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Preface

“Polymer-Based Flexible Materials, 2nd Edition" continues to explore this dynamic and rapidly

evolving field, focusing on the diverse applications and innovations that have emerged since the

publication of the first edition. This revised edition aims to provide a comprehensive overview

and in-depth analysis of polymer-based materials, particularly those with key properties such

as flexibility, elasticity, and stretchability—attributes that are critical for a wide range of modern

applications.

The reprint covers the latest advancements in the synthesis, processing, and characterization

of flexible polymer materials, with special emphasis on their potential in wearable technology, soft

robotics, and flexible electronics. As the demand for lightweight, cost-effective, and multifunctional

materials continues to grow, this work highlights the pivotal role of polymers in shaping the future of

materials science and engineering. Designed as an authoritative resource for researchers, engineers,

and students in materials science, polymer chemistry, and engineering, the reprint presents research

on polymer-based flexible materials in an accessible yet scientifically rigorous manner—spanning

fundamental principles to cutting-edge breakthroughs. It brings together the collective expertise

of an interdisciplinary team of contributors, each specializing in various aspects of polymer-based

materials. We extend our deepest gratitude to all the authors and contributors who shared their

valuable insights and knowledge. Their dedication and hard work made this second edition possible.

We also express our sincere appreciation to the academic institutions and colleagues who

provided support during the compilation of this book. Without their guidance and assistance, this

project would not have been completed. It is our hope that “Polymer-Based Flexible Materials, 2nd

Edition" will serve as a comprehensive and inspiring reference for researchers and practitioners in the

field, while contributing to the continued advancement of this important discipline.
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Article

Preparation of Polymerized High Internal Phase Emulsion
Membranes with High Open-Cellular Extent and High
Toughness via RAFT Polymerization
Yulan Wu 1, Jie Huang 1, Zanru Guo 1 , Qian Yang 1, Chunmiao Xia 2 and Zhenan Zheng 1,*

1 Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of
Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China

2 Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources,
School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China

* Correspondence: zzn1963@mnnu.edu.cn

Abstract: Porous polymer membranes with highly interconnected open-cellular structure
and high toughness are crucial for various application fields. Polymerized high internal
phase emulsions (polyHIPEs), which usually exist as monoliths, possess the advantages
of high porosity and good connectivity. However, it is difficult to prepare membranes
due to brittleness and easy pulverization. Copolymerizing acrylate soft monomers can
effectively improve the toughness of polyHIPEs, but it is easy to cause emulsion instabil-
ity and pore collapse. In this paper, stable HIPEs with a high content of butyl acrylate
(41.7 mol% to 75 mol% based on monomers) can be obtained by using a composite emulsi-
fier (30 wt.% based on monomers) consisting of Span80/DDBSS (9/2 in molar ratio) and
adding 0.12 mol·L−1 CaCl2 according to aqueous phase concentration. On this basis, poly-
HIPE membranes with high open-cellular extent and high toughness are firstly prepared via
reversible addition–fragmentation chain transfer (RAFT) polymerization. The addition of
the RAFT agent significantly improves the mechanical properties of polyHIPE membranes
without affecting open-cellular structure. The toughness of polyHIPE membranes prepared
by RAFT polymerization is significantly enhanced compared with conventional free radical
polymerization. When the molar ratio of butyl acrylate/styrene/divinylbenzene is 7/4/1,
the polyHIPE membrane prepared by RAFT polymerization presents plastic deformation
during the tensile test. The toughness modulus reaches 93.04 ± 12.28 kJ·m−3 while the
open-cellular extent reaches 92.35%, and it also has excellent thermal stability.

Keywords: polyHIPE membranes; RAFT polymerization; open-cellular extent; toughness

1. Introduction
Porous polymer membranes play a key role in various application fields, such as

separation analysis [1–3], sensors [4,5], energy storage and conversion, etc. [6–9]. An ideal
porous polymer membrane should possess a highly interconnected open-cellular structure
and high toughness. The highly interconnected open-cellular structure is beneficial to
achieving high mass transfer flux with low resistance, while high toughness helps to
maintain structure integrality when subjected to external force. The preparation method of
porous polymer materials usually includes foaming, phase separation, pore-forming agent,
etc. [10–12]. However, these methods lack the regulation of the pore structure of materials.

By contrast, polymerized high internal phase emulsions (polyHIPEs) provide a facile
method to build open-cellular structures with high porosity and good pore connectivity.

Polymers 2025, 17, 515 https://doi.org/10.3390/polym17040515
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Typical polyHIPEs are monoliths with a high glass transition temperature (Tg), which are
produced by free radical crosslinking copolymerization of monomers such as styrene (St)
and divinylbenzene (DVB). Although having a high modulus and strength, typical poly-
HIPEs are extremely brittle, thus easily leading to fragmentation during the preparation
of membranes. The mechanical properties of typical polyHIPEs can only be measured
by a compression test instead of a tensile test [13]. Therefore, improving the toughness
of polyHIPEs is critical in order to expand their application fields [13,14]. In order to
address the above problems, Kovačič et al. [13,15–17] prepared polyHIPE membranes with
improved toughness by ring-opening metathesis polymerization (ROMP) of dicyclopenta-
diene (DCPD). However, ROMP of DCPD requires strict control of reaction conditions, such
as temperature, pressure, and solvent selection, to avoid the occurrence of side reactions
and the instability of the product structure [15,16].

Free radical polymerization is a more convenient process due to the wide range of
applied monomers and mild reaction conditions. But to prepare polyHIPE membranes
with high open-cellular extent and high toughness via free radical polymerization is still
challenging. By copolymerizing acrylate soft monomers, the Tg of the polymer can be
significantly reduced, thereby improving the toughness of polyHIPEs [18]. However, due
to the high polarity of the acrylate monomer, Ostwald ripening is overwhelming when its
dosage is large, which is detrimental to the formation of a stable emulsion [19]. Furthermore,
copolymerizing too many soft monomers will lead to the collapse and closure of pores,
affecting the formation of an open-cellular structure [20]. To date, the concerned research is
limited, and there is a lack of discussion on the intrinsic structure and mechanical properties
of the materials.

Previous studies have shown that controlled/“living” free radical polymerization
(CLRP) realizes the controllability of the polymerization process by changing the kinetic
characteristics, thereby obtaining a more uniform crosslinking structure and further im-
proving the mechanical properties of the material [21–26]. This provides a new direction
for the preparation of polyHIPE membranes with high open-cellular extent and high tough-
ness. In this paper, polyHIPE membranes composed of monomers, including styrene (St),
butyl acrylate (BA), and divinylbenzene (DVB), composite emulsifiers including sorbitol
monooleate (Span 80) and sodium dodecyl benzene sulfonate (DDBSS), are firstly prepared
via reversible addition–fragmentation chain transfer (RAFT) polymerization, one of the
controlled/“living” free radical polymerizations. The effects of RAFT polymerization and
monomer composition on the intrinsic structure and mechanical properties of polyHIPE
membranes are systematically investigated in order to achieve high open-cellular extent
and high toughness.

2. Experimental Section
2.1. Materials

In order to remove the inhibitor, styrene (St, Mn = 104.15 g·mol−1, Xilong Scien-
tific Co., Ltd., Shantou, Guangdong, China) was distilled under reduced pressure, and
butyl acrylate (BA, Mn = 128.19 g·mol−1, Xilong Scientific Co., Ltd., Shantou, Guang-
dong, China) was washed with a 10 wt.% sodium hydroxide solution for more than three
times. Divinylbenzene (DVB, Mn = 130.19 g·mol−1, 80%, Sigma-Aldrich, St. Louis, MO,
USA), 2,2′-azobis(2-methylpropionitrile) (AIBN, Mn = 164.21 g·mol−1, 99%, Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China), sorbitan oleate (Span 80,
Mn = 428.61 g·mol−1, Xilong Scientific Co., Ltd., Shantou, Guangdong, China), sodium
dodecyl benzene sulfonate (DDBSS, Mn = 348.48 g·mol−1, 90%, Macklin, Shanghai, China),
and calcium chloride (CaCl2, Mn = 110.98 g·mol−1, anhydrous, Xilong Scientific Co., Ltd.,
Shantou, Guangdong, China) were used as purchased without further purification. The

2
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2-{[(Dodecyl-sulfanyl) carbonothioyl] sulfanyl} propanoic acid (Mn = 350 g·mol−1) was
synthesized and purified as described in reference [27], which was used as the RAFT agent.
The molecular formula of the RAFT agent is shown in Figure 1.
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2.2. Preparation of polyHIPE Membranes

Take RAFT-2 as an example: the organic phase was firstly prepared by mixing 4.480 g
BA (3.5 × 10−2 mol), 0.809 g St (7.77 × 10−3 mol), 0.506 g DVB (3.89 × 10−3 mol), and
0.0652 g the RAFT agent (1.86 × 10−4 mol), 1.472 g Span 80 (3.43 × 10−3 mol) and 0.0513 g
AIBN (3.12 × 10−4 mol). Then, it was poured into a three-necked round-bottom flask.
An amount of 0.266 g CaCl2 (2.40 × 10−3 mol), 0.266 g DDBSS (7.63 × 10−4 mol) was
dissolved in 20 g of deionized water to form the aqueous phase. The aqueous phase was
then dropwise added to the organic phase in the flask while stirring at 300 rpm. Once
the addition was completed, the stirring speed was adjusted to 1600 rpm and continued
for 30 min to obtain a viscous, homogeneous emulsion. The emulsion was poured into a
mold and transferred to a 70 ◦C drying oven for polymerization. After 72 h, the samples
were removed from the mold and placed in a Soxhlet extractor. They were first extracted
with deionized water for 24 h, followed by anhydrous ethanol for another 24 h. After
extraction, the samples were vacuum dried at 70 ◦C for 10 h, and polyHIPE membranes
were finally obtained.

2.3. Characterization

Pore structure. The scanning electron microscope (JSM-6010LA, JEOL Ltd., Tokyo,
Japan) was applied to observe the internal structure of polyHIPE membranes. The mem-
brane surface was sputtered for 120 s in a vacuum before observation, and the test voltage
was 10 kV.

Specific surface area. The surface area and pore size analyzer (Tristar II 3020, Mi-
cromeritics, Norcross, GA, USA) was applied to measure the specific surface area of
polyHIPE membranes. The temperature of nitrogen adsorption was set as −196 ◦C, and
the degassing temperature was 100 ◦C.

Porosity. The mercury porosimeter (Auto Pore IV 9510, Micromeritics, Norcross, GA,
USA) was applied to measure the porosity of polyHIPE membranes.

Tensile properties. The tensile properties of polyHIPE membranes were measured us-
ing a Zwick/Roell Z020 (ZwickRoell, Ulm, Germany). The shape of the test bar conformed
to GB/T 1040.2-2006 [28]. The testing was conducted at 15 ◦C with a tensile speed of
1 mm·min−1. The tensile test was repeated at least three times. The modulus of toughness
(MT) was calculated using Equation (1) as follows:

MT =
∫ εf

0
σdε (1)

where σ is tensile strength, ε is strain, and εf is elongation at break.
Heat stability. The heat stability of polyHIPE membranes was measured using a

Pyris 1 TGA (Perkin-Elmer, Ulm, Germany) in a nitrogen atmosphere. The range of test
temperature was 30 ◦C to 700 ◦C with a heat speed of 10 ◦C·min−1.

Glass transition temperature. A TA Q200 differential scanning calorimeter (TA Instru-
ments, New Castle, DE, USA) was applied to measure the Tg of polyHIPE membrane. The

3
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test was conducted in a nitrogen atmosphere, and the test temperature range was −40 ◦C
to 100 ◦C with a heat speed of 10 ◦C·min−1.

3. Results and Discussion
The introduction of polar monomers into the HIPE is conducive to Ostwald ripening,

resulting in emulsion instability and thus affects the structure and properties of poly-
HIPEs [29]. Previous studies have shown that Ostwald ripening can be effectively inhibited
by introducing electrolyte [30] and a composite emulsifier [31] composed of nonionic and
anionic emulsifiers. In this paper, a composite emulsifier (Span80/DDBSS equal to 9/2 in
molar ratio) and an electrolyte (0.12 mol·L−1 CaCl2) were applied to enhance the emulsion
stability. The amount of composite emulsifier was 30 wt.% of the total monomers. The
synthesized recipes and the corresponding emulsion stability are summarized in Table 1. It
can be seen that emulsions with a BA content less than 75 mol% remain stable at 25 ◦C for
more than 15 days, indicating superior stability. However, when the BA content reaches
92 mol%, the emulsion becomes unstable after one day, which is attributed to serious
Ostwald ripening.

Table 1. The recipe and stability of HIPEs.

Sample BA/St/DVB a RAFT b

(mol%)

Emulsifier
(30 wt.%)

Electrolyte
(mol·L−1)

Initiator b

(mol%) O/W c
Emulsion
Stability

(days)Span80/DDBSS CaCl2 AIBN

RAFT-1 11/0/1 0.4

9/2 0.12 0.67 1/3

>1

FRP-2 9/2/1 — >15
RAFT-2 9/2/1 0.4 >15
RAFT-3 7/4/1 0.4 >15
RAFT-4 5/6/1 0.4 >15
RAFT-5 3/8/1 0.4 >15
RAFT-6 7/2/3 0.4 >15

a molar ratio, b molar ratio of monomers, c volume ratio.

The stable HIPEs were poured into the mold followed by thermally initiated poly-
merization to prepare polyHIPE membranes. The effect of conventional free radical poly-
merization (FRP) and RAFT polymerization on the structure and properties of polyHIPE
membranes are compared while maintaining the molar ratio of BA/St/DVB equal to 9/2/1.
As shown in Figure 2, the size of the samples is basically the same and the appearance is
white, indicating that there is an obvious phase separation structure inside the samples. As
presented in Figure 3, two kinds of polyHIPE membranes both exhibit an interconnecting
open-cellular structure. Herein, the pore connectivity rate (PC) is defined to characterize the
open-cellular extent inside polyHIPE membranes, which can be calculated by Equation (2):

PC= PA/PT (2)

where PA is the actual porosity measured by a mercury porosimeter and PT is the theoretical
porosity calculated by Equation (3):

PT =
VH2O

VH2O + VSt + VDVB + VBA
=

mH2O/ρH2O

mH2O/ρH2O + mSt/ρSt + mDVB/ρDVB + mBA/ρBA
(3)

where the VH2O is the volume of water phase, VSt, VDVB, VBA are the volumes of dif-
ferent ingredients, mSt, mDVB, mBA are the actual weights of different ingredients, and

4
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ρH2O, ρSt, ρDVB, ρBA are the densities of H2O, St, DVB and BA, which are 1, 0.902, 0.919 and
0.898 g·cm−3, respectively [32].

Polymers 2025, 17, x FOR PEER REVIEW 5 of 13 
 

 

P = VୌమVୌమ  Vୗ୲  Vୈ  V= mୌమ ρୌమൗmୌమ ρୌమൗ  mୗ୲ ρୗ୲ൗ  mୈ ρୈൗ  m ρൗ  
(3)

where the Vୌమ is the volume of water phase, Vୗ୲, Vୈ, V are the volumes of different 
ingredients, mୗ୲, mୈ, m  are the actual weights of different ingredients, and ρୌమ,ρୗ୲, ρୈ, ρ are the densities of H2O, St, DVB and BA, which are 1, 0.902, 0.919 and 
0.898 g/cm3, respectively [32]. 

 

Figure 2. The optical images of polyHIPE membranes prepared by FRP and RAFT polymerization. 

 

Figure 3. SEM images of polyHIPE membranes prepared by FRP and RAFT polymerization: (a) 
RAFT-2, (b) FRP-2. 

The results of mercury porosimeter are summarized in Table 2. As can be seen, the 
specific surface area and pore connectivity of RAFT-2 and FRP-2 are basically consistent. 
However, the Pc of RAFT-2 and FRP-2 is merely around 90%. It is speculated that the high 
proportion of the soft monomer leads to the insufficient mechanical strength and thus 
results in partial pore collapse and closure [20,33], which will be elaborated in the follow-
ing discussion. As shown in the pore size distribution curves (Figure 4), RAFT-2 contains 
a large amount of smaller mesopores with a size about 1–2 nm, which does not appear in 
FRP-2, indicating remarkable difference in microstructure for materials prepared by RAFT 
polymerization and conventional free radical polymerization [34]. The stress–strain 
curves of synthesized polyHIPE membranes are shown in Figure 5 with results summa-
rized in Table 2. As can be seen, the tensile strength, elongation at break, and modulus of 
toughness of RAFT-2 are obviously higher than those of FRP-2. Specifically, the tensile 

Figure 2. The optical images of polyHIPE membranes prepared by FRP and RAFT polymerization.

Polymers 2025, 17, x FOR PEER REVIEW 5 of 13 
 

 

P = VୌమVୌమ  Vୗ୲  Vୈ  V= mୌమ ρୌమൗmୌమ ρୌమൗ  mୗ୲ ρୗ୲ൗ  mୈ ρୈൗ  m ρൗ  
(3)

where the Vୌమ is the volume of water phase, Vୗ୲, Vୈ, V are the volumes of different 
ingredients, mୗ୲, mୈ, m  are the actual weights of different ingredients, and ρୌమ,ρୗ୲, ρୈ, ρ are the densities of H2O, St, DVB and BA, which are 1, 0.902, 0.919 and 
0.898 g/cm3, respectively [32]. 

 

Figure 2. The optical images of polyHIPE membranes prepared by FRP and RAFT polymerization. 

 

Figure 3. SEM images of polyHIPE membranes prepared by FRP and RAFT polymerization: (a) 
RAFT-2, (b) FRP-2. 

The results of mercury porosimeter are summarized in Table 2. As can be seen, the 
specific surface area and pore connectivity of RAFT-2 and FRP-2 are basically consistent. 
However, the Pc of RAFT-2 and FRP-2 is merely around 90%. It is speculated that the high 
proportion of the soft monomer leads to the insufficient mechanical strength and thus 
results in partial pore collapse and closure [20,33], which will be elaborated in the follow-
ing discussion. As shown in the pore size distribution curves (Figure 4), RAFT-2 contains 
a large amount of smaller mesopores with a size about 1–2 nm, which does not appear in 
FRP-2, indicating remarkable difference in microstructure for materials prepared by RAFT 
polymerization and conventional free radical polymerization [34]. The stress–strain 
curves of synthesized polyHIPE membranes are shown in Figure 5 with results summa-
rized in Table 2. As can be seen, the tensile strength, elongation at break, and modulus of 
toughness of RAFT-2 are obviously higher than those of FRP-2. Specifically, the tensile 
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(a) RAFT-2, (b) FRP-2.

The results of mercury porosimeter are summarized in Table 2. As can be seen, the
specific surface area and pore connectivity of RAFT-2 and FRP-2 are basically consistent.
However, the Pc of RAFT-2 and FRP-2 is merely around 90%. It is speculated that the
high proportion of the soft monomer leads to the insufficient mechanical strength and
thus results in partial pore collapse and closure [20,33], which will be elaborated in the
following discussion. As shown in the pore size distribution curves (Figure 4), RAFT-2
contains a large amount of smaller mesopores with a size about 1–2 nm, which does not
appear in FRP-2, indicating remarkable difference in microstructure for materials prepared
by RAFT polymerization and conventional free radical polymerization [34]. The stress–
strain curves of synthesized polyHIPE membranes are shown in Figure 5 with results
summarized in Table 2. As can be seen, the tensile strength, elongation at break, and
modulus of toughness of RAFT-2 are obviously higher than those of FRP-2. Specifically,
the tensile strength enhances from 266.8 ± 7.05 kPa to 347 ± 4.31 kPa, and elongation at
break increases from 17.36 ± 2.40% to 24.00 ± 3.26%. Correspondingly, the MT of RAFT-2
reaches to 47.60 ± 7.88 kJ·m−3, which is about twice that of FRP-2.
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Table 2. The structure and mechanical properties of polyHIPE membranes prepared by FRP and
RAFT polymerization.

Sample PA (%) PT (%) PC (%) BET
(m2·g−1) E a (MPa) σ b (kPa) εf

c (%) MT
d

(kJ·m−3)

RAFT-2 67.21 75.69 88.80 3.42 2.04 ± 0.34 347 ± 4.31 24.00 ± 3.26 47.60 ± 7.88
FRP-2 68.71 75.99 90.42 3.25 1.63 ± 0.76 266.8 ± 7.05 17.36 ± 2.40 23.86 ± 8.71

a Young’s modulus, b ultimate tensile strength, c elongation at break, d modulus of toughness.
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Figure 4. The pore size distribution curves of polyHIPE membranes prepared by FRP and RAFT
polymerization.
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Figure 5. The stress–strain curves of polyHIPE membranes prepared by FRP and RAFT polymerization.

The difference in the structure and properties of polyHIPE membranes prepared by
RAFT polymerization and conventional free radical polymerization are intimately related
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to the kinetic characteristics of the polymerization process. In conventional free radical
polymerization, the radicals formed by the decomposition of the initiator rapidly grow into
polymer chains with high molecular weight, and then terminate in a very short time. Due
to the low concentration of polymer chains, cyclization and intramolecular crosslinking
reactions are prone to form microgels. As the reaction proceeds, the microgels form a
network structure through intermolecular crosslinking [35], as illustrated in Figure 6a.
The crosslinking network formed by microgels is heterogeneous and contains a lot of
structural defects, which is unfavorable to the mechanical properties. By contrast, all of
the polymer chain are generated at the beginning and grow simultaneously during RAFT
polymerization. Therefore, a large number of the oligomer living chains tend to form a
uniform intermolecular crosslinking network with less structural defects, as illustrated in
Figure 6b, which helps to improve the mechanical properties [36].
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Although RAFT polymerization effectively improves the toughness of polyHIPE mem-
branes, the DSC results show that the Tg of RAFT-2 is about −6.7 ◦C (Figure 7), which is
lower than test temperature (i.e., 15 ◦C), indicating that RAFT-2 is in a rubbery state, so
Young’s modulus and the tensile strength of RAFT-2 are still low. The insufficient mechani-
cal strength leads to incomplete open-cellular structures, as described above. Aiming at the
above problems, the strength of the material is enhanced by increasing the molar ratio of
DVB or St to obtain higher toughness and open-cellular extent. Five kinds of polyHIPE
membranes with different monomer ratios based on stable emulsions are synthesized via
RAFT polymerization, as listed in Table 1. When the molar ratio of BA/St/DVB changes
from 9/2/1 to 7/2/3, RAFT-6 shows brittle fracture, as shown in Figure 8, indicating that
the amount of DVB has a significant effect on the brittleness of the material. By changing
the molar ratio of BA/St/DVB from 9/2/1 to 5/6/1, RAFT-3 and RAFT-4 remain intact and
the degree of shrinkage is reduced. However, when the molar ratio of BA/St/DVB changes
to 3/8/1 in RAFT-5, brittle fracture is observed again, as shown in Figure 8. The SEM
image (Figure 9) shows that all polyHIPE membranes have an interconnected open-cellular
structure when the molar ratio of BA/St/DVB changes from 9/2/1 to 5/6/1. The changes
of molar ratios of BA/St/DVB also cause the PC to increase from 88.80% to 100%, which is
consistent with the change of sample size, indicating that the collapse and closure of pores
can be avoided effectively by increasing the St content. The specific surface area increases
from 3.42 m2·g−1 to 5.19 m2·g−1, as shown in Table 3.
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A tensile test of polyHIPE membranes with different molar ratios of BA/St/DVB
were further conducted. The test results are summarized in Table 3, while the stress–strain
curves are shown in Figure 10. When the molar ratio of BA/St/DVB changes from 9/2/1
to 7/4/1, the Tg of RAFT-3 increases to 18.7 ◦C (Figure 7), and a distinct yield point is
observed in the stress–strain curve. Because the test temperature is close to the Tg, the
yield stress of RAFT-3 is lower than the fracture stress. The frozen chain segment of the
glassy RAFT-3 begins to move under external force after the yield point, and the extension
of the polymer chain provides significant deformation of the material. Therefore, RAFT-3
exhibits plastic deformation with ductile fracture. Specifically, although elongation at
break decreases from 24.00 ± 3.26% to 17.50 ± 3.90%, Young’s modulus and the tensile
strength increase to 10.09 ± 1.82 MPa and 819.62 ± 33.31 kPa, respectively. Accordingly,
the MT increases from 47.60 ± 7.88 kJ·m−3 to 93.04 ± 12.28 kJ·m−3. When the molar ratio
of BA/St/DVB changes to 5/6/1, the Tg of RAFT-4 increases to 41.7 ◦C (Figure 7) and
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Young’s modulus of RAFT-4 increases sharply, indicating that the strength of the polymer
skeleton is greatly enhanced. Simultaneously, a large number of macropores with a size of
several hundred nanometers to microns appear inside the material, while the mesopores
with a size below 10 nm basically disappear, as shown in Figure 11, which is consistent
with the research of Luo et al. [36]. The results indicate that the existence of mesopores
inside RAFT-2 and RAFT-3 with high BA content may be attributed to the collapse of pores
caused by insufficient polymer skeleton strength, rather than structural defects caused by
uneven crosslinking. However, because the test temperature is much lower than the Tg,
the yield stress of RAFT-4 is higher than the fracture stress. Thus, elongation at break and
toughness of RAFT-4 is sharply reduced, and RAFT-4 responds in an almost linear–elastic
manner and fails by brittle fracture. Therefore, the adjustment range of the molar ratios
of BA/St/DVB is quite narrow in order to achieve high open-cellular extent and high
toughness simultaneously in polyHIPE membranes.

Polymers 2025, 17, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 7. The derivative DSC curves of RAFT-2, RAFT-3, and RAFT-4. 

 

Figure 8. The optical images of polyHIPE membranes obtained by different molar ratios of 
BA/St/DVB prepared by RAFT polymerization. 

 

Figure 9. SEM images of polyHIPE membranes with different molar ratios of BA/St/DVB prepared
by RAFT polymerization: (a) 9/2/1, (b) 7/4/1, and (c) 5/6/1.

Table 3. The structure and mechanical properties of polyHIPE membranes with different molar ratios.

Sample BA/St/DVB E a

(MPa)
σ b

(kPa)
ε c

(%)
MT

d

(kJ·m−3)
BET

(m2·g−1) PA (%) PT (%) PC (%)

RAFT-2 9/2/1 2.04 ± 0.34 347 ± 4.31 24.00 ± 3.26 47.60 ± 7.88 3.42 67.21 75.69 88.80
RAFT-3 7/4/1 10.09 ± 1.82 819.62 ± 33.31 17.50 ± 3.90 93.04 ± 12.28 3.85 69.79 75.57 92.35
RAFT-4 5/6/1 51.10 ± 2.68 664.4 ± 41.37 1.60 ± 0.66 6.24 ± 3.45 5.19 76.65 75.71 100 e

a Young’s modulus, b ultimate tensile strength, c elongation at break, d modulus of toughness, e Deviation in the
theoretical calculation, PC is recorded as 100% when PA is greater than PT.
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Figure 10. The stress–strain curves of polyHIPE membranes with different molar ratios of BA/St/DVB
prepared by RAFT polymerization.
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The heat stability of RAFT-2, RAFT-3, and RAFT-4 was also analyzed. The TGA results
show that the initial decomposition temperatures of the samples all exceed 300 ◦C, and the
heat resistance is improved by increasing the St content, as shown in Figure 12. Moreover,
no shrinkage or yellowing phenomenon is observed after 200 ◦C treatment in air for
30 min, as shown in Figure 13, proving excellent thermal stability of all the samples. The
synthesized polyHIPE membranes have wide application prospect in the field of lithium
ion batteries as separators due to their high open-cellular structures and high toughness.
Since the traditional polyolefin separators possesses poor heat stability, the superior heat
stability of the polyHIPE membrane can effectively delay the thermal runaway and thus
improve the safety of lithium ion batteries.

10



Polymers 2025, 17, 515Polymers 2025, 17, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 12. Thermogravimetry analysis curves of RAFT-2, RAFT-3, and RAFT-4. 

 

Figure 13. Optical photographs of RAFT-2, RAFT-3 and RAFT-4: (a) before and (b) after exposure 
at 200 °C for 30 min. 

4. Conclusions 
In this paper, stable HIPEs with a high butyl acrylate content (41.7 mol% to 75 mol% 

based on monomers) can be obtained by using a composite emulsifier (30 wt.% based on 
monomer) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol/L CaCl2 
according to aqueous phase concentration. On this basis, polyHIPE membranes with high 
open-cellular extent and high toughness are firstly prepared by RAFT polymerization. 
RAFT polymerization can significantly improve the toughness of the material. When the 
molar ratio of BA/St/DVB equals 9/2/1, the MT of the polyHIPE membrane prepared by 
RAFT polymerization is twofold that of traditional free radical polymerization, reaching 
47.6 ± 7.88 kJ/m3, while the PC almost remains the same. When the molar ratio of 
BA/St/DVB equals 7/4/1, the polyHIPE membrane prepared by RAFT polymerization 
shows plastic deformation during the tensile test, and the MT is further improved to 93.04 
± 12.28 kJ/m3 with a PC of 92.35%, and it also exhibits excellent thermal stability. This work 
provides a new idea to prepare polyHIPE membranes with high open-cellular structures 
and high toughness, and thus expands the application field of polyHIPEs. 

Author Contributions: Conceptualization, Z.Z.; Methodology, J.H.; Validation, Z.G. and C.X.; For-
mal analysis, Y.W. and J.H.; Investigation, Y.W.; Data curation, J.H. and Q.Y.; Writing—original 
draft, Y.W.; Writing—review & editing, J.H., Z.G. and Z.Z.; Supervision, Z.Z.; Funding acquisition, 
Z.G., C.X. and Z.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Fujian Provincial Natural Science Foundation grant number 
2022J05172 and 2022J01900 and Foundation of Anhui Provincial Higher Education Institutions grant 
number 2022AH050959. The APC was funded by Research Fund of Minnan Normal University. 

Institutional Review Board Statement: Not applicable. 

Figure 12. Thermogravimetry analysis curves of RAFT-2, RAFT-3, and RAFT-4.

Polymers 2025, 17, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 12. Thermogravimetry analysis curves of RAFT-2, RAFT-3, and RAFT-4. 

 

Figure 13. Optical photographs of RAFT-2, RAFT-3 and RAFT-4: (a) before and (b) after exposure 
at 200 °C for 30 min. 

4. Conclusions 
In this paper, stable HIPEs with a high butyl acrylate content (41.7 mol% to 75 mol% 

based on monomers) can be obtained by using a composite emulsifier (30 wt.% based on 
monomer) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol/L CaCl2 
according to aqueous phase concentration. On this basis, polyHIPE membranes with high 
open-cellular extent and high toughness are firstly prepared by RAFT polymerization. 
RAFT polymerization can significantly improve the toughness of the material. When the 
molar ratio of BA/St/DVB equals 9/2/1, the MT of the polyHIPE membrane prepared by 
RAFT polymerization is twofold that of traditional free radical polymerization, reaching 
47.6 ± 7.88 kJ/m3, while the PC almost remains the same. When the molar ratio of 
BA/St/DVB equals 7/4/1, the polyHIPE membrane prepared by RAFT polymerization 
shows plastic deformation during the tensile test, and the MT is further improved to 93.04 
± 12.28 kJ/m3 with a PC of 92.35%, and it also exhibits excellent thermal stability. This work 
provides a new idea to prepare polyHIPE membranes with high open-cellular structures 
and high toughness, and thus expands the application field of polyHIPEs. 

Author Contributions: Conceptualization, Z.Z.; Methodology, J.H.; Validation, Z.G. and C.X.; For-
mal analysis, Y.W. and J.H.; Investigation, Y.W.; Data curation, J.H. and Q.Y.; Writing—original 
draft, Y.W.; Writing—review & editing, J.H., Z.G. and Z.Z.; Supervision, Z.Z.; Funding acquisition, 
Z.G., C.X. and Z.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Fujian Provincial Natural Science Foundation grant number 
2022J05172 and 2022J01900 and Foundation of Anhui Provincial Higher Education Institutions grant 
number 2022AH050959. The APC was funded by Research Fund of Minnan Normal University. 

Institutional Review Board Statement: Not applicable. 
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4. Conclusions
In this paper, stable HIPEs with a high butyl acrylate content (41.7 mol% to 75 mol%

based on monomers) can be obtained by using a composite emulsifier (30 wt.% based
on monomer) consisting of Span80/DDBSS (9/2 in molar ratio) and adding 0.12 mol·L−1

CaCl2 according to aqueous phase concentration. On this basis, polyHIPE membranes with
high open-cellular extent and high toughness are firstly prepared by RAFT polymerization.
RAFT polymerization can significantly improve the toughness of the material. When the
molar ratio of BA/St/DVB equals 9/2/1, the MT of the polyHIPE membrane prepared by
RAFT polymerization is twofold that of traditional free radical polymerization, reaching
47.6 ± 7.88 kJ·m−3, while the PC almost remains the same. When the molar ratio of
BA/St/DVB equals 7/4/1, the polyHIPE membrane prepared by RAFT polymerization
shows plastic deformation during the tensile test, and the MT is further improved to
93.04 ± 12.28 kJ·m−3 with a PC of 92.35%, and it also exhibits excellent thermal stability.
This work provides a new idea to prepare polyHIPE membranes with high open-cellular
structures and high toughness, and thus expands the application field of polyHIPEs.
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15. Kovačič, S.; Krajnc, P.; Slugovc, C. Inherently Reactive polyHIPE Material from Dicyclopentadiene. Chem. Commun. 2010, 46, 7504.
[CrossRef]
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Abstract: Currently, in the domestic practice of retreading tires using vulcanization tanks,
some tanks exhibit uneven temperature distributions leading to low retreading success
rates. To address that, this paper simulated the temperature and velocity fields during the
heating process of vulcanization tanks for waste tire retreading. The results indicated that
a higher heating power reduces the time required for the vulcanizing agent to reach the
vulcanization condition, but it also increases the difference in tire temperature in the tank,
with a severely uneven distribution of the temperature field. Subsequently, to improve
the uniformity of temperature distribution and enhance the retreading rate of waste tires,
this paper proposed two types of orifice plates to adjust the airflow organization. The
results show that both the plain orifice plate and the frustum cone orifice plate can enhance
the uniformity of the temperature field within the vulcanization tank and reduce the
temperature difference between tires. Moreover, at the same heating power, the presence of
the orifice plates increases the rate of temperature increase in the tires and the vulcanizing
agent compared to the original vulcanization tank, improving the thermal efficiency of the
vulcanization tank heater.

Keywords: waste tire retreading; vulcanization tank; airflow organization; orifice plate;
numerical simulation

1. Introduction
With rapid development and global industrialization, the growing world population’s

demand for automobile production is increasing [1], and the disposal of waste tires has
become a global environmental protection challenge. The stable growth of the automotive
industry inevitably leads to a significant increase in the number of end-of-life tires (ELT) [2],
most of which come from waste passenger cars and truck tires [3,4]. Waste tires, known
as “black pollution”, pose significant challenges in recycling and disposal technology.
According to statistics, over the next thirty years, the global waste output is expected
to increase by 70%, reaching 3.4 billion tons [1]. Thanks to the continuously growing
automotive industry, China alone discards a staggering 16 million tons of waste tires
annually, while the global volume has reached an astonishing 1.5 billion tons [5–7]. Against
this backdrop, the recycling of waste tires is particularly important [8].

The treatment of waste tires mainly includes renovation and reuse, that is, the utiliza-
tion of reclaimed rubber from waste tires, pyrolysis, and direct incineration. The reclaimed
rubber from waste tires uses physical means to crush, separate, and sort waste car tires,
allowing the production of rubber particles and rubber powder with minimal pollution at

Polymers 2025, 17, 232 https://doi.org/10.3390/polym17020232
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room temperature. Although the production of reclaimed rubber powder from waste car
tires can achieve the harmless treatment of this “black pollution”, it ultimately results in
additives and degradation materials derived from the waste tire rubber that may leach into
the environment [9].

Pyrolysis involves the controlled combustion of rubber waste without oxygen, leading
to the decomposition of rubber into smaller components such as fuel oil, gas, carbon
black, sulfur, and metals [10,11]. The main objective of pyrolysis is to extract energy from
waste tire rubber. The fuel produced through this process is purified to remove sulfur,
char, and ash, ensuring the production of high-quality fuel, suitable for enhancing engine
performance. The gas produced during the pyrolysis process is used as for heat and
electricity generation in power plants [12]. Additionally, the carbon black produced by
pyrolysis can be mixed with plastics or EVA foam (Ethylene-Vinyl Acetate copolymer foam),
or it can be further processed into activated carbon [13]. In summary, pyrolysis products
have a wide range of applications with considerable utilization value, aligning with the
trends of the times, saving energy, being environmentally friendly, and being one of the
best ways to create a sustainable development-oriented society. However, this solution for
waste tire management requires large-scale pyrolysis equipment, with high construction
and operation costs (high temperature and low pressure), limiting its large-scale industrial
application [14].

Incineration is a self-sustaining exothermic process that occurs above 400 ◦C, and since
the calorific value of waste tires is higher than that of coal (18.6–27.9 MJ/kg), they are used
for energy recovery. The calorific value of waste tires is 32.6 MJ/kg, which can be used as
a fuel source for producing steam, electricity, pulp, paper, lime, and steel. Additionally,
Oriaku et al. [15] reported the recovery of carbon black (CB) through the combustion of
tires in limited air supply through incineration. The recovered material can be used in
small-scale industries for the production of printing inks and paints. The main advantages
of incineration are the low cost of energy production and the maximum recovery of heat.
However, the atmospheric pollution caused by emissions of flue gas and particulate matter
is a serious air pollution source that needs to be addressed [16].

Tire retreading, as the primary and most effective method used for recycling, has
characteristics such as multiple retreading, low material consumption, low cost, and long
service life. Retreading is the process of replacing the worn tread of discarded tires with
new tread so that the tires can be reused [17,18]. In the tire retreading process, the first
step involves a thorough inspection of the discarded tire body to assess its suitability
for reuse. After this evaluation, the tire crown is separated from the tire body through
grinding and subsequent repair. After the necessary repairs, a cushion rubber sheet is
applied, and a pre-vulcanizing agent is used to vulcanize the tread rubber. As shown
in Figure 1, the process involves applying a vulcanizing agent to the outer tire and then
attaching it to the inner tire. Among them, vulcanizing agents play a role in significantly
improving the physical and chemical properties of rubber, such as elasticity, strength,
heat resistance, medium resistance, and durability, even if rubber is transformed from
thermoplastic rubber to thermosetting rubber through vulcanization reactions, which play
a crucial role in enhancing the adhesion, physical properties, and production efficiency of
refurbished tires, while reducing energy consumption and costs. The final stage includes
the vulcanization of the tread rubber and the final inspection of the product’s quality before
it is ready for the market [19]. Studies have shown that each retreaded tire requires only
30% of the energy and 25% of the raw materials needed to produce a new tire [20,21]. Each
retreading can regain 60–90% of the service life of a new tire, with an average driving
mileage of 50,000–70,000 km. In 2019, the United States produced over 4.05 million metric
tons of waste tires, while the European Union produced 3.56 million metric tons. In recent

15



Polymers 2025, 17, 232

years, in the United States, given the increasing number of waste tires, more tires are
being recycled or used as energy [22]. Currently, in China, there is a large output of waste
tires [23], a low volume of retreading with a retreading rate of about 4%, and generally low
retreading rates [24], which are somewhat behind those of developed countries; however,
significant progress has been made compared to the past. In China, with the rapid growth
in the number of vehicles, the generation of waste tires is also increasing at a double-digit
rate, posing severe challenges for environmental protection and resource conservation.
Therefore, promoting the circular utilization of waste tires not only helps alleviate the issue
of rubber resource shortage in China but also reduces environmental pollution, promoting
the construction of a circular economy and a conservation-oriented society.
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Figure 1. Operation diagram of bonding rubber sheets from waste tire vulcanizing agents. (a) Position
of vulcanizing agent; (b) tire retread operation diagram.

There are mainly two methods of retreading, hot vulcanization and cold vulcanization.
Hot retreading of waste tires refers to the traditional retreading method, with vulcanization
temperatures generally around 145~155 ◦C, with the hot retreading process temperature
being far above the critical temperature, causing significant damage to the tire body. The
use of rigid molds in the hot retreading process can easily lead to tire deformation, thus
generating internal stress, causing layering, shoulder voids, and a high probability of tire
blowouts, affecting the service life of the tire which can only be used for passenger car
tires [17]. In this method, a new rubber layer is formed on the tire, and the entire tire is
vulcanized at 150 ◦C to 180 ◦C to mold the tread pattern. Hot vulcanization uses mature
technology, with a long history, cheap equipment costs, lower investment costs. Some
tires, like airplane tires, can only be retreaded with hot vulcanization. The cold vulcan-
ization method, also known as the pre-vulcanization method, has a general vulcanization
temperature below 120 ◦C and is suitable for commercial vehicle tires. Since the critical
temperature for the denaturation of tire rubber is 120 ◦C, this means that above 120 ◦C, the
physical performance indicators of the tire rubber significantly decrease. For example, the
adhesion strength between the rubber and the framework material decrease in such cases,
leading to tire body layer separation, voids, or even blowouts. Therefore, this method,
compared to traditional hot retreading, does not damage the retreaded tire body and
does not affect the service life of the tire body. The optimal vulcanization temperature for
cold retreading is generally around 100 ◦C. It uses pre-molded vulcanized strips or rings
that are applied to the polished old tire body, which is vulcanized at low temperatures
in the cylinder, potentially saving energy and reducing the aging phenomenon caused
by secondary vulcanization, thus protecting tire body quality and extending service life.
Under normal conditions (the wear resistance of the pre-vulcanized tread rubber reaches
80,000 km or more), the service life of hot retreaded tires should be 60~80% of that of
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new tires, while tires retreaded using the pre-vulcanization method can approach 100%.
However, the current domestic cold retreading technology is not mature, and the general
uneven temperature distribution in cold retreading vulcanization tanks leads to a low tire
retreading rate.

To explore and solve the mentioned issues, this paper studies the temperature and
velocity fields in the vulcanization tank and the development process of tire temperature
within the tank through numerical simulations in ANSYS Fluent 2022R1. The investigation
scope of tire temperature includes temperature differences, average tire temperature, and
the temperature of vulcanizing agent which plays multiple roles in tire retreading, including
restoring tire performance, providing adhesion, improving durability, maintaining tread
shape, and promoting environmental protection. Subsequently, based on the simulation
results, two types of orifice plate structures are proposed, the flat orifice plate and the
frustum cone orifice plate, which significantly improve the uneven temperature distribution
in the vulcanization tank’s temperature field, laying the foundation for the advancement of
the tire retreading industry in China.

2. Materials and Methods
The vulcanization tank, as shown in Figure 2a,b, has two heating air ducts in the

heating part of the tank body. The specifications of the screw-type armored thermocouple
temperature meter are M27·1.5, which means the nominal diameter is 27 mm and the pitch
is 1.5 mm. It is worth mentioning that the length of the thermometer is 150 mm. The
temperature error is ±0.35 ◦C. The air flow direction and the position of the thermometer
are shown in Figure 3. The schematic diagram of the energy transfer is shown in Figure 4.
The heated air circulates clockwise, absorbs heat through an electric heating tank, and then
releases heat through waste tires, repeating the cycle. Schematic diagrams and simplified
geometric structures of the vulcanization tank are shown in Figure 2b,c. The detail can be
seen in Table 1. The vulcanization tank consists of a tank, air ducts, and a driving fan, all
made of 304 stainless steel [20,21]. The temperature of the laboratory environment is 7 ◦C.
Each heating flue is equipped with three U-shaped heating tubes, the model of the waste
tires are 1200r20 tires, and the operation procedure of the vulcanization tank includes the
following steps:

1. Close the vulcanization tank with 21 waste tires;
2. Add compressed air at a pressure of 6 atmospheres to the tank;
3. Turn on the driving fan and heating power to cause the air inside the tank to circulate

and heat up; the heating power is 88 kw and the heating duration is 1600 s;
4. Evenly heat the waste tires in the tank to facilitate the vulcanization of the vulcanizing

agent.

Table 1. Parameters of the vulcanization tank used in the experiment.

Parameters Values

L1 8500 mm
L2 8400 mm
L3 4063 mm
L4 400 mm
L5 200 mm

D1 1600 mm
D2 487.2 mm

R1 800 mm
R2 700 mm

r1 30◦

r2 33.4◦
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3. Geometric Model
All experimental models are simulated through ANSYS Fluent 2022R1. To simplify

the model, each U-shaped heating tube is modeled as two longitudinal heating tubes,
ignoring the influence of the electronic control system. The relevant physical parameters
of the material and the boundary conditions for simulation are shown in Table 2. It is
worth noting that the power of the heat source is set as P = 45, 60, 75, 90 kW. Among
them, the heating conditions are that the thermometer temperature < 100 ◦C and the tire
temperature <80 ◦C. The driving fan operates with a flow rate of 4500 m3/h, with the
minimum Reynolds number being 17,663, which is far greater than 4000, thus, the model
is a turbulent flow model. Additionally, there are two other types of airflow organization
orifice plate structures, which are the flat orifice plate and the frustum cone orifice plate, as
shown in Figures 5 and 6. The 5 cm aperture diameter and the 2 mm thickness of the orifice
plate can be ignored. The diameter of the flat orifice plate is 1460 mm. The bottom diameter
of the frustum cone orifice plate is 560 mm, and the diameter of the upper circle is 230 mm.

From left to right, there are 28 temperature monitoring points set for the vulcanizing
agent, with their specific locations shown in Figure 7.
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A simulation model of the waste tire curing tank is presented in the text, which
includes fluid flow physical problems and fluid–solid heat transfer physical problems.
In the computational domain, air is assumed to be incompressible and with constant
properties. The flow is considered to be three-dimensional and steady. This study applies
three governing equations.
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The turbulence kinetic energy equation in the fluid region and turbulence kinetic
energy dissipation rate equation are expressed as follows:
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ρui
∂ε

∂xi
=

∂

∂xi

[(
µ +

µt

σk

)
∂ε

∂xi

]
+ C1

µt

2
(4)

where ui and uj represent the mean velocity components. P and ε represent the mean
pressure and dissipation rate of TKE, respectively. ρ, u, and µt are the air density, air
molecular dynamic viscosity coefficient, and air turbulence dynamic viscosity, respectively.
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In this model, the turbulence model is a typical turbulence model in ANSYS Fluent.
Previous studies [25,26] have all used typical turbulence models to simulate heat exchanges.
Therefore, the typical parameters [23] in this turbulence model are set as follows:

PrTKE = 1; PrTDR = 1.3; Prwall = 0.85; Pre = 0.85; C1 = 1.44; C2 = 1.92;
Cµ = 0.09.

The energy transport equation in the airflow is expressed as follows:

ρairCp,air
∂Tair

∂t
+ ρairCp,airui

∂Tair
∂xi

=
∂

∂xi

[(
λa +

µt

σT

)
∂Tair
∂xi

]
(5)

where Tair, λa, and Cp,air respectively represent the air temperature, thermal conductivity
of air, and heat capacity of air. The difference in tire temperature is as follows:

∆T = Tmax − Tmin (6)

where Tmax and Tmin are the maximum and minimum temperatures of the tire, respectively.

Tmax = Max{T1, T2 . . . T28} (7)

Tmin = Min{T1, T2 . . . T28} (8)

The standard deviation was calculated as follows:

s =

√√√√ 1
28 − 1

28

∑
i = 1

(
Ti − T

)
(9)

In order to save computational resources, this paper adopts a standard turbulence
model to simulate the heating process of the vulcanizing tank for retreading waste tires,
following the example of some similar studies [27–29]. In this simulation, Patankar’s [30]
SIMPLE algorithm is used to solve the pressure–velocity field. The finite volume method
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is employed for the discretization of the governing equations. To reduce computational
resources and improve calculation speed, the momentum equation terms, turbulence kinetic
energy terms, specific dissipation rate terms, and energy terms are discretized using a first-
order upwind scheme, and the pressure terms are discretized using a first-order scheme.
Compared with second-order discretization schemes, the first-order discretization scheme
has better convergence. Although the use of this scheme helps increase discretization errors,
it may lead to shorter simulation times compared to second-order schemes.

The expected criterion for solver convergence is based on the absolute residual param-
eter. Parameters for the continuity equation, momentum equation, kinetic energy equation,
turbulence equation, and specific dissipation rate equation adopt convergence criterion
10−3. For the energy equation, the convergence criterion is more strictly set to 10−5. This
means that the solver’s goal is to achieve residuals below these thresholds to ensure the
convergence and accuracy of the solution to the governing equations.

Table 2. Thermophysical properties of 304 stainless steel and air.

Domain Density ρ
Thermal Conductivity

Coefficient k Specific Heat Capacity c Viscosity µ

Air calculation area 7.1587 kg/m3 0.02516 W/(m·K) 1.015 kJ/(kg·K) 1.78247 × 10−5 kg/(m·s)
Heating tube (304 SS [31]) 8002 kg/m3 0.014 t + 14.63 W/(m·K) 0.1467 t + 495 kJ/(kg·K) -

Retreaded tire [32–34] 950 kg/m3 −0.00048 t + 0.355 W/(m·K) 1300-0.0025 t kJ/(kg·K) -

4. Grid Independence and Numerical Model Validation
To validate the numerical simulation of the vulcanization tank, this study compares

the simulation results with experimental data. Figure 8 shows the comparison of the exit
temperature of the heating flue gas between the experimental results and the simulation
results. The mean relative error (RE) is expressed by Equation (10) as follows:

RE =
1
N ∑

∣∣Texp − Tsi
∣∣

Texp
× 100 (10)
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In summary, the relative error between the simulation data and the experimental
data are within 2.2%, further proving the accuracy of the computational method for the
vulcanization tank.

To demonstrate the independence of the grid, Figure 8 shows the outlet temperatures
of the heating pipe obtained using five different grid sizes. For grid sizes of 1,163,253,
1,362,248, 1,571,186, 1,811,662, and 2,140,777 cells, the relative errors between simulation and
experiment are approximately 5.69%, 2.73%, 2.63%, 3.12%, 2.74%, and 1.43%, respectively.
The results indicate that when the number of grids is 1,362,248 or more, the effect of grid
size changes on the increase in temperature can be neglected. Therefore, to ensure more
reliable results and shorter simulation times, a grid size of 1,362,248 was finally chosen for
the subsequent simulations, with the simulation time unit step being consistent with the
unit step of the experimental data recording set to 1 s.

In Figure 8b, a grid consisting of 1,362,248 cells was used to monitor air temperature,
with different time steps of 0.02 s, 0.25 s, 0.5 s, and 1 s. The results indicate that the
differences between the various time steps are minimal, with the average temperature
change between the smallest and largest time steps (0.025 s and 0.5 s) being within 2.04%.
Since the experimental data were recorded with a consistent time step of 1 s, we considered
setting the time step to 1 s in order to ensure numerical stability while conforming to the
experimental recording step size.

5. Results and Discussion
In this section, for the simulation of heating in the vulcanization tank under different

heating powers, this paper compares the heating rate at fixed points, the temperature of the
vulcanizing agent, the overall heating rate of the tire, the temperature difference analysis
of the tire, as well as the temperature and velocity distribution diagrams. Subsequently,
in order to improve the uniformity of temperature distribution to enhance the recycling
rate of waste tires, this paper conducts a simulation analysis for the airflow organization
of two types of orifice plate structures and compares the simulation results with those of
the original model, proving that the orifice plates play a significant role in improving the
uniformity of temperature distribution.

5.1. Model Validation

Figure 9a,b shows the temperature rise process of the thermometer temperature and
tire temperature under different heating powers. It is worth mentioning that the label
“Origin-45” refers to the original experimental simulation model with a power of 45 kW.
The results indicated that there is an inverse relationship between the heating power and
the time required to reach the target temperature increase. In other words, the higher the
heating power, the shorter the time needed for both the thermometer temperature and tire
temperature needed to reach the target. The time required for the tire temperature to reach
80 ◦C at heating powers of 90 kW, 75 kW, 60 kW, and 45 kW is 7330 s, 8760 s, 10,910 s, and
14,490 s, respectively.

The reason for this phenomenon is that the higher the power of the heater, the higher
the temperature of the heating element. Due to the increased temperature difference
between the heated air and the dry-burn tube, the amount of heat absorbed by the air per
unit of time increases, and thus, the thermometer and the tire absorb more heat per unit of
time, leading to a faster rate of increase in temperature. Combining Figure 9a,b shows that
when the heating power was 90 kW, the thermometer’s temperature had risen to 100 ◦C
but heating had yet to stopped; instead, it continued increasing for a while before stopping
because the tire’s temperature had yet to reach the target temperature (80 ◦C).
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Similarly, Figure 9c presents the temperature profile of the vulcanizing agent during
the heating process of the vulcanizing tank. The results demonstrate that increasing the
heating power helps the vulcanizing agent reach the vulcanization temperature sooner,
thereby shortening the retreading time. Specifically, the time required to reach the vulcan-
ization temperature with a heating power of 90 kW is almost 40% of that required with a
heating power of 45 kW.
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Figure 9d shows the temperature difference diagram of the vulcanizing agent during
the heating process. It can be observed from Figure 9d that in the early stage of heating,
an increase in heating power at the same time point leads to an increase in the maximum
temperature difference, which may be due to the existence of a heat transfer blind zone
with air flow inside the tire and excessive heat concentration. However, it can be noted
that in the later stage of heating, at the same time point, the higher the heating power, the
smaller the temperature difference. This is because the higher the heating power, the easier
it is for the vulcanization tank to reach the conditions required to stop heating, and then the
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tire, under the combined effects of forced convection and natural convection, carries away
the heat from the higher temperature parts of the tire, causing the temperature difference
to drop rapidly.

Figures 10 and 11 show the xy slice temperature distribution and velocity distribution
during the heating process of the vulcanization tank with a heating power of 60 kW. It can
be observed from the figures that at times of 3000 s, 6000 s, and 9000 s, both the highest and
lowest temperatures increased significantly. The temperature difference across the slice
increased, and the general temperature distribution of the tire was from the bottom to the
top and from right to left. The temperature then gradually decreased, with the right-bottom
tread being higher in temperature and the left-top tread being lower in temperature. By
analyzing the velocity distribution, it can be found that the right side of the vulcanization
tank under the tire receives significant concentrated heating, while the upper side of the
left tire lacks heating. In addition, the internal air temperature on the left side of the tire
is significantly lower than that in other areas, indicating an uneven distribution of air
temperature.

For a time period of 12,000 s, the maximum temperature and the section temperature
decreased significantly. This is because the heating stop condition was reached at t = 10,900 s,
but the fan continued to work, and forced convection combined with natural convection
promoted heat transfer, reducing the temperature difference. It is worth noting that at
that time, the minimum temperature on the left tire was 65 ◦C, which had yet to reach the
vulcanization temperature. The temperature on the right side reached 89 ◦C.

In summary, the increase in heating power helps reduce the heating time required
for the vulcanizing agent, the vulcanization tank thermometer temperature, and the tire
temperature needed to reach the target. However, this also increases the temperature
difference on the tread, leading to concentrated heating on the lower part of the right tire,
which may cause over-vulcanization or under-vulcanization in some areas of the tread,
thus affecting the quality of the retreaded tires.

5.2. Analysis of the Optimization Results for Airflow Organization

In order to adjust the heat accumulation caused by airflow and ensure the uniform heating
of waste tires, this paper proposed two orifice plate structures to adjust the airflow organization
flow, as shown in Figures 4 and 5. Figure 12 shows the temperature heating curves of two types
of vulcanizers with and without orifice plates. “Origin” refers to the untreated vulcanizer, while
“Flat” and “Frustum” are the vulcanizers with flat orifice plates and frustum cone orifice plates.

From the graph, we can observe that the thermometer temperature of the vulcanization tank
with the orifice plate treatment first rises, then levels off, and finally decreases. This is because the
thermometer had reached the target temperature, but the overall temperature of the tire had yet
to reach the vulcanization temperature, and the heating temperature had to be maintained at 100
◦C so that the tire temperature reached 80 ◦C before heating stopped, causing the thermometer
temperature to decrease.

Compared to the untreated vulcanization tank, the vulcanization tank with orifice plates
reaches the target temperature earlier, and the time required to heat to the target temperature de-
creases as the heating temperature increases. This is because the presence of the orifice plate slows
down the flow velocity of the fluid near the thermometer, leading to the rapid accumulation of
heat and a quick increase in temperature, ultimately reaching the target temperature. Additionally,
in the vulcanization tank with orifice plates, the time required to reach the target temperature is
similar for frustrum cone orifice plates and flat orifice plates, but the frustrum cone orifice plate
reaches the point of stopping heating sooner than the flat orifice plate, and the distance increases
with the rise in heating power. This means that when the heating power is 45 kW, 60 kW, 75 kW,
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and 90 kW, the presence of the orifice plate can approximately save at least 90 kWh, 68 kWh,
50 kWh, and 36 kWh, respectively.
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Figure 13 shows the heating process diagrams of the tires in three different types
of vulcanization tanks. The results indicate that when the heating power is 45 kW, the
time required for the waste tires in the vulcanization tank with orifice plates to reach the
vulcanization temperature is approximately 7800 s, while for the untreated vulcanization
tank waste tires, it takes 14,500 s, which is directly reduced by 46.2%. The time difference
between the two decreases with the increase in heating power. When the heating power is
90 kW, the time required for the waste tires in the vulcanization tank with orifice plates to
reach the vulcanization temperature is about 5900 s, and for the untreated vulcanization
tank waste tires, it takes 7300 s, which is reduced by 19.2%. The results show that the
orifice plate adjusts the flow of the heating air, making the heating air more concentrated
towards the tires, thus making it easier for the tires to reach the target temperature. In
the comparison of the time required for the two types of orifice plate tires to reach the
vulcanization temperature, the frustum cone orifice plate has a slight advantage over the
flat orifice plate, with a time difference ranging from 200 to 480 s.
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Figure 14 shows the temperature heating history of the vulcanizing agent under
different power levels. The process of retreading old tires actually involves heating the
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vulcanizing agent to the vulcanization temperature to bond the old tire with a new tread,
creating a new tire. Under different heating powers, the effects of the frustrum cone orifice
plates and flat orifice plates on increasing the temperature of the vulcanizing agent are
almost the same, which may be due to the similarity in their structures. The time required
for the vulcanizing agent with orifice plates to reach the vulcanization temperature is
approximately 7300 s, while the time required for the untreated vulcanizing agent to reach
the vulcanization temperature is about 14,200 s, which means that at a heating power
of 45 kW, the presence of the orifice plates can help reduce the time required to reach
vulcanization temperature by 48.6%. Similarly, this time difference decreases with the
increase in heating power, reaching a reduction of 20.7% at a heating power of 45 kW.
The results indicate that the presence of the orifice plates regulates the flow of the heating
air, making it more concentrated towards the vulcanizing agent, thus facilitating the
vulcanizing agent to reach the vulcanization temperature more easily.
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A large number of studies [35–38] have shown that the retreading results of tires are
related to the temperature of the vulcanizing agent, and an excessively large temperature
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difference can easily lead to the over-vulcanization reaction of the vulcanizing agent in
some positions, which affects the quality of retreaded tires. Figure 15 shows the heating
process of the vulcanizing agent temperature difference at different powers. The results
show that the difference in the temperature of the vulcanizing agent treated with the orifice
plate can greatly reduce the maximum temperature difference. At the same time, with
an increase in heating power, the difference between the temperature difference of the
vulcanizing agent treated with the orifice plate and the difference in the temperature of
the vulcanizing agent without an orifice plate will increase. This means that as the heating
power increases, the temperature regulation of the orifice plate becomes more obvious. In
the comparison of orifice vulcanization tanks, the temperature regulation of the frustrum
cone orifice plate is superior to that of the flat orifice plate, resulting in the better quality of
the retread tires.
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Figure 16 shows the heating process diagram of the standard deviation of the vulcan-
izing agent temperature under different powers. When the heating power is 45 kW, the
standard deviation of the flat plate orifice plate and the frustum cone orifice plate is 7.01,
which is 7.2 lower than that of the untreated vulcanization tank. When the heating power
is 90 kW, the standard deviation of the flat plate orifice plate and the frustum cone orifice
plate is 11.1, which is 11.75 lower than that of the untreated vulcanization tank. The results
indicate that the presence of the orifice plates can greatly improve the uneven temperature
distribution of the vulcanizing agent, thereby enhancing the quality of retreaded tires, and
the regulation effect becomes more pronounced with the increase in heating power.
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Figures 17 and 18 show the cross-sectional xy slice temperature distribution of a
vulcanizer with orifice plates during the heating process at a heating power of 60 kW.
As can be seen from the diagram, when the time is 3000 s, there is still a slight trend
of the temperature inside the vulcanizing tank being lower than outside. However, at
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6000 s, this phenomenon improves, and the temperature difference between the inside
and outside of the retreaded tire is significantly reduced. By 9000 s, this phenomenon is
further reduced. At 12,000 s, the temperatures inside and outside of the retreaded tire are
essentially consistent. The results indicate that the presence of the orifice plate and the
frustrum cone orifice plate can effectively improve the uneven temperature distribution
issue in the retreaded tire vulcanization process, thereby enhancing the quality of the
retreaded tires.
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cone plates (60 kW): (a) time = 3000 s; (b) time = 6000 s; (c) time = 9000 s; (d) time = 12,000 s.

Additionally, Figures 19 and 20 show the velocity distribution diagrams of the cross-
sections of the xy slice during the heating process of the vulcanization tank with frustum
cone orifice plates and flat orifice plates at a heating power of 60 kW. The results indicate
that the orifice plates can mitigate the issue of excessive heat concentration.

Although the improvement effect of the frustum cone orifice plate is better than that of
the flat orifice plate, the area of the frustum cone orifice plate is 76% higher than that of the
flat orifice plate, which means that the manufacturing cost of the frustum cone orifice plate
is 76% higher than that of the flat orifice plate. Moreover, the shape of the frustum cone
orifice plate is more complex than that of the flat orifice plate, which implies higher costs.

The results indicated that the presence of the orifice plate prevents heat accumulation
and addresses the issue of excessive temperature difference during the heating of used tires,
which can cause over-vulcanization or under-vulcanization, thereby enhancing the quality
of the retreaded tires. In the future, the structure of the orifice plate can be optimized
to concentrate heat more effectively on the vulcanizing agent, reducing the heating time
and retreading duration of the tires, ultimately achieving energy savings and efficiency
improvements.
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6. Conclusions
The main conclusions of this study are as follows:

(1) During the heating process of a vulcanization tank without orifice plate, an increase
in heating power leads to a decrease in the time required for the thermometer tem-
perature and the tire to reach the target temperature, as well as for the vulcanizing
agent to reach the vulcanization temperature. This helps improve the renovation
rate of retreaded tires. However, the increase in heating power can also lead to the
accumulation of heat, resulting in an increase in the temperature difference within the
vulcanizing agent and an enlargement of the standard deviation at the monitoring
points. This can cause the over-vulcanization or under-vulcanization of the retreaded
tire, ultimately affecting its quality.

(2) During the heating process, placing orifice plates in the vulcanization tank can sig-
nificantly improve the uneven temperature distribution issue that occurs during the
original vulcanization tank heating process, greatly reducing the difference in the
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vulcanizing agent temperature and the standard deviation of the monitoring points for
the vulcanizing agent. This mitigates the over-vulcanization or under-vulcanization of
retreaded tires, enhancing the quality of retreaded tires. At the same time, the presence
of the orifice plate also reduces the time required for the thermometer temperature
to reach the target temperature of the tire heating and the vulcanizing agent heating
to the vulcanization temperature, thereby reducing the heating time and ultimately
achieving energy savings. When the heating power is 45∼90 kW, the presence of the
orifice plate can approximately save at least 90~36 kW*h, respectively.

(3) In the comparison of orifice plates, the performance of the frustum cone orifice plate
is shown to be better than that of the flat orifice plate. However, the area of the
frustum cone orifice plate is 76% higher than that of the flat orifice plate, and it is
more complex to manufacture, increasing costs. Therefore, considering all factors, this
paper recommends using the flat orifice plate for improving the uneven temperature
distribution issue during the vulcanization tank heating process.
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Abstract: Dynamic hydrogels have attracted considerable attention in the application of
flexible electronics, as they possess injectable and self-healing abilities. However, it is still a
challenge to combine high conductivity and antibacterial properties into dynamic hydro-
gels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds
between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized
with hydrazide groups. The hybrid hydrogels exhibited sol–gel transition, self-healable,
injectable and thermo-responsive abilities. The self-healing efficiency was over 92%. More-
over, the hydrogel displayed antimicrobial properties and high conductivity (6.85 S/m).
Notably, the fabricated hydrogel-based sensors exhibited strain and temperature sensing
(22.05%/◦C) and could detect human motion and speech, and electrocardiographic (ECG)
and electromyography (EMG) signals. Overall, this work provides a simple strategy to
synthesize AgNPs-based dynamic hydrogels with multi-functions, and the hydrogels may
find potential applications in antibacterial wearable electronics, health monitoring and
speech recognition.

Keywords: hydrogel sensor; self-healing; silver nanoparticles; antimicrobial properties;
acylhydrazone bonds

1. Introduction
As one of the soft materials with 3D network structure storing large amounts of

water, hydrogels have tremendous applications ranging from drug delivery [1], wound
dressings [2], soft robotics [3,4], flexible electronics [5,6] and so on. Among them, there is
an increasing interest in hydrogel-based flexible electronics [6], because hydrogels possess
softness comparable to biological tissues and can provide an environment similar to that
of extracellular matrix [7,8]. Thus, hydrogel-based flexible sensors could contact with
target tissue seamlessly in comparison with traditional rigid devices, which enable the
sensors to record motion and electrophysiological (EP) or other physiological signals [9].
As for hydrogel sensors, conductive hydrogels were usually employed, as they converted
the mechanical or physiological signals into electrical signals [10]. Conductive hydrogel
contains a hydrogel matrix and conductive component [6]. However, it is hard for hydrogel
sensors to avoid the mechanical damage by external pressure when they are used [11]. To
extend the service life of hydrogel sensors and reduce waste, it is of great significance to
develop self-healable hydrogel matrix capable of autonomously repairing damage without
any external intervention.
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Self-healable hydrogels would form by the introduction of dynamic covalent bonds
(DCBs) or noncovalent bonds [12]. Compared with noncovalent bonds, dynamic covalent
bonds can dissociate, recombine and exchange reversibly in hydrogel networks [13], which
integrate the reversibility of noncovalent bonds and the stability of covalent bonds [12,13].
DCBs serving as crosslinking in hydrogel were concerned. To date, several DCBs such as
phenylboronate esters [14], disulfide bonds [15] and acylhydrazone [16] have been used
to prepare self-healable hydrogels [17,18]. Among them, acylhydrazone bonds, formed
from the condensation of acylhydrazine and aldehyde/ketone, were concerned due to
their easy designability and thermodynamic stability [19]. Recently, we and other re-
searchers [12,13,19–22] have prepared hydrogels by using acylhydrazone bonds as crosslink-
ing. The hydrogels exhibited self-healing ability without any external stimuli and possessed
injectable and sol–gel transition properties. However, those hydrogels were mainly used as
drug delivery vehicles and cell culture scaffolds in view of their biocompatibility [12,19].
Acylhydrazone-based hydrogels were rarely explored for the application of flexible sensors.

For hydrogel sensors, it is necessary to endow hydrogels with improved conductivity.
Embedding conductive fillers, such as ionic liquids [23], semiconductors [24], carbon mate-
rials [25] and nano-metals [26–28], is considered a facile and feasible method to enhance
the conductivity of hydrogels [29]. Among these conductive fillers, silver nanoparticles
(AgNPs) could be regarded as a potential choice for the conductor due to its low toxicity,
broad-spectrum antibacterial properties and high conductivity [30]. A hydrogel sensor with
antibacterial ability will reduce bacterial infection when it is applied to the human body.
Han et al. [31] introduced the lignin–silver hybrid nanoparticles into the polyvinyl alcohol
matrix and found that the hydrogel has sensitivity for compression. Fan et al. [32] dispersed
AgNPs-attached CNCs in the hydrogel matrix and obtained the hydrogels with monitor-
ing for various human movements. Wang et al. [33] prepared hydrogels with AgNPs for
antibacterial strain sensors. However, AgNPs in those hydrogels were mainly dispersed
in the hydrogel network rather than participating in the formation of the network [30–33].
AgNPs might have dropped from the carrier and agglomerated in the network after re-
peated stretching and compression. In addition, the hydrogels with AgNPs were mainly
used to detect the motion [34,35], and the monitoring for other physiological signals such
as temperature were rarely examined. When AgNPs have functional groups and form
acylhydrazone bonds with temperature-responsive polymers, it is anticipated that the
AgNPs will immobilize in the network hydrogels, and the hydrogel not only possesses
self-healable, antibacterial, injectable and sol–gel transition properties but also exhibits
temperature sensing due to the thermo-responsive hydrogel network.

In this paper, we report a type of self-healable, injectable and antimicrobial conductive
hydrogel possessing motion and temperature sensing based on a thermo-responsive copoly-
mer and AgNPs functionalized with hydrazide groups, as illustrated in Scheme 1. The
thermo-responsive copolymer poly[(N-isopropylacrylamide)-co-(diacetone acrylamide) -co-
poly[(acrylamide)] (P(NIPAM-co-DAAM-co-AM)) was synthesized by reversible addition–
fragmentation chain-transfer (RAFT) polymerization. AgNPs with hydrazide groups were
obtained by surface functionalization and hydrazinolysis. The conductive hydrogels were
generated by mixing the copolymer and AgNPs via the formation of acylhydrazone bonds
between ketone groups and hydrazides (Scheme 1). Based on dynamical acylhydrazone
crosslinking, the obtained hydrogels exhibited sol–gel transition, self-healable, injectable
and thermo-responsive abilities. Moreover, the hydrogel displayed antimicrobial proper-
ties, and the fabricated hydrogel-based sensors exhibited strain and temperature sensing.
The hydrogel can also be used as an electrode for ECG and EMG signals detection. With
these attractive characteristics, the dynamic hydrogels may find potential applications in
antibacterial wearable electronics, health monitoring and speech recognition.
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Scheme 1. Schematic of the fabrication of self-healable and sol–gel transition hydrogels based on
AgNPs.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3, 99.8%, Aladdin Co., Ltd., Shanghai, China), methyl 3-
mercaptopropionate (98%, Aladdin) and acrylamide (AM, >98%, Aladdin Co., Ltd.), sodium
borohydride (NaBH4, 98%, Aladdin Co., Ltd.), hydrazine hydrate monohydrate (>98%,
Aladdin Co., Ltd.), diacetone acrylamide (DAAM, 98%, TCI) and azodiisobutyronitrile
(AIBN, 99%, Aladdin Co., Ltd.) were used as received. N-isopropyl acrylamide (NIPAM,
98%, TCI) was purified by recrystallization. A total of 4 M NaOH and HCl was used to
adjust the pH of solutions. 2-(1-carboxy-1-methyl-ethylsulfanylthio- -carbonylsulfanyl)-
2-methylpropionic acid was used as a chain transfer agent (CTA) and was synthesized
following a previous report [36]. All other chemicals were analytical grade and used
as received.

2.2. Preparation of Temperature-Sensitive Polymer Containing Ketone Groups

The copolymer was prepared according to our previous report [37]. NIPAM (4.0 g,
35.40 mmol), AM (0.718 g, 10.10 mmol) and DAAM (0.855 g, 5.06 mmol) were added to a
two-necked vial with 30 mL dimethyl sulfoxide (DMSO), and then nitrogen was bubbled
into the solution for 30 min to remove oxygen. The chain transfer agent CTA (922.0 mg,
0.25 mmol) and AIBN (2.1 mg, 0.013 mmol) were added with the protection of N2. The
solution was stirred continuously for another 5 min and placed in an oil bath at 70 ◦C for
polymerization. After 24 h, a large amount of ether was added dropwise to obtain white
precipitate. The product was collected and redissolved in DMSO and was reprecipitated
into excess ether. This purification cycle was repeated twice. The resulting products were
freeze-dried for 24 h to yield the objective copolymer, denoted as P70, where “P” means
the polymer and the subscript “70” is the mole ratio of NIPAM to the total moles of the
copolymer. The molar ratio of NIPAM, AM and DAAM in copolymer was 70:20:10.

2.3. Preparation of AgNPs Containing Hydrazide Groups

Three types of AgNPs containing hydrazide groups were prepared (Table S1). A
typical experiment of AgNPs1 was as follows: methyl 3-mercaptopropionate (0.1200 g)
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dissolved in methanol (10 mL) was added dropwise into methanol (100 mL) with 0.85 g of
AgNO3 under high-speed stirring with a shading condition. After stirring for 4 h, NaBH4

(0.5630 g) was slowly added to the solution (the solution immediately turned black). After
the addition of NaBH4, the mixture was stirred for another 4 h. Then, hydrazide hydrate
(0.2300 g) was added and the solution refluxed at 70 ◦C for 12 h. Subsequently, AgNPs were
obtained by centrifugation at 10,000 rpm for 5 min. The remaining solid was washed with
anhydrous ethanol three times to remove any impurities. AgNPs containing hydrazides
were dried in a vacuum oven at 50 ◦C for 24 h. Pure AgNPs were synthesized by adding
NaBH4 (0.5630 g) into AgNO3 (0.85 g) and methanol (100 mL), and used as control.

2.4. Fabrication of Conductive Hydrogels

The conductive hydrogels were prepared by a simple mixing of the copolymer P70

solution and AgNPs solutions, where the number of hydrazide groups from AgNPs was
equivalent to that of the ketone groups of the copolymer. The hydrazide groups per gram
of AgNPs1, AgNPs2 and AgNPs3 were 1.14 mmol, 1.70 mmol and 2.24 mmol, respectively,
which were determined by TGA (discussed in Section 3.2). The ketone groups per gram of
P70 were 0.947 mmol, based on the unit’s molar ratio (15.3:10.7:74.0) calculated by 1H NMR
spectra (discussed in Section 3.1). The solid content was kept at 10 wt%. The obtained
hydrogels based on AgNPs1, AgNPs2 and AgNPs3 were labeled as HAg1, HAg2 and
HAg3, respectively. The compositions of hydrogels are listed in Table S3. The procedure
for the fabrication of HAg1 was as follows: 1.66 g AgNPs1 was dispersed into 32.94 g D.
I. water by sonication for 30 min, then 2.00 g copolymer was dissolved in the dispersion
by stirring. The pH of the mixture solution was tuned to ca. 6.0 by using 4 M HCl and
4 M NaOH. The viscous solutions became hydrogels after ca. 1 h at room temperature.
The hydrogels were kept at room temperature for 24 h before testing. The preparation
procedures for HAg2 and HAg3 were similar to that of AgNPs1.

2.5. Self-Healing and Injectable Properties of the Hydrogel

For the self-healing testing, one disk-shaped hydrogel was cut into two halves. There-
after, two semicircular hydrogels rejoined for 15 min at room temperature. To calculate the
self-healing efficiency, the tensile stress–strain curves of the rectangle-shaped hydrogels
(40 mm × 10 mm × 10 mm) and the self-healed hydrogels were measured. The self-healing
efficiency is defined as the ratio of the stress at fracture to the original stress. The mean
values were calculated from at least three replicate experimental data.

The injectability experiment of the hydrogel was implemented by extruding HAg1
from a syringe.

2.6. Antibacterial Test of Hydrogels

Staphylococcus aureus (S. aureus, ATCC 25923) was used as the tested strain, and the
trypticase soy agar (TSA) nutrient medium was used to cultivate it at 37 ◦C for 24 h. The
cylindrical hydrogels (the diameter was 1.4 cm) were transferred to a Luria–Bertani (LB)
agar plate covered with fresh S. aureus suspension. After incubation at 37 ◦C for 24 h, the
diameter of the antibacterial circle was measured with vernier calipers, and the average
value was obtained from at least three replicate experimental data.

The morphology changes of microorganisms on hydrogels were examined with SEM.
A total of 1 mL of fresh S. aureus suspension (1 × 106 CFUs/mL) was incubated with the
hydrogels at 37 ◦C for 6 h. The hydrogel samples were washed with PBS 3 times and then
fixed with 2.5% glutaraldehyde solution for 4 h. The samples were dehydrated in a graded
ethanol series from 50% to 100% each for 10 min, and the samples were dried in air at room
temperature. They were observed with SEM for microbe morphology changes after coating
with gold.
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2.7. Characterization
1H NMR analyses were conducted on a Brucker 300 MHz spectrometer (Brucker,

Wissembourg, France) at room temperature, and D2O was used as the solvent.
Fourier transform infrared (FT-IR) spectra were obtained on a Nicolet MX-1E FTIR

spectrophotometer(Thermo Electron Corporation, Waltham, MA, USA). The dried samples
were mixed with KBr and compressed into films.

Gel permeation chromatography (GPC) was performed using HCC-8320GPC (Hi-
gashima Co., Ltd., Tokyo, Japan) with equipped with a TSK GEL Super AWM-H column
and refractive index detector. DMF was used as the eluent (the flow rate is 0.4 mL min−1).
Mono-dispersed polymethyl methacrylate was used as the standard.

SEM observation was conducted on a JSM-6510 (Japan Electronics Co., Ltd, Tokyo,
Japan). The hydrogel samples were frozen by liquid nitrogen and then dried by vacuum
freeze-drying.

X-ray diffraction (XRD) patterns were recorded using a RigakuDMAX 2200 (Rigaku
corporation, Tokyo, Japan) with Ni-filtered CuKα radiation in the scanning range of 30◦ to
90◦, at 40 kV and 40 mA X-ray power.

The conductivity of hydrogels was measured at room temperature by a four-probe
instrument SB1201 (Shanghai Qianfeng Electronic Instrument Co., Ltd., Shanghai, China).
The round hydrogels (5 mm thickness, 30 mm diameter) were used for the conductivity
test. The mean values and errors were calculated from at least three independent samples
for each type of hydrogel.

Thermogravimetry analysis (TGA) was conducted on a Diamond TG/DTA thermal
analysis system (PerkinElmer, Hopkinton, MA, USA). Samples were heated in a flow of N2

(20 mL min−1) from room temperature to 800 ◦C at a heating rate of 10 ◦C min−1.
Rheological characterization was performed on a Physica MCR 302 (Anton Paar, Graz,

Austria) rheometer by the flat plate mode with a diameter of 25 mm. The experiments
were conducted by the stress- or strain-controlled mode. For the modulus changing upon
temperature, the temperature increasing rate is 0.2 ◦C min−1.

The tensile strain–stress tests of the hydrogels (40 mm × 10 mm × 10 mm) were con-
ducted on a universal testing machine BJ-SPLZ (Guangzhou Biaoji Packaging Equipment
Co., Ltd., Guangzhou, China) fitted with a 20 N load cell at room temperature. The tensile
speed was 50 mm/min.

Sensor tests were recorded on a digital multimeter TH2829A LCR meter (Changzhou
Tonghui Electronics Co., Ltd., Changzhou, China). The gauge factor (GF) used to evaluate
the sensitivity of sensors was calculated by the following equation: GF = ∆R/R0/ε, where
∆R and R0 are the resistance difference after stretching and the initial resistance, and ε is
the tensile strain of hydrogels. For the fabrication of the hydrogel-based sensor, both ends
of the hydrogel (20 × 10 × 2 mm3) were winded with copper wires serving as the current
collectors. The other ends of copper wires were connected to the LCR meter for recording
the resistance. The test was carried out by stretching with a universal testing machine or
attaching to the subjects’ bodies, such as the wrist and throat.

Electrocardiographic (ECG) and electromyography (EMG) signals were recorded by
a commercial ECG and EMG monitor with three electrodes. Round hydrogels (1.5 mm
thickness, 20 mm diameter) were used as electrodes and were directly adhered to the skin.

3. Results and Discussion
3.1. Fabrication and Structural Characterization of Temperature-Responsive Polymer

To obtain the polymer with a desirable molecular weight, RAFT polymerization was
employed to prepare the copolymer [38]. According to our previous report [37], the cloudy
point of the temperature-responsive polymer containing ketones could be well tuned by
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variation of the components of NIPAM, DAAM and AM units. NIPAM, DAAM and AM
three monomers with a molar ratio of 70: 10: 20 were chosen to form the copolymer P70, as
its cloudy point was close to the human body temperature (37 ◦C) [19,37]. The structure
of P70 was confirmed by 1H NMR spectra (Figure S1a). The signals at 0.9~1.2 ppm and
3.7~4.0 ppm were assigned to the protons from NIPAM units [39]. The chemical shift
peaks of −(CH3)2C− on DAAM units and the protons on the main chain of P70 occurred
at 1.2~1.8 ppm. The peaks of 1.8~2.3 ppm were ascribed to the protons from −CH− of
the main chain and −CH3 on DAAM units. The peak at 2.8–3.3 ppm was assigned to
−CH2− protons on DAAM units [40]. The signals of hydrogen protons were in agreement
with our previous reports [37,39]. According to our previously reported equation [37,39],
the unit ratios of P70 were calculated based on the integration of the proton peaks in the
corresponding units. The molar ratio of AM, DAAM and NIPAM units was 15.3:10.7:74.0,
which was slightly different than the feeding ratio due to the steric effect [37]. GPC was
performed to measure the molecular weight (Mn,GPC) and polydispersity index (PDI) of
P70 (Figure S1b and Table S2). It was found that the Mn,GPC was close to the theoretical
value, and its PDI is 1.483, indicating a copolymer with a controllable molecular weight
and molecular weight distribution [41].

PNIPAM is a typical temperature-responsive polymer that can be converted from
soluble to insoluble as the temperature rises [39,42]. To confirm the temperature responsive-
ness of P70, the apparent phenomenon of P70 solution was observed during the changing
of the temperature. As shown in Figure S2, the solution is colorless and transparent at
25 ◦C, while the solution appeared milky white when the temperature increased to 40 ◦C,
which indicated that the prepared copolymer had a temperature-responsive property [33].
To further determine the cloudy point of P70, the transmittance of the solution at 600 nm
along with the temperature was tested. As shown in Figure S2, the transmittance of the
solution started to decrease when the temperature was increased to 35 ◦C, and the trans-
mittance dropped to nearly 0% as the temperature increased to 37.5 ◦C. The cloudy point
of P70 was 36.3 ◦C, which is the midpoint temperature at the curve of transmittance with
increasing of the temperature. The cloudy point of P70 was close to that of the human body
temperature [43].

3.2. Synthesis and Characterization of AgNPs Hybrids Containing Hydrazide Groups

AgNPs hybrids with hydrazide groups were synthesized by surface functionalization
and hydrazinolysis. XRD was performed to confirm the formation of AgNPs hybrids. As
shown in Figure 1a, five diffraction peaks appeared in the XRD pattern at 2θ positions
38.1◦, 44.2◦, 64.4◦, 77.4◦ and 81.5◦, which are assigned to [1 1 1], [2 0 0], [2 2 0], [3 1 1] and
[2 1 1] planes of the face-centered cubic (fcc) of AgNPs [44,45] in comparison with the JPDS
card (no.: 04-0783). It also was found that there were other miscellaneous diffraction peaks
with the increase in hydrazide bonds (such as AgNPs3), which might be attributed to too
much hydrazide component having a negative effect on the crystallization of AgNPs3.

TEM was employed to visualize the morphology of AgNPs directly. As shown
in Figure 1b–d, AgNPs containing hydrazide bonds exhibited a spherical shape and
became smaller and more uniform in size distribution at the increasing of methyl 3-
mercaptopropionate. This may be explained by AgNPs being wrapped with methyl
3-mercaptopropionate through a chemical bond between S ions and Ag atoms, and the
increasing of the 3-mercaptopropionate ratio made more compounds on the AgNPs surface,
which led to AgNPs hybrids being dispersed more homogeneously in the solution [46].
Therefore, the AgNPs size could be adjusted by changing the molar ratio of the compound
to AgNO3.
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To check that hydrazide groups were introduced on AgNPs, FT-IR spectroscopy was
employed to characterize the AgNPs hybrids. As shown in Figure 1e, AgNPs hybrids
showed strong peaks at 1636 cm−1 and 1536 cm−1 in comparison with that of pure AgNPs,
which were ascribed to the characteristic absorption band of C=O from ketone carbonyl
groups and N-H of hydrazides [19,37,47], respectively. This suggests that hydrazide groups
attached on the AgNPs surface. To determine the relative number of hydrazide groups
on AgNPs, TGA measurements were performed. As given in Figure 1f, the weight loss of
AgNPs under a nitrogen atmosphere happened in the temperature range from ca. 150 ◦C
to ca. 380 ◦C, resulting from the decomposition of the organic component on AgNPs.
One can find that the weight percentages of the organic component in AgNPs1, AgNPs2
and AgNPs3 are 13.7 wt%, 20.4 wt% and 26.9 wt%, respectively, providing additional
evidence of hydrazide groups on AgNPs. The mole number of hydrazide groups per
gram of AgNPs could be calculated by dividing the molecular weight of the organic
component. The values for AgNPs1, AgNPs2 and AgNPs3 are 1.14 mmol, 1.70 mmol and
2.24 mmol, respectively, which suggests that the content of hydrazide groups on AgNPs
can be regulated by feeding ratios.

3.3. Preparation and Characterization of Dynamic Hydrogels with AgNPs

The dynamic acylhydrazone can be formed between ketone and hydrazide [19,39],
which served as the crosslinking for hydrogels. Thus, the copolymer P70 containing
ketone groups was mixed with AgNPs hybrids, resulting in the formation of dynamic
hydrogel HAg1, HAg2 and HAg3. As shown in Figure 2a, the mixture of P70 and AgNPs
hybrids displayed as gels and could support their weight in a vial when the pH of the
solutions was adjusted to ca. 6. To confirm the formation of the hydrogels, dynamic
rheology measurements were performed. Figure 2b shows the dynamic modulus versus
the frequency at a 1% strain at 25 ◦C. One can find that the storage modulus (G′) of the three
hydrogels was consistently higher than their loss modulus (G′′) in the tested frequency
range, indicative of the formation of hydrogels [13,19]. In addition, G′ of HAg1, HAg2
and HAg3 were ca. 126 Pa, ca. 227 Pa and ca. 395 Pa, i.e., G′ increased gradually with the
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increment of hydrazide groups on the AgNPs surface. This should be attributed to the
greater the number of hydrazide groups in one nanoparticle is, the greater the amount
of polymer chains bonded together, forming a more robust network and leading to a
higher modulus.
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In addition, strain amplitude sweeps for obtained hydrogels were measured at a fixed
frequency of 1 Hz at 25 ◦C. As illustrated in Figure 2c, the G′ of the hydrogels was greater
than G′′ at the initial strain region. When the strain reached a critical value, G′′ overlapped
with G′, suggesting that the network of the hydrogel was destroyed. The critical strain
values of HAg1, HAg2 and HAg3 were 2877 ± 13%, 2545 ± 9% and 2373 ± 14%, respec-
tively, which indicates that the hydrogels could withstand large deformation. However,
the critical strain value decreased on the contrary, though the G′ increased from HAg1 to
HAg3. This should be attributed to the chains in the network gradually becoming tight
due to the increment of hydrazide groups in one nanoparticle, which would increase the
stiffness of the hydrogel and concomitantly might reduce the movement of polymer chains.
This led to the disruption of hydrogels at a lower strain.

SEM was carried out to observe the microstructure of the hydrogels. As shown
in Figure 2d, HAg1 displayed a uniform three-dimensional porous structure, further
indicating the formation of hydrogel between AgNPs hybrids and copolymer. Moreover,
AgNPs hybrids were uniformly distributed in the skeleton of hydrogel (Figure 2e). HAg2
and HAg3 also showed similar porous structures (Figure S3). However, the pore size
increased, and its skeleton became thicker from HAg1 to HAg3 (Figures 2d and S3), which
further indicated that the increment of hydrazide groups in nanoparticles would react with
more polymer chains. In order to further verify the formation of hydrogels with AgNPs,
the prepared hydrogels were characterized by elemental analysis. The EDS spectra of the
hydrogels is shown in Figure S4. One can find that the hydrogels contained C, N, O, S
and Ag elements, which originated from AgNPs hybrids and the copolymer. However,
it should be noted that the content of Ag gradually decreased from HAg1 to HAg3. This
result should be attributed to the feeding ratio of AgNPs hybrids in hydrogel decreasing
(Table S3) with the increasing of hydrazide groups on the AgNPs surface due to the ketone
groups remaining constant.
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To confirm the formation of hydrogels via acylhydrazone crosslinking, FT-IR was
performed to analyze the precursors and hydrogel. The characteristic absorption peak of
the C=O of ketones in the polymer appeared at 1720 cm−1 (Figure S5). However, when the
AgNPs1 were mixed with the copolymer to form HAg1, the characteristic absorption peak
of C=O at 1720 cm−1 disappeared, while the characteristic absorption of the C=N bond of
acylhydrazone appeared at 1665 cm−1 [37], indicating the formation of the acylhydrazone
crosslinking in the network. To demonstrate the formation of hydrogels based on AgNPs,
the hydrogels were analyzed by XRD. As shown in Figure S6, five diffraction peaks of
AgNPs appeared at 2θ of 38.1◦, 44.2◦, 64.4◦, 77.4◦ and 81.5◦, consistent with that of AgNPs
hybrids. This result indicated that AgNPs in hydrogels showed a face-centered cubic
structure, and AgNPs were not destroyed during the formation of hydrogels. In addition,
AgNPs in hydrogels remained stable even after storing at room temperature for 1 month,
as it was found that XRD patterns of the hydrogels were similar to that of initial hydrogel
samples (Figure S7).

3.4. Self-Healing and Injectable Properties of the Hydrogels

According to previous reports [19,37], hydrogels constructed with acylhydrazone
bonds have self-healing properties. Therefore, the self-healing properties of hydrogels were
visually examined. As shown in Figure 3a, a circular hydrogel HAg1 was cut into half. Then,
the two semicircle gels were spliced together for 15 min without any external intervention. It
was found that they could heal completely and be gently stretched with forceps, indicating
the self-healing of the hydrogel. Moreover, step-strain measurements were carried out to
verify the self-healing property. As shown in Figure 3b, when the applied oscillatory shear
strain was stepped from 1% to 3000% and maintained for 100 s, the G′′ slightly surpassed
G′, while they immediately restored to their initial values after the strain returned to 1%.
Similarly, when a larger strain (3500% and 4000%) was applied to the hydrogel, G′′ became
greater than G′, indicating that the network was destroyed and appeared as a liquid-like
state. However, G′ and G′′ were quickly recovered when the strain returned to 1%, which
implies the automatic repair of the hydrogel network [11,30]. The self-healable ability of
hydrogels should be attributed to the reversibility of acylhydrazone bonds (Scheme 1),
which could reform at the interfaces of broken hydrogels [15,16,19]. Furthermore, tensile
stress–strain tests were conducted to assess their self-healing efficiency. The tensile stress–
strain curves before and after self-healing hydrogels are shown in Figure S8. The self-
healing efficiencies of the three hydrogels were 92.99%, 92.29% and 94.83% (Figure 3c),
respectively, which proved that the hydrogels have high self-healing efficiency and their
mechanical properties could be recovered after being damaged. In addition, the hydrogels
also exhibited high self-healable abilities after storing at room temperature for two weeks.
As shown in Figure S9, the self-healing efficiencies were still over 85%. However, it should
be pointed out that the fracture stresses of the hydrogels were slightly higher than those of
freshly prepared samples (Figure S9a), while the self-healing efficiencies decreased slightly
(Figure S9b). This should be attributed to the evaporation of water, though they were kept
under seal, reducing the movement of polymer chains.

As mentioned above, the hydrogel network could be disrupted at a large shear strain,
implying the shear-thinning behavior of hydrogel. Thus, the variation of the gel’s viscosity
with the increasing of the shear rate was measured. As shown in Figure 3d, the viscosity of
HAg1 decreased with the increasing of the shear rate, which resulted from the disruption
of the acylhydrazone crosslinking under high shear rates [39]. This shear-thinning behavior
bestowed an injectable property on the hydrogel. It was observed that the hydrogel could
be extruded through a syringe (Figure 3d, inset).
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3.5. Thermo-Responsive and Sol–Gel Transition of Hydrogels

As the prepared copolymer exhibited a thermo-responsive property, the temperature
responsiveness of its hydrogels was examined. When the hydrogels were placed at 37 ◦C
for 5 min, it was observed that the volume of the hydrogels shrunk due to the collapsion of
polymer chains [39] (Figure 4a). When the hydrogels were returned to room temperature,
the hydrogels could slowly return to their original state, indicative of the thermo-responsive
property of the hydrogels. Dynamic rheological measurements were performed to reveal
the temperature responsiveness of the hydrogel. As depicted in Figure 4b, G′ was invari-
ably greater than G′′, and the modulus increased dramatically at around 34 ◦C to 50 ◦C,
suggesting that the hydrogel network was strengthened. This was mainly ascribed to the
collapsion of polymer chains.
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In addition, the hydrogels exhibit a reversible sol–gel transition. As shown in Figure 4c,
when HCl (4 M) was added to the hydrogels to adjust the pH of the mixture to 2.0, the
hydrogels transformed into free-flowing solutions. The mixture could recover hydrogels, as
the pH was tuned to 6, suggesting the reversible sol–gel transition of hydrogels by altering
the pH. This transition can be attributed to the network with reversible dissociation and
regeneration of acylhydrazone crosslinking between hydrazides of AgNPs hybrids and the
ketone groups of copolymer. As illustrated in Scheme 1, acylhydrazone was generated at a
high pH, while it could dissociate at a low pH, leading to the hydrogels with a reversible
sol–gel transition. FT-IR spectroscopy was used to confirm the mechanism. As shown
in Figure 4d, the mixture of AgNPs1 and P70 did not become hydrogel at pH 7, and the
absorption peak of ketone C=O appeared at 1720 cm−1. When the pH was adjusted to
6, the characteristic absorption peak of the ketone C=O at 1720 cm−1 disappeared, while
the characteristic absorption peak of the acylhydrazone C=N was found at 1663 cm−1,
indicating that acylhydrazone bond was formed. When pH was adjusted to 2, C=N at
1663 cm−1 disappeared, and the peak of ketone C=O was observed at 1720 cm−1 again,
which means that the hydrazone bond dissociated.

3.6. Antibacterial Assay of Hydrogels

It is well known that AgNPs have wide-spectrum antimicrobial properties [33]. Thus
the antimicrobial properties of the obtained hydrogels were examined. Here, S. aureus was
chosen as a representative bacterium, as S. aureus has high lethality and sturdy resistance to
antibiotics and is one of the major causes of hospital-acquired infections [48]. The hydrogel
(H0) of copolymer crosslinked with hexanedihydrazide rather than AgNPs hybrids served
as control. As shown in Figure 5a, the inhibition zone of H0 is zero, suggesting that
hydrogel without AgNPs did not have an inhibitory effect on S. aureus. In contrast, the
inhibition zones of HAg1, HAg2 and HAg3 were 24.05 mm, 25.48 mm and 23.97 mm,
respectively, which indicated that the hydrogels with AgNPs were able to kill S. aureus [49].
Furthermore, the morphology changes of S. aureus on hydrogels was observed by SEM. It
can be seen that a large number of S. aureus grew on the H0 surface and had smooth surfaces
(Figure 5b). In contrast, there were very few bacteria on the surface of the three hydrogels
with AgNPs hybrids, and they show wrinkled or cracked cell surfaces (Figures 5c and S10).
Those results indicate that the hydrogels had good antibacterial properties. This should be
attributed to Ag could be release slowly from the hydrogels and killed bacteria.
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3.7. Conductivity and Sensing Performance of Hydrogels

In order to determine whether the prepared hydrogels with AgNPs have conductivity,
a series circuit was designed. As shown in Figure 6a, when HAg1 was placed in the circuit
and the LED bulb was lit, it indicated the conductivity of HAg1. The conductivity of the
hydrogels was measured (Figure 6b). The conductivities of HAg1, HAg2 and HAg3 were
6.85 S/m, 3.54 S/m and 1.97 S/m, respectively. The conductivity of hydrogels should be
mainly attributed to electronically conductive AgNPs, as they have high conductivity [29].
Meanwhile, the ionic conduction also existed in hydrogels due to the presence of ions such
as H+ and Cl− [29], which resulted from the addition of small amounts of HCl solution.
Among them, HAg1 had the highest conductivity, as HAg1 contained the most AgNPs
(Table S3), which is higher than that of repost hydrogels with AgNPs [33,50]. Based on
its high conductivity, HAg1 was tested to use as a strain sensor. The real-time change
in resistance with tensile strain was measured. As displayed in Figure 6c, the resistance
rates (∆R/R0) increased with the increasing of tensile strain. The curve of ∆R/R0 versus
the applied strain was linearly fitted with a high-regression coefficient (R2). The gauge
factor (GF), used to evaluate the sensitivity of the sensor [6], reached up to 2.14. Further,
the hydrogel exhibited a fast response, and the response time and recovery time were
40 ms and 80 ms during the stretching and recovering processes (Figure 6d), respectively,
which are less than that of human skin (~0.1 s) [51]. Apart from fast response, the sensor
exhibited repeatable sensing during cyclic stretching. As shown in Figure 6e, ∆R/R0

changes periodically at 10% strain and remained stable after 30 cycles of the stretching–
recovering process. Those results suggest that the HAg1 sensor had accurate and rapid
detection of the strain signal, which may be used to monitor the human body’s movement.
Thus, the sensor adhered to the volunteer’s wrist to detect its bending activities, as shown
in Figure 6f. The ∆R/R0 values remained almost steady during the repeated bending
process, indicating stable and durable sensitivity. Interestingly, the strain sensor could
detect the characteristic signals of speech when it was attached to the throat, When the
volunteer said “OK” and “goodbye” repeatedly, the distinguishable and reproducible
signals were recorded (Figure 6g), indicating that the HAg1 sensor can be potentially
utilized for speech recognition.

Apart from strain sensing, the hydrogel exhibited a temperature detection capability
due to the temperature responsiveness of the hydrogel. Figure 6h shows the temper-
ature/resistance relation of HAg1 between 27 ◦C and 41 ◦C. The ∆R/R0 values had a
positive correlation with the temperature, i.e., the resistance increased with the increment
of temperature. This should result from AgNPs being gradually wrapped by the collapsed
polymeric chains after temperature responsiveness, which impeded electron transport
and led to the increasing of resistance. Based on the ∆R/R0 versus temperature, there
are two temperature GFs, i.e., the GF values are 7.54%/◦C and 22.05%/◦C during the
temperature ranges of 27~33 ◦C and 33~41 ◦C, respectively, which is higher than that of the
previously reported temperature-sensing materials [52,53]. Moreover, the ∆R/R0 values
at the cooling process mostly overlapped with that of heating, and the temperature GFs
during cooling were also close to that of heating, suggesting that temperature sensing
was reversible. In comparison with the previously reported hydrogels crosslinked with
dynamic covalent bonds or containing AgNPs [54–57] (Table S4), HAg1 simultaneously
exhibited antimicrobial activity, high conductivity and thermomechanical sensing.
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Furthermore, the hydrogel was used as the electrode for ECG signal detection. Here,
a commercial Ag/AgCl gel electrode was used as control. HAg1 electrode pairs were
attached to the human skin, and ECG signals were recorded continuously (Figure 6j),
which was similar to that of a commercial electrode (Figure 6i). Compared with that of
a commercial electrode (Figure S11), the P wave, QRS complex and T wave of the ECG
signal were more clearly detected by HAg1 hydrogel (Figure 6k). Moreover, the ratio of
T and R peak values (T/R ratio) was closer to 1/3 (Figure 6l), indicating good quality for
sensing [26]. The results showed that the HAg1 hydrogel electrodes were better able to
detect the ECG signals in comparison with commercial gel electrodes. Furthermore, HAg1
could also serve as electrodes to record EMG signals when the volunteer gripped an object
(5 kg) (Figure 6m).
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4. Conclusions
We prepared well-defined thermo-responsive copolymer P(NIPAM-co-DAAM-co-AM)

by RAFT polymerization and synthesized AgNPs with hydrazide groups by surface func-
tionalization and hydrazinolysis. The hybrid hydrogels were generated by mixing the
copolymer and AgNPs via the formation of acylhydrazone bonds between ketone groups
and hydrazides. Based on dynamical acylhydrazone crosslinking, the obtained hydrogels
exhibited sol–gel transition, self-healable and injectable properties. And the hydrogels dis-
played thermo-responsive behavior. Moreover, the hydrogels had antimicrobial properties
and high conductivity (6.85 S/m). The fabricated hydrogel-based sensors exhibited strain
and temperature sensing, and the sensors would detect human motion and speech. They
also could be used as electrodes for ECG and EMG signals detection. With these attractive
characteristics, the dynamic hydrogels may find potential applications in antibacterial
wearable electronics, health monitoring and speech recognition.
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Abstract: During the thermal aging process of epoxy resin, microcracks, interfacial de-
lamination, and warpage are the key factors leading to semiconductor device damage.
Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs)
were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its
thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy
(RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with
the external stress, and that the stress correlation coefficient was −2.76 × 10−2 cm−1/MPa.
Then, RAS was used to evaluate the RS distribution of EP-SWs, obtaining a high-resolution
stress-distribution image of 50 × 50 pixels and revealing a strong stress concentration at
the interface between the epoxy resin and the silicon wafer. Additionally, Fourier trans-
form infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Field-emission
scanning electron microscopy (FE-SEM), and RAS were used to analyze the chemical
composition, molecular structure, interfacial microstructure, and RS of the epoxy resin
during the thermal aging process. With the increase in the thermal aging time, the epoxy
resin underwent secondary curing, the RS at the interface changed from tensile stress to
compressive stress, and cracks were formed. The results illuminate the effect of the thermal
aging process on the interface-failure mechanism of composite materials, aiding in the
reliability evaluation and safety design of semiconductor devices.

Keywords: epoxy resin; Raman spectroscopy; residual stress; thermal aging; crack

1. Introduction
Thermosetting materials like epoxy resin are three-dimensional, highly cross-linked

networks formed by cross-linking reactions between epoxy-resin monomers or oligomers
and curing agents [1–4]. Epoxy resin has excellent thermal, mechanical, and electrical
properties and is widely used in various applications, including adhesives, coatings, elec-
tronic packaging, and insulation [5–7]. In recent years, the manufacturing of packaging
devices, from the simplest plastic encapsulants to advanced packaging in heterogeneous
integration, involves a curing process, which inevitably introduces residual stress (RS) [8,9].
Additionally, in a multi-material structure bonded by different materials, owing to the
nonuniform chemical and physical shrinkage caused by the thermal aging effect during
high-temperature service, large amounts of RS may also be generated. A sufficiently
large amount of RS may cause microcracks, interfacial delamination, warpage, or damage
to the epoxy resin, which is gradually becoming one of the main challenges affecting
the reliability of packaging devices [10–14]. Therefore, evaluating the RS of the material
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structure is crucial for understanding the impact of thermal aging on the reliability of the
composite structure.

In one sense, the initial stress of the epoxy resin-based multi-material structure comes
from the thermal RS generated during curing. During the curing process, the epoxy
resin shrinks when cooled to room temperature. At this time, the metal or nonmetal
substrate has a lower coefficient of thermal expansion and shrinks much less than the
epoxy resin, resulting in the generation of RS at the interface between the epoxy resin and
the substrate [15–17]. In another sense, in a thermal-oxidative environment, the epoxy
resin in the multi-material structure undergoes an oxidation reaction, resulting in changes
in the density of the polymer (due to the grafting of oxygen atoms along the polymer
chain) and mass changes (a large amount of volatile products are formed by a chain
breakage near the chain end, ultimately leading to mass loss), finally causing the epoxy
resin to undergo volume shrinkage. Owing to the inherent inertness of the substrate, the
substrate exhibits negligible deformation at temperatures below 300 ◦C. Different degrees
of oxidative deformation can be observed between the shrinking epoxy-resin matrix and the
substrate, thus changing the RS at the interface [18–20]. With the increase in the duration of
the thermal aging process, the RS at the interface further accumulates, causing warpage
and interfacial peeling of the material structure products [21]. Therefore, understanding
the evolution law of the RS during the thermal aging process is an important research
topic for exploring the correlation between thermal aging and structural damage of the
composite material.

Currently, many techniques are available for characterizing residual stress, includ-
ing X-ray diffraction (XRD), Raman spectroscopy (RAS), ultrasonic acoustics, and strain
gauges [16]. Compared to ultrasonic acoustics and strain gauges, which can only obtain
residual stresses in large areas, XRD and Raman spectroscopy can accurately measure
residual stresses in micro areas. However, X-ray diffraction is limited to residual stress
measurement of materials with crystallinity and is not suitable for amorphous materials
such as epoxy resins. Therefore, RAS is currently an important multi-scale and nonde-
structive approach for characterizing the RS of amorphous polymer-based materials with
high resolution. Based on the change in vibrational energy in polymer molecules under
mechanical stress, RAS can confirm the displacement value of sensitive bands and then
calculate the RS, so it has been widely used to understand the mechanical properties of
various polymers [22–25]. Abiko et al. employed RAS to evaluate the RS distribution
of epoxy-resin/aluminum composites [23]. Through Raman imaging, it was found that
compared with room-temperature curing, a more intense stress concentration was found
at the interface between the epoxy resin and the aluminum. Wu et al. imaged the RS of
an epoxy-based thermosetting material by RAS and found that the RS of the thermoset-
ting material containing a highly dynamic thiocarbamate bond decreased by 44% after
annealing at 30 ◦C [24]. These studies have shown that the RS caused by differences in
the curing process and physical properties of the resin of the polymer-based material can
be detected and analyzed by Raman imaging. Therefore, Raman imaging is beneficial for
better understanding the evolution of the micromechanics and complex failure processes
of the composite structure, including interfacial debonding, matrix cracking, warpage,
and local stress distribution. However, its related applications in the thermal aging of
polymer-based materials have been rarely reported.

Here, epoxy-resin specimens (EP-Ss) and epoxy-resin silicon-wafer composites
(EP-SWs) were prepared. The uniaxial tensile approach and RAS were used to study
the relationship between the stress and peak shift of the EP-Ss. Then, the EP-SWs were
placed in an oven for thermal aging test at 105 ◦C. The microscopic RS distribution of the
EP-SWs during the thermal aging process at different times was measured. The distribution
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uniformity and evolution law of the RS at the interface of the composite structure were ana-
lyzed. Additionally, Fourier transform infrared spectroscopy (FTIR), Differential scanning
calorimetry (DSC), and Field-emission scanning electron microscopy (FE-SEM) were used
to analyze the chemical composition, molecular structure, and interfacial microstructure of
the epoxy resin after the thermal aging process.

2. Materials and Methods
2.1. Materials

The bisphenol-A diglycidyl, 4,4′-methylenedianiline, and N,N-dimethylformamide
used in this work were all purchased from Shanghai Aladdin Biochemical Technology Co.,
Ltd. (Shanghai, China). The silicon wafers were purchased from Shijiazhuang Jing Yan
Electronic Technology Co., LTD (Shijiazhuang, China). All the above samples were used as
received, without purification treatment.

2.2. Sample Preparation
2.2.1. Preparation of Epoxy-Resin Specimens (EP-Ss)

The EP-Ss for uniaxial tensile approach were prepared as follows. The bisphenol-A
diglycidyl ether monomer and 4,4′-methylenedianiline curing agent were dissolved in
a flask containing 2 mL of N,N-dimethylformamide solution at a weight ratio of 4.5:1
to obtain a mixed solution. The mixed solution was then cast in a rectangular mold
(L80 × W5 × T2 mm) and cured in a vacuum at 60 ◦C for 24 h to obtained EP-Ss.

2.2.2. Preprocessing of Silicon Wafers

Silicon wafers measuring 10 mm × 10 mm × 0.6 mm were transferred to a beaker
containing 30 mL of chloroform and ultrasonically cleaned for 30 min. Then, the silicon
wafer was transferred to a plasma cleaner for atmospheric-pressure treatment for 5 min.

2.2.3. Preparation of EP-SWs

First, the bisphenol-A diglycidyl ether monomer and 4,4′-methylenedianiline curing
agent were dissolved in a flask containing 5 mL of N,N-dimethylformamide solution at a
weight ratio of 4.5:1. The mixed solution was mechanically stirred in a vacuum environment
at 60 ◦C for 30 min to remove bubbles, and the DMF solution was added to the mixed
solution, thereby preparing a prepolymer solution. Then, the prepolymer solution was
poured into a silicone mold with a silicon wafer attached to the bottom and cured in a
vacuum at 80 ◦C for 8 h and at 100 ◦C for 2 h. After curing, the heating was stopped, and
the temperature in the oven was slowly cooled to room temperature. After demolding,
EP-SWs were obtained by cutting and polishing. All samples were cuboids of 10 mm in
length, 10 mm in width, and 5 mm in height.

2.3. Thermal Aging Process

EP-SWs were isothermally oxidized and aged in an air-circulating oven, which could
continuously deliver external air to the oven to maintain a fresh oxygen environment
around the EP-SWs. To exclude the moisture effect, all the specimens were baked in an
oven at 60 ◦C for 2 h. Subsequently, under high-temperature atmosphere conditions, the
cured EP-SWs were placed in the oven. The thermal aging was conducted based on the
standard IEC 60505 using an oven with a stable temperature of 105 ◦C [26]. The specimens
were taken out regularly, and the time span was 2, 6, 14, and 25 d, respectively.
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2.4. Characterization and Measurement
2.4.1. RS Measurement
Chemical Structure Analysis

To analyze the changes in chemical bonds of the epoxy resin during curing and thermal
aging, we carried out a Fourier transform infrared spectroscopy measurement in the atten-
uated total reflection (ATR) mode (Nicolet IS50 + Continuum, Thermo Fisher Scientific Co.,
Ltd., Waltham, MA, USA) with 16 accumulative scans, a resolution of 2 cm−1, and a scan-
ning range of 500–4000 cm−1. Additionally, the analysis process of the infrared spectrum
was carried out using Spectrum software (PerkinElmer, Glen Waverley, VIC, Australia).

Glass Transition Measurement

A differential scanning calorimetry measurement was carried out using a DSC Q1000
(METTLER TOLEDO, Switzerland). The sample with a mass range of 3–5 mg was sealed
in an aluminum pan and heated from 0 to 250 ◦C at a ramp rate of 10 ◦C/min under a
nitrogen flow of 50 mL/min. The results were interpreted using TA analysis software. DSC
analysis was carried out to check the total curing degree of the sample and measure the
glass transition temperature value of the aged sample. The Tg was measured during the
second heating ramp at the inflection point of the thermogram (i.e., after removing the
thermal history of the sample).

Micromorphology Characterization

Before imaging the microregion, the sample measurement area was sprayed with
platinum via an ion sputtering coating to improve the resolution. An Apreo 2 field-emission
scanning electron microscope produced by Thermo Fisher Scientific was used to observe
the microscopic morphology of the EP-SW.

3. Results and Discussion
3.1. Relationship Between Peak Shift and Stress

As shown in Figure 1, EP-Ss and EP-SWs were prepared by a nucleophilic addition
reaction, using bisphenol-A diglycidyl ether as the matrix and 4,4′-methylenedianiline
as the curing agent. The Raman spectrum of the EP-Ss in the range of 1000–3200 cm−1

is shown in Figure 2a. Since the narrower the width of the Raman peak, the greater the
improvement in the measurement accuracy of the peak shift, combined with the stress mea-
surement approaches reported in the existing literature, the peaks at 3078 cm−1, 1618 cm−1,
and 1123 cm−1 with narrower half-width peaks were selected for stress measurement and
analysis. These three peaks correspond to the aromatic C-H stretching vibration, aromatic
C=C stretching vibration, and aliphatic C-O stretching vibration, respectively. After contin-
uously collecting the Raman spectra at the same point, we finally obtained the accurate
peak positions by curve fitting using the Voigt function (Gaussian + Lorentzian function),
as shown in Figure 2b–d.

To confirm the influence of the laser-irradiation power intensity on the Raman peak
position, we measured the EP-Ss with different laser powers and fitted the peak positions,
as shown in Figure 3. It could be observed that, owing to the local temperature rise in
the measurement area caused by laser irradiation, the peak position decreased with the
increase in the laser power. However, as long as the laser power was constant, this thermal
shift was expected to be constant. Additionally, with the increase in the laser power, the
intensity of the Raman characteristic peak also increased, and the deviation of the peak
position obtained by Voigt fitting was smaller. Therefore, to ensure the reproducibility and
accuracy of the measurement data, we used the maximum laser power for measurement in
this work.
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Based on the ability of RAS to detect the local change in molecular vibration energy,
by measuring the corresponding relationship between strain and Raman wave number
and combining the linear relationship between the stress and strain of elastic mechanical
materials, researchers can obtain the Raman frequency shift–stress factor, and the relation-
ship between the material stress and Raman frequency shift can be established. It has been
experimentally demonstrated that when using RAS to measure the stress of amorphous
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materials, according to Hooke’s law, the relationship between the peak shift and stress is
shown in Equation (1) [22]:

∆v = vσ − v0 = Sσ × ∆σ, (1)

where ∆ν represents the peak shift; ∆σ represents the stress; νσ and ν0 are the peak
positions with and without applied stress, respectively; and Sσ is the Raman mechanical
coefficient. In the uniaxial tensile approach, a small uniaxial tensile platform is used to
apply tensile load to the epoxy resin, and the laser is focused on the sample surface to
obtain the Raman spectrum. Figure 4 shows the peak shift diagram of EP-Ss. The peak
shift reflected the difference in the relative peak positions before and after the application
of stress. The absolute value of the peak shift decreased linearly with the increase in the
load. When an external compressive stress load was applied, owing to the shortening
of the molecular bond length, the vibration frequency increased, and the spectral band
shifted in the high-frequency direction (the wave number becomes larger); conversely,
when the epoxy resin was subjected to a tensile stress load, the spectral band shifted in
the low-frequency direction (the wave number became smaller). A regression line was
obtained by the least square approach, and all the data points were located within the
95% prediction interval.
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From the slope of the regression line, the Raman mechanical coefficient of the
1123 cm−1 peak was −2.76 × 10−2 cm−1/MPa (Figure 5a). Additionally, the stress-
peak shift detection was also carried out for the stretching vibration of aromatic C=C
at 1619 cm−1 and aromatic C-H at 3078 cm−1. The aliphatic C=C peak did not show stress
sensitivity associated with stress (Figure 5b). The Raman mechanical coefficient of the
3078 cm−1 peak was −1.08 × 10−2 cm−1/MPa. In the literature, the Raman mechanical
coefficient has been reported at −1.00 × 10−2 cm−1 /MPa of the stretching vibrations of
aromatic C-H of epoxy resin. The difference in constants is due to the different modes of
vibration produced by the protons in the aromatic ring or the aromatic ring skeleton. By
observing the stretching vibrations of aromatic C-H and aliphatic C-O, it can be seen that
the Raman stress correlation coefficients were all negative, which is in line with the corre-
sponding relationship between the measured strain and Raman wave number (Figure 5c).
Comparing the stress coefficients of aromatic C-H and aliphatic C-O, we found that the
stress sensitivity of aromatic C-H was less than half, indicating that the aliphatic C-O peak
can be used for stress measurement of the epoxy resin and can provide more accurate
data measurement results. Combining the above results, aliphatic C-O was selected as the
Raman peak for stress measurement in this work.
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3.2. Imaging of RS Distribution

RAS was used to measure the RS of the sample after curing. The schematic diagram
of the Raman imaging test process of RS and measurement area are shown in Figure 6a,b.
The X-axis was defined as the distance parallel to the bonding interface. The Y-axis was
defined as the vertical distance from the EP-SW interface. The same Raman mechanical
coefficient (−2.76×10−2 cm−1/MPa) was used to measure the RS of the unaged epoxy
resin. Then, the measurement area was characterized by RAS with a scanning step size
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of 1 µm. By measuring the 1123 cm−1 peak shift and calculating the RS of each point,
the distribution image of RS in the region of 50 × 50 µm2 could be obtained, as shown in
Figure 6c. Compared with the literature, the distribution of residual stress in epoxy resin
shows similar result [23]. Furthermore, it can be seen that at the interface (X = 0), a large
tensile stress (11.64 Mpa) of the epoxy resin was detected because the epoxy resin matrix
was restrained by the silicon wafer. As the distance between the measuring position and
the interface increased, the residual stress decreased gradually. Interestingly, at a distance
of 25 microns from the interface, the epoxy resin showed zero stress, which was caused
by matrix shrinkage and silicon chip restraint. When the measurement position continues
to increase, the matrix shrinkage occupies the dominant factor and presents compressive
stress (5.40 Mpa).
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3.3. Thermal Aging Analysis

Under dry conditions, the cured EP-SW was exposed at 105 ◦C for 25 days and detected
regularly using RAS and ATR-FTIR, respectively. As shown in Figure 7a, the characteristic
peaks of epoxy resin at different aging times are basically consistent, which does not prove
that the epoxy resin undergoes thermal degradation reaction. This phenomenon may be
due to the fact that thermal degradation of polymer produced polar groups, whereas RAS
was only sensitive to non-polar groups in the molecular chain. To demonstrate that the
polymer undergone thermal degradation during thermal aging, ATR-FTIR was used to
characterize the epoxy resin. In Figure 7b, the 914 cm−1 band corresponded to the epoxy
group, and the peak height of the band gradually decreased and disappeared with the
extension of high-temperature loading time, which could be attributed to the secondary
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cross-linking of the epoxy resin during the thermal aging process. As shown in Figure 7c,
the detection of the epoxy amine infrared fingerprint region showed that the main changes
caused by thermal oxidation occurred in two peaks within the wave number range of
1570–1860 cm−1. The peak at 1663 cm−1 usually came from the amide group created by
aging on the molecular chain. The band at 1726 cm−1 usually came from the vibration of
the carbonyl group produced by auto-oxidation [27]. The schematic diagram of the thermal
degradation mechanism of epoxy resin is shown in Figure 7d. The growth of both bands
was referred to the thermo-oxidative degradation of the epoxy chains.
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The interface position between epoxy resin and silicon wafer with different thermal
aging times was observed using scanning electron microscopy. Before thermal aging, the
epoxy resin at the interface was fully bonded to the silicon wafer without any cracks,
indicating the formation of a strong and stable composite structure. When the sample was
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baked at 105 ◦C for 14 days, although the interface was still relatively flat, a small crack
appeared at the interface. This phenomenon indicated that RS within the matrix have an
impact on the morphology of the interface. After 6 days of aging, a crack with a width of
3 µm was formed at the interface position, as shown in Figure 8. This might be due to the
increase in the cross-linking density of the epoxy-resin matrix during secondary curing,
resulting in shrinkage stress at the interface, making the epoxy resin unable to withstand
high stress and peel off to form cracks. After 25 days, the crack significantly expanded,
indicating that the RS of the material continuously accumulated and led to the further
expansion of the crack.
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Figure 8. FE-SEM images of (a) unaged, (b) aged for 2 days, (c) aged for 6 days, (d) aged for 14 days,
and (e) aged for 25 days.

DSC curves of different aging times are shown in Figure 9. Endothermic reactions
were observed in EP-SWs both before and after thermal aging over a wide temperature
range, and differences existed between the glass transition temperatures of aged and
nonaged epoxies. The obvious glass transition temperatures (Tgs) were 99.57 ◦C, 113.50 ◦C,
120.70 ◦C, 122.86 ◦C, and 123.09 ◦C for the samples that were not aged, aged for 2 d, aged
for 6 d, aged for 14 d, and aged for 25 d, respectively. It can be observed that the Tg of the
whole system gradually increased with the increase in aging time, and that the Tg value
tended to be stable after 14 d of aging, which is considered to be the result of the joint action
of cross-linking and chain-breaking effect of epoxy resin [28].

To verify the evolution law of the interfacial RS, we selected cross sections of the
unaged, aged for 6 d, and aged for 25 d EP-SWs for Raman imaging. Figure 10 shows the
distribution of the RS of the epoxy resin near the position of the silicon wafer. According
to the results of the Raman imaging, owing to the mismatch of the thermal expansion
coefficients between the epoxy resin and the silicon wafer, the unaged EP-SWs formed
tensile stress at the interface, and this stress state changed to compressive stress as the
distance from the interface increased. With the increase in the thermal aging time, owing to
the increase in the cross-linking density of the matrix caused by the secondary curing inside
the epoxy resin, the shrinkage stress at the interface was further increased. Notably, after
25 d of aging, owing to the cracks formed at the epoxy-resin/silicon-wafer interface, the
matrix was no longer constrained by the silicon wafer at all, and the entire area uniformly
presented a shrinkage stress.
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Figure 10. (a) Distribution of RS at the interface of unaged (EP-SW). (b) Distribution of RS at the
interface of EP-SW aged for 6 days. (c) Distribution of RS at the interface of EP-SW aged for 25 days.
(d) Average stress along the X-axis of the interface of unaged epoxy resin obtained by Raman imaging.
(e) Average stress along the X-axis of the interface of epoxy resin aged for 2 days obtained by Raman
imaging. (f) Average stress along the X-axis of the interface of epoxy resin aged for 25 days.
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Additionally, the parameter s, which represents the standard deviation of the sample,
was used to quantify the uniformity of the RS distribution, as shown in Equation (2):

s2 =
∑n

i=1(xi − x)2

n − 1
(2)

where s2 is the sample variance, n is the number of test points, xi is the fitted value of the
Raman shift at the i-th point, and x is the average value. Before aging, since the cross-linking
curing inside the epoxy resin was not yet complete, the distribution of tensile stress at the
interface was not obvious, and the value of s was 0.21. After aging at 105 ◦C for 6 d and
25 d, the epoxy resin showed significant stress differences owing to the peeling off of the
EP-SW adhesive interface, resulting in matrix shrinkage and molecular chain fracture with
values of 0.79 and 0.70, respectively.

To compare the stress change trends in the depth direction of the interfaces (Y-axis)
of different aging times of EP-SW, we averaged the relative stresses on the surfaces of
the epoxy resins in the X-axis direction. As shown in Figure 10d, the RS increased as the
distance to the silicon interface decreased, and a tensile stress of 9.9 MPa was detected on
the resin surface. With the increase in the time of the thermal aging process, the RS at the
interface further accumulated, and the shrinkage stress formed inside the matrix gradually
intensified. Finally, in the epoxy resins shown in Figure 10e,f, the average shrinkage stress
on the resin surface of the entire area was approximately 25.5 MPa. The above results
further confirm that the formation and expansion of cracks was caused by the increase in
the shrinkage stress inside the matrix.

4. Conclusions
In this paper, we prepared epoxy-resin/silicon-wafer composites with a bilayer struc-

ture. The RS of the epoxy-resin/silicon-wafer composites during the curing and thermal
aging process was measured with a Raman spectrometer. The distribution of the RS on the
cross section of the epoxy-resin/silicon-wafer composites was measured and calculated,
and two-dimensional RS images on the epoxy-resin interface were acquired. The stress im-
ages clearly show that, stress concentration occurred near the interface of the resin/silicon
wafer composites after curing process, because the thermal contraction amplitude of the
epoxy resin was greater than that of the silicon wafer when cooling to room temperature
after molding. As the exposure time in the thermal aging environment at 105 ◦C continued
to increase, the stress at the interface gradually transformed into shrinkage stress and
gradually increased, eventually leading to the formation of cracks. Meanwhile, FTIR was
used to analyze the molecular structure of the epoxy resin after thermal aging. The results
show that with the increase in the thermal aging time, secondary curing occurred in the
epoxy resin, the RS at the interface changed from tensile stress to compressive stress, and
cracks were formed. Therefore, in this work, research on the characterization approach of
micro-region RS was carried out by combining Raman spectroscopy, revealing the distribu-
tion state of the interfacial RS. Additionally, the development of the reliability-evaluation
technology for RS and the clarification of the correlation between the evolution of RS and
its crack initiation have important application research value and practical significance for
evaluating the technology of local thermal RS at the interface of multi-material structures.
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Abstract: A series of flexible polyacrylonitrile/TiO2 (PAN/P25) multi-porous nanotubular mem-
branes were successfully constructed by facile electrospinning combined with an ethylene glycol
solvothermal induce strategy. The effects of P25 dosage and solvothermal time on the morphology of
samples were systematically investigated, which were characterized in terms of surface morphology,
microstructure, specific surface area, thermal analysis, wettability, photoelectrochemical and fluores-
cence spectra. Rhodamine B (RhB) and Escherichia coli (E. coli) were employed as simulated pollutants
to evaluate photocatalytic degradation and antibacterial properties of the PAN/P25-3 multi-porous
nanotubular membrane. The PAN/P25-3 membrane exhibited the highest photocatalytic degradation
efficiency, with 96.1% degradation of RhB within 120 min under a xenon lamp light source and a
photocatalytic inactivation rate of 95.8% for E. coli under 365 nm monochromatic light irradiation.
The photocatalytic degradation mechanism of the PAN/P25-3 multi-porous nanotubular membrane
for RhB was deduced from the results of 3D-EEM fluorescence and scavenger experiments of reactive
species. Additionally, the cyclic photodegradation experiments demonstrated that the PAN/P25-3
membrane maintained excellent stability and photocatalytic performance after multiple degradation
cycles, confirming its potential for sustainable wastewater treatment applications.

Keywords: electrospinning; multi-porous nanotubular membrane; photocatalytic degradation and
sterilization; solvothermal induction

1. Introduction

Organic and bacterial contaminants have brought about serious water environment
pollution [1]. The emission of organic dyes from the textile industry has caused health prob-
lems for living organisms [2]. Furthermore, bacterial contamination such as Escherichia coli
(E. coli) in water has also resulted in potential risks to human drinking water [3]. In this case,
many water treatment technologies have been developed to purify water, such as ozone dis-
infection, chlorination, UV irradiation, electrolysis, physical adsorption, and photocatalytic
degradation [4–7]. It has been proven that solar-driven photocatalytic oxidation technology
is widely explored for water purification [8]. Semiconductor-based photocatalysts have
attracted extensive attention for their ability to eliminate organic pollutants, inactivate
harmful bacteria, and produce clean energy [9]. This technology is considered a promising
water treatment method due to the absence of sterilization by-products [10,11]. As is
known, commercially available TiO2 (P25) nano-photocatalyst is widely used due to its
high stability, low cost and eco-friendliness [12,13]. However, the P25 nano-photocatalyst is
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prone to agglomerate due to its high surface energy, which reduces the photocatalytic activ-
ity [14]. In addition, it is difficult to separate and recover the P25 nano-photocatalyst from
the treated solution, which limits the cyclic utilization [15,16]. In order to overcome this
problem, people make it easier to recycle by loading magnetic materials in photocatalysts
or using electrospinning.

Due to the large aspect ratio, large specific surface area, controllable chemical composi-
tion, good morphology and high porosity [17–20], electrospinning technology is considered
to be a simple, universal, economical and effective method to fabricate one-dimensional
nanofiber and composite nanofiber membranes containing inorganic particles [21,22]. The
electrospun polyacrylonitrile (PAN) nanofiber possesses a one-dimensional nanostruc-
ture with good chemical stability and excellent flexibility [23], which can be utilized as
a substrate to immobilize inorganic nanoparticles to construct functional membrane and
avoid separating the photocatalyst from water. Pan et al. have combined the different
inorganic materials with electrospun PAN, making the composite materials have different
properties, such as enhanced Raman scattering [24] and adsorption [25–27]. Chen et al.
fabricated PAN/P25 nanofibers by the electrospinning method, which possessed the en-
hanced piezoelectric photocatalysis performance toward Rhodamine B via polar functional
group engineering [28]. P25 nanoparticles can be added to the spinning solution because
of their good stability. However, many P25 nanoparticles are encapsulated into the fiber
during the electrospinning process, which will reduce the exposure of active sites; thus, the
photocatalytic activity of P25 is weakened. Therefore, how to make P25 nanoparticles more
exposed and realize facile recycling becomes a challenge. Ramasundaram et al. have fixed
P25 nanoparticles on steel mesh by electric spraying combined with a high-temperature
hot-pressing method (350 ◦C, 100 MPa) [29]. Romas et al. have immobilized P25 nanoparti-
cles within zinc acetate/PVA nanofibers by an electrostatically modified electrospinning
process, which is calcinated at 600 ◦C to obtain polycrystalline ZnO and ZnO/P25 [30].
These methods often require more stringent conditions or complex equipment, so it is
urgent that an economical and simple method be found.

Herein, the flexible PAN/P25 multi-porous nanotubular membranes are firstly fabri-
cated by a facile electrospinning method combined with an ethylene glycol solvothermal
induction strategy, which possesses excellent photocatalytic degradation of dyes and pho-
tocatalytic sterilization performance. We discussed the morphological changes caused by
the solvothermal treatment time. Additionally, the chemical, physical and photoelectric
properties of the samples were characterized. The multi-porous nanotubular structure
improves the light utilization efficiency and the transmission efficiency of e− and h+. At
the same time, the flexible PAN/P25 multi-porous nanotubular membrane has stable cycle
performance. This multi-porous nanotubular functional membrane will be effectively used
in the field of water pollution treatment in the future.

2. Experimental
2.1. Materials

Poly (vinyl pyrrolidone) (PVP, Mw = 1,300,000) and polyacrylonitrile (PAN, Mw = 150,000)
were purchased from Aladdin Regent Company, America. N,N-dimethylformamide (DMF),
and Ethylene glycol (EG) were obtained from Shanghai Chemical Regent Company, China.
Rhodamine B (RhB) was obtained from Tianjin Guangfu Chemical Reagents Company,
China. P25 (TiO2) was purchased from Degussa, and E. coli (ATCC 8739) was provided by
the research group.

2.2. Preparation of PAN/PVP/P25 Fiber Membrane

As shown in Figure 1, X g P25 (X = 0.1, 0.15, 0.2, 0.25) was ultrasonically dispersed in
6 mL DMF, then 0.6 g PAN and 0.6 g PVP were added sequentially and the uniform spinning
solution was obtained after magnetic stirring for about 6 h. After that, the spinning solution
was transferred to a syringe with a steel needle, which was connected to a direct current
high voltage of 12 kV; the receiver was placed 15 cm away from the tip of the steel needle.
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The temperature and humidity were 25 ◦C and 45%, respectively. Finally, the as-spun
fiber membrane was placed in an oven at 60 ◦C for 2 h to remove the residual solvent.
The products were named PAN/PVP/P25-0.1, PAN/PVP/P25-0.15, PAN/PVP/P25-0.2
and PAN/PVP/P25-0.25 fiber membrane, respectively. As a control, the PAN/PVP fiber
membrane was fabricated at the same conditions without introducing the P25 particles.
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2.3. Preparation of Flexible PAN/P25 Multi-Porous Nanotubular Membrane

A flexible PAN/P25 multi-porous nanotubular membrane was achieved by the ethy-
lene glycol (EG) solvothermal induction strategy. The as-spun PAN/PVP/P25-0.2 fiber
membrane was cut into square pieces with a side length of 3 cm and transferred to the stain-
less steel high-pressure reactor containing EG. The reaction was performed at 180 ◦C for Y h
(Y = 2, 3, 4). After cooling to room temperature, the obtained sample was repeatedly washed
with deionized water and confronted with freeze-drying for 12 h. Finally, the PAN/P25
multi-porous nanotubular membranes were obtained, which were named PAN/P25-2,
PAN/P25-3 and PAN/P25-4 multi-porous nanotubular membranes, respectively. The
detailed formulation is shown in Table 1.

Table 1. Recipes of PAN/P25 multi-porous nanotubular membranes.

Sample PAN (g) PVP (g) P25 (g) Solvothermal Time (h)

PAN/PVP/P25-0.1 0.6 0.6 0.1 —
PAN/PVP/P25-0.15 0.6 0.6 0.15 —
PAN/PVP/P25-0.2 0.6 0.6 0.2 —
PAN/PVP/P25-0.25 0.6 0.6 0.25 —
PAN/PVP 0.6 0.6 0 —
PAN/P25-2 0.6 — 0.2 2
PAN/P25-3 0.6 — 0.2 3
PAN/P25-4 0.6 — 0.2 4

2.4. Photocatalytic Experiment

The photocatalytic activities of the obtained photocatalysts were evaluated by the
degradation of RhB in an aqueous solution. The entire degradation reaction process was
carried out in an opaque 100 mL jacket beaker under a light source with 2 ◦C condensed
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water throughout the jacket of the jacket beaker. Firstly, 50 mg of PAN/PVP/P25 or 29 mg
PAN/P25-3 (to ensure the equivalent of P25) catalytic membrane was added in 50 mL of
RhB (10 mg/L) solution, and the adsorption–desorption equilibrium state was reached after
dark reaction for 30 min without turning on the light source. Then, we turned on the xenon
lamp light source (A 300 W PLS-SXE300 xenon lamp, Beijing Perfect Light Technology Co.,
LTD, Beijing, China) for the degradation experiment. The suspension was taken every
30 min, and the absorbance At at 554 nm of the supernatant was recorded. The final residual
quantity Ct/C0 was approximated by At/A0, where Ct and At represent the concentration
and absorbance at time t, and C0 and A0 represent the initial concentration and absorbance.
The degradation rate is calculated by (1 − Ct/C0) × 100%.

2.5. Photocatalytic Disinfection of E. coli

Firstly, E. coli was inoculated in a Luria-Broth (LB) nutrient solution, cultured in a
shaker at 37 ◦C for 12 h, centrifuged and collected, washed two times with sterile saline,
and then re-suspended in fresh sterile saline. The final E. coli concentration was adjusted to
3 × 106 CFU/mL. In a typical experiment, 10 mg of PAN/P25-3 nanotubular membrane was
immersed into 10 mL of E. coil suspension. The photocatalytic sterilization performance of
the PAN/P25-3 multi-porous nanotubular membrane was evaluated by a xenon lamp with
a DT365 filter. Within a certain time interval, 500 µL suspension was taken and diluted
with sterile saline. In order to determine the cell density of viable E. coli, 100 µL diluted
solution was daubed to nutrient agar and incubated at 37 ◦C for 12 h. We then determined
the number of viable bacteria. Each experiment was repeated three times.

2.6. Characterization

Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet Instruments
Research Series 5PC FTIR. The X-ray diffraction (XRD) patterns were obtained using a
Shimadzu XRD-7000 X-ray diffractometer with monochromatized Cu Kα radiation. The
XRD measurement was conducted with a 2θ range of from 10◦ to 80◦, a scan speed of
5◦/min, and a step size of 0.02◦. The surface morphologies and composition of samples
were examined using SEM (TESCAN MAIA 3 LMH, Bratislava, Czech Republic). TEM
images were recorded by an FEI Tecnai F20 microscope operated at 200 kV. The Brunauer-
Emmett-Teller (BET) specific surface area of the material was obtained by measuring
the nitrogen adsorption–desorption isotherms using a nitrogen adsorption apparatus
(ASAP2020, Norcross, GA, USA). Thermogravimetric (TG) was performed by heating
the nanofiber membranes from 25 ◦C to 800 ◦C at a heating rate of 10 ◦C/min in the air
atmosphere (Netzsch STA 449 F3, Selb, Bavaria, Germany). Static WCA tests for products
were carried out via a contact angle meter (Krüss DSA25, Hamburg, Germany). The
UV–vis diffused reflectance spectra (DRS) measurements of the samples were carried
out using a TU-1901 system with BaSO4 as the reflectance standard. Photoluminescence
(PL) spectra of the samples were detected on a fluorescence spectrophotometer (Hitachi
F-7000, Tokyo, Japan) with an excitation wavelength of 200 nm. Electrochemical signals
were recorded by a CHI660B electrochemical analyzer (Chenhua, Shanghai, China). Three-
dimensional excitation–emission matrix (3DEEM) fluorescence spectra were recorded using
a Fluoromax-4 spectrofluorometer (Zolix SmartFluo-Pro, Beijing, China), and both the
excitation wavelength (Ex) and emission wavelength (Em) were in the range of 200–700
nm. The absorption spectra of organic dyes and antibiotics solutions were obtained by a
UV–vis spectrophotometer (SHIMDZUUV-3600, Kyoto, Japan).

3. Results and Discussion
3.1. Composition and Crystal Structure

In order to evaluate the physical and chemical changes of the composites, FT-IR and
XRD are used for spectral analysis. Figure 2A shows the PAN/PVP fiber membrane,
PAN/PVP/P25 fiber membrane and PAN/P25-3 multi-porous nanotubular membrane.
Observing curve (a), the wide absorption peak near 3400 cm−1 is attributed to the stretching
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vibration of -OH, which is due to the adsorbed water on the sample surface. The absorption
bands of the spectrum observed at 3000–2900 cm−1 and 1454 cm−1 are due to stretching and
deformation vibrations of C-H bonds, respectively. At 2245 cm−1, the stretching vibration
of the C≡N bond in PAN is presented [31–34]. The obvious peaks near 1450 cm−1 and
1250 cm−1 are indexed into C=C and C-N stretching vibrations. In addition, there is an
obvious peak at 1680 cm−1, which is attributed to the C=O stretching vibration in the
PVP molecule. Compared with curve (a), curves (b) and (c) have a new broad peak in
850–550 cm−1, which belongs to the Ti-O-Ti stretching bond and proves the existence of P25.
Figure 2A (curve b) shows a decrease in the peak intensity at 1680 cm−1 for PAN/PVP/P25-
0.2, even before the solvothermal process, which may suggest partial removal or changes
in the PVP structure prior to the reaction. Figure 2B shows the XRD patterns. Curve
(a) has no obvious peak. In curve (b), the anatase phase of P25 corresponds to 25.4◦,
37.7◦, 47.8◦, 54.8◦, 62.5◦ and 75◦ and the rutile phase of P25 corresponds to 27.3◦, 36◦, 41◦,
53.8◦ and 74.9◦ [35,36], which confirms the existence of P25 in the composite film, but the
peak intensity is weak. This is because most P25 nanoparticles are wrapped in the PAN
fiber. Moreover, the XRD peak at approximately 2θ ≈ 17◦ observed in both the PAN/PVP
and PAN/P25-3 patterns likely originates from the (100) reflection of the semi-crystalline
structure of PAN. It is worth noting that the peak strength in curve (c) increases significantly.
This is because more P25 nanoparticles are largely exposed to the surface of the PAN/P25
multi-porous nanotube after the removal of the PVP component, which is mainly ascribed
to the role of the EG solvothermal induction process.

Polymers 2024, 16, x FOR PEER REVIEW 5 of 18 
 

 

3. Results and Discussion 
3.1. Composition and Crystal Structure 

In order to evaluate the physical and chemical changes of the composites, FT-IR and 
XRD are used for spectral analysis. Figure 2A shows the PAN/PVP fiber membrane, 
PAN/PVP/P25 fiber membrane and PAN/P25-3 multi-porous nanotubular membrane. Ob-
serving curve (a), the wide absorption peak near 3400 cm−1 is attributed to the stretching 
vibration of -OH, which is due to the adsorbed water on the sample surface. The absorp-
tion bands of the spectrum observed at 3000–2900 cm−1 and 1454 cm−1 are due to stretching 
and deformation vibrations of C-H bonds, respectively. At 2245 cm−1, the stretching vibra-
tion of the C≡N bond in PAN is presented [31–34]. The obvious peaks near 1450 cm−1 and 
1250 cm−1 are indexed into C=C and C-N stretching vibrations. In addition, there is an 
obvious peak at 1680 cm−1, which is attributed to the C=O stretching vibration in the PVP 
molecule. Compared with curve (a), curves (b) and (c) have a new broad peak in 850–550 
cm−1, which belongs to the Ti-O-Ti stretching bond and proves the existence of P25. Figure 
2A (curve b) shows a decrease in the peak intensity at 1680 cm⁻¹ for PAN/PVP/P25-0.2, 
even before the solvothermal process, which may suggest partial removal or changes in 
the PVP structure prior to the reaction. Figure 2B shows the XRD patterns. Curve (a) has 
no obvious peak. In curve (b), the anatase phase of P25 corresponds to 25.4°, 37.7°, 47.8°, 
54.8°, 62.5° and 75° and the rutile phase of P25 corresponds to 27.3°, 36°, 41°, 53.8° and 
74.9° [35,36], which confirms the existence of P25 in the composite film, but the peak in-
tensity is weak. This is because most P25 nanoparticles are wrapped in the PAN fiber. 
Moreover, the XRD peak at approximately 2θ ≈ 17° observed in both the PAN/PVP and 
PAN/P25-3 patterns likely originates from the (100) reflection of the semi-crystalline struc-
ture of PAN. It is worth noting that the peak strength in curve (c) increases significantly. 
This is because more P25 nanoparticles are largely exposed to the surface of the PAN/P25 
multi-porous nanotube after the removal of the PVP component, which is mainly ascribed 
to the role of the EG solvothermal induction process. 

 
Figure 2. (A) FT-IR and (B) XRD patterns of (a) PAN/PVP; (b) PAN/PVP/P25-0.2; (c) PAN/P25-3. 

3.2. Morphology of PAN/P25 Multi-Porous Nanotubular Membrane 
The surface morphology evolution of PAN/PVP fibrous membranes is observed by 

the SEM. As shown in Figure 3(A1–A4), the PAN/PVP fiber membrane possesses a smooth 
surface with a diameter of 0.32 µm. For the PAN/PVP/P25-0.2 fiber membrane in Figure 
3(B1–B3), some P25 nanoparticles are uniformly loaded on the surface of the fiber mem-
brane and the surface has become rough. Moreover, the fiber diameter increases from 0.32 
µm to 0.72 µm because the viscosity of the spinning solution becomes larger, which makes 
it difficult for the electrostatic force to stretch the fiber more thoroughly. As depicted in 
Figure 3(C1–C4), it is interesting that the PAN/P25-3 multi-porous nanotubular structure 
is achieved after the ethylene glycol solvothermal induction treatment, the nanotubular 

Figure 2. (A) FT-IR and (B) XRD patterns of (a) PAN/PVP; (b) PAN/PVP/P25-0.2; (c) PAN/P25-3.

3.2. Morphology of PAN/P25 Multi-Porous Nanotubular Membrane

The surface morphology evolution of PAN/PVP fibrous membranes is observed
by the SEM. As shown in Figure 3(A1–A4), the PAN/PVP fiber membrane possesses a
smooth surface with a diameter of 0.32 µm. For the PAN/PVP/P25-0.2 fiber membrane in
Figure 3(B1–B3), some P25 nanoparticles are uniformly loaded on the surface of the fiber
membrane and the surface has become rough. Moreover, the fiber diameter increases from
0.32 µm to 0.72 µm because the viscosity of the spinning solution becomes larger, which
makes it difficult for the electrostatic force to stretch the fiber more thoroughly. As depicted
in Figure 3(C1–C4), it is interesting that the PAN/P25-3 multi-porous nanotubular structure
is achieved after the ethylene glycol solvothermal induction treatment, the nanotubular
structure is marked with a red circle, and there are many pores and P25 nanoparticles
exposed to the surface of the PAN/P25 multi-porous nanotube (Red circle mark). The
formation of multi-porous nanotubes is mainly dependent on the phase separation phe-
nomenon between PAN and PVP [37]. Due to the different viscosity of the two components
of PAN and PVP, the PAN component is mainly located outside the fibers, and the PVP
component is mainly located inside the PAN/PVP fibers during the electrospinning process.
Moreover, most of the PVP component is removed from the fibers due to the solubility of
PVP in EG solvent during the EG solvothermal induction reaction. In addition, because
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PAN is rich in a large amount of -CN, which has the ability to trap metal ions, P25 is still
preserved on the fiber. Moreover, the multi-porous nanotube diameter increases from
0.72 µm to 0.90 µm; the reason for this is that the removal of PVP leads to fiber swelling
during the EG solvothermal treatment. The unique multi-porous nanotubular structure
of PAN/P25-3 is favorable for the exposure of P25 nanoparticles and the light-harvesting
and utilization by means of multiple reflections and scattering, yielding more electrons and
holes. Furthermore, the multi-porous nanotubular structure can shorten the diffusion path
of pollutants by passing through the hole in the tube wall and provide more active sites
for contact with pollutants. As a consequence, the above two aspects are beneficial to the
improvement of photocatalytic performance.
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TEM images in Figure 4A,B further confirm the one-dimensional and multi-porous
hollow structure of PAN/P25-3. Moreover, it is vividly shown that the exposed P25
nanoparticles are located on the multi-porous nanotube surface in the enlarged TEM in
Figure 4C,D. Both the increase in holes and the exposure of the P25 nanoparticles are
beneficial to enhance the specific surface area and provide more active sites and flow
channels, which can facilitate the organic dyes or bacteria in sewage contaction with the
P25 photocatalyst. In addition, the light inside the holes can be refracted multiple times to
improve the light utilization rate, thereby improving the photocatalytic efficiency.
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3.3. Effect of Solvothermal Time on the Morphology of PAN/P25

The surface morphology changes of the membranes at different times were observed
by SEM. The PAN/PVP/P25-0.2 fibrous membrane without solvothermal treatment is
shown in Figure 5(A1,A2); a small number of P25 nanoparticles are loaded on the surface
of the fiber, most of them are coated inside the fiber, which makes it have a low photo-
catalytic efficiency. After solvothermal treatment for 2 h (Figure 5(B1,B2)), the holes on
the surface of the fiber are attributed to the dissolution of PVP, but it does not cause the
nanotubular structure, which is still unable to achieve the highest utilization of light. With
the extension of the solvent heat treatment time, the pores on the surface of the fiber grad-
ually increase, and more P25 is exposed while the fibers form a hollow tubular structure
(Figure 5(C1,C2)). However, too long a time (4 h) leads to the agglomeration of nanoparti-
cles P25 (Figure 5(D2)), which may affect the photocatalytic property.
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3.4. Nitrogen Sorption Isotherms

The physical properties of PAN/PVP/P25-0.2 and PAN/P25-3 are further charac-
terized by the BET test. As shown in Figure 6, the N2 adsorption–desorption isotherms
and pore diameter of PAN/PVP/P25-0.2 fiber membrane and PAN/P25-3 multi-porous
nanotubular membrane were evaluated to determine their specific surface area and the pore
size. The PAN/PVP/P25-0.2 fiber membrane exhibits a type III isotherm, which indicates
that the surface of the material is a non-porous or macroporous material. The measured
pores data are attributed to the interlacing pores between the fibers. The PAN/P25-3 multi-
porous nanotubular membrane exhibits a type III isotherm and H3 type hysteresis loop
(0.8 < P/P0 < 1.0), which is one of the main characteristics of mesoporous materials [38], and
its pore size distribution is relatively narrow (2–20 nm). Table 2 shows the specific data; the
surface areas of the PAN/PVP/P25-0.2 fiber membrane and the PAN/P25-3 multi-porous
nanotubular membrane are 12.29 m2·g−1 and 25.74 m2·g−1, respectively. The average pore
size increased distinctly, ranging from 15.33 nm to 24.76 nm, and the pore volume also
increased significantly, from 0.047 cm3·g−1 to 0.160 cm3·g−1. This increase is attributed to
the removal of PVP, which creates a large number of holes. These holes are beneficial for
increasing the active sites and enhancing light absorption.
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(a) PAN/PVP/P25-0.2; (b) PAN/P25-3.

Table 2. Physical properties of the photocatalytic membrane.

Sample SBET (m2·g−1)
Average Pore Size

(nm)
Pore Volume

(cm3·g−1)

PAN/PVP/P25-0.2 12.29 ± 0.01 15.33 ± 0.01 0.047 ± 0.001
PAN/P25-3 25.74 ± 0.01 24.76 ± 0.01 0.160 ± 0.001

3.5. Thermal Analysis

The TG analysis of the PAN/PVP fiber membrane, PAN/PVP/P25 fiber membrane
and PAN/P25-3 multi-porous nanotubular membrane are shown in Figure 7. When the
temperature reached 600 ◦C, PAN and PVP were all volatilized. As shown in observation
curve (b), due to the hydrophilicity of PVP, the membrane surface adsorbs water in the air,
and 3.41% of the mass loss around 100 ◦C is attributed to the water on the surface of the
sample. The mass loss of 0.7% between 100 ◦C and 260 ◦C is attributed to residual DMF.
The pyrolysis of PVP begins at 260 ◦C, and some PVP will cross-link with PAN [39]. At
the same time, PAN is pyrolyzed at 280 ◦C. Therefore, 38.41% of the weight loss between
260 ◦C and 320 ◦C is ascribed to the partial decomposition of PVP and the loss of a small
amount of ammonia and hydrogen cyanide during PAN cyclization [40]. Continuing to
increase the temperature, the secondary weight loss of PAN starts due to carbonization and
decomposition, but it is slower than the previous weight loss, which is due to the better
heat resistance of PAN [41]. When the temperature rises to 600 ◦C, only P25 nanoparticles
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are left, and the residual weight of 14.20% (curve b) is close to the theoretical value (14.29%).
Observing curve (c), due to the removal of PVP, the surface contains less adsorbed water,
so there is almost no mass loss before 100 ◦C. The subsequent pyrolysis curve is similar
to the trend of curve (a), and the final P25 content (24.59%) is close to the theoretical
value (25%). It is suggested that the solvothermal process can remove the PVP component
and hardly cause the shedding of P25 nanoparticles from the PAN/P25-3 multi-porous
nanotubular membrane.
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3.6. Wettability Test

As shown in Figure 8, the wettability of the PAN/PVP fiber membrane, PAN/PVP/P25-
0.2 fiber membrane and PAN/P25-3 multi-porous nanotubular membrane were evaluated
by measuring the contact angle between the surface of the nanofiber membrane and water.
Due to the hydrophilicity of PVP, the PAN/PVP fiber membrane shows good hydrophilic-
ity, and the contact angle is only 21.3◦. Although the surface of the fiber became rough
after loading P25, it still shows good hydrophilicity in Figure 8B. The contact angle of
the PAN/P25-3 multi-porous nanotubular membrane slightly increases to 35.4◦ and still
shows hydrophilic properties; this is probably because some hydrophilic groups of -OH
that originated from the EG solvent are introduced into the PAN/P25-3 surface during
the solvothermal process. This hydrophilicity is beneficial to the treatment of pollutants
in water.
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3.7. Optical Absorption and Photoelectrochemistry Analysis

DRS was used to study the optical absorption behavior of the PAN/PVP/P25-0.2 fiber
membrane and PAN/P25-3 multi-porous nanotubular membrane; the results are shown in
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Figure 9A. The absorption edges of the PAN/PVP/P25-0.2 fiber membrane and PAN/P25-3
multi-porous nanotubular membrane were at 387 nm and 391 nm, respectively, which is
attributed to the intrinsic band gap absorption of P25 [42]. The higher light absorption
value is because the porous structure is favorable for light to enter the inner wall, and the
tubular structure is favorable for light to achieve multiple reflections in the inner wall,
making the light utilization rate higher. At the same time, EG heat treatment may introduce
functional groups such as -OH or -CHO to the surface of the material; this may also be
another reason for the increased light absorption [20,22]. The obtained diffuse reflectance
spectrum is converted into a Tauc diagram (Figure 9B) according to the following formula:
αhν = A (hν − Eg)n/2, Where α, h, v, A and Eg represent the absorption coefficient, Planck’s
constant, optical frequency, direct leap constant and band gap energy, respectively. The
value of n depended on the type of optical transition of semiconductors (ndirect = 1 and
nindirect = 4). The straight part of the figure is extended to the horizontal axis (y = 0) to obtain
the band-gap energy (3.20 eV and 3.17 eV). The band-gap energy of the two samples did not
change significantly, indicating that the P25 remained stable after solvent heat treatment.
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It is well known that the recombination of photogenerated electrons (e−) and holes (h+)
is one of the important parameters determining photocatalytic activity [43]. The PL spectra
(Figure 9C) of the samples were detected at 200 nm excitation wavelength to compare and
analyze the recombination rate of e− and h+. It can be seen that the peak intensity of the
PAN/P25-3 multi-porous nanotubular membrane at 420 nm was significantly lower than
that of the PAN/PVP/P25-0.2 fiber membrane, which indicates that the photoinduced
carrier separation efficiency was higher. This is because the recombination of e− and
h+ occurs not only within a single P25 molecule but also between two or more adjacent
molecules. The porous structure may improve the dispersion of P25, thereby reducing the
recombination of e− and h+ between adjacent P25, thus reducing the recombination rate,
and the multi-porous structure can shorten the diffusion path of e− and h+, thus reducing
the recombination rate.

3.8. Photoelectrochemical Properties Test

Figure 10 shows the photoelectrochemical properties of the membrane. The arc radius
of the PAN/P25-3 multi-porous nanotubular membrane is smaller, indicating that it has
less resistance to free charge migration and a faster charge transfer rate [44]. Faster charge
transfer is beneficial to promote the separation efficiency of photogenerated carriers, thereby
improving the photocatalytic efficiency. Moreover, compared with the PAN/PVP/P25-0.2
fiber membrane, the photocurrent intensity of the PAN/P25-3 multi-porous nanotubular
membrane also increased, further confirming the effective separation of photo-generated
e− and h+ pairs.
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Figure 10. (A) EIS Nyquist plots and (B) photocurrents of (a) PAN/PVP/P25-0.2; (b) PAN/P25-3.

3.9. Photodegradation Activity and Stability

The performance of the obtained samples was studied by photocatalytic degrada-
tion of organic dyes, and RhB was selected as the object model. Figure 11 shows the
photocatalytic degradation curve (A, C) and kinetic diagram (B, D) of RhB aqueous so-
lution by different photocatalysts under simulated sunlight. All of the samples have
degradation effects toward RhB, and the degradation characteristics conform to pseudo-
first-order kinetics. The as-spun PAN/PVP/P25-0.2 fiber membrane was subjected to EG
solvothermal treatment for different durations (2 h, 3 h and 4 h), resulting in the forma-
tion of multi-porous nanotubular membranes: PAN/P25-2, PAN/P25-3, and PAN/P25-4.
These membranes exhibited improved photodegradation performance compared to the
PAN/PVP/P25-0.2 membrane (Figure 11C), as the PAN/P25 multi-porous nanotubular
membranes have more exposed P25 particles. In contrast, most of the P25 nanoparticles
are incorporated within the fibers of the PAN/PVP/P25-0.2 membrane. With increasing
treatment time, the photocatalytic degradation efficiency followed the following order:
PAN/P25-3 > PAN/P25-4 > PAN/P25-2. Among them, the PAN/P25-3 multi-porous
nanotubular membrane demonstrated the highest photocatalytic degradation efficiency of
96.1% for RhB within 120 min. According to the literature [45], the greater the rate constant
k, the stronger the photocatalytic performance of the photocatalyst. The degradation rate
(0.0240 min−1) of the PAN/P25-3 multi-porous nanotubular membrane is four times that of
the PAN/PVP/P25-0.2 fiber membrane (0.006 min−1). This is because the multi-porous nan-
otubular membrane PAN/P25-3 has a larger specific surface area, higher light absorption,
lower e−-h+ recombination rate, smaller impedance and stronger photocurrent.

Stability is an important index affecting the practical application of the material [11].
PAN/P25-3 is subjected to five photocatalytic cycles. The used catalyst was removed,
and the residual dye on the surface was washed with anhydrous ethanol and deionized
water and then reused after freeze-drying. Figure 11E depicts the recycled photocatalytic
performance of the PAN/P25-3 photocatalyst, which keeps its original properties of about
94% even after five runs. In addition, the XRD results (Figure 11F) show that the basic
composition and structure have almost no change before and after use, and there was
no significant change in mass before and after the reaction, which demonstrates that the
PAN/P25-3 multi-porous nanotubular membrane has excellent stability.
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Figure 11. (A,C) Photocatalytic degradation and (B,D) kinetics curves for RhB aqueous solu-
tion over different photocatalysts under simulated solar light irradiation: (a) PAN/PVP/P25-0.1;
(b) PAN/PVP/P25-0.15; (c,e) PAN/PVP/P25-0.2; (d) PAN/PVP/P25-0.25; (f) PAN/P25-2;
(g) PAN/P25-3; (h) PAN/P25-4; (E) recycled photodegradation efficiency of PAN/P25-3; (F) XRD
patterns of PAN/P25-3 before and after the recycling photocatalytic tests.

3.10. Photocatalytic Process and Mechanism

The photocatalytic PAN/P25-3 degradation process of the RhB solution was studied
by the 3D-EEM fluorescence method. Initially, molecular fluorescence is attributed to the
rigid planar structure of RhB, which can accelerate the conjugation effect of π electrons
and improve fluorescence efficiency [46,47]. As shown in Figure 12A, the two fluorescence
characteristic peaks of RhB after the adsorption–desorption equilibria are the (a) peak
at Ex/Em of 550–575/620–660 nm and (b) peak at 225–275/575–650 nm [48]. The 3D-
EEM fluorescence spectrum after adsorption equilibrium is shown in Figure 12B. The
shape, position and intensity of the fluorescence characteristic peak are almost unchanged,
indicating that RhB molecules are not decomposed during this process, just adsorbed
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on the surface of the photocatalyst. With the photocatalytic degradation time of 60 min
(Figure 12C), the position of the fluorescence characteristic peak exhibits gradually red-
shifted, indicating that the RhB molecules are decomposed. This phenomenon may be
related to the generation of N-deethylated intermediates, in which macromolecules are
converted into relatively small fragments and specific functional groups such as amines,
hydroxyl groups and carbonyl groups are removed [49]. In addition, when the visible light
irradiation time was extended to 150 min (Figure 12D), the intensity of the fluorescence
characteristic peak in the residual solution gradually decreased, indicating that the formed
n-deethylation intermediate may be further decomposed into small molecules. Therefore,
the main process of RhB degradation is the dissociation of the conjugated chromophore
structure of the RhB molecule and the mineralization of the corresponding intermediates.
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In order to further explain the photocatalytic mechanism of the PAN/P25-3 multi-
porous nanotubular membrane, triethanolamine (TEOA), p-benzoquinone (p-BQ) and
isopropanol (IPA) were used as the capture agents of photogenerated holes (h+), superoxide
radicals (·O2

−) and hydroxyl radicals (·OH), respectively. As shown in Figure 13, the
catalytic efficiency of PAN/P25-3 decreased to different degrees after the addition of three
free radical trapping agents. These results show that the three kinds of free radicals
have different effects on photocatalytic efficiency. Among them, the degradation rate of
RhB is significantly reduced after TEOA is added, indicating that h+ has been captured
successfully, leading to a decrease in photocatalytic activity. However, the degradation rate
of RhB decreases slightly in the presence of IPA and p-BQ, indicating that ·OH and ·O2

−

are not the main active species. In this case, it can be determined that h+ is the main active
species for the degradation of RhB by PAN/P25-3 multi-porous nanotubular membrane.
·O2

− and ·OH are the secondary active substances.
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3.11. Bacterial Inactivation Activity

The PAN/PVP fibrous membrane was initially obtained using the direct electrospin-
ning method. When 0.2 g of P25 particles was dispersed in the PAN/PVP spinning solution,
the PAN/PVP/P25-0.2 fibrous membrane was produced. The as-spun PAN/PVP/P25-0.2
fibrous membrane was then subjected to the EG solvothermal induction process for 3 h,
resulting in the flexible PAN/P25-3 multi-porous nanotubular membrane. As shown in
Figure 11C, PAN/P25-3 exhibited better photocatalytic degradation performance than
the PAN/PVP/P25-0.2 membrane, which led to the selection of PAN/P25-3 for further
investigation of its bacterial inactivation activity.

In addition, we also examined the photocatalytic sterilization performance of the
PAN/P25-3 multi-porous nanotubular membrane under 365 nm light irradiation, as shown
in Figure 14. Each experiment was repeated three times to ensure reliability and repro-
ducibility. Under dark conditions, the survival number of E. coli cells does not decrease
significantly after 3 h, which indicates that the material itself is non-toxic to E. coli and has
just a weak adsorption. When only light irradiation at a wavelength of 365 nm is applied,
the bacterial concentration decreases by 0.1 log within 3 h; this is because the band of
light can make the bacterial oxygen free radicals, which cause oxidative stress and lead to
bacterial death [50]. However, when the PAN/P25-3 multi-porous nanotubular membrane
is used under light conditions, the inactivation rate of E. coli is significantly improved,
and the bactericidal rate of E. coli is over 95%, which is obviously higher than the sum of
the inactivation rate under light irradiation alone and only catalyst. It is indicated that
the synergistic effect of the PAN/P25-3 multi-porous nanotubular membrane with light
irradiation may play an important role. Under light conditions, PAN/P25-3 can produce
different active free radicals, such as h+, e−, ·O2

−, etc. Where h+ and e− can initiate redox
reactions, and both can be converted into hydroxyl radicals, hydroxyl radicals can quickly
attack and seize hydrogen atoms on viral and bacterial proteins or envelopes, inducing
them to lose their normal physiological functions and leading to death. ·O2

− attacks on
bacteria can cause a decrease in the activity of some antioxidant enzymes (catalase, super-
oxide dismutase) of bacteria and damage cell membranes, resulting in gradual oxidative
damage and leakage of intracellular substances, especially proteins and DNA, the similar
mechanism of photocatalytic bacterial inactivation is similar to that in reference [51].
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4. Conclusions 
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4. Conclusions

In summary, a flexible PAN/P25 multi-porous nanotubular membrane was success-
fully prepared by the electrospinning and solvothermal methods. We explored the optimal
spinning parameters and solvothermal reaction time. Interestingly, the solvothermal re-
action not only transforms the fiber into a multi-porous nanotubular structure but also
exposes the P25 wrapped in the fiber to the outside of the fiber. Compared with the
PAN/PVP/P25-0.2 fiber membrane, the photocatalytic RhB degradation activity of the
PAN/P25-3 multi-porous nanotubular membrane increased by four times. This enhanced
photocatalytic performance can be attributed to the expanded specific surface area, more
active edge exposure, higher light absorption efficiency, high light utilization, smaller
impedance and stronger photocurrent response. After five cycles, the material still main-
tains good stability, which will be well applied in the environmental field. At the same time,
the material also has photocatalytic sterilization ability; under 365 nm monochromatic light
irradiation for 3 h the inactivation rate of E. coli was as high as 95.8%.
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38. Zhang, J.; Song, Y.; Kopeć, M.; Lee, J.; Wang, Z.; Liu, S.; Yan, J.; Yuan, R.; Kowalewski, T.; Bockstaller, M.R.; et al. Facile aqueous
route to nitrogen-doped mesoporous carbons. J. Am. Chem. Soc. 2017, 139, 12931–12934.

39. Sun, D.; Qin, G.; Lü, M.; Wei, W.; Wang, N.; Jiang, L. Preparation of mesoporous polyacrylonitrile and carbon fibers by
electrospinning and supercritical drying. Carbon 2013, 63, 585–588.

40. Kang, Y.; Chen, J.; Feng, S.; Zhou, H.; Zhou, F.; Low, Z.; Zhong, Z.; Xing, W. Efficient removal of high-temperature particulate
matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J. Membr. Sci. 2022,
662, 120985. [CrossRef]

41. Grassie, N.; McGuchan, R. Pyrolysis of polyacrylonitrile and related polymers-I. Thermal analysis of polyacrylonitrile. Eur. Polym.
J. 1970, 6, 1277–1291. [CrossRef]

42. Yu, J.; Yu, H.; Cheng, B.; Zhou, M.; Zhao, X. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment.
J. Mol. Catal. A Chem. 2006, 253, 112–118. [CrossRef]

43. Liu, C.; Wang, L.; Xia, Z.; Chen, R.; Wang, H.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing
supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099. [CrossRef]

44. Duan, Y.; Li, X.; Lv, K.; Zhao, L.; Liu, Y. Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient
NO abatement. Appl. Surf. Sci. 2019, 492, 166–176. [CrossRef]

45. Hailili, R.; Wang, Z.; Xu, M.; Wang, Y.; Gong, X.; Xu, T.; Wang, C. Layered nanostructured ferroelectric perovskite Bi5FeTi3O15 for
visible light photodegradation of antibiotics. J. Mater. Chem. A 2017, 5, 21275–21290. [CrossRef]

46. Guo, H.; Niu, C.; Wen, X.; Zhang, L.; Liang, C.; Zhang, X.; Guan, D.; Tang, N.; Zeng, G. Construction of highly efficient and
stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: Performance and mechanism insight.
J. Colloid Interface Sci. 2018, 513, 852–865. [CrossRef] [PubMed]

47. Ma, Y.; Jin, X.; Zhou, M.; Zhang, Z.; Teng, X.; Chen, H. Chemiluminescence behavior based on oxidation reaction of rhodamine B
with cerium (IV) in sulfuric acid medium. Anal. Chim. Acta 2003, 489, 173–181. [CrossRef]

48. Jiang, Z.; Zhang, B.; Liang, A. A new sensitive and selective fluorescence method for determination of chlorine dioxide in water
using rhodamine B. Talanta 2005, 66, 783–788. [CrossRef]

49. Qin, Y.; Li, H.; Lu, J.; Dong, H.; Liu, X.; Liu, Z.; Yan, Y. Synthesis of QDs self-modified Bi2MoO6/Bi4Ti3O12 photocatalysts via
controlling charge unidirectional flow for effective degradation of organic pollutants. J. Mol. Liq. 2019, 286, 110919. [CrossRef]

50. Akhavan, O.; Ghaderi, E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of
Bacteria in Solar Light Irradiation. J. Phys. Chem. C 2009, 113, 20214–20220. [CrossRef]

51. Sun, H.; Li, G.; Nie, X.; Shi, H.; Wong, P.; Zhao, H.; An, T. Systematic Approach to In-Depth Understanding of Photoelectrocatalytic
Bacterial Inactivation Mechanisms by Tracking the Decomposed Building Blocks. Environ. Sci. Technol. 2014, 48, 9412–9419.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

87



Citation: Ding, L.; Li, D.; Zhang, S.;

Zhang, Y.; Zhao, S.; Du, F.; Yang, F.

Facile In Situ Building of Sulfonated

SiO2 Coating on Porous Skeletons of

Lithium-Ion Battery Separators.

Polymers 2024, 16, 2659. https://

doi.org/10.3390/polym16182659

Academic Editor: Sheng-Heng Chung

Received: 25 August 2024

Revised: 17 September 2024

Accepted: 18 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Facile In Situ Building of Sulfonated SiO2 Coating on Porous
Skeletons of Lithium-Ion Battery Separators
Lei Ding 1, Dandan Li 1, Sihang Zhang 2,* , Yuanjie Zhang 3, Shuyue Zhao 1, Fanghui Du 1 and Feng Yang 4

1 Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and
Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China;
dinglei921022@163.com (L.D.); lidandan10224@163.com (D.L.); zhshuyue09@163.com (S.Z.);
dufanghui@lcu.edu.cn (F.D.)

2 School of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, China
3 Department of Chemistry and Biology, Liaocheng University Dongchang College, No. 266, North Outer Ring

Road, Liaocheng 252001, China; yuanjiezhang2016@163.com
4 State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering,

Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China; yangfengscu@126.com
* Correspondence: sih.zhang@foxmail.com

Abstract: Polyolefin separators with worse porous structures and compatibilities mismatch the
internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study,
a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize
pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes
owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations
enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrica-
tions, which feature simple techniques, low cost, environmental friendliness, and the capability for
continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages
and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow
PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfa-
cial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability,
holding a capacity retention of 82.7% after the 400th cycle at 0.5 C.

Keywords: lithium-ion battery separator; sulfonated SiO2; in situ coating; pore size dispersion;
cycling stability

1. Introduction

Owing to the features of low self-discharge, excellent safety performance, stable
cycle life, and high energy density, lithium-ion batteries (LIBs) have been widely used
in energy storage devices including portable electronic devices and electric vehicles for
more than 30 years since their first commercialization [1,2]. Four components of anode,
cathode, separator, and electrolyte amalgamate to combine into LIBs. Separators are thus
seated between two electrodes to avoid the physical contact of electrodes and meanwhile
conduct Li+, which requires separators to possess both absolute insulation and suitable
porous structures [3,4]. Especially, porous structures govern ion transfer paths and affect
battery performance even though chemically inert separators are not involved in electrode
redox reactions [5]. Even and centralized pore size can ensure homogenized Li+ flux and
effectively stabilize the separator/electrode interface process [6,7]. Furthermore, features
like flexibility, sufficient mechanical strength, low manufacturing cost, and electrolyte
affinity are also vital for separators. Hence, separators prepared with polyolefin have
become mainstream in the separator market nowadays [8,9].

However, the low surface energy of polyolefins generates instinctive hydrophobic
properties and inevitably deteriorates electrolyte affinity. Since ions only migrate within
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the electrolyte-filled pores, poor electrolyte affinity determines partially lacking filling
conditions and increases ion migration barriers [10–12]. Also, routine polyolefins own low
melting points of about 130 ◦C and 165 ◦C for polyethylene and polypropylene. This limits
weak thermal stability and tends to contract excessively at elevated temperatures, which
increases the risk of short circuits caused by electrode contacts [13,14]. However, regular
LIB operations produce massive heat and raise inner temperatures. The poor dimensional
tolerance of separators to heating thus cannot ensure security for LIBs [15,16].

Building inorganic nano-ceramic layers, such as TiO2, Al2O3, SiO2, and ZrO2 with
various functionalizations, on separator top surfaces can construct sturdy skin skeletons
to not only intensify electrolyte affinity but enhance thermal stability in actual separator
industrial fabrications [17–26]. However, the matched binders are needed to ensure tight
adhesions between surface coating and separators. Excess binders may seep into interstitial
paths of nano-ceramics and separator surface pores, which chokes partial ion migration
routes and minifies electrochemical performance. The superficial nano-ceramic coatings
necessarily increase extra thickness and reduce battery energy density [27,28]. Since the
nanoparticle coatings only appear on separator top surfaces, the electrolyte wettability and
ion migration process within separator inner porous skeletons cannot be optimized [29–32].
In particular, existing research and commercial separators are coated offline. The inorganic
nanoparticle coating is elaborately spread on the separator top surface after separator
preparations or porous structure formations, which elevates facility costs and technological
difficulty. Therefore, exploring a new coating separator manufacturing process to achieve
the simultaneous in situ construction of ceramic coatings on the porous skeletons during
pore formations is critical for the low-cost manufacturing of high-performance separators.

Presently, actual industrial separator manufacturing processes including dry processes
and wet processes are based on the tensile-induced pore formation of casting films [33–36].
The dry process can be divided into uniaxial tensile and biaxial tensile. The wet process
adopts casting film containing ultra-high molecular weight polyethylene and mineral oil
and exerts biaxial drawing and solvent extraction to obtain a porous skeleton. The dry
process, with uniaxial drawing, inflicts an ultra-high die draw ratio during extrusion,
then undergoes annealing and uniaxial drawing to create acerose pores. Particularly, the
dry process with biaxial drawing (DPBD) applies directly tensile on casting sheets, in
which the β-crystal polypropylene lamellae within sheets are forced to separate due to
incompact arrangements and further evolve into the final porous structure under biaxial
drawing. Compared with other separator preparation processes, DPBD omits organic
solvent extractions and annealing treatment and thus features eco-friendly, low-cost, and
continuous productions, which owns tremendous potential for separator production [37,38].
However, the unique pore-forming process determines the scattered pore size [39,40] since
lamellae with heterogeneous distribution present various deformation patterns, resulting in
plentiful remaining coarse fibrils and worsening cavitation effects [41–43]. Blending nano-
ceramics into β-crystal polypropylene casting sheets can improve interface distributions
and thus visibly thin coarse fibrils owing to the stripping between nano-ceramics and
lamellae. Meanwhile, ample cavities stem from direct separations of ceramic/lamellae
interfaces and thus facilely fix the ceramic on the porous skeleton surface, with features
including simple techniques, low cost, environmental friendliness, and the capability for
continuous fabrications.

With these considerations in mind, nanometer-sized SiO2 was first sulfonated (SSD) to
optimize hydrophilicity in this research. Then, SSD-composited separators (PP@SSD) were
prepared based on the DPBD to simultaneously homogenize pore sizes and in situ build SSD
coatings on porous skeleton surfaces, featuring simple techniques, low cost, environmental
friendliness, and the capability for continuous fabrications. Furthermore, the PP@SSD
separator presented optimized thermal stability owing to the robust SSD coating on the
porous skeleton. Abundant sulfonic acid groups on the SSD coating further endowed
electrolyte affinity to the separator surface and inner pore walls, lowered Li+ transfer
barriers, and optimized interfacial compatibility. Consequently, the PP@SSD separator gave
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assembled LIBs the optimal C-rate capacity and cycling stability. This approach offered
practical guidance for the low-cost mass manufacturing of high-performance separators.

2. Experiments
2.1. Separator Preparation

An amount of 4 g of nano-SiO2 (Hydrophilic-200, 7–40 nm, Shanghai Aladdin Biochem-
ical Technology Co., Ltd., Shanghai, China) was added into a mixed solution containing
100 mL methanol and 2 mol concentrated sulfuric acid. The mixed solution successively ex-
perienced ultrasonic concussion for 100 min, suction filtration, vacuum drying at 100 ◦C for
24 h, and then trituration to obtain sulfonated SiO2 (SSD). A casting film containing 10 wt%
SSD, 89.7 wt% polypropylene (S801, Korea Petrochemical Ind. Co., Ltd., Shanghai, China),
and 0.3 wt% β-crystal nucleating agent (NAB83, GCH Technology Co. Ltd., Guangzhou,
China) was prepared based on the double-screw extruder (die temperature: 210 ◦C, casting
temperature: 125 ◦C). Then, biaxial drawing was applied on casting films based on the
Bruckner KARO IV biaxial stretcher (Bruckner Group, Siegsdorf, Germany) to prepare
a porous PP@SSD separator, which contained the longitudinal drawing along the MD
(drawing ratio: 300%, drawing temperature: 100 ◦C) and sequential drawing vertical to
the MD (namely TD, drawing ratio: 300%, drawing temperature: 120 ◦C). For comparison,
untreated SiO2 (SD) and β-crystal polypropylene were composited to, respectively, produce
pure PP and PP@SD separator.

2.2. Tests and Characterizations

The crystal morphologies of the casting films and the porous skeleton morphologies
of the separators were observed by FEI Inspect F scanning electron microscopy (SEM).
Before testing, casting films were first etched by the mixed acid (H3PO4:H2SO4 = 1:1,
volume ratio, the concentrations of H2SO4 and H3PO4 used in this research are 85% and
98.3%) containing 1.5 wt% KMnO4 for 24 h to remove the amorphous portion. The melting
behaviors of casting films and separators are recorded by Mettler Toledo DSC3+ Differential
scanning calorimetry (DSC, 25–210 ◦C, 20 ◦C/min). The DSC crystallinity (XC,DSC) could
be obtained based on the ratio of the sample melting enthalpy to that of 100% crystalline
polypropylene. The DSC β-crystal content (Kβ,DSC) was calculated by the ratio of the
β-crystal crystallinity to XC, DSC. The thermal stability of casting films was assessed on the
Q-500 thermogravimetric (TG) analysis (30–800 ◦C, 15 ◦C/min). A D8 ADVANCE X-ray
diffractometer (XRD) was used to gain XRD spectra. The XRD crystallinity (XC,XRD) was
obtained by calculating the diffraction area fractions of the crystalline phase. The XRD
β-crystal content (Kβ,XRD) was the area ratio of the β-phase to crystalline regions.

Separator porosity was acquired by (VT − VS − VP)/VT, where VT is the total volume
of tested separators, and VS and VP are volumes occupied by SSD and polypropylene.
Gurley values were measured on the 4110N Gurley tester. The contact angle was tested
on the KRUSS K100 (KRÜSS Scientific Instruments Co., Ltd., Hamburg, Germany) contact
angle meter. Electrolyte uptake was calculated by (Wa − Wi)/Wi, where Wi is the initial
separator weight and Wa is the separator weight after immersion in ethylene carbonate
(EC): diethyl carbonate (DEC) = 1:1 (mass ratio) for 6 h. Electrolyte retention was obtained
by (Wr − Wi)/(Wa − Wi), where Wr is the weight of the separator placed in a sealed
electronic scale at various times. Tensile and puncture properties were measured by a
universal testing machine fitted with a heating chamber. The thermal shrinkage conditions
of separators can be calculated by Ac/Ai, where Ai is the initial area of the separators, and
Ac is the contractive separator area after being subjected to various temperatures for 30 min
(measured by open source software “Image J”, version number: 1.52).

A Reference 3000 (Gamry Instruments, Warminster, PA, USA) electrochemical work-
station was used to measure separator electrochemical performance. The electrochemical
stability window was recorded by the linear sweep voltammetry (LSV) of the Li-stainless
steel (SS) cell (2–6 V, 5 mV/s). The alternating-current (AC) impedance of the SS/SS cell
(106–10−2 Hz, 10 mV) was recorded to obtain bulk impedance (Rb). Ionic conductivity (σ)
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was thus measured by σ = T/(Rb·S), where T and S are the thickness and area of separators.
Ion migration activation energy (Ea) was measured by σ = σ0·exp(−Ea/RT), where σ0,
R, and T are the pre-factor, thermodynamic gas constant, and temperatures. Interface
impedance (Ri) was assessed by the AC impedance of the Li/Li cell. Li+ transfer number
(t+) was managed by t+ = Is(∆V − IiRi)/Ii (∆V − IsRs), where ∆V is the chronoamperometry
step potential (10 mV), Rs and Is are the steady impedance and current on chronoamperom-
etry plots, and Ii is the initial current of chronoamperometry. A CT3001A LAND (Wuhan
LAND Electronic Co. Ltd., Wuhan, China) system was used to evaluate the C-rate discharge
capacity retention and long-term effective cycling life of LiCoO2/Li cells assembled with
three separators (constant temperature conditions at 26 ◦C, voltage range: 2.75–4.25 V). The
C-rate capacities of LiCoO2/Li cells were recorded under the charge current of 0.2 C and
discharge conditions of 0.2, 0.5, 1, 2, 4, and 8 C, respectively. Cycling tests were carried
out at a constant charge–discharge current of 0.5 C. After assembly, the LiCoO2/Li cells
were left to set for 12 h and following activation (cycled three times at 0.1 C). Customized
LiCoO2 cathodes with 95.7 wt% active material, SS foil, lithium foil, and electrolyte (1 M
LiPF6 dissolved in solvents composed of EC, DEC, and dimethyl carbonate (DMC)) were
offered by Kejing Material Technology Co., Ltd., Shenzhen, China.

3. Results and Discussion
3.1. Properties of Casting Films

The crystal morphology SEM images of three casting films are listed in Figure 1a–c.
Abundant β-lamellae with a loose arrangement can be detected for the pure PP casting
film, without any compact α-phase features. The XRD spectra of the PP film in Figure 1e
present XC,XRD of 59.6% and high Kβ,XRD of 96.8%, which indicates pure β-lamellae in the
PP film. Melt-recrystallizations of metastable β-phase at elevated temperatures generate
the primary β-phase endothermic peak at 153.3 ◦C and inapparent α-phase melting peak at
166.4 ◦C on DSC heating scans (Figure 1d). Since XRD spectra show almost 100% Kβ,XRD
content, the lowest Kβ,DSC (80.3%) of the PP film indicates the inferior β-lamellae thermal
stability. Normal SD and sulfonated SSD are uniformly distributed between β-lamellae in
the PP@SD (Figure 1b) and PP@SSD (Figure 1c) casting films. Tagged diffraction signals of
β-phase (300) and (301) lattice planes at 16.1◦ and 21.2◦ appear on XRD spectra, together
with the high Kβ,DSC of 97% and invisible α-phase diffraction signals, manifesting the
undeteriorated β-phase after SD and SSD additions. TG heating plots (Figure 1f) display
similar initial decomposition temperatures of about 420 ◦C for three films but higher weight
retentions for PP@SD (10.5%) and PP@SSD (9.7%). The similar melting points of about
153 ◦C and higher Kβ,DSC for PP@SD (88.6%) and PP@SSD (87.9%) on DSC heating plots
signify a more stable β-phase. Furthermore, the PP film presents the wide full width at half
maximum of the β-phase melting peak (FWHM, 8.4 ◦C). Meanwhile, the narrower FWHMs
of PP@SD (5.8 ◦C) and PP@SSD (6.7 ◦C) reflect centralized β-lamellae distributions, which
can homogenize the deformation manners of casting films and consequent porous structure.
The above mitigatory deformations can be proved by the gently drawing curves of PP@SD
and PP@SSD (Figure 1g, drawing rate: 100 mm/min, drawing temperature: 100 ◦C).
Profiting from the reinforcement of SSD, PP@SSD shows a higher yield stress of 11.8 MPa.
Also, numerous interfaces between β-lamellae and SSD improve interface distributions and
thus reduce stress concentration during the drawing process, exhibiting a smaller softening
stress drop of 1.1 MPa and higher neck retentions for PP@SSD (Figure 1h,i).
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mum of β-phase melting peak, indicated in (d)). 
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the TD to separate, while compacting β-lamellae along the MD to transform into dense α-
phase fibrils. Subsequent transverse drawing can expand pore size but still retain numer-
ous coarse fibrils on the surface. The above heterogeneous deformation modes thus gen-
erate obviously fractured fibrils and uneven pore size for the PP separator, which can be 
further proved by the broad pore size (mean size: 328 nm) and fibril width (mean width: 
458 nm) distributions. Furthermore, the PP separator exhibits the typical multilayer 
stacked structure with a thickness of 18.8 µm due to the plane biaxial drawing. A normal 
porosity (42.5%) and a high Gurley value (312 s/100 mL) of the PP separator also signify 
the worse permeability. SD and SSD optimize interface distribution within casting films 
and relieve stress concentrations during drawing. Even if coarse fibrils emerge in the 

Figure 1. SEM images of three casting films: (a) PP, (b) PP@SD, and (c) PP@SSD. Key properties
of casting films: (d) DSC heating scans, (e) XRD spectra, (f) TG plots, (g) drawing curves, (h) neck
retention during drawing. (i) Crucial parameters of casting films (FWHM: full width at half maximum
of β-phase melting peak, indicated in (d)).

3.2. Porous Structures

The separator morphologies (containing surface and cross-section) after the biaxial
drawing are depicted in Figure 2a–c to verify the effects of the SSD on the porous structure.
Pore size and fibril width distributions are listed in Figure 2d,e, accompanied by the
porosity and Gurley value in Figure 2f. Longitudinal drawing compels β-lamellae along
the TD to separate, while compacting β-lamellae along the MD to transform into dense
α-phase fibrils. Subsequent transverse drawing can expand pore size but still retain
numerous coarse fibrils on the surface. The above heterogeneous deformation modes
thus generate obviously fractured fibrils and uneven pore size for the PP separator, which
can be further proved by the broad pore size (mean size: 328 nm) and fibril width (mean
width: 458 nm) distributions. Furthermore, the PP separator exhibits the typical multilayer
stacked structure with a thickness of 18.8 µm due to the plane biaxial drawing. A normal
porosity (42.5%) and a high Gurley value (312 s/100 mL) of the PP separator also signify
the worse permeability. SD and SSD optimize interface distribution within casting films
and relieve stress concentrations during drawing. Even if coarse fibrils emerge in the
longitudinal drawing, the SD(SSD)/PP interfaces can be stripped again in the following
transverse drawing, visibly narrowing fibril widths and concentrating pore size distribution.
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Consequently, PP@SD and PP@SSD present uniform porous structures, together with
similar mean pore sizes of 183 and 176 nm. The remarkable coarse fibrils cannot be detected
on the surfaces of two separators. Average fibril widths also reduce to 236 and 243 nm,
respectively. The higher porosity (PP@SD: 43.9%, PP@SSD: 43.8%) and lower Gurley value
(PP@SD: 263 s/100 mL, PP@SSD: 261 s/100 mL) further certify the superior pore channel
linearity, which can provide smoother paths for ion migrations.
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Figure 2. SEM images of three separators: (a) PP, (b) PP@SD, and (c) PP@SSD (1: surface morphology;
2: cross-section morphology). (d) Pore size distributions of separators. (e) Fibril width distributions
of separators. (f) Porosity and Gurley value of separators.

3.3. Wettability, Thermal Stability, and Mechanical Properties

Better compatibility between separators and electrolytes improves electrolyte-filling
processes into porous structures and reduces ion migration barriers [44–46]. The character-
istic contact angle and electrolyte uptake are exhibited in Figure 3a. The PP separator shows
a contact angle of 48.9◦ and electrolyte uptake of 88.3% because the low surface energy
feature of polypropylene deteriorates electrolyte affinity. PP@SD and PP@SSD give supe-
rior electrolyte wettability owing to the SD and SSD coating on porous skeleton surfaces
and thus reduce contact angles to 22.1◦ and 16.6◦, maybe due to the transition from the
Cassie–Baxter state to the Wenzel state. The stronger capillary intrusions further reinforce
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electrolyte uptake to 121.7% for PP@SD and reach a maximum of 149.6% for PP@SSD.
Stronger capillary intrusions also endow PP@SSD with the fastest electrolyte absorption
speed (Figure 3b), achieving electrolyte uptake of 133.1% after immersion for only 10 min.
Furthermore, the highest electrolyte retention of PP@SSD (Figure 3c) demonstrates the best
electrolyte retention capacity owing to the abundant sulfonic acid group.
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Separators encounter various conditions including tensile, coiling, compression, and
puncture during LIB assembly and subsequent long-term operations [47,48]. Sufficient
strengths are necessary for guaranteeing separator integrality. The tensile and puncture
plots are listed in Figure 4a,b (drawing and puncture rate: 200 mm/min, temperature:
25 ◦C). The PP separator shows the drawing and puncture strength of 125.7 MPa and
276.5 g, which can cope with various encounters faced within LIBs. PP@SD and PP@SSD
give a high drawing strength of 132.9 and 133.6 MPa owing to nanoparticle reinforcement
effects. Meanwhile, the much higher puncture strength for PP@SD (360.8 g) and PP@SSD
(377.2 g) can provide utilization potentiality for LIBs with high-security demands.

Stable thermal behaviors of separators act to prevent short circuits as LIBs are faced
with thermal runaways. The DSC plots and thermal shrinkage states at various tem-
peratures are displayed in Figure 4c,d. Since the metastable β-lamellae spontaneously
translate into the α-phase under tensile and thermal stimuli, three separators show sim-
ilar α-phase melting behaviors (PP: 169.1 ◦C, PP@SD: 169.4 ◦C, and PP@SSD: 169.2 ◦C),
whereas the normal PP separator exhibits drastic thermal shrinkage of 68.7% at 165 ◦C. The
contractions of PP@SD and PP@SSD are alleviated at elevated temperatures owing to the
in situ SD and SSD coating on the porous skeleton surfaces, reaching 43.4% and 44.9% at
165 ◦C, respectively.
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3.4. Electrochemical Performance

The LSV curves of Li/SS cells containing separators are presented in Figure 5a to
evaluate separator electrochemical stability windows. Three separators show placid volt-
age platforms within 4.6 V, followed by the subsequent current increases owing to elec-
trolyte decompositions. The PP separator maintains stable voltages until 4.73 V. PP@SD
shows a stable voltage limit of 4.93 V. The highest stable voltage of 5.08 V and minimum
current uncover the superior electrolyte stabilizing for PP@SSD, which can endow sepa-
rators with more adaptable capacity to high power density LIBs and even the expectant
lithium-metal batteries.

Figure 5b shows the AC impedance curves of SS symmetric cells, accompanied by the
calculated ionic conductivity (σ) in Figure 5d. The ions can only be compelled to transfer
by using electrolytes as carriers owing to the insulating polypropylene substrate. σ is
thus mainly governed by the intrinsic pore channel linearity of separators and electrolyte
filling conditions within the porous structure. The PP separator exhibits an impedance of
3.54 Ω and σ of 0.47 mS/cm. The SD coating on the porous skeleton optimizes electrolyte
affinity and permeability, which endow PP@SD with an impedance of 2.39 Ω and a higher
σ of 0.72 mS/cm. Sulfonated SSD coating with an abundant sulfonic acid group owns the
optimal hydrophily and thus improves σ to 0.94 mS/cm. Furthermore, in order to assess
the ion removability facilitated by the separators, ion transfer activation energy (Ea) is
further calculated by the Arrhenius formula in Figure 5c,d [49]. The high Ea of 9.21 kJ/mol
for the PP separator signifies the high ion migration barriers. The PP@SD separator with
SD coating gives a lower Ea of 7.18 kJ/mol, while the lowest Ea of 6.45 kJ/mol reveals the
highest ion mobility within the PP@SSD separator with SSD coating.
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The σ of separators represents the overall ion migration capacity within separators
owing to the dual-ion conductions of LIBs, whereas the migration of anion inevitably
generates electrode polarizations and sets off chain side reactions. Hence, the Li+ transfer
number (t+) is obtained based on the chronoamperometry to evaluate the current propor-
tion contributed by only Li+ migrations [50]. The weak electrolyte affinity of polyolefin
separators generates scant contact between porous channels and electrolytes and thus
elongates ion migration routes in reverse. The PP separator with inferior wettability thus
gives the low-level t+ of 0.282. While superior electrolyte affinity can improve electrolyte
filling and contact conditions within pore channels, the luxuriant hydroxyl groups on
SD surfaces optimize electrolyte compatibility. Meanwhile, the lone pairs in hydroxyl
electrostatically interact with Li+, which accelerates Li+ desolvation and raises free ion con-
centrations [51]. Furthermore, hydrogen bonds form between PF6

− and hydroxyl, which
hinders anion transfer within separators. Consequently, PP@SD exhibits the t+ of 0.441.
The highest t+ of PP@SSD (0.531) indicates that sulfonic acid groups are significantly more
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advantageous in promoting Li+ transport compared with hydroxyl, which is consistent
with the calculated Ea.

The AC impedance curves of Li/Li cells are displayed in Figure 5e to compare the
interfacial impedances (Ri) of three separators, which state the compatibility between the
separator and Li electrode [52]. The high Ri value of 426 Ω for the PP separator reflects poor
compatibility with Li electrodes. Better electrolyte uptake and retention enable sufficient
contact with the Li electrode and improve more suitable interfaces, leading to the much
lower Ri of 233 and 158 Ω for PP@SD and PP@SSD.

3.5. Battery Performance

The C-rate capacities of LiCoO2/Li cells with three separators are shown in Figure 6a
to testify new-type separator-determined battery combination performance. Cells contain-
ing the PP separator show a discharge capacity of about 139–140 mA h/g when cycling
at 0.2 C for the first five charge–discharge processes. The limited ion migrations caused
by ohmic polarization significantly reduce discharge capacities at the higher current den-
sities, which decrease to 40.9 mA h/g when cycling once at 8 C and reach the minimum
of 31.6 mA h/g only after the 5th cycle. Cells including PP@SD give discharge capacities
of 140.3 and 139.9 mA h/g during the 1st and 5th cycles at 0.2 C but maintain higher
capacities as the current density rises, dropping to 63.5 mA h/g for the 1st cycle at 8C and
57.1 mA h/g after the 5th cycle. The electrode active materials routinely determine the
battery capacity. Separators between two electrodes can also affect Li+ transfer channels
and the separator/electrode interfacial process, which alters battery dynamics and com-
prehensive performance. The enhanced electrolyte affinity ensures superior uptake and
retention conditions, thus wetting the electrode effectively and facilitating Li+ insertions
and removals. The optimized σ, Ea, and t+ state the accelerated migration rate of Li+ within
separators and alleviative anti-anion polarization effects. Also, the superior compatibilities
between separators and electrodes promote Li+ diffusions through the electrode/separator
interfaces. Consequently, PP@SSD cells show the optimal capacity retentions of 77.9 and
70.4 mA h/g for the 1st and 5th cycles at 8 C.
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Figure 6b displays the capacity retentions and corresponding coulomb efficiencies of
LiCoO2/Li cells when cycled at 0.5/0.5 C for 400 cycles to assess the effects of a coated
separator on long-term charge–discharge behaviors of LIBs. Similar capacities of 134.5,
135.2, and 136.8 mA h/g of PP, PP@SD, and PP@SSD can be detected for the first cycle,
whereas the discharge capacity gaps are highlighted as the cycle increases. The capacities of
cells with PP achieve 124.7 mA h/g after the 100th cycle and quickly lower to 75.1 mA h/g
(capacity retention: 55.8%) after the 400th cycle. Improved cycling stability emerges for
the PP@SD cell, which retains a sluggish capacity decay of 127.5 mA h/g and 99.0 mA h/g
after the 100th and 400th cycles. Especially, PP@SSD with sulfonated SSD coating can
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expedite Li+ within cells to where it should migrate, leading to the high capacity during
the cycling test and ultimately maintaining a capacity of 113.1 mA h/g (retention: 82.7%).

4. Conclusions

In this research, the novel PP@SSD composite separator SSD composited separators
were designed based on the DPBD. This approach simultaneously homogenized pore size
distributions and fixed to porous skeleton surfaces during PP@SSD separator fabrications,
which facilely integrated the ceramic coating during separator fabrications and feature
low production difficulty and cost. In addition, the robust SSD coating on porous skeleton
surfaces provided superior thermal dimensional stability and adequate security at elevated
temperatures. Numerous sulfonic acid groups of the SSD coating also endowed the PP@SSD
composite separator with better electrolyte affinity, which lowered barriers for Li+ transfer
and optimized overall battery performance. This research focused on offering a facile
separator manufacturing process, which combines the characteristics of low cost, high
security, and high performance for the next generation of LIBs and the expected lithium-
metal batteries.
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Abstract: With the development of material science and increasing awareness of ecological envi-
ronmental protection, liquid biodegradable mulch films (LBDMs) have garnered significant public
interest. In this research, new LBDMs were developed using hydrophobically modified polymer
materials, surfactants, and photosensitive catalysts. Characterization by scanning electron microscopy
(SEM) revealed good material compatibility. LBDMs exhibited excellent wettability and degradability,
effectively covering soil surfaces and enhancing soil moisture conservation, with a degradation rate of
76.09% after 80 days of burial. The field performance experiment was conducted over two consecutive
years, 2021 and 2022, to assess differences in soil temperature and moisture, peanut agronomic traits,
pod traits, and yield under four treatments: non-mulching (CK), LBDMs, clear polyethylene mulch
films (CPEMs), and black polyethylene mulch films (BPEMs). LBDMs increased soil temperature by
0.56 ◦C and soil moisture by 19.25%, accelerated the seedling stage by 4-to-6 days, and improved
the average emergence rate by 15.91%. Furthermore, LBDMs significantly promoted peanut growth,
and it increased yield by 14.34% compared to CK. LBDMs performed comparably to the two types of
PE films in maintaining soil conditions and different crop phenotype traits, including plant height,
branch number, yield, and quality, and they even outperformed PE films in productivity per plant
and 100-kernel weight. These findings suggest that LBDMs are a promising eco-friendly alternative
to traditional PE films.

Keywords: liquid biodegradable mulch films; characterization; performance; soil conditions; peanut
growth; peanut yield

1. Introduction

The peanut (Arachis hypogaea L.) is a significant grain and oil crop in China, with its
yield ranking first globally [1]. For over half a century, polyethylene (PE) mulch films
have been widely used in agriculture to enhance peanut productivity [2]. Film mulching
can elevate soil temperature, maintain soil moisture, suppress weed growth, reduce the
occurrence and spread of phytopathogens, and enhance crop growth and yield [2–5].
However, the extensive use of PE mulch films has led to severe agricultural non-point
source pollution with long-lasting ecological impacts [6,7]. Residual plastic fragments in the
soil degrade the structure of the plow layer, impede water and fertilizer transport, hinder
soil microorganism activity, and eventually cause soil compaction, which negatively affects
crop growth [8,9]. To promote sustainable agricultural practices, biodegradable films have
emerged as a research focus. These films offer similar warming and moisture conservation
benefits as conventional PE films and often surpass PE films in improving soil properties
and crop growth [10,11]. Biodegradable films naturally degrade through microbial action
and finally break down into CO2 and H2O [12,13]. Therefore, biodegradable films represent
a promising alternative to traditional PE films in agricultural ecosystems [14,15].

Polymers 2024, 16, 2487. https://doi.org/10.3390/polym16172487 https://www.mdpi.com/journal/polymers101



Polymers 2024, 16, 2487

In recent years, researchers have proposed the feasibility of using LBDMs as substitutes
for traditional plastic films. Various research institutions, both in China and abroad, have
studied and applied LBDMs [16–19]. These films are emulsion suspensions with organic
polymers as the main carbon skeleton, significantly reducing labor intensity and improving
efficiency compared to the manual application of plastic films [17]. LBDMs exhibit excellent
wettability, forming a multi-molecular network of gelatinous film after spraying on the soil
surface [20]. Spraying LBDMs binds soil particles together, forming an aggregate structure
that effectively preserves soil temperature and moisture, while reducing water evaporation
without impeding water infiltration [21]. And then, it promotes the growth and yield of
crops [22,23]. Additionally, integrating water-soluble fertilizers and pesticides beneficial to
crops into the LBDM system creates a multifunctional film, further enhancing its value by
reducing labor intensity through combined applications [4,7]. However, existing LBDMs
are typically composed of chemical polymers with poor degradability or highly hydrophilic
materials such as humic acid, starch, cellulose, ethyl cellulose, and polyglutamic acid, or
simply mixed with these materials [5]. These compositions are either not environmentally
friendly or fail to form a durable film, resulting in a poor performance characterized by
inelasticity, fragility, and susceptibility to rainfall erosion, with a relatively short effective
duration [24–27]. Currently, the research and development of LBDMs are still in the small-
scale experimental stage, with significant challenges remaining before large-scale adoption
can be achieved. Therefore, developing a high-performance, production-suitable liquid
biodegradable mulch film has become an urgent need in this field.

In this study, newly developed LBDMs were prepared using hydrophobically modified
polymer materials, surfactants, and photosensitive catalysts. These films exist in liquid
form and can be directly sprayed onto the soil to form a biodegradable film. The use of
hydrophobically modified polymer materials enhances the film’s erosion resistance and
improves soil water retention. To determine whether LBDMs can meet the varying soil
condition requirements at different crop growth stages, we characterized their performance
and selected peanuts as a model crop to evaluate their effects on crop growth and yield.
The objective of this study is to verify the superior performance of LBDMs, including
their wettability, degradability, temperature regulation, water retention capabilities, etc.
Additionally, we aim to explore the impact of LBDMs on the physiological traits, quality,
and yield of peanuts in the Yantai area, guiding the application of LBDMs in Yantai and
surrounding regions.

2. Materials and Methods
2.1. Experimental Site

The field experiments were conducted at the experimental plot of Yantai Academy of
Agricultural Sciences (37◦29′ N, 121◦16′ E), Yantai, Shandong Province, China, in 2021 and
2022. The soil was loam, and the plot was flat with medium and uniform fertility. The con-
tents of hydrolyzable nitrogen, available potassium, and available phosphorus at 0~20 cm
depth were 32.61~39.03 mg·kg−1, 183.69~188.53 mg·kg−1, and 111.34~126.96 mg·kg−1,
respectively. The content of organic matter was 1.68~1.83%, and the soil pH value was
6.40~6.66. In the study area, the climate was the temperate monsoon with four distinc-
tive seasons, sufficient sunshine, and moderate rainfall with a mean annual temperature
ranging from 12.7 ◦C to 13.0 ◦C. The annual rainfall was from 830.6 mm to 989.9 mm, of
which 70~90% fell in a major part of the growing season between June and September. The
rainfall and the air temperature during the experimental period were measured using an
automatic weather station (RS-ECTH-N01-TR temperature and humidity sensors, Jinan,
China; ZQZ-A automatic weather station, Beijing, China) at the experimental site.

2.2. Field Experimental Design and Treatments

The big-fruit-type peanut variety ‘Huayu 22’, provided by Shandong Peanut Research
Institute and approved by the Shandong Province Crop Variety Approval Committee in
February 2003, was selected in this study. This variety is an early-maturing ordinary peanut,
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with high quality, high yield potential, high stress resistance, moderate disease resistance,
and a 130-day growth period [28].

Four treatments were designed and applied: (1) peanut cultivation mulched with
liquid biodegradable mulch films (LBDMs), (2) peanut cultivation mulched with black
polyethylene mulch films (BPEMs), (3) peanut cultivation mulched with clear polyethylene
mulch films (CPEMs), and (4) peanut cultivation with no mulching as the control (CK).
Each treatment was replicated three times, a total of 12 plots, and each plot area measured
42 m2 (21 m × 2 m) in a randomized block arrangement. Each plot contained 2 ridges, and
2 rows were planted in each ridge. The plant spacing was 20 cm, the ridge length was 21 m,
and 2 seeds were sown in each hole. A 0.8 m wide border was set between each plot for
field management and sampling activities. All the polyethylene (PE) film mulches were
0.01 mm thick and 130 cm wide (Yantai Changsheng Plastic Factory, Yantai, China). With
PE film mulching, the films were used flat to cover the surface of the ridges, where the film
edges were covered carefully and compacted with soil. LBDMs were sprayed evenly on the
soil surface, with the help of the knapsack sprayer, and the spraying range was 1 m. The
seed cultivar ‘Huayu 22’ was sown at a rate of 420 per plot using a handheld hole-sowing
machine, with a sowing depth of 4~5 cm. The seeding and film mulching were conducted
on 3 May and 8 May, and the peanuts were harvested on 13 September and 16 September,
in 2021 and 2022, respectively.

Herbicides were applied before sowing, and weeds were manually controlled during
the crop growth period. Before the experiment, deep plowing to a depth of approximately
20 cm was performed using a tractor-mounted moldboard plow. No additional tillage or
irrigation was conducted during the entire experimental period.

2.3. Preparation and Characterization of LBDMs Mulching Films
2.3.1. Preparation of LBDMs

A certain amount of polymer materials chitin (0.72 wt%), polycarbonate (1.52 wt%),
alkyl glucoside (0.06 wt%), coconut oil-based glucoside (0.06 wt%), cellulose acetate
(0.85 wt%), and carboxymethyl cellulose (0.85 wt%) were weighed and mixed with water
at a mass ratio (solid/liquid) of 1:2 [18,29,30]. They were heated in water to 50~60 ◦C and
dispersed. Carboxylic acids, epoxy compounds, halogenated hydrocarbons, aliphatic acyl
chloride, and isocyanate were added as hydrophobic reagents (0.68 wt%) for hydrophobic
modification, and amine compounds (0.34 wt%) were used as an end-capping reagent to
obtain hydrophobically modified polymer materials [31–33]. Then, the above-mentioned
hydrophobically modified polymer material was weighed, and the surfactant and photosen-
sitive catalyst were added and stirred with water to obtain a gelatinous viscous transparent
liquid film. The composition ratio of surfactant, photo-sensitive catalyst, and hydrophobi-
cally modified polymer material was 0.05:0.02:1. The mass ratio of the above surfactants,
including calcium dodecyl benzene sulfonate and styrene phenol polyoxyvinyl ether, is
1.5:1. The photosensitive catalyst was metal porphyrin [34]. The prepared mixture was
poured into culture plates and dried under natural conditions, and then the films were
uncovered and reserved as spares.

2.3.2. Characterization of LBDMs

The surface morphology and microstructure of the LBDMs sample films were observed
using a scanning electron microscope (SEM) (Phenom Pure, The Netherlands) at various
magnifications (Mag = 500×, 1500×, 3000×, and 13,000×). Before testing, the LBDM
samples were dried in a 60 ◦C drying oven for 12 h to form thin-film samples. These
samples were then affixed to the test bench with a conductive tape. The samples were
sputter-coated with gold and subsequently imaged using the SEM with an accelerating
voltage of 10 kV.
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2.3.3. LBDMs Wettability

To evaluate the wettability of LBDMs, the contact angle between LBDMs and soil
surface was measured by a simplified sessile drop method at room environment (25 ± 2 ◦C,
50% RH) [35,36]. Four treatments were set up according to the soil granularity size in
this experiment, and an LBDMs droplet with a volume of 15 µL was deposited onto
the soil surface. The contact angle and the complete infiltration time of each treatment
were recorded, and subsequently the wettability of LBDMs was characterized under a
microscope. In addition, the soil collected from the field was placed in a petri dish, and the
liquid film was sprayed evenly on the surface of the soil. The treatment without spraying
liquid film was used as the control. After the film was formed by natural drying, a certain
amount of water was sprayed on the surface of the soil, so that the soil was completely
immersed in water to simulate the natural rainwater soaking process. After seven days, the
effect of water immersion on the stability of the liquid film was observed.

2.3.4. LBDMs Degradation

The degradable property of LBDMs was investigated by the soil burial test method [37].
After drying the LBDMs to form solid films, three kinds of films (LBDMs, CPEMs, and
BPEMs) were cut into a square of 3 cm × 3 cm, buried in the soil at a depth of 10 cm, and
maintained by 30–40% soil moisture. Within 80 days after burial, the films were taken out
every 10 days, and the degradation situation was observed. The surface morphology of the
sample films after soil burial degradation was analyzed using the SEM characterization
method described in Section 2.3.2. In addition, to determine the degradation rate of
LBDMs, the film samples, before being buried with soil, were weighed, and then they
were taken out every 10 days, washed with distilled water, dried at 40 ◦C for 6 h, and
weighed again. Each treatment was repeated three times to take the average value, and the
mass loss was obtained. The degradation rate of LBDMs was calculated according to the
following formula:

Degradation rate (%) = (mass before degradation − mass after
degradation)/mass before degradation × 100

2.4. Determination of Soil Temperature and Moisture

After sowing, the soil temperature and moisture of the different treatments at 10 cm
depth were measured with the 485-type soil temperature and moisture sensor (RS-ECTH-
N01-TR; Shandong Renke Measurement and Control Technology Co., Ltd., Jinan, China),
and the temperature and moisture were recorded every 2 h to see the detailed changes until
the end of the whole growth period.

2.5. Peanut Growth and Developmental Progress and Yield
2.5.1. Seedling Emergence

The seedling stage and emergence rates for the different treatments were recorded
after sowing. During this period, the number of successfully emerged seedlings in all test
plots was recorded daily. The seedling emergence rate was calculated by the formula as
follows. When the seeding emergence rate reached 50%, that day was determined as the
seeding stage.

Seedling emergence rate (%) = (the number of successful seedling
emergence/the number of total seeds) × 100

2.5.2. Growth Parameters of Peanuts

Each growth stage of the peanut was recorded. During the seedling stage, anthesis
stage, pod bearing stage, and harvesting stage, the values of plant height were recorded
every 10 days until they were seriously lodging and could not be measured. Fifteen
peanut plants were continuously selected from the middle ridge of each test plot (a total
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of forty-five plants for every treatment) to record the total branch number and lateral
branch length.

2.5.3. Determination of Peanut Pod Traits

To determine peanut pod traits, fifteen peanut plants were continuously selected from
the middle ridge of each replicate (repeat three times, a total of forty-five plants for every
treatment), and all peanut pods were collected from selected plants. Total pod number,
full pod number, immature pod number, total kernel number, germinated kernel number,
single-kernel pod number, and double-kernel pod number were recorded. The full pod
rate, immature pod rate, kernel rate, single kernel rate, double kernel rate, and germinated
kernel rate were calculated for each treatment.

2.5.4. Peanut Yield

During the harvest period, 2 sample points were randomly selected from each plot,
in which both ends were removed, and a 1 m2 area with uniform growth of each sample
point was harvested to determine the final pod yield. The pod yield for each experimental
plot was determined by fresh weight and was used to calculate yield per hectare. ‘Huayu
22’ groundnut is usually harvested at about 130 days in the eastern part of Shandong,
and the final harvest date was determined based on visual observations of leaf senescence
and peanut kernel maturity. At the same time, fifteen peanut plants were continuously
selected from the middle ridge of each replicate (repeat three times, a total of forty-five
plants for every treatment) to count the productivity per plant, 100-kernel weight, and
100-pod weight. Among them, the determination of single plant productivity required the
mature pods to be fully sundried and weighed to calculate the average weight of the pods
per plant.

2.6. Statistical Analyses

The effects of the treatments on the measured parameters were evaluated using one-
way ANOVA from the SAS package, and the least significant difference (LSD) was used to
compare means [38]. In all cases, differences were deemed to be significant if p < 0.05. Data
graphs were generated using GraphPad Prism 8.0.2 software.

3. Results and Discussion
3.1. Weather Conditions

The weather conditions, including rainfall and air temperature, varied between the two
growing seasons of peanuts (Figure 1). From May to September in 2021, air temperatures
ranged from 9.9 ◦C to 28.8 ◦C, with a total rainfall of 530.2 mm and a mean monthly rainfall
of 106.0 mm. The highest rainfall occurred in August. In contrast, during the same period
in 2022, temperatures ranged from 11.8 ◦C to 31.5 ◦C, with a total rainfall of 788.2 mm and
a mean monthly rainfall of 157.6 mm. The maximum rainfall was recorded in September.
These differences in rainfall and air temperature between the two years were expected to
influence peanut development and result in yield variations.
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3.2. LBDMs Surface Morphologies, Wettability, and Degradability
3.2.1. LBDMs Surface Morphologies

To visually assess the surface morphology and dispersion of LBDMs, the dried films
were observed using scanning electron microscopy (SEM) at different magnifications
(500×, 1500×, 3000×, and 13,000×), as shown in Figure 2. The low-magnification images
(Figure 2A) revealed a smooth, compact, and uniform surface with the transparency of
plastic, free from noticeable holes, folds, or cracks, indicating good compatibility among the
materials used in the preparation of LBDMs. The higher-magnification images (Figure 2B–
D) displayed small particles on the film surface, likely resulting from the agglomeration
of polymer materials forming small, aggregated structures. Additionally, during the
drying process, small molecular substances may have volatilized first, with macromolecular
substances continuously precipitating and depositing on the film surface.
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3.2.2. Wettability Analysis of LBDMs

To analyze the wettability of LBDMs, contact angle tests were conducted. The contact
angles of LBDM droplets on soil surfaces with different particle sizes are shown in Figure 3.
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As the soil particle size increased, the contact angle also increased (θeI = 37.5◦, θeII = 52.0◦,
θeIII = 90.0◦, θeIV = 116.2◦), and the complete infiltration time of the film lengthened
(TI = 24 s, TII = 6 s, TIII = 4 s, TIV = 3 s). These results indicated a good wettability effect on
soil surfaces of varying particle sizes. It was also observed in the experiment that, as the soil
particle size became smaller, the soil surface layer after spraying LBDMs was more likely to
form a film layer. This phenomenon confirmed that, under uniform soil flatness, reducing
soil granularity and enhancing the binding force between soil aggregates made it easier to
form a continuous film on the soil surface, significantly improving the film-forming effect.
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Figure 3. The wettability of LBDMs on soil surfaces with different particle sizes. (I) Grinding soil
after passing through a 100-mesh sieve. (II) Soil passing through a 100-mesh sieve. (III) Conventional
soil with large particles removed. (IV) Untreated conventional soil. (SL) Microscopic images of the
soil surface sprayed with LBDMs (mag = 40×). (NO) Microscopic images of the soil surface without
LBDMs application (mag = 40×).

LBDMs demonstrated excellent wettability, effectively covering soil surfaces with
various particle sizes, bonding soil particles, and forming film-covered soil surface layers
(Figure 4C). This good film-forming property is crucial for its warming and moisturizing
effects. When examining the impact of simulated rainwater immersion on LBDMs’ stability
(Figure 4B), many dry cracks of varying depths were observed on the surface of soil without
LBDMs mulching. In contrast, the soil surface with LBDM mulching had a relatively
uniform structure with only a few small cracks (Figure 4A). Soil cracks result from rapid
water evaporation. Compared to the untreated soil sample, fewer cracks appeared on the
LBDM-covered soil surface after rain immersion due to the protective layer formed by
LBDMs. This layer slows water evaporation, reduces the agglomeration and shrinkage of
soil aggregates, and thus minimizes the occurrence of surface cracks. These results further
indicate that LBDMs effectively enhance the bonding force between surface soil aggregates,
maintain soil granular structure stability, prevent soil moisture evaporation, and improve
soil water stability and moisture conservation.

107



Polymers 2024, 16, 2487Polymers 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. The film-forming effect of LBDMs on the soil surface. (A) Comparison of the soil surface 
with LBDM mulching after 7 days of water soaking. (B) Comparison of the soil surface without 
LBDM mulching after 7 days of water soaking. (C) Digital images of the soil cross-section after 
spraying LBDM mulching film. 

3.2.3. Degradation Performance of LBDMs 
The degradation of the film in the natural environment is influenced by seasonal and 

location-specific factors, such as humidity, temperature, sunlight, and microorganisms 
[39]. These factors compromise the film’s internal structure, leading to a loss of rigidity 
and toughness. Some researchers consider the weight loss method as a quantitative indi-
cator of the degradation performance of films, with an increased degradation rate over 
time proving the degradability of LBDMs [40]. As shown in Figure 5, LBDMs softened 
and thinned after ten days of burial, with observable rupture and degradation. The 
LBDMs lost their original appearance and structural integrity during the degradation pro-
cess, developed many holes and cracks, and gradually decomposed into small fragments. 
SEM images revealed that the surface morphology of the degraded film sample became 
wrinkled and uneven, with visible fragmented structures protruding from the surface 
(Figure 6). We also found that the degradation rate increased over time (Figure 6). After 
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Figure 4. The film-forming effect of LBDMs on the soil surface. (A) Comparison of the soil surface
with LBDM mulching after 7 days of water soaking. (B) Comparison of the soil surface without
LBDM mulching after 7 days of water soaking. (C) Digital images of the soil cross-section after
spraying LBDM mulching film.

3.2.3. Degradation Performance of LBDMs

The degradation of the film in the natural environment is influenced by seasonal and
location-specific factors, such as humidity, temperature, sunlight, and microorganisms [39].
These factors compromise the film’s internal structure, leading to a loss of rigidity and
toughness. Some researchers consider the weight loss method as a quantitative indicator of
the degradation performance of films, with an increased degradation rate over time proving
the degradability of LBDMs [40]. As shown in Figure 5, LBDMs softened and thinned after
ten days of burial, with observable rupture and degradation. The LBDMs lost their original
appearance and structural integrity during the degradation process, developed many holes
and cracks, and gradually decomposed into small fragments. SEM images revealed that
the surface morphology of the degraded film sample became wrinkled and uneven, with
visible fragmented structures protruding from the surface (Figure 6). We also found that the
degradation rate increased over time (Figure 6). After 50 days of burial in the soil, the film’s
degradation rate exceeded 50%, classifying it as a biodegradable material [41]. Specifically,
the degradation rate of LBDMs was 61.33% after 50 days and reached 76.09% after 80 days
of burial, indicating that LBDMs have good degradability. These results demonstrated that
LBDMs were one kind of biodegradable and environmentally friendly material.
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Figure 6. SEM images of the LBDMs’ surface morphology (mag = 13,000×) and the correlation
between the degradation rate of LBDMs and soil burial duration. BD = before degradation (0 days
after burial); AD = after degradation (80 days after burial).

3.3. Soil Temperature and Moisture

Film mulching significantly impacts the soil microenvironment, with soil temperature
and moisture levels affecting crop yield [3]. Warmer soil and higher soil moisture content
are positively related to peanut-seedling emergence and phenological development, canopy
formation, radiation use efficiency, and pod yield. From sowing to harvest, the trend of soil
temperature and moisture during the experimental period is shown in Figure 7. Compared
to the control (CK), LBDMs demonstrated a more remarkable warming effect, raising the
average temperature over two years by 0.56 ◦C. However, this warming effect was less
pronounced than that of CPEMs and BPEMs, which increased temperatures by 1.21 ◦C and
0.72 ◦C, respectively. These findings align with the results of Sun et al. [42] and Sartore
et al. [43]. In the later stages of crop growth, the difference in soil temperature among
the treatments diminished compared to the earlier stages. This may be attributed to the
crop canopy affecting the soil’s heat absorption from solar radiation, thus influencing soil
temperature. Several studies have shown that the warming effect of mulching decreased in
the later growth stages, as the plant canopy became fully established, narrowing the soil
temperature gap between mulching and non-mulching treatments [44,45].

Soil moisture is a critical physical property of soil, playing a vital role in crop growth.
Film mulching forms a barrier between the soil and the atmosphere, preventing soil
moisture loss [10,46]. During the 2021 and 2022 growth stages, significant differences
in soil moisture at a 10 cm depth were observed under different mulching conditions.
LBDMs exhibited better soil moisture retention than CK, increasing average humidity
by 19.25%. In comparison, CPEMs increased average humidity by 20.09%, while BPEMs
showed the highest moisture retention, with a 35.75% increase over CK. This difference
from soil temperature trends can be explained by the fact that increased soil temperature
not only accelerates surface moisture loss but also promotes root development, enhances
crop aboveground growth, and increases leaf transpiration. Excessive transpiration is
not conducive to soil moisture retention [47]. Additionally, Chen et al. [48] found that
higher soil moisture increased heat capacity and slowed temperature rise. This study could
confirm the above point that LBDMs and BPEMs retained soil moisture better than CPEMs,
though their soil temperature preservation was not as effective as that of CPEMs.
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3.4. Effects of mulching films on Peanut Seedling Emergence

The seedling emergence rate is a crucial factor in determining yield. We recorded
daily seedling emergence data. As shown in Table 1, all mulching treatments promoted
peanut emergence and increased the emergence rate. Among them, BPEMs and CPEMs
had the most significant effect, followed by LBDMs. In both 2021 and 2022, compared
to CK, the LBDMs treatment advanced the peanut seedling stage by 4-to-6 days and
effectively increased the emergence rate by 16.88% and 14.93%, respectively. It was found
that increased soil temperature could improve seed germination and emergence [49]. At the
seedling stage, the plant canopy was small, which allowed most of the film-mulched area to
receive solar energy and the soil temperature to warm up. In addition, the water underneath
the film could reduce the longwave radiation, which reduces the rate of decrease in soil
temperature at night. Therefore, the diurnal temperature fluctuation in this stage involved
faster warming up of mulched than un-mulched soil during the day and slower cooling at
night, producing a mini-greenhouse effect.

Table 1. Seedling emergence analysis in 2021 and 2022.

Year 2021 2022

Treatments
Seedling Stage Emergence Rate

(%)

Seedling Stage Emergence Rate
(%)Date DAS Date DAS

CPEMs 15 May 12 87.66 ± 3.52 b 19 May 11 89.52 ± 3.29 a
BPEMs 15 May 12 91.35 ± 2.66 a 18 May 10 92.17 ± 4.29 a
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Table 1. Cont.

Year 2021 2022

Treatments
Seedling Stage Emergence Rate

(%)

Seedling Stage Emergence Rate
(%)Date DAS Date DAS

LBDMs 19 May 16 82.59 ± 2.28 c 23 May 15 81.08 ± 3.10 b
CK 25 May 22 65.71 ± 2.36 d 27 May 19 66.15 ± 3.69 c

Note: Data are presented as mean ± SE, n = 3. Values followed by different lowercase letters in the same column
are significantly different among treatments at 0.05 level for the same factor. Seedling stage: the time required for
50% of seedlings to emerge and expand their first true leaf; DAS, days after sowing.

3.5. Effects of Mulching Films on Peanut Growth Parameters

To analyze the agronomic traits of peanuts, we recorded the plant height, lateral
branch length, and number of branches. Based on two years of field data, the plant height
of peanuts under different treatments showed a gradual increase over time (Figure 8).
Compared to CK, mulching with LBDMs significantly increased plant height throughout
the growth period. Additionally, the lateral branch length and number of branches mulched
with LBDMs resulted in longer lateral branch lengths and more branches than CK and
comparable to or even better than CPEMs and BPEMs treatments (Figure 9).
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Figure 8. The trend in peanut plant height under CPEM, BPEM, LBDM, and CK treatments in 2021
(a) and 2022 (b).
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In 2021, the average length of lateral branches mulched with LBDMs was 55.15 cm,
which was 9.2 cm longer than CK, but 1.8 cm and 2.2 cm shorter than CPEMs and BPEMs,
respectively (Figure 9a). The mean number of branches for LBDM treatment was 9.8, which
is not significantly different from CK, CPEMs, and BPEMs (p < 0.05, Figure 9b). Similar
results were observed in 2022, where the average length of lateral branches mulched with
LBDMs was 61.35 cm, 14.3 cm longer than CK, and 1.55 cm longer than CPEMs, with no
significant differences from BPEMs (p < 0.05, Figure 9a). The mean number of branches for
LBDMs treatment in 2022 was 10.6, which was 1.2 more than that of CK and not significantly
different from that of CPEMs and BPEMs (p < 0.05, Figure 9b). Favorable soil temperature
plays a crucial role in optimal plant growth. These findings confirm that LBDM mulching
promotes the early growth of peanut plants, resulting in faster seedling emergence and
better overall plant growth. This phenomenon can be attributed to film mulching, which
alters soil temperature and moisture to conditions more suitable for seedling emergence
and plant growth. This conclusion aligns with the reports of Wang et al. [50] and Sun
et al. [42].

3.6. Effects of Mulching Films on Peanut Pod Traits

To assess the effects of LBDM mulching treatments on peanut pod quality, we recorded
the full pod rate, immature pod rate, kernel rate, single kernel rate, double kernel rate, and
germinated kernel rate. The results in Table 2 show that the full pod rate, kernel rate, and
germinated kernel rate for LBDM mulching treatments were significantly higher than those
for CK (p < 0.05), while the immature pod rate was lower. Compared to the CPEM and
BPEM treatments, the germination rate of LBDMs was lower, and the full pod rate and
kernel rate were equivalent to that of CPEMs, equivalent to or slightly worse than that
of BPEMs. In addition, there were no significant differences among the four treatments
regarding the single kernel rate and double kernel rate.

Table 2. Effect of mulching on peanut pod quality in 2021 and 2022.

Full Pod Rate
(%)

Immature Pod
Rate (%)

Kernel Rate
(%)

Single Kernel
Rate (%)

Double Kernel
Rate (%)

Germinated
Kernel Rate (%)

Year 2021

CPEMs 72.31 ± 0.96 b 25.24 ± 1.18 b 74.02 ± 1.42 ab 21.27 ± 1.40 a 77.59 ± 1.85 a 6.96 ± 0.92 b
BPEMs 76.66 ± 1.75 a 21.06 ± 0.92 c 75.37 ± 0.86 a 20.87 ± 0.83 a 78.29 ± 0.97 a 10.88 ± 1.30 a
LBDMs 72.73 ± 1.13 b 24.97 ± 0.64 b 73.40 ± 1.00 b 21.37 ± 0.89 a 77.06 ± 1.38 a 4.02 ± 0.58 c

CK 66.69 ± 1.37 c 30.57 ± 1.59 a 73.32 ± 1.06 b 21.68 ± 1.22 a 77.74 ± 1.25 a 1.18 ± 0.62 d

Year 2022

CPEMs 66.02 ± 2.23 bc 31.13 ± 2.65 ab 81.32 ± 1.54 a 24.91 ± 1.72 a 72.99 ± 1.82 a 3.59 ± 0.28 ab
BPEMs 73.41 ± 3.36 a 25.11 ± 2.68 b 80.59 ± 4.67 a 20.98 ± 4.18 a 74.48 ± 4.74 a 8.38 ± 2.63 a
LBDMs 67.67 ± 2.58 b 29.37 ± 3.91 ab 83.09 ± 7.86 a 22.61 ± 1.01 a 75.93 ± 0.29 a 0.74 ± 0.82 c

CK 60.44 ± 3.20 c 36.52 ± 4.23 a 70.21 ± 2.76 b 26.34 ± 3.68 a 71.59 ± 4.85 a 1.25 ± 1.44 bc

Data are presented as mean ± SE, n = 3. Values followed by different lowercase letters in the same column indicate
significant differences among treatments at the 0.05 level for the same factor.

In 2021, the full pod rate of peanuts under the LBDM treatment was 72.73%, which
was 6.04% higher than that of CK, 3.93% lower than that of BPEMs, and not significantly
different from that of CPEMs (p < 0.05). The immature pod rate for LBDMs was 24.97%,
5.60% lower than that of CK, 3.91% higher than that of BPEMs, and not significantly
different from that of CPEMs (p < 0.05). The kernel rate for LBDMs was 73.40%, 1.97% lower
than that of BPEMs, and not significantly different from that of CK and CPEMs (p < 0.05).
The single and double kernel rates for LBDMs were 21.37% and 77.06%, respectively, with
no significant differences from the other treatments (p < 0.05). The germinated kernel rate
for LBDMs was 4.02%, 2.84% higher than that of CK, and 2.97% and 6.86% lower than
that of CPEMs and BPEMs, respectively. The results for 2022 showed some differences
from 2021. The full pod rate under LBDM treatment was 67.67%, 7.23% higher than that of
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CK, 5.74% lower than that of BPEMs, and not significantly different from that of CPEMs
(p < 0.05). The immature pod rate for LBDMs was 29.37%, with no significant differences
from the other treatments (p < 0.05). The kernel rate for LBDMs was 83.09%, 12.88% higher
than that of CK, and not significantly different from that of CPEMs and BPEMs (p < 0.05).
The single and double kernel rates for LBDMs were 22.61% and 75.93%, respectively, with
no significant differences from the other treatments (p < 0.05). The germinated kernel rate
for LBDMs was 0.74%, 7.64%, and 2.85% lower than that if BPEMs and CPEMs, respectively,
and not significantly different from CK (p < 0.05).

3.7. Effects of Mulching Films on Peanut Yield

To explore the effect of LBDMs treatment on yield, we studied productivity per plant,
100-pod weight, and 100-kernel weight. Over two years, we recorded peanut yield and
confirmed that mulching with LBDMs could significantly affect yield. The data in Table 3
indicate that mulching with LBDMs, CPEMs, and BPEMs significantly increased pod yield
compared to CK.

Table 3. Effect of mulching on peanut yield and yield components in 2021 and 2022.

Pod Yield (kg·ha−1)
Yield Increase

Compared to CK
(%)

Productivity per
Plant (g) 100-Pod Weight (g) 100-Kernel Weight

(g)

Year 2021

CPEMs 4975.00 ± 131.05 ab 10.19 18.43 ± 0.49 ab 238.63 ± 5.47 ab 97.24 ± 2.55 a
BPEMs 5175.00 ± 119.06 a 14.62 20.37 ± 0.97 a 247.33 ± 2.25 a 97.15 ± 1.82 a
LBDMs 4895.00 ± 129.33 bc 8.42 19.38 ± 1.04 a 245.00 ± 1.80 a 96.80 ± 1.04 a

CK 4515.00 ± 83.52 c - 17.08 ± 0.96 b 234.00 ± 5.00 b 96.00 ± 0.98 a

Year 2022

CPEMs 4965.00 ± 70.53 b 14.27 18.22 ± 1.07 b 239.99 ± 2.54 bc 89.10 ± 2.32 b
BPEMs 5360.00 ± 106.42 a 23.36 21.24 ± 0.41 a 246.45 ± 3.65 a 96.23 ± 3.29 a
LBDMs 5225.00 ± 92.60 a 20.25 20.67 ± 0.61 a 242.08 ± 0.68 ab 95.47 ± 1.14 a

CK 4345.00 ± 102.10 c - 16.93 ± 0.60 b 235.53 ± 1.60 c 88.92 ± 4.20 b

Data are presented as mean ± SE, n = 3. Values followed by different lowercase letters in the same column indicate
significant differences among treatments at the 0.05 level for the same factor.

In 2021, the yield increase rate for the LBDM mulching treatment was 8.42%, which
was 2.49% and 6.2% lower than that of CPEMs and BPEMs, respectively. In 2022, the yield
increase rate for LBDMs was 20.25%, 5.98% higher than that of CPEMs and 3.11% lower
than that of BPEMs. Overall, the average yield increase rate over the two years of LBDMs
mulching treatment was significantly better than that of CPEMs but not as good as that of
BPEMs. In 2021, the productivity per plant and 100-pod weight for LBDMs were 19.38 g
and 245.00 g, respectively, which were 2.30 g and 11.00 g higher than CK’s values but
not significantly different from the values of CPEMs and BPEMs (p < 0.05). There was no
significant difference in 100-kernel weight among the four treatments (p < 0.05). In 2022,
the productivity per plant for LBDMs was 20.67 g, which was 3.74 g and 2.45 g higher than
that of CK and CPEMs, respectively, but not significantly different from that of BPEMs
(p < 0.05). The 100-pod weight for LBDMs was 242.08 g, which was 6.55 g higher than
that of CK, with no significant differences from that of CPEMs and BPEMs (p < 0.05). The
100-kernel weight for LBDMs was 95.47 g, which was 6.55 g and 6.37 g higher than that of
CK and CPEMs, respectively, but not significantly different from that of BPEMs (p < 0.05).

The pod yield in the mulched treatments, including the LBDM-mulched treatments,
was higher than that in CK. Similar results were reported by Waterer [51]. Film mulching
increases soil temperature by several degrees, promoting better growth during the early
growth period and more water absorption in the later period. Notably, LBDM mulching
improved plant height, lateral branch length, number of branches, and dry matter accu-
mulation in individual plants and increased productivity per plant, full pod rate, kernel
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rate, 100-pod weight, and 100-kernel weight, leading to an increased pod yield. This result
aligns with Song’s report [22]. Compared with CK, the pod yield, productivity per plant,
100-pod weight, 100-kernel weight, full pod rate, and kernel rate of LBDMs were better,
but it did not affect pod traits such as the single kernel rate. This may be due to film
mulching promoting peanut flower bud differentiation, increasing the number of effective
flowers and needles, thereby promoting an increase in the number of pods per plant and
increasing peanut yield [52]. Additionally, film mulching prevents pegs developing during
later growth stages from entering the soil, thus conserving nutrients for developing pods
set earlier, increasing the number of full pods, and reducing the number of immature
pods [53,54].

The productivity per plant, 100-pod weight, and 100-kernel weight of LBDMs treat-
ment was significantly better than that of CK and equivalent to or even better than PE
mulching treatments. However, in terms of pod yield, the LBDM treatment’s result was
significantly higher than that of the CK but lower than that of the BPEM, possibly due
to the emergence rate. This finding is consistent with the research of Kunzova et al. [55],
which highlighted that seedling emergence and establishment are key processes in grain
yield determination.

4. Conclusions

Overall, this study underscores the potential of LBDMs as environmentally friendly
alternatives to traditional PE films. LBDMs demonstrated good degradability and wetta-
bility and can be simply sprayed onto the soil to form a film layer to serve as agriculture
mulching, which is highly facile and efficient as compared with traditional PE films. It
optimizes the soil environment, promoting peanut seed germination and root development,
supporting healthy plant growth, and laying the foundation for increased peanut yield.
These improvements were comparable to those achieved with ordinary PE films and even
outperformed in regard to some aspects of crop growth and yield. In general, LBDMs not
only provide the heat- and moisture-retention benefits of PE films, advancing the seedling
stage, increasing the emergence rate, promoting crop growth and development, acceler-
ating the growth process, and increasing yield, but also reduce labor input and residual
soil pollution due to their simple application and degradation performance. Therefore,
promoting the use of LBDMs as a substitute for ordinary PE films in agricultural produc-
tion is of great significance. However, further studies on economic cost, field application
characteristics, and supporting spraying equipment are necessary.
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Abstract: Flexible, wearable pressure sensors offer numerous benefits, including superior sensing
capabilities, a lightweight and compact design, and exceptional conformal properties, making them
highly sought after in various applications including medical monitoring, human–computer interac-
tions, and electronic skins. Because of their excellent characteristics, such as simple fabrication, low
power consumption, and short response time, capacitive pressure sensors have received widespread
attention. As a flexible polymer material, polydimethylsiloxane (PDMS) is widely used in the prepara-
tion of dielectric layers for capacitive pressure sensors. The Young’s modulus of the flexible polymer
can be effectively decreased through the synergistic application of sacrificial template and laser
ablation techniques, thereby improving the functionality of capacitive pressure sensors. In this study,
a novel sensor was introduced. Its dielectric layer was developed through a series of processes,
including the use of a sacrificial template method using NaCl microparticles and subsequent CO2

laser ablation. This porous PDMS dielectric layer, featuring an array of holes, was then sandwiched
between two flexible electrodes to create a capacitive pressure sensor. The sensor demonstrates a
sensitivity of 0.694 kPa−1 within the pressure range of 0–1 kPa and can effectively detect pressures
ranging from 3 Pa to 200 kPa. The sensor demonstrates stability for up to 500 cycles, with a rapid
response time of 96 ms and a recovery time of 118 ms, coupled with a low hysteresis of 6.8%. Further-
more, our testing indicates that the sensor possesses limitless potential for use in detecting human
physiological activities and delivering signals.

Keywords: flexible capacitive pressure sensor; porous structure; array of holes; polymer; laser ablation

1. Introduction

As the complexity of wearable systems [1–3] continues to advance, scholars have
shown a growing interest in the advancement of flexible and wearable pressure sensors [4].
The utilization of these sensors has experienced a notable increase in various applica-
tions, including medical monitoring [5–8], human–computer interactions [9–12], electronic
skins [13–15], and other fields, owing to their exceptional sensing capabilities, compact di-
mensions, and robust shape retention properties, among other benefits. Wearable pressure
sensors can be classified based on their operating principles as piezoresistive [16,17], ca-
pacitive [18–20], friction electric [21,22], and piezoelectric [23] pressure sensors. Capacitive
pressure sensors are distinguished among various sensor types for their straightforward
manufacturing process, minimal energy consumption, superior stability, and rapid response
time [20,24–26]. Previous studies have indicated that conventional capacitive sensors pri-
marily utilize solid silicone rubbers such as polydimethylsiloxane (PDMS) [27,28] and
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ecoflex [29]. However, despite the flexibility of these silicone rubbers, their low com-
pressive strain and high Young’s modulus [30] result in reduced sensitivity [31], thereby
failing to meet the requirements for high sensitivity sensors. To improve the sensitivity of
capacitive pressure sensors within a certain pressure range, scholars have suggested the
incorporation of microstructures within the dielectric layer [32]. Drawing from previous
research, scholars have developed microstructures in the forms of micropyramidal [33–35],
microcylindrical [36–39], and microconical [19,40] shapes. For example, Luo et al. present
a capacitive pressure sensor with a tilted micropillar array structure in its dielectric layer
prepared by a photolithographic method. This sensor exhibits high pressure sensitivity
(0.42 kPa−1) and a very small detection limit (1 Pa) [39].

Moreover, incorporating a porous structure into the dielectric layer is a method that
can enhance sensitivity [41–44]. This structural modification reduces the Young’s mod-
ulus of the dielectric layer, facilitating compression of the flexible sensor and ultimately
increasing sensitivity [45]. Previous research has explored different techniques for cre-
ating polymer-based porous dielectric layers. For example, sacrificial templates [46–48],
gas foaming [49–51], 3D printing [52,53], and other methods [54,55] have been used in
various studies. The sacrificial template method is a popular choice due to its ease of
use and high effectiveness. The preparation process entails blending removable particles
with silicone rubber prior to its curing, allowing for the embedding of particles within
the cured silicone rubber. These particles facilitate the formation of interconnected air
exchange channels [41]. Pores can be generated in the silicone rubber by extracting the
particles. Salt and sugar [47,48] are commonly used as sacrificial templates due to their
high water solubility, facilitating their removal. In addition to these conventional templates,
researchers are actively investigating alternative sacrificial templates such as polystyrene
(PS) beads [56,57]. Yang et al. obtained porous micropyramidal structured dielectric layers
by pressing PDMS into a micropyramidal silicon mold filled with PS beads and curing
it, followed by dissolving away the PS beads using toluene. Capacitive pressure sensors
which were based on this dielectric layer exhibit an extremely high sensitivity of up to
44.5 kPa−1 in the pressure range of 0–100 Pa [33].

The susceptibility of the dielectric layer to compression at low pressures, resulting in
rapid saturation of the sensor and a reduced operating range, hinders its ability to accurately
detect higher pressures. Additionally, repeated compressions may lead to destruction of
the microstructures due to interaction forces between them. In order to combine high
sensitivity with a wide pressure detection range and to maintain good recovery properties
of the dielectric layer, Li et al. obtained a highly porous dielectric layer by the sacrificial
NaCl template method, while the insertion of multiple metal pins introduced a through-
hole array in the porous dielectric layer, thus further improving the porosity. This working
design of the sensor achieves a sensitivity of 1.15 kPa−1 within 0–1 kPa and the device
has a very wide operating ranging from 5 Pa to 1 MPa [45]. However, damage to the
dielectric layer during metal pin demolding can compromise sensor performance. Jiang
et al. demonstrate the fabrication of microstructures with uniform geometry and adjustable
size through laser ablation on a dielectric substrate [40]. This cost-effective and efficient
method offers a practical approach for designing arrays.

This research presents the fabrication of an innovative flexible capacitive sensor that
boasts a distinctive design. Notably, this novel sensor incorporates a dielectric layer charac-
terized by a porous architecture and an array of holes, setting it apart from conventional
sensors. The porous dielectric layer was fabricated using the sacrificial NaCl template
method, while the hole array was created through laser ablation of the porous dielectric
layer. By sandwiching this porous dielectric layer with the hole array between flexible
electrodes made of polyimide tape and copper foil, a flexible capacitive pressure sen-
sor was developed. The sensor exhibited a notable sensitivity of 0.694 kPa−1 within the
0–1 kPa range, while demonstrating a broad pressure response spanning from 0 to 200 kPa.
Experimental evaluations revealed its capability to discern pressures as minute as 3 Pa,
accompanied by remarkable consistency across 500 high-pressure cycles, underscoring its
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reliability and durability. Furthermore, the sensor’s utility is showcased in monitoring
human physiological activities, such as swallowing and elbow flexion, as well as in Morse
code communication.

2. Materials and Methods
2.1. Materials

Polydimethylsiloxane (PDMS) and a silicone elastomer curing agent were purchased
from Dow Corning in Midland, MI, USA. Sodium chloride (NaCl microparticles, ≥99.5%,
with a particle size distribution in the range of 5–70 µm) was purchased from China
Salt Shanghai Salt Industry Co., Ltd., in Shanghai, China. The flexible electrodes were
manufactured using copper foil purchased from Anhui Zhengying Company in Fuyang,
Anhui, China, and polyimide (PI) tape from Hangzhou Ubisoft Company in Hangzhou,
Zhejiang, China.

2.2. Preparation of Porous PDMS Dielectric

The sacrificial template method was employed to fabricate porous dielectric layers
using salt microparticles with a particle size distribution ranging from 5 to 70 µm. The
procedure for creating the porous PDMS dielectric layer is illustrated in Figure 1a. Specifi-
cally, 5.521 g of salt was introduced into a mold measuring 60 mm in diameter and 2 mm
in height and then compressed to conform to the mold shape. Subsequently, 3.110 g of
PDMS prepolymer was introduced into the templates, and the molds containing the PDMS
prepolymer were subjected to a vacuum treatment in a vacuum machine (LC-DZF-6050AB,
Lichen Instrument Technology Co., Shanghai, China) at a temperature of 25 ◦C and an
air pressure of 0.07 MPa for 20 min. This process facilitated the thorough infiltration of
the PDMS prepolymer into the molded salt templates. The PDMS prepolymer utilized in
this study was prepared by blending PDMS with a curing agent through homogeneous
stirring for a period of 20 min, with a mass ratio of PDMS to curing agent set at 10:1. After
complete infiltration of the PDMS, the sample was subjected to atmospheric pressure and
heated to a temperature of 50 ◦C for 3 h to allow the PDMS prepolymer to undergo full
curing. Subsequently, the demolded sample was transferred to a water bath heating unit
(DF-101S5L, Lichen Instrument Technology Co., Shanghai, China) and immersed in hot
water at 80 ◦C for 12 h in order to eliminate salt residues. Finally, the sample was dried in a
drying oven at 100 ◦C for 1 h, resulting in the formation of a porous PDMS dielectric layer
with a porosity of approximately 46%.

2.3. Preparation of Porous PDMS Dielectric Layers with Hole Array

Following the preparation of the porous PDMS dielectric layer, the porous PDMS
material was subjected to ablation using a carbon dioxide laser (K3020, Julong Laser Co.,
Ltd., Liaocheng, Shandong, China) with a wavelength of 10.6 µm, leading to the formation
of the hole array. The specific procedures for this process are outlined in Figure 1b. Utilizing
AutoCAD2013TM software (G. 55. 0. 0), a 6 × 6 matrix of circular holes with a diameter
of 1 mm was designed. The spacing (d) between two adjacent holes was identified as
a key parameter for optimization purposes in our research. Subsequently, the designed
arrays were fed into the laser machine, where the samples underwent ablation with precise
adjustments of laser power and scanning speed, resulting in the creation of a PDMS
dielectric layer containing an array of holes. The ablation depth of porous PDMS using
varying laser powers at a consistent scanning speed is illustrated in Figure S1.

It is important to acknowledge that achieving greater hole depth at lower power
levels necessitates multiple ablations to meet the specified criteria, resulting in a more
time-intensive process. Elevated power levels raise the ambient temperature of the laser
output beam, potentially causing “over-burning” of the hole arrays and impacting their
morphology [58]. In this study, a laser power of 30 W and a scanning speed of 200 mm/s
was utilized to process the porous PDMS samples.
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Furthermore, the depth of the hole array can be controlled by adjusting the number
of ablations. When utilizing a power of 30 W and a scanning speed of 200 mm/s, it
was observed that two ablations of the porous PDMS film resulted in a hole depth of
approximately 2 mm, which corresponds to the thickness of the sample films prepared.
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2.4. Experimental Setup

The morphology of the dielectric layer was analyzed using optical microscopy (RY001,
Ksgaopin, Kunshan, Jiangsu, China) and scanning electron microscopy (JSM-IT500HR,
Japan Electronics, Tokyo, Japan). The porous PDMS dielectric layer, measuring 8 mm × 8
mm × 2 mm (2 mm thick), containing an array of holes, was positioned between two flexible
electrodes, each measuring 8 mm × 8 mm × 0.025 mm. These electrodes were composed of
PI tape (0.02 mm thick) and copper foil (5 µm thick). Due to the pressure sensitive adhesive
(PSA) on the purchased copper sheet, it possessed some adhesive properties. The PSA on
the electrodes was bonded to thin (50 µm thick) layers of PDMS precursor (with a 10:1
mass ratio of PDMS to curing agent), which had been pre-coated (using the scratch-coating
method) on the upper and bottom surfaces of porous PDMS dielectric layers with the hole
array. After the PDMS precursor is cured, the flexible electrodes can be firmly connected to
the dielectric layer, ensuring no detachment occurs during compression and bending. The
sample was mounted on a 5 cm diameter disk and secured to the testing apparatus using
PI tape to maintain flatness and optimal contact during testing. A manual press (HLD,
Handpi, Yueqing, Zhejiang, China) was utilized to exert pressure on the sensor, while a
digital force gauge (HP-20, Handpi, Yueqing, Zhejiang, China) was employed to measure
the real-time pressure value. The digital force gauge boasts a reading accuracy of 0.001 N

120



Polymers 2024, 16, 2369

and a range of 0–20 N. Copper wire was employed to connect the two electrodes of the
sensor with the LCR bridge (TH2822D, Tonghui, Changzhou, Jiangsu, China). The real-time
capacitance data of the sensor were recorded using the LCR bridge at a temperature of
25 ◦C. The data acquisition frequency of the bridge was set at 100 kHz. Afterwards, the
collected data were compiled and analyzed on a computer system. The circuit connection
diagram for the test of the capacitive flexible pressure sensor developed in this study is
illustrated in Figure S3.

3. Results and Discussion
3.1. Measurement of Porosity in Porous Dielectric Layers

The mass of multiple prepared porous PDMS samples was individually recorded in
order to improve the accuracy of porosity estimation. Subsequently, these samples were
immersed in separate beakers filled with water for 8 h to ensure complete penetration of
water into the porous PDMS samples. After taking these samples out of the water, the mass
of each sample post-water absorption was measured and documented. The porosity of
each sample was then calculated using Equation (1) [59].

P =
(mw − md)/ρw

(mw − md)/ρw + md/ρd
× 100% (1)

where md is the mass of the initial porous dielectric layer, mw is the mass of the porous
dielectric layer after sufficient water absorption, ρd is the density of the PDMS, and ρw is the
density of water. The porosity of the porous PDMS dielectric layer, which was fabricated
using the sacrificial NaCl template method, was determined to fall within the range of 46%
± 0.7% based on Equation (1).

3.2. Characterization of Flexible Capacitive Sensors

The capacitive flexible pressure sensor developed in this study comprises two flexible
electrodes composed of flexible PI tape (0.02 mm thick) and copper foil (5 µm thick), as well
as porous PDMS dielectric layer which incorporates an array of holes. Figure S2 illustrates
the external appearance of the sensor and highlights its remarkable flexibility. Meanwhile,
Figure 1c provides a comprehensive illustration of the flexible capacitive pressure sensor’s
composition, complemented by optical and scanning electron microscope images that reveal
the cross-section of the dielectric layer in detail. Analysis of the sensor dielectric layer’s
cross-section reveals that the laser-ablated holes exhibit a slight tilt angle on their sidewalls,
deviating from perfect verticality. The analysis of the cross-sectional intensity distribution
of the laser output power reveals a Gaussian function pattern [58,60], indicating that the
highest energy concentration is located at the center of the beam. Consequently, materials
positioned near the beam’s center experience complete ablation during the ablation process,
whereas those situated at the periphery of the beam exhibit lower energy levels and,
consequently, reduced ablation efficiency. This discrepancy in energy distribution results in
a slightly inclined sidewall formation. Scanning electron micrographs of the cross sections
provide visual representation of the dimensions and spatial arrangement of micropores. It
is observed that, with the exception of a few larger pores resulting from larger salt particles,
the variation in pore size among the remaining pores is minimal. Analysis of the particle
size distribution shown in Figure 1d reveals that the majority of pores fall within the range
of 8–32 µm.

3.3. Sensing Mechanism of Capacitive Pressure Sensors

A capacitive pressure sensor’s capacitance is determined by the effective overlap
area of the electrodes and the dielectric layer (A), the relative permittivity of the dielectric
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layer (εr), and the distance between the electrode plates (d). Specifically, it is determined
according to the conventional capacitance formula, Equation (2), for a parallel flat capacitor.

C =
ε0εr A

d
(2)

In this equation, ε0 represents the dielectric constant of air, while εr stands for the
relative dielectric constant of the dielectric layer, and d denotes the distance between the
two electrode plates. In the case of a porous dielectric layer containing an array of holes,
a fraction of the dielectric layer’s volume is initially filled with air. Upon application of
force, the air-filled pores within the dielectric layer gradually collapse and are substituted
with solid PDMS material. This process alters the sensor’s geometry, leading to variations
in the dielectric constant (εr) and thickness (d), consequently impacting the capacitance.
The sensor’s response to pressure is determined by monitoring the relative changes in
capacitance. Additionally, the close and secure attachment of the flexible electrodes to
the dielectric layer serves to mitigate noise interference. The electrodes employed in this
study exhibit superior conductivity and flexibility, thereby enhancing the precision of
data collection within narrow pressure ranges. The sensing mechanism of the sensor we
designed is illustrated in Figure 2a. The dielectric layer’s relative dielectric constant is
influenced by both air and PDMS due to the presence of microporous pores and the hole
array. This relationship can be quantitatively determined using Equation (3).

εr = εava + εcvc (3)
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Figure 2. (a) Illustration of the workflow for a porous flexible capacitive pressure sensor, featuring an
array of holes structure. (b) A schematic diagram elucidating the sensing mechanism of a flexible
capacitive pressure sensor, featuring a porous dielectric layer without an array of holes structure.

The relative permittivity of air, denoted as εa and approximately equal to 1, and the
relative permittivity of PDMS, denoted as εc, are key parameters in the analysis of the dielectric
layer. The volumes occupied by air (va) and PDMS (vc) within the dielectric layer play a
crucial role in the compression sensing mechanism of the sensor. When the dielectric layer
undergoes compression, a portion of the air is displaced by PDMS, resulting in changes to
both va and vc, ultimately leading to variations in the relative permittivity (εr).

The diagram in Figure 2a illustrates the workflow of a porous PDMS dielectric layer
containing an array of holes. The initial thickness of the sensor’s dielectric layer is denoted
as d0, with a relative dielectric constant of εr0. The pressure response of the sensor can be
categorized into two distinct phases as pressure increases from 0. During the initial phase,
the sensor’s high density of micropores and the hole array results in a significant amount
of air being trapped within the sensor, leading to the low Young’s modulus of the dielectric
layer, which facilitates easy compression of the sensor. During the low-pressure phase,
there is a rapid increase in ∆d1 = d1 − d0 , as the relative permittivity of the dielectric
layer transitions from εr0 to εr1 due to the partial replacement of air with solid PDMS. This
enhanced sensitivity of the sensor is particularly pronounced in the low-pressure regime,
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contributing to its improved performance in detecting subtle pressure variations. In the
subsequent stage, as the pressure increases to a higher level, the microporous pores of the
PDMS layer become densified, leading to a less significant change in ∆d2 = d2 − d1 . The
alteration in the relative dielectric constant εr, transitioning from εr1 to εr2, significantly
influences the variation in capacitance value. This shift in relative permittivity primarily
correlates with the saturation of microporous pores and laser-ablated holes. In comparison
to the porous structure-only sensor depicted in Figure 2b, our analysis revealed that the
porous dielectric layer with an array of holes illustrated in Figure 2a exhibited greater
compression than the porous structure-only dielectric layer shown in Figure 2b when
subjected to identical pressure levels; that is, d0 − d1 > d0 − d3 and d1 − d2 > d3 − d4 . The
notable increase in sensor sensitivity, particularly evident in low-pressure conditions, stems
directly from the incorporation of a hole matrix within the porous dielectric layer. This
design feature results in a reduced Young’s modulus, enabling greater compressibility and
subsequently enhancing the sensor’s ability to detect even minute pressure fluctuations.
The uniformly distributed micropores within the dielectric layer, in conjunction with the
array of holes extending to the base, function synergistically to enhance pressure sensing
across the entire operational range. During the initial phase, when the pressure was applied,
the majority of the microporous pores were filled by solid PDMS, whereas only a minor
proportion of the air introduced through the array of holes was filled with solid PDMS.
At this stage, the microporous pores assume a primary function, while the array of holes
assumes a secondary role. In the second stage, when the pressure gradually increases, the
air introduced through the array of holes assumes a primary role because it still has a large
volume fraction, whereas the residual microporous pores contribute a secondary function
because most of the micropores were densified. The synergistic interaction between the
microporous pores and the hole array is crucial in ensuring a broad operational range and
high sensitivity at low pressures for the sensors. As the pressure on the sensor is gradually
released, the densified pores within the dielectric layer are re-established, resulting in the
restoration of the hole array to its initial height and the morphology of the dielectric layer.
This observation serves as evidence of the sensor’s favorable recoverability.

3.4. Sensor Performance Optimization and Improvement

The specific test steps for the performance of capacitive pressure sensors are described
in Section 2.4. Pressure is applied using the HLD pressure testing machine, pressure data
are recorded with the HP-200 dynamometer, and capacitance data are collected using the
TH2830 LCR meter. The sensitivity equation for the sensor is presented as Equation (2).

S =
δ
(

∆C
C0

)

δp
(4)

where ∆C is the capacitance value C of the sensor after it has been compressed minus
the initial capacitance value C0, and p is the pressure loaded on the sensor. It is recog-
nized that the larger the value of ∆C/C0 per unit pressure, the higher the sensitivity of
the sensor. Based on this theory, five different sample designs were created for compar-
ative analysis. Specifically, the samples can be categorized into five types: bulk PDMS
(bPDMS), bulk PDMS with an array of holes (bPDMS-h2) with a hole depth of 2 mm, porous
PDMS (pPDMS), porous PDMS with an array of holes depth of 1 mm (pPDMS-h1), and
porous PDMS with an array of holes depth of 2 mm (pPDMS-h2). Each sample measures
8 mm × 8 mm × 2 mm (2 mm thick) and features a 6 × 6 round hole array. The manu-
facturing procedure entailed the repetitive ablation of bulk PDMS material to a depth of
2 mm, accomplished through five sequential cycles using a laser power setting of 30 W and
a scanning velocity of 200 mm/s. To produce porous PDMS with a uniform array of 1 mm
deep holes, a singular ablation step was employed, utilizing a laser intensity of 30 W and
a scanning velocity of 200 mm/s. Furthermore, to create porous PDMS featuring 2 mm
deep holes, a two-step ablation process was conducted under the same laser conditions,
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precisely reaching the bottom of the dielectric layer during the second ablation iteration.
Figure S4 illustrates the variation in hole depths resulting from ablating the porous PDMS
dielectric layer once (Figure S4a), twice (Figure S4b), and ablating the bulk PDMS dielectric
layer three (Figure S4d) and five times (Figure S4c) using a CO2 laser, as per the specified
laser parameters. The data indicate that a greater number of ablations are required for
the bulk PDMS in comparison to the porous PDMS to achieve equivalent hole depths.
This discrepancy can be attributed to the poor light absorption of the transparent bulk
PDMS [61], necessitating an increased number of ablations for effective ablation.

The performance curves illustrating the relative capacitance versus pressure for the five
tested sensors are presented in Figure 3. Specifically, Figure 3a displays the curves within
the pressure range of 0–200 kPa. Analysis of the results indicates that the sensitivity of the
sensors, namely pPDMS, pPDMS-h1, and pPDMS-h2, can be significantly improved through
the incorporation of multiple micropores. This enhancement is attributed to the lower Young’s
modulus of the porous samples, rendering them more compressible compared to the bulk
PDMS. Despite the introduction of an array of holes in the dielectric layer of the bPDMS-h2
sensor, the lack of a porous structure in the dielectric layer results in all other areas being
occupied by PDMS. This limits the presence of air gaps, thereby hindering the reduction
of the Young’s modulus of the dielectric layer. Consequently, the dielectric layer is difficult
to compress, leading to a relatively low sensitivity. Regarding the two sensors, pPDMS-h1
and pPDMS-h2, which have been modified with an array of holes in addition to the existing
porous structure, their porosity is greater and their Young’s modulus is lower compared to
the pPDMS sensor with only a porous structure. This results in increased compressibility and
higher sensitivity of the two sensors compared to the pPDMS sensor.
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Figure 3. (a) The variation curves depicting the relationship between relative capacitance and pressure
within the range of 0 to 200 kPa for five test samples. (b) A linear fit curve illustrating the correlation
between relative capacitance change values and pressure values within the pressure range of 0 to
1 kPa. (c) Linear fit curves demonstrating the relationship between relative capacitance change values
and pressure values within the pressure range of 1 kPa to 10 kPa. (d) Fit curves representing the
relationship between relative capacitance change values and pressure values within the pressure
range of 10 to 200 kPa.
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To better elucidate the operational principles of the sensor, three distinct pressure
intervals were selected for individual analysis of the capacitive response. In particular, the
sensitivities of pPDMS-h2, pPDMS-h1, and pPDMS were determined to be 0.694 kPa−1,
0.379 kPa−1, and 0.188 kPa−1, respectively, within the range of 0–1 kPa, as illustrated in
Figure 3b. When the applied pressure falls within the range of 1–10 kPa, the sensitivity
of various sensor types diminishes, as shown in Figure 3c. However, sensors utilizing a
dielectric layer with a composite structure of micropores and an array of holes still exhibit
a level of sensitivity. Furthermore, the sensitivity of these sensors increases with the depth
of the holes within the array. Even under extremely high pressures, pPDMS-h2 continues
to exhibit a certain degree of sensitivity, as depicted in Figure 3d. In addition, the tests
conducted yielded the relationship curves between pressure and strain in the dielectric
layer for the five samples within the range of 0–200 kPa, as illustrated in Figure S5. It
is evident that the sample pPDMS-h2, characterized by high compressibility, exhibited
the highest strain of 72% at a pressure of 200 kPa, whereas bulk PDMS displayed the
lowest strain of approximately 26% at 200 kPa. Additionally, all samples demonstrated
strain–pressure curves that followed an exponential function increase.

The dielectric layer of a capacitive pressure sensor exhibits a capacitive response that
is tied to both the material’s relative permittivity and the inter-electrode distance between
its two conductive plates. Under elevated pressure, the porous structure of the dielectric
layer undergoes compression, leading to the infiltration of solid PDMS into the majority of
its pores. This mechanism entails a deceleration in the shrinking rate of the gap between the
electrode plates, coupled with a diminished rate of growth in the relative permittivity of the
dielectric layer, collectively contributing to a decrease in sensor sensitivity as the applied
pressure escalates. Introducing an array of holes into the dielectric layer enhances the air
content, enabling a more effortless compression response to applied pressure in contrast to
a purely porous dielectric layer. This modification leads to an improved compressibility
characteristic under pressure. Consequently, the sensitivity is heightened. As pressure
levels escalate, the air gap within the porous dielectric layer becomes nearly solidified by
the PDMS material, leading to an increase in Young’s modulus and rendering compression
more challenging. Therefore, the sensitivity of dielectric layers with only microporous
structures is relatively low at high pressures. Nevertheless, in the case of a porous dielectric
layer containing an array of holes, the presence of a significant volume of air at the location
of the hole array allows the dielectric layer to maintain an air gap even when subjected to
high levels of compression. This characteristic provides the dielectric layer with the ability
to respond to the higher pressures, thereby enabling sensors utilizing such porous dielectric
layers to maintain sensitivity even under high-pressure conditions.

The impact of the sparsity of an array of holes in porous dielectric layers on the Young’s
modulus of a sensor, and subsequently on its sensitivity, was investigated by maintaining a
constant individual hole area (1 mm in diameter) and adjusting the laser ablation spacing
between neighboring holes in the array. The laser ablation process results in concentrated
thermal energy at the location of the holes, leading to over-burning. When the spacing
between two holes is too small, the high laser energy causes an increase in material tem-
perature outside the ablation area. This can result in the destruction of the PDMS between
neighboring holes, leading to the cross-linking of the holes and compromising the intended
structure of the dielectric layer. Considering the above issues and the ablation accuracy
(0.06 mm) of the CO2 laser we used, we set the minimum pitch to 0.4 mm. The spacing was
sequentially adjusted to 0.8 mm, 1.0 mm, and 1.2 mm. The depth of the holes was all 2 mm.
The samples of the various classes mentioned above were named pPDMS-w0.4 (which is
the same sample as pPDMS-h2), pPDMS-w0.8, pPDMS-w1.0, and pPDMS-w1.2. Figure S6a–c
shows the physical diagrams of the pPDMS-w0.8, pPDMS-w1.0, and pPDMS-w1.2 dielectric
layers, respectively.
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The results of their performance are illustrated in Figure 4. Our investigation revealed
that, under identical pressure conditions, sensitivity increases as the spacing of the hole
array decreases. Figure 4a displays the pressure response curves of the four samples
within the pressure range of 0–200 kPa. Specifically, the sensor pPDMS-w0.4 demonstrated
the highest sensitivity of 0.694 kPa−1, within the pressure range of 0–1 kPa, as shown
in Figure 4b. As the spacing between the hole array of various samples increases in a
sequential manner, the sensitivity of the sensors correspondingly decreases across the same
pressure range. The sensitivity of the sensor pPDMS-w0.8 is 0.396 kPa−1 within the pressure
range of 0–1 kPa. The sensor pPDMS-w1.0 exhibits a sensitivity of 0.248 kPa−1, while the
sensor pPDMS-w1.2 demonstrates a sensitivity of merely 0.197 kPa−1. It is important to
highlight that despite the decrease in sensitivity of a sensor utilizing a porous dielectric layer
with an array of holes, as the spacing of the array increases over the same pressure range,
they remain superior to pPDMS. This is precisely the result of the increased sensitivity
due to the introduction of a hole array in the porous dielectric layer, thus leading to a
further reduction of the Young’s modulus of the dielectric layer. In the pressure range of
20–200 kPa (Figure 4c), the decrease in sensitivity of all four sensors is attributed to the
increased density and reduced compressibility of the dielectric layer at higher pressures.
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Laser ablation creates a series of perforations that introduce additional air into the
porous dielectric layer, which has a porosity of approximately 46%. This process lowers
the Young’s modulus of the material, facilitating compression and ultimately enhancing
the sensitivity of the flexible sensor. In a specification-consistent porous dielectric layer,
the volume fraction of air introduced by the hole array increases as the holes are closer
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together. This enhanced porosity facilitates greater compressibility of the dielectric layer,
thereby improving the sensitivity of the sensor. Theoretically, the porosity of the samples
can be determined by combining the air volume introduced by the sacrificial NaCl template
method with the air volume introduced by the pore array created through laser ablation [45],
as shown in Figure 4d. According to this theory, the porosity values for pPDMS, pPDMS-
w1.2, pPDMS-w1.0, pPDMS-w0.8, and pPDMS-w0.4 are approximately 46%, 56.8%, 58.8%,
61.5%, and 69.3%, respectively. It is important to highlight that the porosity calculated
through this method closely aligns with the results obtained from the porosity measurement
method for porous dielectric layers discussed in Section 3.1, with a maximum discrepancy
of 1%. Figure 4d illustrates the variation in relative capacitance of the sensor in relation to
the porosity of the dielectric layer under a pressure of 1 kPa. The curve clearly exhibits an
exponential transformation as the porosity increases. Therefore, we believe that the hole
array provides an effective way to reduce the Young’s modulus of the dielectric layer and
improve the responsiveness of capacitive sensors in a certain pressure range.

3.5. The Comprehensive Performance of Flexible Capacitive Sensors

Based on the optimization process outlined above, the flexible capacitive sensor
pPDMS-h2 was chosen for further comprehensive performance evaluations in this study.
To demonstrate the sensor’s minimum detection limit, incremental pressure was applied
starting from 1 Pa, resulting in a notable change in capacitance value at 3 Pa, as illustrated
in Figure 5a. The sensor exhibited a significant response at 3 Pa, indicating that its mini-
mum pressure detection threshold is approximately 3 Pa. The graphical representation in
Figure 5b showcases three distinct traces, each portraying the sensor’s relative capacitance
variation ∆C/C0 in response to static loads of 5 g, 25 g, and 40 g, respectively. It is evident
that ∆C/C0 exhibits rapid variation during the loading and unloading, demonstrating
consistent responsiveness, effective recovery, and high sensitivity. The sensor’s response
and recovery times were assessed by swiftly applying and releasing a pressure of 800 Pa.
Rapid application and release of pressure can be crucial for ensuring the accuracy of the
measurement data. Analysis of Figure 5c reveals that the sensor achieves a response time of
96 ms when the capacitance value change rate reaches 0.58, and a recovery time of 118 ms
when pressure is rapidly released. Based on this observation, the sensor’s response time
aligns closely with that of human skin’s sensitivity to pressure stimuli [62], suggesting its
potential applicability in monitoring human physiological activities, thereby expanding its
utilization domain. To evaluate the reproducibility of the sensor’s performance, the sensor
was subjected to repetitive loading and unloading cycles at a constant pressure of 150 kPa
on a testing platform, totaling 500 iterations. This methodology allowed for an assessment
of the sensor’s consistency over multiple cycles. The results, depicted in Figure 5d, indicate
that the maximum change in samples exhibited a margin of error of ±14% throughout the
cycling process. The observed maximum error value of 14% can be attributed to external
interference affecting the testing machine at some point in time. Analysis of the graphical
results indicates that the sensor exhibits excellent repeatability across each cycle under
stable operating conditions. Consequently, it can be inferred that the sensor demonstrates
enhanced durability, an extended service life, consistent responsiveness after multiple
uses, and the capacity to endure high pressures. Small errors due to interference from
the test equipment do not affect the overall sensing performance. The phenomenon of
hysteresis, arising from the cyclic loading and unloading of the sensor within a pressure
spectrum spanning 0 to 200 kPa, is visually presented in Figure 5e. The analysis reveals a
maximum delay of approximately 6.8%. This lag level is nearly identical to that reported in
some previous work [63,64]. This unavoidable hysteresis is due to the fact that polymers
show viscoelastic behavior [65]. Figure 5f demonstrates the sensor’s exceptional dynamic
pressure response within the 0–70 kPa range.
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Figure 5. Comprehensive performance testing of capacitive pressure sensors utilizing the sample
pPDMS-h2. (a) The sensor’s minimum pressure detection limit. (b) The sensor’s pressure response to
the loading and unloading of 5 g, 25 g, and 40 g weights. (c) The sensor’s response time at a pressure of
0.85 kPa. (d) The stability test of the sensor’s responsiveness at a pressure of 105 kPa for 500 cycles. (e) The
test of the hysteresis in the capacitive response of pressure sensors between 0 and 200 kPa during loading
and unloading. (f) The test of the sensor’s response to stepped pressure changed between 0 and 70 kPa.

3.6. Performance Comparison of Different Porous Capacitive Pressure Sensors

Table 1 demonstrates some research conducted in recent years to investigate the
performance of porous capacitive pressure sensors. It can be noted that the vast majority of
work is developed using templates, or by dissolving away the soluble material after the
elastomer layer has cured. The introduction of air gap increases the compressibility of the
dielectric layer, so that the sensitivity increases when the porosity is higher. Therefore, by
introducing an array of holes into the porous dielectric layer, we have obtained a higher
porosity and thus improved the sensitivity of our sensors compared to other sensors with
only micropores. In addition, due to the synergistic effect of micropores and a hole array,
the sensor obtains a wide pressure detection range.

Table 1. A review of the performance specifications of several types of porous capacitive pressure
sensors (NR = Not Reported).

Electrodes/Dielectric Layer Key Materials to Fabricate the
Dielectric Pressure Range Sensitivity Response Time Reference

AgNPs-SBS/
Microporous PDMS PDMS/Glucose particles 0–2 kPa 0.278 kPa−1 340 ms [63]

AgNWs and CFs-PDMS/
Microporous ecoflex Ecoflex/Sugar 0–10 kPa 0.161 kPa−1 NR [48]

ITO coated flexible PET/
Porous PDMS PDMS/Sugar/Salt particles 0–5 kPa 0.171 kPa−1 162 ms [66]

Ag-TPU/
microporous PDMS

PDMS/NaHCO3/
HNO3

0–50 Pa
0.2–1 MPa

0.3 kPa−1

3.2 MPa−1 116 ms [49]

ITO coated flexible PET/porous
PDMS PDMS/Deionized water 0.1–0.5 kPa 0.095 kPa−1 110 ms [67]

CB-PDMS/
porous PDMS PDMS/Citric acid monohydrate 0–4 kPa

4–14 kPa
0.1 kPa−1

0.049 kPa−1 80 ms [68]

PI-Cu/
microporous PDMS with hole

array
PDMS/Salt microparticles

0–1 kPa
1–10 kPa

10–200 kPa

0.694 kPa−1

0.077 kPa−1

0.01 kPa−1
96 ms This work
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3.7. Applications Related to Flexible Capacitive Pressure Sensors

This study showcased the potential applications of the sensor developed for monitoring
human physiological activities. The fluorescent point in Figure 6a indicates the specific
site where the sensor was deployed to monitor the volunteers’ physiological activities. By
affixing the sensor to the elbow joint of the volunteers, it was feasible to track the degree
of flexion in their arms. In Figure 6b, it is evident that the capacitive output is optimized
when the arm assumes a 90◦ flexion, followed by a decrease in this response as the arm
bends to a 45◦ angle. Even at minimal bending, a response is still generated. Swallowing, a
critical physiological function, was examined by affixing the sensor to the volunteer’s throat
during normal swallowing activity. Real-time capacitance data collected from the sensor
revealed its responsiveness to the activity, including differences in swallowing speed and
strength (Figure 6c). The sensor was affixed to the volunteer’s knee prior to engaging in
leg-raising movements. As shown in Figure 6d, subsequent repetitive stretching and bending
activities elicited periodic changes in the sensor’s response. To quantify the pressure applied
by each finger on the water cup, sensors were affixed to the glove worn by the participant.
The volunteer subsequently lifted the water cup, allowing for the measurement of pressure
through the detection of capacitance value changes in the sensors on each finger. Analysis
of the data, as depicted in Figure 6e, reveals that the thumb exerts the highest pressure on
the water cup, while the little finger exerts the least pressure. Morse Code, a signaling code
characterized by alternating signals, is utilized to convey various alphabets, numbers, and
punctuation marks through unique sequences. This code serves a crucial function in radio
communication, navigation, emergency signaling, and other domains. Volunteers attempted
to transmit Morse code through the actuation of sensors, and the resulting Morse code signal
was successfully detected on the testing equipment. The results of this experiment are depicted
in Figure 6f,g, showcasing the successful transmission of the messages “USST” and “OECE” by
the volunteers. The aforementioned applications were effectively demonstrated through the
utilization of the sensor developed in this study, thereby showcasing the significant potential
applications of this sensor in the realm of human body monitoring and signal transmission.
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the elbow. (c) Tracking changes in relative capacitance during the act of swallowing. (d) The response
of the sensor from a volunteer engaging in leg lifts. (e) The pressure applied by individual fingers on
a cup of water while being held is measured. (f,g) Generating specific Morse code signals through
the act of pressing the sensor with the fingers.

4. Conclusions

The objective of this study is to introduce a new flexible capacitive pressure sensor
fabricated through the utilization of laser ablation and sacrificial templates. Initially, a
PDMS film with approximately 46% porosity was produced using the sacrificial template
technique. Subsequently, a 6 × 6 array of perforations was created on the porous PDMS
film via a CO2 laser, leading to the development of the dielectric layer employed in this
investigation. The preparation method described is cost-effective, environmentally sus-
tainable, and easily manageable, allowing for the customization of array patterns and
demonstrating significant potential for various applications. Through optimization of the
ablation power of the CO2 laser and careful regulation of the number of ablations, we were
able to identify the specific ablation parameters necessary to achieve the desired hole depth.
Additionally, our research delved into the impact of varying spacing between adjacent holes
within the array on sensor sensitivity, attributing differences in sensitivity to variations in
Young’s modulus. Our research revealed a positive correlation between the proximity of
neighboring cavities and sensor sensitivity, within the limitations of the machining process.
The top-performing sensor in our study demonstrated a sensitivity of 0.694 kPa−1 within
the range of 0–1 kPa. Additionally, the sensor exhibited a broad pressure detection range,
remaining responsive even at pressures as high as 200 kPa and detecting pressures as low
as 3 Pa. Furthermore, the device maintained consistent performance after undergoing
500 consecutive pressure loadings and unloadings. In order to showcase the practical utility
of the sensor, we utilized it to effectively identify signals of human physiological activity
and explored its capacity to convey pertinent information. These findings underscore
the promising application prospects of the capacitive sensor developed by our team, thus
holding significant implications for its broader implementation in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym16162369/s1, Figure S1: Depth of ablation in porous
PDMS dielectric layer as a function of CO2 laser power, at a scanning rate of 200 mm/s; Figure S2:
(a) Physical illustration of a flexible capacitive sensor. (b–d) The exhibition of the mechanical flexibility
of the sensor designed in this work, the upper right image representing the overall flexibility of the
sensor. The two figures below show the flexibility of the electrodes and the dielectric layer, respec-
tively; Figure S3: The circuit connection diagram of each experimental device during the performance
test of the capacitive pressure sensor; Figure S4: Optical microscopy image of the cross-section of the
dielectric layer of the sensors we designed during the hole depth optimization. (a) Optical microscopy
image of the cross-section of the dielectric layer of the sensor pPDMS-h1. (b) Optical microscopy
image of the cross-section of the dielectric layer of the sensor pPDMS-h2. (c) Optical microscopy
image of the cross-section of the dielectric layer of the sensor PDMS-h2. (d) Hole depths obtained
by laser ablation of bulk PDMS, performed three times at a laser power of 30 W and a scanning
speed of 200 mm/s.; Figure S5: Relationship between pressure and compressive strain for capacitive
sensors based on PDMS, pPDMS, pPDMS-h1, and pPDMS-h2 dielectric layers. Figure S6: The show
of the actual drawings of three dielectric layers designed in the process of hole spacing optimization.
(a–c) The three figures show, from left to right, the top views of the dielectric layer of the sensors
pPDMS-w0.8, pPDMS-w1.0, and pPDMS-w1.2, respectively.
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Abstract: Polymeric positive temperature coefficient (PTC) materials with low switching temperature
points are crucial for numerous electronic devices, which typically function within the room tempera-
ture range (0–40 ◦C). Ideal polymeric PTC materials for flexible electronic thermal control should
possess a room-temperature switching temperature, low room-temperature resistivity, exceptional
mechanical flexibility, and adaptive thermal control properties. In this study, a novel PTC material
with a room-temperature switching temperature and superb mechanical properties has been designed.
A blend of a semi-crystalline polymer EVA with a low melting temperature (Tm) and an amorphous
polymer (PVAc) with a low glass transition temperature (Tg) was prepared. Low-cost graphite was
chosen as the conductive filler, while CNF was incorporated as a hybrid filler to enhance the material’s
heating stability. PVAc0.4/EVA0.6/GP-3wt.% CNF exhibited the lowest room temperature resistivity,
and its PTC strength (1.1) was comparable to that without CNF addition, with a Curie temperature
of 29.4 ◦C. Room temperature Joule heating tests revealed that PVAc0.4/EVA0.6/GP-3wt.% CNF
achieved an equilibrium temperature of approximately 42 ◦C at 25 V, with a heating power of 3.04 W
and a power density of 3.04 W/cm2. The Young’s modulus of PVAc0.4/EVA0.6/GP-3wt.% CNF was
9.24 MPa, and the toughness value was 1.68 MJ/m3, indicating that the elasticity and toughness of the
composites were enhanced after mixing the fillers, and the mechanical properties of the composites
were improved by blending graphite with CNF.

Keywords: polymeric positive temperature coefficient; room temperature Curie Point; EVA and
PVAc blends; graphite and CNT co-fillers

1. Introduction

Conductive polymer composites (CPCs) are of widespread interest due to their ver-
satility and dexterity in various engineering applications, such as in overcurrent protec-
tors, electronic devices, electromagnetic shielding, flexible sensors, and self-regulating
heaters [1–7]. Specifically, certain CPCs exhibit a thermal resistance behavior, whereby
the resistivity increases sharply when the temperature exceeds a certain point, referred
to as the switching temperature. This is attributed to the severe thermal expansion near
the melting point of the polymer matrix, resulting in an increase in the spacing between
conductive particles. This phenomenon is defined as the positive temperature coefficient
(PTC) effect and is caused by the mismatch of thermal expansion between the polymer
matrix and the filler, as well as by the disruption of the conductive network [8,9]. In general,
above the melting point, the resistivity decreases inversely with increasing temperature,
exhibiting a negative temperature coefficient effect (NTC) [10]. However, the NTC effect can
significantly impact the performance of PTC materials due to the aggregation of conductive
particles and the random reconfiguration of the conductive network.

To date, there have been numerous attempts to obtain PTC materials with superior
performance, but most of the research has concentrated on the high temperature region,
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with switching temperatures ranging from 50 to 400 ◦C [11–15]. However, in numerous
regions, the operating temperature range of electronic devices is often required to be within
the room temperature range of 0–40 ◦C [16–18]. To achieve effective temperature control,
PTC materials should possess a switching temperature slightly below the control temper-
ature of the electrical device. Therefore, preparing PTC materials with a low switching
temperature ranging from 0 to 40 ◦C has been a crucial issue [19–21].

Ideal polymeric PTC materials for thermal control should possess room-temperature
switching temperatures [22–24], low room-temperature resistivity [25–29], good PTC re-
peatability [14], high PTC strength [19], good mechanical flexibility [30–33], and adaptive
thermal control properties [21]. It has been demonstrated that PTC materials with low
Curie temperatures can be achieved using low melting point semi-crystalline polymers and
low glass transition temperature amorphous polymers as matrix materials. These materials
exhibit excellent PTC repeatability and mechanical properties, with PVAc0.4/EVA0.6/GP
composites showing the best Joule heating performance, yet their heating stability requires
improvement. For polymer-based PTC composites to be practical, heating stability is cru-
cial, directly affecting the material’s service life. To enhance heating stability, focus should
be on improving PTC repeatability while avoiding exceeding the material’s tolerance tem-
perature for extended periods, as this can also shorten its lifespan. Numerous studies have
been conducted to improve PTC repeatability, primarily through filler modification [34,35],
hybrid fillers [34,36], polymer blending [37–40], and macroscopic assembly of different
PTC materials [41–43]. The current study considered polymer blending to enhance PTC
reproducibility during the initial design phase, and the results validated this approach.
However, further performance enhancement necessitates considering other methods. Mod-
ified fillers can improve compatibility between fillers and polymers, preventing large
agglomerates and allowing conductive fillers to be reversibly repositioned. The polymer
matrix bonds to filler surface-grafted molecules through physical entanglement or chemical
bonding. However, due to the complexity of filler modification and potential conductivity
losses with increasing grafting modifiers, this strategy is rarely implemented in practical
products. Rational device structure design can also enhance PTC performance, but the
manufacturing process is intricate, increasing costs and limiting applications in scenarios
requiring lighter, simpler materials, such as aircraft wing de-icing or wearable devices.
Hybrid fillers leverage the synergy between fillers to hinder cluster formation. The second
filler connects conductive filler clusters over long distances, increasing the likelihood of
conductive network formation. This approach often reduces room temperature resistivity
while enhancing PTC repeatability. High aspect ratio fillers have been reported to restrict
other filler movements, inhibiting the NTC effect [44].

In this paper, carbon nanofibers (CNF) with high aspect ratios were chosen as the
second conductive filler to be added to the optimal PVAc0.4/EVA0.6/GP composite in
order to further enhance the heating stability of the material. Additionally, the heating
stability of the material was tested at low temperatures (<0 ◦C). The material’s heating
performance at low temperatures (<0 ◦C) was also examined to explore its potential for
de-icing applications.

2. Experimental
2.1. Materials

Graphite (average size about 6.5 µm, density 2.2 g/cm3) was purchased from Shen-
zhen Jinda Power Technology Co. (Shenzhan China) PS (density 1.047 g/cm3, melt flow
index 7.9–8.9 g/10 min, 200 ◦C/5 kg) was provided by Shanghai Aladdin Biochemical
Technology Co. EVA (40 w, Mr = 70,000–120,000, density 0.965 g/cm3, melt flow in-
dex 52 g/10 min, 190 ◦C/2.16 kg) was purchased from DuPont de Nemours & Company
(Guangzhou, China). Toluene (AR, Mr = 92.14) was produced by Shanghai Tianteng Tech-
nology Co. (Shanghai, China) CNF (purity > 70%, OD 200–600 nm, length 5–50 µm) was
provided by Shanghai Aladdin Biochemical Technology Co. (Shanghai, China).
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2.2. Sample Preparation

The PVAc/EVA/GP-CNF composites were prepared using the solution blending
method. Firstly, a 2/3 mass ratio of PVAc and EVA (total mass 0.4 g) was added to 2.9 mL
of toluene at the same time, followed by magnetic stirring at 60 ◦C for 12 h until the
polymer was completely dissolved. After being dissolved, 20 wt.% of graphite as well as
mass ratios (1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.%) of CNF were weighed and added
to the mixed solution, and then the multi-step cyclic dispersion method was performed:
magnetic stirring for 1.5 h, sonication for 10 min, oscillation on a vortex mixer for 1 min,
and then magnetic stirring for 10 min, sonication for 10 min, oscillation on a vortex mixer
for 1 min. Immediately after the dispersion process, the mixed solution in the bottle was
sucked up with a rubber-tipped dropper and squeezed out onto a clean glass sheet, which
was naturally stretched on the surface using the tension of the liquid. The glass sheet was
put into an oven at 60 ◦C and kept warm for 24 h to allow the solvent to evaporate. After
the end of the holding period, it was cooled to room temperature and then annealed: the
temperature was slowly increased to 70 ◦C for 10 min, and then cooled to room temperature.
Finally, the sample was obtained by stripping the film, and the thickness of the sample was
about 200 µm. The composition of the polymer and conductive filler used in the experiment
is shown in Table 1.

Table 1. Surface free energies of the fillers and polymers.

Materials Total Surface Energy
γ (mJ·m−2)

Dispersion
Component γd

(mJ·m−2)

Polar Component γp

(mJ·m−2)

EVA (40 wt.%VA) 35.9 32.5 3.4
PVAc 36.5 25.1 11.4

Graphite 52.8 41.1 11.7
CNF 94.7 92.1 2.6

2.3. Characterization

The microscopic morphology of the fracture surface and the distribution of graphite
in the co-polymer were characterized by field emission scanning electron microscopy.
The fracture surfaces of the samples were obtained by breaking the samples after immer-
sion in liquid nitrogen for 5 min. Gold spraying was performed on all studied surfaces
before testing.

The thermal properties of PTC materials were determined by differential scanning
calorimetry. A sample weighing about 5 mg was heated from 10 ◦C to 180 ◦C at a heating
rate of 10 ◦C/min, held at this temperature for 5 min to remove the thermal history, and
then cooled from 180 ◦C to 10 ◦C at a cooling rate of 10 ◦C/min, held for 5 min, and then
heated from 10 ◦C to 180 ◦C at a rate of 10 ◦C/min.

The DC resistance of the sample along the thickness direction was measured contin-
uously using the PTCR-T characteristic test system with a heating rate of 2 ◦C/min. The
resistivity ρ was calculated as ρ = RS/d, where R, S, and d represent the resistance, area,
and thickness of the sample, respectively. The sample was cut to a size of 10 mm × 10 mm
before testing, and the upper and lower surfaces of the material were sprayed with gold.

A DC power supply was used to apply a voltage to the samples, and the Joule heating
properties of the materials at different voltages were tested by varying the voltage and
testing their electrical heating stability. The mechanical properties of the samples were
tested using an Instron tensile testing machine to evaluate their mechanical properties.

3. Results and Discussion
3.1. Microscopic Morphological Analysis of PVAc0.4/EVA0.6/GP-CNF Conductive Composites

Figure 1 shows the cross-sectional view of PVAc0.4/EVA0.6/20 wt.% CNF and the
corresponding energy dispersive spectroscopy (EDS) image. When the PVAc/EVA mass
ratio is 2/3, the morphology of the composite undergoes significant changes when graphite
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is replaced with the same content of CNF. It has been observed that the region with relatively
high O content in the EDS image is primarily PVAc, while the region with low O content
is primarily EVA, thus enabling the distinction of regions in Figure 1a based on the EDS
(Figure 1b). Initially, when the polymer matrix components were identical, the two phases
of the biphasic polymer lost their longitudinal co-continuity after the filler was changed to
CNF, resulting in a more distinct division between the EVA and PVAc phases. The EVA
phase filled with CNF was more porous and loose, with finer and rougher pores overall.
Meanwhile, some pores were observable in the PVAc phase filled with CNF, but they were
coarser, and the PVAc phase in the cross-section appeared relatively smoother. Additionally,
there were differences in the pattern of CNF filling in the two phases. In the EVA phase, the
CNF was smaller, while in the PVAc phase, not only were there some fine CNF interspersed,
but also some relatively large CNF tips were visible through the PVAc phase, leading to
larger holes in this phase. The reason for this morphological difference may be that EVA
is a semi-crystalline polymer, comprising both crystalline and amorphous phases. The
introduction of CNF disrupts the crystalline phase structure, resulting in the formation
of many loose pores. Conversely, PVAc is a pure amorphous phase with better affinity
for CNF, leading to CNF being wrapped in the polymer, resulting in narrower voids and
fewer pores.
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Figure 1. PVAc0.4/EVA0.6/20wt.% CNF: (a) SEM image of cross section; (b) EDS surface image (the
Chinese characters in the figure mean: “Digital Image”).

Figure 2 shows SEM cross-sectional images of the PVAc0.4/EVA0.6/GP-CNF com-
posites at different CNF contents. From the figures, it can be seen that the addition of a
small amount of second filler CNF on top of 20 wt.% graphite does not significantly affect
the morphology of the composites, and the biphasic polymers still exhibit a co-continuous
state at these five CNF contents, with no obvious dividing line or partition between the
two phases.

According to Figure 3, the distribution of PVAc and EVA phases is similar to that
of graphite in the absence of CNF addition. It can be observed that the graphite is well
dispersed in the matrix regardless of the CNF content. Graphite plays a significant role in
the formation of the conductive network, while CNFs of varying sizes function as a “bridge”
connecting graphite particles and forming graphite–CNF–graphite channels. Additionally,
some CNFs are directly or indirectly in contact with each other, forming CNF–CNF net-
works (see Figure S1 in Supporting Information), thus creating a dual conductive network
and enhancing the likelihood of forming a conductive pathway. Figure 2f depicts a partial
enlargement of the cross-section at a CNF content of 3 wt.%. Notably, CNFs can traverse
the polymer phase, serving as a bridge between two-phase regions, which can compensate
for the smaller size of graphite particles that may not form long conductive channels alone.
This indicates that graphite and CNFs have a synergistic effect on the formation of the
conductive network, resulting in a more stable and superior conductive network.
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In order to predict the preferential distribution of graphite in the binary-polymer,
classical thermodynamics is used. When the equilibrium state is reached, the graphite
is either distributed in a specific phase or at the interface of two immiscible polymers,
which is dictated by the minimum interfacial energy [45]. The wetting coefficient (ωa) can
assess the equilibrium state of the conductive fillers based on Young’s equation, shown as
Equation (1) [46]:

ωa =
γCA − γCB

γAB
(1)

where γCA, γCB, and γAB are the interfacial energies between polymer A and the filler,
polymer B and the filler, and between polymer A and polymer B, respectively. The values
of ωa > 1, ωa < −1, or −1 < ωa < 1 mean that the fillers would preferentially be localized
in polymer B, in polymer A, or at the interface, respectively [47].

The interfacial energies can be calculated from the surface energies of the dispersion
and polar parts. According to the type of surfaces, two main approaches are often used to
calculate γij, including the harmonic mean equation and the geometric mean equation [48].
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Harmonic mean equation:
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where γ1 and γ2 are the surface tensions of components 1 and 2; γd
1 and γd

2 are the dispersive
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p
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the surface tension of components 1 and 2.
The results of the interfacial energy obtained using Equations (2) and (3) are presented

in Table 2, and the results of the wetting coefficient are shown in Table 3. The wettability
coefficients calculated using the harmonic mean equation and the geometric mean equation
are 0.3 and 0.4, respectively, suggesting that graphite is primarily situated at the interface
between EVA and PVAc, which aligns with our observed findings. However, for CNF, the
wettability coefficients determined by the harmonic mean equation and the geometric mean
equation are −2.9 and −3.2, respectively, implying that CNF predominantly resides in the
EVA phase. Nevertheless, this inference contradicts the observed packing distribution.

Table 2. Interfacial energies as calculated using harmonic mean equation and geometric mean equation.

Materials
Interfacial Energy by Harmonic

Mean Equation
(mJ·m−2)

Interfacial Energy by Geometric
Mean Equation

(mJ·m−2)

EVA/Graphite 5.5 3.0
PVAc/Graphite 3.9 2.0

EVA/CNF 28.6 15.2
PVAc/CNF 43.8 24.1
EVA/PVAc 5.3 2.8

Table 3. Wetting coefficient and predicted location of graphite.

Blends A B ωa (Harmonic Mean
Equation)

ωa (Geometric Mean
Equation) Predicted Location

Graphite/PVAc/EVA EVA PVAc 0.3 0.4 PVAc/EVA
interface

CNF/PVAc/EVA EVA PVAc −2.9 −3.2 EVA

3.2. Influence of Mixed Fillers on Electrical and Thermal Resistance Properties

Figure 4 shows the room temperature resistivity of PVAc0.4/EVA0.6/GP-CNF with
different levels of CNF addition (errors are given in Supporting Information). The room
temperature resistivity increased by three orders of magnitude after adding only 1 wt.%
CNF or 2 wt.% CNF compared to that without CNF. As the CNF content continued to
increase, the room temperature resistivity decreased and then increased, reaching a mini-
mum value of 205.4 Ω·m at 3 wt.% CNF, approximately twice the resistivity without the
addition of CNF. The reason for this trend may be that when 1 wt.% CNF or 2 wt.% CNF is
added, the amount of CNF is too small not only to form a new conductive chain containing
more CNF, but also the insertion of CNF may affect the van der Waals forces between
graphite [49] and thus destroy the graphite–graphite conductive network, resulting in a
higher resistivity at this time. With the addition of more CNF, CNF starts to participate in
the composition of the conducting network, and graphite–CNF–graphite and CNF–CNF
conducting channels appear. However, continuing to increase the CNF content after more
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than 3 wt.% will make it difficult to disperse the CNFs with high aspect ratios by entangling
them with each other [40], and the CNF entanglement phenomenon can be observed in
Figure 2e. The large amount of CNF agglomeration will reduce the utilization of CNF and
make less CNF form the conductive network, and it will affect the composition of the full
conductive network, so the continued addition of CNF will instead increase the resistivity.
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Figure 4. Room temperature resistivity of PVAc0.4/EVA0.6/GP-CNF at different CNF contents.

The temperature resistance characteristic curves of the PVAc0.4/EVA0.6/GP-CNF
composites are depicted in Figure 5. When the CNF content is low, the PTC strength is
similar to that without CNF addition. The PTC curves at 1 wt.% and 2 wt.% CNF content
are similar, suggesting that the conductive network within the material may be comparable
at this point and inferior to the graphite conductive network without CNF, resulting in
a higher room temperature resistivity. At 3 wt.% CNF content, the PTC strength and
room temperature resistivity are closest to those without addition, and there is almost
no NTC phenomenon, indicating potential good PTC repeatability. As the CNF content
increases, the PTC strength decreases, with 4 wt.% and 5 wt.% CNF exhibiting weaker PTC
effects. This is attributed to the rise in conductive particles within the matrix, enhancing
the conductive particle percentage and conductive channel formation probability. During
warming, conductive fillers may be displaced from their equilibrium positions, moving
closer to other conductive particles, enabling the formation of new conductive channels.
This second filler addition partially negates the PTC effect. The high CNF content facilitates
easier reconfiguration of the conductive network during warming after deconstruction.

Collectively, it seems that the composite with 3 wt.% CNF has the best PTC perfor-
mance. Therefore, the PTC cycling curve of PVAc0.4/EVA0.6/GP-3wt.%CNF was further
tested to investigate its PTC reproducibility. From Figure 6a, it was found that the material
exhibits a very weak NTC effect only during the first heating, and the NTC effect disappears
during subsequent heating. It can even be observed that the trend at the end of the curve
is gradually upward, with only the first curve ending slightly downward. The second
curve shows a long “plateau” after 50 ◦C, and the third to fifth curves are very similar and
no longer have a “plateau”. However, the end of the curve goes up, indicating that the
PTC effect of the material continues from room temperature to the test cutoff temperature.
The sixth and seventh cycles also maintain this pattern, with the difference being that
the room temperature resistivity remains largely unchanged for the first five cycles but
slightly increases for the last two. The gradual elimination of the NTC effect and even the
transition to a PTC effect with increasing heating times is an interesting phenomenon, as
it is contrary to the results and patterns of many studies [27,50]. This indicates that the
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PTC of this material is reproducible and does not deteriorate quickly with increasing use.
The significant increase in resistivity in the sixth and seventh cycles compared to previous
cycles may be attributed to irrecoverable changes in the structure, volume, aggregation
state, and distribution of the conductive fillers in the material after the sixth cycle. This
can also be supported by the changes in Curie temperature [51]. From Figure 6b, it can be
observed that the Curie temperature is similar for the third, fourth, and fifth cycles, but
significantly decreases for the sixth and seventh cycles. Since the Curie temperature is
related to the phase transformation process of the composite [29], this change indicates that
the material undergoes a different phase transformation in the latter two cycles compared
to before.

Polymers 2024, 16, x FOR PEER REVIEW 8 of 15 
 

 

resistivity are closest to those without addition, and there is almost no NTC phenomenon, 
indicating potential good PTC repeatability. As the CNF content increases, the PTC strength 
decreases, with 4 wt.% and 5 wt.% CNF exhibiting weaker PTC effects. This is attributed to 
the rise in conductive particles within the matrix, enhancing the conductive particle percent-
age and conductive channel formation probability. During warming, conductive fillers may 
be displaced from their equilibrium positions, moving closer to other conductive particles, 
enabling the formation of new conductive channels. This second filler addition partially ne-
gates the PTC effect. The high CNF content facilitates easier reconfiguration of the conduc-
tive network during warming after deconstruction. 

 
Figure 5. PVAc0.4/EVA0.6/GP-CNF composites with different CNF contents. (a) Resistance temper-
ature characteristic curve; (b) PTC intensity. 

Collectively, it seems that the composite with 3 wt.% CNF has the best PTC perfor-
mance. Therefore, the PTC cycling curve of PVAc0.4/EVA0.6/GP-3wt.%CNF was further 
tested to investigate its PTC reproducibility. From Figure 6a, it was found that the material 
exhibits a very weak NTC effect only during the first heating, and the NTC effect disap-
pears during subsequent heating. It can even be observed that the trend at the end of the 
curve is gradually upward, with only the first curve ending slightly downward. The sec-
ond curve shows a long “plateau” after 50 °C, and the third to fifth curves are very similar 
and no longer have a “plateau”. However, the end of the curve goes up, indicating that 
the PTC effect of the material continues from room temperature to the test cutoff temper-
ature. The sixth and seventh cycles also maintain this pattern, with the difference being 
that the room temperature resistivity remains largely unchanged for the first five cycles 
but slightly increases for the last two. The gradual elimination of the NTC effect and even 
the transition to a PTC effect with increasing heating times is an interesting phenomenon, 
as it is contrary to the results and patterns of many studies [27,50]. This indicates that the 
PTC of this material is reproducible and does not deteriorate quickly with increasing use. 
The significant increase in resistivity in the sixth and seventh cycles compared to previous 
cycles may be attributed to irrecoverable changes in the structure, volume, aggregation 
state, and distribution of the conductive fillers in the material after the sixth cycle. This 
can also be supported by the changes in Curie temperature [51]. From Figure 6b, it can be 
observed that the Curie temperature is similar for the third, fourth, and fifth cycles, but 
significantly decreases for the sixth and seventh cycles. Since the Curie temperature is 
related to the phase transformation process of the composite [29], this change indicates 
that the material undergoes a different phase transformation in the latter two cycles com-
pared to before. 

Figure 5. PVAc0.4/EVA0.6/GP-CNF composites with different CNF contents. (a) Resistance tempera-
ture characteristic curve; (b) PTC intensity.

Polymers 2024, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. PVAc0.4/EVA0.6/GP-3wt.%CNF composite heating cycle. (a) Resistance temperature char-
acteristic curve; (b) Curie temperature and PTC intensity. 

The Curie temperature during the initial heating of PVAc0.4/EVA0.6/GP-3wt.%CNF 
increased by approximately 1 °C compared to the material without CNF, reaching 29.4 °C, 
and remained at approximately 30 °C during cyclic heating. The PTC strength decreased 
with the number of cycles during the first few cycles, and increased to values close to the 
initial during the last two cycles. Taken together, it appears that this material has excellent 
PTC repeatability, which also indicates its potential for long-term use. 

To investigate the effect of CNF addition on the melting point and glass transition 
temperature of the polymer matrix, PVAc0.4/EVA0.6/GP without CNF and three typical 
concentrations of the material with CNF added were selected for DSC testing. The results 
are shown in Figure 7. It can be seen that the addition of CNF has essentially no effect on 
the glass transition temperature and melting temperature of the copolymer matrix, which 
are around −28 °C for these samples, while the melting peaks at 51 °C and 105 °C also 
largely overlap. However, with an increase in CNF content, the peak height of the melt 
peak at 105 °C gradually decreased, indicating that a high content of CNF would affect 
the formation of crystal structures in EVA and reduce its crystallinity. 

 
Figure 7. DSC curves of PVAc0.4/EVA0.6/GP-CNF at different CNF contents. 

Additional details regarding this Section 3.2 can be found in the Supporting Infor-
mation (Figures S2–S5 and the related discussions in Supporting Information). 

3.3. Impact of Mixed Fillers on Self-Limiting Performance 
Based on the results of previous PTC performance tests of the composites, the 

PVAc0.4/EVA0.6/GP-3wt.%CNF composite was selected as the main object for the next 
Joule heating performance tests. 

Figure 6. PVAc0.4/EVA0.6/GP-3wt.%CNF composite heating cycle. (a) Resistance temperature
characteristic curve; (b) Curie temperature and PTC intensity.

The Curie temperature during the initial heating of PVAc0.4/EVA0.6/GP-3wt.%CNF
increased by approximately 1 ◦C compared to the material without CNF, reaching 29.4 ◦C,
and remained at approximately 30 ◦C during cyclic heating. The PTC strength decreased
with the number of cycles during the first few cycles, and increased to values close to the
initial during the last two cycles. Taken together, it appears that this material has excellent
PTC repeatability, which also indicates its potential for long-term use.

To investigate the effect of CNF addition on the melting point and glass transition
temperature of the polymer matrix, PVAc0.4/EVA0.6/GP without CNF and three typical
concentrations of the material with CNF added were selected for DSC testing. The results
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are shown in Figure 7. It can be seen that the addition of CNF has essentially no effect on
the glass transition temperature and melting temperature of the copolymer matrix, which
are around −28 ◦C for these samples, while the melting peaks at 51 ◦C and 105 ◦C also
largely overlap. However, with an increase in CNF content, the peak height of the melt
peak at 105 ◦C gradually decreased, indicating that a high content of CNF would affect the
formation of crystal structures in EVA and reduce its crystallinity.
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Additional details regarding this Section 3.2 can be found in the Supporting Informa-
tion (Figures S2–S5 and the related discussions in Supporting Information).

3.3. Impact of Mixed Fillers on Self-Limiting Performance

Based on the results of previous PTC performance tests of the composites, the
PVAc0.4/EVA0.6/GP-3wt.%CNF composite was selected as the main object for the next
Joule heating performance tests.

(1) Room temperature ambient heating test

From Figure 8a, it can be seen that with an increase in voltage, the material gradually
reaches the self-limiting temperature. At 20 V and 25 V, the material shows good self-
limiting ability, reaching the self-limiting temperature in approximately 1 min. After this,
the temperature increases slowly with time to reach equilibrium temperatures of 42 ◦C and
40 ◦C, respectively. However, when the voltage is 30 V, the temperature of the material
rises rapidly to 40 ◦C and then increases to 61 ◦C due to the large heating power, indicating
a lack of good self-limiting ability.
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To evaluate its electrical heating cycle stability and compare it with the previous mate-
rial, it was chosen to apply 25 V for six electrical heating tests, and the results are presented
in Figure 8b. The initial heating power was 3.04 W, and the power density was 3.04 W/cm2,
approximately six times higher than that of the PS0.4/EVA0.6/GP material and half of the
PVAc0.4/EVA0.6/GP material. It is observed that the equilibrium temperature during the
first heating was approximately 42 ◦C. The subsequent five heating processes involved a
period of temperature fluctuations within a specific range, not exceeding 2 ◦C overall, and
stabilizing near 40 ◦C. Although the equilibrium temperature during the last five heating
cycles was lower than the first one, the lowest equilibrium temperature was only reduced
by approximately 2 ◦C compared to the first, demonstrating excellent electrical heating
stability. This indicates that, although the initial heating power decreases after adding
CNF, the electrical heating stability of the composite significantly improves, enhancing its
overall self-limiting heating performance. This has a significant impact on the practical
application of the material and provides a reference solution to the problem of short service
life in low-temperature polymer-based PTC materials, suggesting that this material has
great potential for use in low-temperature heating and temperature control applications.

(2) Low-temperature environment heating test

In order to test the electrical heating performance of the material in a low-temperature
environment where it can freeze, we cut a PVAc0.4/EVA0.6/GP-3wt.%CNF sample to
a size of 20 mm × 20 mm, and coated both sides of the sample with silver paste. Then,
the sample was covered with copper foil as the electrode, the DC voltage source used
before was connected, and the sample was heated at different voltages, and its temperature
variation with time was plotted. The graphs were plotted against time. In this experiment,
the heating was started from an ambient temperature of about −10 ◦C.

As the applied voltage increased and the heating power density increases, the heating
rate and the equilibrium temperature of the sample gradually increase (Figure 9). When the
applied voltage is less than 5 V, the sample temperature cannot reach the Curie temperature
due to the low heating power. When the applied voltage reaches 5 V and above, it takes
only about 1 min to reach the equilibrium temperature and keep it around 30 ◦C, i.e.,
it remains stable near the Curie temperature. This equilibrium temperature is lower
than the equilibrium temperature achieved at room temperature, as the low-temperature
environment accelerates the heat dissipation rate of the material, ultimately resulting in
a lower equilibrium temperature. The 5 V and 6 V heating curves are closer and show
similar heating patterns. In the initial stage, due to the low resistivity, the heating power
is high, resulting in a fast heating rate and rapid temperature rise. However, as the Curie
temperature is approached, the resistivity of the material rises significantly, leading to a
decrease in heating power and a subsequent decrease in the heating rate, thus maintaining
the equilibrium temperature near the Curie temperature. In the subsequent heating process,
the resistance fluctuates with temperature, but the heating power is automatically adjusted.
The material will automatically reduce the power when overheating and increase the power
when cooling, ultimately achieving the self-limiting capability of the material. Given this,
at these voltages, PVAc0.4/EVA0.6/GP-3wt.%CNF exhibits good automatic temperature
control in low-temperature environments, indicating its potential application in the field
of de-icing.

(3) Breakage heating test

The heating performance of PVAc0.4/EVA0.6/GP-3wt.%CNF on complex surfaces is
shown in Figure 10, with the same upper electrode as in the low temperature environment
test. The infrared images of the material in the rectangular, “H”, and “back” heating states
are shown in the figure.

It is found that the material can be heated successfully in intact, complex, and broken
states, and the equilibrium temperature is over 40 ◦C. Since the surface of the material is
covered with a silver paste layer and a copper foil layer, and the metal blocks infrared
radiation, the infrared image cannot fully show the internal heat distribution of the material.
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However, based on the infrared image, the surface and edge of the material are warmer than
the ambient temperature (25 ◦C), indicating that the damaged sample can still be heated
normally. Figure 10d shows the surface temperature of the sample directly tested with a
thermocouple, reaching 50 ◦C, which also confirms the heating function of the damaged
sample. This is due to the use of a double-sided electrode, and the partial damage of the
sample does not affect the heating performance in other areas, demonstrating the reliability
of the material in some actual harsh environments. If the heating material is broken due
to external factors, this is a fatal issue for conventional metallic heating materials used in
aircraft de-icing. The results also demonstrate that this material can be used in applications
requiring irregular or complex shapes, where many heating materials have previously been
unable to achieve heating on complex surfaces [52,53].
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Additional details regarding this Section 3.3 can be found in the Supporting Informa-
tion (Figure S6 and the related discussions in Supporting Information).

3.4. Effect of Mixed Filler on Mechanical Properties

Figure 11a depicts the stress–strain curves of PVAc0.4/EVA0.6/GP and
PVAc0.4/EVA0.6/GP-3wt.%CNF. Upon observing the two curves, it is evident that the
strain at break of the material increased considerably from 85% to 142% after the addition
of 3 wt.% CNF. This indicates a significant enhancement in the ductility of the material fol-
lowing the addition of the second-phase filler, CNF. However, the ultimate tensile strength
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of the material decreased slightly after the inclusion of CNF, suggesting a reduction in the
stress at the onset of necking. The Young’s modulus of PVAc0.4/EVA0.6/GP-3wt.%CNF
was calculated to be 9.24 MPa, and the toughness value was 1.68 MJ/m3 (while the Young’s
modulus of PVAc0.4/EVA0.6/GP was calculated to be 7.92 MPa and the toughness value
was 1.23 MJ/m3). This implies that the stresses required to induce elastic deformation in
this material are relatively lower, and the composites with mixed fillers exhibit greater
elasticity. Furthermore, the toughness value with the addition of CNF is higher than with-
out it, demonstrating that the hybrid filler also enhances the toughness of the material. In
summary, the blending of graphite and CNF fillers appears to have improved the overall
mechanical properties of the composite.
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Figure 11b,c show the physical images of PVAc0.4/EVA0.6/GP-3wt.%CNF wound
and folded around a glass rod with a diameter of 5 mm, respectively, as can be seen from
the figures. This film has very good flexibility and can be bent and folded at will, which
can be applied to complex shapes or curved surfaces.

4. Conclusions

In this paper, PVAc0.4/EVA0.6/GP composites with varying CNF contents were pre-
pared by incorporating CNF as a secondary conductive filler into the PVAc0.4/EVA0.6/GP
composite with the best overall performance. This approach enhanced the stability of the
conductive network and the thermal stability of the materials. The study also examined the
impact of CNF content on the microscopic morphology, electrical conductivity, and PTC
properties of the composites. Additionally, the Joule heating properties and mechanical
properties of the optimal composition, PVAc0.4/EVA0.6/GP-3wt.%CNF, were tested at
room and low temperatures. The PTC material exhibited a low switching temperature
point (<30 ◦C), low room temperature resistivity (205.4 Ω·m), high PTC repeatability and
flexibility, high heating stability and reliability, short heating response time, and excellent
adaptive thermal control performance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym16142028/s1, Figure S1. Cross section SEM im-
ages of PVAc0.4/EVA0.6/GP-CNF composites; Figure S2. Cross section SEM images of four different
PVAc/EVA/GP composite; Figure S3. EDS diagrams of the two composite materials; Figure S4. Cross
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section SEM images of PVAc0.4/EVA0.6/GP-CNF composites after heating; Figure S5. FTIR result
of PVAc0.4/EVA0.6/GP-CNF composites; Figure S6. (a) Influence of humidity on resistance of the
composites, (b) application of the composites as temperature sensor on skin.
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Abstract: Carbon black particles possess dimensions on the nanometer or sub-nanometer scale.
When utilized, these particles have a tendency to aggregate, which compromises their stability under
storage conditions. To address this issue, a dispersant was prepared using cotton short fibers as raw
materials through etherification and graft polymerization with acrylamide (AM) and 2-acrylamido-2-
methylpropane sulfonic acid (AMPS) as raw materials. The dispersant was then used to disperse
carbon black to test its dispersing performance. A response surface optimization test was utilized to
ascertain the influence of AMPS monomer mass, AM monomer mass, and potassium persulfate (KPS)
initiator mass on the dispersibility of carbon black during dispersant preparation, and a set of optimal
preparation conditions were obtained. The dispersion stability of carbon black in water was assessed
using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), elemental analysis
(EA), thermogravimetric analysis (TG), zeta potential analysis, high magnification scanning electron
microscopy (SEM), and contact angle measurements. Results revealed that the optimum mass ratio
of carboxymethyl cellulose (CMC) to AMPS to AM was 1:0.69:1.67, with the KPS initiator comprising
1.56% of the total monomer mass. By incorporating the dispersant at a concentration of 37.50%, the
particle size of carbon black particles was observed to decrease from 5.350 µm to 0.255 µm, and no
agglomeration of carbon black particles occurred even after 3 weeks of storage.

Keywords: cotton linters; response surface; dispersant; carbon black

1. Introduction

Carbon black is a dark powder, usually produced from heavy oil in petroleum re-
fineries, coal, natural gas, and biomass under specific conditions. The composition of
carbon black consists of discrete, nearly spherical particles, with the size of each particle
varying based on the production method, often reaching the nanometer and sub-nanometer
range [1]. Carbon black possesses excellent rubber reinforcement properties. Additionally,
it is highly conductive and has anti-static properties. It is also used as a coloring agent and
exhibits ultraviolet absorption. Due to these versatile properties, it is extensively utilized
in various industries including printing and dyeing, and the production of paint, ink,
rubber, plastic, foam, ceramics, silicone, leather, and cement building materials [2–7]. Even
though carbon black is used in a variety of applications, it possesses a large specific surface
area and exudes high surface free energy, which results in a high propensity for cluster
formation and poor dispersion, making it challenging to uniformly disperse the particles
within a matrix or substrate [8,9]. The technology for dispersing carbon black is pivotal
for enabling practical applications of carbon black materials. Techniques such as vigorous
agitation, ultrasonic treatment, and other dispersion methods have been proposed, but the
dispersion of carbon black often falls short of expectations, leading to particle clumping
and sedimentation [10]. Consequently, enhancing the dispersion performance of carbon
black has become the focal point in this field.
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Cellulose is an abundantly available polysaccharide that is composed of intercon-
nected glucose molecules through β-1,4-glycosidic bonds [11]. Naturally available cellulose
has poor utility due to its low solubility in water and vulnerability to degradation by
microorganisms and enzymes [12]. Carboxymethyl cellulose (CMC) is another versatile
material that has several useful properties such as water retention, along with thickening,
stabilizing, and dispersing capabilities [13–15]. These properties arise from its relatively
large specific surface area, the presence of hydroxyl functional groups, and the ability to
withstand mechanical stress to a certain extent. In recent years, dispersing stabilizers based
on carboxymethyl cellulose have garnered significant attention and interest in cellulose
chemistry research. This is mainly due to their biodegradability, ease of chemical modifica-
tion, and capacity to maintain stable dispersions of nanoparticles and emulsions, including
nanosized iron tetraoxide (Fe3O4), carbon nanotubes (CNTs), graphene oxide (rGO), and
others for applications in pigments, coatings, and functional composite materials [16–19].

This study selected Xinjiang’s abundant and low-cost cotton linters as raw materials.
Through grafting polymerization modification to introduce functional groups such as amino
and sulfonic acid groups, a high-performance waterborne dispersant was successfully
prepared, enhancing the economic value of cotton linters. Utilizing response surface
methodology for multi-factor analysis and response surface modeling, it optimizes multiple
factors and their interactions, clarifying the effects of various process parameters on sample
performance. This study determined the optimal process conditions for CMC-AMPS-
AM and utilized carbon black to test dispersibility, evaluating the effectiveness of the
prepared dispersant.

2. Materials and Methods
2.1. Experimental Drugs and Instruments

The cotton short staple is purchased from Aksu Prefecture, Xinjiang, China, at the
Tiancheng Cotton Short Fiber Market Development Co., Ltd. (Detailed composition is
listed in Table 1). Acetone (C3H6O, analytical grade), nitric acid (HNO3, analytical grade),
urea (analytical grade), potassium persulfate (K2S2O8, analytical grade) were purchased
in Tianjin, China, all provided by Tianjin Xinbo Chemical Co., Ltd. Anhydrous ethanol
(C2H5OH, analytical grade) and sodium hydroxide (NaOH, analytical grade) were pur-
chased from Tianjin, China, both supplied by Tianjin Zhiyuan Chemical Reagent Co., Ltd.
Acrylamide (C3H5NO, Analytical grade) was procured in Tianjin, China and supplied by
Tianjin Yongsheng Fine Chemical Co., Ltd. Ammonium cerium nitrate (Ce(NH4)2(NO3)6,
Analytical grade) was purchased in Shanghai, China, supplied by Shanghai McLean Bio-
chemical Technology Co., Ltd. 2-acrylamide-2-methylpropanesulfonic acid (C7H13NO4S,
Analytical grade) was purchased from Shanghai, China, supplied by Shanghai Beide
Pharmaceutical Technology Co., Ltd. Carbon Black (Analytical grade) procured in Shang-
hai, China, supplied by Shanghai Yien Chemical Technology Co., Ltd. Chloroacetic acid
(ClCH2COOH, Analytical grade), procured in Tianjin, China, supplied by Tianjin BASF
Chemical Co., Ltd.

Table 1. Cotton linters composition and content.

Component Name Cellulose Pectin Wax Lignin Ash Content

content/% >95 0.5 1 1~2 1

The DF-101S solar collector-type magnetic heating stirrer was purchased from the
Medical Instrument Factory in Jintan, Jiangsu Province, China; the SCIENTZ-10N freeze
dryer was purchased from Ningbo Xinzhi Biotechnology Co., Ltd. in Ningbo, China; the
BT-9300S laser particle size analyzer was purchased from Dandong Bates Instruments Co.,
Ltd. in Dandong, China; the QM-3SP04 planetary ball mill equipment was purchased from
Nanjing ND Instruments Co., Ltd. in Nanjing, China; and the BZY-101 surface tension meter
was purchased from Shanghai Jitai Electronic Technology Co., Ltd. in Shanghai, China.
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2.2. Synthesis of CMC-AMPS-AM Hyperdispersan
2.2.1. The Mechanism of Cotton Linters Staple Cellulose Modification

Cellulose from cotton linters is converted into CMC via alkalinization followed by
derivatization with chloroacetic acid [20–22]. The product is typically a white-to-grayish-
white, water-soluble, odorless solid [23]. The preparation reaction scheme for CMC is
shown in Figure 1.
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Figure 1. The reaction scheme for preparing CMC from cellulose.

Ceric ammonium nitrate (CAN) grafting mechanism [24]: During the grafting poly-
merization process, the acidic medium of ceric ammonium nitrate forms chelates with
hydroxyl groups of cellulose, particularly between the vicinal hydroxyl groups at C2 and
C3 of the glucose units in cellulose. Subsequently, through homolytic cleavage, radicals
are generated on the cellulose molecular chain, opening the C2–C3 bond of the glucose
ring of cellulose. This allows the cellulose to undergo free radical polymerization with the
polymerizable monomers, as shown in Figure 2.
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Using ceric ammonium nitrate [24] and potassium persulfate [25] to initiate monomer
polymerization reactions, the main reactions are depicted in Figure 3.
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2.2.2. Sample Preparation

The cotton linters were shredded, dried, and alkalized to obtain refined cellulose,
which was then etherified with chloroacetic acid to produce carboxymethyl cellulose
(CMC). Then, 2 g of CMC and 0.125 mmol/L cerium ammonium nitrate solution (relative
to a liquid volume of 50 mL of the reactant) were taken and the pH was adjusted to 1.0. The
solution was placed in a constant temperature water bath at 50 ◦C and stirred for 15 min.
2-acrylamido-2-methylpropanesulfonic acid (AMPS) was slowly added to this solution, and
a reaction was maintained for 4.5 h. Then, sodium hydroxide and urea were added to form
a stable NaOH/Urea/H2O solution system (with mass fractions of 7% NaOH, 12% urea,
and 81% water). The solution was frozen at −12 ◦C for 12 h. It was then thawed and heated
to 50 ◦C while stirring. Potassium persulfate (KPS) and acrylamide (AM) were slowly
added and reacted for 4.5 h. After the reaction, the crude CMC-AMPS-AM copolymer
was precipitated and dried in double the amount of ethanol, followed by grinding. Using
ethanol and acetone as solvents, pure CMC-AMPS-AM copolymer was obtained after 48 h
through extraction with a Soxhlet apparatus. The preparation process is shown in Figure 4.
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2.3. Conversion Rate Calculation

A conversion rate calculation was conducted using the elemental tracing method as
shown in the following equations:

mAMPS =
mS × 207.250

32
(1)

Conversion RateAMPS =
mAMPS

1.382
× 100% (2)

mNAMPS =
ms × 14.0067

32
(3)

mN= mNAMPS+mNAM (4)

mAM =
mNAM × 71.078

14.007
(5)

Conversion RateAM =
mAM

3.335
× 100% (6)

Here, mS is the mass of sulfur in the polymer (g); 207.25 is the relative molecular mass
of AMPS; 32 is the relative atomic mass of element S; mAMPS is the mass of AMPS in the
polymer (g); 1.382 is the single cell input for AMPS (g); ConConversion RateAMPS is the
AMPS monomer conversion rate (%); mNAMPS is the nitrogen element mass from AMPS

152



Polymers 2024, 16, 1964

in the polymer (g); 14.007 is the relative atomic mass of element N; mNAM is the mass of
element N in the polymer from AM (g); mN is the total mass of nitrogen in the polymer (g);
71.078 is the relative molecular mass of AM; mAM is the mass of AM in the polymer (g);
3.335 is the single cell input for AM (g); Conversion RateAM is the AM monomer conversion
rate (%).

2.4. Response Surface Optimisation Experimental Design

The influential factors chosen for the response surface method were the inputs of
AMPS, AM, and KPS, while the value of surface tension in the dispersant solution was
considered as the response value (Y). This was then analyzed using the Box-Behnken
design, which is a three-factor, three-level response surface analysis. The outcomes of this
design process are documented in Table 2.

Table 2. Response surface experimental design.

Level
Considerations

A:AMPS (g) B:AM (g) C:KPS (g)

−1 1 2 0

0 3 3 0.075

1 5 4 0.150

2.5. Description

A Fourier transform infrared spectrometer (FTIR, VEETEX-70, BRUKE, Germany) was
employed for scanning within the spectral range of 400–4000 cm−1, with a sampling rate
of 80 spectra per second. The XRD measurements were performed using a Rigaku Ultima
IV diffractometer produced by Rigaku Corporation (Atsugi, Kanagawa, Japan), with a
scanning range of 2θ = 10◦~80◦. The Bettersize 2600 laser particle size analyzer was used
to measure the particle size of carbon black in the slurry. Elemental content analysis of
C, H, N, and S was determined using the Vario EL cube type elemental analyzer from
Germany. To obtain a uniform fine powder, the samples were subjected to a process of
vacuum drying followed by grinding. Subsequently, the content of S and N was measured
on the elemental analyzer. The weight loss process of the samples and the extent of heat
resistance of the products were analyzed using a thermogravimetric analyzer (TA, TGA550,
Milford, MA, USA). Testing conditions involved measuring the samples under a nitrogen
atmosphere, with a temperature increase from room temperature to 800 ◦C at a rate of
10 ◦C/min. The contact angle between the sample and water was measured utilizing the
LSA-100 (LAUDA Scientific GmbH) contact angle tester. The sample platen exerted a
pressure of 10 MPa, while the observed volume of the test droplets was 2 µL. Furthermore,
the appearance and morphology of the samples were observed using a scanning electron
microscope (SEM, ZSISS Gemini 300, Baden-Württemberg, Germany). The Zeta potential
of the sample was measured using a Zetasizer Nano ZS90 (manufactured by Malvern, UK).
The testing method involved mixing carbon black and dispersant material in a ratio of
10:37.5 in ultrapure water, followed by sonication to prepare a 0.1 wt% dilute solution.
Zeta potential measurements were then conducted on the dilute solution samples. The
molecular weight and polymer dispersity index of dispersants materials are tested using
the American Agilent 1260 Infinity II Gel Permeation Chromatography (GPC). The test is
conducted at room temperature with deionized water as the mobile phase.

3. Results
3.1. Response Surface Modelling and Analysis of Variance (ANOVA)

According to the experimental design in Table 2, the independent variables selected
are AMPS (A), AM (B), and KPS (C). The experimental response value (Y) is the surface
tension in the dispersant solution. The optimal process conditions are determined through
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response surface methodology (RSM) analysis to explore the effects among these variables,
with experimental results shown in Table 3.

Table 3. Response surface experimental design and results.

Std AMPS AM KPS Surface Tension of Solution (mN/m)

16 0 0 0 48.9
15 0 0 0 52.0
4 1 1 0 55.3
17 0 0 0 49.6
5 −1 0 −1 60.4
7 −1 0 1 49.8
9 0 −1 −1 64.2
3 −1 1 0 51.2
1 −1 −1 0 61.8
14 0 0 0 50.6
2 1 −1 0 64.8
12 0 1 1 57.3
6 1 0 −1 59.5
10 0 1 −1 62.3
8 1 0 1 61.3
13 0 0 0 47.5
11 0 −1 1 63.9

Response surface test design data were designed and optimized using Design-Expert
13 software using Box-Behnken (BBD). The response value (Y) and the influence factor
conformed to the quadratic response regression equation (Equation (7)).

Y = 129.30375 − 4.14125 × A − 41.0025 × B − 194.23333 × C + 0.1375 × A × B − 20.66667 × A × C
−15.66667 × B × C + 0.5475 × A2 + 6.365 × B2 + 1038.2222 × C2 (7)

The model is capable of forecasting the correlation between the autonomous factors
(A, B, and C) and the response variable (Y). The analysis utilized Fisher’s statistical test
for the purpose of conducting an analysis of variance (ANOVA), with the outcomes of
ANOVA and confidence analysis of the equations featured in Table 4. The results of the
confidence analysis of the quadratic response surface regression model demonstrate that
the correlation coefficient of the model fit, R2 = 0.9483, exceeds 0.8, indicating an excellent
fit of the model with the experimental data, along with a low experimental error.

Table 4. Analysis of variance of regression equations and credibility of regression model.

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 576.94 9 64.10 14.26 0.0010 Significant
A-AMPS 39.16 1 39.16 8.71 0.0214

B-AM 102.25 1 102.25 22.74 0.0020
C-KPS 24.85 1 24.85 5.53 0.0510

AB 0.3025 1 0.3025 0.0673 0.8028
AC 38.44 1 38.44 8.55 0.0222
BC 5.52 1 5.52 1.23 0.3043
A² 20.19 1 20.19 4.49 0.0718
B² 170.58 1 170.58 37.94 0.0005
C² 143.60 1 143.60 31.94 0.0008

Residual 31.47 7 4.50
Lack of Fit 19.88 3 6.63 2.29 0.2205 not Significant
Pure Error 11.59 4 2.90
Cor Total 608.41 16

The p value for the lack-of-fit term is 0.2205, which is greater than 0.05, suggesting that
the lack-of-fit is not statistically significant [26]. Figure 5 depicts the correlation between
the factual surface tension and the anticipated surface tension. The proximity in the
correspondence between the projected quantities and the actual quantities signifies an
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elevated level of concordance between them. In this manner, it showcases the dependability
of the quadratic response regression model [27].
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3.2. Response Surface 3D Graph

Figure 6 depicts visualizations of the impact of each factor, namely AMPS (Figure 6a),
AM (Figure 6b), and KPS (Figure 6c), on the surface tension of the solution. By observing
the slope of the surface and the density of contour plots, the magnitude of the influence on
the surface tension can be determined. Additionally, Table 4 provides further insight by
presenting the F-values of AMPS input (A), AM input (B), and KPS input (C), which are
8.71, 22.74, and 5.53, respectively. Thus, it can be concluded that the influence of each factor
on the surface tension of the solution follows this order: AM input > AMPS input > KPS
input. Utilizing the proposed model, the optimization of CMC: AMPS: AM and KPS ratios
resulted in an ideal composition of 1:0.69:1.67 for CMC, AMPS, and AM, respectively, with
KPS being approximately 1.56% of the total monomer amount. Furthermore, the elemental
content analysis revealed the N, C, H, and S contents in the samples. By employing the
elemental tracing method, the sources of N and S in the CMC-AMPS-AM samples were
identified, and the measurements obtained are listed in Table 5.
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Table 5. Elemental analyzer measurement data table.

Specimens N (%) C (%) H (%) S(%)

CMC-AMPS-AM 4.77 33.67 5.46 2.69

Based on Equations (1)–(6) in Section 2.3, the AMPS and AM grafting rates were
calculated. The AMPS grafting rate was calculated to be 70.21%, and the AM grafting rate
was 33.80%; the low AM grafting rate was mainly due to the polymerization of AM.

3.3. Carbon Black Dispersion Stability Performance

When investigating the dispersing properties of carbon black, it is crucial to take into
account several pivotal factors. Firstly, it is imperative to ensure an appropriate amount of dis-
persant is utilized, as an insufficient quantity would not achieve the desired dispersion of carbon
black, while an excessive amount would result in the formation of “bridges” by the dispersant,
causing carbon black re-agglomeration. Secondly, the pH value of the dispersant also exerts
a certain influence on the dispersion performance. Within an optimal pH range, the surface
charge of the particles can be fine-tuned, thus facilitating the homogeneous dispersion of
carbon black particles. Furthermore, the stability requirements of the dispersant should
also be considered. A stable dispersant not only sustains long-term dispersion efficacy but
also enhances the stability and performance of the end product.

3.3.1. Effect of Dispersant Concentration

The dosage of dispersant is dependent upon the type of particles and desired particle
size. In the case of pigment dispersion, the dispersant for organic pigment typically ranges
from 5% to 30%, as specified by the industry. Similarly, the dispersant for inorganic
pigment ranges from 5% to 20%, while for carbon black, it falls between 25% and 50%. For
the high-surface-energy carbon black used in automotive coatings, such as FW 200, the
recommended amount of dispersant is between 60% and 150%.

A specific quantity of dispersing stabilizer was combined with 1.5 g of carbon black,
followed by the addition of 10 mL of deionized water as the solvent. Subsequently, 30 g
of zirconia ball mill beads with a particle size of 0.5 mm were added, and the carbon
black slurry was acquired through grinding for 5 h in a ball mill rotating at a speed of
300 rpm/min. Simultaneously, the paint without hyperdispersant was prepared as the
control group, the results are shown in Figure 7. As the dispersant concentration rose
from 0% to 37.5%, the size distribution of the carbon black particles shifted from a wide to
narrow distribution, and the median particle size D50 decreased from 5.350 µm to 0.255 µm.
Yet, when the dispersant concentration reached 100%, the median particle size D50 of
carbon black particles increased to 0.288 µm. In addition, compared with other studies on
carbon black dispersants, Table 6 shows that the CMC-AMPS-AM dispersant demonstrates
significant advantages in enhancing carbon black dispersibility.

The agglomeration of carbon black particles is a consequence of van der Waals forces
coming into play, leading to a gradual elevation in particle density and subsequent set-
tling due to gravitational forces. The function of the dispersant is to counteract these
inter-particular forces. The concentration of the dispersant directly influences the balance
between dispersant molecules and carbon black particles, thereby affecting the disper-
sion effect. At low concentrations, insufficient dispersant coverage on the carbon black
particles hinders the ability to counteract inter-particle forces. With increasing dispersant
concentration, the adsorption between dispersant molecules and carbon black particles
gradually rises, effectively diminishing the inter-particle interaction force and thwarting
particle agglomeration, and thus resulting in reduced particle size.
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Table 6. Comparison of the effects of different dispersants on the particle size of carbon black.

Dispersed Materials D50 Particle Size of Carbon Black (µm) Reference

DP-3537 1.80 [28]
IMD 0.275 [29]
PIB 0.100 [30]

BYK-192 0.785 [29]

3.3.2. Zeta Potential Analysis

The magnitude of the Zeta potential serves as a crucial factor in assessing the stability
of a dispersed system. Greater values of the zeta potential indicate enhanced electrostatic
repulsion, thereby leading to superior suspension stability [31–33].

As shown in Figure 8a, the Zeta–pH curve illustrates the dispersion of carbon black
by dispersants. According to the double electric layer exclusion mechanism, charged
particles adhere to the surface of particles forming a double electric layer, which results in
electrostatic repulsion. In an acidic environment, there is an abundance of positive ions
H+. Sulfonate ions (SO3

−) readily react with H+ ions, leading to an increase in potential.
Sulfate groups have a lower negative charge density, hence the Zeta potential is relatively
lower in acidic environments.
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In alkaline environments, a significant number of negative ions (such as OH-) are
present and they interact with the positive charge on the polymer surface, causing the
surface to have a negative potential. This ion exchange affects the surface potential and
Zeta potential of the polymer. In an alkaline environment, the absolute value of the Zeta
potential is mainly due to the presence of a large number of OH- ions in the solution, which
leads to the following phenomena: (1) Charge shielding effect: A large number of negative
ions, such as OH- ions, adsorb on the surface of the anionic dispersant. When the OH-
concentration is sufficiently high, a charge shielding layer is formed on the surface of the
dispersant material, which partially shields the negative charges, reduces the absolute
value of the potential, and weakens the electrostatic repulsion. (2) Double layer thickness
variation: The Zeta potential actually measures the potential difference of the double layer.
When a large number of OH- ions adsorb on the surface of the anionic dispersant, the
thickness of the double layer increases, which affects the transport speed of the charges,
and the absolute value of the Zeta potential may decrease. (3) Solvent polarization effect: A
large number of OH- ions increase the degree of solvent polarization, increase the thickness
of the double layer, and weaken the electrostatic interaction between the dispersant and the
solution. This reduces the absolute value of the Zeta potential. As shown in Figure 8b, the
natural sedimentation effect of carbon black particles can be observed with the addition
of the same amount of dispersant at different pH levels. In conclusion, CMC-AMPS-AM
dispersants tend to induce agglomeration and instability of particles in strongly acidic and
strongly alkaline environments.

3.3.3. Stability of Carbon Black Slurry

After undergoing mechanical fracturing and abrasion with the ball mill, the particle
size of carbon black decreases while the surface energy increases. This results in an elevated
adhesion force between different particles that results in particle agglomeration. Hence, the
stability of dispersants holds utmost significance [34,35]. In reference to Section 3.3.1 for
preparing the slurry, add 10% dispersant to the carbon black, then ball mill the sample and
store at room temperature. The variation in particle size is monitored every seven days.
As shown in Figure 9, the particle size of the carbon black exhibits minimal fluctuation,
remaining within the range of 0.469 µm before storage to 0.474 µm at the end of the fourth
week. Facilitated by the dispersant, the carbon black particles surmount inter-particle
adhesion as well as electrostatic forces, displaying no discernible trend of “coarsening”.
This suggests the dispersant confers commendable dispersion stability.
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Figure 9. Variation of carbon black particle size with storage time.

As shown in Figure 10, the left bottle contains carbon black slurry without dispersant
added, with 0.2 g taken and diluted with distilled water 20 times as a blank group. The
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middle/right bottles contain carbon black slurry with 37.5% dispersant added, with 0.2 g
taken and diluted with distilled water 40/160 times, respectively. The natural settling effects
after 0, 1, 2, and 3 weeks are represented by a, b, c, and d. As shown in the figure, carbon
black particles without dispersant coating precipitate within 7 days due to the force of
attraction between molecules, causing the micro particles to aggregate into larger particles.
In contrast, carbon black particles with dispersant effectively overcome the intermolecular
forces between carbon black particles caused by the presence of dispersant, resulting in
continuous dispersion of particles in water.
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Figure 10. Settling of carbon black slurry in water (left bottle diluted 20 times, middle bottle diluted
80 times, and right bottle diluted 160 times): week 0 (a); week 1 (b); week 2 (c); and week 3 (d).

3.3.4. Scanning Electron Microscopy (SEM) Analysis

Figure 11 depicts high-magnification scanning electron microscope images of carbon
black slurries without dispersant and with 37.5% dispersant added after drying. Upon
examining Figure 11a,c, it is evident that the carbon black particles, in the absence of any
added dispersant, coalesce together, forming dense clusters with larger-sized particles.
From Figure 11b,d, it can be observed that individual carbon black particles typically
have smaller diameters, while larger particles are often formed by aggregation of smaller
ones. Therefore, after the addition of dispersants, the dispersants effectively inhibit the
aggregation between carbon black particles, improving the dispersibility and stability of
carbon black.

Polymers 2024, 16, x FOR PEER REVIEW 13 of 19 
 

 

Figure 10. Settling of carbon black slurry in water (left bottle diluted 20 times, middle bottle diluted 

80 times, and right bottle diluted 160 times): week 0 (a); week 1 (b); week 2 (c); and week 3 (d). 

3.3.4. Scanning Electron Microscopy (SEM) Analysis 

Figure 11 depicts high-magnification scanning electron microscope images of carbon 

black slurries without dispersant and with 37.5% dispersant added after drying. Upon 

examining Figure 11a,c, it is evident that the carbon black particles, in the absence of any 

added dispersant, coalesce together, forming dense clusters with larger-sized particles. 

From figures 11b and 11d, it can be observed that individual carbon black particles typi-

cally have smaller diameters, while larger particles are often formed by aggregation of 

smaller ones. Therefore, after the addition of dispersants, the dispersants effectively in-

hibit the aggregation between carbon black particles, improving the dispersibility and sta-

bility of carbon black.  

  

  

Figure 11. (a–d) SEM images of carbon black slurry without dispersant; (c,d) SEM images of carbon 

black slurry with 37.5% dispersant added. 

3.4. Characterisation of Dispersant Materials 

3.4.1. Infrared Spectroscopy Test (FTIR) Analysis 

From the FTIR spectra shown in Figure 12, it can be observed that the −NH absorp-

tion peak of the secondary amide occurred at 2934 cm−1, whereas the C-S stretching vibra-

tion peak in AMPS appeared at 628 cm−1. The -SO3− in AMPS exhibited S-O bond asym-

metry and S=O bond symmetry vibration absorption peaks near 1045 cm−1 and 1219 cm−1 

[36]. The characteristic absorption peak at 3445 cm−1 is attributed to the -NH2 stretching 

vibration in AM. Furthermore, the characteristic peaks at 1673 cm−1 and 1119 cm−1 are re-

lated to the stretching vibration of the carbonyl C=O and C-N in the amide group of AM 

[37]. The deformation of methylene resulted in the generation of the characteristic absorp-

tion peak at 1455 cm−1. Through the FTIR analysis, it can be concluded that AMPS and 

acrylamide have been successfully grafted onto the cellulose skeleton. 

a b 

c d 

Figure 11. (a–d) SEM images of carbon black slurry without dispersant; (c,d) SEM images of carbon
black slurry with 37.5% dispersant added.
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3.4. Characterisation of Dispersant Materials
3.4.1. Infrared Spectroscopy Test (FTIR) Analysis

From the FTIR spectra shown in Figure 12, it can be observed that the −NH absorption
peak of the secondary amide occurred at 2934 cm−1, whereas the C-S stretching vibration
peak in AMPS appeared at 628 cm−1. The -SO3− in AMPS exhibited S-O bond asymmetry
and S=O bond symmetry vibration absorption peaks near 1045 cm−1 and 1219 cm−1 [36].
The characteristic absorption peak at 3445 cm−1 is attributed to the -NH2 stretching vibra-
tion in AM. Furthermore, the characteristic peaks at 1673 cm−1 and 1119 cm−1 are related to
the stretching vibration of the carbonyl C=O and C-N in the amide group of AM [37]. The
deformation of methylene resulted in the generation of the characteristic absorption peak
at 1455 cm−1. Through the FTIR analysis, it can be concluded that AMPS and acrylamide
have been successfully grafted onto the cellulose skeleton.
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3.4.2. Thermogravimetric (DT) Analysis

TG-DTG curves illustrate the weight loss of CMC and CMC-AMPS-AM, as shown
in Figure 13. For CMC (Figure 13a), it is discernible that before the temperature reaches
32 ◦C–234 ◦C, there is a relatively insignificant weight loss of approximately 10%, which
is attributed to the removal of adsorbed water on the carboxymethyl cellulose surface.
Between 234 ◦C and 325 ◦C, there is a prominent weight loss of about 37.5%, stemming from
the rupture and decay of C=O, C-O-C, and -OH bonds. Notably, the thermal degradation
of cellulose attains a maximum when the temperature peaks at 289 ◦C, primarily due to a
substantial number of C–C bond ruptures, leading to a vast mass reduction in cellulose.
Throughout the entire process, spanning from 32 ◦C to 800 ◦C, the overall weight loss
accounts for approximately 66.6% of the mass.

In the case of CMC-AMPS-AM (Figure 13b), a negligible reduction in mass of the
CMC-AMPS-AM copolymer is observed within the temperature interval of 36 ◦C to 100 ◦C.
This phenomenon can be attributed to the low amount of moisture adhered to the CMC-
AMPS-AM copolymer, as well as the weight decrease caused by the evaporation of acetone.
In contrast, the weight loss percentage of carboxymethyl cellulose is approximately 14.7%
within the temperature range of 226 ◦C to 331 ◦C and 37.5% within the range of 234 ◦C
to 325 ◦C. This indicates a considerable decline in weight loss in CMC, likely due to the
grafting reaction that disrupts the cyclic structure in the sugar component and imparts
greater stability. In the temperature range of 331 ◦C to 371 ◦C, the weight loss was ap-
proximately 18.9%, possibly due to the thermal decomposition of the amide group in AM
and the subsequent imidization reaction. Throughout the temperature range of 32 ◦C
to 800 ◦C, the weight of the CMC-AMPS-AM copolymer witnessed a total decrease of
approximately 69%.
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3.4.3. X-ray Diffraction (XRD) Analysis

XRD results for CMC and CMC-AMPS-AM samples are shown in Figure 14, where it
can be observed that in the grafting of AMPS, AM could impact the chemical reaction and
molecular structure, subsequently causing deviations in the crystal structure, diminished
grain size, and defects in the cellulose crystals. As a result of the decreased grain size and
crystallinity, the peaks in the XRD pattern became broader, with a rounded shape and
lower intensity.
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3.4.4. Molecular Weight Testing

According to the dispersion mechanism of dispersants, the molecular weight of disper-
sants is closely related to their dispersing performance. Gel permeation chromatography
(GPC) tests were conducted on CMC-AMPS-AM dispersant materials, and the test results
are shown in Table 7.

Table 7. The results of the GPC test for the CMC-AMPS-AM dispersant material.

Specimens Mn Mw PDI

CMC-AMPS-AM 148159 278299 1.878381

3.4.5. Contact Angle Analysis

The dispersant composition not only affects the dispersion of pigment particles but
also affects the surface energy of the resulting dry pigment particles. The smaller the
contact angle, the higher is the hydrophilicity of the particles [38,39]. After mixing carbon
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black with CMC-AMPS-AM dispersant material in a 1:1 ratio, measure the contact angle
with water. As shown in Figure 15, the untreated carbon black surface is rich in polar
functional groups such as hydroxyl carbonyl groups, which attracts hydrogen atoms of
water molecules, rendering it hydrophilic. Carboxymethyl (-CH2COOH) functional groups
were prepared through etherification of cellulose. Due to the grafting of AMPS and AM, the
concentration of -COOH groups in carboxymethyl cellulose decreased, the contact angle
increased, and the hydrophilicity decreased. The contact angle increased after adding CMC-
AMPS-AM to carbon black. In the application of carbon black coatings, highly hydrophilic
carbon black particles are not compatible with waterborne coatings, and also not conducive
to the water resistance of coatings [40,41].
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3.5. Dissemination Mechanisms

According to the dispersant dispersing mechanism, dispersants mainly rely on steric
effects and electrostatic interactions [42–45]. Steric hindrance: dispersant molecules or
ions adsorb on the surface of solid particles, forming physical barriers that hinder direct
contact and aggregation of particles. Electrostatic repulsion force refers to the repulsive
force generated by electrostatic interaction between particles of the same charge, effectively
preventing particle aggregation and settling, promoting particle dispersion, and maintain-
ing suspension stability. In practical dispersion, both mechanisms work synergistically [46].
The CMC-AMPS-AM material disperses carbon black as shown in Figure 16, achieving
optimized dispersion through the synergistic effects of steric hindrance and electrostatic
repulsion force.
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4. Conclusions

Carboxymethyl cellulose is derived through the process of etherification, using the
abundant resource of cotton linters. Tetravalent cerium ions have the ability to engage in
redox reactions with various reducing groups, such as hydroxyl groups, ultimately produc-
ing free radicals. These radicals serve as catalysts for grafting reactions with acrylamide
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monomer and 2-acrylamide-2-methylpropanesulfonic acid monomer. By employing the
response surface method, the optimal values for three influential factors were determined.
The initiator KPS comprised 1.56% of the total amount of monomers, and the ideal ratio of
raw materials CMC:AMPS:AM was established as 1:0.69:1.67. The order of the impact of
these factors on the conversion rate was AM > AMPS > KPS. Through elemental tracing, the
contents of S and N were determined under the optimal preparation process. Consequently,
the elemental tracking method enabled the determination of S and N contents, and the
conversion rates of AMPS and AM were determined to be 70.21% and 33.80%, respectively.
Upon application of the CMC-AMPS-AM dispersant to carbon black materials, the median
particle size (D50) of the carbon black decreased to 0.255 µm. Moreover, the distribution
of particle sizes became more concentrated as the amount of dispersant additive reached
37.5%. Notably, even after a storage period of four weeks, the particle size of the carbon
black remained stable, without exhibiting the so-called “re-coarsening” phenomenon.

In the optimization of dispersant synthesis process, there are challenges in terms
of process complexity and long cycles, which pose a significant challenge for industrial
production. The stability assessment of dispersants does not consider performance under
extreme conditions, such as high and low temperatures. Additionally, industrial appli-
cations often require compatibility with various additives such as ink additives, coating
resins, and tire rubber, but this study does not cover their compatibility and synergistic
effects. Since cellulose is insoluble in water, etherification treatment is required to prepare
water-based dispersants, converting it into carboxymethyl cellulose, which increases costs
and industrial difficulty. Cotton short fiber cellulose has a high content and is easy to ex-
tract, but most biomass cellulose content in nature is low. The future direction of research is
to use low-cellulose biomass for modification and directly prepare water-based dispersants.
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