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Disturbance of urban and regional nitrogen cycles due to urbanization have resulted
in the greenhouse effect, acid rain, eutrophication, and reductions in biodiversity. In light of
this, the ‘nitrogen cascade” effect induced by nitrogen cycle disruption has been recognized
as the third most important global environmental problem after biodiversity loss and
global warming. Possible risk managements to reduce reactive nitrogen being released
into the environment include proper nitrogen management within the production and
consumption cycles of essential resources, which could be supported by anthropogenic
approaches (e.g., environmental pollution monitoring, environmentally friendly technol-
ogy and residents’ behavior) and natural-based approaches, including nitrogen retention
within ecosystems. More importantly, from the perspective of synergizing the reduction
in pollution and carbon emissions, the risk of nitrogen pollution is often accompanied
by excessive emissions of greenhouse gases and atmospheric particles in the early stage.
Progress in new areas of research will depend on relevant risk management. The reports
presented in the Special Issue, ‘Urban and Regional Nitrogen Cycle and Risk Management’,
are the result of collaborative work between researchers in an effort to reduce atmospheric
emissions and mitigate the nitrogen risks, including both experimental and monitoring
studies and mathematical /numerical modeling studies on the urban and regional scale.
The publications of the issue (12 articles) cover the subjects of nitrogen and carbon coupling
(5), ecological effects of nitrogen deposition (4), urban nitrogen flow analysis (1), and
environmental monitoring and modeling (2). A brief overview of the main findings and
conclusions of articles in the Special Issue will be presented below.

Wu and Shen [1] used bibliometric analysis and found that there are gaps between
low-carbon policy and public awareness/behavior in the research hotspots of “Carbon
Emission Reduction”, which hinder research progress in synergizing the reduction of
nitrogen (N) pollution and carbon emissions addressed by risk managements. Urbanization
is a significant indicator of city progress, which may drive the growth of carbon emissions
accompanied by N release, especially in urban agglomeration. Gao et al. [2] examined
the spatial and temporal variations of carbon emissions in the Pearl River Delta (PRD)
urban agglomeration in China, which is suffering from water N pollution. They found
that total carbon emissions in the PRD region have been increasing over 2009-2019 with
hotspots mainly distributed in Guangzhou, Shenzhen, and Dongguan cities. Liu et al. [3]
comprehensively accounted for the greenhouse gas budgets of Beijing and Shenzhen cities
from 2005 to 2020 and revealed that the energy activity sector was the greatest contributor to
GHG emissions in this period, accounting for 82.5% and 76.0% of the total GHG emissions
in Beijing and Shenzhen, respectively. The carbon sink provided by these two urban
ecosystems could absorb only small parts of their emissions, and the neutralization rates
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of sinks ranged from 1.7% to 2.3% in Beijing and from 0.3% to 1.5% in Shenzhen. This
study found that household size had opposite effects on the two cities” emissions, i.e., a
1% increase in household size would increase GHG emissions by 0.487% in Shenzhen but
reduce them by 2.083% in Beijing. Song et al. [4] also found that household size was the main
diver influencing personal carbon emissions in the Sanjiangyuan region of the Qinghai-
Tibet Plateau by interviewing more than 1000 herder households of 15 counties. The
more people living in the household, the lower the per-capita carbon emissions. However,
the effect size of potential carbon reductions was weakened when the number of family
members rose to over three. They proposed that grazing prohibitions and low-carbon
dietary shifts would contribute to low-carbon herder livelihoods, which also may contribute
to lower N herder lifestyles with less fertilizer-N and livestock-N being released. Lama
et al. [5] evaluated the conservation status and effectiveness of national parks, nature
reserves, forest parks, geo-parks, and scenic spots on carbon sequestration within the Loess
Plateau in China throughout 2000-2020. They found that all existing protected area types
have good representation and conservation effectiveness on carbon sequestration. Nature
reserves, where the natural N cycle is maintained, are the most representative form of
carbon sequestration but are the least effective in protecting carbon sequestration. They
proposed that implementing restoration measures in low carbon sequestration areas within
grassland and wild plant nature reserves will help to achieve the goal of carbon neutrality
early, which also can maximize the protection of the natural nitrogen cycles in these places
from human interference.

In terms of modeling for synergizing the reduction in atmospheric pollution and
carbon emissions, Yang et al. [6] develop a combination prediction model for atmospheric
water vapor, which is an essential source of predicting global climate change, combined
with the Zenith Tropospheric Delay (ZTD) data from 13 global navigation satellite system
(GNSS) service stations in the United States. This regional/single station ZTD combination
prediction model, based on the machine learning algorithms of radial basis function (RBF)
neural networks, assisted by the K-means cluster algorithm (K-RBF) and long short-term
memory of real-time parameter updating (R-LSTM), was proposed for online modeling to
serve the response and feedback of the carbon, nitrogen, and water cycle to climate change.
In addition, high resolution simulation of the concentration of atmospheric pollutants
in urban areas can help to develop air pollution control policies. Wu et al. [7] takes the
Wenhua Road block in Shenyang city, China, as the research object, and analyzes the
spatial distribution characteristics of local climate zones (LCZ) and particulate matter
(PM) in the block based on the ArcGIS platform. Their findings show that the spatial
distribution characteristics of PM1, PM2.5, and PM10 under the same pollution level are
relatively similar, while the spatial heterogeneity of the distribution of the same particulate
matter under different pollution levels is higher. The built-up LCZ always has a larger
average concentration of PM than that of the natural LCZ and building height and building
density are the main factors causing the difference. It also provides theoretical and practical
references for the simulation of nitrogen oxide concentration growth at an urban block
scale, although there are few studies focusing on this research field in recent years.

Acid deposition is an important component of atmospheric pollution, N deposition
has become a major ecological problem that endangers ecosystems and residents in cities.
In the case study of Shenzhen city, China, Shu et al. [8] has drawn high-resolution spatial
distribution maps of N retention in the city’s ecological space, on the basis of a large
number of soil sampling across the city, and they found that precipitation factors have
the greatest impact on the spatial differentiation characteristics of N retention services
provided by soil in three main types of land use (forested land, industrial land, and street
town residential land). To examine the effects of atmospheric N deposition containing
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different N components on the functional differences between invasive plants and native
plants, Li et al. [9] conducted a study over a four-month period using a pot-competitive co-
culture experiment to elucidate the effects of artificially simulated N deposition containing
different N components, which was found to facilitate the growth performance of native
monocultural P. laciniata, particularly in terms of the sunlight capture capacity and leaf
photosynthetic area. Invasive Bidens pilosa exhibited a more pronounced competitive
advantage than P. laciniata under artificially simulated N deposition containing different N
components. Furthermore, Li et al. [10] conducted controlled experiments in a greenhouse
to evaluate the functional differences and growth performance between the invasive plant
Amaranthus spinosus L. and the native plant A. tricolor L. in mono- and mixed culture when
exposed to an acid deposition with different sulfur-nitrogen ratios. They found that the
lower pH acid deposition had imposed a greater reduction in the growth performance of
both Amaranthus species than the higher pH acid deposition. Amaranthus spinosus was
more competitive than A. tricolor, especially when exposed to acid deposition. From the
perspective of microbiology, the soil N-fixing bacterial (NFB) community may facilitate the
successful establishment and invasion of exotic non-nitrogen (N)-fixing plants. Invasive
plants can negatively affect the NFB community by releasing N during litter decomposition,
especially where N input from atmospheric N deposition is high. Li et al. [11] conducted
an indoor litterbag experiment to quantitatively compare the effects of the invasive Rhus
typhina L. and native Koelreuteria paniculata Laxm. trees on the litter mass loss and the
NFB. They found that the litter mass loss of the two trees was mainly associated with the
taxonomic richness of NFB. The form of N was not significantly associated with the litter
mass loss in either species, the mixing effect intensity of the litter co-decomposition of the
two species, and NFB alpha diversity. Litter mass loss of R. typhina was significantly higher
than that of K. paniculata under urea. In view of the above research, although we all know
that N-related acid deposition is harmful to plant growth, the negative impacts of which
on the invasive plants are much smaller than those on native plants, this indicates that
regional N pollution has a substantial negative effect on urban and regional biodiversity.

From the perspective of systemic metabolism for N risk assessment, Li et al. [12]
used the material flow analysis method to estimate anthropogenic nitrogen emissions in
Xiamen city, China, and found that the quantity of reactive N generated by human activities
increased 3.5 times from 1995 to 2018. Specifically,, the total reactive N entering the water
environment showed a general increase with fluctuations, resulting in N overload in the
nearby sea with a threefold augmentation compared with surface waters and groundwater.
Population and per capita GDP were major factors contributing to water N pollution,
demonstrating that there is an urgent need for sustainable nitrogen management in coastal
cities.

In summary, the 12 papers include in this Special Issue cover serval developments
and applications related to the urban and regional N risk managements on multiple scales
(indoor laboratory, city block, city, region), which highlight the potential benefits of us-
ing model simulation, spatial analysis, and controlled experiments in the research of N
cycling, involving, for example, the characterization of nitrogen and carbon coupling in the
atmosphere, and risk analyses and corresponding policies for synergizing the reduction in
pollution and carbon emissions.

Author Contributions: Writing—original draft preparation, C.X.; writing—review and editing, C.X.,
Y.-5.S. and C.G. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: After the agreements of the Conference of the Parties, more and more countries announced
plans to achieve net zero emissions over the coming decades and published new policies in response
to the agreements. Public awareness is a crucial factor in achieving the goals of the agreements.
Therefore, the study of public awareness/behavior toward the low-carbon transition is important.
However, this topic lacks a comprehensive and systematic review. Thus, this study used bibliometric
analysis, including performance analysis and scientific mapping analysis, to reveal research trends
and clarify the status of studies in low-carbon transition and public awareness. We found that
95% of the literature on this topic was published from 2011 to 2022. Judging from keywords, the
hotspots of this topic are “Sustainability”, “Energy Transition”, “Low-carbon Economy”, and “Carbon
Emission Reduction”. Regarding the research field transition for this topic, environmental sciences
have always been a core subject. Furthermore, economics, management, political science, and
sociology have focused on this topic in recent years. Additionally, there are gaps between low-carbon
policy and public awareness/behavior. Therefore, the frontier directions of low-carbon transition

s

and public awareness include “low-carbon education”, “policies with specific guidelines”, and

“worldwide collaboration”.

Keywords: low-carbon transition; public awareness; low-carbon behavior

1. Introduction

Climate change is the defining issue of our time on a global scale. The influence
of climate change includes threats to food production and security [1-4], rising sea lev-
els [5-7], increasing the risk of catastrophic flooding [8-10], reducing the ice sheet and
glacier mass [11-13], and causing droughts [14-16]. According to the report from the
Intergovernmental Panel on Climate Change (IPCC (Intergovernmental Panel on Climate
Change)) and previous studies, human-induced climate change is also responsible for
storms and extinctions [7,17-21]. In this urgent situation, we must take action.

“United Nations Framework Convention on Climate Change”, “Kyoto Protocol”, and
“Copenhagen Accord” were formulated to prevent the threat and risks generated by climate
change [22]. In order to mitigate climate change worldwide, the Paris Agreement was
adopted by 196 parties at the UN Climate Change Conference (COP21) in 2015, which is a
legally binding international treaty on climate change [23]. Its overarching goal is to hold
“the increase in the global average temperature to well below 2 °C above pre-industrial
levels” and pursue efforts “to limit the temperature increase to 1.5 °C above pre-industrial
levels” [23]. In order to limit global warming to 1.5 °C, greenhouse gas (GHG) emissions
must decline by 43% by 2030 [23].

Atmosphere 2023, 14, 970. https:/ /doi.org/10.3390/atmos14060970 5
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According to the UN (United Nations), carbon dioxide (CO,) is the most abundant
GHG, accounting for about two-thirds of all GHGs [15]. In recent years, many researchers
have studied the possible options to reduce CO, emissions. Previous studies found that
reducing CO, emissions is vital to mitigating climate change and achieving the low-carbon
transition [24-32]. Studies found that CO, emissions from fossil fuel combustion are
the main source of global climate change [33], and reducing demand for fossil fuels can
directly contribute to the reduction of CO, emissions from waste disposal [34]. From an
engineering point of view, CO, reduction options can be divided into three categories:
(a) reduce energy intensity (energy saving) [35,36]; (b) reduce carbon intensity [37]; and
(c) sequester carbon [37—41]. In addition, new energy is also a vital approach to achieving
carbon neutrality [42]. Paustian et al. [43] found that reducing the frequency of bare fallow
in crop rotations and increasing the use of perennial vegetation will increase the carbon
stock of the soil. Lee et al. [44] found that green transportation and low-emission technology
are the key aspects to balancing climate resilience and economic growth. Dietz et al. studied
the influence of household low-carbon behaviors, and the results show that household
actions can provide a behavioral wedge to reduce carbon emissions rapidly [45].

After the Paris Agreement, more and more countries announced their goal to achieve
net zero emissions over the coming decades and also published new policies in response to
the agreement. For example, the United Kingdom, Japan, and the Republic of Korea, along
with 110 other countries, have pledged to reach carbon neutrality by 2050 [46-49], and China
has pledged to achieve carbon neutrality by 2060 [50,51]. In order to achieve the carbon
neutrality goal, the corresponding policies were formulated in many countries [52-54]. For
example, China’s energy policy promoted the social acceptance or public awareness of
renewable energy [55,56].

As for the public’s awareness/behavior response to policy, the “top-down” approach
of telling the public “what to do” is confirmed to work ineffectively [57]. Although policy
is a positive approach to encouraging low-carbon behavior, public awareness/behavior re-
sponses are also influenced by other factors [58,59]. That is to say, public awareness/behavior
are variables that may delay the process of achieving the goal of the Paris agreement. In
addition, there is a great gap between behavioral intention and actual actions [60]. A study
found that awareness of climate change is widespread, but behavioral engagement is far
lower [61]. Therefore, it is vital to study public awareness/behavior for the low-carbon
transition.

Many studies have focused on the low-carbon transition and public awareness/beha-
vior [62-70] However, this research topic lacks a comprehensive and systematic review.
Therefore, this study analyzed the trends, progress, status, and hotspots of studies on
low-carbon transition and public awareness/behavior through literature from the Web of
Science (WoS) database, including countries/regions contribution analysis, institution con-
tribution analysis, keyword analysis, and journal analysis. From the results of bibliometric
analysis, this study obtains the countries/regions contributions, institution contributions,
hot keywords, and highly productive journals of this research topic. Furthermore, this
study indicated the gaps and future frontier directions for this research topic. These can
contribute to comprehending the progress and content of this research topic and provide
a guide, reference, and inspiration for low-carbon policies. Moreover, policymakers can
formulate a suitable policy for low-carbon development based on the results of this study.

2. Data and Methods
2.1. Data

We collected the data for this study from the Web of Science Core Collection (WoSCC)
database, which is one of the databases of the Web of Science (WoS). The WoSCC database
includes Science Citation Index-Expanded (SCI-Expanded), Arts and Humanities Citation
Index (AHCI), Emerging Sources Citation Index (ESCI), Social Sciences Citation Index
(SSCI), Conference Proceedings Citation Index-Social Science and Humanities (CPCI-SSH),
Book Citation Index-Science (BKCI-S), Book Citation Index-Social Sciences and Humanities
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(BKCI-SSH), Conference Proceedings Citation Index-Science (CPCI-S), Emerging Sources
Citation Index (ESCI), Current Chemical Reactions-Expanded (CCR-EXPANDED), and
Index Chemicus (IC).

The literature data in this study were collected in February 2023. We selected and
collected the literature data by using the following strategy: (a) The literature data was
selected by the keywords that are related to “low-carbon transition” and “public aware-
ness/behavior”. The detailed search strategies were “TS = low-carbon AND awareness”
OR “TS = low-carbon AND Lifestyle AND transition” OR “TS = low-carbon AND Lifestyle
AND behavior” OR “TS = low-carbon AND behavior AND transition” OR “TS = low-
carbon AND environmental education”; (b) only “Article” and “Review Article” literatures
are included in this study; thus, only the literature data from peer-reviewed publications
are collected; (c) only English literature publications were included in this study; and
(d) this study obtained data from 1235 studies via the aforementioned process.

2.2. Methods

The bibliometric analysis in this study includes performance analysis and scientific
mapping analysis, which can reveal research trends and clarify the current status of re-
search. In this study, performance analysis evaluates the influence of studies from coun-
tries/regions, institutions, keywords, and journals. The scientific mapping analysis in this
study encompasses the dynamics and relationships observed within the research. Therefore,
this study conducted bibliometric analysis based on WoSCC data to evaluate publication
trends, journal contributions, institutional contributions, and country contributions. More-
over, the frequency of specific keywords was analyzed through bibliometric analysis.

Microsoft Excel was used to analyze the general performance of publications. The
results of the institution contribution analysis and highly productive journal analysis were
obtained from the WoSCC. The analysis and visualization of keywords were conducted
by Bibliometrix, which is an R-tool for comprehensive science mapping analysis. Coun-
tries /regions contribution analysis and visualization of the aforementioned studies were
analyzed by CiteSpace 6.1 R3 (literature visual analysis software) Figure 1.

TS=(low-carbon ~ AND
Database awa:eness) OR TS=(low- M . 1235
of Web carbon AND Lifestyle types Language literatures
of AND  transition) OR Select “Articles” types were
Science TS=(low-carbon  AND and  “Review Select “English” Sf?le.cted fo.r
Lifestyle AND behavior) Articles” in the in  languages bibliometric
(WoS) OR TS=(low-carbon AND document type type option. analysis.

OR TS=(low-carbon AND

environmental education).
\ /
O ’

!
!
I
behavior AND transition) option. '
!
!
!
!

Figure 1. Flow chart of literature data collected for the study of low-carbon transition and public
awareness/behavior. Note: TS means topic tag, which searches terms in title, abstract, author
keywords, and keywords plus fields.

3. Results
3.1. General Performance of Publications

There were 1235 studies of low-carbon transition and public awareness/behavior
collected from WoSCC. All the selected studies were cited 28,083 times in total. There were
an average of 22.59 citations per piece of literature. Moreover, 33 studies were recorded as
highly cited. The trend in the number of studies on the topics of low-carbon transition and
public awareness/behavior can be seen in Figure 2.
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Numbers of literature

Figure 2. The trend of the number of annual publications for the study of low-carbon transition and
public awareness/behavior.

As we can see in Figure 2, the study of low-carbon transition and public aware-
ness/behavior drew a small amount of attention between 1994 and 1997 and 2000 and 2003.
The number of publications has increased gradually since 2004. There has been a rapid
growth trend in publications since 2016. In addition, there was the largest increase in the
number of publications from 2021 to 2022. It is indicated that studies on the topics of low-
carbon transition and public awareness/behavior have gradually become more popular
since 2004. Since 2010, the study of low-carbon transition and public awareness/behavior
has drawn high amounts of attention and become a popular research topic in the field of
low-carbon.

3.2. High-Productivity Journal Analysis

Academic journals play an important role in the inheritance and dissemination of sci-
entific achievements. Thus, they are essential for scientific research. There are 202 academic
journals that published low-carbon transition and public awareness/behavior-related pa-
pers in this study. The top 10 journals on the study of low-carbon transition and public
awareness/behavior are listed in Table 1, which includes the impact factors, SCImago
journal rank, journal citation reports (JCR), and categories. Eight out of the top 10 journals
were in JCR’s first quarter.

Table 1. Top 10 journals for the study of low-carbon transition and public awareness/behavior.

. Number of IF SJR JCR .
Rank Publications Publications 2022 2022 2022 Categories
1 Journal of Cleaner Production 90 11.072 Q1 Q1 Environmental Science (SCIE)
2 Sustainability 74 3.889 Q2 Q1 Environmental Science (SSCI)
3 Energy Policy 52 7.576 Q1 Q1 Environmental Science (SCIE)
4 Energies 31 3.252 Q2 Q3 Energy and Fuels (SCIE)
Materials Science and Engineering A: . . .
5 Structural Materials: Properties, 29 6.044 Q1 Q1 Metallurgy and Metallurgical Engineering
! ' (SCIE)
Microstructure, and Processing
6 Energy Research and Social Science 26 8514 Q1 Q1 Environmental Science (SSCI)
Metallurgical and Materials Transactions A: Metallurgy and Metallurgical Engineering
7 Physical Metallurgy and Materials Science % 2726 Q @ (SCIE)
International Journal of Environmental Public, Environment, and Occupational
8 Research and Public Health s 4614 a a Health (SSCI)
9 R ble and Sustainable Energy Review: 21 16.799 Q1 Q1 Multidisciplinary Sciences (SCIE)
10 Applied Energy 18 11.466 Q1 Q1 Energy and Fuels (SCIE)

Note: IF: impact factors; SJR: SCImago journal rank; JCR: journal citation reports.
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3.3. Keywords and Hotspot Analysis

The focus and content of the study of low-carbon transition and public awareness/behavior
are analyzed through keyword analysis. The top 20 keywords for the study of low-carbon
transition and public awareness/behavior can be seen in Figure 3. Additionally, Table 2
shows the top 20 keywords and their frequency, which is based on the study of low-
carbon transition and public awareness/behavior. Moreover, Figure 4 illustrates the top
20 keywords with the strongest citation bursts and their popular periods.

hehaviour change
low-carhon lifestyle c_arhon emISSInns

environmgu! I m ate c II a n ggr@e_nl_muse gas emissions
wanshortl OW CArDON::: ...
carhon f.lnl!illel n ewa -h I e e'n-e rgv

sustainability

energy policy ¢hingcarbon emission reduction

energy transition
climate change mitigation

Figure 3. Word cloud of keywords for the study of low-carbon transition and public aware-
ness/behavior. Note: the keyword font size in the diagram represents the frequency of the keywords
during searches.

Table 2. Top 20 keywords for the study of low-carbon transition and public awareness/behavior.

Rank Keywords Frequency Rank Keywords Frequency
1 Low Carbon 77 11 Energy Transition 29
2 Climate Change 73 12 Sustainable Development 29
3 Renewable Energy 62 13 Carbon Emission Reduction 27
4 Sustainability 62 14 Climate Change Mitigation 25
5 Carbon Emissions 51 15 Environmental 25
6 Behavior Change 50 16 Transition 25
7 China 43 17 Low-carbon Economy 24
8 Transport 43 18 Carbon Footprint 23
9 Low-carbon Awareness 39 19 Low-carbon Lifestyle 23
10 Energy Policy 34 20 Greenhouse Gas Emissions 18

The top 20 keywords on the study of low-carbon transition and public awareness/behavior

i

include “Low Carbon”, “Climate Change”, “Sustainability”, “Energy Transition”, “Low-
carbon Awareness”, “Energy Policy”, “Behavior change”, “Low-carbon Economy”, “Trans-
port”, “Environmental”, “Renewable Energy”, “Carbon Emission Reduction”, “Sustainable
Development”, “Transition”, “Climate Change Mitigation”, “Carbon Footprint”, “Carbon
Emissions”, “China”, “Low-carbon Lifestyle”, and “Greenhouse Gas Emissions”.
According to the top 20 keywords, the focus of the study on low-carbon transition in-
cludes energy transition and economic transition, which should be guided by related policy.
In order to decrease carbon emissions and mitigate climate change, researchers explored
possible solutions, which include electric vehicles, introducing renewable energy, adapting
to a low-carbon economy, and enhancing energy efficiency. In addition, researchers also

focused on sustainability and biodiversity.
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Keywords Year Strength Begin End 2000 - 2022
behavior change 2001 4.84 2007 2011
energy absorption 2009 2.55 2009 2012
climate change 2011 6.62 2011 2016
uk 2011 2.81 2011 2018
attitude 2012 3.35 2012 2014 N
governance 2012 3.28 2012 2018 —
sustainable consumption 2013 2.86 2013 2016 i ——
knowledge 2013 2.66 2013 2019 ——————
travel 2013 2.47 2013 2017 —
politics 2013 2.28 2013 2014 — —
choice 2012 2.47 2015 2017 e —
transport 2016 443 2016 2017 S —
carbon footprint 2016 3.45 2016 2019 ——
climate policy 2017 2.57 2017 2018 —
sustainability transition 2018 2.8 2018 2019 A —
green 2015 2.24 2018 2020 S —
willingness to pay 2019 3.57 2019 2020 e
household 2019 2.85 2019 2022 N—
cap and trade 2019 2.24 2019 2022 —
carbon tax 2020 3.32 2020 2022 —

Figure 4. Top 20 keywords with the strongest citation bursts. Note: the year represents the starting
year when keywords are mentioned.

3.4. Institution Contribution Analysis

Institutional contributions are critical to understanding the research intensity and
composition of studies in specific fields. The performance of the top 10 institutions with the
most publications on the study of low-carbon transition and public awareness/behavior is
shown in Table 3. Research achievements in this field predominantly come from research
institutes and universities. In addition, the top three institutions with high publications
are as follows: the Chinese Academy of Sciences, the University of London, and Tian-
jin University.

Table 3. Performance of the top 10 institutions with the most publications within the study of
low-carbon transition and public awareness/behavior.

Number of Publications

Rank Institution Country  1900-  2006-  2011- 2016
2005 2010 2015 2022 Total
1 Chinese Academy of Sciences China 0 4 6 30 38
2 University of London UK 0 0 6 21 27
3 Tianjin University China 0 0 8 19 27
4 Centre National de la Research Scienfique Spain 2 3 1 17 23
5 Northeastern University China 1 2 0 17 20
6 Tsinghua University China 0 3 4 14 21
7 University College London UK 0 1 4 14 19
8 United States Department of Energy USA 4 0 5 10 19
9 Indian Institute of Technology System India 0 2 3 13 18
10 University of Oxford UK 0 0 4 14 18

3.5. Countries/Regions Contribution Analysis

The status of the low-carbon transition and public awareness/behavior were studied
in various countries/regions. The geographical distribution and co-citation network for

10
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the study of low-carbon transition and public awareness/behavior are illustrated, as seen
in Figure 5. According to the result, the top three countries with the highest number of
research publications are China, the United Kingdom (UK), and the United States (US).
Moreover, as for research collaboration, China, the US, the UK, Australia, the Netherlands,
and Germany have exhibited strong causal links with other countries. This shows that, on
these research topics, researchers in these six countries collaborated closely with researchers
in other countries, which further contributed to the increase in publications.

=1)
25), LRF=3.0, LIN=10, LBY=5, e=1.0
=0.1189)

""DENMARK  JAPAN

AUSTRIA SPAIN
PORTUGAL FINLAND

GERMANY AUSTRALIA

ITALY
. PEOPLES R CHINA
FRANCE > e\
USA ENGLAND
St CANADA INDIA
souTH koReaANETHERLANDS MALAYSIA
NORWAY
IRAN

Figure 5. The geographical distribution and co-citation network for the study of low-carbon transition
and public awareness/behavior. Note: the size of the label font in the figure represents the number of
published documents, and the link between nodes represents the cooperative relationship between
countries/regions.

The top 20 countries/regions with the most publications on the study of low-carbon
transition and public awareness/behavior, as well as their whole and per capita publication
numbers in 2022, are shown in Table 4. There were more than 100 publications each in
China, the UK, and the US. Additionally, the top five countries with the highest number of
publications are China, the UK, the US, Australia, and Japan. These results indicate that
these countries have a wealth of high intensity focus on this research field and also have
lots of publications. In addition, judging by the starting year of the research publications,
the UK, the US, Japan, France, Spain, Denmark, and Finland all started the research on
low-carbon transition and public awareness/behavior before 2000. This reflects the fact that
these seven countries started research on this study topic much earlier than other countries.
According to the per capita number of publications in 2022, the top three are Australia, the
Netherlands, and the UK, which indicates that a relatively high percentage of researchers
pay attention to this study topic in these countries.

11
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Table 4. Top 20 countries/regions with the most publications surrounding the study of low-carbon
transition and public awareness/behavior.

. Number of Per Capita Number of

Rank Country Nmf‘be,r of Starting Publications Publications in 2022

Publications Year in 2022 (N/Million People)
1 China 499 2005 133 0.093
2 UK 195 1998 25 0.369
3 USA 142 1998 16 0.047
4 Australia 68 2008 13 0.492
5 Japan 66 1995 11 0.089
6 Germany 60 1998 7 0.084
7 Canada 42 2010 7 0.180
8 Ttaly 40 2008 6 0.102
9 France 38 1997 7 0.180
10 Netherlands 38 2001 8 0.454

Note: N represents the number of publications.

Figure 5 and Table 4 show the geographical distribution of publications for the study
of the low-carbon transition and public awareness/behavior. According to the results,
seven of the top ten countries/regions are located in North America and Europe, which
indicates that this topic of study is conducted on these continents. Excepting the continents
of North America and Europe, China (499), Australia (68), and Japan (66) are another three
countries with a high number of publications on these research topics. Furthermore, within
their respective continents, the quantity of research publications in China, Australia, and
Japan is higher than in other countries.

4. Discussion
4.1. Research Trends, Development, and Hotspots

According to the bibliometric analysis results, studies on the topic of low-carbon
transition and public awareness/behavior gradually became more popular in 2004, received
high amounts of attention in 2016, and thereafter became a popular research topic in the
fields of low-carbon. This may be because of the Paris Agreement in 2015, which drew
strong attention to climate change worldwide, and then low-carbon became a popular topic
in many fields.

According to the number of research publications, China, the UK, the US, Australia,
and Japan have a wealth of high intensity focus on this research field. This may be in
response to the Paris Agreement. For example, the United Kingdom, Japan, and many
other countries have pledged to reach carbon neutrality by 2050 [46—49], and China has
pledged to achieve carbon neutrality by 2060 [50,51]. In order to achieve the carbon
neutrality goal, the corresponding policies were also formulated in many countries [52-54].
For example, China’s energy policy promoted social acceptance or public awareness of
renewable energy [55,56]. In addition, researchers are supported to study low-carbon
transitions and public awareness/behavior in these countries. For example, researchers
in China were encouraged and rewarded to study this topic and apply the findings to the
policy-making process, which is a benefit to the low-carbon transition. Therefore, there
are more publications than in any other country. However, publication numbers cannot
represent the actual achievements of carbon emissions reduction in these countries since
the benefits of low-carbon actions take time to be shown.

Additionally, according to the starting year of research publications, the UK, the
US, Japan, France, Spain, Denmark, and Finland all started the research on low-carbon
transition and public awareness/behavior earlier than other countries. According to the
results of keyword analysis, energy transition and economic transition were the main study
foci of the low-carbon transition.

According to Figure 4, behavior change was focused on by researchers in 2001, and
it became a study hotspot between 2007 and 2011. In addition, researchers paid constant
attention to behavior change from 2001 to the present day. Thus, behavior change should

12
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be the key to achieving a low-carbon transition. As we can see, since climate change started
becoming a popular study topic, researchers from the United Kingdom paid attention to it
in the same year and studied the low-carbon transition and public awareness/behavior
actively from 2011 to 2018. Since 2012, governments have been involved in this topic,
and low-carbon policies have been formulated. Low-carbon technologies were studied
soon after, such as low-carbon transport/travel, low-carbon education, carbon footprint
reduction, and sustainability transition. Additionally, the public’s willingness to pay for
low-carbon products is also studied. From 2019 to 2022, household carbon emissions,
carbon cap and trade, and carbon tax became the study hotspots.

Regarding the research filed for the study of low-carbon transition and public aware-
ness/behavior (Figure 6), from 1900 to 2000, there were not many research fields paying
attention to low-carbon transition and public awareness/behavior studies, just economics
and environmental studies, and each only had one publication. From 2001 to 2010, the
number of research fields increased, and environmental studies/sciences (19) ranked first.
Some fields that did not appear in rankings from 1900 to 2000 were added to the ranking,
including energy fuels, green sustainable science and technology, engineering environ-
mental sciences, business, geography, management, and transportation. Thus, the main
study focus of this period is new energy, carbon emissions reduction, low-carbon policy,
and transportation footprint. From 2011 to 2022, environmental studies/sciences (638) still
ranked the highest and have increased massively in number. Green sustainable science and
technology ranked second (229); the following two are engineering environmental (111),
and economics (90). Additionally, public environmental occupational health, urban stud-
ies, political science, sociology, educational research, communications, and development
studies were added to the rankings. As we can see, the study of low-carbon transition and
public awareness/behavior is getting more attention in environmental studies/sciences
and has become a study topic in so many other fields in recent years.

1900-2000 2001-2010 2011-2022
’ Economics Environmental | Environmental |
Sciences/Studies Sciences/Studies
Green Sustainable

’ Environmental .
Economics

Studies Science Technology

Energy Fuels
Environmental

Energy Fuels

Green Sustainable
Science Technolog

En_gmeermg Economics
Environmental
A

Public Environmental
Occupational Health
Geography
Urban Studies

Management

Geography

Business

Political Science

m

Figure 6. Research filed on transition for the study of low-carbon transition and public aware-

ness/behavior.
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A low-carbon energy transition is important to mitigate climate change impacts and
temperature rises [62]. Adopting alternative technologies for fossil energy and improving
energy efficiency are possible technical directions and options to reduce carbon emis-
sions [33]. Previous studies found that 70% of CO, emissions (directly and indirectly) are
from households; energy use at home, transportation options, and diets will have an effect
on households’” CO, footprint [63]. Peng et al. analyzed neighborhood residents’ cognition
of and participation in low-carbon behaviors. The results showed that neighborhood res-
idents get involved in low-carbon behaviors through home energy conservation (HEC),
efficient resource consumption (ERC), and recycling habits (RH) [64].

Environmental education has a positive impact on low-carbon behavior through pollu-
tion control and enhances green consumption intentions through residents” environmental
awareness [65]. Previous studies found that the influence of awareness and personal/social
norms is as important as monetary factors [63]. Hu et al. also found that attitude, perceived
behavior control, environmental concern, and perceived moral obligation have a positive
impact on low-carbon travel behavioral intention [66]. Thus, environmental education is a
great approach to improving people’s awareness of low-carbon behaviors. Additionally,
personal and social norms have a significant influence on low-carbon behaviors. Niamire
et al. found that behavioral factors (e.g., knowledge and awareness) have an effect on
personal norms; a higher level of knowledge and awareness about environmental and
climate issues comes along with a higher level of personal norms [63]. Chen and Li inves-
tigated the influence factors of low-carbon behavior and found that personal and social
norms had a stronger impact on public low-carbon behavior than private low-carbon
behavior [67]. Moreover, demographic factors (i.e., gender, education, and income) will
impact low-carbon behavior [67]. Additionally, although some people have an awareness
of low-carbon behavior, it is still hard for them to take proper action if they do not have
knowledge of the carbon footprint of their behavior. Thus, there should be information
provided to inform people of the carbon footprint of their decisions [71].

In sum, environmental education is a great way to improve society’s awareness of
low-carbon behavior [68,69]. Thus, there should be some environmental education projects
conducted in the whole society and in such groups as neighborhoods and households.

4.2. Future Work and Frontier Directions

According to previous research, there are gaps between low-carbon-related policy and
public awareness/behavior, which will postpone the progress of the low-carbon transition.
First of all, there are many low-carbon policies formulated, but it is still a challenge to put
them into action. For example, many policies are top-down demands within abstract and
general concepts and usually aim for the benefits of the whole country or a larger range of
populations, which seem remote from public personal life. Thus, it is difficult for the public
to accept changes that are not closely related to their own interests. Therefore, low-carbon
education needs to be invested in to let the public learn about their close relationship with
the low-carbon transition and to explain the policy for guiding the public’s low-carbon
behavior. Additionally, policies are also expected to be more precise, such as providing
specific carbon emission reduction measures and low-carbon behavior guidelines. Secondly,
new low-carbon technologies should be introduced to the public more efficiently. For
example, provide new low-carbon products with purchase discounts and reward the
company for using low-carbon energy so as to guide the public to accept new energy or
low-carbon technology products. Finally, the low-carbon transition needs collaboration
worldwide. It is not the mission of one industry, country, or continent, but a human mission.
Thus, the low-carbon transition is a revolution within the co-thinking, co-design, and co-
action of every person, household, industry, country, and continent. In general, the frontier
issues/directions of low-carbon transition and public awareness include “low-carbon

i

education”, “policies with specific guidelines”, and “worldwide collaboration”.
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4.3. Strengths and Limitations

This study analyzed the trends and status of the research on low-carbon transition
and public awareness/behavior through bibliometric analysis. In addition, this study
systematically summarized the research progress on low-carbon transition and public
awareness/behavior in previous studies, including factors that have an effect on low-
carbon behavior, low-carbon transition mechanisms, and so on.

Finally, because English is the most widely used language for academic publications
worldwide, this study only included publications in English. The limitation of this study is
that it only analyzed English literature collected from the WoSCC database. Moreover, this
study only considered peer-reviewed publications (i.e., “Article” and “Review Article”) on
low-carbon transition and public awareness/behavior. In addition, the search terms might
have excluded other relevant literature.

5. Conclusions

After the Paris agreement, studies on low-carbon transition and public awareness /behavior
became research hotspots in the low-carbon field. As a response, this study conducted
bibliometric analysis to analyze the trends, progress, status, and hotspots of studies on
low-carbon transition and public awareness/behavior, including country /region contribu-
tion analysis, institution contribution analysis, keyword analysis, and highly productive
journal analysis.

This study analyzed the trends and status of the research on low-carbon transition
and public awareness/behavior through bibliometric analysis. In addition, this study
systematically summarized the research progress on low-carbon transition and public
awareness/behavior in previous studies, including factors that have an effect on low-carbon
behavior, low-carbon transition mechanisms, and so on. For example, researchers paid
constant attention to behavior change from 2001 to the present day. Since 2012, governments
have been involved in this topic, and low-carbon policies have been formulated. From 2019
to 2022, household carbon emissions, carbon cap and trade, and carbon tax became the
study hotspots. From 1900 to 2000, there were not many research fields that paid attention
to low-carbon and public awareness/behavior studies. From 2001 to 2010, there were
publications in environmental studies/sciences, energy fuels, green sustainable science
and technology, engineering environmental sciences, business, geography, management,
and transportation fields. From 2011 to 2022, the publication numbers of low-carbon
transition and public awareness/behavior studies have increased massively. Moreover,
public environmental and occupational health, urban studies, political science, sociology,
educational research, communications, and development studies were also focused on
this topic.

Policymakers need to advocate for the carbon reduction benefits of urban forms
and lifestyles and formulate implementable policies accordingly. A low-carbon society is
feasible if widespread awareness is achieved. This is also in line with the trends in “public
participation”, “co-design”, and “act locally”. Regarding the frontier issues/directions of
low-carbon transition and public awareness, low-carbon education needs to be invested
in to let the public learn about their close relationship with low-carbon transition and to
explain the policy for guiding the public’s low-carbon behavior. Additionally, policies are
also expected to be more precise, such as providing specific carbon emission reduction
measures and low-carbon behavior guidelines. Moreover, new low-carbon technologies
should be introduced to the public more efficiently. Finally, the low-carbon transition needs
collaboration worldwide.
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Abstract: Urbanization is a significant indicator of city progress, and as urbanization advances,
carbon emissions exhibit an increasing trend that must not be disregarded. Therefore, it is imperative
to thoroughly examine the spatial and temporal variations as well as the factors influencing carbon
emissions during the urbanization process. In this paper, based on the 2009-2019 PRD region, carbon
emissions are measured from energy consumption, industrial production process, solid waste, and
wastewater according to the IPCC coefficients, and spatial and spatial differences in carbon emissions
are combined with spatial analysis and the drivers analyzed using the gray correlation scale. The
results show that: (1) The total carbon emissions in the PRD region have been increasing over the
study period, and the distribution of total carbon emissions shows a pattern of “strong in the east
and weak in the west”, with energy consumption accounting for the highest proportion of carbon
emissions. (2) The global Moran Index of carbon emissions in the PRD has been decreasing, with low
and low clustering concentrated in Shaoguan and Zhaoqing, high and high clustering concentrated
in Dongguan and Shenzhen, and low and high clustering concentrated in Shenzhen and Guangzhou,
with cold spots mainly concentrated in Zhaoqing and hot spots mainly distributed in Guangzhou,
Shenzhen, and Dongguan. (3) The degree of economic growth has a substantial influence on carbon
emissions in the PRD cities, and the influence of technical advancement has intensified. Guangzhou
City is propelled by low-carbon regulations that have a more equitable influence on all elements.
Zhuhai City has a more significant influence on energy intensity, while Foshan City has a more
noticeable decrease in the effect of foreign investment. To address the issue of carbon emissions,
the government should establish appropriate rules to regulate carbon emissions in areas with high
emissions, foster collaborative efforts across cities, and encourage the growth of environmentally
friendly enterprises.

Keywords: carbon emissions; spatiotemporal differences; driving factors; the Pearl River Delta

1. Introduction

Cities are the primary sources of carbon emissions, and their coordinated role in
driving socioeconomic transformation during urbanization is crucial for advancing energy
efficiency and achieving China’s goals of carbon peaking and carbon neutrality [1]. Cities,
which are the primary hubs of human socioeconomic activity, cover about 3% of the Earth’s
surface area yet account for over 75% of the world’s energy consumption and contribute
to nearly 80% of global carbon emissions [2]. Consequently, achieving carbon peaking in
cities has become a significant agenda for mitigating climate change [3]. Urbanization has
caused a cascade of ecological and environmental problems, including scarcity of resources,
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damage to the environment, and pollution [4]. Urbanization and carbon emissions have a
very complicated connection. It is now critical and necessary to coordinate the interaction
between urbanization and carbon emissions. Conducting research on carbon emissions,
finely characterizing the spatiotemporal distribution patterns, and identifying influenc-
ing factors are of crucial importance. This research not only contributes to promoting
regional coordinated development but also holds significant reference value for enhancing
the scientific, targeted, and practical aspects of energy-saving and emission-reduction
policies [5].

In recent years, both domestic and international scholars have undertaken comprehen-
sive research on carbon emissions, examining diverse perspectives. Their investigations
encompass the estimation of total emissions [6], performance metrics [7], and emission
intensity [8] from various angles. Concurrently, these studies have delved into specific
industries, including the financial sector [9], agriculture [6], industry [10], and tourism [11],
in order to conduct in-depth analyses of carbon emissions. Li et al. (2015) conducted a
thorough examination of carbon emissions at the county, municipal, and provincial levels;
the findings revealed distinct patterns of regional distribution [12].

Zhao et al. (2018) observed distinct patterns of carbon emissions at the province level,
characterized by a high concentration of emissions and a low amount of clustering [13].
When examining carbon emissions at the municipal level, Wu et al. (2023) identified
clustering patterns. They noticed that per capita carbon emissions tend to rise from south
to north and decrease from the eastern coastal regions towards the interior areas [14].
Wang et al. (2021) observed that at the county level, there is a clear spatial intensification
associated with carbon emissions. They found a consistent geographic pattern of “higher
in the north, lower in the south”, in economically developed regions in China having more
per capita carbon emissions compared to other areas [5]. Wang et al. (2015) discovered
that the factors that affect carbon emissions are intricate and varied at the same time [15].
Li et al. (2015) investigated the geographical heterogeneity and spatial autocorrelation
of carbon emissions using spatial panel econometric models and exploratory spatial data
analysis (ESDA) techniques [12]. Liu et al. (2019) investigated the effects of production
scale, the intensity of energy use, the structure of the industry, population size, and the
structure of energy on carbon emissions consumption using the Logarithmic Mean Divisia
Index (LMDI) model [16]. Geographic detectors were utilized to uncover the significant
explanatory capability of economic urbanization in accounting for the variations in carbon
emissions at the county level [17]. Using the STIRPAT model, Chen et al. (2018) found that
a city’s carbon emissions are greatly increased by population growth and the proportion
of its output value that comes from secondary industries [18]. Song et al. (2023) applied
geographic weighted regression and panel data regression models to identify varying levels
of carbon emissions and major influencing factors among different types of counties [19].

Numerous academics have examined carbon emissions within the context of urban-
ization from the angles of drivers, geographical organization, and economic expansion. In
terms of economic growth research, studies are usually conducted in two directions: eco-
nomic growth in general or in a single sector. Among them, Wang et al. (2023) discovered
a connection between economic development and the increase in CO, emissions when
they examined carbon emissions from the perspective of general economic growth [20]. In
their research, Dong et al. (2020) focused on six key sectors, including agriculture, industry,
and construction, to examine the effects of carbon emissions. Their findings indicate that
the transportation industry has the greatest influence [21]. Within the study of spatial
structure, as the city size continues to expand, there is a growing trend of continuity and
concentration of built-up regions, leading to an increase in carbon emissions [22]. The ma-
jority of studies employ the Geographically and Temporally Weighted Regression (GTWR)
model, enabling an examination of urban agglomeration. It has been observed that the
multifaceted structure of certain urban agglomerations fails to effectively reduce carbon
emissions to a significant extent [23]. However, the GTWR model can analyze the urban
change pattern by considering the factors that influence it, incorporating both temporal
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and spatial dimensions. It reveals that the direction and strength of influence vary among
different cities at different stages of development [24]. Ding et al. (2022) discovered that
when urban agglomerations reach a more advanced stage of development, the degree of
land use and land cover change (LUCE) increases, along with a greater concentration of
districts and counties with a high level of carbon emissions [25]. China’s energy sector
produces carbon emissions that are typically greater than those of the rest of the world, and
the country’s growing economy is the main cause pushing up carbon emissions [26]. Yang
et al. (2023) linked carbon emissions to urban high-quality development, demonstrating
that advancements in technology, environmental governance, and economic growth are
critical factors that may favorably impact both the moderate decrease in carbon emissions
and the enhancement of environmental quality [27].

Based on the current study, there is still an opportunity for growth in this area even
though studies on carbon emissions have been trending upward recently. The dominant
techniques for measuring carbon emissions in metropolitan areas are largely concerned
with emissions connected to energy consumption in the accounting process of carbon
dioxide emissions [28]. This concentration leads to significant discrepancies between the
calculated urban carbon emissions and the actual values. Second, the current research
has mostly targeted provincial scales, with limited studies focusing on cities, and there
is a scarcity of regional studies based on cities [5]. Third, there are very few studies on
the spatiotemporal variations and driving forces of regional carbon emissions. Instead,
research on carbon emission efficiency and productivity disparities has dominated the field.

Through experience summarization, this study seeks to provide a scientific reference
for accomplishing the “dual carbon” objectives. Firstly, using economic and social data
from the “Guangdong Statistical Yearbook”, carbon emissions in four sectors—energy
consumption, industrial production processes, solid waste, and wastewater—are calculated
for the nine cities. Secondly, the total carbon emissions are determined by adding the
emissions from these four sectors, and the spatiotemporal variations in carbon emissions are
examined using spatial autocorrelation analysis. Lastly, the research assesses the influence
of driving characteristics on the overall carbon emissions based on these computations.

Thus, this research specifically examines the Pearl River Delta area, investigating the
spatial and temporal changes in carbon emissions that occur throughout the process of
urbanization. The study identifies influential elements and examines their effect on carbon
emissions in the Pearl River Delta. Ultimately, policy suggestions are provided based on
the study findings. These results may be used as a benchmark for conserving energy and
reducing carbon emissions throughout the process of urbanization.

2. Study Area and Data Source
2.1. Study Area

The Pearl River Delta (PRD) is situated in the central-southern region of Guangdong
Province, including the middle and lower sections of the Pearl River, inside the subtrop-
ical zone. Adjacent to Hong Kong and Macau, it comprises nine prefecture-level cities:
Guangzhou, Foshan, Zhaoqing, Shenzhen, Dongguan, Huizhou, Zhuhai, Zhongshan, and
Jiangmen [29,30]. It makes up over one-third of Guangdong Province’s entire land area,
with a total size of around 54,767 square kilometers. With a high urbanization rate of 87%,
the Pearl River Delta, despite its size, concentrates 81% of the province’s entire economic
output. The geographical location of the PRD is shown in Figure 1.

Analyzing the spatial distribution characteristics, temporal evolution, and driving
forces of carbon emissions in highly urbanized regions can be facilitated by examining the
spatiotemporal differentiation and driving factors of carbon emissions in the PRD urban
cluster, one of China’s three major urban agglomerations.
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Figure 1. Study area.

2.2. Data Source

This research specifically examines the Pearl River Delta area and analyzes data on
several carbon emission indicators, including raw coal, coke, domestic glass goods, pig
iron, home waste emissions, household wastewater emissions, and industrial wastewater
emissions. Indicators of economic development level, population size, urbanization level,
energy intensity, and road network density are used as factors influencing urbanization-
related carbon emissions. The Guangdong Statistics Yearbooks from 2009 to 2019 are the
main source of the aforementioned statistics information. Linear interpolation and other
sources like national economic and social development announcements and local statistics
yearbooks are used to augment missing data [31]. Table 1 displays the specific information

needed for this investigation.

Table 1. Details of each data.

Data Name

Data Description

Source

Fossil Fuel Consumption Data

Industrial Production Data

Solid Waste Discharge Data

Wastewater Discharge Data

Total annual energy consumption (raw coal,
coke, crude oil, gasoline, kerosene, diesel, fuel
oil, natural gas, etc.)

Total production of industrial products (daily
glass products, pig iron, crude steel, finished
steel, cement, flat glass, etc.)
Domestic waste emission
Domestic wastewater discharge, industrial
wastewater discharge

Guangdong Provincial Statistical
Yearbook, China Energy Statistical
Yearbook, and Municipal Statistical

Yearbook, 2009-2019
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Table 1. Cont.

Data Name

Data Description Source

Socio-economic Data

Administrative Boundary

Urban Area

Annual gross domestic product, permanent
resident population at the end of the year, urban
population, gross domestic product of the
secondary industry, gross domestic product of
the tertiary industry, energy intensity, number of
kilometers opened to traffic, etc.

Guangdong Provincial Statistical
Yearbook and Municipal Statistical
Yearbook, 2009-2019

National Geographic Information

Pearl River Delta city, county vector boundary Directory Service

Data redefined in 2016

3. Research Methods
3.1. Calculation of Carbon Emissions

Urban areas bear a substantial burden of carbon emissions. Energy consumption,
industrial production processes, solid waste, and waste-water carbon emissions are all
factors that contribute to the environmental impact of cities in terms of their production
and everyday activities. Carbon emissions stem from energy use in various industries.
Additionally, energy consumption in industrial processes, such as the production of cement,
lime, and glass, constitutes industrial production energy consumption, leading to carbon
emissions from industrial production processes. Cities also handle a considerable amount
of municipal and industrial waste, and the incineration, landfilling, and treatment of these
wastes contribute significantly to carbon emissions.

This research assesses carbon emissions from four aspects: energy consumption,
industrial production processes, solid waste, and wastewater, by using pertinent studies
and employing the calculating methodologies specified by the Intergovernmental Panel
on Climate Change (IPCC) [28,32,33]. This estimate does not take into account carbon
emissions from agricultural production activities such as straw burning. The precise
calculating procedure is as follows:

Cn = Qnuri X € 1

Cg = Qgni X €gni x 1244 2)

Cuwb = Qup X Vip X Py X EFy )

Cuf = Quf x 0.167 x (1 —75%) 4)

Cq1 = Np x BOD x SBF x Cpop x FTA x 365 (5)
Cg2 = Quf X COD % Ccop 6)

In the formula, C,; shows the carbon emissions resulting from energy consumption,
Q~i denotes the energy type ith’s usage, and e,,..; shows the energy type ith’s carbon
emission coefficient. Class i industrial product consumption is denoted by Q,.;, the carbon
emission coefficient of Class i industrial goods is €gnis and Cgis the carbon emission of the
industrial production process. The carbon emissions from waste incineration are denoted
by Cup, Qup, Vi, and Py,. The percentages of carbon content and mineral carbon in waste
are 40% and 40%, respectively, and the total combustion efficiency of the waste combustion
furnace is represented by EF;, which is 95%. The landfill’s water content is 71.5%, its
carbon emission is Cy, its quantity is Q, ¢, and its CH, emission coefficient is 0.167. Nj is
the population and Cg; is the carbon emissions from home wastewater. BOD stands for
the organic matter content per capita, SBF for readily precipitable BOD, Cpop for BOD
emission factor, and FTA for BOD that degrades in wastewater without oxygen. The
carbon dioxide (Cg,) emission of industrial wastewater is determined using the average
COD value of different industrial wastewater reported by the IPCC. The maximal ability
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to produce CHy is represented by Ccop. Quy is the volume of wastewater. COD is the
chemical oxygen demand.

3.2. Spatial Autocorrelation

The first law of geography is that there is a higher likelihood of correlation between
occurrences that are near each other. Within a certain geographical extent, the entire
spatial dependency is reflected by global spatial autocorrelation [34]. This work computes
the global geographical autocorrelation using Moran’s I [35,36]. The exact method for
calculating it is as follows:

. nyig i Wij(xi — %) (x; — %)
" E Wil (xie —%)°

@)

In the formula, variables x; and x; define the carbon emissions comprising unit i and
unit j, respectively. W;; represents the geographic weighting matrix of each unit i and unit j
inside the research region. Moran'’s I is a statistical measure that ranges from —1 to 1. If the
value is greater than zero, it shows a positive connection. When the value of I is less than 0,
it indicates a negative correlation, with a greater magnitude indicating a greater amount of
autocorrelation between spaces. When the value of I is equal to 0, it signifies an arbitrary
distribution of space.

This article employs Getis-Ord G; to examine the hot spots and cold spots in order to
further investigate the accumulation regions of extreme and low values in space [37-39].
The precise computation procedure is as follows:

n Loy

Gf = M
i n .
Z,‘lez

In the formula, the geographical weighting matrix, Wj;, represents the relationship
across each unit 7 and unit j in the research region. When G/ exhibits strong regularity, it
indicates that the region is a concentrated area of high value, sometimes referred to as a hot
spot. If GI-* is strongly negative, it suggests the region represents a low-value accumulation
area, namely a cold spot area.

®)

3.3. Grey Correlation Degree

The Grey Relational Analysis method utilizes the geometric similarity of sequence
curves to determine whether different sequences are closely linked, which can make up for
the deficiencies of combining statistical system analysis and has no special requirements on
the required sample size [40]. Therefore, it can eliminate the errors caused by the limited
sample size and has now become an effective tool for measuring the drivers of carbon
emissions [41,42].

Based on the current research, the following nine elements that have an impact were
chosen: The city’s economic growth has a beneficial effect on carbon emissions inside its
boundaries [43]. The yearly gross domestic product (GDP) serves as an index to gauge the
economic status of each city. Urbanization results in growth in the urban population, but
the focal point of urbanization is the concentrated makeup of people living in cities [44]. In
this study, the year-end resident population and the proportion of the urban population to
the total population are selected as indicators of population size and urbanization level.
The secondary industry in China is responsible for 70% of the pollution generated by the
production of goods [45]. Therefore, the scale of the secondary industry can be used as
an indicator to examine the connection between urbanization and carbon emissions [46].
Additionally, the total economic output of the secondary industry is used as a measure of
its size. The size of the tertiary industry scale is an indicator of the level of coordination
during urban growth in the process of urbanization [47]. The gross domestic product of the
tertiary industry is used to measure the size of the tertiary industry scale. The process of
carbon emission is heavily influenced by energy intensity, making it the primary driving
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factor [48]. Urbanization results in a larger land area being used [44] and the density of
road networks is used as a measure of spatial urbanization. Foreign investment does not
have a substantial impact on carbon emissions in China as a whole. However, it does have
a major impact on carbon emissions in areas with varying energy intensities [49]. Therefore,
this article considers foreign investment as a key factor. The role of science and technology
in reducing carbon emissions has been generally acknowledged [50]. This article uses the
number of patents as an indicator of the degree of technology in a certain region. Table 2
displays the elements that influence the variations in carbon emissions across different
locations and time periods.

Table 2. Influences on the variations in carbon emissions in terms of distance and time.

Influence Factor Unit Indicator Specification Symbol
Economic Development 10,000 yuan Gross Annual Product Xy
Population Size 10,000 Permanent Population at the end of the Year Xo
Urbanization Level % Proportion of Permanent Urban Population in X
Total Population

Proportion of the Gross Product of the

Secondary Industry Scale % Secondary Industry to the Gross Product X4
. o Proportion of the Gross Product of the Tertiar

Tertiary Industry Scale e ; Industry to the Gross Product Y Xs
Energy Intensity Tons of standard Ratio of Total Energy Consumption to Gross X

coal /10,000 yuan Domestic Product 6

Road Network Density km/km? Traffic Mileage Per Square Kilometer X7

Foreign Investment 10,000 yuan Cities Utilize Actual Foreign Investment Xg

Technological Level individual Number of Patents Granted Xg

Dimensionalization without meaning is used to standardize the data. To get the gray
correlation coefficient, the following precise calculation method is used:

E(t) = min;[A;(min)] + pmax;[A;(max)] ©)
! [x0(t) — x; ()| + pmax;[A;(max)]
Ai(min) = ming|xo(t) — x;(t) (10)
Ai(max) = maxg|xo(t) — x;(t) (11)
where ¢ is year t and p is the resolution; this paper takes 0.5.
Grey relational degree 7; is obtained as:
1 n
ri = EZt:lgi(t) (12)

In the formula, the closer the correlation degree is to 1, the higher the correlation degree.

4. Results
4.1. Urban Carbon Emissions

It is evident from Figure 2 that the Pearl River Delta’s carbon emissions measurement
data indicate an overall rise in carbon emissions from energy use in the PRD between
2009 and 2019. Foshan witnessed the highest surge, adding 16.338 million tons, while
Guangzhou experienced a reduction of 8.616 million tons in energy-related carbon emis-
sions. The proportion of Foshan’s energy-related carbon emissions in the PRD as a whole
increased by 9.56% over time. In contrast, Guangzhou’s share decreased from 28.74%
to 15.42%.
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Figure 2. Carbon emissions from various sectors in the Pearl River Delta, 2009-2019.

For carbon emissions from industrial production, all the PRD cities recorded an overall
increase, with Shenzhen leading the surge by 8.363 million tons and Zhaoqing having the
smallest increase of 0.731 million tons. The proportion of industrial production carbon
emissions for most cities showed a declining trend, with Guangzhou decreasing by 5.56%.
However, Dongguan’s proportion increased, rising from 10.25% to 16.49%.

Regarding carbon emissions from solid waste, an increase was observed from 2009
to 2014, followed by a decrease from 2014 to 2019. Carbon emissions from solid waste
were significantly reduced in Shenzhen, Guangzhou, and Huizhou; they were down about
0.501 million tons, 0.436 million tons, and 0.221 million tons, respectively. Carbon emissions
from solid waste in Dongguan increased to 0.204 million tons from 0.096 million tons.
Dongguan also saw a 10.85% increase in the proportion of solid waste carbon emissions,
while Shenzhen, Guangzhou, and Huizhou experienced decreases of 12.11%, 5.24%, and
4.15%, respectively.

Compared to carbon emissions from industrial production, wastewater carbon emis-
sions generally showed an upward trend. Dongguan had the smallest increase, with
carbon emissions rising about 0.021 million tons to 0.027 million tons, while Shenzhen
and Guangzhou experienced the largest increases, adding 0.059 million tons and 0.031 mil-
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(2)2009

lion tons, respectively. Wastewater carbon emissions represent the smallest portion of
overall carbon emissions. Shenzhen’s proportion increased from 8.45% to 21.72%. Although
Guangzhou and Foshan saw significant increases in carbon emissions, their proportions
decreased by 2.57% and 4.76%, respectively.

4.2. County Carbon Emissions

A geographical study of carbon emissions throughout the process of urbanization
within the Pearl River Delta for major periods 2009, 2014, and 2019 was undertaken using
ArcGIS 10.8 software. The purpose was to visually represent the variations in carbon
emissions across different locations (Figure 3).

(b)2014

Legend
Carbon Emissions ( 10,000 tons)
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Figure 3. 2009-2019 carbon emissions in the Pearl River Delta counties.

The timeframe from 2009 to 2019 demonstrates an aggregate growing trajectory in
carbon emissions throughout the PRD. In 2009, at the county level within the PRD, the
majority of carbon emissions were below 5 million tons, with one-third even falling below
1 million tons. By 2019, most county-level carbon emissions exceeded 2 million tons, with
an increasing number of counties surpassing 6 million tons.

From a geographical standpoint, the carbon emissions in the PRD region exhibit a
pattern of being “high in the east and low in the west”. The southern portion of the PRD
Central Axis exhibits the highest levels of carbon emissions, primarily attributed to eco-
nomic advancement, high population density, and frequent consumption. In 2009, carbon
emissions were predominantly concentrated in Bao’an, Longgang, Zhongshan, Baiyun, and
other regions. However, by 2019, the concentration shifted to Dongguan, Bao’an, Nanhai,
Shunde, and Longgang. Notably, Nanhai and Shunde experienced significant growth in
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carbon emissions between 2009 and 2019, while Shenzhen, Foshan, Dongguan, and Zhuhai
exhibited the most substantial increase in emissions.

4.3. Spatial Aggregation Characteristics

The research investigated the geographical distribution of carbon emissions in Guang-
dong Province from 2009 to 2019, using global spatial autocorrelation analysis (Table 3).
The findings showed a strong positive connection in carbon emissions, suggesting that
emissions had a tendency to cluster. Areas with higher emissions were found to be next
to other areas with higher emissions, while areas with lower emissions were next to each
other. Regarding specific numerical values, Moran’s I index exhibited a decreasing trend,
declining from 0.329 to 0.168, indicating a reduction of 48.9%. This points towards a dimin-
ishing spatial interdependence and clustering of carbon emissions, primarily attributed to
the gradual reduction in cold spots.

Table 3. Global carbon emissions index, Moran’ I index, 2009-2019.

Year 2009 2014 2019

Moran’s I 0.329 0.275 0.168

Z-score 3.911 3.836 2.443
4 0.000009 0.000125 0.00145

The Pearl River Delta region’s carbon emissions are intricately clustered, with concen-
trated zones with high and low emissions mostly located in the northwest and western
regions (Figure 4). In 2009, Kaifeng, Deqing, Guangning, Sihui, Dinghu, Duanzhou, and
Gaoyao had a low-low clustering pattern, but western Dongguan and Shenzhen showed a
high-high clustering pattern. In 2014, Gaoming, Kaiping, and Enping were added to the
low domain. In 2019, low-low clusters were detected in Fengkai, Deqing, Sihui, Gaoyao,
and Duanzhou, whereas low-high clusters were found in Guangming and Nansha. While
the high-high cluster is mostly concentrated in Shenzhen and Dongguan, the low-low
cluster resides primarily in the western and northwest parts of the PRD. However, there
exist substantial geographical disparities within Guangzhou and Shenzhen, resulting in
low and high clusters also being concentrated in these places. The time scale development
reveals minor fluctuations in the clusters of high and low values, with the low clusters
moving from the Northwest to the West and then returning to the Northwest. This suggests
that carbon emissions in the Northwest are rising.

A study using the Getis-Ord G; method was performed to detect the specific local cor-
relation patterns of carbon emissions throughout the process of urbanization in Guangdong
Province (Figure 5). The findings indicated that the areas with the highest concentrations of
carbon emissions in the Pearl River Delta (PRD) region between 2009 and 2019 were mostly
located in Shenzhen, Dongguan, and Guangzhou. In 2009, Zengcheng, Huangpu, Panyu,
and Longgang had a hotspot confidence level of 95%, while Bao’an, Nanshan, Futian,
Luohu, Nansha, and Dongguan had a higher confidence level of 99%. In 2014, the cities of
Guangzhou, Shenzhen, and Dongguan exhibited the highest levels of confidence in terms
of becoming hotspots. In 2019, the number of locations with a hotspot confidence level
of 99% decreased, while Bao’an, Guangming, Longhua, Nanshan, Futian, and Luohu had
confidence levels of 95%. This is due to both the increasing emissions from places with
relatively lower carbon emissions and the elevated carbon emissions inside the PRD.
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Figure 4. High and low carbon emissions in the Pearl River Delta are clustered, 2009-2019.
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Figure 5. Pearl River Delta cold and hot spots in 2009-2019.
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4.4. Analysis of Urban Carbon Emission Drivers
4.4.1. Gray Correlation Cross-Section Analysis Results

All relevant factors were accurately represented and analyzed using the results of the
gray relational analysis (Figure 6). The research examined the relationship between the
amount of urbanization, the structure of the secondary industry, and the density of the
road network in Guangzhou and Shenzhen. It also investigated the variables that affect
carbon emissions in Zhuhai and Shenzhen. The variables with stronger connections were
urbanization level, secondary industry structure, and road network density, while the
variables with weaker correlations were foreign investment and technology level.

X2

4

X6 Xs

Guangzhon Shenzhen Zhuhai

Figure 6. Grey correlation degree of carbon emission driver cross-section in the Pearl River Delta.

Zhuhai and Shenzhen have comparable sources of carbon emissions; however, Shen-
zhen’s sources are more significant in terms of quantity. The determining variables in
Zhuhai’s impact are primarily its economic growth and the scale of its secondary sector,
which is benchmarked against Shenzhen. The hierarchy of influencing variables in Zhuhai
may be summarized as follows: population size, size of the tertiary industry, degree of
urbanization, density of the road network, Shenzhen (replacing economic development
and size of the secondary industry), energy intensity, level of research and technology, and
foreign investment.

The correlation between Dongguan and Zhaoqing in terms of economic growth is 0.936
and 0.808, respectively. With correlations of 0.707 and 0.692, respectively, the relationship
between the influencing factors of carbon emissions in Dongguan and the density of the
road network and population size is also greater. The correlation between Zhaoqing’s
carbon-emission-influencing factors and energy intensity is 0.500, while the correlation
between carbon-emission-influencing factors and technology level is 0.456.

In Foshan, foreign investment is the primary contributor to carbon emissions, with
a value of 0.857, while energy intensity has the lowest impact, with a value of 0.471.
The growth in carbon emissions in Jiangmen may be attributed to the high degree of
urbanization and the significant amount of the tertiary sector, with coefficients of 0.882 and
0.880, respectively. The association between Jiangmen and carbon emissions is weakest in
the case of foreign investment, with a coefficient of 0.456.

The rising population of Shenzhen, Zhuhai, Huizhou, and Zhongshan has a substan-
tial impact on carbon emissions due to the process of urbanization. These cities have
lower levels of impact from characteristics such as energy intensity and transportation
network density.

4.4.2. Gray Correlation Time Series Analysis Results

The gray relational analysis indicates that the influence of economic growth, popu-
lation size, and transportation network density on cities has changed over time (Table 4).
In 2009, Guangzhou was mostly influenced by economic growth, whilst Zhongshan was
primarily impacted by population size. Foshan was most significantly affected by foreign
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investment, but both road network density and foreign investment had the greatest effect
on Huizhou.

Table 4. The Pearl River Delta’s carbon emissions driving elements have a grey correlation degree,
2009-2019.

Area
Influence Guangzhou Shenzhen Zhuhai Foshan Huizhou Dongguan Zhongshan Jiangmen Zhaoqing
Year Factor
X1 1.000 0.867 0.932 0.712 0.821 0.956 0.982 0.963 0.932
Xz 0.624 0.520 0.914 0.836 0.871 0.861 0.997 0.677 0.622
X3 0.397 0.435 0.556 0.779 0.823 0.983 0.582 0.751 0.682
Xy 0.346 0.368 0.583 0.753 0.642 0.863 0.576 0.550 0.631
2009 X5 0.463 0.417 0.592 0.853 0.814 0.971 0.696 0.658 0.531
Xe 0.340 0.336 0.704 0.654 0.600 0.741 0.341 0.587 0.486
Xz 0.403 0.373 0.697 0.749 0.765 0.735 0.694 0.589 0.651
Xg 0.627 0.719 0.802 0.981 0.889 0.869 0.940 0.864 0.755
Xo 0.436 0.658 0.920 0.548 0.682 0.880 0.806 0.816 0.901
X1 0.882 0.822 0.922 0.736 0.757 0.798 0.924 0.984 0.988
Xz 0.673 0.595 0.891 0.756 0.996 0.859 0.977 0.699 0.712
X3 0.390 0.465 0.551 0.732 0.922 0.952 0.610 0.652 0.763
Xy 0.334 0.389 0.577 0.700 0.685 0.793 0.605 0.564 0.566
2014 X5 0.457 0.460 0.585 0.930 0.943 0.993 0.700 0.609 0.632
Xe 0.338 0.409 0.629 0.726 0.579 0.845 0.622 0.525 0.470
Xy 0.386 0.363 0.727 0.755 0.917 0.623 0.566 0.615 0.650
Xg 0.600 0.854 0.755 0.878 0.970 0.706 0.770 0.959 0.807
Xo 0.500 0.564 0.927 0.737 0.701 0.822 0.733 1.000 0.829
X1 0.458 0.925 0.985 0.645 0.898 0.631 0.987 0.990 0.993
Xo 0.570 0.567 0.934 0.657 0.901 0.774 0.921 0.759 0.729
X3 0.744 0.411 0.563 0.672 0.773 0.724 0.581 0.675 0.734
Xy 0.550 0.362 0.567 0.713 0.624 0.701 0.582 0.572 0.640
2019 X5 0.958 0.391 0.630 0.627 0.704 0.628 0.642 0.665 0.585
Xe 0.577 0.360 0.626 0.450 0.462 0.623 0.581 0.559 0.486
Xy 0.736 0.337 0.735 0.666 0.795 0.822 0.536 0.643 0.649
Xg 0.439 0.540 0.584 0.420 0.871 0.509 0.876 0.984 0.861
Xo 0.667 0.745 1.000 0.631 0.789 0.910 0.747 0.928 0.876

In 2014, Zhaoqing was mostly influenced by economic development, while Zhongshan
was primarily impacted by population size. The effect on Dongguan was primarily influ-
enced by the amount of urbanization, the structure of the secondary sector, the structure
of the tertiary industry, and the intensity of energy use. Huizhou was most significantly
influenced by road network density and foreign investment, whereas Jiangmen was most
significantly influenced by the degree of research and technology.

In 2019, the economic factor had the most significant influence on Zhaoqing, while
population size, energy intensity, and science and technology level had the most effect on
Zhuhai. Shenzhen had the greatest fluctuation in its impact factor, with foreign investment
playing the most prominent role. The most significant transformation in Zhuhai between
2009 and 2014 occurred in terms of energy intensity, but the most substantial shift between
2014 and 2019 was seen in foreign investment.

During the research period, Huizhou exhibited the highest population size, urbaniza-
tion level, secondary industry structure, tertiary industry structure, road network density,
and foreign investment. In Dongguan, the population size and foreign investment effect
indices are consistently decreasing, while the impact indices of tertiary industrial size and
energy intensity show an initial increase followed by a decrease. The foreign investment
effect index in Jiangmen is on the rise, whereas the impact index of the scientific and
technology level first climbs and then declines. Zhaoqing has very minor fluctuations in
each of the impact variables but displays more pronounced variations in economic level,
population size, and foreign investment.
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5. Discussion
5.1. Discussion of the Research

This research presents three primary advancements. Firstly, it quantifies the amount
of carbon dioxide released into the atmosphere as a result of urbanization. This is done
by considering four specific sectors: energy consumption, industrial production processes,
solid waste, and wastewater emissions. This broadens the range of carbon emissions
that occur during urbanization, instead of just considering carbon emissions connected
to energy. Furthermore, it examines the changing patterns of carbon emissions at the
county level, providing a more in-depth comprehension of the characteristics of emission
evolution at a very small scale. Finally, it scrutinizes the variables that have an impact on
carbon emissions, assessing the specific roles played by each element. This analysis may
serve as a realistic foundation for the government to develop policies aimed at reducing
carbon emissions.

An attempt is put forward to confirm the dependability of the findings through
contrasts of what is learned from this investigation with previous research results. Zhao
et al. discovered that carbon emissions from land use within the study area follow a
distribution pattern characterized by high values in the central region and lower values in
the surrounding areas [51]. The geographic distribution pattern for urban carbon emissions
has a resemblance with the observed pattern of “high in the east and low in the west” in
this research.

Regarding the elements that influence carbon emissions, several researchers have
extensively examined these aspects using the MEIC model. Their study reveals that
economic urbanization has the greatest influence on carbon emissions [52]. Researchers
have used the LMDI model to break down carbon emissions by industry and city in the
Pearl River Delta area. Their analysis has shown that the rise in carbon emissions is mostly
driven by economic expansion and population impact [53]. Researchers have analyzed
carbon emissions in the context of urban agglomeration geography and discovered a
notable polarization occurrence in the Pearl River Delta. This indicates an imbalance in
regional development [23]. The results described above align closely with the outcomes
of this investigation. Hence, it is essential to implement customized management and
governance measures for carbon emissions, in addition to developing appropriate plans.

5.2. Carbon Emissions Optimization Policy

(1) Tailor-Made, Differentiated Carbon Emission Control Strategies.

In response to the spatial clustering and spatiotemporal differences of carbon emis-
sions, regions with high carbon emissions should promote inter-city cooperation to foster
the development of high-tech and innovative industries, forming collaborative emission
reduction mechanisms across regions. For high-emission areas such as Guangzhou, Shen-
zhen, Foshan, and Dongguan, which are economically developed cities, emphasis should
be placed on developing green industries, promoting clean and low-carbon energy, and
optimizing industrial and energy structures [54-56]. Particularly in reducing carbon emis-
sion intensity, these cities should intensify efforts in research and application of new energy
vehicles, renewable energy, and high-efficiency technologies. Meanwhile, economically
weaker cities such as Zhaoqing, still in the industrialization phase, are expected to see an in-
crease in carbon emissions [57,58]. Therefore, these cities need to prioritize reducing carbon
emission intensity and promoting clean energy use as the core of clean production, driving
the transformation of traditional industries towards green and low-carbon industries.

(2) Advancement of environmentally friendly technology, enhancement of energy
infrastructure efficiency, and provision of policy direction.

To address the ongoing rise in carbon emissions in the Pearl River Delta region,
policymakers ought to decrease the utilization of high-carbon energy sources like coal
and coke. They should also limit the growth of energy-intensive industries and develop
more logical regulations at the local government level to ensure the improvement of energy
composition. It is important to actively promote the use of natural gas and renewable
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energy and to stimulate the replacement of fossil fuels with low-carbon energy sources in
order to decrease carbon emissions [59,60]. In addition, it is crucial to develop and enforce
stringent carbon emission regulations and evaluation systems to encourage the adoption
of environmentally friendly technology and renewable energy sources, enhance energy
efficiency, and facilitate the widespread use and commercialization of eco-friendly and
low-carbon technologies.

(3) People-Oriented Approach, Advancing Green Technology Innovation, and Low-
Carbon Community Construction.

The Pearl River Delta, being a highly developed region economically, ought to con-
centrate on managing population size, enhancing population structure and quality, in-
vestigating the development of low-carbon homes and communities, and encouraging
the adoption and popularization of low-carbon lifestyles [61,62]. The government must
increase its support for green technology and alternative energy innovation, as well as set
up suitable incentive systems and policy support in order to promote the development
of new low-carbon industry types, optimize the industrial structure, and encourage the
growth of green industries and technological innovation [63]. Through initiatives like
the creation of green innovation funds, tax breaks, and fiscal subsidies, companies and
academic institutions should be encouraged to carry out scientific investigations as well
as the application of green technologies. They should also be encouraged to support the
creation and growth of low-carbon cities, establish a supportive environment and policy
framework, and advance the Pearl River Delta region’s transition to a low-carbon economy.

5.3. Research Limitations and Perspectives

There are several further restrictions on this research. Firstly, regarding the method for
calculating carbon emissions, although IPCC has become one of the most commonly used
methods for carbon emission calculation, issues still exist due to its inherent limitations,
leading to inaccuracies in carbon emission calculations. Secondly, climate and terrain
factors were not considered in the carbon emission calculations. Lastly, the study used
economic development and population size as driving factors, but the analysis may not
be sufficiently in-depth. Therefore, future research could address these limitations by
first considering factors such as climate and terrain in carbon emission calculations and
validating the accuracy of the estimated data by fitting it with widely used techniques
for estimating carbon emissions, such as data from evening lights. Second, using more
specific social and economic variables to investigate the influence of variables like public
attitudes, education level, and income distribution on environmental concerns in the study
of population growth and economic development.

6. Conclusions

This research used the gray relational model and spatial analysis to examine the
spatiotemporal distribution patterns of carbon dioxide throughout the urbanization process
using data from nine cities in the PRD between 2009 and 2019. The present investigation
also examined the impact of relevant influencing factors on carbon emissions. The following
are the outcomes:

Firstly, there was an increase in the region’s total carbon emissions from 2009 to 2019
in the Pearl River Delta. The biggest amount of carbon emissions came from energy-related
sources, then the industrial output; the lowest percentage came from wastewater-related
sources. Guangzhou showed a decrease in carbon emissions due to energy use, whereas
Foshan and Shenzhen saw the largest increases in carbon emissions.

Secondly, there is an “east-high, west-low” trend in the geographical distribution
of carbon emissions in the Pearl River Delta region. The majority of regions with com-
paratively large carbon emissions are found in places like Baiyun District, Zhongshan
City, Longgang District, and Bao’an District. The carbon emissions in these regions rose
even more in 2019, exhibiting a pronounced geographical clustering impact. The Pearl
River Delta region’s spatial autocorrelation of carbon emissions dropped from 0.329 to
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0.168 between 2009 and 2019, according to global Moran’s I analysis. This implies that the
reduction in cold spot regions is the primary cause of the progressive weakening of the
spatial linkages and clustering degree of carbon emissions.

Thirdly, gray relational analysis shows that while economic growth has a significant
influence on carbon emissions, its impact is declining while the impact of technological
level is increasing. When comparing the gray-related degrees of two cities, Zhaoqing
and Jiangmen, the disparities in each carbon-emission-influencing factor were not more
than 0.150. However, with variances of around 0.500 in each carbon-emission-influencing
component, Guangzhou and Foshan showed greater fluctuations.
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Abstract: Clarifying the pattern of the urban greenhouse gas (GHG) budget and its influencing
factors is the basis of promoting urban low-carbon development. This paper takes Beijing and
Shenzhen—the capital city and the most rapidly developing city in China, respectively—as case
studies, comprehensively accounts their GHG budgets from 2005 to 2020, and investigates and
compares the factors affecting their GHG budgets. The total GHG emissions in Beijing were lowest in
2005 (160.3 TgCO, equivalents) and peaked at 227.7 TgCO; equivalents in 2019, and then decreased
to 209.1 TgCO; equivalents in 2020. Meanwhile, the total GHG emissions in Shenzhen gradually
increased from 36.0 TgCO; equivalents in 2005 to 121.4 TgCO, equivalents in 2019, and then decreased
to 119.1 TgCO; equivalents in 2020. The energy activity sector was the greatest contributor to GHG
emissions in this period, accounting for 82.5% and 76.0% of the total GHG emissions in Beijing and
Shenzhen, respectively. The carbon sink of the ecosystems of these two cities could absorb only
small parts of their emissions, and the neutralization rates of sinks ranged from 1.7% to 2.3% in
Beijing and from 0.3% to 1.5% in Shenzhen. The enhancement of population, economic product, and
consumption increased the greenhouse gas emissions in both cities. A 1% increase in population
size, per capita GD (gross domestic product), and residential consumption level would increase total
GHG emissions by 0.181%, 0.019%, and 0.030% in Beijing, respectively. The corresponding increases
in Shenzhen would be 0.180%, 0.243%, and 0.172%, respectively. The household size had opposite
effects on the two cities, i.e., a 1% increase in household size would increase GHG emissions by
0.487% in Shenzhen but reduce them by 2.083% in Beijing. Each 1% increase in secondary industry
and energy intensity would reduce GHG emissions by 0.553% and 0.110% in Shenzhen, respectively,
which are more significant reductions than those in Beijing.

Keywords: Beijing; Shenzhen; greenhouse gas emissions; carbon sinks; influencing factors

1. Introduction
1.1. Motivations

The global average temperature increased by 0.8 °C~1.3 °C from 1900 to 2019 [1], and
human activities are the main cause of global warming. Significant increases in atmospheric
greenhouse gas (GHG) concentrations (especially CO,, CHy, and N,O) since the Industrial
Revolution have been considered to be the main cause of global warming. Adaptation to
global warming and mitigation of the warming rate are currently the main issues faced in
the development of the international community [2,3]. China has proposed to strive to cap
its CO, emissions by 2030 and to strive to achieve carbon neutrality by 2060. Concurrently,
cities have become hotspots for GHG emissions [4]. Urban areas accounted for 61.8% of
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global greenhouse gas emissions in 2015, and the proportion of urban emissions in overall
global GHG emissions will gradually increase in the future, possibly exceeding 80%; this is
related to rapid urban economic development and the increasing urban population. It has
been further suggested that improving the energy-use efficiency and shifting consumption
patterns will help reduce emissions, and slowing the rate of urban expansion and increasing
urban green infrastructure will help protect carbon sinks [5]. Moreover, during urban-
ization, the constructed land area will expand, while the area of natural ecosystems such
as forests will simultaneously shrink, resulting in a reduction in urban carbon sinks and
an expansion of carbon sources; this change will aggravate the imbalance of urban GHG
sinks and sources [6,7]. Therefore, cities are important carriers and key components for
reducing greenhouse gas emissions. Establishing a scientific and systematic urban green-
house gas budget accounting system, clarifying the patterns of urban GHG budgets, and
analyzing their influencing factors are the foundation for regulating the urban greenhouse
gas budget and promoting low-carbon development in cities.

1.2. Literature Review

Energy consumption has always been the sector with the highest greenhouse gas emis-
sions in urban areas. According to a report released by the International Energy Agency
(IEA), Paris, France, China is the world’s largest greenhouse gas emitter, accounting for
about one-quarter of global emissions, and approximately 85% of China’s CO, emissions
come from urban energy consumption [8]. Energy consumption was reported as accounting
for the highest proportion of CO, emissions from Chinese cities between 2001 and 2015,
ranging from 85.14% to 89.3% [9]. During this period, the GHG emissions from energy
consumption increased by 188%. Some studies on the GHG emissions of single cities also
indicated that energy consumption accounted for the highest proportion of emissions and
had increased continuously in recent decades [10]. In recent years, with the continuous
expansion of cities, the implicit GHG emissions caused by intercity power and heat inputs
and outputs has drawn broad concern in academic circles. In Bursa, Turkey, the GHG emis-
sions from electricity were found to have reached one-quarter of the total GHG emissions
of the city in 2016 [11]. In addition, it was reported that GHG emissions from the external
electricity industry had the highest dependency on external power transfers in Beijing and
accounted for approximately 19.5% of the city’s total emissions [12].

A series of studies focusing on GHG budgets outside the energy sector have also been
conducted in recent years. For example, Markolf et al. estimated the GHG emissions of
100 US cities, of which industrial production processes contributed to 18% of total emissions
and became the second-highest sector after energy consumption [13]. GHG emissions from
the waste sector are also increasing in many countries around the world. For instance, GHG
emissions from Mexico’s waste sector increased by 180% from 1998 to 2012 [14], while GHG
emissions from domestic waste in Tianjin increased by 65.9% from 2013 to 2018 [15]. At the
urban level, along with socioeconomic development, cities are more often consumption
centers rather than production entities. Therefore, the “hidden” GHG emissions from city
commodities and services are enormous. Hachaichi et al. conducted a comparative study
of the carbon footprints of 252 cities worldwide, which indicated that food consumption
and commodity consumption accounted for approximately 25% and 9% of the total carbon
footprint, respectively [16]. Guo studied the household carbon emissions in Beijing and
found that durable goods, food, and clothing consumption accounted for 15%, 8%, and 2%
of greenhouse gas emissions, respectively [17]. Previous studies have indicated that urban
carbon sinks could offset a certain proportion of carbon sources. However, the urbanization
process (especially the expansion of constructed area) would reduce both the area and
carbon sink of the ecosystem and exacerbate the imbalance of sink and source in the urban
area. For example, from 1995 to 2019, the urban area in the Monterrey metropolitan area
of Mexico expanded by 2.6 times, and the regional carbon sink decreased by 38.6% [18].
Studies in China have also paid increasing attention to the offsetting or neutralization effect
of urban carbon sinks. In 2020, the neutralization rates of green spaces in Beijing, Shenzhen,
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and Tianjin on total GHG emissions were 0.99%, 0.15%, and 0.84%, respectively. Wang et al.
found that the offset rate of CO, emissions from fossil fuel consumption through ecological
restoration reached 9.9% in Beijing [19].

Currently, the main method for analyzing factors affecting urban GHG emissions is fac-
tor decomposition. This method decomposes the GHG emissions into different influencing
factors and analyzes the main factors affecting GHG emissions in different types of cities by
comparing their contribution values. The models used to study the influencing factors of
GHG emissions are mainly the Kaya model, LMDI decomposition model (logarithmic mean
Divisia index method), IPAT model (Impact = Population x Affluence x Technology), and
STIRPAT model (stochastic impacts by regression on PAT) [20-22]. In 1990, the Japanese
scholar Kaya first proposed the Kaya formula, which points out the relationship between
CO; emissions and carbon emission coefficients, energy intensity, economic development,
and population size. Based on this, different scholars have conducted related exploration
and research. Ang et al. proposed the LMDI decomposition method, which decomposes
the GHG budget into different factors and analyzes the degree to which each factor con-
tributes to the GHG budget [23]. This method solves the problem of residual error and
zero value existence in the decomposition results. In 1971, Ehrlich first proposed the IPAT
model, which divides the influencing factors into population size, economic development,
and technological factors [24]. Due to certain limitations of the IPAT model, Dietz et al.
established the STIRPAT model based on the IPAT model in 1997. The STIRPAT model
still maintains the original product structure of the IPAT model and still regards popu-
lation, economy, and technology as determining factors, but it is more flexible and can
add, modify, or decompose relevant influencing factors according to the research purposes.
Subsequently, this model has been widely used in studies of influencing factor analysis [25].

To date, research on the influencing factors of urban GHG budgets has mainly de-
composed changes in GHG emissions into the population scale, urbanization, economic
development, energy intensity, and other influencing factors and then analyzed the degree
of contribution of each factor to emissions.

Regarding the impact of population factors on the GHG budget, existing studies have
focused mainly on the impacts of the urban population and its changes on GHG emissions.
For example, in Shanghai, carbon emissions increase by 2.62% for every 1% increase in
the permanent population [26]. A total of 23 cities in the Guangdong-Hong Kong-Macao
Greater Bay Area and its surrounding areas were taken as the research area for analysis.
The results showed that with a sharp increase in the urban population, the total emissions
of the 23 cities increased by 43.19% from 2000 to 2016 [27]. Urban expansion leads to
the transformation of natural ecosystems into urban ecosystems, and the transformation
of ecosystems leads to changes in vegetation and soil carbon pools, affecting the urban
GHG budget [28]. Taking Leipzig, Germany, as the research area, the carbon storages
corresponding to different urbanization levels were calculated. The study found that the
carbon storage of the central area with higher urbanization was lower, while the carbon
storages of the areas with lower urbanization were the highest]. Based on an analysis of
urbanization and changes in the soil and plant carbon cycles in North America, the soil
organic carbon pool in Denver was found to have decreased by approximately 60% in
50 years [29].

Past studies show a close relationship between economic development and the green-
house gas budget. Based on a dataset of 274 typical cities in the world, the multiple
regression method was used to analyze the influencing factors of the urban GHG bud-
get [30]. The results show that economic activities are most closely related to greenhouse
gas emissions. A study on the economic development and GHG emissions of seven typical
cities in the world, such as New York and London, showed that countries with high GDP
per capita have higher greenhouse gas emissions [31]. In a Chinese study, the LMDI
decomposition method was used to analyze the factors influencing greenhouse gas emis-
sions from energy consumption in 11 typical Chinese cities, and the findings showed that
economic development was the main contributing factor to the increase in CO; emissions
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from urban energy consumption [32]. China’s coal-based energy consumption structure
is the main factor leading to its substantial growth of greenhouse gas emissions [33].
By analyzing the relationship between GHG emissions and the industrial structure in
30 major cities in China [34], the results showed that the industrial structure is positively
correlated with GHG emissions, and with the upgrading and adjustment of the urban
industrial structure, the impact of the industrial structure on GHG emissions is decreasing
annually. Therefore, adjustment of the industrial structure and energy structure is critical
for reducing GHG emissions.

These studies have made great progress in clarifying the pattern of the urban GHG
budget and analyzing its influencing factors, thereby providing a basis for promoting urban
low-carbon development and regulating the urban greenhouse gas budget. However,
existing research on the influencing factors of GHG budgets has been based mostly on
individual cities, while there is a lack of comparative research examining different cities to
reveal the common laws and differences in GHG budgets among different cities.

This paper selects Beijing and Shenzhen—two low-carbon pilot cities in China—to
comprehensively account for their urban greenhouse gas budgets by using the coefficient
method, and then analyzes the influencing factors of these typical cities” greenhouse
gas budgets from 2005 to 2020 based on the improved STIRPAT (stochastic impacts by
regression on population, affluence, and technology) model and the ridge regression
method to explore the dynamic patterns, influencing factors, and causes of differences in
the two cities’ GHG budgets.

2. Methods
2.1. Study Area

Beijing is the capital of China, the political and cultural center of the country, and
a world-famous city with a history of over 3000 years. Located in the northern part of
the North China Plain, Beijing has a warm, temperate, semi-humid (Table 1), semi-arid
monsoon climate [35,36]. Unlike southern cities, Beijing provides all-day heating during
winter. Beijing is strategically important in China and, as the capital and the world’s first
“dual-Olympic” city, it has a good foundation and conditions for green and low-carbon
transformation. It is capable of and responsible for playing a leading role in the national
dual-carbon action. Shenzhen, located in southern China, has a transitional oceanic climate
from subtropical to tropical and abundant wetland resources. Shenzhen is the window and
flag of China’s reform and opening up, serving as a bridge connecting the inland region and
Hong Kong, and was the first city in China to achieve comprehensive urbanization. Unlike
Beijing’s historical background, Shenzhen is a modern metropolis with more prominent
modern entertainment facilities, such as the Window of the World. Moreover, as one of
the first pilot cities promoting low-carbon development in China and an experimental
demonstration zone for socialism with Chinese characteristics, Shenzhen leads the trend of
institutional innovation and reform in China. Therefore, we chose Beijing and Shenzhen as
research areas.

Table 1. Social and economic indicators in Beijing and Shenzhen.

Beijing Shenzhen

Administrative level

Municipality directly under the central government  Sub-provincial city

Geographical location Northern China Southern China
Land area 16,410.54 km? 1997.47 km?
Resident population in 2005 15.38 million 8.28 million
Resident population in 2020 21.89 million 17.63 million
Urban GDP in 2005 CNY 715.0 billion CNY 503.6 billion
Urban GDP in 2020 CNY 3610.26 billion CNY 2767.02 billion
GDP ratio of three industries in 2005 1.22:26.68:72.10 0.19:53.81:46.00
GDP ratio of three industries in 2020 0.30:15.83:83.87 0.09:37.78:62.13
Growth rate of the per-capita consumption expenditure from 2005 to 2020~ 192.74% 155.04%

Growth rate of the secondary industry output value from 2005 to 2020 ~ 199.70% 285.80%

Growth rate of the tertiary industry output value from 2005 to 2020 487.31% 642.14%

41



Atmosphere 2023, 14, 1158

2.2. Data Sources

The sources of GHG budget accounting data and emission factors applied in this paper
are shown in Table 2. Since the statistical concepts of China’s cities are often divided accord-
ing to administrative units rather than built-up areas, as well as due to data availability, it
is difficult to separately account for activities such as energy consumption and residential
consumption, so the emissions involved in agricultural activities within the administrative
units of specific cities (Beijing and Shenzhen, in this study) are also included. Because the
main industrial products in Shenzhen do not include cement or steel, this study calculated

the GHG emissions only from industrial processes in Beijing.

Table 2. Sources of GHG activity data and emission factors.

Sources of Activity Data

Sources of Emission Factors

Energy activities

Industrial processes

Waste disposal

Household consumption
Agricultural activities

Carbon sinks

Analysis of influencing factors

China Energy Statistical Yearbook [34];
Guangdong Statistical Yearbook [35];
Shenzhen Statistical Yearbook [36].

Beijing Statistical Yearbook [39].

China Statistical Yearbook on

Environment [41]; Information Announcement
on Prevention and Control of Environmental
Pollution by Solid Wastes Shenzhen [42].
Beijing Statistical Yearbook; Shenzhen
Statistical Yearbook.

Beijing Statistical Yearbook; Shenzhen
Statistical Yearbook.

Land change survey in Beijing [44];
land change survey in Shenzhen [45].

Beijing Statistical Yearbook; Shenzhen

Shan, et al., 2018 [37]; Provincial Greenhouse Gas
Inventory Preparation Guidelines (Trial) [38].

Provincial Greenhouse Gas Inventory Preparation
Guidelines (Trial); Liu, et al., 2016 [40].

Provincial Greenhouse Gas Inventory
Preparation Guidelines (Trial).

Liu, et al., 2018 [43].

Provincial Greenhouse Gas Inventory
Preparation Guidelines (Trial).
Accounting Standards of Gross Ecosystem
Product (Trial) [46]; Yu, et al., 2022 [47];
Zhang, et al., 2022 [48].

Statistical Yearbook.

The energy activity data of Shenzhen are incomplete, so they were calculated accord-
ing to the provincial activity data. By consulting the Shenzhen Statistical Yearbook, we
found that the statistical energy consumption data include the energy consumption of raw
coal, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas, natural gas, and
electricity in the industrial sector, and that the total energy consumption of each of these
parts is less than the terminal consumption of Shenzhen. Therefore, the missing energy
consumption data of Shenzhen can be calculated by combining the obtained energy con-
sumption data with the consumption data of Guangdong Province. The specific accounting
formula is shown in Equation (1) as follows:

Ej = Ejj x (E{, —E,)/(Eia — Ep) 1)
where E{j is the energy consumption of category j in sector i of Shenzhen (Tgce), Ejj is
the energy consumption of category j in sector i of Guangdong Province (Tgce), Ei, is the
terminal consumption of department i of Shenzhen (Tgce), E, is the sum of all kinds of
energy consumption available for sector i in the Shenzhen Statistical Yearbook (Tgce), Ei, is
the terminal consumption of sector i in Guangdong Province (Tgce), and Ej, is the sum of
the energy consumption of sector i in Guangdong Province corresponding to the energy
contained in Ej, (Tgce).
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2.3. Accounting for Urban GHG Emissions

GHG emission sectors include urban energy activities, industrial processes, waste
disposal, household consumption, and agricultural activities, and the main GHGs included
are CO,, CHy, and N,O.

2.3.1. GHG Emissions from Energy Activities

GHG emissions from energy activities include the direct emissions of GHGs from
fossil fuel consumption and the indirect emissions of GHGs from the external transfer
of power and heat. GHG emissions from fossil fuel consumption are accounted for with
reference to the method provided by the IPCC [49], and the coefficient method is adopted
to determine the GHG emissions from energy external transfer; this term is estimated
according to Formula (2) as follows:

E= ZZ(EU x NCV; x EF; x Oij X 44/12) @)
1]

where the subscripts i and j in the equation refer to the fossil fuel types and sectors, respec-
tively, E represents the CO, emissions (GgCO), E;; represents fossil fuel consumption (Gg),
NCV; represents the net caloric value of fossil fuels (GJ/Gg), EF; represents the carbon
content (GgC/G]J), O is the carbon oxidation factor (%), and 44/12 is the molecular weight
ratio of CO; to C. These terms are listed in Table 3. The GHG emission coefficients of power
and heat consumption are 0.604 (kgCO,/kW-h) and 0.11 (GgCO, /TJ), respectively [38].
The GHG emission parameters of external power transfer in Beijing and Shenzhen are
1.246 (kgCO,/kW-h) and 0.714 (kgCO,/kW-h), respectively, and the GHG emission pa-
rameter of heating is 0.11 (GgCO, /T]) [50].

Table 3. Accounting parameters of fossil fuel consumption.

Energy Type NCV; EF; O;
Raw coal 0.21 26.32 85
Cleaned coal 0.26 26.32 85
Other washed coal 0.15 26.32 85
Briquettes 0.18 26.32 90
Coke 0.28 31.38 93
Other gas 0.83 21.49 99
Other coking products 0.28 27.45 93
Crude oil 0.43 20.08 98
Gasoline 0.44 18.90 98
Kerosene 0.44 19.60 98
Diesel oil 0.43 20.20 98
Fuel oil 043 21.10 98
Liquefied petroleum gas 0.47 20.00 98
Refinery gas 0.43 20.20 98
Other petroleum products 0.51 17.20 98
Natural gas 3.89 15.32 99

2.3.2. GHG Emissions from Industrial Processes

GHG emissions from industrial processes refer to CO, emissions caused by physical
and chemical reactions in production processes, rather than GHG emissions caused by
industrial combustion. These emissions include the high-temperature decomposition
process of ironmaking solvents and the decarbonization process in the production of steel, as
well as the high-temperature calcination process of limestone in cement production [40,51].
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The accounting formula of GHG emissions in the industrial production process (E, in
GgCOy) is shown in Formula (3) as follows:

E=) ADxEF, 3)
7

where i refers to the ith industrial production process, AD refers to the product output (Gg),
EF refers to the carbon emission factor (GgCO,/Gg), and the emission factors of cement
and steel are 0.538 and 0.265 (GgCO,/Gg), respectively [40].

2.3.3. GHG Emissions from Waste Disposal

GHG emissions from waste disposal are calculated according to the methods recom-
mended in the Provincial Greenhouse Gas Inventory Preparation Guidelines [38], including
CHy4 and CO; emissions from solid waste landfill and incineration, as well as CH4 and N,O
emissions from wastewater treatment.

GHG Emissions from Solid Waste Treatment
1. CHjy emissions from landfill treatment
CH, emissions from landfill treatment (Ecp,, in GgCHj,) were estimated using

Formula (4):
Ech, = (MSW x Lp) x (1 —OX) 4)

where MSW refers to the landfill treatment capacity (Gg/yr), Lo represents the CHy genera-
tion potential (GgCHy/Gg waste), and OX refers to the oxidation factor (%). The accounting
parameters are listed in Table 4.

Table 4. Accounting parameters of waste disposal.

Accounting Parameter Unit Value [38]
CH, generation potential (Lg) GgCH,4/Gg waste 0.03
Landfill oxidation factor (OX) % 10
Total carbon content (CCW) % 20
Fraction of fossil carbon in the total carbon (FCF) % 39
Combustion efficiency of waste incinerator (EF) % 95
Emission factor of domestic wastewater (EF) kgCH,/kgBOD 0.099
Values of BOD/COD in Beijing — 0.45
Values of BOD/COD in Shenzhen — 0.47
Emission factor of industrial wastewater (EF) kgCH, /kgCOD 0.025
Protein consumption per capita (Pr) kg/person/year 35.22
N,O emission factor for wastewater treatment (EF) kgN,O/kgN 0.0015

2. CO, emissions from incineration

CO;, emissions from incineration (Eco,, in Gg) were estimated using Formula (5):

Eco, = Z IW x CCW x ECF x EF x 44/12 ®)

where IW refers to the waste incineration capacity (GgCO,/yr), CCW is the total carbon
content (%), FCF refers to the fraction of fossil carbon in the total carbon (%), EF is the
combustion efficiency (%), and 44/12 is the conversion factor from C to CO,; the accounting
parameters are shown in Table 4.
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GHG Emissions from Wastewater Treatment

1.  Wastewater treatment CH,4 emissions

CH, emissions from wastewater treatment (Ecy,, in GgCHj) were estimated using
Formula (6):

Ecr, = )_TOW; x EF; ©)

1

where i refers to domestic wastewater and industrial wastewater, Ecy, refers to the
total CHy emissions (GgCHy/yr), TOW; refers to organics in wastewater (kgBOD/yr;
kgCOD/yr), and EF; refers to the emission factor (kgCH4/kgBOD; kgCH,4/kgCOD). The
accounting parameters are shown in Table 4.

2. Wastewater Treatment N,O Emissions

N,O emissions from wastewater treatment (Ey,0, in kgN,O) were estimated using
Formula (7):
En,0 = P x Pr x EFg x 44/28 (7)

where P is the population, P; is the annual per capita protein consumption (kg/person/year),
EFg is the NoO emission factor (kgN,O/kgN), and 44/28 is the transformation coefficient;
the accounting parameters are shown in Table 4.

According to the global warming potential (GWP), CHy and N,O were converted to
CO; equivalents, and the GWP parameters of CH4 and N,O were 29 and 298, respectively.

2.3.4. GHG Emissions from Household Consumption

GHG emissions from household consumption can be divided into three categories:
GHG emissions from clothing, from food, and from household articles [52,53]. To avoid
repeat calculations, housing and transportation can be included in energy activities, waste
disposal, and other sectors. GHG emissions from household consumption (E, in GgCO,)
were estimated using Formula (8):

E=) ADxEF, ®)
7

where i represents clothing, food, and household articles and AD refers to the per capita
expenditure on food, clothing, and household articles (CNY /year); these values are 0.120,
0.077, and 0.244 (kgCO, /CNY), respectively [43].

2.3.5. GHG Emissions from Agricultural Activities

GHG emissions from agricultural activities are accounted for according to the method-
ology recommended by the provincial Greenhouse Gas Inventory Preparation Guide-
lines [38]; these emissions mainly include direct and indirect GHG emissions from cropland
and CH4 emissions from rice paddies, animal enteric fermentation, and animal manure
management. According to the accounting results, CH4 and N,O emissions were converted
into CO, equivalents.

GHG Emissions from Cropland
1.  Direct emissions

The direct emissions come from the nitrogen fertilizer input, and the estimation
formula for the direct emission sector (is En,0, in GgN>O) is shown in Formula (9):

ENZO = NN fertilizer X EFdirect )

where Ny fertilizer Tefers to the amount of nitrogen fertilizer applied (Gg) and EF is the
emission factor of nitrogen input from cropland; the emission factors are 0.0057 and
0.0178 (kgN,O/kgN) for Beijing and Shenzhen, respectively [38].
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2. Indirect emissions

Indirect N>O emissions come from atmospheric nitrogen deposition (N2Ogeposition, i
GgN>0) and leaching runoff (N2O jeaching, in GgN20) [54], and the formulae are as follows:

NZOdeposition = (Nanimal x 20% + Ninput X 100/0) % 0.01 (10)
Nzoleaching = Ninput x 20% x 0.0075 (11)
Nanimal = 2 number of animals; x animal nitrogen excretion; (12)

i
where Nanimal Tepresents animal manure emissions (Gg) and Ninpyt represents cropland
nitrogen inputs (Gg). According to the statistical yearbook data, Beijing’s statistics in-
clude cattle, sheep, goats, pigs, and poultry, while the statistical data of Shenzhen include

dairy cattle, other cattle, pigs, and poultry; all corresponding emission factors are shown
in Table 5.

Table 5. Nitrogen excretion of animals.

Beijing animal Poultry Pig Cattle Sheep Goat Other
Nitrogen excretion (kg/head/year) [50] 0.6 16 50 12 2 40
Shenzhen animal Poultry Pig Dairy cattle Other cattle

Nitrogen excretion (kg/head/year) [50] 0.6 16 60 40

Methane (CH,) Emissions from Rice Paddies

CHy emissions from rice paddies (Ecy,, in GgCHy) were estimated using Formula (13):
Ecy, = AD x EF (13)

where AD is the sowing area (ha) and EF is the CHy emission factor (kgCHy ha~1); the EF
values in Beijing and Shenzhen are 234 and 236.7 (kgCHj ha™1), respectively [38].

GHG Emissions from Animal Enteric Fermentation

CHy is produced as a byproduct in the process of animals’ enteric digestion of feed,
and CHy is excreted in the form of gas through the mouth, nose, and rectum of livestock.
Ruminant livestock are the main emission sources of CHy produced by enteric fermentation,
while non-ruminant livestock can be ignored because of their small CHy production.
However, considering the large number of pigs in Beijing, the emission sources of CHy
from enteric fermentation mainly include cattle, goats, sheep, and pigs [55]. CHy emissions
from animal enteric fermentation (Ecp,, in kgCHj) were estimated using Formula (14):

Ech, = Z EFcp, x AP; x 1077 (14)
i

where i is the species of livestock, AP; is the number of heads of livestock species (head),
and EF; is the CHy emission factor of the livestock population (kgCHy head ~! year—); the
values of each coefficient are shown in Table 6.
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Table 6. CH,4 emission factors of animal enteric fermentation.

Beijing animal Cattle Sheep Goat Pig
Emission factors (kgCH, head ! year—') [38] 70.5 8.2 8.9 1
Shenzhen animal Dairy cattle Other cattle Pig

Emission factors (kgCH, head ~! year—1) [38] 88.1 52.9 1

GHG Emissions from Animal Manure Management

Greenhouse gas emissions from animal manure management refer to the CHy and
N;O produced by the storage and treatment of animal manure prior to its application to the
soil. GHG emissions from animal manure management (Ecy,, in kgCHy; En,0, in kgN>O)
were estimated using Formula (15):

ECI—L;(N;O) = ZAPi x EF; (15)
i

where i refers to the livestock species, AP; refers to the number of heads of livestock species
(head), and EF; is the CHy4 (N,O) emission factor for the livestock population (kgCHy
head ~'year~!; kgN,O head ~!year~!). The values of each coefficient are shown in Table 7.

Table 7. Emission factors of CHy and N»O from animal manure management.

Beijing animal

Cattle Sheep Goat Pig Poultry
CHy N,O CHy N,O CHy N,O CHy N,O CHy N,O

Emission factors
(kg head ~year—) [38]

5.14 1.32 0.15 0.093 0.17 0.093 3.12 0.227 0.01 0.007

Shenzhen animal

Emission factors

(kg head ~year—1) [38]

Dairy cattle Other cattle Pig Poultry
CHy N,O CHy N,O CHy N,O CHy N,O

8.45 1.71 4.72 0.805 5.85 0.157 0.02 0.007

2.4. Accounting for Carbon Sinks

The carbon sink mainly calculates the carbon sink of forest land, garden plots, culti-
vated land, grassland, and wetlands. According to the accounting standard of the Gross
Ecosystem Product (Trial) and previous studies [46-48], the carbon sink rate method was
adopted. Since grassland vegetation withers every year, and because fixed carbon is
returned to the atmosphere or soil, only the soil carbon sink amount of grasslands is con-
sidered here. On the basis of the available data, the carbon emissions from cultivated
land were calculated in the agricultural part. Therefore, to avoid repeated calculations,
the carbon sink amount of cultivated lands was obtained mainly by calculating the soil
carbon sink amount of agricultural fields applied with chemical fertilizer, and the formula
is as follows:

2.4.1. Carbon Sink of Forestlands
The carbon sink of forestlands (Q, in kgCO, yr~!) was estimated using Formula (16):

Q = (FVCSR 4 FSCSR) x S x 44/12 (16)

where FVSCR is the carbon sink rate of forest vegetation (kgC ha~! year~!), FSCSR is the
rate of soil carbon sink in forestlands (kgC ha™! yearfl), and S is the area of forestlands (ha).
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2.4.2. Carbon Sink of Garden Plots
The carbon sink of garden plots (Q, in kgCO, yrfl) was estimated using Formula (17):

Q= GCSR x S x 44/12 17)

where GSCR is the carbon sink rate of garden plots ((kgC ha~! year!) and S is the area of
garden plots (ha).

2.4.3. Carbon Sink of Cultivated Lands
The carbon sink of cultivated lands (Q, in kgCO, yrfl) was estimated using Formula (18):

Q =SCSR x S x44/12 (18)

Beijing : SCSR = 0.5286 x TNF + 0.002 (19)
Shenzhen : SCSR = 1.5339 x TNF — 0.267 (20)
TNF = NFE/S (21)

where SCSR is the carbon sink rate of cultivated lands (kgC ha~! yr~1), S is the area of
cultivated lands (ha), TNF is the amount of chemical nitrogen fertilizer per unit area of
cultivated lands (kg ha~! year~'), and NF is the amount of chemical nitrogen fertilizer
applied (kg yearfl).

2.4.4. Carbon Sink of Grasslands
The carbon sink of grasslands (Q, in kgCO, year™!) was estimated using Formula (22):

Q = GSCSR x S x 44/12 22)

where GSCSR is the carbon sink rate of grasslands (kgC ha~! year ') and S is the area of
grasslands (ha).

2.4.5. Carbon Sink of Wetlands
The carbon sink of wetlands (Q, in kgCO, yrfl) was estimated using Formula (23):

Q = SCSR x SW x 1072 x 44/12 (23)

where SCSR is the carbon sink rate of wetlands (kgC ha~! year~—!) and SW is the area of
wetlands (ha). Each parameter is shown in Table 8.

Table 8. Carbon sink rate (kgC ha~! year™1).

Forest Vegetation [46] Forest Soil [46] Garden Plot [47] Grassland [46] Wetland [48]
Beijing 586 1274 30 477
Shenzhen 554 118 1274 18 3305

2.5. Accounting of Net GHG Emissions from Urban Ecosystems

Net GHG emissions refer to the difference between the total GHG emissions and
total carbon sinks (Enet emission, in kgCOy), as estimated by Formula (24). According to
the accounting, the net GHG emissions of Beijing and Shenzhen during 2005-2020 can be
determined as follows:

ENet emission — Etotal emission — Ecarbon sink (24)
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where Eiota] emission 15 the GHG emissions from the energy sector, industrial processes,
agricultural activities, waste disposal, and household consumption, while Ec,pon sink is the
carbon sink from forestlands, garden plots, cultivated lands, grasslands, and wetlands.

2.6. Analysis Method of Influencing Factors of the GHG Budget

The STIRPAT model was developed from the IPAT model to examine the impacts on
the environment [25,56], where I represents the influence of the environment, P represents
the population size, A represents the affluence, and T represents the technological level.
Dietz et al. built the STIRPAT model on the basis of the IPAT model [25]; the STIRPAT
model can be expressed as follows:

I=P°xA°xTdxaxe (25)

where b, ¢, and d represent the index of each variable, a is the constant term, and e is the
residual error term.

Since the model can add or decompose relevant influencing factors, in this paper,
in combination with the urban development situation of China, the population factor
is divided into three variables: the total population, household size, and urbanization
rate. The GDP per capita and resident consumption level are used to reflect economic
development, and the technical level is divided into two variables (the proportion of
secondary industry and the energy intensity), with the formula of influencing factors of the
GHG budget (I) expressed as follows:

[=P x PR x PP x A* x AP x T\* x T xaxe (26)

The description of each independent variable is shown in Table 9. After logarithmic
processing, the expression is as follows:

Inl=X;InP; +XpInPy + X3InP3 + X4 In A1 + Xs5In Ay + Xg InT7 + X7 In Ty

27

+Ine+Inaa @7
Table 9. Variable description.

Variable Symbol  Define Unit

Greenhouse gas budget I Greenhouse gas budget TgCO, equivalents

Population Py Number of permanent residents 10,000 persons

Household size Py The ratio of registered population to registered households  Persons/household

Urbanization rate P3 The proportion of urban population to total population %

GDO per capita Aq Ratio of GDP to population CNY 10,000/ person

Resident consumption level Ay Monthly consumption expenditure per person CNY 100

Proportion of secondary industry Ty The proportion of secondary industry to GDP %

Energy intensity T> Ratio of energy consumption to GDP kgce/CNY 1000

In view of the urban development of Shenzhen, the two indicators of the population
and household size reflecting the population size were selected for practical applications,
while the impact of the urbanization rate on the GHG budget was not selected. With the
help of SPSS (Statistical Product and Service Solutions) software (IBM SPSS Statistics 26),
factors influencing the total GHG emissions, carbon sinks, GHG budget, sectoral GHG
budget, and categorical GHG budget in Beijing and Shenzhen were analyzed. Based on the
STIRPAT extended model, serious multicollinearity was found among the variables when
using the least-squares method for regression analysis. To solve this multicollinearity, the
ridge regression estimation method was used. Ridge regression adds a K value [57,58] to
the least-squares estimation and changes its estimated value to make the estimation result
stable. The K value of the ridge parameter was selected with the help of programming in
SPSS software, and the selection principle was to ensure that the regression coefficients
were essentially stable.
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3. Results
3.1. Comparison of the Patterns and Dynamics of the GHG Budgets of Beijing and Shenzhen
3.1.1. Pattern and Dynamics of Total GHG Emissions

Beijing’s GHG emissions were always higher than Shenzhen’s in 2005-2020 (Figure 1).
On the whole, the GHG emissions in Beijing showed a relatively stable range of change.
The GHG emissions increased from 160.3 TgCO, equivalents in 2005 to 209.1 TgCO,
equivalents in 2020, with a growth rate of 30.5%. The GHG emissions in Shenzhen showed
a gradual increasing trend, from 36.0 TgCO; equivalents in 2005 to 119.1 TgCO; equivalents
in 2020, with a growth rate of 231.1%. Figure 2 shows the per capita and per unit GDP
GHG emissions of Beijing and Shenzhen in 2005-2020. Beijing’s per capita GHG emissions
show an overall decreasing and fluctuating trend (decrease—increase—decrease), with the
lowest per capita GHG emissions of 9.3 tons of CO; equivalents per person in 2015, and
a slight increase from 2016 to 2019. The change in per capita GHG emissions in Beijing is
related to both the promotion of low-carbon-emission efforts and the changes in population
size, which began to decrease slightly in 2016. As shown in Figure 2, the per capita GHG
emissions in Beijing were higher than those in Shenzhen. However, the per capita GHG
emissions in Beijing decreased from 10.4 tons of CO; equivalents per person in 2005 to
9.6 tons of CO, equivalents per person in 2020, while the per capita GHG emissions in
Shenzhen increased from 4.3 tons of CO, equivalents per person in 2005 to 6.8 tons of CO,
equivalents per person in 2020. This indicates that Beijing has achieved certain results
in reducing GHG emissions, but its emissions are still higher than those of Shenzhen. It
is necessary to continue implementing emission reduction measures. Shenzhen needs to
further strengthen low-carbon publicity, raise public awareness of emissions reduction,
and reduce per capita GHG emissions. The GHG emissions per unit GDP in Beijing and
Shenzhen decreased significantly from 2005 to 2020, and the degree of decrease in Beijing
was greater than that in Shenzhen. The GHG emissions per unit GDP in Beijing decreased
by 74.2%, from 2.2 tCO, equivalents/10* CNY GDP in 2005 to 0.6 tCO, equivalents/10%
CNY GDP. Meanwhile, the greenhouse gas emissions per unit GDP in Shenzhen decreased
by 39.7%, from 0.7 t CO, equivalents/10* CNY GDP in 2005 to 0.4 t CO; equivalents/10*
CNY GDP in 2020. Although the GHG emissions per unit GDP in Beijing were higher
than those in Shenzhen, their reduction was greater, and the gap between the two cities
has clearly narrowed. This proves Beijing’s efforts in optimizing industrial production
structures, adjusting energy structures, vigorously introducing natural energy sources, and
improving energy efficiency.
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Figure 1. Total GHG emissions of Beijing and Shenzhen.
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Figure 2. GHG emission intensities of Beijing and Shenzhen.

3.1.2. Characteristics of Sectoral GHG Emissions

Energy activities were still the main source of GHG emissions in Beijing and Shenzhen
from 2005 to 2020 (Figures 3 and 4). Although the highest average proportion of GHG
emissions from energy activities in Beijing was 82.5%, its emission structure changed
significantly. The GHG emissions from energy consumption decreased by 4.0% (Figure 4a),
while the GHG emissions from external energy transfer increased gradually, increasing
by 93.8% in 2020 compared to 2005. Overall, the GHG emissions from energy activities
in Shenzhen showed an increasing trend, increasing by 214.4% in 2020 compared to 2005,
but the proportion of GHG emissions from energy activities in the total GHG emissions
decreased slightly, from 75.9% in 2005 to 72.0% in 2020 (Figure 4b). In 2007, Shenzhen
changed from energy transfer out to energy transfer in, and the amount of energy transfer
in gradually increased; thus, the GHG emissions from energy transfer out increased from
710.2 GgCO; equivalents in 2007 to 11,778.8 GgCO, equivalents in 2020.

The greenhouse gas emissions from industrial production processes in Beijing have
shown a significant downward trend, decreasing by 77.2% from 8.9 TgCO; equivalents
in 2005 to 2.0 TgCO, equivalents in 2020 (Figure 4c); among these emissions, the GHG
emissions from the cement and steel industries decreased by 75.8% and 80.9%, respectively.
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Figure 3. GHG emissions in Beijing and Shenzhen from 2005 to 2020.
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Figure 4. Sectoral GHG emissions in Beijing and Shenzhen from 2005 to 2020. Note: (a-i) refers to
each department.

Overall, Beijing’s waste disposal GHG emissions started to decrease gradually in
2008, increased slightly in 2013, and then gradually decreased again from 2016, with
an overall decrease of 25.3% in 2020 compared to 2005 (Figure 4d). Shenzhen’s waste
disposal GHG emissions showed a trend of first increasing and then decreasing, with
a 42.65% decrease in 2020 compared to 2018 (Figure 4e). The GHG emissions from waste
disposal in Beijing and Shenzhen changed from the highest proportion corresponding to
landfill disposal to the highest proportion corresponding to incineration disposal. The GHG
emissions from incineration treatment in Beijing and Shenzhen increased from 20.1 and
213.5 GgCO, equivalents in 2005 to 1378 and 1759.9 GgCO, equivalents in 2020, respectively,
and the GHG emissions from landfill treatment decreased from 3311.6 and 1825.5 GgCO,
equivalents in 2005 to 907.8 and 356.0 GgCO, equivalents by 2020, respectively.

From 2005 to 2014, the GHG emissions from household consumption in Beijing signifi-
cantly increased (Figure 4f), with an average annual growth rate of 13.9%. After 2016, the
changes tended to flatten out, with an average annual growth rate of —1.57% in 2020 com-
pared to 2016. The greenhouse gas emissions from household consumption in Shenzhen
steadily increased (Figure 4g), with a growth rate of 394.3% in 2020 compared to 2005 and
an average annual growth rate of 11.2%.
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The GHG emissions from agricultural activities in Beijing generally showed a de-
creasing trend, with a decrease of 76.5% in 2020 compared to 2005 (Figure 4h). GHG
emissions from agricultural activities in Shenzhen gradually decreased from 2005 to 2016
and increased significantly in 2017 (Figure 4i), mainly due to an increase in the area of
rice paddies sown in Shenzhen in 2017, resulting in an increase in GHG emissions from
agricultural activities.

3.1.3. Components of GHG Emissions

Both cities had the highest proportions of CO, emissions (Figures 5 and 6), at over 90%,
followed by CHy, and the lowest share of NoO emissions, the GWP of which accounted
for less than 1% of the GHG emissions; in addition, in both cities, the proportions of CO,
gradually increased, while the proportions of CHy and N, O showed decreasing trends year
by year. The Beijing CO, emissions showed a fluctuating upward trend from 2005 to 2020,
with an increase of 33.9% in 2020 compared to 2005, while the Shenzhen CO, emissions
increased steadily during 2005-2020, with a growth rate of 250.7%.
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Figure 6. Emissions of CO,, CHy, and N, O in Shenzhen from 2005 to 2020.
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The CHy emissions in Beijing exhibited large changes, first decreasing by 28.4% in 2015
compared to 2014, and then rapidly decreasing from 2016. The Beijing People’s Government
introduced waste-treatment-related policies in 2013, requiring Beijing to reduce the amount of
waste landfill disposal to less than 30% by the end of 2015 and, further, to build an industrial
system of clean and circular development in the 13th Five-Year Plan period, thereby keeping
the amount of disposed waste to a minimum and developing efficient and modern agriculture,
through which CHy emissions could be gradually reduced. CHy4 emissions in Shenzhen
showed a trend of first increasing and then decreasing. The increase was obvious in 2018,
and the emissions decreased rapidly after 2018. The decrease in 2020 was 85.92% compared
to 2018, possibly related to the waste disposal methods applied in Shenzhen, the increase
in waste landfills in Shenzhen in 2018, and Shenzhen fully promoting the “waste-free city”
construction pilot work in 2019 to achieve the full amount of domestic waste incineration and
tend towards zero landfill, causing CH,4 emissions to be reduced.

The N, O emission proportions of the two cities were the lowest, and their global warming
potential was less than 1%. The average annual N,O emissions in Beijing from 2005 to 2020
were 892.3 GgCO, equivalents, with a gradual decrease of 29.4%, and in Shenzhen from 2005
t0 2020 they were 330.42 GgCO, equivalents, with an increasing trend of 96.2%. N>O emissions
were generated in the agricultural activity sector and the wastewater treatment sector. In
recent years, Beijing has adopted measures such as fertilizer saving and pesticide saving to
build new agricultural industries. The number of animal stocks in 2020 decreased by 74.6%
compared to that in 2005, so the N,O emissions decreased significantly. The N,O emissions
from agricultural activities in Shenzhen decreased by 35.9%, but overall, the N,O emissions
increased by 96.2%; the main reason for this is that the N,O emissions from wastewater
treatment in 2020 had increased by 113.0% compared to 2005.

3.1.4. Carbon Sinks in Beijing and Shenzhen

The carbon sink of Beijing increased from 3674.9 GgCO; in 2005 to 4698.1 GgCO,
in 2020, among which the carbon sink of forestlands made the largest contribution to
the GHG emission reduction (Figure 7), accounting for more than 77% of the total GHG
absorption of the five land types, followed by the carbon sinks of garden plots, grasslands,
cultivated lands, and wetlands, which contributed less to reducing the GHG emissions. The
overall trend of the carbon sink of Shenzhen decreased and then increased, and it increased
significantly in 2020, with a total carbon sink of 397.0~544.2 GgCO, equivalents, among
which the carbon sinks of forestlands, wetlands, and garden plots in Shenzhen contributed
the most to reducing the GHG emissions. The contributions of grasslands and cultivated
lands to reducing the GHG emissions were small.
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Figure 7. Carbon sinks in Beijing and Shenzhen from 2005 to 2020.
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3.1.5. Net GHG Emissions in Beijing and Shenzhen

Net emissions are GHG emissions minus carbon sinks. The net emissions of GHGs in
Beijing from 2005 to 2020 were 156.6~222.9 TgCO, equivalents, and the neutralization rates
of carbon sinks to total GHG emissions ranged from 1.7% to 2.3% (Figure 8). Shenzhen’s
GHG emissions increased significantly from 2005 to 2020, but the growth rate showed
a slowing trend. The net GHG emissions increased from 35.4 TgCO, equivalents in 2005 to
118.5 TgCO, equivalents in 2020—an increase of 234.7%. The neutralizing effect of carbon
sinks on total GHG emissions declined overall, from 1.5% of GHG emissions in 2005 to
0.4% of GHG emissions in 2020.
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Figure 8. Net GHG emissions in Beijing and Shenzhen.

3.2. Influencing Factors on the GHG Budget in Beijing and Shenzhen
3.2.1. Multicollinearity Testing

A correlation analysis and ordinary least-squares (OLS) estimation were conducted
based on the GHG emissions in Beijing and Shenzhen, and significant correlations were
found between the emissions and a series of independent variables (Table 10). Secondly,
multiple linear regression was performed using OLS, and the results showed that the
variance inflation factor (VIF) for all independent variables was greater than 10 (Table 11).
Based on these findings, it can be concluded that there was multicollinearity among the
independent variables. Therefore, the analysis of the factors influencing greenhouse gas
budgets adopted the ridge regression method.

Table 10. Correlation test results.

1. Beijing
InI h‘lPl h‘le 11’1P3 lnAl lnAz h’\T] lnTz
InI 1.000
InPq 0.923 ** 1.000
InP, —0.898 ** —0.850 ** 1.000
InP3 0.917 ** 0.973 ** —0.892 ** 1.000
InAq 0.865 ** 0.926 ** —0.891 ** 0.970 ** 1.000
InA, 0.884 ** 0.960 ** —0.864 ** 0.979 ** 0.987 ** 1.000
InTq —0.845 ** —0.912 ** 0.909 ** —0.950 ** —0.988 ** —0.970 ** 1.000
InT, —0.795 ** —0.888 ** 0.828 ** —0.941 ** —0.985 ** —0.973 ** 0.962 ** 1.000
2. Shenzhen
Inl 1]11’1 1]11’2 lnA1 lnA2 lnT1 II\TZ
InI 1.000
InPq 0.952 ** 1.000
InP, 0.938 ** 0.979 ** 1.000
InA; 0.981 ** 0.981 ** 0.964 ** 1.000
InA, 0.966 ** 0.995 ** 0.978 ** 0.986 ** 1.000
InT —0.970 ** —0.990 ** —0.977 ** —0.983 ** —0.993 ** 1.000
InT, —0.937 ** —0.996 ** —0.969 ** —0.980 ** —0.988 ** 0.981 ** 1.000

Notes: ** indicates significance at the 1% level.
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Table 11. OLS results.

Variables Unstandardized Coefficients t-Statistic Sig. VIF

1. Beijing

Constant 14.130 0.908 0.390

InPy 0.271 0.763 0.467 44.684
InP, —4.364 —2.252 0.054 10.617
InP3 —1.479 —0.382 0.713 65.472
InAq 0.623 2.013 0.079 349.091
InA, 0.187 0.937 0.376 135.634
InTq 0.951 2.750 0.025 67.323
InT, 0.369 2.446 0.040 81.172
R? 0.963

F test 29.392

Sig. 0.000

2.Shenzhen

Constant —0.434 —0.061 0.953

InP; 2.074 2.337 0.044 528.617
InP, —1.134 —1.935 0.085 28.973
InA4q 1.481 6.915 0.000 45.535
InA, —0.128 —0.312 0.762 192.359
InTq —1.145 —1.400 0.195 90.131
InT, 1.903 4.532 0.001 200.276
R? 0.993

F test 214.656

Sig. 0.000

3.2.2. Influencing Factors on the Total GHG Budget

In recent years, the land-use changes in Beijing and Shenzhen have been relatively
small, resulting in relatively small changes in carbon sinks. The average annual growth
rate of the carbon sinks in Beijing from 2005 to 2018 was 0.5%. The average annual decrease
in the carbon sinks in Shenzhen from 2005 to 2020 was 0.4%, so the influence of various
factors on the carbon sinks was not significant. Therefore, this paper analyzes the influence
of each factor on the total and net GHG emissions in Beijing and Shenzhen (Table 12). The
population promoted GHG emissions in both Beijing and Shenzhen, the urbanization rate
promoted GHG emissions in Beijing, and the household size had opposing effects on GHG
emissions in the two cities. The GDP per capita and resident consumption levels contributed
to GHG emissions in Beijing and Shenzhen, with a greater impact observed in Shenzhen.
The proportion of secondary industry and the energy intensity had more significant impacts
in Shenzhen, where they were negatively correlated with GHG emissions.

Table 12. Results of the ridge regression analysis for Beijing and Shenzhen.

Beijing Shenzhen

Total GHG Emissions Net GHG Emissions Total GHG Emissions Net GHG Emissions

InP; (population) 0.181 ** 0.185 ** 0.180 ** 0.175 **
InP;, (household size) —2.083 ** —2.122 % 0.487 ** 0.470 **
InP5 (urbanization rate) 1.256 ** 1.263 ** - -

InA; (GDP per capita) 0.019 ** 0.019 * 0.243 ** 0.270 **
InA; (resident consumption level) 0.030 ** 0.031 ** 0.172 ** 0.179 **
InT; (proportion of secondary industry) ~ —0.026 —0.025 —0.553 ** —0.591 **
InT, (energy intensity) 0.003 0.003 —0.110 ** —0.097 **
Constant 4.839 4.788 7.910 8.037

R? 0.864 0.862 0.933 0.936

Sig 0.006 0.006 0.000 0.000

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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3.2.3. Factors Influencing the Sectoral GHG Budget

In Beijing’s energy activity sector, the population, urbanization rate, and household
size had relatively great degrees of influence on GHG emissions, with the population and
urbanization rate promoting GHG emissions and the household size playing a negative role
(Table 13). In the industrial process sector, the urbanization rate, GDP per capita, residential
consumption level, proportion of secondary industry, and energy intensity had relatively
great influences on GHG emissions, with the increase in the urbanization rate, GDP per
capita, and residential consumption level suppressing GHG emissions, while the proportion
of secondary industry and the energy intensity played positive roles. In the household
consumption sector, increases in the population, urbanization rate, GDP per capita, and
residential consumption level promoted GHG emissions, while the proportion of secondary
industry and the energy intensity played negative roles. In the agricultural activity sector,
the population, proportion of secondary industry, and energy intensity promoted GHG
emissions, the GDP per capita played a negative role in GHG emissions, and the household
size, urbanization rate, and resident consumption level had less significant roles in affecting
GHG emissions. The impact of each influencing factor on GHG emissions from the waste
disposal sector in Beijing was not significant.

Table 13. Results of the analysis of influencing factors on GHG emissions by sector in Beijing.

Energy Activities Industrial Processes Household Consumption  Agricultural Activities

InP; (population) 0.115* —0.127 0.837 ** 1.054 **
InP, (household size) —2.518 ** 2.831 —1.934 6.119
InP; (urbanization rate) 1.074 ** —3.393 ** 4.996 ** —1.834
InA; (GDP per capita) 0.018 * —0.240 ** 0.100 ** —0.296 **
InA; (resident consumption level) 0.019 * —0.206 ** 0.168 ** —0.107
InT; (proportion of secondary industry) ~ —0.028 0.636 ** —0.198 ** 0.649 **
InT, (energy intensity) 0.007 0.290 ** —0.084 ** 0.335 **
Constant 6.412 19.19 —19.296 —1.485
R? 0.807 0.920 0.935 0.753

Sig 0.021 0.001 0.000 0.051

Note: ** and * indicate significance at the 5% and 10% levels, respectively.

In Shenzhen’s energy activity sector, the population, GDP per capita, and residen-
tial consumption level had significant promoting effects on GHG emissions, while the
proportion of secondary industry had a negative effect (Table 14). In the waste disposal
sector, the population, GDP per capita, and residential consumption level played promoting
roles, while the proportion of secondary industry and the energy intensity played negative
roles. The GHG emissions of the household consumption sector increased with increasing
population, household size, GDP per capita, and residential consumption level, while
the proportion of secondary industry and the energy intensity had negative effects. The
impact of each influencing factor on GHG emissions from the agricultural activity sector in
Shenzhen was less significant.

Table 14. Results of the analysis of influencing factors on GHG emissions by sector in Shenzhen.

Energy Activities Waste Disposal Household Consumption

InP; (population) 0.141 ** 0.092 ** 0.313 **

InP; (household size) 0.389 * —0.053 0.840 **

InA; (GDP per capita) 0.264 ** 0.137 ** 0.313 **

InA; (resident consumption level) 0.158 ** 0.126 ** 0.259 **

InT; (proportion of secondary industry) ~ —0.564 ** —0.210* —0.734 **

InT, (energy intensity) —0.063 —0.069 * —0.237 **

Constant 8.143 5.174 4.945

R? 0.888 0.633 0.988

Sig 0.001 0.096 0.000

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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3.2.4. Influencing Factors of the Categorical GHG Budget

Ridge regression analysis showed that the influence of each factor on CHy emissions
in Beijing and Shenzhen was not significant; therefore, this study analyzed the influence of
each influencing factor on the CO; and N,O budgets (Table 15).

Table 15. Influencing factors of the categorical GHG budgets in Beijing and Shenzhen.

Beijing Shenzhen

CO, N,O CO, N,O
InP; (population) 0.202 ** 0.467 ** 0.179 ** 0.161 **
InP; (household size) —2.403 ** 1.848 0.499 ** 0.417 **
InP3 (urbanization rate) 1.471 ** 0.274 - -
InA; (GDP per capita) 0.021 * —0.087 ** 0.278 ** 0.090 **
InA; (resident consumption level) 0.034 ** —0.018 0.181 ** 0.112 **
InT; (proportion of secondary industry) —0.018 0.206 —0.610 ** —0.297 **
InT, (energy intensity) 0.005 0.110 ** —0.098 ** —0.119 **
Constant 3.937 —2.253 7.986 2.191
R? 0.890 0.637 0.934 0.987
Sig 0.003 0.174 0.000 0.000

Note: ** and * indicate significance at the 5% and 10% levels, respectively.

The analysis of the factors influencing the CO, budget in Beijing shows that the
population, urbanization rate, GDP per capita, and resident consumption level played
positive roles, the household size played a negative role, and the energy intensity and
the proportion of secondary industry had no significant impact. The analysis results of
the factors influencing N, O emissions in Beijing indicate that the population and energy
intensity played positive roles, the GDP per capita played a negative role, and the household
size, urbanization rate, residential consumption level, and proportion of secondary industry
were less significant.

The analysis of influencing factors in Shenzhen shows that each factor had a consistent
effect on the CO, and N;O emissions. The population, household size, GDP per capita,
and residential consumption level all played roles in promoting the CO, budget and N,O
emissions, with the household size contributing most strongly. The proportion of secondary
industry and the energy intensity both played negative roles in GHG emissions.

4. Discussion
4.1. Comparison of the Characteristics of the GHG Budgets in Beijing and Shenzhen

The main source of GHG emissions in both Beijing and Shenzhen is the energy activity
sector. The GHG emissions from energy consumption in Beijing’s energy activity sector
decreased slightly over the study period, while the GHG emissions from external energy
transfer gradually increased. This was due mainly to the various measures taken by Beijing
in recent years, such as implementing the conversion of coal to electricity, vigorously in-
troducing high-quality energy such as electricity and natural gas, and reducing residents’
energy use [59]. At the same time, the traditional energy-consuming industries underwent
a comprehensive transformation, resolutely eliminating high-energy-consuming produc-
tion industries and introducing equipment with low consumption and lower emissions to
high-tech industries to replace energy-intensive industries. This finding is consistent with
the study by Xue et al. [58] on GHG emissions in Beijing.

GHG emissions from energy activities in Shenzhen showed an increasing trend overall.
In 2007, the mode changed from energy transfer out to energy transfer in, and the amount
of energy transfer gradually increased. Shenzhen has developed rapidly in recent years. On
the one hand, due to its increasing urban population, energy consumption in transportation
and energy consumption in life have increased significantly [60]; on the other hand, to
cope with the air pollution problem in megacities, Shenzhen has carried out electrification
reform of its manufacturing industry, and this has promoted the increasing demand for
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electricity; these findings are consistent with the study results of Liao et al. [61] obtained
in Shenzhen.

The GHG emissions from industrial processes in Beijing decreased gradually from
2006 to 2008, increased slightly in 2009 and 2010, and continued to decrease from 2011; this
change trend is consistent with the findings of Liu [50].

In Beijing and Shenzhen, the greatest proportion of GHG emissions from waste dis-
posal changed from the landfill source to the incineration source, mainly because the two
cities adjusted their waste treatment structures in recent years, thereby increasing their
incineration rates and reducing their landfill rates. Beijing has accelerated the construction
of waste incineration treatment plants in recent years and increased the incineration rates of
household waste to more than 70%. In 2019, Shenzhen comprehensively promoted the pilot
construction of a “waste-free city” and achieved the total incineration of household waste
and near-zero landfill. As a result, the landfill disposal of waste in Beijing and Shenzhen
decreased significantly. The above results are similar to the findings of Zhang et al. [62,63].

Beijing’s GHG emissions from household consumption increased gradually from 2005
to 2014, with smaller changes observed from 2016 to 2020; Shenzhen’s GHG emissions from
household consumption increased gradually from 2005 to 2020, and the highest percentage
of GHG emissions from household consumption in both cities was from food consumption.
Studies have shown that [64-66] GHG emissions from household consumption are related
mainly to the population size and income level. Beijing’s population showed a gradual
increasing trend from 2005 to 2014, and the increase in the urban population increased the
demands for food and other consumer goods as well as increasing GHG emissions. From
2016 to 2020, Beijing’s population showed a slight decreasing trend, so the change range of
GHG emissions was small. With the continuous increase in the population of Shenzhen, the
demands for clothing, food, and household articles have increased, resulting in an increase
in GHG emissions, and with their increased incomes, people now have increasingly higher
requirements for food quality, resulting in increasing indirect emissions.

The scale of agriculture in Beijing and Shenzhen has been decreasing in recent years;
the sown area of rice paddies in Beijing decreased by 73.3%, while the stock of major animals
decreased by 74.6%, and the stock of major animals in Shenzhen decreased by 69.8%. In
recent years, both cities have carried out pollution control measures on large-scale breeding
farms, improved their agricultural production technology, and developed a conservation-
oriented agriculture that is resource-saving and land-saving, so their agricultural-activities-
related GHG budget has decreased. Shenzhen’s agricultural activities increased signifi-
cantly in 2017, mainly due to the increase in the area of rice paddies sown in Shenzhen in
2017, resulting in an increase in GHG emissions from agricultural activities.

The total carbon sink of Beijing was larger than that of Shenzhen, and the neutralization
rate of the carbon sink to GHG emissions was also higher than that of Shenzhen, partly
because of the abundance of forestlands and other land resources in Beijing [67], and partly
because of the larger growth of GHG emissions in Shenzhen. Forestlands contributed the
most to the carbon sink in Beijing, while forestlands and wetlands contributed the most
to the carbon sink in Shenzhen; these differences are mainly related to the geographical
locations of Beijing and Shenzhen. Shenzhen is a coastal city with abundant wetland
resources [68], so the carbon sink of wetlands is larger there than in Beijing.

4.2. Differences in the Influencing Factors of the GHG Budget in Beijing and Shenzhen
4.2.1. Population Size

The increasing populations have played a role in increasing GHG emissions in both
Beijing and Shenzhen, with population growth leading to increased demands for energy
and urban household consumer goods, thereby generating more GHG emissions. The
increased urbanization rate has promoted GHG emissions in Beijing, and the migration
of the rural population into cities, the growth of urban construction lands, and changes in
people’s consumption patterns all produce more GHG emissions, as has been proven by
a large number of studies [32,69].
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The household size had opposite influences on GHG emissions in Beijing and Shenzhen.
The number of households in Beijing increased by 23.4% from 2005 to 2020, while the growth
rate of the registered population was 18.6%. The registered population was smaller than the
increase in the number of households, resulting in a constant decrease in the household size
in Beijing. Meanwhile, the number of households in Shenzhen increased by 104.60% from
2005 to 2020. The growth rate of the registered population was 172.0%, and the registered
population number was greater than the increase in the number of households, causing the
household size in Shenzhen to increase continuously. It has been shown that an increase in
the number of urban households and a decrease in the household size can cause increased
emissions in terms of household energy and other aspects [70], and the household size in
Beijing has been decreasing in recent years; thus, CO, emissions are expected to increase
as the household size decreases. Significant increases in the number of households and the
registered population of Shenzhen will bring more demands for energy and other resources,
so an increase in the household size will increase Shenzhen’s greenhouse gas emissions.

4.2.2. Economic Development

Using the GDP per capita and residential consumption level to represent the changes
in urban economic development, the regression results show that economic development
influenced GHG emissions to different degrees in the two cities, and that the degree of
influence was greater for Shenzhen than for Beijing. Therefore, this paper further explores
the relationship between economic development and GHG emissions using the Tapio
decoupling model [71,72]. The Tapio decoupling model divides the decoupling status
into three major categories and eight subcategories according to the decoupling index T
(Table 16). The decoupling indices were calculated separately for Beijing and Shenzhen
(Table 17). Beijing was in a decoupling state between GHG emissions and economic
development from 2005 to 2020, indicating that Beijing’s economic development was
no longer at the cost of high GHG emissions. However, the relationship between GHG
emissions and economic development in Shenzhen was mostly expansionary negative
decoupling from 2005 to 2010, meaning that the growth rate of GHG emissions far exceeded
the growth rate of the economy. From 2010 to 2020, the decoupling state was unstable,
with three strong decoupling periods, five weak decoupling periods, and two expanding
connection periods. This means that with the increase in the GDP per capita and the
residents’” consumption level, GHG emissions are increasing. From this point of view,
seeking a balance between economic development and emission reductions will remain
an important goal of Shenzhen’s development in the future.

Table 16. Classification of the decoupling state between GHG emissions and economic development.

AGDP AGHG Decoupling Index T Decoupling State
-0 -0 0<T<08 Weak decoupling GHG emissions growth rate is lower than
that of economic growth .
o . Decoupling
-0 <0 T<0 Strone decouplin GHG emissions decrease while
8 ping GDP increases
<0 <0 T>12 Recessionary decoupling GHG emissions decrease faster than
economic decline
Expansionary negative ~ GHG emissions growth rate is faster than
>0 >0 T>12 . . .
decoupling economic growth Negative
Strong negative GHG emissions increase while decoupling
<0 >0 T<0 ;
decoupling GDP decreases
<0 <0 0<T<08 Weak negative GHG emissions dec.rease at a slower pace
decoupling than economic decline
. . GHG emissions growth rate is close to that
>0 >0 08<T<12 Expansionary coupling of economic growth Coupling
<0 <0 08<T<12 Recessionary coupling GHG emissions reduction rate is close to

that of economic decline
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Table 17. Decoupling between GHG emissions and economic development in Beijing and Shenzhen.

Beijing Shenzhen
Year

Decoupling Index T  Decoupling State ~ Decoupling Index T Decoupling State
2005-2006 0.50 Weak decoupling 1.70 Expansionary negative decoupling
2006-2007 0.29 Weak decoupling 1.37 Expansionary negative decoupling
2007-2008 —0.06 Strong decoupling 0.67 Weak decoupling
2008-2009 0.72 Weak decoupling 1.39 Expansionary negative decoupling
2009-2010 0.36 Weak decoupling 0.64 Weak decoupling
2010-2011 0.10 Weak decoupling -0.17 Strong decoupling
2011-2012 0.26 Weak decoupling 0.37 Weak decoupling
2012-2013 —0.43 Strong decoupling 0.65 Weak decoupling
2013-2014 0.22 Weak decoupling 0.61 Weak decoupling
2014-2015 —0.45 Strong decoupling 1.20 Expansionary coupling
2015-2016 0.35 Weak decoupling 0.68 Weak decoupling
2016-2017 0.50 Weak decoupling —0.10 Strong decoupling
2017-2018 0.22 Weak decoupling 0.94 Expansionary coupling
2018-2019 0.11 Weak decoupling 0.48 Weak decoupling
2019-2020 —4.39 Strong decoupling —0.78 Strong decoupling

4.2.3. Technical Level

The effects of the proportion of secondary industry and the energy intensity on GHG
emissions differed between the two cities. The effects of the proportion of secondary
industry and the energy intensity on GHG emissions in Beijing were less significant, while
the effect on GHG emissions from industrial processes in Beijing was more significant.
With decreases in the proportion of secondary industry and the energy intensity, the GHG
emissions in Beijing’s industrial production process decreased. The proportion of secondary
industry and the energy intensity negatively affected GHG emissions in Shenzhen.

Secondary industry is usually regarded as a high-GHG-emission sector. In recent
years, Beijing has adjusted its industrial structure and changed into a low-consumption
production mode, shifting the traditional high-GHG-emission secondary industry to
a green and low-carbon tertiary industry. Therefore, the reductions in the proportion of
secondary industry and the energy intensity played a role in reducing GHG emissions.
The proportion of secondary industry in Shenzhen decreased from 53.8% in 2005 to 37.8%
in 2020. Although secondary industry continued to decrease, the GHG emissions brought
by secondary industry increased by 12.2%. Therefore, although Shenzhen has followed
the “321” industrial economic pattern in recent years, it still needs to further optimize its
industrial structure.

The energy intensity denotes the technical level and energy-use efficiency of a city.
During the study period, the energy intensity of Beijing and Shenzhen decreased year
by year, but the energy intensity had opposite effects on GHG emissions from industrial
processes in Beijing and on total GHG emissions in Shenzhen. Beijing reduced its raw
coal consumption by 95.8% from 2005 to 2020 by adjusting its energy structure. Therefore,
although energy consumption is still increasing, the growth rate slowed down signif-
icantly, and the reduction in the energy intensity played a role in reducing the GHG
emissions. The energy intensity of Shenzhen played a negative role—on the one hand,
because of the rapid economic development of Shenzhen, and on the other hand, because
of the continuous increase in energy consumption in Shenzhen. Therefore, although
the energy intensity was reduced, the total energy consumption and economic scale
expanded, resulting in an increase in GHG emissions. Therefore, the energy structure
should be further adjusted.
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5. Conclusions

This study comprehensively accounted for the GHG budgets in Beijing and Shenzhen
from 2005 to 2020 and investigated the factors affecting the GHG budgets. We found that the
total GHG emissions of both cities showed an increasing trend from 2005 and peaked in 2019
before decreasing in 2020. The GHG emissions of Beijing, which increased from 160.3 TgCO,
equivalents in 2005 to 209.1 TgCO, equivalents in 2020, were always greater than those of
Shenzhen (36.0 TgCO2 equivalents in 2005 and 119.1 TgCO, equivalents in 2020). However,
the growth rate of GHG emissions from Shenzhen (231.1%) was almost seven times larger
than that of Beijing (30.5%). Energy activities in Beijing and Shenzhen have always been
the main emission sectors of GHGs from 2005 to 2020, accounting for more than 70% of
the total GHG emissions. Among the three GHGs, CO, contributed over 90% to the total
emissions, followed by CHy, (2.2% in Beijing, 3.0% in Shenzhen), while N, O contributed the
lowest proportion of global warming effect (less than 1%). The neutralization rate of carbon
sinks on GHG emissions was greater in Beijing (1.7% to 2.3%) than in Shenzhen (0.3% to
1.5%), and the carbon neutrality rate of the ecosystem carbon sink in Shenzhen showed
a decreasing trend overall. Forest alone contributed about 79% of Beijing’s ecosystem carbon
sink, while in Shenzhen, the carbon sink effect of forest, garden, and wetlands contributed
41.3%, 21.2%, and 36.3% of the total urban carbon sink, respectively. Population size,
GDP per capita, and residents’ consumption level were positively correlated with GHG
emissions in both Beijing and Shenzhen. Meanwhile, household size had opposite effects
on the two cities, with a decrease in household size and an increase in GHG emissions in
Beijing, while there was a positive correlation between household size and GHG emissions
in Shenzhen. The increase in the proportion of secondary industry and the energy intensity
had more significant impacts on GHG emissions in Shenzhen, where they were negatively
correlated with greenhouse gas emissions. Based on the above analysis, the following
suggestions and insights are proposed:

1.  Promote the high-quality development of urbanization: The rapid development of
urbanization is accompanied by population growth and urban expansion, which
promote increased GHG emissions. The populations of Beijing and Shenzhen will
increase further in the future, so we should focus on the quality of urban development
and develop a concentrated and compact urban spatial structure to reduce GHG
emissions. At the same time, to reduce the GHG emissions caused by increasing
populations, governments should strengthen the publicity of low-carbon consumption
and guide residents” awareness of low-carbon consumption to achieve their GHG
emission reduction goals.

2. Optimize the industrial structure and adjust the energy structure: Although Beijing
and Shenzhen have followed the “321” industrial model, in the process of adjusting
their industrial structures and gradually building industrial systems dominated by
tertiary industry, attention should also be paid to the internal structure of the tertiary
industry; this industry should gradually be transformed into a knowledge-intensive
industry with low consumption and low emissions. At the same time, technological
upgrading should be strengthened, low-carbon technologies should be developed, the
close integration of industry, academia, and research should be promoted, the energy-
utilization efficiency should be improved, and GHG emissions should be reduced.
Shenzhen should further adjust its energy structure, focus on optimizing its energy
structure and layout, reduce its coal consumption, and increase its development and
utilization of clean energy and new energy.

3. Increase carbon sinks: Forestry is the main carbon sink resource, and the main coun-
termeasures used to increase the carbon sink capacity include increasing the carbon
sequestration capacity, improving the quality of forestland resources, focusing on the
conservation of forest trees, expanding the area of forestlands, encouraging the devel-
opment of unused lands, and giving priority to the conversion of cultivated lands,
grasslands, and forestlands, reducing the construction occupation and increasing the
area of public green spaces to increase the carbon sink.
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Since the relevant activity-level data of Beijing and Shenzhen are not complete, apply-
ing different methods to calculate the urban GHG budgets and selecting different GHG
emission coefficients would lead to differences in the GHG accounting results. The carbon
sink accounting performed in this paper was based on previous studies, so the accounting
standard had a certain universality, but because the actual environment of each city has
some differences, the calculated results showed some deviation. Moreover, the data used
in this paper were obtained from statistical data. There is no more detailed division of land
use and vegetation types, and unused land was not considered in the accounting process.
As a result, the calculated values were small. Therefore, we hope that in future research
the standards and parameter values used to establish an urban GHG budget inventory can
be refined to fully conform to the characteristics of Chinese cities and accurately calculate
the GHG budgets at different urban scales. The GHG income and expenditure process
contains very complex influencing factors that are not only affected by the population size,
economic development, and technical level but are also related to many unquantifiable
factors, such as climate change, geographic spatial differences, and living habits. Therefore,
in future work, multidisciplinary and cross-disciplinary research should be combined with
the actual situations of different cities to propose emission reduction measures.
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Abstract: With further urbanization, household consumption firmly plays a key role in China’s na-
tional carbon emissions. However, current research concerning carbon issues has mainly focused on
urban household consumption, and few studies have paid attention to herder households, leading to
a research gap in the field of low-carbon shifting related to nomadic economies. In this study, we inter-
viewed more than one-thousand herder households in the Sanjiangyuan region of the Qinghai-Tibet
Plateau in China. The household carbon emissions and their influencing factors were investigated
across the herder households of 15 counties. Our findings revealed the following: (1) There exist
differences in the amounts of household carbon emissions and their compositions in the Sanjiangyuan
region. From the perspective of spatial distribution, the emission hotspots are mainly concentrated in
the eastern part of the Sanjiangyuan region. (2) At the prefecture level, average personal emissions
were larger in the Hainan Prefecture (3.26 t ce/year), while they were approximately 1.36 times that of
the Huangnan Prefecture (2.4 t ce/year), though with smaller personal emissions. The indirect carbon
emissions of the four prefectures all occupied larger percentages of household carbon emissions that
were mainly contributed by food consumption and housing. (3) Family type was the main diver
influencing personal carbon emissions in the Huangnan Prefecture, Guoluo Prefecture, and Yushu
Prefecture. The more people living in the household, the lower the per capita carbon emissions.
However, the effect size of potential carbon reductions was weakened when the number of family
members rose to over three. (4) We propose that grazing prohibitions and low-carbon dietary shifts
would contribute to low-carbon herder livelihoods, especially for small-sized households that should
be peer-to-peer targeted by regional government propaganda, which may help to strengthen the
implementation of in-depth low-carbon promotions across the Sanjiangyuan region and even the
overall Qinghai-Tibet Plateau.

Keywords: herder households; household consumption; carbon emissions; demographic effects;
Sanjiangyuan region

1. Introduction

The era of global warming is not yet over, while the era of global boiling has already
arrived. With rapid global industrialization and modernization, the excessive consump-
tion of energy by humans has led to a dramatic increase in greenhouse gas emissions [1],
thereby exacerbating the global warming situation. Urban areas are the hotspots of human
energy consumption, accounting for over 70% of global carbon emissions. For developing
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countries, residential energy consumption serves as a main engine for economic growth
and a major source of regional carbon emissions [2,3]. For the rapidly urbanizing China,
the direct and indirect carbon emissions caused by household consumption have driven
the growth of carbon emissions over recent decades [4]. In view of China’s current inter-
national commitments to achieve carbon peaking by 2030 and carbon neutrality by 2060,
it is necessary to investigate the dynamics of carbon emissions from different types of
consumption in Chinese households from a multi-scale perspective.

Recently, research concerning the energy-related carbon emissions of Chinese house-
holds has emerged. Su et al. (2023) [5] conducted a dynamic assessment of residential
energy consumption and related carbon emissions in Chinese households. It indicated
that the annual carbon emissions caused by different types of Chinese households would
decrease at different levels. Chen et al. (2023) [6] studied the drivers of urban-rural dispari-
ties in household carbon emissions in China, and they found that the temporal and spatial
characteristics in household carbon emissions between urban and rural areas were influ-
enced by sociometric factors such as economic development levels, household consumption
patterns, and demographic effects. Jiang et al. (2021) [7] proposed that carbon emissions
from households in rural areas may be much higher than those from urban households due
to the different energy types used by urban and rural households. Yuan et al. (2019) [8]
revealed that the household carbon emissions in most coastal provinces and subordinate
cities were mostly influenced by residents” income levels and their demographic effects,
while the higher household carbon emissions were observed in some non-coastal industrial
provinces were due to laggard carbon-control technologies. Concerning the regional carbon
emissions from northern agricultural regions, Liang et al. (2013) [9] found that coal still
was the main energy source resulting in the growth of greenhouse gas (GHG) emissions,
and these results were based on an investigation of the structural changes in household
energy use from 1980 to 2009 in Shandong Province, northern China. Most current research
concerning household carbon emissions has focused on the carbon emission characteristics
of urban household consumption and their influencing factors, and relevant studies related
to rural household consumption, especially at the county scale, are fewer. Although the
limited studies conducted by Jiang et al. (2021) [7] and Liang et al. (2013) [9] investigated
the carbon emissions of rural households in typical agricultural regions, they focused on
suburban regions within metropolitan areas. Compared with rural households, fewer
researchers have paid attention to the carbon issues of herdsman livelihoods, which may
present different stories about carbon issues due to the different cultures of these ethnic
minorities and the special topographies of the plateau regions. Therefore, the mere selection
of urban and rural households as case studies cannot provide a comprehensive mapping of
carbon emissions from households’ consumption in China.

Currently, there is no doubt that fewer in-site studies have concerned herdsman liveli-
hoods in plateau regions with low urbanization levels, which may also be potentially
affected by rapid urbanization in the future. The ecosystems of forests, grasslands, wet-
lands, and permafrost in the Qinghai-Tibet Plateau are the important carbon sinks which
will play a long-term, crucial role in achieving global carbon neutrality. As a natural barrier,
the unique environment of the Qinghai-Tibet Plateau requires the development of corre-
sponding sustainable development strategies to achieve the United Nations’ 17 Sustainable
Development Goals (SDGs) [10]. However, it is not easy to develop such suitable and effec-
tive strategies for the Qinghai-Tibet Plateau due to its fragile environment as the “Third
Pole” region in the world. The difference between this “Third Pole” and other polar regions
on the earth is that this region is constantly threatened by urbanization [11]. The population
of the Tibet Plateau is rapid rising along with the development of regional economies, and
the related increasing exhaust gases emissions resulting from household energy combustion
(such as heating, cooking, electricity, etc.) in this region not only threaten local air quality
and human health, but also hinder progress in achieving the goal of carbon-peaking by
2030 and carbon neutrality by 2060 in Qinghai-Tibet. However, neither governance nor
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academia have paid long-term attention to this carbon issue for plateau regions, resulting
in less relevant research to date [10].

Rising carbon emissions have already threatened sustainable development in the
Qinghai-Tibet Plateau. A household investigation in the Qinghai Province concluded
that there is significant population aggregation and economic development within the
Qinghai-Tibet Plateau. Previous studies found that household-related carbon emissions
have increased at an average annual rate of 23% for the period 2002 to 2012. However,
these studies only acquired an insights into carbon emissions related to urban households
at the provincial level [12], and they failed to provide further information about herdsman
livelihoods in typical plateau regions. The pastoral communities, especially those living
in the higher altitude of Asia, are increasingly exposed to threats brought about by the
aforementioned climactic and anthropogenic factors, and thus their livelihoods are more
vulnerable to climate change compared with those in the urban and rural areas in lower
altitudes. These herder households making up pastoral communities have largely been
dependent on their local knowledge in managing their daily livelihoods [13]. In terms of
energy consumption, over the past thousand years, local herders have preferred livestock
manure (e.g., yak, sheep, etc.) and crop residues as their main energy sources [14], and they
usually lack the means for adopting clean energy to reduce household carbon emissions.
As for energy saving for climate change mitigation, their external dependency has been
increased due to recent climatic anomalies and economic development, which should
be addressed and guided by practitioners and policy makers to better reduce household
carbon emissions for the adaptation of regional climate change. However, there exists a
significant gap between the energy consumption per capita of herders and that of non-
herders within Qinghai Province. The aforementioned factors might lead to different
situations for the dynamic carbon emissions and their driving factors in herder households.
To address this emerging question—whether the carbon emissions of herder households
are high enough to form a significant carbon source that has a negative impact on the
low-carbon development of the plateau—this study took the Sanjiangyuan region of the
Qinghai Province as an example, and analyzed the characteristics of the carbon emissions
of herder households though a door-to-door household survey across different counties,
aiming to provide scientific support for the overall Qinghai-Tibet Plateau to achieve the
relevant carbon goals and sustainable development goals.

2. Literature Review

In recent years, the research topic of household carbon emissions has gradually at-
tracted more academic attention. The existing research has mainly focused on the account-
ing of household carbon emissions in urban and rural communities and analyzing the
relevant factors impacting these carbon emissions. Most studies have highlighted the
importance of families as the basic units of society in carbon emission reductions; however,
in the plateau regions, the role of herder households in carbon emission reductions remains
unclear. It is essential to investigate this issue to gain further insights, since there exist
differences between the family lifestyles of herder households and those of urban and rural
residents. Previously, Jiang et al. (2020) [3] studied the characteristics of household energy
consumption levels in the agricultural and pastoral areas of the Qinghai Province, and
they proposed that the limited data retrieved from official statistics were not enough to
explain the regional differences [15] and that local surveys were needed to address this
issue. Zhang et al. (2020) [16] studied the internal changes in household consumption
levels and related carbon emissions based on a field survey, but they neglected herder
families in the plateau regions. Further, the factors of household characteristics usually play
an important role in explaining the dynamics of household carbon emissions. Zhang et al.
(2023) [17] found that household sizes in China have significant negative impacts on per
capita household carbon emissions, and the negative impact on indirect carbon emissions
is much greater than that on direct carbon emissions. Zhou et al. (2023) [18] found that the
impact of national population aging on carbon emissions presented an inverted U-shaped
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relationship, which showed that aging first increased and then decreased the related carbon
emissions. Zhou et al. (2016) [19] found that the impact of changing age structures on
energy use was not statistically significant, but it led to an increase in emissions across the
country, especially in eastern China. Xu et al. (2016) [20] found that food consumption
was the second largest source of carbon emissions in China. Peng et al. (2023) [4] found
that household income and consumption played important roles in promoting China’s
carbon emissions, and the proportion of income-based household emissions in the total
emissions was higher than that of consumption-based emissions. Golley et al. (2012) [21]
mentioned that rich households generated more emissions per capita than those emitted
by poor households. Akrofi et al. (2023) [22] mentioned that the promotion of renewable
energy technologies such as solar home systems (SHS) had great potential to reduce green-
house gas emissions. The environmental satisfaction levels of households have also been
proposed to have positive impacts on reducing carbon emissions [23-25].

In terms of a driving force analysis of household carbon emissions, statistical analysis
techniques have been adopted to target this issue, including regression analysis and de-
composition analysis [26]. However, these methods have been mainly used for variable
analyses [27,28], predictions [29], and decompositions [8] and they performed weakly in ad-
dressing the multicollinearity problems that arise while handling non-normally distributed
data, and so optimal scale regression analysis has been proposed to be more practical for
analyzing questionnaire data. It can be used to perform integrated analyses for multiple
types of questionnaire data sources, and it has the advantage of being able to gradually
remove variables that fail the significance test with high collinearity [30-32]. As the “Third
Pole” region in the world, the Qinghai-Tibet Plateau’s ecosystems are relatively fragile
and more sensitive to climate change. As mentioned, studies concerning carbon emission
reductions in herder households in the Qinghai-Tibet Plateau are meaningful to this re-
search field [3,33]. Currently, relevant research based on first-hand data retrieved from
local surveys is limited, and therefore, an investigation based on large-scale household
surveys would, indeed, help to further outline the carbon emissions related to herder liveli-
hoods compared with previous work based on a limited number of questionnaires in the
Qinghai-Tibet Plateau [7]. Further, through the acquisition of household scale micro-data,
we could estimate regional household carbon emissions using the scaling-up method, and
provide scientific support for the launch of regional low-carbon strategies, which could not
be achieved by previous large-scale studies that relied on national and provincial statistics.

3. Research Methods
3.1. Region Selection

The Sanjiangyuan region (31°39’ N 89°45' E-36°12" N 102°23' E) is located in the
southern part of the Qinghai Province in China. It is the origin of the Yangtze River, Yellow
River, and Lancang River. The average elevations in the Sanjiangyuan region range from
3500 to 4800 m. Autonomous prefectures for ethnic minorities are the prefecture-level ad-
ministrative units in this plateau area, and they include several subordinate county-level ad-
ministrative regions. The study area included sixteen counties in four Tibetan autonomous
prefectures, including Yushu, Guoluo, Hainan, and Huangnan, which accounted for ap-
proximately 43% of the total area of the Qinghai Province and a total area of 302,500 square
kilometers (Figure 1). The existing population was 556,000, with over 90% being Tibetans
and other ethnic groups, including Hans, Huis, Salas, and Mongolians. The Sanjiangyuan
region is a typical less-developed region. In 2021, its GDP was CNY 19,954,000,000 [34,35],
accounting for only 5.96% of the Qinghai Province’s GDP [13,36]. Due to the characteristics
of the ground cover, as a frigid zone meadow vegetation area plateau, the primary economic
industry in the Sanjiangyuan region is dominated by animal husbandry, causing it to be a
typical area for herder households.
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Figure 1. The location of the research area.

3.2. Data Resources

Based on the relevant literature and suggestions from experts [35-38], we designed a
questionnaire named “Questionnaire on Households’ Livelihoods and Ecological Compen-
sation in Qinghai Province”, which consisted of the following four sections: family member
information, livelihood activities, livelihood capital, and ecological policies and percep-
tions. Considering the cultural issues induced by language barriers during the face-to-face
surveys, each questionnaire was conducted with the help of local volunteers familiar with
the local languages. Subsequently, the questionnaire contents were transferred to the form
of a spreadsheet, and cross-validation was subsequently carried out among the sampled
spreadsheet data to ensure the accuracy of the first-hand data for the statistical analysis. A
total of 1100 questionnaires across 15 counties within 4 prefectures were conducted, with a
final collection of 1027 questionnaires (the effective questionnaires occupied 93.36%).

3.3. Variable Settings

Taking the individual carbon emissions from the different counties as the dependent
variable, the related socioeconomic factors are thereby regarded as the independent vari-
ables (Table Al). According to existing research [17,21,33,39—41], the socioeconomic factors
influencing the individual carbon emissions (Y) included family type, age structure, ed-
ucation level, annual income, solar utilization, environmental satisfaction, and grazing
prohibition. The definitions of each variable are shown in Table 1.
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Table 1. The settings of the independent and dependent variables.

Variable Name

Variable Symbol Variable Attribute Variable Definition

Carbon emissions from personal energy

Individual Carbon Emissions Y Numerical Variable .
consumption (t ce/year)
Single family = 1, a family of two =2, a
Family Type X1 Ordinal Variable family of three = 3, a family of four = 4, and
a family with many members =5
Age Structure X5 Ordinal Variable Under 18 =0, 18-65 =1, and over 65 =2

Education Level

Illiteracy = 1, primary school = 2, junior
high school = 3, high school/technical
secondary school = 4, junior college = 5,
X3 Ordinal Variable bachelor’s degree or above = 6, (monastic
education: less than 6 years as primary
school = 2 and 7 years and above as junior
high school = 3)

Annual Income Xy Numerical Variable Annual personal income (Yuan)
Solar Utilization X5 Nominal Variable Yes =1 and no =2
Environmental Satisfaction Xe Ordinal Variable Gets better = 1, stays the same =2 and gets
worse =3
Grazing Prohibition X7 Ordinal Variable Tighter = 1, unchanged = 2 and looser = 3

3.4. Carbon Emissions Accounting
3.4.1. Direct Carbon Emissions Accounting

Direct energy consumption by pastoral communities mainly consists of cooking and
transportation, and it is divided into fossil energy and non-fossil energy [13]. Based on
the survey, we calculated the main fossil energy used by the respondents including coal,
natural gas, and related electricity, as well as the non-fossil energy referring to biofuels
such as firewood, straw, and livestock manure [17,42] (Table A2). It is acknowledged
that the quantification of carbon emissions generated by the use of electricity is usually
complicated, especially residential electricity. Relevant processes do not burn fossil fuels
directly, but their upstream production will consume numerous fossil fuels. Therefore, it
has been recognized as one of the main energy sources. Except the electricity consumption,
the downstream carbon emissions generated by other energies were considered. This
study converted various energy consumptions into a unified unit of standard coal (kg ce)
as follows:

Qi =) gir; 1)
Ei=) Qic, 2

and E
ME; = -, @3)

In the above equation, Q; represents the original consumption of the i energy source,
q; represents the original consumption of the i energy source, and r; is the conversion
coefficient of the i energy source to standard coal. E; represents the direct carbon emissions
of households, c, represents the carbon emission coefficient of coal, ME; is the personal
direct carbon emissions, and n is the number of household members. The energy con-
version coefficient to standard coal was based on the coefficient published in the China
Energy Statistical Yearbook [43]. The conversion coefficient [3,44] for livestock manure (per
kilogram) was 0.5, and it was 0.7143 for coal (per kilogram), 1.214 for natural gas (per cubic
meter), and 0.1229 for electricity (per kilowatt hour).
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3.4.2. Indirect Carbon Emissions Accounting

The consumption expenditure for households was divided into eight categories, includ-
ing food, clothing, household equipment, supplies and services, healthcare, transportation
and communication, and cultural, educational, and recreational supplies, as well as ser-
vices, living, and other goods and services [36]. Each category of consumption expenditure
corresponded to one or more relevant industries. The industry sectors corresponding to the
different consumption categories and their corresponding embedded emissions intensities
are shown in Table 2. These embedded carbon emissions of residents” consumption could
be therefore calculated based on the input—output analyses (IOA) method. IOA is an
economic quantitative method to explore delineate the carbon emissions embedded in the
interdependence of supply and consumption among different flows of goods and services
across sectors within economic activities [12]. Typically, the input-output table is published
every five years, and the recent input—output table for the Qinghai Province was available
for 2017. This study investigated the indirect carbon emissions resulting from daily house-
hold consumption, which could be calculated through multiplying the survey data for
household consumption levels (Table A2) by the cumulative carbon emissions intensities
of the corresponding sectors. The relationships between consumption expenditure types
and industry types in the input-output table were based on the classification suggested by
Dong and Geng [45]. The calculation formulas used for the consumer lifestyle method are
as follows:

C=FY=F(I-A"Y (4)

and

c
MC =~ )

Table 2. Industry sectors and the embedded carbon emission intensities corresponding to consump-

tion category.

Embedded Emission Intensity

Consumption Category Corresponding Industry (t ce/Ten Thousand Yuan *)
Food Food and tobacco 2.3030
Clothing Textiles, Clothing, Shpes, Hats, Leather, Down and 17465
associated products
Household Equipment, Wood processing products and furniture + Electrical 28267
Supplies and Services machinery and equipment ’
Healthcare Health and Social work + Public administration, Social 1.6650

security and social organization

Transportation and
Communication

Transportation equipment + Communication equipment,
Computers and other electronic equipment +
Transportation, warehousing and postal services + 2.1963
Information transmission, Software and information
technology services

Cultural, Educational and

Paper printing and cultural and educational sporting goods

Entertamment.Supphes + Education + Culture, sports and entertainment 1.8771
and Services
Living Building + Non-metallic mlnera.l products. + Metal products 42978
+ Rental and business services
Other Goods and Services Wholesale and retail + Accommodation and catering + 1.8041

resident services, repairs and other services

* Purchasing power in 2019 (1 USD = 6.8985 yuan).

In the above equations, C represents the indirect carbon emissions from household
consumption, F is a 1 x 8 row vector representing the embedded carbon intensities of
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sectors 1~8, F’ is a 1 x 8 row vector representing the direct carbon intensities of sectors
1~8, A is the 8 x 8 matrix of the direct consumption coefficients from an input-output
table, I represents an identity matrix of the same order as A, Y denotes a column vector
representing the household expenditures based on eight consumption categories, (I — A) -1
is the Leontiv inverse matrix (which shows the impacts of production technologies changing
in one sector of the national economy on all the other sectors), and MC represents the per
capita indirect carbon emissions.

3.4.3. Household Carbon Emissions Accounting

Based on the results of the direct and indirect carbon emissions accounting, the regional
carbon emissions of the prefectures, as well as their per capita carbon emissions, could be
estimated as follows:

mp = Ei+C 6)
n
and MD
PMD; = & N L @)

In the above equations, MD represents the overall personal carbon emissions of
specific household, PMD; is the total per capita emissions of the households in each
prefecture t, and the maximum value of ¢ is four. MD; represents the per capita emissions
of each subordinate household within each prefecture t, and N represents the number of
subordinate households in each prefecture ¢.

3.5. Factors Influencing Household Carbon Emissions
3.5.1. Optimal Scale Regression Analysis

We set the personal carbon emissions in the different counties as the dependent vari-
able and the aforementioned influencing factors as the independent variables. As many
variables as possible in the influencing factors were classified into variables (such as family
type) rather than being used as numerical variables, which would cause significant uncer-
tainty in the analysis by linear regression. Optimal scale regression analysis could quantify
the different values of the categorical variables and convert them into numerical types for
the statistical analysis. Previous studies have shown that some subjective factors such as
consumer preferences [46] and the impact of land expansion on rural revitalization [47] can
be set as categorical variables and then converted into numerical analyses. Therefore, the
optimal scale regression analysis could be adopted to reveal the influencing factors of the
household carbon emissions. This method firstly involved the calculation of the correlation
coefficient R of the independent variable and the correction of the judgment coefficient R
to determine the fitting effect of the regression equation, and then the correlation parameter
(the sum of the squares, degrees of freedom, F-values, etc.) of the regression residual was
summarized to determine the significance level of the regression. Finally, we calculated the
standardization coefficient of the independent variable and gradually removed variables
with high collinearity that had not passed the significance test by determining the optimal
solution after repeated iterations. In order to deeply analyze the main influencing factors
of the personal carbon emissions in each county, the software suite Statistical Product
and Service Solutions (SPSS 21.0) was used for the optimal scale regression analyses. The
definition formula of the regression model is as follows:

Y =15 +bos + - - - 4 bk + & (8)

In the above formula, Y represents the standardized dependent variable, while X3, X3,
and - - - Xy, represent the transformed independent variables and by, by, and - - - by, represents
the standardized regression coefficients of the independent variables; n represents the
number of independent variables, and ¢ represents the error term.
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3.5.2. Multiple Comparative Analysis

We selected the significant influencing factor with the highest importance among
the independent variables, and we used the multiple comparison analysis with an LSD
test (Fisher’s least significant difference) in SPSS521.0 to further determine the degree of
influence of the explanatory variable on the dependent variable at the different levels. We
used t-tests to complete the paired comparisons between the mean values of each group.
The minimum significant difference was the critical value at which the mean difference
reached the level of a significant difference. When the mean difference was greater than or
equal to this critical value, the difference was significant; When the mean deviation was
less than the critical value, the difference was not significant. The higher sensitivity of
this test, as well as the small differences in the mean values between the different levels,
could also be detected. This was conducive to analyzing the differences in the independent
variables at the different levels and their corresponding dependent variables, which could
be used to compare the differences in the main influencing factors of the household carbon
emissions in the different counties, aiming to identify the targeted groups with higher
personal carbon emissions.

4. Results and Analysis
4.1. Characteristics of the Herdsman Households

Based on our large-scale household survey, the basic information about the herdsman
households across 15 counties within 4 prefectures and the whole Sanjiangyuan region
is shown in Tables 3 and 4. Overall, the average family size in the Sanjiangyuan region
was over four members, with a mean age that ranged from 25 to 30 years old. The average
educational level was mainly primary and middle school. The Hainan Prefecture had the
largest average household size of approximately around 4.77 people, which was slightly
higher than those of other three prefectures, and it had the lowest average age and the
lowest average education level. In this region, the average annual income of the households
was the second highest (CNY 6679.20) among the four prefectures, with the highest levels
of environmental satisfaction and the strictest grazing prohibitions. The average age in
the Huangnan Prefecture was 30.375, which was the oldest among the four prefectures
in the Sanjiangyuan region. Although its average household size was smaller than that
of Hainan Prefecture, its average annual income was the highest compared to other three
prefectures, and its average education level was relatively high, though it was inferior to
that of the Guoluo Prefecture (1.83). Overall, the per capita education level and average
income level in the Huangnan Prefecture performed well. Although the average family
size in the Guoluo Prefecture was only second to the Hainan Prefecture, the average family
size level (4.87) of the subordinated Gande County within this prefecture was the highest
among all counties in this study. The grazing prohibition situation of the Guoluo Prefecture
was roughly the same as that of the Huangnan Prefecture, since the policies for grazing
prohibition for these two areas were stricter. The Yushu Prefecture had the smallest average
household size among the four prefectures in the Sanjiangyuan region, along with the
lowest average annual income. It had the lowest environmental satisfaction and the most
liberalizing policy of grazing prohibition policy compared to the other three prefectures.
Overall, our study found that there existed significant differences among the herdsman
households across the different prefectures of the Sanjiangyuan region in terms of their
daily livelihoods, which provided valuable first-hand data for the calculation of carbon
emissions and the analysis of driving forces.
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Table 3. Basic information of herdsman households across Sanjiangyuan region.

. Average Average Average Annual Environmental  Grazing
Prefecture  County Sample Size Family Size Average Age Literacy Income/Yuan * Satisfaction ~ Prohibition
Hai nan Xing hai 179 179 4.77 477 2562  25.62 1.69 1.69  6678.20 6678.20 1.56 1.56 1.30 1.3
Huang Ze ku 557 4.56 29.06 1.77 5071.73 1.88 1.97
nan Henan 228 /9 466 401 3160 3038 459 183 089936 795 144 166 475 186
Ma qin 427 443 29.90 2.07 7848.06 1.76 1.79
Gan de 180 4.87 25.81 1.77 3711.66 2.08 1.88
Jiu zhi 256 4.68 28.43 1.99 5215.31 2.36 1.97
Guoluo  poima 234 1420 4g9 406 50q3 2067 qgg 188 gppyp3 615310 g5 183 4gy 186
Dari 163 4.83 23.82 1.79 7559.82 1.90 1.86
Ma duo 166 4.36 2592 1.78 7509.04 1.27 1.69
Cgﬁgg 103 444 29.26 1.83 452092 2.02 1.98
Yu shu 169 4.46 26.50 1.77 4513.28 2.05 1.90
Yu shu I;Iia;g 234 819 4.85 4.50 2710 27.88 1.69 1.73 5373.64 5883.37 212 221 185 1.93
Za duo 162 4.79 28.81 1.75 9348.45 2.26 1.77
Zhi duo 14 4.14 25.86 1.50 3496.00 243 2.21
Qu malai 137 4.30 29.74 1.82 8047.92 2.38 1.88
* Purchasing power in 2019 (1 USD = 6.8985 yuan).
Table 4. Descriptive statistics of herdsman households in the Sanjiangyuan region.
Variable Name Min Max Mean Standard Deviation
Family Size 1 5 4.58 0.732
Age 0.02 98 29.94 20.02
Literacy 1 6 1.94 1.25
Annual Income 0 300,000 7226.328 16,451.80647
Environmental Satisfaction 1 3 1.87 0.934
Grazing Prohibition 1 3 1.82 0.934

4.2. Household Carbon Emission Characteristics

In terms of direct regional carbon emissions, the Guoluo Prefecture had the highest
direct carbon emissions, followed by the Yushu Prefecture and the Huangnan Prefecture,
while the Hainan Prefecture had the lowest emissions. Further, the indirect regional carbon
emissions also presented similar spatial distribution characteristics. In terms of counties,
the highest direct carbon emissions were found in Zeku County, while the lowest emissions
were found in Zhiduo County. In addition, the indirect carbon emissions were higher
in Maqin County and lower in Zhiduo County. The overall household carbon emissions
of the different regions are shown in Figure 2. The regional emissions were found to be
the highest in Nangqian County and the lowest in Zhiduo County, and the hotspots with
higher carbon emissions were concentrated in the eastern part of the Qinghai Province. In
terms of the per capita household carbon emissions, the average direct personal carbon
emissions in the Yushu Prefecture were higher than those of the Hainan Prefecture, and the
average direct carbon emissions of individuals in the Guoluo Prefecture were the lowest
(Figure 3), which was mainly due to the differences in the structures of domestic energy
supplies. The indirect personal carbon emissions of the different prefectures are shown in
Figure 4. The indirect personal carbon emissions of the Hainan Prefecture were 2.27 t ce
CO, /year, which was similar to those of the Yushu Prefecture. The lowest personal indirect
carbon emissions (1.55 t ce CO, /year) were observed in the Huangnan Prefecture.
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Figure 2. Household carbon emissions of different counties and prefectures.
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Figure 3. Direct personal carbon emissions among four prefectures in the Sanjiangyuan region.
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Figure 4. Indirect personal carbon emission embedded in eight industry sectors among four prefec-
tures in the Sanjiangyuan region.

4.3. Personal Carbon Emissions and Their Influencing Factors

To explore the main influencing factors of personal carbon emissions (Y), the optimal
scale regression was conducted by adopting X1, X», X3, X4, X5, X4 and X7 as the indepen-
dent variables. The significance levels of the regression equations were mainly p values
of less than 0.05, indicating that the model was statistically significant after the tests for
autocorrelation and heteroscedasticity (Table 5). The tolerance values of each variable in
the model were greater than 0.1 before and after transformation, indicating that the model
did not have collinearity issues. Based on the parameter estimation results of the coefficient
table (Table 6) retrieved from the optimal scale regression model, the independent variables
with strong importance levels (p = 0.05) were selected for analysis. The impact of family
type on personal carbon emissions in the four prefectures all passed the significance test
at the 0.05 level, but the degrees of the impacts were different. The importance values for
family type in the Huangnan Prefecture, the Guoluo Prefecture, and the Yushu Prefecture
all exceeded 0.5. The use of solar energy was not significant in any of the prefectures.
Annual income had significant impacts on personal carbon emissions in the Huangnan
Prefecture, the Guoluo Prefecture, and the Yushu Prefecture. Individuals with different
levels of environmental satisfaction in the Huangnan Prefecture, the Guoluo Prefecture,
and the Yushu Prefecture showed significant differences for their personal carbon emis-
sions. Although their contributions were not high, they still indicated that environmental
satisfaction had an impact on their personal carbon emissions to some extent. According to
relevant research [48], residents’ perceptions of heat and air quality affected their behaviors
in relation to energy consumption. Meanwhile, the grazing prohibitions in the Huangnan
Prefecture, the Guoluo Prefecture, and the Yushu Prefecture Prefecture had significant
impacts on their carbon emissions.
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Table 5. Variance analysis for each model.

Prefecture R? Adjusted R? F P
Hainan 0.223 0.087 1.645 0.108
Huangnan 0.294 0.270 12.285 0.000
Guoluo 0.208 0.193 13.700 0.000
Yushu 0.192 0.170 8.609 0.000

Table 6. Parameter estimation results of the main influencing factors of personal emissions.

Standardized Correlation Tolerance
Coefficient .
Prefecture Variable — (Sig) - - Importance
Beta Coefficient Zero- Partial Cor-  Partial Cor- After Con- Before
Standard Error Order relation relation version Conversion
Number of —0.251 0213 0.258 —0.244 —0.255 —0.233 0.275 0.86 0.85
people in a family
Age structure 0.022 0.069 0.749 0.135 0.024 0.021 0.013 0.898 0.902
Educationlevel ~ —0.335 0229 0.105 0.025 0226 —0.205 —0.037 0.375 0.739
Hainan Annual total 0.468 0234 0.05 0213 0.298 0.276 0.448 0.346 0.685
mcome
Environmental ~0.175 0.125 0.15 ~0.23 ~0.179 ~0.161 0.181 0.84 0.843
satisfaction
Grazing 02 0.136 0.122 ~0.133 ~0.204 ~0.183 0.12 0.837 0.92
prohibition
Number of —0.46 0.047 0 —0.432 —0.476 —0.454 0.676 0.975 0.977
people in a family
Age structure 0.02 0.044 0.64 0.023 0.024 0.02 0.002 0.996 0.995
Education level 0.207 0.047 0 0.162 0.233 0.202 0.114 0.951 0.968
Annual total 0.182 0.05 0 0.14 0.209 0.18 0.087 0975 097
mcome
Huangnan
S"l":lr;fg‘grgy 0.056 0.04 0.166 0.085 0.065 0.055 0.016 0.957 0.978
Environmental —0.104 0.052 0.019 —0.066 —0.118 —0.1 0.023 0.919 0.957
satisfaction
Grazing 0.187 0.044 0 0.128 0.205 0.176 0.081 0.889 0.945
prohibition
Number of —0.346 0.039 0 ~0.353 —0.359 —0.342 0.588 0.976 0971
people in a family
Age structure ~0.092 0.042 0.027 —0.084 ~0.102 ~0.092 0.037 0.984 0.984
Education level ~ —0.048 0.075 0522 ~0.064 —0.054 —0.048 0.015 0.993 0.993
Annual total 0147 0.034 0 0179 016 0.144 0.126 0972 0977
Guoluo income
S"l":f;z:rgy 0.045 0.034 0.185 0.082 0.05 0.045 0.018 0.976 0.976
Environmental —0.124 0.041 0 ~0.163 —0.136 —0.122 0.097 0975 0.979
satisfaction
Grazing —0.146 0.051 0.005 —0.171 ~0.158 —0.143 0.12 0.956 0.961
prohibition
Number of —0.405 0.046 0 ~0.399 —0.402 ~0.394 0.842 0.948 0.979
people in a family
Age structure 0.052 0.043 0223 0.056 0.055 0.05 0.015 0.901 0.887
Education level 0.115 0.055 0.004 0.109 0.123 0.111 0.065 0.937 0912
Annual total 0.105 0.049 0.03 0.042 0.11 0.1 0.023 0.898 0.876
Yushu mcome
S(’lf;rszlg‘:rgy 0.041 0.041 0312 0.008 0.045 0.04 0.002 0.952 0.958
Environmental —0.089 0.042 0.013 —0.114 —0.094 —0.085 0.053 0.921 0.934
satisfaction
Grazing ~0.086 0.047 0.039 0 ~0.092 ~0.083 0 0.943 098
prohibition
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Based on the above parameter estimations of the main influencing factors, household
type was the key factor that influenced the personal carbon emissions in the Huangnan
Prefecture, the Guoluo Prefecture, and the Yushu Prefecture. In order to further explore
the impact of household types on personal carbon emissions, we conducted an LSD test
(Table 7) and found the average personal carbon emissions of single households with three
family members in the Hainan Prefecture were 1.14 t ce higher than those of households
with four family members. Further, individuals in a four-member family emitted 0.53 t ce
more CO, annually than individuals in households with over four members. This indicated
that when the household population exceeded three members, the effect size of the potential
carbon reduction would be weakened when the number of family members rose. There
existed significant differences among the different family types in the Guoluo Prefecture.
The personal carbon emissions were 6.1 t ce CO, /(per household) for two-member families,
3.76 t ce CO, / (per household) for three-member families, 3.11 t ce CO, /(per household) for
four-member families, and 2.31 t ce CO, /(per household) for the families with more than
four members, respectively. Therefore, with increasing numbers of family members, the
average personal carbon emissions of herder households could be reduced in the Huangnan
Prefecture. Such impacts of demographic effects on household carbon reductions were
also observed in the Guoluo Prefecture and partly in the Yushu Prefecture, where there
were no significant differences in the personal carbon emissions between two-member and
three-member families.

Table 7. LSD test results for household type.

Household Type Mean onifi 95% Confidence Interval
Prefecture (Number of Family Members) Difference(I-]J) Standard Error Significance Lower Bound Upper Bound
two three —2.057* 0.673 0.003 —3.386 —-0.729
four —0.916 0.647 0.158 —2.192 0.360
five or more —0.381 0.567 0.503 —1.501 0.738
three two 2.057 * 0.673 0.003 0.729 3.386
four 1.141* 0.494 0.022 0.166 2.116
Hainan five or more 1.676* 0.384 0.000 0.918 2434
four two 0.916 0.647 0.158 —0.360 2.192
three —1.141* 0.494 0.022 —2.116 —0.166
five or more 0.535 0.336 0.113 —0.128 1.197
five or more two 0.381 0.567 0.503 —0.738 1.501
three —1.676* 0.384 0.000 —2434 —0.918
four —0.535 0.336 0.113 -1.197 0.128
two three —0.610 0.650 0.348 —1.885 0.666
four 0.271 0.642 0.673 —0.989 1.530
five or more 1.033 0.636 0.105 —0.216 2.281
three two 0.610 0.650 0.348 —0.666 1.885
four 0.880 * 0.176 0.000 0.535 1.225
Huangnan five or more 1.643 * 0.153 0.000 1.341 1.944
four two —0.271 0.642 0.673 —1.530 0.989
three —0.880 * 0.176 0.000 —1.225 —0.535
five or more 0.762 * 0.115 0.000 0.536 0.988
five or more two —1.033 0.636 0.105 —2.281 0.216
three —1.643* 0.153 0.000 —1.944 —1.341
four —0.762* 0.115 0.000 —0.988 —0.536
two three 2.335* 0.315 0.000 1.717 2.953
four 2.986 * 0.300 0.000 2.398 3.574
five or more 3.782* 0.293 0.000 3.207 4.357
Guoluo
three two —2.335* 0.315 0.000 —2.953 —-1.717
four 0.651* 0.143 0.000 0.370 0.932
five or more 1.447 * 0.128 0.000 1.196 1.698
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Table 7. Cont.

Household Type Mean onifi 95% Confidence Interval
Prefecture (Number of Family Members) Difference(I-]) Standard Error Significance LowerBound  Upper Bound
four two —2.986 * 0.300 0.000 —3.574 —2.398
three —0.651 * 0.143 0.000 —0.932 —0.370
five or more 0.796 * 0.084 0.000 0.631 0.961
Guoluo .
five or more two —3.782* 0.293 0.000 —4.357 —3.207
three —1.447 * 0.128 0.000 —1.698 —1.19
four —0.796 * 0.084 0.000 —0.961 —0.631
one two -1.197 1.094 0.274 —3.345 0.951
three —1.270 1.061 0.231 —3.352 0.812
four —0.025 1.059 0.981 —2.104 2.054
five or more 0.969 1.050 0.356 —1.091 3.030
two one 1.197 1.094 0.274 —0.951 3.345
three —0.073 0.356 0.837 —0.773 0.626
four 1.172* 0.352 0.001 0.482 1.863
five or more 2.167 * 0.321 0.000 1.535 2.798
Yush three family 1.270 1.061 0.231 —0.812 3.352
ushu two 0.073 0.356 0.837 —0.626 0.773
four 1.246 0.226 0.000 0.803 1.689
five or more 2.240* 0.175 0.000 1.896 2.583
four one 0.025 1.059 0.981 —2.054 2.104
two —1.172* 0.352 0.001 —1.863 —0.482
three —1.246* 0.226 0.000 —1.689 —0.803
five or more 0.994 * 0.166 0.000 0.669 1.319
five or more one —0.969 1.050 0.356 —3.030 1.091
two —2.167 * 0.321 0.000 —2.798 —1.535
three —2.240* 0.175 0.000 —2.583 —1.896
four —0.994 * 0.166 0.000 -1.319 —0.669
* indicates p < 0.05.

5. Discussion

Compared with other studies that relied on modeling, this study carried out a
widespread analysis of household carbon emissions based on local widespread surveys,
which could provide further insight into the relationships between carbon emissions and
herder households. After all, official statistics for herder households have not been de-
veloped as well as those for urban and rural households outside of the Qinghai-Tibet
Plateau. Further, the carbon issues of herder households have attracted less attention from
researchers. Zhang et al. (2023) [49] found that with improvements in living standards,
the per capita carbon emissions of non-urban households nearly exceeded those of urban
households, based on the differences between the carbon emissions of urban and rural
households in thirty provinces in China. Qu et al. (2013) [50] investigated the household
carbon emissions in the cold and arid regions of northwestern China, and their results
indicated that herder households in high-altitude highlands potentially exhibited the higher
personal carbon emissions. Further, Xian et al. (2019) [51] revealed that with advancements
in the China Western Development Strategy policy, energy consumption in the Western
plateau region was producing a more severe problem of high-intensity exhaust emissions
than the Eastern coastal areas. Zhang et al. (2023) [16] found that the per capita carbon
emissions of pastoral households in Tibetan areas still were lower than those of the whole
country; however, they would be continuously increased with improvements in living
standards, which could not be neglected. The aforementioned studies all proposed that the
individual carbon emissions of urban and rural households were not consistently greater
than those of herder households in some cases. The contributions of carbon emissions from
herder households to regional carbon emissions cannot be ignored. This study substantially
supported the abovementioned viewpoints based on wide-spread field investigations, and
it provides a new perspective for understanding the impacts of herder households on
climate change.
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Concerning the differences between direct and indirect carbon emissions, we sug-
gested that household carbon reductions should not merely focus on household energy
savings, but also addresses the importance of shifting to low-carbon behaviors for herder
households. For example, the carbon emissions generated by the life-cycles of food con-
sumption accounted for the largest proportion of household emissions, and therefore, mod-
erate reductions in meat consumption could reduce carbon footprints during household
dining [52,53]. Despite this, may be difficult for the ethnic minorities of herder households
to adopt lighter diets without the meat of yak and sheep, since the diets of Tibetans and
other ethnic groups, including Huis, Salas, and Mongolians, have long relied on meat
consumption. However, the waste production during meat consumption could be reduced,
which, to some extent, would contribute to both direct and indirect carbon reductions. Our
findings further confirmed that larger household sizes contributed to reductions in personal
carbon emissions, which may be attributable to the positive impacts of larger families on
food waste reductions. The relevant studies conducted by Song et al. [54], Song et al. [55],
and Zhang et al. [56] directly or indirectly support this viewpoint. Meanwhile, this study
found a negative correlation between grazing prohibitions and personal household emis-
sions. On the one hand, the governmental promotions of grazing prohibitions have raised
awareness about environmental protections, which have guided the herdsmen to embrace
more greener lifestyles with less consumption of fertilizers, pesticides, and fossil energies
during their residential livelihoods, therefore resulting in lower household carbon emis-
sions. On the other hand, the scale and range of livestock grazing are limited by official
grazing prohibitions, and the fossil and non-fossil energy consumption levels related to
animal husbandry have been reduced.

It is undeniable that this study had limitations, and they limited our ability to further
understand household carbon emissions in the Qinghai-Tibet Plateau. In future, the
number of questionnaires during the on-site surveys could be increased to cover more
counties located in other plateau regions within the Qinghai-Tibet Plateau. In addition,
the frequency of the surveys could be appropriately increased to two or more times in one
year, aiming to reveal the seasonal responses of household consumption to climate change.
These elements would strengthen the objectivity of the statistical results and improve
the ability of the relevant analyses to elucidate the roles of herder households in climate
change mitigation.

6. Conclusions

Based on on-site questionnaire surveys, this study estimated direct and indirect house-
hold carbon emissions and explored their influencing factors by using an optimal scale
regression analysis and multiple comparative analysis methods. Our findings indicated
the following: (1) Spatial differences exist in the amounts of household carbon emissions
and their compositions in the Sanjiangyuan region. The regional carbon emissions were
found to be the highest in Nanggqian County and the lowest in Zhiduo County, and the
hotspots with higher regional carbon emissions were concentrated in the eastern part of the
Sanjiangyuan region. (2) The direct personal carbon emissions were higher for the Yushu
Prefecture, and those of the Guoluo Prefecture were the lowest. Indirect carbon emissions
were higher than direct carbon emissions in all four prefectures, and the industry sectors
of food and housing were the two main indirect emission sources. The Hainan Prefecture
exhibited the highest per capita indirect carbon emissions. (3) Household type was the
main factor influencing personal carbon emissions across the prefectures. The larger the
household population, the lower the personal carbon emissions. However, the effect size of
the potential carbon reduction was weakened when the number of family members rose to
more than three. (4) We propose that proper grazing prohibitions and low-carbon dietary
shifting would contribute to lower-carbon herder livelihoods, especially for small-sized
households that should be peer-to-peer targeted by regional government propaganda.
Given the limited financial resources in these less-developed regions, this may help to

82



Atmosphere 2023, 14, 1800

strengthen the implementation of in-depth low-carbon promotions from door-to-door
campaigns across the Sanjiangyuan region and even the overall Qinghai-Tibet Plateau.
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Appendix A

Table A1. The definitions of variables for household characteristics and their corresponding questions
in the questionnaire.

Variable Name

Variable Definition Corresponding Questionnaire Question

Family Type

Single family = 1, A family of two =2, A
family of three = 3, A family of four =4,
Family with many members =5

How many people are there in the family? (Fill in
the blanks)

Age structure

In the first part of the questionnaire, the age of the

Under 18 = 0, 18-65 =1, Over 65 =2 family members was counted. (Fill in the blanks)

Education Level

Tlliteracy = 1, Primary school = 2, Junior
high school = 3, High school/ Technical
secondary school = 4, Junior college = 5,
Bachelor’s degree or above = 6,
(Monastic education: less than 6 years as
primary school = 2, 7 years and above as
junior high school = 3)

In the first part of the questionnaire, the information
table of family members is used to calculate the
educational level. (Multiple choice) Options: Illiterate,
primary school, junior high school, senior high
school/technical secondary school, junior college,
undergraduate and above, monastic education

Annual Income

In the second part of the questionnaire, annual net
Annual personal income (Yuan) income was measured for subsistence activities. (Fill in
the blanks)

Solar Utilization

The third part of the questionnaire, living capital,

Yes=1,No=2 counted the amount of solar energy. (Fill in the blanks)

Environmental Satisfaction

In the fourth part of the questionnaire, ecological policy
Gets better = 1, Stays the same = 2, Gets  and perception: do you think the surrounding grassland
worse =3 has become better in the past ten years? (multiple
choice) Choice: Better, unchanged, worse

Grazing Prohibition

In the fourth part of the questionnaire, ecological policy
and perception: do you think there has been any change
Tighter = 1, Unchanged = 2, Looser =3 in the prohibition of grazing in the surrounding pastures
in the past ten years? (multiple choice) Choice: strict,
unchanged, loose
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Table A2. The definitions of variables for household carbon estimation and their corresponding

questions in the questionnaire.

Variable Name

Variable Definition Inclusion Variable

Corresponding Questionnaire Question

Individual Direct
Carbon Emissions

Animal Manure

In the third part of the questionnaire, the
amount of cow manure and sheep manure
used was counted. (Fill in the blanks)

Direct carbon emissions Coal

from personal energy

The third section of the questionnaire,
livelihood capital, measured coal use. (Fill in
the blanks)

consumption (t ce/year)
Natural Gas

The third part of the questionnaire, livelihood
capital, counted natural gas or liquefied gas.
(Fill in the blanks)

Electricity

The third part of the questionnaire, living
capital, calculates electricity consumption. (Fill
in the blanks)

Individual Indirect
Carbon Emissions

Food

In the third part of the questionnaire, the living
capital is counted the monthly living expenses
(food, oil, meat, vegetables, etc.). (Fill in the
blanks)

Clothing

The third part of the questionnaire, living
capital, calculates the cost of buying clothes.
(Fill in the blanks)

Household Equipment,
Supplies and Services

The third part of the questionnaire, living
capital, statistics furniture, appliances, and
other durable goods consumer spending. (Fill
in the blanks)

Direct and indirect
emissions from personal
energy consumption

Healthcare

In the third section of the questionnaire, living
capital, medical expenses were counted. (Fill in
the blanks)

(t ce/year)
Transportation and
Communication

In the third part of the questionnaire,
transportation cost and communication cost
are counted, respectively. (Fill in the blanks)

Cultural, Educational and
Entertainment Supplies
and Services

In the third part of the questionnaire, living
capital, the expenditure on children’s
schooling was calculated. (Fill in the blanks)

Living

In the third part of the questionnaire, living
capital, the consumption of housing
construction is counted. (Fill in the blanks)

Other Goods and Services

In the third part of the questionnaire, living
capital, counted the cost of human favors and
gifts, weddings, and funerals, respectively. (Fill

in the blanks)
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Abstract: Evaluating the conservation effectiveness of multiple types of protected areas (PAs) on
carbon sequestration services can enhance the role of PAs in mitigating global warming. Here, we
evaluated the conservation status and effectiveness of national parks, nature reserves, forest parks,
geo-parks, and scenic spots on carbon sequestration within the Loess Plateau throughout 2000-2020.
The results show that all existing PA types have good representation and conservation effectiveness
on carbon sequestration. Nature reserves are the most representative of carbon sequestration but are
the least effective in protecting carbon sequestration and are the only ones that are weekly effective
in protecting critical carbon sequestration. The main factors influencing these results are PA size,
2000 precipitation, slope, change rate of evapotranspiration, PA rank, and 2000 evapotranspiration.
We suggest upgrading the critical carbon sequestration distribution areas in scenic spots, forest parks
and geo-parks to national parks or nature reserves in the future and implementing appropriate
protection and restoration measures in low carbon sequestration areas within grassland and wild
plant nature reserves to help achieve the goal of carbon neutrality early.

Keywords: type of protected areas; carbon sequestration services; conservation status; conservation
effectiveness; Loess Plateau

1. Introduction

Human-induced climate change and biodiversity loss pose interconnected emergen-
cies that threaten human well-being [1-3]. Policy frameworks such as the Sustainable
Development Goals, United Nations Framework Convention on Climate Change, Con-
vention on Biological Diversity, and others emphasise that ecological conservation and
restoration should simultaneously contribute to biodiversity conservation and climate
change mitigation [4-7]. Increasing concentrations of greenhouse gases like carbon diox-
ide (COy) are significant contributors to global warming [8,9], accelerated by increasing
deforestation and vegetation degradation [10-12].

Establishing Protected areas (PAs) not only enhances biodiversity conservation [13-15]
but also mitigates global warming by increasing vegetation’s carbon sequestration
services [16,17]. In response to global climate change, most countries are still planning to
reach net-zero carbon emissions by 2050-2070 [18], and the Chinese government has proposed
achieving carbon neutrality by 2060 [19]. Strengthening vegetation’s carbon sequestration
in PAs is a key strategy to achieve this goal [20,21]. China is building a PA system mainly
composed of national parks to address issues of spatial overlap and multiple management
of existing PA types [22]. Given global climate change and the opportunity to integrate and
optimise PAs in China, it is necessary to scientifically assess the conservation effects of different
PA types on carbon sequestration.

Current studies predominantly focus on analysing changes in total carbon sequestra-
tion within PAs. Melillo et al. [16] analysed the changes in carbon sequestration in over
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150,000 PAs worldwide from 1700 to 2005, finding that global carbon sequestration in PAs
was 0.5 PgC per year, accounting for about one-fifth of the annual carbon sequestration
of all terrestrial ecosystems; Tian et al. [23] assessed changes in carbon sequestration in
8133 different types of terrestrial PAs in China from 1980 to 2020, showing that the amount
of carbon sequestration in PAs over past 40 years had significantly increased, with nature
reserves sequestering the enormous amount of carbon, and forest parks sequestering the
highest amount of carbon per unit area, despite a clear downward trend.

Research on conservation effects is not uniform. Internationally, studies tend to analyse
all PAs as a single type. For instance, Duncanson et al. [24] analysed the conservation effects
of 260,000 PAs globally on carbon sequestration between 2000 and 2020 using the propensity
score matching method (PSM), and the results showed that PAs are crucial for climate
change mitigation globally, especially in areas with high carbon sequestration. In China,
the focus is more on the conservation effects of nature reserves on carbon sequestration.
For example, Cao [25] used PSM to analyse the conservation effect of 19 national nature
reserves in the Qinling Mountains on carbon sequestration from 2010 to 2015, finding
that carbon sequestration in national nature reserves increased more than that outside
the reserves. However, Xu et al. [26] used the representativeness evaluation method to
assess the protection status of carbon sequestration in 2412 nature reserves in China during
2010 and found that the representativeness of nature reserves on carbon sequestration was
weak. More research on different PA types regarding conservation effectiveness assessment
is needed, as various methods can yield different results. Exploring the conservation
effectiveness of different PA types on carbon sequestration can help promote the effective
management of carbon sequestration and thus mitigate climate change.

The Loess Plateau, with severe soil erosion and a fragile ecological environment, is
one of the most concentrated regions in China in terms of population, resources, and
environmental conflicts [27]. To curb soil erosion, the Chinese government launched the
Grain for Green Project on the Loess Plateau in 1999, significantly changing the regional
land use pattern [28]. This paper investigates the conservation status and effects of carbon
sequestration in five significant PAs types (national parks, nature reserves, forest parks,
geo-parks, and scenic spots) on the Loess Plateau from 2000 to 2020. The objectives of this
study are (1) to clarify the conservation status and effects of different PA types on carbon
sequestration, (2) to identify the critical factors affecting the conservation effects of carbon
sequestration, and (3) to provide suggestions for subsequent conservation management,
thereby offering scientific support for the integration and optimisation of China’s PAs and
contributing to global goals of carbon neutrality and climate change mitigation.

2. Materials and Methods
2.1. Study Area

The Loess Plateau is a temperate semi-moist and semi-arid transition zone in China
that spans approximately 649,000 km?, accounting for 6.76% of China’s total land area [29].
The region’s average annual rainfall is between 20 and 700 mm, and the vegetation (Figure 1)
from southeast to northwest is warm-temperate deciduous broad-leaved forest, forest
grassland, typical grassland, and desert grassland [30]. In addition, the Loess Plateau is
the world’s largest accumulation area of loess and an essential ecological function area
in the middle reaches of the Yellow River [31]. In order to protect the regional ecological
environment, more than 700 PAs of different types, accounting for 15.1% of the total area of
the Loess Plateau, of which more than 160 are nature reserves, have been established.

2.2. Methods

In this study, we first selected PAs with carbon sequestration functions established
within the Loess Plateau by 2020 and those established by 2000 and earlier. We then
conducted a representative analysis and applied methods based on the strictness of PAs to
evaluate their conservation status and effectiveness in carbon sequestration. Subsequently,
we identified factors affecting conservation effectiveness based on the basic attributes of
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the PAs, such as natural geography, socio-economic, and demographic aspects. Finally, we
provided targeted recommendations to enhance the effectiveness of these conservation
efforts. Figure 2 shows the research flowchart.
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Figure 1. Map of the study area.
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Figure 2. Research flowchart.
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2.2.1. Data Sources

We obtained data on the spatial distribution and basic information of PAs on the Loess
Plateau from the State Forestry and Grassland Administration. To evaluate the conservation
status and effectiveness, we obtained carbon sequestration data from the 2000 to 2020 China
Ecosystem Services Dataset of the Ecological Environment Research Centre of the Chinese
Academy of Sciences, with a resolution of 250 m. Data on influencing factors, including
precipitation, temperature, evapotranspiration, population density, GDP, soil texture, DEM,
and slope, were obtained from the Resource Environmental Science Data Registry and
Publishing System at a spatial resolution of 1 km. We used a spatial resolution of 250 m to
assess the conservation effects of cs, and a spatial resolution of 1 km was used to analyse
the impact factors, both in WGS 1984 Albers coordinates and calculated in ArcGIS 10.8.

2.2.2. Selected Protected Areas

In the current conservation situation analysis, we choose PAs with an area larger than
5 km? and with more vegetation distribution to remove those without carbon sequestration
or lower carbon sequestration functions. Selected five types of PAs, including national
park pilot areas, forest parks, geo-parks, scenic spots, and nature reserves (dominated by
forests, grasslands, wild animal, and wild plant types), to assess the 2020 conservation
status of carbon sequestration in 2020. We only selected the PAs established in 2000 and
before for the dynamic analyses. Because we could not obtain the boundaries of the PAs in
each period, we assumed that the boundaries of these PAs had not changed.

2.2.3. Carbon Sequestration

We used the fixed amount of CO; to evaluate the physical quantity of carbon se-
questration in natural ecosystems, which was calculated by the carbon sequestration rate
method [32].

thoz = MCOZ/MC X (VCSR + SCSR) xS (€))]

where, QfCOZ means the total carbon sequestration (t CO,/a), MNCIE)Z = 44/12, means
the coefficient of conversion of C to CO,, VCSR means the carbon sequestration rate of
vegetation, SCSR means the carbon sequestration rate of soil, and S indicates the area of
each ecosystem type.

The importance of ecosystem services indicates the significance of ecological protection
for different ecological units. Based on the physical amount of carbon sequestration in the
Loess Plateau region, we classified 50% of the area with the highest physical amount as
critical [33].

2.2.4. Conservation Effectiveness

We used spatial overlay analysis and before-and-after comparisons to analyse the
conservation effectiveness of carbon sequestration in PAs. For status quo conservation
effectiveness, we only used the carbon sequestration data in 2020 by using representation
analysis as follows [26]:

PAgrea
—=2 % 100% > ——2 x 100% 2
LPCSZU ~ LPayea @)

For dynamic protection effectiveness assessments, we used the rate of change in the
physical amount of carbon sequestration from 2000 to 2020 as follows:

PAcsy = PAcsw | 1909, > W, x ZECS2 — LPCsw

x 100% 3)
PACS()O L CSoo

where PAcs,, /o0 Means the physical amount (critical amount) of carbon sequestration in
the PAs in 2020/2000; LPcs,, ,, means the physical amount (critical amount) of carbon
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sequestration in the Loess Plateau in 2020/2000; PAgseq,, means the total area of PAs in the
Loess Plateau in 2020; LP,,., means the area of Loess Plateau.

W; means the weights of different PA types were set according to their strictness rating
in China [34]. Prior to the establishment of national parks in China, nature reserves were
set as the strictest type of PAs [35], subdivided into three function zones (e.g., core, buffer,
and experimental), three major categories (e.g., natural ecosystem, wildlife, and natural
relics), and nine types. Only a partial of the experimental zones can be opened to the public
with permission. Natural ecosystem types nature reserves contained representativeness,
typicality, and completeness ecosystems; wildlife types nature reserves focused on rare
wildlife species and their habitats. Other PA types, such as forest parks, geo-parks, and
scenic spots, were less subdivided and relatively more open to the public. Based on that,
the weight of nature reserves is set to 2/3 (when considering nature reserve types alone,
the weight of nature reserves of natural ecosystem types is set to 2/3, the weight of nature
reserves of wildlife types is set to 1/3), the weight of geo-parks, forest parks, and scenic
spots is set to 1/3.

2.2.5. Impact Factors

Using the rate of change in the physical volume of carbon sequestration within PAs as
the dependent variable, Spearman correlation analyses were conducted using SPSS software
to reveal the drivers, such as differences in PAs (e.g., time, area, and area), natural factors
(e.g., dem, slope, temperature, precipitation, evapotranspiration, and soil texture), and
threatening factors (e.g., population density, GDP, and cropland). We define a correlation
coefficient of less than 0.3 as a weak correlation, 0.3 and 0.6 as a moderate correlation, and
greater than 0.6 as a strong correlation.

3. Results
3.1. Conservation Status

Regarding physical quantity, the total amount of carbon sequestration in the Loess
Plateau in 2020 was 277.41 Tg, of which 138.71 Tg is critical. Regarding spatial distribution
(Figure 3), the amount of carbon sequestration shows a pattern that is higher in the southeast
and lower in the northwest. The areas with high carbon sequestration are mainly distributed
in the southern part of the Lvliang Mountains, the southern part of the Taihang Mountains,
the Zhongtiao Mountains, the Ziwu Ridge, the northern part of the Qinling Mountains,
the southern part of the Liupan Mountains, and the Daban Mountains; the areas with low
carbon sequestration mainly concentrated in the northern desert area.

Based on the screening method, a total of 430 PAs (including national park pilot areas,
forest parks, geo-parks, scenic spots, and nature reserves) have been selected, with a total
area of about 70,500 km?2, accounting for 10.85% of the total area of the Loess Plateau in
2020. Regarding spatial distribution (Figure 4a), there are fewer PAs in the central part
of the Loess Plateau, and most of them are distributed in the eastern part. In terms of
the number of PA types (Figure 4b), the number of forest parks is higher, accounting for
51.86% of the total, followed by nature reserves, which account for 27.21%, scenic spots
and national parks account for a smaller proportion of the total, with 6.05% and 0.23%,
respectively. In terms of the area of the types (Figure 4b), the nature reserves accounted for
the largest proportion of the area of the Loess Plateau at 5.70%, followed by forest parks at
2.79%, scenic spots, and national parks accounted for a relatively small proportion of the
area at 0.51% and 0.37% respectively.

In 2020, the total amount of carbon sequestration in the 430 PAs was 104.52 Tg. The
total amount of critical carbon sequestration was 69.44 Tg, which accounted for 37.68% and
50.07% of the total amount of the Loess Plateau, respectively; this is much more than the
proportion of the total area of the Loess Plateau accounted for by the PAs (10.85%). As can
be seen from Figure 5, the conservation effect of carbon sequestration in the five types of
PAs was better, with the proportion of forest parks, geo-parks, and scenic spots exceeding
40% of the proportion of the area. Although nature reserves are more effective in protecting
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carbon sequestration, in terms of specific types, forest and wild animal types of nature
reserves are more effective in safeguarding carbon sequestration. In contrast, grassland
and wild plant types are relatively weaker.
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Figure 3. Spatial distribution of carbon sequestration in Loess Plateau (a) physical quantity;
(b) Importance level.
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Figure 4. The situation of PAs in Loess Plateau in 2020. (a) spatial distribution; (b) amount and area,
where NP: national park, NR: nature reserve, FP: forest park, GP: geo-park, SS: scenic spot; NR-F:
forest NR, NR-G: grass NR, NR-WA: wild animal NR, NR-WP: wild plant NR.

In terms of specific quantities, about 100% of national parks, 88.46% of scenic spots,
75.21% of nature reserves, 72.65% of forest parks, and 60.32% of geo-parks are more effective
in protecting the total amount of carbon sequestration. About 80.95% of forests, 77.27%
of wild animals, 33.33% of wild plants, and 20% of grassland-type nature reserves are
more effective in protecting the total carbon sequestration. About 100% of national parks,
91.30% of scenic spots, 84.62% of geo-parks, 80% of nature reserves, and 77.27% of forest
parks protect critical carbon sequestration well; all wild animals and plants, and 75.38% of
forest-type nature reserves protect critical carbon sequestration well.
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Figure 5. A coverage percentage of different PAs for carbon sequestration and Critical carbon
sequestration in 2020.

3.2. Conservation Effectiveness

During the past 20 years, the total amount of carbon sequestration within the Loess
Plateau increased from 152.48 Tg to 277.41 Tg, increasing about 81.93%. We selected
187 eligible PAs (Figure 6), with a total area of about 36,500 km?, accounting for 5.62% of
the total area of the Loess Plateau. Forest parks had the most significant number of sites,
amounting to 93, followed by nature reserves with 53, scenic spots and geo-parks with
23 and 18 sites, respectively; nature reserves accounted for the largest share of the area,
followed by forest parks, scenic spots, and geo-parks. In terms of the specific types of
nature reserves, the number of forest and wild animal types of nature reserves is higher,
the area of forest and wild plant types of nature reserves accounts for a higher proportion,
and the area of grassland types of nature reserves accounts for a minor proportion.

Total carbon sequestration in the 187 PAs increased from 30.43 Tg to 46.99 Tg, increas-
ing about 54.42%. In terms of specific types, the total amount of carbon sequestration in
nature reserves increased the most during the 20 years, reaching 62.47%, followed by scenic
spots and forest parks, with increases of 52.71% and 52.51%, respectively, and geo-parks
with the smallest increase of 41.34%; despite the high increase in total carbon sequestration
within nature reserves, in terms of specific types, forest and wild animal type nature re-
serves had the most considerable increase of 75.60% and 45.47%, respectively, followed by
wild plant type nature reserves with a rise of 18.42%. However, grass-type nature reserves
showed a certain degree of decline, with a decrease of 3.31%.

The total amount of critical carbon sequestration in the 187 PAs increased from 21.98 Tg
to 31.95 Tg, an increase of about 45.36%. In terms of specific types, the total amount of
critical carbon sequestration within forest parks increased the most during the 20 years, with
50.98%, followed by scenic spots and nature reserves, with 41.64% and 40.30%, respectively,
and geo-parks with the smallest increase of 41.34%. In terms of specific types of nature
reserves, the largest increase in the amount of critical carbon sequestration was in the
forest-type nature reserves, followed by the wild animal-type nature reserves, and there
was no distribution of critical carbon sequestration within the grass and wild plant type
nature reserves.

The results show that during the past 20 years, all four types of PAs have a better
protection effect on carbon sequestration, among which scenic spots and forest parks have
a better protection effect, followed by geo-parks and nature reserves (Figure 7). Only
forest and wild animal types of nature reserves had a better protection effect on carbon
sequestration services. In contrast, grassland and wild plant types of nature reserves had
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a lesser protective effect. For critical carbon sequestration, forest parks, scenic spots, and
geo-parks all have a better protection effect. In comparison, nature reserves have a weaker

protection effect. Regarding the specific types of nature reserves, only wild animal-type
nature reserves have a better protection effect.
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Figure 6. Situation of PAs in Loess Plateau in 2000. (a) spatial distribution; (b) amount and area,
where NR: nature reserve, FP: forest park, GP: geopark, SS: scenic spot; NR-F: forest NR, NR-G: grass
NR, NR-WA: wild animal NR, NR-WP: wild plant NR.

In terms of the number of specific PAs, about 91.30% of scenic spots, 83.87% of forest
parks, 77.78% of geo-parks, and 54.72% of nature reserves are more effective in carbon
sequestration; about 75% of wild plants, 69.23% of wild animals, 56.25% of forests, and
25% of grassland-type nature reserves are more effective in carbon sequestration. About
69.57% of scenic spots, 56.99% of forest parks, 44.44% of geo-parks, and 15.09% of nature
reserves are more effective in protecting critical carbon sequestration; about 53.85% of wild

animals and 15.63% of forest-type nature reserves are more effective in safeguarding critical
carbon sequestration.
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Figure 7. Rate of change in carbon sequestration and critical carbon sequestration by different PAs
types from 2000 to 2020.

3.3. Main Factors

Spearman’s correlation analysis showed (Table 1) that there were many factors af-
fecting the rate of change of carbon sequestration, with highly significant strong positive
correlation with the size of the PAs, highly significant moderate positive correlation with
precipitation, slope, rate of change of evapotranspiration, and the grade of the PAs in 2000;
highly significant moderate negative correlation with evapotranspiration in 2000; highly
significant weak positive correlation with cropland area in 2000; and highly significant
weak negative correlation with silt loam content.

Table 1. Correlation test results.

R CS Change Rate Critical CS Change Rate

PA establishment year 0.169 * 0.107
PA level 0.331 ** 0.221 **
PA area 0.612 ** 0.146 *
DEM 0.042 —0.264 **
Slope 0.380 ** 0.345 **
Silt —0.266 ** —0.453 **
Sand 0.106 0.246 **
Temperature in 2000 —0.03 0.278 **
Rate of temperature change 0.03 0.212 **
Precipitation in 2000 0.418 ** 0.638 **
Rate of precipitation change —0.14 —0.307 **
Evapotranspiration in 2000 —0.313 ** —0.369 **
Rate of evapotranspiration change 0.326 ** 0.605 **
Population density in 2000 0.074 0.235 **
Rate of population density change 0.082 0.025
GDP in 2000 0.099 0.213 **
Rate of GDP change 0.047 0.069
Cropland in 2000 0.281 ** 0.004
Rate of cropland change —0.048 0.046

Notes: * indicates significance at the 0.05 level, ** indicates significance at the 0.01 level.

The factors that were highly significant and strongly positively correlated with the
rate of change of critical carbon sequestration were precipitation in 2000 and evapotranspi-
ration change rate; the only factors that were highly significant and moderately positively
correlated was slope, but they were highly significant and moderately negatively correlated
with evapotranspiration in 2000, silt, and precipitation change rate; and highly significant
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and weakly positively correlated with the temperature in 2000, population density in 2000,
the grade of PAs, GDP in 2000, and the temperature change rate, but highly significant and
weakly negative with DEM; in addition, it was also highly significant and weakly positively
correlated with the size of the PAs.

4. Discussion

This study analysed the conservation status of carbon sequestration in 430 PAs of
five types on the Loess Plateau during 2020 using the representative evaluation method. We
found that, without considering the spatial overlap of different PA types, directly adding
up the areas of all PAs, the 430 PAs accounted for only 10.85% of the total area of the
Loess Plateau but provided 37.68% and 50.07% of the total amount of carbon sequestration
and critical carbon sequestration, which was much higher than the area share of the PAs;
therefore, we believe that PAs on the Loess Plateau are better representative of the carbon
sequestration and the critical sequestered carbon. However, the representativeness of
different types of PAs for carbon sequestration services varies, with nature reserves having
the best representativeness for carbon sequestration, followed by forest parks and geo-
parks, which is consistent with the results of the national study [23], which may be because,
nature reserves as the most stringent type of PAs in China, are established larger than other
types to protect the integrity of the ecosystem [36]. In the case of the Loess Plateau, the
area of nature reserves in the region exceeds that of forest parks by a factor of two and
that of geo-parks by a factor of four. Larger areas generally provide more resources and
habitats, thus supporting greater carbon sequestration [37]. Although nature reserves are
better represented for carbon sequestration services, in terms of specific types, only forest
and wild animal-type nature reserves are better represented for carbon sequestration. In
contrast, grassland and wild plant-type nature reserves show lesser representativeness.
The reason for this phenomenon is that the vegetation types of wild plant type nature
reserves in the Loess Plateau region are dominated by grasslands, which in turn have a
lower carbon sequestration capacity than that of forests [38,39], so overall grassland and
wild plant type nature reserves are weakly represented for carbon sequestration services.

Based on the differences in the degree of protection stringency of different types of
PAs [33], constructing the protection effect of multiple types of PAs on carbon sequestration
services not only identifies the differences in the protection of each type of PAs but also
proposes targeted protection advice which is conducive to the overall improvement of the
protection effect. Until now, China has established more than 11,800 PAs [40], which can
be classified into three types: strict protection, restricted use, and protected use [34,41].
According to the degree of strictness of protection, nature reserves are recognised as the
strict type of reserve. They are divided into three categories and nine types [42]. While
scenic spots, forest parks, and geo-parks can be classified as restricted use types. There are
many nature reserves with complex classification systems, of which nearly 18% have spatial
overlap and cross-cutting management authorities, resulting in ineffective management,
especially in the Taihang Mountains region within the Loess Plateau [43]. Therefore, we
constructed a method for assessing the conservation effect of multiple types of PAs on
carbon sequestration services by setting reasonable weights, considering the variability
of background conditions and the degree of protection stringency of PAs on the Loess
Plateau. Our proposed method is, on the one hand, more scientific than determining
the conservation effect or contribution based only on the increase or decrease of carbon
sequestration in the before-and-after timeframe. On the other hand, it is more convenient
to operate than the propensity score matching method. We have taken into account the
strictness of the protection of different types of PAs, such as nature reserves being the most
strict type; only the experimental area allows part of the scientific research activities, its
management policies, measures, funds, personnel and other aspects of the investment
are higher than other types of PAs, the primary purpose is to protect the main object
from interference [44]. Forest parks, scenic spots, and geo-parks allow a certain degree
of human activities, considering the functions of protection, landscape, recreation, and
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popular science education [45], so there is a difference in the setting of weights. In addition,
the PSM method needs to consider more environmental variables [46]. It even needs to
take relevant policy factors into account. Still, it is difficult to maintain the consistency of
the policy factors implemented inside and outside the PAs, so not all the PAs can be found
in the periphery of the environmental factors of the same matching samples (such as the
PAs of small size, the environmental factors do not match) [47]. The workload is heavier
and not very operable. The reasonable weights we set based on the difference in protection
strictness can quickly and scientifically assess the protection effect of different types of PAs
on carbon sequestration services.

Based on the proposed conservation effectiveness assessment method, we assessed
the conservation effectiveness of carbon sequestration services in 187 PAs established in
2000 and before of four categories in 2000-2020. We found that the total carbon seques-
tration within the Loess Plateau increased by about 81.93% during the 20 years, while the
total carbon sequestration services within the 187 PAs increased by about 54.42%, which
was lower than the increase in total carbon sequestration within the Loess Plateau. This
phenomenon may be due to the unique soil conditions of the Loess Plateau itself, where
soil erosion occurs from time to time in areas not covered by PAs [48]. To combat this
ecological problem, China has dramatically increased the vegetation cover in the region by
implementing long-term natural forest protection projects, grain for green, soil and water
conservation, and other conservation and restoration measures [28,49]. At the same time,
PAs are constrained by relevant policies and laws and cannot carry out too much artificial
restoration [48], so the total increase in carbon sequestration services within the Loess
Plateau was more extensive than that in PAs, but this does not indicate that PAs are less ef-
fective in protecting carbon sequestration. Combining the strict degree of protection of PAs
and the background condition of the Loess Plateau and by setting reasonable weights [34],
we found that all 187 PAs of the four categories have a better protective effect on carbon
sequestration services. Still, scenic spots and forest parks have a better protective effect
on carbon sequestration than geo-parks and nature reserves, forest and wild animal type
nature reserves have a better protective effect on carbon sequestration, and grassland and
wild plant type nature reserves have a weaker protective effect on carbon sequestration,
suggests a need for targeted interventions to enhance their conservation outcomes [50]. The
main reason for this result is that scenic spots, forest parks, forest and wild animals type
nature reserves are mainly distributed in the eastern and southern parts of the Loess Plateau.
In contrast, geo-parks, large nature reserves, grassland, and wild plant nature reserves are
distributed primarily in the northern part of the Loess Plateau. The vegetation type of the
eastern and southern parts of the Loess Plateau is dominated by forests, while grasslands
dominate that of the northern part. In contrast, precipitation and slope in the southeastern
part of the Plateau are higher than in the north, and evapotranspiration is lower than in the
north. Evapotranspiration is a key indicator of water availability and plant health, directly
affecting carbon uptake [51]. Related studies have also shown that high precipitation and
low evapotranspiration are essential influences on the carbon sequestration capacity of
vegetation [52]. For critical carbon sequestration, forest parks, scenic spots, and geo-parks
all have a better protection effect on it. Only nature reserves have a weaker effect on it, but
wild animal-type nature reserves have a better effect. The main reason for this phenomenon
is that there is a spatial mismatch between most of the nature reserves and critical carbon
sequestration [26], which is concentrated in the southeastern part of the Loess Plateau, but
the distribution of nature reserves is more expansive and not focused enough.

Our findings underscore the crucial role of considering PA types and background
conditions when evaluating conservation effectiveness. The outstanding performance of
scenic spots, forest parks, and geo-parks indicates that these PA types may benefit from
management practices prioritising carbon sequestration. Conversely, the relatively weaker
performance of grassland and wild plant nature reserves suggests a need for targeted inter-
ventions to enhance their conservation outcomes, such as carrying out artificial restoration
of degraded grasslands with a multi-species configuration of native grasses with a variety
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of legumes [50,53]. Our results suggest that integrating and optimising the management of
PAs should focus on upgrading the protection level of critical carbon sequestration areas
within scenic spots, forest parks, and geo-parks [54]. Combined with the overlapping
analysis of PAs [55], the area should be included in future national parks or nature reserves
according to the actual situation. Implementing comprehensive protection and restoration
measures in low-performing PAs, particularly grassland and wild plant nature reserves,
can significantly enhance their carbon sequestration capacity. This approach aligns with
China’s broader goal of achieving carbon neutrality and emphasises the dual benefits of
biodiversity conservation and climate change mitigation.

The IUCN classifies PAs into six categories, with category Ia representing strict PAs [56].
Countries around the world have further subdivided PA types based on this. Despite
these differences, all are classified into certain levels of strict protection. Therefore, this
study provides a methodological reference for evaluating the effectiveness of PAs with
varying protection levels in different regions and countries, supporting related international
research, and then mitigating global climate change.

5. Conclusions

This study analysed the conservation status and effects of different types of PAs on
carbon sequestration services within the Loess Plateau from 2000 to 2020. The results
found that: (1) The existing PAs demonstrate good representativeness and conservation
effectiveness for carbon sequestration services, though these vary by type. While stricter
PAs generally show better representativeness, this does not always translate to higher con-
servation effectiveness. For example, nature reserves exhibit the best representativeness for
carbon sequestration, yet their conservation effectiveness is lower compared to other types
of PAs. (2) Factors that positively and significantly affect the conservation effect of carbon
sequestration include the size of the PAs area, precipitation in 2000, slope, rate of change
of evapotranspiration, and PAs class. (3) It is recommended to appropriately upgrade
the protection level of areas with low protection stringency but high carbon sequestration
and to implement necessary restoration measures in areas with high protection stringency
but low carbon sequestration. This approach will not only serve as a reference for the
integration and optimisation of PAs in China but also provide guidance for other regions
worldwide with similar classifications of PAs so that we can comprehensively enhance the
carbon sequestration capacity and help achieve the goal of carbon neutrality.
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Abstract: Atmospheric water vapor is an essential source of information that predicts global climate
change, rainfall, and disaster-natured weather. It is also a vital source of error for Earth observation
systems, such as the global navigation satellite system (GNSS). The Zenith Tropospheric Delay (ZTD)
plays a crucial role in applications, such as atmospheric water vapor inversion and GNSS precision
positioning. ZTD has specific temporal and spatial variation characteristics. Real-time ZTD modeling
is widely used in modern society. The conventional back propagation (BP) neural network model
has issues, such as local, optimal, and long short-term memory (LSTM) model needs, which help by
relying on long historical data. A regional/single station ZTD combination prediction model with
high precision, efficiency, and suitability for online modeling was proposed. The model, called K-RBF,
is based on the machine learning algorithms of radial basis function (RBF) neural network, assisted
by the K-means cluster algorithm (K-RBF) and LSTM of real-time parameter updating (R-LSTM). An
online updating mechanism is adopted to improve the modeling efficiency of the traditional LSTM.
Taking the ZTD data (5 min sampling interval) of 13 international GNSS service stations in southern
California in the United States for 90 consecutive days, K-RBF, R-LSTM, and K-RBF were used for
regions, single stations, and a combination of ZTD prediction models regarding research, respectively.
Real-time/near real-time prediction results show that the root-mean-square error (RMSE), mean
absolute error (MAE), coefficient of determination (R2), and training time consumption (TTC) of the
K-RBF model with 13 station data are 8.35 mm, 6.89 mm, 0.61, and 4.78 s, respectively. The accuracy
and efficiency of the K-RBF model are improved compared with those of the conventional BP model.
The RMSE, MAE, R2, and TTC of the R-LSTM model with WHC1 station data are 6.74 mm, 5.92 mm,
0.98, and 0.18 s, which improved by 67.43%, 66.42%, 63.33%, and 97.70% compared with those of
the LSTM model. The comparison experiments of different historical observation data in 24 groups
show that the real-time update model has strong applicability and accuracy for the time prediction of
small sample data. The RMSE and MAE of K-RBF with 13 station data are 4.37 mm and 3.64 mm,
which improved by 47.70% and 47.20% compared to K-RBF and by 28.48% and 31.29% compared to
R-LSTM, respectively. The changes in the temporospatial features of ZTD are considered, as well, in
the combination model.

Keywords: regional troposphere delay modeling; RBF neural network; LSTM; combinatorial model
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1. Introduction
1.1. Motivations

Climate change and extreme weather are major threats to the sustainability of our
society. As an important greenhouse gas, atmospheric water vapor plays a very important
role in climate change research and weather forecasting, especially in extreme weather
nowcasting [1,2]. The presence of water vapor can lead to tens of meter range measurement
errors. Therefore, it is also an important source of error for earth observation systems,
such as the Global Navigation Satellite System (GNSS) [3]. It also plays a crucial role in
the global water cycle. The water vapor on the Earth mainly comes from the evaporation
of the ocean’s surface. The atmospheric flows transport the evaporated water vapor
over the continent to form precipitation and then return to the ocean through rivers and
underground runoff, thereby forming the atmospheric terrestrial marine water cycle [4-6].
Carbon, nitrogen, and water cycles in terrestrial ecosystems are connected and coupled
with one another, jointly driving the key processes of the balance of carbon revenue
and expenditure in the ecosystem [7]. Global climate change, rising atmospheric CO,
concentration, increased deposition of atmospheric nitrogen, and changes in precipitation
patterns affect the carbon revenue and expenditure balance and carbon exchange capacity
of terrestrial ecosystems at various levels. However, as of now, the key processes of
carbon-nitrogen—water coupling cycles and biological regulation mechanisms in terrestrial
ecosystems must be strengthened to evaluate the carbon exchange function and spatial
pattern of terrestrial ecosystems and their response and feedback to global changes in land
ecosystems accurately. Therefore, exploring carbon-nitrogen-water coupling cycles in
terrestrial ecosystems and their responses and adaptation mechanisms to climate change is
urgent [8]. It can provide a scientific basis for the carbon-nitrogen-water coupling research
in terrestrial ecosystems, increase carbon sinks, and reduce pollution emissions, thereby
helping China achieve its “double carbon” goals.

Zenith tropospheric delay (ZTD) can be divided into zenith hydrostatic delay (ZHD)
and zenith non-hydrostatic delay, which is always called zenith wet delay (ZWD) [9]. ZWD
can be converted into precipitable water vapor, PWV. It is an important factor that affects
GNSS navigation and positioning accuracy. In recent years, with the gradual improvement
of the high spatiotemporal resolution of ZTD products and the more frequent occur-
rences of disastrous weather conditions, such as thunderstorms and typhoons, regional
real-time/near real-time ZTD modeling has gradually become a hot issue in GNSS and
other research fields [10]. This research has important research significance and economic
benefits [11].

According to the different conditions of ZTD model application (mainly referring
to whether meteorological parameters are needed), the ZTD model can be divided into
two categories. The first kind of ZTD model needs measured meteorological parameters
(e.g., atmospheric pressure, water vapor pressure, and temperature), which mainly include
Hopfield, Saastamoinen, and Black models [12]. In the actual navigation and positioning,
meteorological parameters cannot be obtained sometimes, or the obtained meteorological
parameters are unstable, thereby causing inconvenience for navigation and positioning.
Given this problem, many scholars have established a second type of empirical ZTD model
without the use of measured meteorological parameters, which only relies on a large
number of empirical data to establish the mapping among various influencing factors and
ZTD. Considering that the participation of any meteorological parameters is not needed,
the empirical ZTD model, which mainly includes the early UNB series and EGNOS models,
as well as GPT2, GPT2w, and IGGtrop models proposed by some scholars in recent years,
has made great progress [13].

In recent years, with the rapid development of numerical weather prediction (NWP)
and the encryption of GNSS observation stations in the region, empirical models that are
more suitable for a certain region are established by fusing the multi-source observation
data using spatiotemporal analysis methods. Usually, the long-term linear trend of ZTD
is obtained by least-squares [14] and maximum likelihood estimation. The nonlinear
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characteristics of ZTD (e.g., trend features, short-period disturbances [15], and seasonal
periodicities) are obtained by time series analysis methods, such as wavelet analysis [16],
spectral analysis, and intelligent analysis. The relationship between ZTD and topography,
station elevation, latitude, and longitude is analyzed by spatial structure function, iterative
tropospheric decomposition, seasonal Gaussian function, and least-squares collocation
methods [17]. For the alpine area of Switzerland, Wilgan and Geiger [18] presented high-
resolution models of tropospheric total refractivity and ZTD. Different combinations of
data sources, including NWP and GNSS data, were used in the models. Using least-
squares collocation, the tropospheric parameters were interpolated to arbitrary locations.
Chen et al. [19] analyzed the temporal and spatial characteristics of the ZTD data of GNSS
stations of the Crustal Movement Observation Network of China (CMONOC), which was
measured for six years. They also established the ZTD empirical model (SHAtrop) for
mainland China by using the periodic and grid functions. The accuracy was better than
the common empirical models (such as EGNOS, UNB3 m, and GPT2). Zhao et al. [20]
established the high-precision ZTD model of altitude-related correction with China as the
research area. The ZTD residuals were obtained based on the ZTD initial values determined
by the GPT3 model and the GNSS-derived ZTD values. The annual, semi-annual, and
seasonal cycles of the residual were analyzed. Moreover, the relationship between the
residual and GNSS elevation was analyzed. To some extent, the model overcame the defect,
in which the existing empirical ZTD model failed to consider the influence of height on
ZTD well.

Owing to the spatial inhomogeneity and temporal variability of atmospheric density
and the nonlinear relationship among different meteorological parameters [21], ZTD has
the characteristics of dynamic variability, many influencing factors, and strong randomness.
Studying the physical mechanism of ZTD [22,23] is difficult, especially for ZTD’s high
spatial and temporal resolution modeling in areas with rugged terrain and large meteo-
rological contrast [17]. Without explicitly providing the physical mechanism, data-driven
models that use machine learning (ML) approaches have become a hot research topic.
The main tasks of ML include supervised learning (e.g., classification and regression),
unsupervised learning (e.g., clustering and dimensionality reduction), and reinforcement
learning (e.g., control and decision-making), which can deal with nonlinear problems better
and are widely used in data interpolation, modeling, and forecasting. In recent years, ML
technology has been widely used in several fields and has achieved certain achievements
in ZTD modeling. Such models include multi-layer perceptron, adaptive network-based
fuzzy inference system (ANFIS), artificial neural network (ANN), and least-squares support
vector machine (LSSVM) [24]. The most widely used model is the regional tropospheric
model, based on ANN, which realizes the interpolation, prediction, fusion, or improvement
of tropospheric delay correction parameters by inputting different parameters in global
or local areas. Taking the ZTD data of global positioning system (GPS) stations in the
Southern California GPS network as the research object, Wang et al. [25] investigated the
ZTD prediction model by using the backpropagation (BP) neural network algorithm and
by taking the longitude, latitude, and altitude of the station as inputs. To overcome a
large amount of computing volume, proneness to the “over-fitting” phenomenon, and the
problem of model instability of the traditional BP neural network, Xiao et al. proposed
an improved BP neural network to establish a regional ZTD model. The model takes the
normalized geodetic longitude, latitude, and geodetic height as the model inputs, as well
as ZTD as the output [26]. Based on the ZTD data of North America, Li conducted ZTD
modeling using the BP neural network, LSSVM, and radial basis function (RBF) neural
network and systematically evaluated the modeling accuracy, efficiency, and stability of
different models. The results show that the RFB algorithm has the best effect in small-scale
sample modeling, and the BP algorithm has evident advantages in large-scale sample mod-
eling [27]. Shi et al. proposed a long short-term memory (LSTM) network ZTD prediction
model based on Keras platform and compared it with the prediction effects of the BP neural
network model. The experimental results show that the root mean square error (RMSE) of
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the prediction results of the LSTM model reaches the mm level, and its mean absolute error
(MAE) and mean absolute percentage error (MAPE) are lower than those of the BP model.
The accuracy and stability of the LSTM model are significantly improved compared with
those of the BP model [28]. With the comprehensive consideration of the spatiotemporal
information of the GPS stations in West Antarctica, Zhang et al. conducted ZTD modeling
through two blind source separation algorithms, namely, principal component analysis
(PCA), independent component analysis (ICA), and BP neural network and performed
high-precision ZTD prediction using the LSTM network [29]. Li et al. improved the ZTD
correction performance of the GPT3 model in Antarctica using RBF and LSTM models in
terms of space and time, respectively [30]. Zhang et al. proposed a new ZTD time-series
forecasting method that used transformer-based machine-learning techniques [31]. For the
investigation, analysis, and forecasting of ZTD, the global VMF stations provided by the
global geodetic observing system (GGOS) during 2008-2020 were used. Results showed
that forecasted ZTD results were more accurate than those of LSTM, RNN, convolutional
neural network (CNN), and GPT3 series models. Zhang et al. [22] estimated the ZTD of
seven GNSS monitoring stations in China for two consecutive years by using static precise
point positioning (PPP) technology. The K-nearest neighbor (KNN) algorithm was used
to interpolate the ZTD data gap. The ZTD difference values between KNN and periodic
models were trained and predicted by LSTM. The predicted value, combined with the
periodic model (ZTD), restored the final ZTD prediction result (LSTM-ZTD), which was
better than BP neural network modeling. Static PPP verification experiments with the
LSTM-ZTD showed that PPP convergence time was improved in summer, autumn, and
winter compared with GPT2 ZTD. Shamshiri et al. [17] developed a new method based on
ML Gaussian process (GP) regression approach using the combination of small-baseline
interferograms and GNSS-derived ZTD values to mitigate phase delay caused by the tropo-
sphere in interferometric observations. On average, it reduced RMSE by 83%, compared
to 50%, by using ERA-Interim to correct tropospheric data. Zheng et al. [32] developed a
stacked ML model for mapping ZTD into PWV without meteorological parameters. The
fifth-generation European Center for Medium-range Weather Forecast Reanalysis (ERA5)
and radiosonde information were used to assess and validate the model’s performance.
The proposed model performed better than the physical model that used GPT3-derived
meteorological parameters. Other techniques that can sense ZTD can benefit from this
model for real-time PWV retrieval. Chkeir et al. [21] studied nowcasting extreme rain
and extreme wind speed with 3 ML techniques, namely, ANN, LSTM, and LSTM Encoder
Decoder (LSTM E/D), applied to different input datasets from ground-based weather
sensors, GNSS receivers, C-band radars, and lightning detectors. The analysis showed that
the LSTM E/D approach was suitable for the nowcasting of meteorological variables.

1.2. Contributions

Most of the aforementioned ML models focus on BP neural network and LSTM. BP
neural network refers to an adaptive nonlinear dynamic system with strong learning and
memory functions. However, it has the disadvantage of slow convergence speed and
easily falls into local optimum. LSTM can remember long and short-term information and
solves the problem of gradient disappearance and explosion during long sequence training;
however, it cannot be parallelized and is time consuming [31]. The shortcomings of the two
models limit their application ability in real-time high-precision regional ZTD modeling.
With the continuous development of real-time precision positioning technologies (e.g.,
real-time kinematic positioning (RTK), regional continuously-operating reference station
(CORS), real-time PPP (RT-PPP), and integer ambiguity resolution-enabled precise point
positioning (PPP-RTK)) and the frequent occurrence of extreme weather, the use of the ZTD
spatiotemporal information of regional GNSS monitoring stations for regional real-time
ZTD high-precision modeling has become a key technology for real-time precision posi-
tioning and short-term strong convective weather forecasting. The model will exhibit high
precision, spatiotemporal resolution, reliability, and timeliness. It can collect the current
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ZTD data of some regional GNSS monitoring stations to carry out ZTD spatiotemporal
modeling, provide regional atmospheric enhancement products for real-time precise posi-
tioning, offer short-term and imminent forecasting services for strong convective disaster
weather for seconds to hours, and support data bases for the study of mutual conversion
processes, such as condensation and evaporation of water vapor [33]. RBF has the char-
acteristics of high stability, fast convergence speed, and global approximation, and LSTM
has been widely used in ZTD modeling and short-term weather forecast. However, its
algorithmic effectiveness and optimization research in regional real-time ZTD modeling
applications are unsatisfactory. This paper attempts to improve them from the aspects of
modeling efficiency and modeling accuracy.

1.3. Organization

Overall, the proposal of a high-precision ZTD model based on ML algorithms suitable
for online modeling is expected, and the model accuracy is not affected by factors, such as
elevation. The remainder of the paper is summarized as follows. Section 2 uses the ZTD
data (5 min sampling interval) of 13 international GNSS service (IGS) stations in southern
California in the United States for 90 consecutive days. Given that the real-time meteoro-
logical parameters do not need to be inputted based on the three-dimensional coordinates
and time of the participating modeling stations as input, the RBF neural network assisted
by the K-means cluster algorithm (K-RBF) is used to construct a regional ZTD prediction
model. In addition, based on the single station ZTD non-full life cycle historical time series
data (few epochs), the single station ZTD prediction model is established by using the
LSTM of real-time parameter updating (R-LSTM). Finally, based on the two ZTD mod-
els, a regional/single-station ZTD prediction model combined with K-RBF and R-LSTM
(KR-RBE-LSTM) is proposed. Section 3 presents the modeling results of the three different
ZTD models. Section 4 discusses the modeling effect in terms of modeling efficiency and
accuracy. Section 5 presents the conclusion and mentions the limitations of this work and
future research direction.

2. Materials and Methods
2.1. Study Region and Datasets

The final ZTD data of 13 IGS monitoring stations in southern California are selected
(ftp:/ /igs.gnsswhu.cn/pub/gps/products/troposphere/new, accessed on 11 December
2022). The plane position of the station and its elevation distribution are shown in
Figures 1 and 2, respectively. The data period is 90 days, that is, from 12 June 2021 to
9 September 2021. The day of the year (DOY) is from 163 to 252. The sampling interval is
5 min. The final ZTD data are used to simulate ZTD real-time or near real-time modeling.
In K-RBF modeling, in t epoch, the data of 12 stations are used for modeling, and the
remaining station data are used for accuracy verification. For R-LSTM modeling, for a
station on the i-th day, when the epoch t = 6, the data of the first five epochs at the day are
used for modeling, and the data of the current epoch t are used for accuracy verification.
When t > 6, the data of epoch t-1 are used for modeling, and the data of the current epoch ¢
are used for accuracy verification. KR-RBF-LSTM modeling is performed on the basis of
the two aforementioned modeling methods. The modeling results of the first five epochs of
each day are removed to compare the accuracy of different models. For 1 of the 13 stations,
283 epoch predicted data are involved in the statistical analysis of the model accuracy in a
day, and 25,470 epochs are involved in the accuracy statistics for 90 consecutive days.
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Figure 1. IGS monitoring station distribution map. Note: The station names are BILL, CIT1, CMP9,
CRFP, HOLP, JPLM, LBCH, ROCK, SFDM, TAB1, TORP, TRAK, and WHC1, and their corresponding
station numbers are 1,2, ... ,13.
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Figure 2. IGS monitoring station elevation distribution.

2.2. Methods
2.2.1. K-Means Clustering-Assisted RBF Neural Network Region ZTD Modeling

RBF neural network is a three-layer feedforward network with a single hidden layer.
The first layer corresponds to the input layer, which is composed of signal source nodes.
The second layer is the hidden layer, and the number of nodes in this layer depends on
the needs of the problem. The conversion function of neurons in the hidden layer, namely,
the RBF, is a non-negative linear function with radial symmetry and attenuation to the
center point. The third layer is the output layer, which is the response to the input mode.
The basic idea is to use RBF as the “base” of the hidden unit to form the hidden layer
space. The hidden layer transforms the input vector and transforms the low-dimensional
input data into the high-dimensional space so that the linear indivisible problem in the
low-dimensional space can be linearly separable in the high-dimensional space.

For ZTD region modeling, the problems to be solved are presented as follows. Giving a
dataset D = {xi,zﬁ}gzl and assuming that the dataset is generated by an unknown function
z = f(x), a function as close to z = f(x) as possible is learned by the dataset D. For any
feasible kernel functions K(x;, x;), the function of the required solution can be expressed as:

f(x) =Y aiK(x;,xj) +b, 1)

i=1

where 7 is the parameter to be solved, and b is a constant.
From the sparse point of view, the RBF neural network adopts pruning ideas to achieve
sparsity. First, an unsupervised learning process is performed on the input in the training
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data. A set of center vectors is selected in advance, and the number is less than the number
of the original data. Subsequently, all the training data are used to learn the weights in
Equation (1). The methods for selecting the RBF neural network center vector include
orthogonal least-squares method [34], clustering method [35], and K-SVD method [36]. In
the clustering method, not only the center vector can be determined, but also the sample
covariances that belong to a certain type of data can be used as the covariance of RBF. In this
paper, the K-means clustering method is used to obtain the center vector and covariance
matrix [37]. The following anisotropic covariance matrix is defined as the kernel function:

RBF;(x) = exp[—(x — &) P, (x — &), )

where ¢; and P; represent the center vector and covariance matrix of the j-th RBF, which are
obtained by K-means clustering, respectively:

(1) Randomly select k objects, which indicate the initial centers of the k clusters to be
divided. The number of k can be preferred by the k-fold cross-check or bootstrap
method. In this paper, the value of k is selected as 1.

(2) Calculate the distance between each point and the center point and find the center
with the shortest distance as the new center point of each cluster.

(3) Calculate the average value (centroid) of all objects in each cluster as the new center
point of each cluster.

(4) Calculate the distance between all objects and the new k centers again and redistribute
all objects to each cluster according to the nearest distance principle.

(5) Repeat the above steps until all cluster centers remain unchanged (the distance be-
tween the newly generated cluster and the previous cluster is less than a set threshold).
This is the end of clustering.

After determining ¢; and P;, the function model to be established becomes:

z= Zﬁ]RBF (x) = Zﬁ;eXP[— x_gj) j (x_i:j)]/ 3

where f; represents the weight vector.
It can be written in the form of the following observation equation:

Z+e=Bp, )

where Z represents the true value of ZTD, e denotes other unmodeled noises, and the [ x m
matrix B is expressed as follows:

[B]; ; = exp[—(x; — &P - &) (5)

The m x 1 weight vector B in Equation (5) is estimated by using the least-squares
method [14]:
g = (B'B) 'Bz. ©6)

The form of the observation equation can be seen as a trained estimator, that is, the
regional ZTD model. In practical applications, the estimator is trained by using the ZTD
data of the modeling station, and the corresponding ZTD can be estimated by inputting the
coordinates and time of the prediction station inside or outside the area.

The ZTD region modeling flow chart is shown in Figure 3:
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Figure 3. ZTD region modeling flow chart.

2.2.2. Real-Time Parameters Updating LSTM Single-Station ZTD Modeling

LSTM neural network is a variant of recursive neural network (RNN), and LSTM
expands its memory ability [38]. This feature enables LSTM to make ZTD prediction in an
environment where meteorological information with evident advantages, stronger feasi-
bility, and higher stability than the traditional ZTD acquisition method, such as Hopfield
model, cannot be obtained [21].

However, the traditional LSTM cannot reasonably use the online ZTD value derived
from GNSS techniques, such as PPP-RTK and RT-PPP. From the perspective of real-time
ZTD modeling, a single-station ZTD modeling method with R-LSTM is given. The LSTM
network refers to an online update mechanism for LSTM learning that minimizes the
cost function. It can establish a practical model with only a small number of non-full life
cycle samples (seconds to hours). The modeling idea is that: first, the reasonable use of
known historical data is necessary to establish the LSTM prediction model. Second, when
the actual online data are obtained, the corresponding prediction value can be achieved
using the selected prediction. The new data at the next epoch can be used as the actual
value of the prediction value. The error between the predicted value and the true value is
added to the overall error of the sample. Finally, the error minimization method is used
to update the model parameters iteratively. With the increasing use of online data, the
model’s accuracy increases over time by updating the loop parameters. This modeling idea
is more conducive to ZTD online modeling and prediction. The implementation steps of
the R-LSTM prediction algorithm are presented as follows:

Assuming that the actual time series is X(x1,x2,x3...... Xy), the improved LSTM
calculation steps are presented as follows:

X1 X2 ot Xp_k41

X2 X3ttt Xp—k42

(1) The actual time series X(x1,x2,...,%,) isextended to X | *3 ¥4~ Xn—k43
Xk Xk+1 0 Xn

where 7 is the time series length, k is the sample dimension, n — k + 1 is the number of
samples, and y = (xg, Xk 1, - - - Xn) is the training data label. X is normalized:

.
X= 2 = 2
VAP X1+ X

(i=1,2-,n—k+1), @)

110



Atmosphere 2023, 14, 303

@

©)

@)

©)

(6)

@)

Initialize network parameters and set super parameters:

Wg = rand(L, N)
by = rand(1,N)
: , ®)

Error_Cost = M,
Max_iter = My

where Wy and by represent the initial weight and bias of the forgetting gate, respec-
tively. The symbol rand () represents a random function; and L and N represent the
number of LSTM cell units and the number of neuron layers, respectively. Similarly,
the initial weights and biases of the input gate, the output gate, the cell state, W;, b;,
We, be, Wy, by, and other parameters also need to be initialized. Error_Cost and Max
_ iter represent the error threshold and the maximum number of hyperparameter
iterations, respectively.
Calculate what information needs to be forgotten from the cell state at time f - 1.
{ft = U(AWf 1, %] + by) )
fr=fi®Ci '

where f; is the output of the forget gate. The symbol ¢( ) represents a sigmoid
activation function. i;_; is the output value of the LSTM at the previous moment. x;
is the input value of the network at the current moment. C;_; is the cell state at the
previous moment. The symbol ® represents the point multiplication operation of the
two vectors.

Calculate which input information can be left in the cell state at time .

~ it = (T(Wi . [ht,l,.X'{] + b,)
Cy = tanh(WC . [I’thl,xt] —+ bc), (].0)
it =1 ®C

where i is the output of the input gate and determines what values will be updated.
The symbol tanh () represents a hyperbolic tangent activation function. Cy is a vector
of new candidate values created by the tanh function.

Calculate the cell state C; at time t.

Cr=fi+i, 11)

where C; is the result of the combined actions of the forget gate and the input gate on
the cell states in Equations (9) and (10).
Calculate the network output at time ¢.
0y = (T(Wg . [l’lt,l, Xt] -+ bo) (12)
hy =0t ® tanh(Ct) !

where o; is the output of the output gate. I is the predicted value at the current
moment. Repeat Steps 3 to 6 to calculate the predicted values / of all training samples.
Calculate the errors between the predicted values and the true values of all samples.

1
Jio) (v, s W, b) = S|ly — B[, (13)

where | () represents the cost function. The minimum value of the function in
Equation (13), namely, the optimal solution error<Error_Cost, or the current number
of iterations iter > Max_iter, are considered. Thus, the training ends. Otherwise, the
BPTT algorithm is used to update the network parameters, and one is added to the
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number of iterations, and then the processing returns to Step 3 for circulation. It exits
the loop until the error threshold or maximum number of iterations is reached. The
following trained network parameters are saved:

90 = (Wf/ Wi/ WCIWOICIh!bf/bile/bO)/ (14)
(8) Update parameters in real time according to online observation data. The new sam-
ples, X,11(Xy k12, Xp41) and 6y, perform the forward operation of the LSTM
shown in Steps 3-6 to obtain the predicted value h,.;. When the data
Xn+2(Xy ka3, - - - xnso) are collected, they can be used as the true value label of the
predicted value h,, 41 to calculate the overall error:
1 2
error = error + E(h,ﬁ_l — Xp42)°. (15)
Then, the BPTT algorithm is used to update the model parameters to 6;:
91=(Wf7/\><AWf,“-,bf*/\XAbf), (16)
where A is the learning rate; and AWf and Ab ' are the gradient matrices and vectors
of the weights and biases of each layer of neurons, respectively. The parameter
initialization corresponds to the global optimal solution of the historical sample.
Hence, when the new sample is added, the global optimal solution can be achieved
again with only a few simple steps of updating.
The improved LSTM flow chart is shown in Figure 4:
21D data of Initialize the ZTD Prediction
modeling station network with trained
¢ model parameters A
* N
Data preprocessing (1) There is a new
N e to foi
v ¢ ¥ Add a new sample (8) sample to join
Parameter X
initialization (2)
Use BPTT Save trained model
Wysbyoe My, M, algorithm to update parameters ™
T 91 the network
v 3) parameters
LSTM forward | to
lculati h error <M
cahcu ation (6) (7) or (8) - 1
iter >M
Collect data online (8) Caleulate the total ’
2 error > (7)

Figure 4. ZTD single station modeling flow chart. Note: The serial number refers to the corresponding
calculation steps.

In addition, the model can be applied to the early warning of severe convective

weather. In Steps 6-8, when the predicted value of ZTD at the next sampling time reaches
the warning value of severe convective weather, the warning information is issued to
make emergency response in time. As a result, the economic losses to industrial and
agricultural production will be reduced, and the utilization rate of water resources will be
improved [39].
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2.2.3. Regional/Single Station ZTD Combination Model

Based on the regional and single station ZTD model above, the regional/single station
ZTD combination model is obtained by weighting:

Weightly = a, Weight', = b, (i = 1)

[1,i-1]
L RMSE )
Weightt, = S — (i=2,3,...,N
SUR = RmsElT T RasED T ( ) , (17)
[1,i-1]
L RMSE .
Weights = i [LH],(Z =2,3,...,N)

RMSEy" ™ +RMSE{

where N is the total number of epochs. Weighth, and Wegliti represent the weights applied
to the ZTD predicted by the regional and single station ZTD models in the i-th epoch, respec-

tively. 2 and b represent the corresponding empirical weights, and a + b =1. RMSE l[al’ifl]

and RMSE [51’171] represent the RMSE of the i — 1 predicted values of the regional and single
station ZTD models before the i-th epoch, respectively.

The weights are gradually updated by comprehensively considering the new predicted
value weights of the two models in the prediction process and the error level of the predicted
values of the previous stage. According to the weighting scheme in Equation (18), the ZTD
that corresponds to the combined model in the i-th epoch is presented as:

[ = [, x Weighth, + L« Wei t',
ZTDg = ZTDy x Weighty + ZTDg x Weighty 18

where Z TDE, zZ TD%andZTDg represent the ZTD prediction values of the combined model,
the regional model, and the single station model in the i-th epoch, respectively. ZTD’C is
obtained by weighting the two other models.

2.2.4. Accuracy Evaluation Criteria

The RMSE, MAE, coefficient of determination (R2), and training time consumption
(TTC) are used as the evaluation indexes of prediction model accuracy and efficiency.
The computation is executed on a personal laptop with an Intel Core i7-10750H CPU at
2.60 GHz and with 16 GB of RAM. RMSE is used to measure the deviation between the
predicted value and the true value of the model. MAE corresponds to the average of
absolute error. No positive and negative offsets are observed because the deviation is
absolute. Hence, the actual situation of the predicted value error can be reflected better. R2,
also known as the goodness of fit in statistics, can measure the degree to which a variable
is explained by another variable. Its value is between 0 and 1, which determines the degree
of fitting among variables. The larger the value, the higher the correlation. TTC is used to
measure the modeling efficiency of the model, which is particularly important for real-time
modeling. The calculation formula of accuracy indicators, such as RMSE, MAE, and R2, are
presented as follows:

1N )
RMSE = ,| =Y (P, — M;)7, (19)
Ni:l
1 N
MAE = Ni;m - M, (20)

N
)y
R2 = i=1 , (21)
N
\/ Y. (M; — M)’ (P, — P’
i=1

where M; and P; are the true and predicted values on the test set, respectively. M and P are
the corresponding average values; and N is the number of predicted samples.
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3. Results
3.1. Regional Modeling Results

To verify the modeling accuracy and efficiency in the regional modeling, the modeling
effects of different amounts of modeling data are compared and analyzed. Two sets of
experiments were carried out. The first set of experiments (K-RBF-0) did not use historical
data in the modeling process. The second set of experiments (K-RBE-5) used the five nearest
consecutive epoch historical data in the modeling process. Figure 5 shows the accuracy
and efficiency statistics results of 13 stations of K-RBF model for 90 days.

RMSE MAE
127 mean: 8.35/8.83 ' 107 mean: 6.89/7.27
g 10 min: 5.66/6.7 ,g min: 4.55/5.45,
g E
a a
= 8 = 6 \
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Figure 5. K-RBF model accuracy and efficiency statistics results of K-RBF-0, K-RBF-5 experiments.

3.2. Single Station Modeling Results

The relationship between the amount of historical data and the accuracy and efficiency
of modeling is analyzed using the conventional LSTM model as a reference to verify the
modeling accuracy and modeling efficiency for the single station modeling. Taking the
WHC1 station as an example, the ZTD data of the first 5,12 x i (i=1,2, ..., 23) epochs of
each day are selected for modeling, and the ZTD of the current epoch is used for accuracy
verification. A total of 24 sets of experiments are recorded as Group1, Group?2, ... , Group24.
Figure 6 shows the accuracy statistics results of R-LSTM and LSTM models for the 24 groups
of experiments for 90 consecutive days. Figure 7 shows the true values, predicted values,
and the differences of both changes in the two models in the Group1 experiment.

3.3. Regional/Single Station Combination Modeling Results

To improve the real-time performance of modeling as much as possible, we select the
K-RBF-0 group experimental method in the K-RBF regional modeling and the Group1 group
experimental method in R-LSTM single station modeling for KR-RBF-STLM combined
modeling. Table 1 and Figure 8 show the accuracy and efficiency statistics results of
13 stations for the three models for 90 days. The distribution of the modeling errors of
various models is also compared and analyzed. Figure 9 shows the true values, predicted
values, and the differences in the changes in the three models at the CIT1, JPLM, LBCH,
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and TORP stations. Figure 10 shows the error distribution of the three models at 13 stations

for 90 days.
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Figure 6. Accuracy and efficiency statistics results of 24 groups of experiments of R—LSTM and
LSTM models.
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Figure 7. Variations in the true values, predicted values, and errors of the R-LSTM and LSTM
modeling in the Group1 experiment of WHC1 Station. Note: The data—free period in the figure is
caused by the absence of true value data in this period.
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Table 1. Statistical results of prediction accuracy and efficiency of K-RBF, R-LSTM, and KR-RBF-

STLM models.
Increasing Increasing Increasing Increasing
RMSE/mm Rate/% MAE/mm Rate/% R2 Rate/% TTCls Rate/%
Station
Number K-RBF/R- K-RBF/R- K-RBF/R- K-RBF/R-
LSTM/KR- Imp1/Imp2 LSTM/KR- Imp1/Imp2 LSTM/KR- Imp1/Imp2 LSTM/KR- Imp1/Imp2
RBF-LSTM RBF-LSTM RBF-LSTM RBF-LSTM
1 10.85/6.74/5.25 51.63/22.09 9.11/5.92/4.38 51.94/26.10 0.46/0.98/0.90 49.05/—-8.18 5.31/0.18/5.49 —3.30/—-96.70
2 6.16/6.18/3.95 35.86/36.10 5.01/5.31/3.36 33.07/36.75 0.76/0.97/0.96 20.97/-1.80 5.26/0.18/5.44 —3.31/-96.69
3 8.07/5.74/4.29 46.83/25.28 6.46/4.98/3.49 45.95/29.85 0.61/0.98/0.92 33.72/—-6.23 4.87/0.19/5.06 —3.70/—96.30
4 12.01/6.83/5.26 56.22/22.93 10.04/5.88/4.40 56.16/25.09 0.42/0.98/0.92 54.66/ —6.00 4.46/0.18/4.63 —3.84/-96.16
5 7.01/5.96/3.74 46.72/37.35 5.77/5.09/3.13 45.80/38.59 0.75/0.98/0.96 22.02/-2.24 5.17/0.21/5.38 —3.88/—-96.12
6 7.73/6.28/4.62 40.28/26.52 6.39/5.50/3.79 40.59/31.05 0.60/0.97/0.89 32.81/-8.05 4.56/0.18/4.74 —3.77/-96.23
7 7.50/5.73/3.85 48.65/32.82 6.25/4.92/3.23 48.28/34.33 0.68/0.98/0.95 27.86/—3.27 4.27/0.18/4.45 —4.05/-95.95
8 8.48/5.85/4.23 50.04/27.63 6.98/5.05/3.52 49.53/30.26 0.61/0.98/0.93 34.27/-5.03 4.99/0.18/5.18 —3.54/-96.46
9 11.15/6.11/4.62 58.56/24.37 9.27/5.22/3.86 58.36/26.05 0.50/0.98/0.93 46.79/ —4.64 5.20/0.18/5.38 —3.30/-96.70
10 9.55/6.23/5.15 46.03/17.22 7.90/5.56/4.19 46.98/24.69 0.48/0.97/0.86 44.23/-11.73 4.69/0.18/4.87 —3.68/—96.32
11 6.08/5.89/3.77 38.02/35.98 4.89/5.13/3.16 35.51/38.48 0.75/0.98/0.94 20.18/-3.37 4.20/0.19/4.38 —4.28/-95.72
12 8.31/5.70/4.23 49.07/25.73 6.92/4.93/3.55 48.64/27.86 0.60/0.98/0.90 33.53/-7.74 4.58/0.19/4.76 —3.92/—-96.08
13 5.66/6.15/3.81 32.57/37.98 4.55/5.32/3.22 29.19/39.51 0.78/0.97/0.95 18.46/—2.40 4.58/0.19/4.77 —3.90/-96.10
mean 8.35/6.11/4.37 47.70/28.48 6.89/5.29/3.64 47.20/31.29 0.61/0.98/0.92 33.51/—-5.43 4.78/0.18/4.96 —3.71/-96.29
min 5.66/5.70/3.74 33.94/34.47 4.55/4.92/3.13 31.20/36.43 0.42/0.97/0.86 51.54/-11.73 4.20/0.18/4.38 —4.28/—-95.94
max 12.01/6.83/5.26 56.22/22.93 10.04/5.92/4.40 56.16/25.68 0.78/0.98/0.96 19.10/—-2.24 5.31/0.21/5.49 —3.30/—-96.20
Note: (1) Imp1 and Imp?2 refer to the modeling result increasing rate of KR—RBF—LSTM relative to K—RBF and
R—LSTM, respectively; (2) The predicted time consumption of all prediction models is within 0.02 s, with no
significant difference. Hence, it is not listed here.
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Figure 8. Accuracy and efficiency changes in K-RBF, R-LSTM, and KR-RBF-STLM models at
different stations.
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Figure 9. Variations in the true values, predicted values, and errors of the K-RBF, R-LSTM, and
KR-RBF-LSTM. (a) CIT1, Station number 2.; (b) JPLM, Station number 6.; (c) LBCH, Station number 7;
(d) TORP, Station number 11. Note: The data—free period in the figure is caused by the absence of
the true value data in this period.
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Figure 10. Error distribution of prediction results of K-RBF, R-LSTM, and KR-RBF-STLM models.

4. Discussion
4.1. Regional Modeling

Figures 1 and 5 suggest that:

(1) The mean, minimum (min), and maximum (max) of K-RBF-0 experiment are
slightly higher than those of K-RBF-5. RMSE, MEA, and R2 are improved by 5.43%, 15.66%,
1.04%, 5.26%, 16.57%, 0.61%, 5.67%, 1.92%, and 8.22%. The mean, min, and max of TTC
are greatly improved by 63.84%, 63.64%, and 64.49%, respectively. The main reason is that,
with the increment in sample data, the total calculation time of the distance between each
data and the center point in Equation (2) will increase. At the same time, the number of
K-means clustering is not optimized and adjusted, thereby increasing time and slightly
decreasing accuracy.

(2) The K-RBF-0 model has high accuracy and effectiveness. The means of RMSE,
MAE, and R2 are 8.35 mm, 6.89 mm, and 0.61. Therefore, this model can meet the real-time
forecasting needs for 4.78 s updates because the K-RBF model is simple, fast, robust, and
highly accurate.

(3) For the K-RBF modeling, the accuracy of each station has certain differences. The
distribution and density of the stations have a particular influence on the modeling accuracy.
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The accuracy of the station in the modeling area is higher than that outside the modeling
area. For example, the accuracies of CIT1 (2), CMP9 (3), HOLP (5), and JPLM (6) stations
are better than those of BILL (1), CRFP (4), SFDM (9), and TAB1 (10). The accuracy of the
station in the dense area of the modeling station is higher than that in the sparse areas, such
as TROP (11), TRAK (12) and BILL (1), and CRFP (4). Although they are all outside the
modeling area, the modeling accuracy of the first two stations is better than those of the
two latter stations because of the dense stations around the former. The main reason is that
ZTD has a certain correlation in space. The more uniform the distribution of stations is, the
higher the density is, and the higher the modeling accuracy is [40].

4.2. Single Station Modeling

Figures 6 and 7 illustrate that:

(1) The RMSE and MAE of the R-LSTM model increase first and then stabilize with
the increasing amounts of historical data. No significant increase was observed after the
numbers of historical epochs exceeded 36. The mean values of the RMSE and MAE in
Group3 to Group24 are 2.83 mm and 2.49 mm, respectively. R2 shows a slow downward
trend, that is, from 0.98 to 0.80. TTC shows a gradual upward trend in mean, min, and max,
which are equivalent to 2.02, 0.18, and 3.98 s, respectively.

(2) The RMSE, MAE, and TTC of the LSTM model show a gradual upward trend with
increasing amounts of historical data, and R2 shows a gradual upward trend and a slow
downward trend. When the number of historical epochs is 276, the RMSE and MAE are
optimal at 0.77 mm and 0.66 mm, respectively. However, R2 is slightly lower than that of
the previous group of experiment (Group23), and TTC is 56.44 times that of the R-LSTM
model. When the number of historical epochs is 192, the accuracy of the two models is
close, but the TTC difference is 56.81 times.

(3) When historical data are sulfficient, the R-LSTM and LSTM prediction methods are
effective. However, when the historical data are insufficient, the LSTM prediction effect is
poor, and the R-LSTM method is still better. In the Group1 experiment (the experimental
results are shown in Figure 8), the RMSE, MAE, R2, and TTC of the R-LSTM model are
6.74 mm, 5.92 mm, 0.98, and 0.18 s, respectively. Compared with those of the LSTM model,
these values are improved by 67.43%, 66.42%, 63.33%, and 97.70%, respectively. The R-
LSTM model can predict the trend of ZTD, whereas the prediction results of the LSTM
model gradually changed linearly. For the epoch of dramatic changes in ZTD, such as the
3679th, 12,354th, and 21,489th epochs, the prediction results of R-LSTM are significantly
better. The main reason is that the training samples of the LSTM model are insufficient in
this case, and the parameters of the R-LSTM model can be updated in real time.

4.3. Regional/Single Station Combination Modeling

Table 1 and Figures 1, 2 and 8-10 show that:

(1) The mean, min, and max of the RMS, MAE, R2, and KR-RBF-LSTM relative to
K-RBF are improved by 47.70%, 33.94%, 56.22%, 47.72%, 31.20%, 56.16%, 33.51%, 51.54%,
and 19.10%; TTC is increased by 3.71%, 4.28%, and 3.30%. Compared with R-LSTM, the
mean, min, and max of RMS and MAE are improved by 28.48%, 34.47%, and 22.93%, as
well as 31.29%, 36.43%, and 25.68%, respectively. R2 is reduced by 5.43%, 11.73%, and
2.24%, and TTC is increased by 96.29%, 95.94%, and 96.20%. In general, the accuracy of
the KR-RBF-LSTM model is the best mainly because the combination model relates the
advantages of the two models. That is, K-RBF can consider the spatial correlation of the
stations, and R-LSTM can consider the temporal correlation of the stations. When the two
are combined, the spatial and temporal correlations can be considered. Specifically, this
advantage is more obvious in the epoch where the ZTD changes greatly. The R-LSTM model
has the best real-time performance. The main reason is that the parameters of the model
can be updated in real time and can quickly reach the global optimal state. Its training
samples are only five historical data of a certain station, whereas the training data of other
models are 2.40 or 3.40 times greater than that. Compared with the BP neural network
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model, the K-RBF model can avoid the problem of the unstable model and time-consuming
training due to the lack of training samples. It exhibits a certain improvement in terms of
accuracy and efficiency [24,41,42].

(2) The distribution of modeling stations will affect the K-RBF modeling effect to a
certain extent, and the influence on the KR-RBF-LSTM model weakens. No significant
difference is observed in the accuracy indicators of each R-LSTM station. The main reason
is that the ZTD has spatial and temporal correlations. The strength of spatial correlation
varies for the distribution of different stations. The regional model considers the spatial
correlation of stations, and the combined model further considers the time correlation of
stations. However, the influence of other stations is ignored in the single station model,
which is only related to the small amount of historical data of the station and the physical
change degree of the ZTD itself.

(3) The errors of the three models are subject to normal distribution, indicating that
the models established in this paper are reasonable. At the same time, the error distribution
of the KR-RBF-LSTM model is better than those of K-RBF and R-LSTM, and its standard
deviation (STD) is improved by 50.98% and 28.43%, respectively.

(4) Although ZTD and station elevation are correlated [20] and the elevation of some
stations in the study area fluctuates greatly, the prediction accuracy of the three models
does not show a strong correlation with the station elevation. The main reason is that the
K-RBF and KR-RBF-LSTM models consider the influence of elevation. The R-LSTM model
can gradually optimize and update the established model parameters according to the ZTD
data obtained at each epoch.

(5) The real-time/near real-time application of the three models can be selected accord-
ing to the user’s needs. Under the condition that no historical data are in the prediction
station, the real-time ZTD data of the regional monitoring station exist around it, and the
K-RBF model can be selected to provide high-precision ZTD enhancement products for
RTK, PPP-RTK, and other positioning modes. Under the condition that the prediction
station has a small amount of historical data (which can be obtained by empirical model),
but no ZTD data of regional monitoring stations are around it, the R-LSTM model can be
selected to improve the prediction accuracy of real-time PPP-based ZTD and serve the
extreme weather forecast. KR-RBF-LSTM model can be used to meet the needs of RTK,
real-time PPP, PPP-RTK, and other high-precision real-time positioning modes under the
condition that the prediction station has a small amount of historical data and real-time
ZTD data of regional monitoring station around it. Specifically, in a short time (such as
within 2 min), the demand for mm-level positioning accuracy in the elevation direction,
such as mining subsidence monitoring, is urgent.

5. Conclusions

A regional/single station ZTD combination prediction model is proposed, aiming at
the problem that the traditional BP neural network modeling is inefficient and has local
optimum and that the traditional LSTM modeling cannot effectively use the data of a
non-full life cycle to establish an excellent ZTD prediction model and cannot reasonably
use the online data. The model considers the ZTD spatiotemporal information and applies
algorithms of the RBF neural network based on K-means clustering and LSTM with real-
time parameter updating. The model mainly solves the problem of online modeling and
model correction of small sample data in regional real-time/near real-time ZTD modeling.
Taking the ZTD data of 13 IGS stations in Southern California for 90 consecutive days as an
example (5 min sampling interval), the prediction performance of the proposed combined
model in regional real-time ZTD modeling is verified. Compared with K-RBF, the RMSE,
MAE, and STD of KR-RBF-LSTM are improved by 47.70%, 47.20%, and 50.98%, respectively.
Compared with R-LSTM, the RMSE, MAE, and STD are improved by 24.48%, 31.29%, and
28.43%, respectively. Compared with the traditional BP model, the accuracy and efficiency
of K-RBF exhibited a certain improvement. Compared with LSTM, the RMSE and MAE of
R-LSTM are improved by 66.43% and 66.42%, respectively.
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The research results of this paper have high reference values for PPP-RTK, RT-PPP,
RTK, and extreme weather forecasting based on regional atmospheric enhancement prod-
ucts. Based on the current work, we can perform further research in the future. First, the
ZTD prediction value of the model with better historical RMSE performance is weighted
higher, and the ZTD prediction value of the combined model may not necessarily take the
optimal value. If the weight in the combined model is adaptively adjusted by using the
relevant optimization algorithm, then the prediction accuracy and stability of the model
can be improved further. Second, the accuracy and efficiency of the regional and single
station models are further improved by optimizing the K-means algorithm and by seeking
more effective R-LSTM parameter optimization methods. Third, due to the lack of clear
physical mechanism of artificial intelligence algorithms, such as that in this paper, the
research on the dynamic change and formation mechanism of atmospheric water vapor
is strengthened. From the perspective of meteorology, hydrology, geography, and other
disciplines, the prediction model is established on the basis of strict physical causes. It is the
focus of extreme weather forecast and climate change research to serve the response and
feedback of carbon, nitrogen, and water cycle to climate change and other multidisciplinary
scientific research.
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GNSS  Global navigation satellite system

GPS Global positioning system

ZTD  Zenith tropospheric delay
ZHD  Zenith hydrostatic delay
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ZWD Zenith wet delay
BP Back propagation
LSTM Long short-term memory
LSTM E/D Long short-term memory encoder decoder
RBF Radial basis function
K-RBF RBF neural network assisted by the K-means cluster algorithm
R-LSTM LSTM of real-time parameter updating
KR-RBF-LSTM  K-RBF and R-LSTM
RMSE Root-mean-square error
STD Standard deviation
MAE Mean absolute error
MAPE Mean absolute percentage error
R2 Coefficient of determination
TTC Training time consumption
PWV Precipitable water vapor
NWP Numerical weather prediction
ML Machine learning
ANFIS Adaptive network-based fuzzy inference system
ANN Artificial neural network
LSSVM Least-squares support vector machine
PCA Principal component analysis
ICA Independent component analysis
GGOSs Global geodetic observing system
CNN Convolutional neural network
KNN K-nearest neighbor
GP Gaussian processes
ERA5 Fifth-generation European Center for Medium-range Weather Forecast reanalysis
prpP Precision point positioning
RT-PPP Real-time precision point positioning
RTK Real-time kinematic positioning
CORS Continuously-operating reference station
PPP-RTK Integer ambiguity resolution-enabled precise point positioning
IGS International GNSS Service
DOY Day of the year
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Abstract: As China’s urbanization process accelerates, the issue of air pollution becomes increasingly
prominent and urgently requires improvement, based on the fact that environmental conditions such
as meteorology and topography are difficult to change. Therefore, relevant optimization studies
from the perspective of architectural patterns are operable to mitigate pollution. This paper takes the
Wenhua Road block in Shenyang, China, as the research object; obtains the concentration data of three
kinds of particulate matter through fixed and mobile monitoring; and analyzes the spatial distribution
characteristics of Local Climate Zones ( LCZ) and particulate matter in the block based on the ArcGIS
platform, identifies high-risk areas, and excavates the influence of LCZ on the concentrations of three
kinds of particulate matter. The results show that the spatial distribution characteristics of PM,
PM; 5, and PMyg under the same pollution level are relatively similar, while the spatial heterogeneity
of the distribution of the same particulate matter under different pollution levels is higher. The
time-weighted results show that the PM; pollution level in the block ranges from 44 to 51 ug/m?3,
PM; 5 ranges from 75 to 86 ug/m?, and PM; ranges from 87 to 99 ug/m?3. The pollution hot spots
throughout the year are located in the central, eastern and western parts of the study area. In terms
of the relationship between the LCZ and particulate matter, with the increase in the particulate
matter diameter, the correlation between the three kinds of particulate matter and LCZ are all
enhanced. The built-up LCZ always has a larger average concentration of particulate matter than
that of the natural LCZ, and building height and building density are the main factors causing the
difference. In the optimal design of the risk area, the proportion of natural vegetation or water surface
should be increased and the building height should be properly controlled and the building density
should be reduced in the renewal of the urban building form. This study will largely improve the
spatial refinement of the optimization of urban architectural patterns oriented to mitigate particulate
matter pollution.

Keywords: three-dimensional architectural forms; particulate matter; mobile monitoring; LCZ; hot
spot analysis

1. Introduction

In recent decades, China’s rapid urbanization has changed the urban land use struc-
ture and building form characteristics [1], leading to ecological and air quality issues [2].
Among them, the influencing factors of air pollution are intricate and complex [3]. Under
the premise that it is difficult to change the objective environmental factors such as topog-
raphy and meteorology [4], mitigating the effect of particulate matter pollution from the
urban design and architectural layout is a practical and feasible solution [5]. Atmospheric
particulate matter is one of the main components of haze, and common atmospheric par-
ticulate matter is categorized into PM;, PM; 5, and PMj, according to their aerodynamic
diameters [6]. These particulate matters of different sizes are harmful to the healthy living
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environment for people, and the smaller the diameter of the particulate matter, the more
damaging it is to human health [7]. The influence of architectural forms on the dispersion
of particulate matter has been confirmed [8]. Most of the existing studies are based on
large-scale spatial simulation. Due to the high spatial heterogeneity of particulate matter
distribution, it is necessary to carry out a small-scale study to obtain particulate matter
pollution data at the block scale based on field monitoring. The introduction of the LCZ
classification system can better distinguish the land use types in urban areas and better
characterize the spatial features of the layout of architectural forms at the block scale [9,10],
which is more closely related to the distribution of atmospheric particulate matter [11].
Therefore, it is necessary to explore the influence of 3D architectural forms on particulate
matter dispersion from the LCZ perspective and realize the optimization of LCZ classes
and architectural patterns based on particulate matter pollution mitigation. This study
provides suggestions for the reduction of particulate matter pollution in urban design and
building layout and for the regulation of urban construction and building layout. This has
theoretical guiding significance for other urban blocks and even other urban construction
and is of great significance for promoting the optimal control of neighborhood pollution
exposure under the concept of a healthy city, the sustainable development of neighborhood
construction, and the improvement of residents” quality of life and health and well-being.

The coupled research on three-dimensional urban morphology and air pollution needs
to consider the issue of scale diversity, and the analytical methods differ for particulate
matter pollution studies at different scales. In general, the dispersion of urban particulate
pollution occurs in small-scale atmospheric environments but is inevitably affected by large-
scale atmospheric motions [12]. On the regional scale, the study of pollutant dispersion
mainly adopts the MODIS remote sensing image inversion method, and the data source is
mainly from MODIS aerosol products, which covers a wide range and has economic benefits
and can realize long-term monitoring, but the spatial resolution of the data is relatively
low [13]. On the urban scale, the spatial interpolation methods are often used for simulation.
Pollutant concentration data are obtained from urban air quality monitoring stations. This
method is simple in principle, easy to operate, and relatively easy to obtain data. However,
in underdeveloped cities, the density of its monitoring stations is insufficient, which limits
research, and there are fewer factors to consider, which can easily amplify the changes
in extreme pollutant concentration values [14]. On the block scale, by obtaining data
on pollutant concentration, topography, and pollution emissions, atmospheric numerical
simulation methods are often used to simulate pollutant dispersion. The advantages of this
method are its simple structure, fast calculation speed, and low requirements for basic data,
making it applicable to small- and medium-scale research. However, this small-scale model
cannot simulate the composite air pollution process well, and its simulation accuracy needs
further consideration [15].

Combining the above research methods, research scales, and data acquisition, the
influence of urban morphology on particulate matter dispersion at the current stage mainly
focuses on large-scale research, with the model simulation as a main method and the data
sources mainly being publicly available data from weather monitoring stations. Lu etal. [16]
focused on the Yangtze River Delta (YRD) region in China, acquired a global PM, 5 concen-
tration dataset, and analyzed the effects of different land use types and landscape pattern
indicators on PMj 5 concentrations. At the meso-scale, Leen et al. [17] used PM, 5 sensors
to collect air quality data in Hanoi, the capital of Vietnam, to assess the spatial distribution
of PM; 5 at the urban scale and to explore changes in PM; 5 concentrations associated with
urban morphology at the local climate zone scale. McCarty et al. [18] analyzed county-level
data from 48 contiguous states in the contiguous U.S. mainland. By using available air
quality monitoring data and remotely sensed land cover data, they explored the correlation
between urban forms and air quality, particularly how urban morphology affects air quality
in different types of county areas. On the micro scale, Jiang et al. [19] carried out a study of
the relationship between urban morphology and air quality (wind speed, CO, and PM; 5)
in two residential districts in the central area of Beijing. They utilized Computational Fluid
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Dynamics (CFD) [20] simulation technology to model the changes in microclimate and
pollutant dispersion within the districts under different weather conditions and identified
five main urban morphology parameters that affect pollutant dispersion and distribution.
In summary, in today’s research on particulate matter, the research scale methodology
and data acquisition as a whole are seriously affected by the spatial resolution, and the
insufficient level of spatial refinement leads to the lack of relevant research results at the
block scale. However, field monitoring can solve the above problems, and in recent years,
more and more scholars have tended to use mobile monitoring methods to investigate the
spatial variations of urban air quality [21,22]. However, field measurements of particle
concentrations require significant manpower, resources, and financial investment. As a re-
sult, research conducted through field measurements remains few. In view of this research
background and its limitations, this study analyzed the correlation between block-scale
particulate matter obtained by field measurement and urban morphology, which is of great
significance to enrich the high-precision and refined research on block-scale particulate
matter pollution prevention and control [23].

Based on the background mentioned above, the correlation between urban morphol-
ogy and particulate matter has been confirmed in many studies, but the majority of these
studies have primarily focused on the urban scale. Due to the high spatial heterogeneity of
particulate matter distribution, the results from large-scale studies may not be applicable
to small-scale optimization designs. There is a lack of quantitative research at the block
scale. In terms of data acquisition, existing studies have mostly investigated the impact of
architectural patterns on particulate matter through model simulations. The main reason
for the limitation of small-scale studies is that it is difficult to obtain pollution data of high
spatiotemporal resolution and high-precision spatial data of environmental factors. There-
fore, there is an urgent need for studies that utilize field measurements to obtain particulate
matter data at the block scale. In terms of innovation, in the existing studies of the block
scale, the introduction of the local climate zones (LCZs) system is not frequent, while the
LCZs can visually reflect the architectural differentiation characteristics, so it is necessary
to introduce and establish a comprehensive analysis of the LCZs system at the block scale.
In conclusion, conducting research on multiple particulate pollution mapping and risk
zone identification based on field measurements of pollutants from the LCZ perspective,
and elucidating the correlation between LCZ classification and pollutant concentrations,
would greatly enhance the spatial refinement of architectural pattern optimization aimed
at mitigating particulate pollution.

2. Study Area and Research Methods
2.1. Overview of the Study Area

The study area is located in Shenyang, capital city of Liaoning Province in China
(41°11/51” N—43°02/13" N, 122°25'09" E-123°48'24" E) (Figure 1a), which has a temperate
continental climate with an average annual temperature of 8.4 °C and annual precipitation
of 510-680 mm. Shenyang serves as an important heavy industrial base with abundant
natural resources and a solid industrial foundation [24]. As the largest central city in
Northeast China and one of the most significant industrial bases in the country, the air
pollution of Shenyang is mainly caused by vehicle exhaust, fossil fuel combustion, industrial
production, and urban construction [25]. As the urbanization progresses quickly and the
environmental pollution becomes increasingly serious, air pollution—particulate matter
pollution, in particular—urgently needs to be addressed [26]. According to the data,
through the kernel density estimation, the PM; 5 in the Shenyang City area from 2000 to 2013
showed an increasing trend, with the annual average concentration up from 58.50 pg/m?3
to 72.49 ug/ m3; even though the PM, 5 had been curbed to a certain extent in the area from
2013 to 2022 because of the implementation of policies such as the Air Pollution Prevention
and Control Action Plan, the annual average concentration remained high, making the
situation unfavorable (Figure 2).
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Figure 2. Change of PM; 5 concentration in Shenyang City from 2000 to 2022.

The Wenhua Road block in Shenyang has serious particulate matter pollution, and
its air pollution index has been continuously high over the years. The land use types of
the block are diverse, which are mainly residential land and commercial land, with green
space, rivers, and land for education. In addition, the mix of high-, medium-, and low-rise
staggered buildings shows its rich three-dimensional architectural form. Boundary 1 of
the block (Figure 1b) is delimited by the city’s main roads, covering an area of 11.12 square
kilometers. Considering the impact of the buildings on the periphery of Boundary 1 on the
particulate matter in the block, existing studies have indicated that an architectural or urban
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design project can strongly influence air quality within its 200-m radius [27]. Therefore, a
200-m buffer zone was created based on Boundary 1, which serves as the research boundary
in this study, with 13.33 square kilometers of total area (as shown in Figure 1c).

2.2. Data Sources and Preprocessing

In this study;, air pollution data from 11 air quality monitoring stations in Shenyang
during 2000-2022 were used, including 6 kinds of conventional monitoring pollutants
concentration data, such as fine particulate matter (PM; 5), inhalable particulate matter
(PMyp), ozone (O3), nitrogen dioxide (NO,), sulfur dioxide (5O;), and carbon monoxide
(CO). Rates are the daily mean values. Air pollution data were provided by the China
National Environmental Monitoring Center (https://www.cnemc.cn, accessed on 1 March
2022), the U.S. Consulate General in Shenyang AQI (https://aqicn.org, accessed on 1
March 2022), and the Department of Ecological and Environment of Liaoning Province
(https:/ /sthj.In.gov.cn, accessed on 1 March 2022). The land use data were obtained from the
Land Use and Land-Cover Change (LUCC) dataset of Shenyang City in 2018 provided by
the Resource and Environmental Science Data Platform (https:/ /www.resdc.cn/, accessed
on 1 May 2022). These data have a resolution of 30 m, which contains six main categories
and eighteen subcategories.

The building vector data of Shenyang City in 2018 is sourced from the Baidu map
(https:/ /map.baidu.com/, accessed on 1 May 2022). The footprint data of buildings are
represented in a polygonal vector, including the base outline and floors information. The
building height is assumed to be 3 meters multiplied by the number of building floors. This
data is verified by reference to Google Maps, supplemented by Baidu Maps panoramic
imagery, and augmented by on-site and online research to add missing building footprints.
In this case, the drawing of acquired building outlines and building floors is also refined
so that more complete and accurate building information data in the study area is finally
formed, with a total of 3171 individual buildings acquired.

2.3. Field Measurement
2.3.1. Monitoring Route Design

The data of the street-level particulate matter concentration are obtained by using
fixed and mobile monitoring in the field. The monitoring activities were carried out for
7 days, including three typical particulate pollution situations in this area, to ensure the
representativeness of the monitoring data. The specific monitoring steps are as follows:

(1) Instrument setting: The detection instrument is a Sniffer4D Lingxiu V2 atmospheric
monitoring system (made by Kefei Technology Co., LTD., Shenzhen, China, purchased
from the network official platform), which can record the concentration of PM;, PM; 5,
and PMj particles with a time resolution of 1 s.

(2) Layout of the monitoring points: Determine the layout of the monitoring points by
combining field investigation and remote sensing. Considering the uniformity and
representativeness of the distribution, 37 mobile monitoring stations are set up, which
cover all LCZ types and are mainly located in the middle of intersections and roads
for easy measurement.

(3) Make the mobile monitoring route: The mobile monitoring is carried out at time
intervals. These routes are connected in a series with all the monitoring points.
Considering the monitoring length and staffing, four monitoring routes are designed
(Figure 3) to ensure that the monitoring data of the particulate matter concentration
in different LCZ can be obtained in the same time period.

(4) Field measurement: The monitoring activity is from October 2022 to March 2023, and
the times with good weather conditions are selected for actual measurement. The
monitoring height is 1.5 m, and the time resolution is 1 s. The method of multi-cycle
continuous repeated measurement is adopted, in which every 1.5 h is designated as
a cycle, and the monitoring time is 8:00-11:00 in the morning and 14:00-17:00 in the
afternoon, with four cycles measured every day. The specific implementation process
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is as follows: after the instrument is turned on, let it stand for 5 min to start measuring
activities. Fix the monitoring instrument at the front of the electric vehicle, drive on
the route during the monitoring period, stay at each monitoring point for 1 min, and
repeat the measurement in multiple periods after completing a closed route.
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Figure 3. Design of the mobile monitoring route.

2.3.2. Quality Assurance and Quality Control of Particulate Matter Data

Before the monitoring activity begins, all instruments are placed in the same stable
environment for three days for relative calibration. After the monitoring activities, all in-
struments were placed in the same stable environment for 3 days and absolutely calibrated
with the public data of the Wenhua Road Meteorological Monitoring Station in the study
area, and the obtained particulate matter concentration was fitted and corrected according
to the calibration data. The collected data are visualized through a GIS platform, and
the monitoring data within five minutes of startup are eliminated. At the same time, the
abnormal high value and abnormal low value of each monitoring route in different time
periods are eliminated, and the missing values are interpolated and replaced to ensure
the integrity of the data. Overall, given these operations, the data in this study can be
considered reliable and valid.

2.4. Research Methods
2.4.1. LCZ Construction in the Block

To map the LCZ for the Wenhua Road block, the study processed the acquired 30-m
resolution land use data and building vector data of Shenyang City, referring to the LCZ
mapping method based on ArcGIS [28] and combining the current status and research
requirements of the study area. First, the collected data were integrated into the GIS
platform for spatial extraction of the study area data. Second, considering the strongest
correlation between the LCZ and PM pollution data at the 200-m grid scale revealed in
the subsequent experimental calculations, the research scale was determined to be in a
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200-m grid. At this scale, building indicators for the street block were calculated, including
average building height and building density. Then, the land use data were categorized into
construction land, green space, and water bodies and coupled with the building indicators
for LCZ classification. Finally, the block LCZ was classified into six built-up environment
types and two natural environment types.

2.4.2. Kriging Interpolation

This method was initially employed by Krige for locating gold resources, then was
theorized and systematized by Matheron and was named the Kriging interpolation [29]. It
needs to meet the second stationary assumption: (1) the average mean of random variables
exists and is independent of the distance, and (2) when the distance between any two points
is “h”, the variance of the regional change increment exists and is independent of the coor-
dinates [30]. Through the Kriging interpolation method, the relatively limited monitoring
data in this study can be utilized to estimate the PM concentration at unmonitored points
in the study area, thereby obtaining continuous spatial distribution maps of the three types
of particulate matter concentrations.

2.4.3. Hot Spot Analysis

The Getis-Ord Gi* hot spot analysis model is a spatial analysis tool that detects and
analyzes autocorrelation in a local space to identify regions characterized by significant
high- or low-value clustering [31]. The model accurately determines where clustering
of high- or low-value elements occurs in space by calculating the high-/low-clustering
statistics for each data point in the region and determining whether the point belongs to
the same class as its neighboring points [32]. The Getis-Ord Gi * statistic is calculated as
follows using Equations (1)—(3) [33]:
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Among them, S is the standard deviation of the PM concentration in the block, and
the G* statistic obtained for each element in the dataset is the Z score. Higher G} values
indicate a tighter clustering of hot spots, while lower G values indicate a tighter clustering
of cold spots.

2.4.4. Grid Spatial Data Integration

This study utilizes ArcGIS’s Create Fishing Grid function to create a fishing grid
matching the study area and integrates three-dimensional building morphology indicators
and spatially interpolated particulate matter concentration distribution into the spatial
grid through multiple grid units. This allows for the acquisition of the average building
indicator values and interpolated particulate matter concentration values at different
pollution levels within each grid unit, thus realizing grid-based spatial connectivity and
facilitating subsequent spatial analysis tasks. Through iterative experimentation and the
comparison of different grid scales concerning the correlation between building indicators
and particulate matter concentration, it is found that the spatial correlation is highest at a
200-m grid scale. Hence, the optimal grid scale is established as 200 m x 200 m.

131



Atmosphere 2024, 15, 794

2.4.5. Correlation Analysis

The strength of a monotonic relationship between two variables can be determined
using a nonparametric statistic called Spearman’s correlation analysis, or Spearman’s
rho [34]. It does not require data to obey a normal distribution; in contrast, it is applied
to data on a fixed-order scale—that is, the rank or order information of the categorical
variables. It first transforms the data into ranks and then computes the Pearson’s correlation
coefficient between the ranks, as shown in Equation (4) below:

6y d?
T n(n?-1)
n—1

e = )
Among those, 75 is the Spearman’s rank correlation coefficient, d; is the difference in
the rank order of the corresponding observations of the two variables, and 7 is the total

number of observations.

2.5. Overall Research Approach

First, the block LCZs are described based on ArcGIS, and the spatial distribution
characteristics of various types of LCZs are analyzed; second, in order to analyze the het-
erogeneity of the spatial distribution characteristics of the three kinds of particulate matter
under different pollution levels, these data obtained from field monitoring are summarized
and classified, and spatially continuous particulate matter pollution maps are drawn based
on the Kriging interpolation. Then, annual particulate matter pollution exposure maps of
the block are developed based on time weighting, and pollution risk zones of the block are
identified through hot spot analysis. Finally, to analyze the correlation between LCZs and
the three kinds of particulate matter concentrations, Spearman’s rank correlation coefficient
is used, and to analyze the results of the differences in the concentrations of particulate
matter in the various types of LCZs and the reasons for the differences, the mean values of
the three kinds of particulate matter concentrations of different LCZ classes are counted
based on the correlation relationship.

3. Results and Discussion
3.1. Description and Analysis of Block LCZ

From the LCZ classification of the Wenhua Road block (Figure 4), it can be seen that
the road block as a whole has a rich variety of architectural forms, including LCZ1-LCZ3
with a compact layout and LCZ4-LCZ6 with an open type, and there are also LCZP green
areas and LCZG water areas with a natural environment type. The distribution of specific
types of LCZs is characterized as follows: In terms of the built environment type, road
block LCZ1 is mainly distributed on both sides of Qingnian Street and the commercial area
on both sides of Wenhua Road; LCZ2 is mainly distributed on both sides of Wenhua Road,
typically represented by dense mid-rise residential buildings; LCZ3 is mainly distributed
on the north side of the Hunhe River, which consists of low-rise compact villas; LCZ4 is
mainly distributed on both sides of Qingnian Street, which is a high-rise open residential
area; LCZ5 is mainly distributed in the residential area on the north side of Nanta Street,
which is an open mid-rise residential area; and LCZ6 is a relatively small distribution of
open low-rise areas. As for the natural environment type, LCZG waters are represented
by the Hunhe River, which appear as a zonal distribution on the south side of the study
area; LCZP green spaces include Wulihe Park, Popular Science Park, and Nanta Park on
the north side of the Hunhe River.
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Figure 4. LCZ classification map of the Wenhua Road block.

3.2. Characterization of the Spatial Distribution of Particulate Matter Concentrations in the Block
3.2.1. Visualization of Measured Particulate Matter Concentrations in the Block

The particulate matter data obtained from field measurements were preprocessed, and
all data within five minutes since startup and outliers were excluded, resulting in a total
of more than 650,000 valid data for the three types of particulate matter concentrations
obtained in this study. The effective data obtained were processed, and the four-cycle data
of each route were superimposed on average to obtain the average daily concentration
of three pollutants on the four routes, which was used as the daily average concentration
of particulate matter. Combined with the air pollution data of Shenyang over the years,
the China Ambient Air Quality Standard (GB3095-2012), and World Health Organization
Air Quality Standard, the measured data are divided into pollution levels according to
research needs:

PM;j, 0 ug/m3 < PM; pollution level 1 <20 pg/m? < pollution level 2 < 50 ug/m3 <
pollution level 3;

PM; 5, 0 pg/m?3 < PM; 5 pollution level 1 < 50 pg/m? < pollution level 2<100 ug/m?3 <
pollution level 3;

PMj, 0 ug/m?3 < PMjq pollution level 1 < 50 pg/m? < pollution level 2 < 100 ug/m? <
pollution level 3.

The data were combined according to pollution levels, in which the visualization of
the measured data of the typical particle matter PMj, 5 concentration under three pollution
levels is shown in Figure 5.

At the same time, we verified the accuracy of the measured data. By summarizing the
hourly average data disclosed by the national monitoring stations, our research also counted
the hourly average of the four monitoring routes under the seven-day measurement period.
After fitting, it was found that the accuracy was 0.866 (Figure 6), and the fitting effect was
good. The field measurement data studied were consistent with the trend of the national
public data, and the measurement data had strong confidence. It could represent the
concentration level of particulate matter in the study area.
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Figure 5. Visualization of PM; 5 concentration data measurement in the blocks.
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Figure 6. Verification of the measurement data accuracy.

The trend of the field measurement data in the study is consistent with that of the
national public site data., and in view of the fact that the reliability of the national monitor-
ing site data has been fully demonstrated in previous research work [35,36], and has been
widely used in related studies [37,38], we believe that the mobile measurement data in this
study verified with the officially released particulate matter detection data have sufficient
confidence to represent the concentration level of particulate matter in the study area.

3.2.2. Spatial Interpolation Results of Particulate Matter in the Block

Due to the limited number of measuring points in the field, the acquired point data
of three kinds of particulate matter concentrations were spatially interpolated, which
generated spatially continuous distribution maps of average particulate matter mass con-
centrations under different pollution levels (Figure 7). The results showed that the spatial
distribution characteristics of the three particulate matter concentrations under the same
pollution level were relatively similar, while the spatial heterogeneity of the same particu-
late matter distribution under different pollution levels was high, but there were also local
spatial similarities.

At pollution level 1 (Figure 7a), the concentration of PM; was in the range of
11-18 pg/m?3, concentration of PM; 5 was in the range of 17-28 jig/m3, and the concentra-
tion of PMjy was in the range of 21-33 pg/m?3. The concentration values were enhanced
with the increase in the diameter of particles, and the overall spatial distribution char-
acteristics among the three particles were relatively similar, but the spatial distribution
heterogeneity within each particle was high. The high pollution indices of the three pol-
lutants are distributed on the west side of Qingnian Street and the east side of Shenshui
District, Xinghuiyunjin District of the Yuexiu Group, and Yijingyuan District on the bank of
South Canal, presumably related to the surrounding high-rise buildings shading, and the
lower spatial openness leads to local deposition phenomenon. The low pollution index is
distributed in the Mixc, Shenyang Pharmaceutical University, Popular Science Park, and
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Nanta Park, places with better spatial openness, and the parks here are equipped with
more greenery, smoothing the transmission of particulate matter.
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Figure 7. Spatial interpolation concentration distribution of three kinds of particulate matter at
different pollution levels: (a) pollution level 1; (b) pollution level 2; (c) pollution level 3.

At pollution level 2 (Figure 7b), the concentration of PM; was in the range of
25-42 pg/m?3, the concentration of PMj 5 was in the range of 53-70 pg/m?, and the concen-
tration of PMjy was in the range of 54-87 ug/m?. The high pollution indices of the three
pollutants are located in the central areas of the block, including the Shenyang Conservatory
of Music, Shimao Wulihe River Road block, Popular Science Park, and Nanta Road block.
The central areas of the block as a whole show a high pollution phenomenon, mainly due to
the influence of the Wulihe River Park of Hunhe River in the south and Qingnian Park and
South Canal in the north, coupled with the dense construction in the central areas of the
block, which makes it difficult for pollutants from the north and the south to be transported
outward. The area with a low pollution index is distributed in the southern part of the
study area, Wulihe River Park, the business district of the Mixc north of the study area,
and the South Canal block; these two blocks are affected by the adsorption of pollutants
from the park’s greenery, and coupled with high spatial openness, the pollutants diffuse
relatively quickly; thus, the pollution here is relatively low.

Under pollution level 3 (Figure 7c), the concentration of PM; is in the range of
6676 ug/m?, the concentration of PM, 5 is in the range of 109-125 pg/m?, and the con-
centration of PMyj is in the range of 126-144 pg/m?. The high pollution index area is
located in the Shenyang Conservatory of Music, Shimao Wulihe block, the interchange of
Wanliutang Road and Culture Road, Shenshui District, and the South Canal block. The
main reason for this difference is the layout of the building. On the one hand, these areas
are built environmental LCZs, often showing higher pollution than natural environmental
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LCZs. On the other hand, a high building height or high building density in the region are
the causes of high pollution, because a high building height and building density hinder
the diffusion of particulate matter, making the local building layout not conducive to the
diffusion and transmission of particulate matter. The low pollution index area is mainly
distributed in the building complexes facing the Hun River and the vicinity of Popular
Science Park, mainly due to the reduction and adsorption of particles by the green space
and the relatively weak shading of the buildings, which makes the transmission of particles
unaffected by the shading.

3.2.3. Identification of Particulate Matter Risk Areas Based on Time Weighting

Due to the high spatial heterogeneity of particulate matter distribution under different
pollution levels, this study attempts to construct a time-weighted annual particulate matter
pollution distribution map based on the proportion of different pollution levels throughout
the year. By statistically categorizing the meteorological data of Shenyang, capital city of
Liaoning Province, in 2022, it was found that pollution level 1 accounted for one-tenth
of the year, pollution level 2 accounted for five-tenths of the year, and pollution level 3
accounted for four-tenths of the year. According to such a time-weighted ratio, the three
kinds of particulate matter pollution data values were weighted and summarized in terms
of time share, and the spatial distribution map of particulate matter in the study area for the
whole year was obtained by the Kriging interpolation method. Then, the hot spot analysis
method based on the GIS platform was used to identify the cold and hot spots analysis
map of particulate matter in the study area for the whole year.

The results showed (Figure 8a) that the time-weighted pollution level of PM; in blocks
was in the range of 44-51 ug/m3, PM; 5 was in the range of 75-86 p1g/m?, and PM;o was in
the range of 87-99 pg/m?3, which all belonged to pollution level 2. The distribution of the
year-round high-pollution areas for the three particulate matters is relatively similar, and
they are all located in the middle of the block, from Culture Road in the north to Shenshui
Road in the south. Low-pollution areas are located in the south and north of the block,
including Wuli River Park along the Hunhe River, the Mixc near Qingnian Park, South
Canal close to Wanliutang Park, and other places that are particulate matter low index
areas, and the overall air quality is relatively good.

As can be seen from the three particulate matter cold and hot spots analysis map
(Figure 8b), the overall cold and hot spots spatial distribution of the three particulate
matters is relatively similar, and the spatial distribution of the high-risk and low-risk zones
of particulate matter with different diameters is consistent, which is also consistent with
the similarity of the spatial interpolation results. The hot and cold spots of the three kinds
of particulate matter are all in a piecewise distribution, which is related to the spatial
transmission distribution mode of the particulate matter. Specifically, the hot spots of
particulate matter throughout the year are mainly distributed in two major areas: namely,
the Dongbei Riza Market and the Shimao Wulihe area; the cold spots are mainly distributed
in the Mixc near Qingnian Park, the South Canal, the Shengjing Grand Theater, and the
Wulihe Ice and Snow Paradise area. From the difference between the hot and cold spots, it
can be seen that the hot spot areas are urban construction land, and the buildings there are
compact and dense with a large flow of people, while the cold spot areas are urban parks
and the surrounding blocks.
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Figure 8. Particulate matter risk area identification map: (a,c,e) annual spatial interpolation results
diagram of particulate matter; (b,d,f) particulate matter cold and hot spots analysis map.

3.3. Effect of LCZ on Particulate Dispersion
3.3.1. Correlation between LCZ and Particulate Matter

First, based on the data collection of the spatial grid and Spearman’s correlation
analysis, the LCZ calculation results and the particulate matter concentration calculation
results were coupled on the block grid to calculate the correlation between the LCZ and
the concentration of particulate matter of the three diameters. Then, the particulate matter
concentrations of different LCZs were counted to excavate the differences in particulate
matter concentrations caused by LCZ classification. From Table 1, it can be seen that there
is a significant correlation between all three kinds of particulate matter concentrations and
LCZs (p < 0.01), and this correlation is enhanced with the increase in particulate matter
diameters, but the overall difference is not significant. This difference in correlation caused
by the particle diameter is mainly due to the fact that large-diameter particles are more
responsive to changes in the LCZ, thus showing a greater correlation between the LCZ and
large-diameter particles. On the other hand, PMy, a small-diameter particle, is less sensitive
to changes in the LCZ than PMj( because of its smaller diameter compared to PMj; thus, it
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is affected to a weaker extent, and the overall correlation is lower than that between PM; 5
and PMlO-

Table 1. Correlation analysis between the LCZ and particulate matter concentration in neighborhoods.

Variables of Analysis : LC.Z - -
Spearman’s Correlation Analysis Sig. (Two-Tailed)
PM; —0.207 ** 0.000
PM, 5 —0.246 ** 0.000
PMy —0.265 ** 0.000

Note: ** is a significant correlation at the 0.01 level (two-tailed).

3.3.2. Correlation between LCZ and Particulate Matter

Based on the correlation between the LCZ and three kinds of particulate matter, the
study statistic was the average value of particulate matter concentration under different
LCZ land use classifications (Figure 9). The results show that, among the characteristic
differences in particulate matter concentrations between LCZ classes, the built-up class
always had a larger value of average particulate matter concentration than the natural
class environment.

Further, the built environment class LCZs were divided into height-control and density-
control groups. In the density-control group, first, the elevation of building heights under
the dense building layout had a contributing effect on the concentration of particulate
matter for different diameters. In the case of controlling the constant building density, there
was LCZ1 > LCZ2 > LCZ3 in building height, and the corresponding particulate matter
concentrations showed similar characteristics, which was because the obstruction effect
of low-rise buildings on particulate matter transmission was weaker than the obstruction
effect of high-rise buildings, and the higher spatial openness under the layout of low-
rise buildings was favorable for particulate matter transmission and diffusion. Secondly,
the effect of building height increase on particulate matters of different diameters under
an open building layout was slightly different from that under a dense building layout.
Similarly, in the case of controlling the building density unchanged, the building height
was LCZ4 > LCZ5 > LCZ6, but the average particulate concentration showed the result of
LCZ5 > LCZ4 > LCZ6, and the particulate concentration at LCZ4 produced a difference
and showed a tendency to decrease, which might be due to the fact that the open high-rise
building layout made the local wind speed accelerate, and the formation of local ventilation
corridors was favorable for the diffusion and transmission of particulates, which, in turn,
reduced their concentration. This may be due to the fact that the layout of open high-rise
buildings accelerates the local wind speed and forms local ventilation corridors, which
is favorable for the diffusion and transmission of particulate matter and thus reduces
its concentration.

In the height control group, first, the increase in building density under the high-rise
building layout has a contributing effect on the concentration of particulate matter of differ-
ent diameters. In the case of controlling the constant building height, there is LCZ1 > LCZ4
on the building density, and its corresponding particulate matter concentration shows
the same characteristics. Secondly, the building density under the middle- and low-rise
building layouts of elevation showed a promoting effect on the concentration of particu-
late matter of different diameters, but none of these differential effects were significant.
Under the condition of controlling the constant building height, there is LCZ2 > LCZ5
and LCZ3 > LCZ6 for the building density, the effect of density on particulate matter
is weaker under the same conditions of mid-rise and low-rise building heights, and the
difference in particulate matter concentrations under different densities at the same height
is not significant.
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Figure 9. Statistical map particulate matter concentration under different LCZ land use classifications:
(a) Statistical maps of PM; concentrations under different LCZ land use classifications; (b) Statistical
Map of PM; 5 Concentration under Different LCZ Land Use Classification; (c) Statistical maps of
PM; concentrations under different LCZ land use classifications.
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4. Discussions
4.1. PM, 5 Difference in LCZ Configuration

In the existing research on “urban form particulate matter”, landscape indicators
(such as PLAND, the NDVI, and the SEI) are usually used to express different landscape
patterns [39,40], and the influence of different landscape configurations on the distribution
of urban particulate matter is analyzed. However, landscape classification is often on a
coarse-grained scale, and various architectural areas are regarded as a landscape type,
often ignoring the change in architectural configuration [41]. The LCZ scheme includes the
classification of architecture and landscape, and its research related to particulate matter
has just arisen in recent years [42]. This study also supplemented relatively few pieces
of literature, a further in-depth research scale, the block scale of three kinds of particles
and LCZ scheme, and a comprehensive and intuitive discussion of the LCZ scheme on the
impact of building configuration on particulate matter.

Referring to previous related studies, Gao et al. [43] assessed the changes in PM; 5
concentrations in two representative communities in Shanghai by mobile measurements
and found that PM; 5 varied drastically at the community level and that this difference
was mainly caused by the spatial pattern of PM; 5 background levels and traffic volume.
Li et al. [44] found that the Central and Causeway Bay areas in Hong Kong are pollution
hot spots. Due to the street canyon effect, traffic intensity and mixing, and ambient
meteorological conditions, these areas have high PM;5 concentrations. Ke et al. [45]
conducted field measurements using fixed and mobile monitoring stations in the Xia Sha
Economic and Technological Development Zone in Hangzhou, capital city of Zhejiang
Province, and found that the spatial variability of the distribution of PM; 5 was closely
related to land use types, architectural layout, and building heights. Liu et al. [46] used
mobile monitoring methods to collect PM; 5 concentration data in Wuhan, capital city of
Hubei Province, and found that the urban morphology factor was an important cause of
high PM, 5 concentrations. Combined with the results of established studies, it was found
that there was little difference in the ambient meteorological conditions under the general
background and industrial pollution emissions at the block level and that, controlling for
such variables, the functional differences in the land use and the spatial differences in the
way buildings are laid out between this study area, and other similar studies are the main
reasons for the spatial heterogeneity of particulate matter in the study area, and thus, it
is necessary to dig deeper into the effects of the block based on the LCZs of particulate
matter pollution.

Among the differences in particulate matter concentrations caused by the LCZ config-
uration, it is found that a built environment always has a larger average particulate matter
concentration than a natural environment. This is because natural species and built species
represent emission sources and absorption/desorption sinks of pollutants, respectively, to
a certain extent. In natural LCZs, trees and green spaces can absorb a large amount of air
pollutants, thus reducing the concentration of particulate matter, which is consistent with
previous research results [47,48]. At the same time, water can absorb particulate matter
through evaporation [49,50] and reduce the local particulate matter deposition. In contrast,
built-up LCZs often have high-rise, high-density buildings, which have the greatest impact
on particulate matter concentrations by affecting the rate of particulate matter transport
and diffusion, such as shading by buildings [51]. Similar laws have been found in the
literature, for example, the PMj, 5 concentration is negatively correlated with the forest area
ratio and positively correlated with the built-up area ratio [52,53].

In built-up LCZs, the building height and building density are the important factors
causing the difference in particulate matter concentrations. Under the condition of con-
trolling the building density being unchanged, it can be seen that the effect of building
height on particulate matter concentrations is complex and may be influenced by a variety
of factors, including pollutant emissions from ground-level sources, air flow and diffu-
sion conditions, and the design of the building and the surrounding environment [54].
When the building height is controlled unchanged, the increase in the building density
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can promote the particulate matter under the layout of high-rise buildings. It is because
the low-density building layout facilitates the transport of particulate matter, while the
high-density building layout brings about the deposition of localized pollutants, which is
in line with the results of the study by Yang et al. This influence is weak under the layout
of middle-level and low-rise buildings. This may be due to the fact that the buildings as
a whole are low and have little hindering effect on the diffusion of particulate matter, so
there is little overall change in the concentrations of the three kinds of particulate matter.
Therefore, the building density is related to the density of the building and building size,
which can affect the local accumulation of pollutants [55].

4.2. Suggestions for the Optimization of Risk Areas

LCZ interclass optimization strategy: A built environmental LCZ is the most typical
feature of a high particulate matter concentration in the block risk area, which is significantly
different from the low particulate matter concentration caused by a natural environment in
the cold spot area. Therefore, in the optimization of risk areas, increasing the proportion
of natural vegetation or water surface and reducing the impermeable surface as much as
possible are feasible optimization means [56,57]. The construction area of green space in
risk areas can be increased by an appropriate amount, and specific measures can be taken,
including building miniature pocket parks, increasing roof greening and vertical greening,
etc. [58]. To improve the green area of risk areas, optimize the air quality by using the
adsorption effect of green plants on particulate matter, improve the high pollution exposure
of risk areas, and promote the construction of healthy blocks in healthy cities. At the same
time, small water landscapes can also be introduced in risk areas [59]. Make full use of the
advantages of geographical resources adjacent to the Hunhe River in the block and through
the connection of the groundwater system. Increase the water coverage area in risk areas,
give full play to the evaporation of water bodies [60], and dilute or take away particulate
matter with water vapor. Reducing the high-concentration pollution of particulate matter
is of great significance for building a comfortable and livable block with fresh air.

However, the introduction and expansion of natural LCZ in risk areas cannot cover a
large area, which may not be a sustainable optimization scheme. Facing the background
of rapid urbanization, building a built-up LCZ configuration that is conducive to the
diffusion of particulate pollution is the key point that should be considered in architectural
design and urban planning layout [61]. Therefore, the LCZ build-up optimization strategy:
According to the research results, a dense building layout and higher building height will
lead to the increase in the particulate matter concentration. Therefore, the optimization
of the risk area can start from two aspects: improving the building height and building
layout density. Analyzing the characteristics of the building layout in risk areas, it is mainly
the high concentration of particulate matter caused by the combination of high and dense,
50, in the optimization design, we should consider reducing this high and dense building
layout, which is not easy to diffuse pollutants, and adding a more low and scattered
building layout design, so as to promote air circulation and diffusion and the transmission
of particulate matter. By extension, in the urban construction, because it is impossible to
arrange low and scattered buildings on a large scale in China’s urban construction [62], the
relationship between building height, building density, and PM, 5 needs to be expanded,
and the determination of a key height threshold will help urban and landscape planning
achieve a cost-effective state in terms of air pollution [63].

4.3. Limitations

On the whole, the research has carried out a certain depth in spatial-scale and par-
ticulate matter species richness, but there are still the following shortcomings: First, the
time period of field measurement is still short, so it is considered to increase the amount of
field measurement work in the follow-up research to improve the data representativeness.
Secondly, the influence of the LCZ on particulate matter has not been quantified, and
the threshold of the building height and building density on particulate matter is still
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unclear. In the follow-up study, we can consider building a relational model to quantify this
influence relationship. The research has guiding significance for improving air pollution
exposure and promoting the sustainable development of urban blocks.

5. Conclusions

This study conducted the mobile monitoring of three types of particulate pollutants
at the block scale. By classifying building LCZ types, particulate pollution maps were
generated. Subsequently, hot spot analysis was employed to identify particulate matter risk
hot spots and cold spots within the neighborhoods, elucidating the correlation between
pollutant distribution and the LCZ. The conclusion is as follows: Regarding the spatial
distribution characteristics of the three types of particulate matter, under the same pollution
level, the spatial distribution characteristics of the concentrations of the three types of
particulate matter are relatively similar, while, under different pollution levels, there is
higher spatial heterogeneity in the distribution of the same type of particulate matter.
The time-weighted results show that the PM; pollution level in the block ranges from 44
to 51 pg/m?3, PM; 5 ranges from 75 to 86 pg/m?, and PM; ranges from 87 to 99 ug/md.
All three types of particulate matter pollution fall within pollution level 2. Regarding
particulate matter risk areas, the spatial distribution of hot spots and cold spots for particles
of different diameters is consistent. Throughout the year, particulate matter hot spots are
mainly distributed in two areas: Dongbei Riza Market and the Shimao Wulihe area. There is
a certain correlation between LCZs and the dispersion of particulate matter pollution. Built-
up LCZs tend to have higher particulate matter concentrations than natural LCZs, while
the building height and density are the key factors contributing to higher concentrations
of particulate matter of different diameters in built-up LCZs. It is necessary to further
investigate their specific mechanisms in subsequent research.
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Abstract: In the context of increasing urbanization and worsening environmental pollution, nonpoint
source pollution during high-frequency rainfall has become a major ecological problem that endangers
residents in cities. This study takes Shenzhen as an example. On the basis of a large number of
soil sample test data, and combined with relevant environmental variables, it has drawn the high-
resolution, high-precision spatial distribution maps of soil attributes within the city. In addition, this
paper combines the revised universal soil loss equation and the GeoDetector model to evaluate the
supply capacity of nonpoint source reduction services in the city’s ecological space and the main
driving factors of spatial distribution characteristics for different types of land. The study found that
increasing soil point density and combining environmental variables can help improve the accuracy
of spatial mapping for soil attributes. The ME, MSE, ASE, RMSE, and RMSSE of spatial mapping
all meet the accuracy evaluation criteria and are better than many existing studies; the spatial
distribution characteristics of soil attributes and nonpoint source reduction services show significant
differences among the whole city, secondary administrative regions, and different types of land; the
GeoDetector results show that among the three main types of land use (forested land, industrial land,
and street town residential land), topographic factors, habitat-quality factors, and ecosystem types
have the greatest impact on the spatial differentiation characteristics of nonpoint source reduction
services. Among climate factors, only precipitation factors have the greatest impact on the spatial
differentiation characteristics of services. Facing the above factors, the g-values calculated by the
GeoDetector are all higher than 10%. The results of this study can provide information for making
better decisions on regional ecological system management and soil protection and on restoration
work aimed at improving nonpoint source reduction services.

Keywords: Shenzhen; soil particle diameter; organic matter; soil contamination; GeoDetector;
driving factor

1. Introduction

Since the Industrial Revolution, the global population has entered a period of rapid
growth [1]. The United Nations predicts that by 2050, the global urban population will
reach 68% of the world’s total population [2]. Technological development has acceler-
ated the expansion of cities around the world to accommodate housing and production
needs. However, highly intensive land-use patterns have achieved economies of scale
while severely altering local soil texture characteristics [3-6]. This has led to the destruction

Atmosphere 2023, 14, 873. https:/ /doi.org/10.3390/atmos14050873 147

https:/ /www.mdpi.com/journal /atmosphere



Atmosphere 2023, 14, 873

of the soil environment and given rise to a series of ecological and environmental prob-
lems. For example, soil degradation can accelerate the degradation of local ecosystems
and increase the risk of dust storm formation [7,8]. Some scholars have found through
research that soil degradation can cause a reduction in the capacity of local ecosystem
services and an increased risk of soil erosion [9]. In addition, while rapid technological
development in agriculture has ensured global food security, the widespread application of
chemical fertilizers and pesticides has also made the global soil environment increasingly
polluted [10,11]. The excessive use of nutrients, such as nitrogen and phosphorus, has
breached the soil environment’s metabolic threshold, posing constant threats to human
lives. For example, studies have found that nutrient enrichment in mangrove soils can
accelerate CO, emissions, leading to an increase in global warming trends [12]. JunKang
Guo et al. [13] have found by reviewing a large number of existing studies that using
excessive fertilizer damages the integrity of soil characteristics.

Ecosystem services can effectively guarantee human ecological security and reduce
environmental risks. Ecosystem services refer to all the benefits that humans obtain from
ecosystems, including material supply services (such as providing food and water), regula-
tion services (such as flood regulation, carbon fixation, water conservation, etc.), cultural
services (such as landscape value enhancement, tourism, health care, etc.), and supporting
services (such as biodiversity maintenance) [14-19]. Many studies have confirmed that
ecosystem services can guarantee the ecological security of cities. Denis Maragno [20] and
A. Rizzo [21] respectively took Dolo and Gorla Maggiore in Italy as case areas, and studied
the positive effects of urban ecological space’s flood reduction service on overall urban
ecological security; in addition, Chae Yeon Park [22] also found that a reasonable urban
green space planning scheme can play a more effective cooling role, so that residents can
avoid the torment of extremely high temperatures. Among all ecosystem services, the
reduction of nonpoint source pollution is crucial. It refers to the function of ecosystems
to maintain soil while reducing the entry of substances such as nitrogen and phosphorus
into downstream water bodies (including rivers, lakes, reservoirs, etc.), ultimately reducing
nonpoint source pollution in the downstream basin. A stable supply of nonpoint source
reduction services can improve the quality of the agricultural production environment
and achieve source reduction for pollutants and systemic health for the production envi-
ronment, laying the foundation for green agricultural development while ensuring the
safety of urban residents’ lives. However, it has been found that changes in soil texture
characteristics and nutrient content can seriously affect the provision of local ecosystem
services by altering the ecosystem’s structure and function [23,24]. As research by Donghua
Luo has found, inappropriate concentrations of soil pollutants can have negative effects
on the growth, development, and forestation of vegetation [25] and on a larger scale can
reduce the ability of trees to provide ecosystem services. Turlough F. Guerin [26] found
in his research on industrial land soil that soil compaction can have negative effects on
the germination, emergence, and early growth of the roots and stems of some plants. Ad-
dressing soil environmental problems in megacities with high land intensification and
large populations poses a significant challenge for researchers and city managers, and
developing strategies to alleviate urban surface pollution pressure and enhance ecosystem
surface reduction services is a pressing issue.

The existing studies on the spatial mapping of the physicochemical properties of soil
are mostly based on different ecosystems [27-29] or small and medium-size cities, and
they rarely use megacities as research cases. Moreover, there are few studies on the influ-
encing factors of the spatial distribution of nonpoint source pollution reduction services.
In China, a megacity refers to a city with a population of over 10 million and is typically
characterized by high levels of urbanization, industrialization, and economic develop-
ment [30,31]. Megacities face many soil environmental issues, such as soil pollution [32],
soil degradation [33,34], and soil erosion [35]. These issues not only affect the ecosystem
services of the city but also threaten the health and quality of life of urban residents. This
article takes Shenzhen as a case study and, on the basis of a large number of soil sample
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data and environmental variables, draws high-resolution spatial distribution maps of soil
particle size and soil pollutant (total phosphorus, total nitrogen) content for the entire city.
Compared with existing research, this article has a higher density of points, considers more
environmental variables, and has better mapping accuracy. Based on the spatial results of
soil attributes, this article combines geospatial remote-sensing data, statistical data, and
localized service function parameters to calculate and spatialize the nonpoint source pollu-
tion reduction services for the entire city. Finally, this article uses the geographic detector
method to explore the main factors affecting the spatial distribution of nonpoint source
pollution reduction services on different land types. The research results can provide a
basis for decision-making for regional ecosystem management and soil protection and for
restoration policies.

2. Materials and Methods
2.1. Study Area

Shenzhen, an important city along China’s southern coast, is in the southern region
of the Guangdong Province and on the east coast of the Pearl River Estuary, as shown in
Figure 1. As one of the four central cities in the Guangdong-Hong Kong-Macao Greater Bay
Area, Shenzhen was the first city in China to undergo reform and open up [36]. The city has
a land area of 1997.47 km? [36], of which 1005.95 km? is built-up land, and has a year-end
resident population of 17,681,600 (as of the end of 2021). In the context of continuous
industrial development and transformation, the local soil environment has gradually dete-
riorated with the influx of population and the continuous reduction of nonecological space
land; it has more-serious environmental problems, such as soil hardening and slabbing, soil
acidification, soil salinization, and soil pollution [37,38]; and the supply base of ecosystem
services has been challenged. Shenzhen is a southern subtropical monsoon climate zone
characterized by high temperatures and rainfall in summer and mild winters, with high
annual rainfall [39]. An overly fragile surface soil environment can cause serious erosion,
surface runoff, and surface source pollution problems when washed by precipitation [40].
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Figure 1. Location map of Shenzhen.
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Shenzhen, as a demonstration area of China’s economic development, is the first
experimental place for many development policies in China. The development strategy
adopted by Shenzhen is a reference and learning experience for other cities in China,
but many of ecological and environmental problems faced by Shenzhen in the process of
development are also possible problems faced by other cities in the process of development.
Therefore, this paper takes Shenzhen, a megacity, as a case study, carries out spatial research
on soil texture characteristics and pollutant content, and explores the main driving factors
of the spatial distribution of nonpoint source pollution reduction services on different
land-use types, providing a basis for regional ecosystem management and protection policy
formulation for Shenzhen now and for other cities in the future.

2.2. Collection and Testing Methods of Soil Samples

At the city district scale, ArcGIS (Environmental Systems Research Institute, RedLands,
CA, USA) was used to generate random points on different ecosystem types, considering
the conditions of vegetation, topography, and climatic characteristics, as shown in Figure 2.
Specifically, 451 points were selected for investigating and testing soil clay, silt, sand, and
organic matter content, while 185 points were chosen for examining and testing the total
soil phosphorus and nitrogen content, which is a significant increase in density compared
with the traditional soil sampling point setup. To collect soil samples, the researchers
removed topsoil weeds, then scooped up a 20 cm soil sample with a shovel, packaged it
immediately, and sent it to the lab the same day for testing.

Soil particle composition/mechanical composition tests are carried out in accordance
with the Forestry Industry Standard of the People’s Republic of China for the Determination
of Forest Soil Particle Composition (Mechanical Composition) LY /T 1225-1999 [41]. Soil
organic matter is tested in accordance with “Soil Testing Part 6: Determination of Soil
Organic Matter” NY/T 1121.6-2006 [42]. The determination of the total phosphorus in
soils follows the “Determination of total phosphorus in soils: alkali fusion—molybdenum
antimony anti-spectrophotometric method” HJ 632-2011 [43]. The detection of total soil
nitrogen follows the “Kjeldahl method for the determination of total nitrogen by soil
quality” HJ 717-2014 [44].
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Figure 2. Ecosystem classification map and distribution of soil sampling sites in Shenzhen.
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2.3. Methods for Mapping Soil Properties

Numerous methods exist for spatializing soil texture and contaminants. In this paper,
the Kriging method of geostatistical methods in ArcGIS is employed for interpolation.
Kriging is the most widely used and typical interpolation method in geostatistics and
contains several types given that both ordinary Kriging (OK) and universal Kriging (UK)
among them ignore the relationship between soil properties and their environmental
components, whereas co-Kriging can combine soil predictor variables with environmental
auxiliary variables for unbiased optimal estimation [45,46]. Consequently, this paper
utilizes co-Kriging in combination with environmental variables for the interpolation of soil
properties. In addition, log-ratio conversion methods, commonly used to address closure
effects and the statistical analysis of component data during interpolation, are referenced
in this study [47].

Environmental variables can directly or indirectly reflect geochemical cycling pro-
cesses, such as soil occurrence, surface runoff, leaching, and vegetation distribution. These
processes subsequently influence soil texture characteristics and nutrient spatial distribu-
tion, so combining auxiliary variables is one of the most important tools to improve the
accuracy of interpolation, especially at the urban scale. This study uses both continuous and
categorical variables to enhance the rationality of the spatial distribution in the mapping
results. Continuous variables include elevation (Ele), slope (Slo), aspect (Asp), general
curvature (GC), plan curvature (PLC), profile curvature (PRC), tangential curvature (TC),
longitudinal curvature (LC), cross-sectional curvature (CSC), flow line curvature (FLC),
LS factor (LSF), flow accumulation (FA), the topographic wetness index (TWI), the wind
exposition index (WEI), and the normalized difference vegetation index (NDVI) [48-52].
All the continuous variables were extracted by using SAGA GIS software (Department
of Physical Geography, University of Gottingen, Gottingen, Sachsen, Germany) that is
based on DEM, and the categorical variables included the type of land use in which the
monitoring sites were located.

2.4. Methods for the Assessment of Surface Source Pollution Reduction Services

The modified general soil loss equation proposed by Wischmeier et al. [53] was used
to account for city-wide soil retention. Next, the soil retention was multiplied by the
content factors of nutrients such as nitrogen and phosphorus in the soil [54] to calculate the
physical quantity of surface source reduction services. The equation is shown below. See
Equations (1) and (2):

Qupbi = Qsr X ¢; 1)

Qn=Y", [R,- % K; % Li % S; % (1— Cj) x A; x 102} 2)

where Qapi 1s the amount of type i surface source pollution reduced by the ecosystem (t/a);
Qsr is the soil retention (t/a); j is the number of nutrient species in the soil; ¢; is the pure
content of nitrogen and phosphorus in the soil (%); A; is the area of ecosystem i (km?); i
is the ecosystem type, i =1, 2,3, ..., n; n is the number of ecosystems; R; is the rainfall
erosivity factor for ecosystem i (MJ-mm-hm~2-h~!-a~1); K; is the soil erodibility factor
of ecosystem i (t-hm?-h-hm=2-MJ~1-mm™1); L; is the slope length factor of ecosystem i
(dimensionless); S; is the slope factor of ecosystem i (dimensionless); and C; is the vegetation
cover factor of ecosystem i (dimensionless).

2.5. Methods for the Study of Drivers for Surface Source Pollution Reduction Services

The GeoDetector (Institute of Geographical Sciences and Natural Resources, Chinese
Academy of Sciences, Beijing, China) is a set of statistical methods designed to detect
spatial heterogeneity and reveal the driving forces behind it. The core idea is based on
the assumption that if an independent variable has a significant effect on a dependent
variable, then the spatial distribution of the independent and dependent variables should be
similar [55,56]. In this paper, we conducted a study on the drivers of the spatial distribution
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of surface source reduction services in Shenzhen’s ecological space by using GeoDetector,
taking into account five major potential influences: climate, soil properties, topography,
habitat quality, and ecosystem type (as shown in Table 1). Because GeoDetector requires
categorical variables as inputs during operation, we have converted all the continuous
input data into 5-level categorical input data by using the natural breakpoint method,
before inputting the data.The GeoDetector consists of four components: (1) divergence
and factor detection, (2) interaction detection, (3) risk zone detection, and (4) ecological
detection, with detailed formulae taken from Dr. Jinfeng Wang's research paper [56]. This
study uses the “divergence and factor detection” and “interaction detection” sections, as
introduced below.

Table 1. Indicator system for potential drivers.

First-Level Indicators Second-Level Indicators General Information
Cli X1: Annual precipitation mm
imate X2: Average annual temperature °C
X3: Content of sand particles g/kg
. . X4: Content of clay particles g/kg
Soil properties X5: Content of silt particles g/kg
X6: Content of organic matter g/kg
Topograph X7: Elevation m
pography X8: Slope Degree
Habitat qualit X9: Normalized difference vegetation index, NDVI Dimensionless
4 ¥ X10: Net primary productivity, NPP t/hm?
Ecosystem type X11: Ecosystem type Forests, grasslands, wetlands, impervious

surfaces, farmlands, barren

(1) Divergence and factor detection are used to detect the spatial heterogeneity of the
dependent variable and to detect the extent to which an independent variable explains
the spatial divergence of the dependent variable.

(2) Interaction detection is used to assess the degree of influence from different driver
factors combined on the dependent variable. There are five types of two-factor
interactions. If the two-factor interaction g-value is less than any single-factor g-value,
then it is nonlinearly attenuated; if the two-factor interaction g-value is between two
single-factor g-values, then it is one-factor nonlinearly attenuated; if the two-factor
interaction g-value is greater than any single-factor g-value, then it is two-factor
enhanced; if the two-factor interaction g-value is equal to the sum of two single-factor
g-values, then it is independent; and if the two-factor interaction g-value is greater
than the sum of two single-factor g-values, then it is nonlinearly enhanced.

3. Results
3.1. Spatial Characteristics of Soil Properties
3.1.1. Accuracy Testing

Co-Kriging (CK) interpolation was evaluated by using a cross-validation method. Its
valuation accuracy is assessed according to the following criteria: (1) the absolute value of
the mean error (ME) is close to 0; (2) the standardized mean error (MSE) is close to 0; (3) the
mean standard error (ASE) is closest to the root mean square error (RMSE); and (4) the
standardized root mean square error (RMSSE) is closest to 1. As can be seen from Table 2,
the relevant data all met the judgment criteria, indicating that all soil property indicators
were interpolated well. The interpolation accuracy of this study is also better than that
of previous research [57-60]. For example, Chen Lu et al. [57] obtained an ME of 0.09, an
MSE of —0.04, and an RMSSE of 1.19 when interpolating soil particle size in the suburbs of
Tianjin, China.
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Table 2. Results of cross-validation.

Soil Properties ME MSE ASE RMSE RMSSE
Silt particles 0.015 0.012 11.060 11.071 1.001
Clay particles 0.011 0.009 11.100 11.080 1.003
Sand particles 0.001 0.001 11.120 11.110 1.012
Organic matter 0.016 0.013 11.090 11.080 1.011
Total nitrogen 0.012 0.010 11.070 11.082 1.016
Total phosphorus 0.003 0.002 11.113 11.102 1.108

3.1.2. Spatial Distribution Characteristics of Soil Particle Size and Organic Matter

The areas with high silt content in Shenzhen are located in the central and eastern parts
of the city, as shown in Figure 3a. The respective areas of high-content areas in Longgang
District, Yantian District, Dapeng New District, and Longhua District are relatively large.
The mean value of silt particle content was higher in the Yantian, Longgang, and Luohu
districts, at 262.04 g/kg, 242.97 g/kg, and 238.15 g/kg, respectively, and lower in the
Nanshan and Guangming districts (see Table S1). In terms of land types, the city’s press
and publication land, dry land, forested land, and railway land had higher mean values, of
231.02 g/kg, 230.22 g/kg, 226.96 g/kg and 224.72 g/kg, respectively, while pastureland,
scenic facilities land, business and financial land, and airport land had lower mean values,
as shown in Figure 4a and Table S2.
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Figure 3. (a) Spatial distribution characteristics of the content of silt; (b) spatial distribution character-
istics of the content of clay.
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Figure 4. (a) Spatial distribution characteristics of the mean silt content of each land type (g/kg);
(b) spatial distribution characteristics of the mean clay content of each land type (g/kg).
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The areas with high clay content in Shenzhen are in the central and southeastern parts
of the city, as shown in Figure 3b. Longgang District, Dapeng New District, and Guangming
District each have a relatively large area of high-content areas. The mean values of clay
content were higher in the Dapeng and Longgang districts at 169.06 g/kg and 165.02 g/kg,
respectively, and lower in the Nanshan and Guangming districts (see Table S1). In terms of
land types, the city’s paddy fields, agricultural land for facilities, shrublands, and forested
land had higher mean values, of 150.92 g/kg, 150.91 g/kg, 148.59 g/kg, and 147.49 g/kg,
respectively. The mean values for pastureland; port and terminal land; cultural, sports, and
recreational land; and airport land were lower, as shown in Figure 4b and Table S2.

The areas with high sand content in Shenzhen are located in the west, southwest. and
northwest of the city, as shown in Figure 5a. The respective areas of high-content areas
in the Baoan, Nanshan, Guangming, and Futian districts are relatively large. The mean
values of sand content were higher in Nanshan District and Baoan District, at 714.76 g/kg
and 668.84 g/kg, respectively. On the other hand, the values were lower in Longgang
District and Dapeng New District (see Supplementary Table S1). In terms of land types, the
city’s port and terminal land, natural grazing land, airport land, and business and financial
land have higher mean values of sand content, at 722.98 g/kg, 721.28 g/kg, 707.71 g/kg,
and 673.04 g/kg, respectively. Agricultural land for facilities, dry land, forested land, and
railway land have lower mean values, as shown in Figure 6a and Table S2.
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Figure 5. (a) Spatial distribution characteristics of the content of sand; (b) spatial distribution
characteristics of the content of organic matter.
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Figure 6. (a) Spatial distribution characteristics of the mean sand content of each land type (g/kg);
(b) spatial distribution characteristics of the mean organic matter content of each land type (g/kg).
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The areas with high soil organic matter content in Shenzhen are in the northwest and
southeast of the city, as shown in Figure 5b. Guangming District, Longhua District, Baoan
District, Dapeng New District, and Pingshan District each have a relatively large area of
high-content areas. The mean organic matter content was higher in Guangming District
and Baoan District, at 139.81 g/kg and 122.83 g/kg, respectively. Meanwhile, the content
was lower in Luohu District, Nanshan District, Futian District, and Longgang District (see
Table S1). In terms of each land type, the city’s artificial grazing land, watered land, paddy
fields, and inland mudflats had higher mean values of organic matter, at 153.86 g/kg,
130.91 g/kg, 122.62 g/kg, and 117.53 g/kg, respectively. Port terminal land, airport land,
tea plantations, and natural grazing land, however, had lower mean values, as shown in

Figure 6b and Table S2.

3.1.3. Spatial Distribution Characteristics of Soil Contaminant Content

The areas with high total soil nitrogen content in Shenzhen are in the central and
western parts of the city, as shown in Figure 7a. Futian District, Nanshan District, and
Longhua District each have a relatively large area of high-content areas. The mean values
of total soil nitrogen in Futian District and Longhua District were higher, at 737.90 mg/kg
and 613.46 mg/kg, respectively, while Dapeng New District and Baoan District were lower
(see Table S1). The mean values of the total soil nitrogen in the city were higher in natural
pastureland and at correctional sites and scenic sites, at 604.59 mg/kg, 568.51 mg/kg, and
552.73 mg/kg, respectively. Lower values were found at airport sites and agricultural
facilities and in tea gardens and artificial pastureland, as shown in Figure 8a and Table S2.
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Figure 7. (a) Spatial distribution characteristics of the content of TN; (b) spatial distribution charac-
teristics of the content of TP.
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Figure 8. (a) Spatial distribution characteristics of the mean TN content of each land type (mg/kg);
(b) spatial distribution characteristics of the mean TP content of each land type (mg/kg).
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The areas with high levels of total soil phosphorus in Shenzhen are in the northeast,
as shown in Figure 7b. Longgang District and Pingshan District each have a relatively
large area of high-content areas. The mean values of total phosphorus in Pingshan District
and Longgang District were higher, at 967.57 mg/kg and 602.09 mg/kg, respectively.
Lower values were observed in Longhua District, Dapeng New District, and Guangming
District (see Table S1). The mean values of total soil phosphorus were higher in rivers,
reservoirs, correctional sites, vacant land, and watered land, at 642.48 mg/kg, 635.21 mg/kg,
633.56 mg/kg, 610.28 mg/kg, and 603.78 mg/kg, respectively, while the mean values were
lower in tea gardens, artificial pastureland, natural pastureland, and coastal mudflats, as
shown in Figure 8b and Table S2.

3.2. Results of Surface Source Pollution Reduction Services

The areas with a higher supply of surface source reduction services in Shenzhen are
distributed in the contiguous mountains with better vegetation cover conditions, along
Dapeng New District-Pingshan District-Yantian District-Luohu District, followed by the
Tanglang Mountain, Fenghuang Mountain, and Yangtai Mountain areas in the east (see
Figure 9). Longgang District and Dapeng New District had higher physical quantities of
TN service and TP service for surface source reduction, reaching 4399.80 t and 3247.69 t
and reaching 7043.18 t and 7296.23 t, respectively, while Futian District and Guangming
District had lower physical quantities of the two indicators (see Table S3). In terms of
supply intensity, the Luohu, Yantian, and Futian districts have higher service averages for
TN reduction from surface sources, at 0.26 t/hm?, 0.20 t/hm?, and 0.17 t/hm?2, respectively.
The Pingshan, Yantian, and Luohu districts have higher service averages for TP reduction
from surface sources, at 0.30 t/hm?2, 0.28 t/hm?2, and 0.28 t/hm?, respectively.
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Figure 9. (a) Spatial distribution characteristics of total nitrogen for city-wide surface source reduction
services (t/hm?); (b) spatial distribution characteristics of total phosphorus for city-wide surface
source reduction services (t/hm?).

3.3. Analysis of the Factors Influencing Surface Source Pollution Reduction Services

In this study, a driver analysis of surface source reduction services was carried out
to determine the city’s main land-use types of forest land, industrial land, and street
town residential land (the cumulative land area accounts for 50.26% of the city’s land
area). The land-use classification data of Shenzhen City comes from the Shenzhen Land
Ecological Survey Project. These data divide the city’s land into 50 types of land use, and
all types of land use can be seen in Table S2. The study fully considered five major factors,
namely climate, soil properties, topography, habitat quality, and ecosystem type, with
11 potential drivers, and the results are shown in Table S4. The results of the study can
provide guidance for environmental-management-oriented service enhancement measures
for surface source reduction.
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3.3.1. Forest Land

The spatial distribution of surface source TN reduction services on forested land is
influenced mainly by the slope factor, vegetation normalization index, and elevation in
the region. Table S4 shows that the g-statistics of each driver are ranked in descending
order as the slope, vegetation normalization index, elevation, precipitation, net primary
productivity, ecosystem type, sand content, organic matter content, sticky grain content,
annual mean temperature, and silt content. In addition, some factors, such as precipitation,
net primary productivity, ecosystem type, and sand content, also positively influence the
formation of spatial variation in TN reduction services, while other factors with small
g-values have little explanatory power (g-values below 10%) [61-65].

Similar to surface source TN reduction services, the spatial distribution of surface
source TP reduction services on forested land is also influenced mainly by the slope factor,
vegetation normalized index, and elevation within the area. As seen in Table S4, the g-
statistics of the drivers are, in descending order, the slope, vegetation normalized index,
elevation, precipitation, ecosystem type, net primary productivity, sand content, mean
annual temperature, clay content, meal content, and organic matter content, and again, the
slope factor, vegetation normalized index, and elevation have the greatest influence on the
spatial variation of TP reduction services on forested land. Other influencing factors, such
as precipitation, ecosystem type, net primary productivity, sand content, and annual mean
temperature, also positively affect the formation of spatial differences in TN reduction
services. Compared with the TN reduction services, the annual mean temperature also
showed a greater influence, and the influence of ecosystem type was stronger than that of
net primary productivity. Other factors with small g-values have less explanatory power
(g-values below 10%) [61-65].

The results of the two-factor interaction detection of source reduction services (TN
and TP) on forested land are shown in Figures S1 and S2, respectively. The interaction
between the drivers showed a two-factor enhancement or nonlinear enhancement; i.e.,
the interaction of any two drivers on the spatial variance of the forested ground source
reduction services (TN and TP) was greater than the effect of one driver alone, indicating
that the spatial variance of the forested ground source reduction services (TN and TP) was
affected by the joint effect of the drivers. There are more nonlinearly enhanced relationships
between the factors of the TN reduction services than the TP reduction services, indicating
that the joint effect between different factors has a greater impact on the spatial variation of
the TN reduction services; the joint effect between the same pair of factors has a different
impact on the TN reduction services and the TP reduction services.

3.3.2. Industrial Land

The main drivers of spatial distribution for both TN reduction services and TP re-
duction services on industrial land are the same: the vegetation normalized index, slope,
and data elevation. As shown in Table 54, the g-statistics of the drivers of TN reduction
services are ranked in descending order as the vegetation normalized index, slope, data
elevation, precipitation, ecosystem type, net primary productivity, sand content, silt content,
annual mean temperature, organic matter content, and clay content. Among them, the
vegetation normalized index, slope, and data elevation have the greatest influence on the
spatial variation of TN reduction services on industrial land. In addition, other influencing
factors, such as precipitation, ecosystem type, net primary productivity, and sand content,
positively affect the formation of spatial variation in TN reduction services from surface
sources, while other factors with small g-values do not have strong explanatory power
(g-values below 10%) [61-65].

The order of the g-statistics of the drivers of the TP reduction services is similar to
that of the TN reduction services, with only silt content and mean annual temperature
changing in order. Similarly, the vegetation normalized index, slope, and data elevation had
the greatest influence on the spatial variation of TP reduction services on industrial land.
Additionally, other factors, such as precipitation, ecosystem type, net primary productivity,
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sand content, and mean annual temperature, positively influence the formation of spatial
variation in TP reduction services, while other factors with small g-values have little
explanatory power [61-65].

The results of the two-factor interaction detection for surface source reduction services
(TN and TP) on industrial land are shown in Figures S3 and 54, respectively. The interaction
between the drivers also shows a two-factor enhancement or nonlinear enhancement, and
the spatial differentiation of surface source reduction services (TN and TP) on industrial
land is affected by the combined effect of the drivers. There were more nonlinearly en-
hanced relationships between the factors for the TP reduction services service than for
the TN reduction services, suggesting that the joint effect between different factors had
a greater impact on the spatial variance of the TP reduction services. There are differ-
ences in the effects of the same pair of factors on the TN reduction services and the TP
reduction services.

3.3.3. Street and Town Residential Land

The main drivers of the spatial distribution of TN reduction services and TP reduction
services on street and town residential land are the same, both being the vegetation nor-
malized index, slope, and elevation. As can be seen from Table S4, the g-statistics of the
drivers of the TN service are, in descending order, the vegetation normalized index, slope,
elevation, precipitation, ecosystem type, net primary productivity, sand content, mean
annual temperature, organic matter content, silt content, and clay content. Among them,
the vegetation normalization index, slope, and elevation have the greatest influence on the
spatial variation of TN reduction services on street and town residential land. In addition,
other factors, such as precipitation, ecosystem type, net primary productivity, sand content,
and annual mean temperature, positively influence the formation of spatial variation in
TN reduction services. Other factors with small g-values do not have strong explanatory
power (g-values below 10%) [61-65].

Similar to the TN reduction services, the g-statistics of the drivers of the TP reduction
services on street and town residential land are, in descending order, the vegetation normal-
ized index, slope, elevation, ecosystem type, precipitation, net primary productivity, sand
content, mean annual temperature, silt content, organic matter content, and clay content.
Similarly, the vegetation normalized index, slope, and elevation had the greatest influence
on the spatial variation of TP reduction services on street and town residential land. In
addition, other influencing factors, such as precipitation, ecosystem type, net primary
productivity, sand content, and annual mean temperature, positively affect the formation
of spatial variation in TP reduction services. Other factors with small g-values do not have
strong explanatory power (g-values below 10%) [61-65].

The results of the two-factor interaction detection for the surface source reduction
services (TN and TP) on street and town residential land are shown in Figures S5 and
S6, respectively. The interaction between the drivers shows a two-factor enhancement or
nonlinear enhancement, indicating that the spatial variation of the surface source reduction
services (TN and TP) on residential land in streets and lanes is affected by the joint action of
the drivers. The nonlinearly enhanced relationship between the factors of the TP reduction
services is comparable to the number of TN reduction services. There are also differences in
the effects of the joint action between the same pair of factors on TN reduction services and
TP reduction services; e.g., the joint action of the X1 and X2 factors is nonlinearly enhanced
in relation to the spatial distribution of TN reduction services, while it is bifactorally
enhanced in relation to the spatial distribution of TP reduction services.

4. Discussion

4.1. Soil Attribute Mapping Based on Multipoint Monitoring Data Provides Better Data Support
for Relevant Research and Management Applications

The traditional accounting of surface source reduction services, which relies on the
modified universal soil loss equation, primarily uses public data sets, such as the HWSD
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global soil data [66-68], to determine the physical and chemical properties of soil. However,
the public data sets have the disadvantages of low resolution and insufficient localization,
making it difficult for them to reflect the actual spatial distribution of soil properties in
the study area. In this study, 451 survey and testing points for soil clay, silt, sand, and
organic matter content and 185 points for total phosphorus and total nitrogen content
were selected across various ecosystem types within each administrative region of the
city. This significantly increased density compared with traditional soil sampling points.
At the same time, the co-Kriging spatial interpolation method, combined with a series of
environmental auxiliary variables, has significantly improved the final spatial interpolation
accuracy, and the interpolation results have passed cross-validation and are more accurate
than the results of existing studies [57-60]. The highly localized, refined, and accurate
spatial mapping results of soil properties also provide strong data support for relevant
research and management application scenarios based on such data, guaranteeing the
scientific soundness and rationality of subsequent results and applications.

4.2. The Distribution Characteristics of the Different Properties of the Soil Show Significant
Differences across the City

The spatial distribution of soil sand, clay, silt, organic matter, and total phosphorus
and nitrogen content in the city is significantly different thanks to the combined influence of
soil parent material and external environmental factors. In terms of the overall distribution,
the areas with high soil silt content are mainly in the eastern part of the city in the area
of Qiniang Mountain and Paiya Mountain, in the central part of the city from Wutong
Mountain to Qiushuiding, and in the western part of the city from Fenghuang Mountain
to Tie Gang Reservoir. The areas with low soil silt content are mainly in the southern
part of Nanshan District, the northwestern part of Bao’an District, the northern part of
Guangming District, and the Maluan Mountain area in the western part of the city. Areas
with high soil clay content are mainly in the Dapeng Peninsula, from Qiniang Mountain
to Paiya Mountain, and from Qiushuiding to Shenxianling Reservoir, while areas with
low content are distributed in the southern part of the city, in the northwestern part of
Bao’an District, and in the northeastern part of Pingshan District. The areas with high
sand content are mainly in the Western International Convention and Exhibition Centre
area, the Nanshan Park area, and the Ma Luangshan area, while the lower content areas
are in large areas of mountainous woodland on the Dapeng Peninsula and in a large area
centered on Qiushui Ding in Longgang District. The areas with high soil organic matter
content are mainly in the Paiya Mountain and Paogou Mountain areas on the Dapeng
Peninsula, the woodland around the Jiulongkeng Reservoir, and the northeastern part of
the Balcony Hill area. The areas with low soil organic matter content are mainly in the
Nanshan Park area, a large area of mountain woodland from Tiantoushan to Guanyinshan
Park, and a large area in Longgang District. Areas with high total soil phosphorus content
are concentrated in the northeastern part of the city, from Shang Che Reservoir to a large
area of woodland in Songzi Keng Forest Park, while the rest of the area has low total soil
phosphorus content. Areas with high total soil nitrogen content are concentrated in large
areas of the surrounding hills and woodlands centered on Tonglang Mountain, while the
rest of the area has low total soil nitrogen content.

Soil properties also show a highly differentiated distribution across the different types
of land uses. Among the 50 types of land in the city, the mean soil silt content is higher
in the areas of press and publication land, dry land, wooded land, and railway land and
lower in the areas of pastureland, scenic facilities, business and financial land, and airport
land. The mean soil clay content values are higher in the range of paddy fields, agricultural
facilities, shrublands, and forested land and lower in the range of pastureland; port and
harbor land; cultural, sports, and recreational land; and airport land. The mean soil sand
content is higher in the range of port and terminal land, natural grazing land, airport
land, and business and financial land and lower in the range of agricultural land, dry land,
forested land, and railway land. The mean soil organic matter content is higher in the range
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of artificial grazing land, watered land, paddy fields, and inland mudflats and lower in the
range of port terminal land, airport land, tea plantations, and natural grazing land. The
mean value of total soil nitrogen is higher in the range of natural grazing land, correctional
sites, and scenic sites and lower in the range of airport sites, agricultural facilities, tea
gardens, and artificial grazing land. The mean value of total soil phosphorus is higher at
correctional sites and in rivers, reservoirs, vacant land, and watered land and lower in tea
gardens, artificial pastures, natural pasture, and coastal mudflats.

4.3. The Distribution Characteristics of Surface Source Pollution Reduction Services Show
Significant Differences across the City

The distribution characteristics of the supply capacity of TN reduction services and TP
reduction services in Shenzhen’s ecological space are more consistent across the city. The
areas with higher supply capacity are distributed mainly in the large mountain woodlands
in the eastern part of the Dapeng Peninsula—Pingshan District-Yantian District-Luohu
District contiguous area and in the Tanglang Mountain, Yangtai Mountain, and Fenghuang
Mountain areas. On the other hand, urban green spaces with smaller slopes and lower-
quality vegetation have lower supply capacity.

At the district scale, the mean value of TN reduction services was higher in Luohu
District, Yantian District, and Futian District, while the mean value of TP reduction services
was higher in Pingshan District, Yantian District, and Luohu District. At the scale of
each land type, forested land, tea plantations, shrubland, and other forested land each
have a high capacity to supply TN reduction services, while forested land, shrubland, tea
plantations, pipeline transport land, and orchards each have a high capacity to supply TP
reduction services. Paddy fields, reservoirs, port terminal land, natural grazing land, and
airport land have a low capacity to reduce surface source pollution.

4.4. Spatial Distribution Characteristics of Surface Source Pollution Reduction Services Are
Driven Mainly by Topography, Habitat Quality, and Ecosystem Type

The results of the GeoDetector show that topographic factors, habitat-quality factors,
and the ecosystem type have the greatest influence on the spatial variability of the TN
reduction services and the TP reduction services on the three types of sites. Among the
climatic factors, precipitation is the only climatic factor that has a significant influence
on the spatial variability of the services. Other than the sand content factor, which has a
certain degree of influence, soil property factors do not have great influences on the spatial
differentiation characteristics of the services. Additionally, the small g-value does not have
strong explanatory power (as shown in Table S4).

An analysis from the perspective of the formation and reduction mechanism of surface
source pollution found the following: (1) Different ecosystem types differ in their ability
to reduce surface source pollutants under the same precipitation conditions owing to dif-
ferences in their internal tree species composition, horizontal structure, vertical structure,
biomass, and other factors. (2) Regions with higher topography and slopes, where precipi-
tation has a stronger ability to scour the surface, form more-severe surface source pollution,
increasing the amount of local surface source pollution reduction from the perspective of
pollution volume production. Conversely, flat regions, where precipitation has a weaker
ability to scour the surface, pose less of a risk for surface source pollution formation and to
some extent weaken the amount of local surface source pollution reduction. (3) When other
environmental factors remain unchanged, better vegetation conditions in a region imply a
multilayered tree structure and high-quality plant growth conditions, which strengthen the
surface source pollutant reduction capacity in the region. (4) Lastly, regions with higher
precipitation experience more-severe surface soil washing by rainfall, leading to the forma-
tion of more surface source pollutants. This phenomenon to some extent strengthens the
local capacity to reduce surface source pollution.
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4.5. Based on the Results of the Interaction Detection between Different Factors,
Service-Enhancement-Oriented Optimization Solutions Can Be Developed

In this study, the driving mechanisms of TN reduction services and TP reduction
services were investigated for the city’s major land types (forested land, industrial land,
and street and residential land). The results show that the driving mechanisms of the three
land types are similar, with elevation, slope, and the vegetation normalization index as
the main drivers of the spatial distribution of the surface source reduction services. Net
primary productivity, ecosystem type, precipitation, and mean annual temperature also
play important roles in the spatial variation of the services. The interaction detection results
of the factors on the three types of sites show that the interaction of each driver shows a two-
factor enhancement or nonlinear enhancement, meaning that the interaction effect of any
two drivers on the spatial variation of the surface source reduction service is greater than
that of one driver alone. This finding suggests that the spatial variation of the surface source
pollution reduction service is affected by the combined effect of the drivers. However, there
are differences in the results of interaction detection between the factors on the three types
of sites. On the same type of land, the interaction detection results of the TN reduction
services and the TP reduction services are different, and the interaction detection results
of the same service on different land types are also different. Therefore, the interaction
and synergy between different driving factors should be considered when optimizing the
ecosystem and controlling the risk of surface source pollution in the region. Targeted and
differentiated treatment modes should be adopted to maximize the enhancement of surface
source pollution reduction services and avoid the further reduction of service supply
capacity due to unreasonable treatment. For example, in the process of urban old city
reconstruction and reserve land development, in order to improve or maximize the ability
of local ecosystems to reduce nonpoint source pollution service supply, urban managers
can adjust different driving factors on the basis of the results of the geographic detector in
this paper; in addition, facing the main nonpoint source pollution problems (total nitrogen
pollution or total phosphorus pollution) that occur in different regions, urban managers
can also transform the many environmental conditions of local ecosystems into the best
combination to achieve the best nonpoint source pollution reduction effect.

4.6. The Innovations and Limitations of This Study

Cities face many ecological and environmental problems in the process of developing
into megacities. Vegetation degradation and soil physicochemical property changes have
great negative impacts on the ecosystem’s service of reducing nonpoint source pollution.
There are few studies on the spatial mapping of the physicochemical properties of soil for
megacities with high degree of hardening and also few studies on the influencing factors of
the spatial distribution of the service of reducing nonpoint source pollution. The novelty of
this paper is reflected in the following aspects: (1) This study comprehensively considered
various environmental variables and carried out a high-resolution spatial mapping of
the physicochemical properties of soil for highly hardened megacities. (2) This study
analyzed the spatial distribution influencing factors of the service of reducing nonpoint
source pollution for the main three land-use types in the city, laying a foundation for urban
ecological management applications. In addition, the research results of this paper can
serve as the basis for future studies. High-quality physical and chemical property grid
maps for soil can be used for the assessment and mapping of many ecosystem services
(such as water conservation, flood reduction, soil conservation, etc.) in the whole city.

Although this paper has achieved some results in the spatial mapping of the physical
and chemical properties of soil and the detection of driving factors for reducing nonpoint
source pollution services, it has not quantified the joint driving effects of different environ-
mental factors on reducing nonpoint source pollution services. In future studies, methods
such as multiple regression, neural network training, random forest, etc. can be used to
carry out such research.
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5. Conclusions

Most megacities with high development intensity, fragile soil environments, and high
precipitation are facing serious surface source pollution problems. In this study, the spatial
distribution of soil particle size, organic matter, total phosphorus, and total nitrogen content
was mapped with high accuracy by using a large number of soil field survey data and
relevant environmental variables. Additionally, the spatial distribution characteristics of
phosphorus and nitrogen pollutants in the city’s soil were clarified. Furthermore, at the
scale of each land type, this paper integrated a modified generic soil loss equation and a
geographic probe to assess the current status and main drivers of spatial variation in the
provision of surface reduction services in the city’s ecosystems. The results of the study can
serve as a foundation for decision-making on ecosystem management and soil conservation
and restoration, ultimately enhancing surface reduction services in the region.
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Abstract: One of the key reasons for the success of invasive plants is the functional differences
between invasive plants and native plants. However, atmospheric nitrogen deposition may disrupt
the level of available nitrogen in soil and the functional differences between invasive plants and
native plants, which may alter the colonization of invasive plants. Thus, there is a pressing necessity
to examine the effects of atmospheric nitrogen deposition containing different nitrogen components
on the functional differences between invasive plants and native plants. However, the progress made
thus far in this field is not sufficiently detailed. This study aimed to elucidate the effects of artificially
simulated nitrogen deposition containing different nitrogen components (i.e., nitrate, ammonium,
urea, and mixed nitrogen) on the functional differences between the Asteraceae invasive plant Bidens
pilosa L. and the Asteraceae native plant Pterocypsela laciniata (Houtt.) Shih. The study was conducted
over a four-month period using a pot-competitive co-culture experiment. The growth performance of
P. laciniata, in particular with regard to the sunlight capture capacity (55.12% lower), plant supporting
capacity (45.92% lower), leaf photosynthetic area (51.24% lower), and plant growth competitiveness
(79.92% lower), may be significantly inhibited under co-cultivation condition in comparison to
monoculture condition. Bidens pilosa exhibited a more pronounced competitive advantage over
P. laciniata, particularly in terms of the sunlight capture capacity (129.43% higher), leaf photosynthetic
capacity (40.06% higher), and enzymatic defense capacity under stress to oxidative stress (956.44%
higher). The application of artificially simulated nitrogen deposition was found to facilitate the
growth performance of monocultural P. laciniata, particularly in terms of the sunlight capture capacity
and leaf photosynthetic area. Bidens pilosa exhibited a more pronounced competitive advantage (the
average value of the relative dominance index of B. pilosa is ~ 0.8995) than P. laciniata under artificially
simulated nitrogen deposition containing different nitrogen components, especially when treated
with ammonium (the relative dominance index of B. pilosa is ~ 0.9363) and mixed nitrogen (the
relative dominance index of B. pilosa is =~ 0.9328). Consequently, atmospheric nitrogen deposition,
especially the increased relative proportion of ammonium in atmospheric nitrogen deposition, may
facilitate the colonization of B. pilosa via a stronger competitive advantage.

Keywords: ammonium; co-cultivation condition; functional difference; growth performance;
relative dominance
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1. Introduction

Invasive plants (IPs) can have a profound impact on environmental health and eco-
logical security. In particular, IPs can affect the structure and ecological function of native
ecosystems, which can result in the loss of native biodiversity [1-4]. At present, there are in
excess of 500 IPs distributed throughout China [5,6]. In particular, the Asteraceae family
has the highest species number of IPs at the family classification level, with a total of 92 IPs
in the family Asteraceae [5,6]. Thus, the investigation of the mechanisms underlying the
success of IPs, particularly those belonging to the Asteraceae family, represents a pivotal
area of research within the field of invasion ecology in recent years [7-9].

One of the key reasons for the success of IPs is the functional differences between
IPs and native plants. In particular, both IPs and native plants are subject to similar, if
not identical, selection pressures, exerted by the environment [10-13]. More importantly,
IPs generally exhibit higher values for the key functional traits, including plant height,
leaf area, photosynthetic capacity, nutrient use efficiency, and environmental tolerance, etc.
Consequently, they exhibit higher growth performance compared to native plants, even
under stressful environments [14-17]. It is therefore essential to illuminate the functional
differences and differences in growth performance-related functional traits between IPs
and native plants to identify the intrinsic mechanisms that determine whether an IP is
successfully invaded.

In general, nitrogen (N) is the main nutrient limiting plant growth in several terrestrial
ecosystems [18-21]. Therefore, the capacity of IPs to obtain N is a pivotal element in
determining their success in colonizing diverse habitats. More importantly, it is evident
that IPs exhibit a greater capacity for N acquisition compared to native plants, due to their
high availability and utilization of N [22-25]. In addition, the invasiveness and invasion
intensity of numerous IPs are significantly related to the level of available N in soil [26-29].
Nevertheless, atmospheric N deposition may significantly disrupt the level of available
N in soil and the interactions between IPs and native plants, which may influence the
colonization of IPs.

In recent years, there has been a notable increase in atmospheric N deposition, which
is largely attributed to the release of N-containing compositions into the atmosphere as a
consequence of the excessive combustion of fossil fuels, unreasonable and/or unsuitable
production and consumption of N-containing fertilizers, and the fast expansion of animal
husbandry and cultivation [30-33]. Presently, East Asia (predominantly China) has one of
the three maximum rates of atmospheric N deposition globally [31,34-36]. In addition, other
parts of the globe are also experiencing more serious atmospheric N deposition problems,
such as Europe and the United States [33,37-39]. Nevertheless, it has been demonstrated
that atmospheric N deposition may promote the invasiveness of several IPs, which in turn
leads to the acceleration of the colonization of IPs by increasing the level of available N in
soil [40—43]. However, atmospheric N deposition encompasses a multitude of different N
components, including nitrate (NO3-N), ammonium (NHy4-N), urea (CO(NH;),-N), etc.,
and that the relative proportions of these N components in atmospheric N deposition may
also be subject to change contingent on the alterations in energy policy and the composition
of energy sources employed [31,34-36]. Nevertheless, atmospheric N deposition containing
different N components can result in alterations in the level of available N in soil and the
interactions between IPs and native plants. Such variations may result in differences in the
functional differences between IPs and native plants. This could have a significant impact
on the colonization of IPs. Therefore, there is a compelling rationale for investigating the
effects of atmospheric N deposition containing different N components on the functional
differences between IPs and native plants, with the aim of elucidating the mechanisms that
facilitate the success of IPs in the context of atmospheric N deposition, particularly in the
context of different N components. Nevertheless, the current state of knowledge in this
field is not sufficiently detailed.

This study aimed to elucidate the effects of artificially simulated N deposition con-
taining different N components (including nitrate (NO3-N), ammonium (NHy4-N), urea
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(CO(NH3),-N), and mixed N with NO3-N:NH4-N:CO(NH;),-N = 1:1:1) on the functional
differences between the Asteraceae IPs Bidens pilosa L. and the Asteraceae native plant
Pterocypsela laciniata (Houtt.) Shih. The study was conducted over a four-month period
using a pot-competitive co-culture experiment. Bidens pilosa is a member of the Asteraceae
family, and the species number of IPs belonging to this family that have been introduced
to China is higher than that of any other family at the family level [5,6]. Bidens pilosa is
native to tropical America and was introduced to China in ~1857 with imported crops
and vegetables. In particular, the species number of IPs sourced from America is higher
than that sourced from other countries and/or districts in China [5,6]. However, B. pilosa
has been identified as a significant threat to ecosystem structure and function, particularly
in terms of the loss of native biodiversity in China, and B. pilosa has been classified as a
harmful IP in China [2,44-46]. The two Asteraceae plants occupy similar habitats, including
agroecosystems, wasteland, and areas adjacent to the main road in China. Additionally,
the two Asteraceae plants also share similar lifestyles, with erect herbs being a common
feature. Furthermore, they exhibit comparable plant heights, reaching up to ~2-3 m. More
importantly, the two Asteraceae plants frequently co-occur in the same habitats, such as
agroecosystems, wasteland, and areas adjacent to the main road, etc. Furthermore, the
distributions of the two Asteraceae plants in China are among the areas most affected by
atmospheric N deposition [31,34-36].

The following questions were proposed for this study: (1) Does B. pilosa exhibit higher
values of the key functional traits (e.g., plant height, leaf area, and leaf nitrogen and chloro-
phyll contents) compared to P. laciniata? (2) Does artificially simulated N deposition confer
a competitive advantage to B. pilosa over P. laciniata? (3) Which component of artificially
simulated N deposition exerts the greatest influence on the competitive advantage of
B. pilosa?

2. Materials and Methods
2.1. Experimental Design

Bidens pilosa (Figure S1) was designated as the target IP. Pterocypsela laciniata (Figure S2)
was proposed as the native species. Seeds of both plants were collected in October 2022 from
Zhenjiang, Jiangsu, China (32.15-32.16° N; 119.52-119.53° E). The selected ecosystems were
classified as wastelands. Bidens pilosa was the only invasive plant species in the sampled
communities. It is likely that the selected B. pilosa individuals were naturally dispersed
in the sampled communities. The native plant species in the sampled communities are
dominated by herbaceous plants, such as Setaria viridis (L.) P. Beauv., Echinochloa crus-galli
(L.) P. Beauv., Arthraxon hispidus (Trin.) Makino, and Artemisia argyi H. Lév. and Vaniot.
The geographical location of the sampling area is provided in Figure S3. Zhenjiang has
a humid subtropical monsoon climate, and in 2022 the average annual temperature in
Zhenjiang was ~17.1 °C, and an average monthly temperature reached a maximum of
~28.1 °C in July and a minimum of ~3.7 °C in January [47]. In 2022, the annual sunshine
hours in Zhenjiang were ~1909.0 h, and the monthly average sunshine hours reached a
maximum value of ~208.2 h in December, and a minimum value of ~125.9 h in August [47].
The annual precipitation in Zhenjiang in 2022 was ~1164.1 mm, and the average monthly
precipitation reached a maximum value of ~432.1 mm in July, and a minimum value of
~2.7 mm in December [47].

A pot competitive co-culture experiment was conducted to examine the growth of
B. pilosa and P. laciniata (Figure S4). Pasture yellow soil (manufacturer: Shenzhibei Sci. &
Technol. Co., Ltd., Baishan, China; pH value: ~6.3; soil electrical conductivity: <3 ms/cm;
organic content: >30%; ~3 kg/planting basin) was used as culture substrate. The reason for
using pasture yellow soil as a culture substrate was to minimize the potential for previous
introduction of IPs, as well as to reduce the risk of contamination from atmospheric N
deposition in natural soils. The seeds of both plants were placed in garden pots (top diam-
eter 25 cm; height 16.5 cm). Six uniformly sized, vigorous of B. pilosa and/or P. laciniata
seedlings were cultivated in each garden pot. The following treatments were employed:
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(1) six B. pilosa seedlings were planted in each garden pot, representing a monoculture of
B. pilosa; (2) three B. pilosa seedlings and three P. laciniata seedlings were planted in each
garden pot, representing a co-culture of B. pilosa and P. laciniata; (3) six P. laciniata seedlings
were planted in each garden pot, representing a monoculture of P. laciniata. All garden pots
were treated with artificially simulated N deposition, specifically (1) nitrate (potassium
nitrate (KNOj3, AR, >99%; Aladdin®, Shanghai, China); inorganic nitrogen); (2) ammonium
(ammonium chloride (NH4Cl, GR, >99.8%; Sinopharm Chemical Reagent Co., Ltd., Shang-
hai, China); inorganic nitrogen); (3) urea (CO(NH;),, BC, >99.5%; Sangon Biotech Co.,
Ltd., Shanghai, China; organic nitrogen); (4) mixed N (nitrate:ammonium:urea = 1:1:1), at
5gNm~2yr~!. Sterile distilled water was used as the control (0 g N L~1). The content of
artificially simulated N deposition, which contained different N components, replicated the
actual content of natural atmospheric N deposition (i.e., 5 g N m~2 yr~!) in the southern
Jiangsu, China [34,35,48,49]. The proportions of the three monomers in the N mixture were
designed to simulate the actual proportions of natural atmospheric N deposition (i.e., equal
mixing) in the southern Jiangsu, China [50-52]. The present study tested a range of plant-
ing type combinations (i.e., monocultural B. pilosa, co-cultivated B. pilosa and P. laciniata,
and monocultural P. laciniata) and N component combinations (i.e., nitrate, ammonium,
urea, and mixed N). Three replicates were arranged for each treatment. Seedlings of both
plants were cultivated in the greenhouse at Jiangsu University, Zhenjiang, Jiangsu, China
(32.2061° N, 119.5128° E) under natural light from April to July 2023 for ~4 months. The
design of this experiment is shown in Figure 1.

:i Co-culture of invasive
i Bidens pilosa L. and
native Pterocypsela

Monoculture of native
: Pterocypsela :
i laciniata (Houtt.) Shih

Monoculture of
invasive Bidens
pilosa L.

indices dominance

PlantIndices |i1 i Functional  Bjochemical @ Osmolytes Relative

Scientific
problem

indices constituents

Does atmospheric N deposition confer a competitive advantage to E
> invasive Bidens pilosa L. over native Pterocypsela laciniata (Houtt.) Shih? :

Figure 1. The chart of the experimental design in this study.

Following ~4 months of pot competitive co-culture experimentation, all individuals of
B. pilosa and P. laciniata were collected to determine their functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata, as well as the relative
dominance index of B. pilosa.

2.2. Determination of Plant Indices

The functional traits closely related to the growth performance of B. pilosa and P. lacini-
ata, including plant height, ground diameter, leaf dimensions, green leaf area, specific leaf
area, leaf chlorophyll and N contents, and biomass, were determined. The biomass stability
index of both plants and the relative dominance index of B. pilosa were also quantified.
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Similarly, biochemical constituents, and osmolytes indices of both plants were determined.
The ecological significance, measuring method, and the corresponding references of the
analyzed indices in this study are presented in Table S1.

2.3. Statistical Analysis

Shapiro-Wilk’s test and Bartlett’s test were employed to determine the extent of
departure from the normality and the homogeneity of the examined variances, respectively.
The statistical analysis of the differences in the values of the functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata, as well as the relative
dominance index of B. pilosa among different treatments was conducted using the one-way
analysis of variance (ANOVA) with the Duncan’s test. Two-way ANOVA was employed to
evaluate the effects of plant species and N component on the functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata. The effect size of each factor
was also evaluated using Partial Eta Squared (17%), which were calculated to be used in a
two-way ANOVA. p < 0.05 was considered to represent a statistically significant difference.
Statistical analyses were conducted using IBM SPSS Statistics 26.0 (IBM, Inc., Armonk,
NY, USA).

3. Results and Discussion

Plant height, ground diameter, leaf width, green leaf area, and biomass of co-cultivated
P. laciniata were significantly lower than those of monocultural P. laciniata (p < 0.05;
Figures 2—4). Thus, the sunlight capture capacity, plant supporting capacity, leaf pho-
tosynthetic area, and plant growth competitiveness of co-cultivated P. laciniata were found
to be significantly lower than those of monocultural P. laciniata. Hence, the growth perfor-
mance of P. laciniata may be significantly reduced under co-cultivation conditions compared
to monoculture condition. The diminished growth performance of P. laciniata under co-
cultivation conditions may be attributed to the decreased availability of nutrients (especially
N) resulting from the intensified interspecific competition under co-cultivation conditions.
Our previous studies have also provided evidence to support this conclusion [53-56]. More
importantly, no significant differences were detected in the growth performance of B. pilosa
between the monoculture and co-cultivation conditions in the majority of cases (p > 0.05;
Figures 2-5). Accordingly, the competitive advantage of B. pilosa is not affected by culti-
vation type. Consequently, B. pilosa exhibited a more pronounced competitive advantage
compared to P. laciniata, especially under co-cultivation conditions.

The functional differences between IPs and native plants may be of critical impor-
tance in determining the success of IPs. More importantly, the results demonstrated that
IPs exhibited a more pronounced competitive advantage over native plants, which were
recruited by the higher values of key functional traits, such as plant height, leaf area, photo-
synthetic capacity, nutrient use efficiency, and environmental tolerance, etc. Consequently,
Ips demonstrated superior growth performance than native plants, even under stressful
environments [11,14-16]. Similarly, the plant height, leaf chlorophyll and N contents, and
plant peroxidase activity of B. pilosa were significantly higher than those of P. laciniata
under both monoculture and co-cultivation conditions (p < 0.05; Figures 2, 3 and 6). More
importantly, plant species significantly affected all functional indices (except ground di-
ameter) (p < 0.00001; Table S2). Thus, B. pilosa exhibited a more pronounced competitive
advantage in comparison to P. laciniata. The pronounced competitive advantage of B. pilosa
is likely attributable to its stronger sunlight capture capacity, leaf photosynthetic capacity,
and enzymatic defense capacity under stress to oxidative stress compared to P. laciniata.
However, leaf length of B. pilosa was found to be significantly shorter than that of P. laciniata
under both monoculture and co-cultivation conditions (p < 0.05; Figure 3). Thus, the leaf
photosynthetic area of B. pilosa was found to be significantly smaller than that of P. laciniata
under both monoculture and co-cultivation conditions. Accordingly, the leaf photosyn-
thetic area does not appear to be a determining factor in the strong competitive advantage
exhibited by B. pilosa. In other words, B. pilosa can obtain a strong competitive advantage
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mainly by means of partial key functional traits, e.g., stronger sunlight capture capacity, leaf
photosynthetic capacity, and enzymatic defense capacity under stress to oxidative stress.
The significantly functional differences between B. pilosa and P. laciniata permit B. pilosa to
gain a stronger competitive advantage and to occupy more ecological niches in the habitats,
which support the niche differentiation hypothesis (i.e., invasive and native species tend to
exhibit functional divergence, resulting in invasive species exhibiting distinct functional
traits compared to native species, thereby enabling the former to successfully invade new
habitats via the higher growth competitiveness) [57-60] and the Darwin’s naturalization hy-
pothesis (i.e., invasive species that are phylogenetically unrelated to native species should
be more successful, as they can exploit the unoccupied ecological niches in the invaded
communities) [61-64]. Accordingly, the “Master-of-some” strategy (i.e., invasive species
are more competitive in favorable habitat, such as the increased resource availability), in
contrast to the “Jack-of-all” strategy (i.e., invasive species are more competitive in stressful
habitats, such as the decreased resource availability) or “Jack and master” strategy (i.e.,
invasive species are more competitive in both unfavorable and favorable habitats) [65-67],
serves to enhance the competitive advantage of B. pilosa, especially under atmospheric
nitrogen deposition.
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Figure 2. Plant height and ground diameter of B. pilosa and P. laciniata under monoculture and co-
cultivation conditions, respectively ((a), plant height; (b), ground diameter). Bars (mean and standard
error, n = 3) with different lowercase letters representing statistically significant differences (p < 0.05).
Abbreviations: PL, monocultural P. laciniata; NiPL, monocultural P. laciniata treated with nitrate;
AmPL, monocultural P. laciniata treated with ammonium; UrPL, monocultural P. laciniata treated
with urea; MixPL, monocultural P. laciniata treated with mixed N; BP, monocultural B. pilosa; NiBP,
monocultural B. pilosa treated with nitrate; AmBP, monocultural B. pilosa treated with ammonium;
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UrBP, monocultural B. pilosa treated with urea; MixBP, monocultural B. pilosa treated with mixed
N; PLBP(PL), co-cultivated P. laciniata; NiPLBP(PL), co-cultivated P. laciniata treated with nitrate;
AmPLBP(PL), co-cultivated P. laciniata treated with ammonium; UrPLBP(PL), co-cultivated P. lacini-
ata treated with urea; MixPLBP(PL), co-cultivated P. laciniata treated with mixed N; PLBP(BP),
co-cultivated B. pilosa; NiPLBP(BP), co-cultivated B. pilosa treated with nitrate; AmPLBP(BP), co-
cultivated B. pilosa treated with ammonium; UrPLBP(BP), co-cultivated B. pilosa treated with urea;
Mix AmPLBP(BP), co-cultivated B. pilosa treated with mixed N.
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Figure 3. Leaf functional traits of B. pilosa and P. laciniata under monoculture and co-cultivation
conditions, respectively ((a), leaf length; (b), leaf width; (c), green leaf area, (d), specific leaf area, (e),
leaf chlorophyll content; (f), leaf N content). Bars (mean and standard error, n = 3) with different
lowercase letters representing statistically significant differences (p < 0.05). Abbreviations have the
same meanings as described in Figure 2.
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Figure 4. Biomass of B. pilosa and P. laciniata under monoculture and co-cultivation conditions,
respectively ((a), fresh weight; (b), dry weight). Bars (mean and standard error, n = 3) with different
lowercase letters representing statistically significant differences (p < 0.05). Abbreviations have the
same meanings as described in Figure 2.
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Figure 5. The biomass stability index of B. pilosa and P. laciniata under monoculture and co-cultivation
conditions, respectively. Bars (mean and standard error, n = 3) with different lowercase letters
representing statistically significant differences (p < 0.05). Abbreviations have the same meanings as
described in Figure 2.

174



Atmosphere 2024, 15, 825

MixPLBP (BP) & o+l MixPLBP (BP) © b MixPLBP (BP) MixPLBP (BP)
UrPLBP (BP) UrPLBP (BP) UrPLBP (BP) UrPLBP (BP)
AmPLBP (BP) AmPLBP (BP) AmPLBP (BP) AmPLBP (BP)
NiPLBP (BP) NiPLBP (BP) NiPLBP (BP) NiPLBP (BP)
PLBP (BP) PLBP (BP) PLBP (BP) PLBP (BP)
MixPLBP (PL) MixPLBP (PL) MixPLBP (PL) MixPLBP (PL)
UrPLBP (PL) UrPLBP (PL) UrPLBP (PL) UrPLBP (PL)
g AmPLBP (PL)
AmPLBP (PL) AmPLBP (PL) & m AmPLBP (PL)
B " NiPLBP (PL) .
NiPLBP (PL) NiPLBP (PL) NiPLBP (PL)
= PLBP (PL)
PLBP (PL) PLBP (PL) PLBP (PL)
MixBP MixBP MixBP MixBP
UrBP UrBP UrBP UrBP
AmBP
AmBP AmBP m AmBP
NiBP )
NiBP NiBP s NiBP
BP BP BP
MixPL MixpL
; MixPL ix
MixPL 1X UrPL bl
T
UrPL UrPL AmPL -
AmPL AmPL NiPL .
NiPL NiPL PL NiPL
PL PL PL
S 828 8 8 <
n o 1 o v o gg8ggggg-° S 8 2 2 @ s 8 g8 8 °
(Ar43/10wi) ((8-uyur)/) (n) &yanoe
JUIU0I IPAYIP[RIPUO[BIA ((8-urur)/) A31apd¢E Iserere) £)J1IA)O® ISEPIX0IdJ Jseynuisip apixorddng

3)

with different lowercase letters represent statistically significant differences (p < 0.05). Abbreviations

have the same meanings as described in Figure 2.

ture and co-cultivation conditions, respectively ((a), malondialdehyde content; (b), catalase activity;
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(c), peroxidase activity; (d), superoxide dismutase activity). Bars (mean and standard error, n
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As one of the essential nutrients required by plants, the application of exogenous N
generally results in the enhanced growth performance of plants, attributed to the increased
level of available N in soil. This is evidenced by numerous studies [68-71]. Similarly,
the application of artificially simulated N deposition led to a significant increase in plant
height, leaf width, and green leaf area of monocultural P. laciniata in the majority of cases
(p < 0.05; Figures 2 and 3). Thus, the application of artificially simulated N deposition may
be beneficial to the growth performance of monocultural P. laciniata, particularly in terms
of the sunlight capture capacity and leaf photosynthetic area.

It can be generally observed that N acquisition and utilization capacity is a crucial
factor in the success of IPs [22-25]. Hence, the application of exogenous N can facilitate the
invasiveness of IPs. In this study, the values of the relative dominance index of B. pilosa
(average value is ~0.8995) was found to be obviously greater than 0.5 when exposed to
artificially simulated N deposition containing different N components, especially when
exposed to ammonium (the relative dominance index of B. pilosa is ~0.9363) and mixed
nitrogen (the relative dominance index of B. pilosa is ~0.9328) (Figure 7). Consequently,
B. pilosa demonstrated a more pronounced competitive advantage than P. laciniata under
the application of artificially simulated N deposition containing different N components,
especially when treated with ammonium and mixed N. Accordingly, artificially simulated
N deposition, regardless of N component, may be conducive to the success of P. laciniata,
especially under the deposition of ammonium and mixed N. This finding may be attributed
to the fact that B. pilosa exhibits a proclivity for ammonium uptake and utilization. In
particular, previous studies have demonstrated that other IPs also displays a preference for
ammonium uptake and utilization over other N components [42,72-74]. It is noteworthy
that the relative proportion of ammonium in atmospheric N deposition is increasing in
certain countries and regions, including China [75-77] and the United States of Amer-
ica [78-80]. Accordingly, the augmented relative proportion of ammonium in atmospheric
N deposition may further facilitate the colonization of B. pilosa via a more pronounced
competitive advantage.

F=2.246
b
a a p=0.137
a
b

CK Nitrate Ammonium Urea MixedN

Figure 7. The relative dominance index of B. pilosa under co-cultivation condition. Bars (mean and
standard error, n = 3) with different lowercase letters represent statistically significant differences
(p < 0.05). Abbreviations have the same meanings as described in Figure 2.

In essence, there is a pressing need to impede or even halt the colonization of B. pilosa,
especially under co-cultivation conditions and when exposed to atmospheric N deposition,
particularly when there is an increase in the relative proportion of ammonium in atmo-
spheric N deposition. The findings of this study also provide a substantial practical basis
for the environmental management of IPs, including effective early warning prevention
and control of IPs, especially when exposed to atmospheric N deposition. In particular,
it is of great importance to reduce the level of atmospheric N deposition, in particular
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the proportion of ammonium, via the alterations in energy policy and the composition
of energy sources employed. This is to minimize the competitive advantage of B. pilosa
under atmospheric N deposition, especially with an increase in the relative proportion of
ammonium in atmospheric N deposition.

4. Conclusions

In conclusion, this study aims to elucidate the functional differences between B. pilosa
and P. laciniata in the context of atmospheric N deposition containing different N com-
ponents. The principal findings are as follows: (1) The sunlight capture capacity, plant
supporting capacity, leaf photosynthetic area, and plant growth competitiveness of co-
cultivated P. laciniata were found to be significantly lower than those of monocultural
P. laciniata. (2) The sunlight capture capacity, leaf photosynthetic capacity, and enzymatic
defense capacity under stress to oxidative stress of B. pilosa were meaningfully greater than
those of P. laciniata under both monoculture and co-cultivation conditions. (3) The results of
the artificially simulated N deposition demonstrated a significant increase in plant height,
leaf width, and green leaf area of monocultural P. laciniata in the majority of cases. (4) The
values of the relative dominance index of B. pilosa were found to be significantly greater
than 0.5 in response to artificially simulated N deposition containing different N compo-
nents, especially when exposed to ammonium and mixed N. In summary, atmospheric N
deposition, especially the increased relative proportion of ammonium in atmospheric N
deposition, may facilitate the colonization of B. pilosa via a stronger competitive advantage.
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Abbreviations

IPs invasive plants

N nitrogen

PL monocultural P. laciniata

NiPL monocultural P. laciniata treated with nitrate
AmPL monocultural P. laciniata treated with ammonium
UrPL monocultural P. laciniata treated with urea
MixPL monocultural P. laciniata treated with mixed N
BP monocultural B. pilosa

NiBP monocultural B. pilosa treated with nitrate
AmBP monocultural B. pilosa treated with ammonium
UrBP monocultural B. pilosa treated with urea
MixBP monocultural B. pilosa treated with mixed N
PLBP(PL) co-cultivated P. laciniata

NiPLBP(PL) co-cultivated P. laciniata treated with nitrate
AmPLBP(PL) co-cultivated P. laciniata treated with ammonium
UrPLBP(PL) co-cultivated P. laciniata treated with urea
MixPLBP(PL) co-cultivated P. laciniata treated with mixed N
PLBP(BP) co-cultivated B. pilosa

NiPLBP(BP) co-cultivated B. pilosa treated with nitrate
AmPLBP(BP) co-cultivated B. pilosa treated with ammonium
UrPLBP(BP) co-cultivated B. pilosa treated with urea

Mix AmPLBP(BP)  co-cultivated B. pilosa treated with mixed N
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Abstract: The functional differences between invasive plants and coexisting native plants can affect
the invasion process of the former because invasive plants and coexisting native plants are exposed
to similar or even identical environmental pressures. Acid deposition is an important component
of atmospheric pollution, and acid deposition with different sulfur—nitrogen ratios may affect the
invasion process of invasive plants by shifting the functional differences and differences in the growth
performance between the invasive and coexisting native plants. It is crucial to analyze the functional
indices and growth performance of these plants when exposed to acid deposition with different
chemical compositions to assess the ecological impacts of atmospheric pollution on the growth
performance of invasive plants. This study aimed to evaluate the functional differences and growth
performance between the invasive plant Amaranthus spinosus L. and the native plant A. tricolor L. in
mono- and mixed culture when exposed to an acid deposition with different sulfur-nitrogen ratios,
including sulfur-rich acid deposition (sulfur—nitrogen ratio = 5:1), nitrogen-rich acid deposition
(sulfur—nitrogen ratio = 1:5), and mixed acid deposition (sulfur-nitrogen ratio = 1:1). The acidity
of the three types of simulated acid deposition was set at pH = 5.6 and pH = 4.5, respectively, with
distilled water as a control (pH = 7.0). The competition experiment between A. spinosus and A. tricolor
was conducted in the greenhouse. Amaranthus spinosus exhibited a strong growth performance
over A. tricolor in the mixed culture, mainly via the increased leaf photosynthetic capacity. The
competitiveness for light acquisition, leaf photosynthetic capacity, and enzymatic defense capacity
under stress of A. spinosus may be vital to its growth performance. The lower pH acid deposition had
imposed a greater reduction in the growth performance of both Amaranthus species than the higher
pH acid deposition. Sulfur-rich acid deposition was more toxic to the growth performance of both
Amaranthus species than nitrogen-rich acid deposition. Amaranthus spinosus was more competitive
than A. tricolor, especially when exposed to acid deposition, compared with just distilled water. Thus,
acid deposition, regardless of the sulfur-nitrogen ratio, may facilitate the invasion process of A.
spinosus via the stronger growth performance.

Keywords: functional difference; growth performance; invasion process; nitrogen-rich acid
deposition; sulfur-rich acid deposition
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1. Introduction

Invasive plants pose a significant threat to ecological stability because they can lead
to changes in community function and biodiversity loss [1-3]. Therefore, the study of the
mechanism by which invasion occurs is one of the hot topics in invasion ecology research
in recent years [4-6].

The functional differences between invasive plants and coexisting native plants reg-
ulate whether the former can successfully invade, as invasive and coexisting native
plants both suffer from similar or even the same selection pressures imposed by their
environment [7-9]. In general, invasive plants have a higher growth performance than co-
existing native plants due to higher values of key functional traits [7,8,10]. Therefore,
it is imperative to elucidate the functional differences and differences in the growth
performance-related traits between invasive and coexisting native plants to shed light
on the mechanisms underlying the successful invasion of invasive plants.

Acid deposition is an important component of atmospheric pollution and can signifi-
cantly affect ecological functions, such as the growth performance of plant species [11-13].
Acid deposition can also affect the invasion process of invasive plants, especially by al-
tering their growth performance and allelopathic intensity [11,14,15]. China is one of the
three regions in the world most severely affected by acid deposition [16-18], and the type of
acid deposition in China has changed from sulfur-rich acid deposition to mixed sulfur and
nitrogen acid deposition and, more recently, to nitrogen-rich acid deposition [14,19,20]. In
other words, the sulfur-nitrogen ratio in the rain in China is gradually decreasing, mainly
due to the recent adjustments in the energy structure and energy-related policies [14,19,20].
Changes in the composition of acid deposition may alter the ability of invasive plants to
invade new habitats. Therefore, it is crucial to improve our understanding of the functional
differences and differences in the growth performance between invasive and coexisting
native plants when exposed to different compositions of acid deposition to explain the
mechanisms driving the successful habitat invasion by invasive plants under various acid
deposition scenarios. However, little progress has been made in this area so far.

This study aimed to estimate the functional differences and differences in the growth
performance between the invasive plant Amaranthus spinosus L. (spiny amaranth) and the na-
tive plant A. tricolor L. (red amaranth) in mono- and mixed culture and when exposed to acid
deposition composed of different sulfur—nitrogen ratios, including sulfur-rich acid deposi-
tion (sulfur—nitrogen ratio = 5:1), nitrogen-rich acid deposition (sulfur-nitrogen ratio = 1:5),
and mixed acid deposition (sulfur-nitrogen ratio = 1:1). Both Amaranthus species can coexist
in the same habitat, such as wasteland and farmland, in East China [10,21]. In East China,
the number of invasive Amaranthus species is significantly higher than among other gen-
era, and there are currently 16 species of invasive plants belonging to Amaranthus, which
accounts for about 5.35% of the total number of invasive plant species in the region [22].
As a spiny annual or perennial herb, A. spinosus is native to tropical America and has
had a significant impact on non-native ecosystems [23-25]. The area in China where
A. spinosus has invaded (including East China) and is currently also experiencing severe
acid deposition [14,19,20].

This study tested the following hypotheses: (I) acid deposition can reduce the growth
performance of both Amaranthus species, and the effects of acid deposition vary with
different sulfur-nitrogen ratios, and (II) A. spinosus may be more competitive than A. tricolor
when exposed to acid deposition regardless of the sulfur-nitrogen ratios.

2. Materials and Methods
2.1. Experimental Design

The competition experiment between A. spinosus (seeds collected at 32.113° N, 119.532° E,
Zhenjiang, Jiangsu, East China) and A. tricolor cv. xinbai (manufacturer: Qingxian Chun-
feng Vegetable Cultivars Breeding Base, Hebei, China) was conducted in planting pots. The
culture matrix was composed of pre-sterilized store-bought pasture soil (pH value: ~6.5;
organic content: >40%; produced by Jiangsu Zhongfang Agriculture and Pastoral Hus-
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bandry Co. LTD) to avoid using soil collected from the field, which may be infested with
invasive plants or contaminated by acid rain.

Six vigorous seedlings with uniform height belonging to the two Amaranthus species
were planted in each planting pot (upper diameter: ~25 cm). The planting pattern was as
follows: (I) monoculture of A. spinosus with six seedlings, (II) monoculture of A. tricolor
with six seedlings, and (IIT) mixed culture of A. spinosus and A. tricolor with three seedlings
per species.

The seedlings were exposed to three types of acid deposition: (I) sulfur-rich acid
deposition (sulfur-nitrogen ratio = 5:1), (II) nitrogen-rich acid deposition (sulfur-nitrogen
ratio = 1:5), and (III) mixed acid deposition (sulfur-nitrogen ratio = 1:1). The three acid
deposition scenarios were created by mixing 0.5 M L~! H,SO,4 and 0.5 M L~! HNOj3 at
different ratios. The acidity of the three acid deposition types was set to pH = 5.6 and
pH = 4.5, respectively. In particular, (I) SO42~ and NO; ™ are the main components of natu-
ral acid precipitation in the study area, (II) the acidity of normal unpolluted precipitation
is almost 5.6, (III) the acidity of natural acid precipitation in the study area is about 4.5,
and (IV) the sulfur-nitrogen ratio of natural acid precipitation in the study area is about
5:1[14,19,20]. Distilled water was used as a control (pH = 7.0). Three planting pots were
used per treatment.

The seedlings were grown in a greenhouse at Jiangsu University, Zhenjiang, Jiangsu,
East China (located at 32.206° N, 119.512° E) under natural light conditions for 50 d.
The climate type of the study area is a subtropical monsoon wet climate (mean annual
hours of sunshine ~ 1996.8 h; mean annual precipitation ~ 1101.4 mm, and mean annual
temperature ~ 15.9 °C) [26].

After 50 d of experimental treatment, all individuals of the two Amaranthus species
were collected to estimate their functional indices, biochemical constituents, and
osmolytes indices.

2.2. Determination of the Functional Indices, and Biochemical Constituents and Osmolytes Indices
of the Two Amaranthus Species

The functional indices of the two Amaranthus species included (I) plant height (repre-
senting the competitiveness for sunlight acquisition), (IT) ground diameter (representing
plant supporting ability), (III) leaf size (characterized as leaf length and width, represent-
ing leaf photosynthetic area), (IV) green leaf area (representing leaf photosynthetic area),
(V) leaf thickness (representing leaf supporting ability), (VI) single-leaf wet and dry weights
(representing leaf growing competitiveness), (VII) leaf water content (representing leaf
moisture content), (VIII) specific leaf area (representing leaf resource use efficiency and
acquisition capacity), (IX) leaf chlorophyll and nitrogen concentrations (representing leaf
photosynthetic capacity), (X) plant aboveground wet and dry weights (representing above-
ground growing competitiveness), and (XI) plant aboveground water content (representing
aboveground moisture content). The procedures used to determine the functional indices
are described in our previous study [27,28].

The biochemical constituents and osmolytes indices of the two Amaranthus species
included (I) plant malondialdehyde content (representing the level of peroxidation of
the cytoplasm membrane under stress; measured using the thiobarbituric acid method
with spectrophotometry (model: uv-2450; manufacturer: Shimadzu, Kyoto, Japan; the
same as below) at 532 nm), (II) plant proline content (representing the level of osmotic
adjustment capacity under stress; measured using the acidic ninhydrin method with
spectrophotometry at 520 nm), (IIT) plant soluble sugar content (representing the level of
osmotic adjustment capacity under stress; measured using the thiobarbituric acid method
with spectrophotometry at 450 nm), (IV) plant catalase activity (EC 1.11.1.6; represent-
ing enzymatic defense capacity under stress specifically to oxidative stress; measured
using the HyO, method with spectrophotometry at 240 nm), (V) plant peroxidase activity
(EC 1.11.1.7; representing enzymatic defense capacity under stress specifically to oxida-
tive stress; measured using the guaiacol method with spectrophotometry at 470 nm), and
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(VI) plant superoxide dismutase activity (EC 1.15.1.1; representing enzymatic defense capac-
ity under stress specifically to oxidative stress; measured using the nitro-blue tetrazolium
method with spectrophotometry at 560 nm) [29-32].

The growth performance of A. spinosus was evaluated using the relative dominance in-
dex. The value of the relative dominance index was evaluated using the ratio of A. spinosus’
biomass in the mixed culture to the sum of A. spinosus’ biomass and A. tricolor’s biomass in
the mixed culture [6,33,34].

2.3. Statistical Analysis

The differences among the treatments were assessed using the one-way analysis of
variance (ANOVA) and Tukey HSD. Four-way ANOVA was used to assess the effects of
planting pattern, plant species, acid deposition acidity, acid deposition type, and their
interactions on the evaluated variances. Partial Eta-squared (17%) was also estimated to
assess the effect size of each factor used in the four-way ANOVA. p < 0.05 was considered
to represent a statistically significant difference. Statistical analyses were performed using
IBM SPSS Statistics 26.0.

3. Results and Discussion

The growth performance of the two Amaranthus species may be reduced in the mixed
culture compared with the monoculture mainly due to the limited resources available
resulting from the increased interspecific competition in the mixed culture [11,35,36]. As
expected, the leaf photosynthetic capacity of A. tricolor in the mixed culture was 20.59%
lower than that in the monoculture when exposed to the mixed acid deposition at pH 4.5
(p < 0.05; Figure 1). Thus, the growth performance of A. tricolor in the mixed culture
may be reduced largely via the decreased leaf photosynthetic capacity. However, the leaf
photosynthetic capacity of A. spinosus in the mixed culture was ~10.87% higher than that in
the monoculture in all treatments (except nitrogen-rich acid at pH 5.6) (p < 0.05; Figure 1).
Thus, the growth performance of A. spinosus may be increased in the mixed culture chiefly
via the increased leaf photosynthetic capacity. Moreover, the leaf photosynthetic capacity
of A. spinosus was ~34.99% higher than that of A. tricolor in all treatments regardless of
planting pattern (p < 0.05; Figure 1). Thus, A. spinosus exhibited a strong growth perfor-
mance over A. tricolor in the mixed culture mainly due to the enhanced leaf photosynthetic
capacity [11,28,37]. Hence, the leaf photosynthetic capacity of A. spinosus may be vital to its
growth performance, especially in the mixed culture. In addition, the four-way ANOVA
results also showed that the planting pattern significantly affected the leaf photosynthetic
capacity of the two Amaranthus species (p < 0.05; Table S1).
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Figure 1. Morphological and physiological indices of Amaranthus spinosus and A. tricolor in mono-
and mixed culture (monoculture A. spinosus, purple bars; mixed culture A. spinosus, red bars; mono-
culture A. tricolor, blue bars; mixed culture A. tricolor, orange bars). Bars (mean with standard
error, n = 3) with different lowercase letters indicate statistically significant differences (p < 0.05).
The two indices (i.e., ground diameter and plant aboveground dry weight) with no statistically sig-
nificant difference (p > 0.05) among all treatments are not shown in this figure. Abbreviations: CK,
control (distilled water; pH = 7.0); SAR1, sulfur-rich acid deposition (sulfur-nitrogen = 5:1; pH = 4.5);
SAR?2, sulfur-rich acid deposition (sulfur-nitrogen = 5:1; pH = 5.6); NARI, nitrogen-rich acid depo-
sition (sulfur-nitrogen = 1:5; pH = 4.5); NAR2, nitrogen-rich acid deposition (sulfur-nitrogen = 1.5;
pH =5.6); AR1, mixed acid deposition (sulfur-nitrogen = 1:1; pH = 4.5); AR2, mixed acid deposition
(sulfur-nitrogen = 1:1; pH = 5.6).
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Usually, the values of the key functional traits of invasive plants are higher than those
of the coexisting native plants [8,10,11]. In this study, the competitiveness for light acqui-
sition and leaf photosynthetic capacity of A. spinosus were ~32.98% and ~34.99% higher
than those of A. tricolor in all treatments, respectively (p < 0.05; Figure 1). The enzymatic
defense capacity under stress of A. spinosus was also higher than in A. tricolor when exposed
to nitrogen-rich acid deposition (p < 0.05; Figure 2). Therefore, the competitiveness for
light acquisition, leaf photosynthetic capacity, and enzymatic defense capacity under stress
in A. spinosus may be critical to its growth performance, especially when exposed to acid
deposition. In addition, the four-way ANOVA results showed that the plant species signifi-
cantly affected the competitiveness for light acquisition, leaf photosynthetic capacity, and
enzymatic defense capacity under stress of the two Amaranthus species (p < 0.05; Table S1).
However, the leaf photosynthetic area, leaf growing competitiveness, leaf moisture con-
tent, leaf resource use efficiency, and acquisition capacity, and aboveground moisture
content of A. spinosus were lower than those of A. tricolor under partial treatments (p < 0.05;
Figures 1 and 2), which suggests that this latter list of functional indices may not be im-
portant to the growth performance of A. spinosus. Thus, A. spinosus may be gaining a
higher growth performance by enhancing certain key ecological functions, such as the
competitiveness for light acquisition, leaf photosynthetic capacity, and enzymatic defense
capacity under stress.
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Figure 2. Biochemical constituents and osmolytes indices of Amaranthus spinosus and A. tricolor in
mono- and mixed culture (monoculture A. spinosus, purple bars; mixed culture A. spinosus, red bars;
monoculture A. tricolor, blue bars; mixed culture A. tricolor, orange bars). Bars (mean with standard
error, n = 3) with different lowercase letters indicate statistically significant differences (p < 0.05). The
index (i.e., plant superoxide dismutase activity) with no statistically significant difference (p > 0.05)
across all treatments is not shown in this figure. Abbreviations have the same meanings as presented
in Figure 1.

Acid deposition can reduce the growth performance of plant species [11-13]. In
this study, the acidity and composition of the acid deposition were two major factors
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affecting the growth performance of the two Amaranthus species (Figures 1 and 2; Table S1).
The osmotic adjustment capacity under stress of the two Amaranthus species exposed to
nitrogen-rich acid deposition at pH 4.5 was lower than when exposed to nitrogen-rich
acid deposition at pH 5.6 (p < 0.05; Figure 2). Thus, the lower pH acid deposition may be
more toxic to the growth performance of both Amaranthus species than the higher pH acid
deposition because the lower pH acid deposition, especially given that more hydrogen ions
may be released, may induce a more intense stress response potentially through enhanced
nutrient leaching [11,14,38]. In addition, four-way ANOVA results showed that the acid
deposition acidity significantly affected the osmotic adjustment capacity under stress of the
two Amaranthus species (p < 0.05; Table S1).

The main components of acid deposition are SO4>~ and NO3~, and acid deposi-
tion with different sulfur-nitrogen ratios can affect the growth performance of plant
species [14,38,39]. In this study, sulfur-rich acid deposition caused a greater reduction in the
competitiveness for light acquisition and leaf photosynthetic capacity of the two Amaranthus
species than nitrogen-rich acid deposition (p < 0.05; Figure 1). This phenomenon may be due
to the higher nitrogen content in nitrogen-rich acid deposition than in sulfur-rich acid depo-
sition. Since nitrogen is one of the essential nutrients required for the growth performance
of plants (i.e., fertilization effect), a nitrogen-rich deposition may actually provide some
nutrient relief, albeit at the expense of soil acidification [14,38,39]. The two Amaranthus
species also exhibited a higher level of osmotic adjustment capacity when exposed to
sulfur-rich acid deposition than when exposed to nitrogen-rich acid deposition (p < 0.05;
Figure 2). Thus, sulfur-rich acid deposition exerted a greater negative impact on the growth
performance of the two Amaranthus species than nitrogen-rich acid deposition [14,40,41],
and this result supports the first hypothesis. In addition, four-way ANOVA results showed
that the acid deposition composition significantly affected the competitiveness for light
acquisition, the leaf photosynthetic capacity, and the osmotic adjustment capacity of the
two Amaranthus species (p < 0.05; Table S1).

The relative dominance index of A. spinosus in this study was higher than 0.5 in all
acid deposition treatments (average: 0.5286) except in the nitrogen-rich acid deposition
treatment at pH 5.6 (Figure 3). Thus, A. spinosus exhibited a higher growth performance
than A. tricolor, especially when exposed to acid deposition with different sulfur-nitrogen
ratios. Therefore, acid deposition, regardless of the sulfur-nitrogen ratio, may accelerate the
invasion process of A. spinosus by allowing the plant to have a higher growth performance.
Accordingly, the higher growth performance of A. spinosus can be attributed to an ex-
tremophilic strategy (being more competitive in a stressful environment) rather than either
a specialist strategy (being more competitive in a favorable environment) or a generalist
strategy (being more competitive in both stressful and favorable environments) [42-44].
Therefore, our results support the second hypothesis.

SAR2 NARI1

NAR2 ARI AR2

CK SARI

Figure 3. The relative dominance index of Amaranthus spinosus in mixed culture under acid deposition
with different sulfur—nitrogen ratios. The value of the relative dominance index ranges from 0 to
1, and it means strong growth performance when the value of this index is higher than 0.5, while
poor growth performance when the value of this index is less than 0.5. Abbreviations have the same
meanings as presented in Figure 1.
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Based on the results of this study, there is a great need to slow down, if not stop, the
invasion process of A. spinosus, especially in mixed culture settings and when exposed
to atmospheric pollution, notably acid deposition. Therefore, early warning and preven-
tive control of this invasive plant is essential to maintain ecosystem stability and local
biodiversity, especially in wastelands and farmland in East China.

4. Conclusions

In summary, this study is the first to attempt to elucidate the ecological effects of
atmospheric pollution, represented by acid deposition with different sulfur-nitrogen ratios,
on the functional differences and differences in the growth performance between the
invasive and native plant species.

The main findings are as follows: (1) Amaranthus spinosus exhibited a strong growth
performance over A. tricolor in the mixed culture, mainly via the increased leaf photosyn-
thetic capacity. (2) The competitiveness for light acquisition, leaf photosynthetic capacity,
and enzymatic defense capacity under stress of A. spinosus may be crucial to its growth
performance. (3) The lower pH acid deposition exerted a greater negative impact on
the growth performance of both Amaranthus species than the higher pH acid deposition.
(4) Sulfur-rich acid deposition resulted in a greater reduction in the growth performance
of both Amaranthus species than nitrogen-rich acid deposition. (5) The invasive plant
A. spinosus was more competitive than the native plant A. tricolor, especially when exposed
to acid deposition, regardless of the sulfur-nitrogen ratios. Accordingly, acid deposition,
regardless of the sulfur—nitrogen ratio, may facilitate the invasion process of A. spinosus by
enhancing its growth performance.

However, in this study, only six individuals of the same plant species were used
per planting pattern to determine the functional differences and differences in the growth
performance between A. spinosus and A. tricolor in mono- and mixed cultures when exposed
to acid deposition with different sulfur-nitrogen ratios. In addition, the nitrogen and sulfur
contents in the soil and plants were not measured. Thus, future studies will include more
plant individuals so as to gain more insights into the differences in the functional traits
between invasive and native plants, especially when exposed to acid deposition with
different chemical compositions.
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https:/ /www.mdpi.com/article/10.3390/atmos15010029/s1, Table S1: Four-way ANOVA on the
effects of planting pattern, plant species, acid deposition acidity, acid deposition type, and their
interactions on the evaluated variances. p < 0.05 is presented in bold.
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Abstract: Soil N-fixing bacterial (NFB) community may facilitate the successful establishment and
invasion of exotic non-nitrogen (N) fixing plants. Invasive plants can negatively affect the NFB
community by releasing N during litter decomposition, especially where N input from atmospheric N
deposition is high. This study aimed to quantitatively compare the effects of the invasive Rhus typhina L.
and native Koelreuteria paniculata Laxm. trees on the litter mass loss, soil physicochemical properties,
soil enzyme activities, and the NFB. Following N supplementation at 5 g N m~2 yr~! in four forms
(including ammonium, nitrate, urea, and mixed N with an equal mixture of the three individual N
forms), a litterbag-experiment was conducted indoors to simulate the litter decomposition of the two
trees. After four months of decomposition, the litter cumulative mass losses of R. typhina under the
control, ammonium chloride, potassium nitrate, urea, and mixed N were 57.93%, 57.38%, 58.69%,
63.66%, and 57.57%, respectively. The litter cumulative mass losses of K. paniculata under the control,
ammonium chloride, potassium nitrate, urea, and mixed N were 54.98%, 57.99%, 48.14%, 49.02%,
and 56.83%, respectively. The litter cumulative mass losses of equally mixed litter from both trees
under the control, ammonium chloride, potassium nitrate, urea, and mixed N were 42.95%, 42.29%,
50.42%, 46.18%, and 43.71%, respectively. There were antagonistic responses to the co-decomposition
of the two trees. The litter mass loss of the two trees was mainly associated with the taxonomic
richness of NFB. The form of N was not significantly associated with the litter mass loss in either
species, the mixing effect intensity of the litter co-decomposition of the two species, and NFB alpha
diversity. Litter mass loss of R. typhina was significantly higher than that of K. paniculata under urea.
The litter mass loss of the two trees under the control and N in four forms mainly affected the relative
abundance of numerous NFB taxa, rather than NFB alpha diversity.

Keywords: antagonistic responses; atmospheric N deposition; co-decomposition; invasive plant;
litter decomposition

1. Introduction

Invasive plants can establish successfully if they can acquire soil nitrogen (N) more effi-
ciently than native plants [1-4]. The invasiveness and the invasion intensity of several inva-
sive plants are also significantly associated with the level of soil N available [5-8]. The abun-
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dance and diversity of the nitrogenase reductase gene nifH (encoding the nitrogenase reduc-
tase subunit) are closely related to the level of soil N available [9-12]. Numerous invasive
plants, such as Trifolium spp. [13], Ageratina adenophora [7], and Amaranthus retroflexus [14],
Cenchrus spinifex [15], and multiple invasive plants (including Paspalum notatum, Sphagneticola
trilobata, Alternanthera philoxeroides, and Hydrocotyle vulgaris) [8] can significantly increase
the abundance and diversity of the nifH gene. Therefore, the soil N-fixing bacterial com-
munity (NFB) may be an important contributor to the successful invasion of invasive
plants [6,7,16,17]. In addition, invasive plants can produce more litter and decompose
more effectively and rapidly than native plants [18-21]. More importantly, invasive plants
can also affect the NFB community via the decomposition process [7,22]. Thus, assessing
the key mechanisms that govern the interactions between invasive plants-NFB via the
decomposition process is crucial for elucidating the mechanisms that drive the successful
invasion of invasive plants.

Atmospheric N deposition consists of several N components globally, including nitrate,
ammonium, urea, and a mixture of several individual N forms. Additionally, the proportion
of these different N components is dynamic and is expected to change as the frequency
and intensity of human activities increase in the future [23-26]. In general, the positive
effects of the mixture of several individual N forms on the ecological functions (e.g.,
the plant litter decomposition, soil enzyme activities, and the soil bacterial community
metabolic activities) appear to be greater than those of the individual N forms [27,28].
More importantly, invasive plants may be more competitive than native plants under
atmospheric N deposition via the altered NFB [14,29,30] or litter decomposition [28,31-33].
Consequently, it is essential to further elucidate the soil micro-ecological mechanisms
underlying the invasion process of invasive plants from the perspective of the interactions
between invasive plants and NFB, especially under different forms of atmospheric N
deposition.

This study aimed to assess the effects of the invasive Rhus typhina L. and native
Koelreuteria paniculata Laxm. trees on the litter mass loss, soil physicochemical proper-
ties, soil enzyme activities, and the NFB community in combination with N addition at
5g N m~2 yr~!in four forms (including ammonium, nitrate, urea, and an equal mixture
of the three individual N forms) in southern Jiangsu, China. As two Sapindales trees,
R. typhina and K. paniculata can coexist in the same habitat, the two trees have similar
growing seasons (e.g., the growing season is usually from ~April to ~August in southern
Jiangsu, China), growing environments (e.g., the parks, urban green spaces, and the areas
near major roads in southern Jiangsu, China, etc.), and lifestyles (i.e., deciduous broadleaf
trees). The two trees have similar stem heights and there is no significant difference in
the space occupied by healthy mature individuals. In addition, both trees are commonly
used in urban ornamentation in China. Rhus typhina originated from the Americas and
was introduced to China in 1959 as an ornamental and landscape plant species [34,35].
However, R. typhina has caused biodiversity loss in China, especially in northern China,
and has been classified as a destructive invasive tree [34,36]. The geographical range where
R. typhina and K. paniculata are found in China is one of the most affected by atmospheric N
deposition [24,37-39].

This study tested the following hypotheses: (1) Rhus typhina litter decomposes more
easily than K. paniculata litter. (2) A synergistic effect might exist between the two trees’
co-decomposition. (3) Rhus typhina increases soil enzyme activities and NFB alpha diversity
compared to K. paniculata. (4) N addition increases the litter mass loss of the two trees and
NEB alpha diversity. (5) The magnitude of influence of N addition on the litter mass loss of
R. typhina may be greater than that of K. paniculata. (6) The magnitude of influence of the
addition of mixed N forms on the litter mass loss of the two trees and NFB alpha diversity
may be greater compared to the addition of the three individual N forms, individually.
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2. Materials and Methods
2.1. Experimental Design

Leaf litter from R. typhina and K. paniculata was randomly collected from an urban
ecosystem of Zhenjiang (32.21 °N, 119.51 °E), southern Jiangsu, China. Figure 1 defines the
geographical location of the sampled area in this study. Figure S1 defines the image of the
environment in which the two trees grow. The annual mean temperature of Zhenjiang was
~17.1 °C, and the monthly mean temperature reached a maximum of ~28.1 °C in July and
decreased to a minimum of ~3.7 °C in January [40]. The annual precipitation of Zhenjiang
was ~1164.1 mm, and the monthly mean precipitation reached a maximum of ~432.1 mm
in July and decreased to a minimum of ~2.7 mm in December [40]. The annual sunshine
duration of Zhenjiang was ~1909.0 h, and the monthly mean sunshine duration reached a
maximum of ~208.2 h in December and decreased to a minimum of ~125.9 h in August [40].

Figure 1. The geographical location of the sampled area (square with red) in this study (Map number:
GS5(2022)4317; produced by the Ministry of Natural Resources of China, http:/ /bzdt.ch.mnr.gov.cn/).

The litterbag experiment was conducted indoors from 15 April to 15 August 2021
(experimental period: ~4 months) to simulate the litter decomposition process. The air-
dried leaf litter of the two trees was loaded into litterbags (10 x 15 cm; mesh size: 0.425 mm).
Specifically, 6 g of R. typhina leaf litter, 6 g of K. paniculata leaf litter, or 6 g equally mixed R.
typhina and K. paniculata leaf litter, were used per litterbag. The litterbags were then buried
into the store-bought pasture soil (pH: ~6.3), at a depth of approximately 2 cm in planting
pots (height: ~16.5 cm; top diameter: ~25 cm) with one litterbag per planting pot. The
pasture yellow soil (pH value: ~6.3; organic content: >30%; soil electrical conductivity:
<3 ms/cm) was purchased from Zhong-Fang Agriculture & Livestock Co. Ltd., Taizhou,
Jiangsu, China. The reason for using the pasture yellow soil as the culture medium was
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to minimize or even eliminate the possibility of the presence of invasive plants and the
possible previous N deposition in the natural soil. The pasture yellow soil was not sterilized
to ensure the natural occurrence of soil microorganisms. N was added to the litterbags in
four forms: ammonium (ammonium chloride), nitrate (potassium nitrate), urea, and mixed
N (an equal mixture of the three individual N forms). The ratio of the three individual N
forms in mixed N was set at 1:1:1 to match the actual proportion of the different N forms
deposited in the soil through the natural atmospheric N deposition in the region (viz.,
southern Jiangsu, China) [23,26,41,42]. All four forms of N were added at5 g N m 2 yr’l,
with sterile distilled water as the control (0 g N L~1). The levels of the four N forms were
similar to the actual concentration of N forms naturally deposited in the study area (viz.,
southern Jiangsu, China) [24,37-39].

The litterbag-experiment included 20 treatments: (1) Control (distilled water). (2) Ammo-
nium, ammonium chloride. (3) Nitrate, potassium nitrate. (4) Urea, urea. (5) MixN, mixed
N. (6) Rt, R. typhina litter under the control. (7) RtAmmonium, R. typhina litter under am-
monium chloride. (8) RtNitrate, R. typhina litter under potassium nitrate. (9) RtUrea,
R. typhina litter under urea. (10) RtMixN, R. typhina litter under mixed N. (11) Kp,
K. paniculata litter under the control. (12) KpAmmonium, K. paniculata litter under ammo-
nium chloride. (13) KpNitrate, K. paniculata litter under potassium nitrate. (14) KpUrea,
K. paniculata litter under urea. (15) KpMixN, K. paniculata litter under mixed N. (16) RK,
equally mixed litter from both trees under the control. (17) RKAmmonium, equally mixed
litter from both trees under ammonium chloride. (18) RKNitrate, equally mixed litter from
both trees under potassium nitrate. (19) RKUrea, equally mixed litter from both trees under
urea. (20) RKMixN, equally mixed litter from both trees under mixed N. Each treatment
was performed in three planting pots.

Litterbags were collected after ~120 d. Litter samples of the two trees in the litterbags
were moderately cleaned and completely air-dried to a constant weight to evaluate the
decomposition variables. Soil samples within 1 cm around the litterbags were also collected
and passed through a 2 mm sieve and were used to estimate soil physicochemical properties,
soil enzyme activities, and NFB.

2.2. Determination of the Decomposition Variables

The litter mass loss of the two trees was calculated as the ratio between the initial litter
dry weight and the dry weight after time ¢ to the initial litter dry weight [20,43,44].

The expected litter decomposition coefficient of the equally mixed litter from the two
trees was calculated as follows [45,46]:

Expected decomposition coefficient = %

where x and y correspond to the observed litter decomposition coefficient of R. typhina and
that of K. paniculata, respectively. The litter decomposition coefficient (k) of the two trees
was determined as follows [47]:

Xp=Xoxe M

where X, and X; correspond to the initial litter dry weight and the litter dry weight after
time ¢, respectively.

The mixing effect intensity of the litter co-decomposition of the two trees was calcu-
lated as follows [20,45,46]:

Mixing effect intensity of the litter co — decomposition = % -1
where O and E correspond to the observed litter decomposition coefficient and the expected
litter decomposition coefficient of equally mixed litter from both trees, respectively. A
stronger response corresponds to a greater deviation from zero. In the presence of synergis-
tic effects, the intensity is greater than zero, while the intensity is lower than zero in the
presence of antagonistic effects.
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2.3. Determination of Soil Physicochemical Properties and Soil Enzyme Activities

Soil pH and moisture were determined in situ using a digital soil acidity-moisture
meter (ZD-06; ZD Instrument Co., Ltd., Taizhou, China) [28,48,49].

Soil enzyme activities, closely related to the soil nutrient cycles, were estimated:
(1) urease (E.C. 3.5.1.5) activity was assessed using the sodium phenolate-sodium hypochlo-
rite method with a colorimetric assay at 578 nm [50,51]; (2) protease (E.C. 3.4.11.4) activ-
ity was measured using the tyrosine method with a colorimetric assay at 700 nm [52];
(3) polyphenol oxidase (E.C. 1.10.3.1) activity was measured using the pyrocatechol method
with a colorimetric assay at 410 nm [53]; (4) catalase (E.C. 1.11.1.6) activity was measured
using the pyrogallol method with a colorimetric assay at 430 nm [51].

2.4. Determination of NFB

To estimate the composition and structure of the NFB community in this study, DNA
sequences of the nifH gene were amplified. The nifH gene is highly conserved among
NFB taxa and is widely used as a marker for phylogenetic analyses of NFB [12,54-57]. The
primers for the amplification of the nifH gene are PolF and PolR [57]. The methods for
subsequent sequencing data analysis can be found in earlier studies [14]. The sequence
data of NFB did not submit to the NCBI database.

2.5. Statistical Analysis

Shapiro-Wilk’s test and Bartlett’s test were used to assess the deviations from normal-
ity and the homogeneity of the assessed variances, respectively. Differences in the values of
the decomposition variables, soil physicochemical properties, soil enzyme activities, and
NFB alpha diversity among different treatments were evaluated using a one-way analysis
of variance (ANOVA; Tukey’s test). Path analysis was used to assess the contribution
intensity of soil physicochemical properties, soil enzyme activities, and NFB alpha diversity
to the litter mass loss of the two trees, according to the absolute values of the direct path
coefficients. Statistical analyses were performed using IBM SPSS Statistics 26.0 (IBM, Inc.,
Armonk, NY, USA).

3. Results
3.1. Differences in the Decomposition Variables

After four months of decomposition, the litter cumulative mass losses of R. typhina
under the control, ammonium chloride, potassium nitrate, urea, and mixed N were 57.93%,
57.38%, 58.69%, 63.66%, and 57.57%, respectively. The litter cumulative mass losses of
K. paniculata under the control, ammonium chloride, potassium nitrate, urea, and mixed
N were 54.98%, 57.99%, 48.14%, 49.02%, and 56.83%, respectively. The litter cumulative
mass losses of equally mixed litter from both trees under the control, ammonium chloride,
potassium nitrate, urea, and mixed N were 42.95%, 42.29%, 50.42%, 46.18%, and 43.71%,
respectively (Figure 2). The litter mass loss of equally mixed litter from both trees was
lower than that of R. typhina under the control (p < 0.05; Figure 2). The litter mass loss
of equally mixed litter from both trees was lower than that of R. typhina and K. paniculata
under ammonium chloride (p < 0.05; Figure 2). The litter mass loss of equally mixed litter
from both trees and that of K. paniculata was lower than that of R. typhina under urea
(p < 0.05; Figure 2). The litter mass loss of equally mixed litter from both trees was also
lower than that of R. typhina under mixed N (p < 0.05; Figure 2). There was no significant
difference in the litter mass loss of R. typhina and that of K. paniculata under the control
(p > 0.05; Figure 2). The form of N did not significantly affect the litter mass loss of the two
trees (p > 0.05; Figure 2).
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Figure 2. Differences in the litter mass loss of the two trees. Bars (means + SE; n = 3) with different
letters indicate significant differences (p < 0.05). Abbreviations: Control, the control; ammonium,
ammonium chloride; nitrate, potassium nitrate; urea, urea; MixN, mixed N; Rt, Rhus typhina L. litter
under the control; RtAmmonium, R. typhina litter under ammonium chloride; RtNitrate, R. typhina
litter under potassium nitrate; RtUrea, R. typhina litter under urea; RtMixN R. typhina litter under
mixed N; Kp, Koelreuteria paniculata Laxm. litter under the control; KpAmmonium, K. paniculata
litter under ammonium chloride; KpNitrate, K. paniculata litter under potassium nitrate; KpUrea,
K. paniculata litter under urea; KpMixN, K. paniculata litter under mixed N; RK, equally mixed
litter from both trees under the control; RKAmmonium, equally mixed litter from both trees under
ammonium chloride; RKNitrate, equally mixed litter from both trees under potassium nitrate; RKUrea,
equally mixed litter from both trees under urea; RKMixN, equally mixed litter from both trees under
mixed N.

The observed decomposition coefficient of equally mixed litter from both trees was
lower than its expected decomposition coefficient under the control, ammonium chloride,
and mixed N (p < 0.05; Figure 3a). The mixing effect intensity of the litter co-decomposition
of the two trees was less than zero under all treatments (Figure 3b). The form of N did not
significantly affect the mixing effect intensity of the litter co-decomposition of the two trees
(p > 0.05; Figure 3b).

F=6.287
P<0.001

Control Ammonium Nitrate Urea MixN

Figure 3. Cont.
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Figure 3. Differences in the observed (blue bars) and expected (purple bars) litter decomposition
coefficients (a), and the mixing effect intensity of the litter co-decomposition (b) of the two trees. Bars
(means + SE; n = 3) with different letters indicate significant differences (p < 0.05); “ns” means no
significant difference (p > 0.05). Abbreviations have the same meanings as presented in Figure 2.
3.2. Differences in Soil Physicochemical Properties and Soil Enzyme Activities
Urea and mixed N decreased soil pH and polyphenol oxidase activity, but increased
soil total N content compared to the control (p < 0.05; Table 1). Ammonium chloride
increased soil protease activity compared to the control (p < 0.05; Table 1).
Table 1. Soil physicochemical properties and soil enzyme activities. Data (means + SE; n = 3) with
different letters in a vertical column indicate significant differences (p < 0.05). Data (including soil
moisture and soil catalase activity) without significant differences (p > 0.05) did not show in this table.
Abbreviations have the same meanings as presented in Figure 2.
. Soil Total N Soil Urease Activity =~ Soil Protease Activity SOI.I Polyphe.mf)l
Soil pH Content (g/kg)  (ug/g soil/d) (ug/g soil/d) Oxidase Activity
8 HE'E HE'E (umol/g soil/h)
Control 6.54 £ 0.03 a— 8.31 £ 0.41 de 76.67 =548 b 486.78 + 53.12 b—e 79.91 + 6.96 ab
Ammonium 6.53 &+ 0.07 a— 8.94 + 0.41 de 7328 £2.64b 838.24 £ 66.48 a 86.67 =722 a
Nitrate 6.47 +0.03 a—d 9.33 + 0.44 de 98.08 + 15.08 b 251.47 +13.20 e-h 50.21 + 4.05 b—d
Urea 6.13 + 0.09 de 15.92 £0.37 ¢ 95.50 + 25.05b 501.94 & 41.44 b 3030 +£2.79d
MixN 6.10 £ 0.06 e 1542 £0.50 ¢ 78.59 +21.97b 731.19 £ 76.38 ab 31.79 £ 6.59d
Rt 6.67 + 0.07 ab 9.20 £ 0.33 de 86.16 = 8.89b 653.43 £ 48.04 a— 36.37 +1.85 cd
RtAmmonium  6.33 £ 0.07 b—e 9.22 +£0.20 de 85.36 + 14.53 b 133.31 £ 36.15 gh 27.74+224d
RtNitrate 6.50 & 0.10 a— 9.40 £ 0.41 de 79.08 +21.52b 553.44 +71.11 a—d 32.86 +6.22d
RtUrea 6.40 & 0.00 a—e 9.38 £ 0.27 de 82.78 +12.34b 89.882 £ 1191 h 45.06 +17.21d
RtMixN 6.533 + 0.07 a—c 9.39 £ 0.11 de 79.56 +10.38 b 430.23 4 54.23 c—f 4474+ 5.0 cd
Kp 6.67 £ 0.07 ab 10.06 + 0.40 d 87.45+8.18b 112.10 £ 24.30 gh 65.15 £+ 2.61 a—
KpAmmonium  6.60 & 0.00 a—c 8.33 £ 0.52de 85.84 +8.14b 359.54 4+ 23.23 d-h 50.30 + 1.86 b—d
KpNitrate 6.27 £ 0.07 c—e 9.31 £0.34 de 207.76 £ 19.63 a 456.49 £ 67.90 b—f 50.14 + 6.75 b—d
KpUrea 6.43 £ 0.03 a—e 9.25 + 0.48 de 86.32 +14.70 b 248.44 4 42.42 e-h 45.62 +1.39 cd
KpMixN 6.53 + 0.03 a— 9.23 +0.04 de 47.67 +791b 199.972 + 71.46 f-h 47.74 +1.53 cd
RK 6.40 & 0.06 a—e 7.82 £0.62e 76.02 +10.19b 258.54 4 47.60 e-h 51.47 + 6.31 b—d
RKAmmonium  6.43 £ 0.09 a—e 8.35 + 0.44 de 94.86 +9.13 b 274.70 & 46.49 d-h 46.10 +7.40 cd
RKNitrate 6.630.12 ab 21.73 £0.23 a 64.90 + 14.08 b 276.72 4+ 86.13 d-h 29.26 +£2.016d
RKUrea 6.70 & 0.06 a 19.30 £0.53 b 85.04 +532b 483.76 £ 55.60 b—f 26.82 +2.58d
RKMixN 6.60 & 0.10 a— 9.78 £ 0.52 de 87.45+786b 391.85 £ 51.37 c-g 41.23+293 cd
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The equally mixed litter from both trees under potassium nitrate and urea increased
soil total N content compared to the control (p < 0.05; Table 1). K. paniculata litter under
potassium nitrate increased soil urease activity compared to the control (p < 0.05; Table 1).
R. typhina litter under ammonium chloride and urea, and K. paniculata litter under the
control decreased soil protease activity compared to the control (p < 0.05; Table 1). The litter
of the two trees, whether mixed or not under N, regardless of the form of N, decreased soil
polyphenol oxidase activity compared to the control (p < 0.05; Table 1).

Soil pH treated with equally mixed litter from both trees was higher than that treated
with K. paniculata litter under potassium nitrate (p < 0.05; Table 1). Soil pH treated with
K. paniculata litter under the control was greater than that treated with K. paniculata litter
under potassium nitrate (p < 0.05; Table 1). Soil total N content treated with K. paniculata
litter was higher than that treated with equally mixed litter from both trees under the
control (p < 0.05; Table 1). Soil total N content treated with R. typhina litter and that treated
with K. paniculata litter was lower than that treated with equally mixed litter from both
trees under potassium nitrate and urea (p < 0.05; Table 1). Soil total N content treated with
equally mixed litter from both trees following the addition of N in four forms decreased in
the following order: potassium nitrate > urea > ammonium chloride > MixN and the control
(p < 0.05; Table 1). Soil urease activity treated with R. typhina litter, and that treated with
equally mixed litter from both trees, was lower than that treated with K. paniculata litter
under potassium nitrate (p < 0.05; Table 1). Soil urease activity treated with K. paniculata
litter under potassium nitrate was greater than that treated with other forms of N (p < 0.05;
Table 1). Soil protease activity treated with R. fyphina litter was greater than that treated
with K. paniculata litter under the control and that treated with equally mixed litter from
both trees under the control (p < 0.05; Table 1). Soil protease activity treated with R.
typhina litter was lower than that treated with equally mixed litter from both trees under
urea (p < 0.05; Table 1).

3.3. Differences in NFB Alpha Diversity
The form of N did not significantly affect NFB alpha diversity (p > 0.05; Table 2).

Table 2. Alpha diversity of soil N-fixing bacterial communities. Data (means + SE; n = 3) with
different letters in a vertical column indicate significant differences (p < 0.05). Data (i.e., Shannon’s
diversity index) without significant differences (p > 0.05) did not show in this table. Abbreviations
have the same meanings as presented in Figure 2.

Simpson’s Dominance

OTU’s Species Index Index Chaol’s Richness Index ACE’s Richness Index
Control 941.67 £ 25.56 a 0.81 £ 0.01 a— 1597.13 + 52.36 a 1591.61 =+ 33.56 a—d
Ammonium 897.33 £+ 19.62 ab 0.79 £ 0.00 a— 1489.10 + 3.04 ab 1534.02 + 44.11 a—
Nitrate 941.00 + 35.57 a 0.83 +£0.02 a—c 1588.74 4+ 62.94 a 1619.08 + 68.79 ab
Urea 904.33 £ 22.81 ab 0.85 £ 0.02 ab 1583.79 4 57.64 a 1656.02 4 38.10 a
MixN 823.67 £ 21.17 a— 0.86 +0.02 a 1435.62 4+ 107.20 ab 1487.79 + 59.44 a—f
Rt 819.67 £ 0.67 a— 0.81 £0.01 a—< 1385.54 + 37.03 ab 1417.76 + 32.54 b—f
RtAmmonium 921.00 £ 20.31 ab 0.79 £ 0.01 a— 1560.81 4 22.94 ab 1603.92 4 17.34 a—c
RtNitrate 895.00 & 9.45 ab 0.79 £0.01 a—c 1486.11 & 25.69 ab 1530.61 4 20.43 a—e
RtUrea 755.33 £31.57 ¢ 0.81 £ 0.01 a—c 1325.73 & 23.99 ab 1396.96 + 35.28 c—f
RtMixN 861.67 & 37.24 a— 0.77 £ 0.00 a— 1370.22 + 24.60 ab 1444.76 + 35.28 a—f
Kp 856.33 & 19.70 a—c 0.75 £ 0.02 a—c 1383.04 & 73.72 ab 1362.96 4 54.94 ef
KpAmmonium 849.00 £+ 15.72 a— 0.74 £ 0.02 be 1385.36 + 21.76 ab 1375.59 =+ 24.04 ef
KpNitrate 834.67 £ 56.16 a—¢ 0.73+£0.03 ¢ 1368.83 & 130.51 ab 1379.77 + 72.14 d—f
KpUrea 876.67 & 13.25 a—c 0.74 £ 0.02 a—< 1430.61 + 25.78 ab 1428.08 & 12.92 b—f
KpMixN 844.67 £ 21.94 a— 0.79 £ 0.04 a— 1288.93 4 55.25 b 1341.60 & 39.35 ef
RK 821.67 £ 12.17 a— 0.76 £ 0.02 a— 1312.43 4+ 32.68 ab 1323.73 4 26.17 ef
RKAmmonium 875.00 £ 20.11 a— 0.78 £ 0.04 a—< 1443.83 + 34.18 ab 1448.28 + 29.61 a—f
RKNitrate 806.67 + 8.41 bc 0.78 £ 0.03 a— 1317.81 4 14.34 ab 1306.66 + 7.45 f
RKUrea 795.00 + 28.43 bc 0.74 £ 0.03 bc 1412.85 & 40.51 ab 1350.84 4 38.09 ef
RKMixN 832.00 £ 15.63 a— 0.73 +£0.03 ¢ 1383.86 4 44.21 ab 1356.12 4 25.61 ef
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R. typhina litter under urea, and equally mixed litter from both trees under potas-
sium nitrate and urea, decreased OTU’s species index of NFB compared to the control
(p < 0.05; Table 2). K. paniculata litter under mixed N decreased Chaol’s richness index
of NFB compared to the control (p < 0.05; Table 2). K. paniculata litter under the control,
ammonium chloride, and mixed N, and equally mixed litter from both trees under the
control, potassium nitrate, urea, and mixed N, decreased ACE’s richness index of NFB
compared to the control (p < 0.05; Table 2).

The OTU'’s species index of NFB treated with R. typhina litter under ammonium
chloride and potassium nitrate was greater than that treated with R. typhina litter under
urea (p < 0.05; Table 2). The ACE'’s richness index of NFB treated with R. fyphina litter under
potassium nitrate was greater than that treated with equally mixed litter from both trees
under potassium nitrate (p < 0.05; Table 2).

3.4. The Contribution Intensity of Soil Physicochemical Properties, Soil Enzyme Activities, and
NFB Alpha Diversity to the Litter Mass Loss of the Two Trees

The absolute values of the direct path coefficient of Simpson’s dominance index
(~0.6358), Chaol’s richness index (~0.5922), and ACE’s richness index (~0.8369) of NFB on
the litter mass loss of the two trees were significantly higher than those of other variables
(<0.400) (Figure 4).
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Figure 4. The contribution intensity of soil physicochemical properties, soil enzyme activities, and
alpha diversity of soil N-fixing bacterial communities to the litter mass loss of the two trees using the
path analysis based on the absolute value of the path coefficient.

3.5. Differences in the NFB Community Structure among Different Treatments

Based on the results of LEfSe analyses, Desulfovibrio and Methylomonas methanica
were primarily changed for NFB treated with the control and mixed N, respectively
(Figure 5a). Rhodocyclales and Thioploca were primarily changed for NFB treated with
R. typhina litter under the control (Figure 5b). Thiohalocapsa and Chromatiaceae were
primarily changed for NFB treated with K. paniculata litter under the control (Figure 5b).
Xanthobacter_sp_91 was primarily changed for NFB treated with equally mixed litter from
both trees under ammonium chloride (Figure 5¢). Desulfotomaculum arcticum was pri-
marily changed for NFB treated with R. typhina litter under potassium nitrate (Figure 5d).
Desulfovibrio longus, Thioalbus denitrificans, and Methylomicrobium were primarily
changed for NFB treated with K. paniculata litter under potassium nitrate (Figure 5d). Pro-
pionibacterium, Propionibacteriaceae, Propionibacteriales, Actinobacteria, Niveispirillum,
and Geoalkalibacter were primarily changed for NFB treated with equally mixed litter
from both trees under potassium nitrate (Figure 5d). Marinospirillum, Oceanospirillaceae,
and Oceanospirillales were primarily changed for NFB treated with R. typhina litter under
urea (Figure 5e). Sphingomonadaceae, Sphingomonadales, and Geopsychrobacter were
primarily changed for NFB treated with K. paniculata litter under urea (Figure 5e). Geother-
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mobacter, Methylomonas, Thioflexothrix, Thiotrichales, and unclassified Thiotrichales were
primarily changed for NFB treated with equally mixed litter from both trees under urea
(Figure 5e). Celerinatantimonas diazotrophica, Celerinatantimonas, Celerinatantimon-
adaceae, and unclassified Gammaproteobacteria were primarily changed for NFB treated
with R. typhina litter under mixed N (Figure 5f). Azoarcus communis was primarily changed
for NFB treated with equally mixed litter from both trees under mixed N (Figure 5f).
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Figure 5. LEfSe evolutionary branch diagram of soil N-fixing bacterial communities. (a) The addition
of N in four forms; (b) the litter of the two trees under the control; (c) the litter of the two trees under
ammonium chloride; (d) the litter of the two trees under potassium nitrate; (e) the litter of the two
trees under urea; (f) the litter of the two trees under mixed N. The taxa with significantly different
abundances among treatments are signified by colored dots, and from the center outward, they
mean the kingdom, phylum, class, order, family, genus, and species levels, respectively. The colored
shadows mean trends of the significantly differed taxa. Only taxa meeting an LDA significance
threshold of >2 are displayed. Abbreviations have the same meanings as presented in Figure 2.

4. Discussion

The litter mass loss of R. typhina was similar to that of K. paniculata (Figure 2). Thus, con-
trary to the first hypothesis, R. typhina litter did not degrade more easily than K. paniculata
litter. These observations are also inconsistent with the results of previous research which
has shown that invasive plants either degrade more rapidly [18-21], or significantly more
slowly than native plants [58-60]. This phenomenon may be due to the similar proportions
of soluble and recalcitrant components in the litter of the two trees [28]. In other words, the
two trees had similar litter quality, probably because they coexist in the same habitat and
have similar growing seasons, growing environments, and lifestyles. This phenomenon
may also be attributed to the relatively short time frame of this study, in which the rapid
decomposition of R. typhina could not be manifested.

In nature, the two trees typically co-exist [21,42]. As a result, the litter decomposition
may be altered when the litter from the two trees is mixed. Non-additive responses
in the litter co-decomposition of invasive plants and native plants are often observed,
and generally, the litter decomposition of invasive plants can accelerate that of native
plants [21,49,61,62]. In this study, the decomposition of the mixed litter from both trees
was slower than that of the individual litter of either species (Figure 2). In addition, the
observed decomposition rate for equally mixed litter from both trees was also significantly
lower than its expected decomposition rate (Figure 3a). More importantly, the mixing
effect intensity of the litter co-decomposition of the two trees was less than zero (Figure 3b).
Thus, contrary to the second hypothesis, antagonistic responses were observed in the litter
co-decomposition of the two trees. Accordingly, there may be an interspecific interference
during the litter co-decomposition process for the co-decomposition of the two trees. In
addition, some recalcitrant components (difficult to decompose) may be formed during the
litter co-decomposition process for the co-decomposition of the two trees. Studies on the
non-additive responses for the co-decomposition of two plant species have shown that only
30% additive, 50% synergistic, and 50% antagonistic responses were observed [63]. The
reason for these differences may be closely related to the differences in the relatedness of
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plant species, the initial quality and quantity of plant litter, the type of culture medium, the
initial soil physicochemical properties, the initial (decomposer) microbial communities in
culture medium, the ratio of the two plant litters mixed, and the duration of the experiment.

Invasive plants can mediate changes in soil enzyme activity [64-67] by releasing
nutrients, such as carbon- and N-containing substances, during the litter co-decomposition
process. Surprisingly, R. typhina litter significantly increased soil protease activity under the
control, but significantly decreased soil urease activity under potassium nitrate compared
to that of K. paniculata in this study (Table 1). Hence, R. typhina can increase the level of urea
hydrolysis but decrease the level of protein hydrolysis. Previous studies also showed that
invasive plants can increase [65,66,68,69] or decrease soil enzyme activities [48,70-72], or
have no significant on soil enzyme activities [67,73-75]. Thus, the effects of invasive plants
on soil enzyme activities may be species-dependent [28,76] and N-form-dependent [48,77],
mainly due to the differences in soil physicochemical properties and the level of available
soil nutrients under different plant species and/or different forms of N.

ACE's richness of NFB under K. paniculata litter and equally mixed litter from both
trees was lower than that under the control (Table 2). Thus, the litter decomposition of
K. paniculata and that of equally mixed litter from both trees under the control may be
slower, mainly due to the reduced richness of NFB. Previous studies have shown that the
abundance and diversity of the nifH gene are strongly associated with the soil available
N levels [9-12]. At the same time, the contribution intensity of the richness of NFB to the
litter mass loss was obviously greater than other variables based on the results of path
analysis (Figure 4). However, contrary to the third hypothesis, the litter decomposition
of R. typhina under the control did not significantly affect NFB alpha diversity (Table 2).
Interestingly, the litter mass loss of the two trees under the control appeared to result in
significant variations in the relative abundance of various NFB taxa, i.e., Rhodocyclales and
Thioploca were abundant during the litter decomposition of R. typhina under the control,
and Thiohalocapsa and Chromatiaceae were abundant during the litter decomposition of
K. paniculata under the control (Figure 5). Thus, the litter decomposition of the two trees
under the control results in the presence of numerous dominant biomarkers of NFB. The
main reason may be that there is still some difference in the litter quality between the two
trees, leading to the species differentiation of NFB. Accordingly, the litter decomposition
of the two trees under the control mainly affected the composition of NFB, rather than
their alpha diversity. Earlier studies have also verified that plant species, particularly the
invasive plants, mainly affected the composition of soil microbial communities rather than
NFB alpha diversity [78,79].

Generally, N addition can trigger soil acidification mainly due to the release and
accumulation of free H* via nitrification [14,80,81]. The same results were observed in this
study (Table 1). In addition, ammonium chloride increased soil protease activity, but urea
and mixed N decreased soil polyphenol oxidase activity (Table 1). Thus, the impacts of N
addition on soil enzyme activities could vary and depend on the form of N. However, the
form of N did not significantly affect the litter mass loss of the two trees and NFB alpha
diversity (Figure 2 and Table 2). Thus, the fourth hypothesis could not be supported based
on this finding. Nonetheless, mixed N triggered a significant variation in the abundance of
Methylomonas methanica (Figure 5). Thus, Methylomonas methanica may be used as a
dominant biomarker under mixed N.

In addition, contrary to the fifth and sixth hypotheses, the form of N did not signifi-
cantly affect the litter mass loss of the two trees (Figure 2), the mixing effect intensity of the
litter co-decomposition of the two trees (Figure 3b), or NFB alpha diversity (Table 2). Thus,
the degree of influence of N addition on the litter mass loss of R. typhina and NFB alpha
diversity was similar to that of K. paniculata. However, the litter mass loss of R. typhina
was significantly higher than that of K. paniculata under urea (Figure 2). Thus, R. typhina
litter may decompose more effectively and rapidly than K. paniculate litter under urea.
This finding is consistent with the previous studies, i.e., invasive plants decompose more
easily and rapidly than native plants [18-21]. This phenomenon may be due to the higher

209



Atmosphere 2024, 15, 424

percentage of soluble components and lower percentage of recalcitrant components in
R. typhina litter compared to those of K. paniculate litter, and /or the compounds contained
in R. typhina litter may be more readily released into the soil in the presence of urea. This
may also be due to the fact that the limitation of the level of N utilization for the metabolic
activity of soil bacterial community in relation to the decomposition process is alleviated to
a greater extent in R. typhina litter, compared to K. paniculate litter under urea [14,82]. In this
study, soil total N content under urea was significantly higher than that under ammonium
chloride and potassium nitrate (Table 1). Previous studies also showed that soil bacterial
community is more likely to utilize organic N than inorganic N [14,83]. Thus, the nutrient
cycling rate during the decomposition process of R. typhina may be obviously higher than
that of K. paniculate under urea. Consequently, an increase in the relative proportion of
urea in the atmospheric N deposition may be beneficial to the invasion of R. typhina via the
increased nutrient cycling rate mediated by the accelerated litter mass loss.

The LEfSe analysis revealed that the litter decomposition of the two trees following
the addition of N in four forms resulted in significant variations in the relative abundance
of various NFB taxa, i.e., Xanthobacter_sp_91 under the litter decomposition of equally
mixed litter from both trees treated with: ammonium chloride; Desulfotomaculum arcticum
under the litter decomposition of R. typhina treated with potassium nitrate; Desulfovibrio
longus, Thioalbus denitrificans, and Methylomicrobium under the litter decomposition
of K. paniculata treated with potassium nitrate; Propionibacterium, Propionibacteriaceae,
Propionibacteriales, Actinobacteria, Niveispirillum, and Geoalkalibacter under the litter
decomposition of equally mixed litter from both trees treated with potassium nitrate; Mari-
nospirillum, Oceanospirillaceae, and Oceanospirillales under the litter decomposition of
R. typhina treated with urea; Sphingomonadaceae, Sphingomonadales, and Geopsychrobac-
ter under the litter decomposition of K. paniculata treated with urea; Geothermobacter,
Methylomonas, Thioflexothrix, Thiotrichales, and unclassified Thiotrichales under the litter
decomposition of equally mixed litter from both trees treated with urea; Celerinatantimonas
diazotrophica, Celerinatantimonas, Celerinatantimonadaceae, and unclassified Gammapro-
teobacteria under the litter decomposition of R. typhina treated with mixed N; Azoarcus
communis under the litter decomposition of equally mixed litter from both trees treated
with mixed N (Figure 5). Thus, the litter decomposition of the two trees following the
addition of N in four forms causes a substantial effect on certain NFB taxa. The differential
shifts in NFB composition in response to the litter decomposition of the two trees following
the addition of N in four forms could be primarily due to the differences in the level of
nitrogenophilic ability of those NFB taxa. Thus, the addition of N in different forms can
exert different intensities of selective pressure on different NFB taxa, leading to increases
(e.g., the nitrogenophilic NFB taxa) or decreases (e.g., the NFB taxa that are poorly tolerant
to N addition) in the proportion of specific NFB taxa.

5. Conclusions

This study is the first attempt to elucidate the effects of the invasive R. typhina and
native K. paniculata trees on the litter mass loss, soil physicochemical properties, soil enzyme
activities, and the NFB community under different forms of N deposition. The main
conclusions are that: (1) There were antagonistic responses to the litter co-decomposition of
the two trees based on the values of the mixing effect intensity of the litter co-decomposition
of the two trees; (2) the litter mass loss of the two trees was mainly affected by the richness
of NFB based on the results of path analysis; (3) the form of N did not significantly affect the
litter mass loss of the two trees, the mixing effect intensity of the litter co-decomposition of
the two trees, or NFB alpha diversity based on the results of one-way ANOVA; (4) the litter
mass loss of R. typhina was significantly higher than that of K. paniculata under urea based
on the results of one-way ANOVA; (5) The litter decomposition of the two trees under the
control, and following the addition of N in four forms, mainly affected the composition of
NFB, i.e., resulted in significant variations in the relative abundance of various NFB taxa,
rather than NFB alpha diversity, based on the results of LEfSe analyses.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15040424 /s1, Figure S1. The photo of the environment in
which the two trees grow (a), Rhus typhina L.; (b), Koelreuteria paniculata Laxm.).
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Abstract: Reactive nitrogen (Nr) has been confirmed as an indispensable nutrient for the city ecosys-
tem, but high-intensity human activities have led to nitrogen pollution in cities, especially in coastal
cities, jeopardizing ecosystem services and human health. Despite this, the characteristics and influ-
encing factors of Nr remain unclear in coastal cities, particularly in the context of rapid urbanization.
This study used the material flow analysis method to estimate Nr emissions in Xiamen from 1995 to
2018 and evaluated the characteristics of excessive Nr emissions. The STIRPAT model was used to
identify and explore factors contributing to observed Nr levels in coastal cities. As indicated by the
results, (1) the quantity of Nr generated by human activities increased 3.5 times from 1995 to 2018.
Specifically, the total Nr entering the water environment showed a general increase with fluctuations,
exhibiting an average annual growth rate of 3.1%, increasing from 17.2 Gg to 35.1 Gg. (2) Nr loads
in the nearby sea increased notably from 8.1 Gg in 1995 to 25.4 Gg in 2018, suggesting a threefold
augmentation compared with surface waters and groundwater. (3) NOx was the gaseous Nr with the
greatest effect on the atmosphere in Xiamen, which was primarily due to fossil fuel consumption.
(4) Population and per capita GDP were major factors contributing to Nr load in the water environ-
ment, while Nr emission to the atmosphere was influenced by population and energy consumption.
These findings provide valuable insights for tailored approaches to sustainable nitrogen management
in coastal cities.

Keywords: reactive nitrogen; coastal city; Xiamen; STIRPAT model

1. Introduction

Nitrogen (N) is a fundamental component of proteins, nucleic acids, and other vital
living substances [1,2]. However, the excessive use of chemical fertilizers and fossil fuels as
well as high food consumption have resulted in the release of large amounts of reactive
nitrogen (Nr: all species of nitrogen (N) except Ny) into the environment, which has
led to environmental pollution such as water eutrophication, atmospheric pollution, and
acid rain [3,4]. Research has suggested that 75% of Nr production on land arises from
human activities [5]. The 2030 Sustainable Development Goals (SDGs) formulated by the
United Nations aim to achieve various goals, including food security, protection of the
environment, and social development. The realization of many of the above-mentioned
goals is closely tied to the responsible use of nitrogen [6].

In cities, Nr emissions are influenced by a wide range of factors (e.g., population,
technology, and other socioeconomic factors). The rapid population growth, industrial-
ization, and socioeconomic development that accompany urbanization can have various
consequences for the environment. Urbanization and agglomeration have led to increased
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levels of nitrogen (Nr) emissions [7]. The anthropogenic sources of Nr in cities mainly
comes from human consumption, croplands, energy consumption, and livestock processing,
while N deposition is the main natural source. China continues to prioritize urbaniza-
tion, particularly in the highly developed, high-income eastern coastal cities. This area
encompasses 53 cities and account for almost 20% of the total Chinese population and over
40% of China’s gross regional product [8]. The increasing urbanization of coastal cities is
boosting nitrogen production and emissions; thus, these cities have already become the
largest anthropogenic nitrogen source worldwide [9,10]. It is essential to investigate the
characteristics of Nr emission as well as its control mechanisms and influencing factors and
change trends in coastal cities to address the increasingly serious problem of Nr pollution in
coastal cities. This investigation is of critical significance both theoretically and practically
to managing nitrogen emissions and protecting the environment.

To address the rising pollution caused by Nr, research has been conducted worldwide
to explore the characteristics of Nr emissions in various cities. It has focused on several
aspects such as the characteristics of Nr emissions, the effect of Nr emissions, and Nr
management [11-13]. For example, a study conducted in Paris suggested that emissions
from food consumption had tripled between 1801 and 1914 [14]. In a study on Nr emis-
sions in Phoenix, Arizona, researchers considered the residential consumption system
and specific industries in the city (e.g., the dairy and livestock sectors) [15]. In addition,
domestic scholars have also conducted several studies on Nr emissions in cities such as
Beijing, Shanghai, Hangzhou, and Guangzhou, analyzing Nr emissions and their driving
factors [16-19]. Nevertheless, the above-mentioned studies have typically quantified Nr
emissions from food consumption, while the environmental effects of Nr on air, water, and
soil have not been fully determined. Therefore, further research is necessary to determine
the extent of the impact of Nr emissions on the environment and to develop effective
measures for Nr management.

Most researchers have focused on identifying the factors that stimulate carbon emis-
sions using the STIRPAT model, whereas limited research has been conducted on the trend
of Nr emissions. Liu and Nie [20] analyzed China’s per capita food nitrogen footprint and
the effect of a wide range of socioeconomic factors on the footprint using the STIRPAT
model. Furthermore, Cui et al. [21] employed the STIRPAT model to investigate the factors
stimulating agricultural carbon emissions in China’s Hebei province. The STIRPAT model
is effective in analyzing the driving forces behind environmental effects [22] and can help
comprehensively evaluate the dynamic interplay of contributing factors and highlight
the characteristic features of the macrosocial “complex coupling system” with respect to
environmental effects. Previous studies on Nr emissions and their factors have generally
considered urbanization, population size, per capita GDP, production structure, energy
efficiency, as well as technological improvements [23-27]. However, the geographic and
socioeconomic conditions of different cities can lead to significant variations in the factors
driving Nr emissions. Understanding the changes in Nr emissions and their influencing
factors is crucial, and further research is needed to account for city-specific factors.

Xiamen, a typical coastal city, is facing increasingly serious air pollution, particu-
larly regarding Nr emissions, whose environmental effects and influencing factors remain
unclear. This study aimed to achieve several objectives. First, the characteristics of Nr
emission in Xiamen were analyzed. Second, we discussed the variation characteristics of
Nr loads in the atmosphere and water bodies. Third, this study attempted to gain insights
into the critical socioeconomic factors of Nr emissions to provide decision-makers with a
more scientific basis for formulating N management policies. Furthermore, this study can
contribute to sustainable city development.

2. Materials and Methods
2.1. Study Area

Xiamen (117°53'-118°26" E, 24°23'-24°54’ N) is located in the southeast of China,
covering a total area of 1699.39 km?. The altitude is 63.2 m (Figure 1). Xiamen has a subtrop-
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ical maritime monsoon climate with concentrated precipitation and warm temperatures.
The resident population of Xiamen has increased from 1.89 million in 1995 to 4.29 million
in 2020. Xiamen is characterized by a high degree of intensive human activities that con-
sume considerable amounts of food and energy. With excessive nitrogen inputs, nitrogen
pollution has grown more serious. Xiamen’s booming economy and rapid urbanization
have changed its land use distribution. In 2020, the urban residential land, industrial land,
and transportation land accounted for 37.2% and were concentrated on the island; the most
of forest land, agricultural land, and other land took up 62.8% of Xiamen, and these lands
were extensively distributed in the surrounding areas. With the continuous acceleration of
urbanization in Xiamen, the urbanization rate was elevated from 62.7% in 2005 to 89.4%
in 2020. According to the results of monitoring surface water nitrogen concentration from
2004 to 2016, provided by the monitoring station of the Xiamen Environmental Protection
Bureau, it was found that major rivers in the area had excessive levels of nitrite and ammo-
nia nitrogen. Furthermore, from 1995 to 2015, the concentration of inorganic nitrogen in the
nearby sea of Xiamen increased from 0.35 mg L 1t01.34 mg L1 [28].
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Figure 1. Map of the study area.

2.2. Data Sources

In this study, socioeconomic data on Xiamen from 1995 to 2018 were collected from
several published government sources (e.g., the Yearbook of the Xiamen Special Economic
Zone (1997-2019) and the Xiamen Ecological Environmental Quality Bulletin). The pa-
rameters of Nr emission primarily originated from the published literature, government
departments, and experiments. The detailed parameters of this study are elucidated in the
Supplementary Materials (Tables S1-530).

2.3. Reactive Nitrogen (Nr) Calculations

Different systems can generate varying levels of nitrogen that affect the environment
in different ways. The systems that primarily affect water bodies include croplands, live-
stock, aquaculture, greenbelts, industry, sewage treatment, and garbage disposal (Figure 2).
Moreover, Nr emissions from the above-mentioned systems also have a certain negative
effect on the atmospheric environment. Nitrogen oxide emissions are increasing, notably in
economically developed areas. In this study, NOx, NH3, and N, O emissions were considered
the main gaseous Nr forms in the atmosphere. In general, systems that exerted a certain effect
on the atmosphere comprised croplands, livestock, aquaculture, greenbelts, sewage treatment,
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and garbage disposal. The calculation formulas for the nitrogen flow and Nr emissions of
each system are detailed in the Supplementary Materials (Equations (S1.1)-(S11.2)).
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Figure 2. Framework of Nr emissions to the environment (blue arrows represent Nr emission to
water environments; red arrows represent Nr emission to the atmosphere; black arrows represent
nitrogen flow between different systems; BNF: Biological nitrogen fixation).

2.4. Influencing Factor Analysis Model
2.4.1. STIRPAT Model

The effects of demographic (P), economic (A), and technological (T) factors on the
environment are mainly postulated in the IPAT model [29]. The IPAT model is reformulated
into a stochastic model (STRIPAT), so that the nonmonotonic or nonproportional effects
of driving forces on the environment can be statistically evaluated [30]. The STRIPAT
model has been successfully adopted to analyze the effects of driving forces on a variety of
environmental effects [31,32], which is expressed as:

L= oPRAG Tiey )
After taking logarithms, the model takes the following form:
Ln(lit) = a+bLn(Py) + cLn(Aj) + dLn(Tit) + & ()

where suffixes i and t denote country and years, respectively; P expresses population size;
A is real GDP per capita; T represents technology; the dependent variable I denotes
pollutant emissions; ¢; is the error term, a is the constant term; and b, ¢, and d are the
coefficients of P, A, and T, respectively.

The STRIPAT model refers to a nonlinear model with multiple dependent variables.
By implementing an index, the model is capable of analyzing the nonproportional effects
of factors on the environment. Besides the three variables already covered in the model,
any other detrimental factor that affects the environment can be introduced for in-depth
examination. The coefficients of the STRIPAT model represent the elasticity relationship
between the independent and dependent variables. For instance, an environmental effect
will result in changes of a%, b%, and c%, respectively, if a 1% change exists in the driver
(PAT). a, b, and c equal to 1 indicate a proportional change in the environmental effect and
the driver (PAT) at a constant ratio. A coefficient greater than 1 reveal that an increase in
socioeconomic factors leads to a higher rate of environmental change. A coefficient over 0
and less than 1 reveals that increasing socioeconomic factors leads to a rise in the rate of
environmental change but at a slower pace than the driving force. However, a coefficient
less than 0 implies that increasing socioeconomic factors is conducive to reducing the
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environmental effect. Based on the STIRPAT model, this paper utilizes the ridge regression
analysis method to fit independent variables and dependent variables through regression.
This method is deemed more compatible and stable compared to the least-squares method
employed in previous research studies.

2.4.2. Model Indicator Selection

In this paper’s STIRPAT model, the “I” variable representing environmental factors is
the total amount of Nr emissions. The wealth factor (A) is represented by the per capita
GDP index. The variable P is further broken down into two indicators: Xiamen resi-
dents (P1), and urbanization level (P,) (the percentage of built-up areas in the entire region).
The technical indicator T is also separated into two indicators: energy consumption (T1) and
industrial structure (T,). Energy consumption is defined as the amount of standard coal
consumed per unit of GDP production, while industrial structure refers to the percentage
of secondary industry. This paper utilizes ridge regression analysis to fit the STIRPAT
model and comprehensively explores the factors affecting Nr emissions in the water and
atmospheric environment.

2.4.3. Mann-Kendall Test and Theil-Sen’s Slope Estimator

The Mann-Kendall test is typically used to detect the presence of a temporal trend
when analyzing environmental data. Thus, the test can be viewed as a nonparametric test
for zero slope of the linear regression of time-ordered data versus time. The calculation of
the Mann-Kendall test statistic can be found in previous research [33,34]. As for the results,
when the Z value is negative, a falling trend is recognized, and when the Z value is positive,
a rising trend is discerned. At a significance level of 0.05 (0.01, 0.001), Z > 1.96 (2.58) and
Z < —1.96 (—2.58) indicate significant increasing and decreasing trends, respectively [35].

Theil-Sen is a nonparametric alternative to ordinary least-squares regression. Sen’s
slope has an advantage compared to linear regression, in that the test is not affected by the
number of outliers and data errors [35]. The Sen’s slope equation is written as follows:

Y

P — X

B = Median(

where x; and x; are the data values at time i and j (i > /), respectively. When f is greater
than zero, it indicates a growth trend, while the opposite indicates a decreasing trend.

3. Results
3.1. The Characteristics of Reactive Nitrogen (Nr) Emissions

Human activities have a considerable impact on the water and air environments of a
city, with varying effects depending on the amount of Nr produced. Analysis of time series
data reveals that the release of Nr into water bodies and the atmosphere undergoes unique
changes with the process of urbanization (Figure 3). By estimating the Mann—Kendall test
and Theil-Sen’s slope estimation at a 99% confidence level (Z > 2.58, p < 0.001) (Table 1),
we found that the total of Nr emissions from anthropogenic activities tended to increase
significantly, going from 42.6 Gg in 1995 to 149.2 Gg in 2018. Moreover, the amount of
Nr released into the atmosphere far exceeded that released into water bodies. Nr loads
released into water bodies tended to fluctuate, increasing from 17.2 Gg in 1995 to 35.1 Gg
in 2018, with an average annual increase rate of 3.1%. On the other hand, Nr loads released
into the atmosphere increased from 25.4 Gg in 1995 to 114.2 Gg in 2018, with an average
annual increase rate of 6.7%. The Nr released into the atmosphere accounts for over half of
the total Nr emissions resulting from anthropogenic activities.
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Table 1. Theil-Sen median slope estimation and Mann-Kendall trend test.

, .. The Z Value of the The p-Value of the

Item Sen’s Slope Mann-Kendall Statistic Mann—Kendall Test Mann—Kendall Test
Total Nr emission 4.834 250.000 6.176 0.000
Nr emission to water bodies 0.945 178.000 4.390 0.000
Nr emission to atmosphere 3.793 252.000 6.226 0.000
Nr emission to surface water 0.033 82.000 2.009 0.045
Nr emission to groundwater 0.001 6.000 0.124 0.901
Nr emission to nearby sea 0.880 182.000 4.490 0.000
NHj3 emission 0.375 244.000 6.027 0.000
NOy emission 3.436 238.000 5.879 0.000
N,O emission —0.026 —198.000 —4.886 0.000
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Figure 3. Total amount of Nr emissions.

3.1.1. Characteristics of Nr Emission to Water Bodies

In general, the water bodies in this study comprised surface water, groundwater, and
the nearby sea. All types of water bodies were affected by Nr emissions from different
systems in the city, and the trends of Nr loads differed between the above-mentioned water
body types from 1995 to 2018 (Figure 4). During urbanization, anthropogenic nitrogen
(Nr) discharges exceeded those from natural sources, leading to severe effects on water
body quality. By estimating the Mann—Kendall test and Theil-Sen’s slope estimation at a
99% confidence level (Z > 2.58, p < 0.001) (Table 1), the total Nr loads in Xiamen’s water
bodies showed a fluctuating increasing trend between 1995 and 2018, with an average
annual growth rate of 3.2%, increasing from 17 Gg to 35 Gg. While Nr loads in surface
water bodies showed no significant changes during the period from 1995 to 2018, Nr loads
in surface water bodies increased from 6.9 Gg to 8.1 Gg during 1995-2012 and decreased
from 7.7 Gg to 7.4 Gg from 2013 to 2018. However, as Xiamen is a typical coastal city, Nr
pollution in nearby seas became more serious. As the river upstream carried considerable
Nr into Xiamen'’s nearby sea, the Nr loads in nearby seas increased, from 8.1 Gg in 1995
to 25.4 Gg in 2018—three times higher than the Nr in surface waters and groundwater in
this 23 year-period. Furthermore, most Nr pollutants originated from the upstream of the
external river (Jiulong River).
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Figure 4. Characteristics of Nr load in different water bodies in Xiamen.

The results of this study revealed differences in the contribution ratios of various
systems to the Nr loads in water bodies in the city; different water bodies were affected
by Nr emissions from the respective systems. In addition, different characteristics and
trends were displayed from 1995 to 2018 (Figure 5). Surface water bodies in the city were
affected by various systems (Figure 5a). To be specific, the contribution of Nr emissions
to surface waters from cropland systems decreased, from 20.2% in 1995 to 6.3% in 2018,
marking a threefold decrease. Moreover, industrial systems contributed to 37.5% of Nr
loads in surface water in 1995, which declined to 1.6% in 2018, with an average annual
decrease of 4.5%. Furthermore, the contribution of livestock systems to Nr loads in surface
water showed a gradual decline, with an average annual decrease of 3.6%. However, the
contribution of N deposition to surface water progressively increased, and it emerged as a
major source of Nr pollution in surface water. From a contribution ratio of 15% in 1995,
N deposition in surface water rose to 65% in 2018, marking a 4.3-fold increase over the
following 23 years.

The nearby sea environment of Xiamen, a typical coastal city located at the mouth of
the Jiulong River, is affected by Nr inputs from a wide variety of inland subsystems and Nr
inputs from external rivers, like the Jiulong River (Figure 5b). As revealed by this study,
external rivers were the primary source of Nr loads in the nearby sea, contributing to an
average annual ratio of 60% from 1995 to 2018. Sewage treatment and surface water served
as the main inland sources of Nr loads. The contribution ratio of Nr emissions from sewage
treatment systems in the nearby sea was elevated from 6.1% in 1995 to 12.7% in 2018.

The discharge of Nr from different systems in the city can substantially affect ground-
water bodies (Figure 5¢). The reduction in cropland area led to a decrease in N fertilizer
leaching to groundwater over the past few years. Moreover, the percentage of N fertilizer in
groundwater declined from 88% in 1995 to just 10% in 2018, marking an overall decrease of
approximately eight times. However, the impact of sewage treatment systems on ground-
water was found to have grown. On average, there was an annual increase of 10.9% in Nr
loads. The increasing workload of the sewage treatment system and aging sewer pipes
were the primary causes of Nr leakage from the sewage treatment system into groundwater
bodies. Furthermore, there was an increase in Nr contaminants that leach into groundwater
from the greenbelt system, whose contribution to the overall Nr load was elevated from
2.7% in 1995 to 26.3% in 2018. The reason for the above result is the development of Xiamen
as an ecological city, leading to an average annual increase of 12.1% in greenbelt area, as
well as an increase in pet feces.
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Figure 5. Characteristics of variations in Nr load contributions to different water bodies ((a): surface
water; (b): nearby sea; (c): groundwater).

3.1.2. Characteristics of Nr Emission to the Atmosphere

Anthropogenic Nr emissions change the nitrogen cycle in cities, adversely impacting
not only water bodies but also the atmosphere, and this issue is becoming more severe.
The atmospheric Nr forms primarily responsible for the damage comprised NH3, NOy,
and NO. By estimating the Mann-Kendall test and Theil-Sen’s slope estimation at a 99%
confidence level (Table 1), we found that NOy presented a significant increasing trend, while
N,O presented a decreasing trend. NOy emissions exerted the greatest effect, accounting
for nearly 80% of the city’s overall Nr emissions (Figure 6a). The second-greatest emission
was NH3, primarily originating from ammonia volatilization in croplands and livestock
systems. Although N,O accounted for a relatively small proportion, it is the third most
critical greenhouse gas after CO, and CHy, with a warming potential 298 times that of CO,
and contributing to 8% of greenhouse gas emissions [36].
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Figure 6. Trends and contributions of gaseous Nr emissions from 1995 to 2018 ((a): emission ratio of
different forms of gaseous Nr; (b): gaseous Nr emission of each subsystem).

Additionally, there were substantial variations in gaseous Nr emissions among dif-
ferent systems (Figure 6b). From 1995 to 2018, Nr emissions from energy consumption
tended to increase, becoming the primary contributor to Nr emissions in city ecosystems.
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Furthermore, Nr emissions from human consumption, sewage treatment, and garbage disposal
systems also increased, although this increase was at a slower rate. In contrast, the aggregate
amount of Nr produced by cropland systems tended to decline over the same period.

3.2. Analysis of Influencing Factors on Nr Emission
3.2.1. Analysis of Influencing Factors on Nr Emission into Water Bodies

According to the STRIPAT model and ridge analysis, the goodness of fit (R? value)
of the model was 0.752 and the model met the requirements. This indicated that the in-
dependent variable explained 75.2% of the variation in the dependent variable (Table 2).
Moreover, the equation’s F value was 8.6, and it was statistically significant at 0.001 level,
indicating that the ridge regression equation could withstand the 99% significance test.
This result indicated that population size, wealth, and urbanization had a positive impact
on environmental Nr load, with both linear and elastic effects. Environmental pressure
increased with the rise in population size, which was found to determine the amplitude
of the environmental Nr load. An increase in population size increased environmental
pressure. The elasticity coefficient, which ranged from 0 to 1, suggested that an increase
in these factors could lead to environmental changes worsening faster than the driving
force. Specifically, for every 1% increase in population, Nr load in water bodies increased
by 0.17%, making population explosion a potential factor for the Nr load in Xiamen’s
water bodies. Similarly, per capita GDP had a positive linear effect on water environ-
mental pressure, with a 1% increase resulting in a 0.16% increase in liquid Nr emissions.
However, in comparison to population and GDP, industrial structure showed a negative
correlation with Nr emissions. The primary reason for this result is the decline of traditional
industries and the rise of tertiary and high-tech industries. Improving industrial structure
could have a positive impact on reducing Nr emissions into the water environment.

Table 2. Ridge regression of various socioeconomic factors affecting Nr load in water bodies.

Standardization Coefficient t r R? F
Constants - 0 1
Population (P;) 0.170 5.019 0.000 ** F = 8.604
Urbanization (P;) 0.153 5.732 0.000 ** 0.752 p =0.001
Industrial structure (T5) -0.117 2.334 0.032 *
Per capita GDP (A) 0.160 6.652 0.000 **

*p <0.05,** p<0.01.

3.2.2. Analysis of Influencing Factors on Nr Emission to the Atmosphere

A ridge analysis was conducted according to the STRIPAT model using population,
industrial structure, energy consumption, and GDP per capita as independent variables
and gaseous Nr emissions as the dependent variable. The results indicated an R? value of
0.932 and the model met the requirements. This indicated that the independent variable
explained 93.2% of the variation in the dependent variable (Table 3). The primary factor
driving this increase was the growing population. Moreover, the city’s energy consump-
tion rose at a rate of 2.9% per year, which had a direct impact on gaseous Nr emissions.
In fact, for every 1% increase in energy consumption, there was a corresponding 0.91%
increase in emissions. Additionally, per capita GDP had a linear positive effect on the
environment, with a 1% increase in per capita GDP resulting in a 0.31% increase in
gaseous Nr emissions. In comparison to the aforementioned factors, Xiamen’s indus-
trial structure had a suppressing effect on gaseous Nr emissions. Over the years, the
proportion of the secondary industry in Xiamen declined by an average of 4.6% annually.
Furthermore, the secondary industry transitioned into high-tech industries, which can help
reduce the nitrogen pollution caused by heavy industries in the region.
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Table 3. Ridge regression of socioeconomic factors affecting Nr load in the atmosphere.

Standardization Coefficient t 4 R? F
Constants - 0 1
Population (Py) 1.091 2.075 0.000 ** F (6,7) =15.897
Industrial structure (T) —0.468 —1.201 0.027 * 0.932 p=0.001
Energy consumption (T1) 0.911 2.081 0.000 **
Per capita GDP (A) 0.310 0.993 0.035*

*p <0.05,** p<0.01.

4. Discussion

Nr emissions have increased significantly due to anthropogenic activities over the
past few decades, particularly in coastal cities, which is expected to adversely affect the
environment of the above-described cities. Accordingly, the sources of Nr emissions and
the factors that contribute to their increase in coastal areas should be explored. This study
aimed to conduct a systematic analysis of the effect of human activities on Nr emissions
and examine the environmental effects arising from such emissions to more effectively
curb and manage nitrogen pollution. The results suggested an increase in Nr emissions
from coastal cities in recent years, with gaseous Nr emissions outweighing the amount
entering the water environment, thus triggering a growing problem of Nr pollution in the
atmosphere. Most Nr emissions have originated from energy systems, cropland systems,
and human consumption systems. Moreover, socioeconomic factors (e.g., population) have
affected Nr emissions. The above-mentioned findings reveal the importance of identifying
the key systems and critical factors of Nr emission to effectively reduce nitrogen pollution in
cities. In brief, a substantial difference was found between the environmental effects of Nr
emissions from different systems in cities, and action should be taken to alleviate this issue.

In Xiamen, the level of Nr entering water bodies tended to fluctuate and increase.
This result is in good agreement with the actual change in nitrogen concentration in sur-
face water. Previous studies found that according to the results of monitoring nitrogen
concentration in surface water in Xiamen from 2004 to 2016, nitrite and ammonia nitro-
gen in major streams and surface water in the territory seriously exceeded the standard.
The average nitrogen concentration in surface water showed a fluctuating increasing trend,
and the nitrogen concentration in surface water showed a significant linear positive cor-
relation with Nr load [37]. The variation in Nr load in surface water bodies is influenced
by multiple systems. Among them, the agricultural system made the largest contribution
during the period from 1995 to 2012, resulting in an increasing trend of Nr load in surface
water bodies due to the extensive use of nitrogen fertilizers. However, from 2013 to 2018,
the urbanization process accelerated and the area of grain cultivation decreased. As a result,
there was a reduction in wastewater discharge from the agricultural system. Furthermore,
policies had an impact on the livestock and aquaculture systems in Xiamen, leading to
a continuous decrease in Nr emissions from 2013 to 2018. This ultimately resulted in a
decrease in wastewater discharge and subsequent fluctuations in Nr load in surface water
bodies. In addition, in our study, we also found severe levels of Nr pollution in the nearby
sea. The coastal city’s nearby sea is affected by outside rivers. In the upstream of the Jiulong
River, the development of industries (e.g., pig breeding and crop cultivation) led to the
elevation of pollution levels [38]. Existing research has suggested that Nr pollutants from
the Jiulong River have resulted in elevated pollution levels in the sea near Xiamen since the
1990s. Human activities (e.g., fertilizer application and pig breeding) in the upstream of the
Jiulong River have disrupted the biogeochemical processes expediting N cycling [39,40].
The above result is confirmed by the frequent occurrence of red tides in the waters of
Xiamen over the past few years. Thus, local sources of pollution should be controlled and
inter-regional cooperation should be developed in the future management of pollutants in
the nearby sea.

The source of Nr pollution that exerts the greatest effect on surface water has changed
from the cropland system to N deposition. Consequently, the contribution of N deposition
to Nr loads in surface water in Xiamen increased by 4.3 times over the 23 years analyzed
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in this study. The increased deposition of atmospheric nitrogen was closely correlated
with the large number of nitrogen oxides generated by energy consumption processes in
the local region, as well as the dispersion of N pollutants attributed to the socioeconomic
development of the surrounding region [41]. The above-described nitrogen oxides primar-
ily originate from fossil fuel combustion in cities while accounting for a larger share of
anthropogenic Nr emissions [42]. In addition, given that, as indicated by statistics, energy
consumption in Xiamen has increased by 2.5 times over the last decade, it is concerning that
half of the nitrogen oxide and ammonia nitrogen emissions eventually return to the land
and water bodies of the city’s ecosystems in the form of a deposition. This N deposition
has contributed to eutrophication in surface water bodies. It can break the material cycle
and energy flow of the surface water ecosystem, so that the stability of surface water
ecosystems can be seriously affected [43]. As revealed by this study, sewage treatment and
greenbelt systems in city ecosystems more notably affect groundwater. The overloading of
the sewage treatment process and the aging of sewage pipes have been confirmed as the
main reasons for the leakage of N pollutants into groundwater bodies [44]. Moreover, since
Xiamen strives to become an ecological and green city, the greenbelt area has achieved an
annual average growth of 12.1%. However, the extensive use of artificial fertilizers on the
greenbelt, coupled with the rising amount of pet waste being discarded in the area, can
trigger an escalation of N pollutants seeping into groundwater [45].

The release of significant amounts of Nr adversely affected the water bodies and the air
environment. This study suggested that Nr emissions resulting from energy consumption
tended to increase and turned out to be the most critical contributor to Xiamen’s Nr
emissions into the atmosphere from 1995 to 2018. This result is consistent with existing
research, which states that energy consumption has become the most important source
of gaseous Nr emissions in cities [46,47]. NOx has accounted for the production of most
gaseous Nr resulting from energy consumption, notably in cities. The total emissions of
NOxy at the city level have been substantially greater than those at the global and national
levels [48-50]. On that basis, the regulation of sectors that emit higher NOy levels (e.g.,
transportation services) should be prioritized in the future. Cities should develop effective
NOx control mechanisms that primarily target reducing motor vehicle emissions in the
future [51].

In the atmosphere, NH3 has been reported as a critical nitrogen-containing gas and
also an alkaline gas. As revealed by previous studies, the majority of NHj present in the
atmosphere arises as a result of the livestock system and the application of N fertilizers,
accounting for 39% and 17% of the total Nr, respectively, on the global scale [42-53]. It is
noteworthy that China is a large agricultural producer, and nitrogen fertilizer application
remains the largest contributor to NH3 emissions on the national scale [54]. Unlike on the
global or national scale, in Xiamen, a typical coastal city, NH3 emissions primarily originate
from croplands and energy consumption systems. NHj3 can be employed as a catalyst for
secondary aerosols, and it takes on critical significance in atmospheric physicochemical
reactions. Additionally, it can neutralize acidic gases, so that the acidity of clouds and
aerosols can be affected [55]. Accordingly, it is imperative to adopt a more reasonable
and scientific farming method that is capable of increasing the utilization rate of nitrogen
fertilizer and the rate of straw return.

NO is a critical greenhouse gas, and although it is the least emitted compared with
other forms of gaseous nitrogen (NHjz, N,O), it is still not negligible in city ecosystems.
Globally, N,O emissions from soils contribute the most to N,O in the atmosphere [56].
In contrast, this study suggested that N,O emissions from the cropland system accounted
for two-thirds of the total gaseous Nr emissions in Xiamen. Subsequently, the sewage
treatment system followed. N,O emissions in the sewage treatment system were attributed
to the biochemical actions of nitrifying and denitrifying bacteria. The above-mentioned
N,O emissions increase during the sewage treatment process [57]. Thus, in the future, the
focus should be placed on updating sewage treatment technologies to increase N removal
rates while reducing greenhouse gas emissions in Xiamen.
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The influencing factors for Nr loads in water bodies, i.e., population and urbaniza-
tion levels, are crucial in Xiamen. However, as for Nr loads in the atmosphere, popu-
lation and energy consumption are the main factors. This finding further confirms that
global population growth is one of the critical drivers of long-term changes in nutrient
cycling [58]. As revealed by existing research, population, economic development, urban-
ization, agricultural patterns, and per capita GDP are the main factors for Nr emission to
the environment [59-61]. The variations in environmental Nr loads identified in this study
were likely the result of social factors, economic development, and population changes.
In particular, as a developed coastal city, the local industries and energy consumption were
identified as crucial factors for the environmental effects of Nr emissions. As revealed by
the analyses of this study, the driving forces of increased Nr emissions due to population
growth shifted progressively from changes in energy consumption to satisfy the city’s
development needs. Consequently, there still exists a significant burden of Nr pollution in
the coastal city. Accordingly, the way energy is produced and exploited should be actively
facilitated by increasing energy efficiency and transitioning from smokestack industries to
high-tech ones. The above-described measures promise to substantially mitigate nitrogen
pollution in Xiamen.

5. Limitations

Although this study presents an expansion of our understanding of the characteris-
tics and influencing factors of Nr emissions in coastal cities, it is limited in several ways
that future research must address. (1) Future analyses should consider the nitrogen con-
centrations and chemical composition of N deposition when analyzing ecological effects.
(2) The critical impact of Nr emissions on the soil environment was not taken into account
in this study. (3) Two types of variables—activity data and N parameters—are needed to
estimate the various kinds of Nr emissions in this paper. Based on previous studies in the
field of uncertainty analysis, activity data are mainly derived from official statistics which
are widely considered as a reliable data source for analysis. Nr emissions in Xiamen are
simply assumed to have uncertainty ranges of 10% to 30% [62]. Based on previous research,
this study will further refine the analysis of uncertainty in future research. Despite these
limitations, this study provided a comprehensive analysis of Nr in coastal cities. Neverthe-
less, future research needs to address these limitations to create more sophisticated and
perfected works.

6. Conclusions

The emission of Nr in Xiamen from 1995 to 2018 was estimated using the method of
material flow analysis. In this study, an increase in Nr emissions was revealed over the 23-year
period. Moreover, a quantitative analysis of the key factors driving the above-mentioned
long-term changes was conducted. The main findings of this study are elucidated as follows:

First, as urbanization leapt forward in Xiamen, the effects of Nr emissions to water
bodies increased, particularly in surface water and the nearby sea. Nr load in the nearby
sea was notably higher than that in surface waters and groundwater, and it increased incre-
mentally from 8.1 Gg in 1995 to 25.4 Gg in 2018, marking an increase of 3.1 times in these
23 years. The majority of the Nr originated from the upstream of the external river, Jiulong
River. Second, the emission of Nr from various subsystems into the water bodies tended
to vary from 2005 to 2018. In terms of surface water, the effect of N deposition and green-
belt subsystems increased as urbanization accelerated. On the other hand, the cropland,
sewage treatment, and greenbelt subsystems had a greater impact on groundwater bodies.
Since Xiamen is a typical coastal city, the issue of Nr pollution in the nearby sea aroused
more attention. The sea near Xiamen was primarily affected by external rivers
(Jiulong River) and the direct discharge of tailwater from sewage treatment facilities. Third,
the gaseous Nr with the greatest impact on the atmosphere in Xiamen was NOy, which
mainly resulted from fossil fuel consumption. Fourth, the STRIPAT model was adopted
to analyze the socioeconomic drivers impacting Nr emissions in Xiamen. As revealed by
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