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Wearable technology will revolutionize our lives in the years to come. The current trend is to
augment ordinary body-worn objects—e.g., watches, glasses, bracelets, and clothing—with advanced
information and communication technologies (ICT) such as sensors, electronics, software, connectivity
and power sources. These wearable devices can monitor and assist the user in the management of
his/her daily life with applications that may range from activity tracking, sport and wellness, mobile
games, environmental monitoring, up to eHealth.

The present Special Issue reports the recent advances in the multidisciplinary field of wearable
technologies and the important gaps that still remain in order to obtain a massive diffusion.

In the frame of wearable technologies, this Special Issue of Technologies includes a total of
10 papers, including one review paper and nine research articles. Articles in this Special Issue address
topics that include: wearable sensing and bio-sensing technologies, smart textiles, smart materials,
wearable microsystems, low-power and embedded circuits for data acquisition and processing and
data transmission.

The first feature paper from Münzenrieder et al. [1] focusses on advanced technologies to push
forward the smart textile field. In the presented research, the authors benchmarked different fabrication
techniques and multiple fibers made from polymers, cotton, metal and glass exhibiting diameters
down to 125 μm, to obtain fully functional transistor fibres. In particular, by exploiting the most
promising fabrication approach, they were able to integrate a commercial nylon fiber functionalized
with InGaZnO TFTs into a woven textile. The second feature paper is from Santos et al. [2] and it
presents a methodology for movement recognition in hand-assisted laparoscopic surgery using a
textile-based sensing glove. The aim is to recognize the commands given by the surgeon’s hand inside
the patient’s abdominal cavity in order to guide a collaborative robot. The glove, which incorporates
piezoresistive sensors, continuously captures the degree of flexion of the surgeon’s fingers. These data
are analyzed throughout the surgical operation using an algorithm that detects and recognizes some
defined movements as commands for the collaborative robot. The results obtained with 10 different
volunteers showed a high degree of precision and recall.

Wearable technologies are fundamental building blocks for the Virtual Reality (VR) and
Augmented Reality (AR) fields as underlined in the next two contributions. The work from
Cutolo et al. [3] reports an innovative hybrid video-optical see-through Head Mounted Display
(HMD). The geometry of the HMD explicitly violates the rigorous conditions of orthostereoscopy.
For properly recovering natural stereo fusion of the scene within the personal space in a region around
a predefined distance from the observer, the authors partially resolved the eye-camera parallax by
warping the camera images through a perspective preserving homography that accounts for the
geometry of the video see-through HMD and refers to such distance. The results obtained showed that
the quasi-orthoscopic setting of the HMD; together with the perspective preserving image warping;
allow the recovering of a correct perception of the relative depths. The paper of Maereg et al. [4]
presents a low cost, wearable six Degree of Freedom (6-DOF) hand pose tracking system for Virtual
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Reality applications. The wearable system is designed for use with an integrated hand exoskeleton
system for kinesthetic haptic feedback. The tracking system consists of an Infrared (IR) based optical
tracker with low cost mono-camera and inertial and magnetic measurement unit. Six DOF hand
tracking outputs filtered and synchronized on LabVIEW software are then sent to the Unity Virtual
environment via User Datagram Protocol (UDP) stream. Experimental results show that this low cost
and compact system has a performance that makes it fully suitable for VR applications.

The next four contributions deal with applications of wearable technologies in the eHealth
sector. The paper from Signorini et al. [5] describes a methodology for prenatal monitoring of fetal
heart rate (FHR). As underlined by the authors, a wearable system able to continuously monitor
FHR would be a noticeable step towards a personalized and remote pregnancy care. The wearable
system presented employs textile electrodes and miniaturized electronics integrated in smart platform
enabled by mobile devices. The system has been tested on a limited set of pregnant women whose
fetal electrocardiogram recordings were acquired and classified, yielding an overall score for both
accuracy and sensitivity over 90%. This novel approach can open a new perspective on the continuous
monitoring of fetus development by enhancing the performance of regular examinations, making
treatments really personalized, and reducing hospitalization or ambulatory visits. Another branch of
eHealth is the monitoring of elderly people to early detect symptoms related to possible health treats
(e.g., frailty, falls, dementia, etc.). In this context, Genovese et al. in [6] reports the sensor description
and the preliminary testing of a an integrated fall detection and prevention ICT service for elderly
people based on wearable smart sensors. Falls are one of the most common causes of accidental injury:
approximately, 37.3 million falls requiring medical intervention occur each year. Fall-related injuries
may cause disabilities, and in some extreme cases, premature death among older adults, which has a
significant impact on health and social care services. The fall detector is intended to be worn at the
waist level for use during activities of daily living; a dedicated logger is intended for the quantitative
assessment of tested individuals during the execution of clinical tests. Both devices provide their
service in conjunction with an Android mobile device. The work from Bock et al. [7] investigates on
the reliability of consumer-grade physical activity monitors (CPAMs). The study is performed on thirty
subjects that wore different activity monitors (a total of eight monitors are employed). The wearable
devices were tested in the lab and in free-living setting. The results shown that all activity monitors
yield reliable estimations of physical activity. However, all CPAMs tested provided reliable estimations
of physical activity within the laboratory but appeared less reliable in a free-living setting. Finally,
the eHealth section of this special issue includes the review paper from Sharma et al. [8]. This review
paper focusses on a hot topic of the biomedical technology: cuffless and continuous monitoring of
blood pressure (BP). As underlined by the authors, in the recent years, the indirect approach to obtain
BP values has been intensively investigated, where BP is mathematically derived through the “Time
Delay” in propagation of pressure waves in the vascular system, obtaining cuffless and continuous BP
monitoring. The review highlights recent efforts in developing these next-generation blood pressure
monitoring devices and compares various mathematical models. The unmet challenges and further
developments that are crucial to develop cuffless BP devices are also discussed.

The paper from Ben Arbia et al. [9] investigates on wearable wireless networks (WWNs) as
innovative ways to connect humans and/or objects anywhere, anytime, within an infinite variety of
applications. In particular, the authors performed experiments on a real testbed to investigate the
connectivity behavior on two wireless communication levels: on-body and body-to-body.

Flexible and stretchable materials and sensing substrates are a relevant topic in the wearable
technology field, with potential of opening new applications in human bio-monitoring and human
machine interaction. In this context, the work from Russo et Al [10] presents a stretchable tactile
sensor based on electrical impedance tomography (EIT), an imaging method that can be applied over
stretchable conductive-fabric materials to realize soft and wearable pressure sensors through current
injections and voltage measurements at electrodes placed at the boundary of a conductive medium.
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The articles published in this Special Issue present detailed views of some of the most important
topics about wearable technologies underlining potential applications for the health and AR/VR
sectors. Integration of sensors into flexible/stretchable substrates, such as textiles, will further increase
the widespread diffusion of wearable technologies.

Acknowledgments: The Guest Editors would like to thank all the authors for their invaluable contributions and
the anonymous reviewers for their fundamental suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Smart textiles promise to have a significant impact on future wearable devices. Among the
different approaches to combine electronic functionality and fabrics, the fabrication of active fibers
results in the most unobtrusive integration and optimal compatibility between electronics and textile
manufacturing equipment. The fabrication of electronic devices, in particular transistors on heavily
curved, temperature sensitive, and rough textiles fibers is not easily achievable using standard clean
room technologies. Hence, we evaluated different fabrication techniques and multiple fibers made
from polymers, cotton, metal and glass exhibiting diameters down to 125 μm. The benchmarked
techniques include the direct fabrication of thin-film structures using a low temperature shadow mask
process, and the transfer of thin-film transistors (TFTs) fabricated on a thin (≈1 μm) flexible polymer
membrane. Both approaches enable the fabrication of working devices, in particular the transfer
method results in fully functional transistor fibers, with an on-off current ratio >107, a threshold
voltage of ≈0.8 V, and a field effect mobility exceeding 7 cm2 V−1 s−1. Finally, the most promising
fabrication approach is used to integrate a commercial nylon fiber functionalized with InGaZnO TFTs
into a woven textile.

Keywords: field-effect transistors; thin-film technology; InGaZnO; oxide semiconductors;
smart textiles

1. Introduction

Electronic or smart textiles (e-textiles) promise to have a significant impact in areas such as
wearable computing or large-area electronics [1]. Potential areas of application include healthcare,
sports, or support of high risk professionals, e.g., firefighters [2–4]. Here, the vision is of
an e-textile consisting of a fabric that preserves all the properties of textile fibers, such as
comformability, washability, softness or stretchability, and combines them with electronic functionality.
The aforementioned electronic functionality often refers to different sensors e.g., for strain, posture,
temperature or other physiological signals [5,6] but also includes the associated conditioning circuits,
power supply, and signal processing or transmission electronics [7–9]. So far, the spectrum of e-textiles
ranges from conventional electronics attached to textiles [10] to electronic components build from
active textile yarns [11,12]. The first approach, usually realized by integrating rigid off-the-shelf
electrical devices and circuit boards, drastically influences the mechanical properties of the textile,
while, the second one in general only provides limited electronic complexity and hence limited
electronic performance [13]. An alternative approach is the integration of flexible electronics into
a woven textile. Here, the use of flexible plastic stripes as carriers for thin-film devices and standard

Technologies 2017, 5, 31; doi:10.3390/technologies5020031 www.mdpi.com/journal/technologies4
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silicon chips, represents a good compromise between the mechanical and electrical properties of the
final textile device [14]. Additionally, the integration of electronic fibers and conductive yarns in the
weft and warp direction of a woven fabric also enables the fabrication of more complex systems inside
a textile. Nevertheless, the integration of flexible stripes causes another fabric specific problem which
is in particular important concerning the mass production of electronic textiles: Non-circular fibers
such as planar plastic stripes are not compatible with standard weaving equipment, and are sensitive
to twisting which calls for modified knitting or embroidery machines [15].

The solution to this problem is the fabrication of mechanically flexible active electronic devices
directly on circular fibers. Since the fabrication of electronic devices on fibers, compatible with the
demands of the textile industry, is challenging only few associated reports including a temperature
sensor on a nylon yarn have been published [16]. In this context, the fabrication related challenges
arise from the required flexibility, and the chemical and physical proprieties of the available yarns.
Additionally, yarns usable for the fabrication of textiles exhibit diameters significantly below 1 mm,
which results in a highly curved surface. These challenges can be addressed by new developments
in the area of flexible electronics. In particular the use of oxide semiconductors, such as amorphous
InGaZnO (IGZO) [17–19], promises to realize high performance active electronic devices on a variety of
substrates. Here, we evaluated how IGZO thin-film transistors (TFTs), representing the most important
and basic building block of all electronic systems, can be fabricated on a variety of different yarns. It is
shown that high performance TFTs, on glass fibers with a radius of 62.5 μm and on polymer fibers with
a radius of 125 μm, are fully functional and can be integrated into textiles for wearable or industrial
applications.

2. Fabrication of TFTs on Fibers

In contrast to conventional substrates used for the fabrication of electronic thin-film devices,
such as semiconductor wafers, glass plates or plastic foils, the mechanical and geometrical
properties of fibers and yarns are less beneficial. Hence, the successful fabrication of transistors
requires a modification of the fabrication process and a proper selection of suitable yarns or fibers.
Here, technologies developed for the fabrication of flexible and stretchable electronics are adapted.

2.1. Micro Processing on Yarns and Fibers

We evaluated a range of possible substrate fibers. As shown in Figure 1a, these included steel
and cotton yarns, nylon fibers with different diameters, glass fibers, and thin insulated metal Cu
(magnet) wire. All materials have certain advantages and disadvantages concerning the fabrication of
smart textiles. The most important parameters for the fabrication of TFTs and electronic textiles are:

• Chemical properties: The chemical stability of the fiber material is a key aspect since the fibers
have to resist the etchants and solvents used during the fabrication process. In this respect the
metal and glass fibers exhibit the most beneficial properties.

• Temperature resistance: Similar to the chemical properties, the melting or glass transition
temperature of the evaluated materials can significantly limit the choice of usable deposition
technologies. While the maximum temperature of cotton and nylon is in the range of 200 ◦C,
the glass fiber can be processed at temperatures above 1000 ◦C.

• Fiber surface: Thin-film devices are made from active layers with thickness in the nanometer
range, hence the surface of the fibers has to be as flat as possible. While the steel and cotton yarns
do not exhibit a continuous surface, also the surface roughness of the other fibers varies strongly.
The rms value of the employed glass fibers is <10 nm, but the corresponding values for nylon
and the insulated Cu wire reach values of 10 μm and 1 μm, respectively.

• Conductivity: Non-conductive fibers (glass, cotton, nylon) have the advantage that no additional
insulation layer is needed, and all electronic devices on their surface are decoupled from
each other. Metallic substrate fibers at the same time, could simplify the device structure
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by providing electronic functionality themselves. Here an interesting option could be the use the
insulated Cu wire as substrate fiber, gate contact and gate insulator simultaneously.

• Textile properties: Unobtrusive smart textiles call for electronic fibers which are soft, bendable,
and with dimensions comparable to the textile yarns of the fabric. In this respect cotton
but also steel yarns have beneficial properties. Similarly, polymer fibers such as nylon are
common. Anyway, the diameter of the nylon fibers should not be too large (�750 μm [20]).
Furthermore, thin Cu wires are bendable and can be imperceptible when integrated into
a textile [21]. Glass fibers on the other hand exhibit a small diameter, but their minimum
bending radius is limited to ≈5 cm.

Figure 1. Thin-film technology on fibers: (a) Photograph of the fibers and yarns evaluated as substrate
fibers for the fabrication of thin-film devices. (b) Different approaches to load flexible fibers into
standard semiconductor manufacturing equipment.

In total it can be concluded that the continuous cylindrical shape, the wide availability,
the variable diameter, the mechanical flexibility, and its use in commercial textiles makes nylon
the most suitable choice for the fabrication of electronic fibers. At the same time, the high surface
roughness of commercial nylon fibers remains an issue.

Another issue which has to be considered is the extreme form factor (relation between diameter
and length) of all kinds of fibers. First it has to be mentioned that the most effective solution for the
fabrication of long functionalized fibers, desirable for the fabrication of textiles, would be roll-to-roll
fabrication [22]. Specialized equipment to continuously coat fibers has been developed using for
example sputtering techniques [23]. Loading a fiber into a commercial semiconductor processing tool,
and structuring the deposited layers, in general requires the use of a carrier substrate to provide
mechanical support and to simplify the handling of the fiber during the fabrication process. Here we
considered three basic possibilities, illustrated in Figure 1b, to ensure comparability between the
substrate fibers and the processing equipment. Mounting short fibers upright on the carrier enables
a 360◦ coating of the fibers, but also limits their length which is contradictory to their use in a textile.
Coiling up the fiber on the surface of a carrier allows processing of longer fibres, the disadvantages
are that only one halve of the fiber surface (top side) is coated, and that there is mechanical strain
induced all along the fiber. Finally wrapping the fiber around a carrier substrate can be used for very
long fibers (a 3 inch carrier substrate in combination with a 250 μm fiber and a 50 % fill factor results in
a max fiber length of ≈20 m). The disadvantages are that again only one halve of the fiber surface can
be coated, and that the fiber on the back of the carrier substrate is not coated at all.

2.2. Fabrication Approaches

To determine the most appropriate manufacturing process, we evaluated two different approaches
to fabricate TFTs on fibers: The direct fabrication of devices on nylon and glass fibers using standard
semiconductor manufacturing equipment [18], and the transfer of TFTs, fabricated on flat and
thin substrates, to different fibers, and yarns [24]. During the direct fabrication process the fibers were
loaded into the deposition tools by wrapping them around the carrier or using only short (≈6 cm)
fibers attached to a carrier.

6
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2.2.1. Direct Fabrication

Direct fabrication was performed on nylon and glass fibers. The schematic process flow is
illustrated in Figure 2. Depending on the material, fibers were cleaned using water, acetone, IPA, and
sonication. Next, a Cr bottom gate was electron beam evaporated, here the sample was tilted and
rotated to ensure a uniform coating of the curved surface. The bottom gate was then insulated by
the deposition of a dielectric material. First we used atomic layer deposition (ALD) at 150 ◦C to grow
100 nm of Al2O3. In case of the glass fibers this resulted in an insulating layer, but the high surface
roughness of nylon prevented the formation of a pinhole free layer on the nylon fibers. Since ALD
is not suitable for the deposition of thicker layers, the nylon fibers were insulated by depositing
a 1 μm thick film of parylene. Subsequent to the insulation of the gate, 30 nm of amorphous IGZO was
deposited using a radio frequency (RF) magnetron sputtering process based on a ceramic InGaZnO4

target and a pure Ar sputtering atmosphere at a pressure of 2 mTorr. The fabrication process was
finalized by the deposition of the source and drain contacts. 10 nm of titanium, acting a adhesion
layer, and 75 nm of gold were electron beam evaporated. Structuring of all layers was done using
a shadow mask. This is because of the geometry of the fibers, and also due to the limited chemical
resistance of nylon fibers. Here, low resolution shadow masks were hand cut from aluminum foil,
whereas high resolution (≈100 μm) shadow masks were etched from a polyimide foil structured using
conventional lithography [25].

Figure 2. Direct fabrication process flow: Deposition techniques and materials used to manufacture
oxide semiconductor thin-film transistors (TFTs) directly on cylindrical fibers. Layer structuring is
done by shadow masks.

2.2.2. Transfer Fabrication

Another possibility to overcome the process related limitations caused by the mechanical,
chemical and geometrical properties of the different fibers is to fabricate TFTs on a conventional
flexible substrate and then transfer them onto a fiber or yarn. This approach was evaluated by
fabricating passivated IGZO based bottom gate inverted staggered TFTs on a Si wafer covered
with a spin coated 400 nm Polyvinyl alcohol (PVA) sacrificial layer and an evaporated 1 μm thin
parylene membrane. The TFTs itself were fabricated by evaporating 35 nm Cr, insulated by an ALD
deposited 25 nm Al2O3 layer, acting as bottom gate; RF sputtering of 15 nm amorphous IGZO; and the
evaporation of 60 nm Au (here, an underlying 15 nm thick Ti layer acts as adhesion layer) as source
and drain contacts. Furthermore an additional 25 nm Al2O3 layer is used as back-channel passivation.
All layers were structured by standard optical lithography. The detailed fabrication process is described
elsewhere [24]. After the fabrication, the PVA sacrificial layer is dissolved in water, and the resulting
free standing electronic membrane can then be cut and transferred to a fiber. Nylon fibers with radii
of 500 μm and 250 μm as well as yarns are used as final substrate. Here the low thickness of the
parylene membrane ensures that even the small bending radii caused by wrapping the transistors
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around a fiber with diameter 250 μm, cannot cause mechanical strain larger than 0.5 %. The reason
for this is the direct proportionality between substrate thickness and strain induced by bending.
This in return guaranties the full functionality of the transistors. The transfer process is visualized
in Figure 3a. To promote the adhesion between the parylene and the nylon, a commercial two
component polymercaptan/epoxy adhesive was used. The surface tension of the adhesive also
prevented any wrinkling of the parylene membrane. Figure 3b illustrates the structure of the resulting
functionalized fibers.

Figure 3. (a) Schematic process flow of the transfer fabrication approach. Here, standard lithography was
used to fabricate TFTs on a parylene membrane attached to a standard silicon wafer. Subsequently the
TFTs are detached from the wafer by dissolving a corresponding sacrificial layer. Finally the TFTs are
transferred to a fiber. (b) Layer structure and materials of the resulting passivated bottom gate inverted
staggered InGaZnO (IGZO) TFTs on a fiber or yarn.

3. Results and Discussion

Electrical characterization of the fiber TFTs was performed inside a shielded probe station under
ambient conditions using a Keysight B1500A parameter analyzer. Performance parameters were
extracted using the Shichman-Hodges equations to model the field effect transistor drain current in
the saturation regime [26].

3.1. Directly Fabricated TFTs

The IGZO TFTs, directly fabricated on nylon and glass fibers, are presented in Figure 4. Multiple TFTs
have been fabricated on a single fiber, where a common gate was used for all TFTs on one fiber.

3.1.1. TFTs on Polymer Fibers

Figure 4a,b show a photograph and the associated VGS-ID transfer characteristic of the nylon
fiber TFTs. As mentioned above the main obstacle concerning the TFT fabrication on nylon fibers
is the high surface roughness of nylon. To effectively insulate the gate from the transistor channel
it was necessary to deposit a 1 μm thick parylene layer as gate insulator. This in combination with
the low dielectric constant of parylene (3.06) [27] lead to a very low gate capacitance of ≈27 μF m−2.
Hence, the resulting TFTs exhibit only a low on-off current ratio of ≈3 × 102 even if the gate-source
voltage is swept between −30 V and 47.5 V. At the same time it has to be mentioned that even at high
voltages like this, the gate current stays below 10−9A. Nevertheless, under the applied gate-source
voltages the TFTs are only operated in the subthreshold regime, which excludes the extraction of
any meaningful quantitative performance parameters. These results show that the direct fabrication
of TFTs on a commercial nylon fiber seems possible. Nevertheless the problems associated to the
surface roughness, such as the required thickness of the gate insulator, and hence the high operation
voltages, exclude any useful application as long as no better dielectric is found.
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3.1.2. TFTs on Glass Fibers

To reduce the operation voltage of the fiber TFTs the gate capacitance has to be increased. Since the
deposition of significantly thinner gate insulators is not possible on the employed nylon, glass fibers
have been used to prove the concept. The smooth surface and higher temperature resistance of
glass allowed the fabrication of functional TFTs using only 100 nm of Al2O3, exhibiting a dielectric
constant of 9.5, as gate insulator. Figure 4c displays photographs and micrographs of the resulting
transistors. The corresponding transfer and output characteristics of a representative TFT are shown in
Figure 4d,e, respectively. The transistor operated in depletion mode and exhibits a threshold voltage
of −12.5 V, a field effect mobility of 3 cm2 V−1 s−1, an on-off current ratio of 104, and a maximum
transconductance of 1.7 μS. Compared to the nylon fiber transistors, these performance parameters
show a significant improvement, nonetheless in particular the very negative threshold voltage is
not desirable. This is because, for wearable applications, enhancement mode transistors operating
at voltages below 5 V are preferred. The reason for the negative threshold voltage is the lack of
a back channel passivisation, and the fact that all process steps are performed at room temperature
(hence there is no intentional or unintentional annealing of the semiconductor). It is expected that
the deposition of an additional Al2O3 passivation layer would be beneficial, but structuring and
precise alignment of small contact holes on the source and drain contacts using a shadow mask is
challenging (the performed structuring of the gate insulator is significantly less demanding). At the
same time, fabrication of passivated TFTs using the transfer approach, described in the next paragraph,
is easily possible.

Figure 4. TFTs directly fabricated on fibers: (a) Photograph of TFTs on a 500 μm diameter Nylon fiber
fabricated using 1 μm parylene as gate insulator. (b) Corresponding transistor transfer characteristic.
(c) Photograph and micrographs of TFTs fabricated on a 125 μm diameter glass fiber fabricated using
100 nm atomic layer deposition (ALD) deposited Al2O3 as gate insulator. Corresponding transfer (d),
and output (e) transistor characteristics.

3.2. Transferred TFTs

Figure 5 presents transistors on nylon fibers and yarns fabricated using the transfer approach.
A micrograph of a functionalized nylon fiber with a diameter of 250 μm is shown in Figure 5a.
A representative TFT has been characterized directly before and after it was transferred to the fiber.
The transfer characteristic of the transistor measured on the silicon carrier wafer (Figure 5b) and
when permanently attached to the fiber (Figure 5c) shows that the transistor operates in the
enhancement mode. On the fiber, the TFTs exhibits a threshold voltage of 0.85 V (−0.1 V compared to

9



Technologies 2017, 5, 31

the measurement before transfer), a field effect mobility of 7.2 cm2 V−1 s−1 (+4 %), an on-off current
ratio of 107 (×8), and a maximum transconductance of 52.1 μS (+7.2 %). The improvement of the
transistor performance is associated to tensile mechanical strain induced by bending the TFT around
the fiber. In case of IGZO TFTs this strain increased the effective carrier mobility and decreases the
threshold voltage [28]. The corresponding output characteristic of the same transistor measured on the
fiber is plotted in Figure 5d, here a clear current saturation effect is visible.

Figure 5. TFTs fabricated on fibers and yarns using the transfer approach: (a) Micrograph of TFTs
on a 250 μm diameter Nylon fiber. (b) The transistor transfer characteristics shown in (b) and (c)
compare the TFT performance measured before and after the TFT was released form the silicon
fabrication substrate and transferred to the fiber [the inset in (c) illustrates contacting the electronic
fiber]. (d) Corresponding output characteristic. (e) Micrograph [i] and measured transfer characteristic
[ii] of a TFT on a yarn.

In addition to the use of nylon fibers, Figure 5e illustrates that it is also possible to fabricate
functionalized yarns using the transfer approach. Here, a transistor on a multi-thread yarn
with a variable diameter between 100 μm and 250 μm is shown. The corresponding TFT transfer
characteristic is used to extract the performance parameters. The noise visible in the measurement of
the linear transistor regime (VDS = 0.1 V) is caused by the uneven and soft surface of the yarn. This
soft surface prevents the formation of a reliable and stable contact between the device and the probe
needles, which also leads to an increase of the contact resistance. On the yarn the transistor exhibits a
threshold voltage of 0.8 V, a field effect mobility of 4.6 cm2 V−1 s−1, an on-off current ratio of 106, and
a maximum transconductance of 93 μS, which confirms the full electronic functionality of the TFT.

4. Conclusions

We compared different fibers, yarns and thin-film manufacturing technologies and evaluated
their suitability for the fabrication of TFTs on textile fibers with diameters down to 125 μm. The direct
fabrication of bottom gate transistors based on amorphous IGZO on nylon and glass fibers is possible.
Here, the chemical properties, and the surface roughness of commercial textile fibers degrade the
performance of these transistors which makes it difficult to achieve low voltage operation and
high flexibility simultaneously. At the same time, fabricating transistors on nylon fibers and yarn
using a transfer approach makes it possible to use standard fabrication technologies and to realize
functionalized fibers compatible with large scale textile manufacturing equipment. In this respect,
transferring IGZO TFTs from a flat substrate to an arbitrary fiber or yarn results in high performance
transistors with field effect mobilities up to 7.2 cm2 V−1 s−1. Furthermore, an additional advantage of
the transfer process is that the length of the fibers is virtually unlimited. Consequently, as demonstrated
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in Figure 6, the presented technology can be used to realize smart textiles based on active electronic
devices which are indistinguishable from the textile fabric itself. Here, the TFTs stay fully functional.
Nevertheless, it has to be mentioned that the shown fiber was manually woven into the textile
(weft direction) because the available weaving machine feeds fibers though small loops, this potentially
destroys the TFTs on the fiber surface (this issue could be addressed by employing an additional
structured encapsulation, e.g. made from parylene). At the same time, we already demonstrated
that conducive yarns integrated in the warp direction and connected to flexible IGZO TFTs (using
conductive epoxy) can be used to form a bus structure inside the textile and to contact the woven
transistors [29]. This will contribute to the development and large scale production of future support
systems, unobtrusively integrated into industrial fabrics or clothing for sports, safety, and healthcare
applications.

Figure 6. Textile integrated thin-film transistors: IGZO TFTs on Nylon fiber with a diameter of 500 μm
are integrated into a commercial textile. The electronic fiber replaces a weft direction cotton yarn.
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Abstract: This paper presents a methodology for movement recognition in hand-assisted laparoscopic
surgery using a textile-based sensing glove. The aim is to recognize the commands given by
the surgeon’s hand inside the patient’s abdominal cavity in order to guide a collaborative robot.
The glove, which incorporates piezoresistive sensors, continuously captures the degree of flexion of
the surgeon’s fingers. These data are analyzed throughout the surgical operation using an algorithm
that detects and recognizes some defined movements as commands for the collaborative robot.
However, hand movement recognition is not an easy task, because of the high variability in the
motion patterns of different people and situations. The data detected by the sensing glove are
analyzed using the following methodology. First, the patterns of the different selected movements
are defined. Then, the parameters of the movements for each person are extracted. The parameters
concerning bending speed and execution time of the movements are modeled in a prephase, in which
all of the necessary information is extracted for subsequent detection during the execution of the
motion. The results obtained with 10 different volunteers show a high degree of precision and recall.

Keywords: Hand-Assisted Laparoscopic Surgery (HALS); sensing glove; wearable; collaborative
surgical robot; gesture recognition

1. Introduction

One of the most important innovations in surgery over the past three decades has been the advent
of minimally invasive surgery (MIS). This technique has revolutionized surgical practice due to its
ability to avoid the trauma of traditional open surgery and diminish the possibility of incision-related
complications. These benefits also have economic consequences, because they result in a reduction
of hospital stay times. However, MIS is technically challenging, because it must be conducted in a
very restricted space using micro instruments and endoscopes that dramatically limit the surgeon’s
perception. In order to gain tactile and force feedback, new technologies and techniques have been
introduced over the last few years. One of these novel techniques is hand-assisted laparoscopic surgery
(HALS). In HALS, the surgeon inserts a hand in the patient’s abdomen through a small incision via
a pressurized sleeve while operating a surgical tool with the other hand. Although this approach is
slightly more invasive for the patient, it is still a MIS intervention, and has been proved especially
advantageous in some types of operations, such as colon and colorectal cancer surgery [1].
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However, HALS has a major shortcoming. As the surgeon is holding the tissue with the inserted
hand and a micro instrument with the other, he/she needs the close cooperation of an assistant to
manage the endoscope and additional surgical tools when performing surgical maneuvers such as
stitching and knot tying. In this paper, we tackle the automation of the tasks performed by the human
assistant using, instead, a collaborative robot (Figure 1). This robotic system requires, among other
important issues, a simple communication scheme capable of recognizing the surgeon’s direct orders
given by the hand inserted in the abdominal cavity.

 

Figure 1. Hand-assisted laparoscopic surgery (HALS) scenario using a robotic assistant.

Previous works on surgical robots can be found in the literature. The first robot systems for
laparoscopic surgery were developed to provide more stability and precision to the movements of the
surgical tools and endoscopes. They were teleoperated systems that integrated a simple robotic arm
with a laparoscopic instrument attached to it [2]. Since then, a number of semi-autonomous robots
have been developed and studied to assist the surgeon in the different phases of the operation [3–5].

Autonomous systems require recognition of the surgical gestures made by the surgeon. The use of
cameras is an early developed technology to sense hand gestures [6–10], including gloved hand
recognition [11], but image processing is always problematic when the scene is under variable
illumination or with a cluttered background [12]. In HALS, the variable lighting provided by
an endoscope under continuous movement, as well as the difficulty of extracting a permanently
blood-stained hand from the internal scenes, prevent the use of this technology. These circumstances
are aggravated as the hand would only be partially visible in the images due to the limited viewing
field available inside the abdominal cavity.

In order to communicate with the collaborative robot in a natural way, the use of a sensor glove is
proposed. A dynamic gesture recognition algorithm has been developed to identify the commands
the surgeon gives to the robot with his/her hand inserted in the abdominal cavity. The chosen
textile-based motion sensing glove is comfortable, and permits the perfect mobility of the surgeon’s
hand in the reduced space inside the patient’s abdomen. Although the glove used in this study
was tailored for a different application (i.e., daily-life monitoring of the grasping activity of stroke
patients, as described in [13]) and has a low number of sensors, i.e., three sensors covering the
thumb, index, and middle fingers, this wearable device allows the surgeon’s hand movements to
be monitored. The movement of the fingers is followed by the glove sensors, without limiting the
operability. However, some disturbances may appear due to cross-talk between sensors. When the
operator tries to move one finger, this can generate a noise signal in another. These disturbances are
filtered to avoid misclassification of the surgeon’s gesture.

To check the algorithm, 10 tests were performed by 10 different subjects to detect some movements
designated in a previous selection phase. Each test consisted of three predefined movements and
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two additional gestures, which were included in order to demonstrate that the algorithm does not
erroneously confuse a movement that is not predefined with a predefined one.

The aim of these tests is to determine whether the developed gesture recognition algorithm can
be used to send commands using a sensor glove to a collaborator robot during a HALS with a high
degree of precision.

This paper is organized as follows. Section 2 introduces the materials and methodologies used in
the experiments that are shown in Section 3. The results are presented in Section 3 and discussed in
Section 4. Finally, Section 5 presents the conclusions.

2. Materials and Methods

2.1. Sensing Glove

The sensing glove adopted in this work is made of cotton–lycra, and has three textile goniometers
directly attached to the fabric. Figure 2a shows the position of the goniometers on the glove,
while Figure 2b show the final prototype of the glove where the goniometers are insulated with
an additional layer of black fabric.

 

Figure 2. (a) The goniometers attached to the glove fabric, (b) the sensing glove prototype and the
wireless acquisition unit.

The textile goniometers are double layer angular sensors, as previously described in [14,15].
The sensing layers are knitted piezoresistive fabrics (KPF) that are made of 75% electro-conductive yarn
and 25% Lycra [16,17]. The two KPF layers are coupled through an electrically-insulating stratum
(Figure 3a). The sensor output is the electrical resistance difference (ΔR) of the two sensing layers.
We demonstrated earlier that the sensor output is proportional to the flexion angle (θ) [14], which is
the angle delimited by the tangent planes to the sensor extremities (Figure 3b).

The glove was developed in previous studies to monitor stroke patients’ everyday activity to
evaluate the outcome of their rehabilitation treatment [13,18]. In [19], the reliable performance of the
glove goniometers was demonstrated, and showed errors below five degrees as compared with an
optical motion capture instrument during natural hand opening/closing movements. The glove has
two KPF goniometers on the dorsal side of the hand to detect the flexion-extension movement of
the metacarpal-phalangeal joints of the index and middle fingers. The third goniometer covers the
trapezium-metacarpal and the metacarpal-phalangeal joints of the thumb to detect thumb opposition.
We conceived this minimal sensor configuration as a tradeoff between grasping recognition and the
wearability of the prototype.
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Figure 3. (a) Schematic structure of the knitted piezoresistive fabrics (KPF) goniometer. The black
stripes represent the two identical piezoresistive layers, while the gray stripe is the insulating layer;
(b) The output (ΔR) is proportional to the bending angle (θ) (c) KPF goniometer electrical model and
block diagram of the electronics front-end. Two instrumentation amplifiers (INS1 and INS2) and a
differential amplifier (DIFF) produce the output ΔV, which is proportional to ΔR and thus to Δθ.

An ad hoc three-channel analog front-end was designed for the acquisition of ΔR from each of the
three goniometers (Figure 3c). For each goniometer, the voltages V1 = Vp2 − Vp3 and V2 = Vp5 − Vp4

are measured when a constant and known current I is supplied through p1 p6. A high-input impedance
stage, consisting of two instrumentation amplifiers (INS1 and INS2), measures the voltages across the
KPF sensors. These voltages are proportional, through the known current I, to the resistances of the
top and bottom layers (R1 and R2). A differential amplifier (DIFF) amplifies the difference between the
measured voltages, obtaining the final output ΔV, which is proportional to ΔR and θ. Each channel
was analogically low-pass filtered (anti-aliasing, cut-off frequency of 10 Hz). The resulting data were
digitally converted (sample time of 100 Sa/s) and wirelessly transmitted to a remote PC for storage
and further elaboration.

2.2. Algorithm for Movement Detection

The glove will communicate with a collaborative robot to assist during a HALS. The actions to
test the collaborative robot take into account the various robotic actions covered by the literature [20],
among which are the guidance of the laparoscopic camera for the safe movement of the endoscope [21]
or a needle insertion [22], the prediction of the end point [23,24], the knotting and unknotting on suture
procedures [25], or grasping and lifting on tissue retraction [26]. Ultimately, we selected three actions
to be performed by the collaborative robot: center the image from the endoscope, indicate a place to
suture, and stretch the thread to suture. These actions are performed in a cholecystectomy, which is
the surgical removal of the gallbladder.

Each of the three robot actions mentioned above is associated with a hand movement to be
performed by the surgeon. Therefore, the system must be prepared to unambiguously recognize
the different movements defined as commands for the robot in order to prevent it from performing
undesirable operations. They will be differentiated by the detection algorithm, which is tested with
a protocol.

16



Technologies 2018, 6, 8

The protocol includes these three movements, which must be detected as robot commands, and are
shown in Table 1 and numbered from 1 to 3. Actions 4 and 5 are introduced to test the developed
algorithm. These were selected for their similarity to the movements selected in both the sensor
value and motion patterns. As a result, differentiation in advance between the different movements
is difficult.

Table 1. Selected movements to be detected.

Nº Initial Posture Final Posture Description Command

1 From initial posture to
final posture twice

To center the image from
the endoscope.

2 From initial posture to
final posture twice.

To indicate a place
to suture.

3 - Initial posture for a
defined time.

To indicate to stretch
the thread.

4 From initial posture to
final posture twice. -

5 From initial posture to
final posture twice. -

To detect these movements, the developed algorithm analyzes the following parameters: flexion
pattern, velocity, execution times, and value provided by the sensor of each finger. To evaluate these
parameters, there is a previous phase in which the variables of each movement in each person are
examined. This previous stage is required for each person, because the speed and timing of the finger
movement is highly variable, as shown in Figure 4.

Once these variables are defined, as explained in later paragraphs, the detection algorithm can
identify each of the three movements.

The motion of the index and middle fingers is sensed by the glove. The acquired data is
continuously processed by the developed algorithm in order to detect some of the predefined dynamics
patterns. Due to the unique textile substrate to which of all the sensors are attached, cross-talk between
sensors may appear. This could be observed as a disturbing signal from a finger when the operator
tries to move another finger, as shown in Figure 5. These movements are filtered in order to avoid
a misclassification.
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(a) 

 
(b) 

Figure 4. Sensor values during the performance of the movements represented in Table 1 in the same
order. (a) person 1, and (b) person 2.

Figure 5. Sensor values during movement 2. There should be no motion in the middle finger, because
only the index finger should participate.

Due to the nature of the sensors used, it is possible to determine the degree of flexion being
applied to the sensor on the glove. However, movements 4 and 2 could be confused due to their
similarity, as shown in Figure 6.
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(a) (b) 

Figure 6. (a) Sensor values during movement 2 and (b) movement 4, performed by the same person.

Movement 1 can be identified by analyzing the data from the index and middle fingers. Each rise
and fall in the glove sensor values corresponds to the flexion and extension movements of the fingers.
This movement consists of a descent (called D1) and ascent (A1), followed by another descent (D2) and
ascent (A2), as shown in Figure 7. This is the flexion pattern considered for movement 1. The D time
and A time are, respectively, the times taken during a descent or ascent.

(a) (b) 

Figure 7. (a) Glove sensor data, which are proportional to the flexion of the finger in movement 1;
(b) Velocity of flexion involved in movement 1.

The flexion velocity involved in this dynamic gesture is higher than the cross-talk ones, as shown
in Figure 7b. To establish the typical velocity for this movement, the average and the standard deviation
of the velocity along D1 and D2, and A1 and A2, are calculated. This typical velocity, V1u, is the
minimum value obtained from the subtraction of the standard deviation from the average in three tests
performed by the same person. The minimum time during descents, t1Du, (D1 and D2) and ascents,
t1Au, (A1 and A2) is also calculated, and will represent the characteristic ascent and descent execution
times of movement 1.

To determine the execution time, t1u, the maximum time in which the whole movement is
performed is considered; that is D1, A1, D2, and A2.

The last parameters to be defined are the maximum, xmax, and minimum, xmin, values of the
sensor, which set the thresholds to consider if the obtained values are part of movement 1. They are
obtained by analyzing three movement samples from the same person.
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With these parameters, shown in Table 2, movement 1 can be defined and differentiated from
others, considering the flexion velocity Ve as the instantaneous velocity scanned during the entire
movement performed, and the execution time te as the time in which the velocity exceeds the
velocity threshold.

Table 2. Characterization of defined movements.

Mov. Finger Flexion Pattern Flexion Velocity Execution Time D Time A Time Sensor Value

1 Index Middle D1 A1 D2 A2 |Ve| > V1u te < t1u tD > t1Du tA > t1Au xmin < x < xmax
2 Index D1 A1 D2 A2 |Ve| > V2u te < t2u tD > t1Du tA > t1Au xmin < x < xmax
3 Index Middle - - te > t3u - - xmin < x < xmax

Using the graphs obtained during the performance of movement 2, as shown in Figure 8, we can
conclude that it is necessary to determine the movements of the index and middle finger in order
to obtain a definition. The flexion pattern for this movement is D1, A1, D2, and A2 for the index
finger, and no movement for the middle finger. The velocity, time of execution, minimum time during
descents (D1 and D2) and ascents (A1 and A2), and the sensor value are defined as described in
movement 1.

(a) (b) 

Figure 8. (a) Glove sensor data, which are proportional to the flexion of the finger in movement 2;
(b) Velocity of the flexion involved in movement 2.

Movement 3, in Figure 9, differs from the other two in that the velocity must be 0, so it is a static
position maintained for a certain time. To identify it, we examine the values of the index and middle
finger sensors, which will be proportional to the flexion carried out by the finger with the sensor.

(a) (b) 

Figure 9. (a) Glove sensor data, which are proportional to the flexion of the finger in movement 3;
(b) Velocity of the flexion involved in movement 3.
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The algorithm for the detection of defined movements evaluates all of the abovementioned
parameters, and detects when one of these movements is executed.

3. Experiments and Results

The test consists of carrying out the movements shown in Table 1 in the same order, as well as
performing a flat position between them, in a scenario of experiments (Figure 10). Therefore, the correct
order of execution is: flat position, movement 1, flat position, movement 2, flat position, movement 3,
flat position, movement 4, flat position, movement 5, flat position.

Figure 10. Scenario of experiments with a pelvitrainer, which simulates the patient’s abdomen.
The collaborative robot is holding the endoscope. The sensing glove is partially viewed on the screen.

Movements 1, 2, and 3 have been selected to be detected by the algorithm, while movements
4 and 5 were introduced to prove that they are not detected in the same manner as the three selected
ones. The two newly introduced movements are similar to movements 1 and 2, but there are small
differences between them.

First, the data are collected from the glove. Then, they are analyzed by the algorithm to detect
the movements that will be interpreted as commands for the robot. These orders are then sent to the
collaborative robot.

The test has been carried out by 10 people, 10 times. Ten right-handed volunteers (five men,
five women) completed the test. All of the participating people in these research activities gave
informed consent for the experiments. No one reported physical limitations that would affect their
skill in performing the task.

The characteristic parameters of each movement are calculated from three tests performed by
the same person. These parameters are characteristic of each person, so 10 sets of patterns have been
obtained for each type of movement, one per person.

Movements 1, 2, and 3 must be detected by the algorithm, while movements 4 and 5 should not be
classified as selected movements. As shown in Table 3, movement 1 was detected with a precision—the
percentage of positive predictions that were correct—of 0.99, and a recall—the percent of the positive
cases recognized—of 0.98. Movement 4 was identified as movement 1 only 1% of the time. On the
other hand, movement 2 was detected with a precision of 0.73 and a recall of 0.87. Movement 4 was
recognized as movement 2 33% of the time. Movement 5 was never mistaken with other movements,
and movement 3 was detected with a precision of 1.0 and a recall of 0.97.
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Table 3. Total results.

Total
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 98 0 0 1 0 0.99 0.98 0.98
2 0 87 0 33 0 0.73 0.87 0.79
3 0 0 97 0 0 1.00 0.97 0.98

F1 as scored for movements 1 and 3 is 0.98, while for movement 2 it was considerably lower, 0.79.

4. Discussion

Movement 4 is detected as movement 2 or 1 because of their similarity, as explained in the
previous sections. Despite the study of different patterns, times, and speeds, movement 4 is detected
as movement 2 35% of the time. Whenever movement 3 has not been detected, this was due to an
insufficient time in the static position.

Reviewing the results, it can be concluded that the effectiveness of the algorithm depends largely
on the person performing the test as shown in Appendix A. Results with surgeons are expected to
be better, because they have greater motor skills, considering their specific training [27]. Tests have
shown that the newly developed algorithm can adequately identify the three movements defined in a
series of different continuous movements. Movement recognition is precise, because identification
is based not only on the initial and final pose, but also on intermediate positions and speeds that are
continuously analyzed to determine whether their pattern is analogous to the model. Different filters
are also introduced to make the dynamic gesture recognition algorithm more reliable. The patterns
obtained with the sensing glove present sufficient information as to be robustly identified, and prevent
failures in those cases where the positions are similar to those of the model, but the execution speed of
the movement is different.

One of the purposes of this study was to test the validity of our non-specific glove to demonstrate
the possibility of using this kind of device, and define the specification for a HALS-dedicated textile
glove for use in future studies. In future works, glove-based hand motion sensing could be fused with
other sensing modalities, such as artificial vison, to make the system more robust.

5. Conclusions

Most current surgical robots are not suitable for HALS operations. Its teleoperated nature prevents
its application in these operations where the surgeon is in direct contact with the patient. In this
scenario, it is necessary to have a robot co-worker that cooperates closely with the surgeon in order to
emulate the interaction with a human assistant. A natural communication interface between surgeon
and robot is crucial in this context. This paper tackles the design of a dynamic gesture recognition
algorithm using a sensor glove that identifies the commands given by the surgeon’s hand inside the
patient’s abdominal cavity. Three different dynamic gestures have been predefined to: point the robot
where to suture, order it to focus the endoscope, and stretch the thread. All of these tasks present
automatic procedures in the literature to carry them out. The algorithm designed to recognize these
gestures analyzes continuously the timing and the bending speed of the index and middle fingers,
and it tries to match them with some of the patterns previously recorded by a particular operator.

The experiments conducted with 10 different volunteers show a good recognition rate and
time performance. However, considering its application in surgical operations, there is room for
improvement. Although this study has considered the option of the sensing glove, another hand
motion sensor would need to be added in order to make the system completely reliable. Furthermore,
other important issues such as safety or electromagnetic compatibility should be addressed in
future works.
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Appendix A

Results for each volunteer.

Table A1. Results Volunteer 1.

Volunteer 1
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 8 0 0 0 1.00 0.80 0.89
3 0 0 10 0 0 1.00 1.00 1.00

Table A2. Results Volunteer 2.

Volunteer 2
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 10 0 2 0 0.83 1.00 0.91
3 0 0 10 0 0 1.00 1.00 1.00

Table A3. Results Volunteer 3.

Volunteer 3
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 8 0 2 0 0.80 0.80 0.80
3 0 0 10 0 0 1.00 1.00 1.00

Table A4. Results Volunteer 4.

Volunteer 4
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 9 0 5 0 0.64 0.90 0.75
3 0 0 9 0 0 1.00 0.90 0.95

Table A5. Results Volunteer 5.

Volunteer 5
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 9 0 2 0 0.82 0.90 0.86
3 0 0 10 0 0 1.00 1.00 1.00
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Table A6. Results Volunteer 6.

Volunteer 6
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 8 0 7 0 0.53 0.80 0.64
3 0 0 10 0 0 1.00 1.00 1.00

Table A7. Results Volunteer 7.

Volunteer 7
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 8 0 9 0 0.47 0.80 0.59
3 0 0 10 0 0 1.00 1.00 1.00

Table A8. Results Volunteer 8.

Volunteer 8
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 1 0 0.91 1.00 0.95
2 0 10 0 0 0 1.00 1.00 1.00
3 0 0 9 0 0 1.00 0.90 0.95

Table A9. Results Volunteer 9.

Volunteer 9
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 8 0 0 0 0 1.00 0.80 0.89
2 0 7 0 0 0 1.00 0.70 0.82
3 0 0 9 0 0 1.00 0.90 0.95

Table A10. Results Volunteer 10.

Volunteer 10
Actual Movement

Precision Recall F1-Score
1 2 3 4 5

Predicted Movement
1 10 0 0 0 0 1.00 1.00 1.00
2 0 10 0 6 0 0.63 1.00 0.77
3 0 0 10 0 0 1.00 1.00 1.00
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Abstract: In non-orthoscopic video see-through (VST) head-mounted displays (HMDs),
depth perception through stereopsis is adversely affected by sources of spatial perception errors.
Solutions for parallax-free and orthoscopic VST HMDs were considered to ensure proper space
perception but at expenses of an increased bulkiness and weight. In this work, we present a
hybrid video-optical see-through HMD the geometry of which explicitly violates the rigorous
conditions of orthostereoscopy. For properly recovering natural stereo fusion of the scene within the
personal space in a region around a predefined distance from the observer, we partially resolve the
eye-camera parallax by warping the camera images through a perspective preserving homography
that accounts for the geometry of the VST HMD and refers to such distance. For validating our
solution; we conducted objective and subjective tests. The goal of the tests was to assess the efficacy
of our solution in recovering natural depth perception in the space around said reference distance.
The results obtained showed that the quasi-orthoscopic setting of the HMD; together with the
perspective preserving image warping; allow the recovering of a correct perception of the relative
depths. The perceived distortion of space around the reference plane proved to be not as severe as
predicted by the mathematical models.

Keywords: video see-through head-mounted displays; orthoscopy; perspective-preserving
homography; stereo fusion

1. Introduction

Augmented reality (AR) systems based on head-mounted displays (HMDs) intrinsically provide
the user with an egocentric viewpoint and represent the most ergonomic and efficient solution for
aiding manual tasks performed under direct vision [1]. AR HMDs are commonly classified according to
the AR paradigm they implement: video see-through (VST) or optical see-through (OST). In binocular
VST HMDs, the view of the real world is captured by a pair of stereo cameras rigidly anchored to the
visor with an anthropometric interaxial distance. The stereo views of the world are presented onto the
HMD after being coherently combined with the virtual content [2].

By contrast, in OST HMDs, the user’s direct view of the world is preserved. The fundamental
OST paradigm in HMDs is still the same as that described by Benton (e.g., Google Glass, Microsoft
HoloLens, Epson Moverio, Lumus Optical) [3]. The user’s own view of the real world is herein
augmented by projecting the virtual information on a beam combiner and then into the user’s line of
sight [4].

Although the OST HMDs were once at the leading edge of the AR research, their degree of
adoption and diffusion slowed down over the years due to technological and human-factor limitations.
Just to mention a few of them: the presence of a small augmentable field of view, the reduced brightness
offered by standard LCOS micro displays, the perceptual conflicts between the 3D real world and the
2D virtual image and the need for accurate and robust eye-to-display calibrations [5].

Technologies 2018, 6, 9; doi:10.3390/technologies6010009 www.mdpi.com/journal/technologies27



Technologies 2018, 6, 9

Some of the technological limitations, like the small field of view, are being and will be likely
overcome along with the technological progress. The remaining limitations are harder to cope with.

The pixel-wise video mixing technology that underpins the VST paradigm can offer high
geometric coherence between virtual and real content. The main reasons for it are: unlike OST
displays, the absence of a user-specific eye-to-display calibration routine; the possibility of rendering
synchronously real scene and the virtual content, whereas in OST displays there is an intrinsic lag
between the immediate perception of the real scene and the appearance of the virtual elements. From
a perceptual standpoint, in VST systems the visual experience of both the real and virtual content can
be unambiguously controllable by computer graphics, with everything on focus at the same apparent
distance from the user. Finally, VST systems are much more suited than OST systems, to rendering
occlusions between real and virtual elements or to implementing complex visualization processing
modalities that are able to perceptually compensate for the loss of the direct real-world view.

Despite all these advantages, the visual perception of the real world with VST HMDs is adversely
affected by various geometric aberrations [6–8]. These geometric aberrations are due to the intrinsic
features of cameras and displays (e.g., resolutions limitations and optical distortions) and can be
boosted by their relative positioning.

One of the major geometric aberrations typical of VST HMDs is related to the misalignment of
viewpoints (parallax) between the capturing cameras and the user’s perspective through the display
(i.e., non-orthoscopic setup). The parallax between capturing camera and user’s viewpoint produces
distortion into the patterns of horizontal and vertical binocular disparities and this translates into a
distorted perception of space.

To recover proper space perception, researchers have put forward various solutions for
implementing claimed parallax-free and orthoscopic VST HMDs [9]. In 1998 Fuchs et al. [10] were
the first to propose a parallax-free VST HMD. In that system, a pair of mirrors was used to bring the
camera centres in the same location of the nodal point of the wearer’s eyes.

In a work published in 2000 [11], a systematic analysis of all the possible distortions in depth
perception due to non-rigorous orthostereoscopic configurations was presented. Starting from this
comprehensive analysis, the authors pursued the same objective of developing a parallax-free VST
HMD by means of a set of mirrors and optical prisms whose goal was to align the optical axes of the
displays to those of the two cameras. However, also this solution was characterized by a divergence
from the conditions of orthostereoscopy in terms of an offset of approximately 30 mm between camera
centre and exit pupil of the display, whose effect the authors claimed to be negligible in terms of
perceptive distortions of space.

In 2005 State et al. [12], presented an innovative VST HMD specifically designed to generate zero
eye-camera offset. Their system, specifically intended for use in medical applications, was designed
and optimized through a software simulator the outputs of which then guided the development of a
proof-of-concept prototype, built via rapid prototyping and by assembling off-the-shelf components.
In their simulated scenario, the authors properly addressed all the aspects for implementing an
orthoscopic VST visor; yet their actual embodiment did not satisfy all those requirements due to the
constructive complexities (e.g., it did not comprise any eye tracker). Therefore, their system could
provide a parallax-free perception of the reality only for user-specific and constant settings in terms of
eye position, inter-pupillary distance and eye convergence.

Finally, in 2009 Bottecchia et al. [13], proposed an orthoscopic monocular prototype of VST HMD
in which a computer-based correction of the parallax was mentioned. Unfortunately, the authors then
did not provide further details on the way the parallax was resolved via software.

Unfortunately, all the presented solutions were bulky and mostly designed for applications in
which the pair of stereoscopic cameras is mounted parallel to each other.

By contrast, for those AR applications in which the user is asked to interact with the augmented
scene within personal space (i.e., at distances below 2 m), the stereo camera pair ought to be pre-set at a
fixed convergence for ensuring sufficient stereo overlaps and granting proper stereo fusion, i.e., toed-in
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setup [14–17]. This angle of convergence should be established based on assumptions made on the
average working distance. In such configuration, for preserving a natural visual perception of the space
(i.e., the conditions of orthostereoscopy) and reduce stereoscopic distortions as keystone distortion
and depth-plane curvature, theoretically also the two displays should be physically converged of the
same angle [11,18]. Yet, this requirement cannot be fulfilled from a practical standpoint and this has
implications on the ability of the stereoscopic system to recovering natural depth perception.

When VST HMDs with parallel stereo cameras are intended for use in close-range tasks, a valid
alternative is represented by the purely software mechanism proposed in [19]. In their solution,
the idea was to maximize via software the stereo overlaps by handling dynamically the convergence
or the shearing of the display frustum based on a heuristic estimation of the working distance.

In line with this approach, we here present a method for properly recovering natural stereo fusion
of the scene at a predefined distance from the observer in a binocular VST system designed for tasks
performed within arm’s reach. Our method explicitly takes into consideration the geometry of the
setup and the intrinsic parameters of camera and display for computing the appropriate plane-induced
homography between the image planes of the stereo cameras and those of their associated displays.
On each side, such perspective preserving homography is used for consistently warping the image
grabbed by the camera before rendering it onto the corresponding display. This solution, yields a
parallax-free perception of the reference plane and, together with the quasi-orthoscopic setup of the
VST HMD, manages to recover almost entirely the natural perception of depth in the space around the
reference distance. The selection of the reference plane for the homography for a specific use case is
based on assumptions made on the average working distance.

For validating our approach, we took advantage of the hybrid nature of a custom-made
see-through HMD [20], which supports both video and optical see-through modalities, for drawing an
experimental setup whose goal was twofold. First goal was to assess, under OST view, the resulting
monoscopic displacement between real features and synthetic ones at various depths around the one
taken as reference for the estimation of the homography. The second goal of the tests was to evaluate
quantitatively whether and how such displacements affected the perception of the relative depths in
the scene under VST view. To this end, we eventually performed preliminary subjective tests aimed at
measuring the accuracy in perceiving relative depths through the VST HMD.

2. Materials and Methods

This section is structured as follows. Section 2.1 provides a detailed description of the binocular
hybrid video-optical see-through HMD used in this study. Section 2.2 outlines the geometry of the
homography induced by a plane that yields a consistent perspective-preserving image warping of the
camera frames. Section 2.3 briefly contains a short description of the AR software framework running
on the HMD. Finally, Section 2.4 introduces the methodology adopted for validating the method.

2.1. Binocular Hybrid Video/Optical See-Through HMD

In a previous study, we presented a novel approach for the development of stereoscopic AR HMDs
able to offer the benefits of both the video and the optical see-through paradigms [20]. The hybrid
mechanism was made possible by means of a pair of electrically-driven LC shutters (FOS model by
LC-Tec [21]) mounted ahead of the waveguides of a OST HMD, opportunely modified for housing
a pair of stereo cameras. The transition between the unaided (OST) and the camera-mediated (VST)
view of the real scene is allowed by acting on the transmittance of the electro-optical shutter. As in the
first prototype, the hybrid VST/OST HMD is based on a reworked version of a commercial binocular
OST HMD (DK-33 by LUMUS [22]). The optical engine of the visor features a 1280 × 720 resolution,
a horizontal FoV (hFoV) of 35.2◦ and a vertical FoV (vFoV) of 20.2◦. The stereo camera pair is composed
by two Sony FCB-MA13 cameras equipped with a 1/2.45′′ CMOS sensor; the cameras are extremely
compact in size (16.5 × 10.3 × 18.0 mm) and have the following characteristics: horizontal FoV = 53◦,
vertical FoV = 29◦ and frame rate of 30 fps at 1920 × 1080 resolution.
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The key differences between the previous prototype and the one that we used in this study are:
stereo camera placement and orientation (Figure 1).

As for the stereo camera placement, to pursue a quasi-orthostereoscopic view of the scene under
VST modality here we opted for a setup featuring an anthropometric interaxial distance (∼65 mm),
hence we mounted the pair of cameras on the top of the two waveguides. To the same end and
as previously done in [1,19,23], we opted for a parallel stereo camera setting. Indeed, in AR visors
specifically designed for close-up tasks as ours, a toed-in stereo camera setting would undoubtedly
widen the area of possible stereo overlaps [17,24]. Yet this configuration, if not coupled with a
simultaneous convergence of the optical display axes, would also distort the horizontal and vertical
patterns of binocular disparities between the stereo frames. This fact would go against the achievement
of a quasi-orthostereoscopic VST HMD and it is deemed to lead to significant distortions in absolute
and relative depth perception [25,26].

 

Figure 1. On the top: CAD schematic of the hybrid video/optical see-through head-mounted display
comprising the supports for the electro-optical shutters and a pair of stereo cameras mounted on top of
the two waveguides of an OST HMD. On the bottom: the HMD.

2.2. Perspective Preserving Planar Homography

This section describes the procedure followed for computing the perspective preserving
homography. The goal was to find the geometric relation between two perspective visions of a
planar scene placed at a pre-defined distance. With reference to Figure 2 and to the equations below,
from now on we shall consider the following convention of variables and symbols:
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Figure 2. Geometry of the perspective preserving homography induced by a reference plane placed at
a pre-defined distance from the eye.

• The homography transformations HD
W and HC

W , which relate respectively the points of the
reference plane π in the world to their projections onto the image planes of both the display and
the camera:

λdxD = HD
W XW

λcxC = HC
W XW

∀ XW ∈ π (1)

where the points are expressed in homogeneous coordinates and where λc and λD are generic
scale factors due to the equivalence of homogeneous coordinates rule.

• The distance dD→π between the vertex of the display frustum (D) and the reference plane π.
• The eye relief, which represents the fixed distance between D and the eyepiece lens of the display.
• The eye-box (or eye motion box), which consists of that range of allowed eye’s positions, at a

pre-established eye-relief distance, from where the full image produced by the eyepiece of the
display is visible.

• RD
C and

→
t

D

C , which are respectively the rotation matrix and the translation vector between camera
reference system (CRS) and display reference system (DRS).

• KC and KD, which are the intrinsic matrixes of camera and display. KC encapsulates the camera
intrinsic parameters and it is computed by using the Zhang’s method [27] implemented within
the camera calibrator tool of MATLAB. KD encapsulates the parameters of the near-eye display’s
frustum and it is approximately derived from the specifics of the HMD as follows [28]. We derived
the focal length of the display ( f ) by using the factory specifics of the horizontal and vertical FoV
of the display. In our ideal pinhole camera model of the display, the focal length was set equal on
both x-axis and y-axis ( fx = fy), meaning the pixels of the display were considered as perfectly
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square. As coordinates of the principal point (Cu and Cv) we considered exactly half of the display
resolution (Cu = Width/2 = 640, Cv = Height/2 = 360). In summary, we assumed:

KD =

⎡⎢⎣ fx 0 Cu

0 fy Cv

0 0 1

⎤⎥⎦ =

⎡⎢⎣ W/
(

2·tan hFoV
2

)
0 W/2

0 H/
(

2·tan vFoV
2

)
H/2

0 0 1

⎤⎥⎦ (2)

• HD
C , which is the perspective preserving homography, induced by a fixed plane π placed at

distance dD→π from D.
• →

n , which is the normal unit vector to the plane π.

The sought homography transformation HD
C , describes the point-to-point relation between camera

viewpoint and user’s viewpoint, such that:

λxD = HD
C

(
RD

C , tD
C , KC, KD, π

)
xC (3)

The parenthesis means that the homography HD
C is a function of respectively: the relative pose

between camera reference system and display reference system (RD
C , tD

C ), the intrinsic parameters of
camera and display (KC, KD) and the position and orientation of the reference plane in the scene (π).

For referring everything to the display we can compute HC
D and inverting the result afterwards

(see Equation (4)).
HD

C is described by a matrix HD
C ε 	3×3 and it is function of the pose between camera frustum and

display frustum and of the two intrinsic matrixes as follows (for referring everything to the display we
have computed HD

C by inverting HC
D) [29–31]:

HD
C = HC

D
−1 =

⎛⎝KC

⎛⎝RC
D +

→
t

C

D·
→
n

T

dD→π

⎞⎠ KD
−1

⎞⎠−1

(4)

The homography transformation (4) is only valid on a fixed plane, perpendicular to the optical
axis of the display and placed at a predefined distance (dD→π). If the plane under observation is
different or if the observed scene is not planar, its perceived view (through-the-waveguide view)
does not match with the rendered image on the display (i.e., direct view and VST view are not
orthoscopically registered).

Another important aspect to consider is the actual position of the nodal point of the user’s eye (E)
with respect to the DRS. This brings about changes in the variables plugged in Equation (3): in the
previous equations, we assumed that the nodal point of the eye (eye centre) was located exactly at the

vertex of the display frustum (i.e., E ≡ D or
→
t

C

D ≡ →
t

C

E). Unfortunately, this is hardly the case in reality.
In addition, we must consider the optical properties of the display eyepiece (i.e., eye relief, eye-box,
virtual or focal plane position) (Figure 3). These properties play a role in the way in first approximation
the non-ideal eye placement in the display reference system (E �= D) affects the elements of KD.

In summary, Equation (4) becomes:

HE
C = HC

E
−1 =

⎛⎝KC

⎛⎝RC
D +

→
t

C

E ·
→
n

T

dE→π

⎞⎠ K̃D
−1

⎞⎠−1

(5)

where
→
t

C

E ought to be known and where the intrinsic matrix of the display K̃D is different from the
original KD. In view of these considerations, an orthoscopic alignment is attained in theory only if
we could determine with absolute accuracy the user’s eyes position in the HMD’s eyepiece reference
system (i.e., DRS). Indeed, in Equation (3) the pose between eye and camera assumes a key role.
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Unfortunately, the eye position in the DRS and consequently in the CRS, varies according to how the
HMD is worn and is dependent on the user’s facial shape (e.g., inter-pupillary distance).

 

Figure 3. Optical properties of the near-eye display.

Since our HMD did not comprise any eye-tracker to calibrate the stereo cameras to the user’s
inter-pupillary distance and since we did not perform any specific display calibration (for precisely

determining K̃D), in our tests we determined an approximation of the homography H̃E
C as follows.

We asked the user to wear the HMD and observe under OST modality a target checkerboard placed
orthogonally to his own viewpoint at approximately the distance of the homography plane π (Figure 4).
We then performed, in real time, multiple refinements of the initial homography HD

C by means of an
additional translational homography (h̃) whose role was to align the user’s views of the checkerboard
(real and synthetic). With this additional homography we intended to compensate for the uncertainties
in defining the actual position of the eye E with respect to D. In our method, we only considered
the effect of translational movements along the x and y-axis (parallel to the image plane). Thus, to a
first approximation, we excluded the effect of a non-perfect placement of the user’s eye centres at the
eye-relief (i.e., we assumed: eye relief = real eye-to-waveguide distance). The relation between the

approximated homography H̃E
C and the ideal HD

C then becomes:

H̃E
C = h̃ HD

C =

⎡⎢⎣ 1 0 xp

0 1 yp

0 0 1

⎤⎥⎦HD
C (6)

In conclusion, unlike the method proposed by Tomioka et al. [30], we estimate the user-specific
homography uniquely by means of design and calibration data. The homography is then refined to
embody the effects of the intrinsic parameters of the displays and of the non-ideal eyes placement in
the HMD so as to be adapted to the subject’s interpupillary distance (IPD).
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Figure 4. Experimental setup for measuring the monoscopic disparities. The same target checkerboard
was used also for the user-specific homography refinement.

2.3. Software Application

For validating our method, we developed a dedicated software application whose main goal
was to manage the camera frames as follows. Camera frames are first grabbed and opportunely
undistorted for eliminating the non-linearities due to radial distortions. The undistorted frames are
warped according to the perspective preserving homography. The warped frames are rendered onto
the background of a stereoscopic scenegraph that is finally screened onto the binocular HMD. For this
application, we did not add any properly registered virtual content to the scenegraph, as our objective
was uniquely to perform perceptual studies on how depth perception was retrieved under VST view.

The application was created in the form of a single executable file with shared libraries all built in
C++, following the same logic of the AR software framework previously developed in [32]. As for the
library managing the rendering of the scenegraph, we used the open-source library for 3D computer
graphics and visualization Visualization Toolkit (VTK), version 7.0.0 [33]. As regards the machine
vision routines, needed for processing the camera frames before rendering them onto the background
of the scene-graph, we adopted the open-source software library OpenCV 3.1 [34].

2.4. Tests

The proposed solution combines a perspective preserving warping mechanism with a
quasi-orthoscopic setting of the VST HMD. The goal of our tests was to assess the efficacy of such
solution in recovering the natural perception of depth in the space around a pre-established distance
from the observer. We grouped the tests into two basic categories: tests for measuring the patterns of
on-image disparities, under OST modality, between real features and HMD-mediated ones and tests
for assessing objectively and subjectively the depth estimation accuracy under VST modality.

2.4.1. Test 1: Measure of on-Image Displacements between Direct View and VST View

For measuring the patterns of monoscopic disparities between direct view and VST view, we used
the experimental setup showed on Figure 4. The on-image displacements between real features and
HMD-mediated ones were measured by means of an additional video camera (Sony FCB-MA13)
placed approximately at the ideal eye’s position (internal camera). As target scene, we used a standard
checkerboard of size 160 × 120 mm (with square size 20 mm) that was displayed on an external
monitor. The internal camera was able to capture two views of the target scene: a direct view and a
VST view (Figure 5). The corners of the checkerboard could be robustly detected through a Matlab’s
function for corners detection. The on-image displacements or monoscopic disparities between the
image coordinates of the real and VST views of the corner points were so easily determined. The real
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poses of the target planes with respect to the internal camera were estimated by solving a standard
perspective-n-point problem and knowing the 3D-2D point correspondences.

We repeated such measurements at various depths around the one taken as reference for the
estimation of the homography (plane π). The range of depths for which the disparities were measured
was: (250–650) mm.

 

Figure 5. On-image displacements between direct view and VST view of a target scene. The test
images were grabbed by an additional video camera placed approximately at the eye relief point of the
eyepiece of the HMD.

2.4.2. Test 2: Assessment of Depth Perception through Objective and Subjective Measures

For assessing the degree of accuracy in depth estimation under VST view, we conducted 2 different
sets of measurements. At first, we computed the resulting angles of retinal disparities yielded by
the monoscopic displacements on both views; these binocular disparities can provide a quantitative
estimation of the uncertainty in detecting the relative depths between objects due to the non-ideally
orthoscopic setting of the VST HMD. Secondly, we performed a preliminary user study aimed at
assessing the accuracy in perceiving relative depths at different distances within personal space (within
1.2 m). Before the session of tests, the homography was refined under OST modality to be adapted to
the subject’s IPD.

In the tests, one participant wearing the HMD under VST modality was asked to estimate the
relative depth relations between three objects of same size and colour (three yellow Lego® bricks of
size 9.6 × 32 × 16 mm). We engaged only one participant so as to be consistent in terms of user’s
stereoscopic acuity. The bricks were laid on five different A3 paper sheets (size 297 × 420 mm),
each of which provided with demarcation lines indicating different relative depths. In each triplet of
demarcation lines, the relative distances between the bricks were decided randomly, with a defined
relative distance between two adjacent bricks of 2 mm.

The paper sheets were placed at five different distances from the observer (Figure 6), covering
a range of depths of about 900 mm (i.e., from a minimum absolute depth of 300 mm to a maximum
depth of 1200 mm). For each position of the paper sheet, the test was repeated four times.

The perceptual tests were all performed keeping the same homography transformation. For all
the target planes, the computed homography was referred to a reference plane perpendicular to the
optical axis of the display and placed at a distance of 500 mm. The final goal of the tests was indeed to
assess on how this aspect would have had a detrimental effect on perceiving relative depths for all the
tested distances of the triplets of bricks.

Each paper included ten possible configurations of relative positions between the three bricks,
so we tested a total of 4 (n◦ of sessions) × 5 (n◦ of paper sheets at different depths) × 10 (n◦ of
configurations of triplets per paper) = 200 configurations of triplets of bricks.
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Figure 6. On the left: experimental setup for depth estimation tests. On the right: paper sheet with
marked segments. The segments were used for placing the triplets of bricks at different absolute depths
from the observer and with random patterns of relative depths among them.

3. Results

This section reports on the results of the two sessions of tests.

3.1. Results of Test 1

We measured the patterns of monoscopic disparities by moving the target checkerboard at ten
different positions with respect to the HMD. Each checkerboard contains a set of 35 corner points
which results in a total of 350 feature points to be considered in our evaluation. In Figures 7 and 8,
the resulting horizontal (hd) and vertical (vd) disparities for all the ten positions of the target plane are
shown in function of the z-coordinate of the point. The z coordinate of the point is retrieved knowing
the pose of the target plane to which they belong. The maps of disparities for each target position are
reported in Appendix A.

In relation to the distance from the reference plane π, the vertical disparities follow a steeper
increase with respect to the horizontal disparities. This fact directly results from the vertical parallax
between CRS and DRS, while the horizontal disparities are only functions of the distance from the
reference plane. In Figure 9, we show the horizontal disparities for the points belonging to the six
target planes closer to the reference plane. Here the range of depths is: (479–555) mm. In Table 1
the values of the mean and standard deviation of the horizontal disparities are reported for all the
target positions.

Figure 7. Horizontal monoscopic disparities.
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Figure 8. Vertical monoscopic disparities.

Figure 9. Horizontal monoscopic disparities for the target planes around z = 500 mm. The coloured
lines are the mean pixel errors on the u coordinate for each target plane.

Table 1. Mean and standard deviation of horizontal monoscopic disparities between direct-view and
VST views of the target planes.

Target Plane Position Mean Error on u Coordinate (Pixel) Error’s Standard Deviation

273 mm 11.2072 7.6836
350 mm 8.8623 5.6106

426 mm (rotated) 1.5173 1.0251
492 mm 2.3730 1.5282
508 mm 1.9128 1.6844
510 mm 0.9542 0.5848

544 mm (rotated) 1.3085 0.9572
554 mm 2.2297 1.1904
614 mm 3.1658 0.9445
653 mm 1.1834 0.7813

3.2. Results of Test 2

3.2.1. Estimation of Depth Perception under VST View

We here provide a quantitative estimation of the misperception of depth due to the unwanted
disparities on both the sides of the HMD. In stereoscopic displays as binocular HMDs, human stereopsis
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is usually simulated by generating pairs of stereo views with a perceptually consistent amount of
horizontal disparities. The relation between the binocular horizontal disparity observed on the 3D
display (dd) and the retinal disparity (dr) is the following [35]:

dr = 2·atan
(

dd·tan(α/2)

W

)
≈ 2·dd·tan(α/2)

W
(7)

By plugging W = 1280 and α = 35.2◦ into the equation, we can calculate the minimum angular
disparity (or minimum angular resolution) that our HMD is able to provide (for a display disparity
dd = 1 pixel): drmin

∼= 1.7 arcmin. This value leads to a visual acuity of about half of the average visual
acuity in human vision (visual acuity = dr

−1). The approximated formula of the depth resolution dZ
at a distance Z from the observer can be retrieved as follows [18,36,37]:

dZ =
Z2dr

I·Kr
(8)

where dr is expressed in arcmins, I is the observer’s IPD and Kr = 3437.75 is a constant that relates
radians to arcmins. By considering a standard value of I = 65 mm, the stereoacuity or depth resolution
offered by our HMD at 500 mm is of about 2 mm.

By plugging Equation (8) in Equation (7), we obtain the relation between depth resolution and
binocular horizontal disparity:

dZ =
2·Z2·dd·tan(α/2)

W·I·Kr
(9)

where the binocular horizontal disparity can be expressed in terms of image coordinates as
follows: dd = ur − ul .

If we consider the values of the stereoacuity offered by our HMD at different depths, we are able
to compute the ideal density of the homographies from Zmin to Zmax:

Zi = Zi−1 + dZi = Zi−1 +
Zi

2dr

I·Kr
(10)

For instance, in the range of depths between 250 and 650 mm (Z0 = 250 and Zmax ≥ 650),
in theory we would need as much as 350 different homographies in order to stay within the resolution
constraints of the HMD. In spite of this and as we explained in Section 2.4.2, the perceptual tests were
all performed keeping the same homography transformation for all the target planes, since our goal
was to assess on how this aspect would have affected depth perception.

In the first session of tests, we observed how the non-ideally orthoscopic setting of the HMD
causes unwanted monoscopic disparities hd on both the sides of the HMD the further we go from the
reference distance. Thus, the horizontal disparity can be written as follows:

d̃d = ur ±
(

hd
r

)
−

(
ul ± hd

l

)
= dd ± 2·hd (11)

In the equation, we assumed the worst-case scenario, where monocular disparities on both sides
add together and they have the same value. In this way, we can estimate the contribution of such
disparities to the depth resolution:

d̃Z =
2·Z2·

(
dd + 2·hd

)
·tan(α/2)

W·I·Kr
(12)

So, the overall depth resolution is affected by the additional disparity contribution brought by the
non-ideally orthoscopic setting of the visor. In the range of depths around the plane π (z = 500 mm)
used for computing the homography, the mean of d̃Z was of about 8.8 mm. The value of d̃Z is lower if
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we consider a smaller area at the center of the stereo images, that is where the monoscopic horizontal
disparities are not as high.

In Figure 10, the profile of d̃Z at various distances from the observer is shown for different values
of horizontal disparities. In the figure, we also report the values of d̃Z associated to the measured
values of hd for Z ∈ [490 − 510] mm.

Figure 10. Depth resolution vs distance from the observer with different values of horizontal disparities.
The asterisks are the values of d̃Z associated to the measured disparities around plane π.

3.2.2. Perceptual Tests

In Table 2, the results of the perceptual tests are reported. We measured the rate of success in
terms of proper relative depths estimation among the bricks in all the tested configurations.

The success rate was surprisingly higher than expected (98.5% of total success rate), taking into
consideration the fact that the relative depths between the three bricks was between 2 and 4 mm
at any distance. In the next session, we shall motivate for the apparent inconsistency between the
misperception of relative depths predicted by the mathematical models and the perceived distortion of
space experienced by the user during the real use cases.

Table 2. Results of the depth estimation tests.

Distance Range
(mm)

First Test
Success Rate

Second Test
Success Rate

Third Test
Success Rate

Fourth Test
Success Rate

~300–~750 100% 100% 100% 100%
~400–~850 100% 100% 100% 100%
~500–~950 100% 90% 100% 100%
~600–~1050 100% 100% 90% 100%
~700–~1150 100% 100% 90% 100%

Total Success Rate
for each test

100% 98% 96% 100% Total Success
Rate 98.5%

4. Discussion & Conclusions

In this work, we have presented a VST HMD whose geometry violates the rigorous conditions
of orthostereoscopy. For properly recovering natural stereo fusion of the scene in a region around a
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predefined distance from the user, we partially resolve the eye-camera parallax by warping the camera
images through a perspective preserving homography.

The appropriate plane-induced homography between the image planes of the pair of stereo
cameras and those of their associated displays, is computed by explicitly taking into consideration the
geometry of the VST HMD and the intrinsic parameters of camera and display. The homography is
therefore estimated uniquely by means of design and calibration data.

For validating our solution, we conducted objective and subjective tests. The goal of the tests was
to assess the efficacy of such solution in recovering the natural perception of depth in the space around
a pre-established distance from the observer.

Thanks to the hybrid nature of the HMD, which can work also under OST modality, in the first
session of tests we measured the patterns of on-image disparities between a direct view of the world
and a VST view. An internal camera, placed at the ideal eye’s position, captured both the views of a
target plane at different distances and orientations relative to the HMD.

These monoscopic disparities provided an initial measure of the amount of perceptual distortions
brought by the non-orthoscopic setting of the HMD. The same disparities were then used to
quantitatively estimate the resulting degree of uncertainty in perceiving relative depths under
VST view.

Finally, we performed subjective tests aimed at assessing under real-use conditions, the actual
depth estimation accuracy under VST view.

From a human-factor standpoint, VST HMDs raise issues related to the user’s interaction with
the augmented content and to some perceptual conflicts. With stereoscopic VST HMDs, the user
can perceive relative depths between real and/or virtual objects by providing consistent depth cues
in the recorded images delivered to the left and right eyes by the two displays of the visor. In our
tests, we focused on relative depth measurements since relative depths information are much more
important than absolute depths for aiding manual tasks in the personal (and intimate) space [7,8].

However, depth perception in binocular VST HMDs has not been fully investigated in literature.
In their study, Kyto et al. [7] performed perceptual tests with a stereoscopic VST HMD aimed at
measuring the effect of binocular disparities, relative size and height in the visual field on depth
judgments in the action space (distances from 2 to 20 m). Their main finding was that depth perception
through VST view in the action space is highly improved by a proper combination of a virtual content
(i.e., auxiliary augmentations) providing binocular disparity and relative size cues. In our study,
we did not use any sort of auxiliary augmentation since the goal of our perceptual studies was to
assess how depth perception is recovered when using non-orthoscopic VST HMDs. Further, our depth
judgment tests were performed within the personal and intimate space where the visual interaction
with the augmented scene is likely to hide the ground plane and for which other depth cues other than
binocular disparities and occlusions are not as relevant.

Overall, the obtained results were surprisingly positive in terms of depth judgment tasks. This is
in line with what experienced by State et al. [19] and suggested by Milgram et al. [38], who both
asserted that the distortion of the visual space derived from the mathematical models underpinning
stereo vision is significantly higher than what the user perceives in reality. In our opinion, this fact is
mostly motivated by the presence of other binocular depth cues as eyes convergence or monocular
ones as linear perspective, texture gradient, shades and shadows [39]. All these cues contribute to
provide a finer perception of depth in the personal space and partially compensate for the distortions
brought by the non-orthoscopic setting of the VST HMD. The results of our preliminary perceptual
tests were even more positive than the ones presented in [19], as in our tests the user could not use the
hand as a “visual aid” for relative and absolute distance estimations.

Another aspect to consider is that the distortion of the patterns of binocular horizontal disparities
at distances different from the homography plane, is not as severe at the centre of the stereo images,
which is where the user normally directs his own view. Further, even if the vertical monoscopic
disparities follow a steeper trend as the distance from the homography plane increases, we believe
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that their effect onto the perception of relative depths is not as evident, also considering that their
combinatory effect is likely to be null.

In conclusion, the quasi-orthoscopic setting of the HMD and the user-specific homography, refined
to embody the effects of the intrinsic parameters of the displays and of the non-ideal eyes placement in
the HMD, are sufficient to recover a proper perception of relative depths in the personal space. Further,
we can assert that the actual density of homographies that ensures a non-perceptible distortion of the
visual space in the personal space can be sparser than the ideal pattern retrieved by estimating the
trend of the stereoacuities of the HMD.

All of this suggests that we should investigate whether display calibration and eye-tracking can
allow the achievement of similar results without the need for a user-specific homography refinement.
Display calibration would in fact provide a proper estimation of the linear and non-linear projective
parameters of the display, while eye-tracking would yield a robust and reliable estimation of the
eyes position.

It is important to outline that the results of our perceptual tests can be considered as a
preliminary proof of effectiveness of the proposed solution in recovering natural depth perception
in a quasi-orthoscopic VST HMD. In addition, the testing platform herein used strongly encourages
us to conducting structured user-studies involving more subjects and aimed at investigating further
on how our solution can be of help to the VR and AR communities for investigations relative to
user’s perception and task achievement efficiency, hence in fields as human-computer interaction,
neuroscience and human factor in computing systems.
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Appendix A

Hereafter the disparity maps for all the target planes considered are shown.

Figure A1. Map of disparities for a target plane placed at 273 mm from the observer.
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Figure A2. Map of disparities for a target plane placed at 350 mm from the observer.

Figure A3. Map of disparities for a target plane rotated and placed at 426 mm from the observer.

Figure A4. Map of disparities for a target plane placed at 492 mm from the observer.
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Figure A5. Map of disparities for a target plane placed at 508 mm from the observer.

Figure A6. Map of disparities for a target plane placed at 510 mm from the observer.

Figure A7. Map of disparities for a target plane rotated and placed at 544 mm from the observer.
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Figure A8. Map of disparities for a target plane placed at 554 mm from the observer.

Figure A9. Map of disparities for a target plane placed at 614 mm from the observer.

Figure A10. Map of disparities for a target plane placed at 653 mm from the observer.
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Abstract: In this paper, a low cost, wearable six Degree of Freedom (6-DOF) hand pose tracking
system is proposed for Virtual Reality applications. It is designed for use with an integrated hand
exoskeleton system for kinesthetic haptic feedback. The tracking system consists of an Infrared (IR)
based optical tracker with low cost mono-camera and inertial and magnetic measurement unit. Image
processing is done on LabVIEW software to extract the 3-DOF position from two IR targets and
Magdwick filter has been implemented on Mbed LPC1768 board to obtain orientation data. Six DOF
hand tracking outputs filtered and synchronized on LabVIEW software are then sent to the Unity
Virtual environment via User Datagram Protocol (UDP) stream. Experimental results show that this
low cost and compact system has a comparable performance of minimal Jitter with position and
orientation Root Mean Square Error (RMSE) of less than 0.2 mm and 0.15 degrees, respectively. Total
Latency of the system is also less than 40 ms.

Keywords: optical tracking; inertial tracking; sensor fusion; virtual reality; low cost

1. Introduction

Physical immersion and highly interactive systems are important for effective virtual reality
applications. User interactions in Virtual Reality (VR) can be displayed in the form of visual, aural and
haptic sensory modalities [1–3]. Continuous hand tracking is crucial for a more realistic and immersive
virtual experiences. Commercial VR devices such as Oculus Rift headset and HTC VIVETM with the
integration of hand tracking systems like Leap Motion Controller enables us to experience “visually
realistic” interaction with Virtual objects. However, most of these commercial devices does not provide
touch feedback (haptics). The integration of haptics in VR devices will improve interactivity and
immersion [4]. Fully optical devices like Leap Motion have limited applicability for VR haptic devices.
The main reason being the haptic setup on the hand can occlude part of the skin which affects the
performance of the tracker. This motivates the development of a low cost hand tracking system for an
integration with a lightweight, low cost, wearable and wireless exoskeleton setup for force feedback.

A variety of hand tracking methods have been developed for different application areas including
VR. These mechanisms are mainly based on optical, inertial, mechanical, electromagnetic and acoustic
sensors [5]. The main consideration in the choice of tracking systems are accuracy and precision,
update rate of tracking outputs, robustness to interference and occlusions and encumbrance from
wires and mechanical linkages. The presence of a hand exoskeleton in a haptic setup would make use
of the mechanical tracking system an easy approach. Mechanical tracking problems involve estimating
the motion of one link relative to the attached moving link [6]. Hence, hand tracking problems can be
solved by estimating the position of each bone relative to the previous bone. In this case, the entire
hand can be arranged as a sequence of attached rigid bodies. The position of the bodies relative to
each other can also be solved using multibody kinematics which also enables us to determine the
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velocity and acceleration of attached bodies. The known kinematic constraints of the hand model
improve the accuracy of tracking [7]. This kind of model based hand tracking can be more effective for
applications which need hand exoskeletons for Haptics and Rehabilitation [8]. Although the position
and orientation of each bone on the hand can be estimated accurately with the hand exoskeleton,
tracking of reference frame on the palm or wrist is necessary. Palm position and orientation is used to
estimate the pose of the overall hand based on a predefined kinematic hand model.

In this paper, a low cost six Degree of Freedom (6-DOF) tracking of the single point reference
frame on palm is discussed using opto-inertial approach. This system aims at providing a relative pose
estimation of human hand while immersed in VR environment and wearing an integrated exoskeleton
for full hand configuration estimation. Therefore, the current design of the proposed tracking system
is part of a mechanical exoskeleton tracking and force feedback system. The system offers a good
compromise in terms of cost and efficiency for VR applications with a predefined workspace range
and also haptic setups which need hand tracking as an input. In the proposed tracking system, the
position and orientation estimation are handled separately. Position is estimated from optical tracking
outputs while orientation is estimated from the Inertial Measurement Unit (IMU) tracking outputs.
Since we adopt a geometrical approach to estimate the depth tracking, orientation data has been used
to correct estimation error. In addition, yaw angle estimation involves the use of optical Infrared (IR)
position outputs as a complementary system to reduce IMU heading error from magnetic interference
on yaw calculation.

Various optical systems have been designed, typically using video cameras and several Infrared
Light Emitting Diodes (LEDs) [9]. Optical systems do not require mapping and provide relatively high
accuracies over a large workspace. However, a constant line of sight between the IR LEDs and the
camera must be maintained [10]. The performance of this optical system can be affected by occlusion
and limiting the coverage area. To overcome the limitations in camera view range, pan-tilt-zoom
cameras can be used with visual servoing techniques which follows the markers to be tracked [11].
It is also difficult to insure a proper tracking under different lighting conditions. Inertial sensors,
on the other hand, have no range limitation and no line of sight is required. They can give high
bandwidth motion measurement with negligible latency. However, they are prone to an interference
from magnetic fields [5]. Due to these complementary pros and cons of the two tracking systems,
combination of optical and inertial technologies results in more accurate 6-DOF pose tracking [12,13].

Optical Tracking systems detect and track artificial features such as normal LEDs and IR LEDS
(active features) or retroactive materials illuminated by Infrared light and a special tag placed onto
the hand (passive features). Using passive features could be a problem in the absence of sufficient
light; therefore, using active features which emits light is more reliable [13]. To reduce the problems
of optical motion tracking related to lightning, Infrared LEDs can be used to completely isolate the
markers from the background light. However, this comes at the expense of requiring a special IR
camera. Most low cost IR tracking systems use normal Webcams with some modification to pass IR
light. Normal Webcams have an infrared blocking filter which prevent the IR from entering. This can
be addressed by removing the filter, so that the camera can be sensitive to infrared light. IR detection
is more reliable in all lighting conditions; however, for a more accurate tracking a infrared pass-filter
can also be added blocking most of the visible light spectrum.

Even though accuracy and precision have lesser importance for VR environments unlike tracking
for localization [14], resolution of less than 1 mm and angular precision of greater than 0.2 degrees is
important for VR applications. Tracking latency beyond 40–60 ms will also affect the performance of
the VR [15].

2. Materials and Methods

The optical tracking part consists of PlayStation 3 (PS3) eye camera (costs £8) and two IR LEDs
while the inertial tracker consists of an LSM9DS0 IMU module which contains a 3-axis gyroscope,
3-axis accelerometer and 3-axis magnetometer in a single chip. The IMU provides a 9-DOFs data
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stream to the Mbed LPC1768 Microcontroller (32-bit ARM Cortex-M3 running at 96 MHz). A LabVIEW
software captures orientation data via Bluetooth at rate of 60 Hz. LabVIEW timed loop enables to
trigger reading of both optical and IMU outputs with similar timing sources thereby synchronizing
the IR tracking position outputs with the orientation outputs and transfer the 6-DOF pose of the palm
through User Datagram Protocol (UDP) connection stream to virtual environment made in Unity 3D.

2.1. Optical Tracking System

Optical Tracking System relies in estimating the pose of the hand from 3D features or targets
attached on the hand. In this experiment, two IR LEDs are used as targets. The IR tracking system uses
a blob detection and tracking image processing algorithm for positional tracking in 3-DOF. The camera
is placed above the workspace (as shown in Figure 1) and tracks 2 IR LEDs placed on the setup.
The position of the camera is selected purposely to eliminate the effect of direct light through doors,
windows and other light sources. One or two IR LEDs enables us to track 2-DOF while 3 or more LEDs
can track 3-DOF position and 3-DOF orientations. The LED viewing angle is also important. Most
LEDs focus the light narrowly; therefore, to distribute the light evenly in all direction a diffuser foam
cover is used. Wide angle LED can also be used.

Figure 1. Virtual reality 6 Degree of Freedom (6-DOF) tracking experimental setup.

The computer vision algorithms are implemented using LabVIEW National Instrument (NI) vision
algorithms. Image frames are acquired continuously with PS3 Eye Camera and NI image acquisition
software is used for inline processing. Image acquisition setting are configured as video resolution
of 320 × 240 at 60 fps. The infrared LEDs are tracked using a simple image processing algorithm
called blob tracking. Blob tracking is more reliable and effective than most complicated image tracking
algorithms in a wide range of lighting environment and it can also be done at full frame rate with
minimum Central Processing Unit (CPU) usage.The IR LEDs are detected as an area of high brightness
in the image. Considering the camera resolution, view range and angle, the workspace of the tracking
system is limited to the range of 40 cm width, 30 cm length and 30 cm height. Segmentation is used
to distinguish regions (set of pixels), which corresponds to IR markers and the background. RGB
ranges are used as a criterion to decide whether a pixel belongs to a region of interest or background.
Thresholding applies a threshold of the RGB image in range of Red (0–255), Green (0–255) and Blue
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(0–202). Pixels outside this range are selected as a region of interest and all other pixels are classified as
background.

Thresholding results in an 8 bit grayscale image, which has to be inverted to reverse the dynamic
of the image. Different morphology techniques are then applied to remove small blobs, and fill holes in
the large blobs detected. These morphological operators are selected among other possible operators
because they do not affect the estimation of the coordinates of the centroid of the blobs. As shown
in Figure 2, the final blobs are characterized by a smooth profile with very much contained glares.
A bounding circle is formed around the blobs which helps to extract the measurement results such
as number of blobs detected, centre of mass X and centre of mass Y of the blobs. The centre of mass
measurements in the X and Y directions given by image coordinates (u, v)are mapped into x and
y world coordinates. Figure 3 shows the main blocks of the vision algorithms used to track the IR
markers.

Figure 2. Blob detection and tracking algorithm outputs.

Figure 3. Blob tracking: Image processing algorithms.

A moving body can be tracked using n observed blobs. Each blob corresponds to a point p (x, y, z)
with coordinates defined with respect to a reference frame in world coordinate system [16]. The point
observed at image coordinate (u, v) provides information about 2-DOFs. If both IR LED are in the field
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of view of the camera, considering movement on 2D plane only, the x and y position can be estimated
from the image coordinates detected as in the following equations.

xm = Cx
u1 + u2

2
, ym = Cy

v1 + v2

2
(1)

Where Cx and Cy are scaling factors from image coordinate to real world coordinates. However,
For 3-DOF positional tracking, the distance from the camera to the features has to be known.
Many algorithms have been developed to determine the depth by solving point model problems
with 3 or more IR spots, multiple cameras or stereo cameras can also be used. Using multiple or stereo
camera systems increases the complexity and cost of the system where as 3 or more IR targets tracking
creates non-stable tracking outputs [17]. In VR applications, considerable spatial accuracy errors are
more acceptable than drifts and jitter since users continuously use visual feedback to correct positional
errors. On the other hand, drift and jitter creates discomfort for the user. As result, an easier approach
has been used to map the depth considering the trade-off between accuracy, cost and computational
complexity. This approach is based on mapping the depth with the proportional distance between the
2 IR LEDs.

dmeasured = Cz

(
(v2 − v1)

2 + (u2 − u1)
2
)1

2 (2)

It is clear that the projection of the distance between the two IR LEDs varies with rotation of the
hand with respect to the y axis (roll angle); therefore, the depth calculation can be corrected by adding
the roll angle (θ) as factor.

zm =
dmeasured

cos θ
(3)

A clear z axis only motion of the IR spots can also produce an error in the x and y axis. This
error increases as the position of IR spots is far from the optical axis of the camera. However, the
error increases linearly as distance increase from origin; therefore, a calibration matrix (mapping
matrix) can be formulated to reduce the error in the x and y axis reading caused by z axis movements.
An automatic linear fitting method is used to find the relationship between the depth values and the
change in X and Y reading caused by Z axis movement. The following steps have been implemented
to find the slope of the deviation in the X and Y axis.

1. Find the linear fitting values from the graph of Z vs. X axis and Z vs. Y axis while moving the IR
tracker in the Z axis. Slope and intercept is calculated for 10 sample points. To calculate slope
and intercepts of data sequence (X, Y)using a least square solution, the LabVIEW linear fit Virtual
Instrument (VI) uses the iterative general Least Square method to fit points to a straight line of
the form

f = mx + b (4)

where x is the data sequence, m is slope and b is intercept. Every iteration gives linear curve of
the form

yi = mxi + b (5)

The least square method finds the slope and intercept which minimizes the residue expressed by
the following equation.

1
N

N−1

∑
i=0

( fi − yi)
2 (6)
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where N is the length of Y, fi is the ith element of Best Linear Fit, and yi is the ith element of Y.
2. Feedback and update the new slope values as coefficient of the calibration matrix (mx and my)
3. Continue to Step 1

Reducing the x and y positional components caused by z axis movements from the pure x and y
position reading avoids the error. ⎡⎢⎣xcal

ycal
zcal

⎤⎥⎦ =

⎡⎢⎣1 0 −mx

0 1 −my

0 0 1

⎤⎥⎦
⎡⎢⎣xm

ym

zm

⎤⎥⎦ (7)

This calibrated 3-DOF position can give us smooth and proportional movement mapping between
the real hand and virtual hand. Figure 4 shows a test for the above algorithm for a square trajectories
on the X-Z plane.

Figure 4. Square trajectory plot: Calibration tests in X-Z plane, Z-Y plane and Y-X plane.

2.2. Inertial Tracking System

The 9-DOF LSM9DS0 MARG (Magnetic, Angular Rate and Gravity) sensor is used to obtain highly
accurate orientation tracking with high update rate. The gyroscope measures angular velocity along the
three orthogonal axis, accelerometers measure linear acceleration and magnetometer measure magnetic
field strength along the three perpendicular axis providing an absolute reference of orientation.

Kalman filters are the most widely used orientation filter algorithms. However, they are
complicated for implementation and demand a large computational load which makes it difficult for
implementation on small scale microcontrollers. The Magdwick filter has been used as an alternative
approach. This filter is effective at low sampling rates, and is more accurate than the Kalman-based
algorithm and has low computational load. The MARG system also known as AHRS (Altitude and
Heading Reference Systems) is able to provide a measurement of orientation relative to the earth
magnetic field and direction of gravity. The algorithm uses a quaternion representation of orientation
to reduce singularities associated with Euler angle representations [18].

The magwick filter includes an online gyroscope bias drift compensation. The gyroscope zero
bias drift overtime caused by temperature and motion with time. Mahony et al. [19] showed that the
gyroscope bias drift can also be compensated by orientation filter through integral feedback in the
rate of change of orientation. Magdwick approaches have also implemented a similar algorithm for
gyroscope drift compensation [18].

Pitch, roll and yaw angles can be purely estimated from quaternion values. However, estimation of
yaw angle involves magnetometer data which can be affected by elevation and tilt angle as well as hard
and soft iron bias. Hard iron biases can be removed using different calibration techniques [20]. Soft
iron biases cause errors in the measured direction of the Earth’s magnetic field. Declination errors need
additional reference heading while inclination errors can be compensated for using the accelerometer
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as it provides an additional measurement of the sensor’s attitude. The magnetometer used in our
application is calibrated to reduce the yaw drift error. However, due to a nearby magnetic object, the
sensor reading becomes more dependent on the change in place. Such cases reduce the reliability of
the magnetometer to produce an accurate yaw orientation. Therefore, the camera information is used
as an additional source of detecting yaw orientation. Since the camera optical axis is parallel to the
yaw axis, two IR LEDs position information can be used to estimate the yaw orientation easily.

yaw = arctan 2
(

v2 − v1

u2 − u1

)
(8)

2.3. Performance Evaluation

Tests has been done to characterize the resolution, static and dynamic spatial accuracy of the
overall tracking system. The resolution is the smallest change of position or orientation that the
tracking system is able to detect. Resolution is limited either by jitter or quantization levels. The visual
effect of the jitter on computer display can affect the user’s haptic experiences. Static accuracy is
the amount of reading error when the position and orientation remain constant. Errors due to noise,
scale factor error and non-linearity can be shown on static accuracy tests. Very low frequency error
components which can be perceived over a period of time are categorized under the term stationary
drift. The jitter is the rapidly changing error component [5]. The static accuracy is calculated as the
Root Mean Square (RMS) error of the recorded position and orientation angles from the true ones when
the tracking sensors are held at a known fixed position and recording the position and orientation
output data stream for a 10 min period of time.

For the position static accuracy test, the target LEDs are taped on a sheet of paper with a square
grid. The grid origin is aligned with the camera optical axis. A variety of known fixed positions and
orientations are tested to see if the static accuracy could vary significantly depending on the position.
From the static experimental results, drift and jitter can be seen due to the quantization error.

In order to remove jitter and drifts, smoothing filters of rectangular moving average are used.
The moving average filter is an optimal filter to reduce random noises and retain sharp response. It is
especially used for time domain signals. The moving average filter operates by averaging a number of
points from the input signal to produce each point in the output signal. In our case, all samples in the
moving average window are weighted equally to remove spikes in the signal. The moving average
can be expressed in the equation form as

y [i] =
1
M

M−1

∑
j=0

x [i + j] (9)

Where x [i] is the input signal, y [i] is the output signal, and M is the number of points on average.
The result shows that most of the jitter and drift is voided by using the filter. Removing the continuous
jitter is particularly important for VR application, even more so than having spatial accuracy. For
angular static accuracy testing, we mounted the IMU on Goniometer attached with a stable box.
Orientation outputs are recorded for fixed roll, pitch and yaw angles.

Dynamic positional accuracy tests are done with a calibrated 3D printer head which can be
manually driven with a resolution of 10 mm or 20 mm jogging mode in the x and y axis and 10 mm
jogging mode in the z axis as a “ground truth” reference system. Dynamic position readings are
recorded while moving the 3D printer head in the x, y and z position. Angular dynamic accuracy tests
are performed on the two axis gimbals shown in Figure 5. Angular data streams are recorded while
rotating the gimbals with a mounted servo motor.
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Figure 5. Orientation dynamic accuracy test setup.

3. Results

Position Data has been collected by placing the IR targets at fixed 3D positions on square grid for
10 min. The recorded data is used to compute the Root Mean Square Error (RMSE) by subtracting the
mean value from each set of position readings according to the following equation.

RMSE =

√
∑n

t=1 (yt − yt)
2

n
(10)

Where yt are recorded data values and yt is the mean value of n data points. The resulting RMSE
for x, y and z are 0.288 mm, 0.268 mm and 0.653 mm respectively. Most of these errors are caused by
quantization levels. This is because the position readings are directly mapped with the position of the
blob centres in pixels which are always integer values. A camera with high resolution can give us a
more accurate reading. The jitter is reduced by filtering to avoid the rapid flickering of the virtual
hand. As shown in Table 1 the position RMSE error is reduced using a rectangular moving average
smoothing filter to 0.148 mm, 0.104 mm and 0.373 mm in x, y and z direction respectively.

Table 1. Position and orientation Root Mean Square Error (RMSE): Static accuracy test.

Position RMSE (mm) Orientation RMSE (Degrees)

Axis Original Filtered Angle Original Filtered

X 0.288 0.148 Pitch 0.199 0.113
Y 0.268 0.104 Roll 0.137 0.079
Z 0.653 0.373 Yaw 0.831 0.486
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To test the dynamic performance of the IR tracker, data are collected while moving the IR targets
mounted on a 3D printer head. The printer head moves for a continuous 10 mm jog mode in one
direction and repeats the same movement in the opposite direction where each 10 mm movement has
constant velocities.

For static orientation tests, the IMU is fixed at different roll, pitch and yaw angles measured
by Goniometer. Test results show that orientation results are accurate except for some drift, which
occurred due to sensor bias or noise. To reduce the drift, the same smoothing filter has been used
and RMSE error are reduced to 0.113◦, 0.709◦ and 0.486◦ pitch, roll and yaw angle, respectively. Static
position and orientation rest results are shown in Figure 6.

Figure 6. Static position and orientation accuracy test results.

To validate dynamic orientation accuracy, data has been collected while moving the IMU placed
on top of the gimbal setup shown in Figure 5. The servos move the gimbals clockwise and counter
clockwise repeatedly with constant speed. The speed is reduced to match the update rate of the IMU.
Results (as shown in Figure 7) indicate that dynamic orientation is worse at higher speed movement,
which may not occur on virtual interactions. Some of the error can also be caused by the jitter of the
servos while moving. On the other hand, yaw orientation dynamic tests are free from such errors since
optical tracking is mainly used to get the yaw angle except during occlusion of the IR targets.
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Figure 7. Position and orientation dynamic accuracy tests.

4. Conclusions

This paper presents a low cost and wearable approach for integration of hand tracking systems
in a VR environment. Even though more accurate systems exist on the market and also as research
equipment, none of them are affordable and they cannot be easily integrated in a VR environment
with haptic setups. Accurate tracking systems which are based on fully optical technologies also have
limitations in the presence of haptic devices due to occlusion. These limitations motivate us for the
development of tracking systems which can be wearable and easily integrated with VR and haptics
applications. Experimental Results shows that our approach can estimate the 6-DOF pose of the hand
with reasonable accuracy and low latency. Future works will include a full haptic exoskeleton system
which tracks full finger joints positions for a more immersive haptic experience.
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Abstract: Prenatal monitoring of Fetal Heart Rate (FHR) is crucial for the prevention of fetal
pathologies and unfavorable deliveries. However, the most commonly used Cardiotocographic exam
can be performed only in hospital-like structures and requires the supervision of expert personnel. For
this reason, a wearable system able to continuously monitor FHR would be a noticeable step towards
a personalized and remote pregnancy care. Thanks to textile electrodes, miniaturized electronics, and
smart devices like smartphones and tablets, we developed a wearable integrated system for everyday
fetal monitoring during the last weeks of pregnancy. Pregnant women at home can use it without
the need for any external support by clinicians. The transmission of FHR to a specialized medical
center allows its remote analysis, exploiting advanced algorithms running on high-performance
hardware able to obtain the best classification of the fetal condition. The system has been tested on a
limited set of pregnant women whose fetal electrocardiogram recordings were acquired and classified,
yielding an overall score for both accuracy and sensitivity over 90%. This novel approach can open a
new perspective on the continuous monitoring of fetus development by enhancing the performance
of regular examinations, making treatments really personalized, and reducing hospitalization or
ambulatory visits.

Keywords: tele-monitoring; wearable devices; fetal heart rate; telemedicine

1. Introduction

In the last two decades, research has been very active in developing wearable devices and
systems for medical-oriented applications, often aimed at continuously monitoring patients in their
environment and during daily life activities. The need is a sustainable health system that can
manage acute care (in hospital or emergency departments), and care of outpatients (mainly chronic),
including healthy citizens during their normal life, in order to prevent possible diseases by means of
tele-monitoring [1].

Until the most recent developments in Information and Communication Technologies (ICT), some
limitations in connections and transmission rates allowed only collecting and sending few parameters
in real-time, but nowadays it is possible to realize continuous surveillance of physiological signals.
Thanks to the introduction of new miniaturized sensors and devices, together with the improvements
in wireless transmission, the remote management of chronic diseases has become a reality, and studies
prove that patients are willing to adopt it [2].
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Nowadays, the switch to domiciliary care for non-critical medical issues is seen in many health care
areas as a way to achieve better control over chronic diseases and consequently delay the occurrence
of any complications, avoid unneeded hospitalizations, and reduce pressure over national budgets [3].
Many exploitations of structured tele-monitoring systems have already been carried out in patients
with heart failure [4,5]. The CarelinkTM Network, for example, has been introduced by Medtronic to
improve the management of patients suffering from heart failure that undergo treatments based on
Implantable Cardioverter Devices (ICD) [6]. The literature shows that whenever ICDs are coupled with
a remote monitoring service, not only it is possible to earlier detect any problem concerning the devices
themselves, but also the therapy may be better optimized and individualized for each patient [7]. Even
research projects investigating new treatments that pose significant threats to outpatients’ health are
increasingly relying on a real-time telemonitoring of clinical parameters for immediate processing and
early detection of abnormal or hazardous conditions [8].

Furthermore, the great comfort of subjects in wearing miniaturized sensors, along with an
increasing general health care policy of prevention, have promoted remote monitoring applications
also in the healthy population. Recently, wearable systems have been adopted to monitor healthy
subjects acting in extreme environments [9], performing highly risky activities such as firefighting [10],
doing physical training [11], or wellness exercises [12]. A boost in this direction is given by the
appearance of new textile materials that allow embedding low-cost wearable sensors and computing
devices in standard duty outfits. Sensorized garments combined with tele-monitoring services may
therefore be applied also to healthy people for detecting signals in subjects while they are engaged
in their daily activities with the aim of preventing or anticipating the occurrence of unusual or
pathological conditions.

Pregnancy and fetal states may also effectively resort to tele-monitoring. Although pregnancy in
itself is not a pathology, the fetal condition should be monitored as often as possible in order to prevent
unfavorable outcomes. The literature shows that pregnant women could highly benefit by a remote
monitoring service that is particularly effective for those patients and also helps in achieving a more
efficient use of the health care [13,14]. This is because the reduction of in- or out-stays for patients only
undergoing routine examinations mitigates the shortages of beds in hospitals and reduces any related
management costs. Therefore, it is desirable to design and implement wearable systems that allow
the effective monitoring of pregnant women in different life conditions and evaluate both possible
acute effects (emergency, risky conditions for the fetus), or non-acute effects related to unhealthy
lifestyles. These factors, though not immediately life-threatening, may be the cause of pathologies in
the long term.

The potential market for these systems is enormous. The number of deliveries in Italy is nearly
500.000 every year and the public healthcare system foresees a minimum of 3 monitoring sessions for
each pregnancy. However, a single exam in the last quarter is often not enough to completely assess
the situation and take appropriate decisions. So the number of monitoring sessions in Italy can be
higher than 1.5 M per year.

The most common exam for evaluating the fetal wellbeing is Cardiotocographic (CTG) monitoring,
which consists of measuring Fetal Heart Rate (FHR) and mother uterine contractions. In fact, fetal
wellness is very strongly related with heart functioning, which makes measuring the FHR so important.
CTG technology is based on a doppler ultrasound probe placed on the maternal abdomen and can
only be accomplished in hospital-like structures, since it requires the supervision of expert personnel.
Recognition of the echoes generated by the opening and closing of the cardiac valves of the fetus
allows for the measuring of the position of the beats in time and therefore the computing of the FHR.

In the last twenty years, advances in CTG analysis have improved the quality of FHR feature
extraction in order to obtain reliable indications of disease development. Great contributions arrived
from advanced processing methods that provided novel parameters that were able to discriminate
fetal states and healthy vs. disease groups [15,16]. These encouraging results pushed even more the
research efforts to explore novel solutions towards FHR monitoring. Even if CTG is the most used
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technology, it still remains an indirect way to measure the fetal heartbeat. More importantly, it does
not allow continuous FHR recordings, since data can only be collected at some certain fixed times,
possibly separated by tenths of days if not by months.

For this reason, we started the Telefetalcare project [17], which aims to design and realize a
wearable fetal tele-monitoring system that is able to collect FHR throughout the last period of the
pregnancy. Its key point is the integration of a specific technology (i.e., wearable sensors and electronics)
with consumer ICT devices (i.e., smartphones and tablets) and remote, high-level signal processing,
data mining, and clinical decision support systems. Available methods of machine learning and
artificial intelligence, applied to FHR, can be employed to improve diagnosis and prediction in
pregnancy healthcare processes [18]. Furthermore, the large amount of available data already classified
in CTG analysis, both in normal and pathological fetuses, ensures a robust (solid) clinical reference
for the development of a new monitoring system [19]. In fact, rich clinical classified and annotated
databases can be used as a knowledge source to generate reliable decision support systems. These
approaches can open a new perspective on the continuous monitoring of fetal development: further
information can be extracted by introducing novel analysis tools, which are more sensitive to fetal
states both in healthy and stress conditions, by increasing the length, frequency, and quality of
monitoring session.

Telefetalcare provides the opportunity to enlarge the time window of fetal and maternal
data collection. It can enhance the performances of regular examinations, make treatments really
personalized, and reduce the effort needed when a constant supervision is required.

2. Materials and Methods

2.1. Overview of the System

The system we are presenting here is the evolution of Telefetalcare [17], a project started in
2010 and aimed at developing a new pregnancy-wearable monitoring system, suited for domiciliary
use. Although many different techniques are currently used to monitor FHR in the clinical
practice (CTG, abdominal ECG, fetal scalp ECG, MECG, etc.), the primary need of realizing a
wearable non-invasive and low-cost device encouraged the choice of measuring the abdominal
Electrocardiogram (ECG).

Two major difficulties arise when using this technique: first, the separation of the maternal and
the Fetal ECG (FECG) is compulsory, because they are both revealed through electrodes; second,
the presence of the “vernix caseosa” during the 29th–31st weeks of the pregnancy makes it almost
impossible to measure the FECG. The first problem has been solved through the use of multiple ECG
leads and intelligent signal processing, as reported in the following, while the second still remains and
limits the use of the system to the last weeks of pregnancy (32–42).

Moreover, when it comes to acquiring ECG signals, one of the problems faced by patients, as
they start monitoring themselves, originates from their inability to properly position the electrodes.
This happens because standard Ag/AgCl electrodes need to be correctly positioned and attached
one-by-one using gel and glue, which is a challenging task for inexperienced users, such as pregnant
women at home. For these reasons, we decided to design a wearable bodysuit provided with ECG
textile electrodes specifically placed to measure abdominal FECG.

The Telefetalcare system encompasses a wearable unit, a compact electronic box for data
preprocessing/transmission, and a smartphone/tablet that sends signals over the network to a remote
diagnostic center and receives their results. The functional diagram of the whole system is shown in
Figure 1.
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Figure 1. The Functional Diagram of the Telefetalcare System.

2.2. The Wearable Unit

The wearable outfit consists of an elastic bodysuit made of cotton and LycraTM that is provided
with electrodes made of conductive textile fibers that are directly intertwined in the garment. The
adoption of a wearable garment makes the use of the system a lot simpler, because the pregnant
woman just has to wear it without bothering about its fitting or properly attaching and deploying
the electrodes. Thus, an elastic garment was fabricated that was able to fit different body sizes while
preserving the relative positions of the electrodes.

The sensing contacts are made of silver yarns directly sewn within the bodysuit whose elastic
properties ensure suitable contact with the patient skin. Since textile electrodes rely on polarized and
capacitive coupling with the skin, the need to use conductive gel is also avoided.

The combined mother and fetus ECG signals are obtained by measuring the differential voltage
between each of the 8 abdominal electrodes and the reference one. Of course, a critical decision
affecting Telefetalcare entailed choosing the right number and the position of the electrodes on the
garment. The driving goal has been to select a pattern that is able to properly sample the mother
abdomen independently of the position of the fetus in the uterus. A decision to limit the lead number
to 8 was mainly imposed for technical reasons. First of all, each lead requires a separate circuit for
analog processing, and the adoption of a larger number of leads (i.e., 16 or 32) would have significantly
increased the dimension and the power consumption of the portable electronics. Moreover, increasing
the lead number would also have dramatically increased the amount of data to be processed and
transmitted, possibly causing data loss problems over the wireless link used by the portable electronic
to communicate with the smartphone. Thus, even though a larger number of leads would have
improved the performance of the device, resulting in enhanced reliability in FECG extraction, 8 leads
plus a reference one were deemed to be a good compromise (9 textile electrodes).

The placement of the sensors on the bodysuit has been carefully investigated in the previous
prototypes of the system, because the main goal of their placement was to maximize the FECG signal
with respect to the maternal one. Several configurations were tested in order to identify the best
solution. In all of them, the position of the electrodes was limited to the garment surface, privileging
those spots that were not particularly subject to movement artifacts.

The configuration shown in Figure 2a was used during the first experiments. The reference
electrode is positioned on the right side of the maternal chest, while the remaining ones are placed
just below the abdomen. This configuration was initially selected for the high level of the ECG signal
(i.e., >300 mV pp). However, the presence of an electrode (i.e., the reference one) very close to the
maternal heart caused the appearance of a strong maternal component in the recordings, which was
very difficult to remove in the subsequent FECG extraction phase. Thus, the configuration shown in
Figure 2b) was then chosen where the reference electrode is placed on the navel and the remaining 8
ones are placed around it with radial symmetry. The overall amplitude of the signal is lower, but the
SNR between Fetal and Mother ECGs is good enough to allow more efficient FECG extraction and
Fetal QRS peak detection.
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Figure 2. Relative positioning of the electrodes on the mother abdomen (above) and their configuration
on the elastic bodysuit (below).

Figure 3 shows the last version of the bodysuit from the textile electrode’s side, which is in contact
with the maternal abdomen. These electrodes do not need the use of conductive gel and can adhere to
the abdomen skin thanks to the elasticity of the bodysuit.

 

Figure 3. The new version of the bodysuit, viewed from the internal side.

2.3. The Electronic Box

ECG signal conditioning, A/D conversion, and wireless transmission to the smartphone using a
Bluetooth (BT) link are all carried out by means of an electronic box connected to the bodysuit through
standard ECG cables, as shown in Figure 4. The box was specifically designed and realized through a
3D printer, in order to contain the two small boards devoted, respectively, to analog and digital circuits.

The analog circuit for signal pre-processing operates a bandpass filter in the frequency range of
0.05–128 Hz with a controllable gain. Signal amplification was mandatory in order to exploit the full
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dynamic range of the Analog to Digital Converter (ADC) (i.e., 0–3.3 V), since the mother QRS peak has
a range of 100 uV–1 mV, and the fetal QRS peak recorded on the abdomen has an amplitude of only
1–100 uV. Thus, the circuit was designed with a gain of approximately 2000, in order to avoid ADC
saturation in case of baseline wander due to artifacts.

  

Figure 4. The block diagram of the hardware capturing device (left) and its box (right).

The FECG recorded on the abdomen has a bandwidth in the range 0.05–100 Hz, which is
compatible with a sampling rate at 256 Hz imposed by constraints of the BT transmission link. In fact,
the 8 channels are all sent in real time to the device, since no high-level processing takes place on the
hardware device, and further increasing the sampling frequency might have caused data loss problems
due to the saturation of the BT link. Data are digitally converted by a 16 bit ADC. We decided to use
a 16 bit ADC because of the very low amplitude of abdominal ECG recordings. A 12 bit ADC was
actually tested in an earlier prototype, but it did not provide the required signal resolution.

The first experiments were accomplished using pre-existing boards dedicated to the acquisition
of electro-encephalography signals. Each of those boards supported two differential leads and was
based on the chips INA118U, which includes an instrumentation amplifier, and TLC274, which has 4
operational amplifiers. Both chips are produced by Texas Instruments. The original circuit layout was
not modified, but the passive components (i.e., resistors and capacitors) were changed to achieve the
required bandpass range (i.e., 0.05–128 Hz) and an amplification gain of 2000.

In order to reduce the power consumption and the overall circuit dimension, a new board was
designed from scratch and built based on the chips INA333 and OPA2333 also from Texas Instruments,
which have much lower current profiles. Moreover, a significant difference with the preliminary board
consisted in introducing a driven-leg circuit into the new one. This circuit takes the signal from the
inputs, sums and negatively amplifies it, and finally reintroduces the result into the patient leg with
the aim of improving the performance in terms of noise rejection and signal quality. This allows a
significant reduction of the alternating current interference.

A different board was used to digitally sample the signal and send the data stream through
a BT link to the external device. This board may receive up to 8 analog inputs from the analog
preprocessing boards, and a 16 bit ADC with 50 μV voltage resolution samples each channel at
256 Hz. The microprocessor ARM TR711FR2 manufactured by STMicroelectronics oversees the entire
functioning of the circuit. The board is powered by a 3.6 V Li-Ion rechargeable battery, similar to those
used for powering mobile phones, which is also used to power up the preprocessing analog boards
and guarantees up to 6 h of life.

A button controls switching on and off the entire device, and a LED is provided, which shines red
when the device is powered-on and turns green during data transmission.

A further improvement of the electronics has recently been introduced by Torti et al. [20],
extracting FECG on a FPGA device, which enormously decreases the amount of data transmitted via
the BT connection, as explained in the next section of the paper. Unfortunately, this new approach
requires a complete redesign of the electronics, and it will be included in the next release of the system.
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2.4. FECG Extraction

In Abdominal FECG (AECG) recordings, the information source is FECG even though Maternal
ECG (MECG) and a broad spectrum of different noises (AC interference, movement artifacts, baseline
wander, electrode contact) are superimposed on it. Among disturbing noise sources, the most
significant is MECG. Fetal QRS (FQRS) might be up to 10 times smaller than Maternal QRS (MQRS),
thus with a very low SNR. This implies that P and T fetal ECG waves could not be reliably detected,
and the only event from FECG that could be extracted after serious pre-processing is the FQRS. In
addition, the classical information used in antenatal monitoring consists of FHR time series, built by
identifying R-R intervals in FECG (or an equivalent as in the case of CTG).

However, in our case, FECG might not be present in some of the 8 ECG leads, depending on the
position of the fetus in uterus. Thus, the FECG extraction algorithm should be able to detect when
FQRS detection is successful and, in those cases, to recognize which one of the 8 ECG leads sources
is the best FECG. Both noise removal and selection of the best FECG channel are extremely complex
tasks to accomplish.

The extraction of Fetal ECG in the current system is performed off-line. It is organized in different
steps to satisfy the following specifications: it must be (i) automatic, (ii) easy to be implemented, and
(iii) working with a limited number of ECG leads (8 in our system).

Literature proposes a vast number of algorithms for Fetal and Maternal QRS identification, MECG
suppression, and FECG extraction. The two main families of algorithms for FECG extraction are
(i) methods based on Blind Source Separation and Independent Component Analysis [21] and (ii)
methods removing maternal QRS after an averaging and subtracting procedure [22,23]. Although
we explored both solutions, a method belonging to the second family is implemented in the actual
release of the system. The algorithm consists of a modified and upgraded version of the Martens
algorithm [24,25].

Before the algorithm application, it is necessary to submit Abdominal ECG (AECG) signals to
five-step preprocessing:

(a). AECG recordings submitted to a 50 Hz digital FIR notch filter.

It removes 50 Hz power-line interference, in a very sharp and selective way. Surrounding
frequency components are preserved (better than a notch analog filter).

(b). Baseline wander and high frequency noise removal from the output signal at step 1 through a
FIR pass-band filter (3 to 80 Hz).

(c). Resampling of all 8 signals at 1000 Hz (T = 1 ms) in order to obtain the X50FILj signals (j = 1 . . . 8)

(d). X50FILj signals submitted to a low-pass filter, moving-average, order 30 (like a moving window
of 30 ms, with cutoff frequency 15 Hz), and results stored as XMAj signals.

(e). Computation of the difference between X50FILj and XMAj: Yj = X50FILj − XMAj.

Yj signals significantly enhance the high frequency components belonging to both fetal and
maternal QRSs.

2.4.1. Detection of MECG

The algorithm starts with the localization of Maternal QRSs (adapted from [24]).
QRS enhancement is based on Principal Component Analysis (PCA). The input is Γ, a [8xN] data matrix
containing the eight Yj signals, each of the N samples, and the output is the first principal component C,
representing the linear combination that yields maximum variance. Inter-signal correlation will be
large for ECG related components, as it will be small in case of noise. Since FECG is not always present
in the 8 channels, the signal C almost suppresses the FECG component.

C is divided into windows of 1 s, in order to be sure that at least a maternal QRS is contained in
each window, and the absolute max (AMax) is computed in each window and temporally located.
At this point, by taking a 100 ms window centered in AMax as single temporary MQRS template,
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the crosscorrelation between this MQRS template and the 1 s window is computed. The peak of
crosscorrelation identifies the beginning of MQRS. MQRS peak is detected and located by finding the
maximum within the next 100 ms after the crosscorrelation peak. Thus, by considering all windows,
we obtain an array t(k) containing the time locations of MQRSs.

The algorithm then goes back to the Yj signals to extract the running MQRS template in each
channel (TempMQRSj).

2.4.2. Construction of MQRS Template

For each Yj signal, a window of 100 ms centered in each t(k) is set (WMQRSj(k)). A running
template TempMQRSj(k) is then obtained by averaging ten WMQRSj(k) windows preceding the actual k
in the Yj signal. The current MQRS is removed by subtracting, from the Yj signal, the TempMQRSj(k)
template, scaled by a value aj(k), which minimizes mean square difference between the current QRS
and the template.

aj(k) = a, in which a → min‖WMQRSj(k)− a·TempMQRSj(k)‖2

After averaging and MQRS template subtraction, we obtain 8 possible FECG signals:

Fj(i) = Yj(i)− [aj(k)·TempMQRSj(k)](i)

2.4.3. Extraction of FHR Series

The extraction of FQRS from the Fjs follows the same procedure applied for MQRS, except the
enhancement based on PCA method, because fetal ECG is often visible in a small number (2 or 3)
of abdominal leads only. Thus, no information is available about the presence of FQRSs in all 8 Fjs.
For this reason, FQRS detection is accomplished in all channels, despite what has been described
for MQRS.

Detection of FQRS complexes on the Fjs is obtained by dividing each Fj in consecutive windows
of 0.5 s, finding the absolute peak in each window and considering 60 ms around it as a temporary
FQRS template. The crosscorrelation between this FQRS template and the 0.5 s window is computed.
As for MQRS, the crosscorrelation peak identifies the beginning of FQRS. FQRS peak is detected and
located by finding the maximum within the next 60 ms after the crosscorrelation peak.

This procedure gives 8 arrays tfj(k) containing the time locations of detected FQRSs (equivalent to
R-R series). Fetal R-R interval extraction is unreliable, or fetal ECG is not detectable, when inter beat
distance shows values that are far from expected and/or noisy.

In order to determine if one or more tfj(k)s is reliable, we compute a Quality parameter, as
explained in the next paragraph. Figure 5 shows a chunk of a Yj signal (j = 3) with the detection of
both MQRS and FQRS.

Figure 5. Maternal and Fetal ECG after the pre-processing phase (Yj = X50FILj −XMAj, j = 3), in which
MQRSs (red diamonds) and FQRS (black dots) are recognized and stored as t(k) and tfj(k), respectively.
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2.4.4. Quality Parameter

The quality parameter [17] ranks fetal QRS detection according to the reliability level of the inter
beat distance.

RRj(i) = t fj(i + 1)− t fj(i)

The 8 Fetal RR series are ordered on the basis of the qj index from the lowest to the highest. Low
qj values indicate good performances and allow selecting the lead (over the available 8’s) with the best
detection performance and the best fetal inter beat distance.

Figure 6 shows two examples of quality index.

qj = mean(
M−1

∑
i=1

‖RRj(i + 1)− RRj(i)‖)

The computation of the qj parameter, ranking the quality of extracted FECG and FHR, ends the
algorithm application.

Figure 6. Two examples of quality index computation in FECG signals. Left panel show a reliable lead,
and right panel refers to a lead in which the FQRS and F interbeat estimation were unreliable.

2.4.5. FECG Extraction through Field Programmable Gate Array (FPGA)

As reported in the previous subsection, an alternative technological approach to FECG extraction
has been already designed and tested in our laboratory. The solution implemented by Torti et al. [20]
explores the development of a special purpose custom computational unit performing fetal signal
extraction to achieve lower power consumption and faster processing times in view of a potential final
Application Specific Integrated Circuit (ASIC) implementation.

In this case the FPGA-based FECG extraction unit exploits a well-known blind source separation
technique called Infomax [26]. It is one of the best methods in terms of reliability and documentation
for implementing FECG extraction on a dedicated hardware circuit. The work in [20] describes
the corresponding algorithm implementation; it produces eight different signals, which should be
classified in order to correctly point out the channels related to mother (maternal signal), to fetus
signal, or to noise. In addition, the classification is automatically performed and relies on a series of
filter banks capable of highlighting the QRS complex, followed by different K-means instances. The
architecture has been designed and implemented on an Altera Stratix V device. It is a high-end FPGA
that provides the necessary hardware resources featuring relatively low power consumption. This
architecture has been tested on a database made up of 343 real tracks. The results reported in [20]
show that the developed architecture is real time compliant with a power consumption of about 0.5
W. In terms of elaboration speed, the proposed implementation outperforms the other solutions in
the literature based on PIC, DSP and FPGA. In particular, the proposed architecture elaborates 4 s of
recording in less than 30 ms. Moreover, the FPGA resource consumption of this architecture is low;
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therefore, it is possible to implement other functionalities, such as data encryption for the separated
tracks. On the other hand, it is also possible to lower the power consumption by adopting a less
performant device, such as an Altera Cyclone V device.

This new solution implies a re-design of the electronics of the whole system, and it will be included
in the next release of our system.

2.5. The Remote Monitoring Service

A fundamental element for an architecture delivering remote monitoring services is represented
by the mobile device, which acts as a networking endpoint for the hardware device capturing signals.
In fact, the combination of those two devices implements a remote station that may be deployed
anywhere, including the patient’s domicile. That station is able to capture physiological signals and
send them in real time to the hospital center where they may be perused by the staff. For our project,
we decided to use a commercial smartphone as the mobile device due to its low cost compared to its
high-end computational capability. Moreover, the patient is expected to already own a smartphone
and be comfortable with it, further reducing the economic impact of the intervention. Finally, through
the use of the smartphone the patient may acquire and send data virtually anytime and anywhere,
with no additional requirement other than the availability of network coverage by the phone carrier to
which she is already subscribed. The smartphone operates according to a store and forward paradigm,
so that, whenever any problem is experienced with the carrier, unsent data are never lost. Instead,
they will be cached in the internal smartphone memory waiting to be transparently transmitted as
soon as the network connectivity is recovered. To implement the mobile app, we chose the AndroidTM

platform because of its widespread availability on a large number of different devices with various
capabilities. Furthermore, the open source approach adopted by AndroidTM makes available a large
knowledge body about its internals that is shared among enthusiast developers.

In Figure 7, we portray the architecture of the mobile app, which is modeled after a multi agent
paradigm [27] and was devised based on our experience in developing similar projects [28,29]. The
modularity of that framework supports the rapid prototyping of telemedicine services through the
reuse of its components, thereby simplifying the switch to different medical contexts.

 

Figure 7. The computational architecture of the remote monitoring service used by Telefetalcare.

As it transpires from the figure, the whole architecture is centered on Data Types, which is the
core component supporting the store and forward paradigm. Data are saved either exploiting the
Sqlite3 database or as plain text files. In our case, data representing patient information, such as
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demographic data, as well as any note written by the patient herself and concerning the specific details
of the acquisition to be shared with the clinic staff, are stored exploiting the Sqlite3 relational structure.
Sampled values are stored instead, exploiting the file paradigm that is more efficient for long time
series. Data Types interacts then with the Synchronization module that implements the two-way data
link with the clinic server.

The Synchronization module exchanges data with the clinic server implementing the retry and
error recovery policy. This component has been successfully exploited and validated in different areas
of remote monitoring involving home patients [30,31]. Two additional modules in the architecture are
represented by the Manual Input and Automatic Input. The former allows the use of the touch-screen
for manually entering data, while the latter exploits BT for connecting with an external device. Finally,
a set of Plugins are used to customize the behaviour according to a specific domain, prompting the
user for input or providing specialized views over data for the chosen application (i.e., Patient Diary or
Local Views). In our case, those implement the remote control for the hardware capturing device and
display data to the user as shown in Figure 8, which includes a plain ECG signal.

 

Figure 8. A snaphot of the mobile device while it is capturing a plain ECG.

At the clinic site, a server is located acting as a backend and including a synchronization engine
that collects all the signal traces sent by the various patients through their apps. The server also
implements the logic for extracting the FHR from the combined signals acquired and an interface for
their perusal. Its operation is modeled as follows. It stores into the patient’s Personal Health Record
(PHR) the incoming 8 tracks that are sent after a successful recording stamped with the date-time
of their acquisition. Any recording then undergoes a processing pipeline composed of three stages.
The first stage includes a filter suppressing the noise superimposed to the recording, as well as the
mother ECG signal, in order to emphasize the fetal component. The second pipeline stage selects the
most interesting track out of the 8 available ones on which FHR will be measured, while the third one
eventually accomplishes the actual FHR measurement.

The server functionality is exposed through a web application that is accessed by the doctors
overseeing the service. That app includes the usual facilities for selecting patients and navigating
across the sessions recorded for each one of them. Once a session is selected, the application displays
the 8 tracks, as well as the computed FHR for visual inspection. All tracks may also be exported for
further analysis using specialized software tools.
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3. Results

The new prototype was tested on five voluntary pregnant women at the 37th week of gestation
during everyday life conditions. They all gave us the informed consent for this testing phase.

3.1. Garment

All subjects reported easiness of wearing the elastic bodysuit and great comfort during the
recording sessions. The abdominal ECG was recorded while subjects were sitting on a chair and
reading a book. We collected more than 10 h of abdominal ECG in different sessions. The average
duration of each tracing was 30 min ± 4 min.

All women had a normal course of pregnancy, and we verified “a posteriori” that they had a
physiological delivery and the newborns were healthy.

In order to prepare for signal acquisition, it was only required that the subject connected the leads
coming out of the sensorized garment to the electronic box, which is dedicated to analog preprocessing,
analog-to-digital conversion, and digital processing. She should also turn on the smartphone, activate
the Telefetalcare app installed on it, and check that the two components were successfully paired and
data transmission over the BT wireless link started.

3.2. Electronics

An essential prerequisite of our solution was the reduction of any cost related to its deployment
and management. To achieve this goal, we decided to devoid the electronic box acting as the
signal-capturing device of any display, on the basis that smartphones already have screens smart
enough to serve for that purpose. Furthermore, mobile devices make also available the primitives
for easily programming their windowing system to achieve an effective user interaction through
simple touch gestures. Thus, the mobile device besides offering the possibility of remotely sending
the acquired signals is also used as the control unit of the hardware device. The use of BT technology
allows pairing the hardware device with a wide range of receivers. Besides mobile devices, also
laptops, hubs, or docking stations could be able to pair with it inasmuch they are endowed with a
suitable application.

Once the mobile terminal was successfully connected through the BT link to the hardware device,
the patient started the acquisition and observed in real time on its screen the signals being acquired.
This feature is particularly useful, since it gives immediate feedback to the patient about the proper
operation of the system. Thus, if a patient experiences any problem with one of the channels, possibly
due to a lead that is not properly connected and has become noisy, the acquisition may be stopped, the
lead may be repositioned, and the acquisition may be started again.

3.3. Transmission

We opted for a deferred transmission, in which the mobile terminal acts according to a
store-and-forward paradigm saving a track of variable length growing at a rate of nearly 256 kBytes
for every minute of sampling. When, according to the directions given by the health care staff, the
expected length was achieved (usually 30 min), the patient could stop the acquisition and select
whether to send that acquisition to the center, keep it locally, or discard it altogether.

3.4. Signal Quality

The quality of the electrocardiographic recordings was then compared to other commercial
devices, showing good results and flat band response in the frequency range 0.1–100 Hz, as reported
in [11]. During the tests, data coming from the abdominal ECG leads of the wearable garment were
preprocessed and transmitted to a laptop through BT connection. A graphical user interface was
developed to display signals in real time; also, on the laptop that was used to test the algorithms for the
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extraction of FECG from abdominal recordings, the fetal QRS and the signal classification according to
the quality index were identified.

3.5. Performance of Classifiers

The performance of the actual FECG extraction algorithm was evaluated on real data acquired
using Telefetalcare, achieving reliable results.

For each recording, accuracy (AC) and sensitivity (SE) of fetal and maternal QRS detection were
quantified. An expert clinician evaluated the 1st-ranked traces with q value < 0.1s (according to the
defined quality parameter) by counting the number of (i) QRS correctly detected (TP), (ii) missed QRS
(FN), and (iii) QRS wrongly detected (FP).

AC and SE were computed in the following way:

AC =
TP

TP + FN + FP
SE =

TP
TP + FN

Classification accuracy = correct predictions/total predictions × 100.
For maternal QRS detection, we obtained an overall accuracy AC = 98.52% and sensitivity SE = 99.5%.
For fetal QRS detection, overall AC = 91.26% and SE = 92.94%.
The FHR time series were then analyzed at the medical center (University of Naples Federico II)

using the software we developed (2CTG2) and the most recent algorithms for the multiparametric
analysis [32] and classification [18]. All subjects showed parameters belonging to the normal ranges,
as we selected healthy pregnant women.

In this testing phase, we did not ask pregnant women who were at risk or had known fetal
pathology to participate. For this reason, we do not report results on the classification of fetal conditions.
The large amount of data obtained from the application of classification parameters to Fetal Heart Rate
data from CTG recordings confirmed their ability in the fetal state classification [33]. These results
were used to design the processing architecture.

The next step of our project will be to use the system in collaboration with the Obstetrics Clinic
and to record tracings from a large population of pregnant women, comprising subjects at risk or with
a known fetal pathology, in order to check the classifying algorithms and to generate warnings and
alarms through our mobile application.

4. Discussion

In the past decade, there have been many attempts to exploit wearable monitoring systems to
provide better care for patients. As a result, no convincing evidence emerged that these systems provide
a cost effective solution to the problem of promptly detecting any situation that requires medical
action [34]. As suggested in [35], the main reason for that is not due to intrinsic technical failures or
limitations but to the underestimation of the organizational issues involved for their adoption. This
becomes a sensible topic, since the majority of remote monitoring efforts have been addressing the
treatment of patients affected by chronic diseases with the aim of promptly detecting any symptom
calling for an action in order to avoid or decrease the onset of complications.

While there is a great potential for remote monitoring in this area [36], the long term perspective
of chronic diseases, mainly involving elderly patients, poses a higher burden on the organization
side. With respect to this, there is a lack of guidelines for the implementation of long term home
tele-health solutions, as well as no consensus on specific clinical indicators universally trusted by
clinicians drawing on data that may be automatically acquired or directly provided by patients. Those
aspects, combined with the failure to account for a broader evaluation context also encompassing
legal, ethical, organizational, and practical aspects, are delaying the mainstream adoption of home
monitoring system for chronic patients [37].

In this context pregnancy, although it does not represent a chronic disease, can be considered like
a time-bounded chronic risky condition, and home-monitoring pregnant women involves the same
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organizational problems as monitoring chronic patients. However, if remote monitoring is conceived
of as a whole “service” comprising wearable devices for collecting signals, electronics for transmitting
data, and suitable software and algorithms for analyzing data supporting the clinician specialist to take
decisions on the basis of the analyzed data, the likelihood of achieving a successful “tele-monitoring”
system increases enormously.

The paper describes the design and development of an end-to-end system for monitoring FHR
during pregnancy. The whole system relies on a wearable sensorized garment for acquiring abdominal
FECG recordings, a telemedicine module to send data to a clinic center, and a clinic server equipped
with software applications able to perform an advanced quantitative analysis of the FHR variability
signal through non-linear and soft computing algorithms to obtain the best classification of the fetal
condition. The remote wearable device can be used by pregnant women at home without the need for
external support by clinicians.

On the technical side, a recent work by Jezewski et al. [38] demonstrated the equivalence of
abdominal FECG and Doppler Ultrasound (CTG) methods, in terms of ability of clinical parameters to
distinguish between normal and pathological fetuses. This fact supports the remote use of advanced
signal processing methods already developed for CTG analysis antepartum in the clinical center
deputed to the tele-monitoring service [13]. Moreover, a recent review paper on telemonitoring in
obstetrics [39] shows “the added value, for both mother and child, of telemonitoring used in prenatal
follow-up program” and suggests that it can be recommended for pregnant women at risk.

Our system, within a limited set of pregnant women, demonstrated both accuracy in measuring
and extracting FHR and comfort for the patients, who can check the fetal condition while staying at
home by means of a low cost wearable device and a reliable telemedicine service.
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Abstract: Falls are one of the most common causes of accidental injury: approximately, 37.3 million
falls requiring medical intervention occur each year. Fall-related injuries may cause disabilities, and in
some extreme cases, premature death among older adults, which has a significant impact on health
and social care services. In recent years, information and communication technologies (ICT) have
helped enhance the autonomy and quality of life of elderly people, and significantly reduced the costs
associated with elderly care. We designed and developed an integrated fall detection and prevention
ICT service for elderly people, which was based on two wearable smart sensors, called, respectively,
WIMU fall detector and WIMU data-logger (Wearable Inertial Measurement Unit, WIMU); their goal
was either to detect falls and promptly react in case of fall events, or to quantify fall risk instrumentally.
The WIMU fall detector is intended to be worn at the waist level for use during activities of daily
living; the WIMU logger is intended for the quantitative assessment of tested individuals during
the execution of clinical tests. Both devices provide their service in conjunction with an Android
mobile device. The ICT service was developed and tested within the European project I-DONT-FALL
(Integrated prevention and Detection sOlutioNs Tailored to the population and risk factors associated
with FALLs, funded by EU, action EU CIP-ICT-PSP-2011-5: GA #CIP-297225). Sensor description and
preliminary testing results are provided in this paper.

Keywords: fall detection; fall prevention; ICT; inertial sensing

1. Introduction

Falls represent a major public health problem requiring medical attention: among older adults
(over 65), one in four falls annually, and one dies every 19 min as result of falling [1]. Falling has
significant consequences which affect the quality of life in the elderly, because falls can dramatically
change an elderly person’s self-confidence and motivation, thereby affecting their ability to live
independently in a dramatically vicious cycle which tends to worsen with age. Even though human
beings are all at risk of falling, some factors such as age, gender, health conditions, and the history
of previous falls show remarkably high correlations to the type and severity of injuries which occur
as a result of falling [2]. Among healthy people, adults over 65 years of age experience high risk of
serious injury due to falling, and this risk keeps increasing with age. In general terms, the risk of
fall is related to extrinsic (environment-dependent) and to intrinsic factors (physical, sensory and
cognitive changes typical of ageing); moreover, fear of falling is related to adopting overly-cautious
gait habits [2], and this might in turn cause falls that result in increased risk of falls, fear of falling,
and functional decline [3]. As a result, fall prevention activities are carried out across a range of
health disciplines including occupational therapy, physiotherapy, general practice, nursing, geriatric,
gerontology health, and social care [4–6]. Fall risk assessment concerns the evaluation of risk factors.
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Relevant efforts in mitigating risk factors are targeted to physiological factors, which include muscle
strength and balance, stability, posture, and gait reaction time [7].

Fall risk definition and instrumental assessment are relevant for adapting the level of assistance
needed by elderly people and tailoring preventive measures to specific subjects that are deemed to
be at high risk of falling. The risk of falling is generally evaluated using questionnaires, despite their
associated problems of subjectivity and limited accuracy [8]. A number of experimental tests (e.g., Berg
balance scale, Timed Up and Go, Turn 180◦ test) have been developed to screen older people in the
community or in a clinical setting [7]; risk can also be evaluated by clinical and functional assessment
including posture and gait, independence in daily life, cognition, and vision [8,9]. However, previous
studies still report limitations in accuracy and versatility, preventing routinely use of this process in
clinical practice [8].

Recently, information and communication technologies (ICT) have been increasingly applied in
the attempt to improve the level of autonomy and quality of life of elderly people at risk of falling,
and a plethora of services were considered for fall prevention and detection, in the latter case, with the
possibility to send alarms and call for rescue once falls have been detected [8,9]. Technology-based
interventions have been deployed in a wide range of contexts, and include: (i) diagnosing and treating
fall risks [10,11]; (ii) increasing adherence to interventions [12,13]; (iii) detecting falls and alerting
caregivers or next of kin [14,15]. ICTs could also play a key role in enabling older adults to self-assess
their fall risk, reducing costs and lessening the burden on the healthcare system, whilst also improving
the quality and effectiveness of care provided [16]. Despite the abundance of ICT systems, and the
availability of several interesting implementations, e.g., [17–21], there are still several challenges that
may potentially impact their use in practice [22].

This paper describes the design, development, and preliminary testing of a custom wearable
sensing device and ICT service for fall detection and fall risk assessment as an element of the
I-DONT-FALL platform for fall risk assessment and mitigation. The European project I-DONT-FALL
(Integrated prevention and Detection sOlutioNs Tailored to the population and risk factors associated
with FALLs, CIP-297225) aims at pursuing a multi-factorial approach to fall detection and fall risk
assessment and mitigation.

The developed ICT service was based on two wearable smart sensors, called, respectively,
WIMU fall detector and WIMU data-logger (Wearable Inertial Measurement Unit, WIMU); their goal
was either to detect falls and promptly react in case of fall events, or to quantify fall risk instrumentally,
in line with other proposed solutions [15–18]. The WIMU fall detector was intended to be worn at the
waist level for use during activities of daily living; the WIMU logger was intended for the quantitative
assessment of tested individuals during the execution of clinical tests. Both devices provide their
service in conjunction with an Android mobile device.

An interesting feature of the I-DONT-FALL approach is that the developed ICT services are
intended to be used not only to automatically detect falls, as most competing solutions do, but also
to prevent falls. Fall prevention is intended in this context to provide support to clinical decisions
regarding the fall risk profile of patients, whose gait is assessed using wearable sensor technologies.
In regard to the problem of fall detection, we have previously developed a method for pre-impact fall
detection based on sensor fusion algorithms combining data from a waist-based inertial measurement
unit integrating an air pressure sensor, [23]. There, a thorough discussion of the advantages of using
air pressure sensors in a fall detector was done, and our results were compared to those achieved by
alternative implementations of state-of-the-art waist-based fall detectors. As for the preliminary testing
of our approach concerning fall prevention, we describe in this paper our solution to the problem
of getting an instrumental version of a widely used clinical test, namely the Six Minutes Walking
Test (6MWT).

The 6MWT was administered to both high and low fall-risk patients wearing the proposed system
at the waist level. Waist movement during walking plays a critical role in successful locomotion,
and contributes to gait stability among older people [24]. In the preliminary tests, the acquired signals
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were processed to extract gait parameters: stride time, cadence, stride time variability, root mean square
of the vertical acceleration, and harmonic ratios (HR) of the three components of the acceleration.
In fact, these gait variables, or a subset of them, have been previously considered in several research
reports [25–27], sometimes with a specific focus on the study of falls [26]. Another parameter of interest
in 6MWT was the walked distance which was not computed using the WIMU sensor data, but was
measured manually. Walked distance can be considered a proxy to walking speed, which can be
estimated as the ratio between the distance and the time elapsed during the test. Recently, solutions
have been proposed concerning the application of smartphone technology to the development of a
practical and easy-to-use tool for rehabilitation professionals to use in the management of 6MWT [28].
While a similar approach could have been considered here, we preferred to opt for the use of an
external sensor unit, namely the WIMU. This was pursued with the aim of extending the number
and type of gait variables that could be involved in the assessment (in particular, the HRs), and to be
compliant with the experimental setups that are described in the literature [25,26,28].

2. Materials and Methods

2.1. The Overall ICT Solution

The I-DONT-FALL project aims at implementing a fall detection and risk management framework
for a multi-factorial approach to risk assessment [29]. The fall detection service is depicted in Figure 1.
The patient wears a fall detector, namely a smart sensor that is capable of identifying fall-related
impacts. When a fall event is detected, an alarm is issued via the Bluetooth (BT) connection between
the fall detector and an Android device from which it is sent to a call center and to a repository of phone
numbers and/or e-mail addresses (i.e., relatives and caregivers). The Android device automatically
selects the channel (Wi-Fi and/or GPRS/3G-4G) over which the alarm is to be broadcast. The call
center closes the loop by contacting the patient/caregiver to check on his/her conditions and to
acquire context information about the fall event. Context information is added to the sensor data in
order to provide a clear representation of the fall event even in the case of false positives. Sensing
data corresponding to 2.5-s long windows that are centered around the fall time of occurrence are
automatically stored on the smartphone and transferred to a secure server. The activation of the call
center is based on machine-machine interaction provided by a web service. All the gathered data from
different users in different locations are stored on a remote secure server. The web service structure
information is provided by the SOAP (Simple Object Access Protocol) protocol.

Three general methods for read access to patient data on the secure server by a third-party
healthcare system are provided:

• access to HTML/Java streams that allow interactive, top-down browsing of patient data, using a
unique, time-limited URL;

• access to PDF format summary reports of the patient data covering a specified period of time,
normally 28-day blocks;

• subscription to specific types of low-level physiological data and interventions that have been
recorded for or by the patient within the system.
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Figure 1. Fall detection service architecture: in case of an alarm by the WIMU fall detector, accelerometer
data and the alarm itself are sent to the smartphone by Bluetooth connection. The smartphone
automatically sends warning messages to a list of recipients (SMS/email) and alerts the call center
that directly contacts the elderly individual on the smartphone, and if needed, clinical emergency staff.
In a secondary loop, information about the fall event are uploaded to a secure server automatically by
the smartphone and manually by the call center and clinical staff that are also allowed to access the
information in the patient’s record.

2.2. The Hardware

The fall detector is a battery-powered (3.7 V Li-polymer Rechargeable) device (Figure 2) intended
to be worn around the waist (weight 100 g) during indoor daily activities; the battery life is about 20 h,
and data from the internal sensors is sampled at a rate of 100 Hz.

Figure 2. The WIMU fall detector case with its dimensions in different views (units in mm).

The electronics of the fall detector embeds two stacked Printed Circuit Boards (PCBs) of
identical size: the controller and the sensor board. The controller is a commercial device based
on a 32-bit low-power ARM cortex M0 Core running at 48 MHz, 8 KB RAM, 32 KB FLASH:
the NXP LPC11U24. The software running on the controller is developed using an online Software
Development Kit (SDK) that supports a C/C++ programming environment including libraries for
peripheral abstraction.

The sensor board is a two-layer PCB (Figure 3), specifically designed and developed to host a
battery charger powered connecting the device to an USB port via its mini USB connector, a micro
SD card slot for internal logging, a Bluetooth module (RN-42 by Roving Networks), and four
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sensors. In particular, one tri-axial accelerometer (BMA180 by Bosch Sensortec), one tri-axial gyroscope
(ITG-3200 by InvenSense), one tri-axial magnetic sensor (HMC5883L by Honeywell), and a barometric
pressure sensor (BMP085 by Bosch), all sample at a rate of 100 Hz. The sensor setup is shown in
Table 1.

Figure 3. The sensor board (layer 1 and 2).

Table 1. WIMU sensor board setup.

Device
Low Pass Filter Cut Off

Frequency (Hz)
Sensing Range Sensitivity-Resolution

Accelerometer 1200 ±4 g (1 g = 9.81 m/s2) 0.000488 g/LSB
Gyroscope 256 ± 2000 ◦/s 0.0696 (◦/s)/LSB

Magnetometer ± 0.88 Gauss 0.00729 Gauss/LSB
Pressure sensor +9000 m, ..., 500 m above the sea level 0.01 hPa

The logger is a battery -powered (3.7V Li-polymer Rechargeable) device (Figure 4) intended to be
worn around the waist (weight: 90 g) during the execution of specific tests by the patients. The battery
life is about 4 h.

Figure 4. The WIMU logger case with its dimensions in different views (units in mm).

The logger electronics differ from the those of the fall detector only in the features of the controller.
The controller is now a commercial device based on a 32-bit ARM cortex M3 core running at 96 MHz,
32 KB RAM, 512 KB FLASH: the NXP LPC1768. Basically, the difference between the NXP LPC1768
and the NXP LPC11U24 is in the power consumption and memory capabilities. Computational and
memory capabilities are higher in this controller compared to those of the fall detector. The sensor
board is identical to the one used for the fall detector.
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2.3. The Fall Detector: Functionalities

The fall detector is designed to achieve a continuous-data monitoring for almost the full length
of the day. Working in conjunction with an Android mobile device and according to the diagram of
Figure 5, the fall detector provides the following functions:

• automatic fall detection—a built-in algorithm of fall detection identifies impacts that may be
related to falls, generates and displays alarms, and sends them to the Android device using
BT connectivity;

• automatic logging (and subsequent transfer to the Android device)—acceleration data occurring
in a time window around the fall event are stored; this is a useful feature to keep track of fall
events and use the logged data for post-hoc processing, e.g., further refinement and tuning of the
built-in fall detection algorithm;

• parsing and managing of a list of commands coming from the mobile device to change the
parameters of the algorithms, obtain battery information, and troubleshoot possible device errors.

• estimation of the activity level (AL)—the built-in algorithm of AL estimation helps keep track
of the intensity of the physical activity of the patient during the day.

Figure 5. Fall detector flow diagram.

As highlighted in the flowchart in Figure 5, after the system start-up, the fall detector waits for
commands coming from the Android device. After receiving a “Start” command, the sensing board
is initialized and a control loop is activated with the purpose of sampling the accelerometer data,
executing the fall detection algorithm, computing the AL index, and parsing of the commands coming
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from the mobile device. In case a fall event is detected, an alert message is sent to the mobile device
and the WIMU is frozen in power standby. The commands available to the mobile device allow the
control loop exiting for the WIMU standby (Stop command) and the collection of data about the battery
level and the AL index (GetBatteryLevel and GetALIndex commands).

A detailed description of the fall detection and AL estimation algorithms are beyond the scope of
this paper; they are reported in the technical deliverables of the I-DONT-FALL project [30].

2.4. The Data Logger: Functionalities

The main functionality of the logger is data acquisition and their transfer to the Android device.
Namely, the logger collects raw data from the set of sensors embedded in the sensor board at a rate of
100 Hz in two different modes, see the flowchart in Figure 6:

1. standalone mode—the data are stored in the internal memory of the device, which is capable of
storing records lasting six minutes;

2. continuous mode—the data are transferred sample-by-sample to the Android mobile device;
the maximum duration of a data record will depend on the battery duration (about four hours)
of the wearable device. Considering the sampling rate (100 Hz) and a sensory data frame length
of 38 bytes, the max data length collected in four hours is about 60 MB.

Figure 6. Logger flow diagram.
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2.5. The Android Mobile Device

The mobile device runs the WIMU manager, an app which is able to operate either the fall
detector or the logger. The full system operationality relies on the integrity of wireless communication
(BT, GSM/GPRS/3G-4G and/or IEEE 802.11 b/g/n).

All communications between the WIMUs and the mobile device are based on the SLIP protocol
(Serial Line Internet Protocol). The WIMU manager incorporates an FTP server that allows the data to
be transferred to a remote data server.

When working in fall detection mode, the WIMU manager consists of four threads which work in
parallel to accomplish the following tasks:

1. periodic check of the connection with WIMU;
2. periodic check of the connection with the call-center;
3. acquisition of the ADL index and WIMU’s battery level;
4. alarm management;

a. propagate the alarm to different recipients (see Table 2);
b. upload of acceleration data logged by the WIMU in a time window around the fall event.

Table 2. Android mobile device fall detection alarm management. Tick marks indicates the used

Internet Telephone Network

Alarm Recipient Web Service e-mail SMS Pre-Recorded Phone Calls

Call centre �
Family and friends � � �

In case of connection failure or fall-detection, the Android device generates text and vocal
messages. AL index and the WIMU battery level are continuously displayed on the main activity of
the WIMU manager (Figure 7).

Figure 7. WIMU manager app front end.

When working in logger mode, the WIMU manager implements different functionalities:

1. the selection of standalone mode (the logging duration can be specified) or continuous mode;
2. acquisition of the WIMU battery level;
3. acquisition of the data collected by the WIMU (at the end of the experiment for the

standalone mode, sample-by-sample in continuous mode);
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4. calculation and displaying of the Fast Fourier Transform (FFT) of the data acquired by the WIMU
during a diagnostic test data acquisition. This tool is useful to let the user periodically check the
correct functionality of the instrument.

2.6. Instrumentation of the Six-Minutes Walking Test

To test the potentialities of the proposed technological solution, an instrumental version of the
6MWT has been proposed by measuring lower trunk accelerations using the WIMU, configured
as a wireless data-logger. In particular, the results of a preliminary experimental session involving
elderly subjects are reported to better explicate the potentialities of the proposed technological solution.
Two groups were tested for this preliminary evaluation of the hardware, involving a subset of the
overall IDONTFALL dataset, including 25 high fall-risk and 25 age-matched low fall-risk patients
respectively, grouped and selected by the clinical partners of the I-DONT-FALL project [31]. The WIMU
was mounted at the L3 spinous process (lower trunk) using a Velcro belt carefully placed in order
to not restrict the subjects’ movement. Subjects were asked to stand still in their upright posture
for few seconds before starting the test. The 6MWT was administered along a corridor 32-m long
(approximately) with two small cones on the floor to mark the start and end points of each trip.
No specific instructions were given to the operators to calibrate the WIMU sensors; care was required
in fixing the WIMU to the body to align the device local frame to the anatomical axes. Trunk linear
accelerations were measured along the vertical (VT), anteroposterior (AP), and medio-lateral (ML) axes,
sampled at 100 Hz. At the end of each test, collected data were uploaded to the Android smartphone
via Bluetooth.

The first gait variable considered for the 6MWT assessment is the walking distance D, expressed
in meters, and measured manually by the experimenter. Stride time, T, expressed in seconds, is the
time elapsed from the first contact of the (right) leg with the ground to the next; stride time variability
is computed from the coefficient of variation (COV, standard deviation divided by mean value ×100)
of stride time, which quantifies variability while taking into account mean performance. These gait
variables, and especially stride time variability, were considered in past studies [7]. The issue of gait
variability is challenging, since variability in motor function can be regarded either as a marker of
impaired motor control or as a positive sign of system adaptation [32]. Gait involves cycles that are
characterized by regularity, but also balance components characterized by variability. Identifying
such components, while taking into account noise random error, is a challenge. If random error is
large, reliability will be low, and any variable will show large variability. Thus, variability caused by
random error may be misinterpreted as an indicator of adaptability or impairment. The estimation
of spatio-temporal gait parameters requires the detection of subsequent foot contacts (onset and end
of stride cycles). Several studies have addressed the relationship between measured accelerations
(on trunk, thigh, shank and foot) and spatio-temporal gait parameters. We adapted the method
proposed by Zijlstra and Hof [25] for stride time determination.

The harmonic ratios (HRs) are dimensionless quantities that, as they are derived from body
accelerations, offer insights into the underlying mechanisms of balance control during gait [33].
HRs provide information on the ability of subjects to control their trunk smoothly during walking,
providing an indication of whole-body balance and coordination (gait stability). We measure HRs in
three directions, which allows us to exam directional responses. It can be speculated that movements
in the ML direction during walking can be controlled differently than those in the AP plane, raising
interesting questions concerning the ability of HRs to correlate with or predict falls. It is hypothesized
that significantly lower HRs are found in unstable older adults (self-reported falls or unsteadiness)
when compared to normal groups. Higher HRs indicate smoother and more stable trunk movement
during gait [33]. Typical AP and VT acceleration patterns of the lower trunk during walking exhibit two
major acceleration peaks per stride, one for each step; thus, frequency decomposition through Fourier
analysis yields a dominance of the second harmonic and subsequent even harmonics. The even
harmonics for the AP and VT indicate the in-phase components of the signal, whereas the odd
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harmonics comprise the out-of-phase components (minimized in healthy gait). The HRVT and HRAP
are calculated by dividing the even harmonics (summed amplitudes of the first 20 even harmonics)
by the odd harmonics (summed amplitudes of the first 20 odd harmonics), with higher HRs being
characteristic of healthy, stable gait. Conversely, the ML accelerations exhibit one acceleration peak per
stride, resulting in dominance of the first harmonic and subsequent odd harmonics. Here, the odd
harmonics are in-phase and even harmonics are out-of-phase. Therefore, the HRML is calculated from
a ratio of the odd harmonics divided by the even harmonics.

3. Results

Table 3 shows the results of gait parameters estimation across the two tested groups. Statistically
significant differences, obtained by applying an independent samples t-test, are marked with asterisks.
In Table 4, the correlation matrix computed for the gait parameters from the high fall risk group is
also reported.

Table 3. Gait parameters results for the two groups.

Patient Fall-Risk Level

Low-Risk High-Risk

Walked distance (D), m 281 ± 100 183 ± 58 ***
Cadence, spm 103 ± 13 90 ± 15 ***

Stride time (Tstride), s 1.19 ± 0.18 1.37 ± 0.23 **
Stride time variability (COV), % 6.7 ± 3.1 8.5 ± 3.9

RMS (vertical acceleration), m/s2 1.68 ± 0.59 1.05 ± 0.41 ***
HRML 1.66 ± 0.36 1.70 ± 0.42
HRVT 1.93 ± 0.67 1.65 ± 0.56
HRAP 1.69 ± 0.64 1.46 ± 0.38

***: p < 0.001 **: p < 0.01.

Table 4. Correlation matrix computed for the gait parameters from the high fall risk group. In bold:
the strongest correlations among gait parameters.

D Tstride COV RMS HRML HRVT HRAP

D 1.00
Tstride −0.28 1.00
COV 0.56 ** 0.21 1.00
RMS 0.73 ** −0.32 −0.59 ** 1.00

HRML −0.10 −0.55 ** −0.13 −0.021 1.00
HRVT 0.48 * −0.28 −0.63 ** 0.70 ** 0.27 1.00
HRAP 0.42 * −0.27 −0.59 ** 0.64 ** 0.35 0.88 ** 1.00

*: p < 0.05 level (2-tailed) **: p < 0.01 level (2-tailed).

4. Discussion

The main results achieved during the preliminary experimental tests reported in this study can
be summarized in the two following points. First, high fall-risk patients’ gait was slower (0.51 m/s
vs. 0.78 m/s on average), more variable (according to the estimated stride time variability), and less
stable (the AP and VT directions, i.e., frontal stability) than normal gait (normative values taken from
available literature). Statistically significant differences between the two groups were obtained for
walked distance, stride time, cadence, and vertical acceleration RMS. In general terms, and despite the
limitations of comparing these results with studies based on different protocols and selection criteria
for the subjects, this is in accordance with previous studies that identified statistically significant
reduced stride length and walking speed in high fall risk patients [26]. In our solution, the differences
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observed for stride time variability and harmonic ratios is not as high as it was observed to be in
previous studies [28,34]; we believe that this could be an effect of the limited pool of tested subjects in
this preliminary evaluation of the device.

Secondly, the results of the correlation analysis show the presence of a remarkably strong
relationship between walked distance, stride time variability, and frontal stability, in the sense that a
fast gait is likely to be less variable and more frontally stable than a slower pathologic gait. Such results
confirmed the expectations and previous findings concerning gait subjects at high risk of falls, and in
our view, confirmed the applicability of the proposed solution to the specific scenario of fall risk
assessment in the elderly.

5. Conclusions

The proposed technological solution makes up part of the integrated solution for fall detection and
fall risk assessment and mitigation as proposed in the I-DONT-FALL EU-funded project. The WIMU
fall detector accomplished the aim of monitoring falls during daily life, allowing a full day’s battery
life and embedding custom-made fall detection algorithms. Moreover, the fall detector allowed the
logging of fall data, which is useful for updating the existing fall detection computational solutions
using real falls data. The designed WIMU data logger consisted of a fully functional logging unit
that accurately and reliably logged data and implemented gait parameter estimation, embedding the
processing in the unit.

Finally, it is worth noting that, the proposed solution for fall risk assessment and fall detection
is fully integrated in an ICT solution aiming at a multi-factorial approach to risk assessment and at
prompting intervention protocol in case of fall. Such a solution, the final result of the I-DONT-FALL
project, achieved a commercially-ready integrated framework for both monitoring the elderly at home
and reducing their fall risk by prescribing physical and cognitive activities tailored to the user.
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Abstract: Limited research exists on the reliability of consumer-based physical activity monitors
(CPAMs) despite numerous studies on their validity. Consumers often purchase CPAMs to assess
their physical activity (PA) habits over time, emphasizing CPAM reliability more so than their validity;
therefore, the purpose of this study was to investigate the reliability of several CPAMs. In this study,
30 participants wore a pair of four CPAM models (Fitbit One, Zip, Flex, and Jawbone Up24) for a
total of eight monitors, while completing seven activities in the laboratory. Activities were completed
in two consecutive five-minute bouts. Participants then wore either all wrist- or hip-mounted CPAMs
in a free-living setting for the remainder of the day. Intra-monitor reliability for steps (0.88–0.99)
was higher than kcals (0.77–0.94), and was higher for hip-worn CPAMs than for wrist-worn CPAMs
(p < 0.001 for both). Inter-monitor reliability in the laboratory for steps (0.81–0.99) was higher
than kcals (0.64–0.91) and higher for hip-worn CPAMs than for wrist-worn CPAMs (p < 0.001 for
both). Free-living correlations were 0.61–0.98, 0.35–0.96, and 0.97–0.98 for steps, kcals, and active
minutes, respectively. These findings illustrate that all CPAMs assessed yield reliable estimations of
PA. Additionally, all CPAMs tested can provide reliable estimations of physical activity within the
laboratory but appear less reliable in a free-living setting.

Keywords: physical activity; accelerometry; steps; energy expenditure; activity tracker

1. Introduction

Despite the well-known benefits of regularly engaging in physical activity (PA), half, or more,
of U.S. adults do not meet the 2008 Physical Activity Guidelines for Americans [1–3]. To better
understand the role of PA in improving health and reducing disease burden, it is important to
measure PA accurately and reliably. High-quality measurement techniques allow researchers to
identify which activity intensities provide optimal health benefits, monitor intermittent bouts of
PA, and more accurately assess the effectiveness of interventions for promoting behavior change [4].
Consumer-based PA monitors (CPAMs) are common accessories with one in ten adults in the United
States owning a CPAM [5]. During the first fiscal quarter of 2016, 19.7 million fitness trackers were
sold worldwide; a 67.2% increase from quarter one of 2015. Fitbit Inc. was the largest distributor of
fitness trackers during quarter one of 2015 and 2016 with 32.6 and 24.5% market share, respectively [6].
Despite surging popularity of these devices, one in three consumers who purchase a CPAM stops
using it after six months [5]. The reasons for the high dropout in using CPAMs are not well understood,
but they may be partly related to a lack of understanding on how well (e.g., accurately and reliably)
the CPAMs capture PA levels and patterns over time.
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While studies of device accuracy are common, much less research has investigated CPAM
reliability [7]. For instance, only one study has assessed intra-monitor reliability (e.g., test-retest
reliability). Kooiman et al. [8] assessed the intra-monitor reliability of the Fitbit Flex (Fitbit Inc., San
Francisco, CA), Jawbone Up (AliphCom dba Jawbone, San Francisco, CA, USA), and Fitbit Zip (Fitbit
Inc., San Francisco, CA, USA) to estimate steps using two bouts on a treadmill at 3.0 mph for 30 min.
High intra-class correlations (ICCs) were found (0.81–0.90, for the Fitbit Flex, Fitbit Zip, and Jawbone
Up), but these results are limited to a single activity and did not assess other variables, such as kcals or
active minutes [8].

Four studies have assessed inter-monitor reliability (agreement between various monitors used
during the same assessment). These studies ranged from case studies to those with 30 participants
and assessed the Fitbit Ultra, Fitbit One, and Fitbit Flex. All four studies found Pearson correlations
>0.90 for both steps and kcal measurements during ambulation in laboratory settings [9–11] or across
free-living settings [12].

Current CPAM reliability research is limited regarding the diversity of activities tested (mainly
walking and jogging) and the variables assessed (mainly steps). Additionally, several studies have
evaluated inter-monitor reliability exclusively despite intra-monitor reliability being more relevant to
assessing PA habits over time as consumers rarely use multiple CPAMs at a given time. Furthermore,
little work has been done to assess CPAM inter-monitor reliability in a free-living setting. The inclusion
of multiple settings is critical as several studies have reported setting-oriented differences in CPAM
performance [13,14]. This study’s purpose was to assess the intra- and inter-monitor reliability of
several CPAMs for steps and kcals during a variety of activities, as well as the inter-monitor reliability
to estimate steps, kcals, and active minutes in a free-living setting.

2. Methods

Participants

In this study, 30 (9M/21F) young adults were recruited from the East-Central region of Indiana.
To be eligible for this study, participants had to be free of gait abnormalities, free of acute illness,
between the ages of 18 and 80 years, not pregnant, and capable of completing the protocol without
undue fatigue.

Prior to participating in the study all participants provided written informed consent approved by
Ball State University’s Institutional Review Board. All participants were right-handed and Caucasian;
demographic information is shown in Table 1.

Table 1. Demographic information on participants categorized per analysis.

All
Participants

ICCs
(n = 28)

Pearson
(n = 30)

FL Hip
(n = 15)

FL Wrist
(n = 15)

Age (years) 23.1 ± 2.1 23.0 ± 2.1 23.0 ± 2.0 23.8 ± 2.4 22.4 ± 1.7
BMI (kg·m−2) 23.3 ± 3.4 23.4 ± 3.5 23.2 ± 3.3 23.3 ± 2.7 23.3 ± 4.0

Treadmill Brisk (km·h−1) 5.3 ± 0.3 5.3 ± 0.3 5.5 ± 0.3 - - - -
Treadmill Jog (km·h−1) 8.7 ± 2.1 8.9 ± 2.1 8.9 ± 2.1 - - - -

Kcal = kilocalories. BMI = body mass index. ICCs = data from participants used during intra-monitor analysis.
Pearson = data from participants used during inter-monitor analysis. FL Hip = data from participants assigned
hip-worn monitors during free-living portion of study. FL Wrist = data from participants assigned wrist-worn
monitors during free-living portion of study. Data presented as mean ± standard deviation.

3. Equipments

During the laboratory visit, participants wore eight CPAMs (one pair of four different models).
Descriptions of the CPAMs used are provided below.

Fitbit One (FO; Fitbit Inc., San Francisco, CA, USA): The FO, a hip-worn CPAM weighing 8.5 grams
was used to estimate steps and kcals in the laboratory setting, as well as steps, kcals, and active minutes
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during the free-living portion of the study. Data are quantified by the FO by utilizing the demographic
information entered into the monitor, as well as through measurements made via accelerometer
hardware within the monitor. This CPAM has an internal, rechargeable battery and provides real-time
feedback to its user. The FO has the capability to synchronize with the Fitbit Mobile Application via a
Bluetooth connection allowing the user to track PA over time. Data from the FO were collected from
the Fitbit Mobile Application before and after each activity.

Fitbit Zip (Fitbit Inc., San Francisco, CA, USA): The FZ, is a hip-worn CPAM weighing 8.5 grams
and was used to estimate steps and kcals in the laboratory setting as well as steps, kcals, and active
minutes during the free-living portion of the study. Data are quantified by the FZ by utilizing the
demographical information entered into the monitor, as well as through measurements made via
the accelerometer hardware within the monitor. The FZ uses a CR-2032 watch battery and has the
capability to synchronize with the Fitbit Mobile Application via a Bluetooth connection. Data from the
FZ were collected from the device’s built-in display screen before and after each activity.

Jawbone Up24 (AliphCom dba Jawbone, San Francisco, CA, USA): The JU, a wrist-worn CPAM
weighing 22.7 grams and was used to estimate steps and kcals in the laboratory setting, as well
as steps, kcals, and active minutes during the free-living portion of the study. Data are quantified
by the JU by utilizing the demographical information entered into the monitor, as well as through
measurements made via accelerometer hardware within the monitor. This CPAM utilizes an internal,
rechargeable battery and can provide real-time feedback to its user via Bluetooth connection and the
UP Mobile Application. Data from the JU were collected from the UP Mobile Application before and
after each activity.

Fitbit Flex (Fitbit Inc., San Francisco, CA, USA): The FF, a wrist-worn CPAM weighing 17.0 grams
and was used to estimate steps and kcals in the laboratory setting, as well as steps, kcals, and active
minutes during the free-living portion of the study. Data are quantified by the FF by utilizing the
demographical information entered into the monitor, as well as through measurements made via
accelerometer hardware within the monitor. This monitor utilizes an internalized, rechargeable battery
and requires the Fitbit Mobile Application and a Bluetooth connection to track PA. Data from the FF
were collected from the Fitbit Mobile Application before and after each activity.

4. Protocol

Participants came to the Clinical Exercise Physiology Laboratory at Ball State University twice.
During visit 1, participants completed an informed consent and had their height and weight
measurements taken via scale (to the nearest 0.1 kg) and stadiometer (to the nearest 1.0 cm), which
were then entered into each CPAM’s respective mobile applications in addition to age, sex, and hand
dominance. Researchers then fitted the CPAMs to the participants; initial readings of steps and kcals
were collected from all CPAMs while the participant was in a seated position.

Following baseline data collection, participants completed a laboratory-based activity protocol.
Each participant underwent an identical protocol where all activities lasted for five minutes, excluding
transition time between activities. The only exception was the ‘climbing stairs’ activity in which all
participants ascended and descended a flight of stairs five times at a self-selected pace. All activities
were performed twice in succession with CPAM data collected before and after each activity bout to
allow for the intra-monitor reliability analysis. It should be noted that data collected from the CPAMs
were done so in the same order (FO, FZ, FF, JU) to minimize variability. Additionally, transition times
between activity bouts lasted approximately one to three minutes and were determined by CPAM
synchronization rate following activity bouts. The activity protocol was structured in the following
order: typing, reading, sweeping (participants swept confetti into a pile within a ~10 m2 section of
the laboratory), slow treadmill walk at 3.2 km/h, brisk treadmill walk (4.8–5.6 km/h), treadmill jog
(6.4–12.9 km/h), and ascending/descending stairs. Participants chose paces for the brisk treadmill
walk, treadmill jog, and stairs activities.
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5. Data Cleaning and Analysis

Intra-monitor reliability was assessed via intra-class correlations (ICCs) independently for each
CPAM model (FO, FZ, JU, and FF) and outcome variable of interest (steps and kcals). Data used in this
analysis came from a single monitor of each brand during both bouts of each activity. For wrist-worn
CPAMs, data from the distal monitor were used, whereas data for hip-worn CPAMs came from
the anterior monitor. Inter-monitor reliability was assessed by comparing data from each monitor
brand with its pair (e.g., one FF against the other FF) for the first activity bout exclusively. Pearson
correlations, calculated for each CPAM model and outcome variable of interest, were used to define
the inter-monitor reliability for each CPAM. Both intra- and inter-monitor reliability analyses used
protocol-wide data. That is, for each participant, there was a single ICC and Pearson correlation
calculated using data from all activities, for a total of 30 data points for each analysis points. It should
be noted that these analyses occurred after exclusion criteria were applied (see below).

Participants also completed a free-living protocol after their first laboratory visit. During this
protocol, the participants continued to wear either hip-worn (FOs and FZs) or wrist-worn (FFs and
JUs) CPAMs. Participants were assigned either hip- or wrist-worn CPAMs as the researchers presumed
wearing all eight CPAMs for most of a day would be uncomfortable for participants and may, therefore,
alter their behavior and/or reduce compliance with wearing the devices. These CPAMs were worn
for the remainder of the day then returned to the lab the following morning (visit two) when the
research staff collected CPAM monitors and data concluding participants’ involvement in the study.
The CPAMs assigned to the participants were arranged among participants so that each placement site
(hip or wrist) was used by 15 participants. Free-living data were analyzed using Pearson correlations
in a similar fashion to the laboratory inter-monitor reliability analysis.

A pair of exclusion criteria was applied to the collected CPAM data to remove data likely
influenced by monitor malfunctions. The exclusion criteria for laboratory data were (1) data were
negative (e.g., steps decreased following an activity) or (2) the kcals variable was not updated for a
given CPAM following an activity. Exclusion criteria for the free-living portion were (1) data were
negative or (2) steps taken over the remainder of the day were ≤150 steps. Once these criteria were
applied, a repeated-measures analysis of variance (RM-ANOVA) with Tukey’s post-hoc was used
to determine if significant differences existed among the ICCs. Bland-Altman plots were created
using step and kcal data from both bouts (intra) and monitor pairs (inter) to illustrate the nature of
CPAM differences.

Additionally, median absolute differences (MAD) have been used alongside correlations to
characterize agreement, as done in previous work [15]. Initially, absolute differences were calculated
for each monitor per participant and activity. Then, the medians of the absolute differences were
determined per monitor and participant and presented as MAD. Median percent difference (MPD)
was calculated in a similar fashion using percent differences in place of absolute differences. MAD
and MPD were calculated using step and kcal data from both bouts (intra-monitor) and each pair of
monitors (inter-monitor).

All analyses were conducted in SPSS version 23.0 (IBM, Armonk, NY, USA) and Microsoft Excel
(Microsoft, Redmond, WA). Statistical significance was defined a priori as α < 0.05. Nomenclature for
correlation strength was designated as follow: high (r = 0.80–1.00), moderately high (r = 0.60–0.79),
low (r = 0.40–0.59), or no relationship (r = 0.00–0.19) as set forth by Safrit et al. [16].

6. Results

6.1. Intra-Monitor Reliability

Two participants were excluded from the intra-monitor reliability analysis due to errors
encountered during data collection (e.g., poor synchronization of the mobile application), resulting in
28 participants’ data being used during analysis. Additionally, exclusion criteria removed 11.8% of
step and 8.3% of kcal data from participants included in the analysis. The ICCs for steps and kcals are
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shown in Figure 1. All step ICCs were high (≥0.80) with the FZ significantly higher than the JU and FF
(p < 0.05). All ICCs for kcals were moderately high (0.60–0.79) with the FO having significantly higher
reliability than the JU and FF (p < 0.05). Data for MAD and MPD are shown in Table 2. Recorded
estimations per CPAM and activity from the first visit are shown in Table 3. Intra-monitor MAD
and MPD step values for the hip-worn CPAMs were significantly lower (better) than the wrist-worn
CPAMs (p < 0.01) without a concurrent difference in kcal estimations (p = 0.46 and 0.53, respectively).
The JU had the largest average MAD for steps (11), kcals (2.1), and the highest MPD for kcals (13.9%);
the FF had the largest MPD for steps (7.2%). Figure 2 (steps) and Figure 3 (kcals) illustrate that CPAM
error was higher in some cases during activities with higher predicted PA; however, these results may
be partly influenced by outliers as they were not excluded from analysis. In general, the 95% limits of
agreement were narrower for the hip-worn CPAMs compared to the wrist-worn CPAMs.

Figure 1. Intra-class correlations (Intra-) and Pearson correlations (inter-) for laboratory data. FO = Fitbit
One. FZ = Fitbit Zip. JU = Jawbone Up24. FF = Fitbit Flex. Intra-Steps = intra-class coefficient for steps.
Intra-kcals = intra-class coefficient for Calories. Inter-Steps = Pearson correlations for steps. Inter-Kcals
= Pearson correlation for Calories. # statistically different from FO. $ statistically different from FZ. *
statistically different from JU. + statistically different from FF. Statistical significance was defined as
p < 0.05 for all.

Table 2. Median absolute differences and median absolute percent differences across entire
laboratory protocol.

FO FZ JU FF

Intra-monitor reliability
Steps 1.9 + (0.4) * 3.3 + (0.7) * 7.5 (2.3) #,$ 10.9 #,$ (2.6)
Kcals 1.5 (8.8) 1.5 (9.1) 1.8 (12.5) 1.5 (8.9)

Inter-monitor reliability
(Lab)
Steps 0.5 *,+ (0.1) *,+ 0.5 (0.1) + 2.8 # (0.7) # 4.0 # (1.4) #,$

Kcals 0.5 *,+ (4.6) *,+ 0.5 *,+ (5.9) *,+ 1.3 #,$ (9.4) #,$ 1.5 #,$ (9.1) #,$

Inter-monitor reliability
(FL)
Steps 35 (2.1) 128 (7.0) 731 (8.1) 154 (5.2)
Kcals 34 (5.1) 60 (8.3) 26 (4.1) 88 (11.5)

Active Minutes 0 (0.0) 0 (0.0) 6 (8.5) 0 (0.0)

Kcals = kilocalories. Data presented as MAD (MPD). MAD = median absolute difference. MPD = median absolute
percent difference. FL = free-living. FO = Fitbit One. FZ = Fitbit Zip. JU = Jawbone Up24. FF = Fitbit Flex. #

significantly different from FO (p < 0.05). $ significantly different from FZ. * significantly different from JU. +

significantly different from FF.
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Table 3. Physical activity estimations per monitor and activity from visit one.

Steps Typing Reading Sweeping Slow TM Brisk TM TM Jog Stairs

FO 0 ± 1 0 ± 0 10 ± 43 476 ± 35 587 ± 31 725 ± 105 113 ± 21
FZ 2 ± 8 1 ± 3 1 ± 3 461 ± 60 583 ± 100 744 ± 105 123 ± 36
JU 2 ± 6 0 ± 2 266 ± 166 426 ± 74 575 ± 127 779 ± 136 125 ± 46
FF 1 ± 3 3 ± 8 327 ± 116 399 ± 142 529 ± 151 757 ± 185 153 ± 128

Kcals
FO 9.2 ± 2.0 7.7 ± 1.4 10.1 ± 2.6 20.8 ± 4.4 32.7 ± 6.4 48.9 ± 12.3 13.2 ± 3.7
FZ 11.6 ± 8.7 7.7 ± 1.2 7.8 ± 2.0 41.3 ± 25.8 41.3 ± 6.7 56.0 ± 9.0 12.1 ± 4.4
JU 10.7 ± 3.9 7.6 ± 1.7 17.6 ± 7.1 21.5 ± 7.4 31.1 ± 9.6 56.2 ± 22.4 12.1 ± 11.3
FF 12.8 ± 15.6 8.1 ± 1.7 28.9 ± 9.5 33.0 ± 11.7 39.1 ± 11.9 58.7 ± 18.3 14.5 ± 7.8

TM = treadmill. Kcal = kilocalories. FO = Fitbit One. FZ = Fitbit Zip. JU = Jawbone Up24. FF = Fitbit Flex.
Data presented as mean ± standard deviation.

Figure 2. Bland-Altman plots with 95% limits of agreement calculated using the intra-monitor step
data from all activities completed by each participant.
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Figure 3. Bland-Altman plots with 95% limits of agreement calculated using the intra-monitor
kilocalorie (kcals) data from all activities completed by each participant.

6.2. Inter-Monitor Reliability: Laboratory Setting

All 30 participants’ data were included in the inter-monitor reliability analysis. Correlations for
steps and kcals are shown in Figure 1. Prior to analysis, 11.5% (step) and 8.2% (kcal) data were removed
per exclusion criteria mentioned above. All step correlations were high (≥0.80). Both hip-worn CPAMs
(FO and FZ) had correlations significantly higher than the wrist-worn CPAMs (JU and FF, p < 0.05).
Kcal correlations for the FO and FZ were high (≥0.80); the JU and FF correlations were moderately
high (0.60–0.79). Correlations were significantly higher for the FO than the FF, the FZ than the JU and
FF, and the JU than the FF (p < 0.05). Results from MAD and MPD are shown in Table 2. Recorded
estimations per CPAM and activity from the first visit are shown in Table 3. Inter-MAD and MPD
values were significantly lower in hip-worn CPAMs than wrist-worn CPAMs (p < 0.05 and < 0.01,
respectively). The JU had the largest MAD and MPD for kcals (2.7 and 14.2%), the FF had the largest
MAD value for steps (7), and the FZ had the largest MPD for steps (6.2%). For both steps (Figure 4)
and kcals (Figure 5), the 95% limits of agreement were narrower for the hip-worn CPAMs compared to
the wrist-worn CPAMs.
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Figure 4. Bland-Altman plots with 95% limits of agreement created using the inter-monitor step data
from all activities completed by each participant.

Figure 5. Bland-Altman plots with 95% limits of agreement created using the inter-monitor kilocalorie
(kcals) data from all activities completed by each participant.
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6.3. Inter-Monitor Reliability: Free-Living Setting

Each pair of CPAMs (wrist- or hip-worn) was worn by fifteen participants. A small percentage of
step (3.6%), kcal (0.0%), and active minute (5.0%) were removed per exclusion criteria. Minimum wear
time was not mandated; however, mean wear time was 5.7 ± 3.8 h. Correlations for steps, kcals, and
active minutes for all CPAMs are shown in Figure 6. Most CPAMs had high inter-monitor reliability for
all variables, except for kcals for the FO (low), active minutes for the FZ (moderate), and steps/kcals
for the FF (moderately high). The abnormally low FO kcal and FZ active minutes correlations are
attributable to infrequent outliers illustrated in Figures 7–9. MAD and MPD data paralleled data
collected in the laboratory setting; that is, wrist-worn CPAMs displayed greater (worse) MAD and
MPD data compared to the hip-worn CPAMs. JU had the highest step and active minute MAD and
MPDs while the FF had the largest MAD and MPD for kcals.

Figure 6. Pearson correlations (inter-monitor reliability) of the free-living data. Kcals = Calories.
Mins = active minutes.

Figure 7. Bland-Altman plots with 95% limits of agreement created using the free-living steps data
from each participant.
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Figure 8. Bland-Altman plots with 95% limits of agreement created using the free-living kilocalories
(kcals) data from each participant.

Figure 9. Bland-Altman plots with 95% limits of agreement created using the free-living active minutes
data from each participant.
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7. Discussion

This study found that all CPAMs had high intra-monitor reliability (≥0.80) for steps in a
laboratory setting; however, the hip-worn CPAMs were significantly more reliable than the wrist-worn
CPAMs. The ICCs in the present study are higher than those found by Kooiman et al. [8] who
determined intra-monitor reliability for steps using the FF, JU, and FZ; their ICCs were 0.81, 0.83, and
0.90, respectively compared to 0.89, 0.88, and 0.99 in our study also using a laboratory setting [8].
Discrepancies between the studies could be attributable to differences in activity protocols. Kooiman
et al. [8] used a single treadmill walking activity, whereas the present study used seven different
activities, including both ambulatory (e.g., walking) and non-ambulatory (e.g., typing) tasks. The
larger number and greater variety of activities used in our study builds upon preexisting CPAM
literature and advances our understanding on how these devices perform during free-living activity.
While no other studies have investigated the intra-monitor reliability of the FO for steps or any CPAMs
to estimate kcals, we found lower reliability for kcal estimated than for step estimates, both in terms of
lower correlations but also higher MPD. Our findings show consistently high intra-monitor reliability,
especially for step estimates, with a variety of CPAMs and activities.

High correlations (≥0.80) were also observed in the inter-monitor reliability analyses for all
CPAMs when estimating steps but only for the hip-worn CPAMs when estimating kcals; wrist-worn
CPAMs had moderately-high correlations for kcal estimations. When examining CPAM validity, most
studies show higher accuracy for step estimations than kcal estimates [7,16,17]. Therefore, available
evidence suggests that step estimations from CPAMs are both more reliable and more valid than kcal
estimations. The correlations obtained in the present study were comparable to those reported by
Diaz et al. for steps (0.97 vs. 0.99) and kcals (0.94 vs. 0.97), as well as those of Takacs et al. [11] for
steps (0.96 vs. 1.00), respectively [8,10]. It is important to note the consistently high correlations across
various activity protocols indicating that reliability remains high even with the inclusion of a variety of
activities, contrasting validity research where inclusion of diverse activities lowers CPAM validity [18].

CPAM correlation point estimates from the free-living portion of this study were comparable to,
or lower than, those found during the laboratory portion. Most correlations were moderately high,
although there were four instances when CPAM performance failed to meet the moderately high
threshold. These instances included the FO for kcals, the FZ for active minutes, and the FF for steps
and active minutes. The JU was the only CPAM whose correlations met the moderately high or greater
criteria for all PA variables. A case study examining inter-monitor reliability of 10 Fitbit Ultra devices
in an eight-day free-living trial found considerably higher reliability coefficients (0.995–1.000) for daily
step counts than our study [12]. The Fitbit Ultra is a hip-worn CPAM, which partially explains the
strong reliability found in their study. Additionally, only a portion of the day was spent in a free-living
setting in our study, there was likely smaller variability in the data collected subsequently causing
lower correlation coefficients than seen in the work of Dontje et al [12]. However, recent works have
illustrated that CPAM’s underestimate PA in free-living settings [14] and that the variability of these
estimations is not consistent between CPAM models [13]. Collectively, available research suggests
high or moderately-high reliability for most CPAMs and most dependent variables tested in free-living
settings, supporting the use of these CPAMs during field-based PA monitoring [12].

While all CPAMs in the present study yielded moderately-high to high intra- and inter-monitor
reliability in the laboratory, the hip-worn CPAMs (FO and FZ) had higher reliability than the wrist-worn
CPAMs (JU and FF), both in terms of correlations as well as smaller (better) intra- and inter-monitor
MAD and MPD values and generally narrower (better) 95% limits of agreement when examined using
Bland-Altman plots. Given the greater variability and higher accelerations of arm movement compared
to hip movement during basic tasks, these results were expected. However, wrist-worn activity
monitors have better user compliance than hip-worn monitors [2,19,20]. Additionally, there are a
greater number of wrist-worn CPAMs than hip-worn CPAMs on the market suggesting that wrist-worn
CPAMs may be the more popular models. Accordingly, the choice of CPAM placement (wrist vs. hip)
may depend on the importance of optimal reliability vs. optimal compliance and comfort.
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All CPAMs in the present study collect and interpret PA data based upon accelerometer-based
sensors within the device. More recently, manufacturers have produced CPAMs which incorporate
variables, such as heart rate or other variables (e.g., skin temperature), into their algorithms (e.g., Apple
Watch and Fitbit Charge). Indeed, a recent study showed these multi-sensor CPAMs showed improved
energy expenditure estimations compared to single-sensor CPAMs [13]. As multi-sensor CPAMs
become more common, the reliability of their newer variables (e.g., heart rate) and the influence of
newer variables on other preexisting variables (e.g., kcals) should be investigated as there is likely
crosstalk between sensors.

This study did not evaluate CPAM validity, but the relationship between CPAM validity and
reliability is worth considering. A recent review article by Evenson et al. [7] reported results from
over 20 validity and reliability studies, finding high validity and inter-monitor reliability for steps
using treadmill-oriented protocols. Evenson also noted lower monitor validity during non-ambulatory
activities and when the CPAMs were used in a free-living setting [7]. In contrast, our study found
high or moderately high intra- and inter-monitor reliability across a variety of ambulatory and
non-ambulatory activities in both laboratory and in free-living settings. Thus, available evidence
suggests that CPAM reliability may be stronger than CPAM validity; in other words, CPAMs may be
more useful for tracking PA changes within an individual over time or comparing PA trends between
individuals than assessing adherence to PA recommendations. This should be taken into consideration
when determining the utility of CPAMs as tracking or intervention tools.

Weaker correlations were observed in isolated cases during the free-living data collection, likely as
a result of large differences in predicted activity in a few participants (Figures 7–9). Interestingly, there
is a noticeable discrepancy between these correlations and their respective MAD and MPD values.
While these results seemingly contradict one another, the large differences which significantly impacted
the correlations are not as influential in an analysis of the median absolute and percent differences
because median values are not sensitive to outliers. The robustness of median values (compared to
means) allows for better interpretation of differences between monitors and is supported by its use in
previous research [15]. Nevertheless, the large differences and data removed per the ‘cleaning’ process
are worth noting. It is the authors’ impression that the artificial laboratory analysis and subsequently
frequent uploading of CPAM data may have introduced some of these data (e.g., Figure 5). CPAMs
are likely not intended to be updated in five-minute intervals over an extended period of time; thus,
these errors could be attributable to application lag. It is worth noting, though, that these devices may
have occasional errors while updating one or more variables. This may have contributed to some
of the instances where the variables were actually lower at the end of the day than the beginning of
the day (which is not physiologically possible). Additionally, some of the sporadic large differences
seen in the free-living data (e.g., a difference of >6000 steps for the Fitbit Zip; differences of >375 kcals
for the Fitbit One and Flex; differences of >10 active minutes for the Fitbit Zip and Jawbone Up24)
may be attributable to occasional data loss during updating. Issues with updating the devices and/or
associated applications are worth noting as they quantitatively lower reliability and may necessitate
data screening or removal rules to be introduced.

A limitation of this study design was the relatively short duration (five minutes) of the laboratory
activities which did not permit the analysis of active minutes (require at least 10-min bouts for Fitbit
monitors). The abbreviated activity times may have also contributed to relatively frequent failure of
CPAMs and/or their related applications to update properly resulting in bad data (removed from
analysis). Additionally, sweeping was the only non-ambulatory, non-sedentary activity in the present
study, which limits understanding of CPAM reliability during these types of activities. Mean wear time
during the free-living portion of the study is also a limitation as it resulted in low data variability and
limited options for statistical analyses for these data. To this, the limited wear time of these monitors in
the free-living setting did not permit a statistical comparison between laboratory-based and free-living
performance. Furthermore, a washout period was not utilized between laboratory and free-living
segments of the study. This limitation introduces a source of variability such that participants may
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have modified their free-living behavior having completed the laboratory protocol earlier in the day.
However, the laboratory activity protocol included a variety of activities not previously assessed
in reliability studies (e.g., sweeping and reading) strengthens the present study. By including these
activities of daily living, our results better reflect the performance of these monitors to across a variety
of activities likely to be performed during a typical day. Second, this study included both laboratory
and free-living aspects, which provides a more developed assessment of CPAM performance compared
to studies without a free-living component.

In conclusion, these CPAMs provide reliable estimations of most PA variables in the laboratory;
however, their reliability declines in a free-living setting. This may be attributable to small discrepancies
between estimations being amplified as a result of increased wear time. Nonetheless, these findings
suggest that certain CPAMs can provide reliable estimations of PA, especially steps taken, in a
laboratory setting and possibly in free-living.
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Abstract: Blood pressure (BP) is one of the most important monitoring parameters in clinical medicine.
For years, the cuff-based sphygmomanometer and the arterial invasive line have been the gold
standards for care professionals to assess BP. During the past few decades, the wide spread of the
oscillometry-based BP arm or wrist cuffs have made home-based BP assessment more convenient and
accessible. However, the discontinuous nature, the inability to interface with mobile applications, the
relative inaccuracy with movement, and the need for calibration have rendered those BP oscillometry
devices inadequate for next-generation healthcare infrastructure where integration and continuous
data acquisition and communication are required. Recently, the indirect approach to obtain BP values
has been intensively investigated, where BP is mathematically derived through the “Time Delay”
in propagation of pressure waves in the vascular system. This holds promise for the realization
of cuffless and continuous BP monitoring systems, for both patients and healthy populations in
both inpatient and outpatient settings. This review highlights recent efforts in developing these
next-generation blood pressure monitoring devices and compares various mathematical models.
The unmet challenges and further developments that are crucial to develop “Time Delay”-based BP
devices are also discussed.

Keywords: blood pressure; pulse transit time; pulse arrival time; electrocardiogram (ECG);
photoplethysmography (PPG)

1. Introduction

Cardiovascular disease (CVD) plagues our aging society as the leading cause of morbidity and
mortality in developed countries [1,2]. High blood pressure (BP) or hypertension (HTN) is a common
condition leading to CVD. HTN is determined by increased pressure in the arteries that can lead to
stress on the heart, also known as hypertensive heart disease. About 67 million American adults (31%)
are affected by HTN, while only 47% of patients maintain normal BP control [3]. Further, HTN has also
been found associated with other health issues in various groups of populations, such as the elderly
and pregnant women, to name a few [4,5].

Conventionally, non-invasive BP has been measured using a sphygmomanometer based on the
design proposed by Samuel Siegfried Karl Ritter von Basch in 1881 [6]. Riva Rocci further improved
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the design by developing a branchial cuff sphygmomanometer in 1896 [7]. The detection of Kortokoff
sound (K-sound) in 1905 enabled complete non-invasive BP measurement [8]. The pressure indicated
by the manometer at the first K-sound is noted as the systolic BP (SBP) and the silent fifth sound
indicates the diastolic BP (DBP) (Figure 1a) [8–10]. In the past few decades, oscillometry-based
BP tools have become popular, providing ease of operation. They do not require a caregiver or
experienced personnel to operate and hence can be used to monitor BP in the home setting. These
devices have a cuff wrapping around the arm or leg to detect the oscillations during cuff-deflation
using a built-in pressure sensor. Mean arterial pressure (MAP) is estimated using the amplitude
variations of the recorded oscillations which are used to algorithmically obtain SBP and DBP [11,12]
(Figure 1b). However, a recent study by Leung et al. indicated over three in ten home BP monitoring
cuffs were inaccurate [13]. Further, cuff-based devices are cumbersome and cannot perform continuous
measurements. Thus it is difficult to be integrated with wearable technologies, which continue to
gain popularity in commercial sectors and clinical practice. Ambulatory blood pressure monitoring
(ABPM) has been used to diagnose HTN in the outpatient setting. Although, ABPM is superior to the
isolated, sporadic monitoring of patient’s BP generally affected by “white coat” HTN (or “white coat
syndrome”, referring to a phenomenon in which people only exhibit HTN in a clinical setting), the
current ABPM in use is a bulky device that is not portable or practical for daily or long-term uses [14].

 

Figure 1. Conventional blood pressure (BP) measurement. (a) Sphygmomanometer; and (b) Oscillometry-
based BP measurement.

Finapres (Finapres Medical Systems, the Netherlands), a device that measures finger arterial pressure
using a finger cuff and infrared plethysmograph, has been gaining in popularity [15,16]. Though
having a smaller cuff, the processing device still makes it inadequate to provide continuous data for
daily use. Additionally, it is also motion-sensitive and cannot be reliably used to measure BP during
normal activities.

In the past few years, several research groups have developed cuff-less BP monitoring wearable
devices, holding promise to allow patients to continuously monitor BP without interruption to their
daily activities [17–21]. The underlying principle of these devices is based on the relation of the time
it takes for a volume of blood (in the form of a pulse) to travel from the heart to a peripheral organ,
which could be in the form of pulse transit time (PTT) or pulse arrival time (PAT) [22–24]. Algorithms
and mathematical models have been proposed and developed to optimize the regression process and
calibration of the traveling/delay time (“Time Delay”) and BP [25–27]. The “Time Delay” is usually
obtained using a cardiac electrical signal, i.e., electrocardiogram (ECG), recording device and a pulse
oximeter at a peripheral organ, i.e., photoplethysmography (PPG) [28,29]. However, existing systems
are not continuous as most of the ECG acquisition approaches require a cross-body configuration,
asking the user to touch an open electrode on the wearable device; hence continuous measurements
of BP have not been achieved [17,30]. Though these devices overcome issues of other non-invasive
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tools, several critical issues still remained. First, some devices anchor to the body, which some users
may find irritating [31]. Second, this approach requires frequent calibration to map the “Time Delay”
and BP to maintain accuracy and all existing fitting models appear to be dependent of objects and
temporal trials, as well as motional activities [32,33]. Third, time synchronization between different
bio-signals to obtain “Time Delay” is crucial as the system’s input parameter is in milliseconds. Fourth,
the dependence of BP on other factors, such as vasomotor tones, neural control and heart rate, requires
additional parameters to be included along with PTT/PAT in the mathematical model to adequately
estimate BP [34,35]. Lastly, the accuracy measured via the regression coefficient (R2) is low, with
significant value variations even in the same subject at the same activity level [36,37], suggesting
a more-sophisticated mathematical model may be a solution to enable BP monitoring devices with
higher reliability and precision, which can later be accepted as practical medical-grade tools.

This methodological review provides an overview of the physical relationship between blood
pressure and the “Time Delay” of cardiac signals in a human’s cardiovascular system, as well as the
existing mathematical models to derive BP from “Time Delay” measurements. Thorough comparisons
among methods are achieved using our recording data [38] and those obtained from the Physionet’s
Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) II (Version 3, accessed in December
2016) online waveform database [39]. Collectively, challenges and important issues of wearable,
home-based, cuffless and continuous BP monitoring are discussed in detail.

2. Cardiovascular System and the Electrical-Mechanical Coupling of the Heart

2.1. Electro-Mechanical Cardiac Signals

The heart’s electrical system, also known as the cardiac conduction system, consists of three main
components: sinoatrial (SA) node, atrioventricular (AV) node and His-Purkinje system. It is usually
recorded as the ECG signal [40] (Figure 2a). The SA node, located in the upper portion of the right
atrium, is the heart’s intrinsic pacemaker that initiates electrical signal, indicated as the P-wave of the
patient’s ECG. Generated electrical signals result in atrial contraction and help push blood through the
atrioventricular valves into both ventricles. The electrical impulse then activates the AV node, a relay
station, situated above the ventricles. It facilitates right and left atriums to empty their blood contents
into the two ventricles (corresponding to PR intervals of ECG). Once released, the electrical signal
moves along the electrical highway (the “bundle of His”—transmits impulses from the atrioventricular
node to the ventricles of the heart) which later divides into Purkinje fibers connected to cells in the
walls of the left and right ventricles. This causes the electrically stimulated ventricles to contract and
pump oxygenated blood into the arteries. This entire phase represents the QRS complex of an ECG.
Later stages of the ECG signal represent the repolarization phase of the ventricles (T waves) [41,42].

Figure 2. (a) Electro-mechanical signal generated in human heart; (b) electrocardiogram (ECG) signal;
and (c) pressure wave.

Electrical-mechanical coupling of the heart results in blood ejection into the arterial tree, affecting
the blood velocity and generating a systemic pressure wave traveling from the central to peripheral
arteries. The pressure wave causes dilation of the arterial walls on its path and moves faster than
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the blood flow [43,44]. It varies periodically between two extreme points, maximum and minimum,
referring to SBP and DBP, as the pressure in the artery due to ventricular contraction and the pressure
in the artery during each beat, respectively. The mean value of the pressure wave, termed MAP
(Figure 2c), is estimated as:

MAP = DBP +
1
3
(SBP − DBP) (1)

This pressure waveform can be directly obtained using a pulse sensor on the peripheral arteries
or indirectly measured through a pulse oximeter, namely a PPG sensor. Since the pressure wave causes
the blood volume to change at the peripheral site, it can be detected by measuring the variation of the
oxygen content of the blood caused by influx of oxygenated blood on the arrival of the pressure wave,
indicated as the first peak on the PPG waveform [45]. Many other vital parameters can be estimated
using PPG as discussed in section C.

2.2. Relationship between BP, Pressure Wave Velocity (PWV) and Time Period

The central arteries push blood to narrow distal arteries by expanding during systole and
contracting during diastole [46]. This expansion and contraction results in changes of the elastic
modulus (E) of the vessels and is related to the fluid pressure P as below:

E = EoeαP (2)

In Equation (2), α is a vessel parameter (Euler number) and Eo is the Young’s modulus for zero
arterial pressure. These two are subject-specific parameters [47–49]. Equation (2) estimates the central
arterial pressure if α and Eo are updated by accounting for the age and health impacts on the elasticity
due to the change in the wall composition. Arterial walls are composed of endothelium, elastin,
collagen, and smooth muscle (SM) cells in varying quantities at central and peripheral sites [50,51].
Different compositions as well as gradual replacement of elastin with collagen changes the elasticity of
these arteries, resulting in changes in central and peripheral BP [52,53]. A detailed analysis of elastic
and viscous properties of the arterial tree can be found in the review [54] which describes how the
central arterial elasticity is determined by the BP and also how the peripheral elasticity is affected by
both BP and SM contraction [55]. Hence, the peripheral elasticity cannot be accurately predicted by
Equation (2).

The elasticity of arteries determines the propagation speed, the pressure wave velocity (PWV);
a relationship can be obtained between them using arterial wave propagation models. Assuming
the artery to be an elastic tube with a thickness h, diameter d and blood density ρ, we have the
Moens-Kortweg equation as follows [56]:

PWV =

√
hE
ρd

(3)

Combining Equations (2) and (3), we obtain the Bramwell-Hills and Moens-Kortweg’s equation,
representing the relationship between P and PWV and hence the “Time Delay” for an artery with a
length of L [44]:

PWV =
L

Time Delay
=

√
hEoeαP

ρd
(4)

This equation indicates that the rise in pressure, with other parameters constant, will result in an
increase in PWV and inversely affects the “Time Delay”.
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2.3. Determination of the “Time Delay”

2.3.1. Pulse Transit Time (PTT)

PTT refers to the time taken by a pressure wave to travel between two arterial sites and is inversely
related to BP (Figure 3a). PTT can be measured using different techniques like Ultrasound Doppler
and arterial tonometry [57–59]. The latter can be obtained by observing two distant PPG waves
(Figure 3c). Ears, toes and fingers are common sites used for measurement [60]. PTTf measured from
the foot of one PPG to that of another has been demonstrated to have a strong correlation to invasive
DBP [61], but a study on 44 normotensive male subjects concluded otherwise [62]. The peaks of PPG
that theoretically represent SBP have been found to be unreliable indicators of SBP. These peaks are
distorted by reflection of pressure waves from the terminal arteries. Chen et al. proposed a novel
method based on experimental data to use the mean of PTTfp (time delay between falling edge of
central PPG and peak of peripheral PPG) and PTTrp (time delay between rising edge of reflecting
central PPG and peak of peripheral PPG) to obtain PTT for SBP (Figure 3c) [63]. Other studies have
indicated that posture, ambient temperature, and relaxation affect PPG, raising a question on the
development of an accurate PTT device [64].

Figure 3. (a) Inverse relationship between pulse transit time (PTT) and systolic blood pressure
(SBP) from our data; (b) Pulse arrival time (PAT) using different characteristic points of the
photoplethysmography (PPG) waveform; (c) Different types of PTT and other PPG parameters.

2.3.2. Pulse Arrival Time (PAT)

Another popular and convenient method to measure the “Time Delay” is based on the time
difference between the R-peak of ECG and a characteristic point of PPG peak (Figure 3b). Different
time stamps on the PPG waveform, such as foot [65–67], peak [67–69] and mid-point of the rising
edge [29,70,71], have been considered to estimate the “Time Delay” (Figure 3b). Though some studies
reported this delay as PTT, it is more accurately known as Pulse Arrival Time (PAT) as in addition to
the PTT of the pressure wave, it includes the Pre-ejection Period (PEP) delay. PEP is the time needed to
convert the electrical signal into a mechanical pumping force and isovolumetric contraction to open
the aortic valves [43,72]:

PAT = PTT + PEP (5)
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PEP is a delay that changes with stress, physical activity, age and emotion [48]. A study has
attempted to estimate PEP as a percentage of the RR interval as, with a low heart rate, PEP becomes
more significant [73]. They approximated PEP as 7% of the RR interval and concluded that it should be
subtracted out to obtain PTT. The impact of PEP on the overall PTT decreases with distance from the
heart. Thus for short PTTs, especially those extracted from ear PPQ, it is needed to accommodate for
this electro-mechanical delay, or PEP. Nevertheless, the effect of including PEP in BP estimation is still
under investigation. Some have reported the relationship of PEP with PAT [74–76], while others find it
a weak surrogate [77,78]. There were studies indicating that all SBP, DBP and MAP are less correlated
to PAT as compared to PTT [79], while others stating PAT is a better indicator of SBP [80,81] as it is
dependent on both ventricular contraction and vascular function.

3. Mathematical Models

Mathematical relationships between BP and the “Time Delay” or PTT/PAT reported in the
literature are derivatives of the physical model previously discussed and summarized in Table 1.
We will discuss several models below.
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3.1. Logarithmic Model

The Bramwell-Hills and Moens-Kortweg’s equation gives a logarithmic relationship between BP
and the “Time Delay”. Assuming the density of blood (ρ), the diameter of artery (d), the thickness
of the artery (h), the distance at which the “Time Delay” is obtained (L), and the elasticity (Eo) are
constant for a subject, we can have relationship of BP and the “Time Delay” represented as:

BP = a ln(Time Delay) + b (6)

Here, a and b are subject-specific constants and they can be obtained through a regression analysis
between the reference BP and the corresponding “Time Delay” [82]. Proença et al. estimated SBP
with this mathematical model Equation (6) using both PTT and PAT [82]. They determined PTT
from two PPG sensors placed at the earlobe and at a finger, and PAT with PEP adjustment using
the impedance cardiogram. However, they found inconsistent results with both of them. Poon et al.
established a relationship between MBP and the “Time Delay” using Equation (6) and obtained SBP
and DBP using Equation (1) and a factor that accounts for the change in elasticity due to pressure wave
variations [30]. Their results agreed with the AAMI (American Association for the Advancement of
Medical Instrumentation) standard of a BP device with the mean difference of less than 5 mmHg and
standard deviation within 8 mmHg [91]. Hence, this method has become popular to indirectly obtain
BP via the “Time Delay”.

The logarithmic model Equation (6) approaches negative infinity as “Time Delay” tends to zero,
making it difficult to use this relationship to represent small BP [61].

3.2. Proportional (Linear) Model

Assuming there is a negligible change in the arterial thickness and diameter with pressure
variations, BP and the “Time Delay” can be linearly related by differentiating the Moens-Kortweg’s
Equation (3) with respect to time Equation (6) [65]. Chen et al. obtained a high correlation factor
between the measured SBP and the calculated SBP using PATf and thus they established a calibration
model that varies according to fluctuation in PAT.

BP = a(Time Delay) + b (7)

Using Equation (7), a study attempted to estimate SBP and DBP for 14 normotensive subjects and
then carried out a repeatability test after six months to verify whether the model still holds or not [83].
In their study, PATp was obtained for each subject before, during and after exercise. The repeatability
test showed that although the range of a and b were similar to the values obtained previously, errors
on calculating BP using the “six-month old calibrated algorithm” were significant. The authors also
reported that there was less correlation between DBP and PAT which could be due to the fact that
PATp, instead of PATf, was used to estimate DBP. Choi et al. used the same algorithm and investigated
the use of different characteristic points of PPG (Figure 3b) and calibration intervals to achieve BP [25].
In their work, they concluded that PATp measurements and one hour calibration intervals provided
better estimates of BP within error limits. Further, it was claimed that the algorithm was adopted
not only for its better performance, but also for its robustness against motion artifacts that exist in
non-invasive waveforms.

Several other studies have integrated the linear BP algorithm (7) with other influencing factors,
such as heart rate (HR) and arterial stiffness index (ASI) (Figure 3c), that would affect BP [48,66,84].
The effect of variance in HR has shown both positive and negative impacts on BP in clinical data. In
normal conditions, it has a positive relation but under baroreflex activity (the mechanism to regulate
acute BP changes via controlling heart rate), HR is negatively correlated to BP [84,87,92]. The other
factor, arterial stiffness, has been assumed constant in algorithms based on those physical models
(3) and (4). However, it influences the calibration frequency and can be estimated using ASI. The
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correlation factor using HR and the linear model (7) has been found to be around 0.79 for SBP and 0.814
for DBP [84], confirming its significance. It was also found that estimations based on the “maximum
likelihood” and adaptive Kalman filter can reduce the number of calibration measurements required
to estimate algorithm constants [88]. This model can be estimated by linear regression and offers ease
in recalibration.

3.3. Inverse Square Model

Assuming arteries are rigid pipes, the work done by the travelling pressure wave can be expressed
as a sum of its potential and kinetic energy where kinetic energy is dependent on PWV. The work done
is equal to the change in BP with a fixed cross-sectional area and thus [73]:

BP =
A

Time Delay2 + B (8)

where A =
(

0.6 × height
distance factor

)2 ρ
1.4 and ρ is the average blood density.

Here, B is estimated for individuals by using the “Time Delay” and cuff-based BP measurements.
Fung et al. used PAT to estimate BP, assuming that the measurement obtained from peripheral sites
like toes and fingers have insignificant delay due to PEP. However, for PPG at the ear, PAT should
have been adjusted for PEP as the ear is closer to the heart, thus possessing a pressure wave similar
to that in the central artery. For the estimation of A from the subject’s height, an additional distance
factor related to the locations of the PPG sensors was included. The distance factor was assumed to
be 1, 0.5, and 1.6 for fingers, ears, and toes, respectively, in the study. The algorithm correlated to BP
measured by cuff with a mean difference of −0.0790 mmHg and 11.32 mmHg standard deviation.
Furthermore, it was able to track both hypotension and hypertension. Wibmer et al. [85] modified the
above relationship to account for the asymptotic behavior of BP as following:

BP = a +
(

b
Time Delay − c

)2
(9)

In their study, PAT was obtained using PPG and a single-lead ECG signal and it had a high
correlation factor with SBP while the correlation with DBP was similar as previously reported. Thus,
the approach (9) adds reasonable asymptotic behavior which most models fail to achieve.

3.4. Inverse Model

The model represented by (9) also indicates the inverse relationship between BP and PTT and
thus was used to obtain the subject-specific mathematical equation [54,93], where BP is calculated
as follows

BP =
a

Time Delay
+ b (10)

Additional parameters accounting for neural impact on BP were included to the inverse
relationship given by (10). It has been reported that variability in both PTT and BP signals was
coherent indicating that the neural system affects them simultaneously. When compensation for
variability due to neural control was integrated with (10), the model gave results with higher accuracy
for both DBP and SBP [69]. The study also incorporated the hydrostatic effects in the algorithm by
measuring data for calibration in sitting and standing position. Model (10), if represented in terms
of PWV, gives a direct relationship between PWV to BP [87]. In this case, the parameter L which is
the distance between the sensor point and heart, was obtained using a subject-specific tape measure
between the fossa jugularis and the sensor instead of relying on various ratios to subject’s height.
Marcinkevics et al. considered two PWV estimation methods, using PATf and PTTf, and obtained
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similar results [87]. Most experimental data suggest the inverse relationship between BP and PTT/PAT
which is achieved by this model.

3.5. Comparison between Models

It was reported that those algorithms previously discussed yielded R2 values ranging from 0.02
to 0.97 as summarized in Table 1. In order to apply a mathematical model, one needs to vary the BP
over a considerable range to obtain the curve that can relate PTT/PAT closely to BP. Models under
different conditions, generally exercising and medication, have been considered as summarized in
Table 2. The same algorithm may result in different regression coefficients when using different BP
perturbation techniques and calibration intervals, thus making comparisons difficult [25,84]. In order
to give a better insight on this issue, in this work we elucidated four algorithms (6)–(8), and (10), using
the Physionet online database as a source for the ECG, PPG and Arterial Blood Pressure (ABP). The
database contains time-stamped nurse-verified physiological readings of patients in the intensive care
unit at Boston’s Beth Israel Deaconess Medical Center (BIDMC), beginning in 2001 and spanning seven
years [94]. Individual demographic details, though vital in analyses, are unavailable as it can result in
infringement of patient’s privacy [95]. Two-leads ECG, finger PPG, and invasive ABP from one of the
radial arteries were recorded at 125 Hz for varied lengths (weeks or more) using a bedside monitor.
In this review, data which had at least five-minute long continuous recordings were considered for
investigation. The ABP values listed were used for the calculation of SBP, DBP, and MAP. The four
algorithms were evaluated using PATf, PATm, and PATp for five adult patients (age > 15) by using
five different PATs and the average of five beat-to-beat ABP values as a reference. The unavailability
of a second PPG signal restricted our evaluation to PAT. The Band-Altman plot for the expected
measurement (BP values calculated from invasive ABP waveform) versus the calculated BP as well
as R2 were used to analyze the four algorithms (Figure 4) [96–98]. The x-axis of the plots shows the
average estimate of the algorithm that performed best and the y-axis represents the difference between
the expected and measured values. Results indicated that the inclusion of HR in the BP algorithm for
all three BP values (SBP, DBP, and MAP) gave higher regression coefficients between the measured
and expected values with mean error and standard deviation (SD) within AAMI standards (Figure 4),
and the use of PATm and PATp gave similar or better results than PATf. Using this algorithm, 92.3%
MAP data is within the interval of 2·SD and 85% of DBP estimates. In case of SBP, though using PATp

gave better R2, that of PATm delivered a more-agreeable Bland-Altman plot with 96.1% data within the
2·SD interval (Figure 4). For both DBP and MAP, the mean of difference between the invasive BP and
the one estimated using PAT and HR is small, indicating insignificant bias between the two methods.
Average error and standard difference between the PAT based and the reference value is within AAMI
standards for both MAP (0 ± 2.12) and DBP (0 ± 2.13) measurements. The SBP measurement has
a slightly higher standard difference (1.3 ± 7.02), but it is still within the AAMI standard (Table 2).
The larger disagreements between reference and measured SBP and DBP values for some of the data
points is due to inclusion of data of hypertensive patients, as can be seen in Figure 4a,c. Out of the five
patients, two reported BP higher than 140/80 mmHg, resulting in higher disagreements in their case,
which agrees with the study performed by Gesche and colleagues [89].
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Table 2. Various BP perturbation techniques.

Procedure Description Refs

Physical Exercise Graded Bicycle Test, Running, Sit-ups [87,99]

Posture Sitting, standing and lying supine [100]

Valsalva Maneuver Breathing against closed nose/mouth for 30 s [101]

Cold Pressure Placement of ice wrapped in wet cloth on subject’s
forehead for 2 min. Hand in 4 ◦C water for 1 min [102,103]

Mental Arithmetic Counting backwards from 500 in intervals of 7,
Continuous addition of 3 digit numbers for 2 min [104]

Relaxation Slow breathing/Meditative music [105,106]

Amyl Nitrate Inhalation of vasodilator [107]

Anesthesia Dental anesthesia [84,108]

Isometric Exercise Raising legs/arms against pressure [109]

Sustained Handgrip Clenching one’s fist forcefully [110,111]

Figure 4. Bland-Altman plot between reference and measured (a) SBP using aPATm + bHR + c;
(b) Mean arterial pressure (MAP) using aPATp + bHR + c; (c) Diastolic blood pressure (DBP) using
aPATp + bHR + c; and (d) R2 obtained for different algorithms with significance level 0.05.

Another study [112] provided a comparison between algorithms by Chen et al. and Poon et al.
and they found that Chen’s algorithm gave results within the standards for only a 4 min calibration
interval and was unreliable in tracking large changes in BP, whereas Poon’s algorithm required shorter
calibration intervals to maintain a favorable accuracy. A recent study claimed that the inaccuracy
of existing algorithms using PAT in tracking Low-Frequency (LF) variations in BP was one of the
main reasons for inaccurate results [90,113]. In order to improve the accuracy, they introduced a
factor termed “photoplethysmogram intensity ratio” (PIR), which could be determined by the ratio of
the peak (Ip) and the foot (If) PPG values (Figure 3c). PIR was found mainly dependent on the
arterial diameter and correlated with DBP [90,113]. Recently, machine learning-based techniques have
been investigated [114] and promising results have been reported. In their work, various machine
learning-based techniques were compared and they found that non-linear algorithms, like kernel
machines or ensemble-learning methods as well as the AdaBoost model, gave better performances
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than linear approximations. Other techniques such as linear regression and decision tree were found
not appropriate in predicting BP [114].

4. Discussion

Blood pressure is a complex parameter that has both physiological and neurological influences,
and thus those need to be included to obtain a robust model. Heart rate (HR) represents the cardiac
cycle and determines the heart’s preload and the cardiac output (CO), which positively impact BP as
the pressure on the arterial walls. HR is proportional to the volume of blood ejected [115,116]. HR
and BP are also regulated by the autonomic nervous system which has been found to be inversely
related, depending on the baroreflex activity [117]. HR is calculated from the RR interval in ECG
signals and has been incorporated in several algorithms to estimate BP [84], demonstrating some
improvement in accuracy. To consider the effect of the sympathetic system on BP, variability in PAT
has been employed in the inverse model giving R2 of 0.96 when compared to those of cuff-based SBP
tools [69]. The arterial stiffness affecting cushioning of arteries has been found to have implications
on systolic hypertension [53,118]. Structural changes, such as those related to vascular aging and
atherosclerosis, along with functional changes like increased BP or higher sympathetic activity, can
impact the arterial stiffness [115]. Baek et al. described a method of estimating arterial stiffness index
(ASI) as the time delay between the mid-point of the rising edge (incident) and characteristic point on
the “dicrotic notch” (reflecting wave) of the PPG (Figure 3c) [84,115]. Shaltis et al. estimated the impact
of hydrostatic pressure by varying the position of subject and measuring changes in PTT and BP, and
through experimental data they concluded that gravity has a significant impact on BP [119]. These
suggest that one may need to take more related parameters under consideration in order to establish
an accurate and robust mathematical algorithm/model/relation to derive BP from the “Time Delay”.

There are several other important issues that make time delay-based BP measurements
challenging. To find the best fitting curve for PTT/PAT-based BP estimation, it is essential to vary
BP over a wide range in order to have more points to construct the calibration curve. Significant
variations in SBP can be achieved using some of the methods listed in Table 3, but it is difficult to vary
DBP and MBP, restricting the development of accurate algorithms for these. Another issue arises due
to the assumption of a tubular arterial system similar to central arteries which fails for the tapering
peripheral branches. Peripheral branches have amplified pressure peaks due to wave reflection from
arterial terminations, which need to be adjusted to estimate central artery pressure [120,121].

Table 3. Mean error and standard deviation (in mmHg) between measured and reference BP data.

Algorithm/Characteristic Point PATf PATm PATp

SBP

aln(PAT) + b 0.1 ± 11 8.9 0.3 ± 11
a/PAT2 + b 0.1 ± 12 0.1 ± 12 0.1 ± 12
a/PAT + b 0.1 ± 13 0.1 ± 13 0.1 ± 13

aPAT + bHR + c 0.1 ± 14 0.1 ± 14 0.1 ± 14

MAP

aln(PAT) + b 0.1 ± 15 0.1 ± 15 0.1 ± 15
a/PAT2 + b 0.1 ± 16 0.1 ± 16 0.1 ± 16
a/PAT + b 0.1 ± 17 0.1 ± 17 0.1 ± 17

aPAT + bHR + c 0.1 ± 18 0.1 ± 18 0.1 ± 18

DBP

aln(PAT) + b 0.1 ± 19 0.1 ± 19 0.1 ± 19
a/PAT2 + b 0.1 ± 20 0.1 ± 20 0.1 ± 20
a/PAT + b 0.1 ± 21 0.1 ± 21 0.1 ± 21

aPAT + bHR + c 0.1 ± 22 0.1 ± 22 0.1 ± 22

Training algorithms require simultaneous recording of ECG/PPG and a gold standard tool for
BP measurements. In many studies, this was carried out on different arms; however, BP is known to
differ on both arms [122,123] and hence the correlation between this BP and PTT/PAT had inherent
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errors. The inter-arm BP difference is usually not taken in account while doing the comparison, which
can induce errors [124]. The PPG signal which has been widely used to estimate PTT and PAT is
susceptible to motion artifacts and thus requires careful placement of sensors and signal processing
techniques, such as the periodic moving average filter [125–127]. The PPG sensors need to be fixed
accurately on the arterial position for BP derivation, as modifying the position would change the
distance of propagation, and thus affect PWV and ultimately BP [128]. The contact force of PPG
sensors at the site of placement has a considerable effect on the BP measurement and needs to be
adjusted during calibration [129]. A study demonstrated that at positive transmural pressures, PTT
increased with the applied contact force, reaching the maximum at the zero transmural pressure
and remaining at a constant level at negative transmural pressures [130]. Further, the detection of
various characteristic points on a PPG signal requires effective signal processing algorithms as it is
susceptible to noise and motion [131–134]. Though several studies have attempted to calibrate BP
for dynamic cases, most of them required subjects to stop exercising to estimate BP and therefore
failed to provide real-time data [26]. Movements of arms and legs would affect the PPG signal,
and it is thus advised to include hydrostatic effects on the PTT-BP mathematical model. Liu et al.
demonstrated that the same BP can have different PAT, depending on whether the subject is at rest
or exercising, possibly due to the differences in PEP [35]. Accelerometers can be used to determine
different body positions (sleeping/walking/running, etc) and provide additional information in
selecting appropriate algorithms to estimate BP [17,130,135]. Studies have shown that longer PTTs give
better estimations than shorter ones, and this requires sensors to be placed far away from each other;
consequently, compact devices would be difficult to achieve [136]. There is also a need to include heart
rate variability (HRV), as it has been shown that HR can have both negative and positive effects on BP,
and hence the same algorithm will fail to accurately predict BP if the variability is ignored [116].

It is extremely important to investigate the accuracy and appropriateness of any proposed models
using measured data of a large pool of subjects, with both patients and regular populations, to reach
any conclusion on a PTT/PAT-based device. Different standards, such as AAMI/ ISO, ESH-IP [137],
and BHS [138], have been used to validate such a BP device, but insufficient data and varied statistical
tools made it inadequate for comparisons. Those reported validations, at times, compromised on
the number of subjects and observers required and thus failed to prove that the newly-developed
devices were comparable with medical-grade systems. Since PTT/PAT-based devices are calibration
dependent, there is a dire need to include the accuracy of the reference device. However, the gold
standard for BP measurement in clinical settings, namely the arterial invasive line, is usually applied for
inpatients in serious medication conditions only, while the widely-used cuff-based devices are not error
free [139]. Therefore, the unavailability of high-precision clinical data has limited the investigations
and validations of those PTT/PAT-based BP devices. Further, it is not feasible to acquire invasive BP
data of a large number of various populations (including healthy people) for correlation in order to
obtain statistical significance. Last but not least, it is also necessary to evaluate wearable continuous
cuffless BP against continuous arterial (invasive/non-invasive) BP. Since, these PTT/PAT-based BP
devices aim to provide continuous data, it would be more relevant to be validated/calibrated using
continuous beat-to-beat BP, rather than the BP averaged over a time, or discrete BP values.

In general, PTT/PAT-based BP devices have the capability of providing home-based monitoring in
the form of a wearable linked with a smart device and thus mobile-heath (m-health) could be achieved
with the connection to a cloud-based server. As a result, various approaches, such as the device with
three chest sensors for PPG, ECG and ICG (impedance cardiogram) underneath a t-shirt, or ECG and
PPG monitoring using circuitry on the toilet seats, beds and steering wheels, have been proposed and
implemented [19,20,128,140]. In our group, the replacement of the three-electrode ECG configuration
with a non-contact electrode (NCE) approach for ECG acquisition has been attempted. Different from
regular contact-electrode ECG approaches which are dependent on the electrode-skin interface, NCE
ECG could be obtained without any effects from the skin (sweat, hair, etc.), thus becoming of interest
for off-the-clinic measurements. This method can further ease the signal acquisition as ECG data can
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be recorded using a single capacitive-coupling NCE in a specific point within the human body (i.e.,
wrist), thus holding promise for the realization of unobtrusive home-based BP monitoring wearable
devices [38]. For instance, this approach can enable BP monitoring during sleeping or exercising
without any hindrance to the users. Wireless communication via Bluetooth Low Energy (BLE) can be
utilized to facilitate data collection and transfer locally among wearables for one user and globally
with a cloud-based server, paving the way for real-time monitoring and diagnoses as well as distanced-
and self-care. However, the communication time among devices needs to be considered as it affects
directly the calculation of the “Time Delay” [141].

5. Conclusions

With the present technology, it is possible to implement a PTT/PAT-based system that accurately
predicts the trends of BP instead of measuring BP itself. Considerable fluctuations in this trend can be
used as a warning signal for users to monitor their BP and continuous monitoring of this variation
can be helpful in clinical environments, as most vital parameters in operational theatres are measured
continuously except for BP. Therefore, the development of a cuffless BP monitoring system will provide
novel solutions in various medical scenarios. The frequency of calibration as predicted by many studies
was less than one hour, which is inappropriate as the artery stiffness and dimension could not change
abruptly. This indicates that confounding factors need to be taken into account for PTT/PAT-based BP
as many other factors apart from the “Time Delay” also have their contributions. From comparisons,
we found that the inclusion of heart rate improved the efficiency of PAT-based BP measurement.
Further, one may ask whether there is a need for continuous monitoring of BP, and the answer may be
not for healthy populations but crucial for CVD patients. Sleep apnea patients also require continuous
BP monitoring; thus, a home-based system with connectivity to the caregiver online network would be
of interest.
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Abstract: Wearable wireless networks (WWNs) offer innovative ways to connect humans and/or
objects anywhere, anytime, within an infinite variety of applications. WWNs include three levels of
communications: on-body, body-to-body and off-body communication. Successful communication
in on-body and body-to-body networks is often challenging due to ultra-low power consumption,
processing and storage capabilities, which have a significant impact on the achievable throughput
and packet reception ratio as well as latency. Consequently, all these factors make it difficult to opt for
an appropriate technology to optimize communication performance, which predominantly depends
on the given application. In particular, this work emphasizes the impact of coarse-grain factors
(such as dynamic and diverse mobility, radio-link and signal propagation, interference management,
data dissemination schemes, and routing approaches) directly affecting the communication
performance in WWNs. Experiments have been performed on a real testbed to investigate
the connectivity behavior on two wireless communication levels: on-body and body-to-body.
It is concluded that by considering the impact of above-mentioned factors, the general perception of
using specific technologies may not be correct. Indeed, for on-body communication, by using the
IEEE 802.15.6 standard (which is specifically designed for on-body communication), it is observed
that while operating at low transmission power under realistic conditions, the connectivity can be
significantly low, thus, the transmission power has to be tuned carefully. Similarly, for body-to-body
communication in an indoor environment, WiFi IEEE 802.11n also has a high threshold of end-to-end
disconnections beyond two hops (approximatively 25 m). Therefore, these facts promote the use
of novel technologies such as 802.11ac, NarrowBand-IoT (NB-IoT) etc. as possible candidates for
body-to-body communications as a part of the Internet of humans concept.

Keywords: wearable wireless networks (WWNs); on-body networks (BANs); body-to-body networks
(BBNs); connectivity; disaster relief and emergency applications

1. Introduction

Internet of humans (IoH) is a new paradigm in which wearable technology is emerging as
a cutting-edge enabler. IoH is the concept of connecting, monitoring and recording human data
with the Internet. Wearable technology is revolutionizing many applications, including health-care,
sports and fitness, rescue and emergency management, augmented reality, fashion, and so on [1].
Recently, wearable technology revenue has greatly increased, passing from USD 2 billion in 2013
to more than USD 15 billion in 2017. Furthermore, technology ownership has undergone a strong
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increase, from 7% in 2014 to 14% by 2015. By the end of 2017, it is predicted to double again and
reach 28% [2].

Nowadays people can easily keep track of their health and fitness with human-assistive wearable
technology. Elderly people can also be remotely monitored and followed up. For instance, it was
recently reported that the UK National Health Service (NHS) could save up to 7 billion pounds per year
by using innovative technologies to deliver quality health-care to chronically ill with fewer hospital
visits and admissions [1,3].

Virtual and augmented reality (VR/AR) form another showcase of wearable technology which
has completely changed the perception of immersive vision. Within next few years, many millions of
people will be able to walk around wearing relatively unobtrusive AR devices that offer an immersive
and high-resolution view of a visually-augmented world [4]. Among other applications, wearable
technology also hails to assist first responders in rescuing and evacuating people during disasters.
In past few years, it has been found that wearable technology can be vigorously exploited in disaster
contexts to not only save human lives but also to monitor the real-time health status of the rescue
team members and victims. Furthermore, it helps operations commanders to make optimal decisions
during disaster relief operations.

Other use cases within recent works targeted real testbeds and implementations in order to
evaluate the performance of the wearable wireless networks (WWN) integrated with Internet of
things (IoT) in real conditions. Miranda et al. in [5] implemented and evaluated a complete common
recognition and identification platform (CRIP) for healthcare IoT. CRIP enables a basic configuration
and communication standardization of healthcare “things”. Other aspects are also covered, in particular
security and privacy, and health device integration. Different communication standards were used to
deploy CRIP, such as Near Field Communication (NFC), biometrics (fingerprints) and Bluetooth. In
most of the above-mentioned applications, wireless communication is inevitable between various types
of devices including sensors, actuators, coordinators, and gateways. Additionally, with the advent
of body-to-body networks (BBNs or B2B), the communication is extended from classical “on-body
networks/body area networks (BANs)” to modern “body-to-body networks (BBNs)” as shown in
Figure 1. Consequently, wearable wireless networks (WWNs) are emerging as a new frontier for future
smart applications in Internet of things (IoT) and Internet of humans (IoH). From the viewpoint of
WWN “connectivity” in IoT and IoH, BBNd provide multi-hop device-to-device (D2D) communication
to extend the end-to-end network coverage. This coincides with the vision of 5G, setting up new
challenges towards cooperative and collaborative D2D communication among heterogeneous devices.

Figure 1. Wearable wireless networks: extending on-body communication to body-to-body and
off-body communication. BAN: on-body network.
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The “connectivity” between devices can not be merely ensured by establishing and executing
a hand-shaking protocol. For example, if the packet reception ratio is as low as 50% it means that
half of the time devices are disconnected, or in other words, the packets delay recorded is 2 times
higher than the given application constraint. Additionally, it also means that only 50% of the time the
considered devices are connected. Consequently, connectivity is an indispensable aspect in WWNs
and IoT. To have deeper understanding in this article, we take a closer look at the BAN and BBN
communication in WWNs. In particular, we accentuate on the network connectivity challenges in
WWNs while considering a first responder rescue and critical operation as a case study.

The contributions of this paper are the following:

• Potential technologies for BAN and BBN wireless networks for the considered application:
A comprehensive overview of existing technologies is presented with potential candidates for
BAN and BBN communication. We consider various cross-layer design parameters that can
have a direct or indirect impact on the connectivity. Most appropriate standards and supported
technologies are selected for both BAN and BBN communication in the application context (use
case: disaster and relief operations).

• Impact of space-time channel variations, co-channel interference for on-body connectivity: On-body
connectivity is addressed from the view points of space–time channel variations and dynamic
mobility as well as co-channel interference under the constraints of low power, latency and packet
delivery ratio (PDR).

• Real testbed to evaluate and analyze end-to-end connectivity and end-to-end round trip time delay for
BBN wireless communication: The analysis of the end-to-end connectivity and the end-to-end
round trip time delay behavior for BBN communication is discussed with regards to the data
dissemination strategies. Then, the experiment scenario is presented and the testing is detailed
based on the newly proposed dedicated routing strategy for a disaster context [6] (Optimized
Routing Approach for Critical and Emergency Networks (i.e., ORACE-Net)). This work is a rare
implementation of BAN and BBN technologies in the disaster context. It does not only evaluate the
considered implementation, but it also provides a strong guidance for possible future emerging
candidates for wireless BAN and BBN technologies.

2. Overview of Candidate Technologies for Wearable Wireless Networks

While selecting the appropriate technologies for WWNs, there are a number of constraints to
be considered. Based on a given application, often power consumption is required to be very low
in order to maximize the lifetime of deployed nodes and the whole network. Typically for on-body
communication, excessive power can result in additional interference [7] and therefore fine tuning of
the transmission power is extremely important. The effective throughput (after adding all overheads)
is another constraint directly related with the specific technology being used. In addition, packet
latency, dynamic range, node density and network topology are few important constraints.

Below, we summarize possible optimal selection of the technologies for both BAN and
BBN communication.

2.1. Overview of On-Body Communication Technologies and Existing Implementations

A holistic overview of (non-cellular) existing standards and technologies for WWN applications
is presented in Table 1. For on-body networks, over the past decade a legacy has been incurred from
the wireless sensor network-powered Zigbee and the IEEE 802.15.4 standard. Such BAN products
and protocol designs remained very dominant by covering health-care-related applications such as
patient monitoring in hospital wards and intensive care units. Few other variants of this standard
(for example IEEE 802.15.4a, mainly used for wireless sensor networks for ultra-wide bands, and
IEEE 802.15.4j, a modified physical layer of IEEE 802.15.4) focused on the medical body area network
(MBAN) with frequency band between 2360 MHz to 2400 MHz (just before the congested narrow
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band spectrum). However, this is limited to medical-related applications where for instance dynamic
mobility, space–time variations of the wireless channel cause less impact and therefore such specific
features are not proposed in the standard.

The SmartBAN standard is proposed by the European Telecommunications Standards Institute
(ETSI) to support health-care-related applications. However, the proposed BAN-specific features are
not scalable for covering other non-medical applications [8]. The IEEE 802.15.6 standard is targeted
for wide a range of applications for body area networks. It provides great flexibility, diversity in
terms of features and WWN-specific provisions which are necessary to be exploited in the dynamic
and emerging applications. The standard proposes BAN-specific channel models (which are very
important to accurately model the system performance).

In terms of maximum achievable throughput at narrow-band, the IEEE 802.15.6 standard can
reach up to 680 Kb/s, while operating at maximum frequency and highest modulation order by
considering all the overheads of the Media Access Control (MAC) and Physical (PHY) layers [9]. This
imposes limits to the use of the IEEE 802.15.6 standard in a few emerging applications. For example in
applications such as augmented reality where transmission of high-rate audio and video are necessary,
the IEEE 802.15.6 standard does not meet the requirements.

However, since the IEEE 802.15.6 standard provides ultra-low power consumption for both
invasive and non-invasive devices while having key security features, it is expected to cover a
wide range of applications with relatively low throughput requirements. Importantly, the great
flexibility on the usage of multiple options at the PHY (i.e., human body communication, narrow-band,
and ultra-wide-band) and at the MAC layer (scheduled access, beacon enabled/disabled, carrier sense
multiple access with collision avoidance (CSMA/CA), polling and posting), make the IEEE 802.15.6
standard a viable option for on-body WWN. In this paper we use the IEEE 802.15.6 standard with
applications covering the data rate up to 600 kbps. Further, we provide an in-depth overview of the
standard focused on connectivity.
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2.2. Body-to-Body Technologies and Implementations

For BBN communications, the devices are supposed to communicate over relatively long distances
and often are equipped with better battery lifetime in comparison to BAN sensors. Table 1 summarizes
the BBN communication standards. The distance from one BAN to another is likely to exceed several
hundred meters and therefore short-range and low-power technologies (as mentioned for on-body) are
not suitable choices. Consequently, the dynamic range constraint eliminates some candidates for BBN
communications including IEEE 802.15.6, IEEE 802.15.4 (ZigBee), IEEE 802.15.4j Medical Body Area
Network (MBAN) and IEEE 802.15.4a (ultra-wideband, UWB). As can be seen in Table 1, the eligible
standards that can fulfill technical and operational requirements for BBN communications are; WiFi
IEEE 802.11a/b/g/n and Bluetooth IEEE 802.15.1 (and Bluetooth low energy, BLE). In comparison to
Bluetooth, WiFi is the most relevant to BBN communication for the following reasons: (1) the
communication range of WiFi, which is up to 250 m (outdoor), is higher than the range assured
by Bluetooth which could reach a maximum of 100 m (under specific conditions for class 1); (2) there
are a large number of mobile devices implementing at least one of the WiFi varieties cited above; and
(3) bandwidth assured by WiFi is around 150 Mb/s (in case of IEEE 802.11n) and could even reach 500
Mb/s (IEEE 802.11ac), compared to the hundreds of Kb/s offered by Bluetooth.

Furthermore, Bluetooth low energy (BLE) and WiFi are expected to provide short range coverage
from 100 to 200 m with a throughput range from a few Mbps to hundreds of Mbps. BLE or Bluetooth
Smart technologies are strong candidates for the BBN communications, however, they remain limited
in terms of range (100 m theoretical) as well as low transmission power and therefore they are high
power interference-sensitive. On the other hand, recent variants of the WiFi standard (i.e., IEEE 802.11n,
IEEE 802.11ac, etc.) offer provisions to operate in multi-band frequencies (i.e., 2.4 GHz and 5 GHz).
Additionally, using WiFi, devices could operate for more than 10 h with one battery. Thus, WiFi could
be considered as a pertinent candidate for future BBN communications.

Indeed, these above statements were proved through recent extensive simulations in [11], where it
was concluded that WiFi IEEE 802.11 has the best performance in the considered application (disaster
relief networks) compared to ZigBee and Wireless Body Area Network (WBAN). Furthermore, a recent
experiment [12] validated WiFi IEEE 802.11n as a BBN communication protocol for the disaster relief
applications despite the limitations detailed in Section 4. To sum up, WiFi IEEE 802.11 standard in
general remains the most appropriate technology for BBN communications.

2.3. Overview of Key WWN Applications and Implementations

The wireless technologies given above are considered as current and prospective technologies
which fulfill the BAN and BBN communications. Wireless technology is selected and implemented
depending on the requirements of the applications and use cases. Chen et al. in [13] classify the
applications into three main classes: (1) remote health and fitness monitoring; (2) military and training;
and (3) intelligent biosensors for vehicle-area-networks. Moreover, authors in [13] discuss a list of
research projects and implementations, in particular: Advanced Health and Disaster Aid Network
(AID-N) [14] targets disaster and public safety applications. AID-N uses wired connection for BAN
communication, mesh and ZigBee for BBN. Off-body communication in AID-N are fulfilled through
WiFi, cellular networks and the Internet. AID-N aims to sense pulse, blood pressure, temperature
and Electrocardiography (ECG). Negra et al. in [15] focus more on the main medical applications: (1)
telemedicine and remote patient monitoring; (2) rehabilitation and therapy; (3) biofeedback; and (4)
ambient assisted living. The latter work discusses also the Quality of Service (QoS) requirements for
the medical context. The earliest proposed schemes target to enhance the on-body devices transmission
reliability and improve energy efficiency. Chen et al. in [16] proposed a novel cross-layer design
optimization (CLDO) scheme. Indeed, the design of CLDO relies on the three lower layers (i.e., PHY,
MAC and network layer). Power consumption is firstly optimized by selecting optimal power relays.
Then, the remaining energy in leaf nodes is utilized to increase the lifetime and the reliability. An
optimal packet size is given for energy efficiency. Chen et al. claim that an inevitably slight overhead
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accompanies CLDO processing for different factors. First, during network initialization complex
procedures are run. Second, the algorithm uses a certain number of iterations which influences the
overall performance. Third, CLDO lacks the capacity to manage dynamic location situations.

Recent optimization of existing approaches has been proposed to draw a mathematical model
for joint single path routing and relay deployment in BAN design. An interesting algorithm has
been introduced by D’Andreagiovanni et al. in [17] to handle the uncertainty that affects traffic
demands in the multiperiod capacitated network design problem (MP-CNDP). Additionally, a hybrid
primal heuristic based on the combination of a randomized fixing algorithm was proposed by the
authors, inspired from ant colony optimization and exact large neighborhood search. Performance of
the proposed model has been confirmed based on computational experiment compared to existing
solutions. This strategy has been improved by D’Andreagiovanni et al. in [18]. The authors adopt
a best performance solution based on a min–max approach [19]. Indeed, the proposed algorithm
relies on a combination of a probabilistic fixing procedure, guided by linear relaxations, and an
exact large variable neighborhood search [17]. This combination has been inspired by the solution
methods approximate nondeterministic tree-search (ANTS) [20], ant colony optimization [21] and other
randomized algorithms [22]. D’Andreagiovanni et al. extended their preliminary work [18] by new
integer linear programming (ILP) heuristic to solve the design problem. The new techniques detailed in
[23] do not only fix the variables expressing routing decisions, but also employ an initial deterministic
fixing phase of the variables modeling the activation of relay nodes. Experiment conducted by this
work shows that the proposed approach outperforms the existing optimization solvers strategies and
the results recorded in [18]. In [24], a heuristic min–max regret approach has been developed for BAN
design, showing a significant reduction in the conservatism of optimal solutions with respect to the
pure min–max approach of [18].

The main challenges in WWN are around routing techniques for BAN and BBN networks. We
have recently proposed a new routing approach (i.e., ORACE-Net) which is dedicated to disaster and
critical emergency networks. ORACE-Net [6] relies on end-to-end link quality estimation for routing
decisions. The scope of this work is to present the network connectivity analysis of our proposed
approach [6]. Another approach presented by Tsouri et al. in [25] relies on Dijkstra’s algorithm
augmented with novel link cost function designed to balance energy consumption across the network.
This latter technique avoids relaying through nodes which spend more accumulated energy than
others. Indeed, routing decisions are made based on the energy optimization. Authors claim that the
proposed approach increases the network lifetime by 40% with a slight raise of the energy consumed
per bit. This work is limited because the main concern of an operational application is studying
the BBN network connectivity and routing which consists of the only present backbone in case of
operational and dynamic context.

3. On-Body Communication and Connectivity

Typically, the on-body communication architecture is composed of sensors (to obtain physiological
data), actuators (to act on obtained observations) and a coordinator (to control and coordinate
both on-body and beyond body networks). Sensors (i.e., biological sensors, environment sensors,
location and position sensors, etc.) could be connected directly to the on-body coordinator,
which is often considered as more powerful with longer lifetime batteries than deployed sensors.
Successful connectivity between on-body nodes and coordinators are often constrained due to
ultra-low power consumption, processing and storage, data throughput or packet reception ratio and
latency. These fine-grain constraints are often impacted by coarse-grain factors such as dynamic and
diverse mobility (e.g., for sports and fitness applications), radio-link and signal propagation (indoor,
outdoor, underwater, during emergencies and disasters etc.), interference management (co-channel,
inter-channel) and coexistence strategies (time-shared, channel-hopping, collaborative etc.), and
data dissemination schemes, as well as routing approaches. Consequently, to successfully support
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diverse wearable applications, the vital impact of coarse-grain factors is extremely important to analyze.
In this section such factors are explored and presented.

3.1. Space–Time Varying Radio-Links and Signal Propagation

Accurate channel modeling is a very active topic of research in both BAN and BBN.
In particular, under dynamic and diverse mobility patterns, based on the positions of on-body
sensors, space and time varying radio-links can severely affect the connectivity between
sensors-coordinator communication.

Such space–time varying characteristics often provide higher degree of correlation as identified
in [26]. Further, both short-term and long-term channel fading can be modeled to precise the path-loss
factors from signal propagation. Moreover, body shadowing also has to be taken into account for
accurate modeling of on-body and body-to-body links [27].

In the IEEE 802.15.6 standard, the proposed channel models are limited to stationary radio-links,
which consequently requires space-time variations and accurate signal propagation enhancements.
At the narrow band, both proposed channel models (i.e., CM3-A and CM3-B) are distance-dependent;
the path-loss derived for those models from measurement campaigns was recently enhanced
using bio-mechanical mobility and deterministic models [28]. As an example shown in Figure 2,
for a space–time varying link such as “wrist-chest” the average peak-to-peak path-loss is 10-dBs
higher than for IEEE 802.15.6 standard channel models and hence is more accurate. Realistic radio-link
conditions and signal propagation are important to analyze the true connectivity between on-body
sensors-coordinator communication.

Figure 2. IEEE 802.15.6 enhanced path-loss models obtained from bio-mechanical deterministic channel
model. For example, a link between left wrist and chest is shown. (a) Time-varying distances; (b)
Enhanced pathloss model CM3-A and (c) enhanced pathloss model CM3-B.

Figure 3 shows the average packet delivery ratio (PDR) results of the on-body communication.
Twelve sensors placed on various locations around the body include links which provide space–time
variations, static as well as periodic line-of-sight (LOS) and non-line-of-sight (NLOS) links. The
results are presented for walking, standing-sitting and running mobility conditions. In addition to
transmitting power variations (from 0 dBm to −20 dBm), various configurations of the physical layers
of the IEEE 802.15.6 standards are exploited. Configuration 1 (C-1) is based on 900 MHz, 101.2 Kbps
and 16 bytes of packet size. Configuration 2 (C-2) and configuration 3 (C-3) differ from C-1 only by the
packet sizes which are 128 bytes and 256 bytes, respectively. The last configuration (C-4) is based on
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2450 MHz, 971:4 Kbps and 128 bytes of packet length. It can be seen that, at very low transmission
power (such as −10 dBm and −20 dBm), the PDR starts decreasing sharply. Therefore, it is important
that, while operating at very low transmission power and under realistic conditions, the packet
reception performance can be significantly degraded. Consequently, such power optimizations and
fine tunning have to be managed with care to ensure robust connectivity.

Figure 3. Average packet delivery ratio under walking, stand–sit and running mobility patterns at
varied transmission power from 0 dBm, −10 dBm and −20 dBm.

3.2. Co-Channel Interference and Coexistence Techniques

With the widespread deployment of wireless networks in our daily living environment, BAN
solutions are subject to strong co-channel interference, especially on the unlicensed industrial, scientific
and medical (ISM) radio bands which are presently populated by various wireless technologies. The
resulting interference can severely impact the connectivity and thus the communication performances.

In this regard, the IEEE 802.15.6 standard has proposed specific coexistence strategies, including
beacon shifting, channel hopping, and active super-frame interleaving. In the first approach, each BAN
coordinator adopts a different beacon shifting pseudo-random sequence to reduce the interference
with neighboring BANs.

The second technique, which is only applicable to narrow-band channels, consists of choosing
polynomial-based channel hopping sequences to avoid having neighboring BANs use the same radio
channel. The active super-frame interleaving technique enables BAN coordinators to cooperatively
coordinate the schedule of their active super-frames. Additionally, the carrier sense multiple access
with collision avoidance (CSMA/CA) medium access control protocol could also be adopted to
reduce the interference by letting the BANs nodes sense the occupancy of the radio channel prior to
any data transmission.

The packet error rate distributions of co-channel interference among up-to five co-located BANs
are presented in Figure 4. IEEE 802.15.6 proposed coexistence technique comparisons are highlighted.
It is observed that both time shared and channel hopping approaches are well-suited to minimizing
interference from neighboring BANs. However, for a dense deployment, new or enhanced schemes
must be proposed.

131



Technologies 2017, 5, 43

Figure 4. Packet error rate distributions of co-channel interference and evaluation of the IEEE 802.15.6
proposed coexistence techniques. (a) Reference scenario, without any coexistence strategy; (b) Channel
hopping; (c) Carrier sense multiple access with collision avoidance (CSMA-CA)-based coexistence;
(d) Time-shared coexistence.

3.3. Transceiver Implementations and Architecture Considerations

This section gives an overview of existing IEEE 802.15.6 transceiver (front-end and possible digital
baseband part) implementations and highlights the key architectural elements typically found in such
implementations. Given the high flexibility of the IEEE 802.15.6 standard, few industrial chips only
implement the part of IEEE 802.15.6 standard. As illustrated below, most of the publicly documented
implementations are multi-mode, e.g., supporting 802.15.6 and Bluetooth and/or Zigbee.

A few years ago, the authors of [29,30] implemented a 0.13-μm Complementary
Metal-Oxide-Semiconductor (CMOS) front-end chip supporting the IEEE 802.15.6 NB PHY draft
and BT-LE 4.0 standards, as well as proprietary protocols. The chip is composed of a 2.4-GHz sliding-IF
receiver, a 2.4-GHz polar loop modulator transmitter, a 900-MHz loop modulator transmitter, and a low
frequency 10-bit Successive AppRoximation Digital-Analog Conversion (SAR ADC) for bio-telemetry
data acquisition, as well as several peripherals and digital interfaces for an Field-Programmable Gate
Array (FPGA)-based digital PHY/MAC design. The chip achieves up to 1000 ksps and requires power
between 1.7 and 12.3 mW, depending on the selected mode. It can operate both on the 2.36 GHz
MBANs spectrum and the worldwide 2.4 GHz ISM band. It also features a transmitter for operation in
China, the EU, North America and Japan (780/868/915/950 MHz, respectively).

The implementation of a 0.18 μm CMOS reconfigurable sliding-IF transceiver targeting
400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs is presented in [31]. The receiver part
comprises a wideband front-end and a reconfigurable amplifier-mixer. The transmitter part comprises
a reconfigurable two stage full quadrature mixer, and a delta-sigma fractional-N Phase Locked Loop
(PLL), as well as some auxiliary circuits. The chip can operate in the 0.36–0.51 GHz and the 2.36–2.5
GHz ranges. Its power consumption ranges between 13.2 mW and 18 mW.

The IEEE-802.15.6-compliant transceiver targeting a multichannel electro-acupuncture application
is presented in [32]. As opposed to the two works listed above, this implementation builds upon the
Human Body Communication (HBC) physical layer. The chip is implemented on a 0.13-μm CMOS
process. The possible data rates are 164, 328, 626 Kb/s and 1.3125 Mb/s; its peak power is 5.5 mW
(receiver-activated). The works presented in [33,34] deal with the transceiver and baseband parts,
respectively, for a IEEE802.15.6/Bluetooth Low Energy/Zigbee system. The transceiver is implemented
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on a 90-nm CMOS process. The transmitter comprises a 2-point fractional-N PLL-based frequency
modulator (FM), and a Delta-Sigma digital-controlled polar Power Amplifier (PA). The receiver builds
upon a sliding-IF architecture and operates on the 2.36/2.4 GHz bands. The rates supported by the
transceiver are 1 Mbps for BT-LE, 250 kbps for IEEE 802.15.4 (ZigBee), and 971 kbps for IEEE 802.15.6.
It also supports a proprietary 2 Mb/s mode for data-streaming applications such as hearing aids. Its
power consumption is 3.8 mW for the receiver and 4.6–4.4 mW for the transmitter.

The digital baseband part is implemented on a 40-nm low-power CMOS process. It comprises the
transmitter and receiver digital baseband modules, and sub-modules responsible for processing at the
PHY and Down Layer (DL) layers. Its power consumption is 200 μW for the receiver and 80 μW for
the transmitter. Its data rates are identical to those of the transceiver described above. More recently,
the authors of [35] designed and implemented an IEEE 802.15.6-compliant transceiver building upon
the HBC physical layer (as also done in [32]). The analog front-end consists of a transmitter (transmit
filter and output electrode) and a receiver (gain stage with automatic gain control and a hard decision
detector). The digital part is implemented on a Xilinx Virtex 5 FPGA. The design reaches 763 Kbps (bit
error rate of 0.21). The dynamic power consumption of the design is 4.5 nJ/bit with a spreading factor
of 8 (it varies approximately linearly with the spreading factor).

The essential properties of these implementations are summarized in Table 2. As can be seen,
implementations have been proposed for either NB or HBC PHY; typically those that support NB PHY
also support BT-LE and/or Zigbee The achieved data-rates are either spot-on with the standard, or
slightly below or above. However, it can be noted that the IEEE 802.15.6-compliant chipsets are yet to
be commercially widely available.

Table 2. Essential properties of IEEE 802.15.6 publicly documented implementations.

Referred
Works

[31] [29,30] [33,34] [32] [35]

Standard(s)
IEEE802.15.6
NB; Zigbee

IEEE802.15.6 NB;
BT-LE 4.0;

proprietary

IEEE802.15.6 NB;
BT-LE; Zigbee

IEEE802.15.6
HBC

IEEE802.15.6
HBC

Frequency(ies)
0.36–0.51 GHz;
2.36–2.5 GHz

2.36 GHz; 2.4 GHz;
780/868/915/950 MHz 2.36 GHz; 2.4 GHz 21 MHz 21 MHz

Data-rates N/A 1000 kbps 250/971 kbps;
2 Mb/s

164; 328;
626 Kb/s;

1.3125 Mb/s
763 kbps

Power 13.2–18 mW 1.7–12.3 mW
RX: 3.8 mW +
200 μW; TX:

4.6–4.4 mW + 80 μW
5.5 mW (peak) 4.5 nJ/bit

Front-end 0.18 μm CMOS 0.13 μm CMOS 90 nm CMOS 0.13 μm CMOS Discrete
components

Digital
baseband

N/A FPGA (not
documented) 40 nm LP-CMOS N/A Xilinx Virtex 5

This section focuses on on-body communication. In what follows, we carry on the discussion
with the next communication tier, i.e., body-to-body communication.

4. Body-to-Body Communication and Connectivity

Due to the growing number of connected devices (smart-phones, computers, game consoles,
sensors, and wireless gadgets) to Internet, every human being is considered as a part of a BBN network
that could be deployed at any time, anywhere in a context of Internet of humans (IoH) or Internet of
things (IoT). Therefore, diverse deployment strategies are possible and various drawbacks are likely
to be faced by the BBN network connectivity in a real deployment. Connectivity depends on the
following factors: (1) dissemination strategy based on which data is transmitted among the wireless
network; (2) communication range: which depends on the used wireless standard (i.e., BAN/MBAN,
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BLE, ZigBee, etc.); (3) routing protocol which must be appropriate for the application context; and
(4) experiment area: indoor/outdoor with natural/artificial obstacles. So, let us focus first on the
various dissemination and routing techniques with regard to their impact on connectivity while
meeting the applications requirements.

4.1. Impact of Dissemination Strategies on Connectivity

Data dissemination defines the interconnection logic hierarchy. First, we define the flat wireless
network which is a set of nodes communicating with any reachable neighbors using the same wireless
technology. Second, a hierarchical wireless network is a set of nodes which communicate with other
neighbors from the same hierarchical level only. Specific or elected nodes only could communicate
with higher level nodes. The interconnection hierarchy could be set physically (different frequencies
to separate nodes into groups, different wireless technologies: more than one WiFi standard, one
standard and different channels, etc.) or logically (i.e., same wireless technology and frequencies but
different nodes groups related to one specific gateway node). We identify two main dissemination
strategies in BBN communications related to the two different interconnection hierarchies.

The clustered data dissemination strategy consists of dividing the network into small groups of
sub-networks called clusters. Each cluster leader is called a cluster head (CH). Nodes in a same cluster
only communicate with their CH. CHs communicate between each others to reach wide networks.
This strategy fulfills relevant operational requirements for indoor scenarios [36]. Even though
this strategy defines a clear hierarchical communication charter, but it still restricts the connection
capabilities only through CH. Indeed, when a CH of a cluster “A” is out of range from a neighbor
cluster “B”, a connection can not established even if a normal node from “A” is too close to “B”.
Electing new CH for the cluster “A” causes a significant delay, in addition to disconnection during the
election process. Therefore, defining members for each cluster is always challenging. Consequently,
connectivity of the entire BBN network depends on the connectivity between the CHs.

The distributed data dissemination strategy allows any node in the network to communicate with
any reachable node. As an example, an on-body sensor placed on the right wrist could communicate
with the on-body coordinator of the neighboring body. This strategy decreases the average delay of
the packet compared to the clustered approach [36], whereas, it decreases the link spectral efficiency
and the network overall throughput. Accordingly, the average end-to-end connectivity decreases with
the link spectral efficiency.

Distributed data dissemination strategies have higher routing overhead than the clustered
strategies, since in the first category, any node is allowed to send data to any node. However,
in the clustered strategy, the routing overhead remains only between CHs. A delay in route refreshment
in the routing table may increase routes unavailability. Therefore, a node with unavailable routes in its
routing table is considered as a disconnected node.

4.2. Impact of Routing Protocols on Connectivity

In BBN networks, implemented routing protocols refer to various classes. Indeed, recent research
tends to evaluate and implement ad hoc routing networks: proactive, reactive, geographic-based and
gradient-based [6] in BBN communications. Moreover, context-aware protocols were proposed with
regards to the implementation context (i.e, health-care, emergency, operational assistance, military,
etc.). Routing protocols consist of the mechanisms that carry data from source to destination which
have key role in BBN connectivity. Indeed, routing decisions are based on certain metrics depending
on the use case. With regards to the study and experiments conducted by Mekikis et. al in [37], it is
claimed that connectivity depends on the networking model (unicast, multicast or broadcast). Ad hoc
networks, implemented in the disaster context application, use broadcast for neighbor discovery, and
unicast/multicast for routing data. Based on our recent experiment [12], the network performance
increases with the accurate end-to-end link quality estimations and real link conditions.
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4.3. Real Indoor Experiment Scenario: A Wireless Body-to-Body Connectivity Evaluation

In order to evaluate the connectivity in indoor wireless body-to-body network scenario, we rely on
the recent routing approach (i.e., Optimized Routing Approach for Critical and Emergency Networks:
ORACE-Net) which is designed specifically for disaster scenario. The scenario consists of a group
of people (we are considering two rescuers in this work) moving in/out an office inside a building
following a disaster mobility pattern generated by Bonnmotion [38], which is a mobility scenario
generation and analysis tool. Each WBAN consists of an android mobile node collecting live data
from on-body Shimmer [39] sensors as depicted in Figure 5b. Additionally, four tactical static nodes
(numbered from 2 to 5 in Figure 5a) are deployed during the disaster scenario which represent a
temporary backbone through which data is routed to Internet. A dedicated node in the network is
considered as a gateway, called a command center node (CC) placed in the back gate of the office as
shown in Figure 5a. The CC relays data from the deployed network to Internet and vice versa. Our
emphasis of the evaluation mainly concerns the connectivity of the WBAN mobile nodes. To that end,
the tactical nodes placements are selected as such to enhance the signal propagation and as a result
increase the end-to-end connectivity between mobile WBANs and Internet (through the CC node).
Experiment scenario map is depicted in Figure 5a. The experimental parameters are given in Table 3.

Table 3. Experimental parameters and configuration settings. ORACE: Optimized Routing Approach
for Critical and Emergency Networks; CC: command center node.

General Settings

Parameter Settings

Number of WBANs 2
ORACE-Net Tactical Devices 4 (raspberry pi 2) OS: Raspbian v8.0

Mobile nodes (coordinators) 2 (Samsung Galaxy S3-I9300-rooted)
OS: Android 4.2.2 CyanogenMod 10.0

Wireless mode Ad hoc
ESSID CROW2
Wireless standard IEEE 802.11n/2.412 GHz (Channel 1)
Transmission power 0 dBm
Experiment area 30 m × 150 m

CC-node connection Ethernet to Internet
Ad hoc WiFi to ORACE-Net network

Number of iterations 3
Experimentation duration 60 min/iteration

ORACE-Net Protocol and Application Layer Settings

Application layer MQTT client used for pushing data to the IoT
platform

MQTT msg size/intervals 30 Kb/1 s
Hello/ADV packet size 20/25 Bytes
Hello/ADV intervals 3 s
Multicast address/port 224.0.0.0/10000

Shimmer [39] Sensing Device Settings

Wireless standard Bluetooth IEEE 802.15.1

Sensed data
Pressure, Temperature, Gyroscope
(x, y, z, axis-angle), Acceleration (x, y, z),
Magnetometer (x, y, z), Battery level

Device/Body 1 (with multiple embedded sensors)
Buffer [39] 1024 bytes
Message interval 1 s
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(a) (b)

Figure 5. (a) Map of the experiment scenario; (b) Data collecting from the on-body Shimmer sensors to
the android mobile application and then to the IoT platform through the ORACE-Net tactical deployed
network. OMD: ORACE-Net mobile device; OTD: ORACE-Net tactical device; FG: front gate of the
office; BG: back gate.

Data collected from on-body sensors is routed from WBAN node through the other WBAN node
and/or tactical deployed nodes. By reaching the CC node, data is pushed through Internet to the IoT
platform. On the IoT platform, data is plotted instantly as depicted by the curves shown in Figure 5b.
The WBAN node behavior during the experiment is observed as depicted by Figure 6. The end-to-end
link quality estimation (i.e., E2ELQE) is a real-time metric calculated between a mobile node and the
CC node. The bottom curve of Figure 6 illustrates the E2ELQE results over the time. There is a strong
correlation between E2ELQE and the HOPCount. It is observed that when the mobile node reaches more
than 3 hops away from the CC node, and maintains that HOPCount for more than 2 s, the E2ELQE
decreases sharply. When the E2ELQE decreases significantly, connection latency increases and leads
to mobile node disconnection. This is due to many factors: (1) signal degradation caused by the fact
of being out of range (and no closed node can relay the mobile’s data); and (2) the unstable links
between the nodes are caused by the interference effected by WiFi access points, wireless extenders
and devices inside the office. Equally important, indoor obstacles raised major signal attenuation [40].
It is noteworthy that the delay in milli-seconds (ms) depicted in Figure 6 is reset to zero when a mobile
node is disconnected (we consider that a delay higher than 1000 ms is an immediate disconnection).
Hence, this leads us to investigate the accuracy of the delay and disconnection times. For that, we
have set up a process to ping the distant CC node every millisecond. The resulted average round-trip
time delay and the average end-to-end disconnections per hop count are illustrated in blue and red
respectively in Figure 7.

.
Figure 6. Hop count, instant delay and end-to-end link quality estimation variation during one hour of
experimentation for WBAN node in an indoor scenario.
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Figure 7. Average disconnections and round-trip time delay per hop count for WBAN (android smart
phone mobile node with ORACE-Net protocol-enabled) in an indoor scenario.

What is important to know is that the average percentage of end-to-end disconnections and
average round trip time delay increase accordingly with the hop count. With regards to the mobile
smartphones used in the experiment (Samsung Galaxy S3 I9300-Battery: 2100 mAh-WiFi IEEE 802.11n),
the experimental range is around 100 m. The experiment shows that the best performance is recorded
within 1 hop (from the mobile node to the CC node) where average disconnection is around 12% and
average round-trip time delay is equal to 21 ms. However, a connection within 4 hops (approximate
distance between two nodes is 45 m) makes the average end-to-end disconnections exceed 43% as
illustrated in Figure 7. The average round trip delay increases also to reach 72 ms. It is perceived that
for more than 4 hops, average disconnection is expected to exceed 50%.

As has been noted, these results were achieved with intermediate tactical static nodes, hence,
results might be worse if all the nodes of the network are mobile. Therefore, based on the best
performance recorded (12% among 1 hop), the standard WiFi IEEE 802.11n remains efficient within
short distances only.

Interestingly, we learned from our experiments that the standard WiFi IEEE 802.11n is only
appropriate for body-to-body communications in the indoor scenario for an overall distance of 25 to
30 m (from one node to another). Our results and findings are consistent with the results provided
by Andreev et al. in [41]. WiFi IEEE 802.11n remains a candidate for BBN communications for indoor
scenarios, but with consideration of the above-cited limitation.

5. Conclusions and Perspectives

To conclude, with reference to wearable wireless network end-to-end connectivity, we highlighted
the key envisioned challenges. First, while operating at low transmission power and under realistic
conditions, the packet reception performance can be significantly degraded while exploiting the
BAN-specific IEEE 802.15.6 standard. Second, the routing approach and the dissemination strategy
have an impact on the end-to-end connectivity and the end-to-end round-trip time delay. It is concluded
also, for an indoor scenario with the considered settings, that the BBN average disconnections are
higher than 43% within 4 hops. Third, it is observed that wireless standard (i.e., WiFi IEEE 802.11n),
while having a large coverage support, it is not entirely appropriate for BBN communications in indoor
propagation as it has a very high average of end-to-end disconnections.

For the future, it is necessary to investigate other wireless body-to-body communication
technologies. Indeed, WiFi IEEE 802.11ac standards, as well as cellular technologies Long-Term
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Evolution (LTE)/5G could potentially fulfill operational BBN requirements (especially regarding
range and connectivity). Furthermore, the IEEE 802.11ac standard uses a 5-GHz frequency which
avoids most of the interference possibilities and with the provision of higher number of channels
defined by the standard (i.e., 25 channels by considering a channel width equal to 20 MHz) could
be interesting to investigate. In addition, 4G/LTE is also another ubiquitous approach followed
by 5G to deliver an edge-free body-to-body experience. Besides, specific technologies targeting the
IoT could offer connectivity at various network tiers. LTE Cat M1 Machine Type Communications
(eMTC), LTE CAT NB1 Narrowband Internet of Things(NB-IoT), and 802.11ah (WiFi HaLow) are
such candidate technologies for which chipsets are known to exist or have been announced. Table 4
highlights a selection of such chipsets. Their availability or future availability paves the way for further
investigations and modeling related to their longer range connectivity, reliability, etc. Most of these
standards are designed to consume much less power than classical cellular technologies and therefore
could prove very effective in future wearable wireless networks.

Table 4. Selected chipsets for upcoming future technologies.

Chipset
Ublox
SARA-N2
series

Sequans Communication
Monarch SQN3330

Gemalto
EMS31

Intel XMM
7115/XMM
7315

Qualcomm
DM9206

Newarcom
NRC7191

Standard(s)
LTE
Cat NB1

single-chip LTE
Cat M1/NB1 LTE Cat M1 LTE CAT

M1 and NB1
LTE CAT M1
and/or NB1

802.11ah
(WiFi HaLow)

Data Rates
227 kbit/s
DL and
21 kbit/s UL

up to 300 kbps DL/375
kbps UL in HD-FDD and
1 Mbps in FD-FDD (LTE
CAT M1); up to 40 kbps
DL/55 kbps UL in
HD-FDD (LTE CAT NB1)

up to 300 kbps
DL and
375 kbps UL

N/A N/A up to
2 Mbit/s
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Abstract: Electrical impedance tomography (EIT) is an imaging method that can be applied over
stretchable conductive-fabric materials to realize soft and wearable pressure sensors through current
injections and voltage measurements at electrodes placed at the boundary of a conductive medium.
In common EIT systems, the voltage data are serially measured by means of multiplexers, and are hence
collected at slightly different times, which affects the real-time performance of the system. They also
tend to have complicated hardware, which increases power consumption. In this paper, we present
our design of a 16-electrode high-speed EIT system that simultaneously implements constant current
injection and differential potential measurements. This leads to a faster, simpler-to-implement and
less-noisy technique, when compared with traditional EIT approaches. Our system consists of
a Howland current pump with two multiplexers for a constant DC current supply, and a data
acquisition card. It guarantees a data collection rate of 78 frames/s. The results from our conductive
stretchable fabric sensor show that the system successfully performs voltage data collection with a
mean signal-to-noise ratio (SNR) of 55 dB, and a mean absolute deviation (MAD) of 0.5 mV. The power
consumption can be brought down to 3 mW; therefore, it is suitable for battery-powered applications.
Finally, pressure contacts over the sensor are properly reconstructed, thereby validating the efficiency
of our EIT system for soft and stretchable sensor applications.

Keywords: EIT; stretchable; pressure sensor; conductive fabric; wearable

1. Introduction

Electrical impedance tomography (EIT) is a method in which an image of the internal conductivity
distribution of an object is reconstructed from potential measurements made at the electrodes placed
around its boundary [1,2]. In a typical procedure, a low-frequency or DC drive current is injected
between two of these electrodes, and the resulting voltage data are collected from the remaining electrodes.
The current injection and voltage measurements are then systematically repeated until every electrode pair
has served for current injection. Once the voltage data are collected, the reconstruction of the conductivity
is performed by solving the Laplacian elliptic partial differential equation [1]. Then, a finite element (FE)
model of the sensor is computed, resulting in an image of the conductivity distribution.

EIT is mainly used in clinical applications for patient monitoring [3,4]; other applications include
damage detection [5] and pressure sore prevention [6]. Recently, EIT has been also employed for
showing the internal impedance distribution of conductive fabrics that respond to touch with local
changes in conductivity, and was therefore used for developing an artificial skin as a large-area pressure
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sensor [7]. Such sensors have the advantage of being stretchable, and can be placed over surfaces with
a different topology. In [8,9], an EIT-based sensor was placed over a mannequin arm in order to detect
different types of touches. This demonstrated that these sensors have the potential of being used as
wearable devices, and can now be used in robotic applications, whereby a robotic system is equipped
with sensors that do not interfere with its mechanics.

However, EIT still presents a major drawback; it is considered an inverse problem, as described
in [1]. Thus, EIT systems are mathematically severely ill-posed and non-linear, and are very sensitive
to small changes in potential at the boundary measurements. Therefore, the image reconstruction of
the internal conductivity of the body under examination is apt to errors, meaning EIT applications
suffer from a low spatial resolution.

The spatial resolution can be improved by increasing the number of electrodes [10]; this creates
more information available for solving the inverse problem. However, this solution affects the time
required for the data collection, and therefore decreases the temporal resolution of the system.

The general approach to compensate for such a drawback is to develop data collection systems
that are faster and less sensitive to noise.

Various methods have been used to increase the temporal resolution of EIT systems. In [11],
the authors use a frequency-division multiplexing approach; they simultaneously inject currents
at different frequencies from all the electrodes and measure the resulting voltage. In [12], a similar
approach is also presented, where a fast EIT system is achieved via parallel current excitation that
uses orthogonal signals. The drive currents can be then isolated, as they present diverse frequencies.
Nonetheless, these approaches require synchronous analogue detection hardware and digital processing
techniques that complicate the system design and increase the cost and power consumption. In [13],
a fast EIT system is presented; it injects a switched DC current pulse into the drive electrode pairs and
measures the voltage waveform, whereby parallel data acquisition is taken during the half part of the
cycle. The problem with such a system is that, in order to achieve a fast response, the measurement
time has to be small, limiting the measurement sensitivity.

A temporal resolution of 45 Hz is reported for an EIT-based sensor in [14], alongside a power
consumption of roughly 22 mW. In [15], the use of a current of 10 mA at 2 kHz over a resistive
material of 1 Ohm/sq results in a power loss of about 175 mW. In these approaches, the use of
multiple analog switch controllers for current injection and voltage measurements complicates the
hardware. Additionally, bearing in mind wearable applications, electronics should give minimum
power consumption and be fit for battery-powered operation. In this paper, we present our electronic
design of a printed circuit board (PCB) for 16-electrode high-speed EIT sensor applications. A video of
our EIT sensor setup is available as Supplementary Materials. It works by serially injecting a constant
unidirectional DC current and collecting differential voltages concurrently from all the electrodes at
each current injection cycle. Parallel data acquisition consents for a higher data capture rate; therefore,
this design allows for an increased temporal resolution. It also decreases the electrical common-mode
noise, as the voltage data are collected in the differential mode. Another advantage of this design is
that it does not have a complex hardware setup. This makes the system low-cost and of a low power
consumption; thus it is more suitable for wearable applications.

The remainder of this paper is organized as follows: the electronic design of our PCB is presented
in Section 2. In Section 3, we present our 16-electrode sensor system. In Section 4, we begin by
showing the data acquisition frame rate along with an analysis of the voltage data; we then show
different images corresponding to pressure inputs on the stretchable sensor. Finally, Section 5 concludes
the paper.

2. Hardware Implementation

In EIT, a certain number of electrodes are located at the periphery of a conductive body.
These electrodes serve for the application of either a small alternating or a DC current, and for
performing voltage measurements; then, an image showing the internal conductivity is reconstructed
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using the voltage data and a FE model of the system. In Figure 1 is shown a typical EIT current
injection and voltage measurement cycle. In order to scan between all electrodes and obtain a full
voltage data set, the current injection and voltage measurement are systematically repeated until every
electrode pair has served for the current injection. To reduce the effects of noise due to the contact
impedance, voltage measurements are not performed at electrodes carrying injected current. Therefore,
for a generic L-electrodes system, the number of measurements at the boundary is K = L (L − 3).
The voltage data sets are in the form of Vb = (Vb

1, ..., Vb
K), where Vb is the vector containing the

voltage measurements and K is the number of measurements. For a 16-electrode system, K = 208.
However, the total number of independent measurement is halved due to the reciprocity principle [16],
as we have a symmetrical commutation of current injection and potential measurement.

Figure 1. First and last steps of the current injection and voltage measurement sequence are shown for
our 16-electrode system. For each step, the current is injected between two electrode pairs, while those
remaining are used to measure the corresponding voltages. The process is repeated until every adjacent
electrode pair has served for current injection.

Electronic Circuit

Our hardware system for current injection and voltage measurement is a customized PCB,
as shown in Figure 2. It presents a power supply connector, a two-multiplexer mechanism connected
to a Howland current pump constant current generator, a sensor block for connection with the sensor
electrodes, and a connector for the National Instruments Data Acquisition (NI DAQ) USB card. The PCB
can be powered with either USB or a wall block power supply.

The two multiplexers serve for the rotation of the current supply between the electrodes, and
are digitally controlled by the DAQ card. They are two 16:1 ADG1606 multiplexers, presenting a
typical on resistance of 4.5 Ω and a transition time, when switching from one address state to another,
of 143 ns. With 16 channels, the multiplexers each need to be controlled by 4 digital-bit variables and 1
enabling variable, for a total of 10 variables. The first of the multiplexers has its input connected to
the current source, while the latter is connected to ground; their outputs are then connected to the
different electrode pairs.

The Howland current pump [17] is made of an Operational amplifier (Opamp), and provides a
high-output impedance constant current source. The circuit is able to supply a constant DC current,
independent of the connected load resistivity, to various loads. The Opamp for the current generator is
an OP727 dual-Opamp, with a good common-mode rejection ratio (CMRR) CMRR of 85 dB, rail-to-rail,
and a low supply current of 300μA/amplifier. The DAQ card is a NI USB6353, which serves for both
the multiplexer control and the parallel collection of the voltage data. The DAQ has a high input
impedance, a multichannel maximum sample rate of 1.00 MS/s, and an ADC resolution of 16 bits.
The DAQ is used for the differential voltage readings, where one input channel is connected to the
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positive input of the device’s programmable gain instrumentation amplifier (PGIA), and the other
is connected to the negative input of the PGIA; low settling times at all gains ensure the maximum
resolution of the ADC is used. Differently to other works, we do not use any multiplexers for the
voltage readings, but collect the data simultaneously from all the electrodes, thus decreasing electrical
noise and the settling time. Furthermore, our design guarantees the possibility of switching between
different types of voltage reading modalities (i.e., collecting differential voltage data between either
adjacent or non adjacent electrode pairs).

Figure 2. On the left, our customized printed circuit board (PCB) is shown. On the right, schematics of
the PCB in our proposed electrical impedance tomography (EIT) system, with the sensor connection
block, two multiplexers, and a Howland current pump are shown. The board can be supplied with
either USB or a wall block power supply.

For the management of the DAQ card, we use the MATLAB Data Acquisition Toolbox to collect
data and generate the 10 bit digital signal for the control of the two multiplexers. This approach allows
for reading data into MATLAB for immediate analysis.

To further clarify the working principle of the system, a block diagram of our sensor system setup
is shown in Figure 3.

Figure 3. Block diagram of the EIT-based sensor system for current injection and voltage measurement.

3. EIT-Based Stretchable Sensor

Our EIT-based sensor is realized using a thin, stretchable piezoresistive fabric material that
translates touch pressure into local changes in its resistivity. We have taken inspiration from the work
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of [9], and have followed our previous work [18], in which we developed the first prototype of an
eight-electrode pressure-responsive sensor based on EIT.

In this paper, we present our 16-electrode sensor, which is based on a conductive stretchable
fabric from the Eeonyx Corporation, made with nylon and coated with conductive doped polypyrrole
(Figure 4a,b). The material has a surface resistance of 30 KΩ, and it is low-cost and lightweight.
A 3D-printed circular frame made of two disc layers is used to house the conductive sheet.
The frame presents 16 extrusions, where conductive copper stripes are placed to create the electrodes.
The conductive fabric is then placed between the two discs, firmly in contact with the surrounding
electrodes, as shown in Figure 4c.

Although a mathematical framework for an EIT-based pressure-sensor membrane was presented
in [19], this model was also based on the hypothesis of incompressibility, which is not sufficient for the
conductive fabric employed in this work. Here, we have relied on the model of [1], which presents a
more general approach to solve the EIT inverse problem.

The image of the pressure contacts over the sensor is reconstructed by comparing two voltage
data sets: V0 is used as a background reference and V1 is the resulting potential measured when
pressure is applied. Additionally, as the DAQ card is constantly updating V1, this method guarantees
that no initial calibration is needed.

Figure 4. Our EIT-based stretchable sensor. In (a), the conductive fabric material in shown, and (b) shows
the material when stretched. In (c), the conductive fabric is placed between the two 3D printed discs.

Image Reconstruction

The image reconstruction is carried out using a MATLAB program based on the EIDORS
package [20], which is available under a General Public License. After the image (x̂O) of the
conductivity changes is reconstructed, it requires post-processing, as it presents artefacts due to
noise and possible electrode movement. To minimize these effects, we work on the image pixel values
[x̂O]i and select the region of interest (ROI) in which the maximum amount of conductivity change has
taken place. The processed image (x̂P) is found as follows:

ˆ[xP]i =

{
[x̂O]i if[x̂O]i ≥ f · max(x̂O)

0 otherwise
(1)

where ˆ[xP]i are the pixel values of (x̂P), and f is the threshold for the selection. The ROI is therefore
the region of (x̂O) for which the pixels of (x̂P) are non-zero.

Is it clear that, because the choice of f determines the size of the ROI, it has a great impact on
the final image, as shown in Figure 5. A number of studies have been conducted regarding the best
choice of the threshold factor [7,21], but still heuristic selection is very common. In our case, we choose
f = 0.10, as it performed best in our experiments.
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Figure 5. Examples of reconstructed images after a conductivity change has taken place on the
stretchable pressure sensor. From left to right, the raw reconstructed image with a positive conductivity
change (in red), and the region of interest (ROI) with different threshold factors f .

4. Measurement Results

4.1. Voltage Data Parameters

The tests shown here were conducted using the adjacent stimulation method for the current
injection and measurement pattern because of its well-known use in EIT literature. In this method,
two neighbours’ electrodes are used for the current stimulation, while voltage data is read between the
remaining adjacent electrode pairs, as seen in Figure 1. Other types of strategies can be used, but these
are outside the scope of this paper. An explanation on the different drive pattern typologies can be
found in [22].

The tests presented here were performed by using a current of I = 32μA and a power supply
of 16 V. This configuration gives a power consumption of about 10 mW, which is far lower than that
presented in literature. This value can be further reduced to 3 mW when using a current of 10μA
supplied with a power supply of 5 V.

In order to judge the quality of the resulting signal, we use the SNR:

SNR = −20 log10
|E[Vi]|√
Var(Vi)

(2)

where E[Vi] is the mean of multiple measurements for each channel and Var(Vi) is the variance
between these measurements.

In Table 1, the mean SNR and the mean absolute deviation (MAD) among different measurement
sets are shown for both tested currents. The results demonstrate that, in order to further reduce the
power consumption, the drive current amplitude must be decreased without greatly affecting the
system performance.

Table 1. Mean signal-to-noise ratio (SNR; dB) and mean absolute deviation (MAD; mV) in the case of
two different current amplitudes.

I = 32 μA I = 10 μA

SNR 55 49
MAD 0.5 0.4

4.2. Boundary Data Collection

We chose a sample time for the voltage readings of 62,500 samples/s and selected the multiplexers’
input and output channels for the 16 current injections through the digital output voltages of the DAQ.
Additionally, the total number of collected samples for each channel was selected via software to be
800, which made it 50 for each injection step; this number guaranteed a data collection rate of 78 Hz,
which was adequate to have a temporal resolution suitable for EIT touch-sensing applications.
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Figure 6 shows an example of the voltage data set acquired through the first DAQ differential
channel, namely the difference between electrodes 1 and 2 at each current injection step. The profile of
the boundary data potentials indicates the effective multiplexers’ channel switching with a precise
conveyance of the control digital bits. Additionally, the image shows that choosing a number of
samples for each channel equal to 800 is a good compromise between reaching the static conditions at
each time step and having a fast data set update rate. In fact, it is visible that the effects of transients
are negligible after just 25 samples. For each current injection time step, the mean value of the samples
is calculated after the static conditions are reached. This is then used as the final value for calculating
the 208 voltage data set, as seen in Figure 7. In order to qualitatively demonstrate the quality of the
hardware setup and the voltage data, Figure 8 shows the reconstructed images when a pressure input
is applied in different positions over the sensor. In the reconstructed figures, a red colour indicates
a positive change in the conductivity, while a blue colour represents the ringing artefacts, which are
bands or "ghosts" near the edges, typical of linear filters such as EIT systems.

Figure 6. Measured voltage output signal on DAQ channel 1, obtained with 16 sequential DC current
excitation signals. Mean values were calculated at each injection time step for each channel after the
static conditions were reached, and contributed to creating the final voltage data set.
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Figure 7. An example of a 208 voltage data set for a typical 16-electrode EIT system.

Figure 8. Reconstructed images for a pressure input applied in different locations over the sensor.
On the right is the final image showing the ROI representing the maximum conductivity change. A red
colour indicates an increase in the conductivity.

5. Conclusions

A high-speed EIT system that concurrently implements constant current injection and differential
potential measurements has been developed for EIT-based sensor applications.

Our customized PCB design implements a Howland current pump and two analog multiplexers
for the constant current injection. They are controlled using a 10 bit digital signal originating from
the DAQ. The voltage data measured at the electrodes placed around the fabric sensor show the
multiplexers operating in the required sequence, and also show that the data is successfully acquired
for reconstructing the image of the pressure input on the stretchable sensor. The reconstructed images
for different contact points over the sensor demonstrate the efficiency of our EIT-based sensor.
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Our system is able to capture data at 78 frames/s and its power consumption can be brought
down to 3 mW when using a current of 10 μA supplied at 5 V.

The advantages of this approach in contrast to those found in the literature are the following:
(a) the less complicated hardware design makes it low-cost and more suitable for wearable systems,
and (b) it has a low power consumption. Furthermore, our design is advantageous for touch-sensing
applications, as its high speed guarantees that the voltage data collection is complete before any
noticeable change in conductivity occurs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7080/5/3/48/s1:
Video S1: EIT Sensor.
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