the European TSO-DSO cooperation. In the next few years, the network code flexibility
is to be developed at the European level. Basic elements of our question can be directly
incorporated here.

Bottom-up: Parking operators and large employers can already participate in the
network today in order to achieve fair and equitable treatment of the workforce with regard
to mobility subsidies (no free fuel for e-drivers) and the charging of guests.

4.5. Transfer Strategy for Europe

A decentralized solution (like DLT) also offers more flexibility than a centralized
platform for onboarding additional regions (or environments). A DLT network is not
subject to the sovereignty of a single provider and, due to its decentralized orientation, by
definition, offers more openness for the onboarding of new stakeholders. Due to the (within
the framework of the project initially Germany-wide) implementation on a national level,
overarching solutions for simple loading in the virtual grid area must already be developed
within the project for the four German TSO control areas. These processes are scalable
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across Europe, since the European TSOs are galvanically as well as information-technically
coupled and the concept of the balancing group management is analogously structured. The
model requires an expansion of the German (and potentially also the European) regulatory
framework by extending and thus improving the existing balancing system for charging
processes. The virtual grid approach is easy to integrate into the existing balancing system,
as it is based upon it—comparable to the, e.g., traction current system or balancing between
two grid operators. However, it is also easily transferable to all other EU countries, as
they have a balancing system that is comparable to Germany’s in the main points. In this
respect, the EU makes hardly any particular specifications. A European rollout is, therefore,
possible. Specifically, a coupling or interoperability of the platforms of the company Elia
(EnergyBlocks) and BANULA is already being considered. Elia is very interested in the
results of the BANULA project since both concepts are based on a virtual grid area. The
company Elektromaps from Spain, which provides information about charging points
throughout Europe, has expressed interest in participating in the project.

In a further step, BANULA will be presented by TransnetBW and 50Hertz in entso-e
in the context of the established TSO-DSO cooperation. Currently, the managing director of
TransnetBW is chairman of the working group for coordinated cooperation with the new
European DSO association “EUDE”. This provides the best conditions for coordinating
processes between the two associations throughout Europe with regard to a virtual grid
area. Against this backdrop, on the one hand, we carry the concepts to Europe, and on the
other hand, we also want to actively accompany European developments (e.g., FlexHub,
Equigy) in order to derive possible synergies for BANULA.

In summary, the technology is thus transferable to other countries. On the operator
side, the Schwarz Group is a project partner that operates many hundreds of charging
points not only in Germany, but across many other European countries. It is interested in a
solution for all of its charging points, so it also has a great intrinsic interest in developing
an international solution.

5. Results and Practical Applications

To prove and validate the project’s underlying concepts, a pilot of the entire system
and all players involved is implemented. For each role mentioned above, there is at
least one organization necessary to adapt and implement the idea to make the ecosystem
applicable in the current German energy market. Therefore, the project is composed of
a multitude of entities in order to be capable of proving the concept end-to-end. As the
approach of the system shall eventually be rolled out in the real world’s energy market,
the pilot is applied to the infrastructure of two large German charging networks and not
only in a laboratory setup. For this reason, the new ecosystem is based on the current
German and European regulations of the energy and e-mobility market. In the German
energy market, a voluntary regulation system for CPOs to create a transaction-based energy
balancing group was implemented in 2020 (BK6-20-160 [27]); however, it is not widely
used by CPOs in Germany due to the lack of adequate incentives. For the pilot project, this
regulation system is analyzed, the flaws are exposed and practicable improvements are
made. Hence, the pilot project focuses especially on improvements, which create benefits
for the CPOs to participate in this voluntary regulation system but also integrate into the
current technical market solutions. Furthermore, the new ecosystem shall include the
application of bidirectional charging and decrease the administrative burden as charge
points—in Germany—so far are not considered as energy market locations but as energy
metering locations.

To fulfil the ecosystem’s transparency objectives, the pilot project evaluates the usage
of distributed ledger technologies and implements the best fitting solution into the pilot
implementation. Therefore, the pilot will be split into multiple implementation and testing
stages. In the first stage a prototype—the minimal viable product (MVP)—is implemented
and tested. Therefore, the technical feasibility of the project is shown by implementing the
necessary roles for a limited set of use cases and charging stations. For this approach only
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the least features of the roadmap are implemented and tested in a friendly environment
with known drivers, CPOs, EMPs, grid operators and—if necessary—shadow balancing.
Thus, we can implement and test the MVP, even if the current regulations are not fully
satisfied. The roadshow across Germany—from Freiburg to Berlin—shall demonstrate the
crossregional approach across the four balancing zones operated by the German TSOs.

The use cases to be demonstrated in this roadshow—shown in Figure 5—cover the
most important roles for the combination of the e-mobility ecosystem and the energy
market ecosystem. The goal of the roadshow is to enable system- and grid-compatible
charging at any charging point. In the roadshow, two electric vehicles with charging
cards from two different EMPs will start the journey from Freiburg to Berlin. They will
charge simultaneously, also at charging points of one and the same charging station, but
authenticated through the different EMPs. The charging quantities will be allocated to the
respective balancing group of the respective EMP and will appear in the correct balancing
group bookings. The supplier of the physical grid connection point (to which the charging
infrastructure is connected) will not change—however, the two selected EMPs will deliver
the energy for the charging processes. After the MVP is realized and tested successfully,
the next stage of the project with more users, charging stations and use cases will be
implemented. For testing the ecosystem under real conditions in Germany, a large number
of charging stations will be integrated into the BANULA ecosystem and the functionality
will be proven and validated within a one-year fleet trial. These vehicles will be handed
over to different groups of test subjects who differ in terms of their usage behaviour and
the provided charging options. The results of the testing groups will form the basis for
evaluating the application of the ecosystem to end users and improving the pilot project.
In addition, a roadshow across Germany—from Freiburg to Berlin—will demonstrate the
crossregional approach in the four balancing zones operated by the German TSOs.

During the lifetime of the pilot, a series of workshops with experts in the field of
energy and mobility will be held and a new expert community will be founded. The
feedback of the expert rounds will be integrated into the pilot and the interim results will
be published to the community.

The entire pilot of the BANULA ecosystem is divided into multiple MVPs, the road-
show being one of them. Because the German energy market is highly regulated and
the BANULA ecosystem demands that many players in the energy market adapt their
software systems and processes, many perspectives need to be considered in the imple-
mentation of the entire pilot. Adapting the current German law [26] and following the
BDEWs application documents [27] is not easy, as most of the current software systems and
processes do not support them. In order to develop a functional pilot, all use cases of the
BANULA ecosystem have been broken down into technical use cases—there are currently
24 of them—which were, in turn, grouped into several MVPs. Therefore, each MVP is a
standalone part of the ecosystem, which addresses different technical and functional parts
of the BANULA ecosystem.

The first MVP of the entire pilot and the basis of the entire ecosystem—the ability to
charge with a different energy supplier than the energy supplier of the charging point and
account for the energy amount to the correct energy balancing group—is implemented and
tested at one location in one distribution grid in one transmission network. Simultaneously,
the same processes and implementations are prepared at four other locations. All of these
four locations are on different properties, while three of them are in new distribution grids
and two of them are in new transmission networks.

Based on the experiences of implementing the BANULA ecosystem on different
premises in different distribution networks in different transmission networks, each case
has its own tasks to handle. Even as the law supports an innovative concept as the BANULA
ecosystem, the software systems and processes of the current energy market players do not
support a smooth implementation at every location at present.
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6. Discussion

The content of the BANULA concept is sufficiently complex and innovative that certain
reflections and assumptions are certainly open to discussion. As discussed above, the added
values for each role are, therefore, preliminary considerations and may change depending
on what applies in practice. Questions such as the following arise: Does the transfer of
responsibility for energy procurement from the role of CPO to the role of EMP actually
lead to more reliable consumption forecasts and an associated increase in balancing group
loyalty? Do users appreciate the new added value offered by the BANULA ecosystem
to a sufficient extent to achieve market penetration? Is a new business model for CPOs
that explicitly excludes energy procurement and sales attractive enough to prevail over
the existing model? The topics of grid fees and ad hoc charging and how these can be
integrated into BANULA are of particular interest. It is crucial that BANULA achieves
a significant market share with CPOs and EMPs in order to realize the added values of
the individual market roles, e.g., transparency regarding usability and prices (from the
customer’s perspective).

Of course, the ecosystem described in this document harbours risks as well as far-
reaching opportunities, which can be outlined but not conclusively recorded. In any case,
the use of the BANULA platform allows further added value to be realized beyond the basic
idea of BANULA—think of dynamic prices or bidirectional billing, for example. However,
the transaction costs are decisive for the profitability of these offers. For the BANULA
platform to thrive as a vehicle for ecosystem transformation, proper governance is required.
Therefore, the corporate structure must be well thought out, especially in view of the fact
that the platform is a decentralized system.

7. Conclusions

With the concept of BANULA, a new innovative ecosystem for the operation and
billing of charging processes is developed. The concept of BANULA offers added value for
all market roles in the ecosystem and brings together energy economic processes, balancing
charging energy quantities and the processes in electromobility. The benefits for selected
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stakeholders are as follows: End customers can choose their electricity supplier at BANULA
charging points and are not bound to the supplier associated with the charging point; EMPs
offer their electricity at all BANULA charging stations and develop new business and tariff
models for their customers; CPOs (Charge Point Operators) can focus on operating the
charging stations and delegate the procurement of the corresponding electricity quantities
to the EMP and its suppliers; and distribution and transmission grid operators benefit from
increased transparency in their respective electricity grids.

To achieve these objectives, BANULA defines new processes and roles, reassigns
responsibilities and develops a technical backbone layer. The latter is based on blockchain
technology (distributed ledger technology) and offers security, full transparency and au-
ditable traceability. BANULA adopts a blockchain-based approach where the blockchain
itself stores only a restricted amount of data. However, it serves as a real-time lookup
table for each role within the system. To ensure data integrity and security, a comprehen-
sive concept for roles and permissions will be developed to prevent data misuse. The
described model is technically and procedurally operational within the current German
legal framework. The feasibility will be demonstrated at selected charging stations.

An example of this is charging electric vehicles at public charging stations using the
electricity generated from one’s own photovoltaic system. To leverage added value at the
European level, there are plans to transfer and adapt the entire system at the EU level.
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Abstract: In a simulation study, it was investigated how the costs of supplying H2 for the refuelling
of long-haul trucks along highways in Canada can be minimized by optimizing the design of the
refuelling infrastructure. Scenarios using local or centralized blue H2 production were evaluated
using two different modes of H2 transportation (liquid H2 tanker trucks and pipelines). For each
scenario, the average H2 supply costs were determined considering H2 production costs from
facilities of different sizes and transportation costs for H2 that was not produced locally. Average H2
supply costs were 2.83 CAD/kg H2 for the scenario with local H2 production at each refuelling site,
3.22–3.27 CAD/kg H2 for scenarios using centralized H2 production and tanker truck transportation,
and 2.92–2.96 CAD/kg H2 for centralized H2 production scenarios with pipeline transportation.
Optimized scenarios using the cheaper transportation option (tanker truck or pipeline) for each
highway segment had average H2 supply costs (2.82–2.88 CAD/kg H2) similar to those of using
only local H2 production, with slightly lower costs for the scenario using the largest H2 production
volumes. Follow-on research is recommended to include the impact of CO2 transportation (from blue
H2 production) on the design of an optimum supply infrastructure.

Keywords: long-haul trucks; hydrogen; infrastructure; simulation; tanker truck; pipeline;
transportation cost

1. Introduction

Around 27% of global CO2 emissions come from the transportation sector, which
makes it the second largest emitter [1]. Over the last decade, significant momentum has
built for the electrification of passenger vehicles mainly using battery electric technology.
However, the use of hydrogen (H2) as a transportation fuel has significant potential to
support the transition towards a low carbon economy since it does not emit carbon at the
end-use point of combustion, has good storage life, and it can be transported by roads,
ships, or pipelines in gaseous or liquid forms [2].

To drastically reduce emissions and eliminate the use of diesel in the long-haul trucking
sector, it is expected that H2 fuel cell vehicles will be needed as battery electric vehicles
cannot provide the same utility as diesel vehicles. Significant studies have been conducted
on different aspects of using hydrogen as a clean fuel for long-distance transportation.

• Kumar et al. developed a framework to analyze the supply chain cost of low-carbon hy-
drogen exports from Alberta, Canada, to several viable destinations in North America,
the Asia–Pacific, and Europe [3]. The supply chain includes all unit operations rang-
ing from hydrogen production with carbon capture and storage, hydrogen pipeline
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transportation, liquefaction, shipping, and regasification at the destinations. A techno-
economic assessment has been conducted to estimate the supply chain cost of different
viable pathways considering the energy, material, and capacity. Results show that
within North America, transporting hydrogen blended with natural gas using the
existing natural gas pipelines could reduce the price by 17%. Further cost savings
around 28% were achieved while transporting ammonia to the Asia–Pacific in com-
parison to shipping liquified hydrogen. An analysis of overseas H2 supply chains has
been conducted by Lim et al. considering the economic (unit H2 cost), environmental
(carbon footprint), and technological aspects [4]. The supply chains include all the
operations ranging from H2 production, ship transportation, to inland distribution.
Several supply chains were compared varying the economies of scale, amount of H2,
and distance. Results show that the use of liquid organic hydrogen carrier, liquid
hydrogen, and ammonia are the most potentially feasible options for H2 carriers
considering these criteria.

• Stolen et al. developed a well-to-tank analysis to calculate the costs, energy con-
sumption, and greenhouse gas (GHG) emissions for supplying hydrogen to fuel cell
electric vehicles (FCEVs) [5]. The study followed a holistic approach considering the
whole supply chain that includes the storage and transportation of hydrogen. The
study discussed different hydrogen infrastructure technologies from ecological and
economic points of view. Compression and liquefaction have been mentioned as the
state-of-the-art H2 technologies, whereas liquid organic hydrogen carrier (LOHC) has
been identified as the most promising H2 technology for the near future from an eco-
nomic perspective. However, further research is needed regarding the system design
of the LOHC-supplied refuelling stations and the heat source for dehydrogenation.

• Barbir et al. considered a wide range of hydrogen refuelling station (HRS) capacities
and configurations [6]. For example, locating the hydrogen production and refuelling
station within an existing wind farm in Croatia or nearby the end users, or site
the hydrogen production within the wind farm and install the refuelling station
nearby the users, etc. The study assumed that hydrogen is delivered to the refuelling
station with a tube trailer and when hydrogen was produced within the wind farm, a
mobile refuelling station was used for consumers in different locations. The techno-
economic analysis of each hydrogen refuelling station configuration was conducted
to estimate the levelized cost of hydrogen production—the capital, operational, and
maintenance costs. The study results show that, since the capacity and location of
the hydrogen refuelling stations depend on the users, it was difficult to identify the
optimum configuration without the hydrogen infrastructure development in Croatia.
However, the authors mentioned that the results could play a significant role in the
implementation of hydrogen infrastructure in Croatia in the near future.

• Hurskainen and Ihonen conducted a techno-economic assessment for point-to-point
large-scale road transportation of hydrogen [7]. The researchers compared liquid
organic hydrogen carriers (LOHC), compressed H2 gas delivery by trucks, and on-site
production of hydrogen using water electrolysis. Results show that the LOHC supply
chain was the most economic option for long-distance hydrogen transportation by
road. However, to achieve economic feasibility, the heat supply method for releasing
hydrogen at the end-user site and the investment costs were found as the most critical
parameters to consider.

• Qing et al. assessed four possible low-carbon hydrogen supply chains for a hydro-
gen refuelling station located in Shanghai [8]. The study analyzed the feasibility of
using renewable hydrogen as a transportation fuel for fuel cell vehicles. Two routes
considered on-site hydrogen production powered by a stand-alone or grid-connected
photovoltaic (PV)–wind generation system separately, whereas the other two routes
considered off-site hydrogen supply. The off-site hydrogen is also produced by a
stand-alone or grid-connected PV–wind generation system located in the Qinghai
Province, since it is a rich renewable energy area. The H2 is then delivered to Shanghai
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by liquid hydrogen tanker trucks. The study found the off-site production supply
chains as feasible options. The study mentioned transporting liquid hydrogen for
long distance using trucks is more economical compared to transporting compressed
gaseous hydrogen due to its higher energy density. Although this study was focused
on H2 supply for passenger vehicles, the results would also apply to H2 supply for
long-haul trucks.

• Kumar et al. conducted a process-based techno-economic assessment of hydro-
gen transportation pathways [9], Including, for example, pure hydrogen (hydrogen
pipeline and truck transport of gaseous and liquified hydrogen), hydrogen–natural gas
blends (pipeline), ammonia (pipeline), and liquid organic hydrogen carriers (pipeline
and rail). The authors estimated the costs and GHG emissions for high-capacity long
distance H2 transportation, such as 1000 km, 3000 km. Kumar et al. identified the
hydrogen pipelines and hythane (hydrogen and natural gas blends) as the least expen-
sive H2 transportation pathways for long distances [9]. The ammonia, liquid organic
hydrogen carrier, and truck transportation pathways were found to be more than
1.5 times expensive than the pure H2 pipelines.

• The International Energy Agency (IEA) assessed the opportunities and issues related
to different alternative H2 transportation options [10]. Pipeline and shipping options
were discussed for long-distance H2 transport such as 1000, 2000, and 3000 km. The
report also elaborated on local H2 distribution options such as trucks carrying gaseous
H2, liquid H2, ammonia, and LOHC and pipelines with 100 tonnes per day and
500 tonnes per day capacities. H2 conversion and reconversion technologies are also
considered in the study. The study identified pipeline H2 transportation to be the
cheapest option for less than 1500 km distances compared to ammonia and LOHC,
which were more cost effective for overseas H2 transportation over longer distances.
For local distribution, pipelines with high capacity were referred to as more cost
effective than tanker trucks for H2 transportation over longer distances [10].

The above-mentioned studies focused on different aspects of H2 used as a transporta-
tion fuel technology such as H2 production technologies, techno-economic assessments of
low-cost hydrogen transportation, H2 export by overseas or inland routes, assessments of
low carbon hydrogen exports from cheaper production locations like Canada, economic,
technological, and environmental impacts of H2 supply chains, and on different storage
technologies of H2. However, very few studies have been addressing the significance of
the H2 refuelling infrastructure on the overall H2 supply chain from a cost perspective.
Current H2 prices are far above the level needed for cost-effective operation of H2-based
transportation. Cost reductions in every part of the H2 supply chain will be needed to
realize a sustainable cost level.

This study investigated how costs in the supply of H2 for the refuelling of long-haul
trucks along major highways in Canada can be minimized by optimizing the design of the
supply infrastructure. Given the high cost of green hydrogen, this study focussed on the
use of blue hydrogen, produced from natural gas with carbon capture. Scenarios of local
and centralized blue H2 production were evaluated to investigate whether cost savings
from centralized H2 production on a larger scale would outweigh the additional costs of H2
transportation to refuelling sites without H2 production. The study analyzed two pathways
for H2 transportation: tanker trucks carrying liquid H2 and pipelines transporting gaseous
H2. The study used state-of-the-art H2 transportation and refuelling infrastructure design
parameters both for pipelines and tanker trucks.

First, scenarios that used one of the two transportation methods for all refuelling
sites in the total network were analyzed. Then the relationship between H2 volume,
transportation cost, and transportation distance were investigated, enabling the evaluation
of optimized scenarios, which used the least cost transportation option (either tanker truck
or pipeline, based on local conditions) for different refuelling sites along the highways.

The paper is divided in the following sections: Section 2 discusses the methodology;
description of the H2 supply pathways, scenarios, modes of transportation, and costs
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considered. Section 3 presents the results and discussions, followed by conclusions in
Section 4.

2. Methodology

A simulation model was developed to estimate the H2 demand for heavy-duty long-
haul trucks along major highways in Canada. Over 11,000 km of Canadian major highways
were considered (see Figure 1). Data from provincial transportation authorities (like the
Ontario Ministry of Transport) were used to estimate the annual average daily truck traffic
(AADTT) flow for each of the highway segments, resulting in a large range in AADTT
values from 500 trucks per day on more quiet highways to 17,000 trucks per day on the
busiest segments. The model assumed that each highway segment should provide the
H2 needed for all trucks that drive on that highway segment and for the total length of
that segment.
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The required H2 production per highway segment was then calculated from the truck
traffic kilometers driven on that segment and a fixed H2 consumption of 10 kg/100 km.

2.1. Hydrogen Refuelling Sites, Production Sites, and Pumps

To determine the number of H2 refuelling sites per highway, the highways were
segmented based on the truck traffic flow. To minimize H2 transportation costs, production
sites were co-located with refuelling sites. The standard distance between refuelling sites
was assumed to be 100 km. However, the actual distance between refuelling sites on some
highway sections was a bit shorter if the segment length was not exactly a multiple of
100 km. Given space constraints on truck rest stops, a maximum of 20 H2 pumps per
refuelling site were allowed, requiring refuelling stations to be placed closer together on
the busiest highway sections.

The number of refuelling sites for highway segment i, NR,i, was calculated using
Equation (1):

NR,i = Li/Di (1)

in which Li is the length of highway segment i and Di the distance between H2 refuelling
sites on that highway segment. Similarly, the number of H2 production sites for highway
segment i, NP,i, was calculated:

NP,i = NR,i/Rj (2)

with Rj being the number of refuelling sites supplied by a single production site in scenario j.

2.2. Scenarios and Transportation Options

Different scenarios were developed to investigate the impact of the size of the H2
production facility on the amount of hydrogen that would need to be transported, the
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transportation distance, and on the costs to supply H2 to refuelling sites. Larger production
sites were placed further apart, effectively increasing the number of refuelling sites that
would be supplied by one production facility. Four scenarios were evaluated with a focus
on identifying the potential to optimize the H2 supply to the refuelling infrastructure for
long haul trucks:

• Scenario 1: Each refuelling site had its own production facility; hence, no transporta-
tion was required between production and refuelling stations. Production sites were
about 100 km from each other.

• Scenario 2: Each production site supplied two refuelling sites (one of them being the co-
located refuelling site), and the distance between production sites was around 200 km.
Under this scenario, there were two times as many refuelling sites as production sites,
requiring half of the total amount of H2 produced to be transported to a neighbouring
refuelling site over 100 km distance (one-way) away.

• Scenario 3: Each production site supplied H2 to three refuelling sites, and there was
generally one production site per 300 km of highway. With three times as many
refuelling sites as production sites, two thirds of all refuelling sites needed to have
their H2 transported from the neighbouring production site, which was placed at
the middle location of the three refuelling sites. The H2 transportation distance was
100 km (one-way).

• Scenario 4: Each production site supplied five different refuelling sites, because pro-
duction sites were placed about 500 km apart. Under this scenario, there were five
times as many refuelling sites as production sites, requiring four fifths of all the H2 to
be transported to neighbouring refuelling sites from the central H2 production station.
On average, the H2 was transported over 150 km (one-way), as the distance to the
closest refuelling sites was 100 km, and 200 km to the outer refuelling sites.

For each scenario of supplying H2 to a network of refuelling sites under Scenarios 2–4,
two transportation variants were evaluated: tanker trucks and pipelines. The unit opera-
tions considered in the tanker truck pathway included production, liquefaction, transporta-
tion, and regasification, while the pipeline pathway considered production and transporta-
tion (see Figure 2). The unit operations are explained in detail in Sections 2.3.1 and 2.3.2.
For clarity, Scenario 1 does not use either of these pathways, because all H2 is produced
locally at each refuelling site.
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2.3. Hydrogen Production Cost and Transportation Costs

In the economic analysis, the total costs to supply H2 to the refuelling sites were
calculated as the sum of the production costs and the transportation costs.

TCH = CP + CT (3)

Here, TCH, CP, and CT are the total H2 supply cost, the H2 production costs, and the
costs for transportation of H2 from production to the refuelling sites, respectively.

For the H2 production costs, a correlation between the costs of production and the
production volume was used, based upon the results for blue H2 production by steam
methane reforming (SMR) from [11]. The SMR cost curve was extrapolated to determine
values for the smaller production volumes (between 5 and 100 tonnes/day) needed in this
study (see Figure 3). The hydrogen production cost numbers developed by [11] include
the cost to capture the associated CO2, but they exclude the costs to transport CO2 to
storage sites.
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It should be noted that the overall cost numbers shown in the results of this study
are the average costs over the total highway network and for all H2 supplied (a total
of 2978 tonnes per day), considering the H2 production costs from facilities of different
sizes, and distributing the total H2 transportation costs (for transportation over different
distances) over all H2 supplied (i.e., the total of H2 that needed transportation and the H2
that was produced on-site and did not need transportation).

Sections 2.3.1 and 2.3.2 discuss the details of the H2 transportation costs by liquid H2
tanker truck and by pipeline, respectively.

2.3.1. H2 Transportation by Liquid H2 Tanker Truck

The calculation of the costs to transport H2 by tanker truck included the capital cost
for the liquid H2 tanker truck, the driver salary, diesel fuel costs, and maintenance and
repair costs (including tires). Table 1 presents the technical, operational, and economic data
for H2 transport by tanker truck used in this study. All costs are given in 2020 Canadian
dollars (CAD).
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Table 1. Data and assumptions for H2 transportation by liquid tanker truck.

Values Units Reference

Capacity of liquid H2 tanker truck 4000 kg [12]
Lifetime of liquid H2 tanker trailer 20 years [12]

Lifetime of truck cab 5 years [12]
Capital costs of liquid H2 tanker trailer $852,000 CAD [12]

Capital costs of truck cab $108,000 CAD [12]
Diesel price per litre 1.59 CAD [13]

Diesel consumption per km 0.39 litre [13]
Diesel costs per km 0.83 CAD Calculated

Truck driver salary per hour 26.42 CAD [14]
Average speed truck 50 km/h [12]

Total time needed for loading and
unloading 3 H [12]

H2 liquefaction costs 1.34 CAD/kg [10]
Conversion rate USD/CAD 1.3415 [15]

Adjusted inflation factor (2008 to 2020) 1.2 [16]
Driving days per year 300 days Assumed

Shifts (round trips) per day 3 [12]
Operational cost (repair, maintenance, tires) 0.159 CAD/km [17]

The truck capital cost includes the costs for tanker, undercarriage, and cab. The liquid
H2 tanker can transport 10 times more hydrogen than a tube trailer for compressed H2
gas [12], hence, it was decided to use the liquid H2 tanker truck.

A diesel price of CAD 1.59 per liter was used in the tanker truck scenarios, based on
the average diesel retail price in 17 Canadian cities over the period of May 2020–November
2023 [13].

The total salary costs per roundtrip to deliver H2 to a refuelling site was calculated
based on the total time spent on the job, which included driving time and loading and
unloading time.

While the costs of liquefying hydrogen were substantial (1.34 CAD/kg), the costs
for regasification at the refuelling sites to convert it back to gaseous H2 were found to be
negligible [10], and, hence, they were not included in this study.

The capital costs of the tanker trailer and cab were calculated using a net present value
(NPV) approach. A 10% minimum acceptable rate of return (MARR) was used in the NPV
calculation of the truck transportation infrastructure for a 20-year lifespan. The capital
recovery factor (CRF) given by Equation (4) was used to obtain the annual capital cost.

CRF = {I*(1 + i)n/((1 + i)n − 1)} (4)

Here, i is the MARR (10%) and n is the project lifespan of 20 years.

2.3.2. H2 Transportation by Pipeline

For the calculation of the costs to transport H2 by pipeline, capital, operational, and
maintenance costs were considered for the two main components, namely, the pipeline and
the H2 compressor.

The pure hydrogen transportation cost equations from [9,18] were used to estimate the
pipeline capital cost and compressor capital cost, which included the equipment purchase
and installation cost.

The pipeline capital cost was assessed using the following equation from [9,18].

Cpipe = ({1171*(D/25.4)2 + 15,251*(D/25.4) + 329,705}*L + 767,845)*AF (5)

Cpipe is the H2 pipeline capital cost (CAD), D is the pipeline diameter (mm), and L
is the pipeline length (km). A cost factor (Alberta factor 1.15) has been considered in this
equation to reflect a 15% cost increase from the average North American value [9,19].
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The internal pipeline diameter for the pipelines of the network used in this study was
based on the maximum daily amount of H2 to be supplied to a refuelling site, which was
77 tonnes. In [9], a 16-inch (406.4 mm) pipeline was utilized for transporting 607 tonnes of
H2 per day. Using a simplified scaling method, which assumes that pipeline throughput
is linear with the area of the pipe opening, a 6-inch (152.4 mm) diameter was found to be
sufficient for transporting up to 85 tonnes per day. It was decided to use this diameter for
all pipelines in the network, because of the limited cost savings from using pipelines with
smaller diameters (a pipeline with half the diameter (3-inch/76.2 mm) has a 75% lower
capacity than a 6-inch pipeline, but costs only 16% less) in comparison to the opportunity
to use the pipeline network for additional clients in the future.

The compressor capital cost was estimated using the factorial method. Applying
this method, the purchase equipment cost of an equipment was first estimated, then the
cost was multiplied by the factors (installation costs, offsite costs, design and engineering,
and contingencies) to obtain the capital installation cost [9]. The purchase equipment cost
(CPEC) and the installed capital costs (CICC) were determined using Equations (6) and (7)
from [9,11].

CPEC = 30,746*P0.6089 (6)

CICC = (CPEC* ∑ CIF + OSBL + D&E + Contingency)*AF (7)

Here, P is power consumption by the compressor motor (kW). The factors used in
the CICC equation, namely, material and labour installation factor (CIF), off-site battery
limit cost (OSBL), the design and engineering cost (D&E), and the contingency charge
(Contingency) have values of 1.385, 0.3, 0.3, and 0.1 respectively.

The operating costs and maintenance costs were also considered to calculate the
overall cost for a hydrogen pipeline transportation infrastructure. The operating and
maintenance costs for the pipeline were assumed to be 1.5% and 3% of the pipeline capital
cost, respectively [9]. The compressor operating cost was not considered in this study
and would have been negligeable in comparison to the much higher costs to operate
the pipeline.

The pipeline and compressor have an assumed lifetime of 25 and 10 years, respectively.
A 10% minimum acceptable rate of return (MARR) was considered to calculate the net
present value (NPV) of the pipeline infrastructure for a 25-year lifespan. The capital
recovery factor (CRF) given by Equation (4) was used to obtain the annual capital cost. All
costs for the pipeline scenario were adjusted to 2020 CAD.

The annualized capital, operating, and maintenance costs for all pipelines were added
together into the total annual costs for H2 transportation. These costs were distributed over
all H2 produced/supplied, to calculate the contribution of transportation to the average
supply costs per kg of H2 for the pipeline scenarios.

It was assumed pipelines can be buried and they can follow the same trajectory as
truck routes for H2 transportation. Hence, the distance between the H2 refuelling stations
and the H2 production stations were kept the same as for truck transportation cases.

3. Results and Discussion
3.1. Hydrogen Production and Refuelling Sites

Different scenarios were evaluated for local and centralized H2 production (as ex-
plained in Section 2.2), varying the size of the production facility and the associated distance
between production sites, and the number of refuelling sites that were supplied by one
production site (see Table 2). For Scenario 1, where the H2 required for each refuelling site
is produced locally, there is no need for any H2 transportation. For the other scenarios,
the total H2 transportation distances were determined based upon the number of H2 re-
fuelling sites that did not have on-site production and their distances to the nearest H2
production site.
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Table 2. Number of production and refuelling sites for the scenarios evaluated.

Approximate Distance
between Refuelling

Sites (km)

Number of
Refuelling

Sites

Number
of Pumps

Number of
Refuelling Sites

per Production Site

Approximate Distance
between Production

Sites (km)

Number of
Production

Sites

Scenario 1 100 125 843 1 100 125
Scenario 2 100 125 843 2 200 67
Scenario 3 100 125 843 3 300 51
Scenario 4 100 125 843 5 500 38

The results in Table 2 show a clear reduction in the number of production sites for
scenarios in which one production site would supply an increasing number of refuelling
sites. However, this reduction is not linear, because the number of required H2 production
sites was evaluated per highway segment. If a highway segment was smaller than the
standard distance between two production sites under a certain scenario, it would still have
its own production facility. Similarly, if the length of the highway segment was 1.5 times the
standard distance between production sites, the segment would have two production sites.

3.2. H2 Supply Costs and Potential Cost Savings

The total cost per kg of hydrogen supplied to the refuelling sites for each of the
scenarios are presented in Tables 3 and 4. The cost numbers shown here are average costs
over the total highway network for all H2 supplied, 2978 tonnes H2 per day, considering
the full range of H2 costs from production facilities of different sizes, and distributing the
H2 transportation costs over all H2 supplied.

Table 3. Total H2 cost per kg supplied and H2 costs savings for different scenarios using liquid H2

tanker trucks for transportation.

Scenario
Number of
Production

Sites

Average
H2 Production

Volume
(Tonnes/Day)

Average
H2 Production

Costs
(CAD/kg)

Average H2
Transport.

Costs
(CAD/kg)

Average Cost of H2
Supplied to

Refuelling Sites
(CAD/kg)

H2
Costs

Savings
(%)

Scenario 1 125 23.8 2.83 0.00 2.83
Scenario 2 67 44.5 2.55 0.66 3.22 −13.6%
Scenario 3 51 58.4 2.45 0.81 3.26 −15.1%
Scenario 4 38 78.4 2.31 0.96 3.27 −15.5%

Table 4. Total H2 cost per kg supplied and H2 costs savings for different scenarios using pipelines for
transportation.

Scenario
Number of
Production

Sites

Average
H2 Production

Volume
(Tonnes/Day)

Average
H2 Production

Costs
(CAD/kg)

Average H2
Transport Costs

(CAD/kg)

Average Cost of H2
Supplied to

Refuelling Sites
(CAD/kg)

H2
Costs

Savings
(%)

Scenario 1 125 23.8 2.83 0.00 2.83
Scenario 2 67 44.5 2.55 0.40 2.95 −4.2%
Scenario 3 51 58.4 2.45 0.51 2.96 −4.7%
Scenario 4 38 78.4 2.31 0.62 2.92 −3.3%

H2 production costs varied significantly across the evaluated scenarios. The average
H2 production cost ranged from 2.31 CAD/kg to 2.83 CAD/kg, with the lowest cost for
Scenario 4, which had, on average, the highest production volume per production facility.

For the truck transport scenarios (see Table 3), the costs of the H2 liquefaction had
a major impact on the overall H2 transportation costs (i.e., the average of the costs for
H2 that needed transportation and for H2 that did not need transportation). For the
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scenarios using centralized H2 production, more refuelling sites need transportation when
moving from Scenario 2 to Scenario 4, hence, the results in Table 3 show an increase in the
average transportation costs. Due to the high costs for liquefaction, the scenario needing no
transportation due to local H2 production at every refuelling site (Scenario 1) was overall
more cost-effective in supplying H2 than the scenarios using centralized H2 production.

For the pipeline scenarios, H2 was transported in gaseous form, avoiding the need
for costly liquefaction. Similar to the scenarios using tanker trucks, the transportation cost
increased when moving from Scenario 2 to Scenario 4 to more centralized H2 production
(see Table 4), with each scenario needing more H2 to be transported. The overall costs to
supply H2 by pipeline were fairly similar for all scenarios with centralized H2 production.

The results in Tables 3 and 4 show that while pipeline transport results in lower H2
supply costs than truck transport, all scenarios involving H2 transportation are still more
expensive than the scenario that has on-site H2 production at all refuelling sites and does
not need any H2 transportation (Scenario 1).

The evaluated scenarios for H2 supply using tanker truck or pipeline transportation,
however, may not be optimized scenarios, because they used the same transportation
method for the total network of refuelling sites. In the next section, first the relationship
between the transportation costs and transportation distance is investigated for tanker
truck transportation and for pipelines, after which results for a mixed scenario using both
truck transport and pipelines are presented.

3.2.1. Comparison of H2 Transportation Costs between Tanker Truck and Pipelines

Figure 4 compares the per kg H2 transportation cost for different transportation
methods and for a range in daily H2 demand (volume), focusing on transportation between
locations that are 100 km and 200 km apart. For the tanker truck scenarios, the roundtrip
driving distance per delivery was twice the distance between locations, i.e., 200 km and
400 km, respectively, for the examples illustrated in Figure 4.
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Figure 4. Comparison of transportation costs per kg of H2 between liquid H2 tanker trucks and
pipelines.

From Figure 4, it is observed that the pipeline transportation costs change with hydro-
gen demand whereas the truck transportation costs per kg of H2 remain constant. This is
caused by the different characteristics of the two transportation methods. Since the tanker
truck capacity is fixed (4000 kg of hydrogen per tanker truck), the per kg H2 transportation
costs are also constant with demand, because if more H2 will need to be transported, this
will be achieved by a larger number of tanker trucks, each having the same H2 transporta-
tion costs per kg of H2 transported. For pipelines, the overall transportation costs are
dominated by capital costs, which are fixed once a network with a certain capacity has
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been constructed. Using this pipeline network for different H2 demands will then lead to
differences in H2 transportation costs. If the H2 throughput of the pipeline (the H2 demand)
was increased, the transportation cost would decrease and vice versa.

Figure 4 shows that truck transportation is more cost-effective for lower H2 demands
(i.e., for refuelling sites along quiet highways) and that pipeline transportation is favored
for higher H2 demands (refuelling sites along busy highways). For a distance of 100 km
between production and refuelling sites, pipelines have lower costs for H2 demands starting
around 17 tonnes per day, while for a 200 km transportation distance, pipelines will result
in lower costs for demands over 30 tonnes per day.

3.2.2. Optimized Scenarios Using a Mix of H2 Transportation Methods

The results from Figure 4 were used to create optimized scenarios for Scenarios 2 to
5 by selecting the lowest costs transportation method (tanker truck or pipeline) for each
highway segment. Thus, the optimized scenario represents a combination of transportation
modes to supply H2 to the total network of refuelling sites across highways in Canada.

Table 5 presents details on the optimized scenarios and compares the average cost to
supply H2 from centralized production to the costs for when using local H2 production
(Scenario 1). It was observed that for each scenario, almost half of the refuelling sites
used tanker truck transportation, while the other sites utilized pipelines. The optimized
scenarios had average H2 supply costs that were further reduced in comparison to the
scenarios that used either tanker truck or pipeline transport and were similar to those of
Scenario 1.

Table 5. Total H2 cost per kg supplied and H2 costs savings for optimized scenarios using a mix of
tanker trucks and pipelines for H2 transportation.

Scenario

Number of
Refuelling Sites

Needing
Transportation

Number of Refuelling
Sites Using

Transportation by
Truck

Number of Refuelling
Sites Using

Transportation by
Pipeline

Average Cost of
H2 Supplied to
Refuelling Sites

(CAD/kg)

H2 Cost
Savings

(%)

Scenario 1 N/A N/A N/A 2.83
Scenario 2 58 27 31 2.88 −1.9%
Scenario 3 74 36 38 2.87 −1.5%
Scenario 4 87 43 44 2.82 0.3%

Although the average H2 supply costs for the optimized scenarios utilizing centralized
H2 production were comparable to those for the scenario using decentralized H2 production,
there is one additional aspect that is outside the scope of the current study, but that will
need to be taken into account for a full view on the optimum H2 supply infrastructure
for refuelling sites for long-haul trucks along highways in Canada: The study used cost
information for H2 production from natural gas, which included the costs of CO2 removal,
but not the costs to transport CO2 to the storage site. These costs may be substantial,
because for a large fraction of the production sites along the Canadian highway network
it is expected that CO2 may need to be transported over long distances. This may have a
significant impact on the overall H2 supply costs and may influence whether centralized or
decentralized H2 production would be most cost-effective. It is, therefore, recommended
that the transportation of CO2 from the H2 production sites to the storage location(s) will
be included in follow-on research on an optimized H2 supply infrastructure.

4. Conclusions

In this study, it was analyzed how the costs of supplying H2 to refuelling sites for long-
haul trucks along major highways in Canada can be minimized by optimizing the design
of the refuelling infrastructure. Scenarios using local or centralized blue H2 production
were evaluated using two different modes of H2 transportation (liquid H2 tanker trucks
and pipelines).
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For each scenario, the average H2 supply costs were determined considering H2
production costs from facilities of different sizes and transportation costs for H2 that was
not produced locally. Average H2 supply costs were 2.83 CAD/kg H2 for the scenario
with local H2 production at each refuelling site. Scenarios with centralized H2 production
had average H2 supply costs of 3.22–3.27 CAD/kg H2 when using tanker trucks for H2
transportation and of 2.92–2.96 CAD/kg H2 when utilizing pipeline transportation. The
high costs for H2 liquefaction were a major factor in the higher supply costs for the tanker
truck transportation scenarios.

The different characteristics of the two H2 transportation methods allowed for the
creation of optimized scenarios, which utilized each transportation mode when it would
be the cheaper option (tanker trucks for refuelling sites with lower H2 demand along
quiet highways, and pipelines for sites along busy highways that had higher H2 demand).
The average H2 supply costs for the optimized scenarios of centralized H2 production
(2.82–2.88 CAD/kg H2) were similar to the average supply costs when using local H2
production at each refuelling site (2.83 CAD/kg H2), with slightly lower costs for the
scenario using the largest H2 production volumes.

While the results of this study seem to indicate that there is little difference in the
results between scenarios using local or centralized H2 production, the transport of CO2
from the production site of the blue H2 to a storage location were out of scope for this
study. Follow-on research is recommended to investigate how the CO2 transportation
costs will impact the H2 supply costs and may influence the design of an optimum supply
infrastructure for a network of refuelling sites for long-haul trucks.

It is recommended that in future research, the results obtained from blue hydrogen
pathways will be updated to include the costs for CO2 transportation and storage, and to
compare them to those of green hydrogen pathways to identify the optimum solution.
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Abstract: A radical transformation of the transport industry is required in order to achieve a fossil-fuel-
free vehicle fleet and reach the greenhouse gas emissions goals. Electrification plays a crucial role in
this radical process. An electric road system (ERS) is a road that supplies power to electric vehicles as
they drive on it, offering numerous advantages. These include an extended driving range, decreased
reliance on batteries, and increased flexibility and convenience for drivers, eliminating the need to
stop for recharging. This paper highlights the transformative potential of ERS in revolutionizing the
land transport sector. Through thorough testing with a conductive ERS demonstrator, the viability of
the presented technology is validated. Essential aspects like power transfer, efficiency, safety, and
environmental impact showcase ERS’s adaptability and scalability across diverse vehicle types. This
study recommends widespread ERS support for battery electric vehicles, emphasizing the route
toward a sustainable future.

Keywords: electric road system (ERS); dynamic charging; charging infrastructure; battery electric
vehicle (BEV); charging; infrastructure

1. Introduction

The decarbonization of road transport is a fundamental step toward significant reduc-
tions in global CO2 emissions. The electrification of road transport is a promising path
toward CO2 reduction [1]. This electrification of road vehicles is however challenging
from several viewpoints. The electric traction system (electric machine and corresponding
inverter, excluding the battery) is an improvement compared to combustion-based propul-
sion, since an electric traction system is significantly smaller, lighter, and more efficient
than the corresponding combustion-based traction system. The challenge lies in how the
energy is transferred to and stored onboard a battery electric vehicle (BEV).

The electric energy can be transferred in three different ways:

1. The onboard battery energy storage can be filled via the direct transfer of electric
energy, called charging. The charging rate is constrained by the capacity of the battery
to receive power. Modern full-electric-vehicle batteries are designed to store large
amounts of energy, enabling faster charging. Fast charging, exemplified by the Kia
EV6 [2], can achieve partial recharging from 10% to 80% in about 20 min. Extended
charging times, such as during night-time, result in lower charging rates.

2. An alternative is to replace an empty battery with a full one, called battery swapping.
There are several automotive OEMs for both commercial vehicles and private cars, like
the Chinese car OEM NIO [3], that are designed for systematic battery replacement in
just a few minutes in dedicated battery-swapping stations. The empty battery is then
recharged in the battery swapping station at a lower charge rate than demanded at a
fast charging station.

3. A continuous supply of electric energy can be provided at least for parts of a travelled
distance on a public road. This kind of energy transfer can be referred to as an “electric
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road system” (ERS), which partly replaces the role of fast charging. While on an ERS,
energy can be provided for both propulsion of the vehicle and charging an onboard
battery. The need for onboard energy storage is reduced. As presented in [4], even
with fractional deployments of an ERS on a main road system, the battery capacity
installed in the majority of BEVs can be reduced by 50–70%.

1.1. Electric Roads

An electric road refers to a road that includes some kind of technology that facilitates
electric energy transfer from the road to the vehicles driving on it. The energy transfer can
be made in a conductive way, meaning that some kind of sliding contacts are used, as used
in trains, trams, and trolleybuses. Energy transfer can also occur inductively utilizing a
high-frequency magnetic field connecting a transmitting component, typically located just
beneath the road surface, and a receiving component installed in vehicles, usually beneath
the vehicle body. The company Electreon [5] manufactures an example of this technology.
This paper focuses on ERSs in the form of conductive ERSs.

Conductive ERSs exist in at least three different forms:

1. Siemens eHighway [6] is an example of conductive transfer from above the vehicle via
catenary lines. This technology is derived from train technology and is only designed
to supply power to electric trucks. The catenary lines are located on a highway in
Germany and was first commissioned using an electric truck in 2017.

2. Honda has introduced a conductive transfer system from the side of the road [7]. With
this technology, the vehicle connects to a continuous, parallel, two-pole supply on
the side of the road via an arm extended from the side of the vehicle. Honda has
developed a demonstrator ERS based on this technology located on a racing track.
The system has demonstrated exceptional performance, effectively transferring power
exceeding 450 kW at speeds of 150 km/h.

3. There are multiple companies that have built ERS demonstrators using conductive
transfer from the road surface, for instance, Alstom [8], Elways [9], and Elonroad [10].
For this type of conductive ERS technology, a mechanical arm or mechatronic device
establishes a connection with a continuous, parallel, two-pole supply located in the
road. Both Alstom and Elways have tested their own versions of this technology with
electric trucks in enclosed environments. Elonroad has tested this technology on a
public road using an electric bus, a passenger car, and a resistive load.

To validate the viability of conductive ERSs, this paper reports on experiences with com-
missioning an ERS demonstrator with different road vehicles drawing power from it.

1.2. Aspects of Different Charging Technologies

As outlined in [1], a fast-charging-based road transport system requires a ratio of
1:100 or denser of fast charging stations for BEV passenger cars. In Sweden, with about
5 million cars [11], this corresponds to about 50,000 fast charging spots distributed along
approximately 15,000 km of national and European roads. This results in at least 100 fast
chargers every 30 km on average across Sweden. Along traffic-intense roads, where an
even greater demand is expected, even more fast chargers will be needed.

Meeting the increasing demand for a high ratio of fast chargers to BEVs, coupled
with a lower overall vehicle count, presents a similar challenge in allocating fast chargers
for commercial vehicles. Modeling indicates that with the implementation of an ERS for
road transport, approximately 3000 to 4000 km out of the total 15,000 km of national and
European roads would require ERS coverage [12]. This coverage would facilitate “non-
stop” travel across the country, with vehicles needing 50–70% less battery capacity than a
fast-charger-based system.

These conclusions highlight two challenges with electromobility: (I) a huge number
of fast charging stations is needed in a fast-charging-based system; (II) by deploying ERS
technology on a wide scale, the abundant requirement of fast chargers can be diminished
and the amount and size of BEV batteries can be reduced significantly.
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1.3. Related CO2 Emissions

Figure 1 illustrates the CO2 emissions originating from both the manufacturing and
driving phases of passenger cars, local distribution trucks, and long-haul trucks in Sweden.
The analysis considers a fully electrified vehicle fleet, comparing a fast-charger-based
system (left bar) with an ERS-based system (right bar) in terms of required battery amount.
Note that the CO2 emissions from driving various vehicle types (depicted in the yellow
field) remain constant for both types of charging infrastructure. The CO2 emissions from
driving were calculated using the CO2 emissions related to electricity production from [13]
and consumption per vehicle from [4].

Figure 1. CO2 emissions from BEVs with a full electrification of cars and two types of trucks in
Sweden using either a fast-charger based system (left bar) or an ERS-based system (right bar).

However, the CO2 emissions related to battery manufacturing (indicated by the blue
field for passenger cars, gray for long-haul trucks, and orange for local distribution trucks)
are non-negligible compared to the emissions from driving, regardless of the charging
infrastructure. Moreover, employing an ERS significantly reduces the CO2 emissions
from battery manufacturing. The calculation of battery manufacturing emissions involved
several steps:

1. Determination of the distribution of vehicle types and their quantities in Sweden
based on data from [11].

2. Assumption of battery sizes: 30 kWh for passenger cars, 200 kWh for local distribution
trucks, and 250 kWh for long-haul trucks [1].

3. Computation of battery amounts for a fast-charger-based system compared to an
ERS-based system, relying on [4].

4. Adoption of an assumed emissions factor of 60 kg CO2/kWh related to battery
production [14].

In conclusion, the figure highlights that the CO2 emissions from battery manufacturing
are dominated by passenger car batteries and that the selection of charging technology
significantly impacts CO2 emissions, indirectly via the reduced battery need.

2. Materials and Methods

This paper presents a conductive electric road demonstrator built by the company
Elonroad [10], located on a public road in an urban environment in Lund, Sweden, that
has been used to assess the potential of the presented electric road technology. The project
related to the demonstrator is known as the Evolution Road project [15], which consists of
partners from industry, academia, as well as the public sector in Sweden, and is funded
by the Swedish Transport Administration. Since the project started in 2019, a number of
aspects related to the technology has been tested encompassing the electric power transfer
to the installation and build procedures. In this paper, results and experiences from the
project concerning the following areas are presented:
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• Electric power transfer;
• Efficiency calculations;
• Electrical safety;
• Mechanical safety *;
• Electromagnetic compatibility (EMC) *;
• Acoustic tests *;
• Environmental perspective *.

Areas labeled with an asterisk provide a concise overview of the gained experiences
and results and are presented in Sections 2.3–2.5.

2.1. The Electric Road Demonstrator

The conductive electric road demonstrator consists of a transformer, a rectifier, and a
segmented conductive electric rail with a total length of 850 m embedded in the top layer
of the road surface, as presented in Figure 2. In the following subsection, each subsystem
of the demonstrator is presented.

Figure 2. The ERS demonstrator.

2.1.1. Alternating Short-Segmented Electric Road

The electric road presented in this paper is a form of conductive electric road known
as an alternating short-segmented electric road (ASSE). This means that the short segments
(1 m long) are arranged so that, as illustrated in Figure 3, every other short segment (dark
grey) is permanently connected to 0 V DC, and the remaining short segments can be
connected to either 0 V DC or 650 V DC by means of solid-state switches integrated in the
road. To mitigate the risks associated with hazardous voltage levels, a short segment is
activated with 650 V DC only when a vehicle is positioned on top of it. As a convenience and
safety measure, each short segment is equipped with LEDs to indicate the activation status
of 650 V DC. The activation of short segments is facilitated through wireless communication
between the vehicle and ERS.

The ASSE is rectangular in cross-section and built in 10 m sections that are integrated
in a groove in the road and secured by a bitumen mass, as presented in Figure 4. A 40 cm
wide and 6 cm deep groove is milled in the top layer of the road. The 10 m sections are then
placed in the groove hanging on bars, thus are level with the surrounding asphalt. The
remaining space is filled with a bitumen mass that fixes the rail to the road and the bars are
removed. The whole process is fast and has no negative impact on the underlying layers
of the road body. Once installed, the visual impact of the road is very limited, as shown
in Figure 2. However, more knowledge and research are required regarding the rectifier
station installations and cable installation between the rectifier station and the electric road,
as these installations are expected to be more time-consuming and labor-intensive than the
installation of the electric road.

The presented ERS technology does not only supply vehicles with power but also
offers control over both charge access as well as billing data for the charging vehicles. In
addition, the LEDs in the ASSE offer additional safety services such as alerts of traffic
accidents and risks of traffic congestion.
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Figure 3. Overview of the basic principle of a conductive ERS taken from [16]. All elements in green
are placed onboard the vehicle and represent the interface toward the electric road. The rest of the
vehicle is not shown for clarity.

Figure 4. (Left): Installation of a 10 m section of ASSE into a groove. (Right): Moulding a 10 m
section of ASSE into a groove in the road.

2.1.2. The Rectifier Station

A 6-pulse passive rectifier (bottom right in Figure 3) is used to provide 650 V DC to
the two internal main power conductors (illustrated in blue and red) in the ASSE. The
demonstrator is connected to a 400 V grid; therefore, a 400 kVA 400/450 V transformer is
used to achieve a mean three-phase rectified voltage of 650 V DC. In addition to the rectifier
and the transformer, the rectifier station also contains solid-state switches (used to connect
and disconnect the electric road) and computers that can handle billing and data as well as
survey and control the short segments and their corresponding LEDs in the road.

2.1.3. The Power Receiver in the Vehicle—The “Pick-Up”

In order to ensure a smooth power transfer between the ASSE and the vehicle, at least
three sliding contacts are required (illustrated in green in Figure 3). The device containing
the sliding contacts, presented in Figure 5, is referred to as the “pick-up”. The pick-up is a
mechatronic device equipped with sensors that automatically ensure contact with the ASSE
as it has the capability to lower, raise, and move the sliding contacts laterally. Additionally,
it can exert a specific contact force on the contacts. As the pick-up adjusts its position
automatically, limited input or attention is required from the driver.
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Figure 5. Two different types of pick-ups mounted on different vehicles providing contact between
ASSE and vehicle.

As a vehicle drives along the ERS and draws power, the sliding contact points alternate
between short segments that are connected to either 650 V DC or 0 V DC. As a consequence,
an onboard rectifier is required as the voltage perceived by the vehicle has an alternating
voltage polarity from the pick-up. In addition to the onboard rectifier, a DC/DC converter
is required onboard the vehicle for two reasons: (I) to match the voltage level of the high-
voltage battery with the ERS supply and (II) to provide galvanic isolation between the ERS
supply and the traction voltage system (TVS) of the BEV.

As roads are subjected to harsh weather conditions, the contact surface can be wet, icy,
or even covered in snow. In addition, small pebbles as well as sand can accumulate on the
contact surface. To mitigate the risk of poor contact during cold conditions, the project has
successfully used a snow plough to clear the contact surface. Small objects, such as sand or
pebbles, are cleared by the pickup due to the nature of the sliding contact. However, small
objects have the potential to lift the sliding contact, posing a risk of breaking the current
path to the rectifier and potentially causing an arc.

To address this issue concerning poor contact, two measures have proved effective during
the project: (I) dividing one sliding contact into several smaller contacts arranged in parallel
and (II) incorporating more than three sliding contacts per vehicle. Both of these strategies
provide alternative paths for the pick-up currents, mitigating the risk of arcing. Although the
pick-up has performed well during the project, with an efficiency well over 97% (as shown in
Section 3.2), little is known of its performance in terms of losses at higher speeds. In addition,
service intervals and maintenance costs related to the pick-up are hitherto unknown.

2.2. Electric Power Transfer and Efficiency Calculations

In this project, three different vehicles draw power from the electric road: an electric
bus, a passenger car, and a resistive load mounted on a trailer. In Figure 6, the interfaces
where voltage and current are measured in the demonstrator are depicted as follows: A—grid,
B—after the transformer, C—after the rectifier in the rectifier station, and E—after the rectifier
in the vehicle. These measurements serve as the basis for calculating power, losses, and efficiency
at these interfaces. A full description of the measurement system is presented in [17].

Figure 6. An overview of the measurement interfaces of the ERS demonstrator and the electric bus.
Red elements represent 650 V DC and blue represent 0 V DC.
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2.3. Safety

There are many safety aspects to consider related to conductive ERS technology. The
following issues are considered in this paper:

• The two main areas of electrical safety in a conductive ERS are related to the risk of
touch events related to hazardous voltages. This means that there should be no risk
related to touching the electric road or a vehicle that is connected to an electric road.
Firstly, touch protection of the ASSE is accomplished by the design, as the outer
exterior of the ASSE is grounded to 0 V potential in the rectifier station. In addition,
short segments are only activated with hazardous voltage levels of 650 V DC when
a vehicle is located over it; otherwise, they remain at safe ground potential of 0 V, as
presented in Section 2.1.1.
Secondly, the high-voltage battery, ERS supply voltage, and corresponding TVS in
the vehicle are galvanically isolated from the chassis to prevent hazardous touch
currents from flowing through a person’s body (standing on conductive ground)
when touching the vehicle’s chassis. Figure 7 presents the basic concept of an isolation
fault between the positive high-voltage pole of the ERS supply and the vehicle’s
chassis while a human body is in contact with the vehicle’s chassis and ground. This
event causes current to flow through the human body to ground and back to the
rectifier station.
However, to mitigate this risk, the vehicle is equipped with an isolation fault moni-
toring system. The isolation fault monitoring system is designed to ensure that the
impedance between the high-voltage poles in the TVS and the chassis is unaltered and
kept in the magnitude of MΩ. If an isolation fault occurs (meaning that the impedance
is instantly drastically reduced), the intended isolation fault monitoring system is
triggered and disconnects the high-voltage battery from the TVS as well as the vehicle
from the ERS supply.
In order to gain a greater understanding of this phenomenon, measurements of touch
currents were obtained when a human model, defined according to standard [18],
is connected to the electric bus chassis while the bus was drawing power from the
ERS. No isolation faults were present in the bus or the ERS demonstrator during
these measurements. A 4444 Picoscope [19] was used to measure the voltage over
the human model in order to assess the magnitude of touch current, as outlined in
the related standards [18,20]. The results of these measurements are presented in
Section 3.3 in this paper.

Figure 7. Conceptual overview of the electric safety issue of touch current when a vehicle is drawing
power from the ERS and a human body is connected to the vehicle’s chassis. Red elements represent
650 V DC and blue represent 0 V DC.

• Mechanical safety refers to the road friction on the short segments of an ASSE, which,
as a conductive ground-based technology, can cause poor friction compared to the
adjacent friction on the original road. To mitigate this risk, a pattern is engraved in
the short segments that is small enough to not interfere with the sliding contacts but
provide enough grip to the rubber in the wheels. Throughout the project, a number
of friction test have been conducted by two different parties, Ramboll consultancy
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and The Swedish National Road and Transport Research Institute (VTI). All tests
concluded that the ASSE fulfilled the friction requirements for public roads in Sweden.

• Electromagnetic compatibility (EMC) is briefly mentioned in this paper as the ERS must
comply with standards concerning radiated emissions. However, as there are no
specific standards concerning ERSs, measurements were conducted based on best
practices concerning EMC as well as standards addressing similar infrastructure,
for instance, railways, tramways, and trolleybuses. Three different organizations
conducted measurements at different occasions: Research Institute of Sweden (RISE),
Swedish Defence Materiel Administration (FMV), and Department of Biomedical
Engineering, LTH, Faculty of Engineering. Measurements of radiated emissions, while
the bus is drawing power from the demonstrator ERS, identified peaks across a broad
spectrum of frequencies. To investigate this issue, further measurements are planned
to be conducted in a laboratory environment, aiming to mitigate the uncertainties
associated with background emissions.

2.4. Acoustic Tests

There are many aspects to consider in an ERS, for instance, the issue of noise pollution.
In order to assess the impact of the sliding contacts concerning noise, acoustic tests were
performed with the ERS demonstrator. The tests were performed according to ECE-R51 [21]
with the electric bus on the ERS demonstrator. The tests were performed at night time in
order to reduce the influence of background noise. The bus drove at different speeds with
the pick-up lowered and raised for each speed as to determine the impact of the sliding
contact. Initial results showed no significant increase in noise emissions with the pick-up
connected to the ASSE.

2.5. Environmental Perspective

As ERSs have the benefit of reducing CO2 emissions by allowing BEVs to have smaller
batteries, this paper also briefly addresses the environmental perspective of recycling
the ERS. As the ERS demonstrator is still in commission, the process of recycling is in a
preliminary phase. However, initial measures of recycling subsystems and parts of the ERS
have thus far produced promising results. The project is presently assessing the economic
benefits of recycling, with more detailed information forthcoming. However, it is evident
that recycling the entire system post use poses no practical challenges, and the metal value
of the components far surpasses the recycling costs.

A primary motivation behind the project is the need to lower the overall need for
batteries in a future, mostly for BEVs. A compelling argument for ERS-based infrastructure
capable of serving all BEV types lies in the fact that approximately 90% of the batteries in
existing and future vehicles are and will be in smaller vehicles, with about 10% in heavy
duty trucks (HDTs) [1]. Infrastructure that only services HDTs would have a comparatively
minor impact on the environmental footprint of battery production and the complexity
of recycling batteries. In conclusion, from an environmental standpoint, comprehensive
support for all BEV types is recommended.

3. Results
3.1. Electric Power Transfer

Two types of electric power transfer tests are presented in this paper: (I) two vehicles
(a passenger car and the electric bus) are drawing power from the ERS demonstrator
simultaneously, see Figure 8 (left), and (II) a resistive load mounted on a trailer, see Figure 8
(right), draws a power of 280 kW at a speed of 80 km/h.

The two-vehicle test showed that the road was able to provide individual supply to
several vehicles. In Figure 9, the total drawn power in interface C (interfaces defined in
Section 2.2) is presented while a passenger car (a Nissan Leaf) and an electric bus (Solaris
Trollino 15) draw power from 140 m of electric road. The measurements were sampled at
200 kHz using LEM sensors. The full measurement system is presented in [17].
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Figure 8. (Left): An electric bus and a passenger car drawing power from the ERS demonstrator
simultaneously. (Right): The trailer designed to draw 300 kW.

Figure 9. Bus and passenger car drawing power from the ERS demonstrator.

At 0.5 s, static charging is initiated, and the bus is standing still while charging from
the ERS demonstrator and drew a power of 37 kW. During static charging, the drawn power
is limited to approximately 40 kW to avoid the risk of overheating the contact points in the
pick-up. As the bus starts to drive, at 18.5 s, the drawn power to the battery increases from
37 kW to roughly 80 kW. As dynamic charging commences, the bus accelerates, and the
total drawn power in interface C increases. While the bus is accelerating, the passenger car
starts to draw 13 kW dynamically (located behind the electric bus) at 26.5 s; consequently,
the total drawn power is instantly increased from 142 kW to 155 kW. At 32.5 s, the bus
reaches a top speed of approximately 20km/h, and, at 33 s, the bus starts to brake until it
disconnects from the electric road at 34 s. At 41 s, the passenger car drives off the electric
road and disconnects.

Throughout this charging event, the onboard DC/DC converter in the passenger car
is configured to draw 13 kW. Due to the low state of charge (SoC) in the car’s high-voltage
battery, the entire 13 kW is allocated to the battery circuit, where it is distributed between
the battery and the electric traction system. Since the DC/DC converter sets a limit on the
drawn power from the ERS demonstrator, the drawn power remains constant regardless of
whether the passenger car is charging statically or dynamically.

In Figure 10, measurements of the drawn power and speed from the ERS demonstrator
are presented from interface C (power on left y–axis, and speed on right y–axis) with the
trailer acting as the vehicle load. These measurements were obtained using the Elonroads
internal measurement system sampled at approximately 1 kHz. After 0.9 s, the trailer
connects to the first ASSE section and draws a power of 280 kW. As different versions of
the 10 m sections of ASSE were used during this measuring event, the first ASSE 10 m
sections that the trailer connected to were not equipped with sensors to measure speed.
Consequently, the speed of the trailer was unknown until 1.3 s when the trailer made
contact with a 10 m section of ASSE that could provide speed measurements. When speed
measurements were available at 1.3 s, the trailer had a speed of 75 km/h and reached a
speed of 80 km/h at 2.5 s. After 3 s, the car that was pulling the trailer started to break and
reached a speed of 13 km/h after 6.5 s. The trailer disconnected from the ASSE at 8.1 s, and
the power was 0 kW at this time. The trailer came to a complete stop after 8.6 s.
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As presented in Figure 10, the ERS demonstrator is able to provide a continuous power
of 280 kW with no disruption between 0.9 and 8.1 s at speeds up to 80 km/h. This verifies
that the presented ERS technology is capable of providing high power levels at high speeds
resembling highway conditions for trucks. This high power level of 280 kW is mainly intended
for heavy trucks and not expected to be drawn by cars that are expected to draw up to 50 kW
from the ERS. Although the ERS demonstrator is designed to provide 300 kW of power,
tests have shown that the installed transformer in the rectifier station is slightly undersized.
Consequently, the transformer restricts the trailer from drawing power at these levels.

Figure 10. Trailer drawing power from the ERS demonstrator. The left y–axis shows the drawn power
(blue line), and right y–axis shows the speed of the trailer (orange line).

3.2. Efficiency Calculations Based on Tests

To evaluate the efficiency between the grid and the vehicle for the showcased ERS
technology, a charging event was conducted wherein the electric bus draws power from the
ERS demonstrator. Figure 6, previously introduced in Section 2.2, presents an overview of
the ERS demonstrator and the electric bus with the corresponding measurement interfaces
(A–E), where current and voltage are used to calculate the losses and efficiency for the ERS
demonstrator. Interface A–C represents the losses in the transformer and the rectifier, and
interface C–E represents the losses in the underground cable to the ASSE, the ASSE, the
sliding contact, and the onboard rectifier.

In Figure 11, a charging event with 140 m of electric road and the electric bus drawing
power from it is presented. In the upper plot, losses (left y–axis) and drawn power (right
y–axis) at interfaces A–C, C–E, and A–E are presented with a moving average filter with a
time constant of 50 ms; in the lower plot, the efficiency (left y–axis) and drawn power (right
y–axis) at interfaces A–C, C–E, and A–E are presented with a moving average filter with a
time constant of 250 ms. Losses and efficiencies were calculated based on measurements of
voltage and current using the measurement system presented in [17].

At 2 s, the bus is at standstill and draws 39 kW from the electric road. The drawn
power, supplied to the battery during static charging, is limited to 39 kW in order to
avoid overheating the contact points in the pick-up. After 18 s, the bus starts to accelerate
and dynamic charging is initiated. Consequently, the previous power limit to the battery
increases from 39 kW to 79 kW at 19 s. Simultaneously, the drawn power required for
propulsion increases as the bus accelerates, reaching a peak power of 187 kW at 22.5 s. By
25 s, the bus has attained its final speed of 40 km/h, and at 27 s, the drawn power reduces
as the bus starts to cruise at 40 km/h.

During static charging, the loss in the ERS demonstrator from grid to vehicle (interface
A–E, upper plot) is 2.1 kW, which corresponds to an efficiency of 94% (interface A–E, lower
plot). A total of 1.7 kW of these losses occur in the rectifier station (interface A–C, upper
plot), which results in a efficiency of 95% for the rectifier station. The corresponding loss
in the ASSE and up to the BEV DC/DC converter (interface C–E, upper plot) is 0.4 kW,
which results in a efficiency of 98.7%. During dynamic charging, the total losses in the
ERS demonstrator (interface A–E, upper plot) at peak power (187 kW at 22.5 s) is 9 kW,
which results in a total efficiency of 95.4% (interface A–E, lower plot). The losses in the
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rectifier station are now 3.6 kW (interface A–C, upper plot) and that in the ASSE up to the
DC/DC converter in the BEV (interface C–E, upper plot) reaches 5.4 kW. Although the
losses increase at peak power, and generally during dynamic charging, the efficiency for
the rectifier station (interface A–C, lower plot) increases to 98.1%, and the efficiency for the
ASSE and up to DC/DC converter in the BEV decreases to 97.2%. After peak power at 22.5
s, the efficiency for the ASSE and the vehicle (interface C–E) increases to 97.4%.

Figure 11. Power (right y–axis), losses (upper plot, left y–axis), and efficiency (lower plot, left y–axis)
when the bus is drawing power from the ERS demonstrator.

To conclude, from Figure 11, it is clear that the presented conductive ERS technology
offers great efficiency performance. For the ASSE and the vehicle (interface C–E), an
efficiency between 97.2 and 98.7% shows great promise for the presented ERS technology
as high efficiency is crucial for ERS deployment on a wide scale.

However, it is also evident that the efficiency performance is dependent on the power
drawn by the vehicles. During static charging, the efficiency for the rectifier station is
lower than during dynamic charging. This is because the relatively constant magnetization
losses cause the efficiency of the 400 kVA transformer in the rectifier station to increase
with increasing load. At lower loads (around 40 kW in this case), the no-load losses in the
transformer are high compared to the load-losses, which results in a low efficiency for the
transformer. This indicates that the transformer choice in conjunction with drawn power
load from the ERS are important factors for the efficiency of the presented ERS technology.

During static charging, the losses in the ASSE and in the vehicle are smaller than
during dynamic charging, which is due two main reasons: (I) The resistive losses in the
system increase with the square of the drawn current. Hence, a higher drawn power results
in higher losses, as seen in Figure 11 when dynamic charging commences. (II) During
dynamic charging, the contact resistance in the sliding contact between the pick-up and
short segment increases. As a result, the resistive losses in the system at interface C-E
increase as both the resistance and the drawn current increase, which leads to an overall
reduction in efficiency.

3.3. Electrical Safety Test—Touch Current

For a conductive ERS, the issue of electrical safety is critical. One of the most important
safety aspects is the issue of touch current related to the vehicle’s chassis, meaning that there
should be no safety risks of touching an electric vehicle’s chassis while it is charging on an
electric road. In order to assess the electrical safety aspect of touch current, measurements
were conducted on the ERS demonstrator with a model of a human body connected to
electric bus chassis while the bus was drawing power from the demonstrator.
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In Figure 12, the measurement setup for the touch current tests is presented, where a
human model is connected between a BEV chassis and ground while the BEV is drawing
power from an electric road. The human model (defined in [18]) comprised a resistor Rs
(1.5 kΩ), connected in parallel with a capacitor Cs (0.22 nF), which was connected in series
with the resistor Rb (0.5 kΩ). Resistor Rs and Cs correspond to the impedance of a human
body’s skin, while resistor Rb corresponds to the impedance of a human body excluding
the skin. The voltage Vb over resistor Rb was measured in order to assess the current that
flows through the human model when connected to the vehicle’s chassis.

Figure 12. Overview of the measurement setup related to touch current when a human model is
connected between a BEV chassis and the ground while the BEV is drawing power from an ERS. Red
elements represent 650 V DC and blue represent 0 V DC.

Figure 13 presents measurements of the voltage Vb and current through the human
model Ib when the electric bus is charging on 80 m of electric road with a human model
connected between its chassis and ground. The upper plot shows the voltage Vb, and
the lower plot shows the current Ib. In both plots, the unfiltered value (left y–axis) as
well as a moving root mean square (RMS) value (right y–axis) with a time constant of
100 ms are shown. The relevant levels of touch current are presented as RMS values in
the relevant standards [18,20]. Although the high-voltage system of the bus is isolated
from the chassis, there is a current that flows through the human body to the ground
when the bus is drawing power from the ERS demonstrator. This is caused by inadvertent
capacitive coupling (also known as-parasitic capacitance) between the high-voltage poles
of the TVS and the bus chassis. As presented in [22], the greatest impact on the voltage
Vb is the parasitic capacitance between the output of the converters in the TVS and the
bus chassis, for instance, the output of the onboard high voltage battery charger and the
traction inverter, see Figure 14. Therefore, the magnitude of touch current is greatly related
to which subsystems and corresponding converters are active in the TVS during charging.

In Figure 13, between 0.5 s and 3.5 s, the onboard charger starts its sequence to initiate
static charging from the ERS demonstrator. After 3.5 s, the bus draws 38 kW of power from
the electric road statically, and the RMS of Vb and Ib reaches values of 7.7 V and 15.6 mA,
respectively. As dynamic charging starts at 5.5 s, the traction inverter starts to draw power
from the ERS, and the current through the capacitive coupling between the output of the
traction inverter and bus’s chassis, see Figure 14, increases the RMS of Vb to 10.6 V and of
Ib to 21.2 mA in Figure 13.

The presented measurements show that the BEVs that charge from an ERS must account
for this parasitic capacitance in their onboard converters. Despite the observed touch cur-
rent values exceeding the recommendations specified by relevant standards [18,20], these
findings do not implicate an inherent fault in the presented ERS technology. Two primary
factors account for this discrepancy. Firstly, the particular electric bus that was used for the
measurements lacked complete double isolation between the TVS and chassis, a feature now
considered standard in modern BEVs. Single isolation elevates the risk of isolation faults
and the occurrence of parasitic capacitance. Secondly, the electric bus does not have a fully
functioning isolation fault monitoring system that is adapted for the presented conductive
ERS technology. Finally, it is probable that mitigating the touch current issues associated with

258



World Electr. Veh. J. 2024, 15, 59

this phenomenon could be achieved through measures such as (I) using an isolated DC/DC
converter or (II) minimizing the parasitic capacitances during the vehicle’s design phase.

Figure 13. Measurements of the human model connected between the bus chassis and the ground.
Upper plot: Blue lines represents the unfiltered voltage Vb (left y–axis) and red (right y–axis) with a
moving RMS filter of 100 ms. Lower plot: Blue lines represents the unfiltered current Ib (left y–axis)
and red (right y–axis) with a moving RMS filter of 100 ms.

Figure 14. An overview of the bus’s TVS that illustrates the inadvertent capacitive coupling between
the output of the onboard converters and the bus’s chassis.

4. Discussion

Electrifying road transport demands strategic choices, where ERS emerges as a trans-
formative solution, mitigating both infrastructure demands and environmental footprint.
The showcased ERS demonstrator, along with its corresponding installation, commission-
ing, and comprehensive testing within the Evolution Road project, not only validates
and establishes the viability of the presented conductive ERS technology but also con-
firms the feasibility of the overall concept of ERS. This paper explores various aspects and
presents tests essential for the widespread deployment of ERS, including electric power
transfer, efficiency evaluation, electrical and mechanical safety, acoustic emissions, EMC,
and environmental considerations.

The electric power transfer tests showed the presented ERS technology’s capability of
supplying power to two vehicles simultaneously and showcasing its suitability for highway
implementation by using a trailer equipped with a resistive load. While the drawn power
was constrained to 280 kW, the limitations were not attributed to the design of the ERS
demonstrator but rather to the transformer in the rectifier station. Also, power levels
exceeding 300 kW are only considered for HDTs, whereas passenger cars are expected
to draw power in the range of 50 kW. Given the aforementioned distribution between
passenger cars and HDTs, these expected power levels pose no threat to an ERS’s power
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capabilities. These results reinforce the ERS technology’s adaptability and scalability for
various vehicle types and power requirements with no implications.

The ERS demonstrator’s performance in terms of efficiency further showcases the
potential of this ERS technology for wide deployment. An efficiency of over 97% at power
levels of over 150 kW during dynamic charging between rectifier station and onboard
DC/DC converter in the vehicle, see Figure 11 interface C–E, is a noteworthy achieve-
ment. Although these results are impressive, the efficiency performance of the presented
technology under high-speed conditions, involving more challenging contact scenarios
on rough terrain with dirt, leaves, and snow, is hitherto unknown. At higher speeds, it
is anticipated that the pick-up may introduce risks in terms of reliable functionality due
to poor contact performance. However, the pick-up design is still in its early stages, and
preliminary designs and tests have indicated substantial potential for improvement.

Ensuring electrical safety is paramount for conductive ERSs. This paper presents the
critical concern of touch current related to the vehicle’s chassis during charging. Touch
current measurements, conducted with a human model connected to an electric bus’s chas-
sis drawing power from the ERS demonstrator, revealed inadvertent capacitive coupling
issues. The voltage and current through the human model were assessed during charg-
ing, highlighting the impact of parasitic capacitance between the output of the onboard
converters in the bus TVS and the bus’s chassis.

Despite touch current values exceeding recommended standards, it was clarified
that this does not inherently condemn ERS technology. Limitations in the tested electric
bus, lacking complete double isolation between the TVS and chassis, and the absence of
a fully functioning isolation fault monitoring system contribute to the observed touch
current values. Mitigation strategies, such as employing an isolated DC/DC converter or
minimizing the parasitic capacitances between the output of the onboard converters and
chassis during vehicle design, are proposed to address touch current concerns effectively.

Although the suggested solutions will be the subject of further work and their ef-
fectiveness is unknown, their impact and cost on vehicle design is expected to be minor.
While the phenomenon of capacitive coupling between the output of the onboard con-
verters and chassis is a novel consideration for conductive ERS safety, capacitive coupling
between the chassis and TVS is a well-known phenomenon, as it is considered in various
standards [23]. Given the automotive industry’s existing familiarity with and management
of such issues, the incorporation of these mitigating strategies is not anticipated to yield
significant implications for overall vehicle design and cost.

Despite the promising potential of ERS as a charging infrastructure, three significant
challenges remain unresolved: Firstly, for widespread deployment of ERSs, it is imperative
to establish common regulations and standardization on an international scale, ensuring
the implementation of compatible systems that facilitate international transport. The
second challenge concerns financing and business models during both deployment and
operation. The responsibility for conducting and financing the deployment and operation
of ERS remains uncertain, whether it should be undertaken by governments, companies,
or private vehicle owners. Thirdly, in connection with operational concerns, the matter of
maintenance and its associated costs remains unknown.

Throughout the year, the demonstrator has remained active and operational, enduring
various harsh weather conditions, but not without maintenance work. Although mainte-
nance is expected to be required for ERSs, accurately estimating the actual maintenance
needs proves challenging due to the experiences gained from the demonstrator. This diffi-
culty arises partly from reduced traffic volumes and partly from the experimental nature of
the installation. Given the absence of a fully operational conductive ERS on public roads,
additional knowledge regarding maintenance and associated costs is essential.

However, as this paper focused on technical issues related to ERSs, these three chal-
lenges are beyond the scope of this paper. Nevertheless, addressing these challenges is
pivotal for achieving widespread deployment of ERSs.
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5. Conclusions

The Evolution Road project illuminates the transformative potential of ERS in re-
shaping the land transport sector. Extensive testing has revealed ERS as a solution that
effectively balances charging infrastructure needs with environmental concerns. While
challenges related to regulation, operation, maintenance, financing, and business models
remain, the adaptability of the ERS across various vehicles highlights its viability and
scalability. To ensure an environmentally sustainable future, it is imperative to advocate for
the comprehensive support of all types of BEVs through ERS integration. Future endeavors
involve refining efficiency, addressing touch current concerns, and advancing societal
integration for widespread ERS adoption.
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Abstract: In addition to passenger vehicles, battery-electric trucks and buses could offer substantial
flexibility to the energy system. Using a Bass diffusion model, we extrapolated the unidirectional
charging needs and availability of trucks in five of eleven typical applications, as well as city buses,
for Germany until 2040. Combined, these heavy-duty vehicles could provide up to 23 GW of down-
regulating flexibility potential (i.e., in case of excess power supply) in 2040. The resulting revenues
could contribute to reducing electricity costs for depot operators. These results illustrate the need to
provide easy and automated market access to heavy-duty vehicle fleets.

Keywords: heavy-duty electric vehicles; electric trucks; electric buses; smart charging; flexibility potential

1. Introduction

The European electricity grid is maintained and operated by unbundled grid oper-
ators for ultra-high and high voltage levels by so-called transmission system operators
(TSOs). TSOs co-create and partly operate markets to solve physical challenges such as
frequency deviations or bottlenecks in the grid (i.e., congestions). These are referred to
as ancillary services [1] and can be divided into four flexibility segments: two ancillary
services, balancing power and congestion management, as well as congestion alleviation
and the wholesale market. These flexibility segments consider regulatory, technological,
and economic framework conditions, as well as the involvement of key stakeholders. Due
to the increasing share of electricity generation from renewable sources, as well as the
increasing electrification of heating and transport sectors, more flexibility will be needed in
the future, in particular on the demand side. The first two segments are the most promising
for the integration of demand-side flexibility from electric vehicles. They are briefly intro-
duced in the following discussion, and the temporal order of market closures in Germany
is provided in Figure 1.

• Balancing power provides upward regulation (supplying additional energy to the
grid) and downward regulation (drawing excess energy from the grid) to guarantee
a constant equilibrium between electricity generation and consumption, and thus
maintain a stable system frequency of 50 Hertz at any time. In particular, the uncer-
tainty of wind and solar generation forecasts is an important driver for the increasing
need for flexibility to keep the system in balance. German TSO TenneT expects the
need for flexibility to grow by up to 3 GW by 2030. Balancing power is procured in
three “qualities” representing different speeds and durations of intervention, namely,
frequency containment reserve (FCR), automatic frequency restoration reserve (aFRR),
and manual frequency restoration reserve (mFRR). All three are procured through
auctions until a certain time on the previous day (D-1).

• Congestion management aims to solve an energy transmission (or distribution) prob-
lem by making use of remedial actions, such as redispatch and feed-in management.
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The task is to match market outcomes with the physical restrictions of the grid during
real-time operation. Locational shifts in generation (wind and solar), increasing peak
supply, and new demand centers increase needs in this segment. TenneT expects
additional flexibility needs in this segment of up to 9 GW by 2030.
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Although the use of battery-electric vehicle (BEV) passenger cars to provide flexibility
to the power grid has been investigated extensively (e.g., [2–5]), the body of research regard-
ing the flexibility potential of battery-electric trucks and buses is much smaller. Although
the technical implementation of smart charging should be similar for all vehicle sizes [6],
the impact of electric truck and bus charging on electricity grids appears significant due
to larger batteries, longer distances travelled, and larger charging powers [7,8]. Although
buses have well-planned routes with high temporal synchronization [9], truck use cases are
diverse (cf. Section 2). Initially, Borlaug et al. found that the early ramp-up of short-haul,
predictable truck use cases can likely be accommodated with existing infrastructure in the
US [10]. However, this may change with increasing penetration of the technology to more
demanding use cases [11]. As a first step, minimizing depot peak-load already strains the
grid less and lowers electricity costs for truck fleets due to reduced demand charges [12].
Taljegard et al. [13] showed that a completely electrified transport sector using bidirectional
charging, including trucks and buses, could reduce necessary investments in the energy
system to meet peak-power by 50% in Sweden, Germany, the UK, and Spain.

In contrast, we aimed to investigate in detail the flexibility and remuneration potential
on a per-depot level, focusing on comparing different vehicle use cases. We considered
unidirectional conductive direct current (DC) charging using the CCS2 charging standard
(combined charging system). As a refined market framework is currently in place only for
balancing power, our quantitative analysis focused on this flexibility segment rather than
congestion management.

This feasibility study examined how electrified medium- and heavy-duty trucks and
city buses can provide flexibility to the energy system by investigating key economic,
regulatory, legal, and technical aspects. This paper is structured as follows. Section 2
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describes our methodological approach and use case assumptions. Results for initial
considerations, technical flexibility, and remuneration potential are discussed in Section 3.
Section 4 presents our conclusions and discusses future work.

2. Materials and Methods

The approach taken in this study was twofold (cf. Figure 2). First, expert workshops
with representatives from Daimler Truck and TenneT were held. Second, flexibility and
marketing potential were derived for a range of use cases and extrapolated over exemplary
market ramp-ups.
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The goals of the workshops were to establish a common understanding of the subject
matter between two vastly different industries, further focus our approach, and coordinate
the quantification methodology. In total, four online workshops were conducted during
the time span of 12 April 2021 until 18 May 2021. The number of participants in these
workshops ranged between 10 and 14 employees of TenneT and Daimler Truck. The
experience level ranged from expert level (technical, regulatory, or economic) to project
leads (of other related projects of TenneT and Daimler Truck) and manager level. The
workshops were structured as follows: focus presentations by participants on specific
topics, participants were split in multiple groups for deep dives, and participants worked
together using a prepared digital whiteboard.

The following three tables describe the parameters used to describe a city bus use case
(Table 1) and major truck use cases (Tables 2 and 3). The city bus use case was based on a
large, electrified depot in a major German city. Unlike in truck use cases, columns in Table 1
describe spectrums for various parameters rather than specific routes or use cases.

Table 1. Parameters for the “city bus” use case.

Available battery capacity kWh 350

Max. available charging power kW 80

Energy demand per day kWh Min 200 Max 550

Time departure 1 h Earliest 05:30 Latest 08:30

Time arrival 1 h Earliest 11:00 Latest 15:00

Time departure 2 h None, or earliest 13:30 None, or latest 17:00

Time arrival 2 h None, or earliest 19:00 None, or latest 24:00

Vehicles in example depot 149
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Table 2. Parameters for “line haul” (LH 1–3) and “retail/distribution” (R/D 4–6) use cases.

LH 1 LH 2 LH 3 R/D 4 R/D 5 R/D 6

Available battery capacity kWh 600 600 600 600 400 400
Max. available charging power kW 300 300 50 50 150 150

Energy demand per day kWh 650 600 350 575 350 400
Time departure 1 h 05:30 06:00 07:00 08:00 05:00 05:00

Time arrival 1 h 17:00 16:00 15:00 16:00 13:00 13:00
Time departure 2 h - - - - 14:00 14:00

Time arrival 2 h - - - - 20:00 20:00
Variability of departure avg. avg. large low low low

Vehicles per example depot 50 50 45 20 30 30

Table 3. Parameters for “construction” (Con 7–9) and “waste” (Wa 10–11) use cases.

Con 7 Con 8 Con 9 Wa 10 Wa 11

Available battery capacity kWh 600 400 400 400 400
Max. available charging power kW 150 50 50 50 50

Energy demand per day kWh 475 300 275 375 300
Time departure 1 h 08:00 08:00 08:00 07:30 07:00

Time arrival 1 h 12:00 16:00 16:00 15:30 15:00
Time departure 2 h 13:00 - - - -

Time arrival 2 h 16:00 - - - -
Variability of departure average average average low very low

Vehicles per example depot 10 10 10 15 30

Line haul segments (LH 1–3) summarize a wide variety of long, medium, and short
haul applications, transporting all types of goods either on demand or on daily return
trips. Retail and distribution routes (R/D 4–6) are usually shorter but more plannable
(cf. “variability of departure”), and often include multiple trips per day to retail locations,
supermarkets, or distribution locations.

Construction uses cases (Con 7–9) include transportation of building material or
equipment to and from construction sites as well as haulage within the site. Waste collection
in urban environments and transport between collection and deposition/incineration sites
are further prime uses cases for electrification (Wa 10–11).

Although stylized, these parameters allowed detailed modelling of flexibility poten-
tials for exemplary depots for every use case. Flexibility potential is a function of battery
state-of-charge and charging power; i.e., the energy volume that can be made available for
flexibility marketing. We assumed minimizing peak load as the default charging strategy
and as the baseline for the assessment of flexibility potential. Within the limits of ensuring
that vehicles are fully charged for their next route, the vehicles’ state-of-charge, and the
available charging power, charging load could deviate from the minimum depot load
schedule, and this flexibility could be offered to the energy market. In an extensive Excel
tool, this calculation was conducted for every example depot for the average weekday.

For the flexibility calculation, we assumed that a sufficiently sized grid connection
existed or would be built at the depot to enable installed chargers to be simultaneously
used at maximum capacity. In combination with over-night idle times, these assumptions
allowed for the deterministic calculation of positive (delayed charging processes) and
negative (accelerated charging processes) flexibility potential in MW per depot. The
potential was assumed to be equal for every day of the week; weekends and bank holidays
were not modelled.

In the next step, we created a ramp-up scenario for every use case for Germany using
a Bass diffusion model [14] as applied by Ensslen et al. [15] for passenger BEV. Innovation
coefficients were used to calculate the share of diesel vehicles being replaced by BEVs over
time. The scenario was based on expert assessments (the vehicle ramp-up at the basis of this
analysis represents a potential scenario and does not represent a sales prognosis of Daimler
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Truck AG), market data [16], and an external source for the bus use case [17]. Furthermore,
each use case had a cap on its electrification potential at full diffusion due to the limitations
of BEVs, e.g., regarding the range, cargo load, or power demand of ancillary consumers,
which was accounted for in the scenario. Looking only at use cases most relevant for
flexibility marketing (i.e., with sufficient idle time and early electrification potential), we
focused the discussion on five of eleven truck use cases and the city bus use case. Their
scenario ramp-up numbers are listed in Table 4.

Table 4. Ramp-up approximation of number of vehicles on the road in Germany.

Use Case 2025 2030 2035 2040

Line haul 2 1200 9300 29,000 37,000
Line haul 3 8300 31,300 68,000 94,000

Retail 5 5000 22,800 58,000 86,000
Construction 7 200 2300 13,000 22,000

Waste 11 1500 6500 13,000 16,000

Total of all use cases 30,900 151,700 411,000 606,000

City bus 6900 20,300 31,000 36,000

The flexibility potential per depot were then scaled to the entirety of Germany and
aggregated for flexibility marketing. Revenue calculations were based on market data
for 2020 and 2021 from the German balancing market platform regelleistung.net [18], and
considered both theoretical revenues from the power bid as well a conservative energy
bid. Note that we did not model costs, and therefore did not make any claims regarding
profitability. Likely cost components, e.g., include increased grid fees, software licenses,
prequalification, and market access fees.

3. Results
3.1. Expert Workshops

As the workshops brought together a mix of participants from different levels of
expertise across a range of topics from two different industries, opinions, and therefore
results, were faceted and diverse. Nevertheless, the workshop series yielded three key
take-aways:

1. Logistics businesses will not use electrified vehicles if there is no positive business
case, based, e.g., on vehicle price, electricity costs, or incentives for earning additional
revenue by providing flexibility services.

2. Promising flexibility segments include balancing power and congestion management
(i.e., redispatch).

a. Although for balancing power the asset location (e.g., the depot) is less impor-
tant, it is crucial for congestion management because spatial bottlenecks in the
electricity network need to be solved.

b. Technically, trucks and buses can participate in all three balancing types: FCR,
aFRR, and mFRR. However, the “higher quality” balancing types (FCR and aFRR)
are most suitable because the charging of batteries can be adjusted quickly, and
trucks and buses have enough capacity that can be shifted.

c. In Germany, the regulatory framework for loads and storages under “Redispatch
3.0” is yet to be shaped, while in the Netherlands the so-called GOPACS plat-
form already offers market-based remuneration. Depot operators only provide
the redispatch service if they reduce their electricity costs from a market-based
remuneration. Therefore, it was decided to focus the following quantification on
balancing power within the currently available market framework.

3. The crowd balancing platform “Equigy” enables a more efficient provision of balancing
power and congestion management from decentralized, distributed flexibility sources.
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a. The crowd balancing platform is not a marketplace, but creates the framework
conditions for decentralized prequalification and efficient accounting for the
increasing amount of small and distributed assets. This ultimately lowers market
entry barriers.

Beyond these key takeaways, many other topics were discussed. Opinions diverged
regarding the following points:

4. Not all participants in the workshops agreed that marketing flexibility potential on the
wholesale power market should be out-of-scope due to the wholesale markets’ strong
liquidity and ease of use.

5. The focus on solely Germany was discussed across several workshops. The reason
for this discussion was that markets for balancing power are largely integrated in Eu-
rope; thus, changes to integrate electrified busses and trucks often requires European
regulatory changes.

6. Regarding technical challenges to the integration of electrified busses and trucks,
there are differences between countries in which Equigy operates. For example, the
Netherlands already uses a practical implementation in which EVs can provide aFRR,
but this is not yet the case for Germany.

3.2. Flexibility and Revenue

Positive and negative flexibility potentials (in MW) for grid operation are illustrated
in Table 5. Technical flexibility potential is substantial for line haul and retail truck use
cases, and large bus depots also play a substantial role in the early morning hours. With a
theoretical potential for over 4 GW of positive and negative flexibility from 4 pm to 4 am
(peaking at over 23 GW of negative flexibility in the 20:00–24:00 4 h block and at over
7 GW of positive flexibility in the 00:00–04:00 block), all examined use cases combined
could have a significant impact on, for example, the balancing power market in 2040. For
context, the current demand in 2022 for positive and negative balancing power in Germany
is approximately 7.1 GW.

Table 5. Maximum positive and negative (−) flexibility potential for Germany in 2025, 2030, and 2040
[MW].

00:00–04:00 04:00–08:00 08:00–12:00 12:00–16:00 16:00–20:00 20:00–24:00

2025
+529 +13 +4 0 +266 +354
−1146 −26 −13 −47 −659 −1048

2030
+2210 +46 +13 0 +1238 +1613
−5960 −77 −39 −138 −3981 −5765

2040
+7066 +154 +23 0 +4183 +5542
−22,593 −137 −70 −245 −16,095 −23,113

Figure 3 illustrates the potential revenue from flexibility provision, and therefore
the reduction potential for the total cost of ownership [EURct/kWh] for truck customers.
In practice, depot operators may have electricity contracts with flexibility aggregators
who grant remuneration or rebates on electricity prices in exchange for flexibility. The
revenue potential is larger in the aFRR market, and the largest revenue results for truck
use cases were line haul 2 and waste 11, while the bus use case and truck use case retail
5 had the lowest potential. For aFRR, the revenue potential could be significant, given
that average electricity prices for German industry are approximately 20 EURct/kWh. If
transport companies could facilitate flexibility marketing reliably, significant rebates on
their electricity costs would be possible.
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Figure 3. Range of maximum possible revenue per consumed kWh from (a) aFRR (capacity and
energy) and (b) FCR in EURct/kWh (minimum revenue with 2020 prices, maximum with 2021 prices).

There are several limitations to these findings. First, the analysis did not allow for
profitability conclusions because only the revenue side was presented (i.e., costs were not
included). Second, the flexibility potential assumed that it could be offered over the entire
bid timeframe, which is not possible in practice because actual flexibility delivery can
considerably reduce the potential. Furthermore, flexibility potentials were based on only a
selection of bus and truck use cases (six of twelve) and considered only weekdays (neither
weekends nor bank holidays). Finally, we used market data from 2020 and 2021 to illustrate
revenue ranges; predictions of future prices require further analysis.

4. Discussion

This study laid the foundation for a mutual understanding of the interaction of energy
and transport sectors by assessing the flexibility and revenue potentials of electrified trucks
and buses. We showed the significant technical potential of shifting charging times of
specific truck and bus use cases to offer balancing power. Furthermore, this offering
could lead to notable revenues that should be used to compensate depot operators for the
flexibility provided.

Policy recommendations for balancing power include prequalification criteria, which
should avoid redundancy and minimize costs for balancing service providers (e.g., by
establishing largely automated prequalification processes). Furthermore, vehicle operators’
risk of insufficient state-of-charge must be nullified through smart IT solutions. Due to a
current lack of marketability, we excluded congestion management from the quantification
analysis of this study, despite the expected impact of truck and bus charging on distribution
grids [5,6]. A market-based approach should complement the existing cost-based provision
of redispatch services and address these decentralized generation or consumption assets,
for which there is no mandatory participation in the current redispatch regime. This means
that an attractive market solution is needed to allow voluntary participation by consumers
and businesses, rather than mandatory load reductions.

5. Conclusions

The electricity system is changing: a growing share of volatile renewable production
meets higher and more dynamic loads on all consumption levels. This study investigated
how demand–response in the form of battery-electric trucks and buses could offer sub-
stantial flexibility to the energy system. In a small series of expert workshops, we built a
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common understanding of the key aspects of this topic and aligned a research approach.
Consequently, we used a Bass diffusion model to extrapolate the unidirectional charging
needs and availability of trucks in five of eleven typical applications, as well as city buses,
for Germany until 2040. Combined, these heavy-duty vehicles could provide up to 23 GW
of down-regulating flexibility potential (i.e., in case of excess power supply) in 2040. The
resulting revenues could contribute to reducing electricity costs for fleet operators, thereby
improving the attractiveness of zero-emission technologies. These results illustrate the
need to provide easy and automated market access to heavy-duty vehicle fleets.

A full economic examination regarding the profitability potential is advisable in future
work. This includes, in particular, a quantitative assessment of the cost side and of the
effects of delivering balancing energy on the flexibility potential. Further research is needed
to quantitatively compare other marketing options, e.g., congestion management, intraday
arbitrage trading, or even pure behind-the-meter cost minimization using on-site solar
generation. A logical expansion of the model could integrate bidirectional charging, which
should further increase flexibility potentials, especially when considering weekends and
public holidays. Furthermore, a technical pilot could be informative regarding open topics
in standardization or availability of equipment.
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Abstract: This work focuses on developing a mobility control system for high-speed series-hybrid
electric tracked vehicles, which operate with independent traction motors for each track. The scope
of this research includes modeling a series-hybrid powertrain specific to military tracked vehicles
and conducting an in-depth analysis of its dynamic behavior. Subsequently, this study conducts a
critical review of mobility control approaches sourced from the literature, identifying key techniques
relevant to high-inertia vehicular applications. Building on foundational models, this study proposes
a robust closed-loop mobility control system aimed at ensuring precise and stable off-road vehicle
operations. The system’s resilience and adaptability to a variety of driving conditions are emphasized,
with a particular focus on handling maneuvers such as steering and pivoting, which are challenging
operations for tracked vehicle agility. The performance of the proposed mobility control system is
tested through a series of simulations, covering a spectrum of operational scenarios. These tests
are conducted in both offline simulation settings, which permit meticulous fine-tuning of system
parameters, and real-time environments that replicate actual field conditions. The simulation results
demonstrate the system’s capacity to improve the vehicular response and highlight its potential
impact on future designs of mobility control systems for the heavy-duty vehicle sector, particularly in
defense applications.

Keywords: hybrid electric tracked vehicles; hybrid electric military vehicles; vehicle control; mobility
control system; series-hybrid electric powerpack; tracked vehicle dynamics; steering maneuver;
torque management; robust control; terrain adaptability

1. Introduction

Tracked vehicles are essential for various sectors, including the automotive industry,
defense, construction, and agriculture, due to their superior off-road capabilities. The
recent shift towards hybrid electric drive systems, similar to those in wheeled vehicles,
has gained momentum thanks to the advantages they offer. Sivakumar’s study states that
the hybridization of military vehicles offers significant benefits, including improved fuel
efficiency, enhanced drivability, and silent running, yet faces considerable development
challenges due to the demand for robust and environment-resistant components [1]. Many
studies agree that adding electric power to military vehicles could make them quieter and
work better, while also providing extra electric power when needed, as summarized in a
study that introduces a new hybrid power system for these vehicles that aims to cut down
on weight and use less fuel without compromising on how well the vehicle performs [2].
Furthermore, the adaptation of series-hybrid drives to tracked vehicles implies a need
for distinct controller requirements: a power management algorithm for effective power
distribution among the power sources (battery and generator set) and a mobility control
algorithm for independent motor operation to achieve the desired motion control variables,
including sprocket velocity and track speed differential during maneuvers. It is also crucial
to operate these systems within a region that ensures robustness and optimal performance.

FNSS, a global leader in the land systems sector, is at the forefront of this innovation,
not only producing wheeled and tracked armored combat vehicles, turrets, and engineering
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vehicles, but also exploring hybrid powertrain technologies [3]. The focus of this study
revolves around the hybridization of an armored tracked FNSS vehicle named KAPLAN
HYBRID, as shown in Figure 1. This work was presented by Çeliksöz at the EVS36
symposium in Sacramento, USA, in June 2023, together with the publication of a conference
paper in which the development of a control system for the vehicle is focused on [4].
This paper builds upon the conference paper, providing an extension that details the
development of a mobility control system specifically tailored for FNSS’s series-hybrid
tracked vehicles. The approach commences with the modeling of vehicle dynamics and
a hybrid powertrain using MATLAB Simulink, followed by a review of existing mobility
control strategies detailed in the literature. Subsequently, in a simulated environment,
a robust closed-loop mobility control system is designed and tested, while the power
management system is analyzed as a black-box model that sets instantaneous traction
power limits to ensure clarity and maintain focus on mobility controller development. The
system’s robustness is validated by simulating the vehicle model against diverse dynamic
traction power constraints in various scenarios.
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Figure 1. KAPLAN HYBRID, developed by FNSS [3].

Before delving into the details of this work, it is essential to note that the current
literature documents a range of control methodologies for hybrid systems. In terms of
dual independent motor-driven tracked electric vehicles, Zhang et al. studied an improved
steering control utilizing a model predictive control approach, leading to efficient adher-
ence to specified speed and turn rates [5]. Their research demonstrates the potential to
enhance vehicle stability under varied driving conditions through an intelligent application
of predictive control algorithms. Zeyu et al. implemented a neural network combined
with a PID algorithm to refine the vehicle’s steering control [6]. Even though the trac-
tion motor torques are initially defined by the neural network, the introduction of PID
adjustments accommodates variable terrain coefficients. Hu et al. discussed a dual-motor
drive strategy that inherently computes torques for a predetermined target turning radius,
employing a PID controller to achieve the radius more rapidly [7]. Additionally, Pei et al.
proposed a torque fuzzy compensation control strategy to enhance steering execution,
where torque distribution is regulated by applying direct multipliers derived from fuzzy
logic [8]. Summary of the corresponding study is presented in Figure 2.
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In their review of electric tracked vehicle mobility, Kotiev et al. address the complexi-
ties of achieving balanced torque in high-speed scenarios, particularly through individual
drives on each sprocket [9]. Traditional methodologies are determined insufficient for
accurate analysis, causing the authors to incorporate neural networks and simulation
tools to better predict the thrust requirements for various steering conditions. Their work
emphasizes sophisticated design and testing protocols in the realm of advanced electric
vehicle systems.

Alongside independent dual-motor drive studies, researchers in the tracked EV com-
munity have also suggested power coupling drive solutions, in which mobility is improved
using a transmission between left and right traction units. Zhai et al. introduced a steering
stability control methodology that significantly enhances handling stability and safety for
high-speed tracked vehicles equipped with a four-motor distributed drive system [10].
This method utilizes a steering coupling system and a direct yaw torque control strategy
to optimize torque distribution, ensuring improved steering performance under various
conditions. In their subsequent work, Zhai and co-authors address a pivotal aspect of
electric tracked vehicle design, focusing on handling behavior during dynamic steering of a
dual motor drive system [11]. Their research articulates the requirements of dual motors for
torque and power for effective maneuverability, leading to the conceptualization of a new
steering system. An investigation by Huang et al. into the dynamics of dual-motor drive
tracked vehicles during high-speed steering proposes a novel electromechanical coupling
device coupled with an optimized torque distribution control approach, resulting in a
significant improvement in power output and steering performance [12]. Zhai and his
team, furthermore, have devised a power coupling steering system that effectively counters
insufficiencies in motor torque and power during differentiated steering demands [13].
The system’s capability has been rigorously validated through simulations, demonstrating
its effectiveness in maintaining vehicle stability and enhancing maneuverability, particu-
larly in steering scenarios that historically placed substantial demands on engine torque
and power.

Overall, a review of the literature indicates that steering ability could potentially be
synthesized and augmented through the application of either advanced closed-loop control
software or simpler software assisted by an optimized transmission mechanism. This
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work will focus on the development of control software using the former solution for dual
independent electric drive.

Research extends the domain of knowledge by developing a special mobility control
system for FNSS’s specific series-hybrid electric tracked vehicle. Emphasizing technological
innovations in hybrid drive systems for armored combat vehicles, this work contributes
insights that improve the understanding and application of these systems, setting a foun-
dational model for further study and practical deployment in the sector. Our principal
contributions and conclusions underscore technology’s progression in hybrid drive sys-
tems and exemplify their potential for robust, real-world functionality in military vehicle
applications. Moreover, this study provides a comprehensive evaluation of the system’s
performance under a variety of combat scenarios, ensuring that vehicles are equipped
to handle diverse and challenging terrains. The discussions included are not limited to
theoretical assessments; they also present insights from extensive field tests that enhance
the practical feasibility and dominance of the hybrid system.

2. Materials and Methods

Plant and control system models are deliberately designed to further research initia-
tives and assess an algorithm’s performance with a variety of control inputs and driving
cycles. Plant modeling incorporates power sources, the traction system, and the vehicle’s
framework, whereas the control system is explored in terms of power management and
mobility control systems. These modeling activities are carried out distinctly for plant
and control systems, and this division is to enable the examination of diverse vehicle
configurations and powertrain systems. After each section is individually shaped, they
are then unified to construct an integrated model depicted in Figure 3. A more detailed
explanation of each model is provided in the following sections, offering a deeper insight
into how each component functions within the entire system.
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2.1. Modeling the Plant: Hybrid Electric Tracked Vehicle

In this section, attention is given to the modeling process for the plant of the hybrid
electric tracked vehicle. The focus is on the representation of hybrid electric propulsion
systems specific to tracked vehicles and on modeling techniques that capture the dynamic
relationships between the traction system’s components and the vehicle’s overall architec-
ture. Furthermore, power sources are briefly defined, even though the scope of this work is
powertrain and mobility of the vehicle rather than energy management.

2.1.1. Electric Traction System

The electric traction system, which is presented in a simplified schematic in Figure 4,
is modeled through a composite approach that brings together electric motors, gearboxes,
and friction brakes connected to left and right sprockets. This configuration is carefully con-
structed to accurately reflect the system’s mechanical and electrical interactions, ensuring
that the model provides a realistic representation of vehicle dynamics.
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Figure 4. Schematic of electric traction system.

In this configuration, e-motors are modeled as a source of torque featuring a unity
transfer function, which means an absence of delay in torque delivery upon request, as
long as it does not exceed the motor’s torque reserve. To preserve this characteristic, the
system utilizes the smallest value between the requested torque and the available torque at
the current shaft speed, as illustrated in Equation (1). Subsequently, the torques generated
by the motors are scaled by the gear ratio and modified for gearbox efficiency.

Tout,Motor = min{Tavail,Motor (w), TRequest} (1)

In Equation (1); Tout,Motor, Tavail,Motor (w), and TRequest represent motor torque output,
speed-dependent available motor torque, and requested torque via mobility control system,
respectively. Speed-dependent available motor torque is obtained from the full load curve,
which represents the speed–torque characteristics of the electric motor. Even though the full
load curve is distinct in electric motors, it displays a standard trend: a constant torque at
lower speeds transitioning to a constant power at higher speeds. This pattern is elaborated
on in Aiso’s research [14], as exemplified in Figure 5.
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Prior to transitioning to vehicle dynamics calculations, the torques from the friction
brakes are added to those from the gearbox output, as shown in Equation (2). The resulting
torque is then supplied to the subsystem governing the dynamics of the tracked vehicle.

TSprocket = iGB ηPT Tout,Motor − TBrake (2)

In Equation (2), TSprocket, iGB, ηPT, and TBrake represent sprocket torque output, gear
ratio, powertrain efficiency, and applied brake torque, respectively.
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2.1.2. Dynamics of the Tracked Vehicle

The dynamics of the tracked vehicle are captured using a 3-DOF (degrees of freedom)
vehicle model that considers the equations of motion along the longitudinal (x), lateral
(y), and yaw (z) axes, which are detailed in Figure 6 for a left maneuver. These equations,
detailed in Figure 6 for a left maneuver, are represented by (3), (4), and (5). They are derived
for this maneuver assuming a center of gravity in the middle of the lateral axis, rather than
the longitudinal axis.

mVhc ax = (FTraction,left − FResistance,left) + (FTraction,right − FResistance,right) = ΣFx,i (3)

mVhc ay = (QLateral,left + QLateral,right) xcenter,rear − (QLateral,left + QLateral,right) xcenter,front = ΣFy,i (4)

IVhc,zz Φ′ = ΣFx,i yResultant − ΣFy,i xResultant (5)
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In the above expressions, the terms mVhc, IVhc,zz, ax, ay, and Φ′ denote the mass of
the vehicle, inertia about the vertical axis at the vehicle’s center of gravity, accelerations
in the longitudinal and lateral directions, and the rate of yaw, respectively. The forces
FTraction,left, FTraction,right, FResistance,left, and FResistance,right are indicative of the traction and
longitudinal resistance forces acting on the vehicle for left and right tracks, respectively.
While QLateral,left and QLateral,right characterize distributed side frictional forces per length
interacting with the left and right tracks, lateral distance between the vehicle’s cog (center
of gravity) and the vehicle’s front and rear end are denoted by xcenter,front and xcenter,rear.
Furthermore, the net forces along the longitudinal and lateral axes are given by ΣFx,i and
ΣFy,i, with the corresponding distances from these net forces to the vehicle’s center of
gravity being represented by xResultant and yResultant, correspondingly.

Dynamic calculations are followed by integrations of computed accelerations to obtain
speed components of the vehicle in the longitudinal, lateral, and yaw axes.

2.1.3. Power Sources

Power sources for the hybrid vehicle comprise a combination of a battery and a
generator set involving a diesel engine and an electric generator. In this work, it is assumed
that the available power and the summation of the power sources’ reserve remains constant
for a clear investigation of the mobility control system.
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2.2. Mobility Control Method

• Control Theory and Big Picture

Based on the research and findings presented in previous sections, it is found that the
vehicle in question, a high-speed off-road military vehicle, requires a strong and effective
closed-loop control system to achieve the targeted maneuverability at high speeds across
various terrains. It has been determined that while producing overall torque in response
to the driver’s input is correlated with the accelerator pedal’s position, the distribution
of torque should be adjusted based on feedback from the speed difference between the
sprockets. This differential is related to the angle of the steering wheel set by the driver.
In other words, a certain speed differential between the electric motors is decided, corre-
sponding to the given steering wheel angle, through the employment of the closed-loop
controller. The strategy for mobility control can be seen in Figure 7, demonstrated via
block diagrams. There are four primary subsystems, each with special roles. The Driver
block is designed to feed specific driver commands for varying test runs and is separate
from the onboard vehicle control system. The Driver command preprocessor and the
closed-loop controller blocks are critical to the control system, handling the computational
side of mobility control and transforming driver instructions into specific torque demands
for the left and right motors. Lastly, the traction system represents the plant, including
mathematical models of the electric motor and gearbox. The outputs from the traction
system are the torques delivered to the left and right sprockets, which are the main inputs
of the vehicle’s dynamic model.
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• Preprocessing and Shaping Control Commands

Within the Driver Command Preprocessor section, throttle and steering inputs are
preprocessed depending on the selected gear and current vehicle speed. The shaping of
the inputs is performed by three main functions: steering shaping, pivot shaping, and
throttle shaping.

The steering shaping function aims to transform steering commands into differences
in motor velocities through a suitable shaping strategy. FNSS Savunma Sistemleri A.Ş.,
operating out of its Ankara, Turkey location, has compiled test records from standard
tracked vehicles for calibration purposes. Upon analyzing the change in speed at maximum
steering, a pattern is noted where the difference in speed across the motors at full steer
changes with vehicle velocity. However, this increase is interrupted by sudden changes
at certain velocities, making the pattern non-linear. A closer inspection shows that these
dips coincide with the gear shifting points of traditional gearboxes. For consistent steering
behavior, a smooth curve is mapped over the test data, excluding these dips. The normal-
ized version of these test data together with the smoothing curve is depicted in Figure 8,
ensuring confidentiality.
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To further refine the effectiveness of the steering shaping function, FNSS has incorpo-
rated adaptive elements into the function to cater to a range of variables, such as terrain
type, vehicle mode, and the selected gear. This adaptive approach ensures that steering
inputs are not only translated into consistent motor velocity differences across the usual
operational spectrum but also provides compensation for less predictable conditions that
could affect handling, such as a scenario in which one of the tracks is in contact with a
more slippery surface. By integrating a dynamic feedback loop, steering inputs result in
real-time adjustments to motor outputs, thus delivering an enhanced and more responsive
driving experience for operators.

The pivot maneuver is executed through a specifically designed shaping function.
Initially, the maximum speed range is established. Subsequently, the position of the acceler-
ator pedal is correlated to this range to achieve the required speed differential. In addition,
the angle of the steering wheel is utilized to decide the pivot turn’s direction, allowing
the driver to command a counterclockwise (CCW) or clockwise (CW) rotation by steering,
regardless of the actual degree of the wheel’s turn. The plot for this pivot shaping strategy
can be found in Figure 9, providing a visual representation of the maneuvering process.
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Figure 9. Pivot shaping strategy in normalized form.

Enhancing the pivot shaping function further, FNSS has considered vehicle load
dynamics to ensure stability during pivot turns. The shaping strategy is thus calibrated
to maintain the vehicle’s balance by investigating vehicle dynamics in offline simulation
environments and real-time tests for different conditions. This calibration is particularly
critical when operating with varying loads or executing pivots on steep gradients.
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The throttle shaping function is developed to adjust the input received from the
accelerator pedal based upon the selected vehicle mobility mode, with the objective of
improving the driver’s experience. This is achieved by mapping the position of the pedal
to specific throttle values, which correspond to a range of distinct operational modes, as
depicted in Figure 10.
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In scenarios where safety is significant, such as in the preliminary testing phase of
the algorithm, a conservative throttle response is preferred. This scenario is optimally
supported by a shaping function like option 1 in Figure 10, which is characterized by a
more gradual and controlled acceleration curve. On the other hand, for circumstances that
demand a more robust and dynamic performance, such as during an aggressive driving test,
the shaping curve should approach option 3 in Figure 10. This latter option is fine-tuned to
yield a sharper and more immediate increase in throttle response, reflecting the vehicle’s
need for rapid acceleration. Throughout many testing protocols and simulation exercises,
option 2, which represents linear throttle shaping, is the preferred choice. This option
is beneficial because it provides a straightforward correlation between pedal input and
throttle output. Such predictability enables the control engineer to isolate and evaluate
the performance characteristics of each subsystem without the added complexity that
non-linear shaping options might introduce.

By employing these shaping functions, total cumulative torque demand and desired
speed difference variables are designated. Based on these desired inputs, a closed-loop
motion controller is operated, and the torque demands of left and right traction motors
are determined.

2.3. Power Management Method

The mobility control system serves a dual purpose within the vehicle’s control archi-
tecture. Primarily, it is responsible for directly actuating the traction motors. However, the
scope of the mobility control system’s functionality extends to playing a key role in the
vehicle’s overall power management by continuously monitoring the instantaneous power
requirements of the traction system.

As the vehicle operates, the mobility control system calculates the immediate power
demands needed for traction by multiplication of torque demand, measured speed, and
corresponding traction efficiency. Once the power calculations are performed, the mobility
control system communicates a traction power request to the power management algorithm,
which is another significant system of the hybrid tracked vehicle in question, as explained in
the work of Akar et al. [15]. This request for power is carefully evaluated to control how the
power management system should regulate the generator set’s output. By providing this
traction power request, the mobility control system ensures that the power management
system can adjust the generator’s output dynamically, matching the generated power
with the traction system’s demands. This synchronous operation is crucial for ensuring
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that the difference between generated and demanded power does not exceed the limits of
electric battery.

Another aspect influenced by traction power is the sizing of the EV battery and
configuration of the generator set, dictating the selection of an internal combustion engine
and electric generator of optimal size. This choice becomes even more complex as power
requirements directly impact other considerations for battery and generator selection.
Choosing the appropriate battery for a specific application relies on assessing key battery
properties and finding the right balance among them. For electric and hybrid vehicles,
crucial factors include the necessary power and range, which dictate battery pack design
within the constraints of available space. While lithium-ion (Li-ion) batteries are prevalent
due to their high energy density, significant voltage output, and minimal maintenance,
no single battery type is universally optimal for all uses. After the assessment of the
environmental conditions, a Li-ion-type battery is used in this vehicle and the control
parameters are tuned accordingly.

3. Simulations and Results

Using the modeling approach and equations mentioned previously, a mobility control
system was developed and simulated using MATLAB Simulink 2021b. An overview of the
Simulink model is illustrated in Figure 11.
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Functional scenarios, including pivot maneuvers, steering actions, and forward and
reverse movements, were studied by extensive simulations to analyze the vehicle’s behavior
under various operational conditions. To analyze the results, a simulation postprocessing
interface was developed, which permits the in-depth observation of the vehicle’s motion
dynamics and the associated responses from the powertrain, including variables like
sprocket torques and track speeds.

An example of this simulation platform can be seen in Figure 12, which specifically
illustrates the interface during a scenario involving a forward steering motion at a prede-
termined longitudinal speed of the vehicle. In this simulation, it is observed that upon
reaching the 50th second of the simulation time, the driver introduces a steering command,
inputting a 40% steering angle into the system. Due to this action, the motor torques
experience a substantial and rapid increase. After this initial jump in torque caused by
the need to adjust the vehicle’s trajectory according to the steering input, the motor’s
torque levels exhibit a stabilization, converging to a steady-state value. The steady-state
torques involved in steering are now balanced, and the vehicle maintains the new desired
directional path at a constant speed.
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Figure 12. Simulation interface for a cornering maneuver.

Additionally, Figure 13 indicates that the speed differential between the left and right
electric motors reaches the preset target specified by the steering shaping function. An
upward trajectory in speed difference is observed as the steering input rises, a response
predicted from the closed-loop control system. The presence of noise in the actual speed
differential originates from the characteristics of the electric motors’ encoders. It is assumed
that the encoders are influenced by white noise to test the controller’s capability to cope
with this type of disturbance.
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Figure 13. Speed differential during cornering.

Observations of the vehicle’s longitudinal response are demonstrated in Figure 14 as
well. It is noted that there is a proportional increase in the vehicle’s total torque, correlating
with the rise in the accelerator pedal position, regardless of the steering input. This effect is
achieved by applying a linear throttle shaping function, as explained in the mobility control
system section.
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The simulations successfully confirmed the effectiveness of the control methods dis-
cussed earlier in shaping vehicle dynamics, ensuring that the system can fully manage both
the total traction force and the vehicle’s turning radius based on driver commands. This
controllability enables consistent maneuvering at fixed speeds in straight lines as well as
during complex directional changes where high maneuverability is required. The ability
to precisely adjust the speeds of individual sprockets strengthens the vehicle’s flexibility
to cope with different terrain types and driving conditions while enhancing the system’s
overall handling and dependability.

4. Discussion and Conclusions

This paper investigates the mobility control system of a series-hybrid electric tracked
vehicle. The objective of the system is to control electric motor torques to produce the entire
torque demanded by the throttle, while achieving the necessary speed differential when
steering inputs are made. Traditional testing methods on the electrified tracked vehicle
helped establish the speed differential target.

Results from practical demonstrations indicate that the intended motion is achiev-
able with the deployed mobility control system. The findings, thus, suggest that similar
architectures can be applied generically across the domain of electric propulsion systems
in heavy-duty vehicles. Moreover, the speed differential methodology enhances system
adaptability across varying terrains. Even though different friction coefficients may neces-
sitate varied sprocket torques for steering actions, the employment of a closed-loop speed
differential strategy yields the correct sprocket torques. This validates the significance of
torque management and its responsiveness to external conditions, which holds universality
for other applications. Variations in radius due to changes in slip characteristics are com-
pensated for by the driver’s input, effectively incorporating human interaction as part of
the loop.

The integration of regenerative braking into the series-hybrid system enables trans-
mission reversibility and further demonstrates the potential for increased efficiency and
reduced wear on braking components. By converting kinetic energy into electrical energy
during deceleration phases, energy is fed back into the battery, thus extending the opera-
tional range of the vehicle. Initial tests exhibit promising results, with noticeable energy
recovery without compromising the stability or control of the vehicle. The ability to regen-
erate is critically important for hybrid systems since the vehicle in question is a high-weight
off-road piece of machinery operating on inclines, where reversibility becomes crucial for
boosting efficiency. In such challenging environments, the system’s ability to convert kinetic
energy into electrical energy for storage in the battery significantly enhances the operational
range and energy conservation, underscoring its value for vehicles navigating steep terrain.
The interaction between regenerative braking and torque distribution algorithms is crucial;
it maintains driving dynamics that are consistent with driver expectations. This addition to
the mobility control system complements the existing architecture, presenting a beneficial
approach to vehicle energy management and efficiency optimization.

283



World Electr. Veh. J. 2024, 15, 47

Our mobility control system represents a significant advancement in the management
of series-hybrid electric tracked vehicles, and future refinements could be made to fine-tune
the relationship between driver inputs and vehicle performance, supporting the human–
machine interface for optimal control. Furthermore, current studies show that the transition
from engine-driven auxiliary systems to electric-powered ones is accelerating [16]. This
transition not only streamlines the management of auxiliary systems but also reinforces
the essential connection between vehicle efficiency and advanced control technologies,
setting a benchmark for future EV system innovations. Illustrative of this trend is a study
by Pugi et al. (2021), which highlights the significant enhancements made in electric direc-
tional drilling machines, marking them as exemplary cases of electrification in auxiliary
elements and contributing to the sustainable progress of urban infrastructure develop-
ment [17].

In conclusion, the findings presented herein emphasize the generic value of this re-
search in shaping the future of vehicle control systems. Particularly, the control of electric
motor torques within a high-inertia platform of armored tracked vehicles demonstrates the
agility that can be attained through advanced engineering. This closed-loop speed differen-
tial control system offers a new paradigm in mobility, where precision and adaptability are
improved together by promoting a high level of responsiveness relative to conventional
tracked vehicles. Mobility control enhances vehicle management and performance, while
efforts to electrify auxiliary systems contribute to the overall efficiency and evolution of
electric vehicle technologies. Finally, the navigation strategies developed here could serve
as a basis for autonomous or semi-autonomous control systems in similar military vehicles,
significantly impacting the field of vehicle automation.

Author Contributions: Conceptualization, D.Ç. and V.K.; methodology, D.Ç. and V.K.; software, D.Ç.;
validation, D.Ç. and V.K.; formal analysis, D.Ç. and V.K.; investigation, D.Ç. and V.K.; resources, D.Ç.
and V.K.; data curation, D.Ç. and V.K.; writing—original draft preparation, D.Ç.; writing—review and
editing, D.Ç. and V.K.; visualization, D.Ç. and V.K.; supervision, D.Ç. and V.K.; project administration,
D.Ç. and V.K.; funding acquisition, D.Ç. and V.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was carried out as part of the Hybrid Electric Tracked Vehicle Development
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Article

An Empirical Study of the Policy Processes behind Norway’s
BEV-Olution
Erik Figenbaum

Institute of Transport Economics, Gaustadalleen 21, N-0349 Oslo, Norway; efi@toi.no

Abstract: Norway’s large battery electric vehicle (BEV) market and fleet are not the result of a
comprehensive policy plan. Using the multiple streams (MS) framework and document analysis, it
was identified that the most important Norwegian BEV policy decisions were made using inadequate
policy processes that fall outside of traditional politics. This is contrary to the MS framework postulate
that three independent streams of problems, policy solutions, and politics must align to pave the way
for new policies. Politicians had limited information about the effects of policies they introduced in
this “learning by doing process”. Impact assessments were rarely made. The decision rationale was
often not documented. The future market expectation and thus the national budget consequences
were low when important policy decisions were made, whereas the political gain was high. The
processes were more aligned with traditional politics after 2014. The ambitious ZE vehicle targets for
2025 and the climate policy targets for 2030 locked in incentives, despite rising tax losses. In sum,
these developments created the world’s largest per-capita BEV market. To avoid negative issues
and keep the BEV policies’ potential to support the BEV transition, politicians should ensure that
sufficient knowledge is available when making decisions about future policies. Such decisions should
be taken transparently within traditional politics, be properly assessed as with EU policy processes,
and regularly reviewed as with the California ZEV mandate process. The required knowledge should
be developed in open-access research.

Keywords: policy; incentive; strategy; passenger car; government

1. Introduction

Norway is the world leader in per capita BEV diffusion (battery electric vehicle) [1]. In
total, 690,000 BEVs were on the road at the end of 2023, which was 24% of the passenger car
fleet. Another 7% were plug-in hybrid vehicles (PHEVs) [2]. The BEV market share passed
79% in 2022, with PHEVs accounting for another 8.5% [2], as seen in Figure 1. In 2010,
there were only 3000 BEVs in Norway [3]. BEVs are now pursued as a measure to reduce
transport GHG emissions, and the current target is to only sell ZEVs from 2025, which is the
world’s most ambitious timeline. The consensus among most automakers is that BEVs will
become the dominant technology for passenger vehicles. PHEVs will not count towards
the EU’s new vehicle 0 g CO2/km 2035 target, and the sale of hydrogen fuel cell vehicles
(FCEV) is miniscule, despite having the same incentives as BEVs. FCEVs were discredited
after a filling station explosion in 2019 and subsequent filling station closures. Only two
models have been available in the market, the Toyota Mirai and the Hyundai NEXO.

The incentives for BEVs include the exemption from registration tax from 1990, the
1996–2003 exemption from annual tax and the reduction from 2004, the zero rate value-
added tax (VAT) on BEV purchases from 2001 and BEV leasing from 2015, free parking
from 1999 to 2017 and a parking fee reduction from 2018, free road tolls from 1997 to 2017
and a road toll reduction from 2018, reduced ferry rates from 2009, and access to bus lanes
in the Oslo area from 2003 and nationally from 2005, with some rush hour limitations from
2015. Finally, there has been a re-registration tax exemption from 2018 and there was a
reduction in 2022, as well as a reduced benefit tax on company cars from 2000 to 2022.
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Support schemes for normal chargers have been in place in Oslo since 2008 and nationally
since 2009. Support for fast chargers was introduced in 2011 and scaled to cover all main
roads between 2015 and 2020. Most fast chargers are now deployed on commercial terms.
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Norway established through these incentives a market where BEV producers com-
peted on equal terms and where BEVs became competitive with ICEVs earlier than else-
where. This gives rise to the research question of this article: How and why were the BEV
policies and incentives established and what did the politicians know about BEVs when
the actual decisions were made? Understanding how these policies came about can be
used to improve the policy processes ahead and help other countries seeking to accelerate
the transition to ZEVs. They need to understand how a country like Norway, without an
automotive industry, could become such a leader in the ZEV transition in order to develop
efficient policies.

Section 2 of this article includes a description of the methods and materials used in
this study. The results are in Section 3, the discussion is in Section 4, and the conclusion is
in Section 5.

2. Materials and Methods
2.1. Literature Review

The rapid market introduction of BEVs in Norway is the result of large incentives that
were introduced in 1990 [3–5]. The first incentives were intended to enable market experi-
ments and establish knowledge about BEVs’ technical potential in Norway’s demanding
climatic conditions [3,4]. Further incentives were introduced [3–5] to build a niche market
and establish a BEV industry between 1999 and 2002 and 2007 and 2010. Norway had then
a world-leading BEV developer, THINK [5], which Ford owned from 1999 to 2002. Ford
needed low-cost BEVs for the California ZEV mandate. The market remained small up
until 2011. It was limited by the high cost and limited supply and quality of BEVs [3,5].
Norwegian BEV industrialisation ended in 2010 due to a lack of funding for THINK and
other entrepreneurs in the wake of the global financial crisis. [3,4]. The market took off in
2011 with the availability of high-volume OEM BEVs that were competitive with ICEVs
due to the Norwegian incentives [6]. The OEMs expanded their offerings further in 2016,
which allowed a BEV regime to gradually emerge [5] and compete with the existing ICEV
regime. A long-term policy framework was a prerequisite for success [7], and the user
value of the incentives was high, according to user surveys [8–10]. BEV sales expanded in
2020 with the availability of longer-range models [11,12]. An expanding charging infras-
tructure ecosystem supported long-distance travel and single-vehicle ownership [13], but
user-friendliness was lacking due to a myriad of different suppliers with different apps and
payment systems [14]. The policy focus since 2021 has been a controlled downscaling of
incentives, as signalled by the publishing of the principles for the future of vehicle taxation
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in Norway in the 2021 National Budget [15]: “A sustainable vehicle taxation system must
include technology neutral equitable taxes on purchase and use of vehicles and take into
account the transition to ZEVs towards 2025”.

The Norwegian 1990 to 2022 societal BEV development process has previously been
analysed using the technology innovation system framework [3,4] and the multi-level
perspective (MLP) [5,16]. These analyses found that an alignment of the factors required to
achieve rapid BEV diffusion occurred after 2010. The costs, effectiveness, and impacts of
policies [17–22], including the total cost of ownership [6], have been analysed, with the con-
clusion that the incentives have been vital in the development of the market. Downscaling
the incentives while keeping sales up may be possible according to the latest research [23],
although user surveys show that most of the incentives have been and are still impor-
tant [8–10]. The knowledge available to politicians when introducing BEV policies has been
limited [24]. Cities had an important role in BEV policy development [5,25] due to local
incentives such as free parking and support schemes for chargers. Local assets such as clean
electricity and policy learnings over time have also been important. [7,26]. Some criticisms
of the policies do exist, especially on the combined size of the incentives [27,28], but most
research has focused on the positive or factual aspects of the electromobility transition and
how to reach national targets. Politicians have focused on making BEVs a story, as seen in
the Appendix A overview of the suggested policies in party programmes and government
declarations from 1990 to 2023.

Norway became the world leader in BEV adoption without anyone having analysed in
detail exactly how and why the Norwegian BEV policies and incentives were established or
what politicians knew about BEVs and the impacts of the policies when the actual decisions
were made. This article aims to fill this knowledge gap and improve the understanding
of policy processes. This knowledge can aid policy development for the electrification of
light commercial vehicles and trucks and should be of interest to other countries seeking
to accelerate their transition to ZEVs. This understanding may also be relevant for other
policy areas.

Understanding the BEV policy development processes has also not been an important
research theme in other countries. There are singular examples for Sweden and Den-
mark [29], Germany [30], France [31], and the UK [30], and for regions such as the EU [32],
the Nordic countries [33], and California [31,34]. California and the EU conduct large, trans-
parent, and publicly available impact assessments when introducing new ZEV and vehicle
CO2 policies [35,36] so there is less need to study how these processes proceeded. Cross-
country analyses have provided additional information about the efficiency of BEV policies
in different contexts [26,29–31,33,37,38] and, sometimes, on how they came about [26].
The conclusion is, however, that BEV policy development processes are understudied
in general. Yet, this topic is of special interest in the Norwegian case as the policies led
to market shares above 80%. This achievement came at a considerable tax loss cost but
without much resistance. There is thus a need to increase the understanding of the overall
process in Norway.

2.2. A Brief Overview of Norwegian Politics and Policy Processes

Norway has a tradition of technology-neutral politics developed in thoroughly doc-
umented processes defined by the “Instructions for official studies and reports” (“Utred-
ningsinstruksen”) [39–41]. A strong social economics bureaucracy in the Ministry of Finance
oversees the national budget process and has written procedures and methods for how
policy changes should be evaluated [42–45]. The essence of these requirements is that
all relevant aspects of all types of governments that internally or externally develop pol-
icy proposals should be thoroughly evaluated using a specific method that captures the
economic impacts.

Large policy changes are normally introduced in gradual policy processes, as illus-
trated in Figure 2. They start with a public report evaluating policy change needs and
implications for the national budget, the public, businesses, and stakeholders. The gov-
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ernment develops the suggested changes into a proposal in the annual national budget.
A debate in parliament on the budget and policy changes follows. A recommendation
from one of the parliament committees is made before making a decision in plenum. Large
policy changes are often anchored as broad political agreements between the parties in
parliament for stability reasons. New governments build politics from the existing situation
and rarely reverse recent reforms.
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Taxes are adjusted in small steps in a government’s internal annual national budget
process to provide stability for market actors. Vehicle importers have, for instance, already
pre-ordered vehicles for the following year when a national budget has been made public
in early October. Large, unexpected tax changes can influence the value of a dealer’s stock
of new and second-hand vehicles and can thus be a challenge.

Policies that require a law change and affect businesses, consumers, or other gover-
nance levels go through a structured process with a public hearing after parliament or the
government has proposed a law change. Potentially unwanted effects can be identified, and
adjustments can be made before the law enters into force. Law changes that only affect the
national governance level can be made directly by parliament. Parliament can also petition
the government to introduce specific policies. The government responds with an analysis
of the impacts in the next national budget documents or propositions to parliament.

Norwegian politics is, however, less stable than before as cross-party coalitions have
become the rule. This leads to very detailed government declarations that regulate the
policies that the government will pursue up until the next election, including vehicle
taxation and BEV incentives. These declarations are the result of long negotiations in
which party programmes are the starting point. This means that decisions can have been
made about politics even before any impact assessments have been made about their
effectiveness, costs, or other impacts. Small pro-BEV parties can in this way have a high
impact on BEV policies.

The Norwegian relationship with the EU is regulated via the EEA agreement, which
essentially means that the four freedoms of the EU—the free movement of goods, capital,
services, and people—applies also to Norway. The EFTA Surveillance Authority (ESA)
has the role that the EU court has within the EU, i.e., to verify the legality of the policies
proposed in terms of state aid and EU regulations related to the four freedoms.

2.3. Method

This study of Norwegian BEV policy development processes was based on a systematic
document analysis. This method was chosen because all the relevant facts about the
development of the large and costly Norwegian BEV incentives should have been properly
documented in publicly available documents if the structured Norwegian policy processes
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depicted in Figure 2 were followed. A second reason is that documents are the only reliable
source of information that span the entire 1990 to 2023 timeframe of this study. A third
reason was to avoid memory bias.

The first target of the document study was to identify the level of knowledge of BEVs
and the expectations for future developments at the time when important BEV policy
decisions were made. The second target of the document study was to identify the degree
to which structured Norwegian political processes were followed and, specifically, the
instructions for official studies and reports and the guidelines for policy analysis. Combined,
these two approaches make it possible to answer this article’s research question. The actors
that were involved in the decisions would not have had access to the full information
gathered retrospectively in this article. They may also have acted on biased information
from market actors and stakeholders. Neutral information on BEV usability in Norwegian
conditions was hardly available up until 2010.

The 1990–2023 BEV policy development process has been split into seven periods and
evaluated against the structured Norwegian governance processes using Kingdon’s [46]
multiple streams (MS) framework. This framework is appropriate for the study of policy
development processes. Kingdon states that policy agendas are set by the dynamics of
three “streams” of processes that are essentially independent of each other: a stream of
problems, a stream of policies, and a stream of politics—the 3Ps [34]. When these three
streams align, a policy window is created that provides opportunities for policy actors to
push their views on policy problems and solutions and set the policy agenda, i.e., pave
the way for BEV support policies. An agenda is defined by Kingdon [46] as “the list of
subjects or problems to which government officials, and people outside of government
closely associated with those officials, are paying some serious attention at any given
time”. Collantes and Sperling [46] found the framework useful for EV policy analysis but
questioned if these three streams are independent of each other.

2.4. Materials

Great effort was put into identifying all the relevant documents that deal with different
aspects of BEV development since 1990. The materials included 261 articles, reports, books,
and other documents from research, government and civil services, consultants, NGOs, and
industry, as shown in the overview in Table 1. In addition to these documents, the analysis
draws on information from the annual national budget documents and protocols of policy
decisions and debates in parliament. Documents with relevance to the policy development
processes were subsequently included in the analysis and complemented by press articles
identified through the Norwegian Retriever news archive service. Many of the reviewed
documents prior to 2000 are not publicly available now but were disseminated to the public
and policy makers when they were published. They fill a void in the knowledge of the
early development and come from the author’s archive. Most documents up to 2010 and
most of the press articles are in Norwegian language.

Table 1. Overview of the documents analysed.

Electromobility Norway Theory/International Total

Peer-reviewed research articles 22 18 40
Editor-reviewed research articles 2 1 3
Monographs (scientific book, PhD thesis) 3 2 5
Book chapter in scientific book 3 3 6
Scientific research paper 3 3 6
Reports—research/scientific 28 3 31
Reports—authorities using scientific approach 2 0 2
Reports—consultants 10 0 10
Reports—organisations 2 1 3
Popular science book 2 0 2
Press articles 66 9 75
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Table 1. Cont.

Electromobility Norway Theory/International Total

Other news articles, websites 14 3 17
Private actor documents 17 6 23
Public actor documents 10 1 11
Political documents 18 0 18
Law texts 1 2 3
Other references 4 2 6

Total 207 54 261

3. Results

Sections 3.1–3.7 analyse the detailed policy processes behind the introduction and
revision of each policy and incentive—split into seven periods—before assessing the overall
process in Section 3.8. Each subsection starts with a brief overview of the main activities of
the period and contains a flowchart that shows a chronological chain of the market, policy,
and knowledge development.

3.1. 1990–1997—Policies Enabled Market Experiments to Verify BEVs’ Potential

In 1990 when the first was imported, BEVs were unknown [3]. A vehicle registration
code for BEVs did not even exist. The gasoline three-way catalyst became obligatory in 1989,
but local pollution was still a problem in cities. Politicians saw BEVs as a local pollution
reduction measure, whereas the energy sector saw BEVs as a new electricity market [3]. The
first incentives—the registration tax (1990) and the annual tax exemption (1996)—enabled
market experimentation. PIVCO saw potential for producing BEVs, being inspired by
California’s ZEV mandate requirements for BEV sales from 1998 and French and Swiss BEV
activities. PIVCO (THINK) tested BEV prototypes 3–4 years before starting industrialisation.
The target was to produce 5000–10,000 BEVs/year [3]. PIVCO BEVs were advanced for
their time, having Ni–Cd batteries, an ABS, a driver airbag, and a 50–80 km range [3]. The
competitor Kewet had BEVs with lead–acid batteries and a 30–40 km range. A small number
of Peugeot, Citroën, and Renault Ni–Cd-battery BEVs were also available. The National
Institute of Technology tested BEVs’ capability [3], with inconclusive results. BEVs were
seen as a positive concept with good potential, but they were small, had low top speeds,
and the build quality and durability were poor. They were also too expensive, even with
incentives [6]. The Electric Vehicle Association (EVA, Norstart) was established to increase
BEV interest, improve incentives, and support industrial development [47]. Free road tolls
were introduced in 1997 to make BEVs more competitive, after NGO lobbying [3,47,48].
This incentive became important in later years with toll roads everywhere. At the end of
this period, the BEV fleet counted 105 and two models were sold. They had a range of
30–60 km. The timeline is shown in Figure 3.
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Exemption from registration tax and km tax (1990, 1996)

High vehicle registration taxes generate government income. Because taxes doubled
1990 BEV prices [6], NGO and industry actors lobbied for an exemption [47] to enable
market tests. The finance minister was positive [56]. A temporary exemption in the 1990
National Budget [57] was endorsed by parliament [58]. BEVs were also exempted from
km tax. No impact assessments were made. The tax loss was negligible, with five BEVs
in the fleet [3]. The exemption became permanent when Parliament adopted the 1996
National Budget vehicle tax reform [59,60]. This was again without an impact assessment,
contrasting the well-prepared reform itself [59,61]. The exemption lasted until 2023 when a
weight tax was introduced for all vehicles [62].
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Exemption and reduction from annual tax (1996)

The annual tax exemption was decided in the parliament’s 1996 National Budget
vehicle taxation reform debate and was documented in a sentence in the minutes [60].
There was no impact assessment as it had not been proposed in the reform [59]. With
50 BEVs in the fleet [3], the budget impact was negligible. BEV owners had to pay [63]
a traffic accident tax (EUR ~40) from 2004 after it became part of the annual tax. A 2015
vehicle taxation policy settlement [64] decision to introduce half annual tax in 2018 was
broken in 2016. Parliament instead decided on a full tax exemption from 2018 [65] during
a process to change the annual tax to a vehicle insurance tax [66]. In the national budget
process for 2021, parliament endorsed the government’s 70% ICEV rate proposal [15]. The
incentive was removed in April 2022 [67].

Free road tolls (1997)

An environmental NGO and the pop group A-ha, supported by the EV Association
and Oslo Energi (DSO), wanted an exemption from road tolls and parking fees for BEVs in
Oslo in the early 1990s. They thus refused to pay [47]. The pressure [3,5,24,47] made Oslo
decide to offer free toll roads in 1995 [47,68] and free parking from 1997 [69]. Oslo wanted
to reduce pollution and have PIVCO/THINKs BEV factories in Oslo [70]. National laws
inhibited the introduction. The Norwegian Public Roads Administration (NPRA) stated
that road tolls could by law only be used to build roads. Parliament changed the law in 1997
without any impact assessment, stating that BEVs were environmentally comparable to
the already exempted buses [71]. The Minister of Transport stated that toll road companies
were not impacted, but longer payment periods or higher rates could be required. In the
2017 National Budget, parliament decided that BEVs could pay maximum 50% of the rate
for ICEVs for parking and road tolls, to be decided by local authorities [65], which was
changed to 70% in 2023 [62].

3.2. 1998–2002—Policies Supported BEV Industrialisation

This period started optimistically. PIVCO changed its name to THINK and industri-
alised a city BEV that was launched at the 1998 Brussels World Electric Vehicle Symposium.
Lotus Engineering (UK) improved the quality of the product and aided the production
start-up. The 1998 Asian crisis hit the Norwegian economy with falling oil prices. THINK
lost capital and went bankrupt in 1998 [3]. Ford bought THINK in 1999 to obtain a low-cost
BEV to meet California’s ZEV mandate [3]. Production started in late 1999 after product
improvements and the introduction of a better-quality assurance system. Sales started in
Norway and some European markets. A model for California was developed [47]. THINK
reached the global BEV forefront. Small numbers of Kewet and French BEVs were imported
and sold to fleets, enthusiasts, and free-road-toll beneficiaries. Politicians became BEV
proponents with Ford owning THINK and introduced free parking and a zero-rate VAT on
BEVs. Ford sold THINK in 2002 after it became clear that the 2003 California ZEV mandate
no longer required BEVs as they were seen as technically immature by the legislators.
THINK also had technical problems with the California model, and Ford had economic
problems and had to save costs [3]. THINK was sold to an Indian investor. The period
ended pessimistically with a global downturn. BEVs were seen as not being market-ready.
The fleet had, however, grown to 871 by the end of 2002 [3]. The complete timeline is shown
in Figure 4.
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Free public parking (1999)

Free public parking (see also Section 3.1) came [75,76] after a Ministry of Transport
parking law revision [77] and law change process [78]. The fee losses were negligible, with
only 285 BEVs in the fleet [3]. In 2016, parliament followed up on the 2015 vehicle tax
policy settlement [64] and decided to let local authorities decide on BEV parking fees from
2017. During the 2017 National Budget debate, parliament decided on a maximum of a 50%
ICEV rate, to be decided by local authorities [65], but it was never implemented.

Reduced company car benefit tax (2000)

The prime minister introduced—without any impact assessment—a reduced company
car benefit tax at the 1999 THINK factory opening to support industrialisation [79,80]. The
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rationale was that BEVs had lower private benefits due to their short range and long charge
times. BEV company car sales were low as the zero-rate VAT did not apply to leased
BEVs until 2015. A tax revision from 2005 set BEVs’ value to 75% of their list price before
calculating tax [81]. It was set to 50% in 2009 [82], 60% in 2018 [66,83], 80% in 2022 [84,85],
and 100% in 2023 [62].

Zero-rate VAT (Value-Added Tax) (2001)

THINK BEVs were too expensive [3], but Ford, preferring mandatory public fleet
targets [3] as in the US, was inactive on tax incentives. So, EVA and Bellona (NGOs)
lobbied [47] for a VAT exemption during the 2001 National Budget VAT reform process.
This reform, which was based on a VAT expert group report [86], but a BEV exemption
was not part of the proposed reform. The EVA and Bellona told parliament that a VAT
exemption was needed to support THINK. Politicians were positive according to an EVA
document [87]. Parliament decided [88] on a zero-rate VAT to make BEVs more economical
to buy as part of the reform [89]. A NOK 10 million tax loss for 250 BEVs sold was
estimated for 2001 [3]. There was no impact assessment in the national budget to support
the decision [90]. A gradual VAT re-introduction from 2018 was proposed in the 2015
Revised National Budget [91], but parliament decided to keep it in place through 2017 after
EFTA Surveillance Authority (ESA) approval (see Section 3.5) [92]. It was later extended
through 2020 [93] and to 2022 [94]. In the 2022 Revised National Budget [95], it was
proposed that the zero VAT rate be replaced by a support scheme covering the VAT up to
a price of NOK 500,000. Parliament decided on a full exemption up to NOK 500,000 and
full VAT on the part of the price above NOK 500,000. This scheme, formalised in the 2023
National Budget [62], will last until 2025 [96].

3.3. 2003–2006—Policies Remained in Place as Global BEV Markets Collapsed

A four-year global BEV downturn followed the previous periods’ optimism [3,5].
BEVs were not considered market-ready, Ford had left THINK, and the French activity
ended. Norwegian activity also plummeted. The EV Association lost most of its members
and barely survived [3]. THINK went bankrupt again, in spite of BEVs obtaining access
to bus lanes in the Oslo area from 2003 and nationally from 2005. THINK was bought
by Norwegian investors who saw the potential for BEVs in the increased global interest
in GHG emission reduction [3] measures. ElbilNorge had bought the bankrupt Kewet
in 1999 and in 2005 established a small production of the 4-wheel MC (L7e registration)
Buddy based on the Kewet model. New actors imported used French BEVs [3,5]. The
2001 government declaration contained a sentence on keeping the incentives in place,
which was important for future developments. The government-appointed Low Emission
Committee [97] found BEVs to be vital for Norway to become a low-emission society by
2050 and suggested supportive policies. A slow market continued to develop through this
difficult period. The BEV fleet now counted 1656 [3]. Several models were imported in this
period. In the end, two were available. The timeline is shown in Figure 5.

Access to bus lanes (2003/2005)

In 2001, the NPRA planned to ban minibuses from bus lanes [98]. Consumers
used them to avoid rush hour queues. This would [5] thus make room for environmen-
tally friendly BEVs, and lobbyists [99] also hoped to turn around Ford’s decision to sell
THINK [47] with such an incentive. The Minister of Transport [100,101] agreed to test it
out in the Oslo area in 2003 to see if buses were delayed by the (then) slow BEVs [3]. Buses
were not delayed, BEV demand increased [102,103], and the incentive became permanent
and nationwide in 2005. Minibuses were thrown out in 2009 [104]. The test replaced the
impact assessment normally required for policy changes. The motivation was to reduce
pollution and support the market [105,106]. It had no budget impacts and was not state
aid [92]. A passenger has in some places been required in rush hour in some places since
2015 [107–109] due to increased bus lane congestion.
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3.4. 2007–2010—Policies Supported BEV Industrialisation in the Global Climate Policy Spur

THINK expanded with international investors, hired previous staff, and, in 2008 at
the Geneva Auto show, launched the model developed under Ford for the Californian
market [3]. It had double the range of other models (130 km) but used expensive Li–Ion
and Ni–NiCl2 batteries. ElbilNorge improved the Buddy and increased production. The
incentives were still in place and a new one was added—the reduced ferry rate from
2009 [5]. A new vehicle GHG emission reduction target was introduced. The first public
charging networks were put in place in the Oslo municipality in 2008 and across Norway
from 2010 with support from Transnova, a new government agency. The Electrification
Resource Group appointed by the Ministry of Transport saw great BEV potential leading
up to 2020 and suggested new incentives [113]. The global financial crisis hit THINK and
ElbilNorge hard. Both went bankrupt in 2010/2011 [3] when the BEV breakthrough started
with sales of OEM BEVs. The fleet had increased to 3360 and six models were sold [3]. The
timeline is shown in Figure 6.
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Average new vehicle CO2 emissions target of 120 g/km by 2012 (2007)

Norway’s first average new vehicle CO2 emissions target of 120 g/km by 2012 came
during a 2007 government press conference [114]. The 2007 Climate Policy Bill [115] had
no specific vehicle target, only a sentence about phasing in ZEVs. The vehicle importers
had lobbied for the 120 g/km 2012 target to favour diesel ICEVs, which, in theory, reduce
CO2 emissions by 20–25% compared to gasoline ICEVs. The target was to be achieved by
tuning the CO2 element of the registration tax. No impact assessment was published. The
parliament majority formalised the target as part of a climate policy settlement [116]. It was
more ambitious than the EU’s voluntary 130 g/km target for 2015, which became an EU
regulation in 2009 [117].

Increased vehicle allowance for business trips (2008)

A higher km allowance for government employees’ use of private BEVs for business
trips was introduced, without impact assessment, by the government in 2008 [118]. It was
introduced as a measure to support THINK’s reopened factory and because BEVs’ total
cost of ownership was higher than that for ICEVs.

Reduced ferry rates (2009)

In 2009, the Minister of Transport introduced [119] reduced ferry rates. This was based
on a voter’s idea [120]. The BEV was free of charge, but the driver paid the regular fee.
No expert group study or impact assessment was made. No stakeholders were involved.
The idea came from a voter and the rationale was to support industry, reduce energy
consumption and environmental impacts, and spread BEVs to coastal areas [120]. The
NPRA had the delegated power to implement the change. With 2424 BEVs in the fleet in
2008 [3], mainly in cities, the incentive would not strain ferry operators’ budgets. Ferry
operators could from 2018 charge BEVs 50% of the ICEV rates [65].

Transnova funding agency (2009) transport GHG emission reduction measures, first charger
support programme

In parliament’s climate policy settlement [116] for the 2007 Climate Policy Bill [115], it
was decided that a new funding agency, Transnova, should fund clean transport projects.
To battle the 2009 financial crisis, the government decided to support the installation of
chargers across Norway [121]. Transnova thus established [122] a national NOK 50 million,
first-come-first-serve support scheme for normal public chargers [123]. Standard Schuko
household-type outdoor sockets were chosen due to a lack of standards and 2500 chargers
were supported. Transnova supported the first 24 fast chargers in 2011–2012 [124] with
leftover funds.
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3.5. 2011–2015—Policies Supported the Roll-Out of Increasing Numbers of OEM BEVs

BEVs from the Mitsubishi, Citroën, Peugeot, and Nissan OEMs sold well. Buyers saved
time using bus lanes and saved money on road tolls and parking fees. More models came
on the market when other OEMs started production. Existing outdoor sockets were used
for charging, but “wall-box” installations expanded after dealers bundled them with BEV
purchases. Improved Li–Ion batteries enabled longer ranges at a decreasing cost. Public
chargers and fast chargers supported the market. A national fast charger infrastructure
connected southern Norway’s cities by 2015. Tesla developed the first long-range-capable
BEV, supported by their growing network of superchargers. Dealers gave buyers a one-
year-free EV Association membership. The EVA became a large consumer NGO supporting
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BEV owners across Norway and influencing policy processes. The policy processes became
more complex as sales increased and the impact on tax revenues became noticeable. The
new average vehicle CO2 emissions of 85 g CO2/km by 2020 target (introduced in 2012)
meant that BEVs, PHEVs, or FCEVs had to be sold [133]. Politicians simultaneously decided
to continue the incentives until 2015 or until 50,000 BEVs had been sold. In 2015, Norway
stated its intention in the Paris Agreement to reduce GHG emissions by 40% compared
to 1990 levels. The average range of the BEVs sold more than doubled during this period,
so BEV user appeal and sales increased substantially. The fleet reached 69,134 at the end
of 2015, with 14 models sold. The average range was 120–176 km. The timeline is shown
in Figure 7.

Average new vehicle CO2 emissions of 85 g/km by 2020 (2012)

The 2012 Climate Policy Bill [134] proposed a reduction in average new vehicle CO2
emissions to 85 g/km by 2020, which would de facto require the sales of BEVs, PHEVs,
or FCEVs [134]. The Klimakur 2020 expert study [132] provided a knowledge base for
CO2 reduction measures in 2020, without proposing this specific target. The measure was
inspired by the EU’s voluntary 95 g/km by 2020 target from a 2009 EU regulation [117],
which became a firm policy in a 2014 regulation [135].

Keep incentives in place until there are 50,000 BEVs in the fleet or through 2015 (2012)

Parliament decided in the 2012 climate policy settlement [136] to keep incentives
in place until 50,000 BEVs were in the fleet or through 2015. This reduced uncertainty
about the incentives, although, in 2011, the government stated that it had no plans to
change them [137]. Parliament thus linked for the first time the level and timeframe of BEV
incentives to both a long-term vehicle (85 g CO2/km by 2020) and climate policy targets.
No impact assessment supported the decision, apart from the Klimakur 2020 report [132].

Keep incentives in place until the end of 2017 (2013)

The 2013 government declaration [138] specified that the BEV incentives should
last through 2017, regardless of sales. The small party Venstre was a strong BEV policy
proponent and had this included in the declaration as a condition for supporting the new
government. Impact assessments were partly found in the 2012 Climate Policy Bill [134]
and the Klimakur 2020 [132] report.

Zero-rate VAT for BEV leasing and battery replacement (2015)

In the 2014 National Budget process, parliament petitioned [139] the government to
introduce zero-rate VAT on BEV leasing and batteries [140] based on an NGO/auto-sector
report [141]. The rationale was to treat leasing as equal to purchase and address battery
replacement cost concerns [8,142]. It had been discovered that the EFTA Surveillance
Authority (ESA), which supervises the European Economic Area agreement with the
EU, had to be notified [92] to evaluate the impacts on the trade agreement between the
EU and Norway. Notifications should have been sent also for other BEV incentives. The
government proposed the incentive in a 2015 Revised National Budget (RNB) document [91]
after notifying the ESA [143]. The ESA confirmed compliance through 2017 [92], including
also the zero rate for BEV purchases. A formal decision was made during the RNB 2015
debate [91] over VAT law changes [144]. It entered into force in 2015 with a NOK 40 million
first-year estimated tax loss [91]. This process followed the political tradition in Norway
because the ESA notification required a proper rationale and impact assessment. The ESA
found that the bus lane access was not state aid and that the registration tax exemption
and free parking were in place before the 1994 EEA agreement, so these incentives were
acceptable. The remaining BEV incentives were found to be proportional to targets.

Vehicle taxation policy settlement (2015)

The RNB 2015 document [91] stated that BEVs should fare better than ICEVs in the tax
system to support the 2020 and 2030 climate policy targets and the 85 g CO2/km target for
2020. Yet, several policy changes were proposed to limit the increasing tax losses from BEV
sales. The incentives were expected to last through 2017 and the registration tax exemption
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was expected to last through 2020, but the zero-rate VAT was to be replaced by a support
scheme after 2017, initially set as equal to the zero-rate VAT, as proposed by the Green
Tax Committee [145]. This support was to be reduced as the technology improved and
sales increased. A re-introduction of annual tax from 2018 and a removal of the company
car tax advantage was also proposed. Parliament agreed [146] to this in a settlement with
the government. It was also decided that local authorities should define parking fees and
allow access to bus lanes and that the government should develop an environmental tariff
differentiation system for toll roads and ferries. In the 2017 National Budget, parliament
dismissed [65] the VAT support scheme and annual tax re-introduction. The 2025 target to
only sell ZEVs introduced in 2017 was more important.
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3.6. 2016–2020—Policies Supported the Mass Market to Achieve GHG Emission Reductions

BEVs now had a good foothold in the market, although the market share in 2016 was
1% lower than in 2015. The first year without growth. The reason for this was that buyers
were waiting for longer-range BEVs that had been announced. When these longer-range
and lower-cost BEVs became available from traditional and new Chinese OEMs, the market
expanded rapidly. BEVs average range doubled, and the model variety expanded. BEVs
became an alternative for all households. Charging networks supported long-distance
driving across Norway. The national target that only BEVs were to be sold from 2025 was,
however, so ambitious that the politicians kept the incentives in place, despite growing tax
losses and criticism. The EU 2019 CO2 targets for 2025 and 2030 de-facto required European
ZEV shares, and access to BEVs improved further and costs continued to decrease. The
electromobility transition accelerated. The Klimakur2030 public report by the environment,
transport, and energy authorities [153] saw BEVs as a top priority for reducing national
GHG emissions. Yet, a Ministry of Transport toll road expert group suggested road tolls for
BEVs [154]. This was because the purpose of these tolls is to finance road and transport
reduction measures and public transport in cities [154]. Norway’s Paris Agreement NDC
to reduce GHG emissions by 40% by 2030 compared to 1990 entered into force in 2016 and
was increased to 50% to 55% in 2020. The fleet had now reached 339,912 (12% of the total
fleet) and 43 models were sold [3]. The average range increased from 209 to 393 km [3].
There was a broad understanding among stakeholders and politicians that BEVs were the
future. Figure 8 shows the timeline.

Keep incentives in place through 2020 (2016/2017)

In the 2017 National Budget negotiations, parliament petitioned the government [65]
to continue the zero VAT rates until 2020, introduce an annual tax exemption from 2018,
and ask for ESA notification [155]. The rationale was to keep up the momentum towards
the 2025 100% ZEV target. No impact assessment was made apart from in the “after the
fact” ESA notification. ESA gave approval through 2020 [93].

Only sell ZEVs from 2025 (2017)

The 2016 National Transport Plan (NTP) suggested a target [156] of only selling ZEVs
from 2025 and increasing biofuel use to reduce transport GHG emissions by 50% by 2030
compared to 1990. This target was derived from the national 2030 40% GHG emission
reduction commitment of the Paris Agreement [157]. Insights came from an Environment
Agency report [158]. Parliament approved the NTP and thus the ZEV target [159,160] in
2017. The incentives remained mostly unchanged until 2022 following this decision.

Exemption from re-registration tax (2018)

In 2014, the EV Association had proposed [161] an exemption from re-registration. In
the negotiations over the national budget for 2018, parliament decided to ask the govern-
ment to obtain ESA approval for the exemption [155], which the ESA approved until the
end of 2020 [93]. It was adopted as part of the national budget for 2018 [155]. No expert
group report supported the decision, but the ESA notification and the 2018 National Budget
did contain an impact assessment. The rationale was to reduce the transaction cost and
value loss of BEVs. In 2022, the tax was set to 25% of ICEVs [67] and, from 2023, it was set
back to 100% [62].

Right to charge for flat owners in joint properties (2018)

The right to charge for flat owners in joint properties came about in a 2017 law change
process [162], following a petition from parliament to the government, which was preceded
by EV Association pressure. The law stated, “A section owner may, with the consent of
the board, construct a charging point for electric cars in connection with a parking space
available to the section, or other places designated by the board. The board can only refuse
to consent if there is a valid reason”. Later, a new sentence was added: “A section owner
who has the right to park on the owner section association’s property, but without disposing
of his own space, may demand that a charging point be set up for an electric car. The board
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shall comply with the claim unless there is objective reason to refuse. The board decides
where to set up the charging point” [163].

1 
 

 
Figure 8. Timeline of policies, market activities, and research publications 2016–2020 [5,9,10,13,18–20,153].
Light green: Norwegian policies. Dark green: international policies. Blue: research results. Grey: market
activities. Source: Author.

The 50% rule for road tolls, parking fees, and ferry tickets, and acknowledging local authority
co-decisions (2018)

In the national budget negotiations for 2017, parliament decided [65] that ZEVs should
pay a maximum of 50% of the ICEV rates for toll roads, parking, and ferries to reduce
the income losses associated with the exemptions while keeping some ZEV incentives.
Municipalities were allowed to make decisions within this limit. Changes to the toll
road tariff system [164] and the NPRAs National Ferry Tariffs [165] for national main
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roads followed. This was thus a combination of a major national law change and minor
administrative changes. No impact assessments were made. The 50% rate for parking was
never implemented [166]. The 2017 parking regulation revision had replaced the obligatory
exemption, with a possibility to offer exemption [167]. Municipalities could thus in practise
charge BEVs 100% of the rate of ICEVs, despite the parliament’s decision.

Action plan for infrastructure for alternative fuels in transport (2019)

The Oslo municipality funded the first large deployment of chargers in 2008 [168]. A
national scheme followed in 2009 with financial crisis funding [121,122]. Normal and fast
chargers had since then been supported by the Transnova [169] and Enova [170] funding
agencies, counties [171], and municipalities [172,173], without a coherent national plan.
The government’s alternative fuel infrastructure plan published in 2019 [174] targeted a
coherent alternative fuel infrastructure deployment and support for the implementation
of the EU Dir. 2014/94/EU on infrastructure for alternative fuels [175]. The plan was
presented in an expert group report followed by a public hearing. A final plan has yet to
be adopted.

Keep incentives in place through 2021 (2020)

A decision to keep the zero VAT rates and registration tax exemption in place until
2021 came after the 2018 government declaration [176] had stated this intention. An ESA
notification [177] was sent asking to extend the incentives through 2022, which the ESA
approved [94]. No formal impact assessment was made but both the notification and the
ESA decision contained a thorough evaluation of impacts and a justification.

Strategy for post-2025 vehicle taxation (2020)

Vehicle taxes provide a large portion of government income and are normally adjusted
in small annual steps in the national budget process to avoid market distortion. The post-
2025 general vehicle taxation principles were presented in the national budget documents
for 2021 [15] and in the Climate Policy Bill to parliament [178] to provide market actors
with a long-term perspective on vehicle taxes. The main principles stated were as follows:
“A sustainable car tax system has a stable tax base, put a price on the external costs of
vehicle use, taxes purchase and ownership of vehicles technology neutral, and takes care of
distributional effects”.

Right to charge for flat owners in housing communities (2020)

The right to access to charging infrastructure for flat owners was expanded to housing
communities in 2020 following a thorough law change process. The results were included
in a 2020 bill to parliament [179], which then made the formal decision. The law on housing
communities was updated accordingly [163].

3.7. 2021–2023—Policies Downscaled to Preserve Government Income but Still Meet Targets

In 2023, Norway increased its Paris Agreement GHG emission reduction obligation to
55% [180]. The BEV market share passed 80% and the fleet share reached 24% at the end
of 2023. The BEV fleet reached 690,000 [2]. Politics was focusing on reaching the target of
only selling ZEVs, i.e., BEVs, from 2025. A gradual incentive downscaling was, however,
initiated to preserve government tax income and because of diminishing user barriers.
Home charging access in dense cities and for flat owners was still a barrier. The remaining
75–80% of Norwegians live in detached, semi-detached, and row houses where charging is
easily accessible. Fast charging networks now covered all of Norway and were mainly built
on commercial terms without support. There were, however, increasing charge queues
at peak travel times as the building of chargers was outpaced by the expanding fleet and
because more users drove long distances with BEVs. Long-range BEVs were available in
all sizes and segments from traditional and Chinese OEMs, but some use areas, such as
heavy, long-distance towing, could still not be covered satisfactorily. The timeline is shown
in Figure 9.
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Charging infrastructure strategy proposal (2022)

The development of a charging infrastructure strategy was started in 2022 after a
parliament petition that the government should secure the building of a comprehensive
charging infrastructure [181], which researchers, the EVA, and other NGOs saw as a major
barrier to meeting the 2025 ZEV target [182]. The petition was sent during a parliament
debate and public hearing [183] over the climate policy bill [178]. Another petition asked the
government to develop a national charging infrastructure strategy to secure coordination
between public authorities and develop more user-friendly charging infrastructure [184]. A
charging expert group report was published in March 2022 [185], and stakeholders were
invited to comment on it [186].

Proposal of the removal of zero-rate VAT, to be replaced by a support scheme (2023). VAT
to be introduced on the part of the purchase price exceeding NOK 500,000

An expert group report [145] and a previous government [91] had proposed replacing
zero-rate VAT with a support scheme. In the revised national budget for 2022 [95], the
government proposed a scheme equal to 25% VAT up to NOK 500,000, i.e., capped at
NOK 125,000. The incentive would move from the national budget income side, which is
balanced by oil sector income, to the expense side, balanced against all other spending. It
was stated to be a more equitable system for the future. Parliament decided, however, to
keep the VAT exemption in place for a price up to NOK 500,000 and introduce VAT on the
part of the purchase price exceeding that sum from 2023 [187,188], and to keep this scheme
until 2025.

New weight tax on all vehicles (2023)

This tax on all new vehicles above 500 kg came as a big surprise in the 2023 National
Budget [62]. BEVs, due to their heavier weight, had a higher tax than ICEVs. No impact
assessment was published.

Removal of reduced re-registration tax incentive (2023)

The re-registration tax incentive was removed in the 2023 National Budget [62] pro-
posal, which was endorsed by parliament [189]. No impact assessment was published.

Removal of reduced company car benefit tax (2023)

The reduced company car benefit tax was removed in the 2023 National Budget [62]
proposal and endorsed by parliament as the budget proposal was not changed [189]. No
impact assessment was published.

The 70% rule for toll roads (2023)

It was decided during the national budget process for 2023 that BEVs can from 2023
be charged up to 70% of the toll road rate charged for ICEVs [62,190].
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3.8. 1990–2023—The Policy Processes from Infancy to Mass Market and Beyond

The 33-year-long time horizon of the Norwegian BEV policy framework stands out.
Large incentives covering many aspects of BEV purchase and ownership remained in place
for a long time after their introduction, as seen in Table 2. The incentives came about in
a learning-by-doing process where politicians introduced BEV-friendly policies based on
stakeholder input and pressure. Lobbyism is easier in a small country like Norway with
good access to politicians compared to large countries. BEV interest thus developed broadly,
and the policies were adopted into party programmes and government declarations over
time, as seen in Appendix A.
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Table 2. Timeline of the main incentives and their 2023 status. Source: Author.

Incentive Introduction 1st Major
Revision

2nd Major
Revision

3rd Major
Revision

4th Major
Revision

5th Major
Revision

Status 2023

Registration
tax
exemption

1990,
temporary

1996,
permanent

2023, weight
tax element
introduced

Weight tax as
for ICEVs,
other parts
exempted

Annual tax
exemption

1996 2004, partial
reduction

2018, BEVs
fully
exempted,
changed to
tax on
insurance

2021, partial
reduction

2022, full tax
as for ICEVs

Full tax as for
ICEVs

Road toll
exemption

1997 2018, max
50% of
ICEVs, local
decision

2023, max
70% of
ICEVs, local
decision

Max 70% of
ICEVs, local
decision

Parking fee
exemption

1999 2017, local
authorities
can decide

2018, BEVs
50% of ICEVs

50% rate still
not
implemented

Reduced
company car
benefit tax

2000 2005, new tax
system, BEVs
75% of ICEVs

2009, 50% of
ICEVs

2018, 60% of
ICEV

2022, 80% of
ICEV

2023, full tax
as for ICEVs

Full tax as for
ICEVs

Zero-rate
VAT
purchases

2001 2023, full
VAT on price
above NOK
500,000

Full VAT on
price above
NOK 500,000

Reduced
ferry rates

2009,
national car
ferries

2018, max
50% of
ICEVs, ferry
operator to
decide,
includes
county
ferries

Max 50% of
ICEVs, ferry
operator to
decide,
includes
county
ferries

Zero-rate
VAT leasing

2015 2023, full
VAT on price
above NOK
500,000

Full VAT on
price above
NOK 500,000

Re-
registration
tax
exemption

2018 2022, 25% of
ICEV rate

2023, full tax
as for ICEVs

Full tax as for
ICEVs

Access to bus
lanes

2003, Oslo
area test

2005, access
to all bus
lanes in
Norway

2015,
passenger in
the car in
rush hour,
local
authority
decides

2015,
passenger in
the car rush
hour, local
authority
decides

About 20% of the policy processes were improper from a traditional politics point of
view, as seen in Table 3 and the flowcharts in Figure 10. Another 28% were inadequate.
Some were parliamentary add-ons to traditional political processes. One example is the
zero-rate VAT that was added by parliament to an otherwise well-prepared VAT reform.
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Another is the 2012 decision to keep the BEV incentives in place until 2015 or when
50,000 BEVs were sold, which came during a parliamentary climate policy debate. Several
incentives came during late-night parliament national budget negotiations (Table 3, policy
nos. 4, 8, 18). Others originated from parliament (Table 3, policy nos. 5, 27) and were thus
not “prepared” by the government. No impact assessments, therefore, supported these
decisions, but policy no. 27 went through an after-the-fact process. In some cases, only
a sentence shows that the decision was made. The temporary registration tax exemption
became de facto permanent when a vehicle taxation reform was passed by parliament,
without even being mentioned in the reform documents. Incentives affecting consumer-
oriented laws have been carried out as proper law change processes (Table 3, policy nos. 6,
28, 30). Most processes since 2014 have been proper (Table 3, policy nos. 22–25, 27, 29–31,
33–35) apart from the last year’s incentive downscaling (Table 3, policy nos. 26, 32, 37–40).
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Figure 10. BEV policy development process flows. Green = OK, orange = inadequate, red = im-
proper. Grey: Elements of the traditional policy processes, as seen in figure 2. The thick arrows 
shows the actual policy process flow for each policy. Source: Author. 

4. Discussion 
Development in the problems stream: Air pollution was a major issue in Norwegian cities 

in the 1990s. The three-way catalyst became obligatory in 1989, but the slow fleet turnover 
caused cities to look to BEVs to reduce air pollution. Energy companies needed a new 
electricity revenue stream after an energy market reform. The BEV developer PIVCO saw 
an opportunity to produce a city BEV using a low-volume production process. This mar-
ket was uninteresting for the OEMs. They saw BEVs as California-ZEV-mandate-compli-
ance cars. Norwegian actors were inspired by French and Swiss BEV developments and 
the California ZEV mandate. Market experiments started after the costly registration tax 
was exempted in 1990. The actors established the EVA to improve the policy framework. 
Research found the early BEVs to be of poor quality and in need of improvements to be 
marketable. PIVCO planned to solve these issues through industrialisation. The clean air 
motivation had been reduced by 1998–2000. The focus shifted to industrialisation when 
Ford owned THINK (PIVCO) from 1999 to 2002 and in 2010 when other investors had 
taken over. The total cost of ownership was almost competitive with ICEVs for users, with 
free parking and free road tolls when the zero-rate VAT was introduced. A GHG emission 
reduction focus emerged when it became clear that the Kyoto Agreement GHG emission 
trading system did not work, and national policies would be required. The obligations of 
the Paris GHG emission reduction agreement would not be possible without BEVs as other 
transport measures had low potential and would be unpopular [192]. Local pollution 
came back on the agenda with rising diesel shares and the EU diesel emission regulation 
scandal [193]. Research showed that BEVs became multi-vehicle households’ “workhorse” 
after OEM BEVs became available in 2011 [8–10]. The limited range was not an issue as 
they also owned an ICEV. The range of the latest generation of BEVs of all sizes was also 
sufficient for single-vehicle households. The market share reached 17% in 2015, 54% in 
2020, and 80% in 2022. The EU’s 2020–2030 vehicle CO2 regulations de facto require ZEVs 
to be sold and show that Norway is on the right track, but ahead of other European coun-
tries.  

Development in the policy solutions stream: BEVs have never been mandated in Norway. 
The market is too small for automakers to develop specific vehicles. Market pull incentives 
were used at first to allow for experiments and reduce local pollution, and later to support 
the build-up of a Norwegian BEV industry. High vehicle taxes since the 1960s made it 
possible to support BEVs through large tax exemptions. Politicians and municipalities 
were pressurised by NGOs to introduce incentives such as free parking and free road tolls. 
The policy effects were not well understood but the tax losses were initially low. The Nor-
wegian BEV industry was globally leading at a time when OEMs saw BEVs as California 
“compliance” cars. Politicians failed, however, to support the BEV industry through the 
2009 financial crisis. A government fund invested a small amount in THINK but de-
manded experienced auto industry involvement, which led to a production relocation to 
Valmet in Finland. All Norwegian BEV industry activity had ended by 2011. OEMs devel-
oped BEVs to meet the EU’s vehicle CO2 regulations and the policy focus shifted to sup-
port climate policy by replacing ICEVs with BEVs when they became available. The 

Figure 10. BEV policy development process flows. Green = OK, orange = inadequate, red = improper.
Grey: Elements of the traditional policy processes, as seen in Figure 2. The thick arrows shows the
actual policy process flow for each policy. Source: Author.
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The reasons for the lack of proper policy processes up to 2010 could be the large
political interest in BEVs, a lack of knowledge [24], a sense of urgency as BEVs were un-
competitive without incentives, the need for transport sector GHG emission reductions [6],
a willingness to support BEV industrialisation, and that the expected tax losses were low
for the first few years after each incentive was introduced.

4. Discussion

Development in the problems stream: Air pollution was a major issue in Norwegian cities
in the 1990s. The three-way catalyst became obligatory in 1989, but the slow fleet turnover
caused cities to look to BEVs to reduce air pollution. Energy companies needed a new
electricity revenue stream after an energy market reform. The BEV developer PIVCO saw
an opportunity to produce a city BEV using a low-volume production process. This market
was uninteresting for the OEMs. They saw BEVs as California-ZEV-mandate-compliance
cars. Norwegian actors were inspired by French and Swiss BEV developments and the
California ZEV mandate. Market experiments started after the costly registration tax
was exempted in 1990. The actors established the EVA to improve the policy framework.
Research found the early BEVs to be of poor quality and in need of improvements to be
marketable. PIVCO planned to solve these issues through industrialisation. The clean air
motivation had been reduced by 1998–2000. The focus shifted to industrialisation when
Ford owned THINK (PIVCO) from 1999 to 2002 and in 2010 when other investors had
taken over. The total cost of ownership was almost competitive with ICEVs for users, with
free parking and free road tolls when the zero-rate VAT was introduced. A GHG emission
reduction focus emerged when it became clear that the Kyoto Agreement GHG emission
trading system did not work, and national policies would be required. The obligations
of the Paris GHG emission reduction agreement would not be possible without BEVs as
other transport measures had low potential and would be unpopular [192]. Local pollution
came back on the agenda with rising diesel shares and the EU diesel emission regulation
scandal [193]. Research showed that BEVs became multi-vehicle households’ “workhorse”
after OEM BEVs became available in 2011 [8–10]. The limited range was not an issue as
they also owned an ICEV. The range of the latest generation of BEVs of all sizes was also
sufficient for single-vehicle households. The market share reached 17% in 2015, 54% in 2020,
and 80% in 2022. The EU’s 2020–2030 vehicle CO2 regulations de facto require ZEVs to be
sold and show that Norway is on the right track, but ahead of other European countries.

Development in the policy solutions stream: BEVs have never been mandated in Norway.
The market is too small for automakers to develop specific vehicles. Market pull incentives
were used at first to allow for experiments and reduce local pollution, and later to support
the build-up of a Norwegian BEV industry. High vehicle taxes since the 1960s made it
possible to support BEVs through large tax exemptions. Politicians and municipalities
were pressurised by NGOs to introduce incentives such as free parking and free road
tolls. The policy effects were not well understood but the tax losses were initially low. The
Norwegian BEV industry was globally leading at a time when OEMs saw BEVs as California
“compliance” cars. Politicians failed, however, to support the BEV industry through the
2009 financial crisis. A government fund invested a small amount in THINK but demanded
experienced auto industry involvement, which led to a production relocation to Valmet in
Finland. All Norwegian BEV industry activity had ended by 2011. OEMs developed BEVs
to meet the EU’s vehicle CO2 regulations and the policy focus shifted to support climate
policy by replacing ICEVs with BEVs when they became available. The market took off.
BEVs contributed significantly to GHG emission reduction 2020 targets. By backcasting the
2030 Paris Agreement GHG emission obligation, it became clear that the national target
had to be to only sell BEVs from 2025. This was so ambitious that the incentives remained
in place likely longer than they would have without the target. Increased research on user
needs and the effects of policy changes supported policy development through the 2010s.
The increasing vehicle tax losses were masked out by the increased oil sector income. BEV
policies thus did not get in the way of other priorities. The BEV tax loss was about 5% of
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the oil income that balanced the 2020 National Budget, as seen in Figure 11. The incentive
reductions from 2023 had little impact as Tesla lowered their prices and forced other OEMs
to do the same.
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Developments in the political stream: The structured development processes of Norwe-
gian politics were not followed for important BEV policies up until 2014. Decisions were
made in poorly documented ad-hoc processes in parliament. The incentives would likely
not have fared well in regular political processes with rigorous cost-benefit analyses. There
was a lack of information about BEVs’ potential and effects on government income in the
early years. Such decisions were to some extent anchored in the party programmes, as seen
in the overview in Appendix A. The party programmes became more positive to ZEVs over
time. The government’s reliance on small, pro-environment parties as coalition partners
and the 2025 ZEV target caused BEV policies to continue despite increasing tax losses. They
became “protected” by government declarations. Politicians were disproportionally recep-
tive to BEV policies suggested by advocacy groups and entrepreneurs. Industrialisation, a
policy area where political and financial risks seem to be more accepted, was a strong policy
driver for the 1997 to 2010 developments. The most important incentives were agreed
across parties in parliament to ensure stability. BEV policies found little opposition as they
consisted of positive measures, and Norway did not have to worry about an incumbent
ICEV production industry as other countries do. Some precedence for substantial vehicle
tax exemptions existed before BEVs for, for instance, airbags and three-way catalysts. BEV
policies contributed to Norway’s international environmental standing. The discovery that
BEV politics violated the EEA agreement with the EU led to an alignment of BEV politics
with traditional politics.

Politicians did not want to make the best-informed decisions. When the two large stud-
ies [113,126] of climate policy measure options were carried out by energy, transport, and
environment authorities in 2010 and 2020, the government’s mandate precluded recom-
mending packages of policy measures based on the best available knowledge. The 2020
mandate reads as follows: ”A specialist group is established to carry out an investigation
of possible measures and means of implementation of climate policy targets in 2030 but
shall not make recommendations“. The 2010 mandate was similar. It seems that the politi-
cians did not want expert advice so that they could cherry-pick options matching party
programmes. These authorities are, however, underlying government ministries. This may
have led to the conclusion that they could only present possibilities, not policy suggestions.
The actual targets and measures that were decided upon by politicians were not the same as
those evaluated in these studies, and the impact assessments were thus not representative.
This lack of competence-based politics was also seen in the National Transport Plan process
where politicians often prioritised uneconomic projects over good projects [194].

The politics stream was side-lined. The main incentives were developed in the policy
solutions stream outside of traditional politics as a response to issues in the problem stream.
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These issues were put on the political agenda by lobbyists, i.e., industrial entrepreneurs,
NGOs, and local authorities, and later by traditional vehicle importers. The Norwegian
BEV policy process thus did not follow the multiple streams (MS) framework postulate
that the 3Ps—the problems, policy solutions, and politics streams—must align to pave the
way for new policies.

The lack of knowledge within all three streams was an issue through the 1990s and 2000s.
Politicians lacked knowledge about how BEVs could function in Norway and solve issues
in the problem stream. BEVs’ potential to reduce pollution was, for instance, vastly
overestimated, given THINK’s low level of planning for BEV production. Research on
the potential of BEVs was therefore initiated. The earliest incentives were intended to
be temporal to build knowledge to enable decision making within traditional politics.
Later policies supported industrial development, a policy area with high risk and lower
documentation requirements, so the incentives were decided ad-hoc, without impact
assessments. The policy results were inconclusive. The market remained slow, and more
incentives were added with unclear effects but high political visibility at a low initial cost.
The incentives were on the less-visible-income side of the national budget, and they did not
compete against policies on the expense side of the budget, where competition for funding
is hard.

The feedback from the problem stream was not clear. The early buyers were fleets seeing a
marketing advantage and “irrational” enthusiasts. They made large sacrifices in terms of
comfort, vehicle size, usability, quality, and reliability. This may have led to a misconception
in the politics stream of BEVs’ potential to solve issues in the problems stream. The user
base expanded with the zero-rate VAT from 2001 and the bus lane access from 2003, but
sales were hampered by the low access to BEVs, again leading to mixed signals to the other
streams. The market did not respond until the OEMs took over in 2011. Norway’s demand-
side measures have from then on perfectly matched the EU’s supply-side measures.

Researchers have supplied increasingly enhanced knowledge to all three streams since 2010.
User behaviour and needs have been analysed and statistical models of future demand
have been established since 2010. This knowledge has been used to investigate how to
reach the increasingly ambitious ZEV targets. It could have been used to develop impact
assessments that would have aligned BEV politics with traditional politics earlier. This
did not happen until the government had to assess the impacts and justifications in the
notifications sent to ESA in 2014.

It is unlikely that the large package of BEV incentives could have been established within
traditional politics. Traditional politics requires sufficient information to be able to write
impact assessments and make well-documented decisions. BEV policies before 2014 were
mainly decided outside traditional politics in a poorly documented “learning-by-doing”
process, not following the instructions of official studies and reports (“Utredningsinstruk-
sen”) [39–41], nor the Ministry of Finance procedures for evaluating policies [42–45]. The
reasons for this could be a lack of knowledge, strong political interests, and minority govern-
ments’ reliance on small, BEV-friendly parties. Economists’ first best solution for reducing
GHG emissions, the Kyoto global trading system, failed, so national policies became the
focus. Finally, there was an increasing GHG emission reduction urgency through the 2010s.
The three streams of problems, policies, and politics were not fully aligned until 2017 when
parliament endorsed the target to only sell ZEVs from 2025. The three streams came close
to being aligned two years earlier when the government found out that it had to consult
the ESA about the legality of the policies. The first notifications to the ESA did contain
impact assessments in line with traditional Norwegian politics, but they were written after
the decision had been made.

The tax income losses may have been higher than necessary, and the industrial support may
have been too low. It is not certain that the entire incentive package is really needed to be
able to reach the target of only selling ZEVs from 2025. Some incentives could potentially
have been gradually scaled back earlier. The target itself may also not be optimal. The
costs could have been lower if the target had been 80% or 90% or if the 100% target had

319



World Electr. Veh. J. 2024, 15, 37

been phased in over a few years. Another issue is that the large incentives failed to build a
Norwegian BEV industry. Norway could potentially have had a BEV industry today had
some incentives been refocused to industrial support, especially during the 1998 and 2009
financial crises when private funding became unavailable to BEV producers.

The effectiveness of the BEV incentives should have been monitored, given the high cost of the
incentives. Norway spent, according to the 2024 National Budget [195], NOK 28.6 billion on
tax incentives for BEVs in 2023 and NOK 39 billion in 2022. Compared to the tax income on
ICEVs, the tax incentive costs were even higher due to the loss of fuel taxes (electricity tax
is lower) and because registration tax is partially based on a vehicle’s CO2 emissions. Given
these high costs, governments should have invested more in research on the effectiveness
of BEV policies.

The transition to BEVs continues and deepens. Norway will in the coming years spend
large resources to transform the transport sector into a zero-emission sector mainly powered
by renewable electricity. All new city buses shall be zero-emission from 2025. Every new,
small LCV shall be zero-emission by 2025 and every new, large LCV shall be zero-emission
by 2030. The transition will spread to the trucking sector, which must transition much faster
than BEVs to reach the National Transport Plan target that 50% of trucks sold should be
zero-emission in 2030, as few were in the 2023 fleet [196]. Parliament changed the 2030 truck
target to 100% but included biogas during the national budget negotiations for 2024 [197].
The main recommendation for the truck segment is to link incentives to a long-term plan,
with regular public reviews of the progress and the need for policy changes. These plans
and reviews should, due to the large resources that will have to be used to speed up the
truck transition, be supported by policy cost-effectiveness research.

The Norwegian BEV policy processes deviate from those of other countries and regions. The
oil income made it easy to continue the incentives when the market took off in 2011. Other
countries must evaluate BEV policy expenses against other policy needs or use budget-
neutral measures such as ZEV mandates or bonus/malus systems. Norway has no ICEV
producers, whereas some countries must consider the effects on their vehicle producers.
Norwegian electricity is almost 100% hydro-electric based and without GHG emissions,
and most Norwegians have or can obtain access to home charging. The stable Norwegian
tax exemptions are on the less-visible-income side of the national budget. The support
schemes in other countries are on the expense side, are affected by frequent policy changes,
and often run out of money mid-year. The large user privileges were enabled by the spare
capacity in the bus lanes and the toll roads spread across the country. The ad-hoc policy
process differs from other countries’ structured processes.

5. Conclusions

The Norwegian BEV policy process was investigated using a combination of document
analysis and the multi-stream (MS) policy analysis framework. The MS framework states
that policies can gain traction when the three streams of problems, policy solutions, and
politics align. The analysis reveals that this prerequisite was not fulfilled when powerful
BEV policies were decided in Norway, not as part of a comprehensive plan but in an ad-hoc
“learning-by-doing” process outside traditional politics. The early BEV policy decision
processes were also inadequate in terms of traceability and the documentation of their
impacts and rationale. Politicians and other actors had until 2010 no or inadequate infor-
mation about the effects of the BEV policies they introduced. They were disproportionally
receptive to arguments from the problems stream about the need for BEV support policies.

At first, the stated target in the problem stream was to improve air quality; then, indus-
trialisation became the focus, before it shifted to GHG emission reduction. Incentives that
addressed these problems were developed in the policy solutions stream outside traditional
politics. Given the market status and expectations for the future when the most important
policy decisions were made, the immediate consequences, budget impacts, and risks were
seen as low, and the political gain was seen as high. The post-2010 processes when the
market share increased from <1% to above 80% have been more in line with traditional
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politics after politicians discovered that they had to notify the ESA. ESA notifications
contain proper justifications and impact assessments, as is expected for decisions made in
the politics stream. The 3Ps of the MS framework aligned, although some of the processes
were still inadequate in terms of transparency. The ambitious target to only sell ZEVs from
2025 and the ambitious climate policy targets for 2030 led to a lock-in that protected the
incentives from down-scaling. These developments created the world’s largest per-capita
BEV market.

To avoid negative issues but keep the potential to support the transition to ZE vehicles,
politicians should ensure that sufficient knowledge about status and uncertainties is avail-
able when decisions about BEV policies are made. Decisions should be properly assessed
within traditional politics as with EU policy processes and regularly reviewed as with the
California ZEV mandate mid-term reviews. The required knowledge for decision making
should be developed in continuous open-research activities and in other publicly available
documents.

New insights into BEV policy development processes can be gained by comparing
the Norwegian process with that of other countries. This would be of particular interest to
countries that aim to expand their BEV market. The analysis of policy processes should
also be expanded to heavy-duty truck electrification while it is still in an early stage. The
knowledge of the policy processes for passenger vehicle electrification can then be used
to devise better policy processes related to the target of only selling ZE trucks in Norway
by 2030. More research is also required on policies to improve the knowledge of charging
infrastructure deployment strategies and policies that improve usability.
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tally Friendly Energy Research, co-sponsored by the Research Council of Norway (FME MoZEES,
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Abstract: Subcooled liquid hydrogen (sLH2) is an onboard storage, as well as a hydrogen refueling
technology that is currently being developed by Daimler Truck and Linde to boost the mileage of
heavy-duty trucks, while also improving performance and reducing the complexity of hydrogen
refueling stations. In this article, the key technical aspects, advantages, challenges and future
developments of sLH2 at vehicle and infrastructure levels will be explored and highlighted.

Keywords: hydrogen mobility; FCEV; heavy-duty trucks; subcooled liquid hydrogen; sLH2; liquid
hydrogen; LH2; hydrogen refueling station

1. Introduction

On the way toward carbon-neutral road transport mobility, heavy-duty trucks (HDTs)
are one of the most challenging applications to decarbonize [1]. In this context, truck
original equipment manufacturers (OEMs) are exploring a dual technology-open strategy,
with both battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) being
developed and adopted as complementary solutions [2,3].

BEVs are considered the best choice for short distances, with plannable routes and
a lighter load. On the other hand, FCEVs are the preferred technology for cases of high
mileage and energy consumption, such as long-haul and on-demand applications [4].
Furthermore, FCEVs are projected to be an attractive option when flexibility is also required
and where there are local grid constraints [3].

In an FCEV, one of the main components is the onboard hydrogen storage system.
Despite having a high gravimetric energy density, hydrogen has a very low volumetric
density when stored at an ambient temperature and pressure. Therefore, in order to reach
the mileage targets (as in Figure 1), hydrogen needs to be either stored at a higher pressure
or lower temperature. To this end, several potential candidates for onboard hydrogen
storages can be considered [5–7], namely the following:

(1) Compressed hydrogen gas (CHG) at room temperature and high pressures;
(2) Cryo-compressed hydrogen (CcH2) at low temperatures and high pressures;
(3) Liquid hydrogen (LH2) at very low temperatures (<20 K) and low pressures (<10 bar).

Each of these storage technologies has a different storage pressure, as well as density
(Figure 2).

While CHG hydrogen can only reach storage densities of up to ~40 kg/m3 (at 700 bar
and 15 ◦C), subcooled liquid hydrogen (sLH2) can reach up to ~62 kg/m3 (at ~16 bar and
−245 ◦C). By combining higher pressures (e.g., 350 bar) and low-to-cryogenic temperature
(e.g., −250/−200 ◦C), it is possible to reach even higher energy densities (e.g., ~72 kg/m3).
However, the storage technologies of cryo-compressed hydrogen (CcH2) are more complex
and currently have a lower technology readiness level (TRL) compared to the previously
mentioned two technologies, as they need to handle both very low temperatures as well as
high pressure in both the tank system and the refueling line (pipes, connectors, etc.). Hence,
in this paper, we will focus on CHG and LH2.
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Today, compressed hydrogen at 70 MPa (CHG70) and 35 MPa (CHG35) is used in light-
duty vehicles [8] and for buses, respectively. With respect to the more challenging HDT use
cases, however, OEMs are currently pursuing different concepts [6]. Considering that such
a technology choice has a large impact on the whole hydrogen value chain, it is of utmost
importance that OEMs and infrastructure players collaborate and work closely together.

In this context, Daimler Truck and Linde are jointly developing a new storage and
refueling solution, namely “subcooled liquid hydrogen” (sLH2). Thanks to an improved
tank and interface design encompassing an increased pressure (up to ~20–25 bar), sLH2
enhances refueling performances while reducing the complexity of protocols and hardware
at the hydrogen refueling stations (HRS) [9]. Some of the key parameters/advantages at
the vehicle and HRS levels will be detailed in the following subsections.

2. Vehicle Advantages

The transition of HDT toward zero-emission vehicles implies a profound transforma-
tion of vehicle architecture. In FCEVs, one substantial challenge is the integration of large
tank systems to achieve range and payload target. Considering sLH2 and CHG70 as the
reference technologies for heavy-duty long-haul trucks, the architecture of the respective
tank systems, as well as their integration in vehicles, will differ substantially, resulting in
different vehicle characteristics (Figure 3).
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Figure 3. Comparison of the main vehicle characteristic of a 4 × 2 HDT equipped with sLH2 and
CHG70 tank systems (left and right respectively); SOC refers to the vehicle state of charge (see
details below).

sLH2 has an approximately 50 % higher density (up to 62 kg/m3 at p = 16 bar and
T = 28 K) compared to CHG70 (40 kg/m3 at p = 700 bar and T = Tamb). At the same
time, an insulated stainless-steel, low-pressure tank is sufficient to store sLH2 compared
to Type IV high-pressure tanks reinforced with carbon fibers, typically used in a CHG70
configuration [10].

This results in lighter (approximately 20–30% less weight per stored kg of hydrogen)
and cheaper (approximately 40–50% lower costs per stored kg of hydrogen) tanks with
lower volumes, higher stored mass of hydrogen and mileage (sLH2 showcases approx-
imately 50% range increase, from ~700 km of CHG70 to more than 1000 km of sLH2,
depending on the consumption profile) [10].

Overall, we conclude that the sLH2 technology has clear advantages in terms of ranges,
vehicle investment costs and payloads compared to the more common CHG technology.
Furthermore, despite being a novel technology, the necessary know-how to develop sLH2
tanks is quite similar to the wide-spread liquid natural gas (LNG) tank, resulting in multiple
potential suppliers and/or manufacturers that can scale-up and industrially produce such
tank systems.

Despite such clear advantages, one challenge with sLH2 on the vehicle side is the
boil-off onboard. However, internal simulations and tests indicate that boil-off kicks in
after approximately 10 h if the state of charge (SOC) is 100% and only after more than 160 h
when the tank is half empty (~50% SOC). However, considering that HDTs are normally
driven on a daily basis, these values suggest that boil-off would be a rather rare event
during normal operation.

3. Refueling Protocol and HRS Advantages

The sLH2 refueling process is based on improved LH2 refueling, without back-gas
or limitation toward multiple tanks or back-to-back refueling. To achieve this, Linde
developed a novel sLH2 refueling station including an sLH2 pump with a flow rate
exceeding 400 kg/h, with a target pressure of 16 bar during refueling [10]. Fueling times of
less than 10 min for typical HDTs can be realized with this configuration.

Thanks to the higher density of LH2 and the lower required pressure during refueling,
the hydrogen delivery, as well as the storage and compression at the station, is not only
easier compared to gaseous compressed hydrogen, but also noticeably more compact, as
can be seen from the example in Figure 4.
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The improved refueling performance with sLH2 fueling leads to a very low TCO for the
HRS, as well as a high HRS energy efficiency (0.05 kWh/kg H2), and footprint/complexity
reductions are quite remarkable compared to CHG70 [10].

In this respect, also considering the advantages at the vehicle level, sLH2 is a highly
attractive technology for customers in the trucking sector and beyond. However, there
are still a few steps remaining before sLH2 becomes widely accepted within the industry.
Besides the market availability and low cost of liquid hydrogen (a discussion that is out of
scope for the current paper), one of the remaining hurdles is the standardization process
that will be discussed in the next section.

4. Standardization

Linde and Daimler Truck are not proprietary of the technology and are promoting
the advantages of using sLH2 in HDT in order to expand the technology adoption by
other OEMs, as well as more infrastructure providers. In order to achieve that, a white
paper process was initiated in 2021 [11,12]. The resulting specifications for the fueling
and hardware interface, after the conclusion of the activities within the Clean Energy
Partnership (CEP) in 2022, are now under standardization at the ISO level.

The CEP sLH2 white paper activities saw the participation of multiple stakeholders
from the trucking and infrastructure sectors, and resulted in two papers being developed:

(1) LH2 fueling from the station into the truck is well known from former projects, but
has some disadvantages, e.g., gas return from the tank to the fueling station, and fueling
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stops only based on signals from the truck. Therefore, the first white paper focuses on
sLH2 (subcooled liquified hydrogen) fueling to avoid gas return from the vehicle tank,
and defines fueling stops without data communication required. sLH2 fueling is a process
in which the liquefied hydrogen is subcooled and can be used in this state to fill the
vehicle tank.

The fueling procedure is subdivided into three steps:

• Pre-fueling (incl. purging and leakage testing, pressure system determination, etc.);
• Main fueling (with two fueling steps, one with a reduced flow rate for the cooldown

of piping and storage system and a second with a target fueling rate of 400 kg/h);
• Post-fueling (after the ptarget is reached, further purging and leakage testing needs to

be conducted before the nozzle is disconnected).

The flow, pressure and temperature profiles during a typical refueling event are shown
in Figure 6.

Figure 6. (a) Exemplarily flow, pressure and temperature profiles during sLH2 fueling; (b) p–T plot
of hydrogen sLH2.

(2) Furthermore, having the vehicle storage system, connected to the propulsion unit,
on one hand and the fueling unit on the other, a component joining both units for hydrogen
transfer is required. Therefore, the goal of the second white paper is the development of a
subcooled liquid hydrogen fueling interface applied in trucks, of which the main hardware
components are shown in Figure 7. This coupling component shall be easily reproducible
in a series of production process.

Figure 7. (a) Overview of the fueling interface-components; (b) Overview of system boundaries and
interface with focus of standardization effort highlighted in red box.
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Within the documents, a complete set of information on controlling, testing dimension-
ing, geometry, design and further requirements (e.g., environmental, electrical, operational)
is provided. Since early 2023, the sLH2 protocol and interface are being discussed within
the ISO activities (TC 197—Hydrogen Technologies), with the target of achieving a global
standard. Within these activities, revision of the following documents has been proposed
and is expected to be completed by 2026:

- ISO 13984: liquid H2—land vehicle fueling protocol [13];
- ISO 13985: liquid H2—land vehicle fuel tanks [14];
- ISO 19886: liquid H2—land vehicle fueling connectors [15].

5. Conclusions

In the present paper, the advantages of sLH2 technologies for vehicles as well as
refueling stations are shown. Overall, sLH2 features a significant commercial advantage
for HDTs and HRSs, while also reducing the space requirements, thanks to the higher
energy density of liquid hydrogen and reduced amount of equipment. At the same time,
the refueling protocol, that is currently undergoing a standardization process, solves some
of the critical challenges for fueling vehicles with liquid hydrogen. Considering also the
initial positive testing results, we are confident that sLH2 will be a standard solution in the
future portfolio of heavy-duty road transport and non-road transport applications.
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Abstract: In this study, we focused on the eco-driving of electric vehicles (EVs). The target vehicle is
an electric bus developed by our research team. Using the parameters of the bus and speed pattern
optimization algorithm, we derived the EV’s eco-driving speed pattern. Compared to the eco-driving
of internal combustion engine vehicles (ICVs), we found several different characteristics. We verified
these characteristics with actual vehicle driving test data of the target bus, and the results confirmed
its rationality. The EV’s eco-driving method can improve electricity consumption by about 10–20%
under the same average speed.

Keywords: energy consumption; efficiency; EV (electric vehicle); simulation; optimization

1. Introduction

The energy efficiency of the transportation sector has become a key factor to reduce
greenhouse gas emissions and fuel consumption in response to the negative impacts of
global warming [1–3]. As a method of energy conservation and environmental sustainabil-
ity, eco-driving has attracted considerable research interest over the past two decades [4–6].
Eco-driving is an emerging research field, and its definition is not yet strictly defined.
However, it generally refers to the practice of driving vehicles in a way that improves fuel
economy [7–9].

Many studies have shown that eco-driving is a low-cost, high-efficiency method of
energy conservation and emission reduction [1,10,11]. Eco-driving has been widely dis-
cussed and applied worldwide due to the aforementioned advantages. German scholars
were the first to focus on this field in 2001. As of 2020, scholars from the United States
and China have contributed the most publications in this field (total papers—percentage:
178—23% (US), 117—15% (China)) [4,12,13]. Numerous studies from around the world
have shown the enormous potential of eco-driving in energy conservation, emission reduc-
tion, and other aspects [14–16]. Eco-driving has also been summarized into some specific
and easy-to-implement principles that are promoted worldwide. In European countries
including England, Germany, Italy, and Finland, eco-driving methods such as the golden
rules of eco-driving have been regarded as part of the driving license examination [4,17].
In Japan, the 10 recommendations for eco-driving promoted by government departments
such as the ministry of the environment are well-known to the public [18].

Many popular eco-driving principles, including gentle acceleration and quick shifting
up, are usually based on ICVs [19,20]. With the popularization of EVs, research on EV
eco-driving becomes more and more important. Many researchers study eco-driving as
an optimization problem. For example, a study conducted by Mensing et al. shows that
using optimization techniques at a fixed distance and time to adjust the driver’s operations
significantly improves the energy efficiency of the ICV [21]. This fixed distance and time
method is convenient to clarify the energy consumption improvement effect of eco-driving
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under the same driving conditions, so we also adopted it in our research. However, the
power system characteristics of EVs and ICVs are different, and the applicability of EVs
needs further verification. And a study conducted by Sundström et al. introduces a
generic dynamic programming function for Matlab [22], which can be used in vehicle
power consumption optimization problems. Referring to this research, we built a speed
change pattern optimization simulator by combining our developed accuracy-proven
vehicle simulator with an optimization algorithm and used it to develop EV eco-driving.
In addition, an eco-driving optimization study often focuses on algorithms and lacks the
verification of actual vehicle experiments [23,24]. In this regard, after deriving the optimal
EV eco-driving, we verified its characteristics using the driving test data of a small electric
bus that was developed by our research team.

The purpose of this study is to explore eco-driving strategies that are applicable to EVs.
Currently, many eco-driving views for cars are based on ICVs. Are they still applicable
to EVs, which have undergone significant changes in their powertrain systems and are
rapidly becoming popular [25]? We want to find out what kind of driving strategies will
improve the electricity consumption of EVs. For this purpose, we selected a self-developed
electric bus as the object vehicle, constructed a simulator that can accurately calculate the
power consumption of the vehicle during operation, and combined it with an optimization
method to derive the EV eco-driving speed change pattern, which is the speed change
pattern that results in the best electricity consumption under the set conditions. After
investigating it, we obtained some eco-driving strategies that are applicable to EVs and
discovered the differences between them and the eco-driving strategies that are applicable
to ICVs. Then, we verified the correctness of these eco-driving strategies through the
experimental driving data of the object vehicle and investigated the reasons why these
eco-driving strategies can improve the electricity consumption.

2. Target Vehicle and Simulator
2.1. Target Vehicle and Simulation Conditions

In this study, the target vehicle is a small electric bus, the Waseda Electric Bus-
3Advanced (WEB-3A). This vehicle was created by converting a small diesel bus using
Hino Motors into a remodeled small electric bus with standard specifications. Table 1
summarizes the basic specifications.

Table 1. Basic specifications of WEB-3A.

Base Diesel Bus WEB-3A

Manufacturer/Type Hino/Poncho (BDG-HX6JLAE)

Capacity 31 persons

Curb/Gross weight [kg] 5710/7415 5990/7695

Engine or Motor 132 kW Engine 145 kW/400 Nm (PMSM)

Transmission 5 speed AT Fixed

Battery [kWh]/[V] None 40/331
(TOSHIBA “SCiB™”)

Exterior photograph None
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(Waseda Electric Bus)

Since we focused on the aforementioned street bus in this study, we optimized the
speed change pattern, in which “driving distance” and “average speed” are fixed from start
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to stop, while considering the distance between bus stops and the schedule [26,27]. Our
purpose was to cover a total distance of 400 m in three intervals (acceleration, coasting, and
deceleration) at an average speed of 30 km/h. In addition, we also focused on the double
travel distance when stops were skipped (800 m total with an average speed of 30 km/h).
In this study, we assumed that there would be no impact from traffic lights or congestion.

2.2. Vehicle Driving Energy Calculation Simulator and the Speed Change Pattern Optimization Method

Figure 1 shows the schematic of the backward simulator used to calculate the driving
energy of WEB-3A. The power consumed by the battery is obtained by inputting the
vehicle’s speed. The vehicle simulator was constructed using methods that are commonly
used in electric vehicle simulations. It can simulate the power consumption of a vehicle
during operation by using information on the vehicle’s speed and road gradient. The
vehicle simulation considers the driving resistance of the vehicle (acceleration resistance,
air resistance, rolling resistance, and slope resistance), the transmission efficiency and the
motor/inverter efficiency during driving and regeneration (transmission efficiency is a
constant value, while motor/inverter efficiency comes from the efficiency map), and the
power consumption of the vehicle’s auxiliary equipment.
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Figure 1. Image of vehicle running energy calculation simulator.

The vehicle simulator constructed using the above method can achieve high-precision
calculation of instantaneous electricity consumption and comprehensive electricity con-
sumption for the entire journey. Figure 2 shows the comparison between the actual mea-
sured motor power and the simulated calculated motor power of the object vehicle on a
certain route (which is described in detail in Section 4). It can be seen that the simulation
results are highly consistent with the measured values, and the comprehensive electricity
consumption error of the simulation is within 5%.

We optimized the drive of 400 m (or 800 m) with an average speed of 30 km/h, as
mentioned above. First, we define a cost function to search for the speed change pattern
that consumes least energy, as shown in Equation (1).

C =
w tend

tstart
P(j)dt (1)

Here, C [kWh] is the consumed energy, t [s] is time, P [kW] is consumed power, and j
[m/s3] is the jerk (control variable).

Figure 3 shows a schematic of the optimization method used in this study (dynamic
programming) (x [m] represents position, v [m/s] represents speed, and a [m/s2] represents
acceleration). The following are the constraints and convergence conditions: (a) maximum
jerk of ±1 m/s3, (b) maximum acceleration (deceleration) of ±0.2 G, (c) starting (stopping)
speed of 0 km/h, and (d) maximum speed of 60 km/h.
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The speed change pattern is optimized by incorporating the proposed optimization
method into the vehicle’s driving energy calculation simulator. Calculations are performed
in the following order: (a) determine the relationship among acceleration, speed, position,
and time as state variables and jerk as the control variable, (b) input the state variables
of each tiny time period into the vehicle simulator to calculate the battery electricity
consumption, and (c) search for the combination that minimizes the cost function.

3. Investigation and Trial Calculation of the Electricity Consumption Optimization
Speed Change Pattern
3.1. Derivation of the Electricity Consumption Optimization Speed Change Pattern

In this section, we summarize the optimization of the speed change pattern for
various conditions.

The vehicle loss conditions are listed in Table 2. In addition, we investigate the use of
“coasting”, which has gained attention recently for improving the electricity consumption
of electric vehicles. In most cases, coasting is not advantageous in terms of fuel efficiency
or safety in internal combustion vehicles; thus, it is not employed in regular driving.
However, it is widely employed in trains as an eco-driving method. In some cases, coasting
has been implemented in electric vehicles. For example, some EVs using a one-pedal
accelerator in the neutral range of pedal opening, to account for the driver’s unintentional
fine operation, set a dead zone to keep the output of the motor at 0 Nm, so that the
vehicle maintains coasting [28], while others maintain coasting by releasing the accelerator
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pedal [29]. Coasting is possible by reducing the motor torque to 0 Nm while the inverter is
operating [30] or disconnecting the inverter from the motor [31]. In the current study, we
employed the latter “inverter off coasting control (with coasting control)”. Finally, as the
second analytical condition, we employed “without coasting control”.

Table 2. List of various data used for vehicle loss calculation.

Transmission
Efficiency

Auxiliary
Equipment

Consumption Power

Motor/Inverter Efficiency
(Using Efficiency Map Data)

98% 1.5 kW
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Figure 4 illustrates the simulator’s speed change pattern optimization result. The
following section summarizes the details of “with coasting control (Co)” and “without
coasting control (W/O Co)”.
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Figure 4. Optimized speed change patterns in different settings: (a) distance: 800 m, time: 96 s,
average speed: 30 km/h; (b) distance: 400 m, time: 48 s, average speed: 30 km/h.

3.2. Discussion on the Details of the Derived Electricity Consumption Optimization Speed
Change Pattern

This section examines the results of the “with coasting control (inverter OFF coasting
control)” and “without coasting control” settings, which are derived in the previous section.
For detailed discussions, driving is divided into three parts: acceleration, cruising, and
deceleration. Due to space constraints, we only present the discussion on the 800 m drive.

First, we consider the acceleration interval. Figure 5 illustrates the details of the
acceleration interval in optimized speed change patterns. Both types of controls “should
accelerate strongly” compared to the typical internal combustion engine vehicle’s eco-
driving acceleration pattern [19,20]. In particular, the vehicle starts near the maximum
allowable acceleration (0.2 G) based on the optimization calculation, then eases slightly,
but remains close to full acceleration. This strong acceleration can reduce the cruising
speed under the situation of fixed driving distance and time, thereby reducing the energy
that is required for acceleration and the air resistance loss of the entire driving trip. When
performing similar acceleration, for an internal combustion engine vehicle, the engine
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must be revved high while the gear remains low, leading to poor fuel efficiency. However,
the motor is resistant to load changes while maintaining good efficiency across a wide
range of operating points. Therefore, strong acceleration is not a major issue in terms of
electricity consumption. We can see this from the motor operating points of Figure 5, which
demonstrate that good efficiency is maintained. For a diesel bus, if the bus “accelerates
slowly” while leaving a bus stop, it may disrupt traffic flow and potentially cause accidents.
Thus, there is a safety concern. However, with an electric bus, while passenger comfort is
important, relatively strong acceleration to merge safely into the traffic does not cause a
major issue in terms of electricity consumption.
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Figure 5. Details of acceleration interval in optimized speed patterns (distance: 800 m): (a) speed—time
profile; (b) motor torque—speed profile.

Next, we consider the cruising interval. Figure 6 shows the details of the cruising
interval in optimized speed change patterns. “With coasting control” is “repetition of
acceleration and coasting”, while “without coasting control” is “constant speed driving”,
which is also recommended for heavy internal combustion engine vehicles as well. From the
motor operating points of Figure 6, in some cases, a repetition of acceleration and coasting
may be preferable to a constant speed of driving in the cruising interval (depending on
the loss when the motor operating point is at 0 Nm). This conclusion is similar to the
“coasting-powering operation” being recommended for trains.
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Figure 6. Details of cruising interval in optimized speed patterns (distance: 800 m): (a) speed—time
profile; (b) motor torque—speed profile.

Finally, considering the deceleration interval, Figure 7 shows the details of the deceler-
ation interval in optimized speed change patterns. Both types of coasting controls were
described as “deceleration while maintaining the maximum regeneration”. To maximize
regenerative energy recovery, this is a speed change along the vehicle-set regenerative
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braking line (the break line in the motor’s operating points of Figure 7). Energy dissipation
due to mechanical braking in the same interval can be prevented, thereby contributing
substantially to improved efficiency. Note that when using “with coasting control”, coast-
ing deceleration has advantages over regenerative deceleration in energy saving and is
therefore preferred. Afterwards, it is switched to regenerative deceleration for a stronger
deceleration. After nearly reaching the minimum regenerative speed, it decelerates or stops
using mechanical braking. This operation is comparable to that of a diesel bus.
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Figure 7. Details of deceleration interval in optimized speed patterns (distance: 800 m): (a) speed—time
profile; (b) motor torque—speed profile.

3.3. Calculation of the Improvements in Electricity Consumption with the Derived Electricity
Consumption Optimization Speed Change Pattern

In this section we compare the electricity consumption when the target vehicle, WEB-
3A, is driven with the various electricity consumption optimization speed change pat-
terns. Figure 8 summarizes the speed change patterns. We specifically used the electricity
consumption during (a) the cruising zero style (constant acceleration interval and con-
stant deceleration interval without cruising) as the reference and compared this value
to the (b) ICV eco-driving speed change pattern for diesel buses and the optimization
speed change pattern when the two types of coasting control mentioned above were used
((c) without coasting control and (d) with coasting control). The (b) ICV eco-driving is
based on relevant reference studies [19,20]. The three internal combustion engine vehicle’s
eco-driving principles were considered as follows: (i) limiting acceleration: ICV eco-driving
uses a smaller acceleration of approximately 0.06 G to limit the acceleration based on gentle
acceleration and a quick shift up; (ii) constant speed cruising: ICV eco-driving uses cruise
control to reduce unnecessary acceleration and deceleration and to maintain a constant
speed while cruising; (iii) engine braking: ICV eco-driving simulates the engine braking of
diesel buses by using a smaller deceleration when slowing down.
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Table 3 compares the electricity consumption derived from the vehicle driving energy
calculation simulator. We can quantitatively see that driving with the electricity consumption
optimization speed change pattern derived in this study improves electricity consumption.

Table 3. Electricity consumption comparison of various speed change patterns in different settings.

Electricity Consumption
[kWh/km] [%]

(a) Cruising zero style 0.408 (Benchmark)

(b) ICV eco-driving 0.382 −6.2%

(c) W/O coasting control style 0.370 −10.0%

(d) With coasting control style 0.318 −24.2%

At this point, the three strategies of EV eco-driving can be confirmed again as follows:
acceleration, regenerative braking, and coasting. Firstly, acceleration: At the same average
speed, a faster acceleration can reduce the maximum speed/cruise speed of a trip, thereby
reducing the energy required for acceleration and the air resistance loss of the entire driving
trip. Secondly, regenerative braking: Using regenerative braking as much as possible can
greatly improve the energy efficiency of the deceleration interval (without coasting control),
convert kinetic energy into electrical energy, and reduce the energy loss of mechanical
braking. Thirdly, coasting: The energy efficiency of coasting is very high. Therefore, using
coasting to drive when allowed can effectively improve the energy efficiency of the vehicle,
for example, cruising by repetition of acceleration and coasting or decelerating by coasting.

4. Verification of Derived Speed Change Pattern Optimization Based on the Public Road
Driving Test Data

In this chapter, we verify the validity of the speed change pattern optimization derived
in the previous chapter based on the public road driving test data. The optimization
resulted in the following order (without coasting control): “acceleration interval with
acceleration strongly”, “cruising interval with constant speed”, and “deceleration interval
with maintaining the maximum regeneration and mechanical braking”. We compared the
optimization result to the measured value for each interval.

4.1. Public Road Driving Test

Our research group conducted a 12-month driving test in Tonomachi, Kawasaki City,
Japan, using the electric bus WEB-3A (December 2015 to November 2016). This test was
conducted four times daily covering a distance of ~5.5 km one way. The vehicle route is
shown in Figure 9, and an illustration of the changes in vehicle speed and elevation along
the route is shown in Figure 10. The route includes a bridge and the slope changes around
it; however, the remainder of the route is flat. In the following test, we extracted various
data from the verification test for analysis. We excluded areas with a change in slope. There
was no change in the number of passengers, because it was a trial operation.

The driving test was conducted in Kawasaki City, which is in the Tokyo metropolitan
area. This area is highly developed, with a high road density and traffic congestion. There
are many occassions for acceleration and deceleration when driving a car and few situations
for long-term cruising. Therefore, strategies related to acceleration and deceleration are
more applicable, while strategies related to cruising are less applicable. If the traffic
is smooth and there are more situations for free cruising in a city or road scene, the
applicability of the above results may change. To maintain consistency with the optimal
settings and to avoid a decrease in generality caused by road slope characteristics, we
chose this relatively flat urban road to verify the optimization results. The maximum speed
allowed on this route is 60 km/h, but due to the influence of traffic signals and traffic
congestion, there are more instances of acceleration and deceleration when starting and
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stopping, and about one-third of the time is spent in a stationary state, resulting in a slow
average speed of only about 15 km/h.
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4.2. Verification of Derived Speed Change Pattern Optimization
4.2.1. Comparison of the Optimization Result and Measured Value in the Acceleration Interval

The optimization result was “acceleration interval with acceleration strongly”.
Figures 11 and 12 show the comparison with the measured value for the speed change
pattern and motor operating point, respectively. The four types of values shown with a
dotted line are the measured results (e.g., 0712_Trip55 is the 55th trip data from 12 July),
the two types of optimization results are shown with a solid line (e.g., W/O Co means
the optimization without coasting control), and the ICV eco-driving acceleration pattern is
shown with break line. The most similar to the optimization results and ICV eco-driving
acceleration pattern were extracted from the test data.
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Figure 11. Speed—time profile at acceleration interval: (a) 800 m; (b) 400 m.
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Figure 12. Motor torque—speed profile at acceleration interval: (a) 800 m; (b) 400 m.

Figures 13 and 14 compare the average motor efficiency (motor output/motor input)
and the average vehicle efficiency (powertrain output/battery output). The figure shows
16 types of acceleration data, obtained on the same test day (12 July), as well as four different
types of measured values to increase generality. The average efficiency was calculated from
start to 30 km/h.
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Figure 13. Relationship between motor efficiency and average acceleration: (a) 800 m; (b) 400 m.
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Figure 14. Relationship between vehicle efficiency and average acceleration: (a) 800 m; (b) 400 m.

The optimization result and the measured result were consistent. Specifically, efficiency
remained rather constant regardless of acceleration, indicating that it is quite different
from the property of internal combustion engine vehicles [19,20]. These results verify the
previous optimization result: even if the electric vehicle performs strong acceleration, there
will be no deterioration in efficiency.

4.2.2. Comparison of the Optimization Result and Measured Values in the Cruising Interval

The WEB-3A adopts the “without coasting control” setting, so the optimization result
for this type of control was “cruising interval with constant speed”. Figure 15 shows the
comparison of electricity consumption and motor operating point with the measured and
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optimized values. The figures illustrate 14 types of data obtained on the same test day
(October 14), when the speed change was within ±2 km/h, and the acceleration was within
±1 km/h/s. In Figure 15a, the solid line represents the theoretical electricity consumption
of a vehicle driven at a constant speed. The optimization result without coasting control is
consistent with both the theoretical consumption and measured consumption. Furthermore,
the conclusion of the previous section, “acceleration interval with acceleration strongly”,
has the effect of bringing the vehicle speed in the subsequent cruising interval closer to
the theoretical minimum electricity consumption (about 30 km/h); thus, it was a valid
optimization result.
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Figure 15. Various comparisons of cruising interval: (a) relationship between electricity consumption
and average speed; (b) motor torque—speed profile.

4.2.3. Comparison of the Optimization Result and Measured Value in the Deceleration Interval

The optimization result was “deceleration while maintaining the maximum regener-
ation”. Here, we continue the comparison of “deceleration with maximum regenerative
drive”. Figures 16 and 17 show the comparison of the speed change pattern and motor
operating point with the measured value, respectively. Figures 18 and 19 are comparisons
of energy regeneration efficiency, with the former representing the average deceleration
dependency and the latter representing the deceleration speed band notation. These are
equivalent to the regenerative system efficiency (to the motor power generation unit) [32],
which is derived by dividing the regenerative energy that was actually generated by the
theoretically generatable regenerative energy. In order to broaden the scope, we collected
39 different types of deceleration data (other trips) in addition to the four measured val-
ues. Furthermore, for comparison, we included six different types of measured energy
regeneration efficiency when using both regenerative and mechanical brakes. Overall, the
optimization result and measured value were consistent, demonstrating the efficacy of
“deceleration while maintaining the maximum regeneration” in electric buses. Additionally,
the measured data showed that the energy regeneration efficiency (74–96% with a mean of
85%) improved significantly compared to using both regenerative and mechanical brakes
(33–49% with a mean of 41%).
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Figure 16. Speed—time profile at deceleration interval: (a) 800 m; (b) 400 m.
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5. Conclusions

We report an electric vehicle driving energy calculation simulator with a speed change
optimization function that is proposed in this study. We were able to derive a speed change
pattern that optimizes electricity consumption while performing various types of coasting
controls using the designed simulator.

Based on the optimization calculation with the simulator, the optimal speed change
pattern (EV eco-driving) was derived for electric buses “without coasting control” and “with
coasting control” (assume “inverter off coasting control”). When the target vehicle is driven
in the EV eco-driving speed change pattern, according to our trial calculation, this method
can improve the electricity consumption by about 10–20% under the same average speed.

To confirm the validity of the optimization results of the speed change pattern derived,
mentioned above, we used the object vehicle’s road driving test data. The optimization
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result is in the following order (without coasting control): “acceleration interval with
acceleration strongly”, “cruising interval with constant speed driving”, and “deceleration
while maintaining the maximum regeneration”. We verified these results by comparing
them to actual measured data, which are the speed change in each interval, and found that
they were consistent.

Specifically, we examined the details of the “acceleration interval with acceleration
strongly”, which was significantly different from that of internal combustion engine ve-
hicles, and confirmed with our measured data that the previous optimization result is
valid: even if an electric bus performs strong acceleration, there will be no deterioration
in efficiency. Internal combustion engines have large variations in fuel consumption dur-
ing acceleration, but the properties of an electric bus, whose efficiency does not depend
on the pattern of acceleration change, contributes to eliminating variations in electricity
consumption during acceleration.

Finally, we summarized the three eco-driving strategies that are applicable to EVs and
mentioned above and anticipated their expected application scenarios in the real world: no
need to limit acceleration, use regenerative braking, and use coasting. They are, respectively,
suitable for city roads with frequent starts and stops and intercity roads (or highways) that
are mainly for cruising.

No need to limit acceleration: EVs and ICVs have significant differences in their
powertrain systems, so eco-driving methods based on ICVs may not be applicable to EVs.
Limiting acceleration based on gentle acceleration and quick shifting up may improve
the efficiency of the internal combustion engine but has no effect on the efficiency of the
motor/inverter. At the same average speed, a faster acceleration can reduce the maximum
speed/cruise speed of a trip, thereby reducing the energy that is required for acceleration
and the air resistance loss of the entire driving trip. Therefore, from the perspective of
eco-driving, there is no need to consider acceleration limits when driving EVs.

Regenerative braking: Using regenerative braking as much as possible can greatly
improve the energy efficiency of the deceleration interval, convert kinetic energy into elec-
trical energy, and reduce the energy loss of mechanical braking. Actively using regenerative
braking can convert most of the deceleration kinetic energy into electrical energy for future
driving. The mean energy regeneration efficiency is 85% when only using regenerative
braking for deceleration, while the mean energy regeneration efficiency is 41% when using
both regenerative braking and mechanical brakes. If regenerative braking is not used at all,
all of this energy will be converted into the thermal losses of the mechanical brakes. When
the two strategies mentioned above are applied to city road driving with frequent starts
and stops, the effect is particularly significant, with an expected improvement of about 10%
in electricity consumption.

Coasting: Coasting has already been widely used as a basic eco-driving method in
railway transportation. The energy efficiency of coasting is very high. Therefore, using
coasting to drive when allowed can effectively improve the energy efficiency of the vehicle,
for example, by cruising by repetition of acceleration and coasting. Additionally, from the
perspective of eco-driving, when road traffic conditions permit, coasting should be the
first choice for deceleration, followed by regenerative braking. This method is particularly
effective when driving on city-to-city roads or highways with fewer vehicles, with an
expected improvement of about 10% in electricity consumption.
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15. Čulík, K.; Štefancová, V.; Hrudkay, K.; Morgoš, J. Interior Heating and Its Influence on Electric Bus Consumption. Energies 2021,
14, 8346. [CrossRef]
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Abstract: To increase the efficiency of electrified vehicles, many energy management strategies
(driving strategies) have been proposed. These include both offline optimization techniques to
identify a system’s theoretical optimum and online optimization techniques created for onboard
use in the vehicle. In the field of online optimization, predictive approaches can achieve additional
savings. However, predictions are challenging, and robust usability in all driving situations of the
vehicle is not guaranteed. In this study, a new approach for a predictive energy management strategy
is presented. It is demonstrated how this so-called predictive Online Equivalent Consumption
Minimization Strategy (ECMS) can achieve additional fuel savings compared to a non-predictive
Online ECMS by predicting recuperation events using map data. As long as the route is known, map
data are available, and the current position of the global navigation satellite system (GNSS) is given,
the predictive Online ECMS can be applied. If these requirements are not met, the non-predictive
basic implementation can still be used to ensure robust functionality. The methodology is investigated
using a backward simulation model of a D-segment vehicle powered by a 48 V hybrid electric system
in a P2 topology. A dataset including real driving cycles including map data from Open Street Map
(OSM) is used. However, the investigations are limited to the consideration of traffic signal (TS)
positions on the upcoming route. Simulation results focus on the interaction between the energy
management strategy (EMS) and usable battery energy. More than 1 % average saving potentials
compared to a non-predictive implementation are shown. The highest saving potentials are found
with a usable battery energy of 100 Wh.

Keywords: electrified powertrains; 48 V system; equivalent consumption minimization strategy
(ECMS); model predictive control (MPC); li-ion battery; global navigation satellite system (GNSS);
real driving cycles

1. Introduction

Due to emission regulations and an increase in environmental consciousness in general,
a broad variety of alternative drive systems have been developed. These include 48 V
hybrid electric vehicles (HEVs), which have the benefit of decreasing CO2 emissions at
moderate system expense, especially for inner-city driving. A 48 V system is described
by component dimensioning, topology, and an energy management strategy (EMS) [1].
The EMS has to guarantee a robust operation in various driving situations. An overview
of the most common methods provided within [1–8] shows that EMS development has
been extensively researched over last years. In this paper, a novel approach for a predictive
Online ECMS is presented using real driving cycles. It is demonstrated how, in the case of
a known journey and the availability of map data, a predictive Online ECMS is established
by using the present Global Navigation Satellite System (GNSS) position. This is the case
for instance, when manually entering a route into a navigation system or returning to a
previously traveled path which is identified by intelligent algorithms. It is shown how a
predictive Online ECMS can achieve additional fuel savings compared to a non-predictive
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Online ECMS by predicting recuperation events due to traffic signals (TS). The simulation
results focus on the interaction between the EMS and battery.

2. Related Work

The EMS can be subdivided in multiple ways. They can be categorized into rule-based,
optimization-based, and learning-based techniques. Mixed forms also exist. Furthermore,
offline and online methods can be distinguished. Offline strategies are defined by the need
for prior knowledge of the whole driving profile. With this, a specific hybrid design is
described, for instance, in terms of possible fuel consumption savings for a certain cycle.
The global optimum is determined for benchmark analysis. Online strategies require only
limited prior knowledge of the upcoming driving path. The ECMS that is investigated in
this work can be assigned to optimization-based EMS concepts. Depending on the particu-
lar implementation, an ECMS is associated with either offline or online techniques. Using
an Offline ECMS, the global optimum for time-invariant systems is found due to the equiv-
alence to Pontryagin’s Minimum Principle (PMP) [9,10], where a so-called equivalence
factor λ is found iteratively to solve the optimization problem [11,12]. This Offline ECMS
is frequently utilized to find the global optimum in offline applications, especially due to
the low computing effort [13]. The 2D-ECMS has been created to investigate topologies
with two traction motors [14]. For an Online ECMS, which was first published by Pa-
ganelli et al. [15], the idea of a Stae Of Charge (SOC)-dependent control of the equivalence
factor λ was effectively implemented [16–26]. In addition, there are predictive Online ECMS
techniques where predictions are essential for the ECMS’s fundamental operation [18,27].
However, it has also been demonstrated that the introduction of predictive information can
enhance non-predictive Online ECMS implementation. The following publications should
be mentioned:

• In [28], step functions are used for adjusting λ by taking into account the future energy
demand. A 10% improvement compared to a non-predictive Online ECMS solution
was reached.

• In [29], optimal recuperation is realized by predictive charging and discharging of the
battery. A 6% improvement compared to a non-predictive Online ECMS solution is
achieved.

• In [30], velocity prediction using a Convolutional Neural Network (CNN) for optimal
λ determination is realized. A 0.2% to 0.5% improvement compared to the non-
predictive Online ECMS is presented.

• In [31], velocity prediction is used to determine SOC nodes. A 9.7% improvement
compared to the non-predictive Online ECMS solution is given.

• In [32], λ adaptation is realized considering future energy demand with a dynamic
prediction horizon. An improvement between 0.3% and 4% compared to the non-
predictive Online ECMS is achieved.

• In [33], velocity prediction at intersections considering traffic signal (TS) state and
traffic flow leads to an improvement of 0–2% compared to the non-predictive On-
line ECMS.

The presented prediction approaches show a wide range of possibilities for the de-
velopment of predictive driving strategies. When comparing the results, it should be
noted that different boundary conditions, vehicle models, and types of ECMS were used in
each publication. The approach of [28], for example, has only been tested on previously
known very hilly routes and is therefore only useful in very specific scenarios. Therefore,
a comparison and evaluation of the results is of limited value. However, for the authors of
the paper, these investigations form the basis for developing their own predictive approach.
In [34], an approach utilizing the recuperation potential has already been published. It was
shown that noticeable CO2 reduction potentials occur, in particular, with limited battery
capacity. Detailed investigations regarding predicting torque for predictive EMS are pre-
sented in [35,36]. However, it was shown that the prediction of the future torque is very
difficult and often only possible with a certain degree of uncertainty. Therefore, this paper
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presents a novel approach for a predictive Online ECMS considering recuperation poten-
tials using map data without the need for torque predictions. Additionally, a comparison
to a non-predictive Online ECMS is provided.

3. Modeling

In vehicle simulation, forward and backward simulation can be distinguished. For-
ward simulation models are based on the physical causality of the system by comparing
the target velocity with the actual vehicle velocity using a driver model. A velocity can
then be calculated for each time step based on the acceleration brought on by the control
input of the driver model. In contrast, a backward simulation model presupposes that
the vehicle adheres to a predetermined profile of acceleration and velocity. Therefore, no
driver model is necessary [4]. The verified backward calculation model of a 48 V HEV (P2
topology, see Figure 1) with an Offline ECMS and an iteratively calculated λ from the work
of [13] is applied.

DTGBK1K0ICE

P0 P1 P2 P3 P4

Figure 1. Topologies of HEVs in parallel configuration from [34].

In this model, torque is calculated from the longitudinal dynamics of the vehicle.
Hereby, the wheel radius as well as the transmission ratios of the vehicle are taken into
account. The correlations from longitudinal dynamics are shown below. The different
parameters and their corresponding units are listed in Table 1.

FWheel = Fair + Froll + Facc + Fslp (1)

Fair = cw · A · ρ
2 · v2 (2)

Froll = m · g · cosα · fR (3)

Facc = m · a (4)

Fslp = m · g · sinα (5)

Table 1. Parameters and units of the driving resistances.

Drag Coefficient cw 0.3
Projected Frontal Area A 2.5 m2

Air Density ρ 1.2 kg/m3

Vehicle Mass m 1600 kg
Gravitational Acceleration g 9.81 m/s2

Rolling Resistance Coefficient fR 0.012

An internal combustion engine (ICE), electric motor (EM), and gearbox (GB) are
modeled using stationary maps. The 48 V battery is represented by a simple inner resistance
model. Equations (6) and (7) are used to compute the battery voltage under load Ubat and
the corresponding battery current Ibat. Therefore, the battery power Pem, the battery losses
Pem,loss, and the power from auxiliary consumers Paux are considered. Moreover, the open-
circuit voltage UOCV and the inner resistance Ri are required. In addition, as a measure of
energy deviation from the starting conditions, an energy deviation dE from reference SOC
is calculated (Equation (8)). It is used as a criterion for a neutral energy balance [34]
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Ibat =
Pem + Pem,loss + Paux

Ubat
(6)

Ubat = UOCV(SOC)− Ri(SOC) · Ibat (7)

dE =
∫

Ubat Ibatdt (8)

The battery is of a nickel–mangan–cobalt/graphite cell type. Ri and UOCV are calcu-
lated using SOC-specific component data. However, for simplification a large 48 V battery
(>10 kWh) with constant SOC characteristics (SOC = 70%) is used within the investigations.
Other effects, such as degradation of the battery and its impact on CO2 emissions, are
neglected [13]. The recuperated energy is determined using a simplified logic considering
the limits of the electrical components and the application of the mechanical brake.

The studies are based on real driving cycles including four different drivers. These
real driving cycles were already used and presented in [35,36]. Hereby, relevant map data
from Open Street Map (OSM) was matched with the original GNSS tracks according to
Figures 2 and 3. For detailed information on the preprocessing of the driving data, please
refer to [36].
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Figure 2. Visualization of available driving data. From [36].
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Figure 3. Visualisation of identified Open Street Map (OSM) data including GNSS track, traffic signal
(TS), give way (GW), and stop. From [36].

This publication is limited to the cycles of Driver 1, which covers 63 cycles of city
driving, country road driving, and highway driving of a total duration of 30 h and almost
3000 km (for more information, see [35]). For the design of a non-predictive Online ECMS,
three representative cycles are selected for each road type. These nine cycles should
represent real operation as good as possible. The most important characteristics are shown
below (Table 2).

In Figure 4, the traffic signal (TS) density is shown for the 63 cycles. Cycles marked in
dark gray are selected for the exemplary application of the newly developed predictive
Online ECMS approach. The chosen cycles are characterized by at least one TS per km.
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Table 2. Real driving cycles to parametrize non-predictive Online ECMS.

Road Type Avg. vel. in
km/h

Max. vel. in
km/h Dist. in km Dur. in h Stand-still in %

City
28 69 6 0.2 26
19 60 4 0.2 39
25 62 11 0.4 21

Country Road
73 110 39 0.5 1
57 90 17 0.3 6
67 118 41 0.6 5

Highway
108 168 164 1.5 2
116 189 162 1.4 1
101 176 74 0.7 6
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Figure 4. Overview of the 63 driving cycles. As the investigations are limited to the consideration of
TS positions, TS per km are shown for each cycle. Cycles marked in dark gray are selected for the
exemplary application of the newly developed predictive Online ECMS approach. These cycles are
characterized by at least one TS per km.

4. Methodology

In the concept of an ECMS, an equivalent fuel consumption is calculated taking into
account the fuel’s lower heating value, Qlhv and an equivalence factor λ to convert battery
power into fuel power. Using the equivalent fuel consumption a cost function J is stated,
where the optimization problem P is written as follows [13]:

P : min
u

∫
J(u, x)dt (9)

J(u, x) = ṁ f uel + λ
Pbat
Qlhv

(10)

The local constrains are given as follows:

SOCmin ≤ SOC(t) ≤ SOCmax (11)

Pbat,min ≤ Pbat(t) ≤ Pbat,max (12)

TICE,min ≤ TICE(t) ≤ TICE,max (13)

368



World Electr. Veh. J. 2023, 14, 353

TEM,min ≤ TEM(t) ≤ TEM,max (14)

nICE,min ≤ nICE(t) ≤ nICE,max (15)

nEM,min ≤ nEM(t) ≤ nEM,max (16)

The presented inequalities represent the SOC-limits and maximum battery power. Also,
the limitations of both torque and speed from ICE and EM are considered. At each time
step, the ideal torque split (control variable in the optimization problem) is determined
by minimizing P. As a state variable the SOC is used. In an Offline ECMS, a constant λ is
found iteratively for time-invariant systems. For an online-capable implementation of the
ECMS, the idea of a SOC-dependent control of the equivalence factor λ was implemented
in several studies [16–26]. In this work, an average equivalence factor λO f f line,avg is used
for the Online ECMS. However, this does not guarantee charge-sustaining (CS) behavior
in online operations: depending on the cycle, the SOC trajectories result in an excessive
charging or discharging of the battery. Therefore, a penalty term is added. According to
dSOC, (difference between the real SOC and the reference SOC), the value of the energy (λ)
is either raised or lowered. As concluded in [25,37], the trigonometric penalty function is
better than a proportional penalty function: it allows tiny deviations from the reference SOC
but strongly penalizes significant deviations. Therefore, the penalty term consists of the
penalty factor kpSOC multiplied by the cubic derivation of SOC dSOC3 (see Equation (17)).
In terms of CS operation, the deviation of the battery’s energy content at the end of the
cycle is limited to a specific value. These presumptions are used to establish the proper
kpSOC for the non-predictive Online ECMS.

λ(t) = λO f f line,avg − kpSOC · dSOC(t)3 (17)

In this paper, a novel approach for a predictive Online ECMS that considers map data
to achieve saving potentials compared to the non-predictive Online ECMS implementation
is presented. The investigations are limited to the consideration of TS positions on the
upcoming route. The appearance of a TS within the upcoming horizon (represented by
f lagTS) has a direct impact on λ using an additional parameter kpTS:

λ(t) = λO f f line,avg − kpSOC · dSOC(t)3 − kpTS · f lagTS (18)

A summary of the applied methodology is given by Figure 5.

Offline Online

Offline ECMS
w/ iteratively

calculated lambda

Non-Predictive Online ECMS
w/o iteratively

calculated lambda

Parameter studies

Predictive Online ECMS
w/o iteratively

calculated lambda

λO f f line,avg
λO f f line thorizonkpTS

Parameter studies

kpSOC

Figure 5. Applied methodology for predictive Online ECMS.

5. Results

In the investigations fuel consumption is minimized, whereby there is a proportional
relationship between fuel consumption and CO2 emissions. The CO2 values presented in
this work are calculated with the relation 1 l/100 km = 23.2 gCO2/km. First, the Offline
ECMS is used to iteratively determine the optimum λO f f line value for each of the nine
cycles selected (Table 2). An overview is given in Table 3. λO f f line ranges from 2.55 to 2.88.
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The lowest λ values occur during city driving. The highest lambda values, on the other
hand, occur on highways.

Table 3. Results from Offline ECMS for real driving cycles from Table 2.

Road Type λO f f line CO2 (g/km)

City
2.61 134.16
2.55 139.87
2.61 144.42

Country Road
2.74 124.69
2.70 122.31
2.64 172.21

Highway
2.81 148.40
2.75 168.92
2.88 169.08

The non-predictive Online ECMS is parametrized according to [34]. Cycles with high
TS density are typically city driving cycles. Therfore, a λO f f line,avg,city of 2.60 is chosen
(Table 4). Parameter studies, which will not be discussed in detail, result in a kpSOC of 3.57
to achieve charge-sustaining (CS) operation. For further information the reader is referred
to [34]. A battery-specific parametrization of the non-predictive Online ECMS is waived in
this publication.

Table 4. Final parametrization for non-predictive Online ECMS.

λO f f line,avg,city 2.60
kpSOC 3.57

In the next step, a predictive Online ECMS is to be parametrized to show additional
saving potentials for routes with a high density of TS (Figure 4). In contrast to [34],
the route itself and the Global Navigation Satellite System (GNSS) position are assumed to
be known for this predictive Online ECMS. It is also expected that the appropriate map
data are available. Both parameters kpTS and horizon length thorizon have to be specified.
The investigations will be carried out for different battery sizes. Parameter ranges to
identify the best parametrization of kpTS and thorizon are given in Table 5.

Table 5. Ranges to identify optimal parameters kpTS and horizon length thorizon of the predictive
Online ECMS for a usable battery energy of 25 Wh, 50 Wh, 75 Wh, 100 Wh, 200 Wh, 300 Wh, 400 Wh,
500 Wh and 1000 Wh.

Min Max

kpTS 0 5
thorizon in s 5 s 100 s

In Figure 6, CO2 reduction potentials in % over kpTS for different thorizon in the case of
a usable battery energy of 25 Wh are given for the selected cycles with high TS density from
Figure 4. For formatting reasons, the plots are restricted to 16 out of 19 cycles. For each
cycle, there exists an individual kpTS with a corresponding thorizon which leads to the best
results. It can also be seen that above a certain value of kpTS, there is no further influence on
CO2. To ensure robust applicability, a parametrization for the overall largest CO2 savings
potential for each battery size can be determined based on these investigations.

A behavior similar to that shown in Figure 6 is seen for a usable battery energy of
100 Wh in Figure 7.

In Figure 8, the velocity, the presence of a TS, and the SOC trajectories are presented
over time for an exemplary cycle with 100 Wh usable battery energy. This includes
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both the non-predictive Online ECMS and the predictive Online ECMS for the chosen
λO f f line,avg,city = 2.60 using the ideal kpTS and thorizon setting. Additionally, the SOC trajec-
tory is given for a non-predictive Online ECMS with a λ of 2.70.
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Figure 6. Usable battery energy 25 Wh: CO2 over kpTS of several thorizon for predictive Online ECMS
(16/19 cycles). Each graph represents a specific thorizon.
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Figure 7. Usable battery energy 100 Wh: CO2 over kpTS of several thorizon for predictive Online
ECMS (16/19 cycles). Each graph represents a specific thorizon.

In a first step, the analysis focuses on both the non-predictive and the predictive
Online ECMS for λO f f line,avg,city = 2.60. At t = 340 s as well as at t = 370 s and t = 500 s
there is a correlation between the traffic light position and the speed. Speed is reduced in
all three cases and leads to corresponding recuperation phases. At time points t = 370 s
and t = 500 s, significantly higher recuperable energies are observed in the SOC trajectory
for the predictive Online ECMS. At t = 340 s, on the other hand, there is no increase in
recuperable energy. In contrast to those three points mentioned above, however, it is also
possible that no significant reduction in speed and therefore no recuperation phase occurs
despite the presence of a traffic light. This is shown, for example, at t = 200 s and t = 280 s.
This can happen, for example, when the traffic light is green. While the recuperable energy
remains unchanged at t = 280 s, CO2 emissions can increase locally at t = 200 s compared
to the non-predictive ECMS: the battery state of charge is kept longer with the predictive
Online ECMS, which is associated with additional ICE operation. It is concluded that the
predicitve Online ECMS can have both positive and negative effects on the optimality of
the EMS. At some timesteps a local improvement is achieved when applying the predictive
Online ECMS by better taking into account recuperation potentials. At other timesteps, a
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local increase in CO2 emissions is achieved due to additional operation of the ICE. There
are also situations where there is no impact on the optimality of the EMS. Ultimately,
the decisive factor is which effects predominate. Overall, a well-parametrized predictive
Online ECMS leads to a reduction in fuel consumption compared to the non-predictive
Online ECMS.

In a second step, the SOC trajectory for λ of 2.70 should also be considered. A closer
look at the non-predictive SOC trajectorys of λO f f line,avg,city = 2.60 and λ = 2.70 reveals that
CO2 reduction potentials by applying a predictive Online ECMS are highly dependent on
the chosen non-predictive basic implementation: At t = 380 s, the additional energy hub
for the use of recuperated energy is much higher for λ = 2.70 than for λO f f line,avg,city = 2.60.
Anyway, both non-predictive Online ECMS implementations reach the upper SOC limit
multiple times and therefore both λ seem to be too high for the shown driving cycle. It
is concluded that significant saving potentials can already be achieved by an adequate
choice of non-predictive Online ECMS. At the same time, however, the additional savings
from the proposed predictive Online ECMS using recuperation potentials compared to a
non-predictive implementation are reduced.
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Figure 8. Usable battery energy 100 Wh: velocity (upper graph), f lagTS (middle graph), and battery
SOC over time (lower graph). Both for non-predictive Online ECMS (black) and predictive Online
ECMS (orange) with thorizon: 65 s, kpTS = 0.2. In addition, the course for the non-predictive Online
ECMS with λ = 2.70 is plotted (black dashed).

As already stated, Figure 8 reveals that λ reductions also occur when the battery is
already discharged before a recuperation phase is initiated (t = 200 s). Therefore, a depen-
dence of kpTS on SOC is introduced in a follow-up work. Thus, when SOC is around the
lower limit, no reduction in the value of the electric energy (λ) is allowed. Apart from
this measure, a dependence of kpTS on the occurrence of the recuperation potential in the
prediction horizon could also be added. If the TS is quite close, the influence should be
large. If the TS is in the later part of the studied horizon, the influence is reduced.

In contrast to Figures 6 and 7, there are no additional saving potentials for a predictive
implementation when a large battery (usable battery energy 1000 Wh) is used, see Figure 9.
Here, a significant deterioration is observed for all kpTS. This is in line with the findings
already made in the context of [34] that considering recuperation potentials in a predictive
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Online ECMS does not lead to any noticeable saving potential for large batteries compared
to a well-parametrized non-predictive Online ECMS.
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Figure 9. Usable battery energy 1000 Wh: CO2 over kpTS of several thorizon for predictive Online
ECMS (16/19 cycles). Each graph represents a specific thorizon.

As shown in Figure 10, an overall improvement is observed when applying a predictive
Online ECMS. However, the saving potentials depend strongly on the usable energy content
of the battery. The highest saving potentials exist with a usable battery energy of 100 Wh.
With lower battery capacities, the saving potentials using a predictive implementation
become less. For a usable battery energy larger than 100 Wh, no more significant saving
potentials are found. The corresponding parameters for each battery size are listed in
Table 6.
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Figure 10. Potentials of the proposed predictive EMS for different usable battery energies: Average
CO2 reduction in % when applying the predictive Online ECMS compared to the non-predictive
Online ECMS.
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Table 6. Optimal overall parameters of the predictive Online ECMS for different battery sizes
including average CO2 reduction potentials compared to the non-predictive Online ECMS (Figure 10).

Usable Energy in Wh kpTS Horizon in s Reduction CO2 %

25 0.35 30 0.19
50 0.15 40 0.47
75 0.35 45 0.98

100 0.20 50 1.35
200 0.05 25 0.12
300
400 No additional CO2 reduction potentials by applying
500 the proposed predictive Online ECMS considering TS
1000

6. Conclusions

In this study, a new approach for a predictive energy management strategy (EMS)
was presented, which complements the existing field and provides starting points for
future studies. It was demonstrated how a predictive Online Equivalent Consumption
Minimization Strategy (ECMS) can achieve additional fuel savings compared to a non-
predictive Online ECMS by predicting recuperation events using map data. Within the
investigations, TS from the upcoming road profile are considered in the predictive Online
ECMS, whereby more than 1 % average saving potentials compared to a non-predictive
implementation were shown. The highest saving potentials are found with a usable
battery energy of 100 Wh. With lower usable battery energy, the saving potentials decrease
using the proposed predictive implementation. For batteries larger than 100 Wh, no more
significant saving potentials are found. Furthermore, a big dependence of the added value
by implementing a predictive Online ECMS from the basic non-predictive Online ECMS is
revealed. In a follow-up work, a dependency of kpTS on SOC could be introduced. Thus,
if the battery state of charge is already at SOCmin, no additional reduction in the value of the
electrical energy (λ) is allowed. Furthermore, a dependence of kpTS on the occurrence of
the recuperation potential in the predicted horizon can be implemented. If the recuperation
occurs early in the time horizon, a large influence is aimed at; if it occurs late in the horizon,
a small influence should be realized. Apart from that, the predictive Online ECMS could be
enhanced by using additional map data, telemetry data or information from Radar, Lidar,
and camera. Also, Car-to-Car (C2C) and Car-to-X (C2X) communication could be used to
consider the status of the traffic signal.

To apply the predictive Online ECMS the route must be given and the current position
of the global navigation satellite system (GNSS) must be known. Subsequent studies could
investigate, how intelligent methods can be used to better estimate the current position
of the vehicle or to predict the route. In order to validate the proposed predictive Online
ECMS, an implementation in the real vehicle is required. For such an implementation in a
real vehicle, the upcoming velocity has to be approximated to transfer map information
from the distance domain to the time domain. Alternatively, a specific future distance could
be used instead of the specified time horizon in the proposed predicitve Online ECMS.
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Abstract: There has been significant EV sales growth in Europe, benefiting from its policies for
promoting electric vehicles (EVs) and investments in manufacturing. This study investigates the
investment announcements for EV and battery production announced by manufacturers and com-
pares them to four scenarios with different EV penetration levels in Europe. This study projects
the required capacities and estimates the investment needs to meet different EV sale targets in each
scenario. The investigations show that, for Europe to achieve 60% new EV sales by 2030 and to be
on track for 100% by 2035, its 4.8 million planned production capacity of EVs would fall short of
the needed 9.2 million in 2030. The gap could close to 2.0 million when tentative announcements
are counted. The results for batteries indicate that tentative plans are adequate and firm plans can
satisfy most scenarios by 2030. More investments into EV production, along with policy support and
incentives, are needed for more rapid scenarios.

Keywords: investment; electric vehicle; vehicle assembly; original equipment manufacturer; Europe;
battery production

1. Introduction

From 1990 to 2020, greenhouse gas (GHG) emissions have decreased by 32% in the
European Union (EU) [1]. The reduction in GHG emissions is likely to continue, especially
with strong regulatory support. For example, the legislative proposal “Fit for 55” aims to
reduce the EU’s GHG emissions by 55 percent by 2030. The REPowerEU Plan presented
by the European Commission aims to promote energy saving, clean energy production,
and the diversification of energy suppliers. All these will help bring the 2030 EV sales
target and climate ambition within reach. Looking ahead to address the ambitious 2030
and 2050 target, measures for serious emission reduction are still needed, especially in the
transportation sector, which emits the most GHG emission [2].

Transportation electrification has been considered a promising pathway to decar-
bonization in the road transportation sector in the long term. Worldwide, the sales of
electric vehicles (EVs) in 2021 hit a new record of 6.6 million; in Europe, EV sales increased
by two-thirds year-on-year to 2.3 million. Germany remained the largest EV market in
Europe in terms of the number of EVs sold; Norway had the highest market share of new
EV sales in Europe, followed by Iceland and Sweden [3]. The growth in EV sales has grown
significantly, thanks in part to strong policy support [4], and Europe is determined to
reduce GHG emissions and to retake the lead in EV transition. More recently, the EU agreed
on legislation that could ban new internal combustion engine vehicle sales beginning in
2035 [5].

Despite regulatory support, most EU member states provide financial support via
different institutions and programs to support a strong EV uptake [6]. The European Invest-
ment Bank (EIB) has provided funding for strengthening the electric charging network in
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Germany [7] and Italy [8]. Lienert and Bellon argued that global automakers are spending
nearly USD 515 billion in investment into the EV and related battery industry through
2030 [9], and European automakers are leading EV and battery investment in total dollar
amounts. While the importance of decarbonizing the road transportation sector is well
known, as is the need for significant capital investments in the EV and battery industries,
there is a lack of detailed estimates of the overall investment needs for expanding the
production of EVs and batteries to achieve different transitional targets in the EV transition.
This research effort to track announced investments and compare them to requirements
fills a void in this area.

In particular, this study collects and examines publicly available original equipment
manufacturers (OEMs) and battery suppliers’ announcements for expanding the production
of EVs and batteries in Europe between 2020 and 2022 and out to 2030. This paper is
interested in two particular questions, as follows:

• What is the planned production capacity of EVs and batteries in Europe towards 2030,
given investment announcements made by OEMs and battery suppliers?

• How fast will upfront capital investment into EVs and batteries need to scale up to meet
different EV penetration levels and transitional targets, and are the announcements
and plans adequate for this picture?

For the purpose of clarification, EV in this paper refers to battery electric vehicles
(BEV) and plug-in hybrid electric vehicles (PHEV) in the light-duty vehicle (LDV) sector.
Due to investment announcement data availability, battery production in this paper only
covers the downstream battery production, including battery cell production and battery
pack assembly. Processes like acquiring and processing minerals for batteries are not
included. Lastly, Europe in this paper includes the 27 EU members, the European Free Trade
Association (Iceland, Norway, Liechtenstein, and Switzerland), and the United Kingdom.

2. Background

To achieve a successful and rapid diffusion of EVs in the future, countries and regions
have been offering various incentives to attract capital investment into not only EV assembly
and battery production but also other automotive parts and battery recycling. There has
been an increasing emphasis on “localizing” the EV supply chain in major EV supply
markets, including Europe [10]. From the government’s perspective, localization helps
locate the automotive industry’s value-creation efforts, including creating more high-skilled
jobs and capturing innovation spillovers [11].

From the view of OEMs, having assembly plants close to critical parts supply (such as
the supply of EV batteries, which account for between 30% and 40% of the total cost of
an EV [12]) can help reduce their supply chain risks. Yet localizing the whole EV supply
chain and relying less on EV imports is not easy. OEMs need to align their investments in
EV production with battery production and, on the battery side, must secure enough raw
materials to produce the batteries. Nevertheless, the demand for EVs needs to be spurred
in parallel so that OEMs have the confidence to continue investing.

As the EV transition continues to accelerate, the question that needs to be asked has
shifted from “Will the automotive future be electric” to “How large will the EV market be”,
and “Can the EV market scale up fast enough?” Previously, Slowik and Lutsey evaluated
plants that are manufacturing EVs currently and some major carmakers’ newly announced
commitments in the US but did not further investigate how much total investment might be
needed in the future, given different sales targets or other market growth assumptions [13].
Since 2021, there has been some grey literature containing EV-related investment data,
including CIC energiGUNE [14], Environmental Resources Management (ERM) [15], and
Atlas Public Policy [16]. In the past several months, as Reuters documented, more com-
panies have invested in EV battery factories in Europe [17]. S&P Global also observed an
increase in private equity investment in the European EV industry [18]. Despite weaker
sales growth due to high interest rates and slow economic growth, analysts at Automotive
News claim that EV investment will stay strong in Europe [19].
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To the authors’ knowledge, no academic research in current literature has provided
a detailed picture of how much investment for EV and battery production has been com-
mitted in Europe towards 2035 and if the planned production capacities behind these
investments align with Europe’s fast EV growth plans. Therefore, this is the first known
research paper that fills the aforementioned research gap by investigating the planned pro-
duction capacity of EV assembly and battery production in Europe to 2030 and estimating
how fast the investment for EV and battery production needs to scale up to meet various
EV penetration levels and transitional targets. Moreover, by comparing the announced
investment to the investment need under each scenario, this paper also contributes by pro-
viding critical benchmarks and timely insights on whether the current industry ambition
and plans are adequate for each different picture in the future.

3. Methodology

In the Cobb–Douglas production function, total production is a function of labor and
capital input constrained by the total factor productivity [20]. In Equation (1), Y is total
production, L is labor input, K is capital input, A is total factor productivity, α and β are
the output elasticities of capital and labor, respectively. This study assumes Lβ is sufficient
and constant and investigates how EV assembly and final battery production capacity will
be affected by changes in K in Europe. Therefore, this study focuses on investigating the
relationship between capital investment and EV assembly and final battery production
capacity in Europe.

Y def
= A× Lβ × Kα (1)

As such, this study starts with collecting publicly available OEM investment announce-
ments that mention both the amount of investment and the production capacity and end up
with 57 OEM investment announcements of expanding the production of EVs and batteries
in Europe made by OEMs and suppliers from 2020 to 2022 towards 2030 which are docu-
mented in [21]. As shown in Figure 1, this study uses these announced investment plans to
calculate the average investment per unit of production capacity of EVs and batteries in
Europe through 2030, which will be explained in Section 3.1.
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Based on the average investment per unit of production capacity, this study then
estimates either the investment or the production capacity in announcements where such
information is not clarified. For both EVs and batteries, this study adds their respective
planned production capacity to their base production capacity; the base production capacity
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of EVs was estimated based on historical EV sales data in Europe. Finally, this study
compares the planned capacities to the required EV sales needs to meet different EV
penetration levels and transitional targets. How different EV sales scenarios are developed
will be explained in Section 3.2.

3.1. Planned EV and Battery Production Capacity

The total planned production capacity is derived as the sum of the base production
capacity and the planned production capacity. This paper chooses the highest annual EV
sales number between 2010 and 2021 annual EV sales in Europe and uses this number as the
base production capacity of EVs in Europe. According to the International Energy Agency
(IEA), 2284 thousand units of EVs were sold in Europe in 2021, which is assumed as the
base production capacity of EVs in Europe for this study. The base production capacity of
EVs is not further categorized by OEM to avoid missing any production capacity provided
through non-major OEMs.

In this study, investment plans are divided into either firm or tentative announcements.
Firm announcements are usually very specific and disclose information, including the use
of the investment, the anticipated start time of the actual production, and the plant’s rated
capacity and/or the investment size. On the other hand, tentative investment plans may
not disclose the use or the amount of the investment or when production can start. For
example, some tentative investment plans are in the “advanced discussion” or “proposal
submission” stage as of the time of writing. In summary, there are 41 firm announcements
(11 for EV and 30 for battery) and 16 tentative announcements (7 for EV and 9 for battery).
All currencies in this study are in the 2022 US dollar.

3.1.1. Planned Battery Production Capacity

The process of estimating how many EV batteries can be produced in the future based
on relevant investment announcements can be complicated due to factors like the future
EV driving range, size of EV, and EV sales composition (BEV versus PHEV). In this study, it
is assumed that impacts from all possible factors are eventually reflected in one value—the
average battery capacity per vehicle in Europe, regarding the new EV sales.

According to the most recent research, EV battery size varies between 52 kWh/vehicle
and 85 kWh/vehicle in Europe [22]. For example, the Tesla Model Y was the best-selling
EV in Europe in 2022 [23], and the new entry-level Tesla Model Y has a 55 kWh/vehicle
battery [24]. Furthermore, there is a trend that sports utility vehicles (SUVs) and large BEV
models are dominating current EV options [25]. Therefore, looking out to 2030 and 2035,
this study selects the upper quantile between 52 kWh/vehicle and 85 kWh/vehicle (which
is 74 kWh/vehicle) and assumes the battery capacity per vehicle Is 74 kWh/vehicle on
average through 2035.

Announced investment for battery production in Europe ranges from USD 0.48 billion
to USD 8.80 billion. Equation (2) explains how the investment per unit of production
capacity for batteries on average is calculated. Thereinto, n is the number of announcements
that mention both the investment and the capacity, which are documented in [21], Ii is the
announced amount of investment, and Ci is the rated production capacity announced by
OEMs and suppliers. This study uses the interquartile range (IQR) to detect outliers. If any
outlier exists, it will fall out of the IQR in a boxplot. If identified, outliers are excluded to
calculate ICbattery.

ICbattery
def
=

∑n
i=1 Ii

∑n
i=1 Ci

(2)

In this study, ICbattery is USD 91/kWh/year. As indicated in an earlier section, this
value only covers the final battery production process. This paper then uses ICbattery to
calculate the planned capacity of a battery plant (i.e., the number of EVs that a facility can
build to support) and the committed amount of investment behind the announcement in the
cases where they are not disclosed in other announcements, following Equations (3) and (4).
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Thereinto, CCi is the calculated battery production capacity, and CIi is the calculated
investment for a certain battery production announced by OEMs and suppliers.

CCi =
Ii

ICbattery
(3)

CIi = Ci × ICbattery (4)

3.1.2. Planned EV Production Capacity

Likewise, this paper uses the announcements that mention the investment and the
capacity to calculate the average investment per unit of EV production capacity in Europe.
and these announcements are documented in [21]. The amount of announcements is labeled
as m in Equation (5); Investj is the announced amount of the investment; and Capacityj is
the rated production capacity of EVs announced by OEMs.

ICassembly
def
=

∑m
j=1 Investj

∑m
j=1 Capacityj

(5)

It is found that ICassembly is about USD 5699/vehicle/year in Europe. Following the
same logic as described in Equations (3) and (4), this is further used to calculate the planned
EV production capacity or the investment in cases where they are not disclosed in some
announcements.

3.2. Required Annual New EV Sales

The new EV sales towards 2035 are projected based on multiple sources. Bloomberg
New Energy Finance (BNEF) projects annual sales of new EVs in Europe to reach around
4.3 million in 2025, which is about 28% of all passenger vehicle sales [26]. It is also assumed
in BNEF’s accelerated scenario that all new sales of passenger vehicles will be 100% electric
by 2035, which aligns with the aforementioned legislation that can potentially ban all sales
of new internal combustion engine vehicles.

In IEA’s Announced Policy Scenario, the annual new EV sales in Europe are pro-
jected to reach 7.6 million by 2030, representing 52% of EV sales share [27]. This study
estimates that 100% of the annual new EV sales share can be translated into 15.4 million and
14.6 million annual new EV sales in volume based on BNEF and IEA’s projections, respec-
tively. Therefore, this paper chooses the mean between these two projections, 15 million, as
the volume that corresponds to 100% EV sales share for this study.

In this study, four EV sales scenarios (Table 1) are created based on two BNEF scenarios
and four scenarios used in Mock and Díaz’s study. Annual new EV sales share is specified
every 5 years. The annual new EV sales are derived by multiplying 15 million new sales of
light-duty vehicles (LDVs) with the new EV sales share.

3.3. Investment Needs for EV and Battery Production

In each scenario, the estimated annual investment needs for EV production are derived
as the production of ICAssembly and the annual additional EV production capacity needs.
The estimated annual investment needs for battery production are derived as the production
of ICBattery and the average battery capacity per vehicle, and multiplied by the annual
additional capacity, which is the same as the annual additional capacity of EV production
because this study assumes one battery per EV.

3.4. Sensitivity Analysis

The planned production capacities can vary, depending on OEM and supplier commit-
ments. Therefore, a tentative scenario is created so that firm and tentative OEM investment
announcements are both taken into account for calculating the future planned produc-
tion capacities. The tentatively planned production capacities are also compared with the
required production capacities.
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Table 1. EV sales scenarios in Europe.

Scenario Definition Annual New EV Sales Share

Fastest Scenario
This scenario assumes that no new internal combustion engine vehicles
will be sold by 2030. The annual new EV sales will stay constant from
2030 to 2035.

29% in 2025
100% in 2030
100% in 2035

High Ambition Scenario

This scenario assumes more supportive policies will be in place to push
for much faster EV adoption, no new internal combustion engine
vehicle will be sold after 2035, and 70% lower worldwide harmonized
light vehicle test procedure (WLTP 1) CO2 emissions by 2030.

22% in 2025
61% in 2030
100% in 2035

Accelerated Ambition Scenario In this scenario, EV adoption is assumed to slow down in the early
2030s due to the saturation of some segments.

20% in 2025
50% in 2030
85% in 2035

Moderate Ambition Scenario In this scenario, it is assumed that the fleet average WLTP CO2 emission
target in 2025 is improved to a 20% reduction.

20% in 2025
42% in 2030
64% in 2035

1 WLTP is a laboratory test that is used to measure fuel consumption and CO2 emissions from passenger cars and
vans, and their pollutant emissions.

As mentioned in Section 3.1.1, estimating how many EV batteries can be produced in
the future can be affected by various factors. To complement the baseline scenario, a lower
case is created where this study assumes the battery capacity per vehicle in Europe is
62.5 kWh/vehicle on average. This value is derived based on the assumption of new EV
sales and the assumption of the average battery capacity per PHEV in Europe. This study
assumes that the new BEV sales to the new PHEV sales are about 4 to 1 based on current
market trends and expert suggestions; this study also assumes that the average battery ca-
pacity per PHEV in Europe is about 16.5 kWh/vehicle, according to Mock and Díaz’s study.
Additionally, a higher case is created to reflect a potential future market where more BEVs
than PHEVs are sold, or the EV driving range is higher. In this case, after consulting with
industry experts, the average battery capacity per vehicle is adjusted to 92.5 kWh/vehicle,
representing a 25% increase over 74 kWh in the base case. The investment needs for battery
production will thus vary accordingly, and this study calculates the investment needs for
all four scenarios in the lower and higher case.

4. Results
4.1. Compare the Annual Planned Production Capacities to the Annual New EV Sales

As depicted in Figure 2, the new EV sales are likely to reach 9.2 million in Europe
by 2030 in the High Ambition scenario, representing about 60% of EV sales share. In the
Accelerated Ambition scenario and Moderate Ambition scenario, the new EV sales could
reach 7.5 million and 6.3 million by 2030, respectively.

As mentioned in Section 3.1, the base production capacity of batteries in Europe in this
study is about 2.3 million. According to [28], battery plants take about 5 years to ramp up
to their full capacity. Therefore, this paper assumes that the battery plant’s capacity factor
is 20% in the first year and increases linearly until it reaches 100% in the fifth year.

If only firm investment announcements are considered, the planned battery produc-
tion capacity in Europe will be able to support 12.7 million EVs by 2030, with an average
of 74 kWh/vehicle battery capacity per vehicle; this is sufficient for the High Ambition
scenario (Figure 3). The planned battery production capacity from 2030 to 2035 is currently
flat because the investment plans announced so far only cover through 2030. More invest-
ment plans for battery production are anticipated. Notably, though the planned production
capacity of batteries may not be enough for the fastest scenario by 2030, it seems to be fully
sufficient for all scenarios through the late 2020s.
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The planned production capacity of EVs will be 4.8 million EVs in Europe by 2030,
which is about 1.5 million short of the Moderate Ambition in Europe by 2030. As indicated
in Figure 4, the production capacity of EVs in Europe may be lagging for most of the
scenarios in this paper before 2030.
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4.2. Compare the Investment Needs to the Announced Investment for Expanding EV and
Battery Production

To achieve an ambitious EV sales scenario, more investment will be needed soon
(Appendix A). In the Fastest scenario, investment needs can reach USD 14.4 and USD 12.1
billion in 2026 to support additional production capacity of EVs and batteries, respectively;
such annual additional investments may be needed at least through 2030 to sustain this
scenario. The High Ambition scenario may face its first uptake in investment needs in 2031,
with investment for additional EV and battery production reaching about USD 11.6 and
USD 9.8 billion, respectively.

As shown in Table 2, about USD 69 billion for battery production has been announced
in Europe between 2020 and 2022 towards 2030 based on firm announcements. This can
be translated into many batteries that can support about 12.7 million EVs with a battery
capacity of 74 kWh/vehicle, enabling Europe to meet the High Ambition scenario. If
the fastest scenario is pursued, about USD 18 billion in investment would be needed
before 2030 or earlier. For EV production, USD 15 billion has been announced through
firm announcements in Europe towards 2030. With tentative investments included, the
investment amounts to about USD 28 billion and the planned production capacity of EVs is
sufficient for the Moderate Ambition scenario by 2030.
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Table 2. Compare the announced investments to the investment needs for expanding the production
capacity of EVs and batteries in Europe by 2030 and 2035 (billion USD).

EV Sales Scenario Cumulative Investment Announced
Cumulative Investment Needs

By 2030 By 2035

Battery production

Fastest

USD 69
(USD 110 1)

USD 87 USD 87

High Ambition USD 39 USD 83

Accelerated Ambition USD 37 USD 72

Moderate Ambition USD 29 USD 51

EV production

Fastest

USD 15
(USD 28 2)

USD 74 USD 74

High Ambition USD 33 USD 70

Accelerated Ambition USD 31 USD 61

Moderate Ambition USD 24 USD 43
1 USD 110 billion is the total announced investment through 2030 for battery production based on firm and
tentative announcements. 2 USD 28 billion is the total announced investment through 2030 for EV production
based on firm and tentative announcements.

4.3. Sensitivity Analysis Results

When tentative investment announcements are also taken into consideration, the planned
production capacity of batteries in Europe by 2030 can increase to nearly 19.7 million EVs
being supported, exceeding the need in the fastest scenario by 4.2 million (Figure A2). For
EV production, the planned production capacity of EVs can increase to about 7.2 million,
which is sufficient for the Moderate Ambition scenario and is only 0.3 million short of the
Accelerated Ambition scenario by 2030 (Figure A3).

As suggested in Table 3, with a lower battery capacity per vehicle on average, the
planned battery production capacity can increase to 14.6 million by 2030 based on firm
announcements, which can put Europe very close to meeting the fastest scenario. As
indicated in the results from the higher case, the planned production capacity of batteries
is nearly 16.2 million by 2030 based on both firm and tentative announcements; and when
only firm announcements are considered, Europe can meet the High Ambition scenario.

Table 3. Planned battery production capacity in Europe to 2030 in the Lower and Higher case.

Capacity Needed in 2030 Planned Production Capacity in 2030

High Ambition
scenario

Fastest
scenario

Average battery capacity per vehicle (kWh/vehicle)

Lower case:
62.5

Base case:
74

Higher case:
92.5

9.2 million 15.0 million
Firm 14.6 million 12.5 million 10.6 million

Firm and tentative 22.9 million 19.2 million 16.2 million

This paper also examines the investment needs in the lower and the higher case
(Table 4). In the lower case, the firm announced investment for battery production
(i.e., USD 69 billion) almost reaches the investment needs in the fastest scenario
(i.e., USD 74 billion). In the higher case, the firm announced investment would put Europe
on track for the High Ambition scenario; with tentative investments included, the fastest
scenario could be met by 2030.
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Table 4. Investment needs for the production capacity of batteries in Europe in the Lower and Higher
case (billion USD).

Scenario Investment Announced
So Far to 2030

Cumulative Investment Needs

Lower Case:
62.5 kWh/vehicle

Higher Case:
92.5 kWh/vehicle

By 2030 By 2035 By 2030 By 2035

Fastest

USD 69
(USD 110)

USD 74 USD 74 USD 109 USD 109

High Ambition USD 33 USD 70 USD 49 USD 103

Accelerated Ambition USD 31 USD 61 USD 46 USD 90

Moderate Ambition USD 24 USD 43 USD 36 USD 64

5. Discussion

By tracking the announced investment plans for expanding the production capacity
of EVs and batteries in Europe, translating them into future production capacities, and
comparing these to different EV transitional targets towards 2030 and 2035, this paper
provides a better understanding of whether these announced investment plans appear
to be adequate to meet the EV sale targets and emission reduction goals in Europe. This
paper also gives a sense of how fast future investments will need to scale up to be sufficient.
There are several implications of this study, as follows.

In general, this study suggests that if Europe is committed to meeting the High
Ambition scenario (on track for 100% EV sales share by 2035), the planned production
capacity of batteries seems to be adequate, but the production capacity of EVs will require
a lot more investment that has yet been announced. This provides practical insights for
automakers and automotive suppliers and helps improve the EV supply chain “visibility”
(knowledge of sourcing options and potential supply scale). The results of this study may
help automakers and suppliers better understand where the EV assembly and battery
production is going within Europe, what is happening elsewhere, and whether trouble of
shortage might be brewing in the supply chain [29].

In terms of the source of investment, while existing OEMs and battery companies will
likely continue expanding their investments directly, this study suggests that some support
for financing could be provided by the governments through different fiscal incentives and
subsidies, including vehicle purchase incentives which can help spur EV demand growth
and supply-side investments. In addition to direct incentives, regulatory policies that can
help de-risk the market and help boost OEMs’ confidence that EV demand will be spurred to
achieve these targets, may be needed as well to keep incentivizing production investments.

For investment in battery production, this paper suggests that OEMs and battery
suppliers seem on track to achieve the required targets in the 2030 time frame, even for
the most ambitious scenario. This means that some battery investments announced so far
may come from OEM and battery suppliers’ anticipation of future vehicle investments,
investments for a future market of PHEVs, potential export of EVs, or battery swapping.

However, such a ramp-up in battery manufacturing needs to be treated carefully. If
the ramp-up in battery production capacity happens before significant EV demand is in
place, battery plants may run the risk of low operational efficiency. Operational efficiency
is one of the major concerns for gigafactories. For example, if a 50 GWh plant only achieves
66% of its planned annual output, it can lose about USD 500 million in value annually;
the loss can also be translated to a modeled profit of 6% to 8% [30]. To mitigate risks of
low operation efficiency of battery plants, it may be reasonable to consider export as an
important destination for the over-production of batteries.

Though more investment is desired in general, the results in this paper also point at
one potential risk: the gap between investments in different parts of the EV supply chain.
The results in this paper suggest that in Europe, more investment plans and production ca-
pacities have been announced for batteries than for EV production so far. One explanation
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may be that OEMs and battery suppliers are concerned about the supply chain shortage,
especially the scarcity of certain raw materials for producing batteries. European govern-
ments and automakers have invested heavily to push the expansion of battery production
in Europe in recent years, to manage such supply chain risk and to avoid relying on battery
imports from Asia [13]. Therefore, OEMs prefer securing enough battery capacity (or secur-
ing a strategic partnership with a battery supplier who can secure enough raw materials for
producing batteries) before investing in any EV production facility close by. The increasing
demand for batteries may seem more certain for the industry at this moment.

To bridge the production capacity gap, as well as the investment gap, between EV
production and battery production, this study suggests that an additional investment of
USD 5 billion to USD 18 billion may be needed to increase the production capacity of
EVs in Europe to reach the High Ambition scenario by 2030. In the meantime, it may be
beneficial to consider importing EVs from other countries and regions into Europe as well.
The European Automobile Manufacturers’ Association, the American Automotive Policy
Council, the Truck and Engine Manufacturers Association, and the Alliance for Automotive
Innovation have made a joint statement in support of the US-EU Transatlantic Trade and
Technology Council to revive the coordination on issues arising from the nexus of trade
with the supply chain. In the tentative scenario, Europe would be about 0.3 million short of
the Accelerated Ambition scenario (50% EV sales share by 2030 and 85% by 2035). Such
volume is within the range of EV imports seen in 2020 as 30% of 3.0 million EVs were
imported into Europe [31].

It has to be stressed that the results presented in this research rely on various assump-
tions that reflect the current announced investment plans and understanding of the key
trends in the EV market. For example, this study assumes that the average battery capacity
per vehicle in Europe towards 2035 is about 74 kWh/vehicle based on the current range of
EV battery size in Europe and the trend of preferring larger BEV models and SUVs. This
study also assumes that all firms announced investment plans will come through on time,
while OEMs and suppliers can change their plans anytime due to reasons like changes
in the overall company strategy and geopolitical tension. Hence, the analysis should be
updated as more investment plans are announced and updated.

In addition to the exploration of possible variations presented in the sensitivity anal-
yses, the authors also recognize other factors that may lead to potential variations in the
estimated needs for battery and EV production presented in this paper. Firstly, this study
could overestimate the investment needs for additional battery and EV production, if
economies of scale and learning curve are considered. Further, if the EV assembly factories
find ways to retrofit their existing factories instead of constructing new assembly facilities in
the near future, then the estimated investment needs for EV production in this paper could
be overestimated. However, if the investment cost for construction materials increases, the
estimated investment needs presented in this paper can be underestimated. Last but not
least, as the EV market is driven by ambitious policy targets and incentives, changes in EV
sale targets and policy incentives can increase the volatility of the EV market, which further
increases the variations in the estimates in this paper.

Additionally, this study has not covered the full EV supply chain. There are other
important auto parts and materials, and all industries and stakeholders should work
collaboratively to ensure enough materials and production capacity are available at all
stages. In addition to issues around the production and supply, OEMs are also watching the
charging infrastructure roll-out and are waiting for the EV sales to ramp up as recharging
networks develop. However, building up the charging infrastructure requires significant
amounts of planning and capital investment upfront as well. This research effort will be
extended to estimate the investment needs in charging infrastructure and other possible
areas to better understand the investment needs for an EV-dominated vehicle future
by 2035.
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6. Conclusions

The analysis presented in this paper provides several contributions. Firstly, it provides
a timely picture of the future production capacity of EVs and batteries in Europe, based on
publicly available investment announcements made by OEMs and suppliers from 2020 to
2022. The results in this paper indicate that the planned production capacity of batteries
will be sufficient for the High Ambition scenario towards 2030, putting Europe on the
trajectory of achieving 100% new EV sales share by 2035. However, the planned production
capacity of EVs currently falls short of meeting the High Ambition scenario, or even the
Moderate Ambition scenario (42% EV sales share towards 2030) in the same timeframe.

Secondly, the results of the sensitivity analyses in this paper show that, with tentative
investment plans considered, the planned production capacity of batteries may exceed
the Fastest scenario by 2030. However, the planned production capacity of EVs may still
risk facing a 0.3 million shortage for the Accelerated Ambition scenario and a 2.0 million
shortage for the High Ambition scenario. This study acknowledges different factors
and uncertainties (e.g., changes in policies and incentives, technology improvement, and
economies of scale) in the future EV market, leading to potential over- or underestimations
in this study. It is anticipated that more investment in EV production will still come in the
future. Yet with time for hitting 2030 targets getting short, it may be challenging to achieve
the more ambitious scenarios without importing vehicles from other world regions.

Therefore, this study suggests that policies that help spur faster investment for EV
production are needed in Europe; at the same time, consideration of potential trade dy-
namics with other major EV supply markets, such as importing EVs due to a shortage in
domestic capacity, may be needed as well. There is also a completely different risk: markets
will not develop quickly, and investment proves to be greater than market needs. In this
case, opportunities to sell excess production (such as batteries) into other markets may
be welcome.

Overall, this paper is the first known effort that shows how fast upfront capital invest-
ment for EV and battery production will need to scale up in Europe under four different EV
sales scenarios. The interpretation of capital investment signals future expected capacity
and gives an idea of the final cost of EVs. These signals can inform the industry of the
current landscape of investment opportunities and help governments formulate regulatory
and fiscal incentives that would accelerate the pace of achieving the EV sales targets by
2030 in Europe.

It is important to keep track of such investment announcements and update the results
in this paper when more announcements become available in the next few years. While this
research provides insights into the planned capacity and investment needs for future battery
and EV production in Europe, it has not included the investment needs for other parts of
the EV supply chain, which can be investigated in the future. This paper does not discuss
the source of upfront investment, though it may not need to be a new investment but
redirections. For future research, it may be interesting to consider trade dynamics between
Europe and other major EV markets or extend such research to the other transportation
sectors, such as the medium- and heavy-duty vehicle sectors.
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Abstract: The current paper defines a framework for the introduction of automated frequency
restoration reserve services, enabled by vehicle-to-grid technology, into the business model of an
entity owning and operating a network of semi-public Electric Vehicle Supply Equipment. It assesses
the profitability of this introduction by performing a case study based on the real-life electric vehicle
charging data from the EVSE network located in a hospital parking lot. From the results of the study,
it is clearly visible that the introduction of vehicle-to-grid-enabled automated frequency restoration
reserve services has a significant positive incremental profitability; however, this is heavily dependent
on the plug-in ratio of the charging network, determined by electric vehicle users’ behavior.

Keywords: vehicle-to-grid; business model; infrastructure; electric vehicle supply equipment;
market development

1. Introduction
1.1. Context

Recent years have shown a significant increase in the popularity of electric vehicles
(EVs), which, in combination with the renewable energy supply, is generally considered a
positive trend, leading to reduced pollution and a cleaner environment (e.g., reduced oil
consumption and CO2 emissions) [1,2]. At the same time, the growing number of EVs on
the roads brings certain challenges. One of these challenges is the increasing pressure on
electricity grids [3]. However, EVs can also provide a solution to this issue by means of
vehicle-to-grid (V2G) technology [4], allowing for bidirectional energy transfer between the
EV battery and the electricity grid, and thus providing the opportunity not only to consume
and store energy in EV batteries but also to inject it back into the grid. Moreover, this creates
additional opportunities both for grid operators, who would potentially benefit from a
solution to grid-balancing issues, and for the participants of the EV charging business
ecosystem, which could potentially benefit from the additional revenue streams.

Based on a number of previous studies defining the EV charging business ecosys-
tem [5], the business models of its participants [5,6], the introduction of V2G technology
into these business models [5] and the initial opportunities of V2G service organizers in
grid-balancing markets [7], the current study makes a step further into the investigation of
the V2G potential in grid-balancing services. Namely, this study assesses the incremental
profitability of the introduction of V2G-enabled automated Frequency Restoration Reserve
(aFRR) services, into the business model of an entity owning, managing, and maintaining a
semi-public EV charging infrastructure.
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1.2. Literature Overview

The vehicle-to-grid (V2G) concept was primarily introduced by the research of Kemp-
ton et al. [8], outlining the technical and financial opportunities enabled by the bidirectional
energy flow to and from the EV battery. One of these opportunities, further elaborated by
a number of follow-up studies [9–14], is the potential application of V2G technology to
energy-grid-balancing services. The participants of the EV charging business ecosystem,
managing and maintaining the network of Electric Vehicle Supply Equipment (ESVE)
would, in this case, take over the role of the grid-balancing service providers (BSP), ag-
gregating a number of V2G EVSE and providing power and energy to the central grid
in case of necessity [9,10] in exchange for remuneration based on their bidding strategies
in a grid-balancing auction [11]. It is important to mention that the application of V2G
technology is not limited by the central grid-balancing services and includes numerous
applications, including peak shaving, local load-balancing and others [12,13]. However, the
V2G-enabled grid-balancing services are particularly valuable in the light of the potential
future necessity of electric grid reinforcements [14].

The initial business model of the participants of the EV charging business ecosystem,
managing and maintaining the network of EVSE, is mainly based on the provision of EV
charging services as the core value proposition at present, covering the needs of the EV
users as the main customer segment and receiving EV charging fees as the main revenue
stream [5,6,15].

However, the V2G-enabled transformation of this business model introduces an addi-
tional value proposition: grid-balancing services. The new value proposition targets a new
customer segment, namely transmission system operators (TSO) (entities responsible for
managing and maintaining a high-voltage electricity grid). At the same time, the currently
existing main customer segment—the EV users—takes the role of the key partner, providing
the EV batteries for the V2G-enabled grid-balancing services [5,7,16].

According to Elia [17], the Belgian TSO, there are three types of grid-balancing services
designed to avoid frequency deviations from a predefined constant level (e.g., 50 Hz
in Belgium):

• Frequency Containment Reserve (FCR): primary reserve, which is automatically fully
activated within a timeframe of 30 s in case of a significant frequency deviation and
stabilizes the frequency fluctuations [18].

• Automated Frequency Restoration Reserve (aFRR): secondary reserve, which is au-
tomatically fully activated within a timeframe between 30 s and 7.5 min, in order to
restore the frequency at the predefined level [19].

• Manual Frequency Restoration Reserve (mFRR): tertiary reserve, which is manually
activated on demand within 15 min, in order to restore frequency at the predefined
level in case of major imbalances [20].

According to the recent study, performed by Elia [21], EVs can be mainly used to
provide FCR and aFRR services, as the provision of these services requires a relatively
fast automatic activation and can be performed with limited energy resources. Moreover,
according to [5], the inclusion of grid balancing services in the list of their value propositions
can become a significant additional revenue stream for the participants in the EV charging
business ecosystem.

Automated Frequency Restoration Reserve (aFRR)

From the revenue point of view, the aFRR service is particularly interesting for entities
willing to engage themselves in the energy balancing market, since it opens two additional
revenue streams: balancing power capacity and balancing energy remunerations [19].

In practice, the rules and procedures related to the provision of aFRR services differ
from one TSO to another. However, even though the current study focuses on the Belgian
TSO Elia, the procedural differences are not critical, and the results could be extrapolated
to other geographical regions with minor adjustments.
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It is also important to mention that the aFRR market was initially designed for large
electricity-generating entities (e.g., gas and hydroelectric power plants), and still has
substantial regulative barriers for small and medium enterprises (SMEs), CPOs, and other
smaller prosumers willing to participate in the provision of the service [22]. The main
barriers are:

• Minimum amount of 1 MW of power for capacity bid and 1 MWh for energy bid [19].
• Pay-as-bid auction principle, where the TSO pays exactly the amount indicated in

the elected bid. The problem with this principle is that smaller entities rarely have
sufficient resources for efficient continuous market analytics and are simply not able
to indicate an up-to-date adequate price [23].

• Expensive specialized metering equipment, which must be installed at every delivery
point aiming to provide aFRR services [24].

However, recent years show a visible decentralization trend in the grid balancing
market, indicating that these regulatory barriers can be diminished in the near future.
For instance, the provision of FCR services does not require the installation of additional
specialized metering equipment and requires only a standard digital meter [25]. Moreover,
the FCR power capacity auctions are transferred to the pay-as-cleared principle, where
all the elected bids from different BSPs receive equivalent remuneration based on the
highest price from the elected bids [23]. These changes in the regulatory framework of
the FCR services can be seen as the first step towards the decentralization of the whole
grid-balancing market, including aFRR services.

1.3. Contribution

Since the V2G technology has not reached its maturity phase and the opportunities
provided by the technology are not yet widely applied, the existing literature still lacks
studies related to the profitability assessment of V2G-enabled aFRR. Therefore, the aim of
the current study is to address this gap by defining the framework for the introduction of
the aFRR services into the business model of an entity owning and operating an Electric
Vehicle Supply Equipment (EVSE) network and assess the incremental profitability of this
introduction based on a case-study of semi-public EV charging infrastructure.

2. Methodology
2.1. Model

The revenue streams of an entity owning, operating, and managing a network of EVSE
is mainly represented by the fees received from the provision of EV charging services, which
form the core value proposition of its initial business model. The cost structure, however,
comprises numerous elements, including the cost of the supplied energy, depreciation of
EVSE, human resources (HR) remunerations, and others [6,15].

As mentioned before, the introduction of V2G-enabled grid-balancing services is able
to diversify the list of value propositions, entering a new market with a new customer
segment and creating additional revenue streams. The focus of the current study lies in the
assessment of the incremental profitability of the provision of V2G-enabled aFRR, which is
the difference between the additional revenues and expenses caused by the introduction
of the service. The factors influencing the incremental profitability of the provision of
V2G-enabled aFRR are described in the current section in Equations (1)–(5).

The revenue generated by the provision of V2G-enabled aFRR (RaFRR) consists of two
components, and can be defined as follows (Equation (1)):

RaFRR = CRaFRR + ERaFRR, (1)

• CRaFRR: power capacity remuneration;
• ERaFRR: energy remuneration.

The provision and remuneration of the aFRR service are based on the auction principle.
After concluding the contract with a TSO, a BSP is able to make power capacity bids on a
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day-ahead auction. Moreover, there are two types of power capacity auctions—“all-CCTU”
and “per-CCTU”. The abbreviation CCTU means the Capacity Contracting Time Unit: the
4 h block when the power capacity bid made by the BSP can be activated by the TSO. Thus,
in the first auction type, the bids are made for the whole 24 h, while in the second, bids
are made for the 4 h blocks beginning from midnight (00:00 to 04:00; 04:00 to 08:00; 08:00
to 12:00, etc.). The BSP has to choose the suitable auction and CCTU(s) (in case of “per
CCTU” auction) and make a power capacity bid, indicating the amount of power it is able
to provide on the next day and the price of the desired service in EUR per MW of indicated
power per hour (EUR/MW/h). The maximum amount of power the BSP is able to bid is
defined beforehand by means of a prequalification test performed by the TSO. The bids are
elected by the TSO based on the forecast-balancing power necessary for the next day and
the “cheapest available” principle. If the bid made by the BSP is elected, the BSP receives
the remuneration for the reserved amount of power (per MW) for the reserved time period
(per hour) [19].

It is also important to mention that participation in the provision of aFRR services in-
volves a certain risk of penalties in case of non-compliance with the contractual obligations
of the BSP. The penalties can occur either due to the failure of spontaneous availability
and/or activation tests performed by the TSO, or due to actual failure to provide the service
during the activation. However, the maximum penalty should not exceed the remuneration
of the respective month. Additionally, there is also a risk-mitigation opportunity, a so-called
Transfer of Obligations (TO) procedure, allowing for the transfer of the power capacity
obligations made by one BSP to another at the last hour before the due time, in case of any
unexpected problems [19]. However, this procedure is based on agreements between the
BSPs and can be costly for the demanding side.

Thus, for the V2G-enabled aFRR, the remuneration for the reserved power capacity
(CRaFRR) mechanism can be formulated as follows (Equation (2)):

CRaFRR = aFRRCapacity Bid ×∑Z
y=1 Ny × Ky × Treserved ×

(
Pplug-in − Pfailure × Ffailure

)
− PTO ×CTO (2)

• aFRRCapacity Bid: aFRR capacity bid (in €/MW/h) for the considered time period
(Treserved);

• y: type of EVSE (from 1 to Z) (e.g., uni/bi-directional; AC/DC; EVSE power level);
• Ny: number of EVSE types y participating in the provision of aFRR services;
• Ky: power level of EVSE type y;
• Treserved: reservation time period of the available BSP power capacity;
• Pplug-in: probability that the EVSE type y is going to be plugged into an EV during the

reservation time period (Treserved);
• Pfailure: risk factor, indicating the probability that the BSP will fail and be penalized;
• Ffailure: the multiplication factor forming aFRR penalties, which is the factor to be

multiplied with the price of the missing MW of power the BSP was not able to deliver;
• PTO: risk factor, indicating the probability of the necessity of opting for the transfer of

obligations (TO) service;
• CTO: cost of TO service.

During the CCTU for which the balancing power capacity was reserved, the TSO can
actually activate the bid, and its activation initiates the second type of aFRR remuneration—
balancing energy remuneration (ERaFRR). In order to provide (for aFRR+) (or decrease for
aFRR−) the necessary power capacity, the BSP has to inject (or consume, in case of aFRR−)
energy into the grid during the whole activation period, while the TSO will pay for this
balancing energy. The balancing energy remuneration is also based on the auction principle,
but is intra-day in this case. The BSP, whose power capacity bid was elected on the prior
day, makes another intra-day energy bid, indicating the amount of energy (in MWh) and
the price. In this case, the BSP receives the remuneration (cost reduction, for aFRR−)
only in case of activation, based on the actual amount of MWhs injected (consumed, for
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aFRR−) into the TSO grid [19]. Thus, the V2G-enabled aFRR energy remuneration can be
formulated as follows (Equation (3)):

ERaFRR = aFRREnergy Bid ×∑Z
y=1 Ny ∗ PLy ∗ Tactivated (3)

• aFRREnergy Bid: aFRR energy bid (in €/MWh) for the considered time period (Tactivated);
• Tactivated: activation time period of the available BSP power capacity.

The influence of the introduction of V2G-enabled aFRR services on the cost structure
mainly involves the increase in infrastructure depreciation costs related to the difference
between unidirectional and V2G EVSE prices, along with the necessary precise metering
equipment to be installed at every delivery point (EVSE or EVSE hub). Thus, the additional
costs related to the provision of V2G-enabled aFRR services can be defined as follows
(Equation (4)):

CaFRR = ∑Z
y=1

∆Py
Ly

+ ∑N
m=1

Pm
Lm

(4)

• ∆Py: difference in price between uni- and bidirectional EVSE with comparable
power level;

• Ly: useful lifetime of EVSE type y;
• m: number of aFRR delivery points (from 1 to N) in the EVSE network;
• Pm: price of specialized aFRR metering equipment;
• Lm: useful lifetime of specialized aFRR metering equipment.

Defining the incremental profits for the provision of V2G-enabled aFRR service (IPaFRR)
as the difference between the additional revenues (RaFRR) and costs (CaFRR) results in the
following formula (Equation (5)):

IPaFRR = aFRRCapacity Bid ×∑Z
y=1 Ny×Ky × Treserved ×

(
Pplug-in − Pfailure × Ffailure

)
− PTO ×CTO + aFRREnergy Bid×

∑Z
y=1 Ny×Ky × Tactivated −∑Z

y=1
∆Py
Ly + ∑N

m=1
Pm
Lm

(5)

2.2. V2G-Enabled aFRR Use-Case
2.2.1. General Provisions

In order to assess the incremental profitability of the V2G-enabled aFRR services, the
current research applies the defined model, generating a case-study based on real-life data
and a set of grounded assumptions.

In general, the process of the provision of V2G-enabled aFRR services can be compared
with the use of stationary batteries for similar purposes. The EV battery increases (for
aFRR+) or decreases (for aFRR−) the power level of the TSO grid in case of need, while the
TSO pays for the reserved capacity and the activated energy.

However, the reserved capacity bids for aFRR+ are, on average, higher than the aFRR−
bids, while the V2G technology allows not only for energy to be consumed at a lower price
(for aFRR−) but also to be injected and sold through energy bids by aFRR+ [26]. Moreover,
according to the internal EV charging data, in most cases, the EVs plug in at >50% state of
charge (SOC), while participation in aFRR− requires buffer space in the EV battery. Finally,
due to this need for additional buffer battery space, the EV is not able to charge during the
CCTU outside the activation periods, solely relying on aFRR− activation periods to charge.
At the same time, the expected parking time is typically longer than the time needed to
charge, creating the opportunity to compensate for the depleted energy in aFRR+.

Considering all the above-mentioned issues, the case-study generated by the current
research is focused on the provision of V2G-enabled aFRR+ services.

The provision of aFRR+ can be performed in two ways, depending on the power
baseline set by the BSP before the activation. Either, during the activation, the BSP stops
consuming energy from the grid, reducing its own power and increasing the power in the
TSO grid compared to the declared baseline (while consuming), or the BSP injects energy
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into the TSO grid, increasing the power in grid compared to the idle-state baseline, as
shown in Figure 1.
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Figure 1. Example of the V2G-enabled aFRR+ provision process.

Figure 1 shows an example of the V2G-enabled aFRR+ provision process with time in
hours on the x-axis and power in kW on the y-axis. The reserved CCTU begins at time t1
with the declared power baseline 1. At this point, the reservation period begins, but aFRR+
is not activated, so EVs connected to the EVSE network and engaged in the provision of the
service are consuming energy and increasing their SOC. At timepoint t2, the TSO activates
aFRR+ and the BSP stops consuming, dropping the power baseline to 0. The activation
ends at timepoint t3, and connected EVs can continue to charge until timepoint t4, when
they reach 100% SOC and remain plugged-in, but idle. At timepoint t5, the TSO initiates
another activation, but this time the EVs are not able to stop charging, as they are idle and
the power baseline is at level 0. Thus, the EVs begin to discharge, injecting energy into the
grid. At timepoint t6, the activation ends, and EVs can begin to recharge the discharged
energy, and at timepoint t7, the reserved CCTU ends. It is important to notice that, in case
aFRR+ power capacity is provided by the reduction in or stopping of consumption, the BSP
does not receive the energy remuneration, as no energy was actually injected into the grid.

Regarding the resulting SOC after the end of aFRR+ CCTU, due to the opportunity for
service provision via stopping or reducing consumption, in the worst case, the additional
∆SOC would be equal to 0%, meaning that the EV would remain at the same state of charge
as before CCTU. Therefore, a time buffer should be created after the CCTU to bring the EV
to the SOC desired by the EV user.

However, on average, the probability of the occurrence of ∆SOC = 0% is less likely.
By analyzing the open access data retrieved from Elia [26], the average aFRR+ activation
time per CCTU (4 h) is 103 min (ex., injecting ~17.2 kWh of energy to the grid through 10
kW V2G charger), while, according to the internal EV charging data, the average time to
reach 100% SOC is around 51 min (the vast majority of EVs plug in with 60–80% SOC). By
subtracting 103 min from 4 h, it becomes clear that a time buffer of 137 min of non-active
time within a CCTU is already present, making it easy to cover the time needed to reach
100% SOC.
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2.2.2. Coping with Uncertainties for aFRR Capacity Remuneration

In addition the SOC, there is another important factor that plays a role. Unlike
stationary batteries, the EV batteries move together with the vehicles, while the successful
provision of V2G-enabled aFRR services requires every participating EVSE to be connected
to an EV during the elected CCTU. Moreover, as the capacity bids are made on the day-
ahead auction, the plug-in probabilities (Pplug-in) of the EVSE network for the elected
CCTU should be known at least one day beforehand. This creates an area of uncertainty,
consisting of the probability of using the costly TO risk-mitigation technique (PTO) and the
probability of failing to deliver the service and receiving the penalty (Pfailure). Therefore, an
accurate forecasting technique is of major importance for the successful implementation of
the service.

The current research applies an EV-charging data-driven forecasting method, limiting
the risk of failure. By making use of the historic EV charging data retrieved from the EVSE,
which is meant to be engaged in the provision of V2G-enabled aFRR, the study defines a set
of plug-in probabilities (Pplug-in) for every minute of the day. This allows for the CCTU(s)
with the highest Pplug-in to be elected, limiting the risk of failure.

After defining the CCTU(s) with the highest Pplug-in, the risk could be further mitigated
by the TO option. This could be achieved by comparing how accurately the Pplug-in values
retrieved from the EVSE, which is meant to be engaged in the provision of V2G-enabled
aFRR, one hour before and at the beginning of the elected CCTU(s) that correspond with
each other (% of correspondence), and double checked by means of statistical analysis
methods (e.g., t-test; ANOVA) (BSP can opt for a TO at the final hour before the CCTU).
The high retrieved value indicates the high accuracy of the forecast and allows for the result
of (1 − Pplug-in) to be used as the PTO value.

Finally, the probability of failure (Pfailure), despite all the risk-mitigation techniques,
can be retrieved by calculating the joint forecasting accuracy of every CCTU timestep,
adjusted for Pplug-in at the beginning of CCTU.

2.2.3. Values of the Model Parameters

After outlining the general provisions of the case study and describing the methods
used to cope with uncertainties, it is relevant to define the values for a number of parameters
that actually participate in the calculations.

As shown in Table 1, the values of the parameters are divided into three subgroups.
The first subgroup represents the values retrieved from external data sources. It is important
to note the importance of ∆Py variable, as, according to [7], the profitability of the whole
business model is very sensitive to the price of V2G EVSE. The ∆Py value presented in
Table 1 is retrieved from the difference in the privately retrieved price quotes for a 10 kW
DC bidirectional charger and a unidirectional AC charger of a similar power level.

Table 1. Values of the model parameters.

Parameter Symbol Value Units

Ex
te

rn
al

da
ta

so
ur

ce

EVSE type y DC V2G /
EVSE power level [27] Ky 0.01 MW
Difference between uni- and bidirectional
EVSE price [27–30] ∆Py 3000 €

aFRR capacity bid [26] aFRRCapacity Bid 65.07 €/MW/h
aFRR energy bid [31] aFRREnergy Bid 282.60 €/MWh
CCTU time [19] Treserved 4 H
Average activation time per CCTU [32] Tactivated 103 minutes
EVSE useful lifetime [15,33] Ly 10 Years
Metering equipment cost [34] Pm 2000 €
Metering equipment useful lifetime [34] Lm 10 Years
Failure factor [19] Ffailure 1.3 /
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Table 1. Cont.

Parameter Symbol Value Units

EV
ch

ar
gi

ng
da

ta

Plug-in probability during CCTU Pplug-in [0.136; 0.99] /
Probability of failure Pfailure [0.009; 0.32] /
Probability of TO PTO [0.01; 0.864] /

A
ss

um
p-

ti
on

s Cost of TO CTO 1.2×Capacity
remuneration

€

EVSE network size Ny 250 Units

The second represents the ranges of probabilities retrieved by means of calculations
from the available charging dataset, which are discussed in more detail in the results of
the study (Section 3). The third subgroup is the values that are part of the assumptions list
designed explicitly for the current case study.

2.2.4. Design and Assumptions of the Case Study

The current research assesses the annual incremental profitability of the V2G-enabled
aFRR+ services by means of a case study of semi-public EVSE infrastructure located in
a hospital parking lot (UZ Bussel). The dataset includes 9344 charging sessions from
12 EV chargers over a two-year period (January 2020–January 2022), filtered to include the
workdays only, assuming the highest probability of EVs remaining plugged in for a longer
period of time during working hours. Moreover, the current case study generates results
for participation in only one CCTU per day, namely CCTU 4 (12:00–16:00), which is the one
with the highest plug-in probabilities and lowest risk of failure.

Following the application of the model defined in Section 2.1, the case study adopts
the following assumptions:

(a) The costs of TO are defined by the bilateral contracts between the BSPs and are
therefore not disclosed. The current study assumes this cost to be 120% of the capacity
remuneration, as it is slightly lower than the one that is applicable for penalties.

(b) The average EV battery capacity of the EVs charging at the respective EVSE is 50 kWh.
(c) The provided case study does not include any bidding strategies, assuming all the

power capacity bids are to be elected based on the average market price.

2.2.5. Scenarios

As is clear from the previous sections, the successful implementation of the V2G-
enabled aFRR services is heavily dependent on the EV users’ charging behavior, deter-
mining the Pplug-in at a certain point in time. Therefore, the current study provides three
different modeling scenarios, considering different types of behavior and interactions with
EV users, which affect the Pplug-in and its derivatives (PTO; Pfailure):

• Scenario 1: Natural behavior. The EV user agrees to the fact that his/her EV is going
to be used for V2G-enabled aFRR services (or is unaware of this fact), but does not
change his/her charging behavior and acts naturally. This scenario is based purely
on the historical real-life data of EV charging patterns determining Pplug-in, PTO, and
Pfailure. The EV user is not bound by any obligations and is able to unplug the EV at any
time. At the same time, the EV user receives no shared revenues from the provision of
V2G-enabled aFRR services.

• Scenario 2: Binding contract. The EV users receive binding day-ahead contracts,
offering 20% of the aFRR+ capacity revenues for the permission to use their EV
batteries for grid-balancing purposes. In this case, the EV would be plugged in and
blocked for a period of 6 h, beginning 1 h before the elected CCTU (allowing fpr the
user to opt for the TO option in case of emergency) and ending 1 h after the CCTU
(ensuring that 100% SOC is reached for the EV after the provision of the service). In
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case of a violation of contract terms (e.g., not plugging in or unplugging before the
contractually defined moments), the EV user pays a penalty equivalent to the penalty
the BSP would receive for missing the MW (securing the BSP from losses in case of
contract violations). This allows for a the situation where PTO = Pfailure = 0. This can be
seen as another risk-mitigation method, cutting out the additional expenses related to
uncertainties by sharing 20% of capacity revenues with the EV users.

• Scenario 3: Non-binding contract. The EV users receive non-binding day-ahead
contracts, offering 20% of aFRR+ capacity revenues for the permission to use their
batteries for grid-balancing purposes. This contract type is a non-binding commercial
offering that does not involve any penalties in case the EV user is not plugged-in
during the defined period of time. Thus, in the worst case, the violation of the contract
terms by the EV user would mean that no remuneration is received. In this scenario,
20% of the contracted users are assumed to violate the non-binding contract on average,
creating losses related to TO and penalties for the BSP. This scenario can be seen as
another risk-mitigation method, although less efficient than the one described in
Scenario 2 in absolute terms for the BSP, but it is also less binding, and thus more
attractive for EV users. In this case, the PTO and Pfailure are limited to 20% of their
initial value.

3. Results

Before proceeding to the actual results of the study, determining the incremental
profitability of the V2G-enabled aFRR+ services for an entity owning, managing, and main-
taining EVSE infrastructure, it is important to discuss the results of the Pplug-in calculations
and its derivatives, which play a crucial role in the successful implementation of the service.
By making use of the method described in Section 2.2.2 and a real-life dataset retrieved
from the EVSE network located in a hospital parking lot, the current study has defined the
Pplug-in distribution, as presented in Figure 2:
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Figure 2 shows the Pplug-in (y-axis) of the EVSE network during the time of the day
(x-axis). Every curve on the graph represents the probability that at least a certain per-
centage of the EVSE network (indicated in the legend) is connected to an EV (and can
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potentially be used for grid-balancing) at a certain point in time. With regard to the location
and the nature of the given EVSE network, it is clear the Pplug-in drastically increases around
07:00 and decreases around 17:00, indicating the average working hours of the hospital.
This observatio directly points to the fact that the CCTU for the provision of grid-balancing
services should be elected within this timeframe. Considering these conditions, there are
two options regarding the CCTU choice: CCTU 3 (08:00–12:00) and CCTU 4 (12:00–16:00).
However, there is also another point of attention, namely, PTO. As mentioned before, the
BSP can opt for TO at final hour before the elected CCTU, while the Pplug-in values at 07:00
and 08:00 have significant differences, making the TO forecast inaccurate. At the same time,
the Pplug-in values at 11:00 and 12:00 match each other very well. Therefore, the optimal
risk-limiting choice is to opt for CCTU 4 (12:00–16:00) in this case. Another important
observation is that the higher the considered percentage of the EVSE network, the lower
the chance of having this percentage simultaneously plugged into the EVs. However, the
Pplug-in density of up to 50% of EVSE network engagement remains quite high.

Thus, the first, and main, risk-mitigation method is an analysis of the historical plug-
in data, as the ability to provide V2G-enabled aFRR services is the combination of the
availability of V2G EVSE and the plugged-in EV. Therefore, the increase in the EVSE
network engagement without the respective increase in EVSE occupation rate (increasing
the potential plug-in probability) would only lead to losses. Also, as mentioned before, there
is a TO option, serving as an official risk-mitigation method, limiting the potential losses
related to penalties. Finally, the inclusion of the EV users in the contractual obligations,
as described in scenarios provided in Section 2.2.5, serves as an additional, final risk-
mitigation technique.

The incremental profitability of a V2G-enabled aFRR+ service for every EVSE network
engagement level and every scenario defined in Section 2.2.5 is provided in Figure 3:
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It is noticeable from Figure 3 that all the modeled scenarios show a positive incre-
mental profit growth until the engagement of 60% (70% for Scenario 3) is reached by the
EVSE network in aFRR+ services. These results are particularly interesting in light of the
previously conducted research on the profitability of the provision of EV charging services
only [7], showing negative profitability results (namely, −76,738 EUR) for this EVSE net-
work size (250 EVSE units) caused by the high fixed costs and high electricity prices for
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smaller consumers. At the same time, it is clearly visible from Figure 3 that the incremental
profits from the provision of V2G-enabled aFRR+ services are able to cover these losses,
allowing for the break-even point to be reached on this relatively small network size.

Furthermore, after reaching the peak, the incremental profits begin to fall, eventually
becoming negative at above 90% of network engagement. This behavior is explained by the
lowering Pplug-in that goes along with the increasing network engagement (clearly visible
on Figure 2), and resulting increase in PTO and Pfailure. Moreover, even though the potential
penalty is capped by the power capacity revenues, the negative incremental profit is caused
by the additional expenses related to the provision of the service.

It is also noticeable that, at lower EVSE network engagement values (up to 50%),
Scenario 1 (blue curve) is more profitable than the other scenario. This can be explained
by the lower PTO and Pfailure, which lead smaller expenses compared to the EV users’
remuneration. However, after 60% of EVSE network engagement, Scenario 1 shows a
strong negative trend, reaching negative values faster than other scenarios. The reason for
this is that the BSP in Scenario 1 does not mitigate the PTO and Pfailure by means of contracts
with EV users, and bares more risks when the plug-in probability of the chosen percentage
of the EVSE network begins to fall.

4. Conclusions

The current research has defined the framework for the introduction of the V2G-
enabled aFRR services into the business model of an entity owning and operating an EVSE
network, and used the defined framework for an assessment of its profitability based on a
case study of EVSE infrastructure located in a hospital parking lot.

From the performed analysis, based on real-life data and a set of modeling assump-
tions, it becomes clear that the introduction of V2G-enabled aFRR services into the business
model of an entity owning, managing, and operating a network of semi-public EVSE can
have a significant positive incremental profitability.

However, it is important to bear in mind that the provision of aFRR services is heavily
related to the plug-in probability of the EVSE network, influencing the potential network
engagement in the service and the probability of costly risk-mitigation techniques and
penalties. As is visible from the results of the case study, the profits increase up to 60–70%
of the EVSE network engagement in aFRR service, with a relatively high simultaneous
plug-in probability. Up to this level, the increasing additional revenues are able to cover the
expenses. At higher levels of network engagement, the simultaneous plug-in probability of
the network is significantly lower, resulting in a higher probability of TO, penalties, and
diminishing profitability.

By comparing different scenarios from the case study, it becomes clear that above 50%
EVSE network engagement it becomes more profitable to conclude contracts and share
profits with the EV users. Even non-binding contracts (assumed to be violated in 20% of
cases) partially mitigate the penalty and TO risks born by the BSP and increase profitability
at the higher levels of EVSE network engagement.

Finally, it should be pointed out that even though the defined framework is applied to
the semi-public EVSE network in the current research, its application (with minor adjust-
ments) can be extrapolated to public and private EVSE infrastructures as well. Moreover,
the framework can be applied to the unidirectional smart charging infrastructure; however,
this would remove the opportunity to make incremental balancing energy bids and limit
the direction of power-balancing. Therefore, the results of these potential use cases could
be significantly different, and are interesting topics for future research.
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Abstract: Smart charging is a means of monitoring and actively controlling EV chargers to optimize
the distribution and consumption of energy with a focus on peak-load avoidance. This paper describes
the most important requirements that have influenced the design and implementation of the “Smart
Charging System” (SCS). It presents the architecture and main functional building blocks of the SCS,
which have been realized in an iterative development process as an extension component of the
already existing open-source solution “Open e-Mobility”. We also provide details on the functionality
of the core smart charging algorithm within SCS and show how various data sources can be utilized
by the system to increase the safety and efficiency of EV charging processes. Furthermore, we describe
our iterative approach to developing the system, introduce the real-world testbed at SAP Labs France
in Mougins/France, and share evaluation results and experiences gathered over a three-year period.

Keywords: fleet; smart charging; infrastructure; ICT; load management

1. Introduction

In the past decade, the global market share of electric vehicles (EV) has been growing
rapidly. A significant proportion of EVs of all types, including cars, delivery vans, trucks,
buses, etc., belong to corporate fleets. For example, in Germany 58% of all electric cars
sold in 2021 were registered to companies [1]. Companies are increasingly using their EV
fleets for business-related and sometimes even mission-critical purposes as EVs prove
to be more and more reliable. To ensure the high operational readiness of EVs and
reduce dependency on publicly accessible charging stations, many companies build and
operate their own EV charging infrastructure (CI) on their premises. Those facilities are
also often used by employees to charge privately owned EVs at work. Establishing and
operating a CI poses a number of economic challenges to a company, including high
capital and operating costs (TCO), volatile and less predictable utilization (during and
outside business hours), complex tax regulations, etc. [2–4]. In addition, businesses
must take several technical boundaries at typical parking areas into consideration, such
as missing or insufficient cabling, grid power limitations, bad network connectivity,
etc. A properly designed software system can help enterprises master many of the
operational challenges during the entire life cycle of charging stations and other related
assets. A crucial task thereby is to optimize the distribution of available and in many
cases limited amount of power among multiple, often heterogeneous EVs and chargers
in a safe and cost-efficient manner. Smart charging algorithms can also help increase
driver satisfaction by maximizing the average state of charge (SoC) across multiple
simultaneously charged EVs at a given location [5]. In addition, ref. [3] shows that an
intelligent charging strategy can almost double the utilization of the infrastructure and
the available power compared to an uncontrolled baseline charging strategy. Further
related work in the research area of smart charging is summarized in various studies. For
example, ref. [6] reviewed seven case studies related to smart charging. In the context
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of commercial EV fleets, ref. [7] identified challenges in return-to-base scenarios. A
comprehensive overview of smart charging applications together with an overview of
publicly known pilot projects is provided in [8]. Case studies often include real-world
testing in technically limited environments with a very small number of EVs. For example,
in [9], a possible design of charging infrastructure for company locations is presented
while considering charging preferences and trip data of a bakery in Germany. A three-
day experiment in a so-called “mobility house” (containing student housing, a grocery
store, and a parking garage) showed that rule-based peak shaving and load demand
forecasting can reduce load demand peaks by 25.4–38.5% while ensuring a minimum
SoC of 50% [10]. The applicability of smart charging approaches that were designed
specifically for charge-at-work scenarios, such as [11,12], and various related scheduling
strategies, e.g., refs. [13–17] are usually evaluated in simulations rather than operational
environments. The same holds for [4], which proposed a charging simulation model to
support the design of a corporate charging infrastructure based on employees’ driving
data. Further challenges in the context of scheduling charging processes and related
requirements for a software system are presented by [2]. Other operational challenges that
require the usage of additional hardware, e.g., to recognize vehicles that are not connected
to the system (e.g., unplugged EVs, conventional vehicles that block EV parking lots,
etc.), are not in the scope of our work. An approach to deal with such problems can be
the integration of sensors, such as LiDAR systems, and related data platforms that help
connected automated vehicles detect and handle certain situations, including searching
suitable parking lots [18,19].

In this paper, we present the Smart Charging System (SCS), which is a software
system mainly designed to serve companies that operate EV fleets and have one or more
parking areas at their sites equipped with charging stations. In contrast to the above-
mentioned research, our smart charging approach and system implementation has been
deployed and actively used to power a large number of EVs in resource-constrained
environments. Research results are often validated with the help of simulations, because
research institutions usually do not operate EV fleets and EV fleet operators do not pro-
vide researchers with access to their business facilities and data. Nevertheless, simulation
is a useful instrument, for example, to initially test new features or the applicability
of system improvements before putting those into operation. The same holds for pilot
projects, which usually only run for a limited time with a small number of EVs in a
lab environment (e.g., known vehicle properties, selected hardware, controllable user
behaviour). The findings presented in this work are based on the iterative implementation
process and evaluation in a real-world testbed. We discuss requirements and approaches
to fulfil them with the help of our SCS, such as dealing with missing data, connectivity
issues, etc., in the real-world, which are usually not covered in smaller test scenarios or in
theoretical research backed by simulations. Technically, the SCS is an optional extension
component of the open-source system “Open e-Mobility” (OE) [20]. OE is currently used
to manage thousands of charging stations at different locations of various companies.
It can be deployed and operated as an on-premises system or as a containerized cloud
solution and communicate with several other systems via the provided interfaces. The
deployment and activation of the presented SCS within an OE instance helps manage
energy distribution, infrastructure protection, and other related other requirements in an
automated manner. Without activating the SCS in an OE system, related tasks must be
carried out by the operator, who manually enters power limits for each charging point
(CP), for example. The remainder of the paper is organized as follows: In Section 2, we
describe our iterative approach to develop the software system, summarize the identified
main functional and non-functional requirements, and introduce the real-world testbed at
SAP Labs France in Mougins (France) that was used for technical evaluation. In Section 3,
we present the architecture and main functional building blocks of the SCS, explain the
functionality of the core EV charging algorithm, and show its integration with various
data sources that are supported in the current implementation. We also discuss particular
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advantages of the incrementally added features and data sources that helped increase
the efficiency of the charging infrastructure. Finally, we draw conclusions and outline
directions for our future work in Section 4.

2. Materials and Methods
2.1. Iterative Software Development Approach

The SCS, along with other software components of OE, was realized and tested in
multiple iterations in a period of three years. The development process included multiple
phases and related test cycles. In each development phase, a new, encapsulated and inde-
pendent component was added to the already existing SCS so that respective improvements
were feasible and measurable. When designing and implementing the SCS, we focused in
particular on the following capabilities as main requirements for the system:

• Infrastructure protection: During the simultaneous charging of EVs, huge demand
peaks can occur, damaging the infrastructure or even leading to outages. The SCS must
deal with several related thresholds at the same time, such as the mains connection
power of the site, limitations of the local electrical infrastructure according to fuse
hierarchies, capacity of individual power lines and transformers, etc. In addition,
it is important to communicate with the local energy management system (EMS), if
deployed on site, to quickly react on fluctuations of the available power caused by
electricity consuming devices (e.g., machinery, HVAC devices) or by energy producing
assets (e.g., PV, CHP).

• Management of heterogeneous charging equipment: A company’s CI can contain
AC and DC chargers of various vendors, types and versions. Considering only “ab-
stracted” equipment in the software system can lead to severe problems, because “real”
devices behave differently with respect to their, e.g., charging curve characteristics,
in/output ratios, means of data provisioning, interfaces, configurable parameters, etc.
The larger the CI, the greater the cumulative effect of these factors can be.

• Support of EV-specific charging: During a charging session, the EV’s battery man-
agement system may autonomously increase (or lower) the demanded power. As a
reaction, the SCS may limit the maximum available power or provide the EV with addi-
tional power, e.g., by rescheduling other EVs’ charging sessions. Accordingly, the SCS
requires up-to-date information about connected vehicles, including the maximum
allowed current/power, number of phases used, etc.

• Context-aware prioritization: In the business context, a prioritization of charging
sessions is often needed: A salesperson, who wants to visit a customer and needs
a “full” battery within two hours, has higher priority than another employee, who
leaves the office at the evening. To determine prioritization, data items from different
sources are required, e.g., planned arrival time, estimated departure time, capacity of
EV batteries, current SoC, etc.

• Interoperability and scalability: The SCS must seamlessly interact with other system
components over available interfaces and network protocols. It should also be able to
serve CIs of different size and allow adding (removing) locations to the overall setup.

• Flexibility: CI sites have different properties and characteristics, for example, with
regard to the number and type of served EVs, usual charging times, local infrastructure
limitations, etc. Consequently, the structure and operational complexity of the SCS
also varies between deployment sites. In order to address this, the SCS needs to be
built to be modular and thus adaptable to the given infrastructure, EV fleet, user
needs, and prioritization requirements. In general, the SCS must be able to work in
different complexity levels and enable adding/removing components independently
from each other.

• Exception handling: In case of errors, e.g., due to malfunctioning charging stations or
EVs, a proper exception handling in near real time is needed. Thereby, vendor- and
device-specific error messages must be captured and properly interpreted. It must
also be ensured that failing or bad network connectivity (HTTP, WebSocket, TCP/IP)
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does not jeopardize running charging sessions and missing data are handled when
planning new sessions. If there is an outage in the local electrical system, a safe restart
of charging procedures is required.

2.2. Method of System Evaluation

The evaluation of the system in an operative environment took place at the premises
of SAP Labs France in Mougins, France. The charging infrastructure on site has been
initially set up and maintained by local team members. Experiments with the SCS began
on 1 April 2020, which was a good time to start, because the local CI was less stressed as
usual (due to COVID-19) and users were therefore more tolerant of potential technical
problems. As time went on, the number of both charging stations and charging operations
increased steadily, so that the scalability of the system could be tested as well. The testbed
currently comprises 38 charging points (31 AC and 7 DC) at 22 charging stations of
different vendors, including Schneider Electric, Legrand, ABB, Delta, IES, Webasto, Ebee,
Mennekes, Keba, StarCharge, Wall Box Chargers, and Joinon. In the evaluation period, the
system served in total over 650 employees to charge 291 company cars of various vendors
including Tesla, Jaguar, Kia, Renault, Volkswagen, Audi, Mercedes, Hyundai, BMW,
Fiat, Volvo, and Nissan. In total, more than 25,000 EV charging sessions were executed
successfully, consuming approximately 700 MWh energy with a combined session time
of almost 3400 days. The system protected the power-constrained infrastructure well
since it never experienced critical overload situations throughout the entire test period.
In addition to the real-world tests, a tool [21] that simulates the behaviour of multiple
OCPP-compliant charging points was also used to frequently test SCS. It especially helped
avoid technical and safety-related problems that would have been occurred due to errors
(bugs) in the software implementation.

3. Results and Discussion
3.1. System Design

The high-level architecture of the SCS contains four main functional components as
shown in Figure 1. The main task of the component Smart Charging Core is to calculate
and dynamically adjust the distribution of available power among the active charging
sessions in the given CI (see details in Section 3.2). The Data Manager stores permanent
data, such as the system configuration and master data about the capabilities of the
installed charging stations. It also maintains temporary information needed to carry out
calculations, for example. As part of OE, the SCS interacts with other components of the
entire charging-point management system, termed as “Internal Components” in Figure 1.
For instance, the SCS logs relevant technical events using the Logging interface of OE. The
SCS also provides information about the status of active charging sessions for EV drivers
via the Mobile App as well as for the CI’s technical operator via Browser/Portal. The SCS can
communicate and exchange data with further “External Components”, including EMS,
enterprise resource planning (ERP) or EV vendors’ Vehicle Backend, if they are available
and made accessible within the CI owner’s IT environment. These external systems are
mainly used by the SCS as data sources to support ongoing calculations of charging
plans. The required connections to these systems and charging stations on site, including
protocol- and API-specific messaging, are handled by the Communication Manager. The
component Integration Layer is mainly responsible for collecting the required data from
the different connected sources in a synchronous or asynchronous way, and also for the
preparation of the gathered data for further processing by the core component (see details
in Section 3.3).
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Figure 1. High-level architecture diagram of the Smart Charging System. The four main components
in the middle can fetch data from various external data sources and also interact with other parts of
Open e-Mobility.

The deployment of the four main components, i.e., without the above-mentioned
additional data sources, is sufficient to operate the SCS with basic functionality. In this case,
the Smart Charging Core can work with predefined configuration values, such as fixed safety
limits for power consumption, and it does not take into account dynamic information, such
as instantaneous solar power generation. The above-mentioned additional internal and
external components can be added (activated) optionally and independently from each
other helping to adapt the SCS to specific requirements in the given scenario.

3.2. Smart Charging Core

The current version of the SCS implements a scheduling procedure illustrated by the
flowchart in Figure 2. The initial concept is presented in [13,22], and the corresponding
implementation is available online on GitHub [23]. The main goal of the overall process
(see also the pseudo-code in Algorithm 1) is to share the basically limited charging power at
a given location among the connected EVs in a fair manner. The SCS triggers the calculation
when a new charging session starts to meet the additional demand, or when an ongoing
session ends to redistribute the released capacity. The scheduling procedure can also be
executed periodically (e.g., every 15 min) to adjust the power consumption of ongoing
sessions, as well as on demand, when significant changes in the amount of available energy
are detected (e.g., through additional solar production). The output of the calculation is
a charging plan that determines which of the connected EVs should receive power in the
next k time slots without violating the local site’s safety limits (see also Algorithm 2 for
details). During charging plan creation, EVs can be prioritized (using Algorithm 3), which
is especially useful when the total (aggregated) power demand would exceed the maximum
available power in one or more time slots. As shown in Figure 2 several optional data
sources (represented as rectangles) can be utilized during the calculation in order to adapt
the system’s behaviour. It is important to note that the scheduling process is able to work
without receiving data from those sources, e.g., due to a technical problem. For example, in
case the actual battery type and capacity of a plugged-in EV is unknown because the Fleet
Management component is temporarily unavailable, the SCS can run using preset values.
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Figure 2. Flowchart diagram of the scheduling procedure based on [13] with the main calculation
steps and optionally involved data sources (Fleet Management, Vehicle Backend, Mobile App, EMS,
Site Management).

Algorithm 1 Scheduling procedure

1: procedure SCHEDULE(evList, tsList)
2: for i← 1 to evList.length do
3: FILLPLAN(ev[i], tsList) . Algorithm 2 called
4: end for
5: PRIORITIZE(evList) . Algorithm 3 called
6: for k← 1 to tsList.length do
7: sumIts ← 0
8: for i← 1 to evList.length do
9: sumIts ← sumIts + evList[i].tsList[k].I

10: end for
11: index ← 1
12: while sumIts ≥ fuse limit do . Check if total current exceeds limit
13: tsList[k]← blocked . Block time slot for rescheduling
14: sumIts ← sumIts − evList[index].tsList[k].I
15: FILLPLAN(evList[index], tsList) . Reschedule EV with lowest priority
16: index ++
17: end while
18: end for
19: end procedure
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Algorithm 2 Procedure to fill EV charge plans

1: procedure FILLPLAN(ev, tsList)
2: for k← 1 to tsList.length do
3: if tsList[k] not blocked & ev.capinit + ev.capcha(k) ≤ ev.capmax then
4: ev.tsList[k].I ← min(ev.Imax, cp.Imax) . Assign lower value of CP/EV max

current
5: else
6: ev.tsList[k].I ← 0
7: end if
8: end for
9: end procedure

Algorithm 3 Prioritization procedure

1: procedure PRIORITIZE(evList)
2: for i← 1 to evList.length do
3: mCapminSoC ← evList[i].capdes − (evList[i].capinit + evList[i].capcha)
4: ∆t← evList[i].tdep − evList[i].tnow
5: if mCapminSoC ≥ 0 then . Assign higher priority if EV is below minimum SoC
6: evList[i].priority← mCapminSoC/((∆t ∗ evList[i].Imax) + 1e− 8)
7: else
8: mCapmaxSoC ← evList[i].capmax − (evList[i].capinit + evList[i].capcha)
9: evList[i].priority← mCapmaxSoC/((∆t ∗ evList[i].Imax) + 1e− 8)− 1000

10: end if
11: end for
12: sort (evList, priority) . Sort according priority
13: return
14: end procedure

The scheduling algorithm (see Algorithm 1) initially creates a “greedy” charging plan
for each ev in evList for n time slots of duration d represented in tsList. In a practical
setup, for example, with n = 96 and d = 0.25 hours, a charging plan for the next 24 h can
be created.

By executing Algorithm 2 for each EV (see Lines 2–4 in Algorithm 1), the maximum
possible charging current will be assigned to each EV, according to the limitations of the
given EV (ev.Imax) and the charging point (cp.Imax).

This is repeated for the next time slots until the sum of the EV’s initial charge capacity
ev.capinit (measured in Ah) and charged capacity ev.capcha reaches/exceeds the battery’s
maximum capacity ev.capmax. Note that ev.capcha is calculated based on the charging
current I assigned to the EV and the total duration of passed k time slots.

To face potential conflicts that could occur if the total scheduled charging power within
one or more time slots exceeds power limitations of the charging infrastructure, some EVs’
initially created charging plans must be adjusted, i.e., delayed. For that purpose, EVs are
ranked by executing Algorithm 3 (see Line 5 in Algorithm 1). In order to determine the
critical time slots, sumIts, the sum of charging currents assigned to all EVs in evList in each
time slot, is calculated. A particular time slot will be blocked (see Line 13 in Algorithm 1)
if the resulting value is not below the relevant technical limitation of the charging site’s
electrical system (called fuse limit). The sumIts is reduced by the previously given charging
current I of the lowest ranked EV (see Line 14 in Algorithm 1), whose charging plan
will be refilled. Afterwards, the EV with the lowest priority is rescheduled by applying
Algorithm 2 (see line 15 in Algorithm 1). Reducing the charging current to zero in all
blocked time slots (see Line 6 in Algorithm 2) leads to a delayed/prolonged charging of
the particular EV, because the intended capmax value cannot be reached otherwise. This
shifting procedure is repeated for the next ranked EVs until the violation of the fuse limit
within the time slot is solved. Note that an adjustment of the charging current in the last
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unblocked time slot to match fuse limits more exactly is implemented but not included in
the pseudo-code due to readability and space reasons.

The aforementioned prioritization of EVs for being potentially rescheduled is per-
formed in Algorithm 3. To rank EVs in evList, the missing capacity to reach the minimum
SoC mCapminSoC (measured in Ah) is calculated for each EV. This is the difference between
the EV’s desired charge capacity capdes (calculated from the desired SoC, in %, as entered by
the user) and the sum of its initial capacity capinit on arrival and the capacity charged capcha
since then (see Line 3 in Algorithm 3). The urgency of charging depends on the available
time ∆t between departure time tdep (e.g., entered by the EV driver) and current time tnow.
If the minimum SoC is not yet reached, the priority is calculated based on mCapminSoC, the
urgency ∆t, and the maximum charging current Imax of the EV (see Line 6 in Algorithm 3).
The applied formula basically ensures that EVs/drivers with higher energy demand and
less time for charging will receive a higher priority in average and thus will not be taken as
first candidates for being “shifted”. The other EVs that already reached their minimum
expected SoC will be ranked based on the charge capacity that is missing to reach the
maximum capacity of the vehicle’s battery mCapmaxSoC. The chosen formula (see Line 9
in Algorithm 3) gives in average a higher rank for those EVs with higher energy demand
and less available time to fully charge their batteries. Accordingly, first candidates for
rescheduling will be those EVs that almost reached their batteries’ maximum capacity and
still have time to wait.

3.3. Integration Layer

To leverage the capabilities of the generic Smart Charging Core component and to
configure the implemented algorithms properly, information from several heterogeneous
data sources with regard to, e.g., available APIs, security settings, data formats, etc., must
be gathered. In case these sources are not deployed in the given environment and/or
(temporarily) unavailable, the algorithms must be provided with preset values to ensure
operational safety at any point in time. Similarly, a calculated charging plan must be
transmitted to all connected charging stations and the respective EVs, so that they can
interpret received messages (commands) and set configuration parameters or return data
as requested. These data-oriented tasks are carried out by the Integration Layer. This
component basically allows the adaptation of the Smart Charging Core to the given context
and operational environment. Note that the SCS currently supports Open Charge Point
Protocol (OCPP) version 1.6 [24]. Accordingly, the Integration Layer creates and maintains
a charging profile for each connected, OCPP-compatible charging station within the CI.
A fundamental task thereby is to handle misbehaving or incompatible charging stations.
For that purpose, the Integration Layer monitors and reflects the current status of the CI,
and it reacts on events that occurred. It can also collect data on ongoing charging sessions
in near real time and help redistribute the available power according to the actual power
consumption of ongoing sessions. Below, the tasks and functionality of the Integration Layer
are explained in more detail.

• Error and Exception Handling: The SCS presupposes a proper implementation of
OCPP by the charging stations and the support of OCPP charging profiles. However,
OCPP implementations vary by charging station manufacturer and model. Compat-
ibility problems often appear in specific setups and cases, which were not known
upfront. The Integration Layer offers different mechanisms to master such situations.
When collecting data to properly configure the core scheduling algorithm, the capabil-
ities of connected stations are checked. It is especially examined whether each station
is able to work with the generated OCPP profiles. If not, the given charging station
will be excluded from the optimization, because it cannot be limited. In order to not
endanger the electrical infrastructure, the SCS will automatically adjust infrastructure
limits for the next optimization cycles by subtracting the maximum power that the
incompatible station can draw. The adjustment of these limits only happens if the
affected charging station is charging. Otherwise, the full capacity can be considered
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by the optimization. A similar mechanism is applied if a charging station is rejecting
or not answering to charging profile requests, e.g., due to network issues. In this case,
the faulty stations are collected and handled as incompatible charging stations in a
separate optimization cycle. At the same time, a notification framework informs the
administrators about the stations, which are not working correctly in order to take
action if the issue persists.

• AC/DC Handling: The Integration Layer supports both AC and DC charging sessions
according to their specifics. AC sessions can use one, two, or all three phases de-
pending on the given charging station and connected EV. When triggering the Smart
Charging Core, this information must be taken into account to determine the demanded
charging current per phase. DC stations usually use all three phases, which makes
phase assignments redundant. For DC chargers, however, the efficiency values need
to be taken into account because the conversion from AC to DC is carried out by the
charging station and not by the EV (as in case of AC chargers).

• Vendor-specific handling: Charging station vendors tend to vary in how they handle
OCPP charging profiles, for example, by using their preferred measurement units (kW
or Ampere). Therefore, the Integration Layer provides a framework and mechanism to
adapt a generic charging profile template to vendor specific requirements.

• EV-specific handling: With the help of the Fleet Management component, the SCS is
able to retrieve data about converters and batteries of almost every EV-model on the
market, by using the Electric Vehicle Database [25] and other similar repositories. To
keep the vehicle data up to date, synchronization jobs with the respective data sources
are implemented. The data can be used to instantiate vehicles of a certain type in Fleet
Management. By assigning these vehicles to users, the system can determine which EV
model is charging at which station, without the need to establish a communication
channel to the EV itself. The extracted information (converter data, battery size) is
used to send power limits and battery capacities to the Smart Charging Core instead of
waiting for actual monitored consumption data and adopting power limits later. In
addition, the system provides implementations of service interfaces offered by OEMs,
such as Mercedes, and also by third-party service platforms, like Tronity, to receive
live information about the current state of charge during AC sessions. The stored
data of the EVs are extended with this information and can be provided for different
purposes such as priority handling.

• Real-time behaviour adaptation: The process of EV charging (both AC and DC) can
be influenced by many factors. The charging curve, i.e., the power drawn over time,
depends not only on the type, age, and condition of the hardware on the vehicle
side but also on external parameters, such as temperature. In some cases, significant
deviations from the expected model-specific behaviour can be observed when charging
a particular EV. A negative implication can be that EVs consume less power than
expected and thus allocated to the session when it started. DC chargers especially
manage power usage actively by monitoring the connected battery’s charging status.
An efficient charging system must react to such varying (in general, unpredictable)
power curves. The Integration Layer captures the momentary power drawn in the
charging sessions and supports the SCS in calculating the real charge demand of a
particular vehicle. The implemented mechanism puts a buffer on top of the observed
power output of the charging station and uses the increased value as a new power
limit for the session, whereby the new limit remains below the connector’s maximum
limit. By supervising whether the EV uses the buffer, the algorithm can determine if
the car would be able to draw more power and provide it to the session if available.
This way, it is also ensured that incorrect or missing vehicle data does not lead to the
allocation of later unused power capacity.

• Dynamic power limits: In most cases, charging stations are operated in combination
with other energy consuming or producing devices. The amount of demanded and
produced power within an electrical system can heavily vary depending on season,
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time of the day, temperature, weather, etc. Setting a fixed, safety-oriented power
limit for the CI could make it basically independent from the fluctuations but lead
to lower throughput and efficiency. For this reason, the SCS can be integrated with
external EMS that monitors and controls the overall electrical infrastructure on site.
This integration should be as flexible as possible, to support as many EMS providers
as possible. Thus, the SCS provides an API endpoint to push energy data, but also
integrates with external APIs to pull/request data from. By taking into account EMS
data, it is possible to dynamically adapt the available power for the CI according to
the current solar production, building consumption, etc.

• Priority Handling: To support the prioritization of EVs (as shown in Algorithm 3)
and related charging sessions, the SCS collects as much information as possible. For
instance, the Mobile App provides a dialogue for the driver to enter their planned
departure time, required state of charge, and also the current state of charge (if the
data are not provided by another integrated source or service). After the data are
collected, they are processed and passed to the Smart Charging Core, which uses the
received parameters to determine which EVs are prioritized and can thus charge
faster. This ensures a fair sharing of power among trustworthy EV drivers and helps
minimize inactivity times.

3.4. Implementation and Deployment in a Real-World Testbed

The SCS was implemented using TypeScript as programming language and the NodeJS
runtime, which are utilised by other OE components as well. The integration with compo-
nents of the existing OE was carried out in accordance with the programming guidelines
of the overall project. To integrate optional, encapsulated components, OE uses a feature-
oriented approach and a Component Manager. It enables the selection and individual
activation, deactivation and configuration of certain functional artefacts in a flexible man-
ner [26]. An example for such an optional feature in the context of OE is the roaming
functionality, which can be switched on or off according to end users’ requirements. The
flexible combination of technically encapsulated system components is fundamentally lim-
ited, mainly due to semantic (sometimes mutual) dependencies between the components.
These dependencies arise when components require the functionality of other components
to work properly.

For example, the Smart Charging Core component relies on the component Site Man-
agement, which is used in OE to maintain the configuration of sites (company locations),
site areas (parking facilities at a given site), and related charging station assignments. At
the same time, Site Management does not depend on an activated Smart Charging Core
component. Therefore, when manually enabling or disabling components in the admin
user interfaces (UIs), the Component Manager verifies whether the known dependencies are
met. If a violation was found, the Component Manager prevents the change and evaluates
necessary actions to resolve the violation, providing the system administrator with the
required information. If all (known) dependencies are satisfied, the configurations are
stored in the database. When a component is disabled, the corresponding database entry
is deleted. Storing component configurations in the database provides flexibility during
runtime. The activation status of a component can be determined by a database request,
and according to the concepts in [27,28], feature flag variables in the code can be used to
determine whether the component’s implementation should be executed or not. Validated
changes take effect immediately, but the user needs to log out and log in again to update the
user context and properly display configuration menus. Furthermore, the implementation
offers multiple variants for each component. For example, the smart charging algorithm
used in Smart Charging Core can be replaced with an alternative algorithm while keeping
other components unchanged. This flexibility is achieved through the use of a factory
pattern [29], which allows for different implementations of the same component. The com-
munication and data exchange with external data sources adheres to commonly accepted
practices like REST [30] using standardized web communication protocols, such as HTTPS
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and WebSocket Secure (WSS), and the related commands. The system further ensures the
safety of the electrical infrastructure by employing fallback mechanisms. In the event of
API call failures, it uses default values regarding battery sizes, state of charge, departure
time, etc. Any issues that may arise are handled by a sophisticated error handling system,
which makes sure to not exceed infrastructure limits. Additionally, every step performed
in the SCS can be logged by calling the logging component within OE, enabling advanced
troubleshooting in case of any unintended behaviour.

Before deploying the SCS in the testbed, as described in Section 2.2, it was possible
to exceed the preset maximum power limit, for example, if a large number of EVs had to
be charged simultaneously. With the roll-out of the first version of the SCS core system
with its main components (i.e., without using any other external data sources), it was
ensured for the first time that the maximum power limit of the local infrastructure could no
longer be exceeded. This “safety-first” strategy did not take into account the actual power
limits of the vehicles’ converters. Instead, the algorithm assigned to each charging session
the maximum charging current, which was derived from the chargers’ maximum output
power, e.g., 22 kW in case of most AC chargers. The actual assignment of the determined
power to a particular charger takes place in updating the charger’s OCPP Charging Profile
using the message SetChargingProfile.req. As a result, the fixed maximum power limit of the
CI was reached quickly, so only a few chargers could operate in parallel while the other
charging stations received no power. The disadvantage of this approach is also illustrated
in the upper part of Figure 3. In the example, a Tesla Model 3 charges constantly at 11 kW,
although the connector has a maximum power of 22 kW. Without adjusting the limit to the
actually demanded power, the SCS statically allocates 22 kW for the entire session duration.
The unused yet blocked 11 kW are “wasted”, i.e., they cannot not be given to other stations
at the same time. For instance, in a CI segment created for testing with a power limit of
110 kW, only five EVs could be charged simultaneously.

Figure 3. Power limit adaption to current consumption (screenshots from “Open e-Mobility”).

Such inefficiencies motivated the incorporation of additional information into the
charging power calculation. The required data sources were added step by step by con-
tinuously extending and enhancing the Integration Layer and related other components.
When retrieving the connected EV’s actual demanded power at the beginning of a charging
session (using the OCPP message MeterValues.req), the allocated power limit can be adjusted
(lowered) by updating the OCPP profile limit of the station. This adaptive adjustment
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of the power limit for a session is shown in the lower part of Figure 3. As a result, the
charging algorithm can redistribute the otherwise unused power among other charging
stations. For technical and safety reasons, the actual limits per charger were calculated
by adding a safety buffer to the observed power consumption. In the example shown in
Figure 3, the buffer is set to approx. 20%. Accordingly, the limit for the charging session
of the example Tesla Model 3 is set to 13.5 kW. Using this enhancement, the number of
parallel powered sessions increased significantly, since eight (instead of only five) EVs with
a power consumption of 11 kW each could be charged.

However, at the beginning of each session, the maximum connector power remains al-
located and thus blocked for other sessions at least until the next execution of the scheduling
algorithm. The applied safety buffer per station (approx. 2.5 kW in case of the exemplary
Tesla) will not be usable by any other session at all.

To address this issue, the Fleet Management component was introduced. It provides
model-specific master data about EVs and enables the assignment of particular EVs to
drivers. When starting a charging session at a charging station, the driver is authenticated
and thus a linkage to the data about the respective EV is established. By retrieving the
electrical properties of the vehnicle from the database, the maximum charging power
of the EVs can be used in the optimization from the beginning. It was now possible to
assign 11 kW as the definite limit to the exemplary Tesla Model 3 without allocating any
additional safety buffer. Figure 4 shows a comparison of charging the same EV with the
above discussed limit adoption (in the upper part) and with the initially set model-specific
power limit (in the lower part). In essence, it became possible to utilize the freed power
at other stations in parallel. On the above mentioned 110 kW infrastructure segment 10
(average) EVs could be charged at the same time without safety risks.

Figure 4. Utilization of vehicle data in charging limit calculations (screenshots from “Open e-Mobility”).

At that stage, the SCS was only able to efficiently distribute power within the CI
according to a fixed maximum power that was set as a strict upper limit. The limit was
determined, as a proportion of the maximum power consumed by the entire facility (mainly
office buildings). Thereby, neither the actual power consumption nor the power provided
by the building’s PV system were considered as input parameters. Since many energy-
consuming devices are not always in operation and/or do not constantly draw a high
amount of power, ignoring their actual energy consumption leads to a rather low power
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limit assigned to the CI. Similarly, considering the actual on-site power generation can help
safely increase the CI’s maximum power consumption limit.

The integration of the SCS with the locally installed EMS solved this issue. The EMS
vendor provides a REST API to query collected data about all connected and monitored
devices, including solar panels and the stationary battery installed in the building. The
continuous retrieval of the actual power consumption and production on site allowed the
dynamic updating of the CI’s maximum power limit. Using this integration feature, it was
possible to allocate 50 kW additional power in average to the charging infrastructure. On
the above-mentioned 110 kW infrastructure it was now possible to charge up to 15 EVs
at the same time on average. Figure 5 shows the power distribution of the testing facility
while taking into account building consumption, solar power production, and charging
station consumption.

Figure 5. EV charging as part of the electrical infrastructure (screenshot from “Open e-Mobility”).

By combining all of the above system components and associated “live” data, the SCS
was able to efficiently distribute power while treating each EV charging session equally.
This approach is beneficial in some use cases, for example, when a logistics company’s
delivery vehicles must be recharged during the night. However, in other settings, some
vehicles must be served faster and/or charge a higher amount of energy than others to fulfil
business-related requirements. Some EVs can have a longer stay at the charging facility
and thus more time to charge than others. The vehicles’ total charging demand may vary
depending on the planned driving distances or specific routes the users need to drive till
the next charge can occur. To meet these requirements and preferences, the incorporation
of further data items, such as the given EV’s current and target SoC, as well as its planned
departure time, is required. These parameters can be provided, for example, by the user
manually, via the Mobile App (see in Figure 1). If user authentication is performed without
using the app, e.g., by presenting a personalized RFID card at the charging station, default
values for the above-mentioned parameters are taken. By passing the collected data to
the Smart Charging Core, the scheduling of sessions can be carried out according to users’
actual needs, and energy can also be provided/distributed in a more efficient way. Figure 6
shows how the prioritization effects the start of powering a charging session in the system
according to the users’ known planned departure time.

In the depicted example, two EVs, EV1 and EV2, arrive at 2:00 p.m. and start charging
at the same time. EV1 can stay till 6:00 p.m., while EV2 must leave earlier, at 4:00 p.m. Due
to the limited available power of approximately 11 kW (see the red line), only one EV can
be charged at its maximum current. If EV1 would be charged before EV2, EV2 would not
have enough time to charge until it must leave, and EV1 will be inactive after it was fully
charged. If the system can take the planned departure times into account, it schedules
EV2 first, allowing to charge to full capacity before it has to leave at 4:00 p.m. EV1 can
start afterwards and have another two hours to charge until 6:00 p.m. Viewing it from the
involved drivers’ perspective, in this particular example, the EV prioritization helps double
the efficiency of the power-constrained infrastructure.
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Figure 6. Effects of prioritization on two concurrent sessions (screenshot from “Open e-Mobility”).

In addition to the support of rather passive AC chargers, the SCS is also able to deal
with DC chargers that actively control charging processes while connected to an EV’s
battery. Figure 7 shows an example of how the SCS combines different data to dynamically
adjust the power limit (in red) during an ongoing DC charging session. The information
about the plugged vehicle’s battery (in the example, a Jaguar I-PACE EV400 with battery
capacity of 90 kWh, and initial SoC of 30% which corresponds to 27 kWh) is used to initially
set the maximum allowed power, which is 104 kW in this case. The DC charger in the
example, which is capable to deliver up to 150 kW, is regulated accordingly. The remaining
46 kW can be distributed among other chargers (as long as the resulting total power does not
violate other thresholds). Over time, the car’s battery management system automatically
reduces the power drawn, in order to protect the battery. As a consequence, the power limit
in the example session is readjusted (lowered) three times, making an increasing amount
of power available for other (newly started or ongoing) charging sessions. The battery’s
increasing SoC is further used to recalculate prioritization decisions (the effects of those are
not depicted here).

Figure 7. Example charging process on a Delta Ultra-fast Charger (screenshot from “Open e-Mobility”).

As illustrated above, the SCS, in combination with the external components and data,
can almost triple the efficiency of the power-limited charging infrastructure. To achieve
similar results with a non-controlled hardware solution, the infrastructure limit would have
to be tripled. For the above test infrastructure, this could require an increase in transformer
power by 200 kW, which would lead to very high costs.
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4. Conclusions and Future Work

In this paper, we presented an extension to the open-source charging-point manage-
ment system “Open e-Mobility” to enable the intelligent control and power scheduling of
EV charging at enterprise sites. The extension called “Smart Charging System” has already
been successfully deployed and used in various charging infrastructures. Thanks to the
modular system architecture and the realized multiple interfaces to external data sources,
various factors and data can be incorporated in the calculation of charging plans for both
AC and DC charging stations. We validated the positive impact of this flexible design
in a real-world environment at SAP Labs France in Mougins, France. As illustrated by
examples, the usage of various data sources and specific information led to better power
utilization and helped increase the overall effectiveness of the charging infrastructure.

Since the SCS has been continuously extended and enhanced in an agile and iterative
development approach, the positive effects generated by newly added features, functions,
and data sources were measurable. However, many of those realized improvements, such
as the increased average SoC at the end of charging sessions, cannot be clearly attributed to
a single dedicated SCS feature nor to the usage of a given dataset. Rather, at any point of
time it was possible to observe the combined effects of all deployed SCS functions, data
sources, etc., and compare the performance of the system with the previous state, i.e., with-
out the respective new features, data, etc. Therefore, at this point we cannot give a reliable
recommendation regarding which of the features or data sources a CI operator should in-
corporate first and/or in which order to maximize the benefits. Nevertheless, the interested
community (researchers, developers, operators) can immediately benefit from the work and
our reported experience: The source code related to smart charging functionality has been
made available under open-source licence, similar to the other parts of Open e-Mobility,
and we have proven the long-term practicality of the implemented ideas and approaches.
Since the described software system can basically only help better control and optimize EV
charging processes, it can especially be useful in resource-constrained environments, in
which overload situations could occur. In environments without such limitations, there is
only less or even no need to establish and run a sophisticated software system.

The SCS will be enhanced by several features and functions in the near future. Cur-
rently, for example, it is not possible to create charging plans that can take advantage of
variable or time-dependent electricity tariffs. The mainly economic impact of such tariffs on
the calculation of charging plans has been studied theoretically in numerous publications
but has hardly been implemented in practice. Another aspect concerns the realization and
integration of predictive algorithms to deal with short-term uncertainties in a company’s
charging infrastructure [31]. The current scheduler implementation assigns power limits
to ongoing EV charging sessions based on actual information, i.e., previously set data,
without taking potential future data and related uncertainties into account. Regarding the
communication with charging stations, it is also planned to support OCPP version 2.0 and
profit from related enhancements.
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Abstract: While the market for medium- and heavy-duty battery-electric vehicles (MHD EVs) is still
nascent, a growing number of these vehicles are being deployed across the U.S. This study used over
2.3 million miles of operational data from multiple types of MHD EVs across various regions and
operating conditions to address knowledge gaps in total cost of ownership and operational range.
First, real-world energy cost savings were determined: MHD fleets should experience energy cost
savings each year from 2021 to 2035, regardless of vehicle platform, with the greatest savings seen in
transit buses (up to USD 4459 annually) and HD trucks (up to USD 3284 annually). Second, to help
fleets across various geographies throughout the U.S. assess the suitability of EVs for their year-round
operating needs, operational range was modeled using the XGBoost algorithm (R2: 70%) given
22 input features relevant to vehicle efficiency. Finally, this paper recommends (1) that MHD fleets
apply energy-saving practices to minimize the impacts of cold temperatures and high congestion
levels on vehicle efficiency and range, and (2) that local hauling fleets select trucks with a nominal
range nearly double the expected maximum daily range to account for range losses under local,
urban driving conditions.

Keywords: BEV (battery electric vehicle); heavy-duty; medium-duty; cost; range; energy efficiency;
machine learning

1. Introduction

Electrifying the transportation sector has become one of many global strategies to
combat climate change and improve air quality, along with the adoption of other zero-
emission technologies. Medium- and heavy-duty (MHD) electric vehicles (EVs) have the
advantage of being more energy efficient than diesel vehicles, in addition to producing
zero tailpipe greenhouse gas emissions. In an experimental driving cycle evaluation study,
three HD EV platforms, namely a step van, a yard tractor, and a Class 8 truck, consumed
3–6 times less energy than diesel counterparts [1]. MHD EVs are now capable of meeting
certain commercial duty cycles and replacing internal combustion engine vehicles, given
current technologies. An assessment using MHD vehicle trip data indicates that Class
2b–7 EVs can support 62–76% of commercial vehicle travel demand in California [2]. In
recent years, the number of MHD EV options available on the market has significantly
increased, up 36% globally since 2021 [3]. Despite rapid improvements in MHD EV energy
efficiency and model availability, the adoption of these vehicles has occurred more slowly
due to barriers like high up-front costs, range and charging limitations [4–6], and public
skepticism that MHD EVs can meet fleet duty cycle requirements [2,7]. This paper seeks to
advise fleets on two major barriers to EV adoption: total cost of ownership and range.

Compared to diesel vehicles, EVs offer reduced energy costs that significantly benefit
their total cost of ownership. A preliminary model-based comparison [8] showed that
MHD EVs were 2–4 times more energy efficient than diesel vehicles, while a 2018 California
Air Resources Board (CARB) meta-analysis using data from real deployments found that
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battery-electric trucks and buses were 3–6 times as efficient as diesel counterparts, with a
vehicle’s precise estimated energy efficiency ratio (EER) depending on its vehicle platform
and duty cycle, with greater efficiency at lower average speeds [9]. Given that electricity
is consistently cheaper than diesel per unit of energy [10] and that heavier vehicles tend
to consume more energy per mile than light vehicles [11], fleets switching from diesel to
electric MHD vehicles should experience energy cost savings, which helps reduce total
cost of ownership. In addition, past research has shown that electric truck ownership
becomes more economical as load capacity increases, with energy savings as a function of
weight [12]. This study not only supported these previous model- and data-based findings,
but also estimated the energy cost savings associated with improved efficiency.

To address users’ uncertainty about real-world EV performance, predictive models
have been widely used to project EV energy consumption, efficiency, and range and to
understand their determinants and trade-offs (Table 1). A recent study on 40-ft and 60-ft
battery-electric buses found that bus speed significantly affects average energy consumption
per mile [13]. Previous light-duty EV research has successfully adopted simulation-based
models, machine learning models (e.g., regression, PCA, and tree-based models), and
neural networks to identify features that most strongly impact vehicle efficiency to guide
fleets’ actions. Energy efficiency and range were found to be strongly correlated with a
vehicle’s battery capacity [14,15], speed profile [15–18], weight [15], acceleration [15], and
road profile [17]. While light-duty EV energy efficiency has been widely studied using
real-world big data–driven methodologies, there remains a knowledge gap in predicting
the energy efficiency and range of MHD EVs. The methodologies used to study light-
duty EVs can be applied to MHD EVs to better understand the key determinants of
vehicle efficiency and make predictions on efficiency and range under real-world physical
conditions. Findings from such analyses can help ease fleet uncertainty regarding EV
performance before procurement and can improve MHD EV efficiency in operation given
fleet-specific duty cycles and vehicle model selections.

Table 1. Methods and significant features from previous research modeling energy efficiency of
light-duty EVs.

Literature Model Features That Significantly Impacted
Light-Duty EV Energy Efficiency

Qi et al., 2017 [16] PCA, decision tree, ANN Negative kinetic energy, positive kinetic energy, speed, traffic

Fetene et al., 2017 [14] Regression Speed, acceleration, trip distance, season, rush hour, battery level
when trip starts, temperature, precipitation, wind speed, visibility

Modi et al., 2019 [19] CNN Significant features not specified, but the selected model used the
following features: speed, road elevation, tractive effort

Weiss et al., 2020 [20] Regression Vehicle weight

Xu et al., 2020 [17] Simulation-based inference model Speed, road type

Ahmed et al., 2022 [15] Regression Speed, acceleration, vehicle weight

Research regarding MHD EVs’ performance in real-world deployment settings has
been scarce [21], and industry stakeholders struggle with a lack of information and data to
understand MHD EVs’ actual duty cycle suitability, total cost of ownership, and perfor-
mance in the face of variables like climate, terrain, and driving speed [7]. The Medium-
and Heavy-Duty Electric Vehicle Data Collection project, funded by the U.S. Department of
Energy (DOE), collected data from 144 MHD vehicles across six vehicle platforms and nine
U.S. states and made it publicly available for researchers. Using this diversified and robust
real-world vehicle performance dataset, this paper aims to fill the knowledge gap surround-
ing the in-use energy efficiency of MHD EVs, refining the methodology and expanding
upon a conference paper submitted and presented at the 36th Electric Vehicle Symposium
& Exposition (EVS 36) [22]. This study (1) compared the energy costs of MHD EVs and
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their conventional diesel internal combustion engine (ICE) counterparts, (2) generated a
machine learning model to predict energy efficiency and highlight significantly impactful
features, and (3) applied the model to predict operational range for transit buses and HD
trucks in both local and regional duty cycles in four U.S. cities.

2. Materials and Methods
2.1. Materials and Data

Onboard data loggers, either from third party suppliers or pre-installed by vehicle
manufacturers, were used to collect data directly from vehicles’ Controller Area Network.
Data was aggregated by day or by trip, depending on each data logger’s frequency of
reporting. Data validation and cleaning were conducted to prepare the data for analysis:
measurement errors and outliers were eliminated, metric units were standardized, and
missing values were imputed. For example, when a vehicle’s energy consumption data was
not usable due to data quality concerns (i.e., Fleet10), it was calculated using the vehicle’s
battery capacity and state of charge (SOC) used. The resulting vehicle performance dataset,
which covered a total of 144 vehicles from six different vehicle platforms operated by
28 fleets across 16 U.S. cities, contained 37,352 vehicle-days and 2.3 million miles traveled.
Table 2 and Figure 1 summarize the makeup, status, and geographic distribution of the
on-road vehicle dataset.

Table 2. Summary of vehicles included in this study.

Vehicle
Platform

Gross Vehicle
Weight Rating

(lbs.)

Number of
Vehicles

in Analysis

Number of
Vehicle-Days
in Analysis

Transit Bus >33,000 90 28,093
Type C School Bus >33,000 17 1809

Class 8 Day Cab Tractor >33,000 14 1269
Class 7 Box Truck 26,001–33,000 7 1144
Class 6 Box Truck 19,501–26,000 6 2025
Class 4 Step Van 14,001–16,000 10 3012

Total 144 37,352
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Data needed for the energy cost savings analysis was gathered from external sources.
Baseline diesel average fuel economy values were sourced by taking the average of all fuel
economy values corresponding to each vehicle platform from (1) CALSTART’s TCO tool [8]
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and (2) the U.S. DOE Alternative Fuels Data Center’s average fuel economy dataset [23],
where available. The price of diesel (USD/gallon) was gathered from the U.S. Energy
Information Administration’s (EIA) diesel price forecast dataset [24]. The price of electricity
(USD/kilowatt-hour (kWh)) was gathered from (1) the EIA’s electricity price forecast
dataset [24] and (2) levelized costs of delivered electricity USD 0.17–0.38 per kWh estimated
by the National Renewal Energy Laboratory (NREL) given a set of 20 scenarios, ranging
from kilowatt- to megawatt-scale charging and accounting for variations in location type,
utilization rate, cost of electric vehicle supply equipment (EVSE) installation and upgrades,
and various utility rates [25].

Some data parameters corresponding to input features for the vehicle energy efficiency
model in Section 3.2 were not directly collected by onboard data loggers; in these cases,
data were downloaded from external sources (Table 3).

Table 3. Features as inputs to the energy efficiency predictive model.

Feature Groups Features Sources

Duty Cycle Average Driving Speed, Total Distance, Total
Run Time, Driving Time, Idling Time Percentage MHD EV Data Collection (CALSTART, 2023)

Vehicle Configuration
Manufacturer, Model Name, Model Year, Weight
Class, Vehicle Platform, Body Style, Rated
Energy, Nominal Range, Estimated Payload

MHD EV Data Collection (CALSTART, 2023);
ZETI Database (CALSTART, 2023) [26]

Use Case Vocation, Sector MHD EV Data Collection (CALSTART, 2023)

Geography Region, State MHD EV Data Collection (CALSTART, 2023)

City
Profile

Climate Average Ambient Temperature,
Average Precipitation

NOAA daily average temperatures [27];
NLDAS-2 hourly dataset [28]; ERA-5-Land
hourly dataset [29]

Road Average Road Grade R package {slopes} [30] applied on
OpenStreetMap network [31]

Congestion Annual Hours of Delay (general, highway) Urban Mobility Report Congestion Data (Texas
A&M Transportation Institute, 2021) [32]

For each vehicle in the dataset, a climate profile consisting of temperature and pre-
cipitation data was gathered. When not collected by onboard data loggers, daily average
ambient temperatures were downloaded from the National Oceanic and Atmospheric
Administration (NOAA) [27]. Trip-level temperatures were downloaded from the National
Aeronautics and Space Administration’s (NASA) NLDAS-2 dataset [28] at the midpoint
location and time of the trip. Hourly precipitation was downloaded per city for 2018–2022
from the ERA-5-Land hourly dataset [29] and summed by day or trip, depending on the
granularity of the corresponding vehicle’s data.

When downloading annual congestion data, 2019 data were used to avoid the ex-
ogenous impact of the COVID-19 pandemic [32]. The metric of annual hours of delay for
general roads was used for buses and local hauling trucks, while annual hours of delay for
highways was used for regional hauling trucks. For cities not covered by the congestion
dataset, metrics were collected for each city’s nearest neighbor by physical distance.

City road slope was computed using road network data from Open Street Map [31],
1 arc-second Digital Elevation Model from the U.S. Geological Survey (USGS) TNM
database [33], and the R package {slopes} [30]. Road segments were filtered to only include
primary, secondary, tertiary, trunk, residential, and link roads for all above road types
excluding residential. Road grade for each road segment was computed, and an aggregated
mean over road grades of all road segments was used in modeling for each city.

Since actual payload data were not available, maximum payload per vehicle model
was obtained from CALSTART’s Zero-Emission Technology Inventory (ZETI) database [26],
which contains vehicle specification data for 843 models of MHD trucks and buses [34].
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When payload was measured in units other than weight (e.g., passengers or volume), these
units were converted to weight using assumptions indicated in the Urban Bus Toolkit [35].
For example, the number of passengers that could be carried in a bus was assumed to
be 1.75 times the number of bus seats to represent both seated and standing passengers.
Payloads of buses were calculated by first converting seat capacities to passenger capacities
and then multiplying passenger capacities by the 178-lb average adult weight.

2.2. Methods
2.2.1. Energy Efficiency Comparison and Energy Cost Savings Analyses

Figure 2 below shows the procedure used for the energy efficiency comparison analysis
and energy cost savings analysis. In this study, energy cost was defined as the cost of fuel
in U.S. dollars (USD) needed to drive a vehicle one mile. Maintenance costs were not
included due to a lack of sufficient historical maintenance data to accurately assess an EVs’
longer-term maintenance needs.
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Figure 2. Procedures of (a) efficiency comparison analysis and (b) energy cost savings analysis.

First, a comparison of energy efficiency between each EV platform and its diesel
counterpart was conducted (Figure 2a). Real-world energy consumption rate (kWh/mi)
and energy efficiency in miles per diesel gallon equivalent (MPDGe) were determined for
each EV platform from average daily energy consumed and average daily distance traveled,
using baseline diesel comparison average fuel economy from CALSTART’s TCO tool [8]
and the U.S. DOE Alternative Fuels Data Center’s average fuel economy dataset [23].

For each vehicle platform, average energy cost savings per mile were (1) projected from
2021–2035 using EIA price projections [24] and (2) calculated using the average levelized
electricity costs estimated by NREL [25] with 2022 diesel price projections [24] (Figure 2b).

Together, these complementary sources of electricity prices presented a more nuanced
understanding of EVs’ energy costs: while the EIA source provided price projections on a
per-year basis over a broad time period, NREL’s estimates, despite their lack of temporal
granularity, accounted for the real-world variability of charging costs associated with
20 diverse charging infrastructure scenarios.

2.2.2. Vehicle Efficiency Prediction: Model Selection, Feature Engineering and
Model Training

Knowing the mechanisms that affect vehicle efficiency can inform fleets’ operations by
predicting efficiency performance and ultimately range. When selecting from a wide array
of machine learning algorithms, we considered the tradeoff between interpretability and
performance. On one end of the spectrum, linear models are the most interpretable but are
generally weak in predictive performance, especially when dealing with high-dimensional
data and non-linear relationships. On the other end, neural networks can achieve higher
predictive performance at the expense of high computation costs and low interpretability,
as they are essentially “black box” models. Tree-based algorithms stood out to best fit our
use case, as they offer a balance between interpretability and predictive performance and
can be trained and tuned reasonably quickly.
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For this study, three tree-based algorithms (i.e., XGBoost, Gradient Boosted Trees or
Gradient Boosting, and Random Forest) were selected to train the efficiency prediction
model. These algorithms adopted a range of ensemble methods, such as bagging and
boosting, to help overcome model overfitting, which is commonly seen in decision trees.
Additionally, two linear models that use L1 and L2 regularization techniques, also known
as Lasso and Ridge Regression, were adopted as baseline models in this study, given their
ability to perform automatic feature selection in high dimensional datasets.

Before training the machine learning models, exploratory data analysis and feature
engineering were conducted to select and transform 22 features as inputs for the models
(Table 3). Figure 3 illustrates the feature engineering procedure. Since vehicle types and
regions were imbalanced in the data, we applied stratified sampling when splitting train
and test data to ensure the test score properly reflected predictive performance of all
categories of interest. K-Nearest-Neighbor (KNN) imputation was used to fill in missing
numerical features with the mean of five nearest neighbors, followed by rescaling to meet
linear model requirements. Although tree-based models generally perform well with
imbalanced data, SMOGN resampling [36] was applied on the training data for all models
to further improve model performance on underrepresented areas of datapoints. Then,
one-hot encoding and ordinal encoding were applied, resulting in 75 features in total.
Finally, quadratic terms of ambient temperature and driving speed were added to the
linear models to better fit their non-linear relationships with the target variable (i.e., energy
consumption rate), but it was unnecessary to add these terms for tree-based models.
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In model training, this study applied five commonly used machine learning algorithms
for comparison to predict vehicle efficiency, calculated as total energy consumption divided
by driving distance and measured by energy consumption rate (kWh/mi). Using Scikit-
Learn [37] and other Python packages, the study was able to tune the hyperparameters
with the random search method and perform k-fold cross-validation to avoid overfitting
on the training set. Mean Absolute Error (MAE) was the key evaluation metric used in
training since MAE assigns equal weights to all errors, which is less sensitive to the impact
of outliers.

2.2.3. Operational Range Prediction: One Year of Duty Cycle Simulation and
Range Forecast

It is critical for fleets to assess how MHD EVs will accommodate their operations
and duty cycle needs when planning procurement. Predicting operational range values
in real-world operating conditions under vehicle type–specific duty cycles can help fleets
gauge the maximum range a vehicle might achieve versus manufacturer specification. The
efficiency model developed in Section 3.2 was used to address this issue by predicting
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and visualizing the operational range of MHD EVs based on hypothetical operating con-
ditions, manufacturer-rated battery capacities, and an assumed 90% SOC battery buffer
(Equations (1) and (2)). We chose three different vehicle types (i.e., transit bus, local HD
truck, and regional HD truck) in four different cities (i.e., Los Angeles, Louisville, Missoula,
and Chicago) to assess the impact of real-world operating conditions and duty cycles on
MHD EV ranges. The 2022 BYD K9M was selected as the vehicle model for transit buses,
while the 2021 Freightliner eCascadia was chosen for local and regional HD trucks. Vehicles
were assumed to be brand new and operating at full State of Health. City profile data were
gathered using the same methodology as described in Section 2.1.

Operational Range (mi) = Usable Battery Capacity (kWh)/Vehicle Efficiency (kWh/mi) (1)

Usable Battery Capacity (kWh) = Nominal Battery Capacity (kWh) × Battery State of Health (%) ×
Battery State of Charge Buffer (%)

(2)

One year of operating duty cycle data was simulated in R. Using our real-world data
as a benchmark, we summarized monthly and weekly averages of daily total distance, total
run time, and driving time for each of the three simulated vehicle types (i.e., transit bus,
local HD truck, regional HD truck). For each pair of month and day of week, 200 data
points were simulated using the averages and standard deviations of residuals, assuming a
normal distribution. The simulated data pool was then cleaned by removing outliers and
negative data points. For each day in 365 days, one data point was randomly sampled
from the simulated data pool based on day of week and month. Forecasting with the R
package {forecast} was used if data were missing or underrepresented in a certain time
in the 356 days. Daily average driving speed and idling time percentage were calculated
from the simulated features. All duty cycle features were engineered and validated to have
ranges and distributions similar to the real-world data.

3. Results and Discussion
3.1. Energy Efficiency Advantages Indicate Energy Cost Savings
3.1.1. Energy Efficiency Comparison Analysis

The distribution of the real-world energy consumption rate for each of the six vehicle
platforms is shown in Figure 4. When comparing the real-world energy efficiency of EVs
and the fuel economy of baseline vehicles, MHD EVs performed an average of 3.4–5.8 times
as well as their conventional counterparts, mirroring CARB’s estimated EER results [9]
(Table 4).
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Table 4. Average and 95% confidence interval of energy efficiency by vehicle type and platform.

Vehicle Type Vehicle Platform Average EV Energy
Efficiency (MPDGe)

Average Baseline Fuel
Economy (MPDG)

Energy Efficiency
Ratio (EER)

Medium-Duty Truck Class 4 Step Van 34.18 (±0.22) 9.04 3.8
Class 6 Truck 28.09 (±0.18) 8.21 3.4

Heavy-Duty Truck Class 7 Truck 16.89 (±0.35) 4.40 3.8
Class 8 Truck 20.58 (±0.40) 3.56 5.8

Bus
Type C School Bus 27.16 (±0.73) 7.06 3.8
35–40-ft Transit Bus 19.07 (±0.08) 3.83 5.0

HD trucks and transit buses had the highest estimated EERs, while MD trucks and
school buses—the most efficient vehicle platforms for both fuel types—had lower EERs.
Vehicle platforms maintained similar efficiency rankings relative to each other regardless of
fuel type, aside from Class 8 trucks, which were the least efficient diesel vehicles but third
least efficient EVs, behind Class 7 trucks and transit buses. Although it is expected that
Class 8 trucks may experience worse real-world efficiency than Class 7 trucks, which have
lower maximum payloads than Class 8 trucks, external factors such as climate, percent
idling time, and driver behavior may have impacted these two truck platforms’ relative
real-world performance.

3.1.2. Energy Cost Savings Comparison Analysis

EIA 2022 price projections indicated that MD trucks, HD trucks, school buses, and
transit buses had estimated average cost savings of USD 0.195, USD 0.493, USD 0.201,
and USD 0.529 per mile, respectively; by 2035, these per-mile projected cost savings are
projected to increase by 14.2% on average, to USD 0.224, USD 0.552, USD 0.238, and USD
0.589 per mile, respectively.

In a 2024 cross-section of these results (Figure 5), energy cost savings were smaller
when using electricity prices based on NREL’s breakeven costs relative to the EIA’s national
average electricity price projections. However, for both estimates, the average cost per mile
was consistently lower for EVs than for baseline vehicles. Thus, even when accounting
for the installation and maintenance of EVSE infrastructure, fueling MHD EVs is still less
expensive per mile on average than fueling their diesel counterparts.
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Finally, for each vehicle platform in the real-world dataset, estimated total annual
fuel cost savings were determined using EIA-projected average cost per mile and aver-
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age annual distance traveled per vehicle in each vehicle platform (Figure 2b). Because of
the combination of their high per-mile fuel cost savings and high annual distance trav-
eled, transit buses and HD trucks had high estimated annual fuel cost savings (Figure 6).
Transit buses, which had the highest per-vehicle average annual mileage (7570 miles per
year), experienced the greatest fuel cost savings, followed by Class 8 and Class 7 trucks,
which had local/regional duty cycles and traveled an average of 4937 and 4779 miles per
year, respectively.
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by 2035.

These results support previous DOE findings that a vehicle’s duty cycle strongly
impacts total cost of ownership [7]: although electric school buses had 43% better energy
efficiency performance (MPDGe) than electric transit buses, their lower annual average
distance (1837 miles) resulted in 90% lower cumulative total fuel cost savings. Thus,
switching from diesel to electric is much more cost-effective for higher-mileage than lower-
mileage vehicle platforms.

3.2. Vehicle Efficiency Predictions Based on Known Real-World Factors

Many factors affect actual EV efficiency, including ambient temperature, driving
speed, topography, and manufacturing configurations. However, studies determining
these variables’ relative impacts are lacking. This paper incorporated real-world data
from these factors and developed machine learning models on in-use performance data to
estimate energy consumption rate (kWh/mi).

3.2.1. Model Performance Evaluation

Each of the five machine learning models was evaluated using the following metrics:
R2, Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) (Table 5). Among the five models, tree-based models (XGBoost, Random Forest,
and Gradient Boosted Trees) had better performance than linear models (Lasso and Ridge
Regression). While the three tree-based models produced R2 values of 69–70%, XGBoost
had the highest R2 (70%) and was selected as the best model to predict operational range in
Section 3.3. The XGBoost model can explain 70% of the variations in the target variable
(energy efficiency), which is good performance considering the large scale and diversified
sources of real-world data.
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Table 5. Model performance evaluation metrics.

Regression Models R2 Mean Absolute
Error (MAE)

Mean Squared
Error (MSE)

Root Mean Squared
Error (RMSE)

Lasso (L1 Regularization) 0.550 0.351 0.236 0.486

Ridge (L2 Regularization) 0.567 0.339 0.227 0.476

Gradient Boosted Trees (GBR) 0.694 0.252 0.161 0.401

Random Forest (RFR) 0.699 0.255 0.158 0.397

XGBoost (XGB) 0.702 0.253 0.156 0.396

3.2.2. Model Result Analysis

A preliminary analysis indicated that MHD EVs were most efficient when operated
at daily average speeds between 20 and 40 mph compared to lower speeds. At speeds
below 20 mph, a higher percentage of idling time versus driving time was observed, which
likely contributed to worse efficiency. This analysis also indicated that MHD EVs driving
more than 100 miles per day achieved a higher average efficiency than those traveling
less. Again, a higher percentage of idling time was observed in shorter trips, resulting
in worse efficiency. The ideal operating environment included minimal traffic, mild to
warm ambient temperatures (50–80 ◦F) [38], and relatively flat terrain. Finally, decreases in
vehicle size and weight significantly increased vehicle efficiency.

While these results were not unexpected, further analysis was conducted to reveal the
most important factors in the XGBoost model. The SHAP (Shapley Addictive exPlanations)
value [39] was examined to determine the predictive impact of each feature on vehicle
efficiency (Figure 7). Clear horizontal separation (red dots on one side and blue on the
other) shows the direction and magnitude of the impact each feature has on the output.
For example, high driving speed values had a negative effect on the output (kWh/mi) and
thus are associated with improved efficiency. Among the top 10 features, all features except
model year showed clear efficiency trends, with consistent impacts on the magnitude
and direction of change in efficiency. Specifically, higher average driving speed, average
ambient temperature, and total distance were associated with improved energy efficiency
of MHD EVs. In contrast, lower congestion hour delay, rated energy (i.e., battery capacity),
idling time percentage, payload, and total run time were associated with reduced efficiency.
Model year was one of the important features, but it is unclear whether older or newer
models were more efficient in general.

All tree-based models achieved similar R2 scores. Each model’s feature importance
ranking was slightly different, but all three models included average driving speed, average
ambient temperature, total distance, and congestion in their respective top features (Table 6).
While the algorithm identified the original equipment manufacturer (OEM) Proterra as
a significant feature, this is likely a result of the selection bias in the data sample from
MHD EV early deployments, where there is a disproportionately high number of Proterra
buses—about 45% of vehicle-days and 37.5% of vehicle count. Therefore, the significance
of this feature might not be generalizable to the overall U.S. MHD EV population as the
diversity of OEMs in real-world deployments increases.

Table 6. SHAP identified top features impacting the prediction on vehicle efficiency.

Top Features XGBoost Random Forest Gradient Boosted Trees

Average driving speed #1 #2 #3

Average ambient temperature #2 #3 #1

Manufacturer Proterra #3 #1 #6

Total distance #4 #5 #5

Congestion hour delay #5 #6 #2
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Figure 7. The XGBoost model’s top 10 features ordered by feature importance (left: bee swarm plot
to show the direction and magnitude of the impact each feature has on vehicle efficiency; right: bar
plot to show the mean absolute impact of each feature on vehicle efficiency). In the bee swarm plot,
positive SHAP values indicate datapoints with feature values (red: high feature value, blue: low
feature value) that are associated with more energy use or lower efficiency. In contrast, negative SHAP
values signify datapoints with feature values that are associated with less energy or higher efficiency.

Average driving speed was consistently among the top important features across all
models, meaning it had a critical effect on efficiency. Energy efficiency of transit buses
became less optimized and substantially more variable when average driving speed was
less than 10 mph (Figure 8). HD trucks were more likely to have energy efficiency as high
as 4 kWh/mi when average driving speed was less than 15 mph. However, for both vehicle
types, when average speed reached 20–40 mph, the efficiency converged to a narrow range
of values and stabilized around 1.5–2 kWh/mi.
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Figure 8. Scatter plot of vehicle efficiency and daily average driving speed for HD trucks (top) and
transit buses (bottom).

The average driving speed feature was aggregated by day, which must be understood
within the context of fleet operations. Throughout a real-world operational day, vehicles
drive at a range of speeds and alternate among driving, idling, and off statuses. Vehicles
may idle in traffic, run on the highway, or stop-and-go on local city roads. Lower daily
average speed may indicate a larger share of driving in urban congested areas with frequent
or longer stops and shorter total distance traveled. These driving conditions are commonly
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observed in urban delivery trucks, city bus circulators, and school buses. A daily average
speed of 20–40 mph may imply a duty cycle with fewer stops and less traffic or loading
time, and MHD trucks operating at these average speeds were observed to achieve higher
energy efficiency. Future studies on MHD EVs may tailor efforts to further understand
mechanisms behind their energy efficiencies at different speeds.

3.3. Operational Range Predictions

A summary of simulated year-long duty cycles for transit buses and local and regional
HD trucks are presented in Table 7. In the vehicles’ simulated duty cycles, transit buses
traveled the farthest with the longest run time and driving time but had the lowest daily
average driving speed due to frequent stops or residential speed limits. Local HD trucks
traveled the shortest distance with the shortest driving time and highest idling time per-
centage. Regional HD trucks traveled long distances with the highest speed and lowest
idling time percentage. In the simulated data, the maximum distance traveled in a day was
177 miles for a regional HD truck and 103 miles for a local HD truck. Regional HD trucks
spent a greater fraction of time driving, indicating that they tend to travel on highways and
have fewer stops.

Table 7. Averages and 95% confidence intervals of simulated duty cycle features.

Vehicle Type Total Distance
(miles)

Driving Time
(hours)

Total Run Time
(hours)

Average Driving
Speed (mph)

Idling Time
Percentage (%)

Transit bus 83.5 (±3.8) 5.6 (±0.2) 8.4 (±0.4) 15.6 (±0.7) 25.2 (±2.6)

Local HD truck 45.3 (±1.4) 2.8 (±0.1) 4.1 (±0.2) 18.0 (±0.9) 28.5 (±2.0)

Regional HD truck 71.3 (±4.0) 3.2 (±0.2) 4.3 (±0.2) 22.7 (±1.3) 23.3 (±1.5)

For transit buses, operational range was modeled across four U.S. cities with different
climates, congestion levels, and hilliness (Table 8, Figure 9). For each city, congestion and
hilliness remained constant throughout the year, while climate variables changed seasonally.
Average ambient temperature was the feature with the strongest impact on operational
range. The modeled transit bus in Los Angeles, with the warmest winters, showed the
most consistent operational range throughout the year, despite a high congestion hour
delay that was 30 times that of Louisville. The operational range of the transit bus in
Missoula dropped significantly in cold winter months, during which average ambient
temperature fell as low as 6 ◦F. In the summer, when ambient temperature was no longer
the limiting factor, transit buses in Missoula had a longer average operating range than
in the other regions, likely thanks to Missoula’s light traffic. In Chicago, a city with low
average ambient temperatures and high congestion levels, transit buses were predicted to
have low operating range throughout the year compared to transit buses in other cities.

Table 8. Profiles of four U.S. cities.

City Average Ambient
Temperature (◦F)

Precipitation
(Inches)

Congestion Hour
Delay (h)

Average Road
Grade (%)

Los Angeles, CA 65.7 (±1.0; 46–86) 0.002 (±0.0004) 952,183,000 2.1

Louisville, KY 59.6 (±1.7; 22–86) 0.006 (±0.0005) 30,610,000 1.7

Missoula, MT 41.8 (±1.6; 6–74) 0.003 (±0.0002) 2,263,000 1.4

Chicago, IL 53.2 (±2.0; 10–85) 0.005 (±0.0005) 331,657,000 0.5

The comparison between the local HD truck and the regional HD truck highlighted
the impact of duty cycle on operational range when climate, congestion, and road slope
are held constant (Table 7, Figure 10). Throughout a year, local HD trucks consistently had
a lower operational range than regional HD trucks, due to lower daily average driving
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speed, shorter total distance traveled, and a higher percentage of idling time. This could be
a result of local HD trucks operating in urban areas and thus spending more time idling or
in traffic. From the model estimates, a local-haul HD truck fleet may need to deploy trucks
with a nominal range nearly double the expected daily range to meet duty cycles in colder
months. While the same truck model had a longer range as a regional HD truck overall,
there were still days when the regional truck’s predicted operational range dropped to
about 65% of its nominal range. In summary, fleets need to select proper MHD EV models
to be prepared for these rare occasions when transitioning to a fully electric fleet.
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Figure 9. Transit bus year-round operational range predictions (blue points) for the 2022 BYD
K9M vehicle model in four U.S. cities (top left: Los Angeles, CA; top right: Louisville, KY; bottom
left: Missoula, MT; bottom right: Chicago, IL). A trend line (dark blue line) showing a seven-day
moving average of predicted range is added to each scatter plot to illustrate the corresponding city’s
seasonal pattern and the impact of temperature on operational range. A reference line (dashed red
line) is added to compare predicted operational range with the transit bus’s nominal range.
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Figure 10. HD truck year-round operational range predictions (green points) for the 2021 Freightliner
eCascadia vehicle model in Louisville, KY (left: local duty cycle; right: regional duty cycle). A
trend line (dark blue line) of a seven-day moving average of predicted range is added to each
scatter plot to illustrate the corresponding city’s seasonal pattern and the impact of temperature
on operational range. A reference line (dashed red line) is added to compare nominal range to the
predicted operational range.
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4. Conclusions

As EV adoption grows, the value of a publicly accessible operational dataset from
early MHD EV deployments will only increase. This study made use of such a dataset
to (1) provide a high-level understanding of energy cost savings across various types of
MHD EVs and (2) execute a novel approach employing the predictive power of machine
learning to model MHD EVs’ energy efficiency. The outcome of this analysis could help
fleets across various geographies throughout the U.S. assess the suitability of EVs for their
operational needs.

4.1. Energy Efficiency Comparison and Energy Cost Savings Analyses

MHD EVs were found to perform an average of 3–6 times as efficiently as their diesel
ICE counterparts, demonstrating that theoretical efficiency advantages associated with
EVs hold true in practice. By using EVs instead of diesel vehicles, fleets should experience
significant energy cost savings from 2021 to 2035, regardless of vehicle platform, with the
greatest savings expected for fleets with transit buses (up to USD 4459 per bus annually)
and HD trucks (up to USD 3284 per truck annually), especially those with high-mileage
duty cycles. Even when accounting for the additional costs associated with installing and
maintaining EVSE infrastructure, fueling MHD EVs was still projected to be less expensive
per mile on average than fueling diesel MHD vehicles.

4.2. Vehicle Efficiency Prediction and Year-round Operational Range Forecast

This study found that a vehicle’s operational range could be substantially lower than
its nominal range under driving conditions with low temperatures, high congestion, and
local duty cycles, and thereby highlighted the importance of estimate operational range
when choosing a MHD EV. Using the efficiency model presented in Section 3.2, fleets
can forecast a vehicle’s year-round operational range to evaluate whether it meets their
operating needs. Based on these results, there are two notable considerations that fleets
should anticipate before purchasing and operating MHD EVs.

1. Because temperature and congestion can significantly impact EVs’ efficiency and
range, fleets should select vehicle models that can satisfy most of their range needs
throughout an entire year, while extending operational range in colder months and
congested areas by applying energy-saving practices. For example, fleets should plan
to pre-heat vehicle cabin and keep vehicle doors closed as much as possible, charge
midday on extremely cold days, and optimize routes and schedules to avoid heavy
traffic where possible.

2. Due to variations in duty cycle characteristics, local-haul operations (less than 100 miles
daily) can have 25% lower operational range than regional-haul operations
(100–300 miles daily), despite using the same vehicle model in the same example
city. Furthermore, local HD truck fleets may need to deploy trucks with a nominal
range nearly double their expected maximum daily range to meet route needs under
more extreme driving conditions, such as colder temperatures, and local duty cycle
requirements, such as the high idling time percentage and traffic levels found in urban
delivery duty cycles. Alternatively, fleets can consider downsizing HD trucks to MD
trucks or vans if they have sufficient payload.

4.3. Limitations and Future Work

While this study addressed several critical issues for fleets, it also had limitations. The
energy cost savings analyses were based on average efficiency values, average miles driven
per vehicle platform, and average price estimates, and EIA fuel prices did not account for
EVSE installation or maintenance costs. As a result, an individual vehicle may experience a
different real-world efficiency and different cost savings from those estimated in this study.
Additionally, electricity demand charges and vehicle efficiency improvement rates can be
incorporated into future scenario analyses.
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When modeling energy efficiency, predictions for trucks were limited to local and
regional haul (less than 300 miles per day) and were not generalized to long-haul duty
cycles. Compared to route-based energy consumption modeling, our model required less
granular inputs, both in terms of time (i.e., duty cycle at vehicle-day level) and geography
(i.e., city served as the geographic area of operation for all climate inputs). The energy
efficiency model is therefore best used to quickly estimate a vehicle’s efficiency in a given
city or to compare a vehicle’s performance across cities or duty cycles. However, the model
can still be improved with additional computational resources and data. Incorporating
a higher number of features and more detailed features would enable better predictions.
For example, using actual cargo weight data rather than a maximum payload constant for
each vehicle model would improve the payload feature’s explanatory power, especially for
trucks. Similarly, incorporating a targeted route as an input would provide details about
actual road grade and traffic level that are not decipherable from city-level approximations
(i.e., average road slope and congestion level).

Future work can use the output of the efficiency model to understand energy costs for
fleets given their selected vehicle model, use case, and city profile. Finally, we plan to build
a user-friendly, web-based tool that employs the model to help fleets predict operational
capabilities of MHD EVs operating in their regions, thereby boosting fleets’ confidence
in the EV transition. This tool will be a resource for accelerated MHD EV deployment;
by addressing EV performance knowledge gaps in an intuitive, accessible manner, it will
enable a better understanding of real-world MHD EV efficiency and range among fleet
managers, policymakers, and the public.
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Abstract: In this study, we investigate the effect of vehicle-to-grid (V2G) flexibility potential on
solving transmission grid congestion in Germany using congestion management measures. We
extend existing work on effects of V2G on transmission grid congestion by determining the flexibil-
ity provided for improving grid operation based on mobility behavior and findings on V2G user
requirements from real-world electric vehicle users. Furthermore, the impact on transmission grid
operation is analyzed using an optimal congestion management model with high temporal and
spatial resolution. Using a scenario for the year 2030 with ambitious targets for European renewable
generation development and electrification of private vehicles, our findings show that by enabling
the available fleet of V2G vehicles to participate in congestion management, cost and amount can be
reduced by up to 11%. However, the required capacity is shown to be lower than installed capacities
in ambitious future scenarios, implying that a limited number of vehicles close to congestion centers
will be utilized for transmission grid operation. Our results further suggest that high numbers of
vehicles with low availability of V2G for grid operation purposes can lead to an increase in congestion
management measures, while V2G proves beneficial for congestion management emissions and cost
in all scenarios.

Keywords: electric vehicle; energy storage; optimization; smart charging; V2G (vehicle to grid)

1. Introduction

The ongoing transformation towards a more sustainable energy system is driven by
concerns about the impact of traditional energy sources on the environment and climate
change. To mitigate these concerns, alternative sources of energy and ways to improve
energy efficiency are necessary. One of the most promising options is electrification across
different sectors in combination with increased electricity generation from renewable
energy sources (RESs), which are becoming increasingly cost-competitive. In the European
electricity system, the share of renewable energy sources has been rising steadily in the last
few years, and several countries have set ambitious targets to increase this share further. In
addition to the increasing the RES share in electricity systems, the electrification of different
sectors, such as transportation, heating and cooling, is gaining momentum. In the private
transportation sector, electric vehicles (EVs) are increasingly popular due to governmental
subsidies, reduced carbon emissions, declining cost and increasing range of the vehicles’
battery package. The diffusion rate of EVs is expected to continue, with many governments
setting targets for EV adoption. For example, the newly elected government has formulated
a new medium-term target of 15 million EVs in Germany by the year 2030 [1]. However, the
anticipated increasing electrification of privately owned vehicles presents new challenges
for electricity grids, as uncontrolled charging of EVs can lead to synchronous charging
behavior, resulting in significant electricity demand peaks and additional stress on the
grid [2]. Vehicle-to-grid (V2G) technology has been proposed as a possible solution to this
challenge. V2G technology provides a decentralized source of flexibility that can mitigate
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the increase in existing peaks in today’s electricity patterns and accordingly improve RES
integration potential when used effectively in grid congestion management. In addition,
V2G technology can partially substitute the role of redispatch power provision of thermal
power plants and other storage technologies [3] and lead to more economical and ecological
congestion management. In previous studies on V2G technology, many aspects of the
impact on the energy system have been investigated. While the majority of these works
focused on electricity market integration and balancing markets, the impact on ultra-high
voltage and high voltage grid expansion requirements has been studied in [4]. Refs. [5,6]
have investigated the potential of EVs for congestion management in Germany and Austria,
each using an aggregated model of the transmission grid. Furthermore, EV flexibility has
been previously investigated as an element of aggregated decentralized flexibility potential
for transmission grid operation [7].

In this study, we investigate transmission grid effects as well as detailed EV flexibility
potential by combining approaches of EV flexibility modeling and an optimal congestion
management model. We use the model cascade to investigate the potential impact of V2G
technology on the German transmission grid for a future energy scenario. We take into
account results from a study on user requirements for V2G performed in the project and
present results for the impact of V2G technology on congestion management using a case
study of the European electricity system in 2030.

2. Modeling of V2G in Transmission Grids

To assess the potential impact of large-scale use of V2G on the transmission grid, a
model cascade was developed by combining project findings on user requirements and
diffusion modeling of projected EV uptake. This approach allows for the estimation of time-
dependent V2G flexibility potential. To quantify the potential benefits of V2G technology,
the flexibility shifting potential of charging operations was analyzed in the simulation of
the transmission grid. In this last step, all previously generated input data are utilized in
an optimal power flow formulation using a minimal congestion management formulation.
The results allow for the identification of the most congested grid areas, where V2G could
be most effective in alleviating grid stress.

2.1. Model Overview

To investigate transmission grid congestion management actions, first, a detailed
modeling of generation, consumption and flexibility behavior is required on a nodal level.
Using these data, the grid operation and utilization of connected flexibility options are often
analyzed using optimal power flow formulations. In this work we present an approach
that includes V2G flexibility in an optimal congestion management formulation based on
the basic optimal power flow. To generate the necessary data for EV charging behavior and
flexibility potential for V2G operation, three submodels are used. The resulting modeling
framework and the information flow is illustrated in Figure 1, which provides a schematic
overview of the model cascade. The framework begins with a detailed analysis of V2G
user requirements, which takes the individual preferences of EV owners into account. This
information is then combined with diffusion modeling of EV uptake, predicting future EV
adoption. The resulting time-dependent V2G flexibility potential is then utilized to perform
the simulation of the German transmission grid and evaluate the benefits of reducing
congestion management measures in different scenarios.
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2.2. User Requirements

The bidirectional charging process directly involves the EV user, which makes the
EV user one of the primary actors within a V2G system [8]. To enable a successful imple-
mentation of V2G technology, it is therefore important to actively engage the user while
dismantling perceived barriers, such as a perceived loss of control over the charging pro-
cess [9–11] or concerns of a shortened battery life due to V2G [10]. One way to foster user
acceptance is to account for charging requirements, which can be defined by the EV user.
The minimum range is such a requirement. We define it as the minimum necessary range
that EVs must always be able to cover in unpredictable cases, for example, an emergency
case [12]. It is also an essential parameter from an aggregator’s point of view, as it defines
the flexibility potential made available by the EV user.

In this study, we account for user requirements by integrating the results of the
minimum range from a representative survey (n = 1196) conducted in January 2021 to
investigate users’ willingness to pay (WTP) and minimum range requirements in the context
of a V2G charging tariff. Specifically, by building a mediation model, the study evaluates the
importance of three charging strategies on users’ WTP and minimum range requirements.
The study reveals EV owners’ preference for a climate-neutral charging strategy, leading to
a higher readiness to accept lower minimum ranges and lower monetary savings [12]. As
previous studies highlight the importance of EV experience to create informed decisions
about issues in the realm of V2G [13,14], we addressed our survey to three stakeholder
groups with different levels of EV experience (see [12]) and asked respondents to provide
their minimum range (SoCmin) requirements in an open-ended question. The question
referred to a BMW i3 with a range of 270 km.

The results in Table 1 show that EV users indicated the lowest SoCmin values, which
is equivalent to approximately 40% of the battery capacity of a BMW i3. Previous field
studies with EV participants found similar values [15]. In this study, we report the average
minimum range (SoCmin = 40%) for the EV owner group (Nhigh = 264), as this group is the
most experienced with EVs and therefore provides the most realistic values (see [12]).

Table 1. EV owners’ minimum range requirements.

Sample (in km)

M SD SE Min Max q0.25 q0.5 q0.75

N = 1196 119.01 98.37 2.84 0 500 50 100 150

Nlow = 691 119.75 97.91 3.73 0 500 50 100 150

Nmed = 241 126.05 104.78 6.75 15 500 50 100 150

Nhigh = 264 110.64 93.16 5.73 1 500 50 100 120

2.3. EV Diffusion

The technology ramp-up of electric vehicles in Germany was assessed using the Bass
diffusion modeling approach, similar to [16]. The Bass diffusion model is a commonly
used approach for assessing the adoption of new technologies [17]. The model is based on
the assumption that the spread of new technologies often follows an S-curve pattern. The
interplay between present and potential adopters, called innovators (q) and imitators (p), is
central to the Bass diffusion model. The market potential is denoted by M, and t represents
the index for the specific year being considered. The model forecasts fleet sizes for every
year since the start year t0, where the difference between the current year t and the start
year t0 is t − t0 = 0. A formal description of the Bass diffusion model can be found in
Equation (1), whereby N(t) represents the number of cumulative adoptions up to a given
time t.

N(t) = m
1− e−(p+q)(1−t0)

1 + p
q e−(p+q)(1−t0)

(1)
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The innovation coefficient q and imitation coefficient p of the model are estimated
by fitting the S-curve derived from the Bass diffusion model to historic annual EV stock
data [18] in Germany and planned registration targets for the year 2030. The delta between
the S-curve and the input data is minimized by using a non-linear regression method. More
precisely, a Levenberg–Marquardt numerical optimization algorithm was employed in the
OriginPro Solver to estimate the parameters of the Bass EV diffusion model.

2.4. EV Flexibility

The V2G flexibility model was designed to generate representative, synthetic charging
and flexibility profiles and thus estimate the V2G flexibility potential of EVs in Germany [19].
An overview of the methodological approach is illustrated in Figure 2. In the first step,
parking and mobility profiles were created based on data from the German Mobility
Panel [20]. The underlying dataset contains plausible data from 1850 households with a
total of 3074 persons and 70,252 trips. Subsequently, the charging behavior of the EV was
simulated by the additional user-specific input data on EV and information on the charging
infrastructure. Battery capacity, energy consumption as well as the availability of charging
points per location and associated charging power (selectable charging power of 3.7 kW,
11 kW, 22 kW and 55 kW) per charging point were set as parameters at the beginning of the
simulation. The input parameters were assumed to be identical for all EVs and the time
resolution is 10 min.
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hicle is charged immediately with the maximum SoC-dependent charging power availa-
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considering user restrictions. We accounted for user restrictions by including the 

Figure 2. V2G flexibility model.

In addition, different charging strategies were implemented and shown in Figure 3.
One charging strategy is the so-called as soon as possible (ASAP) strategy. Here, the vehicle
is charged immediately with the maximum SoC-dependent charging power available at the
charging location up to the maximum SoC level or until the departure time for the next trip.
Another strategy is based on the assumption that EVs will start charging as late as possible
during parking periods with charging opportunities while simultaneously considering
user restrictions. We accounted for user restrictions by including the minimum range from
Section 2.1, which is henceforth called the security range. The safety range (the range to
which charging should take place as soon as possible after arrival at a charging station) and
the target range (the range to which charging should take place as soon as possible before a
journey until the start of the journey) were taken into account. After arrival at a charging
station, charging takes place on the one hand as early as possible to a safety range and on
the other hand as late as possible to a target range (target range ≥ safety range), which is to
be reached at the time of departure.

444



World Electr. Veh. J. 2023, 14, 328

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 5 of 15 
 

minimum range from Section 2.1, which is henceforth called the security range. The safety 
range (the range to which charging should take place as soon as possible after arrival at a 
charging station) and the target range (the range to which charging should take place as 
soon as possible before a journey until the start of the journey) were taken into account. 
After arrival at a charging station, charging takes place on the one hand as early as possi-
ble to a safety range and on the other hand as late as possible to a target range (target 
range ≥ safety range), which is to be reached at the time of departure. 

The amounts of energy required for the journeys are determined based on the dis-
tances driven and the energy consumption. This results in the necessary energy demand 
for the charging processes. The maximum amount of energy that can be charged is then 
determined for each time step. This depends on the parking time, the charging status of 
the vehicle battery and the available charging infrastructure at the respective locations of 
the vehicles [19].  

 
Figure 3. Schematic representation of the V2G flexibility potential and upper and lower bounds. 

Synthetic charging and mobility profiles are derived based on the mobility profiles 
and by simulating the charging behavior. These representative charging profiles can then 
be evaluated and interpreted regarding energy demand and V2G flexibility of the charg-
ing process. To integrate flexibility in the grid model, user requirements and the corre-
sponding EV market ramp-up are considered in the flexibility model in the user-specific 
EV input data scope. Based on the user requirements and the EV market penetration, the 
model can be used to estimate the flexibility potential. The V2G flexibility potential can be 
estimated considering the implemented charging strategies. The ASAP charging strategy 
sets the upper limit for the allowed SOC. The second charging strategy sets the lower SoC 
limit. The area between the charging states of the two extreme SoC levels represents the 
permissible range for the SOC and, combined with the available charging power, de-
scribes the flexibility potential. 

2.5. Transmission Grid 
Using a multi-objective optimization approach, we have developed a framework to 

investigate the optimal congestion management in the interconnected European transmis-
sion grid. The approach allows us to examine the role of EVs that need to be considered 
in the liberalized power market, such as congestion cost, additional carbon emissions, as 
well as deviations from market-based dispatch results, based on a formulation developed 
in [21,22]. The model is applied to the central European electricity market, with the grid 
simulation focusing on congestion management measures in Germany. We utilized highly 
spatially resolved time series of renewable generation and demand using data and meth-
odology described in [23].  

Charging (C)C Driving 
(D)

D C D CSoC

Time

ALAP charging 
strategy

ASAP charging
strategy

Max. SoC

Min. SoC

( )

( )

Figure 3. Schematic representation of the V2G flexibility potential and upper and lower bounds.

The amounts of energy required for the journeys are determined based on the distances
driven and the energy consumption. This results in the necessary energy demand for
the charging processes. The maximum amount of energy that can be charged is then
determined for each time step. This depends on the parking time, the charging status of
the vehicle battery and the available charging infrastructure at the respective locations of
the vehicles [19].

Synthetic charging and mobility profiles are derived based on the mobility profiles
and by simulating the charging behavior. These representative charging profiles can then
be evaluated and interpreted regarding energy demand and V2G flexibility of the charging
process. To integrate flexibility in the grid model, user requirements and the corresponding
EV market ramp-up are considered in the flexibility model in the user-specific EV input
data scope. Based on the user requirements and the EV market penetration, the model can
be used to estimate the flexibility potential. The V2G flexibility potential can be estimated
considering the implemented charging strategies. The ASAP charging strategy sets the
upper limit for the allowed SOC. The second charging strategy sets the lower SoC limit.
The area between the charging states of the two extreme SoC levels represents the permis-
sible range for the SOC and, combined with the available charging power, describes the
flexibility potential.

2.5. Transmission Grid

Using a multi-objective optimization approach, we have developed a framework to in-
vestigate the optimal congestion management in the interconnected European transmission
grid. The approach allows us to examine the role of EVs that need to be considered in the
liberalized power market, such as congestion cost, additional carbon emissions, as well as
deviations from market-based dispatch results, based on a formulation developed in [21,22].
The model is applied to the central European electricity market, with the grid simulation
focusing on congestion management measures in Germany. We utilized highly spatially
resolved time series of renewable generation and demand using data and methodology
described in [23].

To model the interaction between the electricity market and congestion management,
we used a two-step approach. In the first step, we determined the optimal dispatch of
electricity generation in the interconnected market using linear programming. This widely
used and described economic dispatch approach [24] considers various parameters such
as fuel prices, generator capacities and transmission constraints to identify the most cost-
efficient solution for meeting electricity demand. The results of this step provide the
minimal-cost, copperplate-based dispatch solution for the electricity market on a national
level, with the objective function shown in Equation (2). For every timestep t, each of the
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system’s elements are assigned a variable cost term C that is multiplied by the amount of
generation p, with the set of thermal and hydraulic generation G, renewable generation
source RES, decentral flexibility elements F and electricity demand D. In the case of the
last-mentioned, cost occurs when load shedding LS is required. A more detailed description
of the formulation can be found in [22].

min ∑
g∈G,t∈T

Cg × pg,t + ∑
res∈RES,t∈T

CRES × pres,t + ∑
f∈F,t∈T

CF × p f ,t

+ ∑
d∈D,t∈T

CLS × pd,t

∀g ∈ G, res ∈ RES, f ∈ F, d ∈ D, t ∈ T

(2)

The linear formulation of a storage system can be modeled using the generalized
formulation shown in Equation (3). The available energy es,t of storage s in time step t is
determined by the available energy in the previous time step t− 1, charged power pin

g,t

and discharged pout
g,t with their respective efficiency η and external energy inflows ζ in

s,t and
outflows ζout

s,t .

es,t = es,t−1 + pin
g,t × ηg,in − pout

g,t /ηg,out + ζ in
s,t−ζout

s,t ∀s ∈ S, t ∈ T (3)

When applying Equation (3) to V2G charging, the available energy is provided by
the car battery, and efficiency is determined by losses within the vehicle and in auxiliary
equipment such as the wallbox, while the mobility demand results in an irregular outflow.
For single vehicles, charging and discharging power is zero during driving or when they
are not plugged into a charger. Using the fleet flexibility potential aggregation of the V2G
flexibility model shown in Figure 3, this can be expressed by Equations (4)–(7), where
the bounds of the EV fleet storage state et and charging and discharging capacity pt are
determined by the time-variant upper and lower bounds depending on the composition
of plugged-in and unavailable EVs. The external energy outflow ζout

,t is defined as the
energy used at the time of plug in Emob

t for mobility requirements since the previous plug-in.
Using a fleet-wide aggregation of V2G flexibility can lead to the violation of individual
storage state constraints but also implicates a large advantage in computational complexity
compared to a discrete modeling approach.

Emin
t ≤ et ≤ Emax

t ∀ t ∈ T (4)

0 ≤ pin
t ≤ Pin,max

t ∀ t ∈ T (5)

0 ≤ pout
t ≤ Pout,max

t ∀ t ∈ T (6)

ζout
t = Emob

t ∀ t ∈ T (7)

In the second step, we determine the required dispatch adjustments using a linearized
optimal power flow formulation. This step accounts for the V2G flexibility potential
developed by implementing available capacities and bounds from the V2G flexibility model
previously described. In the linearized optimal power flow formulation, the nonlinear
branch flow equations are simplified by an approximation which assumes a lossless system
with constant voltage levels [25]. The resulting linearized power flow equation is shown
in Equation (8), with the active power flow Pi,j between nodes i and j dependent on the
respective bus voltage angles ϕ.

Pi,j = bi,k(ϕk − ϕi) (8)
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To determine the optimal congestion management measures, we formulated the
objective function as a minimization of the total amount of congestion measure volume
in an analogous manner to [22], as shown in Equation (9). While all variables have an
additional bus index in the following due to the additional spatial dimension, the index
is omitted for the sake of simplicity. Each congestion management action consists of
the deviation from the market result, denoted by ∆p. As both positive and negative
measures are contributing in a uniform manner to the objective, the objective function
consists of the absolute value of change. This is not required for load adjustment, where
reduction in load always results in a positive contribution, which is additionally penalized
by the load shedding penalty factor CLS,grid. The corresponding bounds are shown in
Equations (10)–(13). The available potential for reduction or increase in generation for
conventional, renewable and flexibility generation is subject to the technical minimum
and maximum limits Pmin. and Pmax as well as the market dispatch Pt which results from
Equation (2). It should be noted that for volatile RES generation from solar and wind, no
generation increase potential remains, as Pres,max equals Pres,t.

min ∑
g∈G,t∈T

∣∣∣∆pg,t

∣∣∣+ ∑
res∈RES,t∈T

∣∣∣∆pres,t

∣∣∣+ ∑
f∈F,t∈T

∣∣∣∆p f ,t

∣∣∣+ ∑
d∈D,t∈T

CLS,grid × ∆pd,t

∀g ∈ G, res ∈ RES, f ∈ F, d ∈ D, t ∈ T
(9)

Pg,t − Pg,min ≤ ∆pg,t ≤ Pg,max − Pg,t ∀ t ∈ T, g ∈ G (10)

Pres,t − Pres,min ≤ ∆pres,t ≤ Pres,max − Pres,t ∀ t ∈ T, res ∈ RES (11)

Pf ,t − Pf ,min ≤ ∆p f ,t ≤ Pf ,max − Pf ,t ∀ t ∈ T, f ∈ F (12)

0 ≤ ∆pd,t ≤ Pd,t ∀ t ∈ T, d ∈ D (13)

To include V2G flexibility, Equations (3)–(7) can be applied in an analogous manner by
adding a spatial component on a nodal basis, with the nodal EV density being determined
by the regionalization developed in [23]. The calculation is performed for 8760 timesteps
with consecutive weekly optimization horizons, ensuring an optimization time-horizon
long enough to allow the activation of available flexibility from individual mobility de-
mand patterns. Overall, this two-step approach provides a comprehensive framework for
modeling the interaction between the electricity market and transmission grid operation.

3. Case Study

Using the methodology presented previously, a case study was conducted to evaluate
the possibility of deploying V2G to solve grid congestion. The study was carried out for
the German high-voltage transmission grid in the year 2030 using a scenario developed in
the project ENSURE [26]. The scenario “Storyline B” assumes an ambitious path towards
decarbonization of the electricity sector, with high growth for RES generation until 2030.
The generation capacities are shown in Figure 4. While both onshore and offshore wind
generation, as well as solar generation, increase compared to today’s state, power genera-
tion from hard coal and lignite has been phased out by 2030 under the assumptions. The
corresponding transmission grid scenario for the future date and the corresponding spatial
distribution of generation and demand is shown in Figure 5. A very detailed description of
the scenario and its regionalization, as well as the extension of the future energy scenarios
to 2050, can be found in [26].
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Figure 4. Generation capacities in Germany from central and decentralized sources in the case study
for the year 2030 [20].

Figure 5. Demand allocation (left), RES allocation (center) on high voltage level and transmission
grid model (right) of Germany.

To determine the scenario-dependent V2G flexibility potential, the input parameters
shown in Table 2 are defined. Here, the minimum range from Section 2.1 is taken into
account. At the same time, two different market shares are included in the analyses, which
result from the results of the Bass diffusion model. Altogether, we investigate the impact
of V2G in four scenarios, with three alternative parameter sets from the Base scenario:
The scenario Work extends bidirectional charging availability from purely home charging
to workplace charging, which significantly reduces peak charging demand in case of
immediate charging (ASAP) as can be seen in Figure 5. Furthermore, available flexibilities
during working hours are increased for market and grid utilization.
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Table 2. Scenario-related input data.
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The available flexibility potential for the scenarios Base and Work is shown in Figure 6.
In the home-charging scenario, available charging power decreases, with only half of the
total capacity during midday on business days. On the EV fleet-averaged level, available
SoC upper bound levels remain consistently very high, as most of the charging unavail-
abilities are not connected to driving but parking at locations without charging equipment,
which can be seen in the visualization of mobility behavior in Figure 6. Consequently, the
relative change in total available charging power at midday is more significant than the
change in the upper and lower SoC bounds for the scenario Work as shown in Figure 7.
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Figure 6. V2G charging demand in ASAP mode for scenario Base averaged over the vehicle fleet, one
week (left) and scenario Work (middle) and distribution of EV location over one week (right).

To estimate the innovation and imitation coefficient, a non-linear regression method
was applied to both historical EV fleet data of the German Ministry of Transport [18]
and future EV fleet size targets of the German government [1]. Using these inputs, two
EV ramp-up scenarios were developed. The first scenario Base aligns with the current
government’s objective of reaching 15 million EVs by 2030, while the second reduced
transition speed scenario Reduced was devised with the aim of achieving a number of
10 million EVs by 2030. Both variants assume that, eventually, all conventional vehicles
will be replaced by EVs. EVs are expected to be the primary choice for meeting vehicle
emission reduction targets, supported by increasing investments in charging infrastructure
and major vehicle manufacturers’ upcoming lineups of EVs. Additionally, the German
vehicle fleet size is assumed to remain constant. However, trends such as autonomous
driving and car sharing could lead to smaller vehicle fleets in the long term. As quantifying
such effects is challenging and rapid changes in the individual mobility sector until 2030
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seem unlikely, in the investigated scenarios, the fleet size is assumed to remain constant.
Figure 8 displays the forecasted yearly EV fleet sizes for both scenarios.
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Figure 7. (left): V2G flexibility potential for Base (fleet-averaged, one week; charging availability at
home), (right): V2G flexibility potential (fleet-averaged, one week; charging availability at home and
at work).
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Figure 8. Development of EV adoption in Germany for scenarios Base and Reduced.

Though the current diffusion of EVs is still in its early stages, the model predicts that
the adoption rate will speed up, especially after the year 2025. The model results also
suggest that by the end of the 2030s, market saturation can be anticipated, leading to a
reduction in the number of new EVs entering the market. Based on the two scenarios
considered, nearly the entire German car fleet of over 48 million vehicles will be replaced
by EVs between 2042 and 2045. Considering the predicted annual vehicle registrations of
up to 5.5 million in the base scenario and up to 4.8 million annual EV registrations in the
reduced scenario, the scenarios can be considered as an optimistic upper bound when com-
pared to yearly historical passenger car registrations in Germany, which averaged at about
3.5 million annual vehicle registrations [27]. In the fourth scenario Grid, the participation
rate of V2G vehicles in the electricity market is reduced to 20% by limiting the available
charging and discharging power uniformly. Charging and discharging power for trans-
mission grid operation remains the same, thus assuming an option for the transmission
grid operator to utilize available flexibility when it is needed due to transmission grid
congestion, even if the user does not participate in the electricity market.

On the transmission grid level, a dataset for Germany, including overhead lines and
cables above 200 kV, AC and HVDC lines connected to busbars and the present state of
the grid with projected expansions until 2030 is used. The grid dataset is connected to the
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regionalized data on the high voltage level via transformers from extra high voltage levels
to high voltage levels between 60 and 150 kV using the methodology described in [23].
The data include the present state of the transmission grid as well as projected expansion
measures in terms of deconstruction, replacement and construction of substations, busbars,
lines and transformers until the year 2030, as detailed in the German network development
plan. Technical data were derived from publicly available sources or approximated based
on comparable equipment.

4. Results

The underlying assumptions in the energy scenario assumed in this case study lead
to increased utilization of the German transmission grid, as the phase-out of coal gener-
ation and general reduction in available thermal generation capacities go hand-in-hand
with increased renewable generation, especially wind generation in Northern Germany.
Subsequently, the increased interconnection capacities with neighboring countries are used
extensively, as spatial differences in renewable generation favor higher exchange volumes.
The resulting required congestion management measures without V2G flexibility for grid
operation are shown in Table 3. As adjustment of exchange flows is penalized, the main
elements of congestion management in the scenario are positive thermal redispatch and
curtailment of RES generation. This is due to wind onshore and offshore generation in
Northern Germany being the main reason for the observed congestion. The left part of
Figure 9 shows the spatial distribution of lines with active bounds in the optimization
result, where congestion management measures have remediated line overloadings in
the congestion-free solution. Here, the structural overloading of transmission lines in the
north–south direction is observable. Negative thermal redispatch is the inferior solution
when minimizing the volume of adjustments, as RES generation at the source of the con-
gestion is more efficient in most hours. This result might differ when congestion alleviation
costs are included in the objective function, as RES generation does not have variable costs,
while the reduction in thermal generation units is economically beneficial. Maximum
positive dispatch adjustment ranges from 3392 MW in the scenario Work to 5745 MW in
the scenario Reduced, while minimum negative assignments range from −2797 MW in the
same scenario to −4700 MW in scenario Work. The hourly ordered distribution of dispatch
adjustments can be found in the right part of Figure 9. The maximum simultaneous demand
for congestion management is limited compared to the total available capacity from the
entire EV fleet. A primary reason for this is that due to the wide distribution over the entire
grid area, only limited capacities at suitable nodes are available.

Table 3. Congestion management measures without V2G flexibility.
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The impact of including V2G as an additional source of flexibility in the model can
be found in Figure 10. As expected, the volume of congestion management measures
decreases for all scenarios. While the Reduced scenario results in the most considerable
reduction, this scenario also reduces the EV electricity consumption and thus might lower
congestion before flexibility usage. Both Work and Base scenarios lead to a comparable vol-
ume decrease. Both perform better than the Grid scenario with a lower participation factor
when determining the national dispatch. This leads to the assumption that market-oriented
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dispatch of V2G is generally beneficial for reducing grid congestion, and additional mea-
sures are required when the initial V2G dispatch is lowered. The effect on CO2 emissions
and costs differs for the Work scenario on the one hand and the Base and Grid scenario
on the other hand. While relative cost and CO2 emission changes correlate very well for
each scenario, both increase for the Work scenario, while they decrease otherwise. This can
be explained by the higher correlation between conventional electricity demand and the
availability of charging at work, which is not beneficial for transmission grid operation in
this scenario.
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Figure 10. Results of V2G flexibility scenarios in comparison to reference case.

The model results for the sensitivity of the V2G share, as shown in Figure 11, allow a
more detailed interpretation of how transmission grid congestion varies depending on the
V2G adaptation rate. In the Grid scenario, the V2G share on the market side was reduced
to 20%. Here, however, the V2G share of the total EV fleet has been varied synchronously.
The 0% and 100% cases are represented by the Reference and Base scenarios, respectively.
It is observed that a proportional reduction in V2G share leads to an increased requirement
for congestion management measures. This can be explained by the fact that market
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actions are based on national capacities, while grid measures require spatial alignment to
address overloads. However, this effect is not observed in terms of emissions and costs,
where increasing V2G shares lead to reduced outcomes for both. As expected, the greatest
reduction in congestion management measures is observed in the Base scenario.
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5. Conclusions

In this paper, we presented a model framework to investigate the impact of V2G
flexibility on congestion management in the German transmission grid. Our approach
extends the existing literature by including user requirements for V2G as well as a highly
spatially disaggregated flexibility modeling allowing a combination with a detailed future
transmission grid model. We showed the effect of V2G for an ambitious scenario in the
year 2030. The model cascade includes an analysis of V2G user requirements and diffusion
modeling of projected EV uptake. These data have been used in the V2G flexibility modeling
approach to derive time-dependent V2G flexibility potential representing the input data
and boundaries for the transmission grid optimization model. The simulation of the
German transmission grid was conducted to identify the congested grid areas where V2G
could be most effective in alleviating grid stress. The results show that including V2G
in congestion management can reduce the required number of redispatch measures by
more than 10%. This is a conservative estimation compared to the results for eight million
EVs in [5] but can be explained by the more detailed spatial modeling in this approach,
leading to fewer EVs being able to effectively contribute to eliminating transmission grid
congestions. The results are also in the same range compared to the study on redispatch
in Austria [6]. However, we cannot observe a strong negative effect of EV flexibility
participating in the electricity market previously for the German case. The presented
approach also accounts for the minimum range requirements of EV owners and assesses
the adoption of EVs in Germany using the Bass diffusion modeling approach. The study
shows that congestion management measures such as positive thermal redispatch and
curtailment of RES generation are necessary to ensure the grid’s stability. However, the
introduction of V2G as an additional source of flexibility can significantly reduce the volume
of congestion management measures. The results suggest that market-oriented dispatch of
V2G is generally beneficial for reducing grid congestion. Nonetheless, additional measures
may be required when the initial V2G dispatch is lowered. The impact of V2G on CO2
emissions and costs varies depending on the scenario, with the Work scenario showing
an increase in both, while the Base and Grid scenarios show a decrease. In future work,
further decentralized flexibilities and interconnections between the European countries and
their EV transition plans can be included to investigate the role of V2G for transmission
grid operation. Especially, interdependence with other battery storage applications could
be helpful, if a high technical and spatial level of modeling detail can be sustained. While
the role of individual EV users has been included in this work, the high importance of
spatial alignment of flexibility requirements and V2G usage points to a need for research
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on flexibility potential on an individual level, determining the type and location of future
V2G potential needed, as not every EV can contribute to congestion relief equally.
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Abstract: The acceptance of e-motorcycles among German motorcyclists is the focus of this quantita-
tive longitudinal study. By comparing survey results from 2017 and 2022, questions about changes
in perception of e-motorcycles over time as well as possible stimulating factors are analyzed. The
research design is built upon literature research, a secondary literature analysis, and a survey of
motorcyclists. Statistical procedures are used for data analysis and interpretation. The literature
analysis enables the present study to be integrated into the current state of research. The findings
show that the willingness to consider an e-motorcycle as the next purchase was low in 2017 and
dropped from 20% to 5% in 2022, which contrasts with the rising sales figures of e-motorcycles in
the German market. Based on these findings, conclusions are drawn about the market potential of
e-motorcycles in Germany and an overview of the general assessments and concerns of motorcyclists
is provided.

Keywords: sustainable mobility; electro-mobility; e-motorcycle technology; motorcyclists; social
acceptance; behavioral economics

1. Introduction

One of the biggest problems associated with the operation of conventional vehicles
is the pollution emitted by combustion engines. Globally, internal combustion engines
in vehicles are now responsible for a large part of air pollution [1]. Electrically powered
vehicles are seen as a means of reducing the consumption of oil and gasoline and lowering
the emission of pollutants from individual traffic. Electro-mobility is playing an increasingly
important role in Germany. Car manufacturers such as Volkswagen, with its id-models, are
establishing a market segment. However, the focus is mainly on e-cars. While motorcycles
have been appearing in the e-mobility segment for some time, the public has hardly noticed
them. Currently, there is no state support for e-motorcycles in the form of purchase
premiums or environmental bonuses. In this respect, e-motorcycles can represent an
alternative to the e-car that has received little attention in Europe to date. Pollutant
emissions can be reduced by replacing conventional motorcycles with e-motorcycles. This
can be an important factor, especially in cities with high levels of air pollution. Looking
at the environmental impact of e-motorcycles compared to conventional motorcycles, it
should be noted that although the use of e-motorcycles reduces pollutant emissions, the
production of e-motorcycles consumes significantly more energy than the production of
conventional motorcycles [2]. While research on acceptance of e-motorcycles is growing,
it is rarely examined in the German context, e.g., [2–6]. Several studies have investigated
the specific technological, environmental, political, and economic factors of e-motorcycles
worldwide [3]. In these studies, it became obvious that the assessments and concerns
of motorcyclists play an important role in the acceptance of e-motorcycles. This paper
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first seeks to gain empirical insights into the acceptance level of e-motorcycles, obtained
by questioning German motorcyclists at a popular motorcycling spot, and then to detect
possible changes over time by executing the same survey at two different points in time. The
study aims to fill a research gap by answering the following two research-guiding questions:

RQ 1: Are there differences in e-motorcycle acceptance when considering gender
and age?

RQ 2: Has e-motorcycle acceptance changed between 2017 and 2022?
This study is divided into theoretical, methodological, and empirical parts. In the

theoretical part, the relevant scientific fields are presented and an overview of the current
state of research is provided. The methodological part explains the procedures used to
answer the research questions. Finally, the empirical part presents and evaluates the results
of the survey on acceptance of e-motorcycles.

2. Literature Review
2.1. Motorcycle Technology

According to German Federal Motor Vehicle Office (Kraftfahrzeugbundesamt) [7] in
accordance with Directive 2002/24/EG [8] and EU Regulation No. 168/2013 [9], motorcy-
cles are classified as two- or three-wheelers with an internal combustion engine of more
than 50 ccm or a speed of more than 45 km/h. Looking at the technology of e-motorcycles,
the electric motor and high-voltage-battery are the main parts that determine the vehicle
concept, and therefore the whole driving experience. While the weight of the battery is
considerable, the electric engine delivers maximum torque instantly, whereas the torque
curve of a combustion engine only reaches its maximum at a specific rotation speed [10].
There is no remarkable engine sound, no need for a gearbox, and the overall concept
is simpler. Due to less wear on parts, the effort required for maintenance and repair is
lower than for conventional motorcycles [11]. Looking at the ecological sustainability of e-
motorcycles, there is substantial potential to reduce in-use exhaust emissions worldwide [1].
E-motorcycles beat conventional motorcycles in terms of greenhouse gas emissions as well
as energy consumption in all categories: tank-to-wheel, wheel-to-wheel, and over the full
lifecycle [2].

2.2. Sustainable Mobility

In addition to the avoidance of pollutants, the operation of electric motorcycles offers
other advantages that sustainably reduce the burden on the environment. For example,
electric drives are significantly more efficient than conventional gasoline-powered engines,
as the energy in electric drives is converted directly into motive power while internal com-
bustion engines convert part of the energy into heat. In addition, electric motorcycles are
significantly quieter than conventional motorcycles, actively reducing the noise pollution
caused by traffic [12].

Despite the environmental benefits that would result from a switch to electrically pow-
ered motorcycles, there has not yet been any great success on the market for e-motorcycles.
This is due not least to their higher acquisition costs and existing technical problems.
Their lower range compared to conventional motorcycles, together with limited charging
infrastructure, has prevented the sustainable success of e-motorcycles to date [1].

In light of these issues, technological, economic, and social developments are im-
portant for the sustainable market development of e-motorcycles. A growing market,
especially in Asia, is leading to falling prices due to economies of scale and increasing
competitive pressure. Because of falling prices, the market attractiveness of e-motorcycles
is increasing. Market developments in East Asia show that falling electricity prices together
with rising gasoline prices and an increased demand for mobility can accelerate the market
for electrically powered vehicles. Thus far, however, developments have not resulted in an
increasing market share for e-motorcycles in either Europe or Asia. The main problem is
that e-motorcycles do not offer their buyers any direct benefits for their higher price com-
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pared to conventional motorcycles. In contrast, e-bikes offer their customers an additive
benefit through an additional e-drive compared to normal bicycles [2].

2.3. Social Acceptance and Behavioral Economics

Social acceptance is a key element in many debates surrounding the sustainability
transition [13,14]. Fournis and Fortin described a socio-technical paradox known from
the context of wind energy, where everybody supports wind energy while nobody likes
it in the nearby vicinity: “The social dimension has become a factor of equal importance
to technology in the wind farms implementation” [13]. This paradox can probably be
applied to sustainable mobility and the acceptance of e-motorcycles. In addition, various
studies have concluded that social acceptance is vital in terms of technology and innovation
transfer [15–18].

According to Upham et al. social acceptance can be understood as “A favorable or
positive response (including attitude, intention, behavior and—where appropriate—use)
relating to a proposed or in situ technology or socio-technical system, by members of a
given social unit (country or region, community or town and household, organization)” [17]
and p. 102 in [18]. Social-acceptance can be divided into three dimensions, as proposed by
Wüstenhagen et al. [14] and p. 3 in [18]:

• Socio-political acceptance points to the overall “Societal climate towards a technology
or innovation within a society” (p. 3 in [18]). In the case of this study, this dimension
would refer to how approaches to achieve sustainable mobility, in particular the
diffusion of e-motorcycles, are positively or negatively perceived by the public and
opinion leaders [14,18].

• Community or local acceptance focuses on “Attitudes and behaviors exhibited by
those indirectly affected” (p. 3 in [18]). Relating to e-motorcycles, this could describe
charging infrastructure located near residents.

• Market acceptance can be understood as “The process of market adoption of an
innovation” (p. 2685 in [14]). Stakeholders such as consumers and investors are
relevant in this dimension. Market acceptance is measurable, for example, in the
market share of motorcycles and related purchasing behavior (p. 3 in [18]).

Whether a general transition towards sustainable mobility, including an increase
in electric mobility, will be successful is dependent on acceptance levels in the above-
mentioned three dimensions, among other things. For this study, the sociopolitical and
market acceptance dimensions are the focus.

Looking at the situation in Germany from a behavioral economics perspective, Augen-
stein [19] stated there seems to be a dichotomy of opinion. On the one hand, people have
a generally positive attitude towards the topic and diffusion process of electro-mobility.
On the other hand, there is a blockade against recognizing electro-mobility as a holistic
substitute for existing drive systems [19].

However, this study focuses specifically on the e-motorcycle vehicle segment. In
Southeast Asia, where transportation is dominated by motorcycles, the economic aspect
of the customer plays an essential role, as, apart from the European view, the motorcycle
represents an essential medium for locomotion [1]. Because an e-motorcycle has lower
consumption and emission values than a conventional motorcycle, one would think that in
these countries there is a fundamental acceptance and will to opt for an e-motorcycle. How-
ever, a societal dichotomy is evident here as well. A study by Guerra [20] which looked at
the acceptance of e-motorcycles in Indonesia showed important technical prerequisites that
must be in place to promote social acceptance. The time required for recharging, recharging
infrastructure, and higher purchase costs in relation to conventional motorcycles do not
yet overlap with the ideas of potential customers. From Guerra’s empirical analysis, it is
possible to depict individuals who possess the following characteristics and demonstrate
acceptance regarding e-motorcycles. This applies to younger people who are critically
concerned with environmental influences and lead a healthy lifestyle [20].
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Despite the ecological advantages, market success is not seen apparent due to ad-
ditional costs and technological immaturity. With a share of nearly 2% of the German
motorcycle sales in 2021, e-motorcycles are a small yet fast-growing segment, with an
increase of 149% in the first half of 2022 [21]. Their relatively low range in combination
with limited charging infrastructure is seen as a main disadvantage for e-motorcycles [1].
Looking at Germany, the generally positive attitude towards e-mobility contrasts with a
low willingness to change mobility patterns and technologies [18,19]. Focusing on the mo-
torcycle segment in Germany, purely economic criteria cannot explain customer behavior.

Several German studies focus on the social acceptance of electric vehicles on the
demand side, especially by private users [18,22,23]; however, until now research has largely
neglected the role of motorcyclists in the transition to e-mobility [2,5].

3. Methodology

The research design was built around literature research, a secondary literature analy-
sis, and a survey of motorcyclists. Statistical procedures were used for data analysis and
interpretation. A literature analysis enabled the integration of the present study into the
current state of research [24,25].

A longitudinal quantitative survey based on a non-probabilistic convenience sample
was used to build the empirical core approach of this study [26–28]. By using standardized
closed questions, comparable data should be generated to answer the research questions.
The questions included in the questionnaire can be divided into two basic types. On the one
hand, there were identification questions, the aim of which was to identify the respondent,
for example, by gender and age. Participants were asked about their gender (male/female)
and their age. Regarding the latter, they were asked to assign themselves to one of the
following age groups: younger than 25, 25–29 years, 40–59 years, or older than 60 years.
No identification questions asked about personal information which could endanger the
anonymity of the respondent. On the other hand, the selection type questions provided
alternative options to answer a question. Regarding these questions, the respondent
decided on a combination of a yes–no type, where only one yes or no answer can be
selected, for example, Q2 “Would you consider an e-motorbike for your next motorbike
purchase”? and Q5 “Would you buy an e-motorbike if a state bonus of approximately EUR
4000 were introduced, as in Italy/Austria”? A variation of the selection type question was
used for Q1, in which respondents could choose one of several options about whether
or not they already have experience with e-motorbikes. In addition, scale was used for
several questions, allowing respondents to develop a certain tendency with respect to
a statement concerning the maintenance costs, noise level, and reduced environmental
impact of e-bikes (Q3). This scale was used to learn about possible concerns the participants
might have related to e-motorbikes regarding state-of-the-art of the technology, charging
times, and charging infrastructure (Q4). Participants could choose on the following scale:
strongly agree, somewhat agree, somewhat disagree, strongly disagree, and no response.
As a third type, multiple-choice questions were used in the context of the selection type of
question, in which more than two answer categories were selectable [29–31]. This question
type applies to Q6, in which participants were asked whether they already own an e-bike,
e-car, or e-scooter. The content of the questions was derived from the literature review
mentioned above, e.g., other studies about acceptance aspects [18–20].

With the help of a scientific questionnaire, we analyzed the acceptance of e-motorcycles.
The Löwensteiner Platte in the town of Löwenstein in Baden-Württemberg was selected
as the location for the survey. This choice was based on the high visitor frequency of
motorcyclists who rest at this location. In addition, the surveys were conducted at the end
of the regular motorcycle season, on 28 October 2017 and again on 22 October 2022. Both
times, 41 people were surveyed. This included 33 male and 8 female motorcyclists. The
survey contained seven questions, two of which were used to identify the respective age
classification and gender of the person. The remaining questions were intended to elicit
clarifying results on acceptability in the areas of vehicle technology, sustainability, and

459



World Electr. Veh. J. 2023, 14, 326

behavioral economics. The set of questions was mostly identical for the two survey dates
in order to allow a comparison of changes in acceptance of e-motorcycles. Two questions
were added to the survey in 2022 to investigate willingness to buy an e-motorcycle if it
were supported with a state premium and whether the participants already owned another
type of e-vehicle.

4. Findings
4.1. Differences in E-Motorcycle Acceptance Considering Gender and Age

The mean value of the communicated answers was classified into four asymmetric
categories when evaluating the questionnaires. Thus, the significance of the results in
columns one and four of Table 1 of a smaller interval should be strengthened.

Table 1. Result classification of the mean values (own table).

No Acceptance Rather No Acceptance Rather High Acceptance High Acceptance

X ≤ 1.5 1.5 < X ≤ 2.5 2.5 < X ≤ 3.5 3.5 < X ≤ 4

The results of the survey yielded a cumulative mean value of 2.1 in 2017 and 1.7 in
2022, which means that there is a rather negative consensus regarding the acceptance of
e-motorcycles within the scope of this study (Table 2).

Table 2. Result classification of the mean values for 2017 and 2022 (own table).

Mean Value 2017 2022

Frequency 1 (≤ 1.5) 4 14

Frequency 2 (1.5 < x ≤ 2.5) 29 25

Frenquency 3 (2.5 < x ≤ 3.5) 8 2

Frequency 4 (x > 3.5) 0 0

41 41

In order to answer the first research question (“Are there differences in e-motorcycle
acceptance by considering gender and age”?), the means difference test between gender and
the total sum of the mean value was used. In this way, a low link can be found with a value
of −0.27 for 2017 and 0.17 in 2022. Thus, the results for women were never in the range of
positive acceptance. Men, on the other hand, tended to rate acceptance positively, with a
percentage of 24%. It was striking that no results could be assigned to a high acceptance of
a value greater than 3.5 in either year. When considering the means difference test between
the criterion of age and the mean value, a higher degree of link of 0.40 can be determined
for 2017, whereas in 2022 the link dropped to −0.15. Only male persons with an age of over
60 years were classified as having a rather high level of acceptance, which was indicated by
a value greater than 3.0.

4.2. Differences in E-Motorcycle Acceptance between 2017 and 2022

To answer the second research question (“Is there a difference in e-motorcycle accep-
tance between 2017 and 2022”?), the participants’ answers that showed tendencies towards
acceptance or non-acceptance were analyzed.

The results reveal a rather critical view of e-motorcycles. Even though the prominence
and visibility of e-motorcycles among participants increased by 25% in 2022, the willingness
to buy such a vehicle decreased by 27% compared to 2017 (Table 3).

The willingness to consider an e-motorcycle as the next purchase was low in 2017, and
dropped even further from 20% (eight survey participants) to 5% (two survey participants)
in 2022. This is interesting, as knowledge about e-motorcycles grew significantly over this
period. The participants seemed to be less tentative or show greater acceptance with regard
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to other kinds of electrically powered vehicles, as 15% of the participants already owned
an e-bike, e-scooter, or e-car.

Table 3. Result classification of the mean values for 2017 and 2022 by survey question (own table).

Year Age Q1 Q2 Q3.1 Q3.2 Q3.3 Q4.1 Q4.2 Q4.3 Q5 Q6 Average MV
(Without Q5+6)

2017 Mean
value 2.05 1.39 1.59 2.61 1.80 2.63 2.19 2.08 1.73 2.09

2022 Mean
value 2.88 1.73 1.15 1.87 1.39 2.25 1.81 1.79 1.48 1.15 0.20 1.67

Delta 2022–2017 0.83 0.34 −0.44 −0.74 −0.41 −0.38 −0.38 −0.28 −0.26 −0.42

Change in %
compard to 2017 40% 25% −27% −28% −23% −15% −17% −14% −15% −20%

In 2022, 78% of the participants considered the technology to be in the development
stage. The lower costs of ownership in comparison with a conventional motorcycle were
not seen as a countable advantage by 74% of respondents. The greater environmental
friendliness and the lower noise emission were not relevant factors for 58% of the motor-
cyclists. On the contrary, the missing acoustic profile of a combustion engine seemed to
be a negative factor for the acceptance of e-motorcycles for 88% of respondents. Charging
duration and low range, together with limited charging infrastructure, were seen as weak-
nesses for e-motorcycles. Adding to the picture, only 5% of those questioned would buy an
e-motorcycle in the case of a state purchase bonus of approximately EUR 4000, such as is
available in Italy or Austria.

In conclusion, the acceptance scores consistently decreased slightly between 14% and
28% (Q3.1 to Q4.2) (Table 3). In addition, the general acceptance indicator (average of all
MV) decreased by 20% when comparing the results of the 2017 and 2022 surveys. These
are remarkable results, as the sales figures of e-motorcycles in the German market rose
significantly in the first half of 2022 [1].

When looking at the results of the two additional questions used in the 2022 survey,
social acceptance remains low even in the scenario where incentives are in place. Only two
of the 41 survey participants (5%) would be willing to buy an e-motorcycle if they were to
receive a state subsidies of EUR 4000 such as the one provided in Austria and Italy. Thus,
when considering the second research question, the social acceptance of e-motorcycles
among participants remained low and even dropped from 2017 to 2022. Presumably
this is because the diverging driving experience of e-motorcycles, continuing technical
immaturity, and high acquisition costs have not been resolved from the viewpoint of the
survey participants.

5. Discussion

Unlike in other countries, e.g., Asian countries, two-wheeled vehicles play a minor
role in everyday traffic in Germany. In many Asian countries, motorcycles and scooters
form an important means of transport, as they are cheaper, space saving, and often replace
cars [2,4]. In Germany, on the other hand, the car is the main means of transportation for a
large part of the population with regard to commuting. In 2020, 68% of Germans regularly
used a car to reach their workplace. Motorcycles fell into the other 1% of vehicles [32]. Even
though urban areas in Germany are electrified, two-wheeled vehicles are increasingly used
for fulfilling micro-mobility needs or in the context of sharing offers in more sustainable
way, e.g., e-scooters or e-bike-sharing, while riding a motorcycle is predominantly a leisure
activity [1,2]. The power of the engine and sound of the motor are part of the experience for
many motorcyclists, and might not be same when riding an e-motorcycle. For many users
riding such a powerful and loud vehicle is part of their lifestyle. The “move into the wild”
syndrome, as described for car drivers by Viola [33], could be applied to motorcyclists as
well. The results of this survey support the above-mentioned statements, as the participants
viewed the missing or varying features of e-motorcycles concerning the motor sound and
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noise as negative attributes. As motorcycling in Germany is mainly a leisure activity, the
importance of positive emotions such as happiness, flow, or self-image congruency as part
of the driving experience might be higher than in other countries in which motorcycles are
mainly used for transport and commuting. In addition to terrain characteristics, vehicle
dynamics are important features, while range and accompanying infrastructure might
contribute to the driving experience as well [34,35]. Thus, the driving experience of e-
motorcycles might be different from riding a combustion engine motorcycle, potentially
leading to lower acceptance of e-motorcycles among the participants.

Market acceptance, i.e., the adoption process of market innovations, seems to be slow
for e-motorcycles when looking at the “traditional” consumer segments of motorcyclists.

There is only a limited supply of e-motorcycles from the leading motorcycling com-
panies; in particular, the German manufacturer and market leader BMW does not offer
e-motorcycles. Therefore, there is no electric equivalent model for the best-selling conven-
tional motorcycle in Germany, the BMW GS 1250. At the same time, there is strong growth
in sales figures driven by new market competitors. It would be interesting to find out
whether new target groups are responsible for the growing sales figures of e-motorcycles
and how this increase can be explained.

6. Conclusions

Our analysis of motorcycle technology, ecological sustainability, and behavioral eco-
nomics reveals insights into the structure of the e-motorcycle segment. The relevant aspects
were addressed through two surveys during 2017 and 2022, showing that motorcyclists’
acceptance of e-motorcycles was relatively low and declined over the study period. Our
results further suggest that technical immaturity cannot be overcome through incentives.

Considering limitations, the surveys only asked about the lower maintenance costs
of e-motorcycles as a possible important factor for acceptance. The potentially higher
purchase price of e-motorcycles could be another impeding factor, along with technical
immaturity; however, this factor was not considered in the survey. In addition, it has to
be mentioned that this study only involved motorcyclists in South Germany, and used
a non-probabilistic convenience sample. Apart from these limitations, the sample size
is very small. Due to these framework conditions, the power of generalization of these
findings is limited. Further research steps should consist of sending the questionnaire to
other European regions.

In terms of the social implications and the dimension of socio-political acceptance of
e-motorcycles, the results of this study suggest that even though there is a political desire
for an increase in electrically powered vehicles and traffic, technical immaturity leads to
them finding little acceptance in the market among classic motorcyclists.

Regarding practical and managerial implications, the results of this study could help e-
motorcycle manufacturers to enhance their marketing and product strategies. Trying to sell
e-motorcycles to classic motorcycle customers using established marketing concepts and
selling propositions does not seem to be very promising, while investing in research and
development to create the best e-motorcycle to meet classic customer requirements might
not succeed either. Instead, the challenge may involve creating new marketing strategies
against the background of e-motorcycle technology, sustainable mobility, social acceptance,
and customer behavior. One promising way to increase acceptance of e-motorcycles could
be to create new types of two-wheelers which may not be direct competitors to classic
motorcycles. This could be achieved by using additional engineering degrees of freedom
available thanks to not having to integrate a combustion engine. In addition, new ways of
promoting e-motorcycles should be developed and tested, for instance, not rationally as
better means of ecological and sustainable transport, but emotionally charged, for example,
as a joyful and exciting adventure for the young and brave.

From the managerial perspective, it is important to examine whether the traditional
motorcycle brands have the potential to be expanded to e-mobility or whether new brands
have to be created. To reach new customer types, e-motorcycle manufacturers need better
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overviews as well as insights from possible focus groups. The findings of this study
could help decision-makers to better understand the mindset of motorcyclists. It could
be a promising approach to use the results of this study to identify and analyze these
customer segments. Theoretical implications could be developed in further research by
following up on the questions around whether traditional motorcyclists are reluctant to buy
e-motorcycles and what the profiles of the new e-motorcycle buyers are from marketing
and behavioral economics perspectives.
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Abstract: Light electric vehicles are best suited for city and suburban settings, where top speed and
long-distance travel are not the primary concerns. The literature concerning light electric vehicle
powertrain design often overlooks the influence of the associated driving missions. Typically, the
powertrain is initially parameterized, established, and then evaluated with an ex-post-performance
assessment using driving cycles. Nevertheless, to optimize the size and performance of a vehicle
according to its intended mission, it is essential to consider the driving cycles right from the outset, in
the powertrain design. This paper presents the design of an electric powertrain for multipurpose
light electric vehicles, focusing on the motor, battery, and charging requirements. The powertrain
design optimization is realized from the first stages by considering the vehicle’s driving missions
and operational patterns for multipurpose usage (transporting people or goods) in European urban
environments. The proposed powertrain is modular and scalable in terms of the energy capacity of
the battery as well as in the electric motor shaft power and torque. Having such a possibility gives
one the flexibility to use the powertrain in different combinations for different vehicle categories,
from L7 quadricycles to light M1 vehicles.

Keywords: charging; driving cycles; electric powertrain design; induction motor; light electric vehicle

1. Introduction

Transportation is one of the fastest-growing sources of greenhouse gas emissions,
accounting for 78% of the rise in emissions from 1990 to 2019 [1]. In 2020, transportation
emissions declined by 14% solely due to the COVID-19 pandemic but witnessed a swift
12% increase in 2021 [2] following the relaxation of lockdown measures. Meanwhile, the
European Union and governments worldwide have implemented various regulations and
measures aimed at reducing transportation emissions on a global scale [3–7]. For instance,
on 19 April 2023, the European Union and the Council modified Regulation (EU) 2019/631
to Regulation (EU) 2023/851 to enhance the CO2 emission performance criteria for new
passenger cars and new light commercial vehicles, aligning them with the heightened
climate goals of the European Union. Notably, this amendment bolsters the emission
targets and establishes a goal of 100% emission reduction for both cars and vans starting in
2035 [8].

Replacing internal combustion engine (ICE) vehicles with electric vehicles (EV) is
a step in the right direction towards reducing emissions and supporting climate targets;
however, this action alone is not enough to solve the entire problem. Additional efforts such
as integrating clean energy sources, optimizing powertrains based on vehicles’ missions,
promoting shared vehicle usage, battery reusing, and interoperable charging technology [9]
are required.
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Light electric vehicles (LEVs) are particularly suitable for urban and suburban envi-
ronments, where high speed and long range are not the main priorities. LEVs have lower
energy consumption and higher vehicle weight-to-payload ratios, and they require fewer
resources for production compared to other EVs [10]. This makes them more efficient and
affordable, especially for large-scale production and shared mobility scenarios.

Table 1 provides an overview of the specifications of some L7e-C category EVs avail-
able on the market. All the vehicles listed in this table meet the European regulations
outlined in (EU) No 168/2013 [11], which specify that L7e-C vehicles must have a maxi-
mum continuous rated power of no more than 15 kW and a maximum speed of no more
than 90 km/h.

Table 1. Specifications of some L7e-C category EVs available on the market.

Name Power (kW) Max Torque
(Nm)

Max Speed
(km/h) Voltage (V) Battery Type,

Capacity (kWh) Range (km)

Honda Micro
Commuter 15 N/A 80 N/A Li-ion, N/A 96

Mahindra
e-Supro van 15 90 60 72 Li-ion, 15 115

Mahindra Treo 7.5 42 55 48 Li-ion, 7.3 141
Microlino 11 89 90 N/A Li-NMC, 14 230
Renault Twizy 13 57 80 58 Li-ion, 6.1 100
Regis Epic0
Compact 15 N/A 75 144 Li-NMC, 15.2 140

PILOTCAR,
P-1000 10 102 55 48 Li-ion, 26 220

Tazzari Zero 15 150 90 80 Li-ion, 14.2 150

The design of a powertrain starts by defining various quantities such as power, torque,
speed, voltage, battery capacity, and range of the vehicle. The power and torque re-
quirements of an electric traction motor depend on the vehicle’s desired performance
characteristics, size, and weight. An accurate definition of the performance characteristics
and, therefore, a reduction in the vehicle’s energy consumption require knowledge of the
vehicle’s actual driving cycles and mission. As an example, Lindh et al. [12] used an actual
driving cycle of a bus route in Lappeenranta to investigate the speed and torque require-
ments for a heavy-duty vehicle. Based on these requirements, the authors proposed a
permanent magnet traction motor design suitable for hybrid buses. However, the literature
on LEV powertrain design rarely considers the associated driving missions. Instead, the
powertrain is first parametrized and settled, and then, an ex-post-performance assessment
is conducted using various driving cycles [13–16].

Different battery technologies for EVs are reviewed and compared in [17]. Lithium-ion
(Li-ion) batteries are the most frequently utilized battery type in EVs due to their signifi-
cantly higher energy density (Wh/kg) compared to other alternatives. The two most used
Li-ion chemistries are NMC (nickel–manganese–cobalt) and LFP (lithium–iron–phosphate).
NMC cells provide a higher energy density and have a better charging performance at
low temperatures, whereas LFP cells are more affordable and have a longer cycle life. The
high energy density of NMC is vital for providing sufficient ranges for everyday electric
driving, especially for LEVs, in which the mass and physical dimensions of the battery have
strict limitations. On the other hand, the price range of LFP would better fit with LEVs.
However, if an LEV is to be charged at a reasonable speed in cold-climate environments,
expensive and heavy thermal management systems would be required in the case of LFP
batteries. Hence, optimal cell chemistry is a compromise of price, energy density, and
cold-climate performance. The battery capacity is determined based on various factors,
such as the vehicle’s energy consumption, the expected driving conditions, the desired
driving range, the weight of the vehicle, and the efficiency of the electrical motor. Battery
cost is a significant factor contributing to the price of EVs. The cost breakdown of batteries
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can be classified into four primary segments: materials, labor, assembly, and overhead.
Materials constitute the largest portion, representing approximately 60% of the total battery
cost. Anticipated reductions in battery cell and pack costs are expected to occur gradually
due to advancements in battery material chemistry, improvements in battery cell design,
and a decrease in assembly expenses resulting from increased production volumes and
learning. For instance, it is predicted that the global price per kWh of a battery pack will
decrease by approximately 64% in 2050 compared to 2019 [9]. Nevertheless, the current
high cost of batteries makes small LEVs a more cost-effective choice compared to larger
EVs, given their smaller battery size.

The voltage levels of LEVs available on the market typically range from 48 to 80 V. The
specific voltage level of an LEV is determined during the design stage, considering several
factors such as the power and torque requirements of the motor, the desired range of the
vehicle, and the weight and cost constraints of the battery pack. Using higher voltages
in electric vehicles can be more cost-effective for energy distribution as lower currents
require smaller cable cross-sections and connectors. In addition, higher voltage levels offer
greater powertrain scalability towards higher vehicle categories with superior performance
characteristics, such as increased torque, power, and vehicle speed.

In this paper, we present the design of a modular and scalable electric powertrain for
L7e-C category EVs with multipurpose usages (transporting people and goods), with a
focus on the motor, battery, and charging requirements. The modularity and scalability
of the proposed electric powertrain allow one to modify each component according to
the vehicle’s mission, without affecting the overall powertrain concept. This approach
facilitates the adaptation of the powertrain for use in higher classes of vehicles, such as
M1. To ensure that the powertrain components are rightly sized according to the vehicle’s
mission, the associated driving missions and operational patterns are considered in the
design from the very first stages.

This research has been presented at the EVS36 Symposium in Sacramento, USA, in
June 2023.

2. Materials and Methods
2.1. Vehicle Requirements and Specifications

The first step in powertrain design involves setting the base specifications and require-
ments of the vehicle. As mentioned previously, this paper focuses on L7e light four-wheel
EVs. To comply with European regulations, the vehicle properties and specifications were
defined based on regulation (EU) No 168/2013 [11], as follows: a mass in running order of
up to 600 kg (without the battery and payload), a top speed of 90 km/h, and a maximum
continuous power of 15 kW. The total gross weight of the vehicle is assumed to be 1200 kg
(150 kg of which is the battery and 450 kg of which is the payload). The 1-D vehicle
model was described using basic parameters with the following values: wheel’s radius
Rw = 0.31 m, vehicle’s front area Av = 2.17 m2, wind drag coefficient Cx = 0.3, tires’ pressure
pt = 3 bar, mass density of air ρ = 1.2 kg/m3, and rolling resistance coefficient Cr, which is a
function of vehicle speed and whose value varies between 0.0083 and 0.011.

Other basic properties required for the powertrain design include the vehicle’s driving
range and its torque and power profiles. To ensure that the powertrain components are
appropriately sized according to the vehicle’s mission, the associated driving missions
and operational patterns should be considered from the very first stages of design. For
this purpose, we used a driving cycle generated based on typical trips in a European city,
Helsinki, to study the vehicle’s driving range, torque–speed profile, and power require-
ments. This driving cycle was dynamically created using an in-house simulation tool [18]
taking into account the speed limits, traffic lights, road curvature, historical traffic data,
and predefined limits for acceleration and deceleration. The specific driving cycle was
chosen from a large set of routes and their corresponding driving cycles to represent a
typical trip in the Helsinki region, with a mix of urban and suburban driving conditions. It
is worth noting that the presented driving cycle also included terrain shape in the form of
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road elevation changes during the velocity profile. The speed and elevation profiles of this
driving cycle are illustrated in Figure 1.
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Figure 1. Simulated speed and elevation profiles of the Helsinki region with a mix of urban and
suburban driving conditions.

According to the highest allowable vehicle speed (90 km/h), a wheel radius of 0.31 m
(R15), and the maximum electric motor rotational speed (10,000 rpm), we defined a gear
ratio of 12:1 with a mean efficiency of 95%. Applying the identified Helsinki driving
cycle and incorporating the upper boundary conditions, we calculated the vehicle’s needed
torque and shaft power requirements. Figures 2 and 3 present the power and torque profiles
of an electrical machine for the Helsinki driving cycle, without and with considering a
450 kg payload in the vehicle’s weight, respectively.
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driving cycle with a total vehicle weight of 750 kg.

Further, the energy consumption at each driving point and the cumulative needed
energy within one cycle were calculated. The overall energy consumed in the case of an
unloaded vehicle in one driving cycle (38.2 km), including the road profile in the form of
elevation (Figure 1), is 2.73 kWh. In the case of a fully loaded vehicle (with a payload of
450 kg), the consumed energy is 3.56 kWh. To achieve a range of approximately 100 km and
enable shorter charging times even with standard three-phase home charging facilities, the
battery must provide enough energy to allow the vehicle to complete at least three Helsinki
driving cycles, covering a total distance of 114.6 km. For such a distance, the electric energy
consumed by the battery ranges between 8.16 kWh and 10.68 kWh. If we assume a 30%
battery safety margin, the battery should have an energy capacity in the range of 15 kWh.
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Figure 3. (a) Power–speed and (b) torque–speed profiles of an electrical machine for the Helsinki
driving cycle with a total vehicle weight of 1200 kg (including a 450 kg payload).

Based on the calculated torque and power profiles (Figures 2 and 3), the following
electro-mechanical requirements were established for the design of the electrical machine:

• The electrical machine should be capable of delivering a shaft power of 15 kW in
the constant power operational region, with this region extending up to a speed of
90 km/h corresponding to a motor speed of 9240 rpm (Figure 2a).

• The machine should have a nominal torque of approximately 40 Nm (Figure 2b) in the
case of an unloaded vehicle. Meanwhile, the maximum power and maximum torque
should reach up to 23 kW and 60 Nm, respectively, due to the vehicle’s full payload
(Figure 3).

• The electric machine’s torque–speed curve should have a corner point between 35
and 50 km/h, corresponding to a motor speed of around 3600–5100 rpm, to ensure
that the torque demands remain within the region of highest efficiency for the electric
machine.

• The variation of the torque between 40 Nm and 60 Nm should depend on the vehicle’s
payload and the driving cycle’s starting condition.

2.2. Traction Motor Design

Induction motors (IMs) and permanent magnet synchronous motors (PMSMs) are the
most used electric traction motors in EVs. IMs are robust, reliable, and cost-effective, and
their torque characteristics are proportional to the current. PMSMs, on the other hand, have
higher efficiency, power density, and torque density than IMs. PMSMs perform better at
high speeds and can produce high torque at low speeds, but they are more complex and
expensive to produce due to the use of critical raw materials.

The type of traction motor chosen for an EV depends on the specific requirements.
PMSMs are often used for high-performance EVs, while IMs are preferred for low-cost EVs.
In this work, we chose an IM for the traction motor due to its robustness and to avoid the
use of rare earth materials.

The electromagnetic field of an induction machine is governed by

∇×
(

1
µ
∇×A

)
= J, (1)

where µ is the permeability; A is the magnetic vector potential; and J is the current density.
In a 2D analysis, A and J have components only in the axial direction. The right-hand side
of (1) equals zero in the air gap and in the laminated iron of an electrical machine as the
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current density is zero or close to zero in those areas. Considering eddy currents induced
in the rotor’s winding, one can present the field equation of the rotor bars as

σ
dA
dt

+∇×
(

1
µ0
∇×A

)
=

σ∆vm

l
ez, (2)

σ being the rotor bar’s electrical conductivity, ∆vm being the voltage drop between the
ends of the mth bar, l being the total length of the bar, and ez being the unit vector in the
axial direction.

The traction motor was simulated using the 2D transient magnetic finite element
method in the Altair Flux software. The end-region elements (end-winding and end-ring
resistances and leakage inductance) were analytically calculated and added as lumped
elements to the external electrical circuit. The boundary conditions and requirements for
designing the motor were selected for the gear ratio 12:1 as follows:

• A continuous power of 15 kW through the whole speed range (Figure 2a) and a peak
power of 23 kW (Figure 3a).

• A nominal torque of 40 Nm (Figure 2b) and a maximum torque of 60 Nm (Figure 3b)
• A maximum torque of 70 Nm at zero speed to overcome the curb (calculated based on

the wheel’s size, the vehicle’s mass, and a curb height of 15 cm).
• A nominal phase RMS voltage in the range of 125 V to 175 V, allowing lower electric

currents and smaller electric power wires cross-sections.
• The maximum rotational speed of the motor should be 10,000 rpm, due to the 90 km/h

maximum vehicle speed limitation, wheel size, and gearbox ratio).
• A maximum motor efficiency > 92%.

To minimize the motor’s size and maximize its overload operational capabilities, we
selected a liquid cooling system instead of an air-cooling system. The liquid cooling system
offers a higher heat removal capability, especially when the vehicle is heavily loaded at
lower rotational speeds.

Considering these conditions and requirements, we simulated and studied various
IM designs. A comprehensive analysis was conducted to determine the optimal number
of stator slots and rotor bars to minimize the torque pulsations at the nominal operating
point [19,20]. The analysis showed that the lowest torque pulsation occurred with 36 stator
slots, 50 rotor bars, and 2 pole pairs. However, using 50 rotor bars would result in a thin
rotor tooth. To ensure stable manufacturing and adequate rotor strength, the design with
the second-lowest torque pulsations, namely, 30 rotor bars, was chosen. This decision aligns
with our cost-effectiveness objectives, as the combination of 36 stator slots and 30 rotor bars
can be produced using conventional methods and readily available electrical laminations.
In addition, the shape of the rotor bars was chosen to enhance the critical torque value
and reduce factors such as eddy current losses, magnetizing currents, and manufacturing
complexity. The lamination design and 3D form of the proposed traction motor with liquid
cooling are presented in Figure 4a and Figure 4b, respectively. The winding layout, shown
in Figure 4c, has a double-layer fractional slot winding with a coil span of eight slots and a
winding factor of 0.945.

To reach a cost-effective scalability, the cross-sections of the stator and rotor lamination
were fixed, and the axial length of the motor (with proper adjustment of the number of
turns in the stator winding) was varied according to the voltage and power requirements.
Different axial lengths were investigated to determine the optimized length for the motor.
Table 2 presents the main parameters of three of these designs. The results of these three
designs, along with the analysis of the crossroad dynamics in the form of acceleration rates,
will be presented in Section 3.
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Table 2. Design specifications of the proposed traction motors.

Motor Parameter Motor 1 Motor 2 Motor 3

Continuous power (kW) 15
Core material Cogent M270-35A
Material of stator winding and rotor bars Copper
Number of pole pairs 2
Number of stator slots/rotor bars 36/30
Stator core outer diameter (mm) 170
Stator core inner diameter (mm) 96.8
Air gap width (mm) 0.4
Shaft diameter (mm) 32
Thickness of lamination (mm) 0.35
Rotor end ring segment resistance (Ω, 100 ◦C) 3.04 × 10−6

Rotor end ring segment inductance (H) 4.82 × 10−9

Core length stator/rotor (mm) 200 150 100
Number of turns per coil 5 6 8
Stator winding one-phase resistance (Ω, 100 ◦C) 0.054 0.0672 0.1011
Stator end winding inductance (H) 4.14 × 10−5 5.98 × 10−5 1.07 × 10−4

Peak power (kW) 47.5 40.6 29.9
Base speed (rpm) 4000 4380 4680
Peak torque (Nm) 127.0 97.3 66.9
Maximum efficiency (%) 94.5 93.9 92.5
Total weight (kg) 46.1 38.3 30.8

2.3. Battery and Frequency Inverter

Based on the above-defined nominal phase RMS voltage level, the maximum allowable
battery voltage could range from 340 V to 475 V. Another voltage limit was set by the off-
the-shelf frequency inverter needed to drive the designed traction motor. We decided to
use a SEVCON Gen4Size8 frequency inverter [21] with a maximum voltage limit of 400 V.
To achieve the maximum voltage level of 400 V, we used 96 Li-ion NMC battery cells from
KOKAM (model: SLPB100216216H [22]) connected in series, each having a capacity of
40 Ah. When using cells with an average voltage of 3.7 V, the battery stack delivers a
maximum energy of 14 kWh. The proposed battery assembly provided sufficient energy to
fulfill the defined range of the vehicle.

471



World Electr. Veh. J. 2023, 14, 309

The battery designed for the vehicle had integrated BMS, contactors, fuses, DC/DC
converter (400 V/12 V, 1.2 kW), and air-cooling fans in the battery box (Figure 5). This
battery design featured an energy storage system with an energy capacity of 14 kWh,
fulfilling all the requirements regarding voltage, vehicle range, overload capability, fast
charging, and safety concerns (battery’s structural integrity). Moreover, the battery was
built modularly, so its energy capacity could be scaled up to 25 kWh, for example, for the
M1 vehicle type just by substituting the battery cells with the ones that have a higher 60 Ah
capacity, such as the KOKAM Model: KCL216060EN1 [23].
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Figure 5. Modular battery for different vehicle classes (L7 to M1).

2.4. Charging Requirements

A detailed analysis of the vehicle’s utilization was conducted to determine the required
power of the charging system. In this work, vehicle utilization is referred to as duty cycles
and encompasses the trips that a vehicle is expected to make during the day. The duty
cycles are presented as schedule-format descriptions of the driven route’s origins and desti-
nations, non-driving related activities (such as cargo loading and unloading), and breaks
from all activities when the vehicle is not occupied. The cycle profiles can be generated
via mesoscopic simulations such as activity-based transport modeling (ABTM) [24]. We
implemented the duty cycles into an in-house microscopic simulation tool [18] to study
the charging requirements of the vehicle while considering the driving cycles, vehicle
dynamics, and charging module. In the simulation, it was assumed that a fleet of about
28,000 vehicles with a utility rate of 50% had been distributed around the capital region of
Helsinki (i.e., Helsinki, Espoo, Vantaa, and Kauniainen), providing a shared fleet for 24/7
transportation (e.g., people during the day and goods at night).

Figure 6a shows the simulated daily distance driven by each vehicle in the fleet. As
shown in this Figure, the average distance exceeds 200 km, and some vehicles travel over
300 km per day. Figure 6b displays the maximum available charging time between each
trip, assuming that charging is feasible at all locations where the vehicles park.
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To gain an understanding of the vehicle’s operation in a more realistic situation where
charging is not always possible, the parking locations of the vehicles from the initial
simulations were analyzed and the 100 most-often-used locations were set to be equipped
with a charger, while the other parking locations were left without charging facilities. Out
of the 100 charging locations, 20% were equipped with fast 7 kW chargers and the rest
with slower 3.7 kW chargers. The results of these two charging scenarios are compared in
Section 3.

3. Results and Discussion

Figure 7 presents the efficiency maps of the three motor designs, which were calculated
using the 2D finite element method. The efficiency maps show the maximum achievable
power values without any electric current limitations. As can be seen from the efficiency
maps, Motor 1, with a corner point at 4000 rpm, has the largest efficiency area in comparison
to the other motors.
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The vehicle’s dynamics were simulated with these three motor designs. In the simula-
tion, the resistive forces acting on the vehicle (e.g., slope, friction, air drag) and the total
inertia, scaled to the electrical motor, were considered. For the gearbox and differential, a
constant efficiency level of 95% was assumed. The comparison of the motors was carried
out on roads with slopes ranging from 0% to 26% (maximum road slope), in terms of the
maximum achievable speed and acceleration times from 0 to 40 km/h. The acceleration test
results are presented in Table 3. According to these results, Motor 1 achieves the highest
speeds on all the slopes and outperforms the other two motors in the acceleration tests.

Table 3. Maximum achievable speed on different slopes for a fully loaded vehicle (1200 kg).

Motor Variant Top Speed 0% Slope Top Speed 26% Slope Acceleration 0% Slope Acceleration 26% Slope

Motor 1 90 km/h 41.7 km/h 4.00 s 14.12 s
Motor 2 90 km/h 39.6 km/h 5.14 s N/A
Motor 3 90 km/h 38.9 km/h 7.57 s N/A
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The torque’s range was established by analyzing the driving cycles, as described in
Section 2.1. Nevertheless, to validate the torque requirements and to make any necessary
adjustments, the real-world urban driving cycle acceleration time was considered as well.
This will further permit the adjustment of the torque characteristics of the traction motor and
gearbox ratio, if needed, to fulfill the high dynamics of an EV in urban driving conditions.

The acceleration time in the urban driving condition was measured by conducting an
acceleration test on a vehicle with an ICE that had similar size and weight characteristics to
the vehicle under investigation. The acceleration test resulted in a time of approximately
4 s to reach from 0 km/h to 40 km/h. The results of this test were then utilized to define the
acceleration torque requirements by inputting the data into a MATLAB R2020b software
program that was designed based on the vehicle’s equation of motion.

The developed MATLAB R2020b software allows for the simulation of changes in the
dynamic performance of the EV powertrain, considering factors such as the torque–speed
characteristic of the traction motor, the gearbox ratio, vehicle mass (1200 kg), vehicle shape
(drag coefficient), wheel diameter, slope coefficient, and tire pressure. The output of the
software is the calculated speed of the vehicle over time, from which the acceleration can
be determined.

Figure 8 presents the power–speed and torque–speed curves, along with the transient
acceleration behavior, of all three motors on the 0% slope, assuming a fully loaded vehicle
with a total mass of 1200 kg. According to the results, the vehicle with Motor 1 fulfills the
acceleration requirements from 0 to 40 km/h in 4 s and, therefore, is chosen as the traction
motor of the proposed vehicle.
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Table 4 summarizes the results of the following two charging scenarios: one with
charging available at all parking locations and the other with charging available at only
100 locations. In the first scenario, all the scheduled trips were fulfilled without the battery
state of charge (SOC) dropping below 35%. In the second scenario, some vehicles could not
complete their trips due to the high daily distances. Nevertheless, on average, 92% of the
daily target distance was covered, and the issues were mostly related to the very last trip of
the day. It is worth noting that the simulations did not consider certain driver behaviors,
such as selecting a vehicle with a higher SOC or choosing a parking spot with a charger
instead of one without. Accounting for these factors would likely increase the likelihood
of completing all the trips. Therefore, 7 kW was chosen as the maximum charging power
of the vehicle. With such power, the battery could be charged from zero to 100% SOC in
slightly more than 2 h.

In this paper, we highlight the importance of tailoring the powertrain of the vehicle
according to its anticipated driving mission, resulting in optimized energy efficiency. While
standard driving cycles can serve this purpose, they typically do not include complex
and variable driving conditions such as traffic congestion, elevation changes, and weather
conditions. By using real-world driving cycles, we can incorporate these variables when
designing the powertrain. In cases where real-world driving cycles are not accessible,
accurately simulated driving cycles, such as the one used in this paper, offer a suitable al-
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ternative. To illustrate the performance and advantages of our approach, we will prototype
an LEV with the proposed powertrain and test its efficiency under various driving cycles,
including the standard, real-world, and simulated scenarios.

Table 4. Summary of simulated duty cycle with two charging scenarios.

Charging Scenario Completed Daily Distance,
(Mean (Min–Max))

Trips/day,
(Mean (Min–Max))

Completed Distance vs.
Target

Slow charging (3.7 kW) available
at all parking locations

217.6 km
(32.1–364.7) km

10.5
(1–20) 100%

Slow charging (3.7 kW) at 80
locations and fast charging (7 kW)
at 20 locations

196.6 km
(32.1–326.6) km

9.8
(1–17) 92.4%

While our research has primarily addressed the technical and operational aspects
of the powertrain, it is important to acknowledge that cost considerations play a signif-
icant role in the real-world adoption of electric vehicles. Future studies should delve
deeper into the economic aspects of electric vehicle development, exploring cost-effective
strategies for component design, manufacturing, and charging infrastructure. This will
help bridge the gap between the technical advancements presented in this paper and the
practical affordability of electric vehicles, ultimately contributing to their wider adoption
and sustainability.

4. Conclusions

This paper presents the design of an electric powertrain for multipurpose light electric
vehicles, focusing on the motor, battery, and charging requirements. The first step of the
design involved studying a driving cycle from a typical European city such as Helsinki,
to derive the vehicle’s driving range, torque–speed profile, and power requirements. This
ensures that the proposed design is optimized according to the vehicle’s driving missions
and operational patterns. We explored several cross-section designs for IMs, each with
varying pole pair and slot numbers, and ultimately chose the design that aligned with
the driving cycle requirements. In the next step, to achieve economical scalability, we
maintained consistent cross-sections of the motor while adjusting its axial length. We
explored various axial lengths and selected the most optimal motor length based on the
torque and power profile and the vehicle’s dynamics. The most efficient motor was found
to meet the vehicle dynamics’ criterion of accelerating from 0 to 40 km/h in 4 s. The battery
capacity was estimated based on the driving range. The maximum charging power of
the vehicle was set to 7 kW after a detailed analysis of the vehicle’s expected utilization
throughout the day.
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Abstract: The utility factor (UF) of a plug-in hybrid electric vehicle (PHEV) refers to the ratio of miles
traveled in electric mode to the total miles traveled. Standard UF curves provide a prediction of the
expected achievable UF by a PHEV given its all-electric range (AER), but such predictions entail
assumptions about both the driving patterns (distance traveled and energy intensity) and charging
behavior. Studies have attempted to compare the real-world UF achieved by PHEVs to their standard
values, but deviations can stem from deviations in assumptions about: (i) achievable electric range,
(ii) travel distance and (iii) charging frequency. In this paper, we derive analytical models for modified
utility factor curves as a function of both AER and charging behavior. We show that average charging
frequency is insufficient to exactly predict UF but can still estimate bounds. Our generalized model
can also provide insights into the efficacy of PHEVs in reducing carbon emissions.

Keywords: PHEV (plug-in hybrid electric vehicle); utility factors; charging; travel distance; regulations
codes; standards (RCS)

1. Introduction

Plug-in hybrid electric vehicles (PHEVs) have powertrains that combine the traits of
battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). Driving energy in
HEVs, much like conventional vehicles, comes from fuel that powers an internal combustion
engine (ICE) [1], but HEVs also have electric motor(s) and batteries that can assist in
powering the vehicle (or completely power for short periods) and/or recapture energy
during deceleration. The distinguishing feature of PHEVs [2] compared to HEVs is having
larger capacity batteries that allow the vehicle to travel appreciable distances, known as
the all-electric range (AER), without turning on its ICE, plus the capability to charge the
battery from grid electricity like BEVs.

PHEVs have two main modes of driving: charge depletion (CD), in which electric
energy from the battery is the main source of power, and charge sustaining (CS), in which
fuel for the ICE is the main source of power. The utility factor (UF) of a PHEV generally
refers to the ratio of miles traveled in CD mode to its total miles traveled [3]. It is important
to acknowledge that different configurations and designs of PHEVs exist [4], and that
under certain conditions and/or some PHEV powertrain designs, CD mode can involve
small amounts of fuel consumption [5]. However, the current work in this paper focuses
on usage cases where fuel consumption in CD mode is mostly negligible. As such, within
the context of this paper, CD mode can be interchangeably referred to as “EV mode” and
CS mode as “HEV mode”.

Different standards exist [3,6,7] that aim at predicting the expected UF of a PHEV
as a function of its AER, often presented as “UF curves”, with the most prominent of
which being SAE J2841 [3]. Accurate prediction of the UF for a PHEV carries significant
importance because the UF is often used as a simplified metric for estimating tailpipe
carbon emissions and thus has implications for present-day and future regulatory policies.
However, standard UF curves entail underlying assumptions that may not necessarily be
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met by real-world PHEVs. Several modeling studies [8–10] have attempted to assess the
effect of different drive patterns than those in SAE J2841, while other studies [11–13] have
compared standard UF values with those that could be inferred from real-world PHEV data.
As discussed in [12,13] and illustrated in Figure 1, three main categories of reasons why
real-world UF may not align with standard UF curves include mismatches in assumptions
about: (i) attained AER, (ii) actual travel distance and (iii) charging frequency.

Figure 1. Illustration of three categories of assumptions mismatch between standard UF curves and
real-world.

While examining the illustration in Figure 1, a number of considerations ought to be
kept in mind:

• The gap between standard and real UF values (Figure 1a) as well as the categories of
reasons 1–3 (Figure 1b) were drawn in the “negative” direction (i.e., real UF being less
than the standard UF). However, this is primarily for illustrative purposes. In reality,
it is plausible for any of the three categories of reasons or the overall gap to be in either
the positive (i.e., better UF than the standard rating) or negative directions.

• Each of the three main categories of reasons may include several sub-reasons; for
example, category #1 (real-world attained AER) could be affected by the acceleration
rate and speed driving style of vehicle owners, ambient temperature (which in turn
affects both the efficiency of the electric powertrain as well as the heating/cooling
power consumption for climate control of the passenger cabin), weight of passengers
and cargo, gradient of the terrain (uphill/downhill), or towing load.

• It is also important to note that those three categories of reasons, while understood to
be the main contributors to the UF gap, are not the only contributing reasons, nor is it
necessarily true that they are linearly independent. For example, some PHEV designs
may utilize electric power to warm up the battery during a cold climate, while others
might utilize an alternative approach such as briefly turning on the engine, which in
turn might affect the observable miles traveled in CD or EV mode.

• The (real-world) attained AER is not necessarily a static number like the nominal
AER that is published by regulatory agencies such as the US EPA [14]. In fact, the
attained AER can change from day to day depending on the vehicle usage conditions,
and such daily variations in the attained AER can have interactions with the other
two categories of reasons (charging frequency and distance traveled). Nonetheless, to
avoid over-complicating the problem, secondary interactions between the reasons and
“all other/unknown” reasons are often lumped with one of the three main categories
of reasons.
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While the SAE J2841 standard [3] has laid out the methodology for deriving UF curves
from any dataset that provides a statistical distribution of vehicle miles traveled per day,
the “standard UF values” quoted in the literature (such as [8,9,12,13]) often refer to the UF
curves shown in [3], which were derived from the vehicle daily miles traveled profile in the
2001 National Household Travel Survey (NHTS-2001) [15]. Several studies [6,8–10] have
shown alternative UF curves for different datasets of real-world vehicle miles traveled, and
in particular, Paffumi et al. [10] considered models for additional daytime charging, thereby
relaxing the typical assumption of “exactly once-only charging event (to full) before every
drive day” in [3].

To the best of the authors’ knowledge, the current work in this paper is the first of its
kind at attempting to lay out mathematical formulations for relaxing the typical once-only
per drive day assumption to cases where the charging frequency is less than once per drive
day. Similar to previous work [10], when considering charging frequencies different than
exactly once per drive day, other assumptions come into play that result in a “family of
plausible UF curves”, for which we also propose mathematical models that estimate the
upper and lower bounds. Aside from cases of charging frequencies less than once per
drive day, we also propose mathematical models for plausible bounds on UF curves when
the charging frequency is more than once per drive day. The outcome from the extended
families of UF curves can then serve as a means of gauging the carbon emissions reduction
benefit via PHEVs under a broader set of usage conditions.

This paper started with a brief overview of relevant literature as well as a framing of
the scope and motivation for the current work. The rest of the manuscript is organized as
follows: Section 2 provides details of the mathematical models, along with examples of
corresponding UF curves that illustrate how the curves change with various changes in
assumptions. Section 3 provides a more in-depth discussion of the findings, along with
some estimates of carbon emission reduction benefits. The manuscript then concludes with
some highlights of key findings and expected future work directions.

2. Mathematical Model
2.1. Notations and Assumptions

Similar to the SAE J2841 standard [3], the primary input to the mathematical model
is a dataset for daily miles traveled by a sample of vehicles. Vehicles in the dataset don’t
necessarily need to be PHEVs or any particular type of powertrain, and as such, the
methodology in [3] does not require any real-world charging information to be available
in the dataset. In [3], UF for a hypothetical PHEV is calculated with the assumption
that it would drive the same miles traveled profile, with a charging frequency of exactly
one full charge before every drive-day (which we will denote as λ = 1) and no charging
during daytime (which we will denote as µ = 0). Section 2.2 in this manuscript will derive
mathematical models for estimating the UF in cases when the charging is less than once
before every drive day and no daytime charging (0 < λ < 1, µ = 0), while Section 2.3 will
derive mathematical models for estimating the UF in cases when the charging is once before
every drive day, plus some daytime charging (λ = 1, µ > 0). To be considered more closely
representative of the real-world, the horizontal axis for such UF curves ought to be the
real-world attained AER, which will be denoted by the symbol x. In such a setup, it is also
implicitly assumed that “all other/unknown” reasons for the UF gap are lumped with the
Figure 1b category of reasons #1 (attained AER).

To better streamline the UF calculations in the mathematical model, for every vehicle
sample i (i = 1 to N), the statistical profile for daily miles traveled is discretized and
represented as a matrix of the number of driving days per year Dij, with the first index (i)
referring to days of travel by a certain vehicle, while the second index j refers to a range
of miles traveled per day, depending on a discretization parameter δ. For example, if
δ = 0.5 miles, then j = 10 refers to the range between 4.5 and 5.0 miles per day of travel
distance. In this paper, we utilize the 2010–2012 California Household Travel Survey (CHTS)
dataset [16], from which the matrix Dij has been extracted. To make it easier to replicate
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the work in the current paper, a copy of the matrix Dij has been placed in shared/public-
accessible cloud storage [17]. Assuming the discretization parameter (δ), which was chosen
at 0.5 miles, provides sufficient resolution, the annual miles traveled (lij) by a vehicle sample
i on days with daily miles between (j − 1)δ and jδ is estimated (using upper bounds for
daily miles interval) via Equation (1) as follows:

lij = Dij · δ · j (1)

It follows that the total annual miles traveled by a vehicle (Li) and the probability
density mass for a fraction of the vehicle’s miles traveled (pij) on days with daily miles
between (j − 1)δ and jδ can be calculated as:

Li =
J

∑
j=1

lij (2)

pij =
lij
Li

(3)

where J is the maximum number of discretized bins of miles per day of travel. In the current
work, with δ = 0.5 miles, J was set at a value of 2000, which means that days with more
than 1000 miles of travel (very rare occurrences in the CHTS dataset) were treated as if they
were days with 1000 miles of travel.

A reference UFi value, conforming to the charging behavior assumptions of [3]
(i.e., λ = 1, µ = 0), can then be calculated for each vehicle sample given the real-world
attained AER (x) as:

UFi(x) =
J

∑
j=1

pij

(
min(x, δ · j)

δ · j

)
(4)

In order to go from calculating a UF value for each vehicle in the dataset to a
population-wide estimate, SAE J2841 defines two different UF metrics [3]: (i) multi-day
individual utility factor (MDIUF) and (ii) fleet utility factor (FUF). Simply put, MDIUF is
a “simple average” of the UF values calculated for each vehicle in the dataset, while FUF
effectively weighs each vehicle in the dataset by its total miles traveled. The purpose and
usage of the two metrics are different. While MDIUF represents the expected value of UF
for a randomly drawn sample vehicle, FUF, on the other hand, is an estimate of the total
fraction of miles traveled by all vehicles that can be electrified. Furthermore, some datasets
(CHTS included) can have representative weights for each of the vehicle samples that are
often based on household demographics [18], so weighing each sample by its representative
weight (wi) effectively scales it up to the population that the dataset is intended to represent
(all of California in the case of the CHTS dataset). The calculation of MDIUF and FUF can
thus be performed as follows:

MDIUF(x) =
1

W

N

∑
i=1

wi ·UFi(x) (5)

FUF(x) =
1
Y

N

∑
i=1

Liwi ·UFi(x) (6)

where W and Y are respectively the sum of vehicle sample weights and total weighed miles
traveled, calculated as:

W =
N

∑
i=1

wi (7)

Y =
N

∑
i=1

Liwi (8)
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For datasets that don’t have vehicle sample weights, the typical assumption is to
treat all vehicles equally (i.e., by setting all wi = 1 in Equations (5)–(7)). For illustration
purposes, the reference MDIUF and FUF curves (per Equations (5) and (6)) for the CHTS
dataset are plotted in Figure 2 for the range of real-world attained AER (x) between 0 and
100 miles. Also shown in Figure 2 are the reference values from SAE J2841 [3] that are
based on NHTS-2001. One notable observation in Figure 2 is that the reference UF curves
(both MDIUF and FUF) via CHTS seem to have larger UF numbers than the reference
UF curves via NHTS-2001 at any given value of x. This implies that the recorded vehicle
travel in CHTS generally had fewer miles per drive day than in NHTS-2001. One plausible
explanation for this could be the timing of data collection, where CHTS (data collected
between 2010 and 2012) could have been affected by the 2008–2009 recession period in the
US. Another plausible explanation could be due to the method of data collection, where
NHTS-2001 utilized self-reported trip length data, while CHTS data utilized in this paper
came from on-board device (OBD) logging of the sample vehicles. However, regardless
of what dataset is used, the mathematical modeling approach in this paper could still
be applied.

Figure 2. Reference UF curves via CHTS and SAE J2841 (based on NHTS-2001).

2.2. Charging Frequency Less Than Once per Drive Day
2.2.1. Overview

As a note, when considering mathematical modeling for charging frequency less than
once per drive day, we are specifically referring to the case where the overnight charging
before every drive day is less than once per day (i.e., 0 < λ < 1) and there is no daytime
charging. To reduce clutter, we no longer mention daytime charging, but it should be
understood that it is assumed that (µ = 0) within Section 2.2. It also ought to be noted that
while λ is assumed to be strictly greater than zero and strictly less than 1, this is only to
exclude the trivial case of λ = 0, for which UF is zero, and the case of λ = 1, for which UF
can be calculated via Equations (5) and (6). Before building a mathematical model that
addresses the fully general case of (0 < λ < 1), we first consider a few special cases.

2.2.2. Special Case: Binary Charging Behavior

This special case considers a mathematical model where the charging frequency for
each individual vehicle in the data set (λi) can only take a value of either 0 or 1. In other
words, while the overall average for the population of vehicles (λ) is between 0 and 1,
this average is only attained via one set of vehicles (A) always charging (i.e., λi = 1, i ∈ A),
while some vehicles are never charging (i.e., λi = 0, i /∈ A). This can be mathematically
expressed as:
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UFBin
i (x) = λi ·UFi(x) (9)

λ =
1

W ∑
i∈A

wi · λi (10)

where UFBin
i is the UF value for vehicle i with binary charging behavior, while UFi is

the reference UF value, computed via (Equation (4)). When considering going from UF
values for each vehicle (per Equation (9)) to MDIUF and FUF estimates, it can make a big
difference to the UF, which vehicles are in the set (A). As such, it is possible to estimate an
expected value with the assumption of independent likelihood (i.e., any vehicle in the
dataset is equally likely to be in the set A), as well as upper and lower bounds.

Expected Value with Independent Likelihood: when every vehicle in the dataset is
equally likely to be in set (A), it can be shown that the UF for each vehicle i reduces to its
reference UF value multiplied by the population average charging frequency (λ), which in
turn allows for computing MDIUF and FUF as:

MDIUFBin,Ind(x) = λ ·MDIUF(x) (11)

FUFBin,Ind(x) = λ · FUF(x) (12)

Upper and Lower Bounds: to compute upper and lower bounds for MDIUF and FUF,
we setup optimization problems for maximizing/minimizing UF values with “which
vehicles are in the set A” (i.e., which vehicle samples have corresponding λi = 1) as the
decision variables. The optimization problem has the form:

For MDIUF : Minimize/Maximize f Bin
MDIUF(x) =

1
W

N

∑
i=1

λi · wi ·UFi(x) (13)

For FUF : Minimize/Maximize f Bin
FUF(x) =

1
Y

N

∑
i=1

λi · wiLi ·UFi(x) (14)

Subject To :
1

W

N

∑
i=1

wi · λi = λ (15)

λi ∈ {0, 1} (16)

As a note, this optimization setup has the form of a linear program [19] (objec-
tive and constraints are linear in the decision variables λi), with all other quantities in
Equations (13)–(15) being constant or possible to pre-compute before running the optimiza-
tion problem to determine the upper/lower bounds for MDIUF or FUF. However, in the
case of binary charging behavior, it is an integer-linear program (per the constraint in
Equation (16)). While a generic integer linear program can be challenging to solve, when
the number of vehicle samples in the dataset is sufficiently large, the equality constraint in
Equation (15) can be satisfied within reasonable tolerance while relaxing the optimization
problem to only solve its linear program version. The results of this model (independent,
upper and lower bounds) for λ = 0.5 are shown in Figure 3a.

482



World Electr. Veh. J. 2023, 14, 301

Figure 3. Reference UF curves and various models for λ = 0.5.

2.2.3. Special Case: All Vehicles with the Same Charging Frequency

This special case considers a mathematical model where the charging frequency for
each individual vehicle in the data set (λi) is exactly equal to the charging frequency of the
population average (λ). In other words, this is a case where all vehicles in a population
are behaving exactly the same in terms of frequency of charging. For this special case,
going from vehicle UF to population MDIUF and FUF is fairly straight-forward (similar to
Equations (5) and (6)) as:

MDIUFSame(x) =
1

W

N

∑
i=1

wi ·UFSame
i (x, λi) (17)

FUFSame(x) =
1
Y

N

∑
i=1

Liwi ·UFSame
i (x, λi) (18)
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However, the calculation of UF for each vehicle sample as a function of its charging
frequency (λi = λ) requires some further modeling assumptions. For this, we consider the
calculation of an expected UF value based on an independent probability distribution for
which days have a charging event before them, as well as upper and lower bounds.

Expected Value with Independent Probability: when considering a set of drive days
by a vehicle sample i such that any drive day has an equal chance as any other drive
day of having an overnight charging, the chance of a charging event becomes a Bernoulli
experiment [20] with a chance of success equal to the overall average (which is λi = λ).
Under such conditions, the UF of a vehicle sample can be expressed as:

UFSame,Ind
i (x, λi) = λi ·UFi(x) + λi(1− λi) · TDUFi(x) + . . . (19)

where the expression λi (1 − λi) that is multiplied by the second term in Equation (19)
represents the probability of the current driving day not having a charging event after the
previous driving day had a charging event. We don’t consider the rest of the terms after the
second term in Equation (19) as they would be multiplied by λi (1 − λi)2 (or even smaller
numbers), so we consider them negligible compared to the first two terms. The equivalent
UF for two days in a row after one overnight charging event is calculated as:

TDUFi(x) =
J

∑
j=1

(
pij

δ · j
J

∑
k=1

dik ·min(δ · j, max(0, x− δ · k))
)

(20)

where dij is the probability density mass for vehicle i having a day with miles traveled
within a certain range of miles per day:

dij =
Dij

Di
(21)

Di =
J

∑
j=1

Dij (22)

As a sanity check, one could confirm that the expression in (Equation (19)) converges
to the same expression in (Equation (9)) as λi approaches a value of either 0 or 1.

Lower Bound: when considering a set of drive days by a vehicle sample, the temporal
distribution of the charging events relative to driving days can have a significant effect
on the attained UF. Generally speaking, when the charging events are mostly uniformly
spaced, this results in better UF than non-uniformly spaced. For example, if λi = 0.5 with
uniform spacing, this means that a charging event happens exactly one per two drive
days, which can maximize utilization of each charging event. The opposite, least favorable
temporal distribution is when/if all the charging events happen on back-to-back drive
days while leaving a long gap of days without any charging events. Furthermore, if the
stacked-up charging events are occurring before drive days that have the least contribution
to attained electric miles, it would represent the lower bound for UF. To compute this lower
bound, we set up an integer linear programming optimization problem similar to the setup
in Section 2.2.2, but with the decision variables (vj) controlling the temporal distribution of
charging events.

Minimize f Same,LB(x, λi) =
J

∑
j=1

vij · pij

(
min(x, δ · j)

δ · j

)
(23)

Subject To :
1

Di

J

∑
j=1

vij · dij = λi (24)

vij ∈ {0, 1} (25)
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Upper Bound for λi = 0.5: in this estimate of an upper bound for UF, it is assumed that
the temporal distribution of charging events is exactly evenly spaced at one charging event
per two drive days, while being statistically independent from the number of miles traveled
on any given day. The UF can then be calculated in a similar manner as Equation (19), but
with the drive days either having a charging event or a charging event one day earlier (and
no three or more drive days without a charging event):

UFSame,UB,Hal f
i (x) = 0.5 ·UFi(x) + 0.5 · TDUFi(x) (26)

Upper Bound: For cases where λi < 0.5, we consider an upper bound for the UF via
linear interpolation between zero and the upper bound value obtained from Equation (26).
This corresponds to a temporal distribution of charging events where a portion of the time
horizon has evenly spaced charging events at a frequency of one per two drive days, while
the rest of the time horizon has no charging events. Likewise, for cases when λi > 0.5, we
consider an upper bound for the UF via linear interpolation between the value obtained
from Equation (26) and the case when λi = 1. This corresponds to a temporal distribution
of charging events where a portion of the time horizon has evenly spaced charging events
at a frequency of one per two drive days, while the rest of the time horizon has one
charging event for every drive day. Combining the cases, the formula for the upper bound
is summarized as:

UFSame,UB
i (x, λi) =

{
2λi ·UFSame,UB,Hal f

i (x) λi ≤ 0.5
(2λi − 1) ·UFi(x) + (2− 2λi) ·UFSame,UB,Hal f

i (x) λi > 0.5
(27)

The results of this model (independent, upper and lower bounds) for λ = 0.5 are shown
in Figure 3b.

2.2.4. Generalized Upper and Lower Bounds

Given some value (λ) for the overall average frequency of charging, Section 2.2.2
highlighted plausible variations in UF by considering sensitivity to which vehicles within
the population, while Section 2.2.3 highlighted plausible variations in UF by considering
sensitivity to the temporal distribution of charging events relative to daily miles traveled by
each vehicle. We now set up a set of more generic optimization problems, whose optimal
solution provides the overall upper/lower bounds for MDIUF and FUF.

For upper bound MDIUF : Maximize f Gen,UB
MDIUF(x) =

1
W

N

∑
i=1

wi ·UFSame,UB
i (x, λi) (28)

For lower bound MDIUF : Minimize f Gen,LB
MDIUF(x) =

1
W

N

∑
i=1

wi ·UFSame,LB
i (x, λi) (29)

For upper bound FUF : Maximize f Gen,UB
FUF (x) =

1
Y

N

∑
i=1

wiLi ·UFSame,UB
i (x, λi) (30)

For lower bound FUF : Minimize f Gen,LB
FUF (x) =

1
Y

N

∑
i=1

wiLi ·UFSame,LB
i (x, λi) (31)

Subject To :
1

W

N

∑
i=1

wi · λi = λ (32)

0 ≤ λi ≤ 1 (33)

To calculate the upper or lower bounds for MDIUF or FUF, one needs to utilize the
appropriate objective (among Equations (29)–(31)) along with the constraints in
Equations (32) and (33). Though the constraints are linear and the decision variables are
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continuous (which generally makes the optimization problem easier to solve than integer
programming), the objective functions, which include terms defined in Section 2.2.3, can
have nonlinear terms in (λi), such as the terms defined via Equation (19) or even sub-
optimization problems, such as when estimating lower bounds for an individual vehicle
sample via Equations (23)–(25). As such, the optimization approach we tested for solving
Equations (29)–(33) is the nonlinear programming technique known as successive linear
programming [21]. The calculated upper and lower bound UF curves for λ = 0.5 are shown
in Figure 3c.

A brief overview of the successive linear programming (SLP) optimization approach [21]
is that it is a technique that attempts to find the optimum value within a solution domain
of continuous variables (all λi in this case) for a nonlinear objective and/or constraints via
solving a series of linear programming optimization problems. In each iteration of SLP, a
linear approximation is constructed for the nonlinear objective and/or constraints (via func-
tion value and gradient at the “current solution” point). The linear approximation is then
solved via linear programming techniques, with the solution of the linear programming
becoming the new “current solution” point, and the process is repeated until convergence,
which is typically when iterations of SLP can no longer find a better solution satisfying the
problem constraints. In implementation for the current problem (solving for all λi), the
constraints (Equations (32) and (33)) are actually linear, which means that the successive
iterations of SLP always retain a feasible solution. Since the results of SLP, much like
gradient-following optimization techniques, can be dependent on the “starting point”, a
multi-start point strategy is employed, with two special cases (from Sections 2.2.2 and 2.2.3)
included among the starting points. This ensures that the solution returned by SLP (as
shown in Figure 3c) is always “outside the envelope” of either of the two special cases
(shown in Figure 3a,b).

2.3. Charging Frequency: More Than Once per Drive Day

There seems to be a perception that additional charging events beyond once per drive
day tend to have diminishing returns. Part of this perception may come from some daytime
charging events being limited by available time (e.g., charging a PHEV while the owner is
shopping) and therefore not completely topping off the battery/restore full electric driving
range. The other issue about daytime charging events is the timing relative to miles traveled
on a given day. Even a top-off charging event may not add many electric miles if it happens
too early or too late during a drive day. Furthermore, if a daytime charging event occurs on
a day where the miles traveled are less than the electric range of the PHEV, there would be
no “additional” electric miles on that day. As such, one may find corner cases where a lower
bound on UF for (λ = 1, µ > 0) isn’t noticeably better than the reference case of (λ = 1, µ = 0).
Thus, in this section, we focus more on plausible estimates of UF than minimum/maximum
upper and lower bounds.

We develop mathematical models for the estimation of the UF factor for vehicles that
charge to full before every drive day and gain a second full top-off charging event on some
of the drive days, in other words, the case of (λ = 1, 0 < µ ≤ 1). We assume the daytime
charging events have an independent probability of occurring (i.e., any drive day is equally
likely to have a second charging event), which allows us to formulate a generic estimate of
the UF of a sample vehicle as follows:

UFDaytime,Ind
i (x, µi) =

J

∑
j=1

pij

((
min(x, δj)

δj

)
+ µi

(
Φ(δj)

δj

))
(34)

where the function Φ(δj) in the second term of Equation (34) represents the expected value
for additional electric miles on a day with travel distance equal to (δj) due to the occurrence
of a daytime charging event. The additional electric miles are a natural function of both the
total miles traveled during that day as well as when the daytime charging event occurs and
can be expressed as:
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Φ(δj) =





0 δj ≤ x
δj∫

y=0
φ(y) · g(y)dy δj > x (35)

φ(y) =





min(y, δj− x) y ≤ x
x x < y ≤ δj− x

δj− y y > δj− x
(36)

where the function g(y) is the probability density function for occurrence of the daytime
charging event after how many miles (y) have been traveled. In demonstration of this
model (as shown in Figure 4), we utilize the exponential distribution [20], which is a typical
assumption for random arrivals in queueing systems. The distribution is also shifted
such that the daytime charging event wouldn’t occur until half the electric range has been
traveled, and the exponential parameter is set to have the average occurrence of the daytime
charging event between half the electric range and the full electric range. We also note
that Equation (34) can be used to estimate UF if all vehicles in the dataset had the same
frequency for daytime charging (which we consider a plausible scenario), or µi can have
binary (0 or 1) values and an integer linear optimization framework (similar to Section 2.2.2)
can be applied to estimate upper and lower bounds, as shown in Figure 4.

Figure 4. Plausible and Upper/Lower UF curves for select modelled charging frequency.

2.4. Summary of Modelled Cases

A summary list of the modelled cases for charging behavior in this work is provided
in Table 1. To further enhance the modeling perspective, it is noted that the actual timing
of a charging event (during nighttime or daytime) isn’t what drives the mathematical
model. Rather, a charging event (fully topping the electric range in the battery) between
two drive days is the mathematical equivalent of an “overnight” charging event, while an
“additional” charging event within a one-day window after a previous charging event is
the mathematical equivalent of a “daytime” charging event. In which case, as long as there
is no significant temporal overlap between the charging events, one may use the sum of λ
and µ as a proxy estimator for the fully generalized case (as is performed in the discussion
in Section 3). However, detailed derivation for the fully generalized case is beyond the
scope of current work.
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Table 1. Summary of Charging Behavior Modelled Cases.

Case Discussed Description

λi ∈ {0, 1}, µ = 0 Section 2.2.2 No daytime charging. Overnight charging behavior is
binary; some vehicles always charge, others never charge.

All λi = λ, 0 ≤ λ ≤ 1,
µ = 0 Section 2.2.3 No daytime charging. The overnight charging frequency

is the same for all vehicles.

0 ≤ λi ≤ 1, µ = 0 Section 2.2.4
No daytime charging. Generalized case for overnight
charging, where some vehicles always charge, some
never charge, others somewhere in-between.

All λi = 1, 0 ≤ µi ≤ 1 Section 2.3 Vehicles always charge overnight. Some vehicles also
gain one additional charging event during the day.

0 ≤ λi ≤ 1, 0 ≤ µi
Section 3,
future work

Fully generalized case where overnight charging
frequency for each individual vehicle can be anywhere
between always and never, while at the same time, each
individual vehicle may have additional one or more
charging events during the day

3. Discussion

British statistician George Box once famously wrote “All models are wrong, some are
useful”. When one reflects on when the concept of UF and UF curves were originally being
developed (with standard assumptions), one of the main appeal points was that UF curves
were relatively “easy” to use and understand. However, when standard assumptions are
called into question in order to create more realistic real-world behavior models, it becomes
apparent that real-world UF observations can be affected by many complex details. Perhaps
the primary contribution in this work is not so much the calculation of UF curves for various
charging frequencies as it is bringing into focus how wide the difference between upper
and lower bounds can be in some cases, as observed in Figure 4. It also ought to not be
forgotten that the modeling work in Sections 2.2 and 2.3 is still involving several simplifying
assumptions, such as independent probabilities or consideration of daytime charging only
after overnight charging before a drive day has been fulfilled, when in reality, some vehicle
owners may not necessarily charge before every drive day, but they can still occasionally
do daytime charging. It may be possible to further verify the degree of validity of such
assumptions by comparing them with real-world PHEVs data, though this would require
some much more detailed vehicle data than is typically available via public travel surveys.
Such validation work is beyond the scope of the current paper.

Another issue about the concept of UF that is often ignored in favor of it being easy
to use is that UF can be taken as a proxy estimate of only the tail-pipe emissions from
a PHEV. In some instances, deviations in the real-world from ideal UF curves are being
used as a reason to suggest lowering the regulatory carbon emissions reduction benefit
of PHEVs [22,23]. However, this implicitly ignores the fact that electric miles also have
equivalent carbon emissions depending on the fuel mix for electricity generation. What
could be a more relevant metric for gauging the benefit of PHEVs is considering how much
well-to-wheels [24] reduction of carbon emissions they can bring compared to an equivalent
conventional vehicle. For a present-day scenario demonstrating such a concept, we use
the EPA label values [14] for the 2022 RAV4 and RAV4 Prime (respectively at 29 MPG,
38 MPG in CS mode and 0.36 kWh/mile in CD mode), along with the 2021 average carbon
intensity for the US electric grid at ~450 g-CO2/kWh (calculated via fuel mix information
from the US EIA [25] and GREET model [24]) and 10,778 g-CO2/gal for E10 gasoline. We
also consider scenarios for the year 2050 with projected carbon intensity for electricity at
180 g-CO2/kWh, as well as 50% reduced carbon intensity for gasoline. Using plausible FUF
values (from Figure 4b) at different charging frequencies, carbon emissions offset results
for the considered scenarios are shown in Figure 5.
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Considering the bigger picture of well-to-wheels analysis (Figure 5) can dramatically
change the sensitivity of carbon emission reductions (relative to an equivalent conventional
vehicle) to the charging frequency of PHEVs. In fact, at the present-day average US
electric grid, the carbon emissions in CD mode (electric) miles are only about 25% less than
the carbon emissions per mile traveled in CS mode on the E10 gasoline blend. While a
50-mile AER PHEV (scenario 1 in Figure 5) offsets about 37% of the carbon emissions of
an equivalent conventional vehicle when charged exactly once per drive day, the same
PHEV can still offset about 31% of the carbon emissions when its frequency of charging
is 0.5 (once per two drive days on average). The difference between a 50- and an 80-mile
AER PHEV also appears minimal in (scenario 1 Figure 5). With lower carbon intensity in
the electric grid and no change in the gasoline blend (scenario 2 in Figure 5), the difference
between 50- and 80-mile AER, as well as the sensitivity to charging frequency, becomes
more pronounced. However, it also stands to reason that future liquid fuels would have
an increased fraction of biofuels and/or carbon-capture/synthetic fuels that are lower in
carbon intensity. In such cases (scenario 3 in Figure 5), it can still be an attractive option
across a broad range of usage conditions.

4. Conclusions

This paper considered an extension of the standard assumptions for generating UF
curves, with the aim of encompassing a broader range of realistic charging behavior by
PHEV owners. Mathematical models were proposed that address a specific number of
cases, as well as an optimization framework that can be utilized to estimate upper and
lower bounds. Though UF is a fairly simple concept, it has the drawback of not being
indicative of the bigger picture (such as well-to-wheels or full lifecycle) of carbon emissions.
When considering well-to-wheels, it can be shown that the carbon emissions reduction
benefits of a PHEV relative to an equivalent conventional vehicle are not very sensitive
to the frequency of charging or longer than 50 miles AER unless the difference in carbon
intensity between CD mode and CS mode is high (which doesn’t occur except with very low
carbon electricity and high fossil content liquid fuels). Future extensions of this work may
include comparison with detailed real-world PHEV data in order to gauge the realism of
the various assumptions in the proposed mathematical models, as well as further extension
of the mathematical model to consider the interaction/supplementation effects of daytime
charging when overnight charging is less frequent than every night.
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Abstract: Zero-emission trucks for regional and long-haul missions are an option for fossil-free
freight. The viability of such powertrains and system solutions was studied conceptually in project
ESCALATE for trucks with GVW of 40 tonnes and beyond through various battery electric and fuel
cell prime mover combinations. The study covers battery and fuel cell power sources with different
degrees of battery electric as well as H2 and fuel cell operation. As a design basis, two different
missions with a single-charge/H2 refill were analysed. The first mission was the VECTO long-haul
profile repeated up to 750 km, whereas the second was a real 520 km on-road mission in Finland.
Based on the simulated energy consumption on the driving cycle, on-board energy demand was
estimated, and the initial single-charge and H2 refill operational scenarios were produced with five
different power source topologies and on-board storage capacities. The traction motors of the tractor
were dimensioned so that a secondary mission of GVW up to 76 tonnes on a shorter route or a longer
route with more frequent battery recharge and/or H2 refill can be operated. Based on the powertrain
and vehicle model, various infrastructure options for charging and H2 refuelling strategies as well as
various operative scenarios with indicative total cost of ownership (TCO) were analysed.

Keywords: electric vehicle; battery; fuel cell; charging

1. Introduction

The European Green Deal outlines the climate change mitigation targets as follows: “all
27 EU Member States committed to turning the EU into the first climate neutral continent
by 2050”. They pledged to reduce emissions by at least 55% by 2030, compared to 1990
levels, and to reach a fossil-free society by 2050 [1]. The transportation sector is responsible
for roughly one-quarter of the total greenhouse emissions in the EU with road vehicles
contributing to over 60% of the emissions. Lorries, buses, and coaches are responsible for
about a quarter of carbon dioxide (CO2) emissions from road transport in the EU and for
some 6% of total EU emissions. Despite some improvements in fuel consumption efficiency
in recent years, these emissions are still rising, mainly due to increasing road freight
traffic. This requires tremendous efforts in the coming years to introduce zero-emission
powertrains and energy infrastructure into regional and long-haul trucking operations.
Vehicle emission regulations and other policy measures will pave the way for the transition
towards zero-emission transport curbing the total EU emissions of CO2; although, for
heavy-duty vehicles, the current regulation is still quite mild: −15% from 2025 onwards
and −30% from 2030 onwards, compared with the 2019/2020 level [2].

Even though electrification is only one tool among others to reduce vehicle emissions,
it appears to be the most efficient and feasible technology. This has been studied by
now in several research papers where many earlier ones found the status of technology
not sufficient for competitive electric truck operations, for example, insufficient energy
density and battery capacity on-board and slow charging capability [3]. Later studies have
concluded that the business case for electric trucks is emerging but the techno-economic
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competitiveness is depending a lot on the commodity being transported and the related
use case and system level, with medium-duty trucks being able to operate battery electric
for a large share of road freight haulage, whereas for heavy-duty and longer missions,
the fraction is smaller [4]. Continuous technology development, especially in batteries
and charging equipment, has been the main driver towards competitiveness of heavy-
duty trucks. The combination of shorter charging times and, therefore, higher vehicle
availability through fast charging can improve competitiveness of battery electric trucks
in an increasing share of transport missions [5]. In the developing market, there is a
dilemma between uptake of electric heavy-duty vehicles (e-HDVs) and the building up of
the charging infrastructure. To resolve the chicken-and-egg problem of e-mobility, the three
largest truck manufacturers joined in the project for establishing charging infrastructure for
electric long-distance freight transport [6]. The uptake of e-HDVs has been most feasible in
conventional city deliveries that typically, like e-Buses, drive pre-defined work cycles, their
energy consumption can be estimated quite accurately, and they can be charged overnight in
their dedicated parking depots, while their daily driving range varies only a little. However,
in long-haul operations and on shorter missions, if there are more variables in the logistics
assignment, there should be flexibility in the system to use opportunity charging (fast
charging, high-power charging, HPC) in addition to depot charging. Driving in multiple
shifts creates the demand for HPC instead of slow depot charging. Ad hoc assignments
(e.g., courier service, construction transports, maintenance and utility vehicles), logistics in
greater metropolitan areas, long-haul transportation, etc., can be based on the depot but
additionally would require HPC. Roughly put, the heavier the (articulated) vehicle is, the
more the demand for HPC during the work shift will be. According to recent analysis on
long-haul operations in Europe, about 40,000 overnight and 9000 fast megawatt chargers
will be needed to support battery electric long-haul freight [7].

In Nordic countries, the long-haul trucks are typically in a heavier weight class that is
up to GVW 76 tonnes. These national regulations make Nordics a small and specific market
area so that the newest innovations would rather need to be implemented by national or
joint activities. Combining the harsh weather conditions with the higher vehicle masses
makes the Nordics an ideal location for piloting new innovations. In 2021–2022 piloting case
examples in the electrification of heavy transports, it was reported in Sweden that High-
Capacity Transport (HCT)-articulated vehicles of 64 and 80 GVW tonnes can be electrified
in certain routes and drive cycles [8,9]. Also, it was reported that the transportation safety
norms for dangerous goods (ADR) can be fulfilled using e-HDVs [10].

The strict definition of zero-emission road transport requires the prime mover to be
electricity (battery electric vehicle, BEV) or hydrogen (fuel cell vehicle, FCV), or a hybridis-
ation of the two, such as a battery electric truck with a H2 fuel cell range extender. While
battery electric trucks are, in terms of technology and market readiness, several years ahead
of fuel-cell-powered trucks, research on the pros and cons of each and optimal ways to
combine them from powertrain to systems merit a proper analysis. Published research
suggests that for many freight operations, battery electric trucks offer the lowest total cost of
ownership, but fuel cell trucks can still be a viable additional option in some use cases [11].
When assessing the system-level viability for zero-emission trucking including vehicle use
cases and missions, energy consumption and sensitivity to, e.g., payload, GVW, driving
cycle, and conditions, and the viability of the different powertrain and infrastructure config-
urations, modelling, and simulation provide an invaluable tool to support decision making.
As shown by previous research, an unfavourable combination of conditions can reduce
the available operative range of battery electric trucks by 41–47% [12]. The mitigation
measures to reduce the risk for trucking operators from such a range reduction should
contain elements from the powertrain, vehicular design, and infrastructure implementa-
tion. Relevant topics include sufficient margin in designed battery or H2 tank capacity
and powertrain efficiency, vehicular aspects such as minimising driving resistances and
auxiliary consumption, as well as location, availability, and capacity of charging and H2
refilling infrastructures.
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The present paper deals with conceptualising and designing modular zero-emission
powertrains suitable for regional and long-haul missions using trucks with GVW of
40 tonnes and beyond. In Europe, this relates to VECTO vehicle groups 4–12, and in
the US, it relates to Class 8 trucks. The conceptual design object is a 6 × 4 tractor (VECTO
12, overview [13]) prototype with a modular zero-emission powertrain capable of mul-
tiple zero-emission missions in regional and long-haul operations. The powertrain has
an intermediate-sized traction battery for electric operation, fuel cell system capable of
providing average power for selected missions, and a strategy for battery-fuel cell hybrid
operations. The modular powertrain, therefore, enables three energy and operation strate-
gies to be analysed in one demonstration setting: BEV operation, FCV operation, and fuel
cell range-extended BEV (FCRE) operation.

In line with the European 2050 goals, the present paper has been produced through
the project ESCALATE, which aims to demonstrate high-efficiency zero-emission HDV
powertrains (up to 10% increase) for long-haul applications that will provide a range of
800 km without refuelling/recharging and cover at least 500 km average daily operation
(6+ months) in real conditions. ESCALATE is built on the novel concepts around three
main innovation areas, which are (i) standardised, well-designed, cost-effective modular
and scalable multi-powertrain components; (ii) fast fuelling and grid-friendly charging
solutions; and (iii) Digital Twin (DT) and AI-based management tools considering capacity,
availability, speed, and nature of the charging infrastructures as well as the fleet structures.
Throughout the project lifetime, five pilots, five DTs, and five case studies on TCO (with
the target of 10% reduction), together with their environmental performance via LCA, will
be performed.

2. Materials and Methods

Two design basis driving cycles for the GVW 40-tonne prototype tractor demonstrator
were used. Vehicle configuration was as is seen in Figure 1 (left). The first driving cycle is a
single-charge and refill mission of 750 km based on the long-haul mission profile of the Ve-
hicle Energy Consumption calculation TOol VECTO of the European Commission [14], and
the second one is a real roundtrip mission in Finland of 520 km exposed to various Nordic
road conditions. The real route runs from the port of Helsinki in the south of Finland up to
Jyväskylä in central parts of Finland, along the TEN-T core corridor. Modular powertrain
and vehicle model was constructed to support the conceptual design, and driving cycles
for both the VECTO long-haul and the real mission were constructed, utilising open road
network and speed limit data. Charging and H2 refuelling sites were planned to support
the missions. Energy consumption on the said driving cycles and loading were estimated
through simulation, and this information was used for preliminary dimensioning of the
powertrain. The electric drives of the tractor were dimensioned so that a secondary mission
of GVW up to 76 tonnes configuration, Figure 1 (right), on a shorter route can be operated.
The basic parameters of the powertrain and the vehicle combinations used in the simulation
are given in Table 1.
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Figure 1. Tractor and semitrailer (prototype) with the nominal GVW 40 tonnes configuration (left) and
a HCT configuration of tractor, semitrailer, dolly, and another semitrailer with GVW of 76 tonnes (right).

In the piloting phase, the electric truck (in BEV and/or FCEV configuration) will operate
on a flexible time schedule. The vehicle will be depot-charged in Jyväskylä. It is possible to
drive directly to Vuosaari port in Helsinki without need for opportunity charging on the
road. The driver’s resting hours will be well enough to make each leg without additional
breaks due to possible charging events. The time schedule allows the driver to unload the
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cargo plus having the lawful break in port before heading to second leg. Meanwhile, the
truck can be opportunity-charged (high-power charging, HPC).

Table 1. Main vehicle and powertrain parameters of the simulated vehicle combinations (GVW
40 tonnes tractor and semitrailer, GVW 76 tonnes tractor, semitrailer, dolly, and semitrailer).

Parameter

Total mass 40 tonnes/76 tonnes
Empty mass 16 tonnes/26 tonnes

Tractor axle configuration 6 × 4
Motor nominal power 430 kW
Motor nominal speed 1200 rpm

Number of gears 5
Battery efficiency 97%
Inverter efficiency 98%

Driveline efficiency 93%
Aerodynamic factor CdA 7.96 m2/12.0 m2

Rolling resistance factor 0.0065
Maximum speed 80 km/h

While the work cycle in the planned piloting phase offers high flexibility, it is crucial to
design and validate the configuration also in work cycles of heavier gross vehicle weights.
Typically, the long-haul trucks drive in three-shift work only by changing the driver by
the road. The EC regulations for driver’s rest times require one 45 min break after each
4.5 h period of driving [15]. The 45 min break can be split into 15 + 30 min, of which the
30 min need to take place after each 4.5 h of driving. Thus, it is important that the vehicle
supports HPC in a way that enough energy can be charged for at least 2–2.5 h of driving.
The validation of the functionality of the charging and terminal operations during the fast
charging will be covered in other phases of the project.

The energy consumption of electric trucks was evaluated by means of simulations. For
this purpose, the VTT’s in-house simulation platform ‘Smart eFleet’, originally developed
for urban buses [16] and validated based on measurements in [17], was utilised. The
simulation platform models the longitudinal dynamics of a vehicle travelling on a specific
route. The route is in the simulations divided into short segments, of which each includes
data on the topology, traffic lights, road curvature, speed limit, and length obtained from
open data sources. In the simulation, a speed reference is formed for each vehicle based
on the characteristics of the route, i.e., the speed limit and the road curvature. In addition
to this, a traffic component can be included to model the impact of congestion. The
speed of the vehicle is controlled by a PI controller. As the power flow of the simulation
model is forward-facing, the powertrain design parameters automatically set limits on the
acceleration, and the simulation model is well suited for cases where no speed measurement
data are yet available.

Two different powertrain options for the zero-emission truck were modelled, a pure
battery electric powertrain and a battery electric with a fuel cell acting as a range extender.
The electric motor is modelled as an efficiency look-up table dependent on the rotational
speed and the torque. The efficiencies of the gearbox, the battery, and the inverter are
assumed to be constant. The power rating of the electric drive was dimensioned to enable
operation with GVW of 76 tonnes and to meet the power requirement of 5 kW/GVW-tonne.
A simple efficiency curve was implemented for the fuel cell, and the power of the fuel
cell system will be scaled based on the degree of FC hybridisation. Estimated mass of the
power source components will be taken into account as well. For battery use, a simple
limitation of available output power on battery state of charge was implemented.

To ensure the traction performance of the vehicle combination, the mechanical drive-
line includes a 5-speed gearbox. The gear change logic uses fixed traction motor speeds for
up and down shifting, keeping the traction motor speed in a range with sufficient power
output capability and the highest possible efficiency. The traction power is delivered to
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the road using tandem-driven bogie axles. For the operation with 40 tonnes GVW, the
tandem-driven axles would not be needed, but this selection is made to enable also the
operation with 76 tonnes GVW. Losses in the mechanical driveline are taken into account
using efficiency factors for the gearbox and driving axles. The road load model includes
the gravity force due to slope and driving resistance forces for tire rolling resistance and
aerodynamic drag.

3. Results and Discussion

The results from the simulations are shown in Figure 2 for the VECTO long-haul
mission profile and in Figure 3 for the actual long-haul mission with 40 tonnes configuration.
In the synthesised results, the VECTO profile (Figure 2) is repeated until the design basis of
a 750 km mission is reached. The average energy consumption for the VECTO long-haul
driving cycle was 1.83 kWh/km, resulting in a total energy of 1373 kWh drawn from the
battery in pure battery electric mode. Six different power source combinations to fulfil the
750 km mission are shown in Table 2, and the corresponding simulation results for each
variation are shown in Figure 3. The fuel cell was selected individually for each powertrain
combination. The maximum power and the average power on the VECTO profile are
included in Table 2. The H2 tank indicates the minimum amount of hydrogen required
for the VECTO long-haul mission, whereas the fuel cell is selected to be able to provide
enough power also for a truck with a maximum weight of 76 tonnes. Therefore, the fuel cell
does not operate at maximum power in the first three options, and the fuel cell efficiency is
relatively good. The efficiency of the fuel cell system, including all auxiliary devices and
cooling of the fuel cell, is shown in Figure 4.
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Figure 2. VECTO long-haul driving cycle with elevation and driving speed (left) and battery power
(right) with 40 tonnes configuration.

Conceptual powertrain design configurations for the power source capacities are given
in Table 2 for the VECTO long-haul profile. The design basis analysis assumes that the
entire mission is carried out without intermediate or opportunity charging or H2 refilling,
in other words, energy storages are full at the start of the mission and will be depleted at
the end.

For the second use case, the driving cycle consists of a roundtrip, as shown in Figure 5
(520 km). The route was simulated with the same powertrain configurations as in Table 2,
and the resulting energy consumption for the nominal GVW 40 tonnes configuration in
pure battery electric mode was 1.82 kWh/km. The consumption in the direction Vuosaari—
Jyväskylä was 1.85 kWh/km, and in the opposite direction, it was 1.78 kWh/km. The
battery state of charge and fuel tank level are illustrated in Figure 6. An additional vehicle
configuration was analysed based on a GVW of 76 tonnes, as shown in the right side of
Figure 1, and using the same powertrain as previously described. The energy consumptions

495



World Electr. Veh. J. 2023, 14, 253

stated above can be considered to be slightly on the conservative side to provide sufficient
margins at the preliminary design phase.
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Figure 5. Speed and elevation of the Jyväskylä—Vuosaari roundtrip (left) and corresponding battery
power in pure BEV mode (right) with 40 tonnes configuration.
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Figure 6. Simulated battery state of charge (SOC, left) and hydrogen fuel tank level (right) on the
Jyväskylä—Vuosaari route (roundtrip) with 40 tonnes configuration.

The results with the 76 tonnes configuration are illustrated in Figure 7. The battery
was charged in Vuosaari for roughly 45 min with a charging power of maximum 1 MW,
and the fuel cell power was raised to the maximum level for all powertrain configurations.
In addition, a larger H2 tank was used for the first two powertrain configurations operating
with 0% and 20% battery shares, respectively. H2 refilling in Vuosaari could be an option to
minimise the H2 tank. The resulting total energy consumption levels on the Jyväskylä—
Vuosaari route are shown in Table 3. It is to be noted that these consumption numbers are
not fully optimised. The energy management strategy could be tuned based on the mission
to prioritise battery electric energy and minimise the use of hydrogen, especially in the
case that it is more expensive than charged electricity. The fuel cell efficiency varied in the
range 48–53% in the simulations, while the battery efficiency was 97%. In other words,
1 kg of hydrogen corresponds to 16–17 kWh of usable energy. The energy management
strategy should be selected based on the available recharging infrastructure. The strategy
chosen here allows the vehicle to operate on long distances on the expense of high energy
consumption when relying heavily on the fuel cell.

Further simulations were performed on the Vuosaari—Jyväskylä route. Operation in
pure battery electric mode is possible with intermittent charging halfway. The simulated
results, when charging at a power of 1 MW is available in Jyväskylä, are shown in Figure 8.
The charging break is assumed to be roughly 45 min with a couple of minutes reserved
for connecting and disconnecting. The smallest batteries are obviously not enough for this
case, while a battery of minimum 549 kWh is sufficient.
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Figure 7. Battery state of charge (left) and hydrogen tank level (right) when operating on the
Jyväskylä—Vuosaari route with 76 tonnes configuration. The battery is charged in Vuosaari for about
45 min with a maximum power of 1 MW.

Table 3. Energy consumption for the 520 km on-road roundtrip long-haul mission for 40 tonnes and
76 tonnes configurations. An intermediate recharging/refuelling at the turning point the mission
assumed for the 76 tonnes configuration.

GVW 40 Tonnes Nominal Case GVW 76 Tonnes HCT Case

Share of
Battery
Electric

Operation

Jyväskylä—Vuosaari Vuosaari—Jyväskylä Jyväskylä—Vuosaari Vuosaari—Jyväskylä

Battery
Electric
Energy

(kWh/km)

Hydrogen
Energy

(kWh/km)

Battery
Electric
Energy

(kWh/km)

Hydrogen
Energy

(kWh/km)

Battery
Electric
Energy

(kWh/km)

Hydrogen
Energy

(kWh/km)

Battery
Electric
Energy

(kWh/km)

Hydrogen
Energy

(kWh/km)

0% −0.04 3.72 0.05 3.70 −0.04 7.59 0.02 7.52
20% 0.30 3.10 0.35 3.09 0.47 5.94 0.67 5.89
40% 0.62 2.52 0.67 2.51 1.42 3.63 1.63 3.60
60% 1.02 1.84 1.08 1.83 2.20 1.88 2.38 1.86
80% 1.39 0.94 1.46 0.93 2.60 0.96 2.78 0.95
100% 1.78 0.00 1.85 0.00 2.99 0.00 3.21 0.00
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The current study is partly based on conservative vehicle parameter values to ensure
that the vehicle will meet the required performance criteria. In future studies concentrating
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on detailed system design and operational optimisation, the impact of the design parame-
ters will be studied and the potential to minimise energy consumption will be evaluated.
Various energy management strategies will be evaluated and the battery models will be
enhanced to properly take into account the power variation during high-power charging.
Secondly, in the case of a hybrid battery-fuel cell power source, control strategies will be
investigated to optimise various parameters, such as total energy consumption, operational
reliability to complete given missions, or the total cost of ownership. Furthermore, the
impact of environmental conditions and driving behaviours, such as statistical variation in
temperature, wind conditions, and driving resistances, will be analysed in more detail once
reliable information on these based on statistics, operator data, or real piloting operations
is available.

The final and optimal choice for the power source and prime mover split depends
on additional factors such as infrastructure availability, electricity and hydrogen prices,
required payload capacity, and system level availability and productivity. These data will
become available when the final design of the demonstrator vehicle as the fuel cell range-
extended electric truck is manufactured and put in trial operation. The final prototype
design is expected to have battery and fuel cell capacities in mid-area, between the 40% and
60% rows of Tables 2 and 3. The testing and data from the piloting operations will include
operation in both purely electric and fuel cell modes as well as their various combinations.

As part of this subsequent analysis, an additional element of the research approach
will be to assess and compare the system-level techno-economics of the powertrain and
system configurations in the said use cases and missions. The analysis is upcoming based
on the results of the vehicle and mission simulations and related technical and operational
data. The methodology is based on earlier total cost of ownership (TCO) analysis on electric
city buses [18] and the related literature.

4. Conclusions

Approach and methodology for the conceptual design of zero-emission truck pow-
ertrains intended for regional and long-haul missions are presented. Various scenarios
with the developed vehicle and powertrain models were analysed, taking into account
infrastructure and charging/refuelling all along the missions, as well as their impact on the
operative planning.

The approach starts from the design basis of an uninterrupted 750 km mission in
the VECTO long-haul profile, and secondly, a 520 km mission on a real route in southern
Finland. The powertrain designed is capable for vehicle combinations flexibly from a GVW
of 40 tonnes all the way up to 76 tonnes. The energy infrastructure analysed included
overnight depot charging to start the driving missions with a 100% charged battery and
an intermediate fast charging halfway through the roundtrip. Energy use for two truck
configurations was estimated through simulation for both use cases.

Six different conceptual powertrain designs with varying degrees of charged electric
fuel cell operation were presented. For fully electric operation, the estimated battery
capacity required 1373 kWh of traction battery capacity, whereas the other extreme of
power source design with H2 as the prime mover gives a hydrogen storage capacity of
83 kg. The four intermediate powertrain options combine battery and H2 tank capacities in
various ways. In terms of total energy consumption (tank to wheel), the smallest overall
mission energy consumption is with fully electric operation—this depends on the relative
efficiencies of battery electric and fuel cell electric powertrains.

The conceptual pre-design analysis shows that operation of the GVW 40 tonnes truck
is viable in the nominal design basis driving cycles in a battery electric mode with a fuel cell
range extender. Additionally, a number of modular powertrain concepts were proposed to
meet the design criteria. The work also provides requirements for the energy infrastructure
to support operations, pointing to megawatt-level opportunity charging being mandatory
for operating the heaviest payload case in purely electric mode.
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