
mdpi.com/journal/entropy

Special Issue Reprint

Information Theory
and Network Coding II

Edited by

Shenghao Yang and Kenneth Shum

Information Theory and Network
Coding II

Information Theory and Network
Coding II

Guest Editors

Shenghao Yang

Kenneth Shum

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Guest Editors

Shenghao Yang

School of Science and

Engineering

The Chinese University of

Hong Kong, Shenzhen

Shenzhen

China

Kenneth Shum

School of Science and

Engineering

The Chinese University of

Hong Kong, Shenzhen

Shenzhen

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Entropy (ISSN 1099-4300),

freely accessible at: https://www.mdpi.com/journal/entropy/special issues/inf cod.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3877-6 (Hbk)

ISBN 978-3-7258-3878-3 (PDF)

https://doi.org/10.3390/books978-3-7258-3878-3

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

Shenghao Yang and Kenneth W. Shum

Updates on Information Theory and Network Coding
Reprinted from: Entropy 2025, 27, 17, https://doi.org/10.3390/e27010017 1

Weijie Zhou and Hanxu Hou

Three Efficient All-Erasure Decoding Methods for Blaum–Roth Codes
Reprinted from: Entropy 2022, 24, 1499, https://doi.org/10.3390/e24101499 4

Hanqi Tang, Ruobin Zheng, Zongpeng Li, Keping Long and Qifu Sun

Scalable Network Coding for Heterogeneous Devices over Embedded Fields
Reprinted from: Entropy 2022, 24, 1510, https://doi.org/10.3390/e24111510 17

Bin Fan, Bin Tang, Zhihao Qu and Baoliu Ye

Network Coding Approaches for Distributed Computation over Lossy Wireless Networks
Reprinted from: Entropy 2023, 25, 428, https://doi.org/10.3390/e25030428 31

Hoover H. F. Yin, Shenghao Yang, Qiaoqiao Zhou, Lily M. L. Yung and Ka Hei Ng

BAR: Blockwise Adaptive Recoding for Batched Network Coding
Reprinted from: Entropy 2023, 25, 1054, https://doi.org/10.3390/e25071054 47

Licheng Mao, Shenghao Yang, Xuan Huang and Yanyan Dong

Design and Analysis of Systematic Batched Network Codes
Reprinted from: Entropy 2023, 25, 1055, https://doi.org/10.3390/e25071055 86

Yang Bai, Xuan Guang and Raymond W. Yeung

Multiple Linear-Combination Security Network Coding
Reprinted from: Entropy 2023, 25, 1135, https://doi.org/10.3390/e25081135 114

Yiqian Zhang, Tiantian Zhu and Congduan Li

Efficient Communications in V2V Networks with Two-Way Lanes Based on Random Linear
Network Coding
Reprinted from: Entropy 2023, 25, 1454, https://doi.org/10.3390/e25101454 140

Wuqu Wang, Zhe Tao, Nan Liu and Wei Kang

Fundamental Limits of Coded Caching in Request-Robust D2D Communication Networks
Reprinted from: Entropy 2024, 26, 250, https://doi.org/10.3390/e26030250 158

Hanqi Tang, Heping Liu, Sheng Jin, Wenli Liu and Qifu Sun

On Matrix Representation of Extension Field GF(pL) and Its Application in Vector Linear
Network Coding
Reprinted from: Entropy 2024, 26, 822, https://doi.org/10.3390/e26100822 191

Ming Jiang, Yi Wang, Fan Ding and Qiushi Xu

Finite-Blocklength Analysis of Coded Modulation with Retransmission
Reprinted from: Entropy 2024, 26, 863, https://doi.org/10.3390/e26100863 203

v

Received: 20 December 2024

Accepted: 26 December 2024

Published: 30 December 2024

Citation: Yang, S.; Shum, K.W.

Updates on Information Theory and

Network Coding. Entropy 2025, 27, 17.

https://doi.org/10.3390/e27010017

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

entropy

Editorial

Updates on Information Theory and Network Coding

Shenghao Yang * and Kenneth W. Shum

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
wkshum@cuhk.edu.cn
* Correspondence: shyang@cuhk.edu.cn

Around the year 2000, network coding introduced the concept that coding can re-
place the basic packet forwarding operation used in traditional network communication
systems [1–3]. This innovation simplified the achievement of maximum communication
rates for unicast and improved the maximum communication rates for multicast. Random
linear network coding (RLNC) bridged the gap between theory and practical applications
by demonstrating that randomly selected linear combination coefficients are highly likely
to be effective for linear network coding under some conditions [4,5]. Over the past two
decades, significant research has focused on efficient RLNC. One notable approach is
batched network coding (BNC), which integrates erasure coding with network coding in
an outer-code inner-code manner (e.g., [6,7]).

Recently, network coding techniques have been discussed in 3GPP for 5G and within
the Internet Research Task Force (IRTF), the research counterpart of the Internet Engineering
Task Force (IETF). The Coding for Efficient Network Communication Research Group
(NWCRG) of IRTF published six RFCs from 2018 to 2023. Network coding applications
have been explored for satellite systems [8] and content-centric networking [9]. Two
network coding protocols are described in [10,11], while the relationship between coding
and congestion control is examined in [12].

As Guest Editors of this Special Issue of Entropy, titled “Information Theory and Net-
work Coding II”, we are delighted to present ten cutting-edge research papers that explore
advancements in coding theory and network coding. These papers cover a diverse array
of subjects, such as finite-blocklength analysis (contribution 10), erasure coding (contribu-
tion 1), coded caching (contribution 8), vector-linear network coding (contribution 9), and
secure network coding (contribution 6). Contribution 2 proposes a scalable RLNC scheme
that adapts to the computational power of devices, while contribution 7 focuses on the
application of RLNC in Vehicle-to-Vehicle (V2V) networks. Contributions 5 and 4 discuss
the systematic design and adaptive recoding of BNC, respectively. Contribution 3 applies
RLNC and BNC to distributed computation over lossy wireless networks.

We have witnessed rapid advancement in Large Language Models (LLMs) in recent
years. This trend has provided numerous application scenarios for network coding and
highlighted several promising directions for future research. Notably, training LLMs
necessitates innovative GPU cluster networking technologies and distributed computation
techniques. We eagerly anticipate the emergence of more groundbreaking research in
network coding in the coming years.

We would like to express our sincere gratitude to all the authors who have contributed
their high-quality work to this Special Issue. Their dedication and effort have made this
collection of papers a reality. We also thank the reviewers for their time and expertise
in evaluating the submitted manuscripts. Their constructive feedback has significantly
enhanced the quality of the accepted papers. Furthermore, we are grateful to the Editorial

Entropy 2025, 27, 17 https://doi.org/10.3390/e27010017
1

Entropy 2025, 27, 17

Office of Entropy for their invaluable support and assistance in bringing this Special Issue
to fruition.

Author Contributions: Writing—original draft preparation, S.Y.; writing—review and editing, K.W.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grants 12141108, 62171399 and 62171400.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Zhou, W.; Hou, H. Three Efficient All-Erasure Decoding Methods for Blaum–Roth Codes.
Entropy 2022, 24, 1499. https://doi.org/10.3390/e24101499.

2. Tang, H.; Zheng, R.; Li, Z.; Long, K.; Sun, Q. Scalable Network Coding for Heterogeneous
Devices over Embedded Fields. Entropy 2022, 24, 1510. https://doi.org/10.3390/e24111510.

3. Fan, B.; Tang, B.; Qu, Z.; Ye, B. Network Coding Approaches for Distributed Computation over
Lossy Wireless Networks. Entropy 2023, 25, 428. https://doi.org/10.3390/e25030428.

4. Yin, H.H.F.; Yang, S.; Zhou, Q.; Yung, L.M.L.; Ng, K.H. BAR: Blockwise Adaptive Recoding for
Batched Network Coding. Entropy 2023, 25, 1054. https://doi.org/10.3390/e25071054.

5. Mao, L.; Yang, S.; Huang, X.; Dong, Y. Design and Analysis of Systematic Batched Network
Codes. Entropy 2023, 25, 1055. https://doi.org/10.3390/e25071055.

6. Bai, Y.; Guang, X.; Yeung, R.W. Multiple Linear-Combination Security Network Coding. Entropy
2023, 25, 1135. https://doi.org/10.3390/e25081135.

7. Zhang, Y.; Zhu, T.; Li, C. Efficient Communications in V2V Networks with Two-Way Lanes
Based on Random Linear Network Coding. Entropy 2023, 25, 1454. https://doi.org/10.3390/e2
5101454.

8. Wang, W.; Tao, Z.; Liu, N.; Kang, W. Fundamental Limits of Coded Caching in Request-Robust
D2D Communication Networks. Entropy 2024, 26, 250. https://doi.org/10.3390/e26030250.

9. Tang, H.; Liu, H.; Jin, S.; Liu, W.; Sun, Q. On Matrix Representation of Extension Field GF(pL)
and Its Application in Vector Linear Network Coding. Entropy 2024, 26, 822. https://doi.org/
10.3390/e26100822.

10. Jiang, M.; Wang, Y.; Ding, F.; Xu, Q. Finite-Blocklength Analysis of Coded Modulation with
Retransmission. Entropy 2024, 26, 863. https://doi.org/10.3390/e26100863.

References

1. Koetter, R.; Medard, M. An Algebraic Approach to Network Coding. IEEE/ACM Trans. Netw. 2003, 11, 782–795. [CrossRef]
2. Li, S.Y.R.; Yeung, R.W.; Cai, N. Linear network coding. IEEE Trans. Inform. Theory 2003, 49, 371–381. [CrossRef]
3. Ahlswede, R.; Cai, N.; Li, S.Y.R.; Yeung, R.W. Network information flow. IEEE Trans. Inform. Theory 2000, 46, 1204–1216.

[CrossRef]
4. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding Approach to

Multicast. IEEE Trans. Inform. Theory 2006, 52, 4413–4430. [CrossRef]
5. Lun, D.S.; Médard, M.; Koetter, R.; Effros, M. On coding for reliable communication over packet networks. Phys. Commun. 2008,

1, 3–20. [CrossRef]
6. Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the Generation Size and Overlap on Throughput and Complexity in Randomized

Linear Network Coding. IEEE Trans. Inform. Theory 2011, 57, 1111–1123. [CrossRef]
7. Yang, S.; Yeung, R.W. Batched Sparse Codes. IEEE Trans. Inform. Theory 2014, 60, 5322–5346. [CrossRef]
8. Kuhn, N.; Lochin, E. Network Coding for Satellite Systems. RFC 8975, 2021. Available online: https://doi.org/10.17487/RFC8975

(accessed on 19 December 2024).
9. Matsuzono, K.; Asaeda, H.; Westphal, C. Network Coding for Content-Centric Networking/Named Data Networking: Consider-

ations and Challenges. RFC 9273, 2022. Available online: https://doi.org/10.17487/RFC9273 (accessed on 19 December 2024).
10. Yang, S.; Huang, X.; Yeung, R.W.; Zao, D.J.K. BATched Sparse (BATS) Coding Scheme for Multi-hop Data Transport. RFC 9426,

2023. Available online: https://doi.org/10.17487/RFC9426 (accessed on 19 December 2024).

2

Entropy 2025, 27, 17

11. Detchart, J.; Lochin, E.; Lacan, J.; Roca, V. Tetrys: An On-the-Fly Network Coding Protocol. RFC 9407, 2023. Available online:
https://doi.org/10.17487/RFC9407 (accessed on 19 December 2024).

12. Kuhn, N.; Lochin, E.; Michel, F.; Welzl, M. Forward Erasure Correction (FEC) Coding and Congestion Control in Transport. RFC
9265, 2022. Available online: https://doi.org/10.17487/RFC9265 (accessed on 19 December 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3

Citation: Zhou, W.; Hou, H. Three

Efficient All-Erasure Decoding

Methods for Blaum–Roth Codes.

Entropy 2022, 24, 1499. https://

doi.org/10.3390/e24101499

Academic Editors: Shenghao Yang

and Kenneth Shum

Received: 5 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Three Efficient All-Erasure Decoding Methods for Blaum–Roth
Codes

Weijie Zhou 1,† and Hanxu Hou 2,*,†

1 School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523820, China
2 School of Electrical Engineering and Intelligentization, Dongguan University of Technology,

Dongguan 523820, China
* Correspondence: houhanxu@163.com
† These authors contributed equally to this work.

Abstract: Blaum–Roth Codes are binary maximum distance separable (MDS) array codes over
the binary quotient ring F2[x]/(Mp(x)), where Mp(x) = 1 + x + · · · + xp−1, and p is a prime
number. Two existing all-erasure decoding methods for Blaum–Roth codes are the syndrome-based
decoding method and the interpolation-based decoding method. In this paper, we propose a modified
syndrome-based decoding method and a modified interpolation-based decoding method that have
lower decoding complexity than the syndrome-based decoding method and the interpolation-based
decoding method, respectively. Moreover, we present a fast decoding method for Blaum–Roth codes
based on the LU decomposition of the Vandermonde matrix that has a lower decoding complexity
than the two modified decoding methods for most of the parameters.

Keywords: distributed storage; Blaum–Roth codes; all-erasure decoding; decoding complexity

1. Introduction

Redundancy is necessary in storage systems in order to provide high data reliability
in case of disk failures [1]. Replication and erasure codes are two main ways of including
redundancy. The idea of replication is that the data in one disk are copied to multiple disks.
The storage system replaces damaged disks with their copies when some disks are erased.
It is fast to repair the erased disks but requires a lot of storage space. In contrast, erasure
codes provide higher data reliability with a small storage cost.

Maximum distance separable (MDS) codes [2] are typical erasure codes that have
optimal tradeoff between storage cost and data reliability, i.e., they can achieve the minimum
storage cost given a level of data reliability. Binary MDS codes are special MDS codes that
have lower computational complexity in the encoding/decoding procedures, since only
XORs and cyclic-shift operations are involved. Some existing constructions of binary MDS
codes are EVENODD codes [3,4], RDP codes [5], and X-codes [6,7], which can correct any
two-column (we use “column" and “disk" interchangeably in this paper) erasures. RTP
codes [8], Star codes [9,10], and extended EVENODD codes [11–14] can correct any three-
column erasures. With the rapid increase in the data scale in storage systems [15], we need
to design binary MDS codes that can correct any number of erasures as well as efficient
encoding/decoding methods. Graftage codes [16] can achieve various tradeoffs between
storage and repair bandwidth, while we focus on efficient decoding methods of binary
MDS codes. Blaum–Roth codes [17] are this type of code, which are designed over the ring
Rp = F2[x]/(Mp(x)), where Mp(x) = 1 + x + · · ·+ xp−1, and p is a prime number.

When some columns are erased, the syndrome-based decoding method [17] and
the interpolation-based decoding method [18] have been proposed to recover the erased
columns. In the decoding methods [17,18], there are three basic operations over the ring Rp:
(i) addition, (ii) multiplication of a power of x and a polynomial, and (iii) division of factor
1 + xb with 1 ≤ b ≤ p − 1. It is shown in the decoding methods [17,18] that we can first take

Entropy 2022, 24, 1499. https://doi.org/10.3390/e24101499 https://www.mdpi.com/journal/entropy4

Entropy 2022, 24, 1499

the operations (i) and (ii) modulo 1 + xp and then take the results of modulo Mp(x), while
operation (iii) in the decoding methods [17,18] is directly taken as modulo Mp(x).

In this paper, we show that we can also compute operation (iii) as modulo 1 + xp,
which has lower computational complexity than modulo Mp(x). We propose modified
decoding methods for the two existing decoding methods [17,18] that have a lower decoding
complexity than the original decoding methods by computing operation (iii) as modulo 1+ xp

instead of modulo Mp(x). The reason our modified decoding methods have much lower
decoding complexity than the decoding methods [17,18] is twofold. First, all the operations
in our decoding methods are taken as modulo 1+ xp, while the existing decoding methods
execute the divisions as modulo Mp(x). Second, we propose new algorithms in the decoding
procedure to reduce the number of operations. Please refer to Section 3 for our two modified
decoding methods. Moreover, the efficient LU decoding method [19] proposed for extended
EVENODD codes decoding can also be employed to recover the erased columns of Blaum–
Roth codes. We show that the LU decoding method has lower decoding complexity than
the two modified decoding methods for most of the parameters. We define the decoding
complexity as the total number of XORs required to recover the erased columns.

2. Blaum–Roth Codes

In this section, we first review the construction of Blaum–Roth codes [17] and then
show the efficient operations over the ring F2[x]/(1 + xp). Finally, we present an algorithm
to compute multiple multiplications, which have two nonzero terms over F2[x]/(1 + xp)
with lower complexity.

2.1. Construction of Blaum–Roth Codes [17]

The codeword of Blaum–Roth codes [17] is a (p − 1) × n array [ci,j]
p−2,n−1
i=0,j=0 that is

encoded from the (p − 1)k information bits, where ci,j ∈ F2 and n ≤ p. We can view
any k columns of the (p − 1) × n array as information columns that store the (p − 1)k
information bits and the other r = n − k columns as parity columns that store the (p − 1)r
parity bits. For j = 0, 1, . . . , n − 1, we represent the p − 1 bits in column j by a polynomial
cj(x) = ∑

p−2
i=0 ci,jxi. The (p − 1)× n array of Blaum–Roth codes is defined as(

c0(x) c1(x) · · · cn−1(x)
)
· HT

r×n ≡ 0 (mod Mp(x)),

where Hr×n is the r × n parity-check matrix

Hr×n =

⎡⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 x x2 · · · xn−1

...
...

...
. . .

...
1 x(r−1) x(r−1)2 · · · x(r−1)(n−1)

⎤⎥⎥⎥⎥⎦,

and 0 is the all-zero row of length r. We denote the Blaum–Roth codes defined above as
C(p, n, r). When p ≥ n and p is a prime number, we can always retrieve all the information
bits from any k out of the n polynomials [17], i.e., C(p, n, r) are MDS codes.

If we let cp−1,j = 0 for all j = 0, 1, . . . , n − 1, then C(p, n, r) can be equivalently defined
as the following p · r linear constraints. (The subscripts are taken as modulo p unless
otherwise specified.)

n−1

∑
j=0

c〈m−�·j〉p ,j = 0,

where 0 ≤ m ≤ p − 1 and 0 ≤ � ≤ r − 1.
Suppose that the λ columns {ei}λ−1

i=0 are erased, where λ ≥ 2 and 0 ≤ e0 < · · · <
eλ−1 < n. Let the δ = n − λ surviving columns be {hj}δ−1

j=0 , where 0 ≤ h0 < · · · < hδ−1 < n

and {ei}λ−1
i=0 ∪ {hj}δ−1

j=0 = {0, 1, . . . , n − 1}. We have

5

Entropy 2022, 24, 1499

(
ce0(x) ce1(x) · · · ceλ−1(x)

)
· VT

λ×λ = S, (1)

over the ring Rp, where Vλ×λ is the λ × λ square

Vλ×λ =

⎡⎣ 1 1 1 ··· 1
xe0 xe1 xe2 ··· xeλ−1

...
...

...
. . .

...
x(λ−1)e0 x(λ−1)e1 x(λ−1)e2 ··· x(λ−1)eλ−1

⎤⎦,

and S =
(
S0(x) S1(x) · · · Sλ−1(x)

)
, where the λ syndrome polynomials are

S�(x) =
δ−1

∑
j=0

x�·hj chj
(x) for 0 ≤ � ≤ λ − 1. (2)

In this paper, we present three efficient decoding methods to solve the linear systems
in Equation (1) over the ring F2[x]/(1 + xp).

2.2. Efficient Operations over F2[x]/(1 + xp)

It is more efficient to compute the multiplication of a power of x and division of the
factor 1 + xb over the ring F2[x]/(1 + xp) rather than over the ring Rp: (i) Let a(x) ∈ Rp,
and the multiplication xi · a(x) over the ring Rp in [17] (Equation (19)) takes p − 1 XORs,
while the multiplication xi · a(x) over the ring F2[x]/(1 + xp) takes no XORs [20]. (ii)
Let g(x), f (x) ∈ F2[x]/(1 + xp), where d is a positive integer, which is coprime with p.
Consider the equation

(1 + xd)g(x) ≡ f (x) (mod 1 + xp), (3)

where f (x) has an even number of nonzero terms. Given such f (x) and d, we can compute
g(x) by Lemma 1.

Lemma 1. [Lemma 8] in [21] The coefficients of g(x) in Equation (3) are given by

gp−1 = 0, gp−d−1 = fp−1, gd−1 = fd−1,

gp−(�+1)d−1 = gp−�d−1 + fp−�d−1 for � = 1, 2, . . . , p − 3.

By Lemma 1, computing the division f (x)
1+xd takes p − 3 XORs, but we are not sure

whether g(x) has an even number of nonzero terms or not. If we want to guarantee that
g(x) has an even number of nonzero terms, we should use Lemma 2 to compute the
division f (x)

1+xd .

Lemma 2. [Lemma 13] in [20] The coefficients of g(x) in Equation (3) are given by

g0 = f2d + f4d + · · ·+ f(p−1)d,

g�d = g(�−1)d + f�d for � = 1, 2, . . . , p − 1.

By Lemma 2, the division f (x)
1+xd takes 3p−5

2 XORs, and g(x) has an even number

of nonzero terms. However, computing the division f (x)
1+xd in [Corollary 2] in [17] takes

2(p − 1) XORs over the ring Rp, which is strictly larger than the decoding methods in
Lemmas 1 and 2. It is shown in [Theorem 5] in [19] that we can always solve the equations
in Equation (1) over the ring F2[x]/(1+ xp) of which all the solutions are congruent to each
other after modulo Mp(x). Therefore, we can first solve the equations in Equation (1) over
the ring F2[x]/(1 + xp) and then obtain the unique solution by taking modulo Mp(x) to
reduce the computational complexity.

6

Entropy 2022, 24, 1499

2.3. Multiple Multiplications over F2[x]/(1 + xp)

Note that in our modified syndrome-based decoding method and the modified
interpolation-based decoding method, we need to compute multiple polynomial mul-
tiplications, where each polynomial has two nonzero terms. Suppose that we want to
compute the following m multiplications

L(xτ) =
m−1

∏
i=0

(xτ − xξi) (mod 1 + xp), (4)

where m is a positive integer, 0 ≤ τ ≤ p − 1 such that τ /∈ {ξ0, ξ1, . . . , ξm−1}, and 0 ≤ ξ0 <
· · · < ξm−1 < n.

We can derive from Equation (4) that

L(xτ) = xπ ·
m−1

∏
i=0

(1 + xdi) (mod 1 + xp), (5)

where π = ∑m−1
i=0 min(τ, ξi) modulo p and di = |τ − ξi| for i = 0, 1, . . . , m − 1.

Algorithm 1 presents a method to simplify the multiplications in Equation (4). In
Algorithm 1, we use Γ� to denote the number of the polynomial 1 + x� in the multiplication
L(xτ). Note that we only need to count the number of 1 + x� for 1 ≤ � ≤ p−1

2 , because
the equation 1 + x� ≡ x� · (1 + xp−�) modulo 1 + xp holds for p−1

2 < � < n. If Γ� > 1,

then we have (1 + x�)Γ� = (1 + x�)Γ�−2	 Γ�
2
 · (1 + x2�)	

Γ�
2
. Therefore, we can always

merge Γ� multiplications (1 + x�)Γ� into Γ� − 	 Γ�
2
 multiplications and the computational

complexity can be reduced with Algorithm 1. When Algorithm 1 is executed, all elements
of count-array Γ should be zero or one, and the length η of the final L(xτ) is between 1
and m.

Algorithm 1: Simplify the multiple multiplications.

Data: L(xτ) = ∏m−1
i=0 (xτ − xξi)

1 π ← ∑m−1
i=0 min(τ, ξi) (mod p);

2 count-array Γ[p−1
2] = {Γ1, Γ2, . . . , Γ p−1

2
} ← {0};

3 for i ← 0 to m − 1 do // Hash.
4 di ← |τ − ξi| mod p;
5 if di ≤ p−1

2 then Γdi
← Γdi

+ 1;
6 else // Use 1 + xdi ≡ xdi · (1 + xp−di)
7 π ← (π + di) mod p;
8 Γp−di

← Γp−di
+ 1;

9 ω ← 0;
10 while ω �= p−1

2 do

11 for � ← 1 to
p−1

2 do // Merge Multiplications (1 + x�)Γ�

12 if Γ� ≤ 1 then Continue;
13 if 2� ≤ p−1

2 then Γ2� ← Γ2� + 	 Γ�
2
;

14 else // Use 1 + x2� ≡ x2� · (1 + xp−2�)

15 π ← (π + 2	 Γ�
2
�) mod p;

16 Γp−2� ← Γp−2� + 	 Γ�
2
;

17 Γ� ← Γ� − 2	 Γ�
2
;

18 ω ← the amount of elements no greater than one in count-array Γ;

19 {ξi}η−1
i=0 ← the subscript of one in count-array Γ, i.e., Γξi = 1;

20 return xπ · ∏
η−1
i=0 (1 + xξi);

7

Entropy 2022, 24, 1499

3. Decoding Algorithm

In this section, we present two decoding methods over the ring F2[x]/(1 + xp) by
modifying two existing decoding methods [17,18] that can reduce the decoding complexity.

Recall that the λ erased columns are λ columns {ei}λ−1
i=0 , and the δ = n − λ surviving

columns are δ columns {hj}δ−1
j=0 .

3.1. Modified Syndrome-Based Method

We define the function of the indeterminate z

Gi(z) =
λ−1

∏
s=0, �=i

(1 − xes z) =
λ−1

∑
�=0

Gi,�(x)z�,

and the syndrome function S(z) = ∑r−1
�=0 S�(x)z�, where 0 ≤ i ≤ λ − 1 and S�(x) is given in

Equation (2). We can obtain in [Equation (18)] in [17] that

λ−1

∏
s=0, �=i

(xei − xes)cei (x) ≡
λ−1

∑
�=0

Gi,λ−1−�(x)S�(x)

≡ σi(x) (mod Mp(x)).

Therefore, the σi(x) can be regarded as the coefficient of zλ−1 of the polynomial
Gi(z)S(z). Then, the erased column cei (x) is given by σi(x)

∏λ−1
s=0, �=i(xei−xes)

, where 0 ≤ i ≤ λ − 1.

Note that the terms of set {S�(x)z�}r−1
�=λ are not involved in computing the coefficient

of zλ−1 of the polynomial Gi(z)S(z). Thus, we can just consider the first λ terms (the λ
coefficients of degrees less than λ) of S(z) when computing these coefficients, but all the
r terms of S(z) are calculated in [Step 1] in [17]. This is one essential way our modified
syndrome-based decoding method obtains a lower decoding complexity than the original
method in [17].

Moreover, the syndrome polynomials S�(x) satisfy

S0(1) = S1(1) = · · · = Sλ−1(1), (6)

i.e., the λ syndrome polynomials S�(x) either all have an even number of nonzero terms, or
they all have an odd number of nonzero terms, from the definition of Equation (2).

Let G(z) = (1 − xei z)Gi(z) and Q(z) = G(z)S(z). Then, we have

Q(z) = (1 − xei z)
λ−1

∏
s=0, �=i

(1 − xes z)S(z)

=
λ−1

∏
s=0

(1 − xes z)S(z) =
r+λ−1

∑
�=0

Q�(x)z�. (7)

Thus, Q(z) is independent of the erasure index i, and we only need to compute
Q(z) once in the decoding procedure. Recall that σi(x) is the coefficient of zλ−1 of the
polynomial Gi(z)S(z); then, the σi(x) is also the coefficient of zλ−1 of the polynomial

Q(z)
(1−xei z) =

(1−xei z)Gi(z)S(z)
(1−xei z) for all 0 ≤ i ≤ λ − 1. Suppose that

Q(z)
(1 − xei z)

= f i
0(x) + f i

1(x)z + · · ·+ f i
λ−1(x)zλ−1 + · · · ,

we can derive the recurrence formula

f i
�(x) =

{
Q0(x), � = 0;
xei · f i

�−1(x) + Q�(x), � > 0;
(8)

8

Entropy 2022, 24, 1499

where 0 ≤ i ≤ λ − 1. Notice that σi(x) = f i
λ−1(x) holds. Similar to S(z), we only compute

the first λ terms (the λ coefficients of degrees less than λ) of Q(z), since the other coefficients
of Q(z) are not needed, but all the r + λ terms of Q(z) are calculated in [Step 2] in [17].
This is another way our modified syndrome-based decoding method obtains a lower
decoding complexity than the original method in [17]. Algorithm 2 shows our modified
syndrome-based decoding method over the ring F2[x]/(1 + xp).

The following Lemma shows that we can always compute the divisions in steps 11–12
of Algorithm 2 by Lemmas 1 and 2 when λ ≥ 2.

Lemma 3. In steps 11–12 of Algorithm 2, the σi(x) has an even number of nonzero terms for all
0 ≤ i ≤ λ − 1, and we can employ Lemmas 1 and 2 to compute the divisions.

Proof. From Equation (8) and steps 7–10 of Algorithm 2, we obtain

σi(x) = x(λ−1)ei Q0(x) + x(λ−2)ei Q1(x) + · · ·+ Qλ−1(x),

where 0 ≤ i ≤ λ − 1. If the number of polynomials in the set {Qj(x)}λ−1
j=0 , which has an

odd number of nonzero terms, is an even number, then the σi(x) has an even number of
nonzero terms for 0 ≤ i ≤ λ − 1. In the following, we will show this is true. According to
Equation (6) and step 3 of Algorithm 2, Q0(1) = · · · = Qλ−1(1) holds.

Firstly, we consider Q0(1) = · · · = Qλ−1(1) = 1. We denote the λ polynomials
{Qj(x)}λ−1

j=0 with ε = 0, 1, . . . , λ as {Qε
j(x)}λ−1

j=0 . Let Q0
j (x) be the initial Qj(x) for 0 ≤ j ≤

λ − 1.
To prove that the number of polynomials with an odd number of nonzero terms in the

set {Qε
j(x)}λ−1

j=0 is even, it is equivalent to prove that ∑λ−1
j=0 Qε

j(1) = 0.

Algorithm 2: Modified syndrome-based decoding method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n − λ surviving columns

{hj}δ−1
j=0 .

1 for � ← 0 to λ − 1 do // Use Equation (2) and subscript � means slope.
2 S�(x) ← ∑δ−1

j=0 x�·hj chj
(x);

3 Q(z) = ∑λ−1
�=0 Q�(x)z� ← S(z) = ∑λ−1

�=0 S�(x)z�;
4 for s ← 0 to λ − 1 do // Use Equation (7).
5 for � ← λ − 1 down to 1 do // Calculate Q�(x) by backward additions.

6 Q�(x) ← xes · Q�−1(x) + Q�(x);

7 for i ← 0 to λ − 1 do // Use Equation (8).
8 σi(x) ← Q0(x);
9 for � ← 1 to λ − 1 do

10 σi(x) ← xei · σi(x) + Q�(x);

11 for i ← 0 to λ − 1 do // Apply Algorithm 1.
12 cei (x) ← σi(x)

∏λ−1
s=0, �=i(xei−xes)

;

Output: The erased columns {cei (x)}λ−1
i=0 .

According to Equation (7) and steps 4–6 of Algorithm 2, we have

Qε
j(1) =

{
Qε−1

j (1), j = 0;

Qε−1
j−1(1) + Qε−1

j (1), 1 ≤ j ≤ λ − 1;
(9)

9

Entropy 2022, 24, 1499

where ε = 1, 2, . . . , λ. The Q1
j (1) = 0 holds for all j ≥ 1. We can obtain by induction

Qε
j(1) = Qε−1

j−1(1) + Qε−1
j (1) = 0 for all j ≥ ε ≥ 1. (10)

Note that ∑λ−1
j=0 Q2

j (1) = 0; we can suppose that there are an even number of polyno-

mials in the set {Qε
j(x)}λ−1

j=0 , which has an odd number of nonzero terms, when ε = y ≥ 2,

i.e., ∑λ−1
j=0 Qy

j (1) = 0 first. We have ∑λ−1
j=0 Qy+1

j (1); so,

λ−1

∑
j=0

Qy+1
j (1) = Qy

0(1) +
λ−1

∑
j=1

(
Qy

j−1(1) + Qy
j (1)

)
=

λ−1

∑
j=0

Qy
j (1) +

λ−2

∑
j=0

Qy
j (1)

= Qy
λ−1(1) = 0. (11)

Equation (11) comes from Equation (10) with j = λ − 1. Therefore, there are an
even number of polynomials in the set {Qy+1

j (x)}λ−1
j=0 , which has an odd number of

nonzero terms.
Secondly, when Q0(1) = · · · = Qλ−1(1) = 0, the argument is similar. This completes

the proof.

According to Lemma 3, we can use Lemmas 1 and 2 to compute the divisions in step 12.
The number of divisions required in step 12 is recorded as Li, which ranges from 1 to λ − 1
for i = 0, 1, . . . , λ − 1. So, we can obtain cei (x) in step 12 by recursively computing the
division Li times, while the number of nonzero terms of the polynomial resulting from the
first Li − 1 divisions is even. Therefore, we can execute these divisions by Lemma 2 and
execute the last division by Lemma 1. The computational complexity TD in steps 11–12 of
Algorithm 2 is

TD =
λ−1

∑
i=0

(
(Li − 1)

3p − 5
2

+ p − 3
)
, (12)

where λ(p − 3) ≤ TD ≤ λ(λ − 2) 3p−5
2 + λ(p − 3).

In steps 11-12 of Algorithm 2, we take the λ(λ − 1) division without Algorithm 1,
in which λ divisions are executed by Lemma 1 and λ(λ − 2) divisions are executed by
Lemma 2; however, the number of the divisions can be reduced with Algorithm 1. In
Table 1, we show the average number of divisions in steps 11–12 of Algorithm 2 executed
by Lemma 1 and Lemma 2 with Algorithm 1 for (p, n) ∈ {(5, 5), (7, 7)}.

Table 1. The average number of XORs involved in steps 11–12 of Algorithm 2.

p, n λ
Without Algorithm 1 Apply Algorithm 1

Improvement(%)
Lemma 2 Lemma 1 XORs Lemma 2 Lemma 1 XORs

(5, 5)
2 0 2 4 0 2 4 0%
3 3 3 21 2 3 16 23.81%
4 8 4 48 0 4 8 83.33%

(7, 7)

2 0 2 8 0 2 8 0%
3 3 3 36 2.4 3 31.2 13.33%
4 8 4 80 4.4 4 51.2 36%
5 15 5 140 1 5 28 80%
6 24 6 216 6 6 72 66.67%

We specify the computational complexity of Algorithm 2 as follows:

• Steps 1–2 take λ(δ − 1)p = λ(n − λ − 1)p XORs.

10

Entropy 2022, 24, 1499

• Steps 3–6 take λ(λ − 1)p XORs.
• Steps 7–10 take λ(λ − 1)p XORs.
• Steps 11–12 take TD XORs by Equation (12).

Then, the computational complexity TAlg 2 of Algorithm 2 is

TAlg 2 = λ(n + λ − 3)p + TD, (13)

where

pλ2+
(
(n − 2)p − 3

)
λ ≤ TAlg 2 ≤ 5(p − 1)

2
λ2+

(
(n − 5)p + 2

)
λ.

Recall that the computational complexity of the decoding method in [17] is

7p − 4
2

λ2 − 7p − 2
2

λ + r(n − 1)p.

which is strictly larger than TAlg 2.
Table 2 evaluates the computational complexity of the decoding method in [17] and

Algorithm 2 for some parameters. The results in Table 2 demonstrate that Algorithm 2 has
much lower decoding complexity, compared with the original decoding method in [17].
For example, Algorithm 2 has 40.60% less decoding complexity than the decoding method
in [17] when (p, n, r) = (7, 7, 4), λ = 3.

Table 2. Decoding complexity of method in [17] and Algorithm 2.

p, n, r λ XORs in [17] XORs of TAlg 2 Improvement(%)

(5, 5, 3) 2 89 44 50.56%
3 150 91 39.33%

(7, 7, 4)
2 211 92 56.40%
3 300 178.2 40.60%
4 434 275.2 36.59%

The reason why Algorithm 2 has lower decoding complexity than the decoding
method in [17] can be summarized as the following three points.

Firstly, we only consider the first λ terms (the λ coefficients of degrees less than λ)
for both S(z) and Q(z) in computing the coefficients of zλ−1, while all r terms of S(z) and
all r + λ terms of Q(z) are calculated in the decoding method in [17], where r ≥ λ.

Secondly, all the divisions in Algorithm 2 are executed over the ring F2[x]/(1 + xp)

by Lemmas 1 and 2, which takes p − 3 XORs and 3p−5
2 XORs for each division, respectively.

In addition, the division in [17] is executed over the ring Rp, which takes 2(p− 1) XORs [17]
(Corollary 2).

Thirdly, we apply Algorithm 1 to steps 11–12 of Algorithm 2, which can significantly
reduce the number of divisions, thus reducing the number of XORs required.

3.2. Modified Interpolation-Based Decoding Method

According to the decoding method in [18], we can recover the erased column cei (x)
with 0 ≤ i ≤ λ − 1 by

cei (x) =
δ−1

∑
j=0

chj
(x)

fi(xhj)

fi(xei)
(mod Mp(x)), (14)

where fi(y) = ∏λ−1
s=0, �=i(y − xes) and f (y) = ∏λ−1

s=0 (y − xes). Let

aj(x) = chj
(x) · f (xhj) =

λ−1

∏
s=0

(xhj − xes) · chj
(x) (mod Mp(x)), (15)

11

Entropy 2022, 24, 1499

where 0 ≤ j ≤ δ − 1. Then, aj(x) has an even number of nonzero terms, and we only need
to compute once for aj(x) in the decoding procedure, since aj(x) is independent of the
erasure index i. Let

bi(x) =
δ−1

∑
j=0

aj(x)

xhj − xei
(mod Mp(x)), (16)

cei (x) =
bi(x)
fi(xei)

=
bi(x)

∏λ−1
s=0, �=i(xei − xes)

(mod Mp(x)), (17)

where 0 ≤ i ≤ λ − 1, and Mp(x) = 1 + x + · · ·+ xp−1. Algorithm 3 shows our modified
interpolation-based method over the ring F2[x]/(1 + xp).

After using Algorithm 1, the number of polynomial multiplications in step 2 ranges
from 1 to λ. Thus, the computational complexity TM in steps 1–2 of Algorithm 3 is

(n − λ)p ≤ TM ≤ (n − λ)λp. (18)

Algorithm 3: Modified interpolation-based method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n − λ surviving columns

{hj}δ−1
j=0 .

1 for j ← 0 to δ − 1 do // Use Equation (15) and apply Algorithm 1
2 aj(x) ← f (xhj) · chj

(x) = ∏λ−1
s=0 (xhj − xes) · chj

(x);

3 for i ← 0 to λ − 1 do // Use Equation (16)

4 bi(x) ← ∑δ−1
j=0

aj(x)

xhj−xei
;

5 for i ← 0 to λ − 1 do // Use Equation (17) and apply Algorithm 1
6 cei (x) ← bi(x)

fi(xei)
= bi(x)

∏λ−1
s=0, �=i(xei−xes)

;

Output: The erased columns {cei (x)}λ−1
i=0 .

In steps 1–2, we need to take λ multiplications without Algorithm 1, which takes
(n − λ)λp XORs; however, with Algorithm 1, the number of multiplications involved in
steps 1–2 can be reduced. In Table 3, we show the average number of XORs involved in
steps 1–2 of Algorithm 3 with Algorithm 1 for (p, n) ∈ {(5, 5), (7, 7)}. The results in Table 3
show that we can reduce the number of XORs with Algorithm 1, especially for a large value
of λ.

Table 3. The average number of XORs involved in steps 1–2 of Algorithm 3.

p, n λ
Without Algorithm 1 Apply Algorithm 1

Improvement(%)
Multiplication XORs Multiplication XORs

(5, 5)
2 6 30 5 25 16.67%
3 6 30 2 10 66.67%
4 4 20 2 10 50%

(7, 7)

2 10 70 9 63 10%
3 12 84 8.4 58.8 30%
4 12 84 3.6 25.2 70%
5 10 70 4 28 60%
6 6 42 3 21 50%

Only steps 4 and 6 of Algorithm 3 are needed to compute the division. We should
employ Lemma 2 to execute the divisions in steps 3–4 in Algorithm 3, since bi(x) in step 6
of Algorithm 3 should have an even number of nonzero terms. Notice that steps 5–6 of
Algorithm 3 are exactly the same as steps 11–12 of Algorithm 2.

12

Entropy 2022, 24, 1499

We specify the computational complexity of Algorithm 3 as follows:

• Steps 1–2 require TM XORs by Equation (18).
• Steps 3–4 need λ(δ − 1) additions and λδ divisions by Lemma 2, which require

λ(n − λ − 1)p + λ(n − λ) 3p−5
2 XORs in total.

• Steps 5–6 require TD XORs by Equation (12).

Then, the computational complexity of Algorithm 3 is

TAlg 3 = TM + λ(n − λ − 1)p + λ(n − λ)
3p − 5

2
+ TD, (19)

where

−5(p − 1)
2

λ2 + (
5n − 2

2
p − 5

2
n − 3)λ + np ≤ TAlg 3 ≤ −2pλ2 + (

7n − 6
2

p − 5
2

n + 2)λ.

Recall that the computational complexity of the decoding method in [18] is

(−2p + 1)λ2+
(
4(n − 1)p − 3n + 4

)
λ + n(p − 1),

which is larger than that of our Algorithm 3.
Table 4 evaluates the computational complexity of the decoding method in [18] and

Algorithm 3 for some parameters. The results in Table 4 demonstrate that our Algorithm 3
had much lower decoding complexity, compared with the original decoding method in [18].
For example, Algorithm 3 had a 34.13% lower decoding complexity than the decoding
method in [18], when (p, n, r) = (7, 7, 4), λ = 3.

Table 4. Decoding complexities of the decoding method in [18] and our Algorithm 3.

p, n, r λ XORs in [18] XORs of TAlg 3 Improvement(%)

(5, 5, 3) 2 122 79 35.25%
3 146 71 51.37%

(7, 7, 4)
2 292 207 29.11%
3 378 249 34.13%
4 438 228.4 47.85%

The reason why Algorithm 3 has a lower decoding complexity than that of the decod-
ing method in [18] is summarized as follows.

Firstly, all the divisions in Algorithm 3 were executed over the ring F2[x]/(1 + xp)
by Lemmas 1 and 2, which used p − 3 XORs and (3p − 5)/2 XORs for each division,
respectively. The division in the decoding method in [18] was executed over the ring Rp,
which used 2(p − 1) XORs.

Secondly, we applied our Algorithm 1 to steps 1–2 and steps 5–6, which significantly
reduced the number of multiplications, thus reducing the number of XORs required.

4. LU Decomposition-Based Method

The LU factorization of a matrix [22] is to express the matrix as a product of a lower
triangular matrix L and an upper triangular matrix U. According to the LU factorization
of the Vandermonde matrix [23], we can express a Vandermonde matrix as a product of
several lower triangular matrices and several upper triangular matrices. Therefore, we
can solve the Vandermonde linear equations by first solving the linear equations with
the encoding matrices that are the upper triangular matrices and then solving the linear
equations with the encoding matrices that are the lower triangular matrices.

Suppose that the λ erased columns are λ columns {ei}λ−1
i=0 and the δ = n − λ surviving

columns are {hj}δ−1
j=0 . Algorithm 4 shows our LU decomposition-based method over the

ring F2[x]/(1 + xp).

13

Entropy 2022, 24, 1499

According to [Theorem 8] in [19], Equation (1) can be factorized into(
ce0(x) ce1(x) · · · ceλ−1(x)

)
· (L(1)

λ L
(2)
λ · · · L

(λ−1)
λ) · (U(λ−1)

λ U
(λ−2)
λ · · ·U

(1)
λ) = S, (20)

over the ring Rp, where U
(θ)
λ is the upper triangle matrix

U
(θ)
λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Iλ−θ−1 0

ine0

1 xe0 0 · · · 0 0
0 1 xe1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 xeθ−1

0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

and L
(θ)
λ is the lower triangle matrix

L
(θ)
λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Iλ−θ−1 0

ine0

1 0 · · · 0 0
1 xeλ−θ + xeλ−θ−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · xeλ−2 + xeλ−θ−1 0
0 0 · · · 1 xeλ−1 + xeλ−θ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

for θ = 1, 2, . . . , λ − 1.

Algorithm 4: LU decomposition-based method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n − λ surviving columns

{hj}δ−1
j=0 .

1 for � ← 0 to λ − 1 do // use Equation (2) and the subscript � means
slope.

2 S�(x) ← ∑δ−1
j=0 x�·hj chj

(x);

3
(
ce0(x) ce1(x) · · · ceλ−1(x)

)
←
(
S0(x) S1(x) · · · Sλ−1(x)

)
;

// Eliminate λ − 1 upper triangular matrices U
(1)
λ , U

(2)
λ , . . . , U

(λ−1)
λ .

4 for θ ← 1 to λ − 1 do

// Eliminate upper triangular matrix U
(θ)
λ by forward additions.

5 for i ← λ − θ to λ − 1 do

6 cei (x) ← cei (x) + xeθ+i−λ · cei−1(x);

// Eliminate λ − 1 lower triangular matrix L
(λ−1)
λ , L

(λ−2)
λ , . . . , L

(1)
λ .

7 for θ ← λ − 1 down to 1 do

// Eliminate lower triangular matrix L
(θ)
λ by backward additions.

8 Solve ceλ−1(x) from ceλ−1(x) =
ceλ−1 (x)

xeλ−1+xeλ−θ−1 by Lemma 2 and Lemma 1(only
when θ = 1);

9 for i ← λ − 2 down to λ − θ do

10 Solve cei (x) from cei (x) =
cei (x)−cei+1 (x)

xei+xeλ−θ−1 by Lemma 2 and Lemma 1(only
when i = λ − θ);

11 ceλ−θ−1(x) ← ceλ−θ−1(x)− ceλ−θ
(x);

Output: The erased columns {cei (x)}λ−1
i=0 .

We specify the computational complexity of Algorithm 4 as follows:

• Steps 1–2 require λ(δ − 1)p = λ(n − λ − 1)p XORs.

14

Entropy 2022, 24, 1499

• Steps 3–11 require λ(λ − 1)p + (λ − 1)(p − 3) + (λ − 1)(λ − 2)(3p − 5)/4 XORs at
most, according to [Theorem 10] in [19].

Then, the computational complexity of Algorithm 4 is

TAlg 4 =
3p − 5

4
λ2 +

(4n − 13)p + 3
4

λ +
p + 1

2
. (23)

5. Comparison and Conclusions

Table 5 evaluates the decoding complexity of Algorithm 2–4 for some parameters.
The results of Table 5 demonstrate that Algorithm 2 performs better than Algorithm 3 if
λ ≤ n

2 ; otherwise, if λ > n
2 , then Algorithm 3 has less decoding complexity. Algorithm 4

has less decoding complexity than both Algorithms 2 and 3, when λ is small. However,
when λ is large, Algorithm 3 is more efficient than Algorithm 4. For example, compared
with Algorithm 2–4 have 21.98% and 40.66% less decoding complexity, respectively, when
(p, n, r) = (5, 5, 4), λ = 3.

Table 5. Decoding complexities of the proposed three decoding methods.

p, n, r λ
total XORs TAlg 2−TAlg 3

TAlg 2

TAlg 2−TAlg 4

TAlg 2TAlg 2 TAlg 3 TAlg 4

(5, 5, 4)
2 44 79 32 −79.55% 27.27%
3 91 71 54 21.98% 40.66%
4 128 38 81 70.31% 36.72%

(7, 7, 6)

2 92 207 74 −125% 19.57%
3 178.2 249 121 −39.73% 32.10%
4 275.2 228.4 176 17.01% 36.05%
5 343 171 239 50.15% 30.32%
6 492 141 310 71.34% 36.99%

In this paper, we presented three efficient decoding methods for the erasures of
Blaum–Roth codes that all have lower decoding complexity than the existing decoding
methods. The efficient implementation of the proposed decoding methods in practical
storage systems is one of our future works.

Author Contributions: Funding acquisition, H.H. methodology, H.H.; writing—original draft prepa-
ration, W.Z.; writing—review and editing, H.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
62071121 and National Key R&D Program of China grant number 2020YFA0712300.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data generated or analysed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Peng, P. Redundancy Allocation in Distributed Systems. Ph.D. Thesis, Rutgers The State University of New Jersey, School of
Graduate Studies, New Brunswick, NJ, USA, 2022.

2. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error Correcting Codes; Elsevier: Amsterdam, The Netherlands, 1977; Volume 16.
3. Blaum, M.; Brady, J.; Bruck, J.; Menon, J. EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID

Architectures. IEEE Trans. Comput. 1995, 44, 192–202. [CrossRef]
4. Hou, H.; Lee, P.P.C. A New Construction of EVENODD Codes With Lower Computational Complexity. IEEE Commun. Lett.

2018, 22, 1120–1123. [CrossRef]

15

Entropy 2022, 24, 1499

5. Corbett, P.; English, B.; Goel, A.; Grcanac, T.; Kleiman, S.; Leong, J.; Sankar, S. Row-diagonal Parity for Double Disk Failure
Correction. In Proceedings of the 3rd USENIX Conference on File and Storage Technologies, San Francisco, CA, USA, 31 March–
4 April 2004; pp. 1–14.

6. Xu, L.; Bruck, J. X-code: MDS Array Codes with Optimal Encoding. IEEE Trans. Inf. Theory 1999, 45, 272–276.
7. Tsunoda, Y.; Fujiwara, Y.; Ando, H.; Vandendriessche, P. Bounds on separating redundancy of linear codes and rates of X-codes.

IEEE Trans. Inf. Theory 2018, 64, 7577–7593. [CrossRef]
8. Goel, A.; Corbett, P. RAID Triple Parity. ACM SIGOPS Oper. Syst. Rev. 2012, 46, 41–49. [CrossRef]
9. Huang, C.; Xu, L. STAR: An Efficient Coding Scheme for Correcting Triple Storage Node Failures. IEEE Trans. Comput. 2008,

57, 889–901. [CrossRef]
10. Hou, H.; Lee, P.P.C. STAR+ Codes: Triple-Fault-Tolerant Codes with Asymptotically Optimal Updates and Efficient Encod-

ing/Decoding. In Proceedings of the 2021 IEEE Information Theory Workshop (ITW 2021), Kanazawa, Japan, 17–21 October 2021.
11. Blaum, M.; Brady, J.; Bruck, J.; Jai Menon, J.; Vardy, A. The EVENODD Code and its Generalization: An Effcient Scheme for

Tolerating Multiple Disk Failures in RAID Architectures. In High Performance Mass Storage and Parallel I/O; Wiley-IEEE Press:
Hoboken, NJ, USA, 2002; Chapter 8, pp. 187–208.

12. Blaum, M.; Bruck, J.; Vardy, A. MDS Array Codes With Independent Parity Symbols. IEEE Trans. Inf. Theory 1996, 42, 529–542.
[CrossRef]

13. Hou, H.; Shum, K.W.; Chen, M.; Li, H. New MDS Array Code Correcting Multiple Disk Failures. In Proceedings of the 2014 IEEE
Global Communications Conference, Austin, TX, USA, 8–12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2369–2374.

14. Fu, H.; Hou, H.; Zhang, L. Extended EVENODD+ Codes with Asymptotically Optimal Updates and Efficient Encoding/Decoding.
In Proceedings of the 2021 XVII International Symposium “Problems of Redundancy in Information and Control Systems”
(REDUNDANCY), Moscow, Russia, 25–29 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

15. Chiniah, A.; Mungur, A. On the Adoption of Erasure Code for Cloud Storage by Major Distributed Storage Systems. EAI Endorsed
Trans. Cloud Syst. 2022, 7, e1. [CrossRef]

16. Rui, J.; Huang, Q.; Wang, Z. Graftage Coding for Distributed Storage Systems. IEEE Trans. Inf. Theory 2021, 67, 2192–2205.
[CrossRef]

17. Blaum, M.; Roth, R.M. New Array Codes for Multiple Phased Burst Correction. IEEE Trans. Inf. Theory 1993, 39, 66–77. [CrossRef]
18. Guo, Q.; Kan, H. On Systematic Encoding for Blaum-Roth Codes. In Proceedings of the 2011 IEEE International Symposium on

Information Theory Proceedings, St. Petersburg, Russia, 31 July–5 August 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2353–2357.
19. Hou, H.; Han, Y.S.; Shum, K.W.; Li, H. A Unified Form of EVENODD and RDP Codes and Their Efficient Decoding. IEEE Trans.

Commun. 2018, 66, 5053–5066. [CrossRef]
20. Hou, H.; Shum, K.W.; Chen, M.; Li, H. BASIC Codes: Low-complexity Regenerating Codes for Distributed Storage Systems.

IEEE Trans. Inf. Theory 2016, 62, 3053–3069. [CrossRef]
21. Hou, H.; Han, Y.S. A New Construction and An Efficient Decoding Method for Rabin-like Codes. IEEE Trans. Commun. 2017,

66, 521–533. [CrossRef]
22. Strang, G.; Strang, G.; Strang, G.; Strang, G. Introduction to Linear Algebra; Wellesley-Cambridge Press: Wellesley, MA, USA, 1993;

Volume 3.
23. Yang, S.l. On the LU factorization of the Vandermonde matrix. Discret. Appl. Math. 2005, 146, 102–105. [CrossRef]

16

Citation: Tang, H.; Zheng, R.; Li, Z.;

Long, K.; Sun, Q. Scalable Network

Coding for Heterogeneous Devices

over Embedded Fields. Entropy 2022,

24, 1510. https://doi.org/10.3390/

e24111510

Academic Editors: Shenghao Yang

and Kenneth Shum

Received: 29 September 2022

Accepted: 17 October 2022

Published: 22 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Scalable Network Coding for Heterogeneous Devices over
Embedded Fields

Hanqi Tang 1, Ruobin Zheng 2, Zongpeng Li 3, Keping Long 1 and Qifu Sun 1,*

1 Department of Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China

2 Network Technology Lab, Huawei Technologies Co., Ltd., Shenzhen 518000, China
3 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China
* Correspondence: qfsun@ustb.edu.cn

Abstract: In complex network environments, there always exist heterogeneous devices with different
computational powers. In this work, we propose a novel scalable random linear network coding
(RLNC) framework based on embedded fields, so as to endow heterogeneous receivers with different
decoding capabilities. In this framework, the source linearly combines the original packets over
embedded fields based on a precoding matrix and then encodes the precoded packets over GF(2)
before transmission to the network. After justifying the arithmetic compatibility over different finite
fields in the encoding process, we derive a sufficient and necessary condition for decodability over
different fields. Moreover, we theoretically study the construction of an optimal precoding matrix in
terms of decodability. The numerical analysis in classical wireless broadcast networks illustrates that
the proposed scalable RLNC not only guarantees a better decoding compatibility over different fields
compared with classical RLNC over a single field, but also outperforms Fulcrum RLNC in terms of
a better decoding performance over GF(2). Moreover, we take the sparsity of the received binary
coding vector into consideration, and demonstrate that for a large enough batch size, this sparsity
does not affect the completion delay performance much in a wireless broadcast network.

Keywords: random linear network coding (RLNC); wireless broadcast network; scalable network
coding

1. Introduction

In a communication network, linear network coding (LNC) advocates intermediate
nodes to linearly combine received messages before transmission, so as to improve various
network performances, such as increasing network throughput, reliability, and reducing
transmission delay. Random linear network coding (RLNC) provides a distributed and
asymptotically optimal approach for linear coding with coefficients randomly selected
from a base field [1]. It shows the potential to improve the performance of unreliable or
topologically unknown networks such as D2D networks [2], ad hoc networks [3], and
wireless broadcast networks [4–7].

One of the reasons that hinder the large-scale practical applications of RLNC is the
compatibility issue of different computational overheads. In complex network environ-
ments, there exist heterogeneous devices with different computational powers. Specifically,
sources and certain receivers usually have ample computational powers while a large
number of intermediate nodes and other receivers are computationally constrained such
as the data collectors in ad hoc networks or low-cost devices in the Internet of Things
paradigm [8]. It turns out that the coding compatibility among heterogeneous devices with
different computational powers has to be considered in RLNC design.

This paper proposes a novel framework for scalable RLNC design based on embedded
fields. The adjective scalable means that the finite fields chosen in the encoding process are
not limited to a single base field but a set of embedded fields which consists of a large finite

Entropy 2022, 24, 1510. https://doi.org/10.3390/e24111510 https://www.mdpi.com/journal/entropy17

Entropy 2022, 24, 1510

field and all its subfields. The encoding process at the source consists of two stages. In stage
1, based on a precoding matrix, all original packets are linearly combined over different
finite fields to form precoded packets. In stage 2, the final packets to be transmitted are
formed by randomly combining the precoded packets over GF(2). The heterogeneous
receivers can recover the original packets over different fields under different computa-
tional constraints.

It is worthwhile to remark that prior to this work, there have been studies [9–14]
that have taken different fields into account in the course of RLNC design. On one hand,
the so-called Telescopic codes [9–11] and Revolving codes [12] considered different fields
aiming at reducing the decoding complexity. However, they assume that all receivers have
the same decoding capability, that is, they need support the arithmetic over the largest
defined finite field. On the other hand, a flexible RLNC scheme called Fulcrum [13,14]
makes use of GF(2) and its extension field GF(28) for code design and it supports receivers
to decode over both fields. Actually, Fulcrum can be regarded as a special instance in our
proposed framework, while the decoding rule over GF(2) considered therein is weaker than
the one proposed in this paper. In addition, there is limited discussion on the construction
of an optimal encoding matrix in Fulcrum.

The main contributions of this paper are summarized as follows.

• We mathematically justify how to make the arithmetic over different finite fields
compatible.

• We derive a necessary and sufficient condition for decodability at a receiver over
different finite fields. In particular, the proposed decoding rule over GF(2) is stronger
than the one proposed in Fulcrum.

• We theoretically study the construction of an optimal precoding matrix in terms of the
decodability performance.

• By numerical analysis in classical wireless broadcast networks, we demonstrate that
the proposed scalable RLNC not only guarantees a better decoding compatibility over
different fields compared with classical RLNC over a single field, but also provides a
better decoding performance over GF(2) in terms of smaller average completion delay
compared with Fulcrum.

• In numerical analysis, we also take the sparsity of the received binary coding vector
into consideration, and demonstrate that for a large enough batch size, this sparsity does
not affect the completion delay performance much in a wireless broadcast network.

This paper is structured as follows. Section 2 reviews the mathematical fundamentals
of embedded fields. Section 3 first presents the general principles of the proposed scalable
RLNC framework and then formulates the encoding and decoding process. Section 4
investigates the design of an optimal precoding matrix. Section 5 numerically analyzes
the proposed scalable RLNC and compares its performance with classical RLNC over a
single finite field as well as Fulcrum. Moreover, we take the sparsity into consideration and
illustrate the influence on its performance. Conclusion is given in Section 6.

2. Mathematical Fundamentals

In our proposed scalable RLNC framework, different receivers will be able to recover
the original packets over different finite fields, upon their different computational powers.
In order to make the arithmetic over different finite fields compatible, we need the concept
of embedded fields, which will be briefly reviewed in this section. One may refer to [15] for
a detailed introduction on finite fields.

Recall that a finite field GF(2d1) is a subfield of GF(2d2) if and only if d1|d2. Thus,
GF(2d1), GF(2d2), . . . , GF(2dD) are said to form embedded fields F if d1 < d2 < . . . < dD
and d1|d2| . . . |dD. For arbitrary GF(2di) and GF(2dj) in F with i < j, as GF(2dj) can be
regarded as GF

(
(2di)dj/di

)
, it can be expressed not only as a ddj

-dimensional vector space

over GF(2), but also as a dj/di-dimensional vector space over GF(2di) at the same time.

18

Entropy 2022, 24, 1510

Example 1. Assume that d1 = 1, d2 = 2, d3 = 4. The field GF(24) can be expressed as a
four-dimensional vector space over GF(2) as well as a two-dimensional vector space over GF(22).
Let α be a root of the irreducible polynomial x2 + x + 1 over GF(2) so that GF(22) = {0, 1, α, α2}.
The polynomial g(x) = x4 + x + 1 is irreducible over GF(2) but reducible over GF(22) and can
be factorized as g(x) = (x2 + x + α)(x2 + x + α2). Let β be a root of the irreducible polynomial
f (x) = x2 + x + α over GF(22) and β a root of f (x), so that g(β) = β4 + β + 1 = 0 as well. Then,
every element in GF(24) can be expressed as a0 + a1β + a2β2 + a3β3 with aj ∈ {0, 1}. Moreover,
α = β2 + β = β5, so that GF(22) = {0, β0, β5, β10}. Based on this, every element in GF(24) can
also be uniquely expressed as b0 + b1β, b0, b1 ∈ GF(22), which is summarized in Figure 1. In
Figure 1, the integers 0 to 15 are the decimal representation of the binary 4-tuple (a3, a2, a1, a0),
e.g., 13 refers to 1 + β2 + β3, which can be expressed 1 + αβ.

Figure 1. Every element a0 + a1β + a2β2 + a3β3, aj ∈ {0, 1} in GF(24) has a unique expression in the
form of b0 + b1β, b0, b1 ∈ {0, 1, α, α2} = GF(4), where α2 + α + 1 = β2 + β + α = β4 + β + 1 = 0. The
integers 0 to 15 represent the decimal expression of the binary 4-tuple (a3, a2, a1, a0).

3. Framework Description

3.1. General Principles

In this paper, we focus on the construction of a general scalable RLNC framework over
embedded fields, so we attempt to alleviate the influence of specific models of networks.
In the course of framework description, we merely classify the nodes in a network into
three types: a unique source node, intermediate nodes and receiver nodes. Assume that
the source has the highest computational power, so that it can generate coded packets
over embedded fields. The intermediate nodes in the network just recode the received
data packets over GF(2), so as to fully reduce the overall computational complexities in
the network. The heterogeneous receivers have different decoding capabilities. Under its
own computational constraint, every receiver can judge whether sufficient coded packets
have been received for decoding. More importantly, even though a receiver may not have
sufficient computational power to deal with the arithmetic in a larger field over which some
received packets are coded, it can still fully utilize these packets instead of directly throwing
away in the process of decoding. For instance, assume that two received packets w1 and
w2 are respectively equal to p1 + p2 + αp3 and p2 + αp3, where p1, p2, p3 are original
packets generated by the source node and α is an element not equal to 0 and 1 in the field
GF(2dD). For the receiver under the strongest field constraint GF(2), the original packet
p1 can be recovered by w1 + w2 instead of directly throwing w1, w2 away. Consequently,
the proposed scalable RLNC framework not only ensures the decoding capabilities of
heterogeneous network devices but also fully reduces the required number of received
packets for decoding.

3.2. Encoding and Recoding

In every batch, the source s has n original packets pi, 1 ≤ i ≤ n, each of which is an
M-dimensional column vector over GF(2), to be transmitted to receivers. Without loss of
generality, assume M is divisible by 22D

, which can be achieved by padding dummy bits
into every packet. With increasing D, the double exponentially increasing packet length
M may cause the practical issue of an excessive padding overhead. Such an issue can be
effectively solved based on the methods proposed in [16,17].

The encoding process at s has two stages. First, based on pi, 1 ≤ i ≤ n, for each
1 ≤ d ≤ D, extra rd precoded packets are generated based on coding coefficients selected

19

Entropy 2022, 24, 1510

from GF(22d
). In this process, every original packet pi is regarded as a vector of md = M/2d

symbols, each of which consists of 2d bits and represents an element in GF(22d
). The

multiplication of pi by a coefficient in GF(22d
) is thus realized by symbol-wise multiplication.

Note that when d1 < d2, the coefficients in GF(22d1) also appear in GF(22d2), but the coding
arithmetic changes. The mathematical fundamentals in the previous section guarantee the
coding compatibility which will be illustrated in the next example.

Example 2. Assume M = 4, n = 2, d1 = 1 and d2 = 2. Based on two original packets
p1 = [1 0 0 0]T and p2 = [1 1 0 1]T, a precoded packet is to be generated over GF(4) = {0, 1, α, α2}
by the linear combination αp1 + α2p2. First regard p1 and p2 as vectors of 2 symbols over GF(22),

that is, p1 =

[
α
0

]
and p2 =

[
α + 1

1

]
=

[
α2

1

]
. Then,

αp1 + α2p2 =

[
α2

0

]
+

[
α
α2

]
=

[
1

α + 1

]
= [0 1 1 1]T (1)

According to Figure 1, in GF(24), α = β2 + β = β5 and α2 = β2 + β + 1 = β10. As every element
in GF(24) = GF(42) can be uniquely expressed as b0 + b1β, b0, b1 ∈ GF(4), every four-dimensional
vector [a3 a2 a1 a0]

T over GF(2) as the following element in GF(16)

[a3 a2 a1 a0]
T = a3β6 + a2β + a1β5 + a0.

Based on this rule, p1 = β6 and p2 = β6 + β + 1. Consequently, β5p1 + β10p2 = β + β10 =
β + β5 + 1, which is [1 α + 1]T over GF(4) and [0 1 1 1]T over GF(2), same as (1) obtained by the
GF(4) arithmetic.

After stage 1, there are a total of N = n + r1 + r2 + . . . + rD precoded packets, the
first n of which are just the original packets. Let G =

[
In A1 . . . AD

]
denote the n × N

precoding matrix for the N precoded packets, where In refers to the n × n identity matrix
and Ad is a coefficient matrix defined over GF(22d

).
In stage 2, every coded packet c the source finally sends out is a random GF(2)-linear

combination of the N precoded packets, that is,

c = [p1 p2 · · · pn]Gh,

for some randomly generated N-dimensional column vector h over GF(2), which is referred
to as the coding vector for packet c. For a systematic scheme, the first n coded packets
c1, . . . , cn transmitted by the source are just n original packets, that is, the coding vector
for cj is just an N-dimensional unit vector with the jth position equal to 1. Every coded
packet will affix its coding vector to its header. In contrast, the information of precoding
matrix G can either be affixed to the header of every packet or presettled to be known at
every receiver.

At an intermediate node, the coded packets it transmits are GF(2)-linear combinations
of its received packets. Specifically, if an intermediate node receives coded packets c1, . . . , cl
with respective coding vectors h1, . . . , hl , then it will recode them to generate a new coded
packet c′ to be transmitted as

c′ = a1c1 + . . . + alcl ,

where a1, . . . , al are random binary coefficients. The concomitant coding vector for c′ is
a1h1 + . . . + alhl .

It is worthwhile to note that prior to this work, a flexible RLNC scheme called Fulcrum
has been investigated in [13,14]. Fulcrum can be regarded as a special instance in our
proposed framework with the setting D = 3 and r1 = r2 = 0.

20

Entropy 2022, 24, 1510

3.3. Decoding

Define a linear map ϕ : GF(2)N → GF(22D
)n by

ϕ(v) = Gv.

for every column vector v ∈ GF(2)N . The notation ϕ also applies to a set V of vectors:
ϕ(V) = {ϕ(v) : v ∈ V}.

Moreover, let Ud, 0 ≤ d ≤ D, denote the vector subspace of GF(2)N spanned by unit
vectors u1, u2, . . . , u∑d

d′=0 rd′
where a unit vector uj refers to an N-dimensional vector with

the only nonzero entry at position j.
For a receiver t, assume dt is the largest field for computation, and m packets have been

received. Let H denote the N × m matrix over GF(2) obtained by columnwise juxtaposition
of the coding vectors of the m received packets, and H the column space (over GF(2)) of H.

In order to recover original packets under the field constraint GF(22dt), we need make
use of coding packets with coding vectors in Udt ∩H rather than in H. This is because the
lower ∑d′>dt rd′ entries in every coding vector corresponds to the original precoded packets

generated by the source over a larger field than GF(22dt). We next characterize the following
necessary and sufficient condition for decodability at t up to field constraint GF(22dt).

Theorem 1. Based on the m received packets, the original n source packets can be recovered at t if
and only if

dim(ϕ(Udt ∩H)) = n. (2)

Proof. First assume (2) holds. Then, there must exist n vectors, denoted by v1, . . . , vn in
Udt ∩H such that

dim(ϕ({v1, . . . , vn})) = n. (3)

Consequently, there exists an m × n matrix K over GF(2) such that [v1 . . . vn] = HK,
and (3) implies the full rank n of GHK. As the last ∑d′>dt rd′ rows in HK are all zero, the

elements in GHK belong to GF(22dt), and hence there exists an n × n matrix D over GF(22dt)
subject to GHKD = In, that is, the original packets can be recovered at t.

Next assume that the original n packets can be recovered at t. Then, there exists an
m × n matrix D over GF(22dt) such that GHD = In. Further, D can be written as D1D2,
where D1, D2 are over GF(22dt) and of respective size m × n and n × n. Thus, GHD1 is a
matrix over GF(22dt) of full rank n. Recall that none of the elements in the last ∑d′>dt rd′

columns in G is in GF(22dt). Thus, every element in GHD1 belonging to GF(22dt) implies
that the last ∑d′>dt rd′ rows in HD1 are all zero. Moreover, as H is defined over GF(2), we
can further deduce that D1 can be written as D′

1D′′
1 for an m × n matrix D′

1 over GF(2) and
an n × n matrix D′′

1 over GF(22dt), such that the last ∑d′>dt rd′ rows in HD′
1 are all zero too,

that is, the columns in HD′
1 belong to Udt ∩H. In addition, the full rank of GHD1 implies

the full rank of GHD′
1. Equation (2) is thus proved to hold.

Based on the above theorem, we can further characterize the following equivalent
condition for decodability at a receiver from the perspective of matrix rank. For 0 ≤ d ≤ D,
denote by Hdt the ∑d′>dt rd′ × m submatrix of H obtained by restricting H to the last
∑d′>dt rd′ rows.

Corollary 1. Based on the m received packets, the original n source packets can be recovered at t if
and only if

rank(G(HKdt)) = n, (4)

where Kdt is an m × (m − rank(Hdt)) matrix whose columns constitute a basis for the kernel of
the column space of Hdt such that Hdt Kdt = 0.

21

Entropy 2022, 24, 1510

Note that the column space of HKdt are exactly the subspace Udt ∩H in (2), and all
entries in the last ∑d′>dt rd′ rows of HKdt are zero, so the computation of (4) only involve

arithmetic over GF(22dt). Moreover, in order to check (4), it suffices to select rank(HKdt)
linearly independent column vectors in HKdt , juxtapose them into a matrix H′, and check
whether rank(GH′) = n. With the number m of received packets at t increasing, the matrix
Kdt and H′ can be established in the following iterative way.

Algorithm 1. Denote by hm the N-dimensional coding vector over GF(2) for the mth received
packet at receiver t. Without loss of generality, assume that there is at least one non-zero entry in
hm. Let hm

dt
denote the vector restricted from hm to the last ∑d′>dt rd′ entries. The next procedure

efficiently produces desired Kdt and H′.
Initialization. Let Kdt , H′, B and Bdt be empty matrices. They are to consist of a m rows, N

rows, N rows and ∑d′>dt rd′ rows respectively.
Iteration. Consider the case that the mth packet with coding vector hm is just received, and

assume receiver t has dealt with the former m − 1 coding vectors hj, 1 ≤ j < m. Perform either of
the following two depending on hm

dt
.

• If hm
dt

is a zero vector, then update Kdt as

Kdt =

[
Kdt 0

0 . . . 0 1

]
, (5)

and respectively append a zero column vector to B and to Bdt on the right. Further check
whether hm is a GF(2)-linear combination of columns in H′. If so, keep H′ unchanged.
Otherwise, update H′ as [H′ hm]. The iteration for the current value of m completes.

• If hm
dt

is not a zero vector, check whether it is a GF(2)-linear combination of columns in Bdt . If
no, respectively update B, Bdt and Kdt as

B = [B hm], Bdt = [Bdt hm
dt
], Kdt =

[
Kdt

0 . . . 0

]
, (6)

and the iteration for the current value of m completes. Otherwise, perform the following steps.
First compute an (m− 1)-dimensional vector k subject to Bdt k = hm

dt
, and then update Kdt as

Kdt =

[
Kdt k

0 . . . 0 1

]
. (7)

Further compute a new vector v = Bk + hm, and respectively append a zero column vector to
B and to Bdt on the right. Check whether v is a GF(2)-linear combination of columns in H′. If
so, keep H′ unchanged. Otherwise, update H′ as [H′ v]. The iteration for the current value of
m completes.

Note that after the above procedure, the sum of the number of nonzero columns in Bdt and the
number of columns in Kdt is m. The nonzero columns of Bdt keep to form a basis of the column space
of Hdt = [h1

dt
. . . hm

dt
]. The columns of Kdt keep to form a basis of the null space spanned by columns

of Hdt . The columns in H′ keep to be a basis of the column space of HKdt , where H = [h1 . . . hm].

Example 3. Assume that D = 2, n = r0 = 3, and r1 = r2 = 1. The 3 × 5 precoding matrix G is
designed as

G =

[1 0 0 α β
0 1 0 α2 β
0 0 1 1 β

]

where β is a primitive element in GF(24) and α = β5, which can be regarded as a primitive element
of GF(22) ⊂ GF(24).

22

Entropy 2022, 24, 1510

Assume that at a receiver t, GF(22) is the largest field for computation, and 4 packets have been
received with the columnwise juxtaposition of the respective coding vectors prescribed by

H =

⎡⎢⎢⎣
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1
1 1 1 1

⎤⎥⎥⎦
As Hdt = [1 1 1 1] herein, the aforementioned iterative approach can yield the following Kdt and
concomitant H′:

Kdt =

⎡⎢⎣1 1 1
1 0 0
0 1 0
0 0 1

⎤⎥⎦, H′ =

⎡⎢⎢⎣
1 1 0
1 0 1
0 1 1
0 0 1
0 0 0

⎤⎥⎥⎦,

where the columns of H′ form a basis for the subspace Udt ∩H. Consequently, GH′ =

[1 1 α
1 0 1 + α2

0 1 0

]
.

Since 1 + α + α2 = 0 in GF(22), rank(GH′) = 2, that is, (4) does not hold. Therefore, the receiver
requires to receive more packets before decoding all original packets.

Assume h5 = [1 0 0 1 1]T is the coding vector for the 5th received packet. Then, the matrix
Kdt is dynamically updated to

Kdt =

⎡⎢⎢⎣
1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦,

but there is no change for H′, because H · [1 0 0 0 1]T belongs to the column space of H′.
Assume h6 = [0 0 1 0 0]T is the coding vector for the 6th received packet. First, dynamically

update Kdt to

Kdt =

⎡⎢⎢⎢⎢⎣
1 1 1 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦,

Then, as h6 = [0 0 1 0 0]T does not belong to the column space of H′, update H′ as [H′ h6]:

H′ =

⎡⎢⎢⎣
1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 0

⎤⎥⎥⎦.

Consequently, GH′ =

[1 1 α 0
1 0 1 + α2 0
0 1 0 1

]
, and it has full rank 3, so the receiver can recover the source

packets. Actually, in this case, the source packets can be recovered by merely GF(2)-based operations.

In two special cases that dt = D and dt = 0, i.e., receiver t has the highest and the
lowest computational power respectively, (4) degenerates to a more concise form.

Corollary 2. When dt = D, (4) is equivalent to

rank(GH) = n. (8)

23

Entropy 2022, 24, 1510

When dt = 0, (4) is equivalent to

rank(H)− rank(Hdt) = n. (9)

Recall that Fulcrum [13,14] can be regarded as a special RLNC scheme of our frame-
work. One may notice that in Fulcrum, the decoding rule over GF(2) at a receiver is

rank(H) = N, (10)

which is sufficient but not necessary. In contrast, (9) is both necessary and sufficient. As to
be seen in Section 5, there is an observable performance gain when (9) is adopted as the
decoding rule instead of (10). Moreover, our proposed scalable RLNC is more flexible than
Fulcrum, because the receivers with intermediate computational power can fully utilize its
decoding capability to decode over intermediate fields (rather than only over GF(2)), so
that the number of required coded packets can be reduced.

3.4. Decoding Complexity Analysis

In this subsection, we briefly analyze the computational complexity of the proposed
scalable RLNC scheme at receiver t with the field constraint GF(2dt). We assume that after
a sufficiently large recoding process over GF(2), the last r positions in every received binary
column vector h, which corresponds to the r precoded packets generated over the larger
fields than GF(2), are nonzero. According to Corollary 1, when enough coded packets have
been received such that the condition

rank(G(HKdt)) = n

is satisfied, receiver t can recover all original packets by linear combining n coded packets
over GF(2dt). Accordingly, it requires at most n2M/dt multiplications and n(n− 1)M/dt ad-
ditions over GF(2dt) in the decoding process. Following the same consideration in [4,18,19],
we assume that it respectively takes dt and 2d2

t binary operations to realize addition and
multiplication between two elements in GF(2dt). Consequently, the total number of required
binary operations can be characterized as O(Mndt) to recover every M-bit original packet.

Herein, we did not consider the complexity to compute the inverse matrix of GHKdt
because in practice the packet length M is much larger than n, and this convention has also
been adopted in [4,19] for computational complexity analysis.

4. Optimal Construction of Precoding Matrix G

Based on the analysis in the previous section, we are motivated to carefully design
such a precoding matrix G that the full rank of H is equivalent to the full rank of GH,
which can optimize the decodability performance for fixed parameters n and N. To achieve
this goal, for the precoding matrix G, we first introduce the following condition that is
stronger than the conventional maximal distance separable (MDS) property.

Definition 1. An n × N matrix G over GF(22D
) is said to be MDS under GF(2)-mapping if for

any full-rank N × n matrix H over GF(2), rank(GH) = n.

Recall that if G satisfies the conventional MDS property, all n columns in it are linearly
independent. Obviously, the conventional MDS property is a prerequisite for the proposed
MDS property under GF(2)-mapping. However, Example 3 demonstrates an MDS matrix
G that is not MDS under GF(2)-mapping. To the best of our knowledge, except for a brief
attempt in [13], there is no prior literature involving the construction of a matrix satisfying
the MDS property under GF(2)-mapping. We next characterize an equivalent condition on

24

Entropy 2022, 24, 1510

the MDS property under GF(2)-mapping, so as to facilitate the explicit construction. Given
an n × N matrix G, let C denote the set of row vectors generated by G:

C = {mG : m ∈ GF(22D
)n}. (11)

For every c ∈ C, let Nc denote its null space in GF(22D
)N .

Theorem 2. An n × N matrix G is MDS under GF(2)-mapping if and only if

dim(Nc ∩ GF(2)N) < n, ∀ c ∈ C\{0} (12)

Proof. We prove the theorem in a contrapositive argument. Assume that there exists a
nonzero c ∈ C such that dim(Nc ∩ GF(2)N) ≥ n, and let m be a row vector over GF(22D

)
satisfying c = mG. Then, we can select n linearly independent column vectors h1, . . . , hn
over GF(2) from Nc. Write H = [h1 . . . hn]. Thus, mGH = cH = 0, so that GH is not full
rank n, i.e., G is not MDS under GF(2)-mapping.

Assume that G is not MDS under GF(2)-mapping, and let H be a full rank N × n
matrix over GF(2) subject to rank(GH) < n. Then, there exists an n-dimensional row
vector m such that mGH = 0. Write c = mG, so that cH = 0. Since H is full rank n, there
are at least n linearly independent vectors (which are the columns of H) belonging to Nc,
i.e., dim(Nc ∩ GF(2)N) ≥ n.

For c ∈ C, let η(c) denote the number of elements in c belonging to GF(22D
)\{0, 1},

and define an indicator δ which is set to 1 if c consists of an element equal to 1 and set to 0
otherwise. The following is a useful corollary of Theorem 2.

Corollary 3. If an n × N matrix G is MDS under GF(2)-mapping, then the followings hold

η(c) + δ > N − n, ∀ c ∈ C\{0}. (13)

C ∩ GF(2)N = {0}. (14)

Proof. Assume there is a nonzero c ∈ C with η(c) + δ ≤ N − n, i.e., N − η(c) ≥ n + δ.
Define a new vector c′ by restricting to its components belonging to GF(2), so that the
dimension of c′ is N − η(c). Thus, the dimension of the null space of c′ in GF(2)N−η(c)

is N − η(c)− δ, which is no smaller than n. Correspondingly, dim(Nc ∩ GF(2)N) ≥ n, a
contradiction to the MDS property under GF(2)-mapping for G according to (12).

If there is a nonzero c ∈ C belonging to GF(2)N , then η(c) = 0 so that (13) cannot hold
as N > n, and thus G cannot be MDS under GF(2)-mapping.

Conditions (13) and (14) are insufficient for the MDS property under GF(2)-mapping.
The key reason is the possibility of the following

∑<j> αj ∈ GF(2), αj ∈ GF(22D
)\{0, 1}. (15)

For this reason, we should pay more attention in the matrix design to avoid the involvement
of those elements in (15). The special case N = n + 1 is easier to manipulate.

Proposition 1. When N = n + 1, an n × N matrix G is MDS under GF(2)-mapping if and only
if (14) holds.

Proof. The necessity has been shown in Corollary 3. To prove sufficiency, assume (14)
holds for C defined in (11) based on G. Let c be an arbitrary vector in C. As (14) holds,
η(c) > 0. In the case η(c) = 1, there must be at least one element in c equal to 1, because
otherwise we can find another vector in C with all elements in GF(2), a contradiction to (14).
Thus, dim(Nc ∩ GF(2)N) < n for this case. Consider the case η(c) ≥ 2. Without loss of

25

Entropy 2022, 24, 1510

generality, write c = [c1 . . . cη(c) 0 . . . 0] with cj �= 0. We can assume cj not all identical,
because otherwise we can again find another vector in C with all elements in GF(2), a
contradiction to (14). Moreover, for arbitrary two elements a, b ∈ GF(22D

), a + b = 0 if and
only if a = b. Hence, there are at most η(c)− 2 linearly independent vectors in GF(2)η(c)

that are in the null space of c, which further implies dim(Nc ∩ GF(2)N) < n. We have
proved (12) and thus the considered G is MDS under GF(2)-mapping.

Corollary 4. When N = n+ 1, there exists a systematic n× N matrix G = [In AD] over GF(22D
)

that is MDS under GF(2)-mapping if and only if n < 2D.

Proof. Assume n < 2D. Define an n-dimensional column vector a = [α, α2, . . . , αn]T, where
α is a primitive element of GF(22D

). In this way, all elements in a are distinct and every GF(2)-
combination ∑1≤j≤n ajα

j among them does not belong to GF(2). By Proposition 1, [In a] is
an MDS matrix under GF(2)-mapping. When n ≥ 2D, let a = [α1, . . . , αn]T be an arbitrary
n-dimensional vector in GF(22D

). In order to make [In a] MDS under GF(2)-mapping,
according to (14) in Corollary 3, there is not any element αj belonging to GF(2). If there is a

basis, say {α1, . . . , α2D} of GF(22D
) in a, then 1 can be written as a GF(2)-linear combination

of the basis, so that (14) does not hold. If there is not a basis of GF(22D
) in a, then there

exists an n-dimensional nonzero row vector v over GF(2) subject to va = 0, so that (14)
does not hold either. Thus, it is impossible for [In a] to be MDS under GF(2)-mapping.

Based on the above corollary, the required field size is exponentially larger than N in
the construction of an n × N systematic MDS matrix under GF(2)-mapping. This implies
that it is infeasible to construct such a practical precoding matrix G for large N. For this
reason, it is alternative to choose to randomly generate G, which may cause a near-optimal
decodability behavior as illustrated in the next example.

Example 4. Define the following vectors a1 = [α α2 α3 . . . α7]T and a2 = [α2 α4 α6 . . . α14]T

over GF(28) in which α is a primitive element. It can be checked that both matrices [I7 a1] and [I7 a2]
are MDS under GF(2)-mapping. Although the 7 × 9 matrix G = [I7 a1 a2] is not MDS under
GF(2)-mapping, among 42435 7-dimensional subspaces of GF(2)9, there are only 127 instances to
break the desired MDS property, that is, every basis for each of the instances forms a 9 × 7 matrix H

with rank(GH) < 7.

5. Numerical Analysis

In this section, we numerically analyze the performance of applying the proposed
systematic scalable RLNC scheme to a wireless broadcast network, which is a classical
model to demonstrate the advantage of RLNC [4–7]. The number n of original packets in
a batch is varied from n = 6 to 24. In every timeslot, the source broadcasts one packet to
all receivers. The memoryless and independent packet loss probability for every receiver
is pe = 0.2, that is, in every timeslot, every receiver can successfully receive a packet with
probability 1− pe. We consider the scheme with parameters D = 2, r = 2 where r1 = r2 = 1.
In the n × N precoding matrix G = [In A1 A2], the entries in A1 and A2 are randomly
selected from GF(22) and GF(24), respectively. In the numerical analysis of scalable RLNC,
the single source s has n original packets to be broadcast to a total of 30 receivers with
different decoding capabilities. Specifically, the 30 receivers fall into 3 different groups and
the 10 receivers in every group has the same decoding capability, and can decode based on
the decoding rule (4) over GF(2), GF(22) and GF(24), respectively. In the first n timeslots, the
source broadcasts n original packets, whose coding vectors are (n + r)-dimensional unit
vectors, to all receivers. Starting from timeslot n + 1, the source broadcasts coded packets,
each of which is generated based on a random N-dimensional column vector h over GF(2),
till all the receivers can recover the n original packets. Herein, for every parameter setting
and every considered RLNC scheme, we conduct 1200 independent rounds of simulation
which result in 95% confidence intervals.

26

Entropy 2022, 24, 1510

Figure 2 depicts the average group completion delay per packet for the 3 groups
of receivers, respectively labeled as “Scalable-GF(2x)”, x ∈ {1, 2, 4} of the considered
scalable RLNC scheme. The group completion delay means the number of extra coded
packets the source broadcasts till all the 10 receivers in the group can recover n original
packets. For a better comparison, the figure also depicts the average group completion
delay per packet, labeled as “RLNC-GF(2x)”, for a group of 10 receivers of three different
classical systematic RLNC schemes over different fields GF(2x), x ∈ {1, 2, 4}. Recall that in
the classical systematic RLNC scheme over GF(2x), the source first broadcasts n original
packets and then randomly coded packets with n-dimensional coding vectors over GF(2x).
One may observe from Figure 2 that for the case of GF(24), the average completion delay
of scalable RLNC is almost same as the classical RLNC. Over other smaller fields, even
though scalable RLNC yields higher average completion delay than classical RLNC, it
simultaneously guarantees the decoding compatibility at heterogeneous receivers, which
cannot be endowed by classical RLNC schemes. For instance, assume that the source adopts
classical RLNC over GF(22) to generate coded packets. On one hand, the group of receivers
with decoding capability constrained to GF(2) will fail to recover the original packets. On
the other hand, the groups of receivers with decoding capability over GF(24) cannot fully
utilize their higher computational power so that the average completion delay cannot be
further reduced compared with decoding over GF(22). As a result, the performance loss for
the cases of smaller fields in our proposed scalable RLNC compared to classical RLNC is
the cost of decoding compatibility over different fields.

6 8 10 12 14 16 18 20 22 24

Number of Original Packets

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 G
ro

up
 C

om
pl

et
io

n
D

el
ay

 p
er

 P
ac

ke
t

Scalable-GF(2)

Scalable-GF(22)

Scalable-GF(24)
RLNC-GF(2)

RLNC-GF(22)

RLNC-GF(24)

Figure 2. The average group completion delay per packet for the receivers of different systematic
RLNC schemes in a wireless broadcast network with r1 = r2 = 1 and packet loss probability pe = 0.2.

For the considered systematic scalable RLNC scheme, recall that for decoding over
GF(2) in the proposed scalable RLNC, Equation (9) obtained in Sec. III is a necessary and
sufficient rule while Equation (10), originally adopted in [13,14] for Fulcrum decoding, is a
non-necessary rule. Figure 3 compares the average group completion delay per packet for
10 receivers as well as the average completion delay per packet at a single receiver when the
receivers adopt different decoding rules (9) and (10) over GF(2). For the average completion
delay at a single receiver, a noticeable performance gain can be observed. In particular,
when the number of original packets is less than 10, the average completion delay at a single
receiver is reduced by more than 20% based on the decoding rule (9) instead of (10). For
the average group completion delay, the performance gain by adopting (9) instead of (10)
becomes less obvious because it is offset by the increasing number of receivers in a group.
Compared with Fulcrum, which only supports decoding over the smallest field GF(2) or

27

Entropy 2022, 24, 1510

the largest field GF(22D
), in addition to the performance gain illustrated in Figure 3, our

proposed scalable RLNC is more flexible. This is because the receivers with intermediate
computational power can fully utilize its decoding capability to decode over intermediate
fields (rather than only over GF(2)), so that the average completion delay can be reduced.

6 8 10 12 14 16 18 20 22 24

Number of Original Packets

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
A

ve
ra

ge
 C

om
pl

et
io

n
D

el
ay

 p
er

 P
ac

ke
t

Group-Eq.(9)-Fulcrum
Group-Eq.(10)-Scalable
Single-Eq.(9)-Fulcrum
Single-Eq.(10)-Scalable

Figure 3. The average group completion delay per packet for 10 receivers as well as the average
completion delay per packet at a single receiver when the receivers adopt different decoding rules (9)
and (10) over GF(2).

In the remaining part of this section, we shall analyze the performance of our scalable
RLNC scheme by adjusting the sparsity 0 < Ph < 1 of h, which controls to the probability
for every component in h to be one. Specifically, for every packet to be transmitted by
the source, the expected number of precoded packets to form it is Ph(n + r). In previous
analysis of this section, Ph is set to 1/2. We next consider a more sparse h with Ph ≤ 1/2.

According to the work in [20], given that there are (i − 1) (n + r)-dimensional linearly
independent binary vectors with sparsity Ph, the probability that a new randomly generated
(n + r)-dimensional binary coding vector hi with sparsity Ph is linearly independent with
them is lower bounded by

1 − (1 − Ph)
n+r−i. (16)

This bound indicates that except for the case i close to (n + r), the lower bound keeps
very close to 1. Further, at the end of Sec. IV, we have illustrated that a random G will bring
a near-optimal decodability behavior, that is, the full rank of H will lead to the full rank
of GH with high probability. As a result, although our proposed scalable RLNC scheme
with two-stage encoding process is different from the conventional sparse RLNC described
in [20], we are motivated to bring the sparsity into our proposed scheme and attempt to
meet a balance between completion delay and decoding complexity. The work in [14] has
taken the sparsity into consideration in their performance analysis of Fulcrum, which is a
special instance of our proposed scalable RLNC scheme.

In simulation, besides the consideration of sparsity Ph, we also extend the value range
of n from [6, 24] to [8, 64] and set r1 = r2 = 2. All other parameter settings are same as those
in Figure 2. The 3 solid curves in Figure 4 illustrate the average group completion delay
per packet for the 3 groups of 10 receivers under different field constraints GF(2), GF(22)
and GF(24) for scalable RLNC with sparsity Ph = 1/2. The 3 dotted curves in Figure 4
illustrate the completion delay performance under different field constraints GF(2), GF(22)
and GF(24) for scalable RLNC with Ph = 1/4. It is interesting to observe that with the batch
size n increasing, under the same decoding constraint (i.e., two curves in the same color),
the completion delay performance for the case Ph = 1/4 will converge to the case Ph = 1/2.
This result indicates that the lower bound in (16) is rather loose when i is close to n + r,

28

Entropy 2022, 24, 1510

and moreover, for a large enough batch size n, a more sparse vector h will not affect the
completion delay performance much in a wireless broadcast network.

8 16 24 32 40 48 56 64

Number of Original Packets

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 G
ro

up
 C

om
pl

et
io

n
D

el
ay

 p
er

 P
ac

ke
t GF(21) P

h
=1/2

GF(21) P
h
=1/4

GF(22) P
h
=1/2

GF(22) P
h
=1/4

GF(24) P
h
=1/2

GF(24) P
h
=1/4

Figure 4. The average group completion delay per packet for scalable RLNC with different sparsity Ph.

6. Conclusions

In this work, the proposed scalable RLNC framework based on embedded fields
aims at endowing heterogeneous receivers with different decoding capabilities in complex
network environments. In this framework, we derive a general decodability condition
by the arithmetic compatibility of embedded fields. Moreover, we theoretically study the
specific construction of an optimal precoding matrix G and illustrate the rationality of the
near-optimal behavior of a randomly generated G.

In numerical analysis, we demonstrate that the proposed scalable RLNC not only
guarantees a better decoding compatibility compared with classical RLNC, but also pro-
vides a better decoding performance over GF(2) in terms of smaller average completion
delay compared with Fulcrum. In addition, the numerical analysis also demonstrates that
for a large enough batch size, the sparsity of the vector h does not affect the completion
delay performance much. As a potential future work, the theoretical insight behind this
observation deserves a further investigation so as to facilitate the design of a scalable RLNC
scheme with a better tradeoff between decoding complexity and completion delay.

Last, the present scalable RLNC framework assumes block-based coding. It would
also be interesting to make use of the embedded fields structure to generalize the design of
sliding window-based random linear coding schemes such as the ones studied in [21–23].

Author Contributions: R.Z. and Q.S. conceived and designed the mathematical model. H.T. designed
the whole coding framework and wrote the paper with the help of Q.S., K.L. and Z.L. All authors
were involved in problem formulation, data analysis and editing of this paper. All authors have
agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
under Grant 62101028 and 62271044, and by China Postdoctoral Science Foundation under Grant
2021TQ0031, and by Huawei TC20211126644 and by China Telecom 20222910016.

Acknowledgments: This paper was partly presented in [24] at the IEEE/CIC International Confer-
ence on Communications in China (ICCC) 2021.

Conflicts of Interest: The authors declare no conflict of interest.

29

Entropy 2022, 24, 1510

References

1. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A random linear network coding approach to multicast
network. IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

2. Huang, J.; Gharavi, H.; Yan, H.; Xing, C.C. Network coding in relay-based device-to-device communications. IEEE Netw. 2017, 31,
102–107. [CrossRef] [PubMed]

3. Asterjadhi, A.; Fasolo, E.; Rossi, M.; Widmer, J.; Zorzi, M. Toward network coding-based protocols for data broadcasting in wireless
ad hoc networks. IEEE Trans. Wirel. Commun. 2010, 9, 662–673. [CrossRef]

4. Su, R.; Sun Q.; Zhang Z. Delay-complexity trade-off of random linear network coding in wireless broadcast. IEEE Trans. Commun.
2020, 68, 5606–5618. [CrossRef]

5. Eryilmaz, A.; Ozdaglar, A.; Médard, M.; Ahmed, E. On the delay and throughput gains of coding in unreliable networks. IEEE
Trans. Inf. Theory 2008, 54, 5511–5524. [CrossRef]

6. Swapna, B.T.; Eryilmaz, A.; Shroff, N.B. Throughput-delay analysis of random linear network coding for wireless broadcasting.
IEEE Trans. Inf. Theory 2013, 59, 6328–6341. [CrossRef]

7. Zhu, H.; Ouahada, K. Investigating random linear coding from a pricing perspective. Entropy 2018, 20, 548. [CrossRef] [PubMed]
8. Wunderlich, S.; Cabrera, J.A.; Fitzek, F.H.; Reisslein, M. Network coding in heterogeneous multicore IoT nodes with DAG

scheduling of parallel matrix block operations. IEEE Internet Things J. 2017, 4, 917–933. [CrossRef]
9. Heide, J.; Lucani, D.E. Composite extension finite fields for low overhead Network Coding: Telescopic codes. In Proceedings of

the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015.
10. Marcano, N.J.H.; Heide, J.; Lucani, D.E.; Fitzek, F.H. On the overhead of telescopic codes in network coded cooperation. In

Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015.
11. Heide, J. Composite extension finite fields for distributed storage erasure coding. In Proceedings of the 2016 IEEE International

Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016.
12. Yazdani, V.; Lucani, D. Revolving codes: Overhead and computational complexity analysis. IEEE Commu. Lett. 2021, 25, 374–378.

[CrossRef]
13. Lucani, D.E.; Pedersen, M.V.; Ruano, D.; Sørensen, C.W.; Fitzek, F.H.; Heide, J.; Geil, O.; Nguyen, V.; Reisslein, M. Fulcrum: Flexible

network coding for heterogeneous devices. IEEE Access 2018, 6, 77890–77910. [CrossRef]
14. Nguyen, V.; Tasdemir, E.; Nguyen, G.T.; Lucani, D.E.; Fitzek, F.H.; Reisslein, M. DSEP Fulcrum: Dynamic sparsity and expansion

packets for fulcrum network coding. IEEE Access 2020, 8, 78239–78314. [CrossRef]
15. Lidl, R.; Niederreiter, H. Finite Fields, 3rd ed.; Cambridge University Press: Cambridge, UK, 1997.
16. Schutz, B.; Aschenbruck, N. Packet-preserving network coding schemes for padding overhead reduction. In Proceedings of the

2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019.
17. Taghouti, M.; Lucani, D.E.; Cabrera, J.A.; Reisslein, M.; Pedersen, M.V.; Fitzek, F.H. Reduction of padding overhead for RLNC

media distribution with variable size packets. IEEE Trans. Broadcast. 2019, 65, 558–576. [CrossRef]
18. Tang, H.; Sun, Q.T.; Li, Z.; Yang, X.; Long, K. Circular-shift linear network coding. IEEE Trans. Inf. Theory 2019, 65, 65–80. [CrossRef]
19. Hou, H.; Shum, K.W.; Chen, M.; Li, H. BASIC codes: Low-complexity regenerating codes for distributed storage systems. IEEE

Trans. Inf. Theory 2016, 62, 3053–3069. [CrossRef]
20. Feizi, S.; Lucani, D.E.; Sørensen, C.W.; Makhdoumi, A.; Médard, M. Tunable Sparse Network Coding for Multicast Networks. In

Proceedings of the 2014 IEEE International Symposium on Network Coding (NetCod), Aalborg Oest, Denmark, 27–28 June 2014;
pp. 1–6.

21. Karetsi, F.; Papapetrou, E. Lightweight network-coded ARQ: An approach for ultra-reliable low latency communication. Comput.
Commun. 2022, 185, 118–129. [CrossRef]

22. Ma, S.; Liu, X.; Yan, Y.; Zhang, B.; Zheng, J. Sliding-window based batch forwarding using intra-flow random linear network
coding. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus,
15–19 June 2020.

23. Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.; Reisslein, M. FSW: Fulcrum sliding window coding for low-latency
communication. IEEE Access 2022, 10, 54276–54290. [CrossRef]

24. Tang, H.; Zheng, R.; Li, Z.; Sun, Q.T. Scalable Network Coding over Embedded Fields. In Proceedings of the 2021 IEEE/CIC
International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 641–646.

30

Citation: Fan, B.; Tang, B.; Qu, Z.; Ye,

B. Network Coding Approaches for

Distributed Computation over Lossy

Wireless Networks. Entropy 2023, 25,

428. https://doi.org/10.3390/

e25030428

Academic Editor: Syed A. Jafar

Received: 10 January 2023

Revised: 20 February 2023

Accepted: 23 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Network Coding Approaches for Distributed Computation over
Lossy Wireless Networks

Bin Fan 1,2, Bin Tang 1,2,*, Zhihao Qu 1,2 and Baoliu Ye 1,2

1 Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University,
Nanjing 211100, China

2 School of Computer and Information, Hohai University, Nanjing 211100, China
* Correspondence: cstb@hhu.edu.cn

Abstract: In wireless distributed computing systems, worker nodes connect to a master node wire-
lessly and perform large-scale computational tasks that are parallelized across them. However, the
common phenomenon of straggling (i.e., worker nodes often experience unpredictable slowdown
during computation and communication) and packet losses due to severe channel fading can sig-
nificantly increase the latency of computational tasks. In this paper, we consider a heterogeneous,
wireless, distributed computing system performing large-scale matrix multiplications which form
the core of many machine learning applications. To address the aforementioned challenges, we first
propose a random linear network coding (RLNC) approach that leverages the linearity of matrix
multiplication, which has many salient properties, including ratelessness, maximum straggler tol-
erance and near-ideal load balancing. We then theoretically demonstrate that its latency converges
to the optimum in probability when the matrix size grows to infinity. To combat the high encoding
and decoding overheads of the RLNC approach, we further propose a practical variation based
on batched sparse (BATS) code. The effectiveness of our proposed approaches is demonstrated by
numerical simulations.

Keywords: distributed computing; coded computation; network coding; lossy wireless network;
BATS codes

1. Introduction

In recent years, due to the proliferation of computationally intensive applications
at the wireless edge, such as federated learning [1] and image recognition [2], wireless
distributed computing has drawn great interest [3,4], where large-scale computational
tasks are carried out by a cluster of wireless devices collaboratively. Meanwhile, due to the
inherent randomness of wireless environment, wireless distributed computing systems
are facing multiple challenges. One main challenge is called the straggler issue, where
computing devices often experience unpredictable slowdown or even dropout during
computation and communication, which can lead the computational task to much larger
latency or even failure [5]. Another challenge is the packet-loss issue, where the packets
can be lost during transmission due to severe channel fading of wireless networks.

In this paper, we consider a typical wireless distributed computing system consisting
of multiple worker nodes and a master node. We focus on distributed matrix multipli-
cation y = Ax, which forms the core of many computation-intensive machine learning
applications, such as linear regression, and aims at tackling the two above challenges. One
common approach to mitigate the effect of stragglers is providing redundancy through
replication [6–8], which has been widely used in large distributed systems such as MapRe-
duce [9] and Spark [10]. However, this kind of r-replication strategy can only tolerate r
stragglers, and using a larger r increases the computation redundancy, which can lead to
poor performance.

Entropy 2023, 25, 428. https://doi.org/10.3390/e25030428 https://www.mdpi.com/journal/entropy31

Entropy 2023, 25, 428

Recently, Lee et al. [11] firstly introduced coding-based computation framework, and
then proposed an (n, k) maximum-distance-separable (MDS) code approach, such that the
master node can recover the desired result from the local computation results of any k out of
n worker nodes. Based on this, Das et al. further proposed a fine-grained model such that
the partial results of stragglers can be leveraged. However, MDS codes fail to make full use
of the partial work done by stragglers. Ferdinand et al. [12] and Kiani et al. [13] proposed
approaches to make use of stragglers by allocating more fine-grained computing tasks to
each worker. Very recently, Mallick et al. [14] proposed the use of rateless codes such as
LT codes [15] and Raptor codes [16] and demonstrated that a rateless coding approach can
achieve an asymptotically optimal latency. However, all these approaches assumed that the
communication between each worker node and the master node is reliable and can only
lead to inferior performance in wireless distributed computing.

In fact, the packet-loss issue has been widely investigated in communication networks,
and the existing approaches roughly belong to two categories. The first is automatic repeat-
request (ARQ) based, which employs feedback-based retransmissions to combat packet loss.
It has been adopted by Han et al. [17] in a MDS-code-based wireless distributed computing
system. However, the feedbacks from the master node can increase the computation latency
significantly due to the inherent delays of feedback, especially when the communication
traffic between worker nodes and the master node is large. The other is forward error cor-
rection (FEC)-based, employing error-correcting code to combat packet losses. Traditional
FEC approaches mainly focus on achieving reliable transmission over each communication
link, but in the context of distributed matrix multiplication, the objective is to recover the
desired computation result. How to tackle both the straggler issue and the packet-loss issue
for distributed matrix multiplication in wireless distributed computing system remains an
open problem.

In this paper, by leveraging the linearity of matrix multiplication, we show how
network coding [18] can be applied to solve the two issues efficiently in a joint manner. The
main contributions of this paper are summarized as follows:

• We first propose a random linear network coding (RLNC) [19] based approach. In
this approach, the matrix A to be multiplied is first split into multiple submatrices
A1, . . . , Ak, and each worker node is assigned multiple submatrices, each of which
is a random linear combination of the A1, . . . , Ak. Each worker node multiplies each
assigned submatrix with the input x, and it generates random linear combinations of
submatrix-vector products that have been created for transmission. Once receiving
enough packets with independent global encoding vectors, the master node can
recover the desired result Ax by Gaussian elimination. We model the computation and
communication process as a continuous-time trellis, and by conducting a probabilistic
analysis of the connectivity of the trellis, we theoretically show that the latency of
RLNC approach converges to the optimum in probability when the matrix size grows
to infinity.

• Since RLNC approach has high encoding and decoding costs, we further propose a
practical variation of RLNC approach based on batched sparse (BATS) code [20] and
show how to optimize the performance of the BATS approach.

• We conducted numerical simulations to evaluate the proposed RLNC and BATS
approaches. The simulation results show that both approaches can overcome the strag-
gler issue and the packet-loss issue effectively and achieve near-optimal performance.

The reminder of the paper is organized as follows. Section 2 introduces the system
model. Sections 3 and 4 introduce the RLNC approach and the BATS approach, respectively.
Section 5 presents the numerical evaluation results. Finally, Section 6 concludes.

2. System Model

2.1. Coding-Based Wireless Distributed Computation

As shown in Figure 1, we consider a heterogeneous, wireless distributed computing
system consisting of a master node and n heterogeneous worker nodes. These worker

32

Entropy 2023, 25, 428

nodes, denoted by w1, w2, . . . , wn, are connected wirelessly to the master node. We focus
on the matrix-vector multiplication problem, whose goal is to compute the result y = Ax

for a given matrix A ∈ Rm×d and an arbitrary vector x ∈ Rd×1, where R is a set of real
numbers. Our results can be directly extended to matrix-matrix multiplication, where x is a
small matrix.

1,1

1,2

,1

,2

Figure 1. Illustration of the wireless distributed computing system for matrix multiplication.

In order to mitigate the effect of unpredictable node slowdown during computation
and communication, we consider an error-correcting code based computing framework
which consists of four components:

• Encoding before computation: The matrix A is first split along its rows equally into
k submatrices A1, . . . , Ak, i.e., AT = [AT

1 AT
2 · · · AT

k]. Without loss of generality,
here we assume that m/k is an integer. These submatrices are encoded into more
submatrices using an error-correcting code, which are further placed on worker
nodes. The submatrices assigned to worker node wi are denoted as Ãi,1, Ãi,2, . . . , Ãi,ki

,
where ki is the number of submatrices assigned to wi. Here, we emphasize that, in
many applications, such as linear regression, this encoding will be used for multiple
computations with different inputs x [11], so that the encoding is often required to be
executed before the arrival of any x.

• Computation at each worker node: When an input x is arrived at the master node,
the master node will broadcast x to all these worker nodes. Once worker node wi
receives x, it will compute Ãi,1x, Ãi,2x, . . . , Ãi,ki

x in a sequential manner.
• Communication from each worker node: During the computation, each worker

node also keeps on sending its local computation results to the master node in some
manner. For this, each submatrix-vector product which is a vector of length m/k is
encapsulated into a packet. We assume that the communication link between worker i
and the master node can be modeled as a packet erasure channel, where each packet is
erased independently with probability εi. In order to combat these packet losses, each
worker node can transmit its local computation results using a coding based approach.

• Decoding at the master node: Once the master node receives enough information,
it will recover the desired result y = Ax and notify all the worker nodes to stop
the computation.

33

Entropy 2023, 25, 428

2.2. Delay Model

In this paper, we mainly focus on minimizing the latency, which is the time required by
the wireless computing system so that the result y = Ax can be successfully decoded at the
master node by aggregating the results sent from the worker nodes. For the characterization
of the latency, we consider the following two models, one for computation delay and the
other for communication delay.

As in [14], we consider a computation delay model as follows. The computation delay
at each worker node wi consists of two parts. The first is an initial setup time before wi
starts to perform any submatrix-vector multiplication, denoted by Xi, which is assumed to
follow an exponential distribution with rate λi. The second is a constant time for calculating
each submatrix-vector product, which is denoted by τi. Hence, the delay for computing r
submatrix-vector products by wi is Xi + τir.

In order to characterize the straggling effect during the communication, we model
the communication time of a packet from worker node i to the master node as a shifted-
exponential distribution with rate μi and shift parameter θi. Additionally, the communi-
cation times of all packets are mutually independent. The model has also been adopted
by [17,21].

3. A Network Coding Approach

In order to combat the straggling effects during both computation and communication
and the packet losses during communication, in this section, we propose a random linear
network coding (RLNC)-based approach and show that it can achieve optimal latency
performance in the asymptotic sense, i.e., when the number of rows of A goes to infinity,
when the overheads incurred are ignored. A practical version of this approach is given in
the next section.

3.1. Description

We describe the RLNC based approach based on the computing framework given in
Section 2.1:

Encoding before computation: In the RLNC-based approach, each submatrix Ãi,j
assigned to worker node wi is a random linear combination of A1, . . . , Ak; i.e.,

Ãi,j =
k

∑
e=1

ci,j,eAe, j = 1, 2, . . . , ki (1)

where ci,j,e is chosen randomly and independently according to a standard normal distribu-
tion. Since this encoding approach is rateless, ki can be arbitrarily large.

Computation at each worker node: When the worker node wi receives an input x, it
starts to compute the local results ỹi,1 = Ãi,1x, ỹi,2 = Ãi,2x, . . . , ỹi,ki

= Ãi,ki
x, in a sequential

manner.
Communication from each worker node: For each packet transmission starting at

time t, the worker node wi will generate a linear combination of all the local computation
results in hand as

ŷi,t =
di(t)

∑
j=1

c′jỹi,j, (2)

where di(t) is the number of local results that have been computed before time t by wi.
Here, (c′1, . . . , c′di(t)

) is referred to as the local encoding vector of ŷi,t.
Decoding at the master node: Due to the linearity of matrix-vector multiplication, we

can see that

34

Entropy 2023, 25, 428

ŷi,t =
di(t)

∑
j=1

c′jỹi,j =
di(t)

∑
j=1

c′jÃi,jx

=
di(t)

∑
j=1

c′j
k

∑
e=1

ci,j,eAex

=
k

∑
e=1

(
di(t)

∑
j=1

c′jci,j,e

)
Aex

(3)

i.e., each packet received by the master node is a linear combination of A1x, A2x, . . . , Akx.
Here, (

di(t)

∑
j=1

c′jci,j,1,
di(t)

∑
j=1

c′jci,j,2, . . . ,
di(t)

∑
j=1

c′jci,j,k

)
(4)

is referred to as the global encoding vector of ŷi,t. Hence, when the master node receives
enough packets that have k linearly independent global encoding vectors, it can recover
the desired results A1x, A2x, . . . , Akx by Gaussian elimination.

Overhead: Our RLNC approach suffers from its high encoding and decoding com-
plexities, just like RLNC for communication. More specifically, in our approach, the
encoding cost per submatrix is O(k · m/k · d) = O(md), and the total decoding cost is
O(k3 + k2 · m/k) = O(k3 + mk). We can see that the encoding cost is high, but the
encoding can been done before any computation and just once, which can be used for
computing Ax as many times as possible with different x. Meanwhile, the decoding cost is
also high when k is large, but it is independent of d, the number of columns of A. Thus,
when d is very large, the decoding cost at the master node can be much lower than the
computation cost at each worker node. In addition, the decoding at the master node can be
done in an incremental fashion using Gauss–Jordan elimination, which can further reduce
the decoding latency.

Note that the global encoding vector is required by the master node for decoding. To
achieve this efficiently, we use a pseudo-random number generator to generate the local
encoding vector for each transmitted packet and append the random seed. The number
of local results are computed for the packet. Then, the master node can get the global
encoding vectors according to (3). In this way, the coefficient overhead is negligible, which
is opposite to the traditional RLNC for communication networks.

Remark 1. Lin et al. [22] have also applied RLNC in distributed training on mobile devices. They
used RLNC to create coded data partitions among mobile devices so as to tolerate computational
uncertainties, and their main purpose is to reduce the need to exchange data partitions across
mobile devices. Differently from [22], the use of RLNC in this paper is for straggler mitigation
and packet-loss tolerance in a joint manner, while leveraging the computation and communication
capabilities of all worker nodes.

Remark 2. Since random linear network coding is performed over the field of real numbers as
opposed to a finite field, the entries of generated matrices could be very large numbers, leading
the whole computation to be numerically unstable. In fact, this issue is present in any coded
distributed computation over the field of real numbers and is not just limited to our approaches.
There are two basic approaches to dealing with this issue. One is to use very small coefficients
to avoid the emergence of large numbers, which is possible, as the encoding operations are also
linear with these coefficients in our proposed approach. This is significantly different from the
Reed–Solomon-code/polynomial-code-based approaches which have been widely adopted in coded
distributed computation (see, e.g., [11,23]), as the coefficients are powers of evaluation points. In
particular, the numerical instability issue for the RLNC approach is much less severe than that for
Reed–Solomon-code/polynomial-code-based approaches, since Vandermonde matrices have exponen-
tially large condition numbers. The other is to employ the finite field embedding technique [24,25],

35

Entropy 2023, 25, 428

where the entries are quantized into number of finite digits and then embedded into a finite field.
Nevertheless, both approaches incur numerical errors. How to guarantee numerical stability in
coded distributed computation is still an open problem and requires further study.

3.2. Latency Analysis

Let ri =
1

θi + 1/μi
, and r′i = min{1/τi, ri(1 − εi)}. Define

T0 =
k

∑n
i=1 r′i

+
∑n

i=1 r′iXi

∑n
i=1 r′i

. (5)

The following result characterizes a upper bound of the latency of the proposed
RLNC-based approach.

Theorem 1. For any constant δ > 0, the latency of the proposed RLNC-based approach, denoted
by TRLNC, satisfies

lim
k→∞

Pr(TRLNC ≤ (1 + δ)T0) = 1. (6)

The following result establishes a lower bound on the latency of any scheme under
the coding framework.

Theorem 2. For any scheme under the coding framework, the probability that its latency Tany is
less than T0 decays exponentially with k; i.e., for any constant δ > 0, there exists some constant
η > 1 that does not depend on k, such that

Pr(Tany ≥ (1 − δ)T0) = 1 −O(η−k). (7)

From Theorems 1 and 2, it is straightforward to see that the proposed RLNC-based ap-
proach is asymptotically optimal. In the following, we will formally prove Theorems 1 and 2
by a connectivity analysis of a continuous-time trellis, which models the computation and
communication processes.

For any scheme under the coding framework, as illustrated in Figure 2, we model
the computation and communication processes of each worker node wi up to time t
using a continuous-time trellis (G(t)

i) [26], where edges are classified into three types:
computation edges, transmission edges and memory edges. Each computation edge
models the computation of a submatrix-vector product. Suppose wi computes a submatrix-
vector product from time t0 to t0 + τi ≤ t. Then, two nodes, wi(t0) and w′

i(t0 + τi), will be
introduced, and there is a computation edge from wi(t0) to w′

i(t0 + τi). Similarly, suppose
a packet is transmitted from wi at time t0 and received successfully by the master node at
time t1 ≤ t. Then, two nodes w′

i(t0) and m(t1), if they do not exist, will be introduced, and
there is a transmission edge from w′

i(t0) to mi(t1). We also introduce nodes wi(0) and a
node mi(t). Nodes {wi(·)} are connected through the timeline, so are nodes {w′

i(·)} and
nodes {mi(·)}. The edges for such connections are called memory edges. Each computation
edge and each transmission edge is associated with unit capacity, and each memory edge
is associated with an infinity capacity. Finally, we construct a global continuous-time
trellis G(t), which includes the union of all G(t)

i and two auxiliary nodes w(0) and m(t). In
addition, there is an edge from w(0) to each wi(0) with an infinity capacity, and there is an
edge from each mi(t) to m(t) with an infinity capacity.

The usefulness of the continuous-time trellis model is summarized in the following result.

Proposition 1. For any scheme that achieves latency of T, then the maximum flow from w(0) to
m(T) in its continuous-time trellis G(T) must be least k. Moreover, for our RLNC approach, if the
maximum flow from w(0) to m(T) in its continuous-time trellis G(T) is at least k, then the master
node can recover the desired computation result at time T with probability one.

36

Entropy 2023, 25, 428

Figure 2. Illustration of a continuous-time trellis, G(t)
i .

Proof. It is straightforward to see that the first part holds. The second part is inherited
from the optimality of RLNC in communication networks [19] and the fact that all the
operations are over the real field R.

Now, we proceed to prove Theorems 1 and 2. We start by presenting some con-
centration results regarding the communication between worker nodes and the master
node.

Lemma 1. Suppose Y1, Y2, . . . follow a shifted exponential distribution with rate μ and shift
parameter θ independently. Then, for any constant δ > 0, there exists some constant η1 > 1,
such that

Pr

(∣∣∣∣∣ s

∑
i=1

Yi − (θ + μ−1)s

∣∣∣∣∣ > δ(θ + μ−1)s

)
= O(η−s

1). (8)

Proof. The result can be proved by a Chernoff-like argument based on moment generating
function [27].

The moment generating function of Yi is

E[e−hYi] =
μ

μ + h
e−hθ (9)

Hence,

Pr

(
s

∑
i=1

Yi < (1 − δ)(θ + μ−1)s

)
= Pr

(
e−h ∑s

i=1 Yi > e−h(1−δ)(θ + μ−1)s
)

≤
E
[
e−h ∑s

i=1 Yi
]

e−h(1−δ)(θ + μ−1)s

=
∏s

i=1 E
[
e−hYi

]
e−h(1−δ)(θ + μ−1)s

=

(
μ

μ + h e−hθ
)s

e−h(1−δ)(θ + μ−1)s

(10)

where the inequality holds by applying the Markov’s inequality. Let h = 1
(1−δ)(θ + μ−1)−θ

−
μ. We then have

37

Entropy 2023, 25, 428

Pr

(
s

∑
i=1

Yi < (1 − δ)(θ + μ−1)s

)

≤
(

eμ(1−δ)(θ + μ−1)−θ − 1
μ(1 − δ)(θ + μ−1)− θ

)−s

≤
(

e1−δ(1 + θμ) − 1
1 − δ(1 + θμ)

)−s

(11)

By setting η1 = e1−δ(1 + θμ)−1
1−δ(1 + θμ)

, we get the desired result.

For a scheme, let Ni(t) (N′
i (t), resp.) be the number of packet transmissions (successful

packet transmissions, resp.) from worker node wi to the master node during the time
interval (Xi, Xi + t).

Lemma 2. For any scheme and any constant δ > 0, there exists some constant η2 > 1, such that

Pr(Ni(t) ≥ (1 + δ)rit) = O(η−t
2). (12)

Proof. Let Y1, Y2, . . . , YNi(t) be i.i.d. shifted exponential random variables with rate μi and
shift parameter θi, and s = �(1 + δ)rit�. According to Lemma 1, there exist some constant
s = �(1 + δ)rit�η1 > 1 and η2 = η

(1 + δ)ri
1 such that

Pr(Ni(t) ≥ (1 + δ)rit)

≤ Pr

(
s

∑
j=1

Yj ≤ t

)

≤ Pr

(
s

∑
j=1

Yj ≤
(

1 − δ

1 + δ

)(
θi + μ−1

i

)
s

)
≤ η−s

1 = O
(
η−t

2
)

(13)

Lemma 3. For any scheme and any constant δ > 0, there exists some constant η3 > 1 such that

Pr(N′
i (t) ≥ (1 + δ)ri(1 − εi)t) = O(η−t

3). (14)

Proof. Let A denote the event that Ni(t) ≥ (1 + δ/2)rit. By the total law of probability,

Pr
(

N′
i (t) ≥ (1 + δ)ri(1 − εi)t

)
= Pr

(
N′

i (t) ≥ (1 + δ)ri(1 − εi)t | A
)

Pr(A)

+ Pr
(

N′
i (t) ≥ (1 + δ)ri(1 − εi)t | Ā

)
Pr(Ā)

≤ Pr(A) + Pr
(

N′
i (t) ≥ (1 + δ)ri(1 − εi)t | Ā

) (15)

According to Lemma 2, there exists some constant η′
2 > 1 such that Pr(A) = O

(
η−t

2
)
. Let

N be a binomial random variable with parameters (1 + δ/2)rit and 1 − εi. Then, there
exists some constant η′

3 > 1 such that

Pr
(

N′
i (t) ≥ (1 + δ)ri(1 − εi)t | Ā

)
≤ Pr(N ≥ (1 + δ)ri(1 − εi)t)

= O
(
η′−t

3
) (16)

38

Entropy 2023, 25, 428

where the second step follows by applying the Chernoff bound for a binomial random
variable [27]. Finally, by letting min

{
η′

3 = η′
2, η′

3
}

, we have

Pr
(

N′
i (t) ≥ (1 + δ)ri(1 − εi)t

)
= O

(
η−t

3
)

(17)

Lemma 4. For any scheme, let Fi(t) be the maximum flow from wi(0) to m(t) in its continuous-
time trellis G(t). Then, for any constant δ > 0, there exists some constant η4 > 1 such that

Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j

)
≤ O(η−k

4). (18)

Proof. Let B be the event that (1 − δ)T0 − Xi > (1 − δ/2) k
∑n

j=1 r′j
. Then

Pr(B) ≤ Pr
(
(1 − δ)T0 > (1 − δ/2)

k
∑n

i=1 r′i

)
= Pr

(
n

∑
i=1

r′iXi >
δ

2(1 − δ)
k

)

≤ Pr
(
∃i s. t. r′iXi >

δ

2n(1 − δ)
k
)

≤
n

∑
i=1

Pr
(

r′iXi >
δ

2n(1 − δ)
k
)

=
n

∑
i=1

e
− λiδ

2n(1−δ)r′i
k
= O

(
η′−k

4

)

(19)

for some constant η′
4 > 1. By the total law of probability,

Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j

)

= Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)
Pr(A)

+ Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j
| Ā

)
Pr(Ā)

≤ Pr(A) + Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j
| Ā

)
(20)

We consider two cases. In the first case, 1
τi
≤ ri(1 − εi). Thus, r′i =

1
τi

. Since Fi(t) cannot

exceed the number of computation edges t−Xi
τi

, it is straightforward to check that

Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)
= 0. (21)

Thus, Pr
(

Fi((1 − δ)T0) ≥ r′i k
∑n

j=1 r′j

)
= O(η′−k

4). In the second case, 1
τi

> ri(1 − εi). Thus,

r′i = ri(1 − εi). Since Fi((1 − δ)T0) ≤ N′
i ((1 − δ)T0 − Xi),

39

Entropy 2023, 25, 428

Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j
| A

)

≤ Pr

(
N′

i ((1 − δ)T0 − Xi) ≥
r′ik

∑n
j=1 r′j

| A

)

≤ Pr

(
N′

i

(
(1 − δ/2)

k
∑n

j=1 r′j

)
≥ r′ik

∑n
j=1 r′j

)
= O(η−k

5)

(22)

for some constant η5 > 1, where the last step follows from Lemma 3. Thus, we can show

that Pr
(

Fi((1 − δ)T0) ≥ r′i k
∑n

j=1 r′j

)
= O(η−k

4) for constant η4 = min{η′
4, η5}.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For any scheme, since the maximum flow from w(0) to m((1 −
δ)T0) in its continuous-time trellis G((1−δ)T0) is equal to ∑n

i=1 Fi((1 − δ)T0), according to
Proposition 1, its latency Tany satisfies

Pr(Tany ≤ (1 − δ)T0)

≤ Pr

(
n

∑
i=1

Fi((1 − δ)T0) ≥ k

)

≤ Pr

(
∃i s.t. Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j

)

≤
n

∑
i=1

Pr

(
Fi((1 − δ)T0) ≥

r′ik
∑n

j=1 r′j

)
= O(η−k

4)

(23)

where the last step follows from Lemma 4.

Next, we turn to prove Theorem 1. For the RLNC approach and t ≥ Xi, let Ni(t, t + Δt)
be the number of successful packet transmissions from worker node wi to the master node
during the time interval (t, t + Δt). We have the following result.

Lemma 5. For any t ≥ Xi,

Ni(t, t + Δt)
Δt

P→ ri(1 − εi), as Δt → ∞; (24)

i.e., Ni(t, t + Δt)/Δt converges to ri(1− εi) in probability when Δt goes to infinity, or equivalently,
for any constant ε > 0.

Proof. The result can be shown similarly to that of Lemma 3.

Lemma 6. Let Fi(t) be the maximum flow from wi(0) to m(t) in the continuous-time trellis G(t)

of the RLNC approach. Then,

Fi(t)
t − Xi

P→ min
{

1
τi

, ri(1 − εi)

}
= r′i , as t → ∞, (25)

Proof. According to Theorem 1 of [26], Lemma 5 implies this result immediately.

Now we can prove Theorem 1.

40

Entropy 2023, 25, 428

Proof of Theorem 1. According to Lemma 6, Fi(T0)
P→ (T0 − Xi)r′i , as k → ∞. Hence,

∑n
i=1 Fi(T0)

P→ k as k → ∞. Since,

Fi((1 + δ)T0)

Fi(T0)

≥ Fi((1 + δ)T0)

(1 + δ)T0 − Xi
· (1 + δ)(T0 − Xi)

Fi(T0)
P→ 1 + δ,

(26)

it is straightforward to check that

lim
k→∞

Pr

(
n

∑
i=1

Fi((1 + δ)T0) < k

)
= 0. (27)

According to Proposition 1, this implies that

lim
k→∞

Pr{TRLNC ≥ (1 + δ)T0} = 0. (28)

The proof is accomplished.

4. BATS-Code-Based Approach

As mentioned earlier, despite its optimality, RLNC based approach suffers from its
high encoding and decoding overheads. In this section, we propose a new approach based
on batched sparse (BATS) code [20], which is a variation of RLNC having low encoding
and decoding overheads.

4.1. Description

In the BATS-code-based approach, the k submatrices A1, . . . , Ak are first encoded into
A1, . . . , Ak, Ak + 1, . . . , Ak′ using a fixed-rate systematic erasure code (called a precode),
where k′ = (1 + ε)k and ε is a small positive constant (e.g., 0.02). BATS codes are rateless,
as an infinite number of batches can be generated. The generation of each batch is as follows:

• Sample a degree deg according to a given degree distribution Ψ = (Ψ1, . . . , ΨD), where
D is the maximum degree;

• Select deg distinct submatrices uniformly at random from A1, . . . , Ak, Ak + 1, . . . , Ak′ ;
• Generate M random linear combinations of the deg submatrices, which are referred to

as a batch.

Based on BATS code, batches of submatrices are assigned to worker nodes, and each
worker node performs the local computation on the basis of a batch, which consists of M
submatrix-vector multiplications. In order to forward the computational result of a batch
to the master node, each worker node will generate a number of packets, each of which
is a random linear combination of the M submatrix-vector products corresponding to the
batch. For decoding, the master node first recovers A1x, . . . , Akx, Ak + 1x, . . . , Ak′x using
Gaussian-elimination-based belief propagation (BP) decoding, and once any k or slightly
more than k of A1x, . . . , Akx, Ak + 1x, . . . , Ak′x are recovered, the master node can recover
all these A1x, . . . , Akx by decoding the precode. See [20] for more details.

Overhead: In the BATS-code-based approach, the encoding cost per submatrix is
O(deg · m

k · d) = O(md
k), and the total decoding cost is O((M3 + M2 m

k) · k
M) = O(M2k +

Mm). Clearly, both the encoding cost and decoding cost are much lower than for the RLNC
approach, especially when M is a small constant (e.g., 8 or 16). As for the RLNC approach,
the decoding cost is independent of d, and the coefficient overhead is negligible when
leveraging the pseudo-random-number-generator-based approach.

Remark 3. There have been many other sparse variants of random linear network coding, including
chunked codes (e.g., [28,29]), tunable sparse network coding (e.g., [30,31], and sliding-window
coding (e.g., [32–36]). While many of these codes can also be applied, BATS codes are more suitable

41

Entropy 2023, 25, 428

for this distributed computing scenario. On the one hand, BATS codes are rateless. Thus, all the
worker nodes can keep on computing and forwarding local results to the master node before the
whole computation is completed, as long as enough batches are placed on each worker node. In
contrast, chunked codes (e.g., [28,29]) usually have fixed coding rates or require a lot of feedback
from the master node. On the other hand, as mentioned in Section 2, in many applications, the step
of encoding before computation is required to be performed before the arrival of any input x. In other
words, this encoding step should be irrelevant to the uncertain computation and communication
processes of worker nodes. However, differently from BATS codes, sliding-window codes are often
generated on-the-fly and are not as suitable as BATS codes.

4.2. Performance Optimization

The performance of BATS code heavily depends on how the M computation results of
each batch are transmitted to the master node, and which degree distribution is used.

Suppose that worker node wi sends Zi coded packets to the master nodes for the com-
putation results of each batch Bj. Let Hj be a Zi × M matrix, where each row corresponds
to a transmitted packet. If the packet is successfully received by the master node, then the
row is the local encoding vector. Otherwise, the row is zero-vector. Let hi = (hi,0, . . . , hi,M)
denote the rank distribution of Hj, where hi,r is the probability that Hj has rank r. We can
show that

hi,r =

{
∑ub
�=r Pr(Zi = �)(�r)(1 − εi)

rε�−r
i , r ≤ M − 1

∑ub
�=M Pr(Zi = �)∑�

s=M (�s)(1 − εi)
sε�−s

i , r = M.
(29)

where ub is an upper bound of Zi. In order to maximize the transmission efficiency for
BATS code, we apply the linear programming method [37] to optimize the distribution
of Zi:

max
M

∑
r=1

rhi,r

s.t.
ub

∑
�=0

Pr(Zi = �)�
(

θi + μ−1
i

)
≤ Mτi

ub

∑
�=0

Pr(Zi = �) = 1

0 ≤ Pr(Zi = �) ≤ 1, � = 0, . . . , ub

(30)

Here, the objective is to maximize the expected rank. The first constraint stands for the
expected time for transmitting Zj packets to the master node being no larger than the time
for computing M submatrix-vector multiplications, and the last two constraints stand for
Pr(Zi = �), � = 0, . . . , ub being a probability distribution.

When the time goes to infinity, we can see that the proportion of batches whose
computation results have been sent to the master node by worker node wi is 1/τi

∑n
j=1 1/τj

.

Hence, we can derive the empirical rank distribution h over all the batches done by worker
nodes as

h =
n

∑
i=1

1/τi

∑n
j=1 1/τj

hi. (31)

Based on the empirical rank distribution, we can find a good degree distribution Ψ such
that the BATS code can achieve a coding rate close to h̄/M, where h̄ is the expected value
corresponding to the empirical rank distribution (c.f. [20]).

42

Entropy 2023, 25, 428

5. Performance Evaluation

In this section, we first evaluate the decoding cost incurred by our proposed ap-
proaches, and then we present simulations conducted to evaluate the overall computational
performances of these approaches in comparison to some state-of-the-art approaches.

We first ran some experiments on a computer with an Intel(R) Core(TM) i7-10700 CPU
2.90 GHz and Python 3.7. In these experiments, the matrix A was 50,000 × d, where d
ranged from 1000 to 16,000. Matrix A was split into 1000 sub-matrices of the same size, and
each submatrix consisted of 50 rows so that each transmitted packet consisted of 50 real
numbers. In the BATS-code-based approach, the batch size was set to eight. We simulated
the decoding process and evaluated the decoding delays (in terms of second) of both the
RLNC based approach and the BATS-code-based approach. The delay for the original
matrix multiplication was also evaluated. The results are presented in Table 1.

Table 1. The decoding delays (in terms of second) of our proposed approaches in comparison with
the delay of original matrix multiplication.

d = 1000 2000 4000 8000 16,000 32,000

matrix multiplication delay 34.16 69.59 138.69 280.86 550.43 1116.84
decoding delay (RLNC) 34.51 34.51 34.51 34.51 34.51 34.51
decoding delay (BATS) 0.54 0.54 0.54 0.54 0.54 0.54

Note that the decoding latencies of both the RLNC based approach and the BATS-code-
based approach are irrelevant to d, and the latency for the original matrix multiplication
grows linearly with d. From this table, we can see that even when d = 1000, the decoding
latency of the BATS-code-based approach is only about 1.58% of the latency of original
computation, and when d grows larger, this latency becomes negligible. In contrast, when
d = 1000 or d = 2000, the decoding cost of the RLNC based approach is prohibitive.

We also conducted simulations to evaluate the performances of our proposed ap-
proaches. In our simulations, the number of worker nodes was 10, and the settings of
matrix A remained the same as above, except that the number of columns d was irrelevant
in our simulations. We simulated four scenarios. In the first three scenarios, worker nodes
were homogeneous, and the size relationship between computation time per submatrix-
vector product and average communication time of a packet varied among these scenarios.
In the last scenario, worker nodes were heterogeneous. The involved parameters of these
scenarios are given as follows.

• Scenario I, where (λi, τi) = (0.1, 0.2), (μi, θi) = (20, 0.05) and εi = 0.2;
• Scenario II, where (λi, τi) = (0.1, 0.15), (μi, θi) = (10, 0.05) and εi = 0.2;
• Scenario III, where (λi, τi) = (0.1, 0.1), (μi, θi) = (10, 0.1) and εi = 0.2;
• Scenario IV, where for each worker i, parameters λi, τi, μi, θi and εi were uniformly

distributed at random over intervals [0.07, 0.2], [0.1, 0.3], [10, 20], [0.05, 0.2] and
[0.1, 0.4], respectively.

For these scenarios, we evaluated the following five methods.

• Uniform uncoded, where the divided sub-matrices were equally assigned to 10 worker
nodes—i.e., each worker node computed 100 sub-matrices.

• Two-Replication, where the divided sub-matrices were equally assigned to five
worker nodes, and the computing tasks of these worker nodes were replicated at
another five worker nodes.

• (10, 8) MDS code, where the divided 1000 sub-matrices were encoded into 1250 sub-
matrices and then equally assigned to 10 worker nodes.

• LT code [14], where the 1000 original sub-matrices were encoded using LT codes, and
an infinite number of coded sub-matrices was assigned to each worker node.

• RLNC: The details are introduced in Section 3. The time cost of recoding and decoding
operations was ignored.

43

Entropy 2023, 25, 428

• BATS code: The details are introduced in Section 4, and a batch size of eight was used.

While our proposed schemes tackle the packet-loss issue, the first four of the above
schemes do not consider this issue at all. For these schemes, we used an ideal retransmission
(IR) scheme for the first four schemes, where the worker nodes know whether a transmitted
packet is lost or not immediately. This leads these schemes to perform better. In the
following, we refer to the first four schemes as Uncoded + IR, Rep + IR, (10,8)MDS + IR

and LT + IR, respectively.
The latency performance levels of these approaches under the four scenarios are

plotted in Figure 3, where the decoding latency at the master node is ignored. From this
figure, we observe the following.

Figure 3. The latency performances of different approaches under four scenarios, where the error bar
indicates the standard deviation.

• Among the first four schemes, LT + IR achieved the best performance for all four
scenarios. Note that IR eliminates the packet-loss issue, and this result has also been
demonstrated in [14], where only the straggler issue was considered. This is because LT
codes can achieve near-perfect load balance among the worker nodes in the presence
of stragglers.

• For all these scenarios, the proposed RLNC approach achieved the best latency perfor-
mance among all these schemes. In particular, the performance of the RLNC approach
was slightly better than that of LT + IR. Just like LT + IR, our RLNC approach also
achieved near-perfect load balance among the worker nodes. Meanwhile, LT + IR
incurred a small precode overhead, whereas the RLNC approach did not. This result
also demonstrates the near-optimality of the RLNC approach.

• Our BATS approach performed much better than Uncoded + IR, Rep + IR, and (10,8)
MDS + IR in all these scenarios, but slightly worse than LT + IR and RLNC. Since LT + IR
assumes an ideal retransmission scheme, which is impractical, and the RLNC approach
incurs high encoding and decoding costs, the BATS approach is much more practical.

44

Entropy 2023, 25, 428

In summary, both our RLNC approach and our BATS approach can overcome both
the straggler issue and the packet-loss issue effectively and can achieve near-optimal
performance in different scenarios when the number of columns d is large enough.

6. Conclusions

In this paper, we focused on addressing the straggler issue and the packet-loss issue
jointly for distributed matrix multiplication in wireless distributed computing systems. We
proposed an RLNC approach and proved its asymptotical optimality using a continuous-
time-trellis-based argument. We further proposed a more practical variation of the RLNC
approach based on BATS code. The effectiveness of both approaches was demonstrated
through numerical simulations.

Author Contributions: Methodology, B.F., B.T. and Z.Q.; Validation, B.F.; Formal analysis, B.T.;
Writing—original draft, B.F. and B.T.; Writing—review & editing, Z.Q. and B.Y.; Supervision, B.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported by the Water Conservancy Project of Jiangsu Province under Grant
No. 2021053, the National Natural Science Foundation of China under Grant No. 61872171, the
Fundamental Research Funds for the Central Universities under Grant No. B210201053, the Natural
Science Foundation of Jiangsu Province under Grant No. BK20190058, and the Future Network
Scientific Research Fund Project under Grant No. FNSRFP-2021-ZD-07.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Zhao, S. Advances and open problems in federated
learning. Found. Trends Mach. Learn. 2021, 14, 2179–2217. [CrossRef]

2. Drolia, U.; Guo, K.; Narasimhan, P. Precog: Prefetching for image recognition applications at the edge. In Proceedings of the
Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–13.

3. Datla, D.; Chen, X.; Tsou, T.; Raghunandan, S.; Hasan, S.S.; Reed, J.H.; Kim, J.H. Wireless distributed computing: A survey of
research challenges. IEEE Commun. Mag. 2012, 50, 144–152. [CrossRef]

4. Li, S.; Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. A scalable framework for wireless distributed computing. IEEE-ACM Trans.
Netw. 2017, 25, 2643–2654. [CrossRef]

5. Dean, J.; Barroso, L.A. The tail at scale. Commun. ACM 2013, 56, 74–80. [CrossRef]
6. Zaharia, M.; Konwinski, A.; Joseph, A.D.; Katz, R.H.; Stoica, I. Improving MapReduce performance in heterogeneous environ-

ments. In Proceedings of the 8th USENIX Symposium on Operating Systems Design and Implementation, San Diego, CA, USA,
8–10 December 2008; pp. 7–21.

7. Wang, D.; Joshi, G.; Wornell, G. Efficient task replication for fast response times in parallel computation. In Proceedings of the
2014 ACM International Conference on Measurement and Modeling of Computer Systems, Austin, TX, USA, 16–20 June 2014;
pp. 599–600.

8. Wang, D.; Joshi, G.; Wornell, G. Using straggler replication to reduce latency in large-scale parallel computing. ACM Sigmetrics
Perform. Eval. Rev. 2015, 43, 7–11. [CrossRef]

9. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Comm. ACM 2008, 51, 107–113. [CrossRef]
10. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,

10, 10.
11. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding up distributed machine learning using codes.

IEEE Trans. Inf. Theory 2017, 64, 1514–1529. [CrossRef]
12. Ferdinand, N.; Draper, S.C. Hierarchical coded computation. In Proceedings of the 2018 IEEE International Symposium on

Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1620–1624.
13. Kiani, S.; Ferdinand, N.; Draper, S.C. Exploitation of stragglers in coded computation. In Proceedings of the 2018 IEEE

International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1988–1992.
14. Mallick, A.; Chaudhari, M.; Sheth, U.; Palanikumar, G.; Joshi, G. Rateless codes for near-perfect load balancing in distributed

matrix-vector multiplication. Commun. ACM 2022, 65, 111–118. [CrossRef]
15. Luby, M. LT codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC,

Canada, 16–19 November 2002; pp. 271–282.
16. Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [CrossRef]
17. Han, D.J.; Sohn, J.Y.; Moon, J. Coded Wireless Distributed Computing With Packet Losses and Retransmissions. IEEE Trans. Wirel.

Commun 2021, 20, 8204–8217. [CrossRef]
18. Ahlswede, R.; Cai, N.; Li, S.Y.; Yeung, R.W. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]

45

Entropy 2023, 25, 428

19. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A random linear network coding approach to multicast.
IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

20. Yang, S.; Yeung, R.W. Batched sparse codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]
21. Park, H.; Lee, K.; Sohn, J.Y.; Suh, C.; Moon, J. Hierarchical coding for distributed computing. In Proceedings of the 2018 IEEE

International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1630–1634.
22. Lin, Z.; Narra, K.G.; Yu, M.; Avestimehr, S.; Annavaram, M. Train where the data is: A case for bandwidth efficient coded training.

arXiv 2019, arXiv:1910.10283.
23. Yu, Q.; Maddah-Ali, M.; Avestimehr, S. Polynomial codes: An optimal design for high-dimensional coded matrix multiplica-

tion. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

24. Ramamoorthy, A.; Tang, L.; Vontobel, P.O. Universally decodable matrices for distributed matrix-vector multiplication. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1777–1781.

25. Ramamoorthy, A.; Tang, L. Numerically stable coded matrix computations via circulant and rotation matrix embeddings.
IEEE Trans. Inf. Theory 2022, 68, 2684–2703. [CrossRef]

26. Wu, Y. A trellis connectivity analysis of random linear network coding with buffering. In Proceedings of the IEEE International
Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 768–772.

27. Motwani, R.; Raghavan, P. Randomized Algorithms; Cambridge University Press: Cambridge, UK, 1995.
28. Tang, B.; Yang, S.; Ye, B.; Yin, Y.; Lu, S. Expander chunked codes. EURASIP J. Adv. Signal Process. 2015, 1, 106. [CrossRef]
29. Tang, B.; Yang, S. An LDPC approach for chunked network codes. IEEE ACM Trans. Netw. 2018, 26, 605–617. [CrossRef]
30. Feizi, S.; Lucani, D.E.; Médard, M. Tunable sparse network coding. In Proceedings of the 22th International Zurich Seminar on

Communications (IZS), Zürich, Switzerland, 29 February–2 March 2012.
31. Garrido, P.; Sørensen, C.W.; Lucani, D.E.; Agüero, R. Performance and complexity of tunable sparse network coding with gradual

growing tuning functions over wireless networks. In Proceedings of the 2016 IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016.

32. Garrido, P.; Gómez, D.; Lanza, J.; Agüero, R. Exploiting sparse coding: A sliding window enhancement of a random linear
network coding scheme. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur,
Malaysia, 22–27 May 2016.

33. Wunderlich, S.; Gabriel, F.; Pandi, S.; Fitzek, F.H.; Reisslein, M. Caterpillar RLNC (CRLNC): A practical finite sliding window
RLNC approach. IEEE Access 2017, 5, 20183–20197. [CrossRef]

34. Yang, J.; Shi, Z.P.; Wang, C.X.; Ji, J.B. Design of optimized sliding-window BATS codes. IEEE Commun. Lett. 2019, 23, 410–413.
[CrossRef]

35. Karetsi, F.; Papapetrou, E. Lightweight network-coded ARQ: An approach for ultra-reliable low latency communication. Comput.
Commun. 2022, 185, 118–129. [CrossRef]

36. Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.; Reisslein, M. FSW: Fulcrum sliding window coding for low-latency
communication. IEEE Access 2022, 10, 54276–54290. [CrossRef]

37. Tang, B.; Yang, S.; Ye, B.; Guo, S.; Lu, S. Near-optimal one-sided scheduling for coded segmented network coding. IEEE Trans.
Comput. 2015, 65, 929–939. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

46

Citation: Yin, H.H.F.; Yang, S.; Zhou,

Q.; Yung, L.M.L.; Ng, K.H. BAR:

Blockwise Adaptive Recoding for

Batched Network Coding. Entropy

2023, 25, 1054. https://doi.org/

10.3390/e25071054

Academic Editor: Boris Ryabko

Received: 31 May 2023

Revised: 23 June 2023

Accepted: 28 June 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

BAR: Blockwise Adaptive Recoding for Batched
Network Coding †

Hoover H. F. Yin 1,2,*, Shenghao Yang 3,*, Qiaoqiao Zhou 4, Lily M. L. Yung 5 and Ka Hei Ng 5

1 Department of Information Engineering, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, China

2 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China

3 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
4 Department of Computer Science, School of Computing, National University of Singapore,

Singapore 119391, Singapore; zhouqq@comp.nus.edu.sg
5 Independent Researcher, Hong Kong, China; lily@link.cuhk.edu.hk (L.M.L.Y.);

kaheicanaan@link.cuhk.edu.hk (K.H.N.)
* Correspondence: hfyin@ie.cuhk.edu.hk (H.H.F.Y.); shyang@cuhk.edu.cn (S.Y.)
† This paper is an extended version of our papers published in Yin, H.H.F.; Yang, S.; Zhou, Q.; Yung, L.M.L.

Adaptive Recoding for BATS Codes. In Proceedings of the 2016 IEEE International Symposium on
Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2349–2353; and Yin, H.H.F.; Ng, K.H. Impact
of Packet Loss Rate Estimation on Blockwise Adaptive Recoding for Batched Network Coding. In
Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, VIC,
Australia, 12–20 July 2021; pp. 1415–1420.

Abstract: Multi-hop networks have become popular network topologies in various emerging Internet
of Things (IoT) applications. Batched network coding (BNC) is a solution to reliable communications
in such networks with packet loss. By grouping packets into small batches and restricting recoding
to the packets belonging to the same batch; BNC has much smaller computational and storage
requirements at intermediate nodes compared with direct application of random linear network
coding. In this paper, we discuss a practical recoding scheme called blockwise adaptive recoding
(BAR) which learns the latest channel knowledge from short observations so that BAR can adapt to
fluctuations in channel conditions. Due to the low computational power of remote IoT devices, we
focus on investigating practical concerns such as how to implement efficient BAR algorithms. We also
design and investigate feedback schemes for BAR under imperfect feedback systems. Our numerical
evaluations show that BAR has significant throughput gain for small batch sizes compared with
existing baseline recoding schemes. More importantly, this gain is insensitive to inaccurate channel
knowledge. This encouraging result suggests that BAR is suitable to be used in practice as the exact
channel model and its parameters could be unknown and subject to changes from time to time.

Keywords: linear network coding; batched network coding; adaptive recoding

1. Introduction

Noise, interference and congestion are common causes of packet loss in network
communications. Usually, a packet has to travel through multiple hops before it can arrive
at the destination node. Traditionally, the intermediate nodes apply the store-and-forward
strategy. In order to maintain a reliable communication, retransmission is a common
practice. A feedback mechanism is applied so that a network node can acknowledge that
a packet is lost. However, due to the delay and bandwidth consumption of the feedback
packets, retransmission schemes come with a cost of degraded system performance.

In the era of the Internet of things (IoT), there is a diversity of devices and network
topologies. Embedded devices or microcomputers have been heavily deployed due to their
mobility, lightweight design, and low power consumption. Multi-hop wireless networks

Entropy 2023, 25, 1054. https://doi.org/10.3390/e25071054 https://www.mdpi.com/journal/entropy47

Entropy 2023, 25, 1054

have become a common network topology, highlighting the issues in reliable transmission
as wireless links are more vulnerable to packet loss. The packet loss at each link accumulates
and the chance of successfully receiving a packet at the destination drops exponentially.
Fountain codes, such as in [1–3], can recover the lost packets without the need for feedback
because of their ratelessness property. However, the throughput still degrades quickly if
there is packet loss at each network link unless link-by-link feedback and retransmission
are adopted.

1.1. Network Coding-Based Approaches

Random linear network coding (RLNC) [4,5], a simple realization of network
coding [6–8], can achieve the capacity of multi-hop networks with packet loss even with-
out the need for feedback [9,10]. Unfortunately, a direct application of RLNC induces an
enormous overhead for the coefficient vectors, as well as high computational and storage
costs in network coding operations at intermediate nodes, where the intermediate nodes
are usually routers or embedded devices with low computational power and storage space.

Generation-based RLNC was proposed in [11] to resolve these issues. The input
packets of the file are partitioned into multiple subsets called the generations, and RLNC
is applied to each generation independently. This approach, however, cannot achieve an
optimal theoretical rate. Practical concerns and solutions have been further investigated
to improve this type of RLNC, such as decoding delay and complexity [12–20], packet
size [21–25], and coefficient overhead [26–28].

Instead of partitioning into disjoint subsets, overlapped subsets were investigated
in [29–32]. To further reduce the computational costs, the use of RLNC was restricted to
small subsets of coded packets generated from the input packets in [33–38]. Example codes
used for generating the coded packets include LDPC and fountain codes. This combination
of coding theory and network coding is another variant of RLNC called batched network
coding (BNC). BATS codes [38,39], a class of BNC, have a close-to-optimal achievable rate
where the achievable rate is upper bounded by the expectation of the rank distribution of
the batch transfer matrices that model the end-to-end network operations (packet erasures,
network coding operations, etc.) on the batches [40]. This hints that the network coding
operations, also known as recoding, have an impact on the throughput of BNC.

1.2. Challenges of Recoding in Practice

Baseline recoding is the simplest recoding scheme which generates the same number
of recoded packets for every batch. Due to its simple and deterministic structure, baseline
recoding appears in many BNC designs and analyses, such as [41–46]. However, the
throughput of baseline recoding is not optimal with finite batch sizes [47]. The idea of
adaptive recoding, aiming to outperform baseline recoding by generating different numbers
of recoded packets for different batches, was proposed in [47] without truly optimizing
the numbers. Two adaptive recoding optimization models for independent packet loss
channels were then formulated independently in [48,49]. A unified adaptive recoding
framework was proposed in [50], subsuming both optimization models and supporting
other channel models under certain conditions.

Although adaptive recoding can be applied distributively with local network infor-
mation, it is a challenge to obtain accurate local information when deploying adaptive
recoding in real-world scenarios. Adaptive recoding requires two pieces of information:
information distribution remaining in the received batches and the channel condition of
the outgoing link.

The first piece of information may change over time if the channel condition of the
incoming link varies. One reason for the variation is that the link quality can be affected by
interference from users of other networks around the network node. We proposed a simple
way to adapt to this variation in [49], grouping a few batches into a block and observing
the distribution of received batches in this block. This approach was later called blockwise
adaptive recoding (BAR) in [51,52].

48

Entropy 2023, 25, 1054

The second piece of information may also vary from time to time. In some scenarios,
such as deep-space [53–55] and underwater communications [56–58], feedback can be
expensive or is not available; therefore, a feedbackless network is preferred. Without
feedback, we cannot update our knowledge on the channel condition of the outgoing
link. Although we may assume an unchanged channel condition and measure information
such as the packet loss rate of the channel beforehand, this measurement, however, can be
inaccurate due to observational errors or precision limits.

1.3. Contributions

In this paper, we focus on the practical design of applying BAR in real-world applica-
tions. Specifically, we answer the following questions in this paper:

1. How does the block size affect the throughput?
2. Is BAR sensitive to an inaccurate channel condition?
3. How can one calculate the components of BAR and solve the optimization efficiently?
4. How can one make use of link-by-link feedback if it is available?

The first question is related to the trade-off between throughput and latency: a larger
block induces a longer delay but gives a higher throughput. We show by numerical
evaluations that a small block size can already give a significant throughput gain compared
with baseline recoding.

For the second question, we demonstrate that BAR performs very well with an inde-
pendent packet loss model on channels with dependent packet loss. We also show that
BAR is insensitive to an inaccurate packet loss rate. This is an encouraging result as this
suggests that it is feasible to apply BAR in real-world applications.

The third question is important in practice as BAR is suppose to run at network nodes,
usually routers or IoT devices with limited computational power, but also they may need
to handle a huge amount of network traffic. Furthermore, by updating the knowledge of
the incoming link from a short observation, we need to recalculate the components of BAR
and solve the optimization problem again. In light of this, we want to reduce the number of
computations to improve the reaction time and reduce the stress of congestion. We answer
this question by proposing an on-demand dynamic programming approach to build the
components and some implementation techniques to speed up the algorithm for BAR.

Lastly, for the fourth question, we consider both a perfect feedback system (e.g., the
feedback passes through a side-channel with no packet loss) and a lossy feedback system
(e.g., the feedback uses the reverse direction of the lossy channel for data transmission). We
investigate a few ways to estimate the packet loss rate and show that the throughput can be
further boosted by using feedback. Furthermore, a rough estimation is sufficient to catch up
the variation in the channel condition. In other words, unless there is another application
which requires a more accurate estimation on the packet loss rate, we may consider using
an estimation with low computational cost, e.g., the maximum likelihood estimator.

1.4. Paper Organization and Nomenclature

The paper is organized as follows. We first formulate BAR in Section 2. Then, we
discuss the implementation techniques for solving BAR efficiently and evaluate the through-
put of different block sizes in Section 3. In Section 4, we demonstrate that BAR is insensitive
to inaccurate channel models and investigate the use of feedback mechanisms. Lastly, we
conclude the paper in Section 5.

Some specific terminology and notations appear frequently throughout the paper.
We summarize some of the important terminology and frequently used notations in
Tables 1 and 2, respectively.

49

Entropy 2023, 25, 1054

Table 1. Terminology used for batched network coding (BNC).

Terminology Description

Batch A small set of coded packets.
Batch size The number of coded packets in a batch.

Rank of a batch A measure of “useful” information (linearly independent packets) retained in the batch.
Expected rank of a batch The expectation of the rank of the batch at the next network node.

Incoming rank distribution The distribution of the ranks of the batches arriving at the current network node.
Throughput The expectation of the rank distribution of the batches arriving at the destination node.

Recoding The network coding operations restricted to the packets belonging to the same batch.
Recoded packets The coded packets generated by recoding.

Recoder The module that performs recoding.
Baseline recoding A strategy that generates the same number of recoded packets per batch.

Adaptive recoding A strategy that generates different number of recoded packets per batch.
Block A set of batches.

Blockwise adaptive recoding Applying adaptive recoding block by block.

Table 2. Frequently used notations in this paper.

Notation Description

M Batch size.
rb The rank of the batch b.
tb The number of recoded packets for batch b.

E(rb, tb) The expected rank of batch b when its rank is rb at the current node and tb recoded packets are sent.
(h0, . . . , hM) The incoming rank distribution.

p The packet loss rate in the independent packet loss model.
L A block.

tLmax The total number of recoded packets in block L.
tb
max The maximum number of recoded packets allowed for batch b.

Binom(n, p) The binomial distribution.
Bp(t, i) The probability mass function of the binomial distribution Binom(t, 1 − p).
βp(t, r) The sum of the first r probability masses of Binom(t, 1 − p).

Beta(a, b) The beta distribution.
Ix(a, b) The regularized incomplete beta function.

2. Blockwise Adaptive Recoding

In this section, we briefly introduce BNC and then formulate BAR.

2.1. Network Model

As some intermediate nodes may be hardware-implemented routers or not easily
reachable for an upgrade, it is not required to deploy a BNC recoder at every intermediate
node. The nodes that do not deploy a recoder are transparent to the BNC network as
no network coding operations are performed. In the following text, we only consider
intermediate nodes that have deployed BNC recoders.

It is not practical to assume every intermediate node knows the information of the
whole network; thus, a distributed scheme that only requires local information is desirable.
For example, the statistics of the incoming batches, the channel condition of the outgoing
link, etc. In a general network, there may be more than one possible outgoing link to reach
the destination. We can assign one recoder or one management unit for each outgoing link
at an intermediate node [59,60]. In this way, we need a constraint to limit the number of
recoded packets of certain batches sent via the outgoing links. The details are discussed
in Section 2.4. In other words, we consider each route from the source to the destination
separately as a line network.

50

Entropy 2023, 25, 1054

Line networks are the fundamental building blocks of a general network. Conversely, a
recoding scheme for line networks can be extended to general unicast networks and certain
multicast networks [38,48]. A line network is a sequence of network nodes where the
network links only exist between two neighbouring nodes. An example of a line network
is illustrated in Figure 1. In this paper, we only consider line networks in our numerical
evaluations.

Figure 1. A three-hop line network. Network links only exist between two neighbouring nodes.

2.2. Batched Network Coding

Suppose we want to send a file from a source node to a destination node through
a multi-hop network. The file is divided into multiple input packets, where each packet
is regarded as a vector over a fixed finite field. A BNC has three main components: the
encoder, the recoder and the decoder.

The encoder of a BNC is applied at the source node to generate batches from the
input packets, where each batch consists of a small number of coded packets. Recently,
a reinforcement learning approach to optimize the generation of batches was proposed
in [61]. Nevertheless, batches are commonly generated using the traditional approach
as follows. To generate a batch, the encoder samples a predefined degree distribution
to obtain a degree, where the degree is the number of input packets that constitute the
batch. Depending on the application, there are various ways to formulate the degree
distribution [62–65]. According to the degree, a set of packets is chosen randomly from the
input packets. The size of the input packets may be obtained via certain optimizations,
such as in [66], to minimize the overhead. Each packet in the batch is formed by taking
random linear combinations on the chosen set of packets. The encoder generates M packets
per batch, where M is known as the batch size.

Each packet in a batch has a coefficient vector attached to it. Two packets in a batch
are defined as linearly independent of each other if and only if their coefficient vectors are
linearly independent from each other. Immediately after a batch is generated, the packets
within it are assigned as linearly independent from each other. This is accomplished by
suitably choosing the initial coefficient vectors [59,67].

A recoder is applied at each intermediate node, performing network coding operations
on the received batches to generate recoded packets. This procedure is known as recoding.
Some packets of a batch may be lost when they pass through a network link. Each recoded
packet of a batch is formed by taking a random linear combination of the received packets
in a given batch. The number of recoded packets depends on the recoding scheme. For
example, baseline recoding generates the same number of recoded packets for every batch.
Optionally, we can also apply a recoder at the source node so that we can have more than
M packets per batch at the beginning. After recoding, the recoded packets are sent to the
next network node.

At the destination node, a decoder is applied to recover the input packets. Depend-
ing on the specific BNC, we can use different decoding algorithms, such as Gaussian
elimination, belief propagation and inactivation [68,69].

2.3. Expected Rank Functions

The rank of a batch at a network node is defined by the number of linearly independent
packets remaining in the batch, a measure of the amount of information carried by the
batch. Adaptive recoding aims to maximize the sum of the expected value of the rank
distribution of each batch arriving at the next network node. For simplicity, we called this
expected value the expected rank.

51

Entropy 2023, 25, 1054

For batch b, we denote its rank by rb and the number of recoded packets to be generated
by tb. The expectation of rb at the next network node, denoted as E(rb, tb), is known as the
expected rank function. We have

E(r, t) =
t

∑
i=0

Pr(Xt = i)
min{i,r}

∑
j=0

jζ i,r
j , (1)

where Xt is the random variable of the number of packets of a batch received by the next
network node when we send t packets for this batch at the current node, and ζ i,r

j is the
probability that a batch of rank r at the current node with i received packets at the next
network node has rank j at the next network node. The exact formulation of ζ i,r

j can be

found in [38], which is ζ i,r
j =

ζ i
jζ

r
j

ζ
j
j q
(i−j)(r−j)

, where q is the field size for the linear algebra

operations and ζm
j = ∏

j−1
k=0(1 − q−m+k). It is convenient to use q = 28 in practice as each

symbol in this field can be represented by 1 byte. For a sufficiently large field size, say
q = 28, ζ i,r

j is very close to 1 if j = min{i, r}, and is very close to 0 otherwise. That is, we

can approximate ζ i,r
j by δj,min{i,r} where δ·,· is the Kronecker delta. This approximation has

also been used in the literature, see, e.g., [45,70–76].
Besides generating all recoded packets by taking random linear combinations, sys-

tematic recoding [39,47,59,67], which concerns received packets as recoded packets, can
be applied to save computational time. Systematic recoding can achieve a nearly indistin-
guishable performance compared with methods which generate all recoded packets by
taking random linear combinations [39]. Therefore, we can also use (1) to approximate the
expected rank functions for systematic recoding accurately.

For the independent packet loss model with packet loss rate p, we have Xt ∼
Binom(t, 1 − p), a binomial distribution. If p = 1, then a store-and-forward technique
can guarantee the maximal expected rank. If p = 0, then no matter how many packets we
transmit, the next network node must receive no packets. Thus, we assume 0 < p < 1
in this paper. It is easy to prove that the results in this paper are also valid for p = 0 or 1
when we define 00 := 1, which is a convention in combinatorics such that Binom(t, 0) and
Binom(t, 1) are well-defined with correct interpretation. In the remaining text, we assume
ζ i,r

j = δj,min{i,r}. That is, for the independent packet loss model, we have

Eindep(r, t) =
t

∑
i=0

(
t
i

)
(1 − p)i pt−i min{i, r}. (2)

A demonstration of the accuracy of the approximation ζ i,r
j ≈ δj,min{i,r} can be found in

Appendix A.
We also consider the expected rank functions for burst packet loss channels modelled

by Gilbert–Elliott (GE) models [77,78], where the GE model was also used in other BNC
literature such as [52,55,70]. A GE model is a two-state Markov chain, as illustrated in
Figure 2. In each state, there is an independent event to decide whether a packet is lost or
not. We define f (s, i, t) := Pr(St = s, Xt = i), where St is the random variable of the state
of the GE model after sending t packets of a batch. By exploiting the structure of the GE
model, computation of f can be performed by dynamic programming. Then, we have

EGE(r, t) =
t

∑
i=0

(f (G, i, t) + f (B, i, t))min{i, r}. (3)

52

Entropy 2023, 25, 1054

G
pG

B
pB

pGB

pBG
1 − pGB 1 − pBG

Figure 2. A Gilbert–Elliott (GE) model. In each state, there is an independent event to decide whether
a packet is lost or not.

It is easy to see that it would take more steps to compute (3) than (2). Therefore, a
natural question to ask is that for burst packet loss channels, is the throughput gap small
between adaptive recoding with (2) and (3)? We demonstrate in Section 4.2 that the gap is
small so we use (2) any time a nice throughput is received. Therefore, in our investigation
we mainly focus on (2).

In the rest of this paper, we refer to E(r, t) as Eindep(r, t) unless otherwise specified.
From [50], we know that when the loss pattern follows a stationary stochastic process,
the expected rank function E(r, t) is a non-negative, monotonically increasing concave
function with respect to t, which is valid for arbitrary field sizes. Further, E(r, 0) = 0 for
all r. However, we need to calculate the values of E(r, t) or its supergradients to apply
adaptive recoding in practice. To cope with this issue, we first investigate the recursive
formula for E(r, t).

We define the probability mass function of the binomial distribution Binom(t, 1 − p)
by

Bp(t, i) =

{
(t

i)(1 − p)i pt−i if 0 ≤ i ≤ t,
0 otherwise.

(4)

For integers r ≥ 0 and t ≥ −1, we define

βp(t, r) =

{
1 if t ≤ r − 1,

∑r−1
i=0 (

t
i)(1 − p)i pt−i = ∑r−1

i=0 Bp(t, i) otherwise.
(5)

When t ≥ 0, the function βp(t, r) is the partial sum of the probability masses of a
binomial distribution Binom(t, 1 − p). The case where t = −1 is used in the approximation
scheme in Section 3 and is discussed in that section.

The regularized incomplete beta function, defined as Ix(a, b) :=
∫ x

0 ta−1(1−t)b−1 dt∫ 1
0 ta−1(1−t)b−1 dt

([79],

Equation 8.17.2), can be used to express the partial sum of the probability masses of a
binomial distribution. When t ≥ r > 0, we can apply ([79], Equation 8.17.5) and obtain

βp(t, r) =
r−1

∑
i=0

(
t
i

)
(1 − p)i pt−i = Ip(t − r + 1, r). (6)

There are different implementations of Ip(·, ·) available for different languages. For
example, the GNU Scientific Library [80] for C and C++, or the built-in function betainc in
MATLAB. However, most available implementations consider non-negative real parameters
and calculate different queries independently. This consideration is too general for our
application, as we only need to query the integral points efficiently. In other words, this
formula may be sufficient for prototyping or simulation, but it is not efficient enough for
real-time deployment on devices with limited computational power. Nevertheless, this
formula is useful for proving the following properties:

Lemma 1. Assume 0 < p < 1. Let Λ be an index set.

(a) Bp(t + 1, i) = (1 − p)Bp(t, i − 1) + pBp(t, i) for i = 0, 1, . . . , t;
(b) βp(t + 1, r) ≤ βp(t, r) where the equality holds if and only if t + 1 < r or t ≥ r = 0;
(c) βp(t, r) ≤ βp(t + 1, r + 1) where the equality holds if and only if t < r;
(d) βp(t, r + 1) ≥ βp(t, r) where the equality holds if and only if t < r;
(e) 1 ≥ max

b∈Λ
βp(tb, rb) ≥ βp(ta + s, ra) for all a ∈ Λ and any non-negative integer s;

53

Entropy 2023, 25, 1054

(f) 0 ≤ min
b∈Λ

βp(tb, rb) ≤ βp(ta − s, ra) for all a ∈ Λ and any non-negative integer s such that

ta − s ≥ −1.

Proof. See Appendix B.

With the notation of βp(t, r), we can now write the recursive formula for E(r, t).

Lemma 2. E(r, t + 1) = E(r, t) + (1 − p)βp(t, r), where t and r are non-negative integers.

Proof. Let Yi be independent and identically distributed Bernoulli random variables, where
Pr(Yi = 1) = 1 − p for all i. When Yi = 1, the i-th packet is received by the next hop.

When we transmit one more packet at the current node, Yt+1 indicates whether this
packet is received by the next network node or not. If Yt+1 = 0, i.e., the packet is lost, then
the expected rank will not change. If Yt+1 = 1, then the packet is linearly independent
from all the already received packets at the next network node if the number of received
packets at the next network node is less than r. That is, the rank of this batch at the
next network node increases by 1 if ∑t

i=1 Yi < r. Therefore, the increment of E(r, t) is
Pr(Yt+1 = 1, ∑t

i=1 Yi < r). Note that ∑t
i=1 Yi ∼ Binom(t, 1 − p). As Yi are all independent

and identically distributed, we have Pr
(
Yt+1 = 1, ∑t

i=1 Yi < r
)
= (1 − p)βp(t, r).

The formula shown in Lemma 2 can be interpreted as a newly received packet that
is linearly independent of all the already received packets with a probability tends to 1
unless the rank has already reached r. This can also be interpreted as ζ i,r

j = δj,min{i,r} with a
probability tends to 1. The above lemma can be rewritten in a more useful form as stated
below.

Lemma 3. Let t and r be non-negative integers.

(a) E(r, t + 1) = E(r, t) + (1 − p) if t < r;

(b) E(r, t) = (1 − p)∑t−1
j=0 βp(j, r) = (1 − p)

(
min{r, t}+ ∑t−1

j=r βp(j, r)
)

.

Proof. See Appendix C.

2.4. Blockwise Adaptive Recoding

The idea of adaptive recoding was presented in [47], and then independently formu-
lated in [48,49]. The former formulation imposes an artificial upper bound on the number
of recoded packets and then applies a probabilistic approach to avoid integer programming.
The latter investigates the properties of the integer programming problem and proposed
efficient algorithms to directly tackle this problem. These two formulations were unified
in [50] as a general recoding framework for BNC. This framework requires the distribution
of the ranks of the incoming batches, also called the incoming rank distribution. This
distribution, however, is not known in advance, and can continually change due to envi-
ronmental factors. A rank distribution inference approach was proposed in [81], but the
long solving time hinders its application in real-time scenarios.

A more direct way to obtain up-to-date statistics is to use the ranks of the few latest
batches, a trade-off between a latency of a few batches and the throughput of the whole
transmission. This approach was proposed in [49], and later called BAR in [51,52]. In other
words, BAR is a recoding scheme which groups batches into blocks and jointly optimizes
the number of recoded packets for each batch in the block.

We first describe the adaptive recoding framework and its relation to BAR. We fix an
intermediate network node. Let (h0, h1, . . . , hM) be the incoming rank distribution, tr the
number of recoded packets to be sent for a batch of rank r, and tavg the average number of
recoded packets to be sent per batch. The value of tr is a non-negative real number that is
interpreted as follows. Let ε = tr − 	tr
 be the fractional part of tr. There is an ε chance to
transmit 	tr
+ 1 recoded packets, and a 1 − ε chance to transmit 	tr
 packets. That is, the

54

Entropy 2023, 25, 1054

fraction is the probability of transmitting one more packet. Similarly, E(r, tr) is defined as
the linear interpolation by (1 − ε)E(r, 	tr
) + εE(r, 	tr
+ 1). The framework maximizes
the expected rank of the batches at the next node, which is the optimization problem:

max
tr≥0,∀r∈{0,1,...,M}

M

∑
r=0

hrE(r, tr) s.t.
M

∑
r=0

hrtr = tavg. (7)

For BAR, the incoming rank distribution is obtained from the recently received few
batches. Let a block be a set of batches. We assume that the blocks at a network node are
mutually disjoint. Suppose the node receives a block L. For each batch b ∈ L, let rb and tb
be the rank of b and the number of recoded packets to be generated for b, respectively. Let
tLmax = tavg/|L| be the number of recoded packets to be transmitted for the block L. The
batches of the same rank are considered individually with the notations rb and tb, and the
total number of packets to be transmitted for a block is finite; therefore, we assume tb for
each b ∈ L is a non-negative integer, and tLmax is a positive integer. By dividing both the
objective and the constraint of the framework by |L|, we obtain the simplest formulation of
BAR:

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb) s.t. ∑

b∈L
tb = tLmax. (8)

To support scenarios with multiple outgoing links for the same batch, e.g., load
balancing, we may impose an upper bound on the number of recoded packets per batch.
Let tb

max be a non-negative integer that represents the maximum number of recoded packets
allowed to be transmitted for the batch b. This value may depend on the rank of b at the
node. Subsequently, we can formulate the following optimization problem based on (8):

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb)

s.t. ∑
b∈L

tb = tLmax

tb ≤ tb
max, ∀b ∈ L.

(9)

Note that we must have ∑b∈L tb
max ≥ tLmax. In the case where this inequality does

not hold, we can include more batches in the block to resolve this issue. When tb
max is

sufficiently large for all b ∈ L, (9) degenerates into (8).
The above optimization only depends on the local knowledge at the node. The batch

rank rb can be known from the coefficient vectors of the received packets of batch b. As
a remark, the value of tLmax can affect the stability of the packet buffer. For a general
network transmission scenario with multiple transmission sessions, the value of tLmax can
be determined by optimizing the utility of certain local network transmissions [82,83].

Though we do not discuss such optimizations in this paper, we consider solving BAR
with a general value of tLmax.

On the other hand, note that the solution to (9) may not be unique. We only need to
obtain one solution for recoding purpose. In general, (9) is a non-linear integer program-
ming problem. A linear programming variant of (9) can be formulated by using a technique
in [81]. However, such a formulation has a huge amount of constraints and requires the
values of E(rb, t) for all b ∈ L and all possible t to be calculated beforehand. We defer the
discussion of this formulation to Appendix H.

A network node will keep receiving packets until it has received enough batches to
form a block L. A packet buffer is used to store the received packets. Then, the node
solves (9) to obtain the number of recoded packets for each batch in the block, i.e., {tb}b∈L.
The node then generates and transmits tb-recoded packets for every batch b ∈ L. At
the same time, the network node continually receives new packets. After all the recoded
packets for the block L are transmitted, the node drops the block from its packet buffer and
then repeats the procedure by considering another block.

55

Entropy 2023, 25, 1054

We do not specify the transmission order of the packets. Within the same block, the
ordering of packets can be shuffled to combat burst loss, e.g., [43,44,52]. Such shuffling can
reduce the burst error length experienced by each batch so that the packet loss events are
more “independent” from each other. On the other hand, we do not specify the rate control
mechanism, as it should be separated as another module in the system. This can be reflected
in BAR by choosing suitable expected rank functions, e.g., modifying the parameters in the
GE model. BAR is only responsible for deciding the number of recoded packets per batch.

The size of a block depends on its application. For example, if an interleaver is applied
to L batches, we can group the L batches as a block. When |L| = 1, the only solution is
tb = tLmax, which degenerates into baseline recoding. Therefore, we need to use a block
size of at least 2 in order to utilize the throughput enhancement of BAR. Intuitively, it is
better to optimize (9) with a larger block size. However, the block size is related to the
transmission latency as well as the computational and storage burdens at the network
nodes. Note that we cannot conclude the exact rank of each batch in a block until the
previous network node finishes sending all the packets of this block. That is, we need to
wait for the previous network node to send the packets of all the batches in a block until
we can solve the optimization problem. Numerical evaluations in Section 3.5 show that
|L| = 2 already has obvious advantage over |L| = 1, and it may not be necessary to use a
block size larger than eight.

3. Implementation Techniques for Blockwise Adaptive Recoding

In this paper, we focus on the implementation and performance of BAR. Due to the
non-linear integer programming structure of (9), we need to make use of certain properties
of the model in order to solve it efficiently. The authors of [49] proposed greedy algorithms
to solve (9), which were then generalized in [50] to solve (7). The greedy algorithms in [50]
have an potential issue when certain probability masses in the incoming rank distribution
are too small, as they may take too many iterations to find a feasible solution. The number
of iterations is in the order of ∑M

r=0 tr, depending on the solution to (7). That is, we cannot
establish a bound on the time complexity as the incoming rank distribution can be arbitrary.

For BAR, we do not have this issue because the number of recoded packets in a block,
tLmax, is fixed.

In this section, we first discuss the greedy algorithm to solve (9) in Section 3.1. Then, we
propose an approximation scheme in Section 3.2, and discuss its application to speed up the
solver for practical implementations in Section 3.3. The algorithms in Sections 3.1 and 3.3
are similar to that in [50], but they are modified to optimize BAR. Note that the algorithms
in [50] are generalized from [49], so the correctness of the aforementioned modified algo-
rithms is inherited directly from the generalized proofs in [50]. For the approximation
scheme in Section 3.2, which did not appear in [50], a more detailed discussion is provided
in this section.

The algorithms in this section frequently query and compare the values of (1 −
p)βp(t, r) for different t ∈ {−1, 0, 1, . . . , tLmax} and r ∈ {0, 1, 2, . . . , M}. We suppose a
lookup table is constructed so that the queries can be performed in O(1) time. The table
is reusable if the packet loss rate of the outgoing link is unchanged. We only consider the
subset {−1, 0, 1, . . . , tLmax} × {0, 1, 2, . . . , M} of the βp domain because

1. the maximum rank of a batch is M;
2. any tb cannot exceed tLmax as ∑b∈L tb = tLmax.

The case t = −1 will be used by our approximation scheme so we keep it in the lookup table.
We can build the table on-demand by dynamic programming, discussed in Section 3.4.

3.1. Greedy Algorithm

We first discuss the case tLmax ≤ ∑b∈L min{rb, tb
max}. This condition means that the

value of tLmax is too small such that the node has just enough or even not enough time to
forward the linearly independent packets received. It is trivial that every {tb}b∈L satisfying
0 ≤ tb ≤ min{rb, tb

max} and ∑b∈L tb = tLmax is a solution to (9), because every such recoded

56

Entropy 2023, 25, 1054

packet gains 1− p to the expected rank by Lemma 3(a),where this gain is maximal according
to the definition of βp(t, r).

For tLmax > ∑b∈L min{rb, tb
max}, we can initialize tb by min{rb, tb

max} for every b ∈ L
as every such recoded packet gains the maximal value 1 − p to the expected rank. After
this, the algorithm chooses the batch that can gain the most expected rank by sending one
more recoded packet, and assigns one more recoded packet to it. The correctness is due to
the concavity of the expected rank functions.

The above initialization reduces most iterations in the algorithm, as in practice, the
difference between the number of recoded packets and the rank of the batch is not huge.
Algorithm 1 is the improved greedy algorithm. Unlike the version in [50], the complexity
of Algorithm 1 does not depend on the solution.

Algorithm 1: Solver for BAR.
Data: tLmax; {rb}b∈L
Result: An assignment {t∗b}b∈L solving (9)
t ← tLmax ; tb ← 0, ∀b ∈ L ;
foreach b ∈ L do

if min{rb, tb
max} ≥ t then

tb ← t ;
return The assignment {tb}b∈L ;

else

tb ← min{rb, tb
max} ; t ← t − tb ;

while t > 0 do

T ← {b ∈ L : tb = tb
max} ;

b ← an element in arg maxb∈L\T βp(tb, rb) ;
tb ← tb + 1 ;
t ← t − 1 ;

return The assignment {tb}b∈L ;

Theorem 1. Algorithm 1 can be ran inO(|L|+max{0, tLmax −∑b∈L min{rb, tb
max}} log |L|) time.

Proof. There are totally max{0, tLmax − ∑b∈L min{rb, tb
max}} iterations in the while loop. The

query of μ = arg maxb∈L\T βp(tb, rb) can be implemented by using a binary heap. The
initialization of the heap, i.e., heapify, takes O(|L|) time, which can be performed outside the
loop. Each query in the loop takes O(1) time. The update from βp(tμ, rμ) into βp(tμ + 1, rμ),
if tμ < tμ

max − 1, takes O(log |L|) time. For tμ = tμ
max − 1, we may remove the entry from the

heap, taking the same time complexity as the update above. As ∑b∈L min{rb, tb
max} ≥ tLmax

by assumption, the algorithm will not query an empty heap. Therefore, the overall time
complexity is O(|L|+ max{0, tLmax − ∑b∈L min{rb, tb

max}} log |L|).

In the algorithm, we assume that a lookup table for βp(t, r) is pre-computed. The table
can be reused unless there is an update on the outgoing channel condition. Nevertheless,
we will discuss an efficient way to construct the lookup table in Section 3.4, and the
insignificance of the measurement or prediction errors of the loss probability of the outgoing
channel in Section 4.

As the query arg maxb∈L\T βp(tb, rb) is run repeatedly and an update is performed
after every query, we can use a binary heap as described in the proof in real implementation.
Note that by Lemma 1(b), βp(tμ, rμ) ≥ βp(tμ + 1, rμ), so the update is a decrease key
operation in a max-heap. In other words, a Fibonacci heap [84] cannot benefit from this
operation here.

3.2. Equal Opportunity Approximation Scheme

Algorithm 1 increases tb step by step. From a geometric perspective, the algorithm
finds a path from the interior of a compact convex polytope that models the feasible solu-

57

Entropy 2023, 25, 1054

tions to the facet H : ∑b∈L tb = tLmax. If we have a method to move a non-optimal feasible
point on H towards an optimal point, together with a fast and accurate approximation to
(8) or (9), then we can combine them to solve (9) faster than using Algorithm 1 directly.
This idea is illustrated in Figure 3. A generalized tuning scheme can be found in [50] based
on the algorithm in [49]. However, there is no approximation scheme proposed in [50].

t2

t1

tLmax

tLmax

t∗2

t∗1

r2

r1

Figure 3. This figure illustrates the idea of modifying the output of an approximation scheme with
two batches, where L = {1, 2}, tLmax ≥ r1 + r2 and t1

max, t2
max ≥ tLmax. The red and blue dots represent

the optimal and approximate solutions on the facet t1 + t2 = tLmax, respectively. Algorithm 1 starts
the search from an interior point (r1, r2), while a modification approach starts the search from the
blue dot.

We first give an approximation scheme in this subsection. The approximation is based
on an observation of the solution for (8) that does not impose an upper boundary on tb: A
batch of higher rank should have more recoded packets transmitted than a batch of lower
rank. Unless most tb

max are too small, the approximation for (8) is also a good approximation
for (9).

Theorem 2. Let L be a block where |L| ≥ 2. If {tb}b∈L solves (8) and tb ≥ rb for all b ∈ L, then
tm < tn for all m, n ∈ L such that rm < rn.

Proof. See Appendix D.

As we cannot generate any linearly independent packets for a batch of rank 0, we
have E(0, ·) = 0. Therefore, we can exclude batches of rank 0 from L before we start the
approximation. We define L = {b ∈ L : rb > 0} ⊆ L. When tLmax > ∑b∈L rb, we have
tb ≥ rb for all b ∈ L. An easy way to obtain an approximation is to assign {tb}b∈L following
the guidelines given in Theorem 2 by:

• tb = 0 for all b ∈ L \ L;
• tb = rb + � for all b ∈ L.

where � = (tLmax − ∑b∈L rb)/|L|. In the case where � is not an integer, we can round it up
for batches with higher ranks and round it down for those with lower ranks.

The above rules allocate the unassigned packets to batches equally after rb packets
have been assigned to each batch b. Thus, we call this approach the equal opportunity
approximation scheme. The steps of this scheme are summarized in Algorithm 2.

Note that we do not need to know the packet loss rate p to apply this approxima-
tion. That is, if we do not know the value of p, we can still apply this approximation to
outperform baseline recoding.

Theorem 3. Algorithm 2 approximates (8) in O(|L|) time. If tLmax ≤ ∑b∈L rb, then the algorithm
solves (8).

58

Entropy 2023, 25, 1054

Algorithm 2: Equal opportunity approximation scheme.

Data: tLmax; {rb}b∈L
Result: An assignment {tb}b∈L approximating (8)
� ← tLmax ; tb ← 0, ∀b ∈ L ; L ← 0 ;
foreach b ∈ L do

if rb ≥ � then
tb ← � ;
return The assignment {tb}b∈L ;

else if rb > 0 then
tb ← rb ; � ← �− rb ; L ← L + 1 ;

if L = 0 then
return An arbitrary feasible solution {tb}b∈L ;

r ← � mod L ; � ← 	�/L
 ;
foreach b ∈ L s.t. rb > 0 do

tb ← rb + � ;

for the r elements which have the largest rb, b ∈ L do
tb ← tb + 1 ;

return The assignment {tb}b∈L ;

Proof. It is easy to see that Algorithm 2 outputs {tb}b∈L which satisfies ∑b∈L tb = tLmax.
That is, the output is a feasible solution of (8). Note that |L| ≤ |L|, so the assignments and
the branches before the last for loop take O(|L|) time in total. The variable L after the first
foreach loop equals |L|. Adding one to the number of recoded packets for r = � mod L
batches with the highest ranks can be performed in O(|L|) time. Therefore, the overall
running time is O(|L|).

If L = ∅, i.e., the whole block is lost, then any feasible {tb}b∈L is a solution, and
the optimal objective value is 0. If tLmax ≤ ∑b∈L rb, then the algorithm terminates with an
output satisfying tb ≤ rb for all b ∈ L, which is an optimal solution.

For the step that adds 1 to the number of recoded packets for r = � mod L batches
with the highest ranks in the algorithm, the worst linear time case can be achieved by
using introselect [85] (which is quickselect [86] with a random pivot, but changes to use the
median of medians [87] pivot strategy when the complexity grows). We use the selection
algorithm to find the r-th largest element, making use of its intermediate steps. During an
iteration, one of the following three cases will occur. If the algorithm decides to search a
part larger than the pivot, then the discarded part does not contain the largest r elements.
If a part smaller than the pivot is selected, then the discarded part is part of the largest r
elements. If the pivot is exactly the r-th largest element, then the part larger than the pivot
together with the pivot are part of the largest r elements.

In practice, the batch size M is small. We can search these r batches with the highest
ranks in O(|L| + M) time using a counting technique as an efficient alternative. The
technique is to use part of the counting algorithm [88]. We first compute a histogram of
the number of times each rank occurs, taking O(M) time for initialization and O(|L|) time
to scan the block. Then, we can scan and count the frequencies of the histogram from the
highest rank, and eliminate the part where the count exceeds � mod |L|. This takes O(M)
time. Lastly, we scan the ranks of the batches again in O(|L|) time. If included in the
modified histogram, we add 1 to the corresponding tb and minus 1 to the corresponding
frequency in the histogram.

Algorithm 2 is a (1 − p)-approximation algorithm, although the relative performance
guarantee factor 1 − p is not tight in general. However, this suggests that the smaller
the packet loss rate p, the more accurate the output the algorithm gives. We defer this
discussion to Appendix E.

59

Entropy 2023, 25, 1054

3.3. Speed-Up via Approximation

In this subsection, we discuss the implementation that corrects an approximate solu-
tion to an optimal solution for (9). Algorithm 3 is a greedy algorithm that uses any feasible
solution of (8) as a starting point. The foreach loop removes the exceeding recoded packets,
assigning the released slot to another batch following the iterations in Algorithm 1. This
can be regarded as mimicking a replacement of βp(·, ·) with the smallest possible value for
the batch b that violates the constraint tb ≤ tb

max. After this, the intermediate solution is a
feasible solution to (9). Then, the last loop finds an increase to the objective by reassigning
some slots among the batches.

Algorithm 3: Solver for BAR via approximation.

Data: tLmax; rb, b ∈ L
Result: An assignment {t∗b}b∈L solving (9)
tb ← 0, ∀b ∈ L ;
Run an approximation to get tb, b ∈ {a ∈ L : ra > 0} ;
T ← {b ∈ L : tb ≥ tb

max} ;
foreach a ∈ L s.t. ta > ta

max do
while ta > ta

max do
b ← an element in arg maxb∈L\T βp(tb, rb) ;
tb ← tb + 1 ; ta ← ta − 1 ; T ← {a ∈ L : ta ≥ ta

max} ;

while mina∈L βp(ta − 1, ra) < maxb∈L\T βp(tb, rb) do

a ← an element in arg mina∈L βp(ta − 1, ra) ;
b ← an element in arg maxb∈L\T βp(tb, rb) ;
ta ← ta − 1 ; tb ← tb + 1 ; T ← {a ∈ L : ta ≥ ta

max} ;

return The assignment {tb}b∈L ;

Note that the algorithm may query βp(ta − 1, ra) for a ∈ L. If ta = 0, then it has access
to the value βp(−1, ra). Recall that we defined βp(−1, ·) = 1, the upper bound of βp(·, ·)
by (10). Therefore, these values act as barriers to prevent outputting a negative number of
recoded packets.

Theorem 4. Let {tb}b∈L be an approximate solution of (8) computed in O(Tapprox) time. Algorithm 3
can be run in O(Tapprox + |L|+ ∑b∈L |t∗b − tb| log |L|) time.

Proof. The assignments before the foreach loop takes O(Tapprox + |L|) time. There are a
total of ∑b∈L |t∗b − tb|/2 iterations in the loops. The queries for the minimum and maximum
values can be implemented using a min-heap and a max-heap, respectively. Similar to
Algorithm 1, we can use binary heaps, taking O(|L|) initialization time, O(1) query time,
and O(log |L|) update time. Each iteration contains at most two heap queries and four
heap updates. The update of the set T can be performed implicitly by setting βp(ta, ra) to 0
during the heap updates for a ∈ T. The overall time complexity is then O(Tapprox + |L|+
∑b∈L |t∗b − tb| log |L|).

In the last while loop, we need to query the minimum of βp(ta − 1, ra) and the
maximum of βp(tb, rb). It is clear that we need to decrease the key βp(tb, rb) to βp(tb + 1, rb)
in the max-heap, and increase the key βp(ta − 1, ra) to βp(ta − 2, ra) in the min-heap.
However, we can omit the updates for batches a and b in the max-heap and min-heap,
respectively, i.e., reduce from four heap updates to two heap updates. We defer this
discussion to Appendix G.

3.4. Construction of the Lookup Table

In the above algorithms, we assume that we have a lookup table for the function βp(·, ·)
so that we can query its values quickly. In this subsection, we propose an on-demand
approach to construct a lookup table by dynamic programming.

60

Entropy 2023, 25, 1054

Due to the fact that ∑t
i=0 Bp(t, i) = 1, we have

0 ≤ βp(t, r) ≤ 1. (10)

Furthermore, it is easy to see that

βp(t, r) = 0 if and only if r = 0 and t ≥ 0; (11)

βp(t, r) = 1 if and only if t ≤ r − 1. (12)

A tabular form of βp is illustrated in Figure 4 after introducing the boundaries 0 and
1 s.

1 1 1 1 1
0 1 1 1 1
0 βp(1, 1) 1 1 1

0 βp(2, 1) βp(2, 2) 1 1

0 βp(3, 1) βp(3, 2) βp(3, 3) 1

0 βp(4, 1) βp(4, 2) βp(4, 3) βp(4, 4)

Figure 4. The tabular appearance of the function βp(t, r) after introducing boundaries 0 and 1 s. The
rows and columns correspond to t = −1, 0, 1, . . . and r = 0, 1, 2, . . ., respectively. The row above the
line is βp(−1, ·).

Being a dynamic programming approach, we need the following recursive relations:

Bp(t + 1, r) = (1 − p)Bp(t, r − 1) + pBp(t, r) for 0 ≤ r ≤ t; (13)

Bp(r, r) = (1 − p)Bp(r − 1, r − 1) for r > 0; (14)

βp(t, r) = βp(t, r − 1) + Bp(t, r − 1) for 1 < r ≤ t + 1, (15)

where (13) is stated in Lemma 1(a); and (14) and (15) are by the definitions of Bp(t, r)
and βp(t, r), respectively. The boundary conditions are Bp(0, 0) = 1, Bp(i,−1) = 0, and
βp(i, 1) = Bp(i, 0) for i = 0, 1, The table can be built in-place in two stages. The first
stage fills in Bp(y, x − 1) at the (y, x) position of the table. The second stage finishes the
table by using (15). Figure 5 illustrates the two stages where the arrows represent the
recursive relations (13)–(15). As βp(0, 1) = βp(1, 2) = . . . = 1, the corresponding entries
can be substituted in directly.

1 1 1 1 1
0 Bp(0, 0) 1 1 1

0 Bp(1, 0) Bp(1, 1) 1 1

0 Bp(2, 0) Bp(2, 1) Bp(2, 2) 1

0 Bp(3, 0) Bp(3, 1) Bp(3, 2) Bp(3, 3)

0 Bp(4, 0) Bp(4, 1) Bp(4, 2) Bp(4, 3)

(a)

1 1 1 1 1
0 βp(0, 1) 1 1 1

0 βp(1, 1) βp(1, 2) 1 1

0 βp(2, 1) βp(2, 2) βp(2, 3) 1

0 βp(3, 1) βp(3, 2) βp(3, 3) βp(3, 4)

0 βp(4, 1) βp(4, 2) βp(4, 3) βp(4, 4)

(b)

Figure 5. The figures illustrate the two stages of the table generation. The indices start from (−1, 0).
The first row has the index y = −1, which is the row above the line. Compared to Figure 4,
βp(0, 1) = βp(1, 2) = . . . = 1 can be substituted in directly without using the relation (15). (a) The
first stage of the table generation. The 1 and 0 s paddings are generated first. The solid and dashed
arrows represent (13) and (14), respectively. (b) The second stage of the table generation. The 1 and
0 s paddings are kept. The arrows represent the recursive relation (15) with the Bp function in-place.

We can compute the values in the table on-demand. Suppose we have {tb}b∈L in an
iteration of Algorithm 1 so that we need the values of βp(tb, rb) for b ∈ L. Let b′ be an
element in arg maxb∈L rb. The table has rb′ + 1 columns. By the criteria of selecting b in

61

Entropy 2023, 25, 1054

Algorithm 1 and by Lemmas 1(c) and (d),we have maxb∈L tb = tb′ . From Figure 5, we know
we have to calculate all rows of β(t, r) for t ≤ tb′ . Furthermore, the recursive relations on a
row only depend on the previous row; thus, we need to prepare the values of Bp in the next
row so that we have the values to compute βp in the next row. As an example, Figure 6
illustrates the values we have prepared when tb′ = 2.

1 1 1 1 1
0 βp(0, 1) 1 1 1

0 βp(1, 1) βp(1, 2) 1 1

0 βp(2, 1) βp(2, 2) βp(2, 3) 1

0 Bp(3, 0) Bp(3, 1) Bp(3, 2) Bp(3, 3)

∗ ∗ ∗ ∗ ∗

Figure 6. The values prepared when tb′ = 2. The asterisks represent the values that are not yet
initialized.

Each entry in the table is modified at most twice during the two stages. Each assign-
ment takes O(1) time. Therefore, the time and space complexities for building the table
are both O(MR), where R is the number of rows we want to construct. When restricted by
the block size, we know that R ≤ tLmax. The worst case is that we only receive one rank-M
batch for the whole block, which is unlikely to occur. In this case, we have the worst case
complexity O(MtLmax).

Note that we can use fixed-point numbers instead of floating point numbers for a
more efficient table construction. Furthermore, the numerical values in the table are not
important as long as the orders for any pair of values in the table are the same.

3.5. Throughput Evaluations

We now evaluate the performance of BAR in a feedbackless multi-hop network. Note
that baseline recoding is a special case of BAR with block size 1. Our main goal here is
to show the throughput gain of BAR among different block sizes. In the evaluation, all
(recoded) packets of a batch are sent before sending those of another batch.

Let (h0, h1, . . . , hM) be the incoming rank distribution of batches arriving at a network
node. The normalized throughput at a network node is defined as the average rank of
the received batches divided by the batch size, i.e., ∑M

i=0 ihi/M. In our evaluations in this
subsection, we set tLmax = M|L| for every block L. That is, the source node transmits M
packets per batch. We assume that every link in the line network has independent packet
loss with the same packet loss rate p. In this topology, we set a sufficiently large tb

max for
every batch, say, tb

max = tLmax.
We first evaluate the normalized throughput with different batch sizes and packet

loss rates. Figure 7 compares adaptive recoding (AR) and baseline recoding (BR) when
we know the rank distribution of the batches arriving at each network node before the
node applies BAR. In other words, Figure 7 shows the best possible throughput of AR. We
compare the effect of block sizes later. We observe that

1. AR has a higher throughput than BR under the same setting;
2. the difference in throughput between AR and BR is larger when the batch size is

smaller, the packet loss probability is larger, or the length of the line network is longer.

In terms of throughput, the percentage gains of AR over BR using M = 4 and p = 0.2
are 23.3 and 33.7% at the 20-th and 40-th hops, respectively. They become 43.8 and 70.3%,
respectively, when p = 0.3.

Although the above figure shows that the throughput of BNC with AR maintains a
good performance when the length of the line network is long, many applications use a
much shorter line network. We zoom into the figure for the first 10 hops in Figure 8 for
practical purposes.

62

Entropy 2023, 25, 1054

20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(a) p = 0.2

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(b) p = 0.3

Figure 7. Adaptive recoding (AR) vs. baseline recoding (BR) in line networks of different lengths,
batch sizes and packet loss rates.

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(a) p = 0.2

2 4 6 8 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(b) p = 0.3

Figure 8. The first 10 hops in Figure 7.

Now, we consider the effect of different block sizes. Figure 9 shows the normalized
throughput of different |L| and p with M = 8. The first 10 hops in Figure 9 are zoomed in
in Figure 10. We observe that

1. a larger |L| results a better throughput;
2. using |L| = 2 already gives a much larger throughput than using |L| = 1;
3. using |L| > 8 gives little extra gain in terms of throughput.

20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

|L| = 1 |L| = 2
|L| = 4 |L| = 6
|L| = 8 |L| = 1000

(a) p = 0.2

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

|L| = 1 |L| = 2
|L| = 4 |L| = 6
|L| = 8 |L| = 1000

(b) p = 0.3

Figure 9. The effect of different block sizes with M = 8.

63

Entropy 2023, 25, 1054

2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

|L| = 1 |L| = 2
|L| = 4 |L| = 6
|L| = 8 |L| = 1000

(a) p = 0.2

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

|L| = 1 |L| = 2
|L| = 4 |L| = 6
|L| = 8 |L| = 1000

(b) p = 0.3

Figure 10. The first 10 hops in Figure 9.

Next, we show the performance of the equal opportunity approximation scheme. Figure 11
compares the normalized throughput achieved by Algorithm 2 (AS) and the true optimal
throughput (AR). We compare the best possible throughput of AR here, i.e., the same setting as
in Figure 7. The first 10 hops in Figure 11 are zoomed in in Figure 12. We observe that

1. the approximation is close to the optimal solution;
2. the gap in the normalized throughput is smaller when the batch size is larger, the

packet loss probability is smaller, or the length of the line network is shorter.

20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 AS, M = 16
AR, M = 8 AS, M = 8
AR, M = 4 AS, M = 4

(a) p = 0.2

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 AS, M = 16
AR, M = 8 AS, M = 8
AR, M = 4 AS, M = 4

(b) p = 0.3
Figure 11. Approximation vs. optimal AR in line networks of different lengths, batch sizes and
packet loss rates.

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 AS, M = 16
AR, M = 8 AS, M = 8
AR, M = 4 AS, M = 4

(a) p = 0.2

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 AS, M = 16
AR, M = 8 AS, M = 8
AR, M = 4 AS, M = 4

(b) p = 0.3

Figure 12. The first 10 hops in Figure 11.

64

Entropy 2023, 25, 1054

4. Impact of Inaccurate Channel Models

In this section, we first demonstrate that the throughput of BAR is insensitive to
inaccurate channel models and packet loss rates. Then, we investigate the feedback design
and show that although feedback can enhance the throughput, the benefit is insignificant.
In other words, BAR works very well without the need of feedback.

4.1. Sensitivity of βp(t, r)

We can see that our algorithms only depend on the order of the values of βp(·, ·);
therefore, it is possible that the optimal {tb}b∈L for an incorrect p is the same for a correct
p. As shown in Figure 4, the boundaries 0 and 1 s are unaffected by p ∈ (0, 1). That is,
we only need to investigate the stability of βp(t, r) for t ≥ r > 0. We calculate values of
βp(t, r) corrected to four digital places in Figure 13 for M = 4, and p = 0.1, 0.45 and their
1% relative changes. We can see that the order of the values are mostly the same when we
slightly change p.

0.1000 1 1 1
0.0100 0.1900 1 1
0.0010 0.0280 0.2710 1
0.0001 0.0037 0.0523 0.3439
0.0000 0.0005 0.0086 0.0815
0.0000 0.0001 0.0013 0.0159
0.0000 0.0000 0.0002 0.0027

(a) p = 0.1.

0.1010 1 1 1
0.0102 0.1918 1 1
0.0010 0.0285 0.2734 1
0.0001 0.0038 0.0533 0.3468
0.0000 0.0005 0.0088 0.0829
0.0000 0.0001 0.0013 0.0163
0.0000 0.0000 0.0002 0.0028

(b) p = 0.101.

0.0990 1 1 1
0.0098 0.1882 1 1
0.0010 0.0275 0.2686 1
0.0001 0.0036 0.0513 0.3410
0.0000 0.0004 0.0083 0.0800
0.0000 0.0001 0.0012 0.0154
0.0000 0.0000 0.0002 0.0026

(c) p = 0.099.
0.4500 1 1 1
0.2025 0.6975 1 1
0.0911 0.4252 0.8336 1
0.0410 0.2415 0.6090 0.9085
0.0185 0.1312 0.4069 0.7438
0.0083 0.0692 0.2553 0.5585
0.0037 0.0357 0.1529 0.3917

(d) p = 0.45.

0.4545 1 1 1
0.2066 0.7024 1 1
0.0939 0.4319 0.8377 1
0.0427 0.2475 0.6163 0.9115
0.0194 0.1358 0.4152 0.7505
0.0088 0.0723 0.2628 0.5676
0.0040 0.0377 0.1589 0.4013

(e) p = 0.4545.

0.4455 1 1 1
0.1985 0.6925 1 1
0.0884 0.4186 0.8295 1
0.0394 0.2355 0.6016 0.9055
0.0175 0.1268 0.3986 0.7370
0.0078 0.0662 0.2479 0.5494
0.0035 0.0338 0.1471 0.3822

(f) p = 0.4455.

Figure 13. The values of βp(t, r) for r = 1, 2, 3, 4 and t = 1, 2, . . . with different p. The coloured
numbers are the largest eight values smaller than 1.

We can also check with the condition number [89] to verify the stability. Roughly
speaking, the relative change in the function output is approximately equal to the condition
number times the relative change in the function input. A small condition number of
βp(t, r) means that the effect of the inaccurate p is small. As shown in Figure 13, the
values of βp(t, r) drop quickly when t increases. In the view of the throughput, which is
proportional to the sum of these values, we can tolerate a larger relative change, i.e., a
larger condition number, when βp(t, r) is small. We calculate condition numbers of βp(t, r)
in Figure 14 by the formula stated in Theorem 5.

1.0000 - - -
2.0000 0.9474 - -
3.0000 1.9286 0.8967 -
4.0000 2.9189 1.8585 0.8479
5.0000 3.9130 2.8388 1.7898
6.0000 4.9091 3.8268 2.7596
7.0000 5.9062 4.8187 3.7412

(a) p = 0.1

1.0000 - - -
2.0000 0.7097 - -
3.0000 1.5714 0.4899 -
4.0000 2.4906 1.2070 0.3296
5.0000 3.4375 2.0325 0.9059
6.0000 4.4000 2.9157 1.6288
7.0000 5.3721 3.8326 2.4384

(b) p = 0.45

Figure 14. The condition numbers of βp(t, r) for r = 1, 2, 3, 4 and t = 1, 2,

Theorem 5. Let p ∈ (0, 1) and t ≥ r > 0. The condition number of βp(t, r) with respect to p is
pt−r+1(1−p)r−1t!

Ip(t−r+1,r)(t−r)!(r−1)! , or equivalently,
∑r−1

j=0 (−1)j(r−1
j)pt−r+j+1

∑r−1
j=0 (−1)j(r−1

j)pt−r+j+1/(t−r+j+1)
.

Proof. See Appendix F.

65

Entropy 2023, 25, 1054

4.2. Impact of Inaccurate Channel Models

To demonstrate the impact of an inaccurate channel model, we consider three different
channels to present our observations.

• ch1: independent packet loss with constant loss rate p = 0.45.
• ch2: burst packet loss modelled by the GE model illustrated in Figure 2 with the

parameters used in [70], namely pGB = pBG = pG = 0.1, pB = 0.8.
• ch3: independent packet loss with varying loss rates p = 0.45 + 0.3 sin(2πc/1280),

where c is the number of transmitted batches.

All the three channels have the same average packet loss rate of 0.45. The formula of ch3 is
for demonstration purpose only.

We now demonstrate the impact of inaccurate p on the throughput. We consider a
line network where all the links use the same channel (ch1, ch2, or ch3). In this topology,
we set a sufficiently large tb

max for every batch, say, tb
max = tLmax. Similar to the previous

evaluation, all (recoded) packets of a batch are sent before sending those of another batch.
Furthermore, we set tLmax = M|L| for every block L.

In Figure 15 we plot the normalized throughput of the first 80 received blocks at the
fourth hop where |L| = M = 4 or 8. We use BAR with (2) for each network although ch2 is
a bursty channel. The black curves with BAR are the throughput of BAR where the loss
rate is known. For ch1 and ch2, this loss rate p is a constant of 0.45. The red and blue
curves are the throughput of BAR when we guess p = 0.65 and 0.25, respectively, which
is ±0.2 from the average loss rate of 0.45. As there is no feedback, we do not change our
guess on p for these curves. We can see that the throughput is actually very close to the
corresponding black curves. This suggests that in the view of the throughput, BAR is not
sensitive to p. Even with a wild guess on p, BAR still outperforms BR, as illustrated by the
green curves. Regarding ch2, we also plot the orange curve with GE BAR, which is the
throughput achieved by BAR with (3). We can see that the gap between the throughput
achieved by BAR with (2) and (3) is very small. As a summary of our demonstration:

1. We can use BAR with (2) for bursty channels and the loss in throughput is insignificant.
2. BAR with an inaccurate constant p can achieve a throughput close to the one when

we have the exact real-time loss rate.
3. We can see a significant throughput gain from BR by using BAR even with inaccurate

channel models.

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

|L| = M = 4

Blocks

N
o
rm

a
li
ze
d
T
h
ro
u
g
h
p
u
t

BAR, ch 1 p = 0.25, ch1 p = 0.65, ch1 Baseline, ch1 BAR, ch 2

p = 0.25, ch2 p = 0.65, ch2 Baseline, ch2 BAR, ch 3 p = 0.25, ch3

p = 0.65, ch3 Baseline, ch3 GE BAR, ch2 p = 0.45, ch3

10 20 30 40 50 60 70 80

0.2

0.25

0.3

0.35

0.4

|L| = M = 8

Blocks

Figure 15. Throughput with inaccurate channel conditions.

4.3. Feedback Design

Although an inaccurate p can give an acceptable throughput, we can further enhance
the throughput by adapting the varying p values. To achieve this goal, we need to use
feedback.

66

Entropy 2023, 25, 1054

We adopt a simple feedback strategy which lets the next node return the number of
received packets of the batches for the current node to estimate p. Although the next node
does not know the number of lost packets per batch, it knows the number of received
packets per batch. Therefore, we do not need to introduce more overhead to the transmitted
packets by the current node.

When we estimate p, we have to know the number of packets lost during a certain
time frame. If the time frame is too small, the estimation is too sensitive so the estimated p
changes rapidly and unpredictably. If the time frame is too long, we captured too much
out-dated information about the channel so the estimated p changes too slowly and may
not be able to adapt to the real loss rate. Recall that the block size is not large as we want to
keep the delay small. We use a block as an atomic unit of the time frame. The next node
gives feedback on the number of received packets per block. The current node uses the
feedback of the blocks in the time frame to estimate p. We perform an estimation of p per
received feedback. In this way, the estimated p is the same for each block so that we can
apply BAR with (2).

If the feedback is sent via a reliable side channel, then we can assume that the current
node can always receive the feedback. However, if the feedback is sent via an unreliable
channel, say, the reverse direction of the same channel the data packets were sent from, then
we need to consider feedback loss. Let Λ be a set of blocks in a time frame with received
feedback. We handle the case of feedback loss by considering the total number of packets
transmitted for the blocks in Λ as the total number of packets transmitted during the time
frame. In this way, we can also start the estimation before a node sends enough blocks to
fill up a time frame. Suppose no feedback is received for every block in a time frame, then
we reuse the previously estimated p for BAR.

At the beginning of the transmission, we have no feedback yet so we have no in-
formation to estimate p. To outperform BR without the knowledge of p, we can use the
approximation of BAR given by Algorithm 2. Once we have received at least one feedback,
we can then start estimating p.

4.4. Estimators

Let x and n be the total number of packets received by the current node and the total
number of packets transmitted by the previous node, respectively, in a time frame for
observation. That is, the number of packets lost in the time frame is n − x. We introduce
three types of estimators for our numerical evaluations.

(1) Maximum likelihood estimator (MLE): The MLE, denoted by p̂MLE, estimates p by
maximizing the likelihood function. p̂MLE = (n − x)/n is a well-known result which can
be obtained via derivative tests. This form collides with the sample average, so by the law
of large numbers, p̂MLE → p when n → ∞ if p does not change over time.

(2) Minimax estimator: The minimax estimator achieves the smallest maximum risk
among all estimators. With the popular mean squared error (MSE) as the risk function,
it is a Bayes estimator with respect to the least favourable prior distribution. As studied
in [90,91], such prior distribution is a beta distribution Beta(

√
n/2,

√
n/2). The minimax

estimator of p, denoted by p̂MM, is the posterior mean, which is
√

n
1+

√
n

n−x
n + 1

1+
√

n
1
2 , or

equivalently, n−x+0.5
√

n
n+

√
n .

(3) Weighted Bayesian update: Suppose the prior distribution is Beta(a, b), where the
hyperparameters can be interpreted as a pseudo-observation having a successes and b
failures. Given a sample of s successes and f failures from a binomial distribution, the
posterior distribution is Beta(a + s, b + f). To fade out the old samples captured by the
hyperparameters, we introduce a scaling factor 0 ≤ γ ≤ 1 and let the posterior distribution
be Beta(γa + s, γb + f). This factor can also prevent the hyperparameters from growing
indefinitely. The estimation of p, denoted by p̂Bayes, is the posterior mean with s = n − x
and f = x, which is γa+n−x

γ(a+b)+n . To prevent a bias when there are insufficient samples, we

67

Entropy 2023, 25, 1054

select a non-informative prior as the initial hyperparameters. Specifically, we use the
Jeffreys prior, which is Beta(1/2, 1/2).

We first show the estimation of p by different schemes in Figure 16. We use BAR
with (2) and |L| = M = 4. The size of the time frame is W blocks. For p̂MLE and p̂MM, the
observations in the whole time frame have the same weight. For p̂Bayes, the effect of each
observation deceases exponentially faster. We consider an observation is out of the time
frame when it is scaled into 10% of the original value. That is, we define the scaling factor
by γ = W

√
0.1. In each subplot, the black curve is the real-time p. The red and blue curves

are for the estimation without and with feedback loss, respectively. In each case, the two
curves are the 25 and 75% percentiles from 1000 runs, respectively.

0

0.2

0.4

0.6

0.8

1
p̂MLE,W = 4, ch1

w/o feedback loss w/ feedback loss real p

p̂MLE,W = 4, ch2 p̂MLE,W = 4, ch3 p̂MLE,W = 16, ch1 p̂MLE,W = 16, ch2 p̂MLE,W = 16, ch3

0

0.2

0.4

0.6

0.8

1
p̂MM,W = 4, ch1

L
o
ss

P
ro
b
a
b
il
it
y

p̂MM,W = 4, ch2 p̂MM,W = 4, ch3 p̂MM,W = 16, ch1 p̂MM,W = 16, ch2 p̂MM,W = 16, ch3

20 40 60 80
0

0.2

0.4

0.6

0.8

1
p̂Bayes,W = 4, ch1

Blocks
20 40 60 80

p̂Bayes,W = 4, ch2

Blocks
20 40 60 80

p̂Bayes,W = 4, ch3

Blocks
20 40 60 80

p̂Bayes,W = 16, ch1

Blocks
20 40 60 80

p̂Bayes,W = 16, ch2

Blocks
20 40 60 80

p̂Bayes,W = 16, ch3

Blocks

Figure 16. The 25 and 75% percentiles of the estimation of p by different schemes where |L| = M = 4
in 1000 runs.

We can see that a larger W has a slower response to the change in p in ch3. Among the
estimators, p̂Bayes has the fastest response speed as its observations in the time frame are
not fairly weighted. Furthermore, although ch1 and ch2 have the same average loss rate,
the estimation has a larger variance when the channel is bursty.

4.5. Throughput Evaluations

As discussed in Section 4.2, the guessed p values have an insignificant impact on the
throughput. We now show the throughput achieved by the estimation schemes in Figure 17.
The parameters for the networks and BAR are the same as in Section 4.2. We do not wildly
guess p here so it is no surprise that we can achieve nearly the same throughput as when
we know the real p for ch1 and ch2. If we look closely, we can see from Figure 15 that for
ch3, there is a small gap between the throughput of BAR when we know the real-time p
and the one of BAR when using a constant p. Although the estimation may not be accurate
at all times, we can now adapt to the change in p to finally achieve a throughput nearly the
same as when we know the real-time p. On the other hand, whether the feedback is lost or
not, the plots shown in Figure 17 are basically the same.

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 4, w/ feedback

Blocks

N
o
rm

a
li
ze
d
T
h
ro
u
g
h
p
u
t

BAR, ch1 p̂MLE, ch1 p̂MM, ch1 p̂Bayes, ch1 Baseline, ch1 BAR, ch2 p̂MLE, ch2 p̂MM, ch2

p̂Bayes, ch2 Baseline, ch2 BAR, ch3 p̂MLE, ch3 p̂MM, ch3 p̂Bayes, ch3 Baseline, ch3 GE BAR, ch2

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 4, w/o feedback

Blocks
10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 16, w/ feedback

Blocks
10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 16, w/o feedback

Blocks

Figure 17. Throughput with estimated p via feedback where |L| = M = 4.

68

Entropy 2023, 25, 1054

5. Conclusions

We proposed BAR in this paper which can adapt to variations in the incoming channel
condition. In a practical perspective, we discussed how to calculate the components of BAR
and how to solve BAR efficiently. We also investigated the impact of an inaccurate channel
model on the throughput achieved by BAR. Our evaluations showed that

1. BAR is insensitive to the channel model: guessing the loss rate still outperforms BR.
2. For bursty channels, the throughput achieved by BAR with an independent loss

model is nearly identical to one with the real channel model. That is, we can use the
independent loss model for BAR in practice and apply the techniques in this paper to
reduce the computational costs of BAR.

3. Feedback can slightly enhance the throughput for channels with a dynamic loss rate.
This suggests that BAR works very well without the need of feedback. On the other
hand, feedback loss barely affects the throughput of BAR. Therefore, we can send the
feedback through a lossy channel without the need of retransmission. Unless we need
to use an accurate estimated loss rate in other applications, we can use MLE with a
small time frame for BAR to reduce the computational time.

These encouraging results suggest that BAR is suitable to be deployed in real-world
applications.

One drawback of our proposed scheme is that we need to change the default behaviour
of some intermediate network nodes, which can be a practical problem in existing networks.
In fact, this is a common issue for all network coding schemes. Some routers have hard-
wired circuits to efficiently handle heavy traffic, so it is unfeasible to deploy other schemes
on them without replacing the hardware. For these heavy-loaded nodes, one may consider
producing a hardware to speed up the network coding operations, e.g., [92,93], inducing
extra costs on the deployment. On the other hand, the protocol for BNC is not standardized
yet, meaning two parties may adopt BAR with incompatible protocols, thus restricting the
application of BNC in public networks. However, it is not easy to build a consensus on the
protocol, because there are still many research directions to improve the performance of
BNC so the protocol design is subject to change in the near future.

6. Patents

The algorithms in Section 3 are variants of those that can be found in the U.S. patent
10,425,192 granted on 24 September 2019 [94]. The linear programming-based algorithm
for BAR in Appendix H can be found in the U.S. patent 11,452,003 granted on 20 September
2022 [95].

Author Contributions: Conceptualization, H.H.F.Y. and S.Y.; methodology, H.H.F.Y.; software,
H.H.F.Y. and L.M.L.Y.; validation, H.H.F.Y., Q.Z. and K.H.N.; formal analysis, H.H.F.Y.; investi-
gation, H.H.F.Y., S.Y. and Q.Z.; writing—original draft preparation, H.H.F.Y.; writing—review and
editing, H.H.F.Y., S.Y. and Q.Z.; visualization, H.H.F.Y.; supervision, H.H.F.Y. and S.Y.; project ad-
ministration, H.H.F.Y.; funding acquisition, S.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by NSFC under Grants 12141108 and 62171399.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Part of the work of Hoover H. F. Yin, Shanghao Yang and Qiaoqiao Zhou was
conducted when they were with the Institute of Network Coding, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong. The work of Lily M. L. Yung was performed when she
was with the Department of Computer Science and Engineering, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong. The work of Ka Hei Ng was performed when he was
with the Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong. Some results in this paper were included in the thesis of Hoover H. F. Yin [96].

69

Entropy 2023, 25, 1054

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BAR Blockwise adaptive recoding
IoT Internet of Things
BNC Batched network coding
RLNC Random linear network coding
LDPC Low-density parity-check code
BATS code Batched sparse code
GE model Gilbert–Elliott model
MLE Maximum likelihood estimator
MSE Mean squared error

Appendix A. Accuracy of the Approximation ζi,r
j ≈ δj,min{i,r}

We demonstrate the accuracy of the approximation ζ i,r
j ≈ δj,min{i,r} by showing the

percentage error of the expected rank function corrected to three decimal places when
q = 28, p = 0.2 and Xt ∼ Binom(t, 1 − p) in Table A1. That is, the table shows the values

100
∣∣∣∑t

i=0 (
t
i)(1 − p)i pt−i(min{r, i} − ∑

min{i,r}
j=0 jζ i,r

j)
∣∣∣

∑t
i=0 (

t
i)(1 − p)i pt−i ∑

min{i,r}
j=0 jζ i,r

j

for different r and t.
From the table, we can see that only three pairs of (r, t) have percentage errors larger

than 0.1%, where they occur when r, t ≤ 2. For all the other cases, the percentage errors
are less than 0.1%. Therefore, such an approximation is accurate enough for practical
applications.

70

Entropy 2023, 25, 1054

T
a

b
le

A
1

.
Pe

rc
en

ta
ge

er
ro

r
w

he
n

ap
pr

ox
im

at
in

g
ex

pe
ct

ed
ra

nk
fu

nc
ti

on
s.

t
r
=

1
r
=

2
r
=

3
r
=

4
r
=

5
r
=

6
r
=

7
r
=

8
r
=

9
r
=

1
0

r
=

1
1

r
=

1
2

r
=

1
3

r
=

1
4

r
=

1
5

r
=

1
6

1
0.

39
21

6
0.

00
15

3
0.

00
00

1
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
2

0.
13

14
0

0.
15

74
1

0.
00

06
1

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

3
0.

03
84

1
0.

08
03

2
0.

08
39

7
0.

00
03

3
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
4

0.
01

02
5

0.
03

09
1

0.
05

79
1

0.
05

04
2

0.
00

02
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

5
0.

00
25

8
0.

01
02

4
0.

02
76

1
0.

04
39

8
0.

03
22

9
0.

00
01

3
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
6

0.
00

06
2

0.
00

30
8

0.
01

09
1

0.
02

50
2

0.
03

41
6

0.
02

15
5

0.
00

00
8

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

7
0.

00
01

5
0.

00
08

7
0.

00
38

2
0.

01
14

7
0.

02
25

8
0.

02
68

5
0.

01
47

9
0.

00
00

6
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
8

0.
00

00
3

0.
00

02
3

0.
00

12
2

0.
00

45
7

0.
01

17
8

0.
02

02
3

0.
02

12
3

0.
01

03
6

0.
00

00
4

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

9
0.

00
00

1
0.

00
00

6
0.

00
03

7
0.

00
16

5
0.

00
52

6
0.

01
18

2
0.

01
79

8
0.

01
68

6
0.

00
73

8
0.

00
00

3
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
10

0.
00

00
0

0.
00

00
2

0.
00

01
1

0.
00

05
5

0.
00

21
0

0.
00

58
5

0.
01

16
3

0.
01

58
5

0.
01

34
2

0.
00

53
2

0.
00

00
2

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

11
0.

00
00

0
0.

00
00

0
0.

00
00

3
0.

00
01

7
0.

00
07

7
0.

00
25

7
0.

00
63

2
0.

01
12

5
0.

01
38

8
0.

01
07

0
0.

00
38

7
0.

00
00

2
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
12

0.
00

00
0

0.
00

00
0

0.
00

00
1

0.
00

00
5

0.
00

02
7

0.
00

10
3

0.
00

30
2

0.
00

66
5

0.
01

07
2

0.
01

20
8

0.
00

85
4

0.
00

28
4

0.
00

00
1

0.
00

00
0

0.
00

00
0

0.
00

00
0

13
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

2
0.

00
00

9
0.

00
03

8
0.

00
13

1
0.

00
34

4
0.

00
68

5
0.

01
00

9
0.

01
04

6
0.

00
68

2
0.

00
21

0
0.

00
00

1
0.

00
00

0
0.

00
00

0
14

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
3

0.
00

01
3

0.
00

05
2

0.
00

16
0

0.
00

38
1

0.
00

69
3

0.
00

94
0

0.
00

90
1

0.
00

54
5

0.
00

15
6

0.
00

00
1

0.
00

00
0

15
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

1
0.

00
00

4
0.

00
02

0
0.

00
06

9
0.

00
19

0
0.

00
41

2
0.

00
68

9
0.

00
86

6
0.

00
77

3
0.

00
43

6
0.

00
11

7
0.

00
00

0
16

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
1

0.
00

00
7

0.
00

02
8

0.
00

08
7

0.
00

21
9

0.
00

43
6

0.
00

67
7

0.
00

79
2

0.
00

66
0

0.
00

34
9

0.
00

08
8

17
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

2
0.

00
01

0
0.

00
03

7
0.

00
10

6
0.

00
24

6
0.

00
45

4
0.

00
65

6
0.

00
71

8
0.

00
56

2
0.

00
27

9
18

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
1

0.
00

00
4

0.
00

01
5

0.
00

04
8

0.
00

12
6

0.
00

27
1

0.
00

46
6

0.
00

62
9

0.
00

64
7

0.
00

47
6

19
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

1
0.

00
00

6
0.

00
02

0
0.

00
06

0
0.

00
14

7
0.

00
29

3
0.

00
47

1
0.

00
59

8
0.

00
57

9
20

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
2

0.
00

00
8

0.
00

02
7

0.
00

07
3

0.
00

16
7

0.
00

31
1

0.
00

47
0

0.
00

56
3

71

Entropy 2023, 25, 1054

Appendix B. Proof of Lemma 1

We have the following properties when a and b are positive integers and 0 ≤ x ≤ 1
([79], Equations 8.17.20 and 8.17.21):

Ix(a, b)− Ix(a + 1, b) =
(

a + b − 1
a

)
xa(1 − x)b; (A1)

Ix(a, b + 1)− Ix(a, b) =
(

a + b − 1
b

)
xa(1 − x)b. (A2)

Proof of Lemma 1(a). It is trivial for i = 0. For i > 0, recall the recursive formula of
binomial coefficients ([79], Equation 1.2.7):(

t + 1
i

)
=

(
t

i − 1

)
+

(
t
i

)
, i = 1, 2, . . . , t.

Applying the formula, we have

Bp(t + 1, i)

=

(
t + 1

i

)
(1 − p)i pt+1−i

= (1 − p)
(

t
i − 1

)
(1 − p)i−1 pt−(i−1) + p

(
t
i

)
(1 − p)i pt−i

= (1 − p)Bp(t, i − 1) + pBp(t, i).

Proof of Lemma 1(b). Case I: t < r. By (10) and (12), βp(t + 1, r) ≤ 1 = βp(t, r), and the
equality holds if and only if t + 1 ≤ r − 1 < r.

Case II: t ≥ r > 0. By (6) and (A1),

βp(t, r)− βp(t + 1, r)

= Ip(t − r + 1, r)− Ip(t − r + 2, r)

=

(
t

t − r + 1

)
pt−r+1(1 − p)r

> 0.

Case III: t ≥ r = 0. By (11), the equality always hold.

Proof of Lemma 1(c). Case I: t < r. By (12), the equality always hold.
Case II: t ≥ r > 0. By (6) and (A2),

βp(t + 1, r + 1)− βp(t, r)

= Ip(t − r + 1, r + 1)− Ip(t − r + 1, r)

=

(
t
r

)
pt−r+1(1 − p)r

> 0.

Case III: t ≥ r = 0. By (10) and (11), βp(t, r) = 0 < βp(t + 1, r + 1).

Proof of Lemma 1(d). Case I: t = −1. By definition, βp(t, r + 1) = βp(t, r) = 1.
Case II: t ≥ 0. Recall that βp(t, r) is the partial sum of the probability mass of the

binomial distribution Binom(t, 1 − p). By summing one more term, i.e., βp(t, r + 1), the
partial sum must be larger than or equal to βp(t, r). Note that Bp(t, i) �= 0 when 0 ≤ i ≤ t,
so the equality holds if and only if βp(t, r) = 1 and if t < r by (12).

Proof of Lemma 1(e) and (f). Inductively by Lemma 1(b), we have

βp(ta + u, ra) ≤ βp(ta, ra) ≤ βp(ta − v, ra) (A3)

72

Entropy 2023, 25, 1054

for all a ∈ Λ where u, v are non-negative integers such that ta − v ≥ −1. By (10),

0 ≤ min
b∈Λ

βp(tb, rb) ≤ βp(ta, ra) ≤ max
b∈Λ

βp(tb, rb) ≤ 1 (A4)

for all a ∈ Λ. Combining (A3) and (A4), the proof is complete.

Appendix C. Proof of Lemma 3

By Lemma 3(a), we have E(r, t + 1) = E(r, t) + (1 − p)βp(t, r). If t < r, we have

βp(t, r) =
r−1

∑
i=0

Bp(t, i) = 1,

which proves Lemma 3(a).
For Lemma 3(b), note that we have the initial condition

E(r, 0) = Bp(0, 0)min{r, 0} = 0 = (1 − p)
(0)−1

∑
j=0

βp(j, r).

We can evaluate Lemma 2 recursively and obtain the first equality in Lemma 3(b).
By Lemma 3(a), we can show that when t < r, we have

E(r, t) = t(1 − p). (A5)

This implies that when t ≥ r, we have

E(r, t) = (1 − p)

(
r +

t−1

∑
j=r

βp(j, r)

)
. (A6)

When t < r, the summation term ∑t−1
j=r βp(j, r) in (A6) equals 0. So, we can combine

(A5) and (A6) and give

E(r, t) = (1 − p)

(
min{r, t}+

t−1

∑
j=r

βp(j, r)

)
.

Appendix D. Proof of Theorem 2

Suppose tm > tn for some rm < rn, i.e.,

tm > tn ≥ rn > rm. (A7)

We define

t′b =

⎧⎪⎨⎪⎩
tm if b = n,
tn if b = m,
tb otherwise

for all b ∈ L. We consider the difference of

∑
b∈L

E(rb, t′b)− ∑
b∈L

E(rb, tb)

= [E(rm, tn) + E(rn, tm)]− [E(rm, tm) + E(rn, tn)]

= [E(rn, tm)− E(rn, tn)] + [E(rm, tn)− E(rm, tm)]

= (1 − p)

[(
tm−1

∑
j=0

βp(j, rn)−
tn−1

∑
j=0

βp(j, rn)

)
+

(
tn−1

∑
j=0

βp(j, rm)−
tm−1

∑
j=0

βp(j, rm)

)]
(A8)

73

Entropy 2023, 25, 1054

= (1 − p)

[
tm−1

∑
j=tn

βp(j, rn)−
tm−1

∑
j=tn

βp(j, rm)

]

= (1 − p)
tm−1

∑
j=tn

(
βp(j, rn)− βp(j, rm)

)
> 0, (A9)

where

• (A8) follows Lemma 3(b);
• (A9) follows Lemma 1(d) together with (A7).

The above result contradicts that {tb}b∈L solves (8), which gives us that tm ≤ tn for all
rm < rn.

Next, we suppose tm = tn for some rm < rn, i.e.,

tm = tn ≥ rn > rm. (A10)

We define

t′′b =

⎧⎪⎨⎪⎩
tn + 1 if b = n,
tm − 1 if b = m,
tb otherwise

for all b ∈ L. Moreover, we compare the difference of

∑
b∈L

E(ri, t′′i)− ∑
b∈L

E(ri, ti)

= [E(rn, tn + 1) + E(rm, tm − 1)]− [E(rn, tn) + E(rm, tm)]

= [E(rn, tn + 1)− E(rn, tn)]− [E(rm, tm)− E(rm, tm − 1)]

= (1 − p)[βp(tn, rn)− βp(tm − 1, rm)] (A11)

≥ (1 − p)[βp(tm, rm + 1)− βp(tm − 1, rm)] (A12)

> 0, (A13)

where

• (A11) follows Lemma 3(a)
• (A12) follows (A10) and Lemma 1(d)
• (A13) follows Lemma 1(c) together with (A10).

This contradicts {tb}b∈L and solves (8). Therefore, we have tm �= tn for all rm < rn.
Combining the two cases, the proof is complete.

Appendix E. Performance Guarantee and Bounded Error of Algorithm 2

We start the discussion with the following theorem.

Theorem A1. Let SOL and OPT be the solution given by Algorithm 2 and the optimal solution of
(8), respectively, then ⎧⎪⎨⎪⎩

SOL ≥ (1 − p)OPT,

OPT − SOL ≤ (1 − p) ∑
b∈L

rb+|L|�′−1

∑
j=rb+�

βp(j, rb),

where �′ = (tLmax − ∑b∈L rb)/|L| and � = 	�′
.

Proof. We first show that the algorithm has a relative performance guarantee factor of
1 − p. As stated in Theorem 3, when tLmax ≤ ∑b∈L rb, the algorithm guarantees an optimal

74

Entropy 2023, 25, 1054

solution. Therefore, we only consider tLmax > ∑b∈L rb. Let {tb}b∈L be the approximation
given by the algorithm.

Note that any linear combinations of r-independent vectors cannot obtain more than
r-independent vectors. Therefore, the expected rank of a batch at the next hop must be no
larger than the rank of the batch at the current hop, and, be non-negative. That is,

0 ≤ E(rb, t) ≤ rb, ∀t ≥ 0, b ∈ L. (A14)

This gives a bound of the optimal solution by

0 ≤ OPT ≤ ∑
b∈L

rb. (A15)

We consider the exact formula of the approximation:

SOL = (1 − p) ∑
b∈L

rb + (1 − p) ∑
b∈L

tb−1

∑
j=rb

βp(j, rb) (A16)

≥ (1 − p) ∑
b∈L

rb (A17)

≥ (1 − p)OPT, (A18)

where

• (A16) is stated in Lemma 3(b)
• (A17) holds as βp(j, rb) ≥ 0 for all j, rb, which is by (10);
• (A18) follows the inequality (A15).

Lastly, we show the bounded error. Let {t∗b} be a solution to (8). We write t∗b = rb + �b
where �b ≥ 0 for all b ∈ L. Note that the constraint of (8), i.e., ∑b∈L t∗b = tLmax, suggests that

�b ≤ tLmax − ∑
b∈L

rb = |L|�′. (A19)

On the other hand, it is easy to see that the approximation must either give tb = rb + �
or tb = rb + �+ 1. That is, we have tb ≥ rb + �. By Lemma 3(b),we have

SOL ≥ (1 − p) ∑
b∈L

[
rb +

rb+�−1

∑
j=rb

βp(j, rb)

]
. (A20)

We consider the difference between OPT and SOL:

OPT − SOL

≤ (1 − p) ∑
b∈L

(
rb+�b−1

∑
j=rb

βp(j, rb)−
rb+�−1

∑
j=rb

βp(j, rb)

)
(A21)

= (1 − p) ∑
b∈L

⎛⎜⎜⎝rb+�b−1

∑
j=rb+�,
�b>�

βp(j, rb)−
rb+�−1

∑
j=rb+�b ,
�b<�

βp(j, rb)

⎞⎟⎟⎠
≤ (1 − p) ∑

b∈L

rb+�b−1

∑
j=rb+�,
�b>�

βp(j, rb) (A22)

≤ (1 − p) ∑
b∈L

rb+|L|�′−1

∑
j=rb+�

βp(j, rb), (A23)

where

75

Entropy 2023, 25, 1054

• (A21) is the difference between the exact form of OPT by Lemma 3(b) after substituting
the lower bound of SOL shown in (A20);

• the condition �b > � in the summation of (A22) can be removed, as we have rb + �b −
1 < rb + � if �b ≤ �;

• (A23) follows (A19) and the fact shown in (10) that the extra βp(j, rb) terms are non-
negative.

The proof is done.

If the relative performance guarantee factor of 1 − p is tight, we need both equalities
in (A17) and (A18) to hold. First, by (10), we know that βp(j, rb) is always non-negative.
The equality in (A17) holds if and only if ∑tb−1

j=rb
βp(j, rb) = 0 for all b ∈ L. The sum equals

0 only when

• rb = 0 and tb ≥ 0 according to (11); or
• tb − 1 < rb which forms an empty sum.

The equality in (A18) holds if and only if OPT = ∑b∈L E(rb, t∗b) = ∑b∈L rb. Note that
(A14) shows that E(rb, t∗b) is upper bounded by rb. This implies that we need E(rb, t∗b) = rb
for all b ∈ L. When t∗b ≤ rb, we can apply Lemma 3(a) to obtain E(rb, t∗b) = (1 − p)t∗b ,
which equals rb if and only if rb = 0, as we assumed 0 < p < 1 in this paper. By Lemma 2,
E(rb, t) is a monotonic increasing function in terms of t for all rb ≥ 0. Therefore, when
rb �= 0 we need t∗b > rb, which implies that tLmax > ∑b∈L rb. Then, the approximation will
also give tb > rb for some b ∈ L in this case, and the equality in (A17) does not hold.

That is, we have SOL = (1 − p)OPT only when rb = 0 for all b ∈ L. In this case, we
have SOL = OPT = 0. In practice, the probability of having rb = 0 for all b ∈ L is very
small. Therefore, we can consider that the bound is not tight in most cases but it guarantees
that the approximation is good when the packet loss probability is small.

Appendix F. Proof of Theorem 5

Let B(a, b; y) :=
∫ y

0 xa−1(1 − x)b−1 dx be the incomplete beta function. We have the
beta function B(a, b) := B(a, b; 1).

From (6), we have βp(t, r) = Ip(t − r + 1, r) = B(t−r+1,r;p)
B(t−r+1,r;1) . By direct calculation, the

condition number is∣∣∣∣∣∣
p dβp(t,r)

dp

βp(t, r)

∣∣∣∣∣∣ =
∣∣∣∣∣ p d

dp

∫ p
0 xt−r(1 − x)r−1 dx

B(t − r + 1, r; 1)Ip(t − r + 1, r)

∣∣∣∣∣
=

pt−r+1(1 − p)r−1

B(t − r + 1, r; 1)Ip(t − r + 1, r)

=
pt−r+1(1 − p)r−1∫ p

0 xt−r(1 − x)r−1 dx

=
pt−r+1 ∑r−1

j=0(−1)j(r−1
j)pj∫ p

0 xt−r ∑r−1
j=0(−1)j(r−1

j)xj dx
(A24)

=
∑r−1

j=0(−1)j(r−1
j)pt−r+j+1

∑r−1
j=0(−1)j(r−1

j)
∫ p

0 xt−r+j dx

=
∑r−1

j=0(−1)j(r−1
j)pt−r+j+1

∑r−1
j=0(−1)j(r−1

j)pt−r+j+1/(t − r + j + 1)
,

where the absolute value disappears as both numerator and denominator are non-negative.
The first form of the condition number can be obtained by substituting B(t − r + 1, r; 1) =
(t−r)!(r−1)!

t! into (A24).

76

Entropy 2023, 25, 1054

Appendix G. Corrupted Heaps

In this appendix, we explain why we can omit two of the heap updates in Algorithm 3.
Before we start, we need some mathematical descriptions of the optimal solutions of

BAR. Then, we will introduce our lazy evaluation technique on a modified heap that we
called the corrupted heap.

To simplify the notations, we redefine βp(tb, rb) as

βp(t, r) =

⎧⎪⎨⎪⎩
0 if tb ≥ tb

max,
1 if tb ≤ min{rb, tb

max} − 1,

∑rb−1
i=0 (tb

i)(1 − p)i ptb−i otherwise.

in this appendix. In other words, βp(·, ·) is now a function of b. When tb ≥ tb
max, βp(tb, rb)

is the smallest possible value in the image of βp(·, ·). Therefore, the algorithms in this paper
will not assign more recoded packets to the batch b.

Appendix G.1. Optimality Properties of BAR

First, we introduce the following theorem that states a condition for non-optimality
(or optimality after taking contraposition).

Theorem A2. Let {tb}b∈L be a feasible solution of (9). Then, {tb}b∈L is not an optimal solution of
(9) if and only if there exists two distinct batches κ and ρ with tρ ≥ 1 such that (1− p)βp(tκ , rκ) >
(1 − p)βp(tρ − 1, rρ).

Proof. We first prove the sufficient condition. If {tb}b∈L does not solve (9), then it means
that there exists another configuration {t′b}b∈L which can give a higher objective value.
Since ∑b∈L tb = ∑b∈L t′b = tLmax, there exists distinct κ, ρ ∈ L such that t′κ > tκ and t′ρ < tρ.
Note that t′ρ ≥ 0 so we must have tρ ≥ 1. We define

Θ = {κ : t′κ > tκ} and Φ = {ρ : t′ρ < tρ},

where
∑

θ∈Θ
(t′θ − tθ) = ∑

φ∈Φ
(tφ − t′φ) > 0. (A25)

Using the fact that {t′b}b∈L gives a larger objective value and by Lemma 3(b),we have

∑
θ∈Θ

t′θ−1

∑
t=tθ

(1 − p)βp(t, rθ) > ∑
φ∈Φ

tφ−1

∑
t=t′φ

(1 − p)βp(t, rφ). (A26)

Now, we fix κ and ρ such that

κ ∈ arg max
θ∈Θ

βp(tθ , rθ) and ρ ∈ arg min
φ∈Φ

βp(tφ − 1, rφ).

We have

∑
θ∈Θ

(t′θ − tθ)(1 − p)βp(tκ , rκ)

≥ ∑
θ∈Θ

(t′θ − tθ)(1 − p)βp(tθ , rθ)

≥ ∑
θ∈Θ

t′θ−1

∑
t=tθ

(1 − p)βp(t, rθ) (A27)

77

Entropy 2023, 25, 1054

> ∑
φ∈Φ

tφ−1

∑
t=t′φ

(1 − p)βp(t, rφ) (A28)

≥ ∑
φ∈Φ

(tφ − t′φ)(1 − p)βp(tφ − 1, rφ) (A29)

≥ ∑
φ∈Φ

(tφ − t′φ)(1 − p)βp(tρ − 1, rρ),

where

• (A27) and (A29) follows Lemma 1(b);
• (A28) is the inequality shown in (A26).

Applying (A25), we have

(1 − p)βp(tκ , rκ) > (1 − p)βp(tρ − 1, rρ),

which proves the sufficient condition.
Now we consider the necessary condition, where we have

(1 − p)βp(tκ , rκ) > (1 − p)βp(tρ − 1, rρ) (A30)

for some distinct κ and ρ. Let

t′b =

⎧⎪⎨⎪⎩
tκ + 1 if b = κ,
tρ − 1 if b = ρ,
tb otherwise

for all b ∈ L. Then, we consider the following:

∑
b∈L

E(rb, t′b)

= ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rκ , tκ + 1) + E(rρ, tρ − 1)

= ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rρ, tρ − 1) + [E(rκ , tκ) + (1 − p)βp(tκ , rκ)] (A31)

> ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rκ , tκ) + [E(rρ, tρ − 1) + (1 − p)βp(tρ − 1, rρ)] (A32)

= ∑
b∈L\{ρ}

E(rb, tb) + E(rρ, tρ) (A33)

= ∑
b∈L

E(rb, tb),

where

• (A31) and (A33) follow Lemma 3(a)
• (A32) follows (A30).

meaning that {tb}b∈L is not an optimal solution of (9).

Next, we define the sub-problems (A34) of (9) for k ∈ {0, 1, . . . , tLmax}, which present
the optimal substructure of (9).

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb)

s.t. ∑
b∈L

tb = k

tb ≤ tb
max, ∀b ∈ L.

(A34)

78

Entropy 2023, 25, 1054

Note that we assume ∑b∈L tb
max ≥ tLmax ≥ k, or otherwise we should include more

batches in the block.
We define a multiset Ωr that collects the value of (1 − p)βp(t, r) for all integers t ≥ 0,

i.e.,
Ωr = {(1 − p)βp(t, r) : t ∈ {0, 1, 2, . . .}}.

By Lemma 3(b),we have E(r, t) = (1 − p)∑t−1
j=0 βp(j, r). As E(r, t) is concave with

respect to t, βp(t, r) is a monotonic decreasing function on t (also stated in Lemma 1(b)).
This implies the following lemma.

Lemma A1. E(r, t) equals the sum of the largest t elements in Ωr.

Proof. By Lemma 3(b), E(r, t) = (1 − p)∑t−1
j=0 βp(j, r). By Lemma 1(b), βp(t, r) is a mono-

tonic decreasing function on t. By (10) and (12), we have βp(0, r) = 1 ≥ βp(t, r) for all
positive integers t. Therefore, E(r, t) is the sum of the largest t elements in Ωr.

We fix a block L and define a multiset

Ω :=
⊎

b∈L
Ωrb = {(1 − p)βp(tb, rb) : tb ∈ {0, 1, 2, . . . , tb

max − 1}, b ∈ L}.

If two batches a, b ∈ L have the same rank, i.e., ra = rb, then for all t, we have
(1 − p)βp(t, ra) = (1 − p)βp(t, rb). As Ω is a multiset, the duplicated values are not
eliminated. Now, we have the following lemma to connect (A34) and Ω.

Lemma A2. The optimal value of (A34) is the sum of the largest k elements in Ω.

Proof. Let {tb}b∈L solves (A34). We suppose the optimal value is not the sum of the largest
k elements in Ω. However, Lemma A1 states that E(rb, tb) equals the sum of the largest tb
elements in Ωrb for all b ∈ L. This means that there exists two distinct batches κ, ρ ∈ L
with tκ ≤ tb

max − 1 and tρ ≥ 1 such that (1 − p)βp(tκ , rκ) > (1 − p)βp(tρ − 1, rρ).
By setting tLmax = k, we can apply Theorem A2 which gives that {tb}b∈L is not an

optimal solution of (A34). The proof is completed by contradiction.

We define a multiset Ω′
tLmax

which is a collection of the largest tLmax elements in Ω. By

Lemma A2, ∑ω∈Ω′
tLmax

ω is the optimal value of (9). For any non-optimal solution (t(k)b)b∈L,

we define a multiset

�k := {(1 − p)βp(t, rb) : t ∈ {0, 1, . . . , t(k)b − 1}, b ∈ L},

where the value k ∈ {0, 1, . . . , tLmax − 1} is the number of elements in Ω′
tLmax

which are also
contained in �k.

Appendix G.2. Lazy Evaluations

We consider an iteration in the last while loop in Algorithm 3. Suppose we choose to
increase tb by 1 and decrease ta by 1.

Lemma A3. If batch a is selected by the max-heap or batch b is selected by the min-heap in any
future iteration, then the optimal solution is reached.

Proof. Suppose batch a with key A is selected by the max-heap in a future iteration. Note
that A was once the smallest element in �k for some k. Therefore, at the current state
where k′ > k, every element in �k′ must be no smaller than A. Equivalently, we have
(1 − p)βp(tκ , rκ) ≤ (1 − p)βp(tρ − 1, rρ) for all κ, ρ ∈ L. By Theorem A2, the optimal
solution is reached. The min-heap counterpart can be proved in a similar fashion.

79

Entropy 2023, 25, 1054

Suppose we omit the update for the batch ρ in the heap. We call the key of the batch
ρ a corrupted key, or the key of the batch ρ is corrupted. A key which is not corrupted is
called an uncorrupted key. A heap with corrupted keys is called a corrupted heap. In other
words, the key of a batch is corrupted in a corrupted max-heap if and only if the same
batch was once the minimum of the corresponding original min-heap, and vice versa. As
a remark, we do not have a guaranteed maximum portion of corrupted keys as an input.
Furthermore, we do not adopt the carpooling technique. This suggests that the heap here is
not a soft heap [97].

Lemma A4. If the root of a corrupted heap is a corrupted key, then the optimal solution is reached.

Proof. We only consider a corrupted max-heap in the proof. We can use similar arguments
to show that a corrupted min-heap also works.

In a future iteration, suppose batch a is selected by the corrupted max-heap. We
consider the real maximum in the original max-heap. There are three cases.

Case I: batch a is also the root of the original max-heap. As the key of a is corrupted, it
means that the batch was once selected by the corresponding min-heap. By Lemma A3, the
optimal solution is reached.

Case II: the root of the original max-heap is batch a′ where the key of a′ is also
corrupted. Similar to Case I, batch a′ was once selected by the corresponding min-heap,
and we can apply Lemma A3 to finish this case.

Case III: the root of the original max-heap is batch a′′ where the key of a′′ is not
corrupted. In this case, the uncorrupted key of a′′ is also in the corrupted max-heap. Note
that the corrupted key of a is no larger than the actual key of a in the original max-heap.
This means that the key of a, a′′ and the corrupted key of a have the same value. It is
equivalent to let the original max-heap select batch a, as every element in �k′ must be no
smaller than the key of a′′, where k′ represents the state of the current iteration. Then, the
problem is reduced to Case I.

Combining the three cases, the proof is completed.

Theorem A3. The updates for batch a in the max-heap and batch b in the min-heap can be omitted.

Proof. When we omit the updates, the heap itself becomes a corrupted heap. We have to
make sure that when a batch with corrupted key is selected, the termination condition of
the algorithm is also met.

We can express the key of batch π in a corrupted max-heap and min-heap by βp(tπ +
sπ , rπ) and βp(tπ − 1 − uπ , rπ), respectively, where sπ , uπ are non-negative integers. When
sπ or uπ is 0, the key is uncorrupted in the corresponding corrupted heap. By Lemma 1(b),
we have

βp(tπ + sπ , rπ) ≤ βp(tπ , rπ),

βp(tπ − 1, rπ) ≤ βp(tπ − 1 − uπ , rπ).

That is, the root of the corrupted max-heap is no larger than the root of the original
max-heap. Similar for the min-heap. Mathematically, we have

max
π∈L

βp(tπ + sπ , rπ) ≤ max
π∈L

βp(tπ , rπ), (A35)

min
π∈L

βp(tπ − 1, rπ) ≤ min
π∈L

βp(tπ − 1 − uπ , rπ). (A36)

Suppose a corrupted key is selected. By Lemma A4, we know that the optimal solution
is reached. Therefore, we can apply the contrapositive of Theorem A2 and know that

(1 − p)βp(tκ , rκ) ≤ (1 − p)βp(tρ − 1, rρ) (A37)

80

Entropy 2023, 25, 1054

for all κ, ρ ∈ L. We can omit the condition tρ ≥ 1 because by (10) and (12), we have
βp(−1, ·) = 1 ≥ βp(·, ·). The inequality (A37) is equivalent to

max
π∈L

βp(tπ , rπ) ≤ min
π∈L

βp(tπ − 1, rπ).

We can mix this inequality with (A35) and (A36) to show that when a corrupted key is
selected, we have

max
π∈L

βp(tπ + sπ , rπ) ≤ min
π∈L

βp(tπ − 1 − uπ , rπ),

which is the termination condition shown in Algorithm 3 after we replaced the heaps into
corrupted heaps.

We just showed that once a corrupted key selected, the termination condition is
reached. In the other words, before a corrupted key is selected, every previous selection
must be an uncorrupted key. That is, the details inside the iterations are unaffected. If
an uncorrupted key is selected where it also satisfies the termination condition, then no
corrupted key is touched, and the corrupted heap still acts as a normal heap at this point.

The correctness of the algorithm when using a corrupted heap is proven. Moreover,
we do not need to mark which key is corrupted. This is, we can omitted the mentioned
heap updates for a normal heap.

We do not need to mark down which key is corrupted while the algorithm still works,
so we can simply omit the mentioned updates as lazy evaluations. As there are two heaps
in algorithm, we can reduce from four to two heap updates.

Appendix H. Linear Programming Formulation of BAR

In [81], a distributionally robust optimization [98] for AR is formulated as a linear
programming problem. It is based on an observation that when the expected rank function
E(r, t) is concave with respect to t, we can reformulate it by

E(r, t) = min
i∈{0,1,...,ı̄}

(Δr,it + ξr,i)

if we fix an artificial upper bound t ≤ ı̄, where Δr,t := E(r, i + 1) − E(r, i) and ξr,i :=
E(r, i)− iΔr,i. In (9), we implicitly have t ≤ tLmax, so we can make use of this expression to
write (9) as

max
tb ,eb≥0,∀b∈L ∑

b∈L
eb

s.t. ∑
b∈L

tb = tLmax

tb ≤ tb
max, ∀b ∈ L

eb ≤ E(rb, i) + (E(rb, i + 1)− E(rb, i))(tb − i), ∀b ∈ L, ∀i ∈ {0, 1, . . . , tLmax},

where tb is allowed to be a non-integer. A non-integer tb means that we first generate 	tb

recoded packets, then we generate one more recoded packet with probability tb − 	tb
.
Note that there are |L|tLmax constraints for eb.

To turn such a non-deterministic solution into a deterministic one, we perform the
following steps:

1. Collect the batches with non-integer recoded packets into a set S.
2. Calculate R = ∑b∈S(tb − 	tb
). Note that R is an integer for BAR.
3. For every b ∈ S, remove the fractional part of tb.
4. Randomly select R batches from S and add one recoded packet to each of these batches.

We have an integer R because ∑b∈L tb = tLmax. Furthermore, we have R < |S|. Re-
ferring to the idea of Algorithm 1, we have the same value of Δrb ,	tb
 for all b ∈ S. After

81

Entropy 2023, 25, 1054

removing the fractional part of tb for all b ∈ S, it becomes the sub-problem (A34) (defined
in Appendix G.1) with k = tLmax − R. The last step follows Algorithm 1 such that the output
is a solution to (9) where tb for all b ∈ L are all integers.

References

1. Luby, M. LT Codes. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC,
Canada, 19 November 2002; pp. 271–282.

2. Shokrollahi, A. Raptor Codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [CrossRef]
3. Maymounkov, P. Online Codes; Technical Report; New York University: New York, NY, USA, 2002.
4. Ho, T.; Koetter, R.; Médard, M.; Karger, D.R.; Effros, M. The Benefits of Coding over Routing in a Randomized Setting. In

Proceedings of the 2003 IEEE International Symposium on Information Theory (ISIT), Yokohama, Japan, 29 June–4 July 2003;
p. 442.

5. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding Approach to
Multicast. IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

6. Ahlswede, R.; Cai, N.; Li, S.Y.R.; Yeung, R.W. Network Information Flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216.
7. Koetter, R.; Médard, M. An Algebraic Approach to Network Coding. IEEE/ACM Trans. Netw. 2003, 11, 782–795. [CrossRef]
8. Li, S.Y.R.; Yeung, R.W.; Cai, N. Linear Network Coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [CrossRef]
9. Wu, Y. A Trellis Connectivity Analysis of Random Linear Network Coding with Buffering. In Proceedings of the 2006 IEEE

International Symposium on Information Theory (ISIT), Seattle, WA, USA, 9–14 July 2006; pp. 768–772.
10. Lun, D.S.; Médard, M.; Koetter, R.; Effros, M. On coding for reliable communication over packet networks. Phys. Commun. 2008,

1, 3–20. [CrossRef]
11. Chou, P.A.; Wu, Y.; Jain, K. Practical Network Coding. In Proceedings of the Annual Allerton Conference on Communication

Control and Computing, Monticello, IL, USA, 1–3 October 2003; Volume 41, pp. 40–49.
12. Pandi, S.; Gabriel, F.; Cabrera, J.A.; Wunderlich, S.; Reisslein, M.; Fitzek, F.H.P. PACE: Redundancy Engineering in RLNC for

Low-Latency Communication. IEEE Access 2017, 5, 20477–20493. [CrossRef]
13. Wunderlich, S.; Gabriel, F.; Pandi, S.; Fitzek, F.H.P.; Reisslein, M. Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window

RLNC Approach. IEEE Access 2017, 5, 20183–20197. [CrossRef]
14. Lucani, D.E.; Pedersen, M.V.; Ruano, D.; Sørensen, C.W.; Fitzek, F.H.P.; Heide, J.; Geil, O.; Nguyen, V.; Reisslein, M. Fulcrum:

Flexible Network Coding for Heterogeneous Devices. IEEE Access 2018, 6, 77890–77910. [CrossRef]
15. Nguyen, V.; Tasdemir, E.; Nguyen, G.T.; Lucani, D.E.; Fitzek, F.H.P.; Reisslein, M. DSEP Fulcrum: Dynamic Sparsity and

Expansion Packets for Fulcrum Network Coding. IEEE Access 2020, 8, 78293–78314. [CrossRef]
16. Tasdemir, E.; Tömösközi, M.; Cabrera, J.A.; Gabriel, F.; You, D.; Fitzek, F.H.P.; Reisslein, M. SpaRec: Sparse Systematic RLNC

Recoding in Multi-Hop Networks. IEEE Access 2021, 9, 168567–168586. [CrossRef]
17. Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.P.; Reisslein, M. FSW: Fulcrum sliding window coding for low-latency

communication. IEEE Access 2022, 10, 54276–54290. [CrossRef]
18. Fu, A.; Sadeghi, P.; Médard, M. Dynamic rate adaptation for improved throughput and delay in wireless network coded broadcast.

IEEE/ACM Trans. Netw. 2014, 22, 1715–1728. [CrossRef]
19. Chatzigeorgiou, I.; Tassi, A. Decoding delay performance of random linear network coding for broadcast. IEEE Trans. Veh.

Technol. 2017, 66, 7050–7060. [CrossRef]
20. Yazdani, N.; Lucani, D.E. Revolving codes: Overhead and computational complexity analysis. IEEE Commun. Lett. 2021,

25, 374–378. [CrossRef]
21. Torres Compta, P.; Fitzek, F.H.P.; Lucani, D.E. Network Coding is the 5G Key Enabling Technology: Effects and Strategies to

Manage Heterogeneous Packet Lengths. Trans. Emerg. Telecommun. Technol. 2015, 6, 46–55. [CrossRef]
22. Torres Compta, P.; Fitzek, F.H.P.; Lucani, D.E. On the Effects of Heterogeneous Packet Lengths on Network Coding. In

Proceedings of the European Wireless 2014, Barcelona, Spain, 14–16 May 2014; pp. 385–390.
23. Taghouti, M.; Lucani, D.E.; Cabrera, J.A.; Reisslein, M.; Pedersen, M.V.; Fitzek, F.H.P. Reduction of Padding Overhead for RLNC

Media Distribution with Variable Size Packets. IEEE Trans. Broadcast. 2019, 65, 558–576. [CrossRef]
24. Taghouti, M.; Tömösközi, M.; Howeler, M.; Lucani, D.E.; Fitzek, F.H.; Bouallegue, A.; Ekler, P. Implementation of Network Coding

with Recoding for Unequal-Sized and Header Compressed Traffic. In Proceedings of the 2019 IEEE Wireless Communications
and Networking Conference (WCNC), Marrakech, Morocco, 15–19 April 2019.

25. Schütz, B.; Aschenbruck, N. Packet-Preserving Network Coding Schemes for Padding Overhead Reduction. In Proceedings of
the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019; pp. 447–454.

26. de Alwis, C.; Kodikara Arachchi, H.; Fernando, A.; Kondoz, A. Towards Minimising the Coefficient Vector Overhead in Random
Linear Network Coding. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, 26–31 May 2013; pp. 5127–5131.

27. Silva, D. Minimum-Overhead Network Coding in the Short Packet Regime. In Proceedings of the 2012 International Symposium
on Network Coding (NetCod), Boston, MA, USA, 29–30 June 2012; pp. 173–178.

28. Gligoroski, D.; Kralevska, K.; Øverby, H. Minimal Header Overhead for Random Linear Network Coding. In Proceedings of the
2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 680–685.

82

Entropy 2023, 25, 1054

29. Silva, D.; Zeng, W.; Kschischang, F.R. Sparse Network Coding with Overlapping Classes. In Proceedings of the 2009 Workshop
on Network Coding, Theory, and Applications, Lausanne, Switzerland, 15–16 June 2009; pp. 74–79.

30. Heidarzadeh, A.; Banihashemi, A.H. Overlapped Chunked Network Coding. In Proceedings of the 2010 IEEE Information
Theory Workshop on Information Theory (ITW), Dublin, Ireland, 30 August–3 September 2010; pp. 1–5.

31. Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the Generation Size and Overlap on Throughput and Complexity in Randomized
Linear Network Coding. IEEE Trans. Inf. Theory 2011, 57, 1111–1123. [CrossRef]

32. Tang, B.; Yang, S.; Yin, Y.; Ye, B.; Lu, S. Expander graph based overlapped chunked codes. In Proceedings of the 2012 IEEE
International Symposium on Information Theory (ISIT), Cambridge, MA, USA, 1–6 July 2012; pp. 2451–2455.

33. Mahdaviani, K.; Ardakani, M.; Bagheri, H.; Tellambura, C. Gamma Codes: A Low-Overhead Linear-Complexity Network Coding
Solution. In Proceedings of the 2012 International Symposium on Network Coding (NetCod), Cambridge, MA, USA, 29–30 June
2012; pp. 125–130.

34. Mahdaviani, K.; Yazdani, R.; Ardakani, M. Linear-Complexity Overhead-Optimized Random Linear Network Codes. arXiv 2013,
arXiv:1311.2123.

35. Yang, S.; Tang, B. From LDPC to chunked network codes. In Proceedings of the 2014 IEEE Information Theory Workshop on
Information Theory (ITW), Hobart, TAS, Australia, 2–5 November 2014; pp. 406–410.

36. Tang, B.; Yang, S. An LDPC Approach for Chunked Network Codes. IEEE/ACM Trans. Netw. 2018, 26, 605–617. [CrossRef]
37. Yang, S.; Yeung, R.W. Coding for a network coded fountain. In Proceedings of the 2011 IEEE International Symposium on

Information Theory (ISIT), St. Petersburg, Russia, 31 July–5 August 2011; pp. 2647–2651.
38. Yang, S.; Yeung, R.W. Batched Sparse Codes. IEEE Trans. Inf. Theory 2014, 60, 5322–5346. [CrossRef]
39. Yang, S.; Yeung, R.W. BATS Codes: Theory and Practice; Synthesis Lectures on Communication Networks; Morgan & Claypool

Publishers: San Rafael, CA, USA, 2017.
40. Yang, S.; Ho, S.W.; Meng, J.; Yang, E.H. Capacity Analysis of Linear Operator Channels Over Finite Fields. IEEE Trans. Inf. Theory

2014, 60, 4880–4901. [CrossRef]
41. Zhou, Q.; Yang, S.; Yin, H.H.F.; Tang, B. On BATS Codes with Variable Batch Sizes. IEEE Commun. Lett. 2017, 21, 1917–1920.

[CrossRef]
42. Huang, Q.; Sun, K.; Li, X.; Wu, D.O. Just FUN: A Joint Fountain Coding and Network Coding Approach to Loss-Tolerant

Information Spreading. In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, Philadelphia, PA, USA, 11–14 August 2014; pp. 83–92.

43. Yin, H.H.F.; Ng, K.H.; Wang, X.; Cao, Q. On the Minimum Delay of Block Interleaver for Batched Network Codes. In Proceedings
of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1957–1961.

44. Yin, H.H.F.; Ng, K.H.; Wang, X.; Cao, Q.; Ng, L.K.L. On the Memory Requirements of Block Interleaver for Batched Network
Codes. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Angeles, CA, USA, 21–26 June
2020; pp. 1658–1663.

45. Zhou, Z.; Li, C.; Yang, S.; Guang, X. Practical Inner Codes for BATS Codes in Multi-Hop Wireless Networks. IEEE Trans. Veh.
Technol. 2019, 68, 2751–2762. [CrossRef]

46. Zhou, Z.; Kang, J.; Zhou, L. Joint BATS Code and Periodic Scheduling in Multihop Wireless Networks. IEEE Access 2020,
8, 29690–29701. [CrossRef]

47. Yang, S.; Yeung, R.W.; Cheung, J.H.F.; Yin, H.H.F. BATS: Network Coding in Action. In Proceedings of the Annual Allerton
Conference on Communication Control and Computing, Monticello, IL, USA, 30 September–3 October 2014; pp. 1204–1211.

48. Tang, B.; Yang, S.; Ye, B.; Guo, S.; Lu, S. Near-Optimal One-Sided Scheduling for Coded Segmented Network Coding. IEEE Trans.
Comput. 2016, 65, 929–939. [CrossRef]

49. Yin, H.H.F.; Yang, S.; Zhou, Q.; Yung, L.M.L. Adaptive Recoding for BATS Codes. In Proceedings of the 2016 IEEE International
Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 2349–2353.

50. Yin, H.H.F.; Tang, B.; Ng, K.H.; Yang, S.; Wang, X.; Zhou, Q. A Unified Adaptive Recoding Framework for Batched Network
Coding. IEEE J. Sel. Areas Inf. Theory 2021, 2, 1150–1164. [CrossRef]

51. Yin, H.H.F.; Ng, K.H. Impact of Packet Loss Rate Estimation on Blockwise Adaptive Recoding for Batched Network Coding. In
Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, VIC, Australia, 12–20 July 2021;
pp. 1415–1420.

52. Yin, H.H.F.; Ng, K.H.; Zhong, A.Z.; Yeung, R.W.; Yang, S.; Chan, I.Y.Y. Intrablock Interleaving for Batched Network Coding with
Blockwise Adaptive Recoding. IEEE J. Sel. Areas Inf. Theory 2021, 2, 1135–1149. [CrossRef]

53. Breidenthal, J.C. The Merits of Multi-Hop Communication in Deep Space. In Proceedings of the 2000 IEEE Aerospace Conference,
Big Sky, MT, USA, 18–25 March 2000; Volume 1, pp. 211–222.

54. Zhao, H.; Dong, G.; Li, H. Simplified BATS Codes for Deep Space Multihop Networks. In Proceedings of the 2016 IEEE
Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016;
pp. 311–314.

55. Yeung, R.W.; Dong, G.; Zhu, J.; Li, H.; Yang, S.; Chen, C. Space Communication and BATS Codes: A Marriage Made in Heaven. J.
Deep. Space Explor. 2018, 5, 129–139.

56. Sozer, E.M.; Stojanovic, M.; Proakis, J.G. Underwater Acoustic Networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [CrossRef]

83

Entropy 2023, 25, 1054

57. Yang, S.; Ma, J.; Huang, X. Multi-Hop Underwater Acoustic Networks Based on BATS Codes. In Proceedings of the 13th
International Conference on Underwater Networks & Systems, Shenzhen, China, 3–5 December 2018; pp. 30:1–30:5.

58. Sprea, N.; Bashir, M.; Truhachev, D.; Srinivas, K.V.; Schlegel, C.; Sacchi, C. BATS Coding for Underwater Acoustic Communication
Networks. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–10.

59. Yin, H.H.F.; Yeung, R.W.; Yang, S. A Protocol Design Paradigm for Batched Sparse Codes. Entropy 2020, 22. 790. [CrossRef]
[PubMed]

60. Yin, H.H.F.; Tahernia, M. On the Design of Timeout-Based Recoders for Batched Network Codes in the MU-MIMO Regime. In
Proceedings of the 2022 IEEE Region 10 Conference (TENCON), Hong Kong, China, 1–4 November 2022.

61. Qing, J.; Yin, H.H.F.; Yeung, R.W. Enhancing the Decoding Rates of BATS Codes by Learning with Guided Information. In
Proceedings of the 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022;
pp. 37–42.

62. Yang, S.; Zhou, Q. Tree Analysis of BATS Codes. IEEE Commun. Lett. 2016, 20, 37–40. [CrossRef]
63. Yang, S.; Ng, T.C.; Yeung, R.W. Finite-Length Analysis of BATS Codes. IEEE Trans. Inf. Theory 2018, 64, 322–348. [CrossRef]
64. Yang, J.; Shi, Z.; Wang, C.; Ji, J. Design of Optimized Sliding-Window BATS Codes. IEEE Commun. Lett. 2019, 23, 410–413.

[CrossRef]
65. Xu, X.; Zeng, Y.; Guan, Y.L.; Yuan, L. Expanding-Window BATS Code for Scalable Video Multicasting Over Erasure Networks.

IEEE Trans. Multimed. 2018, 20, 271–281. [CrossRef]
66. Yin, H.H.F.; Wong, H.W.H.; Tahernia, M.; Qing, J. Packet Size Optimization for Batched Network Coding. In Proceedings of the

2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 1584–1589.
67. Yang, S.; Yeung, R.W. Network Communication Protocol Design from the Perspective of Batched Network Coding. IEEE Commun.

Mag. 2022, 60, 89–93. [CrossRef]
68. Shokrollahi, A.; Luby, M. Raptor Codes. In Foundations and Trends in Communications and Information Theory; Now Publishers Inc.:

Hanover, MA, USA, 2011; Volume 6.
69. Shokrollahi, A.; Lassen, S.; Karp, R. Systems and Processes for Decoding Chain Reaction Codes through Inactivation. U.S. Patent

6,856,263, 15 February 2005.
70. Xu, X.; Guan, Y.L.; Zeng, Y. Batched Network Coding with Adaptive Recoding for Multi-Hop Erasure Channels with Memory.

IEEE Trans. Commun. 2018, 66, 1042–1052. [CrossRef]
71. Yin, H.H.F.; Tahernia, M. Multi-Phase Recoding for Batched Network Coding. In Proceedings of the 2022 IEEE Information

Theory Workshop on Information Theory (ITW), Mumbai, India, 6–9 November 2022; pp. 25–30.
72. Ye, F.; Roy, S.; Wang, H. Efficient Data Dissemination in Vehicular Ad Hoc Networks. IEEE J. Sel. Areas Commun. (JSAC) 2012,

30, 769–779. [CrossRef]
73. Yin, H.H.F.; Xu, X.; Ng, K.H.; Guan, Y.L.; Yeung, R.W. Packet Efficiency of BATS Coding on Wireless Relay Network with

Overhearing. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019;
pp. 1967–1971.

74. Lucani, D.E.; Médard, M.; Stojanovic, M. Random Linear Network Coding for Time-Division Duplexing: Field Size Considerations.
In Proceedings of the 2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009;
pp. 1–6.

75. Yin, H.H.F.; Xu, X.; Ng, K.H.; Guan, Y.L.; Yeung, R.W. Analysis of Innovative Rank of Batched Network Codes for Wireless Relay
Networks. In Proceedings of the 2021 IEEE Information Theory Workshop on Information Theory (ITW), Kanazawa, Japan, 17–21
October 2021.

76. Zhang, C.; Tang, B.; Ye, B.; Lu, S. An efficient chunked network code based transmission scheme in wireless networks. In
Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

77. Gilbert, E.N. Capacity of a Burst-Noise Channel. Bell Syst. Tech. J. 1960, 39, 1253–1265. [CrossRef]
78. Elliott, E.O. Estimates of Error Rates for Codes on Burst-Noise Channels. Bell Syst. Tech. J. 1963, 42, 1977–1997. [CrossRef]
79. NIST Digital Library of Mathematical Functions. Release 1.1.0. Available online: http://dlmf.nist.gov/ (accessed on 15

December 2020).
80. Galassi, M.; Davies, J.; Theiler, J.; Gough, B.; Jungman, G.; Booth, M.; Rossi, F. GNU Scientific Library Reference Manual, 3rd ed.;

Network Theory Ltd.: London, UK, 2002.
81. Wang, J.; Jia, Z.; Yin, H.H.F.; Yang, S. Small-Sample Inferred Adaptive Recoding for Batched Network Coding. In Proceedings of

the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, VIC, Australia, 12–20 July 2021; pp. 1427–1432.
82. Dong, Y.; Jin, S.; Yang, S.; Yin, H.H.F. Network Utility Maximization for BATS Code Enabled Multihop Wireless Networks. In

Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020.
83. Dong, Y.; Jin, S.; Chen, Y.; Yang, S.; Yin, H.H.F. Utility Maximization for Multihop Networks Employing BATS Codes with

Adaptive Recoding. IEEE J. Sel. Areas Inf. Theory 2021, 2, 1120–1134. [CrossRef]
84. Fredman, M.L.; Tarjan, R.E. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. ACM (JACM)

1987, 34, 596–615. [CrossRef]
85. Musser, D. Introspective Sorting and Selection Algorithms. Softw. Pract. Exp. 1997, 27, 983–993. [CrossRef]
86. Hoare, C.A.R. Algorithm 65: Find. Commun. ACM 1961, 4, 321–322. [CrossRef]

84

Entropy 2023, 25, 1054

87. Blum, M.; Floyd, R.W.; Pratt, V.; Rivest, R.L.; Tarjan, R.E. Time Bounds for Selection. J. Comput. Syst. Sci. 1973, 7, 448–461.
[CrossRef]

88. Seward, H.H. Information Sorting in the Application of Electronic Digital Computers to Business Operations. Master’s Thesis,
MIT Digital Computer Laboratory, Cambridge, UK, 1954; Report R-232.

89. Higham, N.J. Accuracy and Stability of Numerical Algorithms: Second Edition; Other Titles in Applied Mathematics; Society for
Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002.

90. Hodges, J.L., Jr.; Lehmann, E.L. Some Problems in Minimax Point Estimation. Ann. Math. Stat. 1950, 21, 182–197. [CrossRef]
91. Steinhaus, H. The Problem of Estimation. Ann. Math. Stat. 1957, 28, 633–648. [CrossRef]
92. Qing, J.; Leong, P.H.W.; Yeung, R.W. Performance Analysis and Optimal Design of BATS Code: A Hardware Perspective. IEEE

Trans. Veh. Technol. 2023, 1–14. [CrossRef]
93. Yang, S.; Yeung, W.H.; Chao, T.I.; Lee, K.H.; Ho, C.I. Hardware Acceleration for Batched Sparse Codes. U.S. Patent 10,237,782,

19 March 2019.
94. Yin, H.F.H.; Yang, S.; Yeung, W.H.R. Loss-Resilient Protocols for Communication Networks. U.S. Patent 10,425,192, 24 September 2019.
95. Yin, H.F.H.; Ng, K.H.; Zhong, Z.; Yeung, R.W.H.; Yang, S. Compatible Packet Separation for Communication Networks.

U.S. Patent 11,452,003, 20 September 2022.
96. Yin, H.F.H. Recoding Optimizations in Batched Sparse Codes. Ph.D. Thesis, The Chinese University of Hong Kong, Hong Kong,

China, 2019.
97. Chazelle, B. The Soft Heap: An Approximate Priority Queue with Optimal Error Rate. J. ACM (JACM) 2000, 47, 16. [CrossRef]
98. Gao, R.; Kleywegt, A.J. Distributionally Robust Stochastic Optimization with Wasserstein Distance. Math. Oper. Res. 2023,

48, 603–655. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

85

Citation: Mao, L.; Yang, S.; Huang,

X.; Dong, Y. Design and Analysis of

Systematic Batched Network Code.

Entropy 2023, 25, 1055. https://

doi.org/10.3390/e25071055

Academic Editor: Boris Ryabko

Received: 31 May 2023

Revised: 25 June 2023

Accepted: 28 June 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Design and Analysis of Systematic Batched Network Codes

Licheng Mao 1, Shenghao Yang 1,*, Xuan Huang 2 and Yanyan Dong 3

1 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen,
Shenzhen 518172, China; lichengmao@link.cuhk.edu.cn

2 Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China;
1155136647@link.cuhk.edu.hk

3 Department of Electrical and Computer Engineering, National University of Singapore,
Singapore 117597, Singapore

* Correspondence: shyang@cuhk.edu.cn

Abstract: Systematic codes are of important practical interest for communications. Network coding,
however, seems to conflict with systematic codes: although the source node can transmit message
packets, network coding at the intermediate network nodes may significantly reduce the number of
message packets received by the destination node. Is it possible to obtain the benefit of network coding
while preserving some properties of the systematic codes? In this paper, we study the systematic
design of batched network coding, which is a general network coding framework that includes
random linear network coding as a special case. A batched network code has an outer code and an
inner code, where the latter is formed by linear network coding. A systematic batched network code
must take both the outer code and the inner code into consideration. Based on the outer code of a
BATS code, which is a matrix-generalized fountain code, we propose a general systematic outer code
construction that achieves a low encoding/decoding computation cost. To further reduce the number
of random trials required to search a code with a close-to-optimal coding overhead, a triangular
embedding approach is proposed for the construction of the systematic batches. We introduce new
inner codes that provide protection for the systematic batches during transmission and show that it
is possible to significantly increase the expected number of message packets in a received batch at
the destination node, without harm to the expected rank of the batch transfer matrix generated by
network coding.

Keywords: network coding; systematic code; random linear network coding; batched network
coding; BATS code

1. Introduction

Network coding has great advantages compared with the traditional store-and-forward
in network communications [1–3]. Random linear network coding (RLNC) provides a
decentralized approach to network coding and achieves the multicast capacity of networks
with packet loss in a broad setting [4–10]. In the past twenty years, extensive studies
have been performed towards resolving the implementation issues of RLNC, such as the
computational complexity and the coefficient overhead [11–14]. Batched network coding
extends RLNC by introducing an inner code–outer code structure [15–21]. In particular,
the outer code of a batched network code encodes the message packets into a sequence
of batches, each of which is a number of coded packets, and the inner code is formed by
linear network coding applied on the coded packets belonging to the same batch. The
design of the outer code and the inner code can be separated, where the outer code achieves
end-to-end reliability and the inner code maximizes the network efficiency [22]. The num-
ber of packets in a batch (called the batch size) affects the coefficient overhead and the
computational complexity. To achieve the benefits of network coding and constrain the
overhead/complexity, the batch size is usually a small integer larger than 1, e.g., 8 or 16 [23].

Entropy 2023, 25, 1055. https://doi.org/10.3390/e25071055 https://www.mdpi.com/journal/entropy86

Entropy 2023, 25, 1055

Batched network coding allows joint batch encoding/decoding, while the original RLNC
schemes can be regarded as special batched network codes where the outer code has a
single batch or multiple batches encoded/decoded separately.

In coding theory, a code is said to be systematic if all message symbols form a subset
of the coded symbols [24]. Many practical codes can be designed to be systematic—for
example, Reed–Solomon codes [25], fountain codes [26] and polar codes [27]. Standardized
LDPC codes in both 802.11 and 5 G NR are systematic. For network communications, the
retransmission-based end-to-end reliability scheme can be regarded as a systematic code.
The benefits of the systematic codes are also attractive for practical applications of batched
network codes, especially for latency-sensitive applications [28–30].

Different from systematic channel coding, systematic batched network coding needs
to take both the outer code and the inner code into consideration. Though not optimal
in general, an overlapping outer code with batches formed by subsets of the message
packets proposed in [15–17,20] is already systematic in the sense that the union of some
batches includes all the message packets. However, even with a systematic outer code,
the benefits of systematic codes cannot be obtained due to network coding: using random
linear coding at the intermediate nodes prevents the reception of the message packets at the
destination nodes. The problem cannot be solved by simply excluding the message packets
from network coding, which reduces the benefits of network coding. Most existing works
on systematic RLNC focus on encoding and decoding at the source node and destination
nodes, respectively, without considering network coding at the intermediate nodes [31–36].

In this paper, we study systematic batched network codes that have a systematic outer
code and an inner code that can preserve the benefits of the systematic outer code. Our
contributions are summarized as follows.

1.1. Contributions Regarding Systematic Outer Codes

The outer code of a batched network code can be designed by extending fountain
codes or LDPC codes [19,21], which achieve higher rates than the overlapping outer codes
for the same inner code. The existing outer codes obtained by coding are not designed to be
systematic. In principle, any linear code can be systematic by transforming the generator
matrix to the reduced echelon form. As the existing outer codes obtained by coding are
linear, they can also be systematic. The main issue, however, is how to preserve the low
encoding/decoding computation cost: a general transformation of the generator matrix
by Gaussian elimination affects the structure of the codes and hence may increase the
computation cost.

In this paper, we design a systematic outer code based on the BATched Sparse (BATS)
outer code, which is a matrix-generalized fountain code [19]. When the batch size is 1, the
BATS outer code becomes a fountain code. The BATS outer code preserves the rateless
feature of fountain codes, i.e., the number of batches that can be generated is unlimited
(i.e., the rateless property) and can achieve a nearly optimal outer code rate with low
encoding/decoding complexity. To preserve the salient features of the BATS outer code,
the systematic outer code is also expected to be rateless, where the first ns batches (called
systematic batches) consist of a partition of the message packets. In addition to the systematic
batches, the outer code can further generate more batches, called non-systematic batches.
The fountain code has a low-complexity systematic design that benefits from the universal
degree distribution [37]. When the batch size is larger than 1, the degree distribution of the
BATS outer code depends on the rank distribution of the batch transfer matrices and hence
is not universal. For this reason, the systematic design of BATS codes has to consider some
new issues that do not appear in the systematic fountain code design.

In this paper, we generalize the fountain code approach to design a systematic outer
code, which uses a (non-systematic) BATS outer code that satisfies the consistency require-
ment. In particular, a consistent outer code generates the first ns batches deterministically,
which can recover all the message packets. To ensure a small coding overhead, ns is ex-
pected to be as small as possible. For a fountain code, the minimum value of ns is the same

87

Entropy 2023, 25, 1055

as the number of message packets, and a consistent code with the minimum value of ns can
be found using a number of trials of the random encoding procedure of the fountain code.
As fountain codes are universal, for each number of message packets, a consistent code
can be designed once and used forever. However, BATS outer codes are not universal, and,
even for the same number of message packets, the consistent code is different for different
rank distributions. Our experiments show that when the number of message packets is
larger, many more random trials are required to find a consistent outer code with a small
coding overhead.

To design a systematic outer code with a small value of ns more efficiently, we propose
a structured encoding approach for the first ns batches, called triangular embedding. Using
triangular embedding, zero-coding-overhead outer codes can be designed with one or two
random trials for a large range of the number of message packets. Triangular embedding
does not increase the computation costs of both encoding and decoding. Moreover, we
also verify in experiments that the batches generated by triangular embedding can be used
with the batches generated by the BATS outer code and demonstrate superior decoding
performance compared to the BATS outer code.

We also analyze the encoding and decoding computation costs of the proposed system-
atic outer code. For encoding, the systematic outer code has a lower computation cost than
the corresponding BATS outer code. The decoding computation cost of the systematic outer
code depends on the number of message packets received at the destination node. When
all the message packets are received, no computation is required for decoding. When some
of the message packets are not received, the decoding computation cost of the systematic
outer code increases with the number of message packets that are not received and is at
most 2 times the computation cost of the BATS outer code decoding.

1.2. Contributions Regarding Inner Codes

We further study the inner code that can protect the message packets in the systematic
batches. For line networks, systematic inner coding has been discussed for batched network
coding [23], where an intermediate node transmits both the received packets and the
recoded packets generated by linear combinations of the received packets. For a line
network without packet loss, the destination node can receive all the message packets
generated by the systematic outer code when using systematic recoding. However, if the
packet loss rate for each communication link is bounded below by a positive number,
the number of message packets that can be received by the destination node decreases
exponentially rapidly as the network length increases. For systematic RLNC, a decode–
recode network coding approach has been proposed to protect the message packets [38],
where an intermediate node first tries to decode the message packets and then transmits
the decoded message packets together with some recoded packets. Systematic RLNC
is a special systematic batched network code with only the systematic batches, and the
decode–recode approach is mainly discussed for extended window recoding.

In this paper, we extend and refine the decode–recode approach for the inner code of
batched network coding. For a general batched network code, it is not necessary that the
received packets of a batch at an intermediate node can decode all the original packets. In
other words, the batch transfer matrix formed by the coefficient vectors of all the received
packets of a batch at an intermediate node may have a rank lower than the batch size. We
instead study how to decode some of the message packets uniquely at an intermediate
node. We say that a message packet in a systematic batch is recoverable at an intermediate
node if it can be uniquely solved by the received packets of the batch at the intermediate
node. We give a necessary and sufficient condition such that a message packet in a batch
is recoverable, and we show that using Gauss–Jordan elimination, we can find all the
recoverable message packets in a batch. We also analyze the recovery of the message
packets at the next hop subject to packet loss and side information. Our analysis shows that
generating all recoded packets using random linear coding is not preferable, and knowing

88

Entropy 2023, 25, 1055

more information about recoding than the coefficient vectors does not aid in the recovery
of message packets.

Based on our analysis, we improve systematic inner coding to protect the message
packets in a batch, where the level of protection can be tuned by a parameter. Our inner
codes can achieve the same network coding gain as the existing inner codes, while signifi-
cantly improving the number of received message packets. By tuning the parameter, the
number of received message packets can be further increased with the cost of lower coding
rates. Both the recovery of the message packets and the message protection recoding are
linear operations on a batch, and hence our inner code does not increase the coefficient
overhead for decoding at the destination node.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 is a self-contained
introduction of batched network coding with the BATS outer code. In Section 3, we propose
a general approach to systematic outer codes based on the BATS outer code. In Section 4,
we introduce the triangular embedding approach to improve the design efficiency of the
systematic outer code. In Section 5, we discuss the inner coding schemes that can protect
the message packets in systematic batches. Section 6 presents the concluding remarks.

2. Ordinary Batched Network Coding

We briefly introduce ordinary (non-systematic) batched coding to assist the further
discussion of the systematic design. A batched network code is formed by an outer code
and an inner code. Here, we focus on a specific outer code called the BATS outer code,
which was originally introduced by the BATS code. Readers are referred to [23] for more
information about the BATS code.

2.1. BATS Outer Code

The outer code introduced here is also called the ordinary outer code, in contrast to the
systematic outer code, to be discussed in the next section.

A finite field of size q, denoted as Fq, is called the base field. A packet of length T
is a column vector in FT

q , and a set of packets of the same length is equated to the matrix
formed by juxtaposing the packets in the set. We consider the transmission of K message
packets, which form the T × K matrix B from the source node to the destination node in
a network.

The (ordinary) outer code encodes the K message packets in two steps. The first step
uses a systematic precode to generate a number of redundant packets, which are also called
parity check packets. Let K′ ≥ K be the total number of packets containing the message
packets and the parity check packets. Denote by Bp the K′ − K parity check packets. Let P

the K′ × (K′ − K) parity check matrix of the precode, i.e.,

[B Bp]P = 0. (1)

The parity check packets can include both low-density parity check (LDPC) and high-
density parity check (HDPC) packets to balance the computation cost and the decoding
performance. Refer to [37] for such a design of P.

Let B′ = [B Bp], which are called the precoded packets. The second encoding step of
the outer code generates batches of coded packets. Let M be a positive integer called the
batch size, which is usually less than a hundred. For i = 1, 2, . . ., the ith batch Xi includes M
packets generated from a subset Bi ⊂ B′ as follows:

Xi = BiGi,

where Gi is a matrix of M columns called the batch generator matrix. The number of packets
in Bi, which is also the number of rows of Gi, will be specified later. When M = 1, the outer
code becomes a fountain code. The design of Bi is discussed as follows.

89

Entropy 2023, 25, 1055

Here, we discuss general batch encoding that can be used for various decoding
approaches, including inactivation decoding. The precoded packets are further separated
into two parts:

• active packets that include a subset of the message packets and all the LDPC packets,
and

• inactive packets that include all the other message packets and all the HDPC packets.

Denote by A the number of active packets. Then, the number of inactive packets is
K′ − A. We require A ≥ K. As a special case, when there are no HDPC packets or inactive
packets during encoding, we have A = K′. The encoding of a batch uses both active and
inactive packets.

The number of active packets used in a batch is determined using a degree distribution
Ψ = (Ψ1, . . . , ΨDmax), and it affects the decoding performance of both belief propagation
decoding and inactivation decoding. The degree distribution Ψ is designed based on the
batched transfer matrix rank distribution induced by the inner code. The maximum number
Dmax for the active packets is sufficient to be a couple of multiples of M, as proven in [19].
For the encoding of each batch Xi,

1. Independently sample Ψ and obtain an integer dA
i , which is called the active degree

of the batch;
2. Uniformly, at random, choose dA

i active packets to be included in Bi.

The inactive packets can help to further improve the inactivation decoding perfor-
mance. When M = 1, on average, each batch may involve 2 or 3 inactive packets [26].
When M > 1, the number of inactive packets in a batch can be 3(K′ − A)/n, where n is the
number of batches expected to be used for decoding. Denote by dB

i the number of inactive
packets used in the ith batch.

Considering both active and inactive packets, Bi has di = dA
i + dB

i packets, where di is
called the total degree of the batch. Gi is a di × M uniformly random matrix with entries
from the base field. In practice, random encoding can be implemented by a pseudorandom
number generator. The random values in the encoding process can be used for decod-
ing if they share the same pseudorandom number generator at the source node and the
destination node.

Denote by ENC the encoder that implements the above encoding process of the BATS
outer code. The pseudocodes of ENC are given in Appendix C for reference.

2.2. General Inner Code Formulation

We use a line network as an example to introduce the inner code, and the inner code
can be extended to other network typologies as discussed in [23]. A line network of length
L is formed by a sequence of network nodes labeled by 0, 1, . . . , L, where the first node 0 is
the source node and the last node L is the destination node. All the other nodes are called
intermediate nodes. Network links exist only between two consecutive network nodes,
modeled by packet erasure channels, i.e., a packet transmitted on a network link is either
correctly received or erased. Figure 1 illustrates the line network.

node 0 node 1 node 2
· · ·

node L − 1 node L

Figure 1. A line network of length L. Node 0 is the source node, and node L is the destination node.
The direct edge from node i to node i + 1 (i = 0, 1, . . . , L − 1) illustrates the network link.

The inner code is the composition of the recoding operations performed on each batch
separately. The recoding at the source node takes the batches generated by the outer code
as the input, and the recoding at an intermediate node takes the received packets of a batch
as the input. For each batch, recoding generates a number of linear combinations of the
packets belonging to the batch, and the packets generated by recoding are supposed to
belong to the same batch. There are various approaches to the recoding operation, which

90

Entropy 2023, 25, 1055

is determined by the linear combination coefficients. The original RLNC schemes use
coefficients chosen uniformly at random from the base field [4,6,7], and extensive research
has been carried out towards recoding with lower complexity and latency [39–44]. In this
paper, we study the recoding schemes that can fulfil the systematic coding requirement.

Without specifying a recoding scheme, we give a general formulation of recoding.
Fix a certain network node u. Let Y

(u)
i be the received packets of the ith batch at the node u.

At the source node, Y
(0)
i = Xi. As recoding is linear, for v = 1, . . . , L,

Y
(u)
i = XiH

(u)
i = BiGiH

(u)
i , (2)

where H
(u)
i is called the (batch) transfer matrix of the ith batch at the node u. The number of

rows of H
(u)
i is M. The number of columns of H

(u)
i corresponds to the number of packets

received for the ith batch at the node u, which may vary for different batches and is finite.
If no packets are received for a batch, Y

(u)
i (H(u)

i) is the empty matrix of 0 columns.
Note that the transfer matrices are determined not only by the recoding scheme, but

also by the network packet loss pattern. Due to the randomness in both recoding and
packet loss, the transfer matrices cannot be derived from the recoding design. To obtain
the transfer matrices, RLNC introduces coefficient vectors embedded in the packet header
immediately after Xi is generated. The matrix formed by the coefficient vectors is the
identity matrix. The same linear operations performed on a batch are performed on the
coefficient vectors as well, so that H

(u)
i can be known at each node u that receives batch i

from the header of the batch.
We say that a set of packets of a batch are linearly independent/dependent if their

corresponding coefficient vectors in the packet header are linearly independent/dependent.
We call rank(H(u)

i) the rank of the ith batch at node u.

2.3. Decoding Algorithms

Suppose that n batches Y
(L)
i , i = 1, . . . , n are received at the destination node L. A de-

coder is expected to recover B using Y
(L)
i , i = 1, . . . , n, which are related by a linear system.

From this perspective, we obtain an upper bound on the decoding performance [23]:

K ≤
n

∑
i=1

rank(H(L)
i).

When used as a block code with a fixed number n of batches, the (outer) coding rate
defined as K/n, together with the decoding success probability, is used to measure the
outer code performance. When used as a rateless code, decoding allows more batches to be
used until all the message packets are decoded, and the (outer) coding overhead defined as

∑n
i=1 rank(H(L)

i)− K is used to measure the decoding performance.

As B and Y
(L)
i , i = 1, . . . , n are related by a linear system, Gaussian elimination is

the optimal algorithm to solve B. However, Gaussian elimination incurs a computational
complexity linear in K when decoding one message packet on average, which is not
tolerable when K is slightly large. In the remainder of this section, we introduce several
approaches that can achieve O(1) complexity in decoding one message packet. In the
following, we first discuss two decoding algorithms without inactive packets and then
discuss inactivation decoding.

2.3.1. Two-Step Decoding

Suppose that the number of inactive packets during encoding is 0, so that dB
i = 0

for all batches. We first discuss the two-step decoding approach. The first step recovers a
fraction η ≥ K/K′ of precoded packets using a belief propagation (BP) algorithm, which
repeats the following operations:

91

Entropy 2023, 25, 1055

1. A batch i is said to be decodable if dA
i = rank(GiH

(L)
i); solve a decodable batch by

Gaussian elimination;
2. Substitute the decoded (precoded) packets into other undecoded batches and update

the corresponding batch degree and generator matrix.

The BP decoding algorithm has a low computation cost that does not depend on the
total number of message packets K. The second step decodes the precoded packets to
recover the message packets, which is expected to be successful if the first step recovers at
least η fractions of all the precoded packets.

Assume that the ranks of batch transfer matrices at the destination node rank(H(L)
i)

are i.i.d and follow the distribution h = (h0, h1, . . . , hM). We call E[h] = ∑M
i=1 ihi the

expected rank. According to the theory of BATS codes [23], it is possible to design a degree
distribution Ψ for a given rank distribution h such that when K is large, the BP decoding
can recover a given η fraction of the precoded packets with a high probability when the
coding rate K/n is larger, but very close to E[h]. In other words, we only need slightly more
than K/E[h] batches to recover the K message packets.

2.3.2. Joint Decoding

The above two-step decoding algorithm can be improved by combining the two steps
when the precoding includes LDPC. For LDPC precoding, each parity check constraint can
be regarded as a batch with batch size 1 and only one all-zero received packet. Then, the
BP decoding of the batches in the first step of the two-step approach can also include the
parity checks.

In practice, the decoding of the LDPC precode and the decoding of the batches in
the two-step decoding algorithm can be combined together to improve the performance.
The joint decoding algorithm can improve the decoding success rate and reduce the coding
overhead of the two-step decoding algorithm, but does not increase the computation cost
of the two-step decoding.

2.3.3. Inactivation Decoding

When K is relatively small or the coding overhead is small, BP decoding tends to stop
before decoding all the message packets. Although we can continue decoding by Gaussian
elimination, the computational complexity is high.

A better approach is to use inactivation decoding: when BP decoding stops, an unde-
coded message packet is marked as inactive and substituted into the batches as a decoded
packet to resume the BP decoding procedure. The decoding of batches with inactive packets
also induces linear constraints on the inactive packets. Eventually, all the message packets
are either decoded or inactive. The inactive packets are then solved by the linear constraints
induced by decoding batches and the precodes. Inactivation decoding has the same decod-
ing performance as Gaussian elimination, but can have a much lower computation cost if
the number of inactive packets is small.

Moreover, when using inactivation decoding, we can use the inactive packets during
encoding. Inactive packets during encoding are treated as inactive from the beginning
of inactivation decoding and hence are also called pre-inactive packets. The extra inactive
packets added during decoding are called the dynamic inactive packets. See [23] for a detailed
discussion of inactivation decoding for BATS codes.

Denote by DEC the decoder that implements one of the above decoding processes
of the BATS outer code. The pseudocodes of DEC for two-step decoding are given in
Appendix C for reference.

3. Systematic Outer Codes

In this section, we design a systematic outer code that can preserve the silent features
of the ordinary BATS outer code. We call those batches that are designed to include all the
message packets the systematic batches.

92

Entropy 2023, 25, 1055

3.1. Naive Approaches

Before introducing our approach, we first discuss some naive approaches and their
limitations. For a fixed number n of batches, the outer code is a linear block code and hence
the encoding process can be described as[

X1 · · · Xn
]
= BG̃

where G̃ is the K × nM generator matrix of the first n batches. Suppose that nM ≥ K.
If G̃ has K columns forming the identity matrix, the outer code is systematic.

First, we show that the random encoding of the ordinary BATS outer code is not a
systematic code with high probability. For a batch of total degree d, the probability that a
coded packet is equal to a precoded packet is dq−d. As not all precoded packets are message
packets, the probability that a coded packet is equal to a message packet is no greater than
dq−d. Typically, d ≥ M ≥ 2 and q = 256. Thus, it is unlikely that a message packet appears
in a batch using the ordinary outer code.

When n is slightly larger than K/M, the matrix G̃ obtained from the ordinary BATS
outer code has rank K with a high probability. The general procedure to make a linear code
systematic is to transform G̃ by elementary row operations into the reduced row echelon
form. Although a systematic code can be obtained, the drawback of this approach is that
the low encoding/decoding computation cost of the BATS outer code cannot be preserved.

Now, we discuss another naive approach that seems solve the computation cost issue.
To simplify the discussion, suppose that the number of message packets K is a multiple
of the batch size M. In this naive approach, the first K/M batches form a partition of
all the message packets, and more (non-systematic) batches are generated according to
the encoding of batches as an ordinary outer code discussed in Section 2.1. However, to
guarantee good decoding performance using the naive approach, a high degree must be
applied to all the non-systematic batches.

We show two cases wherein a high degree of the non-systematic batches is necessary.
In the first case, one systematic batch is completely erased during the communication
and all the other systematic batches are received by the destination nodes, together with
a non-systematic batch. Suppose that the erased batch is randomly chosen. For all the
received batches, the batch transfer matrix is the M× M identity matrix so that the decoding
problem becomes one of traditional erasure coding. The total number of received packets
is K. To guarantee the decoding of all the message packets, it is necessary that the degree of
the received non-systematic batch is K.

In the second case, we consider that for M systematic batches, only one packet is
erased during communication and all the other packets are received correctly. In other
words, the batch transfer matrix of these M systematic batches is the M × M identity matrix
with one column removed, chosen uniformly at random. The destination node also receives
all the other systematic batches, together with a non-systematic batch, all with the identity
batch transfer matrix. The total number of received packets is K. To guarantee the decoding
of all the message packets, it is necessary that the degree of the received non-systematic
batch is K.

From these cases, we see that to achieve a high coding rate using the naive approach,
the degree of the non-systematic code must be high and hence the encoding/decoding
complexity is high. In the remainder of this section, we derive an approach to obtain a
systematic outer code that has similar encoding/decoding complexity to the ordinary BATS
outer code.

3.2. General Approach to Systematic Outer Codes

We give a general approach tp systematic outer codes, which extends the idea of
systematic fountain codes [37]. Suppose that we have K message packets B for encoding
using a systematic outer code with batch size M, where K is not necessarily a multiple
of M. Let ns be an integer larger than or equal to K/M, to be decided later. We wish to

93

Entropy 2023, 25, 1055

design an outer code such that the first ns batches are systematic batches that include all
the message packets.

Our approach to a systematic outer code uses an ordinary outer code (ENC, DEC),
where ENC is the encoder and DEC is the decoder, as described in Sections 2.1 and 2.3,
respectively. The encoder ENC has two parts ENCns and ENCn+

s
, where ENCns generates

the first ns batches and ENCn+
s

generates all the further batches. The decoder DEC in
general applies to all the batches subject to any batch transfer matrices. We denote by
DECns the case of DEC when applying to the first ns batches with the rank-M batch
transfer matrices.

To construct the systematic outer code, we require (ENC, DEC) satisfying some addi-
tional requirements. The pair (ENC, DEC) is said to be consistent if the following conditions
are satisfied:

1. ENCns and DECns are deterministic; and
2. for any K packets B,

B = DECns

(
ENCns(B)

)
. (3)

For the consistency requirement 2, it is possible to verify (3) without any specific value
B of K packets, i.e., it is not necessary to check all choices of K packets. The reason is that
both ENCns and DECns are linear operations and, if the decoding is successful, their joint
effect is to multiply the K × K identity matrix. We discuss how to design a consistent outer
code later. Here, we focus on how to use it to construct a systematic outer code.

For a consistent (ENC, DEC), the decoder DECns solves K message packets from the
ns M coded packets generated by ENCns . Among the ns M coded packets, ns M − K coded
packets are redundant and can be removed without affecting the decoding performance
(The decoding of a BATS code requires us to solve a system of linear equations by elemen-
tary equation operations. Each coded packet corresponds to an equation of the system.
Each equation can solve at most one message packet. Therefore, exactly K equations are
eventually transformed into the solutions of the message packets. The other equations
are redundant). All the redundant packets can be identified by a trial of DECns . For
i = 1, . . . , ns, let Mi be the number of non-redundant coded packets in the ith batch. We
know that ∑ns

i=1 Mi = K. Denote by DEC∗
ns the same decoder as DECns except that the

redundant coded packets are removed from the decoder input.
Now, we can construct the systematic outer code. For the systematic outer code, the

encoding at the source node works as follows:

1. Partition the message packets B into ns subsets X̃i, i = 1, . . . , ns, where the number of
packets in the ith subset X̃i is Mi;

2. Calculate B̃ = DEC∗
ns(X̃1, . . . , X̃ns) = DEC∗

ns(B);
3. Generate the first ns batches ENCns(B̃);
4. Generate more batches by performing ENCn+

s
on B̃.

See Figure 2b for an illustration of the above encoding process.
We justify that the above encoding process is systematic by showing that the first

ns batches include all the message packets. Denote by ENC∗
ns the encoder that generates

only the Mi non-redundant coded packets in the ith batch, where i = 1, . . . , ns. For any K
packets B, DEC∗

ns

(
ENC∗

ns(B)
)
= DECns

(
ENCns(B)

)
= B. Note that ENCK and DECK can

be expressed as square matrices that are inverse to each other, and hence their order can be
interchanged without changing the output, i.e., ENC∗

ns

(
DEC∗

ns(B)
)
= ENC∗

ns

(
B̃
)
= B.

The computation cost of the third step of encoding can be simplified as not all the
packets in the systematic batches need to be regenerated. Let (X1, . . . , Xns) = ENCns(B̃).
We have X̃i ⊂ Xi and Xi \ X̃i includes only the redundant packets for DECns in the ith batch.
As X̃i is a subset of the message packets, it is not necessary to generate it again. Denote
by ENC−

n the encoder of B̃ that generates only Xi \ X̃i for i = 1, . . . , n. Let (X̄1, . . . , X̄n) =
ENC−

n (B̃). Then, the n systematic batches are Xi = X̃i ∪ X̄i.
The batches generated by the above systematic encoding process will be further

transmitted through a network and processed by the inner code. Let Y′ be the coded

94

Entropy 2023, 25, 1055

packets received by the destination node. To decode, first, DEC is applied on Y′ to output
B̃. Then, we apply ENCns on B̃ to recover B. See Figure 2c for an illustration of the
decoding process.

B ENCns DECns B

(a) normal encoding and decoding

B DEC∗
ns B̃ ENCns X1, . . . , Xns

ENCn+
s

Xns+1, . . .

(b) encoding of the systematic code

Y′ DEC B̃ ENC∗
ns B

(c) decoding of the systematic code

Figure 2. Illustration of the approach to systematic outer codes. (a) shows the normal use of a
consistent pair of the outer code encoder ENCns and decoder DECns . (b) shows the encoding of the
systematic code, where ENCn+

s
is the outer code encoder that generates the coded packets beyond

the first ns batches. (c) shows the decoding of the systematic code, where Y′ is the received coded
packets generated by inner coding.

3.3. Computation Cost

At first, it seems that the systematic outer code increases the encoding and decoding
computation cost because an additional decoding step is employed in the systematic en-
coding, and an additional ordinary encoding step is employed in the systematic decoding.
However, after careful evaluation, we see that the encoding computation cost of the system-
atic outer code is lower than that of the ordinary outer code. The decoding computation
cost of the systematic outer code depends on the number of message packets received at the
destination node. In the worst case, where no message packets are received, the decoding
computation cost is doubled.

To assist our discussion, we denote by b the average computation cost of encoding a
packet using the ordinary outer code, and we denote by c the computation cost of decoding
the ordinary outer code using K coded packets. Here, we assume that the decoding is
successful with zero coding overhead. Suppose that the packet length T is much larger
than M, which means that the coefficient vector length is much less than T. According
to the analysis in [23], b = O(M) and c = O(KM) linear combination operations (LCOs).
(A linear combination operation (LCO) refers to the computation of a linear combination
x + αy, where x and y are two packets of T field elements and α is an element from the
base field.) Moreover, for the two-step decoding and the joint decoding, Kb ≈ c. For the
inactivation decoding, if the number of inactive packets is bounded by a constant, Kb ≈ c.

3.3.1. Encoding Computation Cost

The encoding computation cost depends on the number of coded packets generated.
For the ordinary outer encoding, the computation cost of encoding k packets is kb, where
k = 1, 2, For the systematic outer code, we assume ns M = K (we will discuss how
to design such a code). As the first K packets are the message packets, the encoding
of the first K packets requires no computation. To encode more packets, the systematic
outer code needs to execute DEC∗

ns , which has a computation cost c, and ENCn+
s

, which
takes computation cost b on average to generate a packet. Therefore, when k > K, the
computation cost of generating the first k coded packets using the systematic outer code
is (k − K)b + c ≈ kb. See the illustration in Figure 3a regarding the computation cost of
generating the first k packets.

95

Entropy 2023, 25, 1055

To further understand how the encoding computation cost affects the operation at
the source node, we consider two models of message packet arrival at the source node. In
the first model, the message packets arrive one-by-one with a unit time interval between
two consecutive packets. The ordinary outer code encoding can only start to generate the
first coded packets from the time K when a precode with HDPC is employed. Let Δ be the
time taken by the ordinary encoder to generate K coded packets, where Δ ∝ Kb ≈ c. The
systematic outer code can generate a coded packet upon the arrival of each message packet.
At the time K, the systematic outer code executes DEC∗

ns , which also takes Δ time. In the
second model, all the K message packets arrive together at the same time, e.g., time K. For
this model, the ordinary outer code behaves in the same way as for the previous model,
and the systematic outer code can generate the first K coded packets at time K.

We see that for both message packet arrival models, the systematic outer code gener-
ates the first K packets earlier than the ordinary outer code. When k > K, both encoders
generate the kth packet at the same time. See an illustration of this in Figure 3b.

K

c

number of encoded packets (k)

co
m

pu
ta

ti
on

co
st

ordinary
systematic

(a)

K K + Δ

K

time
nu

m
be

r
of

en
co

de
d

pa
ck

et
s

ordinary
systematic-1
systematic-2

(b)
Figure 3. Illustration of the encoding computation cost for the ordinary outer code and the systematic
outer code. (a) shows the encoding computation cost of generating the first k coded packets. For the
ordinary outer code, the computation cost increases linearly with k. For the systematic outer code, the
computation cost is 0 when k ≤ K. The jump in the computation cost after time K is used to execute
DEC∗

ns
. (b) illustrates the number of encoded packets generated over time. The curve “systematic-1”

is for the systematic outer code encoder when the message packets arrive one-by-one in each unit
time. The curve “systematic-2” is for the systematic outer code encoder when the message packets
arrive all at time K. From time K, these two curves overlap. The ordinary outer code behaves in the
same way for both message packet arrival models.

3.3.2. Decoding Computation Cost

For the systematic outer code, the decoding computation cost depends on the number
Km of message packets received by the destination node. When Km = K, i.e., all the
message packets are received, no computation is required for decoding. When Km < K, the
systematic code decoder needs to execute DEC, which has a computation cost c, and ENC∗

ns ,
which takes computation cost b on average to generate a packet. As Km message packets
have been received, we only need to use ENC∗

ns to generate the remaining K − Km message
packets. Therefore, the overall decoding computation cost is (K − Km)b + c ≈ 2c − Kmb.
When Km is close to K, the systematic outer code decoding computation cost is close to the
ordinary outer code decoding. In the worst case, i.e., Km = 0, the systematic outer code
decoding computation cost is doubled compared with the ordinary outer code decoding.
See an illustration in Figure 4a.

To illustrate how the decoding computation cost affects the operation at the destination
node, we consider that coded packets are received one-by-one with a unit time interval
between two consecutive packets. We assume that the ordinary outer code decoder starts
decoding at time K and takes additional Δ time to decode all the message packets. When
Km = K, all the message packets are decoded at time K. When Km < K, the systematic
outer code decoder executes DEC at time K and starts to use ENC∗

ns from time K + Δ to
generate the K − Km message packets that have not been received. In the worst case, where

96

Entropy 2023, 25, 1055

Km = 0, the systematic outer code decodes all the message packets at time K + 2Δ. See an
illustration in Figure 4b.

0 K/2 K

c

2c

number of received message packets (Km)

co
m

pu
ta

ti
on

co
st

ordinary
systematic

(a)

K K + Δ K + 2Δ

K/2

K

time

nu
m

be
r

of
de

co
de

d
pa

ck
et

s

ordinary
Km = K

Km = K/2
Km = 0

(b)

Figure 4. Illustration of the decoding computation costs of the ordinary outer code and the systematic
outer code. (a) illustrates the decoding computation cost for different numbers Km of message packets
received. For the ordinary outer code, the decoding computation cost is c. For the systematic outer
code, the decoding computation cost is approximately 2c − Kmb when Km < K and 0 when Km = K.
(b) shows the number of decoded packets over time. The three curves labeled Km = K, K/2, 0 are for
the systematic outer code decoder with Km message packets received.

3.4. Random Design

To implement the general approach to the systematic outer code, we only need to
design a consistent pair (ENC, DEC). In the following part of this section, we discuss the
traditional random approach to designing a consistent (ENC, DEC). In the next section,
we discuss a new approach that can design a consistent (ENC, DEC) more effectively.

Denote by h the rank distribution of the batches and let ΨA be the degree distribution
optimized for h as in ([23], Chapter 6), which achieves the near-to-optimal rate of the
ordinary outer code as in Section 2.1 asymptotically. We can use the ordinary encoder and
decoder as introduced in Section 2.1 with the degree distribution ΨA to design ENCn+

s
and

DEC for a consistent outer code (ENC, DEC).
The ordinary outer code is random, but we need a deterministic encoder–decoder

pair (ENCns , DECns) to satisfy the consistent properties. For a given ns ≥ K/E[h], we can
perform random trials of the ordinary outer code using the degree distribution ΨA until an
instance (ENCns , DECns) is found such that (3) is satisfied. Note that it is sufficient for us to
find only one such instance. As both ENCns and ENCn+

s
generate batch instances following

the random outer code encoder with the degree distribution ΨA, which is optimized for h,
DEC can guarantee a high decoding success probability for a sufficiently large number of
received batches [23].

If such an instance cannot be found for a certain value ns, we can increase the value
of ns by 1 and try again. The ordinary outer code is expected to decode correctly with a
high probability when the number of batches is sufficiently large, and we expect to design
a systematic code with the expected coding overhead ns E[h]− K as small as possible.

When M = 1 and E[h] = 1, i.e., the case of fountain codes, a consistent outer code
exists for a range of the values of K when ns = K using this approach [26]. For fountain
codes, the random design works well as fountain codes have a universal design that can
handle all packet loss patterns. The random design is only performed once for each value
of the number of message packets K. Therefore, the efficiency of the random design is
not an issue. In other words, a large number of random trials can be performed to find a
consistent outer code with a small or zero coding overhead.

Although the random design is suitable for fountain codes, it can be less efficient when
M > 1. BATS codes are not universal in the sense that the optimal degree distribution
depends on the rank distribution h. Therefore, even for the same value of K, the random
design needs to be repeated for each h, and this may need to be carried out for h obtained
online. Hence, the efficiency of the random design becomes an issue for BATS codes

97

Entropy 2023, 25, 1055

with batch size M ≥ 2. For M = 16, we perform some experiments using the BATS
code implementation in [45] with the parameters in Appendix B. Inactivation decoding is
applied to achieve a lower coding overhead. To limit the computation cost of inactivation
decoding, the number of inactive packets is limited to 150. In the experiments, we use
the rank distribution h with E[h] = M, which is also called the rank-M distribution.
The experimental results are summarized in Table 1. We observe that when K is up to
400M, a consistent instance with ns = K/M can be found. However, the larger the value
of K, the lower the probability of a code with zero coding overhead. For example, when
K = 10M, most instances have zero overhead. Meanwhile, when K = 400M, only four
instances have zero coding overhead. However, when K is 600M, no instance is found with
zero coding overhead.

Table 1. Experiments of random design. Here, M = 16 and h has rank M. For each value of
K = 10M, 100M, 1000M, 5000 instances of the ordinary outer code are sampled. As a BATS code is
rateless, for each instance, we can try a range of values of ns. The table gives the number of consistent
instances when ns = K/M, K/M + 1, K/M + 2, and ns ≥ K/M + 3.

ns − K/M K = 10M K = 100M K = 200M K = 400M K = 600M

0 4784 3552 836 4 0
1 173 175 50 0 0
2 34 113 53 0 0
≥3 9 1160 4061 4996 5000

4. Triangular Embedding: A Structured Systematic Outer Code Design

We propose a structured design of consistent outer codes with a general batch size
M ≥ 1. Our approach is based on the following observation. For a consistent instance
found by the random design, DECns gives an order of the batches such that the ith batch is
solvable if all the previous batches are solved. Our approach, called triangular embedding,
tries to design ENCns so that the order of the batches for solving is predefined. When
M = 1, our approach also gives a new design of systematic fountain codes.

4.1. Triangular Embedding Design

Consider the encoding of K message packets with respect to a general rank distribution
h. We discuss how to generate the first ns batches, where ns ≥ K/E[h]. The precode is the
same as the ordinary outer code. Let K and K′ be the number of message packets and the
number of precoded packets, respectively. The precoded packets are also separated into
active and inactive packets. Let A be the number of active packets, where A ≥ K.

For the degree distribution Ψ optimized for h, we assume that the degree probability
is zero for degrees from 1 to M − 1 (This assumption does not affect the generality of our
design as it is asymptotically optimal to use such a degree distribution when the rank M
probability of the batch transfer matrix is positive. When the probability of transfer matrix
rank M is zero, we should reduce the batch size to improve the network’s communication
efficiency). Generate the active degree values dA

1 , . . . , dA
ns for the first ns batches by sampling

Ψ. To simplify the discussion, we assume that the degree values are ordered so that
M ≤ dA

1 ≤ dA
2 ≤ · · · ≤ dA

ns . The inactive degree dB
i of the ith batch is obtained in the same

way as the ordinary outer code.
Fix positive integers M1, M2, . . . , Mns such that ∑ns

i=1 Mi = K and Mi ≤ M ≤ dA
i . For

example, when ns divides K, we may choose Mi = K/ns. When ns does not divide K,
there exist unique non-negative integers a and b < ns such that K = ans + b. We may let
Mi = a + 1 for i = 1, . . . , b and let Mi = a for i = b + 1, . . . , ns.

98

Entropy 2023, 25, 1055

Let Ninac be the maximum number of dynamic inactive packets allowed during inacti-
vation decoding. We should determine the total number of inactive packets Ninac + K′ − A
according to the decoding computation cost constraint. For example, Ninac + K′ − A =
2�
√

K�. We further assume that for i = 1, . . . , ns,

dA
i ≤ min{A − K, Ninac}+

i

∑
j=1

Mj. (4)

This assumption is usually satisfied by the degrees sampled as 1) A − K is linear in
K and 2) the average degree of a BATS code degree distribution is only around two times
the batch size M and even the maximum degree is O(M). If dA

i does not satisfy (4), which
should occur rarely, we can modify dA

i to this upper bound or re-sample the active degrees.
Let m1 = 0, and, for i ≥ 2, let mi = mi−1 + Mi−1. For i ≥ 1, the dA

i active packets in Bi
include

• the (mi + 1)th to the (mi + Mi)th active packets, and
• a set of dA

i − Mi packets chosen from the first mi active packets and the last
min{A − K, Ninac} active packets.

The inactive packets in Bi are obtained in the same way as the ordinary outer code.
The ith batch is generated as BiGi, where Gi is a di × M matrix different from the ordinary
outer code. The rows of Gi corresponding to the (mi + 1)th to the (mi + Mi)th active
packets have the form

[
IMi U

]
, where IMi is the Mi × Mi identity matrix and U is the

Mi × (M − Mi) uniformly random matrix. The other rows of Gi are uniformly random.
The batches generated can be transmitted following an arbitrary order.

Define G̃i as the K′ × M matrix by inserting zero rows into Gi so that [B Bp]G̃i = BiGi.
The overall generator matrix of ENCns can be written as G̃ =

[
G̃1 · · · G̃ns

]
. According to

the design of ENCns , G̃ is of the form in Figure 5.

IM1 U
IM2 U

. . .
IMns

U
A − K active packets
pre-inactive packets

K active packets

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭}}

G̃1︷ ︸︸ ︷ G̃2︷ ︸︸ ︷ G̃ns︷ ︸︸ ︷

Figure 5. Illustration of encoding using triangular embedding. The gray part contains non-zero
entries and the white part contains only zero.

4.2. Decoder Design

It is possible to use the decoders discussed in Section 2.3 to decode the batches
generated by triangular embedding. However, due to the structure of the triangular
embedding encoding, the decoder can be simplified.

We design a decoder DECns using only the first Mi packets of the ith batch, i = 1, . . . , ns.
The overall generator matrix G̃∗ of ENC∗

ns is of the form in Figure 6.

99

Entropy 2023, 25, 1055

IM1

IM2
. . .

IMns
A − K active packets
pre-inactive packets

K active packets

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭}}
Figure 6. Illustration of decoding using triangular embedding. The gray part contains non-zero
entries and the white part contains only zero.

An inactivation decoder can be applied to decode the message packets:

• First, inactivate all the packets used by the first ns batches among the last A − K active
packets;

• Second, apply belief propagation decoding to solve all the batches;
• Last, solve the inactive packets.

Note that as, at most, min{A − K, Ninac} packets are used among the last A − K
active packets during encoding, the total number of inactive packets is no more than
Ninac + K′ − A.

4.3. Design Verification

We verify the triangular embedding design from two aspects. First, it can help to
generate zero-coding-overhead consistent outer codes using a small number of random
trials. Second, when jointly decoded with batches generated by the ordinary outer code,
the decoding performance is similar to the case of decoding only the batches generated by
the ordinary outer code.

We perform the experiments using the batch size M = 16 and the rank-M rank distri-
bution h. As with the experiments in Section 3.4, we use the BATS code implementation
in [45] with the parameters in Appendix B. The experimental results of the triangular
embedding outer code are shown in Table 2. We see that, using triangular embedding,
for K up to 1000M, more than 99.5% instances are of zero coding overhead. In fact, for
the remaining instances that are not of zero coding overhead, the coding overhead is only
1 packet (generated using the ordinary outer code). The last row in Table 2 gives the
maximum number of inactive packets for all the instances tested for each value of K. We
see that the number of inactivations is lower than 150, the number of inactivations in the
random design. Therefore, diagonal embedding also reduces the decoding computation
cost.

Table 2. Experiments using triangular embedding for consistent outer codes. Here, M = 16 and h

has rank M with probability 1. For each value of K = 10M, 100M, 1000M, in total, 5000 instances of
the triangular embedded outer code are tested. The table gives the number of consistent instances.

K = 10M K = 100M K = 1000M

zero overhead 4978 4983 4977
max total inact. 27 91 149

As ENCns uses a different encoding approach to the ordinary outer code ENCns+, we
consider whether the batches generated by diagonal embedding and the batches generated
by the ordinary outer code together form a good outer code. We perform some numerical
experiments to verify the joint decoding performance of these two types of batches. For
each batch generated by triangular embedding, we discard the batch with probability
ε = 0.1, 0.3, 0.5 and send the remaining batches to the decoder. After the first ns batches,

100

Entropy 2023, 25, 1055

the ordinary outer code is applied to generate more batches for the decoder. We adopt the
same degree distribution Ψ optimized for the rank-M distribution. The results are shown
in Table 3. We see that for all the cases of ε and for K = 10M, 100M, 200M, the number of
zero-coding-overhead instances is higher than that in Table 1 and the number of instances
with a coding overhead larger than 2M is lower than that in Table 1. For K = 400M, 600M,
the decoding performance is similar to that in Table 1 in terms of both the ratio of zero
coding overhead and the ratio of coding overhead larger than 2M.

Table 3. Joint decoding of batches generated by triangular embedding and the ordinary outer code.
Here, M = 16 and h has rank M with probability 1. In our experiments, each batch generated by
triangular embedding has a probability ε of being discarded, and the remaining batches are sent to the
decoder. Following the batches generated by triangular embedding, batches generated by the ordinary
outer code are also sent to the decoder. For each value of K = 10M, 100M, 200M, 400M, 600M and
ε = 0.1, 0.3, 0.5, in total, 5000 instances are tested.

Coding
Overhead

K = 10M K = 100M K = 200M K = 400M K = 600M

(a) ε = 0.1

0 4982 4955 3446 3 0
1 ∼ M 18 26 69 0 0

M + 1 ∼ 2M 0 3 51 0 0
> 2M 0 16 1434 4997 5000

(b) ε = 0.3

0 4983 4511 1037 17 0
1 ∼ M 17 73 31 0 0

M + 1 ∼ 2M 0 39 25 1 0
> 2M 0 377 3907 4982 5000

(c) ε = 0.5

0 4987 4155 1823 5 0
1 ∼ M 13 107 101 1 0

M + 1 ∼ 2M 0 61 72 1 0
> 2M 0 677 3004 4993 5000

5. Inner Code for Systematic Batches

In this section, we study the design of the inner code for systematic batches. Based
on the discussion in Section 3.3, the decoding complexity at the destination node depends
on the number of message packets received. However, using the existing inner coding
schemes, the number of message packets in a systematic batch reduces significantly during
communication. In the worst case, when no message packets are received at the destination
node, the decoding computation cost at the destination node is doubled when compared
with the ordinary BATS outer code. To resolve this issue, we discuss how to design the
inner code to preserve the message packets in systematic batches.

5.1. Detailed Inner Code Formulation

We first formulate in detail how each network node performs the inner code. We also
discuss the existing inner coding schemes for systematic batches.

We consider the inner code on a line network as described in Section 2. As the inner
code is performed on each batch individually, we consider a generic systematic batch X

without the subscripts. We assume that the packets in X are all message packets. By (2), the
received packets Y(u) of the batch X at node u satisfy

Y(u) = XH(u), (5)

where H(u) is the transfer matrix of the batch at the node u.

101

Entropy 2023, 25, 1055

Let Nu be the number of columns of Y(u) (or H(u)), i.e., the number of received packets
of the batch at node u. For a non-destination node u, we use u+ to denote the receiver
of the outgoing link of u in the line network. Suppose that the node u needs to transmit
N′

u packets of the batch X to the node u+. The transmitted packets, called recoded packets,
are generated by linear combinations as Y(u)Φ(u) = XH(u)Φ(u), where Φ(u) is an Nu × N′

u
matrix over the base field Fq. Due to packet loss, the set of received packets at u+ is a
subset of Y(u)Φ(u). Let E(u) be an N′

u × Nu+ matrix obtained by removing the columns of
an identity matrix specifying the packet erasures. We can write

Y(u+) = XH(u)Φ(u)E(u) = XH(u+), (6)

where H(u+) = H(u)Φ(u)E(u).
There are many solutions to design the recoding matrix Φ(u) in the literature. One

common method for RLNC is a uniformly random matrix over the base field, which is also
called the random linear inner code (RLIC). For multicast communications, it has been shown
that RLIC achieves the multicast capacity for networks with packet loss [5,8–10]. For the
line network discussed here, the systematic inner code (SIC) has been proposed [23], where
all the linearly independent received packets are directly used as recoded packets. We first
discuss the performance of these two existing inner code schemes for systematic batches.

• When using RLIC for systematic batches, the probability that a recoded packet (a col-
umn of XΦ(u)) is a message packet is q−M.

• When using SIC for systematic batches, if the network links have no packet loss, the
destination node receives all the message packets without decoding. If each link has
an erasure probability ε > 0 independently, the number of received message packets
at the destination node drops exponentially rapidly with L increasing.

In other words, for both RLIC and SIC, the destination node cannot benefit from the
systematic outer code.

We are motivated to study the recoding Φ(u) such that a non-source node u can receive
more message packets from a systematic batch even when there are packet losses.

5.2. Recovery of Individual Message Packets

Although Y(u) does not include any message packets, it may be possible to decode
some message packets from (5). When rank(H(u)) = M, all the message packets of a batch
can be decoded at node u. Note that for batched network coding, H(u) does not necessarily
need to be of rank M. We say that a message packet, i.e., a column of X, can be recovered at
node u if it can be uniquely solved from the system (5). When rank(H(u)) < M, some of
the message packets can be recovered by operations within a systematic batch.

Denote by Col(H(u)) the column space of the matrix H(u). Let ei be the length-M
column vector with its ith entry 1 and all the other entries 0. A necessary and sufficient
condition such that a message packet can be recovered from Y(u) is as follows.

Lemma 1. Under the condition that Y(u) = XH(u) is consistent, the ith packet in X has a unique
solution if and only if ei ∈ Col(H(u)).

Proof. The lemma can be proven by the equivalence of the following statements:

1. The ith packet in X has a unique solution;
2. All the vectors x ∈ FNu

q such that xH(u) = 0 (called the left nullspace collectively)
have the ith entry 0;

3. ei is orthogonal to the left nullspace of H(u);
4. ei is in the column space of H(u).

The following proposition shows that we can test the recoverability of all the message
packets in a systematic batch from the reduced column echelon form of H(u), which can be
obtained by (column-wise) Gauss–Jordan elimination.

102

Entropy 2023, 25, 1055

Proposition 1. Let L be the reduced column echelon form for a matrix H(u). Then, ei ∈ Col(H(u))
if and only if ei is a column of L.

Proof. See Appendix A.

The next proposition shows that if a message packet cannot be recovered at a node, it
cannot be recovered at any of the following nodes. Equivalently, if a message packet can be
recovered at a node, it can be recovered at all the previous nodes.

Proposition 2. If a message packet cannot be recovered at the node u, then it cannot be recovered
at the node u+ on the next hop.

Proof. If the ith message packet cannot be recovered at the node u, by Lemma 1, we have
ei �∈ Col(H(u)). Due to Col(H(u+)) = Col(H(u)Φ(u)E(u)) ⊆ Col(H(u)), ei �∈ Col(H(u+))
and hence the ith message packet cannot be recovered at the node u+.

In general, performing an elementary operation as used in Gauss–Jordan elimination
on the received packets of a batch does not affect the rank of the batch, and hence does not
affect the decoding performance. However, recovering message packets at the intermediate
nodes helps to improve the number of message packets to be received/recovered in the
next hop. We use an example to illustrate this fact.

Example 1. Consider a line network with L = 2, M = 3 and N1 = M at node 1. Suppose that

H(1) =

⎡⎣1 0 a
0 1 b
0 0 c

⎤⎦,

where a, b, c �= 0 are elements from the base field. Using systematic recoding on H(1), no additional
packets should be generated and Y(1) is transmitted by node 1. When the second packet is lost from
node 1 to 2, we obtain

H(2) =

⎡⎣1 a
0 b
0 c

⎤⎦,

At destination node 2, we can only recover one message packet. On the other hand, suppose that we
apply the Gaussian elimination step at node 1 and the result should be H(1)D = I. Then, node 1
transmits Y(1)D instead of Y(1). In this case, if we still erase the second packet, the following node
can recover 2 message packets. Moreover, since the Gaussian elimination step preserves the column
space of the batch transfer matrix, (Col(H(u)) = Col(H(u)D)), the rank and number of recoverable
message packets at the destination node should be at least as good as in the recoding schemes without
this step.

Note that the recovery of the message packets at an intermediate node is a linear
operation on a batch and hence can be regarded as a part of the inner code. The effect of
the recovery of the message packets can be captured by the coefficient vectors: the same
operation applied on the received packets of a batch is applied on the coefficient vectors as
well. The destination node does not need to know the exact operations at each intermediate,
but only the coefficient vectors of the received packets.

5.3. Side Information for Message Packet Recovery

We discuss some general properties involved in the recovery of message packets at the
node u+, which provide guidance for the design of new inner codes. The recoverability of
a message packet depends on the knowledge of H(u), which is delivered by the coefficient
vectors. Note that the original purpose of the coefficient vectors is for the destination node

103

Entropy 2023, 25, 1055

to decode the batches. A natural question to consider is the following: if more information
is delivered from node u to u+, could more message packets be recovered at node u+?

Proposition 3. Suppose that X, H(u), Φ(u) and E(u) in (6) are mutually independent. Φ(u) and X

are conditionally independent given H(u+) and Y(u+).

Proof. See Appendix A.

The above proposition states that Φ(u) and X are conditionally independent at the
node u+. The next proposition further shows that knowing Φ(u) at the node u+ does not
help to recover more message packets at node u+. It actually shows a stronger result that
knowing any variable that is independent with X given H(u+) and Y(u+) at the node u+
does not help in recovering more message packets at the node u+.

Proposition 4. Suppose that X, H(u), Φ(u) and E(u) in (6) are mutually independent. Let S be
any random variable that is conditionally independent with X given H(u+) and Y(u+). Given the
instance of H(u+) and Y(u+) at the node u+, further knowing the instance of S at the node u+ does
not help to recover more message packets at u+.

Proof. See Appendix A.

Based on the above analysis, we know that the existing coefficient vectors are sufficient
for the recovery of message packets at the intermediate nodes. In other words, it is not
necessary for a network node to add further information to assist the recovery of the
message packets in the following nodes.

5.4. Recoding with Message Packet Protection

Let r = rank(H(u)) and V be an Nu × Nu matrix such that H(u)V is in reduced column
echelon form. To recover message packets, we perform the same column operations on
Y(u) and obtain Y(u)V = XH(u)V. If ei is the jth column of H(u)V, then the jth column of
Y(u)V is equal to the ith message packet.

Let s be the number of message packets that can be recovered from Y(u). By Proposi-
tion 1, there are exactly s distinct columns in H(u)V with only 1 non-zero entry being one.
Therefore, by proper row and column permutations, H(u)V is of the form⎡⎣Is 0 0

0 Ir−s 0

0 T 0

⎤⎦, (7)

where Ik is the k × k identity matrix, 0 is an all-zero matrix of proper size, and T is an
(Nu − r)× r matrix where each column is not zero.

Denoting the first r columns of the corresponding column permutation matrix as the
Nu × r matrix P, each of the first s columns of H(u)VP has only 1 non-zero entry.

We have discussed the decoding step, which is represented by V. However, to generate
a recoded batch, some redundant packets are to be generated. The following proposition
states that using the random linear inner code at node u, the node u+ can recover almost
no message packets when the number of received packets at u+ is fewer than rank(H(u)).
Denote by ζm,n

k the probability that an m × n uniformly random matrix over Fq has rank k.
See, e.g., ([23], Section 3.3.2) for the formula of ζm,n

k .

Proposition 5. Suppose that the random linear inner code over Fq is used at the node u and Nu+ <

r = rank(H(u)). Under the condition that ei ∈ Col(H(u)), the probability that ei ∈ Col(H(u+))

is 1 − ∑Nu+
k=0 ζ

r−1,Nu+
k qk−Nu+ and it converges to zero as q → ∞.

Proof. See Appendix A.

104

Entropy 2023, 25, 1055

It is unavoidable that the number of received packets at u+ is smaller than rank(H(u))
due to packet loss. Together with Proposition 2, Proposition 5 implies that as long as the
event Nu+ < rank(H(u)) occurs once at some node u, the destination node receives almost
no message packets from a systematic batch. Therefore, random linear recoding is not
preferred for the recovery of message packets. Thus, we are motivated to extend systematic
inner codes for the recovery of message packets.

We propose two designs of recoding that can protect the message packets during
recoding. We first define two recoding matrices. Suppose that s message packets are
recoverable at the node u and the rank of the batch is r.

Message Protection Recoding

For an integer w with 0 ≤ w ≤ N′
u − s, let R be an r × N′

u matrix of the form

R =

[
Is Us,w Ur,N′

u−s−w0 0

]
,

where Um,n is the m × n uniformly random matrix.

Systematic Message Protection Recoding

For an integer w with 0 ≤ w ≤ N′
u − s, let Rsys be an r × N′

u matrix of the form: when
w < N′

u − r,

Rsys =

[
Is Us,w 0

Ur,N′
u−r−w0 0 Ir−s

]
;

when w ≥ N′
u − r,

Rsys =

[
Is Us,w 0

0 0 J

]
,

where J is the first N′
u − w − s columns of Ir−s.

The inner code operations at node u consist of (i) the Gauss–Jordan elimination
represented by the matrix V, (ii) the column permutation and removal of the all-zero
columns represented by the matrix P, and (iii) (systematic) message protection recoding
R (Rsys). When the overall recoding matrix at node u is VPR, the inner code is called the
message protection inner code (MPIC). When the overall recoding matrix at node u is VPRsys,
the inner code is called the systematic message protection inner code (SMPIC).

The value of w controls the level of protection of message packets. When w = 0, no
additional protection is provided for message packets, and we can check that SMPIC has
the same rank performance as the systematic inner code. When w = N′

u − s, all recoded
packets generated by linear combinations are used to protect the message packets.

The computation cost of the proposed message protection recoding at a network node
is mainly determined by (1) the Gauss–Jordan elimination for the recovery of the message
packets, and (2) the generation of the recoded packets. To simplify the discussion, we
only consider the case with w = 0. At node u, Gauss–Jordan elimination is applied on
the Nu received packets. As the packet length T is much larger than the batch size M, the
computation cost of processing the transfer matrix H(u) is ignored. Hence, when the rank
of H(u) is r, the computation cost of recovering the message packets is about r(Nu − 1)
LCOs. If the previous node also uses message protection recoding, the cost at node u can
be reduced, as the message packets received directly can help to simplify the Gauss–Jordan
elimination. Let s0 be the message packet received at node u, and we have s0 ≤ s ≤ r. In this
case, the computation cost for Gauss–Jordan elimination is about (r − s0)(Nu − 1) LCOs.
For a batch of rank r, the cost of generating recoded packets using R or Rsys is linear with
the number of entries in uniformly random sub-matrices. Therefore, the overall recoding
computation cost for SMPIC with w = 0 is about ((r − s0)(Nu − 1) + r(N′

u − r)) LCOs. In
contrast, for RLIC, the computation cost is N′

uNu LCOs, and for SIC, the computation cost
is (N′

u − Nu)Nu LCOs.

105

Entropy 2023, 25, 1055

5.5. Numerical Evaluations

We perform numerical evaluations to verify the performance of the new inner codes
in terms of both the average rank and the average number of recoverable message packets
and compare it with that of the random linear inner code (RLIC) and the systematic inner
code (SIC). We use line networks of length up to 50 hops, where each link has the same
independent packet erasure probability 0.2. The batch size M = 16 and the number of
packets to transmit N′

u = 20 for all nodes u. Since the performance of SMPIC and MPIC
shows negligible differences in simulation, we only show the results for SMPIC, where we
evaluate w = 0 and w = N′

u − s as representatives.
Our numerical evaluation results are shown in Figure 7. We plot the average number

of recoverable message packets and the average rank at node 0 to 50 for SIC, RLIC, SMPIC
with w = 0 (denoted by SMPIC0) and SMPIC with w = N′

u − s (denoted by SMPIC1), each
with 500 trials. We have the following observations.

• SIC and RLIC have almost the same rank performance. SIC has a larger number of
recoverable message packets than RLIC. However, for both SIC and RLIC, the number
of recoverable message packets drops quickly.

• SMPIC0 has similar rank performance to SIC and RLIC and has a much higher average
number of recoverable message packets than that of SIC and RLIC.

• SMPIC1 has the highest average number of recoverable message packets among the
four inner codes, at the cost of a reduced average rank.

The recoding computation costs at each network node are also determined in the
experiments and are illustrated in Figure 8. For RLIC, as N′

u = 20 and the expectation
of Nu = 16, the recoding computation cost is about 320 LCOs. For SIC, the recoding
computation cost is about 64 LCOs. The recoding computation cost of SMPIC0 also matches
the formula that we have derived, where the expectation of s0 is 1 − ε = 0.8 multiplied by
the number of recovered message packets in the previous hop. In Figure 8, we also show
the computation cost of SMPIC1, which is close to that of SMPIC0.

0 10 20 30 40 50
0
2
4
6
8

10
12
14
16

network length (L)

nu
m

be
r

of
m

es
sa

ge
pa

ck
et

s
/

ra
nk

message packet of SIC
message packet of RLIC

message packet of SMPIC0
message packet of SMPIC1

rank of SIC
rank of RLIC

rank of SMPIC0
rank of SMPIC1

Figure 7. The average number of recovered message packets and the average rank at node 0 to 50
for SIC, RLIC, SMPIC with w = 0 (denoted by SMPIC0) and SMPIC with w = N′

u − s (denoted by
SMPIC1), each with 500 trials.

106

Entropy 2023, 25, 1055

0 10 20 30 40 50
0

100

200

300

node index (u)

nu
m

be
r

of
pa

ck
et

op
er

at
io

ns SIC
RLIC

SMPIC0
SMPIC1

Figure 8. The average number of linear combination operations at node 0 to node 49 for SIC, RLIC,
SMPIC with w = 0 (denoted by SMPIC0) and SMPIC with w = N′

u − s (denoted by SMPIC1), each
with 500 trials.

6. Concluding Remarks

In this paper, we propose a design for systematic batched network codes, where the
outer code is systematic and the inner code can protect the systematic property during
network coding. Our design of the systematic code preserves the most salient features
of the BATS code. The diagonal embedding approach is proposed to improve the design
efficiency of the systematic outer code, and it can also be used for non-systematic outer
coding to reduce the coding overhead and computation cost.

The discussion in this paper can help to evaluate when and how to adopt systematic
batched network codes. When the computation cost and the encoding latency are the major
concerns, the use of systematic outer codes is preferred due to the lower computation cost
compared to the ordinary outer code. The decision regarding whether to use message
protection recoding depends on both the computation constraints and the application
scenario. When the decoding computation is sensitive and the intermediate nodes have
an additional computation capability, it is beneficial to use message protection recoding.
Message protection recoding is also preferred for some application scenarios, e.g., for
communications where part of the content can be consumed when ready, a systematic code
is better. Another useful scenario for systematic codes is a network with dynamic network
link qualities: the communication is reliable most of the time and serious packet loss occurs
only in a small fraction of the time.

There are still many refinements to be applied for the systematic batched network
codes. This paper focused on the inner code design for unicast communications. The
current inner codes designed to protect the message packets may not be suitable to achieve
the multicast gain of network coding. Further study of the inner code design for multicast
communication is desired.

7. Patents

Patents resulting from this work are listed in the following:

CN115811381A The design framework of the systematic BATS code (including the outer
code and inner code), invented by the authors of this paper, published on 17 March
2023.

CN2023105394085 The design of the triangular embedded outer code, invented by L.M.
and S.Y., filed on 15 May 2023.

107

Entropy 2023, 25, 1055

Author Contributions: Conceptualization, L.M. and S.Y.; methodology, L.M. and S.Y.; implemen-
tation, L.M.; validation, L.M.; formal analysis, L.M., Y.D., X.H. and S.Y.; writing—original draft
preparation, L.M. and S.Y.; writing—review and editing, L.M., Y.D., X.H. and S.Y.; visualization, L.M.
and S.Y.; supervision, S.Y.; project administration, S.Y.; funding acquisition, S.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by NSFC under Grants 62171399 and 12141108.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge that the research conducted by Dong in this
paper was performed while she was affiliated with CUHK-Shenzhen.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BATS code BATched Sparse code
HDPC High-Density Parity Check
LDPC Low-Density Parity Check
LCO Linear Combination Operation
MPIC Message Protection Inner Code
RLIC Random Linear Inner Code
RLNC Random Linear Network Codes/Random Linear Network Coding
SIC Systematic Inner Code
SMPIC Systematic Message Protection Inner Code

Appendix A. Proofs Regarding Recoverability of Message Packets

Proof of Proposition 1. For the sufficiency, if ei is a column of L, then ei ∈ Col(L) = Col(Hu).
Now, we prove the necessity. If ei ∈ Col(Hu), then ei ∈ Col(L). Let r = rank(Hu). By

the property of reduced column echelon form, all the zero columns are on the right of the
non-zero columns in L, and hence the first r columns are all the non-zero columns of L.
Then, we can write ei = ∑r

j=1 cjlj, where cj is a constant and lj is the jth non-zero column
of L.

For j = 1, . . . , r, denote by ij the row index of the leading 1 of lj, which must exist due
to the property of reduced column echelon form. Further, as the (ij, j) entry is the only
non-zero entry on the ijth row of L, cj = 0 for j such that ij �= i. If there exists no j such that
ij = i, then ei = 0, a contradiction. Therefore, there must a unique j∗ such that ij∗ = i, and
hence ei = lj∗ .

Proof of Proposition 3. Denote by x, y+, h+ and φ the instances of X, Yu+, Hu+ and Φu,
respectively. As P(x, φ|y+, h+) = P(φ|y+, h+)P(x|y+, h+, φ); to prove this claim, it is
sufficient to show that

P(x|y+, h+, φ) = P(x|y+, h+) (A1)

for all instances x, y+, h+ and φ. If y+ �= xh+, (A1) holds as both sides are 0.

108

Entropy 2023, 25, 1055

Suppose that y+ = xh+. As X, Hu, Φu and Eu are independent and Hu+ = HuΦuEu,
we obtain

P(x|y+, h+, φ) =
P(x)P(h+, φ)

P(y+, h+, φ)

=
P(x)P(h+, φ)

∑x′ :x′h+=y+ p(x′)P(h+, φ)

=
P(x)

∑x′ :x′h+=y+ p(x′)
.

Similarly,

P(x|y+, h+) =
P(x)P(h+)

P(y+, h+)

=
P(x)P(h+)

∑x′ :x′h+=y+ p(x′)P(h+)

=
P(x)

∑x′ :x′h+=y+ p(x′)
.

Therefore, (A1) holds when y+ = xh+. The proof is completed.

Proof of Proposition 4. Denote by x, y+, h+ and s the instances of X, Yu+, Hu+ and S,
respectively. It is sufficient to show that P(x|y+, h+, s) = P(x|y+, h+) for all instances
x, s, y+, h+. If y+ �= xh+, the equality holds as both sides are 0. Suppose that y+ = xh+.
As X and S are independent given Hu+ and Yu+, we obtain

P(x|y+, h+, s) =
P(x, s|y+, h+)

P(s|y+, h+)

=
P(s|y+, h+)P(x|y+, h+)

P(s|y+, h+)

= P(x|y+, h+).

Proof of Proposition 5. For convenience, we omit the subscripts of Hu, Φu and Eu.
Assume that H ∈ FM×Nu

q is fixed with rank(H) = r and ei ∈ Col(H). Since
rank(H) = r, and ei ∈ Col(H), we can extend {ei} to a basis of Col(H), denoted by W.
Then, there exists a full row rank matrix C ∈ Fr×Nu

q such that H = WC and Hu+ = WCΦE.
Let Φ∗ = ΦE; then, Φ∗ is an Nu × Nu+ uniformly random matrix.

Notice that C is full row rank, and C can be written as C = KC′, where C′ is an
invertible matrix with the first r rows being C and K is made up of the first r rows of
an identity matrix. Since C′Φ∗ is still an Nu × Nu+ uniformly random matrix, we have
that CΦ∗ is an r × Nu+ uniformly random matrix. In the following, we let M = CΦ∗ and
we have ei ∈ Col(Hu+) if and only if e1 ∈ Col(M). Let mT be the first row of M and M̃

be the submatrix of M with the first row removed. Then, e1 ∈ Col(M) is equivalent to
∃x s.t. M̃x = 0, mTx �= 0; in other words, m �⊥ Null(M̃).

When M̃ has rank k, the null space of M̃ has dimension Nu+ − k. The probability

m �⊥ Null(M̃) is 1 − qk

qNu+
.

109

Entropy 2023, 25, 1055

Therefore, the probability e1 ∈ Col(M) is:

Pr(e1 ∈ Col(M)) =
Nu+

∑
k=0

ζ
r−1,Nu+
k (1 − qk

qNu+
)

= 1 −
Nu+

∑
k=0

ζ
r−1,Nu+
k qk−Nu+ .

Observe that

Pr(e1 ∈ Col(M)) =
Nu+−1

∑
k=0

ζ
r−1,Nu+
k (1 − qk

qNu+
)

≤
Nu+−1

∑
k=0

ζ
r−1,Nu+
k

= 1 − ζ
r−1,Nu+
Nu+

= 1 −
Nu+−1

∑
i=0

(1 − q−r+1+i).

Since ∑Nu+−1
i=0 (1 − q−r+1+i) → 1 as q → ∞, Pr(e1 ∈ Col(M)) → 0, as q → ∞.

Appendix B. BATS Code Parameters Used in Numerical Experiments

For the numerical experiments of the BATS outer code in Sections 3.4 and 4.3, we use
the BATS code with the following parameters.

• The batch size M is 16.
• We use the degree distribution Ψ asymptotically optimized for the rank-M rank

distribution. The non-zero entries of Ψ are listed in Table A1.
• The following formula determines the number of LDPC packets:{

0.0101K +
√

3K, K < 20000
0.0101K +

√
4K, otherwise.

• The number of HDPC packets is max(ln(K), 5).
• The decoder has a limit on the number of inactivated packets and the limit is 150.

Table A1. The non-zero entries of the degree distribution used in the numerical experiments.

Ψ17 Ψ18 Ψ19 Ψ20 Ψ23 Ψ27 Ψ31 Ψ35

0.0588 0.0571 0.0245 0.0899 0.1170 0.0921 0.0678 0.0679

Ψ43 Ψ45 Ψ63 Ψ73 Ψ123 Ψ126 Ψ239

0.0608 0.0604 0.0671 0.0671 0.0599 0.0222 0.0457

Appendix C. Pseudocodes for BATS Outer Encoding and Decoding

Algorithm A1 is the pseudocode for the encoding of the BATS outer code, and
Algorithm A2 is the pseudocode for the two-step decoding of the BATS outer code.

110

Entropy 2023, 25, 1055

Algorithm A1 The encoding process of the BATS outer code.
Input:

• B: all the input packets.
• range: a range of index of batches.
Output:

• X: an array of the generated batches.
1: procedure ENC(B, range)
2: Bp ← Solve the precode constraint

[
B Bp

]
P = 0.

3: B′ ←
[
B Bp

]
4: BA, BI ← Split B′ into active packets and inactive packets.
5: X ← [] � Initialize an array for the generated batches.
6: for i in range do � Line 7 to line 13 generate batches with key i.
7: Use i as the seed for the pseudo random number generator.
8: dA

i ← Sample a degree from the degree distribution Ψ.
9: dB

i ← Randomly choose an inactive degree.
10: Bi ← Randomly choose dA

i packets from BA and dB
i packets from BI .

11: Gi ← Create a (dA
i + dB

i)× M matrix with independently uniform entries.
12: Xi ← BiGi
13: Append Xi onto the end of X.
14: return X

Algorithm A2 The two-step decoding process of the BATS outer code.
Input:

• [Y1, Y2, . . . , Yn]: an array of n batches.
• [H1, H2, . . . , Hn]: an array of batch transfer matrices of the n batches.
Output:

• B: Recovered input packets
1: procedure DEC([Y1, Y2, . . . , Yn], [H1, H2, . . . , Hn])
2: Ω ← {1, 2, . . . , n} � The index set of unsolved batches
3: for i in 1 . . . n do
4: Use i as the seed for the pseudo number generator.
5: dA

i ← Sample a degree from the degree distribution Ψ.
6: Gi ← Create a (dA

i)× M matrix with independently uniform entries.

7: while ∃i ∈ Ω, such that dA
i = rank(GiHi) do

8: Bi ← Solve the system BiGiHi = Yi.
9: for b in Bi do

10: Mark b as decoded.
11: for j in indices of other batch such that b ∈ Bj do
12: Update the batch equation BjGjHj = Yj by canceling b from that equa-

tion.
13: Remove i from Ω.
14:

[
B, Bp

]
← Decode the precode using the decoded packets.

15: return B

References

1. Ahlswede, R.; Cai, N.; Li, S.Y.R.; Yeung, R.W. Network information flow. IEEE Trans. Inform. Theory 2000, 46, 1204–1216.
[CrossRef]

2. Li, S.Y.R.; Yeung, R.W.; Cai, N. Linear network coding. IEEE Trans. Inform. Theory 2003, 49, 371–381. [CrossRef]
3. Koetter, R.; Medard, M. An Algebraic Approach to Network Coding. IEEE/ACM Trans. Netw. 2003, 11, 782–795. [CrossRef]
4. Ho, T.; Leong, B.; Medard, M.; Koetter, R.; Chang, Y.; Effros, M. The benefits of coding over routing in a randomized setting.

In Proceedings of the IEEE International Symposium on Information Theory (ISIT ’03), Yokohama, Japan, 29 June–4 July 2003.
[CrossRef]

111

Entropy 2023, 25, 1055

5. Ho, T.; Médard, M.; Koetter, R.; Karger, D.R.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding Approach to
Multicast. IEEE Trans. Inform. Theory 2006, 52, 4413–4430. [CrossRef]

6. Jaggi, S.; Chou, P.A.; Jain, K. Low complexity optimal algebraic multicast codes. In Proceedings of the International Symposium
on Information Theory (ISIT ’03), Yokohama, Japan, 29 June–4 July 2003.

7. Sanders, P.; Egner, S.; Tolhuizen, L. Polynomial time algorithms for network information flow. In Proceedings of the Fifteenth
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’03), San Diego, CA, USA, 7–9 June 2003; pp. 286–294.

8. Wu, Y. A Trellis Connectivity Analysis of Random Linear Network Coding with Buffering. In Proceedings of the 2006 IEEE
International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 768–772. [CrossRef]

9. Dana, A.F.; Gowaikar, R.; Palanki, R.; Hassibi, B.; Effros, M. Capacity of wireless erasure networks. IEEE Trans. Inform. Theory
2006, 52, 789–804. [CrossRef]

10. Yeung, R.W. Avalanche: A network coding analysis. Commun. Inf. Syst. 2007, 7, 353–358. [CrossRef]
11. Chou, P.A.; Wu, Y.; Jain, K. Practical Network Coding. In Proceedings of the Allerton Conference on Communication, Control,

and Computing, Monticello, IL, USA, 29 September–1 October 2004; Invited paper.
12. de Alwis, C.; Kodikara Arachchi, H.; Fernando, A.; Kondoz, A. Towards minimising the coefficient vector overhead in random

linear Network Coding. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, 26–31 May 2013; pp. 5127–5131. [CrossRef]

13. Silva, D. Minimum-overhead network coding in the short packet regime. In Proceedings of the 2012 International Symposium on
Network Coding (NetCod), Cambridge, MA, USA, 29–30 June 2012; pp. 173–178. . [CrossRef]

14. Gligoroski, D.; Kralevska, K.; Øverby, H. Minimal header overhead for random linear network coding. In Proceedings of the
2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 680–685. [CrossRef]

15. Silva, D.; Zeng, W.; Kschischang, F.R. Sparse Network Coding with Overlapping Classes. In Proceedings of the 2009 Workshop
on Network Coding, Theory, and Applications (NetCod ’09), Lausanne, Switzerland, 15–16 June 2009; pp. 74–79. [CrossRef]

16. Heidarzadeh, A.; Banihashemi, A.H. Overlapped Chunked network coding. In Proceedings of the 2010 IEEE Information Theory
Workshop on Information Theory (ITW ’10), Cairo, Egypt, 6–8 January 2010, pp. 1–5.

17. Li, Y.; Soljanin, E.; Spasojevic, P. Effects of the Generation Size and Overlap on Throughput and Complexity in Randomized
Linear Network Coding. IEEE Trans. Inform. Theory 2011, 57, 1111–1123. [CrossRef]

18. Mahdaviani, K.; Ardakani, M.; Bagheri, H.; Tellambura, C. Gamma Codes: A low-overhead linear-complexity network coding
solution. In Proceedings of the 2012 International Symposium on Network Coding (NetCod), Cambridge, MA, USA, 29–30 June
2012; pp. 125–130. [CrossRef]

19. Yang, S.; Yeung, R.W. Batched Sparse Codes. IEEE Trans. Inform. Theory 2014, 60, 5322–5346. [CrossRef]
20. Tang, B.; Yang, S.; Yin, Y.; Ye, B.; Lu, S. Expander Chunked Codes. EURASIP J. Adv. Signal Process. 2015, 2015, 106. [CrossRef]
21. Tang, B.; Yang, S. An LDPC Approach for Chunked Network Codes. IEEE/ACM Trans. Netw. 2018, 26, 605–617. [CrossRef]
22. Yang, S.; Yeung, R.W. Network Communication Protocol Design from the Perspective of Batched Network Coding. IEEE Commun.

Mag. 2022, 60, 89–93. [CrossRef]
23. Yang, S.; Yeung, R.W. BATS Codes: Theory and Practice; Synthesis Lectures on Communication Networks; Morgan & Claypool

Publishers: Williston, VT, USA, 2017. [CrossRef]
24. MacWilliams, F.; Sloane, N. The Theory of Error-Correcting Codes; North-Holland Publishing: Amsterdam, The Netherlands, 1978.
25. Versfeld, D.J.; Ridley, J.N.; Ferreira, H.C.; Helberg, A.S. On systematic generator matrices for Reed–Solomon codes. IEEE Trans.

Inform. Theory 2010, 56, 2549–2550. [CrossRef]
26. Luby, M.; Shokrollahi, A.; Watson, M.; Stockhammer, T.; Minder, L. RaptorQ Forward Error Correction Scheme for Object Delivery–RFC

6330; Internet Engineering Task Force: Fremont, CA, USA, 2011.
27. Arikan, E. Systematic polar coding. IEEE Commun. Lett. 2011, 15, 860–862. [CrossRef]
28. Badr, A.; Khisti, A.; Tan, W.T.; Apostolopoulos, J. Perfecting Protection for Interactive Multimedia: A survey of forward error

correction for low-delay interactive applications. IEEE Signal Process. Mag. 2017, 34, 95–113. [CrossRef]
29. Garcia-Saavedra, A.; Karzand, M.; Leith, D.J. Low Delay Random Linear Coding and Scheduling Over Multiple Interfaces.

IEEE Trans. Mob. Comput. 2017, 16, 3100–3114. [CrossRef]
30. Li, Y.; Zhang, F.; Wang, J.; Quek, T.Q.S.; Wang, J. On Streaming Coding for Low-Latency Packet Transmissions Over Highly Lossy

Links. IEEE Commun. Lett. 2020, 24, 1885–1889. [CrossRef]
31. Prior, R.; Rodrigues, A. Systematic network coding for packet loss concealment in broadcast distribution. In Proceedings of

the The International Conference on Information Networking 2011 (ICOIN2011), Kuala Lumpur, Malaysia, 26–28 January 2011;
pp. 245–250. [CrossRef]

32. Lucani, D.E.; Medard, M.; Stojanovic, M. On Coding for Delay—Network Coding for Time-Division Duplexing. IEEE Trans.
Inform. Theory 2012, 58, 2330–2348. [CrossRef]

33. Yu, M.; Aboutorab, N.; Sadeghi, P. From Instantly Decodable to Random Linear Network Coded Broadcast. IEEE Trans. Commun.
2014, 62, 3943–3955. [CrossRef]

34. Gabriel, F.; Wunderlich, S.; Pandi, S.; Fitzek, F.H.P.; Reisslein, M. Caterpillar RLNC With Feedback (CRLNC-FB): Reducing Delay
in Selective Repeat ARQ Through Coding. IEEE Access 2018, 6, 44787–44802. [CrossRef]

112

Entropy 2023, 25, 1055

35. Phung, C.V.; Engelmann, A.; Jukan, A. Error Correction with Systematic RLNC in Multi-Channel THz Communication Systems.
In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO),
Opatija, Croatia, 28 September–2 October 2020; pp. 512–517. [CrossRef]

36. Karetsi, F.; Papapetrou, E. A Low Complexity Network-Coded ARQ protocol for Ultra-Reliable Low Latency Communication.
In Proceedings of the 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Pisa, Italy, 7–11 June 2021; pp. 11–20. [CrossRef]

37. Shokrollahi, A.; Luby, M. Raptor Codes. Found. Trends Commun. Inf. Theory 2011, 6, 213–322. [CrossRef]
38. Tasdemir, E.; Tömösközi, M.; Cabrera, J.A.; Gabriel, F.; You, D.; Fitzek, F.H.P.; Reisslein, M. SpaRec: Sparse Systematic RLNC

Recoding in Multi-Hop Networks. IEEE Access 2021, 9, 168567–168586. [CrossRef]
39. Pandi, S.; Gabriel, F.; Cabrera, J.A.; Wunderlich, S.; Reisslein, M.; Fitzek, F.H.P. PACE: Redundancy Engineering in RLNC for

Low-Latency Communication. IEEE Access 2017, 5, 20477–20493. [CrossRef]
40. Wunderlich, S.; Gabriel, F.; Pandi, S.; Fitzek, F.H.P.; Reisslein, M. Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window

RLNC Approach. IEEE Access 2017, 5, 20183–20197. [CrossRef]
41. Lucani, D.E.; Pedersen, M.V.; Ruano, D.; Sørensen, C.W.; Fitzek, F.H.P.; Heide, J.; Geil, O.; Nguyen, V.; Reisslein, M. Fulcrum:

Flexible Network Coding for Heterogeneous Devices. IEEE Access 2018, 6, 77890–77910. [CrossRef]
42. Nguyen, V.; Tasdemir, E.; Nguyen, G.T.; Lucani, D.E.; Fitzek, F.H.P.; Reisslein, M. DSEP Fulcrum: Dynamic Sparsity and

Expansion Packets for Fulcrum Network Coding. IEEE Access 2020, 8, 78293–78314. [CrossRef]
43. Tasdemir, E.; Nguyen, V.; Nguyen, G.T.; Fitzek, F.H.P.; Reisslein, M. FSW: Fulcrum sliding window coding for low-latency

communication. IEEE Access 2022, 10, 54276–54290. [CrossRef]
44. Compta, P.T.; Fitzek, F.H.P.; Lucani, D.E. Network Coding is the 5G Key Enabling Technology: Effects and Strategies to Manage

Heterogeneous Packet Lengths. Trans. Emerg. Telecommun. Technol. 2015, 6, 46–55. [CrossRef]
45. Yang, S. Simbats. 2015. Available online: https://github.com/shhyang/simbats (accessed on 10 June 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

113

Citation: Bai, Y.; Guang, X.; Yeung,

R.W. Multiple Linear-Combination

Security Network Coding. Entropy

2023, 25, 1135. https://doi.org/

10.3390/e25081135

Academic Editor: Syed A. Jafar

Received: 29 May 2023

Revised: 11 July 2023

Accepted: 20 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Multiple Linear-Combination Security Network Coding

Yang Bai 1,∗,†, Xuan Guang 1,† and Raymond W. Yeung 2,†

1 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
2 Institute of Network Coding and the Department of Information Engineering, The Chinese University of

Hong Kong, Hong Kong SAR, China
* Correspondence: bbbyang@mail.nankai.edu.cn
† These authors contributed equally to this work.

Abstract: In this paper, we put forward the model of multiple linear-combination security multicast
network coding, where the wiretapper desires to obtain some information about a predefined set of
multiple linear combinations of the source symbols by eavesdropping any one (but not more than
one) channel subset up to a certain size r, referred to as the security level. For this model, the security
capacity is defined as the maximum average number of source symbols that can be securely multicast
to all sink nodes for one use of the network under the linear-combination security constraint. For
any security level and any linear-combination security constraint, we fully characterize the security
capacity in terms of the ratio of the rank of the linear-combination security constraint to the number
of source symbols. Also, we develop a general construction of linear security network codes. Finally,
we investigate the asymptotic behavior of the security capacity for a sequence of linear-combination
security models and discuss the asymptotic optimality of our code construction.

Keywords: information-theoretical security; linear-combination security; network coding; secure
network coding; security capacity; code construction; asymptotic behavior

1. Introduction

In 2000, Ahlswede et al. [1] proposed the general concept of network coding. In
particular, they investigated the single-source multicast network coding problem, where the
source symbols generated by a single source node are required to multicast to multiple sink
nodes through a noiseless network while the nodes in the network are allowed to process
the received information. It was proven in [1] that if coding is applied at the intermediate
nodes (rather than routing only), the source node can multicast source symbols to all the
sink nodes at the theoretically maximum rate, i.e., the smallest minimum cut capacity
separating a sink node from the source node, as the alphabet size of both the information
source and the channel transmission symbol tends toward infinity. In 2003, Li et al. [2]
proved that linear network coding over a finite alphabet is sufficient for optimal multicast
by means of a vector space approach. Independently, Koetter and Médard [3] developed an
algebraic characterization of linear network coding by means of a matrix approach. Jaggi
et al. [4] further presented a deterministic polynomial-time algorithm for constructing a
linear network code. For comprehensive discussions of network coding, we refer the reader
to [5–10].

In the paradigm of network coding, information-theoretic security in the presence of a
wiretapper is naturally considered (cf. [11–28]), called the secure network coding problem. In
the model of secure network coding over a wiretap network, (i) the source node multicasts
the source symbols to all the sink nodes, which, as legal users, are required to correctly
decode the source symbols; and (ii) the wiretapper, who can access any one but not more
than one wiretap set of communication channels, is not allowed to obtain any information
about the source symbols. The classical information-theoretically secure models, e.g.,
Shannon’s cipher system [29], secret sharing [30,31] and the wiretap channel II [32], can

Entropy 2023, 25, 1135. https://doi.org/10.3390/e25081135 https://www.mdpi.com/journal/entropy114

Entropy 2023, 25, 1135

be regarded as special cases of the secure network coding model. In particular, a wiretap
network is called an r-wiretap network if the wiretapper can fully access an arbitrary subset
of, at most, r edges, where the non-negative integer r is called the security level.

In the model of secure network coding, to guarantee the required information-theoretic
security, it is necessary to randomize the source symbols to combat the wiretapper. Cai and
Yeung [11] presented a code construction for the r-wiretap network. El Rouayheb et al. [12]
further showed that the Cai–Yeung code construction can be viewed as a network general-
ization of the code construction for wiretap channel II in [32]. Motivated by El Rouayheb
et al., Silva and Kschischang [13] proposed a universal design of security network codes
based on rank-metric codes. For the construction of security network codes in [11–13].
However, the existing upper bounds on the minimum required alphabet size may be too
large for implementation for certain applications in terms of computational complexity and
storage requirement. Feldman et al. [33] showed that for a given security level, the alphabet
size can be reduced by sacrificing a small fraction of the information rate. However, if the
information rate is not sacrificed, whether it is possible to reduce the required alphabet
size is considered an open problem [12,17]. Recently, Guang and Yeung [18] developed
a systematic graph-theoretic approach to improve the upper bound on the minimum re-
quired alphabet size for the existence of secure network codes, achieving an improvement
of general significance. Subsequently, in order to tackle the problem of secure network
coding when the information rate and the secure level may vary over time, Guang et al. [19]
put forward local-encoding-preserving secure network coding, where a family of secure
linear network codes is called local-encoding-preserving if all the codes in this family use
a common local encoding operation at each intermediate node in the network. They also
constructed a family of local-encoding-preserving secure linear network codes applicable
for all possible pairs of rate and security level. We note that the variable-rate linear network
coding problem without security consideration was previously investigated by Fong and
Yeung [34].

In this paper, we put forward the model of multiple linear-combination security
network coding, where multiple linear combinations (containing single linear combination
as a special case) of the source symbols are required to be protected from the wiretapper.
More precisely, in this model over an r-wiretap network, (i) the single source node generates
source symbols over a finite field F, and all the source symbols are required to be correctly
decoded at all the sink nodes; and (ii) for a predefined set of linear combinations of the
source symbols, the wiretapper, who can fully access any channel subset of a size not larger
than r, is not allowed to obtain any information about these linear combinations. For the
above security model with security level r, the (linear-combination) security capacity is
defined as the maximum average number of source symbols that can be securely multicast
to all the sink nodes for one use of the network under the above linear-combination
security constraint. A model related to the current work is that considered by Bhattad
and Narayanan [23], which contains weakly secure network coding as a special case. The
relation between the current work and that of Bhattad and Narayanan [23] is discussed in
Appendix A.

In this paper, we investigate the security capacity and the code construction for this
model and analyze the asymptotic behavior of the security capacity and code construc-
tion for a sequence of linear-combination security models. The main contributions and
organization of this paper are as follows:

• In Section 2, we formally present the model of linear-combination security network
coding and the preliminaries, including the necessary notation and definitions.

• In Section 3, we characterize the security capacity by considering different cases of
the security level r. We first prove that Cmin − 1 is the maximum security level such
that the source symbols can be securely multicast to all sink nodes with a positive rate,
where Cmin is the smallest minimum cut capacity separating a sink node from the
source node. Therefore, the security capacity is zero for r ≥ Cmin. For any nontrivial
security level 1 ≤ r ≤ Cmin − 1, we prove upper bounds on the security capacity in

115

Entropy 2023, 25, 1135

terms of the ratio τ of the rank of the linear-combination security constraint to the
number of source symbols.
We further develop a systematic construction of linear security network codes, which
is applicable to an arbitrary linear-combination security model. Based on the obtained
upper bounds and the developed code construction, we fully characterize the security
capacity for any possible pair of the number of the source symbols and the linear-
combination security constraint. We also determine the threshold value τ0 such that
there is no penalty on the security capacity compared with the capacity without any
security consideration when the ratio τ is not larger than τ0.

• In Section 4, we fully characterize the asymptotic behavior of the security capacity for a
sequence of linear-combination security models and prove that our code construction
is asymptotically optimal.

• We conclude in Section 5 with a summary of our results.

2. Preliminaries

Consider a communication network whose communication channels are point-to-
point. The network is represented by a directed acyclic graph G = (V , E), where V and E
are finite sets of nodes and edges, respectively. Here, an edge in the graph G corresponds
to a point-to-point channel in the network. In the graph G, multiple edges between two
nodes are allowed. We assume that an element in a finite field F can be reliably transmitted
on each edge for each use. We use tail(e) and head(e) to denote the tail node and the head
node of an edge e, respectively. For a node v ∈ V , we let In(v) = {e ∈ E : head(e) = v}
and Out(v) = {e ∈ E : tail(e) = v}, i.e., In(v) and Out(v) are the set of input edges and
the set of output edges, respectively. Furthermore, a sequence of edges (e1, e2, · · · , em) is
called a (directed) path from the node tail(e1) to the node head(em) if tail(ei) = head(ei−1)
for i = 2, 3, · · · , m. For two nodes u and v with u �= v, an edge subset C ⊆ E is called a
cut separating v from u if no path exists from u to v upon removing the edges in C. The
capacity of a cut separating v from u is defined as the size of this cut. A cut C separating v
from u is called a minimum cut separating v from u if there does not exist a cut C′ separating
v from u such that |C′| < |C|. The capacity of a minimum cut separating v from u is
called the minimum cut capacity separating v from u, as denoted by mincut(u, v). There is a
single source node s ∈ V and a set of sink nodes T ⊆ V \ {s} on the graph G. Without loss
of generality, we assume that the source node s has no input edges and that every sink
node t ∈ T has no output edges, i.e., In(s) = Out(t) = ∅, ∀ t ∈ T. The graph G, together
with s and T, forms a network N denoted by N = (G, s, T).

The source node s generates L source symbols B1, B2, · · · , BL that are independent and
identically distributed (i.i.d.) random variables with a uniform distribution on the finite
field F. All the source symbols are required to be multicast to every sink node t in T by
using the network N multiple times, i.e., transmitting multiple elements in F on each edge
by using the edge multiple times. There is a wiretapper who can eavesdrop any edge
subset of a size up to the security level r, while, for a positive integer mL, the mL linear
combinations of the source symbols

L

∑
i=1

ai,j · Bi, j = 1, 2, · · · , mL (1)

over the finite field F are required to be protected from the wiretapper, where ai,j,
1 ≤ i ≤ L, 1 ≤ j ≤ mL are constants in F; that is, the wiretapper is not allowed to ob-
tain any information about the multiple linear combinations of the source symbols given
in (1). Furthermore, we let B = (B1, B2, · · · , BL), and

ML =
[

ai,j

]
1≤i≤L, 1≤j≤mL

,

116

Entropy 2023, 25, 1135

is an L × mL matrix. Then, the mL linear combinations in (1) can be written as B ·ML.
Without loss of generality, we assume that mL ≤ L and that the matrix ML has full column
rank, i.e.,

Rank(ML) = mL.

In this model, the security level r is known by the source node and sink nodes, but which
edge subset is eavesdropped by the wiretapper is unknown. It suffices to consider only the
wiretap sets of a size exactly equal to r. Then, we let

Wr � {W ⊆ E : |W| = r},

where each edge subset W ∈ Wr is called a wiretap set. We use {(L, ML), r} to denote the
above linear-combination security model.

Next, we define a (linear-combination) security network code for the security model
{(L, ML), r}. In order to combat the wiretapper, we may need randomness to randomize
the source symbols. However, as we show, it is not always necessary to randomize the
source symbols. As part of the code to be defined, we assume that the key K is a random
variable uniformly distributed over a finite set K, which is available only at the source
node s. The key K and the source symbols Bi, i = 1, 2, · · · , L are assumed to be mutually
independent. A (L, ML) security network code is defined as follows. First, we let bi ∈ F
and k ∈ K be arbitrary outputs of the source symbol Bi and the key K, respectively,
i = 1, 2, · · · , L. We further let b = (b1, b2, · · · , bL), which is the output of the vector of
source symbols B = (B1, B2, · · · , BL). A (L, ML) security network code Ĉ consists of:

• A local encoding function θ̂e for each edge e ∈ E , where

θ̂e :

⎧⎨⎩ FL ×K → Im(θ̂e), if tail(e) = s;

∏
d∈In(tail(e))

Im(θ̂d) → Im(θ̂e), otherwise; (2)

with Im(θ̂e) denoting the image set of θ̂e;
• A decoding function for each sink node t ∈ T:

ϕ̂t : ∏
e∈In(t)

Im(θ̂e) → FL

to decode the source symbols b1, b2, · · · , bL at t.

Furthermore, we use ye ∈ Im(θ̂e) to denote the message transmitted on each edge
e ∈ E by using the code Ĉ under b and k. With the encoding mechanism described in (2),
we readily see that ye is a function of b and k, as denoted by ĥe

(
b k
)

(i.e., ye = ĥe
(
b k
)
),

where ĥe can be obtained by recursively applying the local encoding functions θ̂e, e ∈ E
according to any ancestral order of the edges in E . More precisely, for each e ∈ E , we have

ĥe
(
b k
)
=

{
θ̂e
(
b k
)
, if tail(e) = s;

θ̂e
(
ĥIn(u)(b k)

)
, otherwise;

where u = tail(e) and ĥE(b k) �
(
ĥe(b k) : e ∈ E

)
for an edge subset E ⊆ E so that

ĥIn(u)(b k) =
(
ĥe(b k) : e ∈ In(u)

)
. We call ĥe the global encoding function of the edge e for

the code Ĉ.
For the security model {(L, ML), r}, a (L, ML) security network code Ĉ = {θ̂e : e ∈

E ; ϕ̂t : t ∈ T} is admissible if the following decoding and security conditions are satisfied:

• Decoding condition: All the source symbols are correctly decoded for each sink node
t ∈ T, i.e., for each t ∈ T,

ϕ̂t
(
ĥIn(t)(b k)

)
= b, ∀ b ∈ FL and ∀ k ∈ K; (3)

117

Entropy 2023, 25, 1135

• Security condition: for each wiretap set, W ∈ Wr,

I
(

YW ; B·ML

)
= 0, (4)

where YW � (Ye : e ∈ W), and Ye � ĥe(B, K) is the random variable transmitted on
the edge e.

For an admissible (L, ML) security network code Ĉ = {θ̂e : e ∈ E ; ϕ̂t : t ∈ T}, we let

ne =
⌈

log|F| |Im(θ̂e)|
⌉

for each edge e in E , which is regarded as the number of times the edge e is used for
transmission when applying the code Ĉ. We further let n(Ĉ) � maxe∈E ne. Then, the rate
of Ĉ is defined by

R(Ĉ) =
L

n(Ĉ)
, (5)

which is the average number of source symbols that can be securely multicast to all the sink
nodes for one use of the network using the code Ĉ.

Furthermore, the security capacity for this model {(L, ML), r} is defined as the maxi-
mum rate of all admissible (L, ML) security network codes, i.e.,

C = max
{

R(Ĉ) : Ĉ is an admissible (L, ML) security network code for {(L, ML), r}
}

.

According to the definition of the rate in (5), characterizing the security capacity C is
equivalent to determining the minimum n(Ĉ) over all the admissible (L, ML) security
network codes, i.e.,

n∗ � min
{

n(Ĉ) : Ĉ is an admissible (L, ML) security network code for {(L, ML), r}
}

.

For instance, a special case of the linear-combination security model {(L, ML), r} is
algebraic-sum security network coding, as elaborated below. In this model, the source node
s generates L source symbols B1, B2, · · · , BL, which are required to be multicast to every
sink node t ∈ T, and the wiretapper, who can eavesdrop any edge subset of size r, is not
allowed to obtain any information about the m algebraic sums of the source symbols:

∑
i∈[L]:

i≡j(mod m)

Bi, j = 1, 2, · · · , m, (6)

where 1 ≤ m ≤ L, and [L] � {1, 2, · · · , L}. For this algebraic-sum security model, when
m = 1, we adopt the convention that i ≡ 1(mod 1) for all i = 1, 2, · · · , L. Then, Equation (6)
becomes ∑L

i=1 Bi, i.e., the algebraic sum ∑L
i=1 Bi of all the L source symbols is required to be

protected from the wiretapper. When m = L, we have i �≡ i′(mod m), ∀ i, i′ ∈ [L], where
i �= i′; thus, all the source symbols B1, B2, · · · , BL are required to be protected from the
wiretapper. This is the standard model of secure network coding, which has been widely
studied in the literature, e.g., [11–24].

An example scenario for the application of the linear-combination security model is
as follows. A predefined set of linear combinations of the source symbols is required to
be protected from the wiretapper, while other linear combinations are unprotected. The
source node s generates L source symbols B1, B2, · · · , BL in the finite field F, which are
required to be multicast to every sink node t ∈ T. The L × mL matrix ML is regarded as
an F-valued parity-check matrix. We denote the solution space of the system of linear
equations�b · ML =�0 over F as V(�0), i.e.,

V(�0) =
{
�b ∈ FL : �b · ML =�0

}
,

118

Entropy 2023, 25, 1135

where�0 is the zero row mL-vector. According to the value of�b · ML, for every output�b ∈ FL

of B = (B1, B2, · · · , BL), the vector space FL can be partitioned into |F|mL cosets of the
solution space given by

{
V(�a) : �a ∈ FmL

}
, where V(�a) �

{
�b ∈ FL : �b · ML = �a

}
. In

this scenario, we desire to protect the information as to which coset V(�a) the vector�b lies
in, which may contain some useful information for the wiretapper. In other words, the
information about the specified linear combinations B · ML needs to be protected from the
wiretapper, while other linear combinations are unprotected.

3. Characterization of the Capacity ofthe Security Model {(L, ML), r}
3.1. Upper Bounds on the Security Capacity

Consider a linear-combination security model {(L, ML), r}. We first consider the trivial
case of r ≥ Cmin, where Cmin � mint∈T mincut(s, t). In this case, for a sink node t ∈ T such
that mincut(s, t) = Cmin, the wiretapper is able to decode the source symbols, provided
that the sink node t correctly decodes them. This shows that the security capacity is C = 0
for r ≥ Cmin, which implies that Cmin − 1 is an upper bound on the maximum security
level for which the source symbols can be multicast with a positive rate. For another trivial
case r = 0, the security model {(L, ML), 0} becomes a single-source multicast network
coding problem without any security consideration. Given the fact that the maximum
rate at which the source symbols can be correctly multicast to all the sink nodes is Cmin
(cf. [1,6]), we thus obtain that

n∗ =
⌈

L
Cmin

⌉
,

or, equivalently,

C =
L
n∗ =

L
�L/Cmin�

.

Next, we consider 0 < r < Cmin. We readily see that an admissible (L, ML) security
network code Ĉ is also a network code such that all the L source symbols can be correctly
decoded at each t ∈ T. This immediately implies that n∗ can be lower-bounded by
�L/Cmin� for any security level 0 < r < Cmin, i.e.,

n∗ ≥
⌈

L
Cmin

⌉
. (7)

Furthermore, we present the following lemma, which asserts a non-trivial lower bound
on n∗.

Lemma 1. Consider a linear-combination security model {(L, ML), r} with a security level of
0 < r < Cmin, where Rank(ML) = mL. Let τ = mL/L. Then,

n∗ ≥
⌈

τL
Cmin − r

⌉
. (8)

Proof. First, we claim that
H(B · ML) = τL · log |F|, (9)

where τL = mL. To see this, we consider an arbitrary row vector �x ∈ FτL and obtain

Pr
(

B·ML = �x
)
= ∑

b∈FL : b·ML=�x
Pr
(
B = b

)
= #
{

b ∈ FL : b·ML = �x
}
· 1
|F|L =

1
|F|τL , (10)

where the equality Pr
(
B = b

)
= 1

|F|L holds because the source symbols Bi, 1 ≤ i ≤ L are
i.i.d. with the uniform distribution on F.

119

Entropy 2023, 25, 1135

We now consider an arbitrary admissible (L, ML) security network code: Ĉ = {θ̂e :
e ∈ E ; ϕ̂t : t ∈ T}. For an edge subset C that separates a sink node t ∈ T from the source
node s, it follows from the decoding condition (3) that H(B|YC) = 0. This immediately
implies that

H
(
B · ML

∣∣YC
)
= 0. (11)

Furthermore, for any wiretap set W ∈ Wr with W ⊆ C, it follows from the security
condition (4) that

H
(
B · ML

)
= H

(
B · ML

∣∣YW
)
. (12)

Combining (11) and (12), we obtain

H
(
B · ML

)
= H

(
B · ML

∣∣YW
)
− H

(
B · ML

∣∣YC
)

= I
(
B · ML; YC\W

∣∣YW
)

≤ H
(
YC\W

∣∣YW
)

≤ H
(
YC\W

)
≤ ∑

e∈C\W
H(Ye)

≤ ∑
e∈C\W

log
∣∣Im(θ̂e)| (13)

≤ ∑
e∈C\W

ne · log |F| (14)

≤ n(Ĉ) · |C \ W| · log |F|, (15)

where the inequality (13) holds because Ye takes values in Im(θ̂e), and the inequality (14)
follows from

ne =
⌈

log|F| |Im(θ̂e)|
⌉
≥ log|F| |Im(θ̂e)|,

and the inequality (15) follows from n(Ĉ) = maxe∈E ne.
Combining (9) and (15), we obtain

n(Ĉ) ≥ H
(
B · ML

)
|C \ W| · log |F| =

τL
|C \ W| .

Note that the above inequality is true for each sink node t ∈ T and all the pairs (C, W) of
the cut C separating t from s and the wiretap set W ∈ Wr such that W ⊆ C. We thus obtain

n(Ĉ) ≥ max
t∈T

max
(W,C)∈Wr×Λt :

W⊆C

τL
|C \ W| ,

where Λt �
{

C ⊆ E : C is a cut separating t from s
}

. For each t ∈ T, we have

|C \ W| ≥ Cmin − r, ∀ (W, C) ∈ Wr × Λt with W ⊆ C.

According to the definition of Cmin, this lower bound is achievable for some t ∈ T and
(W, C) ∈ Wr × Λt such that W ⊆ C. It then follows that

n(Ĉ) ≥ τL
Cmin − r

.

120

Entropy 2023, 25, 1135

Furthermore, since n(Ĉ) is an integer, we have

n(Ĉ) ≥
⌈

τL
Cmin − r

⌉
. (16)

In addition, because the above lower bound (16) on n(Ĉ) is valid for any admissible (L, ML)
security network code Ĉ, we obtain

n∗ ≥
⌈

τL
Cmin − r

⌉
.

The lemma is thus proven.

The lower bounds in (7) and (8) on n∗ apply to all 0 < r < Cmin. For a specific value
of τ, one of them can be tighter than the other. By comparing these bounds, we can readily
obtain the upper bounds on the security capacity C as stated in the following theorem.

Theorem 1. Consider a linear-combination security model {(L, ML), r} with a security level of
0 < r < Cmin, where Rank(ML) = mL. Let

τ =
mL

L
and τ0 =

Cmin − r
Cmin

.

• If 0 ≤ τ ≤ τ0, then

C ≤ L
�L/Cmin�

.

• If τ0 < τ ≤ 1, then

C ≤ L
�τL/(Cmin − r)� .

Proof. By comparing the lower bounds ((7) and (8)) on n∗, we immediately obtain

• if 0 ≤ τ ≤ τ0, then

n∗ ≥
⌈

L
Cmin

⌉
≥
⌈

τL
Cmin − r

⌉
(17)

implying that

C ≤ L
�L/Cmin�

;

• If τ0 < τ ≤ 1, we have

n∗ ≥
⌈

τL
Cmin − r

⌉
≥
⌈

L
Cmin

⌉
(18)

implying that

C ≤ L
�τL/Cmin�

.

We have thus proven the theorem.

3.2. Characterization of the Security Capacity

Next, we present a code construction for the security model {(L, ML), r} with 0 < r <
Cmin, which shows that the upper bounds in Theorem 1 for both cases of τ are tight. We thus
obtain a full characterization of the security capacity for the security model {(L, ML), r}, as
stated in the following theorem.

121

Entropy 2023, 25, 1135

Theorem 2. Consider a linear-combination security model {(L, ML), r} over a finite field F, where
0 < r < Cmin and |F| > max

{
|T|, (|E |r)

}
. Let

τ =
mL

L
and τ0 =

Cmin − r
Cmin

.

• If 0 ≤ τ ≤ τ0, then

C =
L

�L/Cmin�
. (19)

• If τ0 < τ ≤ 1, then

C =
L

�τL/(Cmin − r)� . (20)

This theorem reveals the somewhat surprising fact that for the case of 0 ≤ τ ≤ τ0, there
is no penalty on the security capacity compared with the capacity without any security
consideration. In Section 4, we further investigate the asymptotic behavior of the security
capacity for a sequence of the security models as L tends toward infinity. We not only
characterize the asymptotic behavior of the security capacity but also show the asymptotic
optimality of our construction.

We first define a linear security network code for the security model {(L, ML), r}.
Briefly, a (L, ML) security network code Ĉ is linear if the local encoding functions for all the
edges are linear. Specifically, we recall that b = (b1, b2, · · · , bL) ∈ FL is an arbitrary output
of the vector of source symbols B = (B1, B2, · · · , BL). Let K = Fz, where the non-negative
integer z is specified later. Then, the key K is a random row vector uniformly distributed
on Fz. We further let k ∈ Fz be an arbitrary output of K. Consequently, for a (L, ML) linear
security network code Ĉ, all the global encoding functions ĥe, e ∈ E are linear functions of

b and k. Therefore, there exists an F-valued (L + z)× n matrix He =
[
�h(1)e �h(2)e · · · �h(n)e

]
for each e ∈ E such that

ĥe(b k) = (b k) · He,

where n � n(Ĉ), and He is called the global encoding matrix of the edge e for the code
Ĉ. In particular, if n(Ĉ) = 1, then the code Ĉ is called a (L, ML) scalar-linear security
network code.

In the following, for the nontrivial case of a security model {(L, ML), r} with a security
level of 0 < r < Cmin, we develop a construction of admissible (L, ML) linear security
network codes that can be applied to any pair (L, ML). This code construction shows that
the upper bounds in Theorem 1 for both cases of τ are tight, which we state in the following
theorem.

Theorem 3. Consider a linear-combination security model {(L, ML), r} over a finite field F, where
Rank(ML) = mL, 0 < r < Cmin and |F| > max

{
|T|, (|E |r)

}
. Let

τ =
mL

L
and τ0 =

Cmin − r
Cmin

.

Then, there exists an admissible (L, ML) linear security network code Ĉ such that

• If 0 ≤ τ ≤ τ0, then

n(Ĉ) =

⌈
L

Cmin

⌉
; (21)

• if τ0 < τ ≤ 1, then

n(Ĉ) =

⌈
τL

Cmin − r

⌉
. (22)

122

Entropy 2023, 25, 1135

3.3. Proof of Theorem 3

In this subsection, we provide the proof of Theorem 3, which includes three parts:
code construction, verification of the decoding condition and verification of the security
condition.

� Code construction:

We consider a linear-combination security model {(L, ML), r} over a finite field F,
where 0 < r < Cmin and |F| > max

{
|T|, (|E |r)

}
. In the following, we construct an admissi-

ble (L, ML) linear security network code such that the L source symbols can be securely
multicast to all the sink nodes by transmitting n symbols on each edge, i.e., using the
network n times, where

n =

⎧⎪⎨⎪⎩
⌈

L
Cmin

⌉
, if 0 ≤ τ ≤ τ0,⌈

τL
Cmin−r

⌉
. if τ0 < τ ≤ 1,

(23)

(cf. (21) and (22)). For any 0 ≤ τ ≤ 1, we let

z =

{
0, if L ≥ nr + τL,
nr + τL − L, if L < nr + τL,

(24)

i.e.,

K =

{
∅, if L ≥ nr + τL,
Fnr+τL−L, if L < nr + τL.

According to (24), when L ≥ nr + τL, it is unnecessary to randomize the source symbols to
guarantee linear-combination security. Furthermore, for any pair (L, z) satisfying (24), we
observe that

nr + τL ≤ L + z ≤ nCmin. (25)

The first inequality in (25) is straightforward. To prove the second inequality, we consider
two cases below.

Case 1: L ≥ nr + τL.

According to (24) we have z = 0, and thus:

L + z = L. (26)

Furthermore, it follows from (23) that for 0 ≤ τ ≤ τ0,

n =

⌈
L

Cmin

⌉
≥ L

Cmin
;

and for τ0 < τ ≤ 1,

n =

⌈
τL

Cmin − r

⌉
≥
⌈

L
Cmin

⌉
≥ L

Cmin

(cf. (18) for the first inequality in the above equation). Together with (26), we immediately
prove that L + z = L ≤ nCmin for this case.

Case 2: L < nr + τL.

According to (24), we have

L + z = nr + τL. (27)

Furthermore, it follows from (23) that for 0 ≤ τ ≤ τ0,

n =

⌈
L

Cmin

⌉
≥
⌈

τL
Cmin − r

⌉
≥ τL

Cmin − r

123

Entropy 2023, 25, 1135

(cf. (17) for the first inequality in the above equation), and for τ0 < τ ≤ 1,

n =

⌈
τL

Cmin − r

⌉
≥ τL

Cmin − r
.

Together with (27), we immediately obtain that L + z = nr + τL ≤ nCmin for this case.
Combining the two cases, we have proven the second inequality in (25).

According to (25), we have L + z ≤ nCmin. This implies that the L + z symbols in
F generated by the source node s, which contain the L source symbols and the key of z
symbols, can be multicast to all the sink nodes in T by using the network n times. To
elaborate this, we first claim that

L + z > (n − 1)Cmin. (28)

• When 0 ≤ τ ≤ τ0, it follows from (23) that

(n − 1)Cmin =

(⌈
L

Cmin

⌉
− 1
)
· Cmin

<
L

Cmin
· Cmin = L ≤ L + z.

• When τ0 < τ ≤ 1, according to (23), we obtain

(n − 1)Cmin =

(⌈
τL

Cmin − r

⌉
− 1
)
· Cmin

<
τL

Cmin − r
· Cmin

= τL +
τL

Cmin − r
· r

≤ τL + nr ≤ L + z,

where the last two inequalities follow from (23) and (25), respectively.

Thus, we have proven (28).
Now, we let b′1, b′2, · · · , b′L+z be the L + z source symbols, and divide them into n

groups b′
1, b′

2, · · · , b′
n−1 and b′

n, where for i = 1, 2, · · · , n − 1, b′
i contains Cmin source

symbols, and b′
n contains the remaining L + z − (n − 1)Cmin source symbols. Here, we

note from (25) and (28) that

1 ≤ L + z − (n − 1)Cmin ≤ Cmin.

Thus, it suffices to construct, at most, 2 scalar-linear network codes of dimensions Cmin and
ω � L + z − (n − 1)Cmin, respectively, to multicast the L + z source symbols to all the sink
nodes.

Let C1 be a Cmin-dimensional scalar-linear network code in the network N , of which
the global encoding vectors are column vectors �fe in FCmin for all e ∈ E , and let C2 be an
ω-dimensional scalar-linear network code on N , of which the global encoding vectors are
column vectors �f ′e in Fω for all e ∈ E (cf. [1,2] and [6]). We use two codes C1 and C2 to
construct an (L + z)-dimensional (vector-) linear network code C on the network N such
that n symbols are transmitted on each edge e ∈ E . Specifically, for each e ∈ E , we let

Ge =
[
�g(1)e �g(2)e · · · �g(n)e

]

124

Entropy 2023, 25, 1135

=

⎡⎢⎢⎢⎢⎢⎢⎣

�fe �0 · · · �0 �0
�0 �fe · · · �0 �0
...

...
. . .

...
...

�0 �0 · · · �fe �0
�0 �0 · · · �0 �f ′e

⎤⎥⎥⎥⎥⎥⎥⎦,

which is an F-valued (L + z)× n matrix regarded as the global encoding matrix for the
code C.

Next, for an edge e ∈ E , we use
〈

Ge
〉

to denote the vector space spanned by the column
vectors of the matrix Ge, i.e., 〈

Ge
〉
�
〈
�g(1)e ,�g(2)e , · · · ,�g(n)e

〉
.

Furthermore, for a wiretap set W ∈ Wr, we use GW to denote the (L+ z)× nr matrix whose
column vectors are the column vectors of Ge for all the edges e ∈ W, i.e.,

GW =
[

Ge : e ∈ W
]
=
[
�g(1)e �g(2)e · · · �g(n)e : e ∈ W

]
,

Then, similarly, we use
〈

GW
〉

to denote the vector space spanned by the column vectors of
the matrix GW , i.e., 〈

GW
〉
�
〈
�g(1)e ,�g(2)e , · · · ,�g(n)e : e ∈ W

〉
.

Hence, we readily see that 〈
GW
〉
= ∑

e∈W

〈
Ge
〉
.

Now, we claim that there exist F-valued column (L + z)-vectors �ui, i = 1, 2, · · · , τL such
that 〈

�ui : 1 ≤ i ≤ τL
〉⋂ 〈

GW
〉
= {�0}, ∀ W ∈ Wr. (29)

To show this, we prove by induction on 1 ≤ j ≤ τL that if we have j − 1 linearly indepen-
dent column vectors �u1,�u2, · · · ,�uj−1 in FL+z such that〈

�ui : 1 ≤ i ≤ j − 1
〉⋂ 〈

GW
〉
= {�0}, ∀ W ∈ Wr,

then we can choose a column vector �uj ∈ FL+z \
〈
�ui : 1 ≤ i ≤ j − 1

〉
such that〈

�ui : 1 ≤ i ≤ j
〉⋂ 〈

GW
〉
= {�0}, ∀ W ∈ Wr,

provided that |F| > (|E |r). We consider∣∣∣FL+z\
⋃

W∈Wr

〈
GW , �u1,�u2, · · · ,�uj−1

〉∣∣∣
≥ |F|L+z − |Wr| · |F|nr+j−1 (30)

≥ |F|nr+τL − |Wr| · |F|nr+τL−1 (31)

≥ |F|nr+τL−1 ·
(
|F| − |Wr|

)
> 0, (32)

where the inequality (30) follows because

dim
(〈

GW , �u1,�u2, · · · ,�uj−1
〉)

≤ dim
(〈

GW
〉)

+ j − 1

≤ n|W|+ j − 1 = nr + j − 1, ∀ W ∈ Wr;

125

Entropy 2023, 25, 1135

inequality (31) follows from L+ z ≥ nr+ τL according to (25) and inequality (32) follows from

|F| >
(|E |

r

)
= |Wr|.

Thus, we have proven the existence of such vectors �ui, 1 ≤ i ≤ τL that satisfy the condition
(29).

With the vectors �ui, 1 ≤ i ≤ τL, we let U be an F-valued (L + z)× (L + z) invertible
matrix such that �ui, 1 ≤ i ≤ τL are the first τL column vectors of U. Furthermore, we
consider an (L + z)× τL matrix

M̂L �
[

ML
0

]
, (33)

where 0 is the z × τL zero matrix. In particular, when z = 0 (cf. (24)), M̂L = ML. Recalling
that ML has full column rank, we readily see that M̂L also has full column rank. With the
full-column-rank matrix M̂L, we let Γ be an F-valued (L + z)× (L + z) invertible matrix
such that the column vectors of M̂L are the first τL column vectors of Γ. Then, we define
the matrix

Q � Γ · U−1, (34)

which is of size (L + z)× (L + z) and also invertible over F.
Now, we consider the transformation Q · C of the code C by the matrix Q, i.e., Q · C is

an F-valued (L + z)-dimensional linear network code on the network N , of which all the
global encoding matrices are

He � Q · Ge, ∀ e ∈ E ,

(cf. the transformation of a scalar-linear network code in [6], Section 19.3.1 and [19],
Theorem 2). Next, we show that Ĉ � Q · C is an admissible F-valued (L, ML) linear
security network code for the security model {(L, ML), r} by verifying the decoding and
security conditions.

Remark 1. We now discuss the computational complexity of our code construction. Our code
construction consists of two parts: (i) constructing the two linear network codes C1 and C2 of
different dimensions, which are used to multicast all the L + z symbols to the sink nodes; and (ii)
constructing the transformation matrix Q, or equivalently, constructing the τL column (L + z)-
vectors �ui, 1 ≤ i ≤ τL that satisfy the condition (29). We analyze the complexity of the two parts
as follows.

• The linear network codes C1 and C2 can be constructed in polynomial time (cf. [4,6,7]);
• To obtain the column (L + z)-vectors �ui, 1 ≤ i ≤ τL that satisfy (29), we, in turn, choose τL

vectors �ui as follows:

�ui ∈ FL+z\
⋃

W∈Wr

〈
GW , �u1,�u2, · · · ,�ui−1

〉
.

According to ([35], Lemma 11), the vectors �ui, 1 ≤ i ≤ τL can be found in

O
(
τL(L + z)3|Wr|+ τL(L + z)|Wr|2

)
.

By combining the above analysis, our code construction can be implemented in polynomial time.

� Verification of the decoding condition:

We continue to consider the output of the source (b, k), where b ∈ FL is the vector
of source symbols, and k ∈ Fz is the key. In using the code Ĉ, the implementation of
the global encoding matrices He, e ∈ E is equivalent to linearly transforming (b k) into
x � (b k) · Q, then using the code C to multicast x to all the sink nodes in T.

126

Entropy 2023, 25, 1135

Since the vector x can be correctly decoded at each t ∈ T when applying the code C,
(b k) can be also correctly decoded at each t ∈ T, as can the vector b of source symbols.
Thus, we have verified the decoding condition.

� Verification of the security condition:

In order to verify the security condition (4), we need the next lemma, which plays
a crucial role in our code construction. This lemma provides a necessary and sufficient
condition for a linear security network code to satisfy the security condition (4). For an
edge e ∈ E ,

〈
He
〉

denotes the vector space spanned by the column vectors of He, i.e.,〈
He
〉
�
〈
�h(1)e ,�h(2)e , · · · ,�h(n)e

〉
.

Furthermore, for a wiretap set W ∈ Wr, we let HW be the (L + z)× nr matrix that contains
all the column vectors of the global encoding matrices He for all the edges e ∈ W, i.e.,

HW =
[

He : e ∈ W
]
=
[
�h(1)e �h(2)e · · · �h(n)e : e ∈ W

]
.

We let 〈
HW
〉
�
〈
�h(1)e ,�h(2)e , · · · ,�h(n)e : e ∈ W

〉
be the vector space spanned by the column vectors of HW . Evidently,〈

HW
〉
= ∑

e∈W

〈
He
〉
.

Lemma 2. For the security model {(L, ML), r} over a finite field F with 0 < r < Cmin, let Ĉ

be an F-valued (L, ML) linear security network code, of which the global encoding matrices are

(L + z) × n matrices He =
[
�h(1)e �h(2)e · · · �h(n)e

]
, e ∈ E . Then, for the code Ĉ, the security

condition (4) is satisfied if and only if〈
M̂L
〉⋂ 〈

HW
〉
= {�0}, ∀ W ∈ Wr, (35)

where M̂L =
[

ML
0

]
is an (L + z)× τL matrix as defined in (33).

Proof. See Appendix B.

Now, we start to verify the security condition for our code construction. Toward this
end, according to Lemma 2, it suffices to verify (35). For the constructed (L, ML) linear
security network code Ĉ, we have〈

�ui : 1 ≤ i ≤ τL
〉⋂ 〈

GW
〉
= {�0}, ∀ W ∈ Wr (36)

(cf. (29)). We recall (34) that Q = Γ · U−1 is an (L + z)× (L + z) invertible matrix. Then,
according to (36), we immediately obtain〈

Q · �ui : 1 ≤ i ≤ τL
〉⋂ 〈

Q · GW
〉
= {�0}, ∀ W ∈ Wr. (37)

We note that

HW =
[

He : e ∈ W
]
= Q·

[
Ge : e ∈ W

]
= Q·GW , ∀ W ∈ Wr. (38)

Furthermore, we write [
�u1 �u2 · · · �uτL

]
= U·

[
IτL
0

]
,

127

Entropy 2023, 25, 1135

where we recall that �ui, 1 ≤ i ≤ τL are the first τL column vectors of U, IτL is the τL × τL
identity matrix and 0 is the (L + z − τL)× τL zero matrix. Then, we can see that

Q ·
[
�u1 �u2 · · · �uτL

]
= Q · U ·

[
IτL
0

]
= Γ · U−1 · U ·

[
IτL
0

]
(39)

= Γ ·
[

IτL
0

]
= M̂L, (40)

where (39) follows from Q = Γ · U−1 (cf. (34)), and (40) follows because the column
vectors of M̂L are the first τL column vectors of Γ. Combining (38) and (40) with (37), we
immediately prove that 〈

M̂L
〉⋂ 〈

HW
〉
= {�0}, ∀ W ∈ Wr.

Thus, according to Lemma 2, we have verified the security condition. Combining all the
above, Theorem 3 has been proven.

3.4. An Example to Illustrate Our Code Construction

Let N = (G, s, T = {t1, t2}) be the butterfly network as depicted in Figure 1. For the
security model r = 1, we consider two linear-combination security models {(2, M2), 1} and
{(3, M3), 1} over the field F3 = {0, 1, 2}, where

M2 =

[
1
1

]
and M3 =

⎡⎣1 0
1 1
0 1

⎤⎦. (41)

Namely, in the {(2, M2), 1} security model, the algebraic sum B1 + B2 of the two source
symbols is required to be protected from the wiretapper, and in the {(3, M3), 1} security
model, the algebraic sums B1 + B2 and B2 + B3 of the source symbols are required to be
protected from the wiretapper.

s

t1 t2

e1 e2

e3 e4

e5

e6 e7

e8 e9

Figure 1. The butterfly network: N = (G, s, T = {t1, t2}).

• The security model: {(2, M2), 1}.

In this model, the source node s generates two source symbols b1 and b2 in F3, and the
algebraic sum b1 + b2 needs to be protected. According to (41), we have

m2 = Rank(M2) = 1, and τ =
m2

2
=

1
2
= τ0 =

Cmin − r
Cmin

.

128

Entropy 2023, 25, 1135

Therefore, we have 0 ≤ τ ≤ τ0, i.e., the first case in Theorem 2. Next, we construct an
optimal F3-valued (2, M2) linear security network code for the {(2, M2), 1} security model,
which achieves a security capacity of 2.

According to our code construction, it follows from (23) and (24) that we take

n =

⌈
L

Cmin

⌉
= 1

and z = 0 because L = 2 ≥ nr + τL = 2. We first consider an F3-valued two-dimensional
scalar-linear network code C1 on the network N , which is used to multicast two source
symbols b1 and b2 in F3 to sink nodes t1 and t2. The global encoding matrices (vectors) of
C1 are

Ge1 = Ge3 = Ge8 =

[
1
0

]
, Ge2 = Ge4 = Ge9 =

[
0
1

]
, and Ge5 = Ge6 = Ge7 =

[
1
1

]
.

Clearly, the code C1 is not secure for the algebraic sum b1 + b2 because the wiretapper can
obtain b1 + b2 by accessing the edge e5 on which b1 + b2 is transmitted. Based on the code
C1, we now construct a (2, M2) scalar-linear security network code for the {(2, M2), 1}
security model .

Next, we let �u1 =
[

1
2

]
, an F3-valued column 2-vector such that �u1 /∈

〈
Gei

〉
, ∀ 1 ≤ i ≤ 9

(cf. (29)). Then, let U =
[

1 0
2 1

]
, a 2 × 2 invertible matrix on F3 such that �u1 is the first

column vector of U. Furthermore, since z = 0, we have M̂2 = M2 =
[

1
1

]
(cf. (33)) and let

Γ =
[

1 0
1 1

]
, which is a 2 × 2 invertible matrix on F3 such that

[
1
1

]
is the first column vector

of Γ. According to (34), we calculate Q = Γ · U−1 =
[

1 0
2 1

]
. Now, we obtain an admissible

F3-valued (2, M2) scalar-linear security network code Ĉ1 = Q · C1, of which the global
encoding matrices (vectors) are Hei = Q · Gei , 1 ≤ i ≤ 9. Specifically,

He1 = He3 = He8 =

[
1
2

]
, He2 = He4 = He9 =

[
0
1

]
, and He5 = He6 = He7 =

[
1
0

]
.

We use yei , which takes values in F3, to denote the message transmitted on each
edge ei, 1 ≤ i ≤ 9. According to the above global encoding matrices of Ĉ1, the messages
yei (= (b1, b2) · He) transmitted on the edges ei, 1 ≤ i ≤ 9 are

ye1 = ye3 = ye8 = b1 + 2b2, ye2 = ye4 = ye9 = b2, and ye5 = ye6 = ye7 = b1,

as depicted in Figure 2. We can readily verify the decoding and security conditions for
the code Ĉ1. In particular, in this case, we see that although no randomness is used to
randomize the source symbols, the wiretapper cannot obtain any information about the
algebraic sum b1 + b2 when any one edge is eavesdropped.

129

Entropy 2023, 25, 1135

s

t1 t2

b1 + 2b2 b2

b1 + 2b2 b2

b1

b1 b1

b1 + 2b2 b2

Figure 2. An F3-valued (2, M2) scalar-linear security network code for {(2, M2), 1}.

• The security model: {(3, M3), 1}.

In this model, the source node s generates three source symbols b1, b2 and b3 in F3, and
two algebraic sums b1 + b2 and b2 + b3 need to be protected. According to (41), we note
that m3 = Rank(M3) = 2; thus,

τ =
m3

3
=

2
3
> τ0 =

Cmin − r
Cmin

=
1
2

.

Therefore, we have τ0 < τ ≤ 1, i.e., the second case in Theorem 2. Next, we construct an
optimal F3-valued (3, M3) linear security network code for the {(3, M3), 1} security model,
which achieves a security capacity of 3/2.

According to our code construction, it follows from (23) and (24) that we take

n =

⌈
τL

Cmin − r

⌉
= 2

and z = 1 because L < nr + τL according to L = 3 and nr + τL = 4. We consider an
F3-valued four-dimensional (where 4 = L + z) linear network code C2 of rate 2, which is
used to multicast the three source symbols b1, b2 and b3 and a key k in F3 to the sink nodes
t1 and t2. The 4 × 2 global encoding matrices of C2 are

Ge1 =Ge3 =Ge8 =

⎡⎢⎢⎣
1 0
0 0
0 1
0 0

⎤⎥⎥⎦, Ge2 =Ge4 =Ge9 =

⎡⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎦, and Ge5 =Ge6 =Ge7 =

⎡⎢⎢⎣
1 0
1 0
0 1
0 1

⎤⎥⎥⎦.

We note that the code C2 is not secure because the wiretapper can obtain some information
about b1 + b2 by accessing the edge e5 on which b1 + b2 and b3 + k are transmitted. Based
on the code C2, we now construct a linear secure network code for the {(3, M3), 1} security
model.

Let

�u1 =

⎡⎢⎢⎣
1
2
0
0

⎤⎥⎥⎦ and �u2 =

⎡⎢⎢⎣
0
0
1
2

⎤⎥⎥⎦
be two F3-valued column 4-vectors such that

〈
�u1,�u2

〉 ⋂ 〈
Gei

〉
= {�0}, ∀ 1 ≤ i ≤ 9 (cf. (29)).

Then, let

U =

⎡⎢⎢⎣
1 0 0 0
2 0 1 0
0 1 0 0
0 2 0 1

⎤⎥⎥⎦

130

Entropy 2023, 25, 1135

be a 4 × 4 invertible matrix on F3 such that �u1 and �u2 are the first two column vectors of U.
Furthermore, since z = 1, as mentioned above, we have

M̂3 =

⎡⎢⎢⎣
1 0
1 1
0 1
0 0

⎤⎥⎥⎦
(cf. (33)). Also let

Γ =

⎡⎢⎢⎣
1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1

⎤⎥⎥⎦
be a 4 × 4 invertible matrix on F3 such that the column vectors of M̂L are the first two
column vectors of Γ. According to (34), we calculate

Q = Γ · U−1 =

⎡⎢⎢⎣
1 0 0 0
1 0 1 0
1 1 1 0
0 0 1 1

⎤⎥⎥⎦,

Now, we obtain an admissible F3-valued (3, M3) linear security network code Ĉ2 = Q · C2,
of which the 4 × 2 global encoding matrices are Hei = Q · Gei , 1 ≤ i ≤ 9; specifically,

He1 =He3 =He8 =

⎡⎢⎢⎣
1 0
1 1
1 1
0 1

⎤⎥⎥⎦, He2 =He4 =He9 =

⎡⎢⎢⎣
0 0
0 0
1 0
0 1

⎤⎥⎥⎦, and He5 =He6 =He7 =

⎡⎢⎢⎣
1 0
1 1
2 1
0 2

⎤⎥⎥⎦.

We use yei , which takes values in F2
3, to denote the message transmitted on each

edge ei, 1 ≤ i ≤ 9. According to the above global encoding matrices of Ĉ2, the messages
yei (= (b1, b2, b3, k) · He) transmitted on the edges ei, 1 ≤ i ≤ 9 are

ye1 = ye3 = ye8 = (b1 + b2 + b3, b2 + b3 + k),

ye2 = ye4 = ye9 = (b3, k), and ye5 = ye6 = ye7 = (b1 + b2 + 2b3, b2 + b3 + 2k),

as depicted in Figure 3.

s

t1 t2

[
b1+b2+b3
b2+b3+k

] [
b3
k

]
[

b1+b2+b3
b2+b3+k

] [
b3
k

]

[
b1+b2+2b3
b2+b3+2k

]
[

b1+b2+2b3
b2+b3+2k

] [
b1+b2+2b3
b2+b3+2k

]
[

b1+b2+b3
b2+b3+k

] [
b3
k

]

Figure 3. An F3-valued (3, M3) linear-security network code for {(3, M3), 1}.

For the {(2, M2), 1} and {(3, M3), 1} security models, as discussed in the above exam-
ple, according to Theorem 3, admissible linear security network codes with rates of 2 and
3/2, respectively, can be constructed if the field size is |F| > max

{
|T|, (|E |r)

}
= 9. However,

131

Entropy 2023, 25, 1135

we see in the example that the field F3, of size 3 is sufficient for our code construction. This
implies that the max

{
|T|, (|E |r)

}
bound in Theorem 3 on the field size is only sufficient but

not necessary for our code construction.

4. Asymptotic Behavior of the Security Capacity

In this section, we investigate the asymptotic behavior of the security capacity. For a
fixed network N and a security level r, we consider a sequence of the {(L, ML), r}, L =
1, 2, · · · security models. The following theorem characterizes the asymptotic behavior of
the security capacity for a sequence of security models {(L, ML), r}, L = 1, 2, · · · .

Theorem 4. Consider a sequence of linear-combination security models {(L, ML), r} over a finite
field F for L = 1, 2, · · · , where 0 < r < Cmin and |F| > max

{
|T|, (|E |r)

}
. CL,ML denotes the

security capacity for each model {(L, ML), r}. Let

τL =
mL

L
, L = 1, 2, · · · and τ0 =

Cmin − r
Cmin

,

where mL = Rank(ML) for L = 1, 2, · · · .

• If τL ≤ τ0 + o(1), then,
lim

L→∞
CL,ML = Cmin.

• If τL = κ + o(1), with κ satisfying τ0 < κ ≤ 1, then,

lim
L→∞

CL,ML = κ−1 · (Cmin − r).

Proof. We first consider the case of τL ≤ τ0 + o(1). Then, there exists a non-negative
sequence, aL, L = 1, 2, · · · with lim

L→∞
aL = 0, such that

τL ≤ τ0 + aL, L = 1, 2, · · · . (42)

We now use Theorem 2 to show that

CL,ML ≥ L
�(τ0 + aL) · L/(Cmin − r)� . (43)

To show this, consider the following two cases:

• If 0 ≤ τL ≤ τ0, it follows from (19) that

CL,ML =
L

�L/Cmin�
=

L
�τ0 ·L/(Cmin − r)� ≥ L

�(τ0 + aL) · L/(Cmin − r)� ;

• If τ0 < τL ≤ 1, then we obtain

CL,ML =
L

�τL · L/(Cmin − r)� ≥ L
�(τ0 + aL) · L/(Cmin − r)� ,

where the equality follows from (20), and the inequality follows from (42).

Combining (43) and (7) with Lemma 1, we further obtain that for each pair (L, ML),

L
�(τ0 + aL) · L/(Cmin − r)� ≤ CL,ML ≤ L

�L/Cmin�
≤ Cmin. (44)

We note that
lim

L→∞

L
�(τ0 + aL) · L/(Cmin − r)� = Cmin.

132

Entropy 2023, 25, 1135

Together with (44), we have thus proven that

lim
L→∞

CL,ML = Cmin.

Next, we consider a case in which τL = κ + o(1), where τ0 < κ ≤ 1. Then, there exists
a sequence bL, L = 1, 2, · · · satisfying lim

L→∞
bL = 0 such that

τL = κ + bL, L = 1, 2, · · · .

Here, we note that bL may be negative. Together with κ > τ0 and lim
L→∞

bL = 0, there exists a

positive integer L0 such that for each L ≥ L0,

|bL| < κ − τ0, i.e., τ0 − κ < bL < κ − τ0,

which implies that
τL = κ + bL > τ0, ∀ L ≥ L0.

According to (20) in Theorem 2, we have

CL,ML =
L

�(κ + bL) · L/(Cmin − r)� ,

so that
lim

L→∞
CL,ML = κ−1 · (Cmin − r).

Thus, the theorem is proven.

According to Theorem 4, we can see that for a sequence of security models
{(L, ML), r}, L = 1, 2, · · · that satisfies τL ≤ τ0 + o(1) or τL = κ + o(1), where τ0 < κ ≤ 1,
our code construction is asymptotically optimal, i.e.,

lim
L→∞

R(ĈL,ML) = lim
L→∞

CL,ML , (45)

where ĈL,ML is the code constructed for each model {(L, ML), r} by our code construction.
To illustrate this, in the following, we consider several specific sequences of security models.

First, we consider a sequence of security models {(L, ML), r}, L = 1, 2, · · · in which
all the ranks Rank(ML), L = 1, 2, · · · are upper-bounded by a constant, such as m, e.g., the
security constraint of multiple algebraic sums,

∑
i∈[L]:

i≡j(mod m)

Bi, j = 1, 2, · · · , m

as discussed in the last paragraph of Section 2. With this, we have

lim
L→∞

mL

L
= 0,

which implies the inequality τL = mL/L ≤ τ0 + o(1). It then follows from the first case of
Theorem 4 that

lim
L→∞

CL,ML = Cmin.

Next, we show that our code construction is asymptotically optimal. We first note that

τL =
mL

L
≤ Cmin − r

Cmin
= τ0, ∀ L ≥ Cmin ·

⌈
m

Cmin − r

⌉
.

133

Entropy 2023, 25, 1135

Together with the first case of Theorem 3 (cf. (21)), the constructed code ĈL,ML achieves a
rate of R(ĈL,ML) =

L
�L/Cmin� . This immediately implies that the equality (45) is satisfied,

namely that our code construction is asymptotically optimal for this example.
Next, we consider a sequence of security models {(L, ML), r}, L = 1, 2, · · · in which

all the ranks mL = Rank(ML) satisfy

mL = �κ · L�, L = 1, 2, · · · .

We note that the sequence of mL, L = 1, 2, · · · is not upper-bounded. According to Theo-
rem 4, we can obtain the asymptotic behavior of the security capacity for the sequence of
models {(L, ML), r}, L = 1, 2, · · · as follows:

lim
L→∞

CL,ML =

{
Cmin, if 0 < κ ≤ τ0,
κ−1 · (Cmin − r), if τ0 < κ < 1.

(46)

Furthermore, it follows from Theorem 3 that

lim
L→∞

R(ĈL,ML) =

{
Cmin, if 0 < κ ≤ τ0,
κ−1 · (Cmin − r), if τ0 < κ < 1,

(47)

where ĈL,ML is the code constructed for each model {(L, ML), r} by the code construction.
Comparing (46) and (47), we immediately see that the equality (45) holds, which shows
that our code construction is asymptotically optimal for this example.

Finally, we consider the special sequence of security models {(L, ML), r} for
L = 1, 2, · · · , where mL = L, i.e., τL = mL/L = 1 for all L = 1, 2, · · · . This linear-
combination security constraint is equivalent to protecting all the source symbols from
the wiretapper, so each model {(L, ML), r} is equivalent to the standard secure-network
coding model. Thus, we have

lim
L→∞

CL,ML = Cmin − r. (48)

On the other hand, for each pair (L, ML), it follows from τL = 1 and Theorem 3 that the
(L, ML) linear security network code ĈL,ML constructed by our code construction has a rate
of

R(ĈL,ML) =
L

�L/(Cmin − r)� .

This implies that
lim

L→∞
R(ĈL,ML) = Cmin − r. (49)

Combining (48) and (49), we see that the equality (45) holds, and thus, our code construction
is also asymptotically optimal for this example.

5. Conclusions

In this paper, we put forward the model of multiple linear-combination security
network coding, which is specified by the security level, the number of source symbols and
the linear-combination security constraint. We fully characterized the security capacity for
any such security model in terms of the ratio τ of the rank of the linear-combination security
constraint to the number of source symbols. Also, we developed a construction of linear
security network codes. The code construction is applicable to any security model, and the
constructed code achieves the security capacity. We also determined a threshold value τ0
such that there is no penalty on the security capacity compared with the capacity without
any security consideration when the ratio τ is not larger than τ0. Finally, we analyzed the
asymptotic behavior of the security capacity for a sequence of linear-combination security

134

Entropy 2023, 25, 1135

models and fully characterized the asymptotic behavior of the security capacity. We also
showed that our code construction is asymptotically optimal.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The work of Y. Bai and X. Guang was supported in part by the National Key Research and
Development Program of China (grant number 2022YFA1005000), the Natural Science Foundation
of China (grant number 12141108), the Natural Science Foundation of Tianjin, China (grant number
20JCYBJC01390), and the Fundamental Research Funds for the Central Universities of China (grant
number NKU 050-63233070). The work of R. W. Yeung was supported in part by a fellowship award
from the Research Grants Council of the Hong Kong Special Administrative Region, China (grant
number CUHK SRFS2223-4S03)..

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: A special case of the results presented in this paper was discussed in our
submission to the 2023 IEEE Information Theory Workshop. We thank an anonymous reviewer for
pointing out the relation between our submission and the work of Bhattad and Narayanan [23].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. A Related Work by Bhattad and Narayanan

A model related to the current work is that considered by Bhattad and Narayanan [23],
the general case of which is given as follows. On the network N , the single source node s
generates L L ≤ Cmin source symbols, as denoted by X1, X2, · · · , XL, over a finite field F,
which are required to be multicast to all the sink nodes in T. Let Up, 1 ≤ p ≤ P be P subsets
of the L source symbols and Gp, 1 ≤ p ≤ P be another P subsets of the L source symbols.
The security requirement is specified by the P pairs (Up, Gp), 1 ≤ p ≤ P as follows. The
wiretapper, who can access any one wiretap set W in a collection W of wiretap sets, is not
allowed to obtain any information about Up, given Gp for each p = 1, 2, · · · , P, i.e., for each
p = 1, 2, · · · , P,

I
(
Up; YW

∣∣Gp
)
= 0 or H

(
Up
∣∣Gp
)
= H

(
Up
∣∣YW , Gp

)
, ∀ W ∈ W , (A1)

where YW = (Ye : e ∈ W), with Ye being the random variable transmitted on the edge
e. In particular, when taking P = L, Up = {Xp} and Gp = ∅ for 1 ≤ p ≤ P, the security
requirement (A1) becomes

I
(
Xp; YW

)
= 0, ∀ 1 ≤ p ≤ P and W ∈ W .

This type of security requirement is called weak security in [23].
For the above model, the main focus in [23] is on how to find a suitable linear trans-

formation of the L source symbols for a given linear network code to obtain a secure
linear network code such that the security requirement (A1) is satisfied. Theorem 3 in
[23], the most general result presented in the paper, asserts the existence of such a linear
transformation when a given condition is satisfied. We state this theorem as follows.

Theorem A1 ([23], Theorem 3). Consider an L-dimensional L ≤ Cmin network code C over a
finite field F and a collection of wiretap sets W in which r = maxW∈W |W|. Let (Up, Gp), 1 ≤ p ≤
P be P pairs of subsets Up and Gp of the L source symbols, which specify the security requirement.
If

max
1≤p≤P

(
|Up|+ |Gp|

)
≤ L − r, (A2)

then there exists a linear transformation of the source symbols as a precoding on the linear network
code C such that the security requirement (A1) is satisfied.

135

Entropy 2023, 25, 1135

We now go back to the linear-combination security model {(L, ML), r} discussed in
the current paper. Consider the first case 0 ≤ τ ≤ τ0 in Theorem 2, where we recall that
τ = mL/L, where mL = Rank(ML) and τ0 = (Cmin − r)/Cmin. Then, we can apply the
approach of the linear transformation in Theorem A1 (cf. [23] for details) to obtain a (L, ML)
linear security network code, provided that the following two additional conditions on the
model parameters are satisfied:

0 ≤ τ ≤ L − r
L

(≤ τ0) and L ≤ Cmin. (A3)

Specifically, we consider a linear-combination security model {(L, ML), r} satisfying the
conditions (A3), where the L source symbols B1, B2, · · · , BL are required to be multi-
cast to all the sink nodes in T, and the multiple linear combinations B · ML, where
B = (B1, B2, · · · , BL) are required to be protected from the wiretapper. We first linearly
transform B = (B1, B2, · · · , BL) to (X1, X2, · · · , XL) using an L × L invertible matrix M
whose left L × mL submatrix is equal to ML. Then, we have

(X1, X2, · · · , XL) = (B1, B2, · · · , BL) · M,

where
(X1, X2, · · · , XmL) = (B1, B2, · · · , BL) · ML.

We now apply Theorem A1 as follows. Take X1, X2, · · · , XL as the source symbols. Let
U = {X1, X2, · · · , XmL}, G = ∅ and W = Wr. According to τ ≤ (L − r)/L, we see that
|U|+ |G| = mL ≤ L − r, which satisfies the condition (A2) in Theorem A1. It therefore
follows from Theorem A1 that we can construct a linear secure network code such that
X1, X2, · · · , XL can be multicast to all the sink nodes in T, and the wiretapper cannot obtain
any information about U, i.e.,

I
(
X1, X2, · · · , XmL ; YW

)
= 0, ∀ W ∈ Wr,

or, equivalently,
I
(
B · ML; YW

)
= 0, ∀ W ∈ Wr.

Hence, we obtain an admissible (L, ML) linear security network code for the security model
{(L, ML), r}.

However, the second case τ0 < τ ≤ 1 in Theorem 2 cannot be handled by the approach
proposed in [23]. Specifically, according to τ > τ0, we have

mL

L
= τ > τ0 =

Cmin − r
Cmin

≥ L − r
L

.

This implies that |U| + |G| = mL > L − r, which does not satisfy the condition (A2) in
Theorem A1. Hence, we cannot apply the linear transformation approach for the case of
τ0 < τ ≤ 1.

Appendix B. Proof of Lemma 2

We first prove the “only if” part by contradiction. Suppose, on the contrary, that there
exists a wiretap set W ∈ Wr such that〈

M̂L
〉⋂ 〈

HW
〉
�= {�0}. (A4)

In the following, we prove that

I
(
B·ML; YW

)
> 0, (A5)

which contradicts the security condition (4) for the code Ĉ.

136

Entropy 2023, 25, 1135

According (A4), there exist two non-zero column vectors �w ∈ Fn|W| (= Fnr) and
�u ∈ FτL such that

HW · �w = M̂L · �u �=�0, (A6)

where�0 is the zero-column (L + z)-vector. Then, we obtain

I
(

B·ML; YW

)
= I
(

B·ML; (B K)·HW

)
(A7)

= H
(

B·ML

)
− H

(
B·ML

∣∣(B K)·HW

)
= H

(
B·ML

)
− H

(
B·ML ·

∣∣(B K)·HW , (B K)·HW ·�w
)

≥ H
(

B·ML

)
− H

(
B·ML

∣∣(B K)·HW ·�w
)

= I
(

B·ML; (B K)·HW ·�w
)

= I
(

B·ML; (B K)·M̂L ·�u
)

(A8)

= I
(

B·ML; B·ML ·�u
)

= H
(

B·ML ·�u
)
− H

(
B·ML ·�u

∣∣B·ML

)
= H

(
B·ML ·�u

)
> 0, (A9)

where the equality in (A7) follows from YW = (B K) · HW , the equality in (A8) follows

from (A6), the equality in (A9) follows from H
(

B·ML ·�u
∣∣B·ML

)
= 0 and the inequality

in (A9) follows from ML · �u �= �0 because �u �= �0, and ML has full column rank. Thus, the
inequality in (A5) is proven.

Next, we prove the “if” part. According to the security condition (4), we prove that

H
(

B·ML
∣∣YW

)
= H

(
B·ML

)
, ∀ W ∈ Wr (A10)

if the condition in (35) is satisfied. To prove (A10), it suffices to show that for each W ∈ Wr,
the equality

Pr
(

B·ML = �x
∣∣YW = �y

)
= Pr

(
B·ML = �x

)
(A11)

is satisfied for any �x ∈ FτL row vector and any�y ∈ Fnr row vector such that Pr
(
YW = �y

)
>

0, i.e., there exists a pair (b k) of a vectors of source symbols b ∈ FL and a key k ∈ Fz such
that (b k) · HW = �y.

We recall that

Pr
(

B·ML = �x
)
=

1
|F|τL , ∀ �x ∈ FτL

(cf. (10)). Thus, we only need to prove that for each W ∈ Wr,

Pr
(

B·ML = �x
∣∣YW = �y

)
=

1
|F|τL

for any �x ∈ FτL and �y ∈ Fnr such that Pr
(
YW = �y

)
> 0. We now consider

Pr
(

B·ML = �x
∣∣YW = �y

)
=

Pr
(
B·ML = �x, YW = �y

)
Pr
(
YW = �y

)

137

Entropy 2023, 25, 1135

=
Pr
(
(B K)·M̂L = �x, (B K)·HW = �y

)
Pr
(
(B K)·HW = �y

)
=

Pr
(
(B K)·

[
M̂L HW

]
= (�x �y)

)
Pr
(
(B K)·HW = �y

)
=

∑(b k)∈FL×Fz : (b k)[M̂L HW]=(�x �y) Pr
(
B = b, K = k

)
∑(b′ k′)∈FL×Fz : (b′ k′)HW=�y Pr

(
B = b′, K = k′)

=
#
{
(b k) ∈ FL × Fz : (b k)·

[
M̂L HW

]
= (�x �y)

}
#
{
(b′ k′) ∈ FL × Fz : (b′ k′)·HW = �y

} , (A12)

where we use “#{·}” to denote the cardinality of the set, and the equality (A12) follows
because B and K are independently and uniformly distributed on FL and Fz, respectively.
Furthermore,

• For the denominator in (A12), we have

#
{
(b′ k′) ∈ FL × Fz : (b′ k′)·HW = �y

}
= |F|L+z−Rank(HW); (A13)

• For the numerator in (A12), we have

#
{
(b k) ∈ FL × Fz : (b k)·

[
M̂L HW

]
= (�x �y)

}
= |F|L+z−Rank

([
M̂L HW

])
= |F|L+z−Rank(HW)−τL, (A14)

where the equality (A14) follows from the following condition:
〈

M̂L
〉 ⋂ 〈

HW
〉
= {�0}

(cf. (35)).

Combining (A13) and (A14) with (A12), we immediately prove that

Pr
(

B · ML = �x
∣∣YW = �y

)
=

1
|F|τL ,

which implies the equality in (A11). The “if” part is also proven. We have thus proven
the lemma.

References

1. Ahlswede, R.; Cai, N.; Li, S.-Y.; Yeung, R.W. Network Information Flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]
2. Li, S.-Y.R.; Yeung, R.W.; Cai, N. Linear Network Coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [CrossRef]
3. Koetter, R.; Médard, M. An Algebraic Approach to Network Coding. IEEE/ACM Trans. Netw. 2003, 11, 782–795. [CrossRef]
4. Jaggi, S.; Sanders, P.; Chou, P.A.; Effros, M.; Egner, S.; Jain, K.; Tolhuizen, L.M. Polynomial Time Algorithms for Multicast Network

Code Construction. IEEE Trans. Inf. Theory 2005, 51, 1973–1982. [CrossRef]
5. Ho, T.; Lun, D. Network Coding: An Introduction; Cambridge University Press: Cambridge, UK, 2008.
6. Yeung, R.W. Information Theory and Network Coding; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008.
7. Yeung, R.W.; Li, S.-Y.R.; Cai, N.; Zhang, Z. Network Coding Theory Part I: Single Source. Found. Trends Commun. Inf. Theory 2006,

2, 241–329. [CrossRef]
8. Yeung, R.W.; Li, S.-Y.R.; Cai, N.; Zhang, Z. Network Coding Theory Part II: Multiple Source. Found. Trends Commun. Inf. Theory

2006, 2, 330–381. [CrossRef]
9. Fragouli, C.; Soljanin, E. Network Coding Fundamentals. Found. Trends Netw. 2007, 2, 1–133. [CrossRef]
10. Fragouli, C.; Soljanin, E. Network Coding Applications. Found. Trends Netw. 2008, 2, 135–269. [CrossRef]
11. Cai, N.; Yeung, R.W. Secure Network Coding on a Wiretap Network. IEEE Trans. Inf. Theory 2011, 57, 424–435. [CrossRef]
12. El Rouayheb, S.; Soljanin, E.; Sprintson, A. Secure Network Coding for Wiretap Networks of Type II. IEEE Trans. Inf. Theory 2012,

58, 1361–1371. [CrossRef]
13. Silva, D.; Kschischang, F.R. Universal Secure Network Coding via Rank-Metric Codes. IEEE Trans. Inf. Theory 2011, 57, 1124–1135.

[CrossRef]
14. Cai, N.; Chan, T. Theory of Secure Network Coding. Proc. IEEE 2011, 99, 421–437.

138

Entropy 2023, 25, 1135

15. Cui, T.; Ho, T.; Kliewer, J. On Secure Network Coding With Nonuniform or Restricted Wiretap Sets. IEEE Trans. Inf. Theory 2013,
59, 166–176. [CrossRef]

16. Cheng, F.; Yeung, R.W. Performance Bounds on a Wiretap Network with Arbitrary Wiretap Sets. IEEE Trans. Inf. Theory 2014, 60,
3345–3358. [CrossRef]

17. Fragouli, C.; Soljanin, E. (Secure) Linear Network Coding Multicast. Des. Codes Cryptogr. 2016, 78, 269–310. [CrossRef]
18. Guang, X.; Yeung, R.W. Alphabet Size Reduction for Secure Network Coding: A Graph Theoretic Approach. IEEE Trans. Inf.

Theory 2018, 64, 4513–4529. [CrossRef]
19. Guang, X.; Yeung, R.W.; Fu, F.-W. Local-Encoding-Preserving Secure Network Coding. IEEE Trans. Inf. Theory 2020, 66, 5965–5994.

[CrossRef]
20. Cai, N.; Yeung, R.W. A Security Condition for Multi-Source Linear Network Coding. In Proceedings of the 2007 IEEE International

Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 561–565.
21. Chan, T.; Grant, A. Capacity Bounds for Secure Network Coding. In Proceedings of the 2008 Australian Communications Theory

Workshop, Christchurch, New Zealand, 30 January–1 February 2008; pp. 95–100.
22. Zhang, Z.; Yeung, R.W. A General Security Condition for Multi-Source Linear Network Coding. In Proceedings of the 2009 IEEE

International Symposium on Information Theory, Seoul, Republic of Korea, 28 June–3 July 2009; pp. 1155–1158.
23. Bhattad, K.; Narayanan, K.R. Weakly Secure Network Coding. In Proceedings of the First Workshop on Network Coding, Theory

and Applications, Riva del Garda, Italy, 7 April 2005 ; pp. 8–20.
24. Harada, K.; Yamamoto, H. Strongly Secure Linear Network Coding. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2008,

91, 2720–2728. [CrossRef]
25. Cai, N.; Hayashi, M. Secure Network Code for Adaptive and Active Attacks with No-randomness in Intermediate Nodes. IEEE

Trans. Inf. Theory 2020, 66, 1428–1448. [CrossRef]
26. Hayashi, M.; Cai, N. Secure Non-Linear Network Code over A One-Hop Relay Network. IEEE Trans. Inf. Theory 2021, 2, 296–305.

[CrossRef]
27. Agarwal, G. K.; Cardone, M.; Fragouli, C. On Secure Network Coding for Multiple Unicast Traffic. IEEE Trans. Inf. Theory 2020,

66, 5204–5227. [CrossRef]
28. Zhou, H.; El Gamal, A. Network Information Theoretic Security With Omnipresent Eavesdropping. IEEE Trans. Inf. Theory 2021,

67, 8280–8299. [CrossRef]
29. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
30. Blakley, G.R. Safeguarding Cryptographic Keys. In Proceedings of the Managing Requirements Knowledge, International

Workshop on, New York, NY, USA, 4–7 June 1979; p. 313.
31. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
32. Ozarow, L.H.; Wyner, A.D. Wire-Tap Channel II. AT&T Bell Lab. Tech. J. 1984, 63, 2135–2157.
33. Feldman, J.; Malkin, T.; Servedio, R.A.; Stein, C. On the Capacity of Secure Network Coding. In Proceedings of 42nd Annual

Allerton Conference on Communication, Control, and Computing, Monticello, VA, USA, 29 September–1 October 2004.
34. Fong S.-L.; Yeung, R.W. Variable-Rate Linear Network Coding. IEEE Trans. Inf. Theory 2010, 56, 2618–2625. [CrossRef]
35. Yang, S.; Yeung, R.W.; Ngai C.K. Refined Coding Bounds and Code Constructions for Coherent Network Error Correction. IEEE

Trans. Inf. Theory 2011, 57, 1409–1424. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

139

Citation: Zhang, Y.; Zhu, T.; Li, C.

Efficient Communications in V2V

Networks with Two-Way Lanes

Based on Random Linear Network

Coding. Entropy 2023, 25, 1454.

https://doi.org/10.3390/e25101454

Academic Editor: Syed A. Jafar

Received: 19 September 2023

Revised: 9 October 2023

Accepted: 13 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Efficient Communications in V2V Networks with Two-Way
Lanes Based on Random Linear Network Coding

Yiqian Zhang 1,2, Tiantian Zhu 1 and Congduan Li 1,2,*

1 School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China;
zhangyq75@mail2.sysu.edu.cn (Y.Z.); 18705168317@163.com (T.Z.)

2 Shenzhen Key Laboratory of Navigation and Communication Integration, Shenzhen 518107, China
* Correspondence: licongd@mail.sysu.edu.cn

Abstract: Vehicle-to-vehicle (V2V) communication has gained significant attention in the field of
intelligent transportation systems. In this paper, we focus on communication scenarios involving
vehicles moving in the same and opposite directions. Specifically, we model a V2V network as
a dynamic multi-source single-sink network with two-way lanes. To address rapid changes in
network topology, we employ random linear network coding (RLNC), which eliminates the need
for knowledge of the network topology. We begin by deriving the lower bound for the generation
probability. Through simulations, we analyzed the probability distribution and cumulative probability
distribution of latency under varying packet loss rates and batch sizes. Our results demonstrated that
our RLNC scheme significantly reduced the communication latency, even under challenging channel
conditions, when compared to the non-coding case.

Keywords: random linear network coding; vehicle-to-vehicle communication; dynamic topology;
latency reduction

1. Introduction

Vehicles serve as vital means of transportation in urban cities, necessitating increased
intelligence, as the intelligence of a single car falls short of meeting the requirements
for road safety, path planning, decision-making, and traffic efficiency. To address these
challenges, the Internet of Vehicles (IoV) has been introduced, enabling communication
and collaboration among vehicles, and playing a crucial role in slow-vehicle warnings,
intersection collision warnings [1], as well as congestion alleviation, emission reduction,
and time saving [2]. However, these networks face obstacles in terms of mobility and
occlusion. Notably, when a vehicle is traveling at a speed of 120 km/h, a mere 1-second
latency can result in a driving distance of 33 m, potentially leading to severe consequences.
Initially, communication among vehicles relied on dedicated short-range communication
(DSRC) technology [3], which facilitated short-range communication with low latency [4].
Nevertheless, in high-speed scenarios, vehicles often move out of the communication range,
rendering DSRC inadequate. The advent of 5G technology has introduced the concept
of ultra-reliable and low-latency communications (uRLLC) [5], enabling vehicles to main-
tain communication even during high-speed mobility scenarios. To minimize long-term
content access costs in vehicle-to-vehicle (V2V) networks, ref. [6] considered a distributed
multi-agent reinforcement learning (MARL)-based edge caching method and proposed
a distributed MARL-based edge caching method (DMRE), where every agent adaptively
learns optimal caching strategies in collaboration with others. Additionally, they inte-
grated the advantages of deep Q-Networks into DMRE, resulting in a computationally
efficient method named DeepDMRE, which utilizes neural networks to approximate Nash
equilibria. Such deep Q-Networks were also considered in [7], to explore the integration
of reconfigurable intelligent surfaces (RIS) with unmanned aerial vehicles (UAVs) in the

Entropy 2023, 25, 1454. https://doi.org/10.3390/e25101454 https://www.mdpi.com/journal/entropy140

Entropy 2023, 25, 1454

downlink of non-orthogonal multiple-access (NOMA) networks. They proposed a joint op-
timization scheme using deep Q-networks to maximize system capacity, while considering
UAV energy constraints and demonstrating significant improvements in system capacity.

Network coding [8] offers a promising solution for enhancing the performance of
communication systems in V2V networks. By employing network coding techniques,
intermediate nodes in the network can encode the received messages before transmitting
them to the next hop, and the sink node decodes the received messages to reconstruct the
original information. Ref. [9] proposed the use of XOR network coding in fault-tolerant
dynamic scheduling and routing algorithms for time-sensitive in-vehicle networks (IVNs),
to increase throughput, reliability, and robustness. Experimental results demonstrated that
the XOR network coding scheme outperformed the frame replication and elimination for
reliability (FRER) mechanism in terms of schedulability, flow, and response time, because
the FRER mechanism tends to over-utilize the available bandwidth, whereas XOR net-
work coding provides a better performance without excessive bandwidth usage. Ref. [10]
expanded upon the security and privacy considerations in V2V networks as the number
of vehicles accessing the network increases and proposed a comprehensive scheme that
combines network coding, relay collaboration, and homomorphic encryption. The scheme
ensures that the original information remains inaccessible to relay nodes, except for the
intended target vehicle node. It also protects against potential collusion attacks, preventing
conspiratorial attackers or multiple relay nodes from recovering the original information.
Theoretically, such schemes guarantee the confidentiality, privacy protection, and anti-
collusion capabilities of V2V networks. In [11], F. Ye et al. adopted network coding in
vehicular ad hoc networks (VANETs) by modeling platoon vehicles driving in the same
direction on a highway as a 1-D lattice network, in which a single source node aims to
disseminate messages to all other vehicles. They analyzed the theoretical upper bound of
the benefits achieved through network coding and conducted simulations to demonstrate
the performance superiority over random broadcasting using Rayleigh fading wireless
channels. F. Liu et al. [12] extended the data dissemination in VANETs in [11] to a two-way
lane scenario by modeling the network as two separate 1-D lattice networks, corresponding
to the two directions of traffic flow. They divided the dissemination into the encountering
phase and the separated phase, determined by whether the broadcasting coverage areas
of the two disseminators overlapped, which means vehicles traveling in both direction
can communicate with both disseminators simultaneously. They analyzed the impact
of the opposite direction over the traditional one-way lane model and showed that two
disseminators traveling in opposite directions can enhance the speed of data dissemination.
Ref. [13] compared three methods in a highway data mulling scenario, with vehicles from
the opposite direction as data mutes to transmit large multimedia files, modeled as a coupon
collector problem, and among which the network-coding-based strategy outperformed
erasure-coding and repetition-coding strategies. The literature [14–16] shows that network
coding can improve reliability and throughput, but it fails to deal with dynamic situations
where the vehicle volume increases rapidly and the network structure becomes complex.
Therefore, random linear network coding (RLNC) [17] has garnered significant attention,
particularly for its ability to operate without prior knowledge of the network topology.
RLNC involves random coding coefficient selection from a finite field and performing
linear operations on the packets. As the vehicular scale increases, the random selection of
RLNC encoding coefficients within a finite field obviates the need to account for variations
in node quantity and network topology within this method. By receiving a sufficient
number of packets with independent coefficients at the sink, the original information
can be decoded at source, which enables transmitting content over wireless vehicle com-
munications with lossy links and that are highly dynamic. Ref. [18] proposed a RLNC
scheme for data transmission in a one-way lane V2V network, modeled as a multi-source
multi-relay single-sink broadcasting network, to reduce latency and enhance the network
robustness. In this one-way lane V2V communication scenario, the leading vehicles relay
the detected road conditions and critical safety alerts to those following behind, affording

141

Entropy 2023, 25, 1454

them sufficient time for well-informed decision-making. This type of information, with its
small data payload, facilitates swift transmission with no node departures in multi-round
communication processes, as assumed in [18], and implies a static and unchanging network
topology. This may not align with the evolving landscape of intelligent transportation. In
particular, with the increasing demand for in-vehicle entertainment experiences, expediting
the transmission of large-scale data from nearby vehicles has become essential. Given
the significant data volume involved, this study explores the utilization of vehicles in the
opposite lane to establish a framework for bidirectional V2V large-scale data transmission
over an extended period. During prolonged communication sessions for large-scale data
transmission, nodes at high speeds tend to exit the communicable range of receiving vehi-
cles, leading to dynamic changes in the network topology over multiple rounds. In this
extended two-way lane large-scale data transmission scenario, the network is modeled
as a multi-source single-sink network with a dynamic topology, where cars may enter or
leave the communication range, resulting in a varying number of sources each round. The
destination car node receives information from cars traveling in both the same and opposite
directions. By utilizing RLNC in this dynamic two-way lane model, the proposed scheme
enhances throughput and robustness, without relying on a specific network topology.

The main contributions of this paper are as follows:

• it extends the one-way lane model proposed in [18] to incorporate two-way lanes,
thereby creating a dynamic network model;

• the paper provides a lower bound on the generation probability, demonstrating the
feasibility and effectiveness of the RLNC scheme;

• it evaluates the performance of the RLNC scheme under frequently changing net-
work conditions and poor channel conditions. The results demonstrate that RLNC
significantly reduces latency compared to non-coding schemes.

The rest of this paper is organized as follows: Section 2 provides a brief overview
of RLNC and compares our work with the related literature. Section 3 presents a system
model, detailing the two-way lane RLNC transmission scheme and conducting an analysis
of the generation probability and time delay. In Section 4, we analyze the simulation
performance for communication delays under different packet loss rates and batch sizes,
and then compare the coding and non-coding schemes. Section 5 concludes the paper.

2. Related Work

In this section, we give details about RLNC and introduce the reasons why RLNC
is used. Then, the recent related literature for RLNC in V2V networks is compared with
our work.

2.1. Brief of RLNC

We first give a brief introduction to RLNC. Li et al. proposed linear network coding
(LNC) in [19], where they allowed intermediate nodes in the network to perform operations
on the incoming packets, combining them linearly before forwarding. At the receiving end,
the nodes can then decode the received combinations, to retrieve the original information.
Ho et al. then proposed LNC in a randomized setting [20], where the coding coefficients are
randomly chosen in a fixed-size finite field. Figure 1 illustrates a straightforward application
of RLNC in a butterfly network. Source node s is tasked with sending messages X1 and
X2 to sinks t1 and t2. Each channel can transmit only one message during a given time
slot. Node s sends the linearly encoded X1 and X2 with the randomly selected coefficients
(ξ1, ξ2), resulting in ξ1X1 + ξ2X2, to node 1. This information is then forwarded to nodes
3 and t1. Similar operations occur at node 2, with randomly chosen coefficients (ξ3, ξ4).
Given that node 3 receives two messages but can only utilize one channel to communicate
with node 4, it becomes imperative to perform linear network coding at node 3 using

142

Entropy 2023, 25, 1454

randomly chosen coefficients (ξ5, ξ6). Subsequently, node 4 forwards the encoded message
to both sinks. The messages received at t1 are denoted as Y11 and Y12, which is[

Y11
Y12

]
=

[
ξ1 ξ2

ξ5ξ1 + ξ6ξ3 ξ5ξ2 + ξ6ξ4

][
X1
X2

]
, (1)

and the messages received at t2 are denoted as Y21 and Y22, which is[
Y21
Y22

]
=

[
ξ3 ξ4

ξ5ξ1 + ξ6ξ3 ξ5ξ2 + ξ6ξ4

][
X1
X2

]
, (2)

With invertible coefficient matrices, the original X1 and X2 can be decoded.

s

t1 t2

1 2

3

4

ξ1X1 + ξ2X2 ξ3X1 + ξ4X2

ξ5(ξ1X1 + ξ2X2)+

ξ6(ξ3X1 + ξ4X2)

ξ1X1 + ξ2X2

ξ1X1 + ξ2X2

ξ3X1 + ξ4X2

ξ3X1 + ξ4X2

ξ5(ξ1X1 + ξ2X2)+

ξ6(ξ3X1 + ξ4X2)

ξ5(ξ1X1 + ξ2X2)+

ξ6(ξ3X1 + ξ4X2)

X1, X2

Figure 1. RLNC model in a butterfly network.

2.2. RLNC in V2V

Many works have introduced RLNC to V2V communication scenarios. Consider-
ing massive gigabit content transmission in millimeter-wave networks, ref. [21] applied
symbol-level network coding (SLNC); that is, RLNC at the symbol scale, and utilized a
cooperative concurrent distribution strategy in the scenario of highway network topology,
where roadside units (RSU) encode the original packets and then forward them to vehi-
cles. The proposed scheme enables collaborative V2V and vehicle-to-infrastructure (V2I)
mmWave communications through a greedy network coding strategy based on a graph-
theoretic approach. The scheme achieves a low latency, high efficiency, error resilience,
and reliability. In ref. [22], E. Tasdemir et al. implemented a dynamic systematic sliding
window RLNC scheme for end-to-end communication in vehicle platooning scenarios,
where the platooning leader generates packets that are transmitted hop-by-hop to the
platooning members. The coding process only involves packets within the dynamically
sliding window, which moves forward to include new packets and is closed through feed-
back, and these packets are combined linearly to generate coded packets using RLNC
techniques. This coding scheme was shown through simulation to provide resilience and
low latency. To address challenges like transmission collisions and channel fading, ref. [23]
proposed a hybrid medium access control (MAC) protocol for basic safety messages (BSMs)
dissemination within the DSRC framework. Additionally, this protocol, with three sessions,
a MAC setup session, CSMA session, and PNC session integrating physical-layer network
coding and RLNC, further enhances the reliability and efficiency of BSM dissemination.

143

Entropy 2023, 25, 1454

Ref. [24] further analyzed packet delivery ratio performance theoretically and through a
comprehensive simulation. Our proposed method is compared with the recent literature
works in a comparative table, as Table 1.

Table 1. Comparative table of our proposed method and recent literature.

Ours [21] [22] [23] [24]

With the help of RSU � � � � �
The level of RLNC Packet level Symbol level Packet level Packet level Packet level
One/two-way lane Two-way lane One-way lane One-way lane Two-way lane Two-way lane and intersection scenario

Data scale Large scale Large scale Large scale BSM BSM

3. System Model and RLNC Algorithm

In this section, we give the system model and introduce the RLNC algorithm.

3.1. System Model

First, we build the two-way lane V2V model based on real vehicle road scenarios,
as illustrated in Figure 2. In the model, the car receiving messages, denoted as R and
travels at a speed of vR. We have m cars, denoted as A1, A2, . . . , Am, traveling in the same
direction as R at constant speeds of vA1 , vA2 , . . . , vAm , respectively. Additionally, there are
w cars, denoted as B1, B2, . . . , Bw, traveling in the opposite direction at constant speeds of
vB1 , vB2 , . . . , vBw , respectively. For each i ∈ 1, 2, . . . , m and j ∈ 1, 2, . . . , w, cars Ai and Bj
store M identical raw packets to be transmitted. These M raw packets collectively form a
generation. Once the sink node R receives (or decodes) all M raw packets, the raw packets
are updated to transmit the next generation.

Figure 2. Vehicle road model.

R only communicates with cars within its communication range d. Specifically, R and
Ai establish contact only when the distance between them, denoted as d(Ai ,R), satisfies
d(Ai ,R) < d. In the case where Ai is positioned ahead of R, the communication between R
and Ai can be maintained for

t =
d + d(Ai ,R)

vR − vAi

; (3)

When vAi > vR, the communication between R and Ai can be maintained for

t =
d − d(Ai ,R)

vAi − vR
. (4)

If vAi = vR, they can always communicate with each other.
In addition, when Ai is positioned behind R, when vAi < vR, the communication

between R and Ai can be maintained for

t =
d − d(Ai ,R)

vR − vAi

; (5)

144

Entropy 2023, 25, 1454

When vAi > vR, the communication between R and Ai can be maintained for

t =
d + d(Ai ,R)

vAi − vR
. (6)

If vAi = vR, they can always communicate with each other.
Regarding the opposite lane, if car Bi is moving towards R, then

t =
d − d(Bi ,R)

vR + vBi

; (7)

If car Bi is traveling in the opposite direction and is positioned behind car R, R and Bi can
keep in touch for

t =
d + d(Bi ,R)

vR + vBi

. (8)

We further extract the model as a multi-source single-sink network, as shown in
Figure 3. In this model, the sink node is denoted R. The cars traveling in the same direction
are Aαt , where αt = 0, 1, 2, . . . , m.Similarly, the cars traveling in the opposite direction are
denoted as Bβt , with βt = 0, 1, 2, . . . , w. Both the cars in the same direction and those in the
opposite direction possess identical sets of M raw data packets, collectively referred to as a
generation. These packets are organized into batches to be transmitted. It is important to
note that the number of source nodes, denoted by αt and βt, may vary in each round.

Figure 3. A sketch of a two-way lane model.

3.2. RLNC Algorithm

We now implement the RLNC algorithm, analyze the probability of generation, and
present the corresponding algorithms. To implement RLNC, we select encoding coefficients
from the finite field GF(q), where the size of the finite field is denoted q. Consequently,
we obtain the encoded data packet ΓΓΓAi transmitted by the source node Ai from the same
direction as

ΓΓΓAi = a1
i rrr1 + a2

i rrr2 + a3
i rrr3 + · · ·+ aM

i rrrM, (9)

where rrrk represents the kth data packet, and ak
i ∈ GF(q) denotes the encoding coefficient

associated with rrrk in the encoded data packet ΓΓΓAi . Here, i ranges from 0 to αt (the number
of source nodes in the same direction), and k ranges from 1 to M (the total number of data
packets in a generation). Similarly, the encoded data packet ΓΓΓBj from the opposite source
Bj is

ΓΓΓBj = b1
j rrr1 + b2

j rrr2 + b3
j rrr3 + · · ·+ bM

j rrrM, (10)

where bk
j ∈ GF(q) is the encoding coefficient of rrrk in ΓΓΓBi , j = 0, 1, 2, . . . , βt, k = 1, 2, . . . , M.

145

Entropy 2023, 25, 1454

In each time slot, the source nodes collectively transmit the αt + βt packets that have
been encoded using RLNC, which can be represented in matrix form as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΓΓΓA1
ΓΓΓA2

· · ·
ΓΓΓAαt
ΓΓΓB1

ΓΓΓB2

· · ·
ΓΓΓBβt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
2 a2

2 · · · aM
2

a1
1 a2

1 · · · aM
1

· · · · · ·
a1

αt a3
αt · · · aM

αt
b1

1 b2
1 · · · bM

1
b1

2 b2
2 · · · bM

2
· · · · · ·
b1

βt
b2

βt
· · · bM

βt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

rrr1
rrr2
rrr3
· · ·

rrrM−1
rrrM

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

= CCC(αt+βt)×MRRRM×1, (12)

where CCC(αt+βt)×M is the coefficient matrix and RRRM×1 is the raw packet matrix.

3.2.1. Generation Probability

In order to decode M raw packets, the sink node R needs to receive M linearly
independent encoded packets. If the encoding coefficient vector of a packet is linearly
independent of the encoding data packets previously received, then this packet contributes
to the decoding process. We define the number of linearly independent packets received
by the sink node as the “sink’s state”, denoted as SR. The generation probability, which
represents the probability that the encoding packets are linearly independent, takes different
forms based on the sink’s state. Specifically, it depends on whether SR is greater than or
less than M − αt − βt. To address these scenarios, we give Lemmas 1 and 2.

Lemma 1. When the sink’s state SR ≤ M − αt − βt, generation probability is of the form

Pge=αt+βt =
i+αt+βt−1

∏
l=i

(1 − 1
qM−l), (13)

where q is the Galois field size, M is the number of raw packets in each batch, and i is the current
state of the sink node, αt = 0, 1, 2, · · · , m, βt = 0, 1, 2, · · · , w, i = 0, 1, 2, · · · , M − αt − βt.

Proof. Similarly to the proof of Theorem 1 in [18] but with n = αt + βt, source nodes send
αt + βt data packets in a time slot and the n packets are regarded as a group. n sources
send n data packets ΓΓΓΥη

in one time slot. There are qM − 1 choices, resulting in

Cαt+βt
(qM−1)+αt+βt−1 = Cαt+βt

qM+αt+βt−2 (14)

kinds of combination.
If all the n packets are linearly independent, then there are

αt+βt−1
∏
j=0

C1
qM−qi+j

Aαt+βt
αt+βt

(15)

kinds of combination.
Therefore, the generation probability is

Pge=αt+βt =

αt+βt−1
∏
j=0

C1
qM−qi+j

Aαt+βt
αt+βt

Cαt+βt
qM+αt+βt−2

=

αt+βt−1
∏
j=0

C1
qM−qi+j

Aαt+βt
qM+αt+βt−2

. (16)

146

Entropy 2023, 25, 1454

After simplifying, we can prove this.

Lemma 2. When the sink’s state is M > SR > M− αt − βt, that is, SR = M− αt − βt + 1, M−
αt − βt + 2, . . . , M − 1, the generation probability is of the form:

Pge=M−i =
M−1

∏
l=i

(1 − 1
qM−l), (17)

where q is the Galois field size, M is the number of raw packets in each batch, and i is the current
sink’s state, i = M − αt − βt + 1, M − αt − βt + 2, . . . , M − 1.

Proof. Similarly to the proof of Theorem 2 in [18] but with n = αt + βt, the generation
probability is

Pge=M−i =

M−i−1
∏
j=0

C1
qM−qi+j

AM−i
M−i

CM−i
qM+M−i−2

=

M−i−1
∏
j=0

C1
qM−qi+j

AM−i
qM+M−i−2

. (18)

After simplifying, we can prove this.

The generation probability in this context exhibits similarities to the generation prob-
ability discussed in [18]. However, in the context of dynamic topology, the generation
probability in each round is influenced, not only by the sink’s state, but also by the number
of currently communicable source nodes. Specifically, the sink’s state in time slot t can be
expressed as SR > M − αt − βt, indicating that the generation probability aligns with the
conditions stated in Lemma 2. Conversely, prior to the initiation of the (t + 1)th round of
communication, due to multiple vehicles departing the communicable range, in time slot
t + 1, we have SR ≤ M − αt+1 − βt+1. In such cases, the generation probability adheres
to the conditions specified in Lemma 1. This distinction arises from the changes in the
sink’s state and the varying number of communicable source nodes as a consequence of
the dynamic topology in the network.

We focus on determining the lower bound of the generation probability. The lower
bound is acquired when the sink’s state is M − m − w and sources send m + w data packets.
According to Appendix B in [18], let n = m + w, and we establish the lower bound of
generation probability

min Pge =
M−1

∏
l=M−m−w

(1 − 1
qM−l), (19)

which is equivalent to

min Pge =
m+w

∏
μ=1

(1 − 1
qμ), (20)

Thus, the lower bound of the generation probability depends on the total number of sources
at the beginning of communication m + w and the Galois field size q.

Figure 4 illustrates the lower bound of Pge, as given by Equation (20), where n repre-
sents the total number of sources (n = m + w). As the finite field size increases, the lower
bound of generation probability also increases. For example, when considering a finite field
size of GF(256), the minimum generation probability exceeds 0.996. Consequently, with a
sufficiently large finite field size, it is reasonable to assume that every packet transmitted
to the sink is valid, and the generation probability approaches 1. Assuming that, after
ζ rounds of communication, the sink node has received M data packets, the decoding
probability can be expressed as

Pd >
m+w

∏
μ=1

(1 − 1
qμ)

ζ . (21)

147

Entropy 2023, 25, 1454

2 4 8 16 32 64 128 256

Size of finite field

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
en

er
at

io
n

pr
ob

ab
ili

ty
n=1
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

Figure 4. Lower bound of the generation probability with different sources.

3.2.2. Time Delay Analysis

In our analysis of the time delay, we consider the dynamic nature of the participating
sources in each round, which differs from the one-way lane scenario described in [18]. To
address a two-way lane scenario, we first determine the number of source nodes within
the communication range of the sink during each round. This is performed based on the
position, speed, and initial distance to the sink, as outlined in Algorithm 1. In Algorithm 1,
we utilize an indicator variable f. When f = 1, this indicates that the source node is initially
positioned ahead of the sink node. Conversely, when f = 2, this indicates that the source
node is initially located behind the sink node. The algorithm utilizes this indicator to
determine the number of source nodes present in each round, considering their relative
positions with respect to the sink node. We tally the number of same direction sources
engaged in each communication round. This is contingent upon whether the source is
positioned ahead or behind the destination, as well as the relative speeds of the source
and destination vehicles, and the relative distance between them. As for the count of
counter-directional sources, this hinges on whether the source is located ahead or behind
the destination, along with the relative distance between them.

Based on the number of sources participating in each round, αt + βt, we obtain the
binomial distribution for the state transition of the sink node. When the sink’s state is
SR = 0, 1, 2, . . . , M − αt − βt, αt + βt source nodes collectively send αt + βt valid data
packets. The probability of the sink node receiving k valid data packets in this round, which
corresponds to a transition to k states in time slot t, can be calculated as

Pmov(t, k) = Ck
αt+βt

(1 − pe)
k pαt+βt−k

e , (22)

where pe denotes the packet loss rate.

148

Entropy 2023, 25, 1454

Algorithm 1 # of source nodes within communication range in time slot t

Input: # of source nodes from the same direction m
of source nodes from the reverse direction w
communication range db
speed of sink vb
position of source nodes in the same direction f, speed v, distance d
position of source nodes in the reverse direction fo, speed vo, distance do
rounds of communication N

1: Initialize # of same direction nodes Q = 0
2: Q(0) = m
3: for i = 1 → N do
4: count=0
5: for j = 0 → m − 1 do
6: if f(j) = 1&&v(j) < vb&&j(vb − v(j))− (db + d(j)) > 0 then
7: count=count-1
8: end if
9: if f(j) = 1&&v(j) > vb&&j(v(j)− vb)− (db − d(j)) > 0 then

10: count=count-1
11: end if
12: if f(j) = 2&&v(j) < vb&&j(vb − v(j))− (db − d(j)) > 0 then
13: count=count-1
14: end if
15: if f(j) = 2&&v(j) > vb&&j(v(j)− vb)− (db + d(j)) > 0 then
16: count=count-1
17: end if
18: end for
19: Q(i) = m+count
20: end for
21: Initialize # of reverse direction nodes Qo = 0
22: Qo(0) = w
23: for i = 1 → N do
24: count=0
25: for j = 0 → w − 1 do
26: if fo(j) = 1&&j(vb + v(j))− (db + d(j)) > 0 then
27: count=count-1
28: end if
29: if f(j) = 2&&j(vb + v(j))− (db − d(j)) > 0 then
30: count=count-1
31: end if
32: end for
33: Qo(i) = w+count
34: end for
35: total number of the source nodes Q = Q + Qo
Output: # of source nodes within communication range

When the state of the sink is SR = M − αt − βt + 1, M − αt − βt + 2, · · · , M − 1, the
M − SR source nodes will send M − SR valid data packets. The probability of sink node
transits k states in time slot t is

Pmov(t, k) = Ck
M−SR

(1 − pe)
k pM−SR−k

e . (23)

The state matrix of the sink in the first time slot is

S1 = [Bn(1)(0) Bn(1)(1) · · · Bn(1)(n(1))] (24)

= [P1
0,0 P1

0,1 · · · P1
0,n(1)], (25)

149

Entropy 2023, 25, 1454

where the binomial distribution Bn(t)(α) represents the probability of receiving α valid
data packets out of the data packets sent by n(t) source nodes in time slot t. Here, n(t)
represents the total number of source nodes in time slot t, which is initially m + w. Pk

i,j
denotes the probability of the sink state transitioning from i to j in the kth time slot. To
determine the state matrix of the sink node after time slot t, denoted as St, we need to first
solve for the state matrix after time slot t − 1. The state matrix after time slot t is denoted
St and is represented by Equation (26).

The probability Pt(M), which represents the sink node receiving M valid data packets
after t time slots, can be calculated by summing the probabilities Pt

i,M over all possible
states i in the state matrix St. Mathematically, this can be expressed as Pt(M) = ∑ Pt

i,M.
The solution for the state matrix St depends on the state matrix St−1 from the previous
time slot and the number of source nodes Q(t) derived from Algorithm 1. Algorithm 2
provides a solution for calculating the probability Pt, which represents the sink node being
in different states after time slot t. This probability is dependent on the values of Pt−1 and
Q(t − 1). Specifically, Pt(M) represents the completion probability of time slot t, which
is the probability that sink node receives M data packets after t time slots. The recursive
relationship between Pt and Pt−1 is expressed as Pt = Φ(Pt−1, BQ(t−1)), where BQ(t−1)
represents the binomial distribution of the number of received packets in time slot t when
Q(t − 1) data packets are sent. Such a solution for the recursive relation is provided in
Algorithm 3. In Algorithm 3, the first step is to determine the number of source nodes
participating in each round of communication. If this is larger than the needed number
of packets M, then only M nodes will participate in the communication. Otherwise, all
the nodes will participate. For each sink state i, the probability distribution at time slot t
is computed by calculating the probability of receiving k = i − j messages correctly after
having received j messages (see line 19 in Algorithm 3). By utilizing Algorithm 2 and
Algorithm 3, we can calculate the completion probability Pt(M) of the sink node after t
time slots. Subsequently, we will conduct an analysis of the delay probability distribution,
taking into consideration varying packet loss rates pe and packet batch sizes M.

St =

⎡⎢⎢⎢⎢⎢⎢⎣
Bn(t)(0)∑ Pt−1

η,0 Bn(t)(1)∑ Pt−1
η,0 Bn(t)(2)∑ Pt−1

η,0 · · · Bn(t)(n(t))∑ Pt−1
η,0

Bn(t)(0)∑ Pt−1
η,1 Bn(t)(1)∑ Pt−1

η,1 Bn(t)(2)∑ Pt−1
η,1 · · · Bn(t)(n(t))∑ Pt−1

η,1
· · ·

Bn(t)(0)∑ Pt−1
η,M−2 Bn(t)(1)∑ Pt−1

η,M−2 Bn(t)(2)∑ Pt−1
η,M−2 · · · 0

Bn(t)(0)∑ Pt−1
η,M−1 Bn(t)(1)∑ Pt−1

η,M−1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
Pt

0,0 Pt
0,1 Pt

0,2 · · · Pt
0,n

Pt
1,1 Pt

1,2 Pt
1,3 · · · Pt

1,1+n
· · ·

Pt
M−2,M−2 Pt

M−2,M−1 Pt
M−2,M · · · 0

Pt
M−1,M−1 Pt

M−1,M 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦. (26)

Algorithm 2 Completion probability of sink at time slot t

Input: # of raw data packets M, packet loss rate pe, communication times N, # of source
nodes Q

1: Bn(i) = Ci
n(1 − pe)i pn−i

e
2: for i = 0 → Q(0) do
3: P1(i) = BQ(0)(i)
4: end for
5: for t = 2 → N do
6: Pt = Φ(Pt−1, BQ(t−1)

)

7: end for
Output: Completion probability of sink at time slot t: Pt(M)

150

Entropy 2023, 25, 1454

Algorithm 3 The state distribution probability of sink after time slot t:Pt = Φ(Pt−1, BQ(t))

Input: The distribution probability of sink state last time slot Pt−1,# of current source nodes
Q(t − 1)

1: sumQ(t)=0
2: for i = 0 → t − 1 do
3: sumQ(t)=sumQ(t)+Q(i)
4: end for
5: if sumQ(t) > M then
6: maxNum = M
7: else
8: maxNum=sumQ(t)
9: end if

10: sumQ(t-1)=0
11: for i = 0 → t − 2 do
12: sumQ(t-1)=sumQ(t-1)+Q(i)
13: end for
14: for i = 0 → maxNum do
15: Pt(i) = 0
16: for j = 0 → sumQ(t-1) do
17: for k = 0 → Q(t − 1) do
18: if j + k = i&&j! = M then
19: Pt(i) = Pt(i) + Pt(j)× BQ(t−1)(k)
20: end if
21: end for
22: end for
23: end for
Output: The state probability distribution Pt of sink after time slot t

4. Simulation Performance

In this section, we present a comprehensive analysis of the performance of the pro-
posed scheme through Matlab simulations. Our main focus was on minimizing the latency,
which was quantified by the number of time slots required to complete the transmission.
We paid particular attention to two key factors that impact the latency: the packet loss rate,
and the batch size. In addition, we conducted an analysis on the impact of varying vehicle
communication ranges and different arrival rates following a stochastic arrival process,
the Poisson process. Furthermore, we compared the coding and non-coding schemes. By
comparing their performance, we could evaluate the effectiveness of the coding scheme in
reducing the latency and improving the overall efficiency of the system.

4.1. Packet Loss Rate

To analyze the completion probability distribution under varying packet loss rates, we
set up the following parameters:

• The initial distance of the source node to the sink node was randomly generated
within the range of 0 to 150 m. This was because the current communication range of
intelligent cars is 150–300 m. We stipulated that the communication range of the sink
node was 150 m in front and behind; that is, the sink node could communicate with
vehicles within a distance of 150 m:

• The speed of each node was randomly assigned within a range of 60 to 120 km/h
considering the highway scenario;

• The initial position of each car was randomly generated, either in front of or behind
the sink node;

• Each time slot was set to a duration of 100 ms, resulting in 10 rounds of communication
per second.

151

Entropy 2023, 25, 1454

With these parameters in place, we calculated the completion probability of the sink
node at time slot t, which represents the likelihood of receiving M packets after t time slots.

Figure 5 shows the results of the simulation conducted with varying packet loss rates
of m = 2, w = 3, and M = 100. In Figure 5a, we can observe that as the packet loss rate
increased, the sink node required more time to receive M data packets, resulting in a more
dispersed probability distribution of completion delay. This was because of the decrease in
the number of data packets received by the sink node during each round, as a result of the
high packet loss rate.Additionally, as the time slots progress, more sources may move out
of the sink’s communication range, resulting in fewer sources participating in the commu-
nication process and increasing the delay. Figure 5b demonstrates the correlation between
the packet loss rate and the slope of the cumulative completion probability distribution
curve. As the packet loss rate decreases, the curve becomes steeper, indicating a higher
probability of timely completion. This implies that a lower packet loss rate leads to more
efficient and reliable completion of the transmission process.

20 25 30 35

Time Slots

0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

pr
ob

ab
ili

ty

p
e
=0.05

p
e
=0.1

p
e
=0.2

p
e
=0.3

(a)

20 25 30 35

Time slots

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

co
m

pl
et

io
n

pr
ob

ab
ili

ty
p

e
=0.05

p
e
=0.1

p
e
=0.2

p
e
=0.3

(b)

Figure 5. Completion probability distribution and cumulative completion probability distribution
of the delay under different packet loss rates (m = 2, w = 3, M = 100). (a) Completion probability
distribution; (b) cumulative completion probability distribution.

4.2. Batch Size

The delay also depends on the batch size. Figure 6 presents the simulation results
under different batch sizes, with parameters set as m = 3, w = 4, pe = 0.1. In Figure 6a,
we can observe the completion probability distribution, and in Figure 6b, we can observe
the cumulative distribution of the probability of delay. As the batch size increased, the
number of time slots required to transmit a batch also increased. This resulted in a broader
probability distribution of completion delay, indicating that larger batch sizes require more
time to complete the transmission process. The increased delay was attributed to the larger
number of data packets that had to be transmitted within each batch.

Table 2 presents the average delay and unit delay of the first batch of packets trans-
mitted under varying batch sizes. It can be observed that as the batch size increased, the
average delay consistently increased. However, contrary to the findings in the one-way
lane scenario [18], the unit delay did not always decrease in the two-way lanes scenario. In
the two-way lane scenario, after applying RLNC to M raw data packets and transmitting
them to the sink node, the sink node needed to receive M valid data packets to perform
decoding. Therefore, with larger batch sizes, more rounds of transmission were required
to complete the transmission process, even with the same number of initial sources. Con-
sequently, the duration of the communication process was prolonged, leading to a higher
likelihood of source nodes moving out of the communication range of the sink node. Thus,
the subsequent rounds witnessed a decrease in the number of sources and the number
of packets received in each time slot. It is worth noting that for smaller network sizes,

152

Entropy 2023, 25, 1454

the communication delay became larger, which was due to the limited number of sources
available for transmission.

5 10 15 20 25 30 35

Time Slots

0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

pr
ob

ab
ili

ty

M=60
M=80
M=120
M=160

(a)

5 10 15 20 25 30 35

Time slots

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

co
m

pl
et

io
n

pr
ob

ab
ili

ty

M=60
M=80
M=120
M=160

(b)

Figure 6. Completion probability distribution and cumulative completion probability distribution of
delay under different batch size (m = 3, w = 4, pe = 0.1). (a) Completion probability distribution;
(b) cumulative completion probability distribution.

The dynamic nature of the network topology needs to be considered when analyzing
the impact of batch size. Merely focusing on the average and unit delay for the first batch
is not sufficient. This is because, as subsequent batches are sent, the number of source
nodes changes over time, influencing the overall communication delay. Therefore, we
analyzed the total delay for sending a total of Q data packets, while varying the batch
size M, under the condition that the total quantity of data packets Q remained constant.
Table 3 presents the cumulative delay incurred during the transmission of all packets, under
varying batch sizes. It can be observed that, as the batch size increased, the total delay
exhibited a decreasing trend. This was because, with a smaller batch size, it took more
rounds of communication to send the subsequent batches, and the source nodes may have
left the communication range, resulting in more time slots. This implies that increasing
the batch size can mitigate communication delays and improve the overall efficiency
of the transmission process.To reduce the communication delay in two-way lane V2V
communication using RLNC, increasing the batch size within the storage and computing
capabilities of the source and sink nodes can effectively minimize the communication delay.

Table 2. Unit delay under different batch sizes (in time slots).

M(m = 3, w = 4, pe = 0.1) ET T

60 10.2545 0.1709
80 13.4206 0.1678

120 20.6697 0.1722
160 29.5586 0.1847

Table 3. Total delay under different batch sizes (in time slots).

M(Q = 480, m = 3, w = 4, pe = 0.1) ET M(Q = 600, m = 4, w = 5, pe = 0.1) ET

60 258.0652 75 138.5758
80 255.6062 100 136.7833
120 252.2668 120 136.0340
160 250.0318 150 135.4871

4.3. Vehicle Range

Next, we examined the influence of varying the vehicle ranges on the time slots
required for transmission, as illustrated in Figure 7. Figure 7a shows the completion proba-

153

Entropy 2023, 25, 1454

bility distribution, and Figure 7b shows the cumulative completion probability distribution.
It is evident that with a smaller communication range, more time slots were needed to
complete the transmission. However, as the communication range increased, there was
minimal impact on the transmission process. This was attributed to the fact that with
a sufficiently large communication range, vehicles remained within the communication
range until the transmission was complete.

14 15 16 17 18 19 20

Time Slots

0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

pl
et

io
n

pr
ob

ab
ili

ty

Range=150
Range=200
Range=250
Range=300

(a)

13 14 15 16 17 18 19 20 21

Time slots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

co
m

pl
et

io
n

pr
ob

ab
ili

ty

Range=150
Range=200
Range=250
Range=300

(b)

Figure 7. Completion probability distribution and cumulative completion probability distribution of
delay under different range of vehicles (m = 2, w = 3, pe = 0.1, M = 100). (a) Completion probability
distribution; (b) cumulative completion probability distribution.

4.4. Poisson Arrival Process

The Poisson process approximates the stochastic arrival process of vehicles well. In the
following analysis, we delved into the influence of varying arrival rates on the transmission,
utilizing a Poisson process model to simulate vehicle arrivals. As depicted in the Figure 8,
we initiated the network with three vehicles in the same direction and four in the opposite
direction, assuming a packet loss rate of 0.1. λ represents the Poisson parameter, indicating
the arrival rate of vehicles. For each task involving the transmission of 100 data packets, we
determined the time slots required for 50 cases. At the beginning of the transmission, there
was a period during which the model with λ = 1 (represented by blue triangles) required a
significantly large number of time slots. This was because the vehicles transmitting initially
gradually leave, but due to the relatively low arrival of vehicles, more time slots were
needed to complete the transmission.

Notably, after multiple cases, we observed a stabilizing trend in the time required
for each task. Once it reached a steady state, a higher vehicle arrival rate (signified by a
larger λ) corresponded to a reduced number of time slots being required to complete a
transmission. This was because, when there were more vehicles within communication
range, more vehicles could participate in the transmission task, enabling faster reception of
a sufficient number of decoded data packets.

154

Entropy 2023, 25, 1454

0 5 10 15 20 25 30 35 40 45 50

Cases

0

10

20

30

40

50

60

R
eq

ui
re

d
tim

e
sl

ot
s

lamda=1
lamda=2
lamda=3

Figure 8. The time slots required with different λ in the Poisson process (m = 2, w = 3, pe = 0.1,
M = 100).

4.5. Coding vs. Non-Coding

By employing RLNC, M raw data packets were encoded in batches at the source nodes
and transmitted to the sink node, which required the sink node to receive M valid data
packets for decoding. Through multiple batches, the sink node could recover Q original data
packets. Without coding, each source node randomly selected and sent one packet to the
sink node in each round, until all packets had been received. However, this approach does
not guarantee that the randomly selected data packets from different sources will be distinct,
potentially leading to the sink node receiving duplicate data packets. Table 4 provides a
comparison between the coding and non-coding schemes. It shows that as the packet loss
rate increased, the communication latency also increased. However, it is worth noting that
doubling the packet loss rate did not result in a significant increase in communication delay.
The adoption of RLNC technology improved the communication robustness, enhancing
the resistance against channel degradation and reducing communication delay.

In terms of RLNC coding overheads, this hinged on both the finite field size q and
the number of original packets N involved in the coding process. Storing the coefficients
in a single coded packet necessitated (N − 1) · log2 q bits. It is evident that, with a small
packet size, the performance was significantly hindered due to this substantial overhead.
An approach involving the attachment of the seed of the random coefficients generator
to the coded packets was employed in [14,15] for network coding, effectively reducing
the overheads to log2 q, regardless of the number of combined packets. This idea, initially
proposed in [25], is worth considering for adoption to reduce overheads in future research.

Table 4. Comparison of coding and non-coding schemes (in time slots).

Case ET (Q = 400, M = 50, m = 2, w = 3) ET (Q = 600, M = 60, m = 4, w = 5)

Coding (pe = 0.1) 270.9284 180.3904
Coding (pe = 0.2) 327.5296 225.0866
Coding (pe = 0.3) 399.8219 282.0798

Non-coding (pe = 0) 514.86 474.73

155

Entropy 2023, 25, 1454

5. Conclusions

In this paper, we proposed an RLNC scheme for efficient and low-latency transmission
of large-scale data in V2V communication with two-way lanes. We introduced a dynamic
multi-source single-sink model specifically designed for the two-way lane V2V communi-
cation scenario and derived the lower bound of the generation probability for the RLNC
scheme. Our analysis revealed that reducing the packet loss rate and increasing the sending
batch size properly can effectively decrease the communication delay. By conducting a
comparative analysis with a non-RLNC scheme, we demonstrated the superior perfor-
mance of the RLNC scheme in reducing the communication delay and enhancing network
robustness in V2V networks with a dynamic topology with two-way lanes.

Author Contributions: Conceptualization, T.Z. and Y.Z.; methodology, T.Z.; software, T.Z. and Y.Z.;
validation, Y.Z., T.Z. and C.L.; formal analysis, Y.Z.; investigation, C.L.; writing—original draft
preparation, Y.Z.; writing—review and editing, Y.Z. and C.L.; visualization, Y.Z.; supervision, C.L.;
project administration, C.L.; funding acquisition, C.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Science Foundation of China (NSFC) with grant
Nos. 62271514 and the Science, Technology and Innovation Commission of Shenzhen Municipality
with grant Nos. JCYJ20210324120002007, and ZDSYS20210623091807023.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Papadimitratos, P.; Fortelle, A.L.; Evenssen, K.; Brignolo, R.; Cosenza, S. Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 2009, 47, 84–95. [CrossRef]

2. Rios-Torres, J.; Malikopoulos, A.A. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and
Merging at Highway On-Ramps. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1066–1077. [CrossRef]

3. Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A
Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [CrossRef]

4. Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182.
[CrossRef]

5. Popovski, P.; Nielsen, J.J.; Stefanovic, C.; de Carvalho, E.; Strom, E.; Trillingsgaard, K.F.; Bana, A.S.; Kim, D.M.; Kotaba, R.; Park,
J.; et al. Wireless Access for Ultra-Reliable Low-Latency Communication: Principles and Building Blocks. IEEE Netw. 2018,
32, 16–23. [CrossRef]

6. Zhou, H.; Jiang, K.; He, S.; Min, G.; Wu, J. Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching
in Internet-of-Vehicles. IEEE Trans. Wirel. Commun. 2023, 1. [CrossRef]

7. Zhang, H.; Huang, M.; Zhou, H.; Wang, X.; Wang, N.; Long, K. Capacity Maximization in RIS-UAV Networks: A DDQN-Based
Trajectory and Phase Shift Optimization Approach. IEEE Trans. Wirel. Commun. 2023, 22, 2583–2591. [CrossRef]

8. Ahlswede, R.; Cai, N.; Li, S.Y.; Yeung, R. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]
9. Syed, A.A.; Ayaz, S.; Leinmüller, T.; Chandra, M. Network Coding Based Fault-Tolerant Dynamic Scheduling and Routing for

In-Vehicle Networks. J. Netw. Syst. Manag. 2023, 31. [CrossRef]
10. Sun, Y.; Yin, L.; Ma, Y.; Wang, C. IoV-SDCM: An IoV Secure Data Communication Model Based on Network Encoding and Relay

Collaboration. Secur. Commun. Netw. 2022, 2022, 6546004. [CrossRef]
11. Ye, F.; Roy, S.; Wang, H. Efficient Data Dissemination in Vehicular Ad Hoc Networks. IEEE J. Sel. Areas Commun. 2012, 30, 769–779.

[CrossRef]
12. Liu, F.; Chen, Z.; Xia, B. Data Dissemination With Network Coding in Two-Way Vehicle-to-Vehicle Networks. IEEE Trans. Veh.

Technol. 2016, 65, 2445–2456. [CrossRef]
13. Park, J.S.; Lee, U.; Oh, S.; Gerla, M.; Lun, D.; Ro, W.W.; Park, J. Delay Analysis of Car-to-Car Reliable Data Delivery Strategies

Based on Data Mulling with Network Coding. IEICE Trans. Inf. Syst. 2008, E91-D, 2524–2527. [CrossRef]
14. Hassanabadi, B.; Valaee, S. Reliable Periodic Safety Message Broadcasting in VANETs Using Network Coding. IEEE Trans. Wirel.

Commun. 2014, 13, 1284–1297. [CrossRef]
15. Gao, Y.; Ali, G.G.M.N.; Chong, P.H.J.; Guan, Y.L. Network Coding Based BSM Broadcasting at Road Intersection in V2V

Communication. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada,
18–21 September 2016; pp. 1–5. [CrossRef]

156

Entropy 2023, 25, 1454

16. Gao, Y.; Chong, P.H.J.; Guan, Y.L. BSM dissemination with network coded relaying in VANETs at NLOS intersections. In
Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.
[CrossRef]

17. Ho, T.; Medard, M.; Koetter, R.; Karger, D.; Effros, M.; Shi, J.; Leong, B. A Random Linear Network Coding Approach to Multicast.
IEEE Trans. Inf. Theory 2006, 52, 4413–4430. [CrossRef]

18. Zhu, T.; Li, C.; Tang, Y.; Luo, Z. On latency reductions in vehicle-to-vehicle networks by random linear network coding. China
Commun. 2021, 18, 24–38. [CrossRef]

19. Li, S.Y.; Yeung, R.; Cai, N. Linear network coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [CrossRef]
20. Ho, T.; Koetter, R.; Medard, M.; Karger, D.; Effros, M. The benefits of coding over routing in a randomized setting. In Proceedings

of the IEEE International Symposium on Information Theory, 2003. Proceedings, Yokohama, Japan, 29 June 2003–4 July 2003.
[CrossRef]

21. Pan, S.; Zhang, X.M. Cooperative Gigabit Content Distribution with Network Coding for mmWave Vehicular Networks. IEEE
Trans. Mob. Comput. 2023. [CrossRef]

22. Tasdemir, E.; Lehmann, C.; Nophut, D.; Gabriel, F.; Fitzek, F.H.P. Vehicle Platooning: Sliding Window RLNC for Low Latency and
High Resilience. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops),
Dublin, Ireland, 7–11 June 2020. [CrossRef]

23. Zhang, M.; Chong, P.H.J.; Seet, B.C.; Rehman, S.U.; Kumar, A. Integrating PNC and RLNC for BSM dissemination in VANETs. In
Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–5. [CrossRef]

24. Zhang, M.; Ali, G.G.M.N.; Chong, P.H.J.; Seet, B.C.; Kumar, A. A Novel Hybrid MAC Protocol for Basic Safety Message
Broadcasting in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4269–4282. [CrossRef]

25. Liu, Z.; Wu, C.; Li, B.; Zhao, S. UUSee: Large-Scale Operational On-Demand Streaming with Random Network Coding. In
Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

157

Citation: Wang, W.; Tao, Z.; Liu, N.;

Kang, W. Fundamental Limits of

Coded Caching in Request-Robust

D2D Communication Networks.

Entropy 2024, 26, 250. https://

doi.org/10.3390/e26030250

Academic Editors: Shenghao Yang

and Kenneth Shum

Received: 4 February 2024

Revised: 1 March 2024

Accepted: 7 March 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Fundamental Limits of Coded Caching in Request-Robust D2D
Communication Networks †

Wuqu Wang 1, Zhe Tao 2, Nan Liu 1,* and Wei Kang 3

1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 211189, China;
wuquwang@seu.edu.cn

2 Huawei Technologies, Nanjing 210012, China
3 School of Information Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: nanliu@seu.edu.cn
† This article was presented in part at the IEEE International Symposium on Networks, Computers and

Communications (ISNCC 2023), Doha, Qatar, 23–26 October 2023.

Abstract: D2D coded caching, originally introduced by Ji, Caire, and Molisch, significantly improves
communication efficiency by applying the multi-cast technology proposed by Maddah-Ali and
Niesen to the D2D network. Most prior works on D2D coded caching are based on the assumption
that all users will request content at the beginning of the delivery phase. However, in practice, this
is often not the case. Motivated by this consideration, this paper formulates a new problem called
request-robust D2D coded caching. The considered problem includes K users and a content server with
access to N files. Only r users, known as requesters, request a file each at the beginning of the delivery
phase. The objective is to minimize the average and worst-case delivery rate, i.e., the average and
worst-case number of broadcast bits from all users among all possible demands. For this novel D2D
coded caching problem, we propose a scheme based on uncoded cache placement and exploiting
common demands and one-shot delivery. We also propose information-theoretic converse results
under the assumption of uncoded cache placement. Furthermore, we adapt the scheme proposed by
Yapar et al. for uncoded cache placement and one-shot delivery to the request-robust D2D coded
caching problem and prove that the performance of the adapted scheme is order optimal within a
factor of two under uncoded cache placement and within a factor of four in general. Finally, through
numerical evaluations, we show that the proposed scheme outperforms known D2D coded caching
schemes applied to the request-robust scenario for most cache size ranges.

Keywords: coded caching; device-to-device; request-robust; order-optimal scheme

1. Introduction

In recent years, the demand for user throughput has greatly increased by applications
based on fifth-generation (5G) mobile networks [1], such as short videos, self-driving vehi-
cles, the Metaverse, etc. Fortunately, the data of such applications can be pre-stored in the
user’s storage during low-network consumption periods, preventing network congestion
during peak hours. This approach is known as caching [2]. There are typically two phases
in the caching process [3]. Before knowing any user requests, the server fills the users’
caches in the placement phase during off-peak hours. The delivery phase follows in peak
hours. The delivery signals will be designed and transmitted from terminals like the server
or the users to satisfy all user demands when they are revealed. Technology for caching
has advanced quickly in recent years, and it is currently regarded as one of the effective
methods for relieving the congestion of wireless networks.

Traditional caching ignores the processing capability of the users, and therefore,
the contents cached by the users and the signals transmitted by the server are both uncoded.
In contrast to traditional caching, coded caching [3], proposed by Maddah-Ali and Niesen,
uses a combination of coded multi-casting and device caching to simultaneously fulfill

Entropy 2024, 26, 250. https://doi.org/10.3390/e26030250 https://www.mdpi.com/journal/entropy158

Entropy 2024, 26, 250

multiple requests through coded transmissions. The coded caching strategy works for
the prototypical network topology called the single shared-link network, e.g., vehicular
networks [4]. Both the cache contents of the users and the delivery signal from the server
are allowed to be coded in the coded caching problem. The aim is to design a caching and
delivery scheme that minimizes the average and worst-case delivery rate, which is defined
as the average and worst-case number of broadcast bits among all possible user requests.
When the optimal caching and delivery scheme that achieves the lowest worst-case delivery
rate can be found for any user cache size, the optimal tradeoff between rate and memory
for the system is determined. If each user directly stores a subset of the files’ bits in its
cache without coding, it is referred to as an uncoded cache placement scheme; otherwise, it
is referred to as a coded cache placement scheme. The original problem [3] studied in coded
caching is centralized, assuming that all users present during the placement phase will each
make a request for a file at the beginning of the delivery phase. Decentralized coded caching
[5–7] also considers the possibility of users leaving or turning off during the delivery phase
and explores less coordinated caching strategies.

Taking self-driving vehicles as an example: one promising approach to improve the
communication efficiency is through the use of device-to-device (D2D) communication,
which allows the users to directly exchange information with each other without the need
for a server like a base station. This can be particularly useful in situations where the
traditional infrastructure is limited or unavailable, such as in remote or rural areas. To solve
the coded caching problem in these scenarios, a framework is proposed by Ji et al. in [8] for
D2D coded caching. In the placement phase, similar to coded caching [3], the server fills
the users’ caches before the users make any requests. In the delivery phase, when the users
reveal their demands, the server is disconnected from the users and it is up to the users to
communicate with each other so that each user can decode the file it requested using the
signals transmitted by the other users and the contents of its local cache. For the centralized
D2D coded caching problem, the caching strategy of [3] (Algorithm 1), which is uncoded, is
widely used in the placement phase, e.g., in [8,9] and so on. In [8], a novel delivery scheme
was provided that is appropriate for the D2D scenario. Additionally, a well-known D2D
coded caching converse was proposed in [8], and it has been demonstrated that, when the
memory size is large, the proposed D2D caching and delivery scheme is order optimal
within a constant factor. It is difficult to find the optimal caching and delivery scheme and
the corresponding optimal rate–memory tradeoff for the centralized D2D coded caching
problem. However, there are many researchers who try to find the fundamental limits
of the centralized D2D coded caching problems under certain assumptions or additional
constraints, e.g., [9,10].

With concern to the timeliness of the communication, one-shot delivery, which is defined
to satisfy the condition that each user can decode any bit of its requested file from its
own cache and the transmitted signal from at most one other user, is proposed in [9]
for the centralized D2D coded caching problem. For example, one self-driving vehicle
may quickly decode the requested map data after receiving the signals transmitted by
another self-driving vehicle, without waiting for all the considered vehicles to complete
the transmission of signals. The proposed caching and delivery scheme in [9] is optimal
under the constraint of uncoded cache placement and one-shot delivery, and it is order
optimal within a factor of two if the converse of the shared-link coded caching problem
with uncoded cache placement [11] is used as the lower bound and order optimal within a
factor of four compared to the general D2D coded caching converse results.

In addition to [9], many other researchers study variants of the D2D coded caching
problems, such as allowing for coded placement with three users [10], private caching [12],
private caching with a trusted server [13,14], distinct cache sizes [15], finite file packeti-
zations [16], finite-length analysis [17], secure coded caching [18], secure delivery [19],
wireless multi-hop D2D networks [20,21], partially cooperative D2D communication
networks [22,23], constructions of placement delivery arrays (PDAs) [24], and so on.
Among these papers, most of them assume that all users will request content at the begin-

159

Entropy 2024, 26, 250

ning of the delivery phase. However, in practice, this may not be true. For example, when
assisted self-driving vehicles within a certain range carry out D2D communication, they
may not request at the same time or some of them may be driven manually and do not
need to access high-definition map data. In these situations, waiting for all users to request
content will waste time, and setting the requests of the users who do not request some
arbitrary file demand will waste communication resources. Note that in these scenarios,
even though the users may not request data, they are still available to participate in the
delivery phase by transmitting signals that are functions of their cached contents.

Hence, in this paper, we propose and study a new problem called request-robust D2D
coded caching, where in the delivery phase, though all users in the placement phase are still
present and may help with the transmission, some of them do not request any files. It is not
known in the placement phase the number or identity of the users who do not request files.
This problem is not the same as the decentralized D2D coded caching problem [8], where
users who leave or turn off during the delivery phase do not make file requests, nor do they
participate in the delivery. Note that this problem is similar to the user inactivity problem
in the D2D caching setting [9,22], where each user may independently have a probability
of being inactive, i.e., they do not make a file request at the beginning of the delivery phase.
However, in the request-robust D2D coded caching problem, inactive users still help in the
delivery phase by transmitting signals, whereas in the user inactivity problem, they do not.

1.1. Main Contributions

The main contributions of the paper can be summarized as follows:

(1) For the request-robust D2D coded caching problem, we adapt the scheme from [9]
for uncoded cache placement and one-shot delivery and call the adapted scheme the
adapted Yapar–Wan–Schaefer–Caire (YWSC) scheme.

(2) In order to find better performance, we present a new achievable scheme based on
the uncoded cache placement and exploiting common demands [11] and one-shot
delivery [9]. The caching strategy is the same as that proposed by Maddah-Ali and
Niesen in [3] (Algorithm 1), while the delivery strategy divides the sub-files into
three categories, and different delivery signals are designed for each category. We
call the new scheme the three-category-based scheme. This scheme was presented in the
conference version of this paper [25].

(3) We propose an information-theoretic lower bound under uncoded cache placement
based on seeking the converse of a problem called coded caching with inactive users.
The problem of coded caching with inactive users was proposed in [26], where users
are inactive with a certain probability in the traditional coded caching problem of [3].
Hence, the converse for the problem of coded caching with inactive users can serve as
a converse for the request-robust D2D coded caching problem. Note that [26] only
considers the optimization of the cache replication parameter and does not provide a
converse for the caching and delivery scheme.

(4) We prove that the performance of the adapted YWSC scheme is order optimal within
a factor of two under the assumption of uncoded cache placement and within a factor
of four in general.

(5) Through numerical evaluation, we show that the three-category-based scheme out-
performs the adapted YWSC scheme, as well as other known D2D coded caching
schemes [3] applied to the request-robust scenario.

1.2. Notations

Throughout this paper, H(·) represents the entropy of random variables, | · | represents

the cardinality of a set, ⊕ denotes finite field addition, we let X \Y �
= {x ∈ X |x �∈ Y},

[x : y : z]
�
= {x, x + y, x + 2y, ..., z}, [x : y] = [x : 1 : y] and [n] = [1 : n]. For two integers x,

and y, if x < y or x ≤ 0, we let (y
x) = 0.

160

Entropy 2024, 26, 250

2. System Model and Related Background

2.1. System Model

We study the request-robust D2D coded caching problem, which is defined in the follow-
ing. We consider a D2D coded caching system (see Figure 1) where a server is connected to

a fixed content file database of N files, W �
= (W1, ..., WN). Each file consists of F bits. There

are K users in the system, each with a cache of size MF bits. We focus on the non-trivial

scenario where M ≤ N. Let K be the set of user indices, i.e., K �
= [K].

Figure 1. System model for request-robust D2D coded caching problem when there are 3 users.
In this realization, User 2 does not request. Solid and dotted lines indicate placement and delivery
phases, respectively.

The system operates in two phases. In the placement phase, each user’s cache is filled
by the central server, which does not know the number of users or the identities of the
users requesting files in the other phase. Denote the content in the cache of User k as Zk,
k ∈ K. In the delivery phase, some of the K users will make file requests while others
will not. We denote the set of users making file requests as R, R ⊆ K. Each user in R
will request a single file. Let r denote the number of users requesting files, i.e., r � |R|,
and we assume that the file requests, i.e., which user requests which file and which users
are not requesting any files, are known to all K users. Each of the K users will send a signal
that will be received by the users in R. It is required that each user in R can decode its
requested file by using the signals received and its own cache content. Note that Figure 1 is
different from [9] (Figure 1), i.e., there exists a user who does not request any file in Figure 1,
while in [9] (Figure 1), all users request files.

More specifically, a caching and delivery scheme for this system consists of

1. K caching functions
ϕk : [2F]N → [2MF], k ∈ K,

which map the N files into cache contents of the users, denoted by Zk = ϕk(W1, ..., WN),
k ∈ K. Thus, we have the following entropy constraint:

H(Zk|W1, W2, ..., WN) = 0, k ∈ K.

2. K ∑K
r=1 (

K
r)Nr encoding functions

φ
DR
k : [2MF] → [2Rk F], k ∈ K.

where DR is the set of file requests made by the users in R. For example, if there are
K = 4 users, and Users 1 and 3 do not request files during the delivery phase,

161

Entropy 2024, 26, 250

the request vector is D{2,4} = (d2, d4). The encoding function φ
DR
k denotes the

mapping of User k from its cached content to the signal it transmits, which is denoted

as XDR
k , i.e., XDR

k
�
= φ

DR
k (Zk). Thus, we have

H(XDR
k |Zk) = 0, k ∈ K. (1)

We assume the signal XDR
k consists of RDR

k F bits. The signals transmitted by all K
users consist of RDR F bits, i.e., RDR = ∑K

k=1 RDR
k .

3. ∑K
r=1 (

K
r)rNr decoding functions

ψ
DR
k : [2MF]× [2F ∑u∈K\{k} R

DR
u] → [2F], k ∈ R,

which is the decoding function used by User k. For example, if there are K = 4
users, and Users 1 and 3 do not request any file during the delivery phase, the de-
coded files at Users 2 and 4 are Ŵd2 = ψ

(d2,d4)
2 (Z2, X(d2,d4)

1 , X(d2,d4)
3 , X(d2,d4)

4) and

Ŵd4 = ψ
(d2,d4)
4 (Z4, X(d2,d4)

1 , X(d2,d4)
2 , X(d2,d4)

3), respectively.

Correct decoding by the users requesting files is given by Ŵdk
= Wdk

, k ∈ R, or
in other words,

H(Wdk
|Zk, XDR

[K]\{k}) = 0, k ∈ R, (2)

which is called the decodability constraint. We find that by combing (1) and (2), one can
decode any file by knowing the cache of all users, i.e.,

H(W[N]|Z[K]) = 0. (3)

which implies that we are interested in the case where KM ≥ N.
For any caching and delivery scheme that satisfies the decodability constraint, for a

fixed R with size r, we define DR as the set of all possible demands {1, · · · , N}r. We are
interested in two performance metrics: one is with respect to the average performance,
and the other is with respect to the worst performance. More specifically, the average
performance is defined as follows: we assume that the request vector DR is uniformly
distributed on DR. Then, the average delivery rate with respect to the uniform demand
RR

ave,req-rob is defined as

RR
ave,req-rob = EDR [R

DR].

For a given r, we define the maximum average delivery rate with respect to the uniform
demand Rr

ave,req-rob, where the maximum is over all request sets R with size r, i.e.,

Rr
ave,req-rob = max

R:|R|=r
RR

ave,req-rob

The worst-case performance is defined as follows: first, the worst-case delivery rate
RR

worst,req-rob is defined as

RR
worst,req-rob = max

DR
RDR .

For a given r, we define the maximum worst-case delivery rate Rr
worst,req-rob, where the

maximum is over all request sets R with size r, i.e.,

Rr
worst,req-rob = max

R:|R|=r
RR

worst,req-rob.

162

Entropy 2024, 26, 250

We would like to design caching and delivery schemes such that Rr
ave,req-rob and

Rr
worst,req-rob are both the smallest for every r = 1, 2, · · · , K. As can be seen, this is a

multi-objective optimization.
For easy presentability of the results, following the notation of [11], we denote Ne(DR)

as the number of distinct files in a request vector DR. DR\{k} and Ne(DR\{k}) are denoted
as the request vector of users R \ {k} and the number of distinct files requested by all
requesters but User k, respectively.

2.2. Preliminaries

In this subsection, we briefly summarize the related approaches, namely the uncoded
symmetric placement scheme in [3] and the problem of coded caching with inactive users,
which are critical for building our results for the request-robust D2D coded caching prob-
lem.

2.2.1. Uncoded Symmetric Placement Scheme

First, we introduce the uncoded symmetric placement scheme, which is useful for our
scheme proposed in Section 4.

Definition 1. (Maddah-Ali Niesen [MAN] Uncoded Symmetric Placement Scheme): Define t as
t = KM/N. When t is an integer, we have the MAN uncoded symmetric placement scheme as
follows: Each file Wn is divided into (K

t) disjoint sub-files denoted by Wn,T , where n ∈ [N], T ⊆ K,
|T | = t, and H(Wn,T) = F/(K

t). Each user k caches all the bits of the sub-files Wn,T , n ∈ [N],
for all T � k. Since each file includes (K−1

t−1) sub-files with T � k, each user k satisfies the memory
constraint H(Zk) = NF(K−1

t−1)H(Wn,T) = NFt/K = MF.

For the convenience of understanding and reference, we give the algorithm of this
scheme in Algorithm 1.

Algorithm 1 MAN Uncoded Symmetric Placement Scheme (N, K, M, W[N])

1: t ← KM/N
2: T ← {T ⊆ [K] : |T | = t}
3: for n ∈ N do
4: Divide file Wn into disjoint sub-files (Wn,T : T ∈ T) with equal size
5: end for
6: for k ∈ [K] do
7: Zk ← (Wn,T : n ∈ [N], T ∈ T, k ∈ T)
8: end for

The uncoded symmetric placement scheme is the optimal achievable placement
scheme both for the shared-link model with uncoded cache placement [3] and D2D work
with uncoded cache placement and one-shot delivery [9], which reveals that regardless
of the number of users, using the uncoded symmetric placement scheme can satisfy the
optimal rate of these models in all cases. Due to the superiority of the uncoded symmetric
placement scheme, we use the scheme as the placement scheme in our scheme proposed in
Section 4.

2.2.2. Problem of Coded Caching with Inactive Users

We denote our original D2D model with r users of K users requesting files indepen-
dently in W as System 1. In order to derive the converse of System 1, we consider another
system model named coded caching with inactive users, denoted as System 2. This is the model
where a central server responds to the users’ requests, and some of the users do not request
any files in the delivery phase. The central server connects to the whole file database.

The placement phase of System 2 is exactly the same as that of System 1. Thus,
in System 2, Equation (3) is still satisfied. The delivery phase of System 2 is different from

163

Entropy 2024, 26, 250

that of System 1. Specifically, in System 1, the codewords are transmitted by the users,
while in System 2, the codewords are transmitted by the central server. Since the central
server has the whole database and connects to all K users, while in System 1, each user only
caches a subset of the whole database and only connects to other K − 1 users, the optimal
maximum average and worst-case delivery rate in System 2, denoted as Rr∗

ave,inactive and
Rr∗

worst,inactive, can not be larger than the delivery rate in System 1, respectively. In other
words, we have the following inequality:

Rr∗
ave,req-rob ≥ Rr∗

ave,inactive, (4)

Rr∗
worst,req-rob ≥ Rr∗

worst,inactive. (5)

3. Main Result

In this section, we present the main results of this work. We propose two achievable
schemes for the request-robust D2D coded caching problem in Theorems 1 and 2. We further
propose a converse for the problem of coded caching with inactive users in Theorem 3,
which also serves as a converse result to the request-robust D2D coded caching problem.
Theorem 4 compares the performance gap between the achievability result in Theorem 1
and the converse result in Theorem 3 and shows that they are within a multiplicative gap.

The first achievable scheme is obtained by adapting the achievable scheme in [9] with
uncoded cache placement and one-shot delivery to the request-robust D2D coded caching
problem. More specifically, the adaptation is performed by assigning the users, who do not
request, a demand that is most requested by the requesters. We call the adapted scheme
the adapted Yapar–Wan–Schaefer–Caire (YWSC) scheme. We denote the adapted request
vector as D′

K and the adapted request vector of users K \ {k} as D′
K\{k}. Hence, we have

Ne(D′
K) = Ne(DR) and obtain Theorem 1 as follows:

Theorem 1. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand is upper bounded by

Rr∗
ave,req-rob ≤ED′

K

{
K(K−1

t)− ∑K
i=1 (

K−1−Ne(D′
K\{i})

t
)− f

[
(K−r

t)− (K−r−1
t)

]
t(K

t)

}
, (6)

when t = KM
N is an integer in [K], where f is an integer equal to one if and only if each requester

demands a distinct file, i.e., Ne(DR) = r; otherwise, f = 0. When t /∈ [K], Rr∗
ave,req-rob is upper

bounded by the lower convex envelope of the values in (6) for integer values of t ∈ [K].
For the maximum worst-case delivery rate, we have

Rr∗
worst,req-rob ≤max

D′
K

{
K(K−1

t)− ∑K
i=1 (

K−1−Ne(D′
K\{i})

t
)− f

[
(K−r

t)− (K−r−1
t)

]
t(K

t)

}
, (7)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K(K−1
t)−(K−r)(K−r−1

t)−r(K−r
t)

t(K
t)

, r ≤ N,

K(K−1
t)−(2N−r)(K−N

t)−(K+r−2N)(K−1−N
t)

t(K
t)

, otherwise,

K[(K−1
t)−(K−1−N

t)]
t(K

t)
, r ≥ 2N,

(8)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is upper bounded by the lower
convex envelope of the values in (7) for integer values of t ∈ [K].

Proof. The proof of Theorem 1 is provided in Appendix A.

164

Entropy 2024, 26, 250

Theorem 1 is a simple adaptation of an existing scheme; in order to improve its
performance, we propose a new scheme, called the three-category-based scheme, and obtain
Theorem 2 as follows:

Theorem 2. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand is upper bounded by

Rr∗
ave,req-rob ≤EDR

{
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)
[
(r

i+1)− (r−Ne(DR)
i+1)

]
(K

t)

+
(K−r

t)Ne(DR)

(K
t)

+
r(r−1

t)− ∑i∈R (
r−1−Ne(DR\{i})

t)

t(K
t)

}
, (9)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

ave,req-rob is upper bounded by the lower convex
envelope of the values in (9) for integer values of t ∈ [K].

Then, for the maximum worst-case delivery rate, we have

Rr∗
worst,req-rob ≤max

DR

{
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)
[
(r

i+1)− (r−Ne(DR)
i+1)

]
(K

t)

+
(K−r

t)Ne(DR)

(K
t)

+
r(r−1

t)− ∑i∈R (
r−1−Ne(DR\{i})

t)

t(K
t)

}
, (10)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)(

r
i+1)

(K
t)

+
r(K−r

t)

(K
t)

+
r(r−1

t)

t(K
t)

, r ≤ N,

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)[(

r
i+1)−(r−N

i+1)]
(K

t)
+

N(K−r
t)

(K
t)

+
r(r−1

t)−(2N−r)(r−N
t)−2(r−N)(r−1−N

t)

t(K
t)

, otherwise,

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)[(

r
i+1)−(r−N

i+1)]
(K

t)
+

N(K−r
t)

(K
t)

+
r[(r−1

t)−(r−1−N
t)]

t(K
t)

, r ≥ 2N,

(11)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is upper bounded by the lower
convex envelope of the values in (10) for integer values of t ∈ [K].

Proof. In proving Theorem 2, we propose a new scheme, i.e., the three-category-based
scheme, where the sub-files are divided into three categories and different delivery signals
are designed for each category. The detailed proof can be found in Section 4.

Remark 1. In Section 5, we numerically compare the delivery rates of the three-category-based
scheme and the adapted YWSC scheme, and it can be seen that the proposed three-category-based
scheme outperforms the adapted YWSC scheme in all cases cited (see Section 5 for the cited cases
and comparison results).

In the following theorem, we characterize a converse for the request-robust D2D coded
caching problem.

Theorem 3. For the request-robust D2D coded caching problem, the optimal maximum average
delivery rate with respect to the uniform demand and under the constraint of uncoded placement is
lower bounded by:

Rr∗
ave,req-rob ≥ EDR

[
(K

t+1)− (K−Ne(DR)
t+1)

(K
t)

]
, (12)

165

Entropy 2024, 26, 250

where t = KM
N is an integer in [K], where DR is uniformly distributed over DR. When t /∈ [K],

Rr∗
ave,req-rob is lower bounded by the lower convex envelope of the values in (12) for integer values of

t ∈ [K].
Then, for the maximum worst-case delivery rate, we have that the optimal maximum worst-case

delivery rate under the constraint of uncoded placement is lower bounded by

Rr∗
worst,req-rob ≥

(K
t+1)− (K−min{r,N}

t+1)

(K
t)

, (13)

where t = KM
N is an integer in [K]. When t /∈ [K], Rr∗

worst,req-rob is lower bounded by the lower
convex envelope of the values in (13) for integer values of t ∈ [K].

Proof. Similar to [9], we use the converse of the central server version, i.e., System 2, as a
converse for the request-robust D2D coded caching problem when the converse is under
the constraint of uncoded placement. The detailed proof is provided in Appendix B.

We compare the rate achieved by the adapted YWSC scheme from Theorem 1 and
the converse present in Theorem 3 and obtain a multiplicative gap result of Theorem 4 as
follows:

Theorem 4. For the request-robust D2D coded caching problem, the upper bounds of the optimal
maximum average and worst-case rates from Theorem 1 are order optimal within a factor of two
under the constraint of uncoded cache placement and within a factor of four in general.

Proof. The proof of Theorem 4 is given in Appendix D.

Remark 2. It is hard to analytically prove that the rate achieved by the three-category-based scheme
from Theorem 2 outperforms the rate achieved by the adapted YWSC scheme from Theorem 1 in all
cases. However, since in the numerical comparisons in Section 5 the three-category-based scheme
performs better than the adapted YWSC scheme in all cases cited, we conjecture that the rate achieved
by the three-category-based scheme from Theorem 2 and the converse present in Theorem 3 also
follow the multiplicative gap characterized by Theorem 4.

4. A Novel Achievable Scheme, i.e., Proof of Theorem 2

In this section, we present an achievable scheme for the request-robust D2D coded
caching problem. The scheme achieves the rate stated in Theorem 2. We will first provide a
general achievable scheme, which is based on uncoded cache placement and exploiting
common demands [11] and one-shot delivery [9]. Then, we will characterize the perfor-
mance of the proposed scheme and show that for any requester set R and corresponding
request vector DR, the proposed three-category-based scheme achieves the rate

RDR
req-rob =

∑
min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)
[
(r

i+1)− (r−Ne(DR)
i+1)

]
(K

t)

+
(K−r

t)Ne(DR)

(K
t)

+
r(r−1

t)− ∑i∈R (
r−1−Ne(DR\{i})

t)

t(K
t)

, (14)

which, with the explicit characterization of the maximum worst-case delivery rate in
Section 4.2, immediately proves Theorem 2. Finally, we will provide an example to aid in a
better understanding of the proposed three-category-based scheme.

4.1. General Scheme

For the placement phase, because the central server does not know the number of
requesters r, we use the highly adaptable MAN uncoded symmetric placement scheme

166

Entropy 2024, 26, 250

described in Definition 1, denoted as MMAN. In the following, we restrict to integer values
of t ∈ [1 : K]. For cache size M where t = KM/N is not an integer, memory-sharing will be
performed [3,8].

For the delivery phase, let the set of requesters be R with size r. The r requesters each
demand a single file. The delivery strategy is divided into the following steps:

(a) Determining the leading requesters: Each user k ∈ K \R who does not request arbi-
trarily selects a subset of Ne(DR) requesters, denoted by U′k = {u′k

1 , ..., u′k
Ne(DR)

} ⊆ R,
that request Ne(DR) distinct files. Using the idea of leaders from [11], we name these
requesters as the leading requesters of User k.

(b) Splitting the sub-files into three categories: Recall that each sub-file is denoted as
Wn,T and is cached by only users in T . If T ⊆ K \ R, then this sub-file belongs to
the first category, which is the set of sub-files that are only cached by users who do
not request any files. If T contains some elements from R and some elements from
K \R, then this sub-file belongs to the second category, which is the set of sub-files
that are cached by both requesters and non-requesters. Finally, if T ⊆ R, then this
sub-file belongs to the third category, which is the set of sub-files that are only cached
by users who make file requests.

The three categories may not all exist or be required by requesters, and it depends
on the value of r and t. When t ∈ [K − r + 1, K] or r = K, the first category does not
exist. When t = 1 or r = K, the second category does not exist, and when r = 1 or t = K,
the second category is not required. When t ∈ [r + 1, K], the third category does not exist,
and when t = r or r = 1, the third category is not required.

(c) Transmitting signals for the sub-files in the three categories: we will discuss the
delivery scheme for the sub-files in each of the three categories.

(i) For the sub-files in the first category needed by Requester k, k ∈ R, since these sub-
files are not cached in any of the requesters, the users in K \ R who cache these
sub-files transmit them in an uncoded form. Suppose Wdk ,T is requested by User
k ∈ R, T ⊆ K \ R, any of the t users in T can transmit the sub-file in an uncoded
form. However, we adopt the file-splitting strategy in [9] and allow each user in T to
transmit 1/t part of the sub-file, i.e., Wdk ,T is divided into t pieces, each consisting of

F
t(K

t)
numbers of bits. The pieces are denoted as Wdk ,T ,a, a ∈ T , and User a transmits

X1st,dk ,T
a = Wdk ,T ,a. (15)

We notice that Wdk ,T ,a may be needed by other requesters, i.e., there may be other
requesters that request file dk also. Hence, we let each user a transmit in sequence
X1st,dk ,T

a for all k ∈ U′a. Hence, the rate of transmitting total bits for the sub-files in
the first category is

R1st =
t(K−r

t)Ne(DR)

t(K
t)

=
(K−r

t)Ne(DR)

(K
t)

, (16)

because for each T , every user a ∈ T transmits Ne(DR) F
t(K

t)
bits, and there are t users

in each T , and a total of (K−r
t) number of T that are subsets of K \R.

(ii) Consider a sub-file in the second category needed by Requester k, k ∈ R, denoted as
Wdk ,T , where k /∈ T . Denote the set of elements in T that are in R as B, whose size
is denoted as i, and we have 1 ≤ i ≤ r − 1, because we know at least User k who is
requesting a file is not in T . Further denote the set of elements of T that are in K \R
as B̂, whose size is t − i, and we have 1 ≤ t − i ≤ K − r. Hence, T can be written as
T = B⋃ B̂. Furthermore, i must satisfy i ∈ [max{1, t + r − K}, min{t − 1, r − 1}].

167

Entropy 2024, 26, 250

Consider the set B̄ � {k}⋃B, which is a set consisting of i + 1 requesters. The sub-file
Wdx ,B̂⋃ B̄\{x} is needed for x ∈ B̄. We ask that this sub-file be transmitted by the t − i
non-requesters, and Wdx ,B̂⋃ B̄\{x} for any x ∈ B be divided into t − i equal-length disjoint

sub-pieces of F
(t−i)(K

t)
bits, which are denoted by Wdx ,B̂⋃ B̄\{x},b, where b ∈ B̂. Hence, if User

b ∈ B̂ transmits
X2nd,dx ,B̂⋃ B̄\{x}

b =
⊕
x∈B̄

Wdx ,B̂⋃ B̄\{x},b, (17)

the sub-piece retrieval can be accomplished for each requester in B̄ since User x has all the
sub-pieces on the RHS of (17), except for Wdx ,B̂⋃ B̄\{x},b.

We ask each user b ∈ K \R to transmit X2nd,dx ,B̂⋃ B̄\{x}
b in sequence, only if B̄ ∩ U ′b �=

∅, i.e., user b will not transmit if the set B̄ consists of only non-leading requesters. We
now count the amount of transmission for the second category. For a fixed i, the number
of B̂, which is of size t − i, is (K−r

t−i). For each u ∈ B̂, the number of transmitted bits is

(r
i+1) − (r−Ne(DR)

i+1) times the size of a sub-piece, and there are a total of t − i users in B̂.
Hence, the rate of transmitting all the bits for the sub-files in the second category is

R2nd =
∑

min{t−1,r−1}
i=max{1,t+r−K} (

K−r
t−i)
[
(r

i+1)− (r−Ne(DR)
i+1)

]
(K

t)
. (18)

The next lemma shows that the scheme proposed satisfies the decodability constraint,
even for the non-leading requesters.

Lemma 1. The scheme proposed for the sub-files in the second category satisfies the decodability
constraint, i.e., (2).

The proof of Lemma 1 is based on showing the equivalence of the designed scheme
and that in [11]. Hence, we state the following remark first:

Remark 3. Notice that when the sub-files are in the second category and the parameter t is fixed,
for each partition integer i, a user b ∈ B̂ generates its codewords exclusively from the sub-pieces
Wdk ,B̂∪B,b, and there exist (r

i) such sub-pieces in its cache. In addition, for any c ∈ B̂ \ {b}, we have
Wdk ,B̂∪Vb ,b ∩Wdl ,B̂∪V c ,c = ∅ for any V b,V c ⊆ R, |V b| = |V c| = i, k ∈ V b, l ∈ V c. That is to say,
users in B̂ generate their codewords based on non-overlapping libraries of size (t− i)N(r

i)
F

(t−i)(K
t)

=

N(r
i)F/(K

t) bits. Also, observe that the cache of requester k contains (t − i)(r−1
i−1) such Wdk ,B̂∪Vb ,b

sub-pieces, which amount to N(t − i)(r−1
i−1)

F
(t−i)(K

t)
= N(r−1

i−1)
F
(K

t)
= Ni(r

t)
F

r(K
t)

bits.

Therefore, the proposed scheme is in fact composed of (t − i) shared-link models [3] each with
N files of size F′ = (r

i)F/(K
t) bits and K′ = r users with caches of size M′ = Ni/r units each.

The corresponding parameter for each model is found to be t′ = K′M′
N = i. To ensure the existence of

sub-files in the second category, the partition integer must satisfy i ∈ [max{1, t + r − K}, min{t −
1, r − 1}]. Hence, for every i ∈ [max{1, t + r − K}, min{t − 1, r − 1}], summing the achievable
rates Rsl, which is defined as follows from [11]:

Rsl =
(K

t+1)− (K−Ne(d)
t+1)

(K
t)

, (19)

of each b ∈ B̂ shared-link sub-system and replacing the shared-link system parameters F, K, M, t, and
Ne(d) with F′, K′, M′, t′, andNe(DR), respectively, we obtain (18).

168

Entropy 2024, 26, 250

We now prove that for each partition integer i ∈ [max{1, t + r − K}, min{t − 1, r − 1}],
each requester k is able to decode the needed sub-files in the second category with the

partition integer i upon receiving the codewords X2nd,dk ,B̂⋃ B̄\{k}
b for all b ∈ B̂.

When k is a leading requester of the user b who does not request, i.e., k ∈ U′b, it can de-

code any required sub-piece Wdk ,B̂∪P k ,b, where P k ⊆ R \ {k}, |P k| = i, from X2nd,dk ,B̂⋃P k

b ,
which is broadcast from user b by performing

Wdk ,B̂∪P k ,b =

⎛⎝⊕
x∈P k

Wdx ,B̂∪P k∪{k}\{x},b

⎞⎠⊕X2nd,dk ,B̂⋃P k

b ,

as can be seen from (17).
When k /∈ U′b, it is less straightforward for the non-leading requester k to decode

the needed sub-files, because not all of the corresponding codewords X2nd,dk ,B̂⋃P k

b for its
required sub-pieces Wdk ,B̂∪P k ,b are directly broadcast from user b. However, Requester k
can generate these codewords simply based on the codewords received. To show this, we
reformulate the following Lemma 2 from [11] (Lemma 1), which is applied to the codewords
broadcast by the user b with the partition integer i.

Lemma 2. Given an integer t, a partition integer i, a subset B̂ ⊆ K \R of size t − i, a user b ∈ B̂,
and a set of leading requesters U′b, for any subset Cb ⊆ R that includes U′b, let V b

F be family of
all subsets V b of Cb such that each requested file in DR is requested by exactly one user in V b.
The following equation holds:

⊕
Vb∈Vb

F

X2nd,dk ,B̂⋃ {Cb\Vb}\{k}
b = 0, (20)

if each X2nd,dk ,B̂⋃ {Cb\Vb}\{k}
b is defined in (17).

Proof. As we mentioned in Remark 3, for the sub-files needed in the second category, when
the parameters t and i are fixed, the proposed scheme, in fact, corresponds to (t − i) shared-
link schemes. Thus, Ref. [11] (Lemma 1) can directly be applied to each b-th shared-link
scheme.

Let us now consider any subset B̄ of i + 1 non-leading requesters of user b such that
B̄ ∩ U ′b = ∅. Using (20), the following equation can be derived:

X2nd,dk ,B̂⋃ B̄\{k}
b =

⊕
Vb∈Vb

F\{U ′b}
X2nd,dk ,B̂⋃ {Cb\Vb}\{k}

b , (21)

where Cb = B′i ∪ U′b. Equation (21) shows that the codeword X2nd,dk ,B̂⋃ B̄\{k}
b can be

directly computed from the broadcast codewords transmitted to all the leading requesters
of b, because all codewords on the RHS of (21) are directly broadcasted by user b. Hence,

each requester k can obtain the value X2nd,dk ,B̂⋃ B̄\{k}
b for any subset B̄ of i + 1 requesters

and can decode its demanded sub-pieces as discussed before. Hence, Lemma 1 is proved.

(iii) Lastly, we consider the sub-files in the third category. Since all the sub-files needed for
delivery are only cached in the requesters, the transmission will happen only among
requesters. This is equivalent to the D2D coded caching model considered in [9],
and we adopt its achievable scheme with uncoded cache placement and one-shot
delivery, which we call the Yapar–Wan–Schaefer–Caire (YWSC) scheme.

More specifically, during the delivery phase, each sub-file is divided into t equal-length
disjoint sub-pieces of F

t(K
t)

bits, which are denoted by Wn,T ,i, i ∈ T . Further, each user i

169

Entropy 2024, 26, 250

in requester set R, where |R| = r, selects an arbitrary subset of Ne(DR\{i}) users from
R \ {i}, denoted by U i = {ui

1, ..., ui
Ne(DR\{i})

}, which request Ne(DR\{i})) distinct files and

are referred to as leading demanders of user i. Then, for all subsets E i ⊆ R \ {i} of t users,
each user i transmits

X3rd
i = {Yi

E i}E i∩U i �=∅, (22)

where

Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i. (23)

In other words, since all users k ∈ E i shall retrieve the needed sub-pieces Wdk ,{E i∪{i}}\{k},i
from the transmissions of User i, using the idea of leaders from [11], each user i only needs
to transmit in sequence the codewords Yi

E i for all subsets E i such that E i ∩U i �= ∅, i.e., X3rd
i .

As a result, when User k is a leading demander for User i, i.e., k ∈ U i, it can decode
any needed sub-piece Wdk ,Gk∪{i},i, where Gk ⊆ R \ {i, k}, |Gk| = t − 1, from Yi

Gk∪{k}, which
is transmitted from User i by performing

Wdk ,Gk∪{i},i =

⎛⎝⊕
x∈Gk

Wdx ,{Gk∪{i,k}}\{x},i

⎞⎠⊕Yi
Gk∪{k}.

When User k is not a leading demander for User i, using the equation⊕
V i∈V i

F

Yi
C i\V i = 0,

proved in [9] (Lemma 1), where subset C i ⊆ R \ {i} includes U i and V i
F denotes the family

of all subsets V i of C i such that each requested file in DR\{i} is requested by exactly one
user in V i, each user k can decode its requested sub-piece through obtaining the value Yi

E i ,
for any subset E i of t users such that E i ∩ U i = ∅, from the broadcast codewords by the
following equation:

Yi
E i =

⊕
V i∈V i

F\{U i}
Yi
C i\V i , (24)

where C i = E i ∪ U i. To sum up, for each i ∈ R \ {k}, User k decodes its requested sub-
pieces by following either one of the strategies above, depending on whether it is a leading
demander of User i or not.

For each user i ∈ R, the size of the transmitted signal amounts to (r−1
t)− (

r−1−Ne(DR\{i})
t)

times the size of a sub-piece. Hence, the rate of transmitting all the bits for the sub-files in
the third category is

R3rd =
r(r−1

t)− ∑i∈R (
r−1−Ne(DR\{i})

t)

t(K
t)

, (25)

In other words, the equivalence of the above scheme and that of [9] can be seen in the
following remark:

Remark 4. For the sub-files in the third category, the proposed scheme is equivalent to that of [9].
The central server has a library of N files,

{
Wn,T

∣∣T ⊂ R, |T | = t
}

, and each file has F̃ � (r
t)

F
(K

t)

bits. There are r D2D users in the system, each requesting a single file. Based on the MAN uncoded
symmetric placement scheme adopted, the placement is the same as [9], where each sub-file has the

170

Entropy 2024, 26, 250

size of F
(K

t)
, which is equal to F̃

(r
t)

, and sub-file Wn,T is placed in users in T . Thus, each user caches a

total of N(r−1
t−1) sub-files. Hence, each user has a memory of

M̃ = N
(

r − 1
t − 1

)
F
(K

t)

bits, and we can check that

rM̃
NF̃

= t,

just as in [9]. Hence, for the sub-files in the third category, the equivalence between the proposed
cache placement scheme and that of [9] is established. In other words, corresponding to the parameters
(F, N, K, MF, t, and Ne(d)) in [9], which denote the file size, number of files, number of users,
cache size of each user, the parameter defined as t = KMF

NF , and the number of users requesting
different files, respectively, we have

(
F̃, N, r, M̃, t, and Ne(DR)

)
in our problem.

Summing up the three sub-schemes mentioned above, every requester can decode
its requested file. Meanwhile, combining the rate from (16), (18), and (25), the total rate of
this delivery scheme is RDR

req-rob = R1st + R2nd + R3rd, which results in the rate stated in (14).
The description of this subsection with the explicit characterization of the maximum worst-
case delivery rate in Section 4.2, directly proves Theorem 2. More specifically, since the
proposed scheme is symmetric with respect to the users, any R with |R| = r will offer the
same average delivery rate RR

ave,req-rob and the same worst-case delivery rate RR
worst,req-rob.

Remark 5. The difference in transmitting the sub-files in the three categories is that the transmis-
sions of the sub-files in the first and third categories both adopt the one-shot delivery scheme in [9],
while the transmission of the sub-files in the second category adopts the common demands scheme
in [11]. Moreover, the transmission of the sub-files in the first category is in uncoded form, while the
transmissions of the sub-files in the second and third categories are both with coded multi-casting
opportunity.

We formally write the three-category-based scheme in Algorithm 2.

Algorithm 2 Three-category-based Scheme (N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme (N, K, M, W[N])

end procedure

procedure DELIVERY(R, DR)
2: r ← |DR|
3: t ← KM/N
4: Ne(DR) ← the number of distinct elements in DR
5: for k ∈ [K] \ R do

6: U′k ← {u′k
1 , ..., u′k

Ne(DR)
}

7: end for

8: (i) For sub-files in the first category:
9: T ← {T ⊆ [K] \ R : |T | = t}

10: for T ∈ T do

11: for n ∈ [N] do

12: Divide sub-file Wn,T into t disjoint sub-pieces (Wn,T ,a : a ∈ T) with equal size
13: end for

14: for a ∈ T do

15: for s ∈ U′a do

16: User a transmit X1st,ds ,T
a = Wds ,T ,a

171

Entropy 2024, 26, 250

17: end for

18: end for

19: end for

20: (ii) For sub-files in the second category:
21: for ∈ [max{1, t + r − K}, min{t − 1, r − 1}] do

22: B ← {B̂ ⊆ [K] \ R : |B̂| = t − i}
23: for B̂ ∈ B do

24: for B ⊂ R : |B| = i do

25: for n ∈ [N] do

26: Divide sub-file Wn,B∪B̂ into t − i disjoint sub-pieces (Wn,B∪B̂,b : b ∈ B̂) with
equal size

27: end for

28: end for

29: for b ∈ B̂ do

30: for B̄ ⊆ R : |B̄| = i + 1 do

31: if B̄ ∩ U ′b == ∅ then

32: continue
33: else

34: User b transmits X2nd,dx ,B̂⋃ B̄\{x}
b =

⊕
x∈B̄

Wdx ,B̂∪B̄\{x},b

35: end if

36: end for

37: end for

38: end for

39: end for

40: (iii) For sub-files in the third category:
41: G ← {G ⊆ [K] : |G| = t}
42: for n ∈ [N] do

43: for G ∈ G do

44: Divide sub-file Wn,G into t disjoint sub-pieces (Wn,G,i : i ∈ G) with equal size
45: end for

46: end for

47: for i ∈ R do

48: Ne(DR\{i}) ← the number of distinct elements in DR\{i}
49: U i ← {ui

1, ..., ui
Ne(DR\{i})

}
50: for E i ⊆ R \ {i} : |E i| = t users do

51: if E i ∩ U i == ∅ then

52: continue
53: else

54: User i transmits Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i

55: end if

56: end for

57: end for

end procedure

4.2. The Maximum Worst-Case Delivery Rate

In this subsection, we characterize the performance of the proposed three-category-
based scheme for the maximum worst-case delivery rate. The characterization is based on
the observation that the binomial coefficient (n

m) demonstrates a strictly ascending pattern
with respect to n.

For the request-robust D2D coded caching problem, when N, K, M, r, and R do not
change, since the upper bound rate RDR

req-rob from (14) decreases as Ne(DR) decreases,

172

Entropy 2024, 26, 250

the upper bound rate for the maximum worst-case delivery rate is the one at the maximum
value of Ne(DR), i.e.,

Ne(DR) = min{r, N}. (26)

Then, for r ≥ 2N, each file can be requested by at least two requesters, which leads
to Ne(DR\{i}), ∀i ∈ R having the maximum value of N. Hence, this case maximizes the

upper bound rate RDR
req-rob.

For r < 2N, a requester i may be the only user requesting a file or not, which leads
to Ne(DR\{i}) = Ne(DR)− 1 and Ne(DR\{i}) = Ne(DR), respectively. Hence, due to (26),

for r ≤ N, we have (
r−1−Ne(DR\{i})

t) = 0, which proves the case where r ≤ N.
For N < r < 2N, we have Ne(DR) = N and then obtain that each file cannot be

requested by more than two requesters. Thus, due to a total of r requesters, there are 2N − r
requesters, each of which are the only users requesting a file while each of the remaining
2(r − N) requesters are not. Thus, we prove the case where N < r < 2N.

4.3. Example

To aid in better understanding, we provide an example to illustrate the proposed
scheme in Section 4.1.

Let us consider a case where N = 2, K = 6, and M = 2/3. Hence, t = KM/N = 2.
In the placement phase, each file is divided into (6

2) = 15 sub-files, and each sub-file’s index
is in T, where T is the family of all sets T such that T ⊂ [6], |T | = 2. The user k ∈ [6]
caches the following sub-files for each n ∈ {1, 2}:

Zk = {Wn,T |T ∈ T, k ∈ T }.

In the delivery phase, without a loss of generality, we consider only Users 1, 2, 3, and 4
as requesters, each requesting a single file, i.e., R = {1, 2, 3, 4}, and the request vector is
D{1,2,3,4} = (1, 2, 1, 1). Notice that r = 4 and Ne(D{1,2,3,4}) = 2. Requesters 1, 2, 3, and 4
need the following missing sub-files:

W1 \ Z1 = {W1,{2,3}, W1,{2,4}, W1,{2,5}, W1,{2,6}, W1,{3,4}, W1,{3,5}, W1,{3,6}, W1,{4,5}, W1,{4,6}, W1,{5,6}},

W2 \ Z2 = {W2,{1,3}, W2,{1,4}, W2,{1,5}, W2,{1,6}, W2,{3,4}, W2,{3,5}, W2,{3,6}, W2,{4,5}, W2,{4,6}, W2,{5,6}},

W1 \ Z3 = {W1,{1,2}, W1,{1,4}, W1,{1,5}, W1,{1,6}, W1,{2,4}, W1,{2,5}, W1,{2,6}, W1,{4,5}, W1,{4,6}, W1,{5,6}},

W1 \ Z4 = {W1,{1,2}, W1,{1,3}, W1,{1,5}, W1,{1,6}, W1,{2,3}, W1,{2,5}, W1,{2,6}, W1,{3,5}, W1,{3,6}, W1,{5,6}}.

In Step (a), determining the leading requesters without a loss of generality, we assume
that User 5 picks Users 1and 2 and User 6 picks Users 2and 3 as the leading requesters, i.e.,
U′5 = {1, 2},U′6 = {2, 3}.

In Step (b), we split the sub-files into three categories. More specifically, Wn,{5,6},
n ∈ [N] belong to the first category; Wn,{1,5}, Wn,{1,6}, Wn,{2,5}, Wn,{2,6}, Wn,{3,5}, Wn,{3,6},
Wn,{4,5}, Wn,{4,6}, n ∈ [N] belong to the second category; and Wn,{1,2}, Wn,{1,3}, Wn,{1,4},
Wn,{2,3}, Wn,{2,4}, Wn,{3,4} belong to the third category.

In Step (c) of delivering signals, for the sub-files belonging to the first category, i.e., sub-
files only cached by Users 5 and 6, after splitting these sub-files into two equal-length
sub-pieces, from (15), we know that User 5 transmits

W1,{5,6},5, W2,{5,6},5,

and User 6 transmits

W1,{5,6},6, W2,{5,6},6,

173

Entropy 2024, 26, 250

which are all directly needed by the requesters. The rate R1st = 1/30× 2× 2 = 2/15, which
coincides with (16).

For the sub-files in the second category, since i must satisfy i ∈ [max{1, t + r −
K}, min{t − 1, r − 1}], in this example, we only need to consider i = 1, which means that
t − i = 1. The fact that t − i = 1 means that none of these sub-files need to be further split.
Take, for example, User 1 in R; it requires the sub-file W1,{2,5}. Thus, T = {2, 5} = B⋃ B̂,
where B = {2} and B̂ = {5}. Consider the set B̄ = {1}⋃B = {1, 2} of i + 1 = 2 users.
Following from (17), if User {5} transmits

W1,{2,5} ⊕ W2,{1,5},

both Users 1 and 2 will be able to obtain the sub-file they want, i.e., W1,{2,5} and W2,{1,5},
respectively. Similarly, we may consider all four users in R and the sub-files that each of
them need. We find that if User {5} transmits

W1,{2,5} ⊕ W2,{1,5}, W1,{3,5} ⊕ W1,{1,5},

W1,{4,5} ⊕ W1,{1,5}, W2,{3,5} ⊕ W1,{2,5},

W2,{4,5} ⊕ W1,{2,5}, W1,{4,5} ⊕ W1,{3,5},

and User {6} transmits

W1,{2,6} ⊕ W2,{1,6}, W1,{3,6} ⊕ W1,{1,6},

W1,{4,6} ⊕ W1,{1,6}, W2,{3,6} ⊕ W1,{2,6},

W2,{4,6} ⊕ W1,{2,6}, W1,{4,6} ⊕ W1,{3,6},

all the requesting users will be able to decode the necessary sub-files of the second category.
However, recall that U′5 = {1, 2} and U′6 = {2, 3}. Hence, the signal W1,{4,5} ⊕ W1,{3,5}
corresponds to B̄ = {3, 4, 5}, which has zero intersection with U′5. Hence, W1,{4,5} ⊕
W1,{3,5} need not be transmitted and can be calculated due to the fact that

(W1,{3,5} ⊕ W1,{1,5})⊕ (W1,{4,5} ⊕ W1,{1,5})⊕ (W1,{4,5} ⊕ W1,{3,5}) = 0.

Similarly, W1,{4,6} ⊕ W1,{1,6} need not be transmitted due to the fact that

(W1,{3,6} ⊕ W1,{1,6})⊕ (W1,{4,6} ⊕ W1,{3,6})⊕ (W1,{4,6} ⊕ W1,{1,6}) = 0.

Hence, the rate R2nd = 1/15 × 5 × 2 = 2/3, which coincides with (18).
For the sub-files in the third category, User 1 has R \ {1} = {2, 3, 4}, which means

Ne(DR\{1}) = 2. Suppose User 1 picks the leading demanders as U 1 = {2, 4}. Simi-
larly, User 2 has R \ {2} = {1, 3, 4}, which means Ne(DR\{1}) = 1. Suppose User 2
picks the leading demanders as U 2 = {3}. User 3 has R \ {3} = {1, 2, 4}, which means
Ne(DR\{1}) = 2. Suppose User 3 picks the leading demanders as U 3 = {1, 2}, and User 4
has R \ {4} = {1, 2, 3}, which means Ne(DR\{1}) = 2. Suppose User 4 picks the leading
demanders as U 1 = {2, 3}.

Since t = 2, we split the sub-files in the third category into two equal-length sub-pieces.
For User 1, E1 is of size t = 2 and is a subset of R \ {1} = {2, 3, 4}. Hence, possible E1s
can be {2, 3}, {2, 4}, and {3, 4}, which all satisfy the condition of non-zero intersection with
U 1 = {2, 4}. Hence, from (22) and (23), User 1 transmits

Y1
{2,3} = W2,{1,3},1 ⊕ W1,{1,2},1, Y1

{2,4} = W2,{1,4},1 ⊕ W1,{1,2},1, Y1
{3,4} = W1,{1,4},1 ⊕ W1,{1,3},1.

Similarly, User 3 transmits

Y3
{1,2} = W1,{2,3},3 ⊕ W2,{1,3},3, Y3

{1,4} = W1,{3,4},3 ⊕ W1,{1,3},3, Y3
{2,4} = W2,{3,4},3 ⊕ W1,{2,3},3,

174

Entropy 2024, 26, 250

and User 4 transmits

Y4
{1,2} = W1,{2,4},4 ⊕ W2,{1,4},4, Y4

{1,3} = W1,{3,4},4 ⊕ W1,{1,4},4, Y4
{2,3} = W2,{3,4},4 ⊕ W1,{2,4},4.

As for User 2, E2 is of size t = 2 and is a subset of R \ {2} = {1, 3, 4}. Hence, possible E2s
can be {1, 3}, {1, 4}, and {3, 4}. Recall that U 2 = {3}; hence, only {1, 3} and {3, 4} satisfy
the condition of non-zero intersection with U 2 = {3}. Hence, from (22) and (23), User 2
transmits

Y2
{1,3} = W1,{2,3},2 ⊕ W1,{1,2},2, Y2

{3,4} = W1,{2,4},2 ⊕ W1,{2,3},2.

The signal Y2
{1,4} = W1,{2,4},2 ⊕ W1,{1,2},2 does not need to be transmitted and can be

calculated since Y2
{1,3} ⊕ Y2

{3,4} ⊕ Y2
{1,4} = 0 (cf. (24)). Hence, the rate R3rd = 1/30 × (3 ×

3 + 2) = 11/30, which coincides with (25).
Thus, the total delivery rate achieved by the proposed scheme for the case

R = {1, 2, 3, 4} and the request vector is D{1,2,3,4} = (1, 2, 1, 1) is 2
15 + 2

3 + 11
30 = 7

6 . In
this case, if we directly use the YWSC scheme [9] by assigning Users 5 and 6 a demand
that is the same as Users 1, 3, and 4, i.e., all six users make file requests, and the demand
vector is d = {1, 2, 1, 1, 1, 1}, then according to [9] (Equation (14)), the delivery rate is
6×10−(3×5+6)

30 = 13
10 . If we assign Users 5 and 6 with some other demands, the delivery

rate will be even higher. Hence, we see that for the request-robust D2D coded caching
problem, the proposed scheme performs better than directly applying the YWSC scheme
for this example.

The reason why the proposed three-category-based scheme has better performance is
that directly applying the YWSC scheme may contain information that is useful for users
who do not request files, which is useless for requesters and difficult to be excluded. We
provide more details in the following remarks:

Remark 6. When each user requests a single file (r = K), our proposed scheme corresponds to the
one originally presented in [9]. The improvement in our scheme is that when r < K, we take full
advantage of the users who do not request files so that the broadcast codewords are only useful to the
requesters. Moreover, through the numerical comparison in Section 5, we find that letting the users
who do not request files broadcast pieces of sub-files in the first and second categories, i.e., sub-files
in {Wn,A|A � {k}, k ∈ K \R}, incurs a much smaller rate than letting all the users participate
in broadcasting the required pieces of sub-files in all three categories.

Remark 7. The proposed scheme is symmetric in the placement phase. As mentioned in [9] (Remark
6), under the constraints of uncoded cache placement, the shared link models in [11,27] showed
the optimality of symmetry in the placement phase [3]. This symmetry happens in the placement
phase before the requesters are identified and reveal their demands, and any asymmetry in the
placement will certainly not result in a better worst-case rate. However, due to the file-categorization
step (i.e., Step (b)), the delivery phase of the proposed scheme is asymmetric, while if the value of
Ne(DR\{i}) is the same for every i ∈ R, the delivery phase of directly applying the YWSC scheme
(i.e., the adapted YWSC scheme (see Appendix A for the specific scheme)) is symmetric. Interestingly,
the asymmetric delivery phase of the proposed scheme outperforms the possibly symmetric delivery
phase of directly applying the YWSC scheme both for the maximum average and worst-case delivery
rate in all cases cited, as shown in Section 5.

Remark 8. The delivery phase of the proposed scheme is actually one-shot, which is defined in [9]
as meaning that each user k can recover the i-th needed bit denoted as Wk

dk
(i) from its own cache

and the transmission of a single other user whose index is jk(i), i.e., H(Wk
dk
(i)|Xjk(i), Zk) = 0

holds. One-shot delivery allows all users to participate in the transmission without causing users to
repeatedly broadcast the same codeword. However, it is difficult to confirm whether the proposed

175

Entropy 2024, 26, 250

scheme is optimal under the constraint of uncoded cache placement and one-shot delivery since the
delivery scheme as mentioned in Remark 7 is asymmetric.

Remark 9. The rate achieved by the three-category-based scheme from (14) outperforms the rate
achieved by the adapted YWSC scheme from (A1) in some specific cases. For example, for r = 2 and
the maximum worst-case delivery rate, when t ∈ [2, K − 1], r ≤ N, we have

RDR
adapted-YWSC|r=2,t∈[2,K−1],r≤N =

K(K−1
t)− (K − 2)(K−2−1

t)− 2(K−2
t)

t(K
t)

(27)

=
(2K − t − 1)(K−2

t−1)

t(K
t)

>
(2K − t − 2)(K−2

t−1)

t(K
t)

=
(K−2

t−1)(
2

1+1)

(K
t)

+
2(K−2

t)

(K
t)

= RDR
req-rob|r=2,t∈[2,K−1],r≤N , (28)

where (27) is from (8) and (28) is from (11). Meanwhile, when t ∈ [2, K − 1], r > N, i.e., N = 1,
we have

RDR
adapted-YWSC|r=2,t∈[2,K−1],N=1 =

K
[
(K−1

t)− (K−2
t)
]

t(K
t)

(29)

=
1

(K
t)

· K(K − 2)!
t!(K − t − 1)!

>
1

(K
t)

· (K − 1)!
t!(K − t − 1)!

=
(K−2

t−1)(
2

1+1)

(K
t)

+
(K−2

t)

(K
t)

= RDR
req-rob|r=2,t∈[2,K−1],N=1, (30)

where (29) is from (8) and (30) is from (11). Moreover, t ≥ K, i.e., M ≥ N, is trivial, and when
t = 1, the three-category-based scheme and the adapted YWSC have the same performance. Hence,
for r = 2 and the maximum worst-case delivery rate, the three-category-based scheme outperforms
the adapted YWSC scheme for all values of K, N, t.

5. Numerical Evaluations

In this section, we compare the rate–memory tradeoff of the three-category-based
scheme, the adapted YWSC scheme, and the achievable schemes in [8], adapted to the
request-robust D2D coded caching scenario. The adaptation is performed by assigning
the users, who do not request, a demand that is most requested by the requesters. We
also plot the converse bounds on the optimal average and worst-case delivery rate of the
request-robust D2D coded caching problem in Theorem 3.

We consider the cases where the value of K is from 1 to 60. For a fixed K, we consider
that the value of N is from 1 to K. The performance metrics are the maximum average
delivery rate with respect to the uniform demand and the maximum worst-case delivery
rate, i.e., Rr

ave,req-rob and Rr
worst,req-rob. We find that, in these cases, our proposed three-

category-based scheme outperforms the adapted YWSC scheme and the adapted schemes
of [8] for all possible r.

176

Entropy 2024, 26, 250

Take the example where N = 10, K = 30. As shown in Figure 2, the performance of
the proposed scheme is given by the red solid line when r = 20 and the purple solid line
with dots when r = 5. These lines are plotted according to the right-hand side (RHS) of
(9) and (10). The performance of the adapted YWSC scheme is given by a blue dash–dot
line when r = 20 and a cyan dash–dot line with dots when r = 5. These lines are plotted
according to the RHS of (6) and (7). The proposed converse is given by the black dotted line
when r = 20 and the orange dotted line with asterisks when r = 5. Since the achievable rate
in [8] is independent of the demand, the performance of the adapted scheme from [8] does
not change with the value of r and is given by the green dashed line. For the maximum
worst-case rate, we also provide the lower bound in [8] adapted to the request-robust D2D
coded caching scenario with the brown dashed line with dots. It can be seen that our
proposed scheme outperforms the adapted YWSC scheme and adapted scheme of [8] in
this case; meanwhile, the proposed converse is rather tight compared to the adapted lower
bound in [8].

1 1.5 2 2.5 3 3.5 4 4.5 5

M

0

1

2

3

4

5

6

7

8

9

R
at

e

Adapted scheme Ji et al. 2016
Adapted YWSC scheme with r=20
Proposed Scheme with r=20
Proposed Converse with r=20
Adapted YWSC scheme with r=5
Proposed Scheme with r=5
Proposed Converse with r=5

1 1.5 2 2.5 3 3.5 4 4.5 5

M

0

1

2

3

4

5

6

7

8

9

R
at

e

Adapted scheme Ji et al. 2016
Adapted YWSC scheme with r=20
Proposed Scheme with r=20
Proposed Converse with r=20
Adapted YWSC scheme with r=5
Proposed Scheme with r=5
Proposed Converse with r=5
Converse Ji et al. 2016

Figure 2. Consider the request-robust D2D coded caching problem from Section 2.1 where
N = 10 and K = 30. The figure above is for the tradeoff between memory size and the maxi-
mum worst-case delivery rate for different requester numbers. The figure below shows the tradeoff
between memory size and the maximum average delivery rate under uniform demand for different
requester numbers. The scheme and converse proposed by Ji et al. [8] are both adapted to this
request-robust D2D scenario.

177

Entropy 2024, 26, 250

6. Conclusions

In this paper, we propose a new problem called request-robust D2D coded caching,
where in the delivery phase, though all users in the placement phase are still present, some
of them do not request any files. We presented an achievable scheme for this problem based
on uncoded cache placement and exploiting common demands and one-shot delivery.
The caching strategy is the same as that proposed by Maddah-Ali and Niesen, while
the delivery strategy divides the sub-files into three categories, and different delivery
signals are designed for each category. We also characterized information-theoretic lower
bounds for the request-robust D2D coded caching problem under the constraint of uncoded
cache placement. The lower bounds are both for the maximum average delivery rate
under uniform demand and the maximum worst-case delivery rate. We adapt the scheme
proposed by Yapar et al. for uncoded cache placement and one-shot delivery to the request-
robust D2D coded caching problem. The adaptation is performed by assigning the users,
who do not request, a demand that is the most requested by the requesters. The performance
of the adapted scheme is proved to be order optimal within a factor of two under uncoded
cache placement and within a factor of four in general. Finally, by numerical evaluation,
we show that the proposed scheme outperforms the known D2D coded caching schemes
applied to the request-robust scenario.

Author Contributions: Conceptualization, W.W., Z.T., N.L. and W.K.; methodology, W.W., Z.T., N.L.
and W.K.; formal analysis, W.W., Z.T., N.L. and W.K.; writing—original draft preparation, W.W.;
writing—review and editing, W.W., N.L. and W.K.; supervision, N.L. and W.K.; funding acquisition,
N.L. and W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the National Natural Science Foundation of China
under Grants 62361146853, 62071115, and 62371129 and the Research Fund of the National Mobile
Communications Research Laboratory, Southeast University (no. 2024A03).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Zhe Tao was employed by the company Huawei Technologies. The
author declares that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest. The funders had no role in
the design of the study; in the collection, analyses, or interpretation of the data; in the writing of the
manuscript; or in the decision to publish the results.

Appendix A. Adapted Yapar–Wan–Schaefer–Caire Scheme, i.e., Proof of Theorem 1

In this section, we present another achievable scheme that adapts the YWSC scheme
from [9] for the request-robust D2D coded caching problem. The scheme achieves the rate
stated in Theorem 1 .

We will first provide the general achievable scheme, which is based on the uncoded
cache placement and exploiting one-shot delivery [9]. Then, we will characterize the perfor-
mance of the proposed scheme and show that for any requester set R and corresponding
request vector DR, the adapted YWSC scheme achieves the rate

RDR
adapted-YWSC =

K(K−1
t)− ∑K

i=1 (
K−1−Ne(D′

K\{i})
t

)− f
[
(K−r

t)− (K−r−1
t)

]
t(K

t)
, (A1)

where D′
K is the request vector of all the users after adaption, and f is an integer equal

to one if and only if each requester demands a distinct file; otherwise, f = 0. The rate
RDR

adapted-YWSC with the explicit characterization of the maximum worst-case delivery rate
in Appendix A.2 immediately proves Theorem 1. Finally, we will provide an example to
aid in a better understanding of the adapted YWSC scheme.

178

Entropy 2024, 26, 250

Appendix A.1. General Scheme

Similar to Section 4.1, for the placement phase, we still useMMAN described in Definition 1.
In the following, we restrict to integer values of t ∈ [1 : K]. For cache size M where
t = KM/N is not an integer, memory-sharing will be performed [3,8].

For the delivery phase, let the set of requesters be R with size r. The r requesters each
demand a single file. We find that the YWSC scheme from [9] is highly adaptable for the
request-robust D2D coded caching scenario. The adaptation is performed by assigning the
users, who do not request, a demand that is the most requested by the requesters. If there
are multiple demands that are the most requested, the users, who do not request, would
be assigned one of the demands. Recall that we denote the adapted request vector as D′

K,
and the adapted request vector of users K \ {k} as D′

K\{k}. For example, if K = N = 4,
R = {1, 2}, D{1,2} = {1, 4}, we have D′

{1,2,3,4} = {1, 4, 1, 1} or D′
{1,2,3,4} = {1, 4, 4, 4}.

Obviously, Ne(D′
K) = Ne(DR) and Ne(D′

K\{k}) ≥ Ne(DR\{k}) for each k ∈ R.
Next, to adapt the YWSC scheme for the system model, the delivery strategy is divided

into the following steps:

(a) Determining the leading demanders: Recall that each sub-file is denoted as Wn,T and
is cached by only users in T . Each sub-file is divided into t equal-length disjoint sub-
pieces of F

t(K
t)

bits, which are denoted by Wn,T ,i, i ∈ T . Further, each user i selects an ar-

bitrary subset of Ne(D′
K\{i}) users from K \ {i}, denoted by U i = {ui

1, ..., ui
Ne(D′

K\{i})
},

which request Ne(D′
K\{i})) distinct files and are referred to as leading demanders of

user i.

Without a loss of generality, we assume that the leading demanders of each user i are
determined from the requesters as much as possible and are denoted by Ū i. For example,
for K = N = 3,R = {1, 2}, D{1,2} = {1, 3}, D′

{1,2,3} = {1, 3, 1}, the leading demander of

User 2 in the assumption is Ū 2 = {1} and should not be {3}, while the leading demander
of User 1 is Ū 1 = {2, 3}.

(b) Pre-transmitting signals: Then, for all subset E i ⊆ K \ {i} of t users, each user i
prepares for transmitting:

XYWSC
i = {Yi

E i}E i∩U i �=∅, (A2)

where

Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i, (A3)

which is the same as (23). In other words, since all users k ∈ E i shall retrieve the
needed sub-pieces Wdk ,{E i∪{i}}\{k},i from the transmissions of User i, using the idea of
leaders from [11], each user i only need to transmit in sequence the codewords Yi

E i for
all subsets E i such that E i ∩ U i �= ∅, i.e., XYWSC

i .
(c) Removing unwanted codewords: We notice that the codewords that are only useful

for the users, who do not request, are unwanted codewords and do not need to be
transmitted. Next, we will remove the unwanted codewords.

Recall that each user i only prepares for transmitting the codewords Yi
E i where E i ∩

Ū i �= ∅. For user i, when Ū i ∩ K \ R = ∅, the signal XYWSC
i does not have unwanted

codewords. When Ū i ∩K \R �= ∅, the signal XYWSC
i may have the codewords Yi

E i where
E i ⊆ K\R, which are only useful for the users, who do not request, and should be removed.
Obviously, if and only if each requester demands a distinct file, we have Ū i ∩K \R �= ∅

179

Entropy 2024, 26, 250

for only one requester i in R. Hence, for all subsets E i ⊆ K \ {i} of t users, each user i
transmits

Xadapted-YWSC
i = {Yi

E i}E i∩Ū i �=∅,E i�K\R,

where Yi
E i is defined in (A3).

As a result, when Requester k is a leading demander for User i, i.e., k ∈ U i, it can
decode any needed sub-piece Wdk ,Gk∪{i},i, where Gk ⊆ K \ {i, k}, |Gk| = t − 1, from Yi

Gk∪{k},
which is transmitted from User i, by performing

Wdk ,Gk∪{i},i =

⎛⎝⊕
x∈Gk

Wdx ,{Gk∪{i,k}}\{x},i

⎞⎠⊕Yi
Gk∪{k}.

When Requester k is not a leading demander for User i, using the equation⊕
V i∈V i

F

Yi
C i\V i = 0,

proved in [9] (Lemma 1), where subset C i ⊆ K \ {i} includes Ū i and V i
F denotes the family

of all subsets V i of C i such that each requested file in D′
K\{i} is requested by exactly one

user in V i, each user k can decode its requested sub-piece through obtaining the value Yi
E i

for any subset E i of t users such that E i ∩ Ū i = ∅ from the broadcast codewords by the
following equation:

Yi
E i =

⊕
V i∈V i

F\{Ū i}
Yi
C i\V i ,

where C i = E i ∪ Ū i. To sum up, for each i ∈ K \ {k}, Requester k decodes its requested
sub-pieces by following either one of the strategies above depending on whether it is a
leading demander of User i or not.

For each user i ∈ K, the size of the transmitted signal amounts to (K−1
t)− (

K−1−Ne(D′
K\{i})

t
)

times the size of a sub-piece. Meanwhile, if we have Ū i ∩K \R �= ∅ for only one requester
i in R, the size of the removed unwanted codewords amounts to (K−r

t)− (K−r−1
t) times the

size of a sub-piece. Hence, the rate of transmitting total bits coincides (A1).
For the convenience of understanding, we give the algorithm of the adapted YWSC

scheme in Algorithm A1.

Algorithm A1 Adapted YWSC Scheme (N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme(N, K, M, W[N])

end procedure

procedure DELIVERY(R, DR)
2: r ← |DR|
3: t ← KM/N
4: Assign the users, who do not request, a demand that is the most requested by the

requesters and has D′
K ← DR

5: G ← {G ⊆ [K] : |G| = t}
6: for n ∈ [N] do

7: for G ∈ G do

8: Divide sub-file Wn,G into t disjoint sub-pieces (Wn,G,i : i ∈ G) with equal size
9: end for

10: end for

11: for i ∈ K do

12: Ne(D′
K\{i}) ← the number of distinct elements in D′

K\{i}

180

Entropy 2024, 26, 250

13: Ū i ← {ui
1, ..., ui

Ne(D′
K\{i})

} from R as much as possible

14: for E i ⊆ K \ {i} : |E i| = t users do

15: if E i ∩ Ū i == ∅ then

16: continue
17: else if E i ⊆ K \R then

18: continue
19: else

20: User i transmits Yi
E i =

⊕
k∈E i

Wdk ,{E i∪{i}}\{k},i

21: end if

22: end for

23: end for

end procedure

Appendix A.2. The Maximum Worst-Case Delivery Rate

In this section, we characterize the performance of the adapted YWSC scheme for the
maximum worst-case delivery rate. The characterization is based on the observation that
the binomial coefficient (n

m) demonstrates a strictly ascending pattern with respect to n.
Again, the adaptation is performed by assigning the users, who do not request, a

demand that is the most requested by the requesters, and we have Ne(D′
K) = Ne(DR).

Meanwhile, f from (A1) is an integer equal to one if and only if each requester demands
a distinct file, i.e., Ne(DR) = r; otherwise, f = 0. Hence, for the request-robust D2D
coded caching problem, when N, K, M, r, and R do not change, since the upper bound
rate RDR

adapted-YWSC from (A1) decreases as Ne(D′
K) decreases, the upper bound rate for

the maximum worst-case delivery rate is the one at the maximum value of Ne(D′
K), i.e.,

Ne(D′
K) = min{r, N}.

Then, for r ≥ 2N, each file can be requested by at least two users, which leads to
Ne(D′

K\{k}), ∀k ∈ K having the maximum value of N. Meanwhile, in this case, f = 0.

Hence, this case maximizes the upper bound rate RDR
adapted-YWSC.

For r < 2N, User k may be the only user requesting a file or not, which leads to
Ne(D′

K\{k}) = Ne(D′
K)− 1 and Ne(D′

K\{k}) = Ne(D′
K), respectively. Due to the adaption,

for r ≤ N, there are r − 1 users, each of which are the only users requesting a file while
each of the remaining K − r + 1 users are not. Meanwhile, in the case r ≤ N, Ne(D′

K) = r
and f = 1. Thus, we prove the case where r ≤ N.

For N < r < 2N, we have Ne(D′
K) = N. Then, for DR, we obtain that each file

cannot be requested by more than two requesters. Thus, due to a total of K users, there are
2N − r users, each of which are the only users requesting a file while each of the remaining
K + r − 2N users are not. Meanwhile, in this case, f = 0. Thus, we prove the case where
N < r < 2N.

Appendix A.3. Example

To aid in better understanding, we provide an example to illustrate the adapted YWSC
scheme in Appendix A.1.

Let us consider a case where N = 2, K = 4, and M = 1. Hence, t = KM/N = 2. In the
placement phase, each file is divided into (4

2) = 6 sub-files, and each sub-file’s index is in T,
where T is the family of all sets T such that T ⊂ [4], |T | = 2. The user k ∈ [6] caches the
following sub-files for each n ∈ {1, 2}:

Zk = {Wn,T |T ∈ T, k ∈ T }.

In the delivery phase, without a loss of generality, we only consider Users 1 and 2,
as requesters, each requesting a single file, i.e., R = {1, 2}, and the request vector is
D{1,2} = (1, 2). Hence, we consider that the request vector after adaption is

181

Entropy 2024, 26, 250

D′
{1,2,3,4} = (1, 2, 1, 1). Notice that r = 4 and Ne(D′

{1,2,3,4}) = 2. Requesters 1 and 2
need the following missing sub-files:

W1 \ Z1 = {W1,{2,3}, W1,{2,4}, W1,{3,4}},

W2 \ Z2 = {W2,{1,3}, W2,{1,4}, W2,{3,4}}.

In Step (a), since t = 2, we split the sub-files into two equal-length sub-pieces. Further,
determining the leading demanders from the requesters as much as possible, without a loss
of generality, we assume that User 1 picks Users 1 and 3, User 2 picks User 1, User 3 picks
Users 1 and 2, and User 4 picks Users 1 and 2 as the leading demanders, i.e., Ū 1 = {2, 3},
Ū 2 = {1}, Ū 3 = {1, 2}, and Ū 4 = {1, 2}. Notice that Ne(D′

K\{1}) = 2, Ne(D′
K\{2}) = 1,

Ne(D′
K\{3}) = 2, and Ne(D′

K\{4}) = 2.

In Step (b), for User 1, E1 is of size t = 2 and is a subset of K \ {1} = {2, 3, 4}. Hence,
possible E1s can be {2, 3}, {2, 4}, and {3, 4}, which all satisfy the condition of non-zero
intersection with Ū 1 = {2, 3}. Hence, from (22) and (23), User 1 pre-transmits

Y1
{2,3} = W2,{1,3},1 ⊕ W1,{1,2},1, Y1

{2,4} = W2,{1,4},1 ⊕ W1,{1,2},1, Y1
{3,4} = W1,{1,4},1 ⊕ W1,{1,3},1.

Similarly, User 3 pre-transmits

Y3
{1,2} = W1,{2,3},3 ⊕ W2,{1,3},3, Y3

{1,4} = W1,{3,4},3 ⊕ W1,{1,3},3, Y3
{2,4} = W2,{3,4},3 ⊕ W1,{2,3},3,

and User 4 pre-transmits

Y4
{1,2} = W1,{2,4},4 ⊕ W2,{1,4},4, Y4

{1,3} = W1,{3,4},4 ⊕ W1,{1,4},4, Y4
{2,3} = W2,{3,4},4 ⊕ W1,{2,4},4.

As for User 2, E2 is of size t = 2 and is a subset of K \ {2} = {1, 3, 4}. Hence, possible E2s
can be {1, 3}, {1, 4}, and {3, 4}. Recall that Ū 2 = {1}; hence, only {1, 3} and {1, 4} satisfy
the condition of non-zero intersection with U 2 = {1}. Hence, from (A2) and (A3), User 2
pre-transmits

Y2
{1,3} = W1,{2,3},2 ⊕ W1,{1,2},2, Y2

{1,4} = W1,{2,4},2 ⊕ W1,{1,2},2.

The signal Y2
{3,4} = W1,{2,3},2 ⊕ W1,{2,4},2 does not need to be pre-transmitted and can be

calculated since Y2
{1,3} ⊕ Y2

{1,4} ⊕ Y2
{3,4} = 0 (cf. (24)).

In Step (c), removing unwanted codewords, we notice that the codeword Y1
{3,4} is only

useful for the users, who do not request, and hence are removed. The other codewords are
transmitted in the way of Step (b).

Thus, the total delivery rate achieved by the adapted YWSC scheme for the case
R = {1, 2} and D′

{1,2,3,4} = (1, 2, 1, 1) is R{1,2}
adapted-YWSC = 2+3+3+2

12 = 5
6 , which coincides

with (A1). In this case, if we directly use the YWSC scheme [9] by assigning Users 3 and
4 a demand that is the same as User 1, then according to [9] (Equation (14)), the delivery
rate is 4×3−1

12 = 11
12 . If we assign Users 3 and 4 with some other demands, the delivery

rate will be the same. However, if we use the proposed three-category-based scheme from
Section 4.1, then according to (A1), the delivery rate is R{1,2}

req-rob = 2
3 . Hence, we see that for

the request-robust D2D coded caching problem, the proposed three-category-based scheme
performs better than the adapted YWSC scheme for this example.

The reason why the proposed three-category-based scheme and the adapted YWSC
scheme have better performance is in the following remark:

Remark A1. The achievable rate RDR
adapted-YWSC of our model is similar to the achievable rate

R∗(d,MMAN) of Yapar’s model [9]. The main difference is that the value of Ne(d\{i}) in
R∗(d,MMAN) depends on all the users’ request vector d, while the value of Ne(D′

K\{i}) in

182

Entropy 2024, 26, 250

RDR
adapted-YWSC depends on the r requesters’ request vector DR. When N, K, and M is the same,

for User i, there is Ne(D′
K\{i}) ≤ Ne(d\{i}), and hence RDR

adapted-YWSC ≤ R∗(d,MMAN) for uni-
form demand distribution and the worst case. However, using the adapted YWSC scheme, the signal
Xadapted-YWSC

i may contain useless information. For example, in Appendix A.3, the signal Y1
{2,3}

contains the useless sub-piece W1,{1,2},1, which is transmitted for User 3, who does not request. We
find that removing useless sub-pieces does not affect the size of the rate but makes signals contain too
small uncoded sub-pieces. The proposed three-category-based scheme in Section 4 does not contain
useless information and maximizes the global gain brought from the code by utilizing the users, who
do not request, to transmit signals as much as possible.

Appendix B. Proof of Theorem 3

Appendix B.1. The Maximum Average Delivery Rate

In this subsection, we propose the converse bound given in Theorem 3 for the max-
imum average delivery rate of the request-robust D2D coded caching problem. Let us
consider the problem of coded caching with inactive users defined in Section 2.2.2 first.
For a problem of coded caching with inactive users with the rate Rinact, given the same
placement Z and requester demand vector DR as in Section 2.1, the encoding function on
the central server is

φ′DR : [2NF] → [2RinactF],

and the delivery information X′ is denoted as X′ = φ′DR(W1, ..., WN). The r requesters
decode the request message according to caching content and delivery information, and the
decoding function is defined as

ψ
′DR
k : [2Mk F]× [2RinactF] → [2F], k ∈ R.

The file decoded by User k is denoted as Ŵdk
= ψ

′DR
k (X′, Zk). If the error probability of this

system satisfies
P(Ŵdk

�= Wdk
) ≤ ε,

we call the system ε-achievable.
Given DR and Z, we define the minimum achievable rate of the ε-achievable system

as RDR∗
ε,inact(Z). For a fixed R with size r, DR is defined as the set of all possible demands

{1, · · · , N}r. When DR is uniformly distributed on DR, given placement Z, the average
delivery rate with respect to the uniform demand RR∗

ε,ave,inact(Z) is defined as

RR∗
ε,ave,inact(Z) = EDR [R

DR∗
ε,inact(Z)].

For a given r, we define the maximum average delivery rate with respect to the uniform
demand, denoted as Rr

ave,inact, where the maximum is over all the request sets R with
size r. Then, the optimal maximum average delivery rate of the memory–rate tradeoff is
essentially the maximum average delivery rate for the minimum value given an arbitrary
cache size M, and at this rate, the user can decode the requested file with a sufficiently
large size without error; that is,

Rr∗
ave,inact = sup

ε>0
lim sup

F→+∞
min

Z
max

R:|R|=r
RR∗

ε,ave,inact(Z).

Similarly, for a fixed R with size r, given placement Z, the worst-case delivery rate is

RR∗
ε,worst,inact(Z) = max

DR
RDR∗

ε,inact(Z),

183

Entropy 2024, 26, 250

and for a given r, the optimal maximum worst-case delivery rate we want to find is

Rr∗
worst,inact = sup

ε>0
lim sup

F→+∞
min

Z
max

R:|R|=r
RR∗

ε,worst,inact(Z).

For the problem of coded caching with inactive users, we have the following results:

Theorem A1. For the problem of coded caching with inactive users with K users, a database of N
files, uncoded cache sizes of M files at each user, only r users as requesters demanding files during
the delivery phase, and parameter t = KM

N , we have

Rr∗
ave,inact = EDR

[
(K

t+1)− (K−Ne(DR)
t+1)

(K
t)

]
, (A4)

for t ∈ K, where DR is uniformly random on DR = {1, ..., N}r and Ne(DR) denotes the number
of distinct requests in DR. When t /∈ K, Rr∗

ave,inact equals the lower convex envelope of the values in
(A4) for integer values of t ∈ K.

Moreover, for the worst-case rate, we have

Rr∗
worst,inact =

(K
t+1)− (K−min{r,N}

t+1)

(K
t)

, (A5)

for t ∈ K. When t /∈ K, Rr∗
worst,inact equals the lower convex envelope of the values in (A5) for

integer values of t ∈ K.

Proof. The tight lower bounds of the average delivery rate and worst-case delivery rate
are derived in the rest of this section. The caching and delivery scheme that achieves the
optimal maximum average and worst-case rates is described in Appendix C.

Due to inequality (4), to prove Theorem 3, we just need to prove Theorem A1. Moti-
vated by [11], to lower bound the achievable average rate, we first introduce the concept
of demand-type division. For the problem of coded caching with inactive users with the
number of initial users K, the number of requesters r, and the fixed request set R, given the
request vector DR, we define sR(DR) as its statistics such that the ith element of sR(DR) is
equal to the number of the i-th most requested file. For example, when K = 6 and N = 4,
and during the delivery phase r = 4,R = {1, 2, 3, 4}, and DR = {1, 1, 3, 4}, the statistic for
DR is s{1,2,3,4}(DR) = (2, 1, 1, 0). For convenience, we simply the statistics sR(DR) as sR.
Then, we denote the set of all possible statistics by SR. Through this statistical method,
the set of request vectors DR can be divided into some subsets as type, and type DsR is
defined as the set of queries with statistics sR.

Note that for each request vector DR, the value of Ne(DR) only depends on its statistic
sR(DR), so for the same type of request vector, the rate is the same. For convenience,
the Ne(DR) of the type DsR is called Ne(sR).

Given the number of requesters r, the request set R, and the placement Z, for each
type DsR in the problem of coded caching with inactive users, the average delivery rate
RsR∗

ε,ave,inact(Z) is defined as

RsR∗
ε,ave,inact(Z) =

1
|DsR| ∑

DR∈DsR
RDR∗

ε,inact(Z),

For all types of request vectors, we have

Rr∗
ave,inact = sup

ε>0
lim sup

F→+∞
min

Z
max

R:|R|=r
EsR

[
RsR∗

ε,ave,inact(Z)
]

184

Entropy 2024, 26, 250

≥ sup
ε>0

lim sup
F→+∞

max
R:|R|=r

EsR

[
min

Z
RsR∗

ε,ave,inact(Z)
]

. (A6)

Hence, the lower bound of Rr∗
ave,inact can be derived through bounding the minimum value

of RsR∗
ε,ave,inact(Z) for each type DsR individually. We use the following lemma to lower

bound the average rates within each type:

Lemma A1. Consider the problem of coded caching with inactive users with K initial users, N
files, MF cache sizes, r requesters, and request set R during the delivery phase; for each type DsR ,
the minimum value of RsR∗

ε,ave,inact(Z) is lower bounded by

min
Z

RsR∗
ε,ave,inact(Z) ≥ Conv

(
(K

t+1)− (K−Ne(sR)
t+1)

(K
t)

)
−
(

1
F
+ N2

e (sR)ε
)

, (A7)

where Conv(f (t)) denotes the lower convex envelope of the following points: {(t, f (t))|t ∈
{0, 1, ..., K}}.

Proof. We notice that solving the fundamental limits of the problem of coded caching
with inactive users is essentially the caching problem defined in [11]. The only difference
between the problem of coded caching with inactive users and the caching problem defined
in [11] is the size of the request vector. Therefore, applying [11] (Lemma 2) and replacing the
caching problem parameters demand d; statistics of demand s; set of all possible statistics S ;
set of all possible demands D; and type of demand Ds with DR, sR(DR),SR,DR, and DsR ,
we obtain (A7).

From (A6) and Lemma A1, the lower bound of Rr∗
ave,inact can be further derived as

Rr∗
ave,inact ≥ EsR

[
Conv

(
(K

t+1)− (K−Ne(sR)
t+1)

(K
t)

)]
. (A8)

Because the sequence

cn =
(K

n+1)− (K−Ne(sR)
n+1)

(K
n)

,

is convex, the order of the expectation and the Conv in (A8) can be switched. Therefore,
Rr∗

ave,inact is lower bounded by the rate defined in Theorem A1, which immediately proves
Theorem 3 for the maximum average delivery rate.

Appendix B.2. The Maximum Worst-Case Delivery Rate

Due to (5), to prove Theorem 3 for the maximum worst-case delivery rate, we just
need to prove Theorem A1 for the maximum worst-case delivery rate. Given the number of
requesters r, the request set R, and placement Z, for each type DsR in the problem of coded
caching with inactive users, we define the worst-case delivery rate RsR∗

ε,worst,inact(Z) as

RsR∗
ε,worst,inact(Z) = max

DR∈DsR
RDR∗

ε,inact(Z).

Note that

Rr∗
worst,inact = sup

ε>0
lim sup

F→+∞
min

Z
max

R:|R|=r
max

sR
RsR∗

ε,worst,inact(Z)

≥ sup
ε>0

lim sup
F→+∞

max
R:|R|=r

max
sR

min
Z

RsR∗
ε,worst,inact(Z).

185

Entropy 2024, 26, 250

For each sR ∈ SR, using Lemma A1, we can know that

min
Z

RsR∗
ε,worst,inact(Z) ≥ min

Z
RsR∗

ε,ave,inact(Z)

≥ Conv

(
(K

t+1)− (K−Ne(sR)
t+1)

(K
t)

)
−
(

1
F
+ N2

e (sR)ε
)

.

When N, K, M, r, and R do not change, since the worst-case delivery rate RsR∗
ε,worst,inact(Z)

decreases as Ne(sR) decreases, the optimal worst-case delivery rate is the one at the maxi-
mum value of Ne(sR). Meanwhile, there is

Ne(sR) ≤ min{r, N}. (A9)

Consequently,

Rr∗
worst,inact ≥ sup

ε>0
lim sup

F→+∞
max

R:|R|=r
max

sR
Conv

(
(K

t+1)− (K−Ne(sR)
t+1)

(K
t)

)
−
(

1
F
+ N2

e (sR)ε
)

= Conv

(
(K

t+1)− (K−min{r,N}
t+1)

(K
t)

)
.

Therefore, Rr∗
worst,inact is lower bounded by the rate defined in Theorem A1 for the maximum

worst-case delivery rate, which immediately proves Theorem 3 for the maximum worst-case
delivery rate.

Appendix C. Optimal Scheme for Problem of Coded Caching with Inactive Users

Achieved in Theorem A1

In this section, we present the optimal scheme for the problem of coded caching with
inactive users. The scheme achieves the rate stated in Theorem A1. We will characterize
the performance of the proposed scheme and show that for any requester set R and
corresponding request vector DR, the optimal scheme achieves the rate

Rinact =
(K

t+1)− (K−Ne(DR)
t+1)

(K
t)

. (A10)

The rate Rinact with the explicit characterization of the maximum worst-case delivery rate
in (A9) immediately proves Theorem A1.

Similar to Section 4.1, we restrict to integer values of t ∈ K and use the MAN uncoded
symmetric placement scheme given in Definition 1 in the placement phase. For non-integer
values of t, the pair (M, Rinact) achieves the lower convex envelope of the achievable points
for integer values of t ∈ K.

For the delivery phase, the central server arbitrarily selects a subset of Ne(DR) re-
questers, denoted by Û = {û1, ..., ûNe(DR)}, that requests Ne(DR) distinct files, Û ⊆ R.
Following the idea of leaders from [11], we name these requesters as leaders.

Given an arbitrary subset H of t + 1 users, each requester k ∈ H∩R needs the sub-file
Wdk ,H\{k}, which is known by all other users in H. Precisely, all the requesters k ∈ H ∩R
shall retrieve the needed sub-files Wdk ,H\{k} from the transmissions of the central server.
By letting the central server broadcast the codeword

YH =
⊕

x∈H∩R
Wdx ,H\{x}, where H∩R �= ∅, (A11)

this sub-file retrieval can be accomplished since each requester k ∈ H ∩ R has all the
sub-files on the RHS of (A11) except for Wdk ,H\{k}.

186

Entropy 2024, 26, 250

In order to achieve the rate in (A10), the central server only needs to transmit the
codeword YH, which is useful for at least one leader, i.e., Xinact = {YH}H∩Û �=∅. The above

delivery scheme totally transmits (K
t+1)− (K−Ne(DR)

t+1) codewords each with a size of F/(K
t)

bits, which achieves the rate in (A10).

Remark A2. We notice that the proposed scheme is in fact the shared-link model [3] with the same
file number N, file size F, user number K, cache size M, and corresponding parameter t. The only
difference is the size of the request vector. Replacing the shared-link system parameter Ne(d) in (19)
with Ne(DR), we obtain (A10).

We now prove that each requester can decode the file requested by the above delivery
scheme. When k is a leader, i.e., k ∈ Û , it can decode any required sub-file Wdk ,H′ , where
H′ �� k, |H′| = t, from YH′∪{k} by performing

Wdk ,H′ =

(⊕
x∈H′

Wdx ,H′∪{k}\{x}

)⊕
YH′∪{k}, (A12)

where YH′∪{k} is defined in (A11).
When k ∈ R \ Û , not all codewords YH′∪{k} are transmitted, and the requester k needs

to decode the required codewords not transmitted directly. We use Lemma A2 to explain
that the non-leader requester k can also decode all the required sub-files, even if the central
server does not transmit YH′∪{k}, where H′ ∩ Û = ∅.

Lemma A2. Given the request vector DR and picking a set of leaders Û , for any set I ⊆ K, let VF
be the family of all subsets V of I such that each requested file in DR is requested by exactly one
user in V , and we have ⊕

V∈VF

YI\V = 0, (A13)

where YI\V is defined in (A11).

Proof. As mentioned in Remark A2, the proposed scheme for the problem of coded caching
with inactive users is actually the shared-link scheme. Thus, Lemma 1 in [11] can be directly
applied to the proposed scheme.

Consider any subset H of t + 1 non-leader users but containing requesters. From
Lemma A2, the codeword YH can be directly computed from the transmitted codewords
by using the following equation:

YH =
⊕

V∈VF\{Û}
YI\V , (A14)

where I = H ∪ Û , given the fact that all codewords on the RHS of (A14) are broadcast,
because each I \ V has a size of t + 1 and contains at least one leader. Hence, each requester
k can obtain the value YH for any subset H, where H ∩R �= ∅ of t + 1 users, and can
decode its demanded files as discussed in (A11). The proposed scheme for the problem of
coded caching with inactive users achieves the rate in (A10), which proves the achievability
of Theorem A1.

For the convenience of understanding, we give the algorithm of the caching and
delivery scheme with inactive users in Algorithm A2.

Algorithm A2 Caching and Delivery Scheme with Inactive Users(N, K, M)

procedure PLACEMENT(W1, ..., WN)
1: Apply Algorithm 1 MAN Uncoded Symmetric Placement Scheme(N, K, M, W[N])

end procedure

187

Entropy 2024, 26, 250

procedure DELIVERY(R, DR)
2: t ← KM/N
3: Ne(DR) ← the number of distinct elements in DR
4: Û ← {û1, ..., ûNe(DR)}
5: for H ⊆ [K] : |H| = t + 1 do

6: if H∩ Û == ∅ then

7: continue
8: else

9: Central server transmits YH =
⊕

x∈H:dx∈DR
Wdx ,H\{x}

10: end if

11: end for

end procedure

We provide an example to explain how the proposed scheme works.
Let us consider a case that N = 2, K = 3, M = 2/3, and t = KM/N = 1. In the

placement phase, each file is divided into (3
1) = 3 sub-files. The users k ∈ [3] cache the

following sub-files:

Z1 = {W1,{1}, W2,{1}}, Z2 = {W1,{2}, W2,{2}}, Z3 = {W1,{3}, W2,{3}}.

In the delivery phase, only User 1 and 2 as requesters request a single file, i.e., R = {1, 2},
and the request vector is D{1,2} = (1, 1). Notice that r = 2 and Ne(D{1,2}) = 1.

Without a loss of generality, assume that the central server picks User 1 as the leader,
i.e., Û = {1}. Then, the central server transmits the following codewords:

Y{1,2} = W1,{2} ⊕ W1,{1}, Y{1,3} = W1,{3},

without transmitting Y{2,3} = W1,{3}, this will cause Y{2,3} ⊕ Y{1,3} = 0 from (A13). No
matter what the leader central server picks, it can transmit one less codeword, denoted as
YH, where H∩ Û = ∅, through this method.

From the transmitted codewords just mentioned, all the requesters can decode all their
needed files by performing (A12). The rate Rinact = 1/3 × 2 = 2/3 and could be directly
calculated by (A10).

Remark A3. The proposed scheme for the problem of coded caching with inactive users is with
secure delivery [28] for t ≥ 1 and r ≥ 2, where the users who do not request and the external
wiretapper cannot decode any files since the transmitted codewords only consist of the sub-files
needed by requesters, and the sub-files whose index only consists of requesters would not be directly
transmitted and cannot be decoded.

Appendix D. Order Optimality of the Adapted YWSC Scheme in Appendix A.1

i.e., Proof of Theorem 4

As discussed in Remark 1, in this section, under the constraint of the uncoded cache
placement, we only compare the achievable rate RDR

adapted-YWSC from (A1) with the lower
bound rate for Rr∗

ave,req-rob and Rr∗
worst,req-rob from (12) and (13), respectively.

For the maximum average delivery rate, from (12), (A4), and (A10), we have that
EDR [R

DR
adapted-YWSC] ≥ Rr∗

ave,req-rob ≥ Rr∗
ave,inact = EDR [Rinact]. Furthermore, we observe that

Rinact ≥ t
t+1 RDR

adapted-YWSC by the following:

t
t + 1

RDR
adapted-YWSC ≤

1
t+1 K(K−1

t)− 1
t+1 ∑K

i=1 (
K−1−Ne(D′

K\{i})
t

)

(K
t)

188

Entropy 2024, 26, 250

=
(K

t+1)− ∑K
i=1

1
K−Ne(D′

K\{i})
(

K−Ne(D′
K\{i})

t+1
)

(K
t)

≤
(K

t+1)− mini
K

K−Ne(D′
K\{i})

(
K−Ne(D′

K\{i})
t+1

)

(K
t)

≤
(K

t+1)− (K−Ne(DR)
t+1)

(K
t)

(A15)

= Rinact,

where (A15) is because 1 ≤ Ne(DR\{i}) ≤ Ne(D′
K\{i}) ≤ Ne(D′

K) = Ne(DR) for all i ∈ [K].
Therefore, we have that

EDR [R
DR
adapted-YWSC] ≥ Rr∗

ave,req-rob ≥ Rr∗
ave,inact = EDR [Rinact]

≥ t
t + 1

EDR [R
DR
adapted-YWSC] ≥

1
2
EDR [R

DR
adapted-YWSC].

gives the same result, which is

max
DR

RDR
adapted-YWSC ≥ Rr∗

worst,req-rob ≥ Rr∗
worst,inact = max

DR
Rinact

≥ t
t + 1

max
DR

RDR
adapted-YWSC ≥ 1

2
max
DR

RDR
adapted-YWSC,

which can be achieved for the maximum worst-case delivery rate by using similar steps.
These results prove that the achievable rate RDR

adapted-YWSC is order optimal within a factor
of two under the constraint of uncoded cache placement. In addition, by the proved
order optimality of the shared-link scheme within a factor of two [29] for allowing coded
placement, and as discussed in Remark A2 that the only difference between the delivery
scheme with inactive users and a shared-link scheme is the size of the request vector, it
immediately proves that the achieved rate is within a factor of four in general and completes
the proof of Theorem 4.

References

1. Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communica-
tion Technologies and Challenges. IEEE Access 2018, 6, 3619–3647. [CrossRef]

2. Golrezaei, N.; Molisch, A.F.; Dimakis, A.G.; Caire, G. Femtocaching and device-to-device collaboration: A new architecture for
wireless video distribution. IEEE Commun. Mag. 2013, 51, 142–149. [CrossRef]

3. Maddah-Ali, M.A.; Niesen, U. Fundamental Limits of Caching. IEEE Trans. Inf. Theory 2014, 60, 2856–2867. [CrossRef]
4. Wei, Q.; Wang, L.; Xu, L.; Tian, Z.; Han, Z. Hierarchical Coded Caching for Multiscale Content Sharing in Heterogeneous

Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 5770–5786. [CrossRef]
5. Maddah-Ali, M.A.; Niesen, U. Decentralized Coded Caching Attains Order-Optimal Memory-Rate Tradeoff. IEEE/ACM Trans.

Netw. 2015, 23, 1029–1040. [CrossRef]
6. Cheng, H.; Li, C.; Xiong, H.; Frossard, P. Optimal decentralized coded caching for heterogeneous files. In Proceedings of the 2017

25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 2531–2535. [CrossRef]
7. Zheng, L.; Chen, Q.; Yan, Q.; Tang, X. Decentralized Coded Caching Scheme With Heterogeneous File Sizes. IEEE Trans. Veh.

Technol. 2020, 69, 818–827. [CrossRef]
8. Ji, M.; Caire, G.; Molisch, A.F. Fundamental Limits of Caching in Wireless D2D Networks. IEEE Trans. Inf. Theory 2016, 62, 849–869.

[CrossRef]
9. Yapar, C.; Wan, K.; Schaefer, R.F.; Caire, G. On the Optimality of D2D Coded Caching With Uncoded Cache Placement and

One-Shot Delivery. IEEE Trans. Commun. 2019, 67, 8179–8192. [CrossRef]
10. Wang, W.; Liu, N.; Kang, W. Three-User D2D Coded Caching With Two Random Requesters and One Sender. IEEE Trans.

Commun. 2023, 71, 6967–6978. [CrossRef]
11. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. The Exact Rate-Memory Tradeoff for Caching With Uncoded Prefetching. IEEE Trans.

Inf. Theory 2018, 64, 1281–1296. [CrossRef]

189

Entropy 2024, 26, 250

12. Wan, K.; Sun, H.; Ji, M.; Tuninetti, D.; Caire, G. On the Fundamental Limits of Device-to-Device Private Caching under Uncoded
Cache Placement and User Collusion. IEEE Trans. Inf. Theory 2022, 68, 5701–5729. [CrossRef]

13. Wan, K.; Sun, H.; Ji, M.; Tuninetti, D.; Caire, G. Device-to-Device Private Caching with Trusted Server. In Proceedings of the ICC
2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

14. Wan, K.; Sun, H.; Ji, M.; Tuninetti, D.; Caire, G. Novel Converse for Device-to-Device Demand-Private Caching with a Trusted
Server. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA , 21–26
June 2020; pp. 1705–1710. [CrossRef]

15. Ibrahim, A.M.; Zewail, A.A.; Yener, A. Device-to-Device Coded-Caching With Distinct Cache Sizes. IEEE Trans. Commun. 2020,
68, 2748–2762. [CrossRef]

16. Woolsey, N.; Chen, R.R.; Ji, M. Towards Finite File Packetizations in Wireless Device-to-Device Caching Networks. IEEE Trans.
Commun. 2020, 68, 5283–5298. [CrossRef]

17. Zhang, X.; Ji, M. Finite-length Analysis of D2D Coded Caching via Exploiting Asymmetry in Delivery. In Proceedings of the 2022
IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 4–6 July
2022; pp. 1–5. [CrossRef]

18. Zewail, A.A.; Yener, A. Device-to-Device Secure Coded Caching. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1513–1524. [CrossRef]
19. Awan, Z.H.; Sezgin, A. Fundamental limits of caching in D2D networks with secure delivery. In Proceedings of the 2015 IEEE

International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 464–469. [CrossRef]
20. Ji, M.; Chen, R.R.; Caire, G.; Molisch, A.F. Fundamental limits of distributed caching in multihop D2D wireless networks.

In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017;
pp. 2950–2954. [CrossRef]

21. Lee, M.C.; Ji, M.; Molisch, A.F. Optimal Throughput-Outage Analysis of Cache-Aided Wireless Multi-Hop D2D Networks. IEEE
Trans. Commun. 2021, 69, 2489–2504. [CrossRef]

22. Tebbi, A.; Sung, C.W. Coded caching in partially cooperative D2D communication networks. In Proceedings of the 2017 9th
International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany,
6–8 November 2017; pp. 148–153. [CrossRef]

23. Phatak, A.; Varanasi, M.K. An improved coded caching scheme for partially cooperative D2D networks. In Proceedings of the
2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 1121–1126. [CrossRef]

24. Li, J.; Chang, Y. New Constructions of D2D Placement Delivery Arrays. IEEE Commun. Lett. 2023, 27, 85–89. [CrossRef]
25. Wang, W.; Liu, N.; Kang, W. Coded Caching in Request-robust D2D Communication Networks. In Proceedings of the 2023

International Symposium on Networks, Computers and Communications (ISNCC), Doha, Qatar, 23–26 October 2023; pp. 1–6.
[CrossRef]

26. Liao, J.; Tirkkonen, O. Coded Caching in Presence of User Inactivity. In Proceedings of the 2022 IEEE Wireless Communications
and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 1437–1442. [CrossRef]

27. Wan, K.; Tuninetti, D.; Piantanida, P. On the optimality of uncoded cache placement. In Proceedings of the 2016 IEEE Information
Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 161–165. [CrossRef]

28. Sengupta, A.; Tandon, R.; Clancy, T.C. Fundamental Limits of Caching With Secure Delivery. IEEE Trans. Inf. Forensics Secur.
2015, 10, 355–370. [CrossRef]

29. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Characterizing the Rate-Memory Tradeoff in Cache Networks Within a Factor of 2.
IEEE Trans. Inf. Theory 2019, 65, 647–663. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

190

Citation: Tang, H.; Liu, H.; Jin, S.; Liu,

W.; Sun, Q. On Matrix Representation

of Extension Field GF(pL) and Its

Application in Vector Linear Network

Coding. Entropy 2024, 26, 822.

https://doi.org/10.3390/e26100822

Academic Editors: Boris Ryabko and

Jun Chen

Received: 30 July 2024

Revised: 8 September 2024

Accepted: 24 September 2024

Published: 26 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On Matrix Representation of Extension Field GF(pL) and Its
Application in Vector Linear Network Coding

Hanqi Tang, Heping Liu, Sheng Jin, Wenli Liu and Qifu Sun *

School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China; tanghanqi1009@ustb.edu.cn (H.T.); 13121778655@163.com (H.L.);
13735677295@163.com (S.J.); lilyaccount00@163.com (W.L.)
* Correspondence: qfsun@ustb.edu.cn

Abstract: For a finite field GF(pL) with prime p and L > 1, one of the standard representations is L× L
matrices over GF(p) so that the arithmetic of GF(pL) can be realized by the arithmetic among these
matrices over GF(p). Based on the matrix representation of GF(pL), a conventional linear network
coding scheme over GF(pL) can be transformed to an L-dimensional vector LNC scheme over GF(p).
Recently, a few real implementations of coding schemes over GF(2L), such as the Reed–Solomon (RS)
codes in the ISA-L library and the Cauchy-RS codes in the Longhair library, are built upon the classical
result to achieve matrix representation, which focuses more on the structure of every individual
matrix but does not shed light on the inherent correlation among matrices which corresponds to
different elements. In this paper, we first generalize this classical result from over GF(2L) to over
GF(pL) and paraphrase it from the perspective of matrices with different powers to make the inherent
correlation among these matrices more transparent. Moreover, motivated by this correlation, we can
devise a lookup table to pre-store the matrix representation with a smaller size than the one utilized
in current implementations. In addition, this correlation also implies useful theoretical results which
can be adopted to further demonstrate the advantages of binary matrix representation in vector
LNC. In the following part of this paper, we focus on the study of vector LNC and investigate the
applications of matrix representation related to the aspects of random and deterministic vector LNC.

Keywords: vector linear network coding; matrix representation; finite field

1. Introduction

The finite fields GF(pL) with a prime of p and an integer of L ≥ 1 have been widely
used in modern information coding, information processing, cryptography, and so on.
Specifically, in the study of linear network coding (LNC), conventional LNC [1] transmits
data symbols along the edges over GF(pL), and every outgoing edge of a node v transmits
a data symbol that is a GF(pL)-linear combination of the incoming data symbols to v. A
general LNC framework called vector LNC [2] models the data unit transmitted along every
edge as an L-dimensional vector of data symbols over GF(p). Correspondingly, the coding
operations at v involve GF(p)-linear combinations of all data symbols in incoming data
unit vectors and are naturally represented by L × L matrices over GF(p).

Recently, many works [3–7] have shown that vector LNC has the potential to reduce
extra coding overheads in networks relative to conventional LNC. In order to achieve
vector LNC, a matrix representation of GF(pL) [8] is L × L matrices over GF(p) so that the
arithmetic of GF(pL) can be realized by the arithmetic among these matrices over GF(p).
Based on the matrix representation of GF(pL), a conventional LNC scheme over GF(pL)
can be transformed to an L-dimensional vector LNC scheme over GF(p). In addition to
the theory of LNC, many existing implementations of linear codes, such as the Cauchy-RS
codes in the Longhair library [9] and the RS codes in the Jerasure library [10,11] and the
latest release of the ISA-L library [12], also practically achieve arithmetic over GF(2L) using
matrix representation.

Entropy 2024, 26, 822. https://doi.org/10.3390/e26100822 https://www.mdpi.com/journal/entropy191

Entropy 2024, 26, 822

In order to achieve the matrix representation of GF(pL), a classical result obtained
in [13] relies on polynomial multiplications to describe the corresponding matrix of an
element over GF(2L). A number of current implementations and studies (see, e.g., [9–15])
utilize such a characterization to achieve the matrix representation of GF(2L). However,
the characterization in the present form focuses more on the structure of every individual
matrix and does not shed light on the inherent correlation between matrices that corre-
sponds to different elements. As a result, in the aforementioned existing implementations,
the corresponding binary matrix is either independently computed on demand or fully
stored in a lookup table as an L × L matrix over GF(2) in advance.

In the first part of this paper, we shall generalize the characterization of matrix rep-
resentation from over GF(2L) to over GF(pL) and paraphrase it from the perspective of
matrices with different powers so that the inherent correlation among these matrices will be-
come more transparent. More importantly, this correlation motivates us to devise a lookup
table to pre-store the matrix representation with a smaller size. Specifically, compared to
the one adopted in the latest release of the ISA-L library [12], the table size is reduced by a
factor of 1/L. Additionally, this correlation also implies useful theoretical results that can
be adopted to further demonstrate the advantages of binary matrix representation in vector
LNC. In the second part, we focus on the study of vector LNC and show the applications of
matrix representation related to the aspects of random and deterministic coding. In random
coding, we theoretically analyze the coding complexity of conventional and vector LNC
via matrix representation under the same alphabet size 2L. The comparison results show
that vector LNC via matrix representation can reduce at least half of the coding complexity
to achieve multiplications. Then, in deterministic LNC, we focus on the special choice of
coding operations that can be efficiently implemented. In particular, we illustrate that the
choice of primitive polynomial can influence the distributions of matrices with different
numbers of non-zero entries and propose an algorithm to obtain a set of sparse matrices
that can be good candidates for the coefficients of a practical LNC scheme.

This paper is structured as follows. Section 2 reviews the mathematical fundamentals
of representations to an extension field GF(pL). Section 3 paraphrases the matrix represen-
tation from the perspective of matrices in different powers and then devises a lookup table
to pre-store the matrix representation with a smaller size. Section 4 focuses on the study of
vector LNC and shows the applications of matrix representation related to the aspects of
random and deterministic coding. Section 5 summarizes this paper.

Notation. In this paper, every bold symbol represents a vector or a matrix. In particu-
lar, IL refers to the identity matrix of size L, and 0, 1, respectively, represent an all-zero or
all-one matrix, whose size, if not explicitly explained, can be inferred in the context.

2. Preliminaries

In this section, we review three different approaches to express an extension field
GF(pL) with pL elements, where p is a prime. The first approach is the standard polynomial
representation. Let p(x) denote an irreducible polynomial of degree L over GF(p) and α be a
root of p(x). Every element of GF(pL) can be uniquely expressed as a polynomial in α over
GF(p) with a degree less than L, and {1, α, α2, . . . , αL−1} forms a basis GF(pL) over GF(p).
In particular, every β ∈ GF(pL) can be uniquely represented in the form of ∑L−1

l=0 vlα
l with

vl ∈ GF(p). In the polynomial representation, the element β = ∑L−1
l=0 vlα

l is expressed as
the L-dimensional representative vector vβ = [v0 v1 . . . vL−1]β over GF(p). In order to further

simplify this expression, vβ can be written as the integer 0 ≤ dpoly
β ≤ pL − 1 such that

dpoly
β =

L−1

∑
l=0

pl v̂l , (1)

where 0 ≤ v̂l < p is the integer representation of vl , that is, ∑v̂l
i=1 1 = vl where 1 is to be the

multiplicative unit of GF(p).

192

Entropy 2024, 26, 822

The second approach is called the generator representation, which further requires
p(x) to be a primitive polynomial such that α is a primitive element, and all pL − 1 non-
zero elements in GF(pL) can be generated as α0, α1, α2, . . . , αpL−2. Thus, every non-zero
β ∈ GF(pL)\0 is uniquely expressed as the integer 0 ≤ dgen

β ≤ pL − 2 subject to

β = α
dgen

β . (2)

The polynomial representation clearly specifies the additive structure of GF(pL) as a vector
space or a quotient ring of polynomials over GF(p) while leaving the multiplicative structure
hard to determine. Meanwhile, the generator representation explicitly illustrates the cyclic
multiplicative group structure of GF(pL)\{0} without clearly demonstrating the additive
structure. It turns out that the addition operation and its inverse in GF(pL) are easy to
implement based on the polynomial representation, while the multiplicative operations and
its inverse in GF(pL) are easy to be implement based on the generator representation. In
particular, for β1, β2 ∈ GF(pL),

dpoly
β1+β2

= dpoly
β1

⊕ dpoly
β2

or equivalently vβ1+β2 = vβ1 + vβ2 (3)

dgen
β1β2

= (dgen
β1

+ dgen
β2

) mod pL − 1, (4)

where the operation ⊕ between two integers dpoly
β1

and dpoly
β2

means the component-wise
p-ary addition v1 + v2 between the p-ary expression v1, v2 of them. This is the key reason
that in practice both representations are always adopted interchangeably when conducting
operations in GF(pL).

Unfortunately, except for some special β ∈ GF(pL), such as αl , 0 ≤ l < L, there is not a
straightforward way to establish the mapping between dpoly

β and dgen
β without computation,

and a built-in lookup table is always adopted in practice to establish the mapping between
two types of representations. For instance, Table 1 lists the mapping between dpoly

β and dgen
β

for non-zero elements β in GF(23) with p(x) = x4 + x + 1.

Table 1. The mapping between dpoly
β and dgen

β for non-zero β in GF(24) with p(x) = x4 + x + 1.

dgen
β

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dpoly
β

1 2 4 8 3 6 12 11 5 10 7 14 15 13 9

By convention, elements β in GF(pL) are represented as dpoly
β . It takes L p-ary additions

to compute dβ1+β2 = dpoly
β1

⊕ dpoly
β1

. Based on the lookup table, it takes 3 lookups (which,

respectively, map dpoly
β1

, dpoly
β2

to dgen
β1

, dgen
β2

and dgen
β1β2

to dpoly
β1β2

), 1 integer addition, and at most

1 modulo pL − 1 operation to compute dpoly
β1β2

= dpoly
β1

dpoly
β2

. Meanwhile, it is worthwhile to

note that the calculation of dpoly
β1β2

= dpoly
β1

dpoly
β2

without the table follows the multiplication of
polynomials f1(x) and f2(x) with coefficient vectors vβ1 and vβ2 , respectively, and finally
falls into

f1(x) f2(x) modulo p(x), (5)

where the computational complexity compared with the following matrix representation
will be fully discussed in Section 4.

The third approach, which is the focus of this paper, is given by means of matrices
called the matrix representation [8]. Let C be the L × L companion matrix of an irreducible
polynomial p(x) of degree L over GF(p). In particular, if p(x) = a0 + a1x + a2x2 + . . . +
aL−1xL−1 + xL with a0, a1, . . . , aL−1 ∈ GF(p),

193

Entropy 2024, 26, 822

C =

⎡⎢⎢⎣
0 −a0

IL−1

−a1
. . .

−aL−1

⎤⎥⎥⎦
L×L

. (6)

It can be easily verified that p(x) is the characteristic polynomial of C, and according
to the Cayley–Hamilton theorem, p(C) = 0. As a result, {IL, C, C2, · · · , CL−1} forms
a basis of GF(pL) over GF(p), and for every β ∈ GF(pL) with the representative vector
vβ = [v0 v1 . . . vL−1]

T based on the polynomial representation, the matrix representation
M(β) of β is defined as

M(β) = ∑L−1
i=0 viC

i. (7)

If the considered p(x) further qualifies as a primitive polynomial, then similar to the role of
the primitive element α defined above, C is also a multiplicative generator of all non-zero
elements in GF(pL), that is, M(αi) = Ci for all 0 ≤ i ≤ pL − 2. One advantage for the
matrix representation is that all operations in GF(pL) can be realized by matrix operations
over GF(p) among the matrices in C such that there is no need to interchange between the
polynomial and the generator representations in performing field operations. For more
detailed discussions of representation of an extension field, please refer to [16].

Based on the polynomial representation and generator representation, even though
the arithmetic over GF(pL) can be efficiently realized by (3), (4) and a lookup table, it
requires two different types of calculation systems, i.e., one over GF(p) and the other
over integers. This hinders the deployment practicality in applications with resource-
constrained edge devices, such as in ad hoc networks or Internet of Things applications. In
comparison, the matrix representation of GF(pL) interprets the arithmetic of GF(pL) solely
over the arithmetic over GF(p), so it is also a good candidate for realization of the efficient
implementation of linear codes over GF(pL) such as in [9–13].

3. Useful Characterization of the Matrix Representation

Let p(x) be a defined irreducible polynomial over GF(p) of degree L and let α ∈ GF(pL)
be a root of p(x). When p = 2, a useful characterization of the matrix representation M(β)
of β ∈ GF(pL) (with respect to p(x)) can be deduced based on the following classical result
obtained in Construction 4.1 and Lemma 4.2 of [13]: For 1 ≤ j ≤ L, the jth column in
M(β) is equal to the binary expression of αj−1β based on the polynomial representation.
A number of implementations and studies (see, e.g., [9–15]) of linear codes utilize such
characterization to achieve the matrix representation of GF(2L). However, the characteri-
zation in the present form relies on polynomial multiplications and focuses more on the
structure of every individual M(β). It does not explicitly shed light on the inherent correla-
tion among M(β) of different β ∈ GF(2L). It turns out that in existing implementations,
such as the Cauchy-RS codes in the Longhair library [9] and the RS codes in the Jerasure
library [10,11], and the latest release of ISA-L library [12], M(β) is either independently
computed on demand or fully stored in a lookup table as an L × L matrix over GF(2)
in advance.

In this section, we shall generalize the characterization of matrix representation from
over GF(2L) to over GF(pL) and paraphrase it based on the interplay with the generator
representation instead of the conventional polynomial representation so that the correlation
among M(β) of different β ∈ GF(pL) will become more transparent. From now on, we
assume that p(x) is further qualified to be a primitive polynomial such that α is a prim-
itive element in GF(pL). For simplicity, let vi, 0 ≤ i ≤ pL − 2, denote the representative
(column) vector of αi based on the polynomial representation. Then, the following theorem
asserts that the matrix representation M(αi) = Ci consists of L representative vectors with
consecutive subscripts.

194

Entropy 2024, 26, 822

Theorem 1. For 0 ≤ i ≤ pL − 2, the matrix representation M(αi) = Ci can be written as follows:

Ci =
[
vi vi+1 · · · vi+L−1

]
. (8)

As CpL−1 = IL, we omit the modulo-(pL − 1) expressions on the exponent of C and subscript of v

throughout this paper for brevity.

Proof. First, the matrix Ci can be characterized by multiplication iterations based on (6) as
follows. When 2 ≤ i ≤ L,

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
U

−a0 p(1)0 p(2)0 · · · p(i−1)
0

−a1 p(1)1 p(2)1 · · · p(i−1)
1

...
...

...
. . .

...
−aL−2 p(1)L−2 p(2)L−2 · · · p(i−1)

L−2

−aL−1 p(1)L−1 p(2)L−1 · · · p(i−1)
L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where L × (L − i) matrix U =

[
0

IL−i

]
. Further, when L + 1 ≤ i ≤ pL − 2,

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p(i−L)
0 p(i−L+1)

0 · · · p(i−1)
0

p(i−L)
1 p(i−L+1)

1 · · · p(i−1)
1

...
...

. . .
...

p(i−L)
L−2 p(i−L+1)

L−2 · · · p(i−1)
L−2

p(i−L)
L−1 p(i−L+1)

L−1 · · · p(i−1)
L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

The entries in (9) and (10) iteratively qualify

p(1)0 = −a0aL−1, p(1)j = aj−1 − ajaL−1, 1 ≤ j ≤ L − 1 (11)

and

p(k)0 = −a0 p(k−1)
L−1 ,

p(k)j = p(k−1)
j−1 − aj p

(k−1)
L−1 , 1 ≤ j ≤ L − 1, 2 ≤ k ≤ i − 1.

(12)

When i = 0, it can be easily checked that each vector in {v0, v1, v2, . . . , vL−1} is a
unit vector such that the only non-zero entry 1 of vi locates at (i + 1)th row. Therefore,
C0 = IL = [v0, v1, v2, . . . , vL−1], and (8) holds. When i = 1, consider vL with p(C) = 0, i.e.,

a0IL + a1C + a2C2 + . . . + aL−1CL−1 + CL = 0. (13)

Obviously, vL =
[
−a0 −a1 . . . −aL−1

]T and (8) holds.
Assume when i = m, (8) holds, i.e., Cm =

[
vm vm+1 · · · vm+L−1

]
. The Lth

column vector
[

p(m−1)
0 p(m−1)

1 . . . p(m−1)
L−1

]T
of Cm based on (9) corresponds to the

representative vector of Cm+L−1, that is, the matrix Cm+L−1 is equal to

p(m−1)
0 IL + p(m−1)

1 C + . . . + p(m−1)
L−2 CL−2 + p(m−1)

L−1 CL−1 (14)

It remains to prove, by induction, that Cm+1 =
[
vm+1 vm+2 · · · vm+L

]
. As the column

vectors indexed from 1th to (L − 1)th of matrix Cm+1 are exactly same as the ones indexed

195

Entropy 2024, 26, 822

from 2th to Lth of Cm, it suffices to show that the Lth column vector of Cm+1 corresponds
to vm+L. The following is based on (13) and (14):

Cm+L = p(m−1)
0 C + p(m−1)

1 C2 + . . . + p(m−1)
L−2 CL−1 + p(m−1)

L−1 CL

= p(m−1)
0 C + p(m−1)

1 C2 + . . . + p(m−1)
L−2 CL−1 − p(m−1)

L−1 (a0IL + . . . + aL−1CL−1)

= −a0 p(m−1)
L−1 IL + (p(m−1)

0 − a1 p(m−1)
L−1)C + . . . + (p(m−1)

L−2 − aL−1 p(m−1)
L−1)CL−1.

It can be easily checked that p(m)
0 and p(m)

j with 1 ≤ j ≤ L − 1 in Cm+1 calculated by (12)

exactly consist of the representative vector of Cm+L, i.e., vm+L. This completes the proof.

The above theorem draws an interesting conclusion that every non-zero matrix in C
is composed of L representative vectors. Specifically, the first column vector of the matrix
representation Ci is the representative vector of αi, and its jth column vector, 1 ≤ j ≤ L,
corresponds to the representative vector of αi+j−1. For the case p = 2, even though the
above theorem is essentially same as Construction 4.1 and Lemma 4.2 in [13], its expression
with the interplay of generator representation allows us to further devise a lookup table to
pre-store the matrix representation with a smaller size.

In this table, we store pL representative vectors with table size L× pL and arrange them
based on the power order of α with 0 ≤ i ≤ pL − 2. Note that the first column of matrix Ci

can be indexed by vector vi or (i + 1)th column in this table, and the remaining columns of
Ci can be obtained via subsequent L − 1 column vectors based on Theorem 1. As a result,
although this table only stores pL vectors, it contains the whole matrix representations of
GF(pL) due to the inherent correlation among Ci. The following Example 1 shows the
explicit lookup table of GF(24) as an example.

Example 1. Consider the field GF(24) and primitive polynomial p(x) = 1 + x + x4 over GF(2).
The companion matrix C is written as follows:

C =

⎡⎢⎢⎣
0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎤⎥⎥⎦.

Then, the lookup table to store matrix representation Ci with 0 ≤ i ≤ 14 is shown in Figure 1. In
this figure, the solid “window” that currently represents the matrix C can be slid to the right or left
to generate Ci with different i; meanwhile, the dashed box shows the cyclic property based on cyclic
group {I4 = C15, C, C2, · · · , C14}.

Figure 1. The lookup table to store the matrix representation Ci with 0 ≤ i ≤ 14 for the field GF(24)
and primitive polynomial p(x) = 1 + x + x4.

196

Entropy 2024, 26, 822

Recall that in the lookup table of the matrix representation adopted in the latest release
of the ISA-L library [12], the matrix representation of every element in GF(pL) needs to
be stored, so a total of L2 pL p-ary elements need to be pre-stored. Compared with that,
only an L × pL p-ary matrix needs to be stored in the new lookup table, so the table size is
reduced by a factor of 1/L. Moreover, Theorem 1 implies the following useful corollaries of
the matrix representation C = {0, C0, C1, · · · , CpL−2} of GF(pL).

Corollary 1. Every vector in the vector space GF(p)L exactly occurs L times as a column vector in
matrices of C.

Proof. As {IL, C, C2, · · · , CL−1} forms a polynomial basis of GF(pL) over GF(p), the repre-
sentative vectors of matrices in C are distinct. Consider a function f : {Ci} → {vi}. It can
be easily checked that f is bijective, and vi exactly corresponds to the jth column vector
of Ci−j+1 with 1 ≤ j ≤ L. The zero vector of length L simply occurs L times in L × L
matrix 0.

Corollary 2. For every GF(pL), regardless of the choice of the primitive polynomial p(x), the total
number of zero entries in C remains unchanged as L2 pL−1.

The above two corollaries will be adopted to further demonstrate the advantages of
binary matrix representation in vector LNC with C.

4. Applications of Matrix Representation in Vector LNC

In this section, we focus on the study of vector LNC with binary matrices C and show
the applications of matrix representation related to the aspects of random and determinis-
tic coding.

4.1. Computational Complexity Comparison in Random LNC

Herein, the coding coefficients of random LNC are randomly selected from GF(2L),
which can provide a distributed and asymptotically optimal approach for information
transmission, especially in unreliable or topologically unknown networks, such as wireless
broadcast networks [17] or ad hoc network [18]. Recall that in polynomial and generator
representations, the multiplication over GF(2L) based on a lookup table requires two differ-
ent types of calculation systems, so this table may not be utilized in resource-constrained
edge devices. Therefore, under the same alphabet size 2L, we first theoretically compare the
random coding complexity between conventional LNC over {β = ∑L−1

l=0 vlα
l} and vector

LNC over C without lookup table, from the perspective of required binary operations.
To keep the same benchmark for complexity comparison, we adopt the following as-

sumptions.

• We assume that an all-1 binary vector m as information will multiply 2L − 1 non-zero
coding coefficients selected from {β = ∑L−1

l=0 vlα
l} and C, which can be simulated as

encoding process. The complexity is the total number of binary operations that 2L − 1
multiplications take.

• We shall ignore the complexity of a shifting or permutation operation on the binary
vector m, which can be efficiently implemented.

• We only consider the standard implementation of multiplication in GF(2L) by poly-
nomial multiplication modulo and primitive polynomial p(x) = a0 + a1x + · · · +
aL−1xL−1 + xL with η non-zero ai, 0 ≤ i ≤ L − 1, instead of considering other ad-
vanced techniques such as the FFT algorithm [19].

197

Entropy 2024, 26, 822

We first consider the encoding scheme with coefficients selected from {β = ∑L−1
l=0 vlα

l}.
Assume that α is a root of p(x) and every element β in GF(2L) can be expressed as g(α),
where g(x) represents a polynomial over GF(2) with a degree less than L. An all-1 binary
information vector m can be expressed as αL−1 + αL−2 + · · ·+ α2 + α+ 1. We can divide the
whole encoding process into two parts: multiplication and addition. In the multiplication
part, the complexity of shifting operations is ignored, and one polynomial mαi in mg(α) will
modulo p(x) i times and take iη binary operations. Because every αi, 1 ≤ i ≤ L − 1 occurs
2L−1 times among all g(α) in GF(2L), it will take ∑1≤i≤L−1 iη × 2L−1 binary operations
to compute mαi. In the addition part, it takes (j − 1)L binary operations to compute the
additions between j binary vectors mαi with distinct i. Note that the number of distinct
g(α) with j non-zero terms is (L

j) in GF(2L). Therefore, the traverse of g(α) will take an

extra ∑1≤j≤L (
L
j)× (j − 1)L binary additions to compute mg(α). In total, the complexity of

this scheme is shown as follows:

∑
1≤i≤L−1

i(η × 2L−1 + L ×
(

L
i + 1

)
). (15)

Next, we consider the encoding scheme with coefficients selected from C, whose
complexity of encoding process depends on the total number of 1 in Ci with 0 ≤ i ≤ 2L − 2.
In this framework, it is worthwhile to note that every Ci in C is full-rank and can extract a
permutation matrix. Since the complexity of permutational operations is ignored, based on
Proposition 2, the complexity of encoding process over C is shown as follows:

L2 × 2L−1 − L × (2L − 1) = 2L−1(L2 − 2L) + L. (16)

For any primitive polynomial p(x), η ≥ 2. With 3 ≤ L ≤ 12, Table 2 lists the average
number of binary operations per symbol in two schemes. Specifically, every value calculated
by Equation (15) and (16) has divided the alphabet size 2L, and we can find that in random
coding, the vector LNC via matrix representation can theoretically reduce at least half of
the coding complexity to achieve multiplications under the same alphabet size 2L.

Table 2. Average number of binary operations per symbol with parameter η = 2.

L 3 4 5 6 7 8 9 10 11 12

C 1.88 4.25 7.66 12.09 17.55 24.03 31.52 40.01 49.51 60.01

∑L−1
l=0 vlα

l 4.88 10.25 17.66 27.09 38.55 52.03 67.52 85.01 104.51 126.01

rate 38.5% 41.5% 43.3% 44.6% 45.5% 46.2% 46.7% 47.1% 47.3% 47.6%

4.2. The Special Choices of Binary p(x) and Sparse Ci

In addition to the random coding, a deterministic LNC where we pay a broader
concern to reduce the computational complexity can also carefully design some special
coding operations which can be efficiently implemented, such as circular shift [5,6] or
permutation [7]. In this subsection, different from random choice of coefficients, we will
carefully design the choices of binary primitive polynomial p(x) and sparse matrices Ci

in C based on the unveiled properties in Sec. III. We illustrate that the choice of p(x) can
influence the distributions of matrices Ci with different numbers of non-zero entries. Then,
based on a proper p(x), an algorithm is proposed to obtain a subset of C, which contains a
series of relatively sparse matrices in C.

When p = 2, the entries in representative vectors based on Equation (11) and (12) will,
respectively, degenerate as follows:

198

Entropy 2024, 26, 822

p(1)0 = aL−1,

p(1)j = aj−1 + ajaL−1 = aj−1 + aj p
(1)
0 , 1 ≤ j ≤ L − 1.

(17)

and

p(k)0 = p(k−1)
L−1 ,

p(k)j = p(k−1)
j−1 + aj p

(k−1)
L−1 = p(k−1)

j−1 + aj p
(k)
0 , 1 ≤ j ≤ L − 1, 2 ≤ k ≤ i − 1.

(18)

with a0 must be 1 in p(x). Based on the above two equations, consider two adjacent repre-
sentative vectors vk−1 and vk. When the last entry p(k−1)

L−1 in vk−1 is equal to 0, the entries in
vk follow

p(k)0 = 0, p(k)j = p(k−1)
j−1 , 1 ≤ j ≤ L − 1,

which means that vk can be generated by downward circular shift to vk−1. When the last
entry p(k−1)

L−1 equals 1, the entries in vk follow

p(k)0 = 1, p(k)j = p(k−1)
j−1 + aj, 1 ≤ j ≤ L − 1.

Therefore, the difference between vk−1 and vk in Hamming weight is no more than η − 1,
where η represents the number of non-zero ai, 0 ≤ i ≤ L − 1 in primitive polynomial p(x).

Note that for the matrix representation of every GF(2L), the total number of 1 in C
is always L2 × 2L−1 regardless of the choice of binary p(x). However, the value of η will
influence the distributions of sparse matrices in C. Based on (17) and (18), we can intuitively
deduce that with smaller η, the sparse matrices in C will be more concentrated distribution.
Since the identity matrix IL with L non-zero entries is the sparsest full-rank matrix, we
utilize Algorithm 1 to choose 2L−s matrices in C, which can be good candidates as coding
coefficients of a practical coding scheme over GF(2L).

Algorithm 1 The choice of sparse matrices over GF(2L)

Initialize S as an empty set of L × L binary matrix
S ← 0
S ← IL
generate matrix C based on p(x)
generate matrix C−1 based on Equation (18)
define matrix Ĉ = C
define matrix Ĉ−1 = C−1

define integer s < L: the required size of Cs
for i = 1 : 2L−s−1 − 1

S ← Ĉ
S ← Ĉ−1

Ĉ = Ĉ × C
Ĉ−1 = Ĉ−1 × C−1

i = i + 1
end
return S

In Algorithm 1, the multiplications using C or C−1 can be easily achieved by sliding
the “window” right or left, respectively, as shown in Figure 1. Let Cs denote this subset
of C and the 2L−s matrices in Cs can be written as {0, IL, Ci, C−i} with 1 ≤ i ≤ 2L−s−1 − 1.
Then, Table 3 lists the ratio of the total number of 1 between Cs and C with s = 1, 2. We can
find that the 2L−s matrices, which are special choices using Algorithm 1, indeed contain
less 1 than the other matrices in C.

199

Entropy 2024, 26, 822

Table 3. Ratio of total numbers of 1 between Cs and C.

L p(x) η s = 1 s = 2

3 X3 + X + 1 2 0.3056 0.0833

4 X4 + X + 1 2 0.3438 0.1094

5 X5 + X2 + 1 2 0.3800 0.1200

6 X6 + X + 1 2 0.4410 0.1372

7 X7 + X + 1 2 0.4585 0.1987

8 X8 + X4 + X3 + X2 + 1 4 0.4635 0.2235

9 X9 + X4 + 1 2 0.4777 0.2148

10 X10 + X3 + 1 2 0.4950 0.2382

11 X11 + X2 + 1 2 0.4898 0.2325

12 X12 + X6 + X4 + X + 1 4 0.4977 0.2421

13 X13 + X4 + X3 + X + 1 4 0.4906 0.2469

14 X14 + X5 + X3 + X + 1 4 0.4975 0.2500

15 X15 + X + 1 2 0.4979 0.2462

16 X16 + X5 + X3 + X2 + 1 4 0.4978 0.2490

Moreover, in Figure 2, we numerically analyze the relationship between the number of
1 in each matrix and the corresponding number of matrices under the alphabet size 212. For
all candidates of binary primitive polynomials, we choose four representative p(x) with
different η = 4, 6, 8, 10 and the specific polynomials are shown as follows:

p1(x) = x12 + x6 + x4 + x1 + 1

p2(x) = x12 + x7 + x6 + x5 + x3 + x1 + 1

p3(x) = x12 + x8 + x7 + x6 + x4 + x3 + x2 + x1 + 1

p4(x) = x12 + x10 + x9 + x8 + x7 + x5 + x4 + x3 + x2 + x1 + 1

As all the matrices in C are full-rank, the value range of the x-axis should be [12, 132],
and we restrict it to [40, 100] to highlight the distributions. These four curves illustrate that
with η increasing, the distribution variance of the number of 1 in a matrix will decrease,
that is, the number of matrices with an average number of 1, i.e., 70–80, will increase and
the number of relatively sparse or dense matrices will decrease. As a result, a smaller η
of p(x) not only infers a more concentrated distribution but also more amounts for sparse
matrices in C; then, we can select parameter s according to practical requirements and
obtain Cs using Algorithm 1.

40 50 60 70 80 90 100

number of 1 in a matrix

0

50

100

150

200

250

nu
m

be
r

of
 m

at
rix

 = 4
 = 6
 = 8
 = 10

Figure 2. The distribution of sparse matrices in C with different η = 4, 6, 8, 10.

200

Entropy 2024, 26, 822

5. Conclusions

Compared with the classical result, the paraphrase of matrix representation in this
paper focuses more on inherent correlation among matrices and a lookup table to pre-
store the matrix representation with a smaller size is devised. This work also identifies
that the total number of non-zero entries in C is a constant number, which motivates
us to demonstrate the advantages of binary matrix representation in vector LNC. In the
applications of matrix representation, we first theoretically demonstrate the vector LNC
via matrix representation can reduce at least half of the coding complexity compared with
conventional one over GF(2L). Then, we illustrate the influence of η, i.e., the number of
non-zero item in p(x), on the amounts and distributions of sparse matrices in C and propose
an algorithm to obtain sparse matrices which can be good candidates as coding coefficients
of a practical vector LNC scheme.

Author Contributions: Methodology, H.T.; Software, S.J.; Writing—original draft, H.T.; Writing—
review & editing, H.L.; Visualization, W.L.; Supervision, Q.S.; Funding acquisition, Q.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
under Grants U22A2005, 62101028 and 62271044, and by the Fundamental Research Funds for the
Central Universities under Grant FRF-TP-22-041A1.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, S.-Y.R.; Yeung, R.W.; Cai, N. Linear network coding. IEEE Trans. Inf. Theory 2003, 49, 371–381. [CrossRef]
2. Ebrahimi, J.B.; Fragouli, C. Algebraic algorithm for vecor network coding. IEEE Trans. Inf. Theory 2011, 57, 996–1007. [CrossRef]
3. Sun, Q.T.; Yang, X.; Long, K.; Yin, X.; Li, Z. On vector linear solvability of multicast networks. IEEE Trans. Commun. 2016, 64,

5096–5107. [CrossRef]
4. Etzion, T.; Wachter-Zeh, A. Vector network coding based on subspace codes outperforms scalar linear network coding. IEEE

Trans. Inf. Theory 2018, 64, 2460–2473. [CrossRef]
5. Tang, H.; Sun, Q.T.; Li, Z.; Yang, X.; Long, K. Circular-shift linear network coding. IEEE Trans. Inf. Theory 2019, 65, 65–80.

[CrossRef]
6. Sun, Q.T.; Tang, H.; Li, Z.; Yang, X.; Long, K. Circular-shift linear network codes with arbitrary odd block lengths. IEEE Trans.

Commun. 2019, 67, 2660–2672. [CrossRef]
7. Tang, H.; Zhai, Z.; Sun, Q.T.; Yang, X. The multicast solvability of permutation linear network coding. IEEE Commun. Lett. 2023,

27, 105–109. [CrossRef]
8. Wardlaw, W.P. Matrix representation of finite field. Math. Mag. 1994, 67, 289–293. [CrossRef]
9. Longhair: O(N2) Cauchy Reed-Solomon Block Erasure Code for Small Data. 2021. Available online: https://github.com/catid/

longhair (accessed on 1 July 2024).
10. Plank, J.S.; Simmerman, S.; Schuman, C.D. Jerasure: A Library in c/c++ Facilitating Erasure Coding for Storage Applications,

Version 1.2; Technical Report CS-08-627; University of Tennessee: Knoxville, TN, USA, 2008.
11. Luo, J.; Shrestha, M.; Xu, L.; Plank, J.S. Efficient encoding schedules for XOR-based erasure codes. IEEE Trans. Comput. 2014, 63,

2259–2272. [CrossRef]
12. Intel® Intelligent Storage Acceleration Library. 2024. Available online: https://github.com/intel/isa-l/tree/master/erasurecode

(accessed on 1 June 2024).
13. Blomer, J.; Kalfane, M.; Karp, R.; Karpinski, M.; Luby, M.; Zuckerman, D. An XOR-Based Erasure-Resilient Coding Scheme; Technical

Report TR-95-048; University of California at Berkeley: Berkeley, CA, USA, 1995.
14. Plank, J.S.; Xu, L. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications. In Proceedings of

the Fifth IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 24–26 July 2006;
pp. 173–180.

15. Zhou, T.; Tian, C. Fast erasure coding for data storage: A comprehensive study of the acceleration techniques. ACM Trans. Storage
(TOS) 2020, 16, 1–24. [CrossRef]

16. Lidl, R.; Niederreiter, H. Finite Fields, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997.

201

Entropy 2024, 26, 822

17. Su, R.; Sun, Q.T.; Zhang, Z. Delay-complexity trade-off of random linear network coding in wireless broadcast. IEEE Trans.
Commun. 2020, 68, 5606–5618. [CrossRef]

18. Asterjadhi, A.; Fasolo, E.; Rossi, M.; Widmer, J.; Zorzi, M. Toward network coding-based protocols for data broadcasting in
wireless ad hoc networks. IEEE Trans. Wirel. Commun. 2010, 9, 662–673. [CrossRef]

19. Gao, S.; Mateer, T. Additive fast Fourier transforms over finite fields. IEEE Trans. Inf. Theory 2010, 56, 6265–6272. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

202

Citation: Jiang, M.; Wang, Y.; Ding, F.;

Xu, Q. Finite-Blocklength Analysis of

Coded Modulation with

Retransmission. Entropy 2024, 26, 863.

https://doi.org/10.3390/e26100863

Academic Editors: Shenghao Yang

and Kenneth Shum

Received: 14 September 2024

Revised: 8 October 2024

Accepted: 11 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Finite-Blocklength Analysis of Coded Modulation with
Retransmission

Ming Jiang 1,2,*, Yi Wang 1, Fan Ding 1 and Qiushi Xu 1

1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China;
wang_yi@seu.edu.cn (Y.W.); fan_d@seu.edu.cn (F.D.); xuqiushi@seu.edu.cn (Q.X.)

2 Purple Mountain Laboratories, Nanjing 211100, China
* Correspondence: jiang_ming@seu.edu.cn; Tel.: +86-139-1290-9162

Abstract: The rapid developments of 5G and B5G networks have posed higher demands on retrans-
mission in certain scenarios. This article reviews classical finite-length coding performance prediction
formulas and proposes rate prediction formulas for coded modulation retransmission scenarios.
Specifically, we demonstrate that a recently proposed model for correcting these prediction formulas
also exhibits high accuracy in coded modulation retransmissions. To enhance the generality of this
model, we introduce a range variable Pfinal to unify the predictions with different SNRs. Finally,
based on simulation results, the article puts forth recommendations specific to retransmission with a
high spectral efficiency.

Keywords: finite blocklength; retransmission scenario; rate prediction

1. Introduction

New-generation mobile communication systems, 5G NR networks, are worldwide-
deployed communication systems. The 5G wireless system, which is not the straightfor-
ward evolution of traditional 4G cellular networks, is developed as a multipurpose mobile
network with many new service functionalities [1]. 5G networks can provide not only
traditional voice and data communication but also numerous new use cases, applications
for various industries, and connectivity for devices and applications across society [2,3]. Ex-
amples include vehicle-to-vehicle and vehicle-to-infrastructure communication, industrial
automation, health services, smart cities, and smart homes [4,5]. Compared to 4G LTE, 5G
NR and the future development of B5G systems have introduced a series of technical indica-
tors. To meet these performance requirements, 5G systems will leverage various emerging
technologies, such as heterogeneous networks (HetNets) [6,7], massive multiple-input
multiple-output (mMIMO) [8], millimeter-wave (mmWave) communication [9,10], device-
to-device (D2D) communication [11,12], machine-to-machine (M2M) communication [13],
reconfigurable intelligent surfaces (RISs) [14], and network slicing [15], among others.

D2D and M2M communications have many different characteristics compared to
the traditional communication services designed for human interaction. For instance, the
communication among many sensors and controllers in closed-loop control systems of
automated industries requires a maximum latency of 5 ms and a reliable packet error rate
ranging from 10−2 to 10−5 [16]. In terms of traffic safety, the packet error rate cannot exceed
10−5. These typical applications involve short data packets (code length ranges from several
hundred to one thousand) and impose very high requirements on latency and reliability.
For the applications targeting these machine communications, various solutions have been
proposed, including fewer symbols in OFDM signal packets, reducing transmission time.
The theoretical limit for the transmission of these short data packets depends on the specific
transmission environments and the technologies employed.

Shannon’s limit provides the theoretical maximum performance when the encod-
ing blocklength tends towards infinity. However, in practical situations, Shannon’s limit

Entropy 2024, 26, 863. https://doi.org/10.3390/e26100863 https://www.mdpi.com/journal/entropy203

Entropy 2024, 26, 863

does not apply to the performance of moderate-length codes [17]. The finite-blocklength
performance bounds in binary input additive white Gaussian noise (BIAWGN) channels
have adequately addressed this issue. Recently, numerous significant advancements re-
lated to finite-blocklength analysis have emerged. Ref. [18] leverages the property of joint
convexity to address a broad spectrum of use cases, thereby facilitating the efficient resolu-
tion of joint optimization problems in multi-user environments in the finite-blocklength
regime. In [19], Behrooz Makki derives closed-form expressions for message-decoding
probabilities, throughput, expected delay, and error probability in hybrid automatic repeat
request (HARQ) configurations. Moreover, the expectation and variance of the maximum
achievable rate in a mMIMO system with a finite blocklength are rigorously analyzed [20].
However, the finite-blocklength performance analysis is not suitable for higher-order
modulation schemes, for which effective solutions have been proposed in the existing
literature [21–23]. Moreover, to ensure transmission reliability while also meeting low-
latency constraints, a limited number of retransmissions is typically required in practical
wireless networks. Combining rate-compatible coding and incremental redundancy re-
transmission schemes, the performance analysis of finite-length coded retransmission with
high-order modulation is an urgent issue that needs to be addressed.

In this paper, we analyze the performance of finite-length coded modulation in a
retransmission scenario when rate-compatible code is modulated and transmitted using
different modulation schemes in the first and second transmissions. The remaining struc-
ture of this paper is represented as follows. Firstly, we review the theoretical formulas
for predicting the performance of finite-length coded modulation and provide a brief
explanation of the calculation of key parameters in this formula under retransmission
scenarios. Next, we revisit the model for tuning on the theoretical prediction formula and
elaborate on the usage of the model. Here, we refine this method to make it more general.
Finally, through simulation results, we demonstrate the good adaptability of this calibration
model to retransmission scenarios. Based on the simulation results, we also offer some
recommendations for the retransmission approach of coded modulation.

2. Preliminaries

2.1. Some Bounds for Finite-Blocklength Coding

Consider a code with a codebook of size M and blocklength n, where the rate R can
be expressed as

R =
log2M

n
. (1)

Building upon this, [24] has proposed formulas for the upper and lower bounds on the
performance of finite-length coding. For example, the upper bound like the converse
bound, the lower bound like the random coding union (RCU) bound and the dependence
testing (DT) bound. However, these bounds all involve a greater amount of summation
and combinatorial operations, leading to a higher overall complexity and potentially
imprecise results.

For a binary symmetric channel (BSC) with a crossover probability of δ, when it
achieves the block error rate (BLER) ε, its RCU bound and DT bound can be calculated by

ε ≤
n

∑
t=0

(
n
t

)
δt(1 − δ)n−t min{1, (M − 1)

t

∑
k=0

(
n
k

)
2−n}, (2)

and

ε ≤
n

∑
t=0

(
n
t

)
min{δt(1 − δ)n−t, (M − 1)2−n−1}, (3)

respectively. In practical coding, the blocklength n usually amounts to several hundred,
or even greater than 1000. When the combinations of (n

k) are calculated, the computation
process becomes slower, and the precision of the results is certainly affected.

204

Entropy 2024, 26, 863

The converse bound of a BSC satisfies

M ≤ 1
βn

1−ε

, (4)

βn
α = (1 − λ)βL + λβL+1, (5)

where the βl in (5) is defined as

βl =
l

∑
k=0

(
n
k

)
2−n, l = L, L + 1, (6)

and the integer L and variable λ (0 ≤ λ ≤ 1) should be determined by the following equation:

α = (1 − λ)αL + λαL+1, (7)

with

αl =
l−1

∑
k=0

(
n
k

)
(1 − δ)n−kδk, l = L, L + 1. (8)

The calculation of the converse bound (4) not only involves the combinatorial opera-
tions but also requires solving roots for two parameters in a system of binary equations,
making the computation quite complicated. Therefore, a simpler and more efficient calcula-
tion method is further explored by normal approximation (NA).

2.2. Normal Approximation Combined with Coded Modulation

Given a finite blocklength n, BLER ε, the upper bound of the rate can be predicted by

R = C −
√

V
n

Q−1(ε) +O
(

log2n
n

)
, (9)

which is called normal approximation [24], where Q(x) =
∫ +∞

x
1√
2π

e−
1
2 t2

dt, C and V are
the channel capacity and the channel dispersion, respectively. They are both characteristic
parameters of the channel, where the physical quantities do not depend on the encoding
scheme. The third-order term O

(
log2n

n

)
is proven to be log2n

2n in [24].
In different channels, C and V have different calculation methods. For a BSC with a

crossover probability of δ and δ /∈ {0, 1
2 , 1}, we have

C = 1 − h(δ) (10)

V = δ(1 − δ)(log2
1 − δ

δ
)2, (11)

where h(x) = −xlog2x − (1 − x)log2(1 − x).
Meanwhile, for a binary erasure channel (BEC) with an erasure probability of δ, we have

C = 1 − δ (12)

V = δ(1 − δ). (13)

Here, for more general applications, taking a BIAWGN channel with an SNR of P into
consideration, we have

C =
1
2

log2(1 + P) (14)

V =
P
2

P + 2

(P + 1)2 log2
2 e. (15)

205

Entropy 2024, 26, 863

Although (14) and (15) can be easily calculated, specific modulation methods do not provide
the correlation between C, V and constellations.

If the input m points of a constellation, such as m-QAM, follow the discrete uniform
distribution, the two parameters C and V can be computed [25] by

Cm(P) = log2m − 1
m

m

∑
i=1

E

[
log2

(
m

∑
j=1

e‖Z‖2−‖x(i)+Z−x(j)‖2

)]
(16)

Vm(P) =
1
m

m

∑
i=1

Var

[
log2

(
m

∑
j=1

e‖Z‖2−‖x(i)+Z−x(j)‖2

)]
(17)

where Z is a complex Gaussian variable with a zero mean and unit variance, and x(i)
corresponds to a normalized constellation point of m-QAM with a given SNR of P. E[·] and
Var[·] represent the calculations of the mean and variance, respectively. When the value of
m is quite large, the calculations of (16) and (17) suffer a noticeable increase in complexity,
but do provide the correlation between C, V and the constellation.

3. Practical Application with Retransmission

In this section, we consider the coded modulation retransmission scenario in incre-
mental redundancy (IR) HARQ and the calculations of key parameters with the theoretical
formula and a calibration model proposed by Eva C. Song and Guosen Yue [26], which are
easy to use and have extremely good accuracy.

When the first segment of a rate-compatible coding scheme with a high-rate code of
length n fails to be received, the transmitter then sends the redundancy version of coded
bits with identical length n to the receiving end, resulting in a half-rate code of length 2n
for decoding. During retransmission, the modulation order is usually lowered according
to the specific modulation and coding scheme (MCS), such as the MCS table in 5G NR,
thereby better handling errors and enhancing the robustness of transmission.

In [26], the calculations of C and V for the parallel complex Gaussian channels with
an m-QAM input are provided by (15) and (16), respectively. Similarly, we can consider
the coded modulation in the retransmission scenario as the receiver simultaneously receiv-
ing two equal-length coded blocks from a rate-compatible coding scheme with different
modulations m1-QAM and m2-QAM over the same channel.

Therefore, in this scenario, C and V in (9) are computed by

C =
1
2
(Cm1(P) + Cm2(P)) (18)

V =
1
2
(Vm1(P) + Vm2(P)), (19)

where Cmi (P) and Vmi (P), i = 1, 2 can get by (16) and (17) on the constellations of m1-QAM
and m2-QAM, respectively. The proof of C and V is provided in Appendix A.

In terms of practical coding, ref. [26] proposes the following models:

R(P, n, ε) = C(P)− ΔC(P)− α(P)

√
V(P)

n
Q−1(ε) +

log2(n)
2n

, (20)

where C(P) and V(P) can get by (18) and (19), respectively. ΔC(P) refers to the gap between
the theoretical capacity and the rate that practical coding can achieve when the blocklength
is finite. α(P) ≥ 1 is the correction parameter for the channel dispersion V.

We follow the flowchart shown in Figure 1 to calculate the parameters in (20). Firstly,
select a targeting BLER ε and a sufficiently long blocklength ninf as an approximation for
infinite blocklength, where a practical rate-compatible coding scheme is employed for the
necessary initial simulation, such as LTE-turbo codes and 5G-LDPC codes. Then, for each
specific rate Rninf

i , i = 1, 2, 3, . . . , t1, obtain the Pninf
i , i = 1, 2, 3, . . . , t1 required to achieve

206

Entropy 2024, 26, 863

the BLER ε based on simulation. Next, select several short blocklengths n1, n2, . . . , ns
for tuning. For each nk, k = 1, . . . , s and specific rate Rnk

j , j = 1, 2, 3, . . . , t2, obtain the

Pnk
j , j = 1, 2, 3, . . . , t2 required to achieve the BLER ε based on simulation.

Fix a BLER ϵ

Choose nk=n1,n2, ,ns, for
each nk and , simulate

and obtain the
 , j=1,2,3, ,t2

 Calculate
 and

Calculate α (Pf) according
to (21)

Predict

Simulate and determine
Calculate Cth ,Vth , C and

α for every a

Use linear interpolation to
plotdasdassa

and for each nk

()fthC P
()fthV P

()k
f

nR P

Choose ninf, for each Ri ,
simulate and obtain the Pi ,

i=1,2,3, ,t1

kn
jR

kn
jP

Find suitable that
covers all P and P

finalP
kn

jP
inf ()n

fPR

inf() () ()n
f th f fC P C P R P

finalP
fP finalP

infn
iP

infn
iP

infn
iR

Figure 1. Flowchart of calculation algorithm.

We simulate to obtain the Pninf
i and Pnk

j variables using the following method: Given
the modulation scheme, code blocklength n, n = ninf or nk, and rate R, we vary the values
of SNR to obtain a set of data for different SNRs and BLERs (Pn

m, εm), m = 1, 2, 3, Then,
around the given BLER ε, we identify two different BLERs which are the nearest neighbors
εm1 > ε > εm2 and perform linear interpolation based on their corresponding SNRs Pn

m1
and Pn

m2
to obtain the SNR Pn corresponding to the desired BLER ε. The linear interpolation

formula is as follows.
ε =

εm2 − εm1

Pn
m2

− Pn
m1

(Pn − Pn
m1
) + εm1 . (21)

Let the ε be the desired BLER; then, we can get the SNR Pn by (21).
Next, based on the Pninf

i and Pnk
j obtained from above, determine a smallest range

(or slightly larger) of Pfinal to cover all the Pninf
i and Pnk

j . For example, if we simulate to

obtain Pninf
i = 1, 1.5, . . . , 2.5 (dB) and Pnk

j = 1.2, 1.7, 2.2, . . . , 2.9 (dB), then we can choose

Pfinal = [1, 2.9] (dB). After that, use linear interpolation to connect all the Rninf
i (Pninf

i) and
Rnk

j (Pnk
j) to get Rninf(Pf) and Rnk (Pf) in the range Pf ∈ Pfinal. Then, calculate the theo-

retical channel capacity Cth(Pf) and the theoretical channel dispersion Vth(Pf) according
to (18) and (19), respectively. Next, calculate ΔC(Pf) = Cth(Pf)− Rninf(Pf) and for every
Pf ∈ Pfinal, find α that minimizes (22) to get α(Pf).

α(Pf) = arg min
α

s

∑
k=1

(Cth(Pf)− ΔC(Pf)− α

√
Vth(Pf)

nk
Q−1(ε) +

log2nk

2nk
− Rnk (Pf))

2 (22)

Finally, for any given code length n and Pf ∈ Pfinal, compute C and V according to
(18) and (19), and obtain ΔC and α from the steps above. Predict R by using (20), which is
shown in Algorithm 1.

207

Entropy 2024, 26, 863

Algorithm 1: Calculation algorithm of the model to predict R

Input : ε, ninf, Rninf
i , n1, n2, . . . , ns, Rnk

j
Output : R

1 Fix a BLER ε

2 Simulate to get Pninf
i based on ninf, ε, Rninf

i , i = i = 1, 2, 3, . . . , t1

3 Simulate to get Pnk
j based on nk = n1, n2, . . . , ns, ε, Rnk

j , j = 1, 2, 3, . . . , t2

4 Choose a range Pfinal that covers all the Pninf
i and Pnk

j

5 Use linear interpolation to connect all the Rninf
i (Pninf

i) and Rnk
j (Pnk

j) to get Rninf(Pf)

and Rnk (Pf) in the range Pf ∈ Pfinal

6 Calculate Cth(Pf), Vth(Pf) for Pf ∈ Pfinal

7 ΔC(Pf) = Cth(Pf)− Rninf(Pf) for Pf ∈ Pfinal

8 For every Pf ∈ Pfinal, calculate α that minimizes (22) to get α(Pf)

9 return

R = C(Pf)− ΔC(Pf)− α(Pf)

√
V(Pf)

n
Q−1(ε) +

log2(n)
2n

for every Pf ∈ Pfinal

The above method incorporates some modifications to the method proposed in [26].
When using (22), the SNR required for calculating each α is the same, but the simulated SNR
often varies for different selected nk and Rnk

j . Therefore, after obtaining the simulation data
points, we select a range Pfinal to unify the different SNRs obtained from the simulation
that required in the formula.

4. Numerical Example

In this section, we demonstrate that the proposed model is also applicable to the
scenario of retransmission and we analyze the results with different coded modulation
combinations. In the following examples, we always use the rate-compatible coding scheme
based on 5G-LDPC codes and BP decoding in the transmitter and receiver. Assume that
16-QAM and QPSK are used in two transmissions, respectively, where the coded bits in the
first half and the second half of each encoding segment are modulated by 16-QAM and
QPSK, respectively.

In our simulations, the rate R is computed by

R = Rc ×
1
2
(log2(m1) + log2(m2)), (23)

where Rc is the original code rate, log2(m1) and log2(m2) refer to the modulation orders for
the two segments. In this example, an LDPC code with a code rate of Rc =

1
3 , 16-QAM1st

log2(m1) = 4, and QPSK2nd log2(m2) = 2 are employed in the two transmissions; thus, the
rate here is R = 1.

Since the number of message bits remains the same after retransmission, the code
length becomes twice as long, and the highest code rate of 5G-LDPC codes is 11

12 in the
first transmission. Then, after retransmission with Rc = 11

24 , the highest rate here is
R = 11

24 × 3 = 11
8 .

We select ninf = 7200 as an approximation for infinite code length, which approaches
the maximum length 8448 of information bits in the 5G-LDPC coding scheme, with
n1 = 1

20 ninf = 360, n2 = 3
20 ninf = 1080 for tuning. We choose the code rates like

Rc = 1
3 , 7

20 , 11
30 , 5

12 , 9
20 and 11

24 to make the code with length 360 have an integer number
of information bits. Then, we predict the retransmission performance of the coded modula-
tion with n = 3600.

208

Entropy 2024, 26, 863

With this example, let us go through the steps outlined in Algorithm 1. Choose a
fixed BLER ε = 0.1 and then simulate to obtain Figures 2 and 3a,b. In this example,
Pfinal = [1.4, 4.65] (dB) can cover all the simulation points Pninf

i and Pnk
j . Then, Tables 1 and 2

calculate ΔC and α, respectively. Finally, using (20) and the previously obtained parameters,
we can predict R. By repeating the steps mentioned above for ε = 10−2 and 10−3, we can
get the results shown in Figure 4. As shown in Figure 4, the prediction performance of this
model is also very good in the retransmission scenario with a moderate blocklength and
different modulations.

1.5 2 2.5 3 3.5 4 4.5 5

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 2. Calculate ΔC for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd
one with different BLERs, where the red circles, blue stars and black squares correspond to the points
for ε = 10−1 (listed in Table 1), 10−2 and 10−3, respectively.

1.5 2 2.5 3 3.5 4 4.5 5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Data of blocklength n=360 used for calculate α

Figure 3. Cont.

209

Entropy 2024, 26, 863

1.5 2 2.5 3 3.5 4 4.5 5
0.8

1

1.2

1.4

1.6

1.8

2

(b) Data of blocklength n=1080 used for calculate α

Figure 3. Calculate α for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd one
with different BLERs, where the red circles, blue stars and black squares correspond to the points for
ε = 10−1 (listed in Table 2), 10−2 and 10−3, respectively.

Table 1. Calculate ΔC for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd
one, ninf = 7200, ε = 10−1. Here, some points in Pfinal are shown.

Pf ∈ Pfinal (dB) Cth R7200 ΔC

1.45 1.2 1 0.2

1.775 1.26 1.05 0.21

2.145 1.32 1.1 0.22

2.593 1.4 1.167 0.233

2.765 1.43 1.2 0.23

3.052 1.49 1.25 0.24

3.355 1.54 1.3 0.24

3.59 1.58 1.35 0.23

3.7 1.61 1.375 0.235

Table 2. Calculate α for HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the 2nd one,
n1 = 360, n2 = 1080, ε = 10−1. Here, some points in Pfinal are shown.

Pf ∈ Pfinal (dB) R360 R1080 Cth Vth ΔC α

2.6 1 1.09 1.42 1.383 0.23 1

2.75 1.026 1.117 1.446 1.375 0.23 1

2.9 1.048 1.141 1.475 1.366 0.23 1

3.05 1.074 1.165 1.501 1.356 0.24 1.1849

3.2 1.102 1.194 1.529 1.344 0.24 1.6132

3.35 1.13 1.223 1.556 1.332 0.24 2.1820

3.5 1.157 1.251 1.583 1.319 0.235 2.5282

210

Entropy 2024, 26, 863

1.5 2 2.5 3 3.5 4
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Figure 4. Prediction results of HARQ using 16-QAM1st in the 1st transmission and QPSK2nd in the
2nd one with different BLERs.

To more clearly distinguish between the simulation data points used before prediction
and those used to validate the accuracy of the prediction afterward, we plot the simulation
data points required before prediction in Figures 2 and 3a,b as hollow points and the
simulation data points used for validation after prediction in Figures 4–7 as solid points,
respectively. The predicted curves in Figures 4–7 are derived from the initial simulations,
Algorithm 1, as well as the analytical formulas. The simulation points on the predicted
curves are obtained by selecting certain SNRs and spectral efficiencies within the interval
after predicting the performance and then conducting simulations for verification. The
comparisons between the simulated points and the predicted curves show very small
discrepancies. When the SNR is the same, the simulation value may be a little lower than
the prediction curve.

The calculation environments for simulations and predictions are the same. We use
MATLAB 2023b to calculate, use MATLAB’s built-in functions ldpcEncode and ldpcDecode
for encoding and decoding LDPC codes, use MATLAB’s built-in functions qammod and
qamdemod for modulation and demodulation, and we use MATLAB’s built-in functions
awgn to add noise.

The following examples show the prediction results of moderate-blocklength coded
retransmission with other modulation schemes, like 1024-QAM1st and 256-QAM2nd, in the
first and the second transmissions. They are shown in Figures 5–7, respectively.

As shown in these figures, different combinations of modulation schemes can cover
different ranges of rates. In Figure 5, we can see that the combination of 64-QAM and QPSK
covers the rate range from 1.33 to 1.83 in the SNR from 4.13 dB to 6.96 dB; that of 64-QAM
and 16-QAM covers the rate range from 1.67 to 2.29 in the SNR from 5.82 dB to 8.52 dB;
and 64-QAM combined with 64-QAM covers the rate range from 2 to 2.75 in the SNR from
7.3 dB to 10.6 dB.

211

Entropy 2024, 26, 863

4 5 6 7 8 9 10 11

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 (4.13, 1.33)

 (6.96, 1.83)

(5.82, 1.67)

(8.52, 2.29)

 (7.3, 2)

(10.6, 2.75)

Figure 5. Prediction results of HARQ using 64-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.

6 7 8 9 10 11 12 13 14

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(6.22, 1.67)

 (10.1, 2.25)

(7.64, 2)

(11, 2.7)

(9.09, 2.33)

(12.2, 3.21)

(11.1, 2.67)

(13.7, 3.67)

Figure 6. Prediction results of HARQ using 256-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.

212

Entropy 2024, 26, 863

9 10 11 12 13 14 15 16 17

2.5

3

3.5

4

4.5

 (9.29, 2.33)

 (13.6, 3.21)

(11, 2.67)

(14.9, 3.67)

(12.2, 3)

(15.9, 4.12)

 (13.9, 3.33)

(17.5, 4.58)

(15.55, 4)

(15.89, 4)

Figure 7. Prediction results of HARQ using 1024-QAM1st in the 1st transmission and m2-QAM2nd in
the 2nd one.

The results in Figure 6 show that if 256-QAM is used for the initial transmission and if
the aim for a retransmission is to achieve the rate range between 2 and 2.25, we can use
QPSK or 16-QAM for the retransmission. In this case, the required SNR range is between
7.64 dB and 10.1 dB. Similarly, if 16-QAM or 64-QAM is used for the retransmission, the
corresponding SNR range is between 9.09 dB and 11 dB, resulting in a rate range of 2.33 to
2.7. If 256-QAM is still used during retransmission, it will cover a rate range from 2.67 to
3.67 in the SNR from 11.1 dB to 13.7 dB.

However, we can also see in these three figures that using the same modulation scheme
during retransmission as before results in poorer performance. For example, in Figure 7, to
achieve the same rate like R = 4, the combination of 1024-QAM and 1024-QAM performs
about 0.34 dB poorer than that of 1024-QAM and 256-QAM.

The results above can guide us in selecting different modulation schemes based on
varying data rate requirements during retransmission. For example, as illustrated in
Figure 7, when using 1024-QAM for the initial transmission, if the rate is between 2.33 and
2.67, it would be better to use 16-QAM for retransmission. This is because the minimum
code rate of LDPC code is 1/3, and the minimum rate of 1024-QAM combined with
64-QAM is R = 1

3 × 1
2 × (10 + 6) = 2.67. Similarly, if the rate is between 3 and 4.12, it

would be better to use 256-QAM for retransmission because the maximum code rate after
retransmission is Rc =

11
12 × 1

2 = 11
24 , and the maximum rate of 1024-QAM combined with

256-QAM is R = 11
24 × 1

2 × (10 + 8) = 4.12. If the rate is greater than 4.12, we only use
1024-QAM to retransmit. Similar conclusions can be drawn for 64-QAM and 256-QAM in
Figures 5 and 6.

5. Efficiency Analysis

Figure 8 takes the MCS of 5G NR with the BG1 matrix as an example, where we select a
set of coding parameters with blocklengths ranging from n = 360 (Z = 18) to the maximum
length of n = 8448 (Z = 384). The ranges of code rates, respectively, cover [2

3 , 11
12] and

[1
3 , 11

24] in the first transmission and retransmission with a total nRc = 11 different code

213

Entropy 2024, 26, 863

rates. Increasing the value of nRc can further fine-tune the prediction accuracy. For the
system-level simulations that are crucial for the design of 5G networks, it is generally
required to obtain the link-level BLER performance metrics for all data points in Figure 8
through simulations. Then, for the specific link settings of code rates and blocklengths,
the BLER performances can be directly obtained via linear interpolation with the nearby
data points. For future mobile communication systems, with wider ranges of code rates
and blocklengths and lower BLER targets, the performance evaluations for link-level
simulations with multiple retransmissions will significantly increase the computational
complexity. Our proposed performance prediction scheme can effectively reduce the
computational load while ensuring evaluation accuracy.

0 1000 2000 3000 4000 5000 6000 7000 8000

0.4

0.5

0.6

0.7

0.8

0.9

n=360
 *11

n=1080
 3 *11

 n=7200
 20 *11

Figure 8. The link settings required for system-level simulations with different code rates and blocklengths,
where m1-QAM and m2-QAM are used in the first transmission and second transmission, respectively.

In the above example of MCSs shown in Figure 8, once the m1-QAM, m2-QAM and
BLER are determined before or after retransmission, we only need to simulate all the
rate data for three sets of blocklengths (the blue points in three red rectangle boxes in
Figure 8) to predict the rates for any other blocklength (other blue points in Figure 8).
Hence, when the BLERs and SNRs for the coded modulation combinations with all the
different blocklengths and code rates are required for system-level simulations, using
our algorithm can significantly improve the efficiency of performance evaluations. As
shown in Figure 8, assuming that a single testing of BLER ε evaluation for a code with
n = 360 requires a time of τ, then obtaining one set of data requires a time of τ × 11 for
all code rates considered before or after retransmission. As the blocklength increases, the
simulation time will also increase linearly, which means that the simulation testings of
performance evaluation for the codes with n = 1080 and n = 7200 require a computation
time of 3τ and 20τ, respectively. Therefore, the total simulation time required to obtain
all the data needed for the performance prediction of MCSs with m1-QAM and m2-QAM
is (τ + 3τ + 20τ)× 11 = 264τ. Since the time required for the calculations of ΔC and α

214

Entropy 2024, 26, 863

is negligible compared to that of simulation tests for performance evaluations, the total
computational complexity needed to complete the entire prediction can be approximately
evaluated by 264τ. Then, if we need the rate data of codes from n = 360 to 8448 according
to all the lifting values of 5G-LDPC codes shown in Figure 8, the total computational
complexity required for a brute-force Monte Carlo simulation should be about 3300τ,
which is clearly greater than 264τ. Since each modulation combination for retransmission
requires a separate simulation, this algorithm can significantly reduce the computational
complexity when a large amount of SNR-R relationship data corresponding to various
blocklengths are needed, given a specific BLER ε.

6. Conclusions

In this paper, we have reviewed the theoretical prediction formulas for the performance
of finite-length coding and their correction models. Through simulation, we validated the
good adaptability of the correction model to the retransmission scenarios. To make this
model more general, we introduced a range Pfinal to unify the different SNRs. Based on
the simulation results, we can choose the modulation method for the second transmission
according to different bit rate requirements. It is also evident that if the same modulation
method is employed in the second transmission as before, its performance is not as effective
as some methods involving a reduction in the modulation order during retransmission.

Author Contributions: Software, Y.W.; validation, M.J.; data curation, Y.W., F.D. and Q.X.;
writing—original draft preparation, Y.W. and M.J.; writing—review and editing, Y.W. and M.J.;
supervision, M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
under grant 62331002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Random variables and its realization are denoted by capital letters X and its lower case
x, respectively. The boldface letter denotes a vector. A sequence x1, . . . , xn is denoted by xn.
A sequence xn partitioned into 2 blocks with equal blocklength n1 = n2 = n

2 is denoted by
xn = [x1, x2], where n is the blocklength of the code, and the ith element of vector x1, x2
is denoted by x1,i, x2,i. The total variational distance between two distributions D and Q
is denoted by ‖D − Q‖TV . The Radon-Nikodym derivative of D w.r.t. Q is denoted by
dD
dQ . Expectations and variances taken w.r.t. a distribution D are indicated by ED[·] and
VarD[·], respectively.

Let (QX(x(1)), . . . , QX(x(m))) denote an input distribution, where x(i)’s are the
m-QAM constellation points with average power Pw. Denote by D̂X the composition(

D̂X(x(1)), . . . , D̂X(x(m))
)
=
(

Q̂X(x(1)), . . . , Q̂X(x(m))
)

, if nQX(x) is an integer for all
x, or otherwise, the type closest to the QX in total variational distance, in which the greater
probabilities are assigned first to the indices i ∈ {1, . . . , m} whose corresponding constella-
tion symbols x(i) have individual power equal to Pw (if available), then to indices whose
corresponding symbols have individual power less than Pw, and finally to those with
corresponding individual power greater than Pw.

In the retransmission scenario, the 2 segments are effectively transmitted over the
same BIAWGN channel, hence:

Yk = Xk + Wk, (A1)

215

Entropy 2024, 26, 863

where Wk ∼ CN
(
0nk , Ink σ2

k
)
, k = 1, 2, σ1 = σ2 = σ, and Ink is an identity matrix. Therefore,

the SNR is
P =

Pw
σ

. (A2)

The proof of the channel capacity C and the channel dispersion V in the retransmission
scenario is an application of Theorem 2 from [25], which is stated as follows.

Theorem A1. For a channel DYn |Xn(yn|nn) any input distribution DXn , and any output distribu-
tuion QYn , there exists a code with M codewords in Fn and average probability of error satisfying

ε ≤ DXn DYn |Xn [ĩ(Xn; Yn) ≤ log2γn] + Ln MDXn QYn [ĩ(Xn; Yn) > log2γn] + DXn [Xn /∈ Fn] (A3)

where

ĩ(Xn; Yn) = log2
DYn |Xn(Yn|Xn)

QYn(Yn)
(A4)

and the coefficient Ln is defined as

Ln
Δ
= sup

yn∈Yn

dDYn(yn)

dQYn(yn)
(A5)

and γn is an arbitary positive threshold whose optimal choice to give the highest rates is γn = Ln M.

This proof follows similar steps as the proof for the single AWGN channel in [25] with
the modification of taking into account the retransmission scenario. For the 2 segments of
length nk = n

2 , k = 1, 2, denote by D̂(k)
X the composition of segment k and Tnk

(
D̂(k)

X

)
the

corresponding type class. For the different modulation schemes m1-QAM and m2-QAM of
the 2 segments. We fix

QX(x(i)) =
1

mk
, i = 1, . . . , mk, k = 1, 2. (A6)

Under this construction, it can be shown that∥∥∥D̂(k)
X − QX

∥∥∥
TV

≤ O
(

1
nk

)
, (A7)

and
E

D̂(k)
X

[
‖X‖2

]
≤ Pw. (A8)

We choose the input distribution DXn as the following:

DXn(xn) =
2

∏
k=1

{
xk ∈ Tnk

(
D̂(k)

X

)}
(

nkD̂(k)
X (x(1)), . . . , nkD̂(k)

X (x(mk))
) . (A9)

Let
Fn =

{
xn : ‖xk‖2 ≤ nkPw, k = 1, 2

}
. (A10)

It can be verified that the input distribution from (A7) satisfies the maximal power con-
straint ‖xk‖2 ≤ nkPw. Hence,

DXn [Xn /∈ Fn] = 0. (A11)

The output distribution induced by the input distribution DXn can be written as

DYn(yn) = ∑
xn∈X n

DXn(xn)DYn |Xn(yn|xn) =
2

∏
k=1

∑
xk∈Tnk

(
P̂(k)

X

) ΓkDYk |Xk
(yk|xk), (A12)

216

Entropy 2024, 26, 863

where
Γk =

1(
nk

nkD̂(k)
X (x(1)), . . . , nkD̂(k)

X (x(mk))

) (A13)

and

DYk |Xk
(yk|xk) =

nk

∏
t=1

D(k)
Y|X(yt|xt) (A14)

and D(k)
Y|X indicates the channel experienced by segment k, k = 1, 2.

Next, we choose the following auxiliary distributions:

Q(k)
Y (y) =

mk

∑
i=1

QX(x(i))D(k)
Y|X(y|x(i)), k = 1, 2 (A15)

QYn(yn) =
2

∏
k=1

nk

∏
t=1

Q(k)
Y (yk,t) (A16)

where QX is given in (A6).
It can be shown by applying Proposition 3 of [25] to (A12) and (A16), we have

dPYn(yn)

dQYn(yn)
≤ Ln

Δ
=

2

∏
k=1

ck(mk)n
mk−1

2
k (A17)

for sufficiently large nk’s, where ck(mk)’s are positive constants that depend only on the
constellation size m.

We now apply Theorem A1 to the distributions defined above. Let γn = Ln M. For the
first term in (A3), it can be verified that

1
n

ĩ(xn; Yn) = − 1
n

2

∑
k=1

nk

∑
t=1

log2

⎛⎝ mk

∑
j=1

QX(x(j))e
‖Wk,t‖2−‖xk,t+Wk,t−x(j)‖2

σ2

⎞⎠. (A18)

Since {Wk,t}’s are independent, we can invoke the Berry-Esseen Theorem on 1
n ĩ(xn; Yn).

Using (A7), the mean can be verified to be

EDYn |Xn=xn

[
1
n

ĩ(xn; Yn)

]
=

1
2
(Cm1(P) + Cm2(P)) +O

(
1
n

)
= C +O

(
1
n

)
. (A19)

Similarly, the variance can be verified to be

VarDYn |Xn=xn

[
1
n

ĩ(xn; Yn)

]
=

1
n

(
1
2
(Vm1(P) + Vm2(P))

)
+O

(
1
n

)
=

V
n
+O

(
1
n

)
. (A20)

Applying the Berry-Esseen Theorem on 1
n ĩ(xn; Yn) yields

DYn |Xn

[
1
n

ĩ(xn; Yn) ≤ log2(Ln M)

n

]
≤ Q

⎛⎝C − log2(Ln M)
n√

V
n

⎞⎠+
B1√

n
, (A21)

where B1 is some positive constant. Consequently, by averaging over the input sequences,
the first term from (A3) can be bounded by

DXn DYn |Xn

[
1
n

ĩ(Xn; Yn) ≤ log2(Ln M)

n

]
≤ Q

⎛⎝C − log2(Ln M)
n√

V
n

⎞⎠+
B1√

n
. (A22)

217

Entropy 2024, 26, 863

For the second term in (A3), observe that under the conditional distribution DYn |Xn=xn ,
1
n ĩ(xn; Yn) is a summation of independent random variables with positive variance and
finite third absolute moment. Therefore, we can apply the refined large deviation result of
Lemma 47 in [24]

QYn

[
ĩ(xn; Yn) > log2γn

]
= E

[
e−ĩ(xn ;Yn)

{
ĩ(xn; Yn) > log2(Ln M)

}]
≤ B2√

n
(Ln M)−1, (A23)

where the expectation is taken with respect to DYn |Xn=xn and B2 is a positive constant.
Therefore, the second term from (A3) can be bounded as

Ln MDXn QYn

[
ĩ(Xn; Yn) > log2(Ln M)

]
≤ B2√

n
. (A24)

Finally, combining (A22), (A24) and (A11), yields

ε ≤ Q

⎛⎝ C−log2(Ln M)
n√

V
n

⎞⎠+
B√
n

, (A25)

where B = B1 + B2. Rearranging (A25) and with a bit of analysis yields the result of C and
V in retransmission scenario for (9).

References

1. Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun. 2016,
18, 64–84. [CrossRef]

2. El Hattachi, R.; Erfanian, J. 5G white paper. In Next Generation Mobile Networks; White Paper; NGMN Alliance: Dusseldorf,
Germany, 2015; Volume 1, p. 1.

3. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas
Commun. 2014, 32, 1065–1082. [CrossRef]

4. Dimitrakopoulos, G.; Demestichas, P. Intelligent Transportation Systems. IEEE Veh. Technol. Mag. 2010, 5, 77–84. [CrossRef]
5. Anttiroiko, A.V. Electronic Government: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and

Applications; IGI Global: Hershey, PA, USA, 2008; Volume 3.
6. Mughees, A.; Tahir, M.; Sheikh, M.A.; Amphawan, A.; Meng, Y.K.; Ahad, A.; Chamran, K. Energy-efficient joint resource

allocation in 5G HetNet using Multi-Agent Parameterized Deep Reinforcement learning. Phys. Commun. 2023, 61, 102206.
[CrossRef]

7. Ghosh, J.; Vargas-Rosales, C.; Mendes, L.L.; Ra, I.H.; Nhan Vo, V.; Aimtongkham, P.; So-In, C. A Novel Transceiver and an
Asynchronous Mode for the Hybrid Multiple-Access HetNet Architecture. IEEE Access 2023, 11, 135609–135625. [CrossRef]

8. Girycki, A.; Rahman, M.A.; Vinogradov, E.; Pollin, S. Learning-Based Precoding-Aware Radio Resource Scheduling for Cell-Free
mMIMO Networks. IEEE Trans. Wirel. Commun. 2024, 23, 4876–4888. [CrossRef]

9. Zhang, J.; Xi, R.; He, Y.; Sun, Y.; Guo, X.; Wang, W.; Na, X.; Liu, Y.; Shi, Z.; Gu, T. A Survey of mmWave-Based Human Sensing:
Technology, Platforms and Applications. IEEE Commun. Surv. Tutor. 2023, 25, 2052–2087. [CrossRef]

10. Xue, Q.; Ji, C.; Ma, S.; Guo, J.; Xu, Y.; Chen, Q.; Zhang, W. A Survey of Beam Management for mmWave and THz Communications
towards 6G. arXiv 2024, arXiv:2308.02135. [CrossRef]

11. Lai, W.K.; Wang, Y.C.; Lin, H.C.; Li, J.W. Efficient Resource Allocation and Power Control for LTE-A D2D Communication with
Pure D2D Model. IEEE Trans. Veh. Technol. 2020, 69, 3202–3216. [CrossRef]

12. Gismalla, M.S.M.; Azmi, A.I.; Salim, M.R.B.; Abdullah, M.F.L.; Iqbal, F.; Mabrouk, W.A.; Othman, M.B.; Ashyap, A.Y.I.; Supa’at,
A.S.M. Survey on Device to Device (D2D) Communication for 5GB/6G Networks: Concept, Applications, Challenges, and Future
Directions. IEEE Access 2022, 10, 30792–30821. [CrossRef]

13. Mazhar, M.S.; Saleem, Y.; Almogren, A.; Arshad, J.; Jaffery, M.H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Forensic Analysis on
Internet of Things (IoT) Device Using Machine-to-Machine (M2M) Framework. Electronics 2022, 11, 1126. [CrossRef]

14. Pan, C.; Zhou, G.; Zhi, K.; Hong, S.; Wu, T.; Pan, Y.; Ren, H.; Renzo, M.D.; Lee Swindlehurst, A.; Zhang, R.; et al. An Overview of
Signal Processing Techniques for RIS/IRS-Aided Wireless Systems. IEEE J. Sel. Top. Signal Process 2022, 16, 883–917. [CrossRef]

15. Wijethilaka, S.; Liyanage, M. Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Commun. Surv.
Tutor. 2021, 23, 957–994. [CrossRef]

16. Schiessl, S.; Gross, J.; Al-Zubaidy, H. Delay Analysis for Wireless Fading Channels with Finite Blocklength Channel Coding. In
Proceedings of the MSWiM—Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM’15), Dubrovnik, Croatia, 24–28 August 2015.

218

Entropy 2024, 26, 863

17. Mary, P.; Gorce, J.M.; Unsal, A.; Poor, H.V. Finite Blocklength Information Theory: What Is the Practical Impact on Wireless
Communications? In Proceedings of the IEEE Globecom Workshops (GC Wkshps 2016), Washington, DC, USA, 4–8 December
2016; IEEE: New York, NY, USA, 2016.

18. Zhu, Y.; Hu, Y.; Yuan, X.; Gursoy, M.C.; Poor, H.V.; Schmeink, A. Joint Convexity of Error Probability in Blocklength and Transmit
Power in the Finite Blocklength Regime. IEEE Trans. Wirel. Commun. 2022, 22, 2409–2423. [CrossRef]

19. Makki, B.; Svensson, T.; Caire, G.; Zorzi, M. Fast HARQ Over Finite Blocklength Codes: A Technique for Low-Latency Reliable
Communication. IEEE Trans. Wirel. Commun. 2019, 18, 194–209. [CrossRef]

20. You, X.; Sheng, B.; Huang, Y.; Xu, W.; Zhang, C.; Wang, D.; Zhu, P.; Ji, C. Closed-Form Approximation for Performance Bound of
Finite Blocklength Massive MIMO Transmission. IEEE Trans. Commun. 2023, 71, 6939–6951. [CrossRef]

21. Valembois, A.; Fossorier, M. Sphere-Packing Bounds Revisited for Moderate Block Lengths. IEEE Trans. Inf. Theory 2004,
50, 2998–3014. [CrossRef]

22. Lazic, D.; Beth, T.; Egner, S. Constrained capacity of the AWGN channel. In Proceedings of the 1998 IEEE International
Symposium on Information Theory (ISIT-98), Cambridge, MA, USA, 16–21 August 1998.

23. Shi, J.; Wesel, R.D. A Study on Universal Codes With Finite Block Lengths. IEEE Trans. Inf. Theory 2007, 53, 3066–3074. [CrossRef]
24. Polyanskiy, Y.; Poor, H.V.; Verdu, S. Channel Coding Rate in the Finite Blocklength Regime. IEEE Trans. Inf. Theory 2010,

56, 2307–2359. [CrossRef]
25. MolavianJazi, E. A Unified Approach to Gaussian Channels with Finite Blocklength; University of Notre Dame: Notre Dame, IN, USA, 2014.
26. Song, E.C.; Yue, G. Finite Blocklength Analysis for Coded Modulation with Applications to Link Adaptation. In Proceedings of

the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

219

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-3878-3

