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Nonadditive Entropy Application to Detrended Force Sensor Data to Indicate Balance Disorder
of Patients with Vestibular System Dysfunction
Reprinted from: Entropy 2023, 25, 1385, https://doi.org/10.3390/e25101385 . . . . . . . . . . . . 257

Zhipeng Liu

Effects of Nonextensive Electrons on Dust–Ion Acoustic Waves in a Collisional Dusty Plasma
with Negative Ions
Reprinted from: Entropy 2023, 25, 1363, https://doi.org/10.3390/e25091363 . . . . . . . . . . . . 273

D. Monteoliva, A. Plastino and A. R. Plastino

Magic Numbers and Mixing Degree in Many-Fermion Systems
Reprinted from: Entropy 2023, 25, 1206, https://doi.org/10.3390/e25081206 . . . . . . . . . . . . 285

Mohamed Kayid and Mashael A. Alshehri

Tsallis Entropy of a Used Reliability System at the System Level
Reprinted from: Entropy 2023, 25, 550, https://doi.org/10.3390/e25040550 . . . . . . . . . . . . . 296

vi



Received: 7 January 2025

Accepted: 13 January 2025

Published: 20 January 2025

Citation: Tirnakli, U. Nonadditive

Entropies and Nonextensive

Statistical Mechanics. Entropy 2025,

27, 93.

https://doi.org/10.3390/e27010093

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Editorial

Nonadditive Entropies and Nonextensive Statistical Mechanics

Ugur Tirnakli

Department of Physics, Faculty of Arts and Sciences, Izmir University of Economics, Izmir 35330, Turkey;
ugur.tirnakli@ieu.edu.tr

The centennial Boltzmann–Gibbs statistical mechanics [1], which are based on the
additive Boltzmann–Gibbs–von Neumann–Shannon entropy [2], have had undeniable
success in an extremely large class of physical systems [3]. This theory is generically de-
signed for systems in equilibrium, and is deeply related to chaotic non-linear dynamics [4].
This implies, for classical systems, that the maximal Lyapunov exponent is expected to
be positive. However, in many complex systems, where this exponent becomes vanish-
ingly small, the need emerges for non-additive entropies and consistent generalizations of
quantities such as the Maxwellian distributions of velocities [5,6], the celebrated Boltzmann–
Gibbs weight for energies [7,8], the standard Fokker–Planck equation [9–11], and Pesin-like
identities [12,13]. As a whole, this amounts to generalized statistical mechanics based on
nonadditive entropies [14,15].

One of the possible such generalizations, known in the literature as nonextensive
statistical mechanics, was proposed in 1988 by Constantino Tsallis [16] and, since then,
has received many applications in the natural, artificial, and social sciences. Nowadays,
Professor Constantino Tsallis has an outstanding global impact on physics, astrophysics,
geophysics, economics, mathematics, chemistry, and computational sciences, among others
(see the bibliography at https://tsallis.cbpf.br/biblio.htm (accessed on 5 November 2024)).
In recognition of his extraordinarily creative and productive scientific life and innumerable
contributions to the field of statistical physics of complex systems, this Special Issue is
dedicated to him on the occasion of his 80th birthday (5 November 2023).

Several manuscripts were selected for publication in this Special Issue, which I will
attempt to describe in this article. All of these manuscripts were prepared by researchers
who are working all around the world in related areas.

In this Special Issue, we have 21 articles in total, with two of them being review articles
and the rest being research articles. Let us now describe these articles briefly.

For the first review article, we have the privilege of having a contribution from C.
Tsallis himself [17]. In this article, one can follow the development of the theory over the
years, adorned with historical anecdotes. This invaluable contribution can be considered
as yet another example in which one can see the progress of new ideas that enable us to
understand nature better.

The second review article in this SI is the one where K. Nelson has concentrated on
some related open problems [18]. Rephrasing the terminology of the framework based
on scale-shape distributions, several interesting remarks and research questions have
been discussed.

The contributions of the research articles in this SI starts with [19], which is an applica-
tion of the Tsallis entropy to an engineering problem. The performance and quantification
of uncertainties over the lifetime of a system is critical from engineering point of view.
The authors develop a useful criterion for measuring the predictability of the lifetime of a
coherent system.

Entropy 2025, 27, 93 https://doi.org/10.3390/e27010093
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In [20], the authors provide some valuable insights into the interplay between quantum
mixing, magic numbers, and thermodynamic properties in many-fermion systems at low
temperatures. It is shown that the utilization of Tsallis entropy and an exactly solvable
model offer a powerful framework for understanding complex fermionic behavior and its
observable consequences.

The contribution to the SI from Liu essentially highlights the crucial role of nonex-
tensive electrons in modifying dust-ion acoustic wave dynamics within collisional dusty
plasmas containing negative ions [21]. The obtained results have implications for under-
standing wave phenomena in various space and laboratory plasma environments where
deviations from Maxwellian electron distributions are observed.

In [22], the authors aim to demonstrate the potential for Tsallis entropy analyses
of insole pressure data as a quick and accurate tool for identifying vestibular system
dysfunction. The proposed detrending algorithm effectively separates balance-related
fluctuations from individual walking habits, improving diagnostic accuracy. It is argued
that further research with a larger participant pool is needed to validate these findings and
refine the diagnostic process.

The next contribution by Pasten et al., in [23], presents a compelling case for the
combined use of Tsallis entropy and mutability (dynamical entropy) to analyze seismic se-
quences and potentially identify pre-earthquake signals. The identified potential indicators
offer a promising route for further research in seismic risk assessment and forecasting.

In [24], the authors make a significant contribution to the theory of Dirichlet averages
by extending them to the complex domain for matrix-variate cases. This generalization
establishes a relationship between Tsallis entropy and Dirichlet averages. It provides a
mathematical tool for analyzing and understanding a wide range of phenomena across
various disciplines, from special functions and fractional calculus to statistical mechanics
and gene expression modeling.

In [25], the reader can find an investigation of the thermodynamic properties of the
system created in proton–proton collisions at the Super Proton Synchrotron by analyzing
the transverse momentum spectra of identified charged hadrons. Standard Bose–Einstein
and Fermi–Dirac distributions are utilized to extract related parameters. These findings are
expected to contribute to our understanding of particle production mechanisms and the
evolution of the collision system.

In their contributions [26], Shrahili and Kayid offer valuable insights into the past
Tsallis entropy of order statistics, providing a framework for understanding and analyzing
the uncertainty associated with past events in systems with various structures. Obtained
results and derived tools seem to have potential for applications in reliability engineering,
lifetime analysis, and broader information theory contexts.

The authors of [27] analyze the transverse momentum spectra of positive pions in
high-energy heavy ion collisions using a modified Hagedorn function to extract freeze-out
parameters. Their efforts reveal how these parameters depend on both collision centrality
and system size. The obtained results are compared to data from the PHENIX and BRAHMS
collaborations, and discussed in the context of nonextensive statistical mechanics.

Another interesting contribution by Lenzi et al. [28] demonstrates the significant
impact of stochastic resetting on nonlinear diffusion processes. The interplay between these
mechanisms leads to non-Gaussian distributions, transient anomalous diffusion, and the
emergence of power-law stationary states, which provide valuable insights into systems
exhibiting complex diffusion behavior and have potential applications in diverse fields.

In [29], the authors provide a first-principles validation of Fourier’s law in a classical
inertial Heisenberg model. The results highlight the relevance of nonextensive statistical
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mechanics, specifically the stretched q-exponential function, in describing the thermal
transport properties of complex systems.

Another contribution to this SI investigates Kleiber’s law, which describes the
3/4 power-law relationship between organism mass and metabolic rate [30]. The authors
propose a nonlinear dynamical model, grounded in statistical mechanics and renormal-
ization group theory, to explain this law across plant and animal kingdoms. The model
uses Tsallis entropy and connects to concepts of rank distributions and conjugate pairs of
power-law exponents. The findings offer a unified explanation for Kleiber’s law based on
nonlinear dynamics and nonextensive statistical mechanics.

In their article [31], Biro and collaborators explore the mathematical relationships
between non-additive entropy formulas such as Tsallis entropy and the Gini index, a mea-
sure of inequality. A dynamical model, illustrating the time evolution of the Gini index,
is presented.

In [32], Jensen and Tempesta present a group-theoretic approach to classifying en-
tropies, focusing on how the number of system states grows with the number of compo-
nents. This approach, emphasizing composability and extensivity, leads to a systematic
framework encompassing known entropies, such as Boltzmann–Gibbs–Shannon and Tsallis,
and introduces new ones. The framework is applied to data analysis, offering improved
methods for characterizing complexity in time series data.

Another research article here explores relativistic thermodynamics within the frame-
work of special relativity, examining different viewpoints on how heat and temperature
transform under Lorentz boosts [33]. It then investigates the Maxwell–Jüttner distribution,
and proposes a connection between the Tsallis distribution, quantum statistics, and the
cosmological constant. The study uses de Sitter space-time as a model to achieve this
connection, presenting the Tsallis distribution as a deformation of the Maxwell–Jüttner dis-
tribution.

In [34], Yoon et al. examine the non-thermal velocity distribution of solar wind
electrons. The authors build upon prior research linking this non-thermal distribution to
Langmuir turbulence, proposing a model that incorporates whistler-mode turbulence and
thermal fluctuations. The model uses a combination of theoretical calculations and particle-
in-cell simulations. A key aspect is the consideration of spontaneous thermal fluctuations
alongside the background turbulence in shaping the electron distribution. The resulting
distribution, determined numerically, exhibits a distinct core and halo electron population,
aligning with observational data.

Barauna and collaborators introduce a method for classifying spatiotemporal pat-
terns in complex systems using entropy measures [35]. The authors propose a parameter
space based on Shannon permutation entropy and Tsallis spectral permutation entropy to
distinguish between various processes. This approach shows promising results in distin-
guishing various classes of dynamic processes, and paves the way for further research and
applications in data-driven science.

Another contribution by Eroglu et al. [36] provides a compelling quantitative analysis
of the impact and influence of nonextensive statistical mechanics and the pivotal role of
Constantino Tsallis in its development. The study underscores the importance of sciento-
metric methods in understanding the dynamics of scientific knowledge dissemination, and
the impact of individual researchers and their collaborations.

In the final article in this SI, the authors provide valuable insights into the statisti-
cal properties of Sicilian precipitation data, highlighting the presence of scale-invariant
behavior, long-range correlations, and potential climate change impacts [37]. The appli-
cation of nonextensive statistical mechanics offers a powerful tool for understanding the
complexities of evolving precipitation patterns.
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We hope that this volume will be of interest not only to physicists, but also to mathe-
maticians and complex systems scientists.

Acknowledgments: I would like to sincerely express my personal gratitute to C. Tsallis for his never-
ending support and friendship. U.T. is a member of the Science Academy, Bilim Akademisi, Turkey.
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Reminiscences of Half a Century of Life in the World of
Theoretical Physics

Constantino Tsallis 1,2,3,4
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Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil; tsallis@cbpf.br

2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
3 Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria
4 Sistemi Complessi per le Scienze Fisiche, Socio-Economiche e della Vita, Dipartimento di Fisica e Astronomia

Ettore Majorana, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy

Abstract: Selma Lagerlöf said that culture is what remains when one has forgotten everything we
had learned. Without any warranty, through ongoing research tasks, that I will ever attain this high
level of wisdom, I simply share here reminiscences that have played, during my life, an important
role in my incursions in science, mainly in theoretical physics. I end by presenting some perspectives
for future developments.

Keywords: critical phenomena; graph theory; nonlinear dynamical systems; nonadditive entropies;
nonextensive statistical mechanics

Yo soy yo y mi circunstancia

[José Ortega y Gasset]

1. The Leitmotif

Let me start this narrative backwards. While trying to organize a plethora of remi-
niscences from my scientific life, a single aspect vividly came to my mind that percolates
through it all: the intuitive or conscious search for beauty, either primordial or actual.
Insistent thoughts and feelings such as “This way it is not well expressed”, “It must be
possible to present it, to think of it, in a more powerful, more general form”, “Yes, now it is
perfect, there is no way to present it or to think about it more beautifully or more simply”
have been recurrent along my entire life, the leitmotif of my research activities. It is, almost
always, through this path that I imagine—sometimes successfully—the correct scenario,
the correct outcome, for a given issue. I have no doubts that such experiences are currently
shared with virtually all scientists and artists. They are, in any case, shared with A. K.
Rajagopal, with whom I lengthily discussed, many years ago, precisely this point.

The earliest memory that I have of some sort of conscious search for aesthetics goes
back to my childhood. Every day, I used to commute between my residence and school
in Mendoza, Argentina, using the tramway. Every tram ticket had a unique five-digit
number. I had immense pleasure in utilizing every travel duration to play with the digits,
rearranging them or performing various simple arithmetic operations so that the number
would finally be written in a more beautiful manner. I would not stop until the number
reappeared, in my child mind, in an aesthetic form.

For Plato, Truth and Beauty were two inseparable aspects of the same reality.

John Keats wrote, in 1819,

Beauty is truth, truth is beauty

that is all Ye know on earth, and all Ye need to know.
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A few years later, Emily Dickinson, in her lonely style, insisted

I died for beauty, but was scarce

Adjusted in the tomb,

In an adjoining room.

He questioned softly why I failed?

“For beauty”, I replied.

“And I for truth,—the two are one;

We brethren are”, he said.

And so, as kinsmen met at night,

We talked between the rooms,

Until the moss had reached our lips,

And covered up our names.

The Academy of Athens (in Greece, just Academy) is not an Academy of Sciences or
of Arts, it is just The Academy, originally founded by Plato. And, in front of it, two big
columns stand up, dedicated, one of them, to Pallas Athena, the Goddess of Wisdom and
Science—the utopia of which is Truth, and the other one to Apollo, the God of Art—the
utopia of which is Beauty—(see Figure 1).

Figure 1. The Academy of Athens. Centered between the two columns of Pallas Athena and Apollo,
we see the statues of Socrates and of his disciple Plato, the founder of the original Academy, where
Aristotle studied for twenty years.

A few months ago, while lecturing in Princeton University, I had a pleasant surprise:
the symbol of the celebrated Institute for Advanced Study where Einstein spent many years
of his life precisely joins, hand in hand, Truth and Beauty (see Figure 2).
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Figure 2. Symbol of the Institute for Advanced Study, in Princeton, New Jersey.

2. Early Years

After finishing my high-school studies, I first registered, at the National University of
Cuyo, in San Juan, Argentina, on the course of Chemical Engineering at the (immature) age
of 15 and, at the age of 16, I started to follow with enthusiasm the lessons in mathematics,
physics and chemistry. During the first two years, the obligatory disciplines were the basic
ones and I was enchanted. But, in the third year, the technological disciplines themselves
started with all their weight and my interest definitively declined. Coincidentally, I heard a
presentation by Alberto P. Maiztegui at the Institute of Physics Balseiro, part of the same
University but located in the beautiful Bariloche. Fellowships were accessible through a
national competition in Buenos Aires, one of the requirements being to have completely
finished two full years of studies in exact or technological sciences. This is how I shifted
from engineering to physics. I finished in 1965 and eventually moved to France, supported
by a French fellowship, to take a doctorate degree (Doctorat d’ État ès Sciences Physiques).

After some initial years of research in experimental physics (the construction, in 1968,
at the Laboratoire de Spectroscopie Moléculaire headed by Gilbert Amat at the University
of Paris in Jussieu, of a molecular laser working on the CO and CO2 states, and, in 1969,
impedance measurements of complex perovskites supervised by Claude Rocchiccioli-
Deltcheff [1] at the Laboratoire de Magnétisme et Physique des Solides/Centre National de
la Recherche Scientifique in Bellevue-Paris), I definitively turned the focus of my research
onto theoretical physics. However, that early experience in experimental physics indelibly
marked my entire understanding of science.

My first theoretical steps were taken, in the area of ferroelectricity in perovskites [2,3],
with Jacques Bouillot and Roland Machet, who were starting to work at the University of
Dijon, France. We three together discovered with perplexity the beauty and power of the
sum rules in physics.

Those years were marked by the May 1968 student generalized movements in Paris
and elsewhere. I moved to the Service de Physique du Solide et Resonance Magnétique—
Commissariat à l’Énergie Atomique, in Saclay-Paris (Jacques Villain had just moved from
Saclay to Grenoble and I inherited his office room). There, by meditating on the fascinating
mathematical and physical mysteries of phase transitions and critical phenomena, I had the
invaluable fortune to learn priceless insights from Nino Boccara and Gobalakichena Sarma.

I still remember today that one of my first personal theoretical efforts had a definitively
aesthetic motivation. K. Kobayashi [4,5] had proposed an interesting model for KDP-like
ferroelectric crystals. There was, however, an issue of his theory that strongly bothered
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me: the order parameter and the frequency of the associated soft mode did not vanish
at the same temperature. Since, within such simple theoretical approaches, I considered
the order parameter and the corresponding soft mode to be two faces of the same coin,
that discrepancy appeared to me as inadmissible. I thought that the simplest and most
beautiful scenario was that the two main “consequences” of the same “cause”—the ther-
modynamical inclination of the system to make a phase transition—emerged together,
at a single temperature. Then, by including some specific configuration energy within
Kobayashi’s theory, it came out that, as desired, the order parameter and the soft mode
frequency indeed vanish at precisely the same temperature. Satisfied with this result, I
then published this, so corrected, theory [6]. The 1972 paper’s Figure 1 exhibits the critical
temperature as a function of a scaled molecular field Γ. This particular dependence was,
some time later, experimentally confirmed at the Institute of Physics of the University of
Campinas-Unicamp. Unfortunately, I have not succeeded in finding the corresponding
plot but I still remember Sergio Porto showing it to me at the University of Brasilia while,
smiling, he told me “You propose and Unicamp checks!” That was my first experience
where some theoretical effort of mine was experimentally validated. I was fascinated by
this experimental verification which, for me, was close to a miracle. Beauty was showing
its power in science. . .

This fact was somehow consistent with the two most influential lessons—one from
Guido Beck (distinguished German physicist, former assistant of Werner Heisenberg,
having lived part of his life in Argentina and Brazil, where he currently taught the theory
of relativity and quantum mechanics; his quantum mechanics first lesson was simply
unforgettable: he entered the classroom and, to our enormous perplexity, said abruptly
“Do you think that an electron is a hard black little ball? Noooo, an electron is a distribution
of amplitudes of probabilities!”), at the time I was his student at the Balseiro Institute of
Physics in Bariloche, Argentina, and the other one from Pierre-Gilles de Gennes (French
physicist, 1991 Nobel laureate in Physics), when I was following, at Orsay-Paris, his regular
course on Solid State Physics—that I was fortunate to receive during my student times,
before my initiation as a researcher.

Guido Beck was teaching us some simple features about the real and imaginary parts
of some basic dissipative coefficient, and, in the middle of long mathematical calculations,
a zero emerged. At this point he said “Because of this zero, if you put your finger into shoe
polish, when you get your finger out, the hole remains”. Indeed, if you put your finger into
water, the hole then disappears! That was like a sudden flash of lightening in my mind:
the good mathematical theory ought to reflect the empirical fact! The protagonists of Raffaello
Sanzio’s School of Athens in the Vatican are Plato and Aristotle. Plato point to the heavens
(topos Uranos), in contrast to Aristotle who points towards the ground (topos Physis). In their
search for truth, they were both right: the theoretical truth must correspond to the empirical
truth, two faces of the same coin! The perfect balance between Poetry and History. From
Aristotle’s thoughts: Poetry is more philosophical and more elevated than history; for poetry
expresses the universal, and history only the particular. History tells us the events as they happened,
whereas poetry tells them as they could or should have happened. (“Elevated” is to be understood
here as closer to “philosophy”, which occupies, in the Aristotelian thinking, the highest
place in the hierarchy of the forms of knowledge.)

In a different realm, in his teaching, Pierre-Gilles de Gennes solved concrete physical
problems by using generic intuitive and scaling arguments. So, in a few minutes, he
would find the correct answer (excepting perhaps for a pure number of the order of unity).
At home, after many-hour calculations, we students verified systematically that his answer
indeed was the correct one! This opened in my mind a completely new perspective: It
is possible to find the correct theoretical description and understanding without doing tedious
mathematical calculations, just by focusing on what is a must, or nearly so, for that specific physical
problem! (It is within this respect that abduction, the Charles Sanders Peirce favorite form of
logical inference, plays its central role, the one which enables Sherlock Holmes to identify
the murderer, through the “relevant details”!).
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Bond percolation is an interesting geometrical critical phenomenon based on indepen-
dent bond-occupancy probabilities on a given structure, e.g., a square lattice. If we have a series
array of two bonds whose occupancy probabilities are p1 and p2, the overall occupancy
probability is given by

ps = p1 p2 , (1)

where s stands for series. If the array is a parallel one, then the overall occupancy probability
is given by

pp = p1 p2 + p1(1− p2) + p2(1− p1) = p1 + p2 − p1 p2 , (2)

where p stands for parallel. But, already at this elementary stage, aesthetics may come
in! We may say that Equation (2) is not written in a beautiful manner. Indeed, it can be
rewritten in a much more elegant way, namely

1− pp = (1− p1)(1− p2) . (3)

Now, all variables are written in one and the same form. On top of this, Equation (3) trivially
transforms the parallel composition into the same form as the series one. This leads us
naturally to a deep transformation which we will name duality, i.e., p ↔ (1− p). It is
from these very elementary seeds that a powerful graph calculation algorithm, currently
referred to in the literature as the Break-Collapse Method, was developed, valid for a model,
namely the qP-state Potts model (where P stands here for Potts). This model is sensibly
more general than bond percolation, which is therein recovered as the particular case
qP = 1. A very elegant method was born and an important unification was achieved
based on the above very simple considerations [7,8]. Incidentally, a very useful variable
currently referred to as thermal transmissivity t was concomitantly introduced (it was Robin
B. Stinchcombe, during a car ride in Rio de Janeiro, who helped me, with his beautiful
Oxford English, to decide whether to call it transmissivity or transmittivity); this variable
precisely becomes the above bond occupancy probability p when qP = 1 (I once had an
unforgettable conversation with my friend and outstanding statistical mechanicist Antonio
Coniglio: with his red bonds, he had arrived at essentially the same understanding of this
beautiful geometrical–thermal problem). The square lattice is a self-dual (infinite) graph in
the sense that, if we cut each of its bonds by one and only one dual bond, we recover once
again the square lattice. Because of this crucial topological property, its bond-percolation
critical point pc must satisfy pc = 1− pc; hence, pc =

1
2 (see [9,10]). Along totally analogous

lines, it can be shown that the critical thermal transmissivity tc of the square-lattice qP-
state Potts ferromagnet is given by tc = 1

1+
√

qP
. I then introduced a convenient new

variable, namely

s ≡ ln[1 + (qP − 1)t]
ln qP

(4)

It is straightforward to verify that the duality (i.e., series–parallel) transformation now
becomes s ↔ (1− s), one and the same for all values of qP! Consequently, the square-lattice
critical point is given by sc =

1
2 (∀qP) and the qP-state Potts ferromagnetic model becomes,

in this sense, collapsed in the bond percolation model, for all values of qP. I believe that this
simplicity illustrates well what makes the beauty of unification!

Notice, by the way, that definition (4) satisfies, in the qP → 1 limit,

s ∼ ln[1 + (qP − 1)t]
qP − 1

∼ t . (5)

Amazingly enough, we shall later on see [11] that this transformation is precisely the one
which, through (qP − 1)↔ (1− q), connects the Rényi entropic functional SR

q (R standing
for Rényi) and the nonadditive entropic functional Sq, which will play a major role in
generalizing the Boltzmann–Gibbs statistical mechanics; s plays here the role of SR

q and t
that of Sq, the qP → 1 (hence q → 1) limit corresponding to the Boltzmann–Gibbs entropic
functional SBG (Per Bak, the “father” of the concept of self-organized criticality, once shared
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with me a curious statement, “Every man has only one idea in his life; if he has many, he
has none”. Many years later, at the Santa Fe Institute, NM, the Nobel laureate Murray
Gell-Mann and I lengthily discussed, just for pleasure, this point: he disagreed with Bak’s
statement, whereas I was inclined to agree with it).

Diverse real-space renormalization groups and other theoretical techniques were
implemented on the Potts-model above grounds. This perspective enabled many doctoral
theses to be worked out as well as several papers to be published. Also, basically due
to these developments in theoretical physics, I had in 1982 the good fortune to become
a Fellow of the John Simon Guggenheim Foundation (USA), which allowed me to have
enriching post doc periods at Oxford, Boston and Cornell Universities.

The unification implied in any generalization always involves some form of simple
beauty. Indeed, within a generalization, diverse physical situations emerge as particular
instances of a more powerful, more “universal”, theory, a sort of metaphor.

It is a memory of this kind which points to the calculation that Anibal Omar Caride
and myself performed in 1984 [12]. It concerned the quantum specific heat of an anisotropic
rigid rotor whose inertial tensor has a revolution symmetry. This approach unified three
different symmetries, namely the spherical, oblate (“flying disk” like) and prolate (“cigar”
like) ones. The quantum nature of the problem ensures that the various rotational degrees
of freedom are activated at possibly different temperatures T. In the extreme prolate
case, rotations around the symmetry axis might be frozen until very high temperatures
are achieved, due to its nearly vanishing moment of inertia I. Indeed, in such a case,
the first excited state of rotation around that axis becomes thermally activated only at
extremely high temperatures. This yields a nonuniform convergence related to the ordering
of T → ∞ and I → 0. This fact elegantly clarifies the perplexity felt by Josiah Willard
Gibbs concerning the specific heat of diatomic molecules calculated, naturally in his time,
on classical grounds: quantum mechanics did not even exist! To be more precise, in the
Preface of his celebrated 1902 book [13], he writes: Even if we confine our attention to the
phenomena distinctively thermodynamic, we do not escape difficulties in as simple a matter as the
number of degrees of freedom of a diatomic gas. It is well known that while theory would assign to
the gas six degrees of freedom per molecule, in our experiments on specific heat we cannot account
for more than five. Certainly, one is building on an insecure foundation, who rests his work on
hypotheses concerning the constitution of matter. Difficulties of this kind have deterred the author
from attempting to explain the mysteries of nature. . .

Another memory along similar lines refers to the 1987 discussion by Maria da Con-
ceição de Sousa Vieira and myself focusing on the thermal equilibrium of a D-dimensional
ideal gas in Gentile parastatistics [14]. Each parastatistics is characterized by the maximal
allowed number pG of particles per state (G stands for Gentile); hence, pG = 1 and pG → ∞,
respectively, recover Fermi–Dirac (FD) and Bose–Einstein (BE) statistics; in the BE case,
a finite-temperature macroscopic condensation on the ground state occurs at a sufficiently
high dimension D, whereas no such phenomenon is possible for the FD case. The central
issue of that paper concerns whether such macroscopic condensation is or is not possible
for 1 < pG < ∞. The answer is that it is not. This strong result is once again related to
an elegant nonuniform convergence, this time involving the ordering of the pG → ∞ and
the chemical potential μ → 0 limits. An analysis of this result on aesthetical grounds is
available in [15].

3. Nonadditive-Entropy Years

As a consequence of the French–Brazilian Colloquium on Phase Transitions (Critical Phe-
nomena) that I organized in November 1981 in Rio de Janeiro, a French–Mexican–Brazilian
similar event, the First Workshop on Statistical Mechanics, was held in September 1985 in
Mexico City. France provided important financial support. The French delegation was
led by Édouard Brézin and the Brazilian one by myself. During a morning coffee break,
while the participants were outside chatting, I remained resting inside the lecture room.
Brézin was at the blackboard with a Mexican student whose name I do not remember. Their
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conversation was about something related to multifractals. I could not hear them because of
the distance, but I could see that Brézin was writing on the blackboard various expressions
containing pq, well known to naturally appear in the theory of multifractals. Then, it
suddenly came to my mind that it would be possible with pq to generalize Boltzmann
entropy and therefore the entire standard statistical mechanics. Back home, I simply wrote
down the expression of the following entropic functional:

Sq = k
1−∑W

i=1 pq
i

q− 1
(q ∈ [−∞, ∞]) . (6)

If this expression, which trivially contains the Bolzmann–Gibbs–von Neumann–Shannon
functional SBG = −k ∑W

i=1 pi ln pi as the q → 1 instance, was adopted as a postulate, then
it would be possible to generalize the entire BG statistical mechanics [13,16–19]! (Years later, I
gradually learnt from Silvio R.A. Salinas, Richard N. Silver and others that similar entropic
functionals had previously been advanced in the literature of cybernetics and related math-
ematical formalisms. But, seemingly, no one ever addressed the possibility of generalizing,
on such grounds, the entire BG theory itself. Historical details can be found in [20] and
references therein.) During three years I did not feel like publishing anything along this
line because I had no clarity about what could be the physical interpretation of Sq. Obvi-
ously, ideas related to hierarchical space–time structures were lurking. Also, for whatever
reason, the thought emerged insistently that a small probability pi (0 < pi 
 1) may be
considerably magnified through the biased probability pq

i (more precisely, pq
i / ∑W

j=1 pq
j ) if

q < 1, i.e., basically, (0.01)1/2 = 0.1 � 0.01. The image that appeared in my mind was the
calm and gigantic vortices that I had seen in the bottom of the river at the fascinatingly
hectic Iguaçu Falls: zillions of water molecules slowly turning around, just one after the
other. An astronomically low a priori probability, stable and peaceful, quasi-stationary
state in the middle of Hesiodic Chaos! (In fact, many years later, various connections of
turbulent systems did appear with theoretical approaches involving q �= 1, e.g., [21–23]).

Time goes by and, in 1987, Enaldo F. Sarmento, myself and a few other colleagues met,
for a few days (Encontro de Trabalho sobre Autômatas Celulares, 24 to 28 August 1987, Maceió,
Alagoas), at the Federal University of Alagoas in Maceió with the purpose of launching
in Brazil the area of cellular automata. During a free-time period, on a blackboard, I
presented the entropy Sq to Hans J. Herrmann and Evaldo M. F. Curado, and we searched,
without particular success, for possible physical applications. Next day, there were too
many mosquitoes in the hotel where I was sleeping and I decided to go back to Rio de
Janeiro. During the air flight I optimized the functional Sq with the standard norm and
energy constraints, and I found the now well-known q-exponential distribution. I was
delighted by the fact that this distribution unified exponential, asymptotic power-law and
cut-off behaviors, depending on whether q = 1, q > 1 or q < 1.

Some time later on, virtually all the best statistical physicists of Brazil happened to be
in my office at CBPF to discuss the organizational issues of the upcoming IUPAP Statphys
17 meeting to be held in 1989 in Rio de Janeiro. At the end of our discussion, I briefly
presented to them, on the blackboard, the main lines of the Sq proposal, and asked them
whether it would be worthy or not to make this proposal in a standard international journal.
The unanimous opinion was favorable to submitting it outside Brazil. I still remember the
words of Silvio R. A. Salinas, at the time Chief Editor of the Brazilian Journal of Physics
(BJP): “I would send it to a good journal outside Brazil, but if you want to submit it to BJP,
it is already accepted!”.

I first wrote a Centro Brasileiro de Pesquisas Físicas preprint (Notas de Física CBPF-
NF-062/87), published in 1987. Eventually, I submitted the manuscript to the Journal of
Statistical Physics [11] (this paper is, at the date I write these lines, the most cited one
in the entire life of the journal, born in 1969, with 7164 citations at the Web of Science
(All Databases), the second one, with 2715 citations, being the well-known 1978 article by
Mitchell J. Feigenbaum, in 19, 25–52), at the time edited by Joel L. Lebowitz. The submission
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letter, sent on my birthday, 5 November 1987, included the lines “Well, the last few months I
have been working in a ’crazy’ idea: a possible generalization of Boltzmann–Gibbs statistics!
[. . . ]. I did not succeed in finding a direct and useful application to an already known
system. Nevertheless, the generalization has—at least to my eyes!—an internal elegance,
which, I think, makes it worthy to be published: maybe somebody else will find the desired
applications!”. As far as I can tell, the manuscript was sent to two reviewers and neither
of them showed any enthusiasm. The first reviewer wrote “Although the ideas of this
paper are not tremendously new, I recommend publication in the Journal of Statistical
Physics”. The second reviewer appreciated the content of the paper even less. The report
is here reproduced in Figure 3. It seemingly confuses Sq with Rényi’s entropic functional
S̄q (independently rediscovered in Equation (8) of the 1988 paper), and ends with “I don’t
believe that what appears here demonstrates that this generalized canonical ensemble is
of any significance for statistical physics. Thus I don’t believe this manuscript should be
accepted for publication in J. S. P.”. The editor, Lebowitz, sent to me these two reports on
14 January 1988. He wrote “My suggestion would be that you certainly include references
to the Renyi entropy. I really do not know any offhand, but I certainly have seen it in the
literature. I particularly remember seeing it mentioned in papers by Hao Bai-lin, but I
believe that you will have any trouble finding it. Given that, you may want to shorten
the paper and emphasize point D. I will be happy to go along with publication after I get
your revised and shortened version”. I submitted my revised version on 28 January 1988
(misprinted as 1987): see Figure 4. The editor, Lebowitz, formally accepted its publication
on 15 March 1988 and it was published in July 1988 (the differences between the original
and the revised versions are the following ones: (1) after further discussions, “I am very
indebted to E.M.F. Curado and H.J. Herrmann for very stimulating discussions” (in the
1987 version) became “I am very indebted to E.M.F. Curado, H.J. Herrmann, R. Maynard
and A. Coniglio for very stimulating discussions” (in the 1988 version); (2) for reasons that
are not present in my memory any more and in surprising contrast with what I practice in
virtually all my publications, “We postulate for the entropy. . .” (in the 1987 version) became
“I postulate for the entropy. . .” (in the 1988 version); (3) after learning of the existence of
the Rényi entropy, I added (in the 1988 version) “For arbitrary q, S̄q reproduces the Renyi
entropy. (2)” and consistently added the reference 2. A. Rényi, Probability Theory, (North
Holland, 1970)”), three years after I started thinking about such a generalization of the
celebrated centennial BG theory.

A few months later I was scheduled to deliver an invited talk at the International
Workshop on Fractals organized by Luciano Pietronero and held during 10–15 October 1988
in Erice, Italy. Renowned scientists were also present, such as Michael E. Fisher, Benoit
Mandelbrot and Shlomo Alexander, among others. I asked Pietronero whether I could
talk for a few minutes on a topic that was not in my initial Abstract. He told me to feel
free to use my time as I preferred. I then briefly presented the content of my 1988 paper
during the last 10 min of my talk. Mandelbrot was ostensively showing his disapproval
by negatively moving his head just in front of me. At the coffee break I approached him
and gave a reprint of my article which had just arrived in my hands, while telling him
“This is what I talked about”. He took the reprint and, in front of me, went directly to the
references to check whether his name was there. As he did not find it, he gave me, on the
spot, the reprint back and told me “Tout ceci a été fait il y a bien longtemps” (all this has been
carried out a long time ago). It can be trivially checked that his discouraging statement was
completely gratuitous. At the end of the meeting there was a collective appreciation of what
the audience had liked the most. Hans J. Herrmann said “The last 10 min of Constantino”.
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Figure 3. Report of the second reviewer of [11].

Figure 4. Submission of my revised version (the correct date is 28 January 1988, not 1987).
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On 18 November 1988, S. Alexander sent to me from the University of California, Los
Angeles, a long letter with his opinion on my Erice presentation. He included therein: “You
presented it as a new path in statistical physics—in my view without any justification. My
guess would be that the chances that this will prove useful are about equal to those of other
attempts to violate the second law of thermodynamics—or generalize it. If I prove wrong I
will concede that this is the greatest contribution to physics since Einstein”.

The next relevant step of q-statistics was performed thanks to Evaldo M.F. Curado: the
article [24] established the first connection with thermodynamics through a q-generalized
partition function and consistently generalized the third axiom of the celebrated Shannon
theorem. (A rather funny incident occurred with this paper. We had used in it the word
“holistic” in a sort of intuition that this theory, one day maybe, could be useful for globally
correlated systems, a well-established fact nowadays. One of the reviewers strongly
criticized the inclusion of that word (which was “esoteric” in his/her understanding) in
a scientific paper. We did not agree with him/her, especially because in Greek this word
is simply a sort of antonym of “atomistic”. But, to avoid an irrelevant controversy, we
eliminated the word from our revised text. It was with amused surprise that we discovered,
several months later, that the word reappeared in the published version, most probably
due to some mild inadvertence at the production level of the journal!)

Then, in 1993, a long-awaited result appeared. Angel R. Plastino and his father, A.
Plastino, published [25] the first application to a physical system, namely the stellar poly-
tropes, introduced by Lord Kelvin in 1862. It was since long known that the extremization
of the entropic functional SBG leads to a distribution which is characterized by an infinite
total mass. This unphysical result disappears when it is Sq which is extremized with q
sensibly differing from unity. A. Plastino’s genuine interest in Sq started during a long and
relaxed conversation he and I had at the hotel swimming pool in San Juan, Puerto Rico,
during the XVI International Workshop on Condensed-Matter Theories (1 to 5 June 1992).
The Plastinos’ paper became accessible to me and Roger Maynard during the International
Workshop on Nonlinear Phenomena, held during 7 to 9 December 1992 in Florianopolis,
Brazil. During three or four hours, we peripatetically discussed it trying to understand
why Sq does the correct job where SBG fails. We concluded that it was due to the fact that
gravitation is a long-range interaction. The door was open.

A couple of years later, on 4 April 1995, I delivered a talk at the Physics Department
of the Boston University at the invitation of Harry Eugene Stanley. Bruce M. Boghosian
was in the audience. Soon after, he produced a new bridge with a concrete physical
system [26]: a non-neutral electronic plasma, where the Coulombian interactions play a role
similar to the gravitational ones in stellar polytropes. Boghosian showed that the empirical
distribution emerging in two-dimensional turbulence in a pure-electron plasma column
precisely corresponds to q = 1/2.

Concomitantly with the worldwide spread of scientific articles focusing on diverse
aspects of q-statistics (at the date I am writing these lines, they surpass 10,000 articles
authored by nearly 17,000 scientists from 112 countries, as they appear in the Bibliography
at [27]), a wave of some opponents grew up around the world. Among them, it is possible
to distinguish Joel L. Lebowitz—ironically enough, precisely the Journal of Statistical Physics
Editor who accepted my 1988 paper for publishing, Itamar Procaccia—who, in March 2002,
declared without any justification, to a Brazilian newspaper that all this was nothing but
“mindless fitting”, Roger Balian—who was very fundamentally critical (Balian sent, nearly
25 years ago, a private letter to A.K. Rajagopal criticizing q-statistics and telling him that,
in the 1978 Balian–Balazs paper, it was proved that basically no other statistical mechanics
was possible outside the BG one; Rajagopal and Sumiyoshi Abe studied carefully the
Balian–Balazs 48-page paper and then published, in [28], their mathematically consistent
q-generalization of it; they naturally quoted the Balian–Balazs paper and sent to Balian
their recently published paper together with a letter thanking his indication of the 1978
Balian–Balazs paper and its content; as far as I know, they never received an answer
back from Balian) but declined the formal invitation from the President of the Société
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Française de Physique (SFP) to have, in Paris, a free public debate with me, organized by
the SFP itself (some time after Balian’s declination, his own laboratory at L’Orme des
Mérisiers, Commissariat à l’Énergie Atomique, France, invited me to deliver a seminar
on 9 March 2009 on nonadditive entropies and the associated statistical mechanics; while
the loudspeakers were announcing the beginning of the seminar, Balian was at his office,
5–6 m away from the seminar room, but he did not show; I cannot say that his attitude was
a surprise to me; in contrast, the audience was quite interested and asking many questions,
very especially Serge Aubry, who openly manifested his appreciation of the theory and
its physical consequences), Michael Nauenberg—whom I invited, with all traveling and
hosting expenses covered, to freely present his objections at the International Summer
School and Workshop on “Complex Systems—Nonextensive Statistical Mechanics”, held
during 30 July to 8 August 2006, in Trieste, Italy, sponsored by the International Centre
for Theoretical Physics/ICTP Director Katepalli R. Sreenivasan (free time was given to
Nauenberg to publicly present his viewpoints and criticism, and possibly hear some of the
dozens of talks by all kinds of speakers focusing on q-statistics: he went to none), Peter
Grassberger—who, both in private and publicly, confused Sq with Renyi’s entropy in spite
of the fact that the intervals of q for which these two entropic functionals are concave
considerably differ, and a few others. With quite rare exceptions, such claims are not
accompanied by concrete technical papers, which could in principle be answered/rebutted
through other technical papers. This hardly constitutes a surprise: opinative claims are
always by far easier than rigorously founded ones. This is but the old Greek distinction
between doxa and episteme!

A contrasting and interesting case is that of Joseph I. Kapusta. On 19 May 2021,
Kapusta delivered an online talk within the Theoretical Physics Colloquium series that Igor
Shovkovy was hosting at the Arizona State University (ASU), USA. His talk was titled “A
Primer on Tsallis Statistics for Nuclear and Particle Physics”. It started with a pedagogical
introductory attempt and ended with skeptical comments about the q-generalized statistical
mechanics being useful for discussing physical phenomena. I discovered, on the internet,
the existence of Kapusta’s talk many months after it was delivered. I had plenty of reasons
to disagree with him, and therefore I suggested to Shovkovy that he organized at ASU a
in-person or online open debate with Kapusta, or at least a seminar by myself focusing
on the points that Kapusta had criticized in his seminar. Shovkovy showed no special
interest in organizing such (reciprocal) activity, so I decided to rebut, on general grounds,
Kapusta’s views in an online seminar of mine at the Santa Fe Institute, New Mexico, which
was delivered on 12 April 2022 [29]. The whole issue is focused on in an article of mine
titled Enthusiasm and skepticism: Two pillars of science—A nonextensive statistics case [30].

As it happens, we may also identify scientists who have expressed diametrically oppo-
site opinions. These include Murray Gell-Mann—1969 Nobel laureate, who, after hearing
my talk at the IIIrd Gordon Research Conference on “Modern Developments in Thermody-
namics”, 18 to 23 April 1999 in Il Ciocco-Barga, Italy, stood up from his seat and came to
the front of the auditorium exclaiming “Wonderful, absolutely wonderful!”, Pierre-Gilles
de Gennes—1991 Nobel laureate, who, after a 40 min conversation during the International
Conference on “Scaling Concepts and Complex Fluids”, 4 to 8 July 1994 in Catanzaro, Italy,
shared with me that “a nonadditive entropy seems to me quite natural for gravitational
systems.”, László Tisza—who kindly signed for me a copy of his book “Generalized Ther-
modynamics” [31] with the words “With best wishes to Constantino Tsallis for his bold
enterprise to generalize Generalized Thermodynamics on a broad front. Laszlo Tisza. 8
April 1995” (I was introduced to László Tisza—highly esteemed, by the way, by Murray
Gell-Mann, who considered him a top master in thermodynamics—by Gene Stanley, who
invited him to his Boston University office in 1995 to introduce us to each other; on that
occasion, Tisza was nearly 90 years old and we had a lengthy and delightful conversa-
tion; at the end, Tisza told me “How cute! I stopped working in statistical mechanics
because I did not know which way to go. And, certainly, I never thought about gener-
alizing entropy.”), Leo P. Kadanoff—who, after hearing the seminar that I delivered on
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4 May 2005 at the University of Chicago at his invitation, told me, while going for din-
ner, “Everything that you said seems to me quite natural and not controversial at all.”,
Athanassios S. Fokas—who, at the end of the talk that, through his invitation, I delivered
on 15 November 2012 at the Department of Applied Mathematics and Theoretical Physics,
Cambridge University, England, loudly exclaimed “Unbelievable, unbelievable!”, Ezequiel
G. D. “Eddie” Cohen—who emphatically included q-statistics in his Boltzmann Medal
reception lecture in Statphys 22/IUPAP, during 4 to 9 July 2004 in Bangalore, India [32],
see Figure 5, George Contopoulos—who, on two different occasions, invited me to become
a full member of the Academy of Athens; since I could not accept this tempting position
because I would be unable to stay long enough per year in Greece due to my family in
Rio de Janeiro, he eventually honored me, as President of the Academy of Athens, with its
highest distinction, namely the Aristion (Excellence), Michel J. L. Baranger—who, during a
workshop at the New England Complex Systems Institute in the 1990s, after we lengthily
discussed nonlinear dynamical consequences of Sq, told me “I learnt something about
physics today. It does not happen often to me.” [33], Bruce B. Boghosian—who, walking
around within MIT, told me “General Relativity became possible through Riemannian
geometry, which violates Euclid’s 5th postulate. You generalized the BG theory by violating
the additivity of the usual entropic functional. It is but a neat illustration of Kuhn’s Structure
of Scientific Revolutions” [34], Peter T. Landsberg—who once told me, walking around the
São Conrado beach in Rio de Janeiro, “In the first pages of all books on thermodynamics it
should be written that the content is valid only for short-range interactions, but it is not”
and, smiling, he added “In mine it is.”, Roger Maynard, Christian Beck, Hans J. Haubold, J.
Doyne Farmer, Shun’ichi Amari, Alan R. Bishop, H. Eugene “Gene” Stanley, Thomas A.
“Tom” Kaplan, Grzegorz Wilk, Tamás S. Biró, Gergely G. Barnaföldi, Jan Naudts, Stefan
Thurner, Rudolf Hanel, Andrea Rapisarda, Alessandro Pluchino, Alberto Robledo, Renio S.
Mendes, Ugur Tirnakli, Sabir Umarov, Giorgio Benedek, Guiomar Ruiz, Antonio Rodriguez,
Piergiulio Tempesta and definitively many others.

The whole situation might be accurately described through the acute Gregoire Nicolis
and David Daems’ words [35] “It is the strange privilege of statistical mechanics to stimulate
and nourish passionate discussions related to its foundations, particularly in connection with
irreversibility. Ever since the time of Boltzmann it has been customary to see the scientific community
vacillating between extreme, mutually contradicting positions.".

It could even be described through Niccolò Machiavelli’s words: see Figure 6.

Figure 5. Basic content of Ezequiel G. D. “Eddie” Cohen’s Boltzmann Medal reception lecture in
Statphys 22/IUPAP, held during 4 to 9 July 2004 in Bangalore, India. The red underlines are mine.

17



Entropy 2024, 26, 158

Figure 6. Text from Nicolas Machiavelli (translated into English by M. Gell-Mann and myself during
a pleasant afternoon at the Santa Fe Institute, New Mexico).

4. Perspectives

I was chatting one day at tea time with Gell-Mann at the Santa Fe Institute (see Figure 7)
and he shared with me that he was traveling to California to deliver a talk on the Laws of
creativity. I inquired: Oh, how interesting! Tell me about these laws. He continued: The first of
them is: If you have good reasons to believe in something, you must believe in all of its consequences,
no matter how strange or foolish these consequences might a priori seem to you! If you believe that
the molecules of the air of this room are in Brownian motion, you must believe that they are all the
time hitting in the cheeks of your face as well! I would say that this “law” is true more generally
than just for physical phenomena. Reviewers of my 1988 manuscript were skeptical about
the validity or usefulness of a nonadditive entropy in physics. After four decades of all
kinds of applications, and of experimental and analytical validations in both inanimate and
living matter (my friend and distinguished chemist Ricardo de Carvalho Ferreira, whose
name is for ever linked to the asteroid 158520 (2002 FR1), generously told me once “You
did for living matter what Boltzmann did for inanimate matter”; a similar view was kindly
expressed to me by Aneta Stefanovska during the Medyfinol 2012 meeting in Santiago de
Chile; she then invited me to publish a paper in Contemporary Physics, which was indeed
implemented [36]; living matter frequently involves complex stationary or quasi-stationary
states; what is currently referred to as thermal equilibrium, quite frequent in inanimate matter,
may be seen as a particular case of stationary state; see also [37]), it is definitively allowed to
think that those JSP reviewers were wrong, and so were, at least in their initial thoughts,
Mandelbrot and Alexander and various others. At variance, Herrmann, Curado, Plastino Sr.
and Plastino Jr., Boghosian, Beck, Gell-Mann, de Gennes, Tisza, Cohen, Landsberg, Kadanoff,
Maynard, Haubold, Tirnakli, Nobre, Borges, Deppman and many others, were right!

After all, SBG(A + B) is symmetric (with regard to A ↔ B) and, for independent A and
B, it is additive [38] in SBG(A) and SBG(B). Sq is symmetric and multilinear (the importance of
a strategic multilinearity property was emphasized to me, four or five decades ago, by Carlos
Guido Bollini during a quick chat at CBPF) in Sq(A) and Sq(B) (trivial consequences of the
specific pq

i -dependence postulated in definition (6)). Just a “small” logical step further! But
so amazingly powerful!
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Figure 7. With M. Gell-Mann at the Santa Fe Institute, New Mexico (2005).

This is perhaps not the appropriate place for registering the many (impressive) valida-
tions of the present thermostatistical theory that are available in the literature: they can be
found in [20,39–41], for instance. But it might be appropriate to mention at this point a few
illustrative ongoing issues.

(i) Long-range-interacting many-body Hamiltonian systems undoubtedly need to
be revisited. Let us focus on d-dimensional classical systems with two-body attractive
power-law interactions whose potential decays with distance r like 1/rα, where α ≥ 0.
I initially thought, for many years, that 0 ≤ α/d ≤ 1 required q �= 1, whereas systems
with α/d > 1 were fully correctly described within BG statistical mechanics. This belief
was based on the elementary fact that α/d > 1 potentials are integrable. But increasing
evidence is growing nowadays that this integrability is necessary but not sufficient for the
BG theory to be applicable. It appears that all momenta of 1/rα need to be finite and not
only the lower-order ones. Consequently, only when α/d → ∞ should we use q = 1 if
we wish that all thermostatistical (e.g., energy and velocity distributions) and nonlinear
dynamical (e.g., size dependence of the maximal Lyapunov exponent) properties are
adequately handled within the BG theory. Consistently, q = 1 is also fully correct if the
two-body interaction potential decays exponentially with distance or if it is nonzero only
between near-neighboring bodies. For the power-law case, the energy distribution may
be reasonably conjectured to be given by a q-exponential form (the q-exponential function

is defined as eq ≡ [1 + (1− q)x]
1

1−q
+ with [. . . ]+ = [. . . ] if [. . . ] > 0 and zero otherwise;

ex
1 = ex; its inverse function is given by lnq x ≡ x1−q−1

1−q ; ln1 x = ln x) with q given by say

q = 4
3 for 0 ≤ α/d ≤ 1 and q = 1 + 1

3 e1−α/d for α/d > 1. In such power-law systems,
only the α/d → ∞ limit is to be considered, as mentioned above, as rigorously short-range
interactions, belonging therefore to the BG world.

Moreover, it would be wonderful to (analytically and/or numerically) check whether,
for α/d ∈ [0, ∞), a nonuniform convergence occurs at the t → ∞ and N → ∞ limits,
something like the existence, in the (N, t) space, of a curve (probably of the type 1/N ∝
(1/t)γ, with γ > 0) such that on one side (1/tγ 
 1/N) BG statistics prevails, whereas on
the other side (1/tγ � 1/N) q-statistics prevails (see, for instance, [42]).
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The rigorous approach of this class of systems would provide an analytical confirma-
tion that Boltzmann–Gibbs statistical mechanics is sufficient but not necessary for the validity
of (properly scaled) thermodynamics and its Legendre-transform structure (see [43,44] as
well as pioneering studies such as [45,46] and references therein).

(ii) For the astonishing quantum chemical reaction studied in [47], it has been con-
jectured [48] that the index q associated with the distribution of velocities nearly satisfies
(q − 1) ∝ n1/4, where n is the H2 density. Further experimental work would be very
welcome to check the possible validity of this conjecture.

(iii) A “dream” theorem [49] is waiting to be proved, namely, what would be the
necessary and sufficient conditions for a q-generalized Central Limit Theorem whose
attractors (in the space of probability distributions) would be q-Gaussians instead of the
usual Gaussians. Both of them are ubiquitously found in nature.

(iv) The elegant q-generalization of the product frequently referred to, in the literature,
as the q-product [50,51] has been recently shown to be consistent with an entire new q-
generalized algebra [52,53]. Could some sort of q-generalized vector space be defined on this
basis? Such an achievement could be of great operational utility in areas such as theoretical
chemistry where q-Gaussians are known to play a sensibly more efficient numerical role
than Gaussians, as Kleber C. Mundim has repeatedly shown.

(v) Triangles and more triangles! Andrea Rapisarda invited me in 2003 to deliver
a seminar at the Dipartimento di Fisica e Astronomia of the Università di Catania, Italy.
At the end of the presentation, a student expressed his curiosity with regard to the fact that
I had mentioned different values of q for the same physical system. I clarified that, for a
complex system, it was possible that different physical properties behave q-exponentially
with different values of q, whereas a system well described within BG statistical mechan-
ics currently exhibits only one value of q, namely q = 1. I then illustrated that with a
triplet, more precisely (qsen, qrel , qstat) (sen, rel and stat stand for sensitivity, relaxation and
stationary state, respectively): the q-triplet was born. See Figure 8 and [54].

Figure 8. Seminar in Catania, 2003, with Andrea Rapisarda. On the blackboard we see the proposal
of the q-triplet, profusely found afterwards in nature and nonlinear dynamical systems. Such
a possibility was based on possible physical interpretations of the ordinary differential equation
dy/dx = ay q [y(0) = 1 yields y = e a x

q ], thought up in May 1988 on the train from Bayreuth back to
Copenhagen (where I was visiting Per Bak at the Niels Bohr Institutet) to provide an analytical basis
for the re-association in folded proteins [55]. It was George Bemski who drew my attention to this
peculiar biophysical phenomenon, telling me that it could well be related to q-statistics: he was right!

20



Entropy 2024, 26, 158

A couple of years later, in January 2005, NASA invited me to deliver some talks
at the Goddard Space Flight Center, Greenbelt, Maryland. It was terribly cold but the
warm hospitality of Leonard F. Burlaga and Adolfo Figueroa Viñas balanced that! Len
Burlaga showed to me the clock where data from the Voyager 1 spacecraft were arriving.
To see directly online those numbers sent to the Earth from near Pluto meant for me
an unforgettable experience. Then, in his office, Len showed to me corresponding time
series of the solar wind. It struck me that these data could perhaps reveal the empirical
existence in nature of the q-triplet conjectured in Catania. He asked me how to obtain
these three numbers from his Voyager 1 data. I explained to him with all details how this
might possibly be carried out. A few weeks later I received at the Santa Fe Institute-SFI,
New Mexico, where I was spending a long sabbatical period, an email that Len sent me
with wonderful news: (qsen, qrel , qstat) = (−0.6± 0.2, 3.8± 0.3, 1.75± 0.06). See Figure 9
and [56]. The first q-triplet ever detected in nature was found, amazingly enough, in the
solar wind! I immediately gave a seminar at SFI. Murray Gell-Mann became intrigued
with these numbers arriving from outer space and came to my office on a Friday afternoon,
just before the party at which his 75th birthday was going to be celebrated. Through a
several-hour discussion, we succeeded in finding simple relations between those three
numbers, based on the additive duality q ↔ (2− q) and the multiplicative duality q ↔ 1/q.
The theoretical proposal was (qsen, qrel , qstat) = (−1/2, 4, 7/4). That was the beginning of
an entire algebra of indices q! [20,57]. I asked Murray why he was so fond of triangles.
His answer was “You ask me why I like triangles? To start with, it is the simplest possible
polygon!” From that moment on, a plethora of q-triplets started being observed around
the world in very diverse complex systems. I conjecturally proposed some possible logical
frame to those empirical sets of q-triplets and advanced a connection with the Moebius
group of transformations in [58,59], but the real step forward [60] was made by Jean-
Pierre Gazeau, my teaching colleague at the University of Paris, close to 55 years ago!
Consistently with that first triangular structure, all kinds of triangles emerged within q-
statistics. An important one is indicated in Figure 10, which illustrates the Enciso–Tempesta
theorem [61], proving that the only entropic functional which simultaneously is trace-
form and composable, and contains the BG entropy as a particular case is Sq as given in
Equation (6). In the realm of nonlinear dynamical systems, we may think of the three
classical roads to chaos (period doubling, quasi-periodicity and intermittency) as one
more triplet deeply related to q-statistics, as profusely shown by Robledo, Tirnakli, Beck,
Jensen and their collaborators (see [62–67] and references therein), among others. Another
interesting triangle emerged in [68] in connection with molecular kinetics as shown in
Figure 11. Finally, a beautiful metaphor for complex systems was recently presented by
Henrik J. Jensen at the IIIrd International Workshop on Statistical Physics, held from 13 to
15 December 2023 in Antofagasta, Chile: see Figure 12.

On top (or, rather, at the basis) of all the above, let us remind the reader of a distinguished
and crucial triplet upon which nonextensive statistical mechanics is constructed. We refer
to the behavior of the q-exponential function e−x

q , which straightforwardly emerges through
the optimization of Sq under simple constraints. Indeed, e−x

q decays exponentially for q = 1,

as an asymptotic power-law x−
1

q−1 for q > 1, and presents a cutoff for q < 1.
(vi) A nonadditive entropic functional differing from Sq, namely

Sδ = k
W

∑
i=1

pi[ln(1/pi)]
δ (δ > 0; S1 = SBG) , (7)

was introduced in [69,70], which, for equal probabilities, satisfies Sδ = k(ln W)δ. The quantum
version of Sδ was advanced in [20,71] as a thermodynamically admissible alternative to the
Bekenstein–Hawking entropy S1 for black holes as well as for cosmological holographic
models. Indeed, for such deeply gravitational systems (if thought of as (3 + 1)-dimensional
ones), S1 is well known to be proportional to the black hole area A and not to its volume.
Therefore, S1 is not extensive and violates, consequently, the Legendre structure of ther-
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modynamics. (Two decades ago, during a garden cocktail in a scientific event in Germany,
Antonio Coniglio asked me “Since you have generalized the entropy, why don’t you gener-
alize the Legendre structure of thermodynamics itself?”. His provocative question haunted
my thoughts for many years, until I became deeply convinced that the specific form of
the entropic functional acts on an epistemological level less fundamental than the elegant
and powerful Legendre-transform structure of macroscopic phenomena. Unless new deep
and solid empirical evidence emerges, this structure can (and should), through proper
and natural scalings, be maintained in theoretical physics as it stands today, even if the
entropic functional differs from the usual BG one. The basic dilemma for complex systems is
whether to keep the additive entropic functional SBG and violate the entropic extensivity
mandated by the thermodynamical Legendre structure, or the other way around. It turns
out eventually that violating the usual entropic additivity is a small price to pay in order to
preserve the important Legendre structure. The situation is totally analogous to the special
relativity dilemma of preserving the Galilean additivity of composition of velocities and
violating the Lorentz transformation, or the other way around. It was clear to Einstein
that violating the lovely Galilean additivity was a small price to pay for preserving the
Lorentz transformation, which enabled nothing less than the unification of Maxwell elec-
tromagnetism and mechanics!) It was claimed in [71] that Sδ with δ = 3/2 could solve the
serious thermodynamical difficulty of S1. (The idea of using Sδ for black holes emerged at
the closed International Symposium on “Sub-nuclear Physics: Past, Present and Future”
organized by Antonino Zichichi at the Pontifical Academy of Sciences during 30 October to
2 November 2011. After my presentation and that of Michael J. Duff, we had an interesting
coffee-break conversation focusing on the thermodynamical requirement of entropic exten-
sivity for all macroscopic systems, mandated by the Legendre structure of thermodynamics.
Motivated by our discussion, I went back to my room at Saint Martha’s House inside
the Vatican and started investigating which value of q �= 1 could possibly make Sq over-
come the inadmissible lack of extensivity of the well-known Bekenstein–Hawking entropy
(which corresponds to q = 1). It took me two research evenings to suddenly realize that
perhaps no such value of q did exist: I had to use an entropic functional different from Sq! I
then remembered about Sδ, which I had introduced, as a mere mathematical possibility,
in [69]. The path was open and eventually led to δ = 3/2 for (3+1)-dimensional black
holes.) Basically, if ln W ∝ A, then Sδ=3/2 ∝ A3/2, which, as desired, is extensive. Recent
observational results are accumulating [72–74] which indeed indicate δ � 3/2. (Ref. [72]
indicates δ = 1.565 for neutrinos as detected at the IceCube Neutrino Observatory at the
South Pole. Ref. [73] indicates δ = 1.87 and δ = 1.26 through two different theoretical
processings of the data collected at the outer-space Planck Observatory/ESA; amazingly
enough, the mean value of 1.87 and 1.26 precisely yields δ = 1.565! Ref. [74] indicates,
from the Big Bang nucleosynthesis and the relic abundance of cold dark matter particles,
δ = 1.499.) This appears to neatly exclude, for such systems, the Bekenstein–Hawking
entropy S1 (i.e., δ = 1), enfant aimé of string theorists and others (see, for example, [75]).
The scientific importance of such timely issue surely deserves a re-analysis in the light of
nonadditive entropic functionals adequately chosen so as to satisfy entropic extensivity.

Human memory is like a fractal, one reminiscence endlessly pulling another one, and
another and another. Still, I hope that, through these lines, I could share with the reader a
few illustrative facets of what it is possible to learn and appreciate during half a century of
theoretical physics.

In the present manuscript, I mainly focused on concepts—truth and beauty—that may
be thought of as primarily belonging to what is currently referred to as the objective world.
There are others, equally important, such as curiosity and enthusiasm (from Greek enthousias-
mós, divine inspiration), focus and resilience, which primarily belong to the subjective world
. . . but that is another story!

At this point, as final words, it might be proper to emphasize that, in science and
elsewhere, the concepts of objective and subjective themselves surely are strangely entangled.
In the prologue of Miguel de Unamuno’s wonderful Niebla (1935) we can read: Don Quijote
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me ha revelado íntimos secretos suyos que no reveló a Cervantes. (Don Quixote revealed to me
intimate secrets of himself that he did not reveal to Cervantes).

Figure 9. Top: Slide exhibiting the NASA results on the solar wind q-triplet (qsensitivity < 1 <

qstationary state < qrelaxation was the expectation in [54]). Bottom: With my consent for using the
slide, this poster was prepared, selected and exhibited by the United Nations Office for Outer Space
Affairs for the Opening Ceremony of the United Nations International Heliophysical Year exhibit
(19 February 2007, Vienna).

23



Entropy 2024, 26, 158

Figure 10. Scheme of the Enciso–Tempesta theorem [61] proving the uniqueness of Sq for simultane-
ously being trace-form and composable, and containing SBG as a particular case. For further details,
see [20].

Figure 11. Triangle from [68], reflecting the q-exponential generalization of the Arrhenius law for
chemical kinetics. Experimental validations of q �= 1 can be found in [68] and references therein.

24



Entropy 2024, 26, 158

Figure 12. Borromean rings are three elementary rings that are two-by-two free but not so when the
three of them are entangled. This expressive metaphor for complex systems was recently presented
in a lecture by Henrik J. Jensen, in co-authorship with Fernando Rosas.
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Abstract: Nonextensive statistical mechanics has developed into an important framework for model-
ing the thermodynamics of complex systems and the information of complex signals. To mark the
80th birthday of the field’s founder, Constantino Tsallis, a review of open problems that can stimulate
future research is provided. Over the thirty-year development of NSM, a variety of criticisms have
been published ranging from questions about the justification for generalizing the entropy function
to the interpretation of the generalizing parameter q. While these criticisms have been addressed in
the past and the breadth of applications has demonstrated the utility of the NSM methodologies,
this review provides insights into how the field can continue to improve the understanding and
application of complex system models. The review starts by grounding q-statistics within scale-
shape distributions and then frames a series of open problems for investigation. The open problems
include using the degrees of freedom to quantify the difference between entropy and its general-
ization, clarifying the physical interpretation of the parameter q, improving the definition of the
generalized product using multidimensional analysis, defining a generalized Fourier transform appli-
cable to signal processing applications, and re-examining the normalization of nonextensive entropy.
This review concludes with a proposal that the shape parameter is a candidate for defining the
statistical complexity of a system.

Keywords: complexity; nonextensive; Pareto; student’s t; Fourier; entropy

1. Introduction

Nonextensive statistical mechanics (NSM) [1–3] has developed into an important
framework for modeling the thermodynamics of complex systems [4–6] and the information
of complex signals [7–9]. The methodology ties together heavy-tailed statistics derived
from a generalized entropy function and the resultant analysis, modeling, and design
methods for systems impacted by nonlinear dynamics. To mark the 80th birthday of the
field’s founder, Constantino Tsallis, I reflect on open problems that will stimulate future
investigation and development of NSM. While there is much to celebrate in the applications
of NSM, a review of open problems requires examination of some of the criticism [10–15]
the field has received over its thirty-year development [16]. The criticism ranges from
questions about the interpretation of the generalizing parameter q to the justification for
modifying the entropy function. In this paper, I will carefully examine several key concerns
with the aim of motivating the further improvement and applicability of NSM.

Inspection of a few applications of NSM introduces the challenges of characteriz-
ing the properties of complex systems using q-statistics. Table 1 lists seven examples
in which a theoretical underpinning is available to explain experimental observations.
However, in each case, the mapping between the physical phenomena and the parameter q
requires unexplained constants that detract from the ability of NSM to describe the physics
of those systems. The relationship q = 1 + x, in which x (or its inverse) is a physical
property, is common since x often defines a property of the system that induces nonlinear-
ity. This property changes to zero (or infinity for inverse) when q = 1. Another typical
relationship is q = 2− y, since this is the reflection of q = 1. If NSM was defined in terms
of the physical property x, the reflection of 0 would simply be x = −y. However, the full
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review of open problems in NSM will show that this simple translation is not adequate to
account for multidimensional systems and the effects of other nonlinear elements.

Table 1. Applications of nonextensive statistical mechanics. A variety of complex systems, such
as atomic gases, space plasma velocities, financial volatility, cellular mobility, wavelets, and heat
baths, can be modeled using NSM. In each case, the mapping between the physical property and
the parameter q requires numerical constants that diminish the ability of q-statistics to describe the
physical phenomena.

Applications Physical Property Relation to q

Entropy of Hydrogen Atoms [17] M, number of atoms q = 1 + 1
M

Space Plasma Velocities [18,19] κ = ν, spectral index q = 1 + 1
κ

Volatility of Financial Markets [7,20] ν, nonlinear Fokker-Plank q = 2− ν

Hydra-Cell Velocity [21,22] ν, nonlinear Kramers Equ q = 2− ν

Wavelet Analysis [23] i, wavelet scale index q = 1− 2i

Heat Bath Thermodynamics [24,25] n, degrees of freedom, n = d N
2 , d

dimensions, N particles
q = n

n−1

Superstatistic Fluctuations [5] n, Chi-square deg. of freedom q = 1 + 2
n+1

The analysis in this review is grounded in the role heavy-tailed statistics plays in mod-
eling the nonlinear dynamics of complex systems. It will be shown that by decomposing
the NSM parameter q into more direct physical properties, interpretations of NSM are
clarified and the connections with the tail shape of distributions, such as the generalized
Pareto distribution and the Student t distribution, are simplified. This approach has been
called nonlinear statistical coupling (NSC). Here, I refer to the theory as NSM and reserve
NSC or simply the coupling for the shape parameter, which may also be a candidate for
quantifying statistical complexity. For simplification, I will assume that distributions have
a location of zero throughout. Also not included in the discussion are distributions, such as
the Weibull distribution, which introduce modifications to the skew of the distribution.

Each section addresses a fundamental question and defines an open problem.
In some cases, a comment will be provided suggesting directions for investigation. So-
lutions are specifically not provided because although the author has, in some cases,
previously recommended a solution, the future direction of NSM is ultimately a community
decision made by the investigators pushing the field forward. Section 2 reviews how q
relates to the traditional parameters of heavy-tailed and compact-support distributions.
Section 3 discusses the question of generalizing entropy. Section 4 examines the difference
between mathematical fits and physical theories, as well as the role of independent random
variables in clarifying the physical property of q. Section 5 highlights some inconsistencies
in how the q-product is defined and applied. Section 6 explains the limitations in the
use of the q-Fourier transform as a physical model. Section 7 considers three different
normalizations of the nonextensive entropy. Finally, Section 8 asks whether a definition for
statistical complexity is possible.

2. How Is q-Statistics Related to Traditional Definitions of Heavy-Tailed Distributions?

NSM began [16,26] with a proposal to generalize Boltzmann–Gibbs statistics by ex-
amining the properties of systems with a distribution of states modified by the power of
q. This modified distribution with the elements pq

i is referred to as the escort distribution;
however, it is unfortunate that the NSM literature has not been explicit that this expression
necessarily defines q as a real number of independent random variables sharing the same
state. If q is an integer n, elementary probability theory establishes that pn is the probability
of n independent random variables, each with probability p. Fractional random variables
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are discussed further in Section 4. From this start, the Tsallis entropy and its maximizing
distribution were derived as follows:

ST
q ≡

1−∑i pq
i

q− 1
(1)

pi =
(1− β(q− 1)xi)

1
q−1

∑N
j=1
(
1− β(q− 1)xj

) 1
q−1

(2)

Warm-Up Problem: The first problem is not so much open as a warm-up to ground the discussion
of the other problems. How does the NSM parameter q relate to the shape of a distribution? And
how does the Lagrange multiplier β relate to the scale of a distribution?

I will address this question via the examination of the generalized Pareto and Student
t distributions. Both the probability density function (pdf) and the survival function (sf) are
provided since the sf will provide insights into the definition of a generalized exponential
function. To unify the discussion, both distributions will be defined in terms of the shape
parameter κ, though the Student t is traditionally defined in terms of its reciprocal, the
degrees of freedom, ν = 1

κ . The shape parameter is also referred to as the nonlinear
statistical coupling or coupling due to its connection with nonlinearity; further, the final
problem will consider whether it is a candidate for quantifying statistical complexity.
The distributions have three domains:

Compact− Support −1 < κ < 0
Exponential κ = 0

Heavy− Tail κ > 0
(3)

Definition 1: Generalized Pareto Distribution

The survival function (cf) is one minus the cumulative distribution function (cdf),
F = 1 − F. The Pareto Type IV with a location of zero is defined in terms of a scale,σ, and
two shape parameters,κ and α.

F(x; σ, κ, α) =
[
1 + κ

( x
σ

)α]− 1
ακ

; x ≥ 0, κ, α > 0 (4)

The probability distribution function (pdf) is the derivative of the cdf

(x; σ, κ, α) =
1
σ

( x
σ

)α−1[
1 + κ

( x
σ

)α]−( 1
ακ +1)

; x ≥ 0, κ, α > 0 (5)

For Pareto Type II α = 1and the cf and pdf reduce to

F(x; σ, κ) =
[
1 + κ

x
σ

]− 1
κ ; x ≥ 0, κ > 0 (6)

f (x; σ, κ) =
1
σ

[
1 + κ

x
σ

]−( 1
κ +1)

; x ≥ 0, κ > 0 (7)

Comment on Definition 1: The definition for Type IV is modified from the traditional approach
to clearly distinguish between the decay of the tail in the limit as x changes to infinity, κ, and the
raising of the variable to the power α. Thus, the outer exponent is − 1

ακ , meaning that − 1
κ is the

asymptotic power. Nevertheless, the emphasis here will be on questions about NSM and connections
to the long-standing traditions in statistical analysis.
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Definition 2: Generalized Student t Distribution

The Student t distribution is traditionally defined in terms of the degrees of freedom, ν; however,
to unify the discussion, the reciprocal shape parameter, κ = 1

ν , is used. The survival function of the
generalized Student t distribution, which depends on the Gauss hypergeometric function, 2F1, and
the Beta function, B, is

F(x; σ, κ, α)
= − 1

2

− σ
√
|κ|

B
(

1
2 , κ−sign(κ)(κ−2)

4κ

)
2F1

(
1
2 , 1+κ

2κ ; 3
2 ; min

(
1,−κ x2

σ2

))
;

{
0 ≤ |x| ≤

√−κ −1 < κ < 0
0 ≤ |x| < ∞ κ ≥ 0

(8)

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n! ;

(a)n =

{
1 n = 0

a(a + 1) · · · (a + n− 1) n > 0
;

B(z1, z2) =
∫ 1

0 tz1−1(t− 1)z2−1dt.

(9)

The Student t probability density function is:

f (x; σ, κ) =

⎧⎪⎨
⎪⎩

√
|κ|

σB
(

1
2 , κ−sign(κ)(κ−2)

4κ

) [1 + κ
( x

σ

)2
]− 1

2 (
1
κ +1)

+
κ �= 0, κ ≥ −1

1
σ
√

2π
exp
(
− 1

α

( x
σ

)2
)

κ = 0.
(10)

Warm-Up Solution: The exponent of the Pareto (α = 1) and Student t (α = 2) distributions
determines the relationship between q and the shape κ:

q = 1 +
ακ

1 + κ
; κ =

q− 1
α + 1− q

. (11)

From this relationship, the escort probability or density can be defined in terms of the following shape:

p(α,κ)
i ≡ p

1+ ακ
1+κ

i

∑N
j=1 p

1+ ακ
1+κ

j

; f (α,κ)(x) ≡ f 1+ ακ
1+κ (x)∫

x∈X f 1+ ακ
1+κ (x)dx

(12)

The multiplicative term of the variable determines the relationship between the Lagrange multiplier
β and the scale σas follows:

β =
(1 + κ)

ασα
; σ =

(
1

(α + 1− q)β

) 1
α

. (13)

Open Problem 1: We notice that the Pareto Type II survival function is in the form of the
generalized exponential function

expκ(z) ≡
{
(1 + κz)

1
κ
+ κ �= 0, (a)+ ≡ max(0, a)

ex κ = 0.
(14)

This leads to a question regarding the definitions for the generalized algebra of NSM. In the
development of NSM, the generalization of the exponential function has been applied to the pdf;
however, would the sf be the more natural function to generalize? If so, the shape parameter rather
than q becomes the fundamental parameter of the NSM generalization of statistical mechanics.
We will see that this modification leads to a clearer definition of the multivariate distributions and
more direct physical interpretations. A related issue is that expκ(−z) �= exp−1

κ (z) for κ �= 0.
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This is important in the definition of distributions since it is the reciprocal of the exponential function
rather than the negative of the argument that is important.

Before continuing, the inverse of the generalized exponential function is defined as the general-
ized logarithm as follows:

logκ z ≡
{ 1

κ (z
κ − 1) κ �= 0, z > 0
ez κ = 0, z > 0.

(15)

3. Is a Generalization of Entropy Necessary?

One of the challenges of statistical mechanics is that it is quite difficult even for sea-
soned experts to formulate an intuitive framework for its foundational concept, entropy.
To address the question of the need for a generalized entropy, we will describe the issue
in terms of a distribution’s average density (or probability for non-continuous distribu-
tions). While most concepts in statistics are framed in terms of densities/probabilities
(y-axis of distribution) and estimates of the random variable (x-axis of distribution), en-
tropy is based on the logarithm of the probabilities. This transformation, p → log p , is
essential to providing an additive scale, meaning that the arithmetic average is the cen-
tral tendency of the uncertainty, leading to the definition of entropy, S = −∑N

i=1 pilogpi.
This is the informational entropy, which will be used in this paper, while the physical
entropy includes multiplication using the Boltzmann constant. We must notice, however,
that the logarithm can be separated from the aggregation of the probabilities using the
weighted geometric mean S = log ∏N

i=1 p−pi
i . For the continuous distributions, the entropy

is S = −
∫

x∈X f (x)log f (x)dx, and the equivalent of the weighted geometric mean of the
density is exp(−S), known as the log-average. Therefore, the weighted geometric mean
can be used to examine the average density or probability without resorting to the logarithmic
transformation. Using Equations (12)–(15), the log-average is generalized to a function that
I will refer to as the coupled log-average.

favg(x; α, κ) ≡
(

expκ

(∫
x∈X

f (α, κ)(x)logκ f−
α

1+κ (x)dx
))− 1+κ

α

, (16)

where the factor− α
1+κ and its inverse are determined using the exponent of the distribution

f. For discrete functions, (9) reduces to the generalized mean, as derived from Definition 3
of [27].

pavg(p; α, κ) ≡
(

N

∑
i=1

p(α, κ)
i p

− ακ
1+κ

i

)− 1+κ
ακ

=

(
N

∑
i=1

p
1+ ακ

1+κ
i

) 1+κ
ακ

. (17)

Figure 1 shows the Gaussian, κ = 0, and three heavy-tailed coupled Gaussians,
κ = {0.5, 1, 2}. The distributions are normalized by their couple average density, which
is highlighted in the figure by a horizontal line. The couped average density is computed
for each density with the matching coupling value, κ. Furthermore, the matching coupled
average of the density is always equal to the density at x = μ ± σ. As the coupling or
shape increases, the tail becomes heavier, and the log-average (κ = 0), shown as dashed
horizontal lines, approaches zero. Thus, the entropy, which is the logarithm of the average
density, approaches infinity. Nevertheless, the Student t distribution has a structure that
is quite different from the variance of the Gaussian changing to infinity. Something has
clearly been lost in summarizing the uncertainty of the Student t with just the entropy.
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Figure 1. Contrast between the average density and average generalized density.

In particular, the scale σ of the Student t distribution, which generalizes the standard
deviation of the Gaussian and is referred to as the q-standard deviation in NSM, remains
finite. The analysis shows that the generalized mean can be used to separate the effect that
the shape and the scale have on measures of the uncertainty.

Open Problem 2: Given that the average generalized density is equal to the density at the mean
plus/minus the scale for the coupled Gaussian and the location plus the scale for the coupled
exponential, can the relationship between the average generalized density and the average density be
quantified in a manner that strengthens the explanation of how the generalized entropy complements
the entropy function in describing the uncertainty of a system? For instance, given that entropy
is a measure of the degrees of freedom of a system, and the coupling is the inverse of the degrees of
freedom, can the difference between the coupled entropy and the entropy be quantified in terms of the
degrees of freedom?

Comment on Problem 2: An important aspect of the investigation of statistical degrees of freedom
is its relationship with the thermodynamic degrees of freedom. As noted in Table 1 and described
in [25], q is determined by the degrees of freedom, n, of a temperature bath. Substituting (11), the
shape, which is the reciprocal of the statistical degrees of freedom, is related by

n =
d N

2
=

q
q− 1

= 2 +
1
κ

, (18)

Taking α = 1, given that the distribution is based on the energy. d is the dimensions of
translational degrees of freedom, though rotational and vibrational could also be considered. N is the
number of molecules.

4. NSM: Mathematical Fit or Physical Theory?

A common criticism of the NSM has been that it is merely a mathematical fit to
physical phenomena given a free parameter rather than a physical theory that provides an
explanatory description of complex systems [10,12,14,28]. While this claim has been refuted
by investigators in the NSM community [2,29–31], we should take a moment to consider
what distinguishes a physical theory from a mathematical fit. Firstly, mathematical theories
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build from assumed axioms and deductively prove derivative theories. Physical theories
are a subset of mathematical theories that are constrained by physical measurements of the
world. So, demonstrating a fit between a mathematical theory and physical measurement
is a crucial step toward a physical theory. But is a fit sufficient to qualify a relationship
as a physical theory? In physics, we are seeking models that provide explanatory power
in describing a system. As such, each term (variables and constants) in a physical theory
must have a clear definition of its role in the physical model; otherwise, the model loses its
ability to be explanatory.

Further, an effective model must fulfill the requirement of being the simplest repre-
sentation of a phenomenon. Occam’s razor [32,33] was one of the first articulations of
this principle, and Bayes’ Theorem quantifies this property by specifying the uncertainty
created by the overfitting of more complex models (see Ch. 28 of [34]). In the context of
NSM, these criteria establish a requirement that its defining parameter q has a clear physical
definition and this property provides a simpler explanation of the statistics of complex
systems than the shape or degrees of freedom parameters that it seeks to replace. For even
in the case where the equations of NSM can be derived from first principles [35,36], if the
defining parameter does not have a physical definition, the derivation still lacks a physical
interpretation.

Furthermore, as noted in the introduction, q does in fact have a straightforward
interpretation based on the escort distribution. The original motivation of q-statistics was

the consideration of systems defined by an escort distribution with probabilities pq
i

∑N
i=1 pq

i
.

The quantity pq
i defines the probability of q random variables that occupy the same state i.

Thus, the necessary starting point for defining a physical property of q is the number of
independent random variables sharing the same state. For continuous random variables,
we can consider an approximate threshold to discretize the limit. The relevance to complex
systems is that the independent components of a multivariate heavy-tailed distribution
are nevertheless correlated (or conversely, if linearly uncorrelated the components are
dependent). Due to the nonlinear dependence between the dimensions of a heavy-tailed
distribution, there is a higher occurrence of discrete variables that are equal or continuous
variables that are approximately equal than would occur for distributions with exponential
decay. This property has recently been explored as an approach to filtering heavy-tailed
samples to facilitate the estimation of their distribution [37].

Nevertheless, the question remains whether the property of equal-valued independent
random variables is central to describing the statistics of complex systems.
Several investigators have suggested other interpretations, but close examination shows
that the descriptions are equal to q − 1 or another function of q, rather than q itself.
For instance, Wilk and Włodarczyk [38,39] show how the fluctuations (relative variance) of
an inverse scale parameter

(
1
λ

)
are equal to q− 1. The problem is this does not provide

an interpretation of q’s statistical property; rather, it shows that q is misaligned by −1
with a possible interpretation. The relative variance is indeed a useful property, and, thus,
the variable a = q− 1 is a candidate for an approach to defining nonextensive statistical
mechanics. But, as we will see in the following section, multidimensional analysis shows
that neither q nor q− 1 are fundamental.

Open Problem 3: We must define and provide evidence for a physical definition of the parameter q.
Included in this definition must be an explanation of the role of the number of independent random
variables via the expression pq. We must demonstrate that this physical property simplifies and/or
improves the description of the statistics of complex systems in comparison to the shape or the shape’s
inverse, the degrees of freedom.

5. The q-Product Does Not Construct the Multivariate Distributions

Borges [26] initiated and other investigators [40–42] further developed a q-algebra to en-
capsulate the core functions of nonextensive statistical mechanics. The foundational functions
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are a generalization of addition and multiplication, though the two do not form a generalized
distributive property. The lack of distribution property was in part caused by the q-sum
being primarily relevant to the combining of q-logarithms, while the q-product was primarily
relevant to the combining of q-exponentials. Here are the definitions in those contexts:

lnq x
⊕

q lnq y ≡
(

x1−q−1
1−q

)
+
(

y1−q−1
1−q

)
+ (1− q)

(
x1−q−1

1−q

)(
y1−q−1

1−q

)
=

(
(xy)1−q−1

1−q

)
= lnq xy;

(19)

expq(x)
⊗

q expq(y)

≡
((

(1 + (1− q)x)
1

1−q
+

)1−q

+

(
(1 + (1− q)y)

1
1−q
+

)1−q

− 1

) 1
1−q

= (1 + (1− q)(x + y))
1

1−q
+ = expq(x + y).

(20)

While these constructions provide a useful shorthand for some of the complex re-
lationships in nonextensive statistical mechanics, when applied to statistical analysis, a
significant shortcoming is evident. A bedrock principle of probability theory, which was
discussed in the last section, is that independent probabilities multiply to form the joint
probability. Thus, a natural question arises regarding the properties of the q-product of
probabilities. Putting aside for a moment the normalization of the q-exponential and q-
Gaussian distributions, which add a further complication, how does the q-product of their
distributions relate to the multivariate forms of these distributions? From the definition of
the q-product, we have

expq

(
1
α

xα
1 1

)⊗
qexpq

(
1
α

xα
2

)
. . .
⊗

qexpq

(
1
α

xα
n

)
= expq

(
∑n

i=1 xα
i

)
. (21)

where α is one for the q-exponential distribution and two for the q-Gaussian. Unfortunately, the
expression on the right has very little to do with the multivariate form of these distributions
when no cross-terms xα

i xα
j exist. This is because the exponents of the distribution include

both a dimensional term and α. Even for just the one-dimensional case, this led investigators
to define 1− Q ≡ 2(1− q) to account for the distinctions. The multivariate form of these
distributions [43] is proportional to the following:

f (x) ∝
[

1 + κ
∑n

i=1 xα
i

σα

]− 1
α (

1
κ +d)

. (22)

From this expression, it is evident that trying to force the multiplicative term inside the
brackets and the exponent to be 1− q and 1

1−q , respectively, results in several distortions of
the physical properties. Firstly, in NSM, the physical scale of the distributions σ is typically
buried in a parameter referred to as the generalized inverse temperature, βq = κ

(1−q)σα .

And from the exponent, q is defined by the relationship 1
1−q = − 1

α

(
1
κ + d

)
.

q = 1 +
ακ

1 + dκ
(23)

To address the multivariate case, Umarov and Tsallis [44] formulated the following defini-
tions for the multivariate Gaussian case (α = 2):

qd
k ≡ qkd ≡

2q− kd(q− 1)
2− kd(q− 1)

. (24)

Far from illuminating the multivariate statistics of complex systems, these types of ex-
pressions provide evidence that q is not aligned with the statistical properties of complex
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systems. Again, to interpret such an expression, it is not enough to understand that
q is the number of equal-valued independent random variables; rather, we also need
to explain the physical role of each term in the right-hand expression. Without these
explanations, the relationship fulfills a mathematical fit but falls short of a physical theory.

Open Problem 4: While the q-product is often referenced regarding its role in defining q-
independence, the form does not lead to the structure of the multivariate heavy-tailed distributions
in the manner that the product of distributions equates with the multivariate distribution of inde-
pendent variables. A definition of the generalized product for NSM is needed that is based on the
properties of the multivariate distributions, as was proposed in [43].

6. Does the q-Fourier Transform Model the Properties of Complex Signals?

One of the celebrated results of NSM is the proof of a generalized central limit theorem
(q-CLT) [45] that converges to q-Gaussians for random variables found to have a property
of q-independence. The nonlinear dependence described by q-independence relies on a
generalization of the Fourier transform that maps q-Gaussians to a q*-Gaussians. Given a
more general form of the Fourier transforms, a natural application would be the design of
filters for signals with long-range correlations and/or fluctuations, the tell-tale characteristic
of signals from a complex system. And yet, to date, there appear to be no applications of
the q-Fourier transform to signal processing. Related to the lack of applications is the lack of
a symmetric inverse [46–48], one of the key properties that has made the Fourier transform
the foundation of signal processing. To frame this problem, I will examine the Fourier
transform in the context of the symmetry between the compact-support and heavy-tailed
functions of NSM [49].

The gap in what should be a straightforward application of NSM results from the
disconnect between the mathematical relationships for the q-CLT and the physics of signal
processing. We must recall that the Fourier transform takes a function as an input (called the
signal) and outputs another function (called the image) that preserves all the information
about the original function. The process can be inverted with a function that has the same
structural form. The image has been proven to represent the sinusoidal frequencies of the
original signal and is used throughout engineering and science to craft filters for noise
reduction, match filtering, and countless other purposes. As the name “image” implies,
the FT is a kind of mirror. When applied to probability distributions, the FT mirror has the
property of transforming wide, high-entropy distributions into narrow, low-entropy image
functions. The Gaussian turns out to be the symmetrical function of this process, whereby
the FT of a Gaussian is also Gaussian (though no longer normalized to integrate to one).
And the variance of the image is proportional to the inverse of the signal’s variance.

Unfortunately, as currently defined, the q-FT violates this basic relationship between a
signal and its image. The q-FT transforms both the tail shape and the scale of the distribution.
Focusing on the tail shape, the transformed value of q and its translation into the shape
parameter are determined from the definition of q-FT to be

q1 =
1 + q
3− q

; κ1 =
κ

1− κ
. (25)

Table 2 shows how different domains of the heavy-tailed q-Gaussian distributions are
transformed by the q-FT into wider-tailed images. The Cauchy distribution (κ = 1, q = 2)
highlights the difficulties involved in applying the q-FT to signal processing since the image
function is an impulse function (κ = ∞, q = 3). This suggests that the Cauchy distribution is
the limit of physically realizable distributions. There are systems such as the Standard Map in
which the Cauchy does act as a limiting distribution [50,51]. At the same time, the coherent noise
model [52] and the Erhenfest dog–flea model [53] have been measured to have q-Gaussians
with the shape/q values (κ = 1.53, q = 2.21) and (κ = 2.08, q = 2.35), respectively. And yet,
distributions in this domain of very slow tail decay (1 < κ < ∞, 2 < q < 3) have a q-FT image
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function with a divergent integral (−∞ < κ < −1, 3 < q < ∞), suggesting that these would
not arise in physically realizable systems.

Table 2. Description of the q-Gaussian domains and their associated q-FT image. The q-FT transforms
have functions such as the q-FT to images with slower decaying tails. So, for example, the last row is
the domain of distributions with an undefined mean, which has an image with a divergent integral.

q-Gaussian Domain q-FT Image

Description Shape, κ q Description Shape q
Finite Mean
Finite Var. [0, 1/3) [1, 3/2)

Finite Mean
Finite Var. [0, 1/2 ) [ 1, 5/3)

Finite Mean
Finite Var. [1/3, 1/2) [3/2, 5/3)

Finite Mean
Div. Variance [1/2 , 1) [5/3, 2)

Finite Mean
Div. Variance [1/2 , 1) [5/3, 2)

Undefined Mean
Div. Variance [1, ∞) [2, 3)

Undefined Mean
Div. Variance [1, ∞) [2, 3) Div. Integral [−∞,−1) [3, ∞)

In contrast to the q-FT, the Fourier transform maps heavy-tailed q-Gaussians into
functions that are a product of a power-law term and a modified second-order Bessel
function, which has an exponential tail decay.

F
[[

1 + κx2
]− 1

2 (
1
κ +1)

+

]
∝
( |t|√

κ

) 1
2κ

K1/2

( |t|√
κ

)
. (26)

The power-law term increases with x but is sharply dampened by and in the limit of
x → ∞ dominated by the exponential decay of the Bessel function. It is noteworthy that
the exponent of the power-law term 1

2κ turns out to be a conjugate mapping between the
exponents of the heavy-tailed and compact-support q-Gaussians. That is, for κ > 0, the
heavy-tail and compact-support domains are related by

Heavy− tailed Compact− support[
1 + κx2]− 1

2 (
1
κ +1)

+

[
1− κ

1+κ x2] 1
2κ

+
.

(27)

In [49], I proposed a symmetrical generalization of the Fourier transform that maps the
q-Gaussians between their compact-support and heavy-tailed domains. However, the
transform included a mapping of the q parameter that did not generalize to other functions.
A requirement for a complete definition is a mathematically rigorous mapping between the
infinite domain of the heavy-tailed distributions and the finite-domain compact-support
functions.

Open Problem 5: As currently defined, the q-Fourier transform of NSM has limited physical
applications, since (a) the inverse is not symmetric and (b) the image function has slower decaying
tails. Can these limitations be validated by limits within physical applications of heavy-tailed
distributions, or can a symmetric generalization of the Fourier transform be defined? A candidate for
a symmetric Fourier transform maps q-Gaussians between their heavy-tailed and compact-support
domains but currently lacks a general mapping between these domains. Can a mathematically
rigorous mapping between the compact-support and heavy-tailed domains be defined that would
qualify as a generalization of the Fourier transform?

7. How Should Nonextensive Entropy Be Normalized?

During the early investigations of nonextensive entropy, a question arose regard-
ing the proper probability required to weight the generalized entropy. Tsallis entropy,

ST
q ≡

1−∑i pq
i

q−1 = −∑i pq
i lnq pi (Tsallis, 2009), is weighted by pq

i ; however, this form does not
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make use of the escort probability pq
i

∑i pq
i

normalization used for defining the constraints

for the generalized maximum entropy formalism. For this reason, the normalized Tsallis

entropy [54,55] SNT
q ≡ ST

q

∑j pq
j
=
−1+ 1

∑i pq
i

q−1 = −∑i
pq

i
∑j pq

j
lnq pi was investigated. The normalized

Tsallis entropy was found not to satisfy the Lesche stability requirement [56–58] and has
since been dismissed in favor of the original Tsallis entropy form.

However, given the insight regarding the distinction between the power and nor-
malization for the generalized exponential and logarithms discussed in Section 5, another
normalization can be considered. The coupled entropy [27,59] is defined as follows:

SC
κ (p; d, α) ≡ ∑i

p
1+ ακ

1+dκ
i

α∑j p
1+ ακ

1+dκ
j

lnκ p
−α

1+dκ
i

= ∑i
1

ακ
p

1+ ακ
1+dκ

i

∑j p
1+ ακ

1+dκ
j

(
p
−ακ
1+dκ
i − 1

)
.

(28)

In [27], it was found that the coupled and Tsallis entropy are (constant, asymptoti-
cally constant) a function of the coupling for the generalized Pareto distribution with the
matching coupling value and a scale equal to (one, non-one), respectively. However, for
the matched coupled Gaussian, the coupled entropy rose in value, while the Tsallis entropy
decayed with the increasing coupling value, i.e., the more heavy-tailed distributions.

The issue of normalization for a generalized entropy comes into sharper focus when
considering the role of a generalized sum in defining the nonlinear combination of entropies.
Substituting for q the relationship between the coupled, normalized, and Tsallis entropies
results in the following expression:

SC
κ (p; d, α) =

SNT
κ (p; d, α)

1 + dκ
=

ST
κ (p; d, α)

(1 + dκ)∑j p
1+ ακ

1+dκ
j

. (29)

While the q-sum of q-entropies has been defined as (using the coupling notation)

ST
1+ ακ

1+dκ
(pA)

⊕
1+ ακ

1+dκ
ST

1+ ακ
1+dκ

(pB)

≡ ST
1+ ακ

1+dκ
(pA) + ST

1+ ακ
1+dκ

(pB)

− ακ
1+dκ ST

1+ ακ
1+dκ

(pA)S
T
1+ ακ

1+dκ
(pB),

(30)

the coupled sum removes the dependency on 1
1+dκ

SC
κ (pA)

⊕
ακSC

κ (pB) ≡ SC
κ (pA) + SC

κ (pB)+ακ SC
κ (pA)S

C
κ (pB). (31)

Notably, the B-G-S entropy scales with the degrees of freedom, and the nonextensive
entropies modify this scaling [35,60]. Given that κ is the inverse of the statistical degrees of
freedom, the coupled sum of the coupled entropies directly expresses this modification.

Open Problem 6: What is the proper normalization of a generalized entropy, and how does the
normalization impact the relationship between a generalized entropy and the statistical degrees of
freedom? Stability issues caused a rejection of the normalized Tsallis entropy; however, neither
the normalized nor the unnormalized Tsallis entropy consider how converting the derivatives of
a cdf into a pdf impacts the relationship between the definition of the generalized exponential and
logarithmic functions and the structure of a pdf and its generalized entropy. When this is accounted
for, the nonlinear term combining a nonextensive entropy (coupled entropy) is precisely the inverse
of the statistical degrees of freedom. Does this suggest a criterion for the normalization?
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Comment on Problem 6: There are a variety of applications that may be impacted by the nor-
malization of the NSM entropy. For instance, the robustness of machine learning algorithms have
been improved using both q-entropy [61,62] and coupled entropy [59] generalizations. A careful
analysis of whether the difference in normalization impacts the performance improvements would
contribute to determining the importance of the normalization. Entropic analysis has been shown to
be an effective measure of financial market volatility, but greater detail is needed to determine the
relative advantages of different forms of generalized entropy [63,64].

8. A Measure of Complexity

The derivation of nonextensive entropy began with the investigation of systems
with a modified distribution, in which the probability of a state is raised to the power q.
As discussed in Sections 2 and 4, this necessitates a physical interpretation of q as the number
of independent random variables sharing the same state. Unfortunately, clarifying this
interpretation raises questions as to whether q is a fundamental or secondary property of
complex systems. The more fundamental question is as follows: how should the statistical
complexity of a system be quantified? The mismatch between q’s physical interpretation
and the fundamental properties of complex systems may explain why the field has avoided
addressing this issue.

Nevertheless, an approach to quantifying the statistical complexity of a system may
be quite simple. The property nonlinear statistical coupling was first introduced with
the candidate 1 − q, which fulfilled the need for the linear domain to have a value of
zero; however, multidimensional analysis exposed that isolating the nonlinear properties
required decomposition. As shown in Equation (23), q is dependent on three properties,
the dimension d, the nonlinearity of the random variable α, and the redefined nonlinear
statistical coupling κ. The coupling term is not new; in fact, it has a long tradition within
statistical analysis as the shape parameter defining the deviation from exponential decay,
and it is the inverse of the degrees of freedom used to define the Student t distribution.
And so, the final open problem for the reader to consider is whether the coupling or shape
parameter is an appropriate measure of a system’s statistical complexity.

Open Problem 7: Does the shape parameter, also referred to as the nonlinear statistical coupling,
provide a quantification of a system’s statistical complexity? Can this definition of statistical complexity be
related to other forms of complexity, such as algorithmic complexity? Explain the statistical complexity in
terms of its inverse, the statistical degrees of freedom. For instance, given samples from which to determine
a model, does the nonlinearity of the function define the deterministic complexity of the model? And do
the statistical degrees of freedom (samples minus model parameters) determine the inverse of the statistical
complexity of the model?

9. Conclusions

While NSM has advanced the modeling of uncertainty within complex systems, there
remain many open problems worthy of investigation. In this paper, issues arising from
the use of the parameter q as a focal point for modeling complex systems are examined.
These issues are framed in terms of a set of open problems, including the following:

1. Should the generalized exponential function, originally proposed by (Borges, 2004) [26],
be applied to the survival function rather than the probability density functions?

2. Can the difference between generalized entropy and BGS entropy be explained in
terms of the degrees of freedom and its inverse, the nonlinear statistical coupling?

3. For NSM to be a complete physical theory, a clear physical interpretation of q is
required. We must determine whether the number of independent random variables
sharing the same state is the appropriate interpretation of q.

4. We must define the q-product using the properties of the multivariate distributions of
q-statistics.

5. The q-Fourier transform does not seem to model the physical image of a heavy-tailed
signal. For example, the Cauchy distribution is transformed into a delta function,
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which could not be used for real-world signal processing. Can a generalization of
the Fourier transform be defined that utilizes the complementary properties of the
compact-support and heavy-tailed domains?

6. The normalization of the coupled entropy differs from both the normalized and
unnormalized Tsallis entropy. Is there a criterion that would clarify a preference
between these three normalizations of the generalized entropy for complex systems?

7. We must define a measure of statistical complexity.

The author has proposed that the nonlinear statistical coupling, which is equal to the
shape parameter and the inverse of the degrees of freedom, is a measure of statistical com-
plexity. It is left to the reader to examine this set of open problems, determine satisfactory
solutions, and consider whether a reframing of nonextensive statistical mechanics leads to
a focus on the fundamental properties of complex systems.
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Abstract: Almost two decades ago, Ernesto P. Borges and Bruce M. Boghosian embarked on the
intricate task of composing a manuscript to honor the profound contributions of Constantino Tsallis
to the realm of statistical physics, coupled with a concise exploration of q-Statistics. Fast-forward
to Constantino Tsallis’ illustrious 80th birthday celebration in 2023, where Deniz Eroglu and Ugur
Tirnakli delved into Constantino’s collaborative network, injecting renewed vitality into the project.
With hearts brimming with appreciation for Tsallis’ enduring inspiration, Eroglu, Boghosian, Borges,
and Tirnakli proudly present this meticulously crafted manuscript as a token of their gratitude.
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1. Introduction

Statistical physics has profoundly enhanced our understanding of nature, life, and phys-
ical phenomena by revolutionizing our comprehension of macroscopic phenomena—the
observable properties of materials—through their connection to microscopic laws, which
govern the behavior of individual atoms and molecules. This bridging of the microscopic
and macroscopic worlds has enabled scientists to predict and explain macroscopic phe-
nomena such as temperature, pressure, and entropy based on the statistical behavior of
microscopic constituents [1,2]. Statistical physics has provided a robust microscopic foun-
dation for thermodynamics. The statistical interpretation of entropy, in particular, has
deepened our understanding of the second law of thermodynamics and the direction of
natural processes [3]. The field has greatly advanced our knowledge of phase transitions,
such as the change from solid to liquid or liquid to gas, explaining critical phenomena and
the nature of phase changes through concepts like critical exponents and scaling laws [4].
In the quantum realm, these principles have been extended to systems governed by quan-
tum mechanics, elucidating phenomena such as superconductivity, superfluidity, and the
behavior of Bose–Einstein condensates [5]. Concepts like entropy have also become funda-
mental to understanding information processing and transmission, leading to applications
in information theory and computational complexity [6]. In materials science, statistical
physics has provided insights into the properties of new materials, such as polymers,
glasses, and complex fluids, driving the development of new technologies and materials
with tailored properties [7,8]. On the largest scales, statistical physics has contributed to our
understanding of the structure of the universe, the distribution of galaxies, and the thermo-
dynamic history of the cosmos, including the study of black holes and the early universe [9].
Moreover, the methods and concepts of statistical physics have influenced various other
disciplines, including chemistry, biology, and economics. In biology, for example, it aids in
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understanding processes like protein folding and the behavior of biological membranes [10].
Overall, statistical physics has transformed physics by providing a powerful framework to
understand and predict the behavior of complex systems, making it an essential pillar of
modern science [11].

Statistical physics is indeed largely founded upon the framework of Boltzmann–Gibbs
(BG) statistics, which emerged in the late 19th century. Ludwig Boltzmann’s introduction
of entropy and its correlation with the microscopic states of a system laid the ground-
work for statistical mechanics [12]. Subsequently, Josiah Willard Gibbs expanded upon
Boltzmann’s ideas, formulating a more rigorous mathematical framework known as Gibbs
statistical mechanics [13]. This framework became instrumental in relating the macroscopic
properties of a system, such as temperature, pressure, and energy, to the microscopic
configurations of its constituent particles. Boltzmann–Gibbs statistics provides a robust
framework for describing the behavior of large systems composed of numerous particles.
Considering the statistical distribution of these microscopic states enables the calcula-
tion of thermodynamic quantities and the prediction of macroscopic behavior. However,
Boltzmann–Gibbs statistics alone was insufficient to address the entire puzzle of bridging
the macroscopic and microscopic worlds. In certain non-equilibrium and complex systems
contexts, Boltzmann–Gibbs statistics exhibit limitations. To address these challenges, Con-
stantino Tsallis proposed a generalization of the BG formalism, known now as q-Statistics,
which is based upon a non-additive entropy having the BG entropy as a special case. These
kinds of generalized entropies have already been introduced in the literature, particularly
within the context of information theory [14], but they had never been used for the general-
ization of statistical mechanics. Tsallis’ q-Statistics offer a broader framework applicable to
systems with long-range interactions and non-equilibrium dynamics, providing insights
into phenomena beyond the scope of traditional statistical mechanics [15,16].

The well-deserved success of statistical physics is not only evident in its transformative
insights into the behavior of complex systems, but also in the robust acknowledgment
it receives through scholarly citations. In the scientific community, acknowledgment of
scholarly contributions is quintessentially expressed through citations, encapsulating the
cumulative impact of scientific endeavors. The statistics of these citations serve as barome-
ters of influence within the scientific world, reflecting the reach, significance, and enduring
legacy of research contributions. This quantitative analysis of scientific citations and related
data falls within the purview of scientometrics, which aims to objectively quantify the
impact of scientific outcomes, whether in the form of scientific papers or the corpora of an
individual scientist or even a group of scientists. Despite the inevitable inaccuracies and
biases inherent in these measures and methods, various indexes have gained widespread
usage among the scientific community and funding agencies. It is implicitly assumed that
such indexes can capture universal behaviors, at least within specific domains, such as
scientific fields.

In this article, the collective measures of q-Statistics, a branch of statistical physics
initiated by Tsallis’ landmark 1988 paper [15], are examined. Additionally, Tsallis’ collab-
oration network, which significantly shaped the q-Statistics community, is reconstructed
to understand how q-Statistics has spread globally and been influenced by key contrib-
utors. Functions emerging within this area provide statistical descriptions of the field’s
time evolution and the geographical distribution of contributors, among other metrics.
The outcome of the analysis shows the remarkable success of the field and its strong impact
on the scientific community. While these observations are notable, they align with the
broader understanding that numerous complex phenomena in the physical, biological,
computational, and social domains exhibit behaviors accurately described by q-Statistics.

2. Diffusion of q-Statistics Ideas

Aiming to understand natural phenomena through statistical approaches has extended
into the intriguing research field of statistically analyzing complex social systems by iden-
tifying the distributions within a given context. First, attention is specifically drawn to
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two particular examples of the diffusion of ideas within a social community, focusing on
their “success”:

(i) The distribution of the number of citations of scientific papers. In ref. [17], this scientometric
feature was addressed, and it was concluded that highly cited papers follow a power-
law distribution, while low-cited papers follow a stretched exponential distribution,
suggesting that different phenomena govern these two regimes. In ref. [18], it was
found that the same data could be represented by a single distribution, namely, a q-
exponential distribution:

expq(x) ≡ [1 + (1− q)x]1/(1−q)
+ (q ∈ R) (1)

where [· · · ]+ means that expq(x) = 0 if [1 + (1− q)x] ≤ 0. This finding suggests that
both high- and low-cited papers may follow the same rules;

(ii) The distribution of the number of weeks that pop musicians stay in Britain’s top-selling lists.
In ref. [19], the top-75 best-selling musicians on a week-by-week basis from 1950 to
2000 in the UK were analyzed, and it was found that a stretched exponential can fit
the data. In ref. [20], it was shown that the same data could be equally well-fitted with
a function that displays an intermediate power-law regime and presents a crossover
to an exponential tail. This function, introduced by [21] within a different context
(reassociation of carbon monoxide in folded myoglobin), is given by

f (x) ≡
[

1− βq

β1
+

βq

β1
e(q−1)β1x

]1/(1−q)
(βq > β1 ≥ 0; q > 1) , (2)

that is, a generalization of the q-exponential, as it reduces to f (x) = expq(−βqx) in
the limit β1 → 0.

These two examples of a measure of success that can be represented by q-exponentials
or functions that belong to the family of q-exponentials support a conjecture that these
social phenomena have a nonextensive nature.

In the present work, the growth and spread of nonextensive ideas among scientists
are considered as an instance of the diffusion of knowledge within a social community.
The time evolution of the number of papers on q-Statistics (including printed or electronic
papers, books, theses, etc.) is regarded as the dynamical aspect of the diffusion process.
The scientific community is viewed as a “phase-space” of the system. The geographical dis-
tribution of the scientists represents a measure of the filling of the phase-space. The spatial
spread is indicated by the distribution of countries to which the authors of those papers
belong. Country rank one is assigned to the country with the highest number of different
authors within the q-Statistics literature. Different statistical measures of the diffusion of
q-Statistics are found, with some satisfactorily described by q-exponentials or functions
belonging to the q-exponential family.

Figure 1 illustrates the cumulative number of papers per year, revealing three dis-
tinct regimes. Initially, the linear regime spans from 1988, coinciding with Tsallis’ first
paper on the subject, to approximately 1992. The onset of the first q-exponential regime
( f (t) = A expq(λqt), q < 1, λq > 0) is observed around 1992 (q = 0.75), indicated by the
red dashed line in Figure 1. Notably, this period marked the establishment of the connec-
tion between nonextensive statistical mechanics and thermodynamics [22], as well as the
first connection to a physical system, namely, self-gravitating stellar polytropes [23]. A
bibliography on the theme of q-Statistics has been continously updated by Constantino
Tsallis since 1995. The name of the file available at the URL [24], TEMUCO.pdf, was chosen
in honor of the city that held the IX Taller Sur de Física del Sólido, 26–29 April 1995, Misión
Borea, Temuco, Chile. The two above important papers and the continuously updated
bibliography likely facilitated the transition from linear growth to the q-exponential regime.
Subsequently, a second q-exponential regime emerged around 2004 and persisted until
December 2023, with q = 0.625. It is worth noting that, to maintain analogy with the current
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nonextensive nomenclature, the index associated with the time evolution, qsen, denotes
sensitivity to initial conditions (qsen < 1), as depicted in Figure 1.

Figure 1. Cumulative number of published papers per year. The cumulative number of papers
related to q-Statistics published each year (as of December 2023) is depicted, where the data follows
two distinct q-exponential regimes ( f (t) = A expq(λqt)) for two different time spans. (Top Panel)
The red dashed line represents the regime from 1992 to 2004 (q = 0.625), and the black dashed line
represents the regime from 2004 to the present (q = 0.75). Each regime’s trend is well-approximated
by a q-exponential with the parameters provided in the figure. (Bottom Panel) The top panel is in
linear–linear scale, while the bottom panel is in mono-q-log scale: the ordinate is represented in q-log
scale, with the q-values 0.625 (yellow triangles) and 0.75 (blue squares). The same q-log functions are
applied to the fitting curves in the top panel, represented again by dashed red and black lines in the
bottom one.

Figure 2 presents the (unnormalized) decreasing cumulative distribution of the number
of scientists that collaborated to q-Statistics per country. The dashed line indicates a fitting
with a generalization of a q-exponential with two power-law regimes. In light of [16,21],
one can write

dy
dx

= − βr yr − (βq − βr) yq (r ≤ q) (3)

with y(0) = 1, whence

x =
∫ 1

y

du
βr ur + (βq − βr) uq (4)

can be obtained. Here, x denotes the number of scientists and y ≡ R/C, where R is the rank
of countries. In the r = 1 case, Equation (4) recovers Equation (2). Notably, a q-value larger
than 1 is found, with q = 2.75, where the index associated with geographical distributions
is analogous to the index qstat (qstat > 1), indicating a stationary state. For a given complex
system, there typically exist several indices q, depending on the class of properties that are
being analyzed. This is frequently referred in the literature as the q-triplet and analogous
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structures [25]. One of these indices is the so-called qsen, which is typically qsen ≤ 1. Another
one of these indices is qstat, which can be, depending on the system, either qstat ≥ 1 or
qstat < 1. Further details can be found in [16].

Figure 2. National researcher contributions to q-Statistics. The collective involvement and impact
of researchers from different countries in the field of q-Statistics, as reflected by the number of
scientists with published papers in the field. The figure illustrates the ranking of countries by the total
number of scientists with published papers on q-Statistics. The dashed line corresponds to the fitting
of the data with a (q,r)-exponential (see text), with the parameters indicated in the figure. The figure
highlights the varying levels of participation and influence of researchers from different nations in
advancing the understanding and development of q-Statistics. As of December 2023, the USA, Brazil,
and Italy are the three major contributors to the field.

The distribution of scientific journals that have been used as vehicles for work on
q-Statistics is shown in Figure 3. Two power-law regimes are identified, with a cross-over
at about 10 papers per journal.

Figure 3. Ranking of journals with publications in q-Statistics. This figure presents the arrange-
ment of journals based on the number of articles that they have published related to q-Statistics.
The data exhibit two distinct power-law regimes: one for journals with a relatively small number
of papers (slope = −0.85) and another for journals with a higher number of papers on q-Statistics
(slope = −1.16). This offers an overview of the distribution of publications across different journals in
the field. As of January 2024, among 91 journals, Physical Review E, Physica A, and Physics Letters A
have the highest number of published papers on q-Statistics.
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The statistics of q-Statistics indicate a q-exponential growth in the number of publica-
tions over the years, characterized by shifting regimes. Leading contributors to q-Statistics
include the United States, Brazil, and Italy, with manuscripts predominantly published in
impactful and longstanding journals such as Physical Review E, Physica A, and Physics Let-
ters A. The primary architects of this success are undoubtedly Constantino Tsallis and his
collaborators. Therefore, the subsequent section is dedicated to exploring the collaboration
network of Tsallis.

3. Collaboration Network of C. Tsallis

The collaboration network of Constantino Tsallis comprises autonomous individuals
collaborating to address research problems, particularly in statistical mechanics. Remarkably,
researchers are located in diverse geographic regions and represent various disciplines,
including fundamental sciences, computer sciences, psychology, and even art. This dynamic
collaboration network has evolved over many years, culminating in the configuration
depicted in Figure 4, facilitating the sharing and dissemination of scientific knowledge.
The network’s formation is not solely attributed to technological advancements but also to
progress in international research and camaraderie.

Figure 4. Constantino Tsallis’ collaboration network. Illustration of Constantino Tsallis’ collabora-
tion network, encompassing all researchers (included in the Scopus database) who collaborated with
him throughout his research career. The network comprises 236 researchers with 436 publications
and 543 edges linking authors who have joint papers within the network. Node sizes are proportional
to the number of citations of coauthored papers, reflecting the impact of researchers on the scientific
community through their collaboration with C. Tsallis. Notably, the network reveals the presence of
11 distinct communities, each denoted by a unique color.
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Data containing joint papers, author names, and Scopus IDs were initially collected
from the Scopus database (on 17 January 2024) to reconstruct Constantino Tsallis’s collabo-
ration network. Utilizing unique Scopus IDs allowed for the differentiation of homonym
author names. Notably, some significant contributions by Tsallis, such as the book titled
“Nonextensive Entropy: Interdisciplinary Applications” by M. Gell-Mann and C. Tsallis,
published by Oxford University Press, were absent from the Scopus database. These im-
portant contributions were integrated into the parsed Scopus data, completing the data
preprocessing approach.

The finalized publication record of C. Tsallis indicates a total of 438 publications and
28,039 citations. The cumulative increase in publications (orange) and citations (red) is
depicted in Figure 5. Additionally, Figure 5 presents the cumulative citation distribution
of papers relative to the year of publications (blue line). The most-cited paper by C.
Tsallis, titled “Possible generalization of Boltzmann-Gibbs statistics” [15], is prominently
highlighted by a significant increase in the blue curve, denoted by an arrow and the text
“Tsallis 1988”.

Figure 5. Constantino Tsallis’ Publications and Citations. Illustrations depict the cumulative
number of publications (orange) and citations (red) throughout the academic career of C. Tsallis,
spanning from 1970 to the present. Cumulative plots of the total number of citations for papers
published in each respective year are also provided (blue). The seminal article by C. Tsallis on
q-Statistics, published in 1988, stands out as a highly cited paper, marked by the arrow denoted
“Tsallis 1988”.

Authors of coauthored articles or books were considered connected; in essence, if two
authors published a joint paper, they were linked in the network structure. As the dataset
encompasses all of C. Tsallis’ works, Tsallis is considered a (co)author of all the papers,
thereby linked to all other researchers within the network. Links between other researchers
indicate that the connected authors have joint paper(s) with C. Tsallis. Consequently,
the collaboration network comprises 236 nodes, indicating that C. Tsallis has 235 coauthors
and 543 links. In Figure 4, node sizes are proportional to the total number of citations
received from coauthored papers with C. Tsallis. Thus, large nodes do not signify that
the author has numerous papers with Tsallis; rather, they have a substantial number of
citations together.

In addition, a community detection algorithm was employed to discern 11 distinct
clusters, each delineated by different colors, as depicted in Figure 4. These clusters are
based on the coauthorships among C. Tsallis’ collaborators, where nodes represent authors
and edges represent shared publications with Tsallis. Each cluster also features leading
authors; for instance, M. Gell-Mann is a prominent node in the yellow cluster, indicating
that researchers in the yellow cluster share a common coauthoring basis. This applies to
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all other clusters, including important and impactful leading collaborators such as E.M.F.
Curado, R.S. Mendes, A.R. Plastino, A. Rapisarda, U. Tirnakli, E.P. Borges, and others.

The clusters not only reflect the frequency of coauthorship, but also sometimes align
with specific research fields and geographic locations. For example, distinct communities
may emerge from authors working in similar research areas but are not strictly grouped
by this criterion. Geographic factors also influence clustering, with authors from the same
research field but different countries or continents often appearing in separate clusters. This
global reach highlights the diverse and extensive nature of Tsallis’ collaborative network.

The nodes in the gray cluster contain researchers who had a few joint works with
C. Tsallis, and they have no significant collaborations with the rest of the network to
be assigned to a specific community. Although intuitively detectable from the network
visualization, these insights underscore the broad and varied impact of Tsallis’ collabora-
tions across different research fields and international borders. This information has now
been incorporated to provide a clearer understanding of the community structures within
the network.

Figure 6 shows the distribution of citations with coauthors—equivalent to the node
sizes in Figure 4. In order to fit the data, we once again utilize Equations (3) and (4), where
x now represents the citations of papers and y ≡ R/C′, with R denoting the coauthor’s
citations rank. As the number of citations is significantly larger than the number of papers,
authors, or countries, the distribution is more saturated. Consequently, we were able to fit
it with a single distribution with better accuracy.

Figure 6. Ranking of Tsallis’ citations with coauthors. The analysis of citations received by articles
authored by Tsallis in collaboration with other researchers. This figure displays the unnormalized
decreasing cumulative distribution of citations for papers with coauthors. The data are fitted with
a (q,r)-exponential model, with parameters indicated by Equations (3) and (4). The figure involves
ranking these citations based on the number of times they have been cited, providing insights into
the impact and influence of Tsallis’ collaborative work. The top-three most-cited coauthors with joint
papers, Mendes, Plastino and Gell-Mann, are indicated.

The distribution of the number of papers with coauthors is illustrated in Figure 7.
Unlike Figure 6, this distribution is not described by a q-exponential function. Instead, it
exhibits two distinct power-law regimes with a transition point between them. The number
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of joint papers with a given coauthor is influenced by different factors than the number
of citations of those joint papers. Psychological or personal aspects, such as friendship or
proximity, among others, may play a more significant role in shaping the behavior observed
in Figure 7 compared to Figure 6, as citations are generally less personal than collaborations.

Figure 7. Ranking of Tsallis’ papers with coauthors. This analysis focuses on articles authored by
Tsallis in collaboration with other researchers, specifically examining the frequency of coauthorship.
The figure illustrates the unnormalized decreasing cumulative distribution of the number of papers
authored by Tsallis in collaboration with others. It identifies two distinct power-law regimes, with a
transition regime between them (slopes indicated). This ranking offers insights into the collaborative
research efforts involving Tsallis. Additionally, the figure highlights the top-three most-frequent
collaborators: da Silva, Nobre, and Tirnakli.

The citations of papers (co)authored by Constantino Tsallis are displayed in Figure 8,
depicted as a Pareto-like plot, where the citations of each paper are plotted as a function of
their respective rank, representing an unnormalized decreasing cumulative distribution.
The log–log scale provides a clear visualization of the fitting of a q-exponential with
parameters A = 437, b = 0.07, and q = 1.86. A widely adopted measure is the h-index [26],
proposed in 2005 to quantify the importance, significance, and impact of an individual
researcher’s corpus. The definition of h-index is such that a researcher has an h-index of n
if their top-n most-cited papers have been cited at least n times each, and the remaining
papers have been cited fewer than n times each. Tsallis’ h-value, reaching a relatively large
number of 67, is illustrated in Figure 8, indicating the average relevance of his scientific
contributions. In contrast, the q-parameter reveals extraordinary contributions. Notably,
the increase in citations of top-cited papers does not immediately affect the h-index, while
the q-parameter increases. Tsallis’ top-ranked paper [15] appears as an outlier, akin to
phenomena like highly energetic cosmic rays described as an “ankle” (see Figure 1 of [27]),
where the ankle signifies extraordinarily highly cited papers.
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Figure 8. Ranking of citations of Tsallis’ papers. This figure presents an analysis of the citations
received by papers authored by Tsallis. It illustrates the unnormalized decreasing cumulative distribu-
tion of citations for Tsallis’ papers, effectively fitted with a q-exponential distribution (A expq(−βqx)).
The displayed index h = 67 indicates the citation count at which the papers achieve an h-index
of 67. This ranking offers insights into the impact and influence of Tsallis’ publications based on
their citation counts. Furthermore, Tsallis’ seminal paper from 1988 stands out as an outlier, signifi-
cantly contributing to the ankle point shown in the figure, which highlights its exceptionally high
citation impact.

4. Concluding Remarks

Constantino Tsallis’ remarkable contributions to science and the q-Statistics are inves-
tigated by considering the meta-data of the associated articles and collaborators, which
was collected from the Scopus database. We have presented scientometric indexes that
express additional features to the difficult task of objectively, quantitatively, and unbiasedly
classifying his activity. Furthermore, we have also compared the nominal citations of a
non-exhaustive list of scientists with remarkable contributions to thermal physics through-
out history and other relatively known scientists within the current statistical mechanics
community (Figure 9). By nominal citation, we mean the appearance of the name of the
scientist in the topic, title, or abstract, rather than in the authorship, of a cited paper, ac-
cording to Web of Science. Scientists like K.E. Wilson, M.E. Fisher, and H.E. Stanley clearly
belong to this group. However, their names are not included because of the very large
number of homonyms. If the results we have found are replicated to other scientists and
fields (especially for scientists with major contributions, for which fluctuations due to poor
statistics tend to be minimized), we believe the characterization of scientific activity will be
better described.

In conclusion, Constantino Tsallis has made significant contributions to the field of
statistical physics, with 438 publications amassing a total of 28,000 citations, according to
Scopus data (as of May 2024, 461 publications, according to Web of Science (All Databases)
data; 44,146 citations according to Google Scholar citations data). He has also supervised
and continues to supervise numerous students and colleagues, including the authors of this
article. His love for science, a deep curiosity about nature, and friendly mentorship, coupled
with wise advice, have consistently inspired us. This harmonious blend of motivation,
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passion, and enthusiasm for statistical physics continues to drive our collective efforts in
the field.

Figure 9. Nominal citations in thermal physics: Comparison with titans. A comparison of nominal
citations is conducted for a non-exhaustive list of scientists with remarkable contributions to thermal
physics throughout history and other relatively well-known scientists within the current statistical
mechanics community. The numbers presented here are obtained from WoS by employing a search of
each name in “All Databases”, including “Preprint Citation Index” in “Topic”. Tsallis is among the
most-cited scientists in the field of thermal physics, providing insights into his relative impact and
influence compared to other luminaries in the field.
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Abstract: Precipitation patterns are critical for understanding the hydrological and climatological
dynamics of any region. Sicily, the largest island in the Mediterranean sea, with its diverse topography
and climatic conditions, serves as an ideal case study for analyzing precipitation data, to gain insights
into regional water resources, agricultural productivity, and climate change impacts. This paper
employs advanced statistical physics methods, particularly Tsallis q-statistics, to analyze sub-hourly
precipitation data from 2002 to 2023, provided by the Sicilian Agrometeorological Informative System
(SIAS). We investigate several critical variables related to rainfall events, including duration, depth,
maximum record, and inter-event time. The study spans two decades (2002–2012 and 2013–2023),
analyzing the distributions of relevant variables. Additionally, we examine the simple returns of these
variables to identify significant temporal changes, fitting these returns with q-Gaussian distributions.
Our findings reveal the scale-invariant nature of precipitation events, the presence of long-range
interactions, and memory effects, characteristic of complex environmental processes.

Keywords: Tsallis q-statistics; Sicily rainfall data; climate change

1. Introduction

Precipitation patterns play a crucial role in understanding the hydrological and clima-
tological dynamics of any region. In the context of Sicily, an island characterized by diverse
topographical and climatic conditions, analyzing precipitation data provides valuable in-
sights into regional water resources, agricultural productivity, and climate change impacts.
Being the largest island in the Mediterranean sea and located in the middle of it, Sicily is
also of great interest for the entire Mediterranean area.

A robust statistical approach is essential for uncovering the underlying patterns and
anomalies in precipitation data, thereby enabling more accurate predictions and effec-
tive water management strategies. In recent years, the application of advanced statistical
physics methods has provided new insights into the analysis of complex environmental
data [1–3]. In particular, various studies have emphasized the importance of different
probability distributions in rainfall analysis. For instance, the Poisson Hurwitz–Lerch
zeta distribution has been used to model the frequency of interarrival times and rainfall
depths [4]. Some studies assumed that the daily precipitation intensities are distributed
according to a Gamma [5] or a mixed exponential [6], light-tailed or heavy tailed distri-
butions [7,8], while other authors found a log-normal [9] or a stretched exponential [10]
distribution. Probability distributions of daily rainfall extremes have also been studied to
make rainfall inferences [11], and entropy-based derivations of probability distributions
have been applied to daily rainfall data [12]. Understanding the fundamental probability
distribution for heavy rainfall can provide insights into extreme weather events [10], and
analyzing extreme rainfall trends is crucial for evaluating depth–duration–frequency curves
in climate change scenarios [13].
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In this context, q-statistics offer a robust framework for analyzing the variability and
distribution of complex environmental data, as they are particularly effective in capturing
the non-linear and multi-scalar nature of such events. Raw data often follow power law dis-
tributions, indicating the presence of scale-invariant processes and the frequent occurrence
of extreme events [14]. For instance, Yang et al. demonstrated the power-law behavior of
hourly precipitation intensity and dry spell duration over the United States, highlighting
the scale-invariant nature of these phenomena [15]. Additionally, studies have focused on
the use of probability distributions in rainfall analysis [16], and memory in volatility return
intervals and a decumulative probability function, following the methodologies usually
employed in the study of financial markets [17]. Decumulated data can be effectively
modeled using Tsallis exponential distributions, which account for long-range interactions
and memory effects typical of many natural processes. Pluchino et al. showed the appli-
cability of Tsallis statistics in capturing long-term correlations at the edge of chaos [18].
Similarly, Ludescher et al. described the universal behavior of interoccurrence times be-
tween losses in financial markets using Tsallis statistics [19], emphasizing the presence of
memory effects [20]. Furthermore, the simple returns of these events, representing changes
over time, conform to q-Gaussian distributions [21], which better capture the heavy tails
and non-Gaussian behavior observed in the data. Recently, Tsallis statistics were also
successfully applied by Greco et al. to study acoustic emissions close to the rupture point
of compressed rocks of various natures [22,23]. Bogachev and Bunde (2008) discussed
memory effects in the statistics of interoccurrence times between large returns in financial
markets, demonstrating the relevance of q-Gaussian distributions in modeling heavy tails
and non-Gaussian behaviors [24]. Yamasaki et al. also highlighted scaling and memory in
volatility return intervals in financial markets, further supporting the use of q-Gaussian
distributions for this kind of analysis [25].

In this paper, we present a comprehensive analysis of precipitation data through the
lens of q-statistics. Specifically, we analyzed sub-hourly precipitation data from 2002 to 2023,
provided by the Sicilian Agrometeorological Informative System (SIAS). The considered
dataset comprises records from 107 meteorological stations, with a focus on nine key rain
gauges located in Messina, Catania, Siracusa, Ragusa, Enna, Caltanissetta, Agrigento, Tra-
pani, and Palermo. We examined several key variables related to rainfall events, including

- Duration [minutes], the length of consecutive wet records;
- Depth [mm], the total amount of precipitation during an event;
- Maximum record [mm/10′], the highest recorded precipitation in a 10 min interval

during an event.

To investigate the temporal evolution of these variables, we analyzed their distributions
over two decades (2002–2012 and 2013–2023). We also explored simple returns of these
variables. In order to characterize our distributions and to identify any significant changes
over time, we considered Tsallis q-statistics [19].

Our analysis aimed to uncover patterns and trends in Sicilian precipitation data,
providing insights into regional climate dynamics and potential impacts of climate change.
This study could offer valuable information to scientists, policymakers, and stakeholders
involved in environmental and water resource management in Sicily.

2. Dataset and Relevant Variables

This study is based on precipitation records from 2002 to 2023 provided by a robust and
extensive rain gauge network under the maintenance of the Sicilian Agrometeorological
Informative System (SIAS), which comprises 107 meteorological stations. We included in
our study the rain gauges of Messina, Catania, Siracusa, Ragusa, Agrigento, Trapani, and
Palermo, which are the most populated cities on the coastline (Istat—Statistical National
Insitute—report 2018/2019). In order to include the midland area, we added two more
cities, namely Enna and Caltanissetta. We analyzed precipitation time series with a 10 min
basis across the nine selected rain gauge stations, see Figure 1. The minimum quantity
observable with the SIAS’s pluviometers was 0.2 mm and, as we mentioned, the time
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resolution was 10 min; we used such granular data per station and built a new time series
based on rainfall events.

Figure 1. SIAS meteorological network: location of the nine rain gauge stations considered in this
paper. See text for more details.

A rainfall event over a rain gauge in our dataset is an episode of consecutive wet
records, i.e., the consecutive not null rows. It follows that each rainfall event can be
characterized by two quantities: a duration [in minutes] and a depth [in mm]. The duration
of an event is the length of consecutive wet records or, in other words, the number of
consecutive not null rows. The rainfall depth relative to an event is the sum of precipitation
amount over the corresponding event duration, in other words, how much it rained during
the event. Each rainfall event is formed by one or more not null records, and one of
those values is the maximum value recorded during the event. We focused our study on
the previous relevant variables related to rainfall events: depth [mm], maximum record
[mm/10′], and duration [minutes]. The first two variables are related to the amount of
precipitation, whilst the duration is a temporal variable. We grouped results following
such criteria. As the whole dataset covers a time span of 22 years, we arbitrarily chose to
perform our analysis with a 11-year scale. We adopted a seasonal approach exploring the
principal features of the distributions of these variables, in order to evaluate the presence
of certain temporal trends across decades.

3. Statistical Analysis of Precipitation Events

3.1. Probability Density Functions

First, we analyzed the probability density function (PDF) for our relevant variables,
considering both seasonal and decade variations. This approach helps in managing the com-
plexity and volume of the data, while still providing clear insights into the overall trends.

Due to the extensive number of reports generated for each season, variable, and decade,
we present only a few selected plots, then we can summarize all the results in a more
compact way. Figures 2–4 illustrate PDFs of the events’ rainfall depth, maximum record,
and duration, respectively, cumulated over all the gauge stations for the autumn season
in each of the two decades, 2002–2012 (left panel) and 2013–2023 (right panel). All the
distributions can be well fitted by power-law functions y ∼ x−b. Performing a χ2 test,
the power-law fit always resulted in a p-value < 0.05, indicating the scale-invariant nature
of the precipitation data, but with different slopes (reported in the legends).

In Figure 5, we compare, as bar charts, the slopes of all the power-law fits performed on
the seasonal distributions of the same three variables for the two considered decades. Bars
are colored in blue for 2002–2012 and in green for 2013–2023. The analysis of rainfall depth
and maximum record (top and central panel, respectively) revealed a sensitive increase in
extreme events, indicated by a lower absolute value of the slopes, only for summer and
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autumn of the second decade. A slight increase in the events’ duration for the second
decade can also be appreciated (bottom panel), but only for spring and summer. The winter
behavior remained largely unchanged from one decade to another, even if a small decrease
in rainfall depth together with a slight increase in the max intensity are visible for this
season (in the top and central panels, respectively).

Figure 2. Probability density function of autumn rainfall depth in log–log scale and its fits with a
power law (red line) for the two decades considered: 2002–2012 (left panel) and 2013–2023 (right

panel). The slopes of the fits are also reported, see text for more details.

Figure 3. Probability density function of autumn max per event in log–log scale and the fit with a
power law (red line) for the two decades considered: 2002–2012 (left panel) and 2013–2023 (right

panel). The slopes of the fits are also reported, see text for more details.

Figure 4. Probability density function of autumn rainfall event duration in log–log scale and its fits
with a power law (red line) for the two decades considered: 2002–2012 (left panel) and 2013–2023
(right panel). The slopes of the fits are also reported, see text for more details.
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Figure 5. We report the values of the slopes of the power-law fits for the events’ rainfall depth
(top panel), maximum record (central panel), and duration (bottom panel). The different colors
refer to the two decades studied: blue for the period 2002–2012 and green for the period 2013–2023.
Differences between the two decades can be appreciated, in particular for summer. An horizontal red
dotted line has been added as reference for the eye. See text for more details.

The observed changes in the slopes over the decades indicate a possible increase in
the frequency and intensity of extreme precipitation events, which might be attributed to
changing climate patterns affecting atmospheric turbulence and energy distribution.

3.2. Decumulative Probability Distributions

In this section, we investigate the decumulative probability distributions for our three
relevant variables in the four seasons and the two decades by means of q-statistics. For each
variable, we plot the fraction of precipitation events (collected for all the gauge stations),
with values above the threshold reported on the x-axis. As in the previous section, we
start by presenting some selected examples of these distributions in the two decades.
In particular, in Figures 6 and 7 we analyzed the rainfall depth and the maximum record in
winter, while in Figure 8 we focused on the event duration in summer. All the distributions
resulted as well fitted by Tsallis q-exponential functions in the usual form [19]:

eq(x) = [1 + (1− q)kx]
1

1−q , (1)

where q is the entropic index and k is a constant that controls the inflection point of the
curve. For q = 1, the standard exponential function is recovered. Values of the entropic
index greater than 1 indicate fat tailed tails and typically quantify the degree of long-range
correlations and memory effects present in the system, expressed by the entity of the de-
viation from unit. Applying the χ2 test, the Tsallis q-exponential fit consistently yields a
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p-value lower than 0.05. In these examples, the entropic index shows a slight difference be-
tween the two decades only for winter rainfall depth, while the winter maximum intensity
and summer duration remained largely unchanged.

Figure 6. Decumulative probability distributions in log–log scale of winter rainfall depth per event
and their q-exponential fits. Comparison between decades: 2002–2012 (left panel) and 2013–2023
(right panel).

Figure 7. Decumulative probability distributions in log–log scale of winter maximum per event
and their q-exponential fits. Comparison between decades: 2002–2012 (left panel) and 2013–2023
(right panel).

Figure 8. Decumulative probability distributions in log–log scale of winter event duration and their
q-exponential fits. Comparison between decades: 2002–2012 (left panel) and 2013–2023 (right panel).

The use of Tsallis q-statistics with q > 1 indicated that the precipitation events exhibited
long-range correlations and memory effects, deviating from classical exponential behavior.
This is consistent with systems that have persistent interactions over time, suggesting that
atmospheric processes have significant temporal dependencies.

Detailed results of the values of the entropic index q for each variable and each season
are reported in the three panels of Figure 9, where bar charts are again colored in blue and
green for 2002–2012 and 2013–2023, respectively.

The changes in the entropic index q across different decades and seasons imply vari-
ations in the degree of correlations and memory effects within the atmospheric system.
This may be indicative of evolving climatic conditions and their impact on the statistical
properties of precipitation events.
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Figure 9. Seasonal bar chart of the entropic index q calculated for the rainfall depth, maximum
intensity per event, and duration decumulative distributions. Comparison between decades: 2002–
2012 (blue) and 2013–2023 (green). A red dotted line as be added as reference for q = 1. See text for
more details.

In the top panel, the comparison of entropic indexes for the events’ rainfall depth
revealed an increase in correlations in the second decade for summer and autumn only,
while a decrease was observed for winter and spring. A slight increase in the index q
among decades can also be observed only in summer for the maximum per event intensity
(central panel). All the other comparisons in both the central and bottom panels only show
very similar values for the entropic index.

The observed variations in the entropic index q for different seasons and decades
suggest that the degree of correlation and memory in precipitation events has changed
over time, potentially due to climatic changes. Increases in q indicate stronger corre-
lations and memory effects, particularly in summer and autumn, reflecting changes in
atmospheric dynamics.

3.3. Returns Distribution

Finally, in this section, we investigate the behavior of simple returns distributions
for each relevant variable, for the different seasons and decades studied. We consider
normalized simple returns R defined as follows:

R =
[(xn+1 − xn)− xmean]

σstd.dev
. (2)

With the distributions of returns being symmetric, they are well fitted by Tsallis
q-Gaussian curves defined as [19]:
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Gq(x) = A
[
1− (1− q)βx2

] 1
1−q , (3)

where A is a normalization parameter, q is the entropic index, and β is a parameter related to
the spread around the mean. Values of entropic index greater than unit quantify deviations
from a Gaussian behavior, also indicating a violation of the standard central limit theorem
due to correlations present in the system. In Figures 10–12, we report, as in the previous
sections, some seasonal examples of distributions of simple returns for our three variables,
comparing the two decades: the spring season was chosen for both rainfall depth and
duration, with the winter season for the maximum recorded value. No relevant differences
among decades are visible in any case for the entropic index q, although different values
of β were obtained. Such an absence of any change in q during 2002–2012 and 2013–2023
can be also appreciated in the summary presented in Figure 13, where we report the bar
charts of the entropic index values extracted from q-Gaussian fits. For both rainfall depth
(top panel) and maximum intensity (central panel), the fitted entropic index does not vary
significantly across decades and seasons, suggesting a consistent statistical behavior over
time. However, the event duration (bottom panel) shows a substantial increase in winter
and, in particular, in summer and autumn, indicating potential changes in the dynamics of
rainfall events in these seasons over the considered decades.

Figure 10. Simple returns in log–lin scale: data and q-Gaussian fits of spring events’ rainfall depth.
The comparison between the two considered decades, i.e., 2002–2012 (left panel) and 2013–2023
(right panel), does not show any relevant differences in the entropic index q.

Figure 11. Simple returns in log–lin scale: data and q-Gaussian fits of winter maximum per event.
In the left panel, we report the 2002–2012 decade, while the right panel shows the 2013–2023 decade.
See text for more details.

Figure 12. Simple returns in log–lin scale: data and q-Gaussian fits of spring rainfall event duration.
In the left panel we report the 2002–2012 decade, while the right panel shows the 2013–2023 decade.
See text for more details.
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Figure 13. Bar chart of entropic index q for rainfall depth (top panel), maximum intensity recorded
per event (central panel), and event duration (bottom panel) are reported for decade (2002–2012 in
green and 2013–2023 in blue) and season. A red dotted line as be added as reference for q = 1. See
text for more details.

The χ2 test of fitting of simple returns with Tsallis q-Gaussian curves yielded a p-
value < 0.05. We observe that the exponent q is always greater than one, indicating the
presence of correlations and deviations from the Gaussian distribution. This suggests that
the precipitation events exhibit complex dynamics and memory effects, not fully captured
by traditional Gaussian statistics. The lack of significant changes in q across decades for
rainfall depth and maximum intensity suggests that these aspects of precipitation events
have remained statistically stable. However, the increase in q for event duration indicates
evolving dynamics in how long precipitation events last, potentially reflecting changes in
atmospheric conditions over time.

These results highlight the complexity and evolving nature of precipitation event
dynamics. The consistent behavior in the entropic index q for rainfall depth and maximum
intensity suggests a stable underlying process, whereas the increase in q for event duration
points to changes in how precipitation events are temporally distributed, possibly due to
shifts in atmospheric dynamics or climate change.

4. Discussion and Conclusions

In this study, we analyzed sub-hourly precipitation data from nine rain gauge stations
located in the main cities of Sicily over two decades, 2002–2012 and 2013–2023. Our analysis
focused on several key features of rainfall events: depth, maximum recorded value of the
event, and duration of the event. The aim was to understand the statistical properties of
these variables and possible changes over time.
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Our analysis provided, for the first time, a comprehensive quantitative analysis of
precipitation data across Sicily using Tsallis q-statistics, revealing significant insights into
the statistical properties of rainfall events. The power law distributions of the relevant
variables suggest the presence of scale-invariant behavior: in fluid dynamics, this points to
the influence of turbulence and fractal-like atmospheric phenomena. The q-exponential
and q-Gaussian distributions highlight the presence of long-range correlations and memory
effects in the data, suggesting that atmospheric processes are influenced by persistent
interactions over time.

The application of Tsallis q-statistics in this context has proven to be particularly valu-
able. By comparing the deviation from exponential and Gaussian behavior among decades
and seasons, we were able to capture the deep out-of-equilibrium nature of the precipitation
data, which classical statistics often fail to describe accurately. Tsallis q-statistics, with a
foundation in non-extensive entropy, provide a more flexible and encompassing frame-
work that accounts for the complex dynamics and interactions inherent in environmental
data. This non-extensive behavior indicates that precipitation events have significant
long-range dependencies and correlations, reflecting the complex, interconnected nature of
atmospheric dynamics.

Our findings indicate, in several cases, notable changes among the two decades con-
sidered, particularly during the summer and—to a lesser extent—the autumn seasons.
We observed an increase in correlations, on one hand, in the decumulative distributions
for rainfall depth and the maximum intensity of events and, on the other hand, in the
normalized returns distributions for the event duration. This increase in correlations and
memory effects, as indicated by the higher entropic index q, suggests that the precipitation
system has become more interconnected and influenced by long-term climatic factors,
which could be a result of ongoing climate change. These quantitative changes, if correctly
interpreted, could have significant implications for water resource management and agri-
cultural planning in Sicily, especially in the context of climate change adaptation. In fact,
the investigation of the underlying mechanisms driving the observed changes in rainfall
patterns could offer valuable insights for developing adaptive strategies to mitigate the
impacts of climate variability and change.

By providing a straightforward and accessible approach, q-statistics offer valuable
insights into complex hydrometeorological processes, especially in regions with prevalent
non-equilibrium conditions like the Mediterranean.

Overall, this study contributes to the growing body of knowledge on precipitation vari-
ability and its impacts, offering a valuable resource for scientists, policymakers, and stake-
holders involved in environmental and water resource management in Sicily. The applica-
tion of q-statistics reveals richer structures and long-range dependencies in precipitation
data, aiding in better risk analysis, modeling, and decision support.The use of Tsallis q-
statistics provides a robust tool for understanding the complexity of precipitation patterns
and their broader climatic implications. By revealing the non-Gaussian nature and the
long-range correlations in precipitation data, this approach helps in better modeling and
predicting extreme weather events, which are crucial for effective climate change adapta-
tion strategies. Future research should focus on extending this analysis to other regions
and incorporating additional climatic variables, to provide a more detailed understanding
of precipitation dynamics.
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Abstract: In addition to their importance in statistical thermodynamics, probabilistic entropy mea-
surements are crucial for understanding and analyzing complex systems, with diverse applications
in time series and one-dimensional profiles. However, extending these methods to two- and three-
dimensional data still requires further development. In this study, we present a new method for
classifying spatiotemporal processes based on entropy measurements. To test and validate the
method, we selected five classes of similar processes related to the evolution of random patterns:
(i) white noise; (ii) red noise; (iii) weak turbulence from reaction to diffusion; (iv) hydrodynamic fully
developed turbulence; and (v) plasma turbulence from MHD. Considering seven possible ways to
measure entropy from a matrix, we present the method as a parameter space composed of the two best
separating measures of the five selected classes. The results highlight better combined performance
of Shannon permutation entropy (Sp

H) and a new approach based on Tsallis Spectral Permutation
Entropy (Ss

q). Notably, our observations reveal the segregation of reaction terms in this Sp
H × Ss

q space,
a result that identifies specific sectors for each class of dynamic process, and it can be used to train
machine learning models for the automatic classification of complex spatiotemporal patterns.

Keywords: nonlinear dynamics; spatiotemporal patterns; turbulence; Shannon entropy; Tsallis
entropy; gradient pattern analysis

1. Introduction

The intricate relationship between probability and entropy is a cornerstone in informa-
tion theory and statistical thermodynamics, providing a robust framework for analyzing
a multitude of phenomena ranging from data transmission processes to the behavior of
many physical systems. Entropy, derived from the probability distribution of the states of a
process or system, can be interpreted as a quantitative measure of randomness or disorder,
offering deep insights into the underlying dynamics of several complex systems (see, for
instance, Refs. [1–6]).

From a thermodynamic perspective, the entropy concept is intimately tied to the sta-
tistical mechanics of microstates. Entropy, S, is defined by Boltzmann’s entropy equation,
S = kB ln Ω, where kB is the Boltzmann constant and Ω represents the number of mi-
crostates. This relationship can be interpreted as the degree of disorder or randomness in a
system’s microscopic configurations, drawing a direct connection between the macroscopic
observable properties and the statistical behavior of microstates. Complementarily, in the
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realm of information theory, entropy is fundamentally concerned with quantifying the
expected level of “information”, “surprise”, or “uncertainty” in the potential outcomes
of a system [7]. This quantification is intricately linked to the probability distribution
of these outcomes. It essentially measures the average unpredictability or the requisite
amount of information needed to describe a random event, thereby providing a metric for
the efficiency of data transmission and encoding strategies. Therefore, the duality of the
entropy interpretation works as a bridge between the abstract realm of information and the
tangible world of the statistics of physical systems. It encapsulates the essence of entropy as
a fundamental measure, providing a unifying lens through which the behavior of complex
systems, whether in the context of information processing or thermodynamics, can be
coherently understood and analyzed. This interdisciplinary approach not only deepens
our understanding of individual phenomenon but also reveals the underlying universality
of the concepts of randomness and information across diverse scientific domains.

In the scenario described above, it is necessary to identify entropy measures that
are effective in characterizing the spatiotemporal patterns of complex processes typically
observed or simulated in 3D + 1: following the notation of the amplitude equation the-
ory, where D corresponds to the spatial dimension in which the amplitude of a variable
fluctuates over time. This need is justified by the great advances in the generation of big
data in computational physics, with emphasis on the direct numerical simulation (DNS) of
turbulence [8,9], ionized fluids [10–14], and reactive–diffusive processes [15] to highlight
a few.

Our main objective in this work is to present and evaluate the performance of a set
of information entropy measurements, conjugated two by two, in order to characterize
different classes of 3D structural patterns arising from nonlinear spatiotemporal processes.
To this end, the article is organized as follows: The analytical methodology is presented
in Section 2, and the data are presented in Section 3. The results, in the context of a
benchmark based on the generalization of the silhouette score, are presented and interpreted
in Section 4. Our concluding remarks, with emphasis on pointing out the usability of the
method in the context of data-driven science, are presented in Section 6.

2. Methods

Various entropy metrics have been proposed in the literature, including spectral
entropy, permutation entropy, and statistical complexity.

The process of defining a new metric typically involves two fundamental steps: (i) es-
tablishing the probability definition and (ii) determining the entropic form. This framework
allows for the generalization of any new metric by specifying these two steps (code publicly
available at https://github.com/rsautter/Eta (14 January 2024)).

In Sections 2.1 and 2.2, we present, respectively, the key techniques for defining
probabilities and entropic forms. Subsequently, in Section 2.3, we introduce a methodology
to assess these metrics using criteria that are commonly applied to clustering techniques.

2.1. Probabilities

Probability is a concept that quantifies the likelihood of an event occurring. It is
expressed as a numerical value between 0 and 1. Here, 0 signifies the complete impossibility
of an event, while 1 denotes absolute certainty. Mathematically, if we consider a process
with a finite number of possible outcomes, the probability Pr(E) of an event E is defined by
the following ratio:

Pr(E) =
Number of favorable outcomes

Total number of possible outcomes
. (1)

This definition is useful for gaining insight of systems that produce discrete real-valued
outcomes. In such a case, a histogram of proportions of observed events is the usual tool
for estimating the underlying probability distribution of such outcomes.
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Many systems produce continue-valued multidimensional outcomes, and the observer
needs to define methods for estimating a useful probability that is able to characterize their
behavior. Approaches such as permutation and spectral analysis incorporate spatial locality
and scale considerations to elucidate the occurrence of specific patterns.

In the permutation approach, local spatial differences (increase, decrease, or constancy)
represent the states. New states can be generated by permuting the array elements. Thus,
the probabilities account for the occurrences of those states. To extend this definition to
multiple dimensions, a given array is flattened. Further details of this technique have been
explored by Pessa and Ribeiro [16].

Another methodology involves spectral analysis, wherein the probability is computed
as the power spectrum density (PSD) of the signal P(ω), which is normalized accordingly.
Since this approach considers the probability associated with a given frequency ω, it
explores the scaling relation of the signal. For instance, white noise, characterized by equal
power across all frequencies, represents a type of signal exhibiting maximum entropy. In
contrast, red noise presents a higher PSD for lower frequencies, leading to lower entropy
values. This approach has been popularized in the literature to study time series [2,17].
The probabilities presented in this section describe the possible spatial states, while the
subsequent subsection elaborates on the entropic characterization of this system.

2.2. Entropic Forms

Several entropy equations and generalizations have been proposed, such as Boltzmann–
Gibbs entropy (also known as Shannon entropy), Tsallis entropy, and Rényi entropy. The
most common form is Shannon entropy, which is expressed as follows:

SH = −
W

∑
i=1

pi log pi. (2)

Here, pi is the probability of state i, which can also comprise complex numbers [18], and
W is the size of the set of possible events. The value of SH depends on the distribution.
Notably, SH is at the maximum when all probabilities are equal, i.e., under the uniform
distribution; in this case, SH = − log W, and it is at the minimum when pi is Dirac’s delta.
To account for this maximum value, normalized Shannon entropy is given by the following:

SH = −∑W
i=1 pi log pi

log W
. (3)

Another significant entropic form is Tsallis entropy, proposed as a generalization of
Boltzmann–Gibbs entropy [19]:

Sq =
1−∑W

i=1 pq
i

q− 1
, (4)

where q ∈ R is the entropic index or nonextensivity parameter, and it plays a crucial role in
determining the degree of nonextensivity in Tsallis entropy.

It is important to explore a range of values for the parameter q to derive a metric
distinct from Shannon entropy since limq→1 Sq = SH . Therefore, we suggest exploring
values for q in the range of 1 < q < 5 and seek a relationship denoted by α, where
log Sq = α log q. This approach enables the examination of this generalization of SH .

A unique strategy for characterizing complex nonlinear systems is gradient pattern
analysis (GPA). This technique involves computing a set of metrics derived from the
gradient lattice representation and the gradient moments (see Appendix A). Specifically, we
highlight G4, which is determined as the Shannon entropy from the complex representation
of the gradient lattice:

G4 =

∣∣∣∣∣
VA

∑
j=0

zj

z
ln

zj

z

∣∣∣∣∣. (5)

68



Entropy 2024, 26, 508

In the lattice context, the gradient signifies the local variation of amplitudes, computed
as the spatial derivative at every embedding dimension. From these spatial derivatives, the
following complex representation is formed:

zj = |vj|eiθj , (6)

It comprises both the modulus (|vj|) and phases (θj). To obtain a probability, the
complex notation is normalized by z = ∑ zj. For an in-depth review of this metric, please
refer to [18,20]. Table 1 provides a summary of all combinations of entropic forms with
associated probabilities, along with the GPA metric, that were examined in this study.

Table 1. Entropy measures.

Measure Probability Entropic Form Reference

Sh
H histogram Shannon, Equation (3) Lesne [21]

Sp
H permutation Shannon, Equation (3) Pessa, Ribeiro [16]

Ss
H spectral Shannon, Equation (3) Abdelsamie et al. [9],

Abdullah et al. [3]
Sh

q histogram Tsallis q-law, Equation (4) Li and Shang [22]
Sp

q permutation Tsallis q-law, Equation (4) Li and Shang [22]
Ss

q spectral Tsallis q-law, Equation (4) This paper
G4 gradient Complex Shannon, Equation (5) Ramos et al. [18]

To assess the efficacy of each metric and explore the impact of various combinations
of probability definitions with entropic forms, we introduce a criterion outlined in the
subsequent section. This criterion is formulated with a focus on clustering the entropy
measures of the dataset.

2.3. Silhouette Score and Generalized Silhouette Score

Non-supervised algorithms face unique challenges, and a remarkable one is defining
their efficiency. The silhouette score is a criterion for defining if a set has been well clus-
terized [23]. Given an element xi in a cluster πk, this metric is computed as follows [3,24]:

s(xi) =
b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (7)

where a(xi) is the average dissimilarity, which is the average distance of xi to all other
elements in the cluster πk, and b(xi) is the average distance to the elements of other clusters.
The greater the s(xi) value, the better performance of the clustering algorithm because it
has produced groups with low dissimilarities and large distances between clusters. This
technique can be extended to feature extractions if one considers the individual datasets
as the clusters πk. However, it is equally essential to account for the potential correlation
between metrics, as metrics may inadvertently capture the same data aspects, which is
undesirable. To mitigate this, we use the modulus of the Pearson correlation |r| to form the
penalty term 1− |r| as follows:

s′(xi) =
(
1− |r|

) b(xi)− a(xi)

max
{

b(xi), a(xi)
} , (8)

which we call the generalized silhouette score (GSS).
After defining a group of entropy measurements and the tool (GSS), which allows

the determination of the best pair of measurements to compose a 2D parameter space, we
selected the dataset to test and validate our methodological approach.
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3. Data

Our main objective is to test the performance of a space composed of two entropy
measures in which it is possible to distinguish different classes of complex spatiotempo-
ral processes. For this first study, we chose turbulence-related processes and simulated
dynamic colored noises.

We employ simulated data related to the following processes: (i) white noise; (ii) col-
ored noise; (iii) weak turbulence; (iv) hydrodynamic turbulence; and (v) magnetohydrody-
namic turbulence (MHD). The main reason for choosing these processes, except colored
noise, is that they all present random-type patterns with underlying dynamic characteristics
based on physical processes described by partial differential equations (diffusion, reaction,
and advection). Each was obtained from simulations identified in Table 2.

Based on the power-law-scaling algorithm technique [25], we created our noise sim-
ulator [26]. The data representing weak turbulence (also called chemical or reactive–
diffusive turbulence) were obtained from the solution of the Ginzburg–Landau complex
equation [15,27]. The hydrodynamic turbulence patterns were selected from the John Hop-
kins database (JHTDB) [28], and the MHD turbulence was simulated using the PENCIL
code [12]. Details regarding the simulations are provided in the Supplementary Materials
in the GitHub repository.

To test the approach based on entropy measurements, we selected a total of 25 snap-
shots representing the evolution of each chosen process. After selecting the middle slice
of the hypercube, we uniformly resized all snapshots to 64× 64 byte-valued pixels using
nearest neighbor interpolation; while this resizing expedites the analysis, it does entail a
loss in resolution. The snapshots were extracted from 3D simulations, taking the analysis
of the central slice of each hypercubeas a criterion as the measurement technique used to
act on matrices within a two-dimensional approach.

Table 2. Datasets and references.

Simulation Process Reference

White Dynamic Noise Spatiotemporal stochastic Timmer et al. [25]
Red Dynamic Noise Spatiotemporal stochastic Timmer et al. [25]
CGL 1 Weak turbulence Sautter [26], Sautter et al. [27]
JHTDB Fully developed turbulence Brandenburg et al. [12]
PENCIL MHD turbulence Brandenburg et al. [12]

1 Our 3D simulator is public available at https://github.com/rsautter/Noisy-Complex-Ginzburg-Landau (14
January 20224).

Figure 1 shows representative snapshots of the respective spatiotemporal processes.
These visualizations provide a compelling narrative of the dynamic behavior of each system,
highlighting the wide variety of patterns that emerge through temporal dynamics in the
phase space.

The numerical procedures and/or technical acquisition details related to the data
shown in Figure 1 are available in the Supplementary Materials in the repository
(https://github.com/rsautter/Eta/ (14 January 2024)) and in the section entitled “Data
Simulations”.
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Figure 1. Snapshots of the spatiotemporal evolution of each selected system class, listed in Table 2.
Each row shows one of the simulations, rendered at time steps that show representative pattern
dynamics: dynamic white noise (β = 0 represented by colormap ‘Blues’) on the 1st row; random red
noise (β = 2, represented by colormap ‘Reds’) on the 2nd row; weak turbulence from the reaction–
diffusion complex Ginzburg–Landau dynamics on the 3rd row (represented by colormap ‘viridis’);
fully developed turbulence from JHTDB on the 4th row (represented on colormap ‘rainbow’) and
MHD turbulence from PENCIL on the 5th row (represented by colormap ‘cool’).

4. Results and Interpretation

The analyses in this study were conducted within 2D metric spaces, encompassing all
possible entropy measure combinations. Based on the minimum information principle, this
configuration offers advantages in terms of interpretability, considering the minimum set of
parameters that can be addressed as labels within a possible machine learning interpretation.
Our approach to measuring entropies from the data follows the following steps:

• Input of a snapshot;
• Pre-processing for which its output is a 64× 64 matrix with amplitudes ranging from

0 to 255;
• Generation of three matrix data outputs: 2D histogram, 2D permutation, and 2D

FFT spectra;
• For each of the three domains, the entropy measures are calculated.

Given the definition of the three types of domains interpreted as probabilities (from
histogram, permutation, and spectrum), we have six entropy variations, as detailed in
Section 2. To distinguish these metrics, we introduced superscripts denoted by h for
histogram probability, p for permutation probability, and s for spectral probability. The
GPA analysis yields another metric, resulting in 21 scores, as illustrated in Figure 2.

As a result, the most effective combination is the following pair: spectral Tsallis
entropy (Ss

q) and Shannon permutation entropy (Sp
H). A visual representation of this space,

accompanied by some snapshots, is presented in Figure 3. In this space, the metrics
reveal a constant Shannon permutation entropy dynamical noise system, which is solely
distinguished by spectral Tsalllis entropy, indicating the differences in the scaling effects in
pattern formation. Conversely, the distinct complex nonlinear characteristics and reaction
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terms observed in MHD simulations are more pronounced in Shannon permutation entropy,
accentuating the diversity of localized patterns alongside the larger-scale ones.

Figure 2. Generalized silhouette score for all 2D metric combinations. Higher values on the heatmap
indicate superior metric performance. The optimal result is achieved with the pairing of spectral
Tsallis entropy and Shannon permutation entropy (Ss

q × Sp
H).

Figure 3. Optimal outcomes achieved are assessed through the generalized silhouette score criterion.
The method achieves its best performance in the (Ss

q × Sp
H) parameter space.
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The analysis of entropy distribution is essential in a classification context, as it offers
insights into the similarity between a new dataset and various models. However, carefully
analysing the entropy metrics over time can highlight important aspects of the underlying
physical processes. For instance, the transition from initial conditions to an oscillatory
relaxation state is evident in Figure 4. This outcome aligns with expectations in the context
of the CGL system due to the periodic nature of the reaction term. However, it is essential
to highlight that in this introductory study, we avoided simulations with more complex
regimes (such as relaxations) as the primary purpose here is to present a new method, and
the objective here is not to use it to deepen the physical interpretation of each process.

Figure 4. Best entropy set according to the generalized silhouette score (see Figure 2) for the 3D-CGL
solution over time, where the oscillatory dynamic of the system is highlighted. The color indicates
the snapshot, where 500 samples are presented.

5. Outlook

Based on the study and approach presented here, we defined a methodological pipeline
for the spatiotemporal characterization of simulated and/or observed complex processes
(Figure 5). The method can be applied to identify and segregate different classes of pro-
cesses and to classify isolated patterns when necessary. In a context where measured and
simulated data may exist, it also serves to validate models. Likewise, the pair of entropy
measurements can also serve as a binomial label for training deep learning architectures
for automatic classification.
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Figure 5. Pipeline of the method proposed in this study based on the best results found: A sequence
of snapshots from the simulation of a given process (in the 2D + 1 or 3D + 1 domains) comprises
the input from which entropy measurements will be obtained. To calculate the respective Shannon
permutation entropy values Sp

H , the permutation values are obtained (see Appendix B). To calculate
the spectral Tsallis entropy Ss

q, the respective spectra are obtained. From the calculated values, the
parameter space is constructed where where it is proposed to characterize the underlying process.
The space also works for classifying isolated patterns, taking as reference the distinct processes that
have already been characterized.

6. Concluding Remarks

This work carried out a comprehensive analysis of entropy metrics and their ap-
plication to complex extended nonlinear systems. The study explored new approaches,
including different entropy measures and a new generalized silhouette score for measure-
ment evaluation.

Through the meticulous consideration of canonical datasets, distinct patterns have been
characterized in terms of entropy metrics. The pivotal finding was the identification of the
optimal pair: spectral Tsallis entropy (Ss

q) and Shannon permutation entropy (Sp
H), yielding

superior outcomes in the generalized silhouette score. This combination showcased efficacy
in distinguishing spatiotemporal dynamics coming from different classes of turbulent-like
processes, including pure stochastic 2D 1/ f−β (colored) noise.

The new method contributes valuable insights into applying entropy probabilistic
measures, providing a foundation for future studies in terms of extended complex system
pattern formation characterization.

Initial work considering entropy measurements for training machine learning models
is underway. In this context, it also includes a study of the computational complexity of
the method for a benchmark with other measures and approaches that may emerge. This
strategy is fundamental when we think about the presented method being applied in a
data science context.
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Appendix A. Gradient Pattern Analysis

Gradient pattern analysis (GPA) represents a paradigm shift in data analysis, focusing
on the spatiotemporal dynamics of information rather than static values. This innovative
approach emphasizes the examination of gradients within datasets—dynamic vectors
that encode the rate of change—thereby revealing patterns and structures that are often
obscured by traditional analytical methods.

From a mathematical perspective, GPA utilizes a series of gradient moments to quan-
tify the smoothness and alignment of these vectors within the data lattice:

G1 =
NC − NV

NV
, (A1)

G2 =
VA
V

⎛
⎜⎜⎜⎜⎝1−

∣∣∣∣∣VA
∑

j=0
vj

∣∣∣∣∣
2

VA
∑

j=0

∣∣vj
∣∣

⎞
⎟⎟⎟⎟⎠, (A2)
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1
2

(
VA
V

+
1

2VA
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∑
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uj.vj + 1

)
, (A3)

and

G4 =

∣∣∣∣∣
VA

∑
j=0

zj

z
ln

zj

z

∣∣∣∣∣. (A4)

where NC and NV are the connections in the Delaunay triangulation and the number of
vertices; VA is the number of asymmetrical vectors, V is the total number of vectors in
the lattice, and vA

j is an asymmetrical vector; uj = (cos(φj), sin(φj)) and zj = |vi| exp(iθj),
where |vi| represents the modulus and θj represents the phase and

z =
VA

∑
j

zj. (A5)

These moments provide a distinctive signature that characterizes the inherent patterns
in the data, and they are applicable across various domains. This versatility enables GPA’s
application in diverse fields, ranging from time-series analysis in climatology to image
recognition in computer vision.

One of the notable strengths of GPA is its capacity for efficient data compression. By
discerning and eliminating redundant information while retaining the essential gradient
characteristics, GPA achieves data compression without losing the dataset’s critical struc-
tural and dynamic properties. This aspect of GPA is particularly advantageous for storing,
transmitting, and analysing large-scale datasets in numerous scientific and engineering
disciplines. For a complete review, see Refs. [18,20].

75



Entropy 2024, 26, 508

Appendix B. Two-Dimensional Permutation Entropy

Based on the concept of permutation entropy [29], two-dimensional multiscale sample
entropy has been proposed as a new texture algorithm [30,31] and has therefore been used
to evaluate the complexity of 2D patterns [32]. In a simplified way, the technique is based
on the following steps:

• Step 1: Obtain the coarse-grained image as an N × N matrix;
• Step 2: Apply a window of size d× d to it;
• Step 3: Carry out d! reshape permutations to obtain the probabilities of each local

pattern;
• Step 4: Repeat the last procedure, scanning the entire matrix;
• Step 5: Apply the probability values as input to the chosen entropy formula.

In our application, we use d = 9 since it is the minimum kernel size encompassing a
central pixel. This value corresponds to a kernel of dx = dy = 3.
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Abstract: The quiet-time solar wind electrons feature non-thermal characteristics when viewed from
the perspective of their velocity distribution functions. They typically have an appearance of being
composed of a denser thermal “core” population plus a tenuous energetic “halo” population. At
first, such a feature was empirically fitted with the kappa velocity space distribution function, but
ever since the ground-breaking work by Tsallis, the space physics community has embraced the
potential implication of the kappa distribution as reflecting the non-extensive nature of the space
plasma. From the viewpoint of microscopic plasma theory, the formation of the non-thermal electron
velocity distribution function can be interpreted in terms of the plasma being in a state of turbulent
quasi-equilibrium. Such a finding brings forth the possible existence of a profound inter-relationship
between the non-extensive statistical state and the turbulent quasi-equilibrium state. The present
paper further develops the idea of solar wind electrons being in the turbulent equilibrium, but, unlike
the previous model, which involves the electrostatic turbulence near the plasma oscillation frequency
(i.e., Langmuir turbulence), the present paper considers the impact of transverse electromagnetic
turbulence, particularly, the turbulence in the whistler-mode frequency range. It is found that the
coupling of spontaneously emitted thermal fluctuations and the background turbulence leads to
the formation of a non-thermal electron velocity distribution function of the type observed in the
solar wind during quiet times. This demonstrates that the whistler-range turbulence represents an
alternative mechanism for producing the kappa-like non-thermal distribution, especially close to the
Sun and in the near-Earth space environment.

Keywords: Kappa distribution; solar wind electrons; whistler-mode waves; turbulence; thermal
fluctuations; electromagnetic; electrostatic; plasma; kinetic

1. Introduction

In situ measurements of charged particles in the near-Earth space environment by
artificial satellite became possible during the decade of the 1960s. It was realized then
that the velocity space distributions of charged particles that make up the space plasma
deviate from the expected Maxwell–Boltzmann–Gauss statistics; instead, the observed
distributions typically feature a suprathermal (or non-thermal) component with inverse
power-law “tail” characteristics for the suprathermal velocity regime, f ∝ v−γ for v � α,
where v represents the particle speed, f is the charged particle velocity distribution function,
γ is the inverse power-law index, and α denotes the thermal speed [1–3]. Recent inner
heliospheric missions, the Parker Solar Probe and Solar Orbiter, further confirm that such
a non-thermal feature persists even for heliospheric environments much closer to the
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Sun [4–6]. The physical origin of such a feature was not understood then. Instead, Olbert
and Vasyliunas [7–10] introduced an empirical model known as the kappa distribution,

fκ(v) ∝
(

1 +
v2

κα2

)−(κ+1)

, (1)

to fit the observation. Here, α = (2kBT/m)1/2 is the Maxwellian thermal speed, meaning
that α is the thermal speed had f (v) been given by the Maxwell–Boltzmann distribution.
kB = 1.3806503 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant, which can replaced
by unity if we adopt the unit of eV for thermal energy. That is, if the temperature T is
expressed in eV instead of Kelvins (K), then we may take kB = 1. Hereafter, we shall
adopt such a convention. The mass of the charged particles is denoted by m. The free
parameter κ determines the degree to which the observed distribution deviates from the
Maxwellian–Boltzmann (MB or thermal) distribution in that if κ → ∞, then the model
reduces to the thermal distribution, fMB(v) ∝ exp

(
−v2/α2), while for v � α, the kappa

model depicts an inverse power-law velocity distribution, fκ(v) ∝ v−2(κ+1). It is to be noted
that, regardless of the value of the κ index, the kappa distribution approximates the MB
distribution for v ≤ α—to be more precise, for a low v, the kappa distribution approaches
the MB distribution with a sightly lower thermal speed, by a factor of

√
κ/(κ + 1). That is,

the kappa model naturally encompasses the quasi-Maxwellian feature in the “core” part of
the velocity distribution characterized by v ≤ α and the inverse power-law tail portion of
the distribution for the suprathermal regime, v � α.

A sample non-thermal charged particle velocity distribution function in space is shown
in Figure 1. Specifically, Figure 1 plots the typical electron velocity distribution function
measured in the near-Earth space environment during quiet-time conditions. Figure 1 is a
reproduction of Figure 4 of Ref. [11], and it shows two typical electron velocity distribution
functions (eVDFs) in the solar wind at 1 au (astronomical unit) measured by the Wind/3DP
electrostatic analyzers EESA-L and EESA-H. The left panels (a) and (c) show an eVDF in the
slow solar wind (at 1995-06-19/00:06:38), and the right panels (b) and (d) show an eVDF in
the fast solar wind (at 1995-06-19/23:13:59). The top panels (a) and (b) show cuts through
the eVDF in one of the two directions perpendicular to the local magnetic field B: the
diamonds are data points from EESA-L and the asterisks are data points from EESA-H. The
dotted lines represent the one-count level for EESA-L and EESA-H. The blue dashed line in
Figure 1a,b represents the sum of Maxwellian and kappa distributions (indicated in blue).
The red line represents the fit to the measured perpendicular eVDF cut; the resulting fit
parameters are indicated in red. The bottom panels (c) and (d) show cuts through the eVDF
in the direction parallel to B. The perpendicular fit is shown in red, and the perpendicular
fit parameters are used to initialize the parallel eVDF fit. The blue dashed line in Figure 1a,b
represents the sum of Maxwellian and kappa distributions calculated using independent
measurements of the core and halo densities and temperatures obtained from the fit of the
spectrum of quasi-thermal fluctuations around the electron plasma frequency measured by
the Wind/Waves electric field antennas. This “quasi-thermal noise” (QTN) technique is
immune to spacecraft potential and therefore offers an independent and highly accurate
measure of the core electron density and temperature, which are used as a reference to
initiate the nonlinear least squares fitting of the measured VDF, resulting in the red curve
fit, whose fit parameters are indicated in red as well. For more details, see Ref. [11] and
Figure 4 therewith, including the accompanying description.

It is well known that the MB distribution corresponds to the maximum entropic (or
the most probable) state as defined through the textbook Boltzmann–Gibbs (BG) definition
for the entropy [12–14], namely,

SBG = −kB

∫
dx

∫
dv f (v) ln f (v),

where
∫

dx is the spatial integration normalized to the total volume,
∫

dx → V −1
∫

dx,
and f (v) is the velocity distribution function. The Boltzmann–Gibbs (BG) entropy, which
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is additive and extensive, applies to an ideal gas or systems dictated by short-range
interactions. The suitability of BG entropy for systems interacting through long-range
forces, such as the plasma or gravitational systems, has been questioned since the inception
of the BG entropy in the first place [15–17]. The additive property relates to the BG entropy
of a total system being equal to the entropies of subsystems. The extensivity means that the
entropy is proportional to the total number of particles. The non-additive/non-extensive
entropy, which presumably may be applicable to systems governed by long-range forces,
violates these properties [18]. The mathematical form of non-extensive entropy, which
became well-known thanks to the work by Tsallis [19], was apparently independently
discovered several times over, as entry 107 in Ref. [18], p. 347, describes. Specifically, it is
mentioned there that several authors have independently rediscovered the form of entropy

Sq = k
1−∑W

i=1 pq
i

q− 1
.

The list includes J. Havrda and F. Charvat, Kybernetika 3, 30 (1967); I. Vajda, Kybernetika
4, 105 (1968); Z. Daroczy, Inf. Control 16, 36 (1970); J. Lindhard and V. Nielsen, Studies in
statistical mechanics, Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske
Meddelelser (Denmark) 38 (9), 1 (1971); B. D. Sharma and D. P. Mittal, J. Math. Sci. 10,
28 (1975); J. Aczel and Z. Daroczy, On Measures of Information and Their Characterization, in
Mathematics in Science and Engineering, ed. R. Bellman (Academic Press, New York, 1975);
A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); and G. P. Patil and C. Taillie, An overview of
diversity, in Ecological Diversity in Theory and Practice, eds. J. F. Grassle, G. P. Patil, W. Smith,
and C. Taillie (Int. Cooperat. Publ. House, Maryland, 1979), pp. 3–27.
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Figure 1. Reproduced from Figure 4 of Ref. [11]: Two typical electron velocity distribution functions
(eVDFs) measured by EESA-L and EESA-H onboard Wind spacecraft at 1 au in the slow solar wind—
panels (a,c)—and in the fast solar wind—panels (b,d). The top panels (a,b) show cuts through the
eVDF in one of the two directions perpendicular to the local magnetic field B. The bottom panels
(c,d) show cuts through the eVDF in the direction parallel to B. Explanations for the different lines in
the figure is given in the main text. For more details, see Ref. [11].
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These earlier works notwithstanding, it is Tsallis’s model [19] that is most well known,
and it has triggered an explosive growth of recent interest in the topic of non-extensive
thermostatics, in the space plasma context as well as in other applications [10,20,21]. The
celebrated Tsallis entropy in continuum form is defined by

Sq = − kB
1− q

∫
dx

∫
dv{ f (v)− [ f (v)]q},

and the velocity distribution that corresponds to the maximum entropic (or the most
probable) state is given by

fq(v) ∝
(

1 +
(1− q) v2

α2

)−1/(1−q)

. (2)

Upon identifying κ = 1/(1− q) or alternatively κ = q/(1− q), one finds that the solution
reduces to either f ∼

[
1 + v2/(κα2)

]−κ or f ∼
{

1 + v2/[(κ + 1)α2]
}−κ−1, respectively.

Strictly speaking, neither is exactly identical to the kappa distribution since fκ is defined
with a mixed κ and κ + 1—see Equation (1). Nonetheless, this convergence of Tsallis’s non-
extensive entropic principle and the kappa model has led to the space physics community
embracing the notion that the space plasma may be in a state of non-extensive statistical
quasi-equilibrium [10,20,22–24].

From the microscopic plasma physics, it is known that the electron kappa distribution
can be regarded as an end product of the weak electrostatic Langmuir turbulence [25,26]. The
initial findings involved a numerical study of a gentle weak electron beam–plasma (or bump-
on-tail) instability and subsequent saturation of the Langmuir turbulence. It was found that
the quasi-steady state of the Langmuir turbulence is characterized by the formation of a non-
thermal, kappa-like velocity distribution function. Subsequently, more rigorous theoretical
analysis revealed that the kappa distribution belongs to a family of unique solutions that
characterize a steady-state electrostatic plasma turbulence [27,28]. This finding implies that a
profound inter-relationship may exist between the non-extensive statistical state and the
turbulent quasi-equilibrium, but the precise mathematical formulation to establish such a
connection does not yet exist at present.

The findings in Refs. [27,28] directly relate to the solar wind electrons [11,29], which
can be interpreted as velocity distribution functions made of multiple subcomponents.
The primary component is the quasi-Maxwellian core population (∼90–95% of the density,
with ∼10 eV). The hotter and tenuous halo electron population can be distinguished from
the core population by its distinct velocity profile, which can be modeled by an inverse
power law. Other distinct populations can also be identified. For high-speed solar wind
streams, a highly field-aligned strahl component can be separately classified from the
halo electrons by their narrow pitch-angle distribution. The halo/strahl density is about
∼5–10% of the total density with a ∼50 eV energy range. Also, the highly energetic
superhalo electrons (with a typical energy in the∼2 keV range but extending up to 100 keV),
which are observed in nearly all solar wind conditions, including the inner heliosphere [4,5]
with a nearly invariant velocity power-law index, are a distinct component [29–31]. The
core, halo/strahl, and superhalo electron populations are sometimes associated with their
respective slight temperature anisotropy, although the superhalo is almost completely
isotropic, and relative drifts between the core and halo can also be detected. In the present
discussion, however, we idealize the situation by considering that the velocity distribution
is isotropic and without any net drifts.

In the present paper, we will first briefly overview the previous weak turbulence the-
ory of electron kappa distribution [27], but, thereafter, we will discuss a new development,
which involves the whistler-mode fluctuations and turbulence. For the near-Earth space
plasma environment as well as for the inner heliosphere close to the Sun, the effects of
wave–particle resonant interaction that involves the whistler-mode waves, instability, and
fluctuations on the electrons are important [6,32–35]. As such, we consider the consequence
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of the electrons undergoing wave–particle resonant interactions with the background tur-
bulence in the whistler-mode frequency range in the present paper. As will be shown,
the impact of such interactions is none other than the formation of a non-thermal velocity
distribution function for the electrons, which is not necessarily the kappa distribution but
rather a more general one that must be generated by a numerical indefinite velocity integra-
tion. However, in the theoretical formalism of the present paper, it turns out that thermal
fluctuations play an important role. A finite-temperature plasma constantly spontaneously
emits and reabsorbs electromagnetic fluctuations—the fluctuation–dissipation theorem. A
correct self-consistent theory of steady-state plasma particle velocity distribution based
upon the steady-state Fokker–Planck particle kinetic equation thus requires the compu-
tation of thermal fluctuations. We thus begin the discourse by considering the thermal
fluctuations emitted by the core electrons and the modification of the fluctuation spectrum
by the presence of background turbulence.

2. Thermal Fluctuations Emitted by Maxwellian Core Electrons in the Background of
Solar Wind Turbulence

In this section, we discuss the quasi-steady-state spectrum of the electrostatic and
electromagnetic fluctuations in the background of solar wind turbulence. We assume that
the thermal fluctuations are spontaneously emitted and reabsorbed predominantly by the
Maxwellian core electrons. The background large-amplitude turbulence is assumed to be
of the transverse electromagnetic type, with its characteristic frequency that encompasses
the whistler-mode frequency range. The combined fluctuations and turbulence spectra
determine the quasi-steady-state velocity distribution function for the solar wind halo
electrons. As already discussed, the solar wind electrons are observed to be made of several
distinct components, but the simplest description pertains to the two-component model,
in which these electrons comprise dense Maxwellian core electrons and a tenuous but
energetic halo electron population. It turns out that the halo electrons immersed in the
field of thermal fluctuations alone will be organized in velocity space into a Maxwellian
distribution. Thus, in this case, there will be no distinction between the core and halo so
that both species will form one continuous thermal population. However, if there exist
turbulent wave spectra for the whistler mode, then as the electrons interact with these
combined spontaneously generated fluctuations and turbulence, they will organize into a
non-thermal velocity distribution function, which manifests a clear demarcation between
the core population and a tail component. The spontaneous emission is important because
these background fluctuations provide the basis upon which non-thermal distribution can
be built.

The electrostatic component of the spontaneous emission [36,37] is the well-known
quasi-thermal noise [38], but the solar wind core electrons should also emit electromagnetic
emissions as well, although a clear identification of such a transverse quasi-thermal noise is
difficult because it will be partially occulted by the background turbulence. However, with
improved future detection techniques, identifying the transverse quasi-thermal noise may
become possible. Although we expect the electric and magnetic fields associated with the
whistler-mode fluctuations to partially overlap with the frequency range of the background
solar wind turbulence, the spectrum should extend to slightly higher frequencies so that
with sufficiently sensitive instruments, the identification could be possible. Even with
today’s technology, if one analyzes the data with sufficient accuracy for the high-frequency
end of the spectrum, one should be able to discern the characteristic signature associated
with the whistler-mode thermal spectrum. Regardless, from a theoretical perspective,
consideration of the emission of electromagnetic fluctuations in the whistler mode is
important. In the presence of the combined background spectrum of Langmuir and whistler-
mode fluctuations as well as the whistler wave turbulence, it will be shown that the solar
wind electrons naturally form a non-thermal velocity distribution function of the type
observed in space, but it is not necessarily the kappa model in the analytic sense. Rather,
the model distribution will be obtained by a numerical indefinite velocity integration.
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The first step in the present discussion is to consider the spectrum of electrostatic and
electromagnetic fluctuations emitted by the thermal core electrons. In Ref. [39], the formulae
for these fluctuation spectra are derived. For electromagnetic fluctuations propagating in a
parallel direction with respect to the ambient magnetic field vector, the transverse electric
and magnetic field spectra are designated as 〈δE2

⊥〉k,ω and 〈δB2
⊥〉k,ω , while for electrostatic

fluctuations characterized by propagation parallel to the ambient magnetic field, the electric
field spectrum is denoted by 〈δE2

‖〉k,ω. These are given by [39–41].

〈δE2
⊥〉k,ω =

2k2
me2

ω2|ε⊥(k, ω)− c2k2/ω2|2
∫

dv v2
⊥ δ(ω− kv‖ −Ωe) f ,

〈δB2
⊥〉k,ω =

c2k2

ω2 〈δE2
⊥〉k,ω,

〈δE2
‖〉k,ω =

2k2
me2

k2|ε‖(k, ω)|2
∫

dv δ(ω− kv‖) f ,

ε⊥(k, ω) = 1 +
ω2

pe

ω2

∫
dv

v⊥/2
ω− kv‖ −Ωe

(
(ω− kv‖)

∂ f
∂v⊥

+ kv⊥
∂ f
∂v‖

)
,

ε‖(k, ω) = 1 +
ω2

pe

k

∫
dv

∂ f /∂v‖
ω− kv‖

, (3)

where e is the unit electric charge; ωpe = (4πn/me)1/2e is the plasma frequency, with n
and me being the ambient density and electron mass, respectively; Ωe = eB/(mec) is the
electron cyclotron frequency, with B and c being the ambient magnetic field intensity and
the speed of light, respectively; and k2

m = Ω2
e /α2

e is the maximum perpendicular wave
length, which results from the integration over the perpendicular wave number, with
αe = (2T/me)1/2 being the electron thermal speed [40]. Here, f = f (v⊥, v‖) represents the
electron velocity distribution function (normalized to unity,

∫
dv f = 1), with v⊥ and v‖

denoting the velocity component perpendicular and parallel to the ambient magnetic field.
The angular frequency and the parallel wave number are defined by ω and k, respectively.

For the Maxwellian thermal velocity distribution function, these are given as shown
below:

〈δE2
⊥〉k,ω =

ω2
pek2

mTee−ζ2

4π3/2ω2kαe|ε⊥(k, ω)− c2k2/ω2|2 , 〈δB2
⊥〉k,ω =

c2k2

ω2 〈δE2
⊥〉k,ω,

〈δE2
‖〉k,ω =

ω2
pek2

mTee−ξ2

π3/2k3α3
e |ε‖(k, ω)|2 ,

ε⊥(k, ω) = 1− c2k2

ω2 +
ω2

pe

ω2 ξZ(ζ), ζ =
ω−Ωe

kαe
,

ε‖(k, ω) = 1−
ω2

pe

k2α2
e

Z′(ξ), ξ =
ω

kαe
, (4)

where Z(ζ) = π−1/2
∫ ∞
−∞ dxe−x2

(x− ζ)−1, Im(ζ) > 0, is the plasma dispersion function
with the prime indicating the derivative with respect to the argument.

Figure 2 plots the electrostatic and electromagnetic spectra, 〈δE2
‖〉k,ω and 〈δE2

⊥〉k,ω,
respectively, computed from the theoretical formulae (4), versus ck/ωpe (horizontal axis)
and ω/Ωe (vertical axis). The color scale is relative in that the maximum value for each
panel is represented by red and the minimum intensity is plotted as a blue backdrop.
The left-hand top and bottom panels correspond to the electrostatic and electromagnetic
fluctuation spectra, respectively. The input parameters are ωpe/Ωe = 5 and βe = 1, where
βe = 8πnTe/B2 is the electron beta (ratio of electron thermal energy to the magnetic field
energy). In order to verify that the theoretical formalism (4) is indeed reliable, we have also
carried out a one-dimensional particle-in-cell (PIC) simulation. We have used a simulation
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box of Lx = 512 c/Ωpe and nx = 4096 grid points, with 2000 particles per grid per species.
The time step used was Δt = 0.01 /ωpe, and the simulation ran until t = 2621.44 /ωpe.
The ratio of plasma frequency to electron gyro frequency was ωpe/Ωe = 5. This ratio is
somewhat lower than the actual value typical of the solar wind at 1 au, which is close to
ωpe/Ωe ∼ O(10)–O(102), but for the sake of illustration we have chosen a relatively low
value of ωpe/Ωe. Otherwise, the spectral peak at ω ∼ ωpe associated with the electrostatic
thermal fluctuations (upper panels) and the spectral characteristics associated with the
transverse-mode fluctuations around the electron cyclotron frequency and below would
have been separated by a wide gap, which would have made visual inspection quite
challenging. Also, if the separation between the two frequencies is too high, it becomes very
challenging for the simulations, too, because we need to resolve both time scales. Other
parameters were electron and proton betas, which were taken to be βe = βp = 0.1. These
choices are not atypical of the solar wind conditions at 1 au. The simulated electrostatic and
electromagnetic fluctuation spectra are plotted in the top and bottom right-hand panels,
respectively. As the readers may appreciate, the theoretical plots compare very well with
the simulated spectra, which indicates that the theoretical method is a reliable tool for
describing the spontaneously emitted thermal spectra in magnetized plasmas accurately.
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Figure 2. [Upper-left] Electrostatic fluctuation spectrum 〈δE2
‖〉k,ω computed from theory; [upper-

right] simulated electrostatic fluctuation spectrum; [lower-left] electromagnetic fluctuation spectrum
〈δE2

⊥〉k,ω computed from theory; [lower-right] simulated electromagnetic fluctuation spectrum.
These spectra are plotted as a function of ck/ωpe (horizontal axis) and ω/Ωe (vertical axis), with their
relative intensities indicated by color maps in arbitrary scales.

The electrostatic fluctuation spectrum is enhanced along the Langmuir wave disper-
sion curve but broadens in frequency somewhat for shorter wavelengths. In the simulated
spectrum, the enhanced fluctuation along the Langmuir wave dispersion curve is broader
than that of the theoretical spectrum, but, otherwise, the overall agreement is excellent. For
the electromagnetic spectrum, it is seen that the fluctuation spectrum is enhanced along
the whistler-mode dispersion curve, but the triangular (or conical) emission pattern that
converges to the electron cyclotron frequency, ω = Ωe at the k → 0 limit, is also prominent
in both the theoretical emission spectrum and the simulated spectrum. Such a feature is
associated with the virtual (or higher-order) modes, that is, heavily damped solutions of
the linear dispersion relation [42–44]. Both the theoretical and simulated spectra accurately
reproduce the emission characteristics associated with such modes. Note, however, that
the simulation does not completely demonstrate the intensification of the higher-order
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mode as k approaches a zero value. This is owing to the limited resolution in the simulation
spectrum. As will be discussed, this limitation further affects the k-integrated wave spectra
for the electric and magnetic fields.

Shown in Figure 3 are wave number-integrated (
∫

dk · · · ) spectra. The left-hand
panel shows the k-integrated magnetic and transverse electric field fluctuation spectra∫

dk〈δB2〉k,ω (red) and
∫

dk〈δE2
⊥〉k,ω (blue) that were computed from theory, plotted against

ω/Ωe. The right-hand panel displays the same spectra constructed from the PIC simulation
result and integrated over the wave numbers. Both the theoretical and simulated spectra
exhibit the behavior of increasing intensities, for both magnetic and electric spectra, over
an increasing frequency, up to ω ∼ 0.5Ωe or so. However, some differences in the behavior
are also evident. For instance, in the theoretical integrated spectra, both the electric and
magnetic field intensify around the electron cyclotron frequency, ω ∼ Ωe, but the simulated
spectra do not exhibit such a behavior. Clearly, the peak at ω/Ωe = 1 in the theoretical
spectrum is associated with the contribution from the higher-order mode. In the simulated
spectrum, the higher-order mode for the low k regime is not as clearly enhanced, which
explains the absence of such a peak. This is due to the limited resolution in the simulation.
Such an increasing behavior as a function of frequency for the fluctuation spectra in the low-
frequency regime is a characteristic of the plasma, and it is the baseline spectral behavior
associated with the thermal motion of plasma particles. It is interesting to note that in
many PIC simulations of low-frequency turbulence, such an increasing intensity can be
seen at the high end of the simulation spectrum. In a typical kinetic simulation of the
low-frequency turbulence, the MHD-like regime corresponding to ω2 
 Ω2

p 
 Ω2
e , where

Ωi = eB/(mpc) is the proton cyclotron frequency, is characterized by a Kolmogorov type of
inverse power-law spectrum, k−5/3 [45–47], but as k increases, in some cases, the intensity
actually rises again [47,48]. In the literature, such a behavior is not clearly explained nor
understood. However, it is entirely possible that the simulation system is automatically
generating the background thermal spectrum.

Figure 3. [Left] k-integrated magnetic and transverse electric field fluctuation spectra
∫

dk〈δB2〉k,ω

(red) and
∫

dk〈δE2
⊥〉k,ω (blue) computed from theory. [Right] Simulated fluctuation spectra integrated

over k. The integrated spectra are plotted against ω/Ωe.

As confirmed by Figures 2 and 3, the theoretical description of thermal fluctua-
tions is consistent with the simulation result. Thus, we now focus on the analytical
approach. Furthermore, henceforth, we are interested in the fluctuations associated
with the eigen modes. For the electrostatic fluctuation, we are concerned with the spec-
tral wave intensity along the Langmuir mode dispersion relation, ω = ωL(k), where
ωL = ωpe

[
1 + 3k2α2

e /(4ω2
pe)
]
. Likewise, for the electromagnetic fluctuations, we pay at-

tention to the whistler-mode dispersion relation, ω = ωW(k), where ωW = Ωec2k2/(ω2
pe +

c2k2). Then, by expanding the denominators by ε‖ ≈ (ω−ωL + i0)(∂ Re ε‖/∂ωL) + i Im ε‖
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and Λ+ ≈ (ω−ωW + i0)(∂ Re Λ+/∂ωW) + i Im Λ+ while ignoring the contribution from
the term associated with Λ−, it is possible to obtain

〈δE2
‖〉k,ω = IL(k) δ(ω−ωL),

〈δE2
⊥〉k,ω = IW(k) δ(ω−ωW), 〈δB2

⊥〉k,ω = MW(k) δ(ω−ωW), (5)

where

IL(k) =
k2

mTe

4π
,

IW(k) =
k2

mTe

4π

ω2
peω3

W

c4k4 =
k2

mTe

4π

Ω2
e ω2

pec2k2

(ω2
pe + c2k2)3 ,

MW(k) =
k2

mTe

4π

ω2
peωW

c2k2 =
k2

mTe

4π

ω2
pe

ω2
pe + c2k2 . (6)

For more details regarding the derivation of this result, see [39–41].
In the solar wind, there exists a permanent low-frequency turbulence of a solar origin.

Such turbulence is commonly believed to be generated on the surface of the Sun through
various mechanisms, including the solar surface convection and small reconnection near the
lower corona, and convected to outer space [49]. The solar wind turbulence for a low-MHD
frequency regime is hydromagnetic in nature and is characterized by a Kolmogorov-like
inertial range spectrum but with a spectral break in the kinetic regime. That is, for the
frequency range above the nominal proton cyclotron frequency and below the electron
cyclotron frequency, Ωp < ω < |Ωe|, the turbulence exhibits a spectral break. Such a
frequency range can be characterized as the whistler turbulence range. For an even higher
frequency ω > |Ωe|, another spectral break is present. We may model such a multi-scale
spectral behavior by adopting an analytical model first suggested by von Kármán [50] and
generalizing to reflect the multiple spectral breaks,

Iturb(k) =
k2

m I0

(1 + k2l2)α(1 + c2k2/ω2
pi)

β−α(1 + c2k2/ω2
pe)

γ−β
, (7)

where l � c/ωpi. Here, we explicitly extracted out the factor k2
m since this is related to

the integration over k⊥ [40]. The solar wind turbulence spectrum appears to behave as
ω−5/3 in the frequency range corresponding to the MHD regime. If we make use of the
Taylor hypothesis [51], then ω can be trivially replaced by k, but in the kinetic regime,
beyond the ion skin depth, c/ωpi or shorter, and much more so for the electron skin depth,
c/ωpe or shorter, the Taylor hypothesis may not be valid. Moreover, since we are interested
in the parallel wave vector and the turbulence intensity integrated over k⊥, the inverse
power-law index α may not be the same as that of the Kolmogorov value, namely α = 5/6.
Nevertheless, we may model the MHD regime by the Kolmogorov type of spectrum. In
any event, the model spectrum (8) describes a finite and maximum turbulence level at
k = 0, and for 0 < k < ωpi/c it describes the k−2α behavior. For the wave number regime
corresponding to ωpi/c < k < ωpe/c, the model depicts a k−2β behavior. For k > ωpe/c,
the spectrum behaves as k−2γ. We illustrate this by choosing α = 5/6, β = 1.2, and γ = 2,
which are admittedly arbitrary. We also choose the MHD scale factor l = 102(mp/me),
which is again arbitrary.

In Figure 4, we demonstrate the influence of the whistler-mode fluctuation spectrum
on the background turbulence spectrum by considering the superposition of the model
turbulence spectrum and the whistler-mode fluctuation spectrum, Iturb(k) + IW(k), where
the whistler-mode fluctuation spectrum IW(k) is defined in Equation (6) and the model
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turbulence spectrum Iturb(k) is given by Equation (7). Figure 4 plots the spectral factor that
defines the combined spectrum, namely,

S(q) =
q2

(1 + q2)3 +
R

(1 + Mlq2)α(1 + Mq2)β−α(1 + q2)γ−β
,

q =
ck

ωpe
, M =

mp

me
= 1836, R =

4πI0

Te

ω2
pe

Ω2
e

, (8)

where α = 5/6, β = 1.2, γ = 2, and l = 102(mp/me), as already noted above. The first term
on the right-hand, q2/(1 + q2)3, denotes the spontaneously emitted whistler-mode thermal
fluctuation spectrum. The second term on the right-hand side is the model spectrum with
multiple spectral breaks. In Figure 4, the dashed magenta-colored curve represents the
spontaneously emitted whistler-mode fluctuation spectrum, q2/(1 + q2)3. The dashed
black curves represent the background turbulence spectrum without the influence of the
fluctuation, for two cases of R = 106 and R = 107. The total spectral factor for the two cases
is plotted with thick blue (R = 106) and red (R = 107) curves. It is evident that the model
turbulence spectrum (8) depicts a flat spectrum for a q → 0 regime; a Kolmogorov-type
of spectrum in the “MHD” regime, (Ml)−1/2 < q < M−1/2; a slightly steeper spectrum
of k−2.4 in the “kinetic proton” regime, M−1/2 < q < 1; and a yet steeper spectrum, k−4,
in the whistler turbulence regime, q > 1. It is in this wave number regime where the
presence of the thermal fluctuation spectrum should be discernible. Specifically, in the case
of a relatively low turbulence level, as indicated by R = 106, we expect that the actual
solar wind turbulence should reveal the presence of the fluctuation. However, for higher
turbulence levels (as denoted by R = 107), the intensity of fluctuation will be partially
hidden so that a clear identification might not be so straightforward.

Figure 4. Model spectral factor, S(q), versus q in logarithmic horizontal and vertical scales. The
magenta dashes represent the spontaneous whistler-mode fluctuation, while the black dashes denote
the background turbulence for two cases of R = 106 and R = 107. The combined spectra are plotted
with thick blue (R = 106) and red (R = 107) curves. For a low turbulence level (R = 106), the
presence of fluctuation should be more evident, but if the turbulence level is high (R = 107), then the
fluctuation will be partially hidden.

As an example of actual solar wind turbulence spectra measured in the near-Earth
environment, we reproduce a figure taken from Ref. [52]. The result is Figure 5, which
is constructed from the measurements made by Cluster spacecraft. The location of the
spacecraft is at 1 au during a quiet-time condition on 30 January 2003. The detailed
discussion of the instrumentation and data analysis method can be found in Ref. [52],
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but the main focus of the present paper is bring the readers’ attention to the spectral
flattening behavior for the high-frequency end of the turbulence spectra, especially for
the electric field. According to the theory—see Equation (6)—and the model spectrum
shown in Figure 4, the spontaneously emitted thermal fluctuations should affect the high
end of the solar wind turbulence spectra, especially if the turbulence level is sufficiently
low. Admittedly, just what exactly it means by “sufficiently low” is not entirely clear, and
further study is called for. Nevertheless, the identification of the spontaneous quasi-thermal
whistler-mode fluctuations based on observation could be an intriguing and innovative
research topic. In any case, Figure 5 displays the Kolmogorov-like spectrum in the low-
frequency band while also showing a spectral break at frequency fb, which represents the
“break” frequency for the transition of one spectral slope to another. This frequency could
be associated with the kinetic proton effects. The whistler-mode thermal noise, however,
is supposed to be associated with the electron kinetic effects, which are believed to be
related to a much higher frequency. However, before one could reach such a frequency, the
instrument noise floor would contaminate the data, so it is very challenging to delineate
the noise effects versus the baseline thermal noise.

Figure 5. Magnetic (black) and electric (red) field spectra taken by Cluster spacecraft [reproduced
from Ref. [52]].

Specifically, a key element that should be accounted for before one can definitely
extract the theoretical signature, i.e., the whistler-mode thermal fluctuation, from the
data is for the model turbulence spectrum of the type shown in Figure 4 to be translated
into the spacecraft frame frequency using the appropriate solar wind speed and electron
inertial length, as well as to properly scale the normalized amplitude S(q) to physical
units. This includes translating the “R” parameter into actual units. The flattening of the
E-field spectrum shown in Figure 5 could be entirely due to the instrumental artifact. In
spite of this, however, the thermal noise associated with the whistler-mode fluctuations
could partly contribute to the observed flattening of the spectrum, if not for this particular
event, then at least for some other events. As will be shown in the next section, the
combination of the quasi-thermal whistler noise and the background turbulence can account
for the observed non-thermal electron velocity distribution function. We thus proceed
with the discussion of the theory for the formation of the electron velocity distribution
function under the influence of background whistler-mode turbulence and the quasi-
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thermal noise spectrum, which contains both electrostatic Langmuir-type and whistler-
mode-type electromagnetic fluctuations.

3. Formation of Kappa Electron Distribution by Langmuir Turbulence

In this section, we briefly overview the previous theory of kappa electron distribution by
Langmuir turbulence advanced by Yoon [27]. The full discourse of this theory is quite com-
plex and requires a detailed exposition of kinetic weak plasma turbulence theory [37,53–65],
but, in its essence, it boils down to the modification of the spontaneously emitted Langmuir
fluctuations to reflect the influence of the steady-state weak Langmuir turbulence spectrum.
It was shown by considering the balance of the nonlinear wave kinetic equation for Langmuir
turbulence that, in the steady state, the electrostatic fluctuation spectrum should be modified
to include the effects of turbulence in the following form:

IL(k) =
k2

mTe

4π

(
1 +

k2
L

k2

)
. (9)

The modification factor k2
L/k2 leads to the kappa electron distribution function when this

spectrum is inserted into the diffusion coefficient of the steady-state electron distribution
function computed from the kinetic theory.

Reference [40] derives the Fokker–Planck electron kinetic equation with waves and
fluctuations that have a wave vector lying in the parallel direction defined with the ambient
magnetic field vector. We summarize the equation for the electron velocity distribution
function f ,
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where the right-hand side of the kinetic equation is expressed in a velocity-space spherical
coordinate system, in which v =

√
v2
⊥ + v2

‖ is the magnitude and μ = v‖/v is the cosine of

the pitch angle. Under the assumption of primarily electrostatic interaction, the velocity
space friction and diffusion coefficients are given by
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=
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⎞
⎠δ(ω− kvμ). (11)

We assume steady state, ∂/∂t → 0, and isotropy, ∂ f /∂μ = 0. Then, we average over μ.
Then, we obtain the steady-state solution for the electron velocity distribution function,

f = const exp
(
−
∫ v

dv′
A(v′)
D(v′)

)
,

A(v) =
∫ 1

−1
dμAv, D(v) =

∫ 1

−1
dμDvv. (12)

We should note that this type of steady-state solution of the Fokker–Planck equation is
found in the literature [66–68], so the basic concept is not new. Making use of the property
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Im ε‖(k, ω)−1∗ = 1
2 πωpe δ(ω − ωL) and expressing 〈δE2

‖〉k,ω = IL(k) δ(ω − ωL), where
IL(k) is given by Equation (9), then we have

A =
e2k2

m
2me

∫ 1

0
dμμ, D =

Te

mev
e2k2

m
2me

(∫ 1

0
dμμ +

k2
L

ω2
pe

v2
∫ 1

0
dμμ3

)
. (13)

From this, we obtain the desired electron kappa velocity distribution function,

f = const exp

(
−me

Te

∫ v
dv′

v′

1 + k2
Lv′2/(2ω2

pe)

)
= const

(
1 +

v2

κα2

)−κ

, (14)

if we identify
k2

Lα2

2ω2
pe

=
1
κ

, and α2 =
κ + 1

κ

2Te

me
. (15)

In this version of the theory, the formation of a non-thermal (kappa) electron distribution
is attributed to the Langmuir turbulence in the asymptotical steady state. According to
this theory, no clear separation of the core and halo electrons is made, but, instead, both
populations are treated as a single kappa distribution function with the low end of the
velocity spectrum mimicking the Maxwellian thermal core, while the suprathermal high-
velocity regime represents the inverse power-law tail population. The brief overview of
this section is not new, and a full discourse can be found in Refs. [27,37,53–65]. In the
remaining part of the present manuscript, we put forth a new model for which the role of
whistler turbulence is emphasized.

4. Formation of Non-Thermal Electron Distribution by Combined Background
Turbulence and Thermal Fluctuations

Section 2 discussed the thermal fluctuations spontaneously emitted by Maxwellian
core electrons. We also discussed the effects of pre-existing solar wind turbulence and
how the combined model may relate to the existing literature on low-frequency turbulence
simulations. We also discussed how the effects of baseline quasi-thermal spontaneous emis-
sion fluctuations may impact the observations, although we noted that the unambiguous
identification of the predicted spectral features associated with thermal fluctuations in the
observation may depend on the level of turbulence. In this section, we proceed to discuss
the combined impact of the quasi-thermal whistler-mode fluctuations and the background
turbulence on the electron velocity distribution function.

In Section 3, the steady-state electron distribution function subject only to the Langmuir
turbulence was discussed, and it was shown that the result is the kappa electron velocity
distribution. For the kappa model, however, no distinction is made between the core
and halo populations. Moreover, the spontaneously emitted transverse fluctuations in
the whistler-mode frequency are ignored. Further, the presence of background solar
wind turbulence is not taken into consideration either. As such, the kappa distribution and
Langmuir turbulence problem may pertain to the outer heliosphere where the local ambient
magnetic field strength is sufficiently low so that the whistler-mode frequency range effects
can be ignored and the underlying plasma may be treated as essentially unmagnetized.

For the near-Earth space environment, however, the whistler-mode dynamics may be
an integral part of wave–particle interaction with the electrons [32,33]. Thus, this section
discusses the formation of the non-thermal electron velocity distribution function in the pres-
ence of spontaneous thermal fluctuations in both the longitudinal Langmuir and transverse
whistler modes and also under the influence of background turbulence [52,69–74]. As will
be shown, under such a physical environment, the self-consistent steady-state solution for
the electron velocity distribution function will be characterized by a distinct core and halo
populations, which is consistent with observations.

The notion of the pre-existing whistler-mode turbulence affecting the solar wind
electron dynamics, resulting in a non-thermal velocity distribution function, has been
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discussed in the literature. For instance, Refs. [75–78] carried out extensive and detailed
numerical simulation based on the quasilinear velocity diffusion theory where the diffusion
coefficient is computed from the model whistler wave turbulence spectrum. It was shown
in these references that the resonant wave–particle interaction between the solar wind
electrons and the pre-existing turbulence in the whistler-mode frequency range leads to the
gradual formation of a non-thermal energetic tail. The present paper is similar in conceptual
background in that we are also seeking to find a non-thermal electron velocity distribution
function that is a result of resonant wave–particle interaction with the background whistler
wave turbulence. However, the main distinction between the present approach and those
of previous works is twofold. Firstly, unlike the previous works, which relate to the
dynamical evolution of the velocity distribution function, we are concerned with the
steady-state solution. This aspect leads to the second distinction. That is, in order to obtain
the steady-state solution, the effects of spontaneous thermal fluctuation are essential. The
effects of spontaneous thermal fluctuations and the related velocity friction effects are not
considered in the dynamical theories of solar wind electron distribution function in the
above references. For dynamical problems, the velocity friction, which is intimately related
to the spontaneous thermal fluctuations, is indeed relatively unimportant, but for the theory
of an asymptotic steady state, the balance of velocity friction coefficient A and velocity
diffusion coefficient D is crucially important—see Equation (12). Reference [67], however,
considered a steady-state solution of a magnetospheric electron velocity distribution in
resonant wave–particle interaction with the background whistler-mode waves. Their
solution is very similar in conceptual background and mathematical methodology to the
present work, except that, in their approach, the velocity friction coefficient is replaced by
the collisional drag coefficient.

We again start from the Fokker–Planck electron kinetic equation with waves and
fluctuations where a wave vector lying in the parallel direction is defined with the ambient
magnetic field vector, that is, Equation (10) or the steady-state solution (12), except that
now the electrons are immersed in the bath of thermal fluctuations of both Langmuir
and whistler types and also the background turbulence. As a result, the velocity fric-
tion and the diffusion coefficients now contain contributions from both longitudinal and
transverse modes,(

Av
Aμ

)
=

e2k2
m

4πme

∫
dk
∫

dω Im
(

1
ω2ε⊥(k, ω)− c2k2

)∗
×
(

ω
kv−ωμ

)
v(1− μ2)δ(ω− kvμ−Ωe)

+
e2k2

m
2πme

∫
dk
∫

dω Im

(
1

kε‖(k, ω)

)∗(
μ

1− μ2

)
δ(ω− kvμ),

⎛
⎝Dvv

Dvμ

Dμμ

⎞
⎠ =

πe2

4m2
e

∫
dk
∫

dω 〈δE2
⊥〉k,ω

⎛
⎝ ω2

(kv−ωμ)ω
(kv−ωμ)2

⎞
⎠

×1− μ2

ω2 δ(ω− kvμ−Ωe)

+
πe2

m2
e

∫
dk
∫

dω 〈δE‖〉k,ω

⎛
⎝ μ2

μ(1− μ2)
(1− μ2)2

⎞
⎠δ(ω− kvμ). (16)

For a steady state, the formal solution (12) is still applicable, with the coefficient A =∫ 1
−1 dμAv and D =

∫ 1
−1 dμDvv now containing the influence of whistler-mode fluctuations

as well as the background turbulence. Making use of Im [ω2ε⊥(k, ω)− c2k2]−1∗ = π δ(ω−
ωW)(Ωe/ω2

pe) and 〈δE2
⊥〉k,ω = IW(k) δ(ω − ωW) and approximating the resonance delta

function by δ(ωW − kvμ −Ωe) ≈ δ(kvμ + Ωe), we may proceed with the computation
of generalized A and D coefficients. For the present purpose, we adopt the whistler-
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mode spectrum by considering the effects of thermal fluctuations and the background
turbulence spectrum, that is, Equation (8), but in a simplified form. In particular, we are
interested in the frequency range that is sufficiently higher than both the MHD scale and
proton kinetic scale but is sufficiently below the electron cyclotron frequency. Thus, in
such a low-frequency limit relative to the electron cyclotron frequency, ω2 
 Ω2

e , the
whistler-mode fluctuations can be approximated by IW(ω) ≈ [k2

mTe/(4π)](ωΩe/ω2
pe) and

MW(kω) ≈ [k2
mTe/(4π)], which, upon making use of the low-frequency version of the

dispersion relation, ω = Ωe(ck/ωpe)2, can be written as

IW(k) ∼ k2
mTe

4π

Ω2
e

ω2
pe

c2k2

ω2
pe

, MW(k) ∼ k2
mTe

4π
. (17)

This result, together with the Langmuir fluctuation spectrum, IL(k) ∼ k2
mTe/(4π), will be

inserted into the expressions for A and D.
We may also simplify the model of the turbulence given by Equation (8) in that we only

focus on the portion of the background turbulence spectrum corresponding to the whistler-
mode range inverse power law, which we simplify by ∝ k−2ν. If we thus superpose this
simplified background turbulence spectrum to the approximate form of the spontaneous
emission spectrum corresponding to the low-frequency whistler-mode thermal emission,
then we may adopt a simplified form of the combined spectrum,

IW(k) =
k2

mTe

4π

Ω2
e

ω2
pe

[
c2k2

ω2
pe

+

(
k2

W
k2

)ν]
. (18)

Here, k2
W is an appropriate parameter for correct dimensionality, which can be adjusted.

This parameter effectively dictates the level of background turbulence as well. In applying
the above model, we reiterate that the model spectrum (18) is meant for the whistler-mode
frequency range satisfying Ω2

i < ω2 < Ω2
e . As such, we confine the width of wave numbers,

cΔk/ωpe, roughly corresponding to the above frequency limitation. In an earlier attempt
to incorporate the solar wind turbulence effects into the model whistler-mode spectrum,
Ref. [41] adopted a model where the thermal fluctuation spectrum was modified to reflect
the inverse power-law feature, namely, IW(k) → [k2

mTe/(4π)](Ω2
e /ω2

pe)(c2k2/ω2
pe)

1−β,
where β is a control parameter that can be chosen as 0 in the case of purely spontaneous
emission and as β = 1 + ν if we wish to model the overall spectral profile to behave as an
inverse power law, IW(k) ∝ k−2ν. However, we now realize that the more proper way to
model the combined spontaneously emitted quasi-thermal whistler-mode spectrum and
the background pre-existing turbulence is the linear superposition (8), which we simplify
as shown in Equation (18). Thus, in the present section, we take the total whistler-mode
spectral intensity to possess the proportionality dictated by the functional relationship,
IW(k) ∝ c2k2/ω2

pe + (k2
W/k2)ν.

For the Langmuir mode spectrum, however, we only consider the thermal fluctuation,
which is distinct from the previous section. Recall that in Section 3 we included the
steady-state Langmuir turbulence factor, (kL/k)2, in the Langmuir turbulence spectrum
(9), which led to the electron kappa distribution. In the present section, we are concerned
with an alternative theory of a non-thermal, generalized kappa distribution, which is
based upon the notion of background whistler-mode turbulence. In short, the transverse
and longitudinal electric field spectral intensities adopted in the present discussion are
defined by

〈δE2
⊥〉k,ω

4
=

k2
mTe

4π

Ω2
e

ω2
pe

[
c2k2

ω2
pe

+

(
k2

W
k2

)ν]
δ(ω−ωW),

〈δE2
‖〉k,ω =

k2
mTe

4π
δ(ω−ωL). (19)
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Inserting this into the generalized coefficients (16), we obtain the desired coefficients A and
D, which are now given by

A =
e2k2

m
2me

(
Ω4

e
ω4

pe

c2

v2

∫ 1

0
dμ

1− μ2

μ3 +
∫ 1

0
dμμ

)
,

D =
Te

mev
e2k2

m
2me

Ω2
e

ω2
pe

[
c2

v2
Ω2

e
ω2

pe

∫ 1

0
dμ

1− μ2

μ3 +

(
k2

W
Ω2

e

)ν

v2ν
∫ 1

0
dμ(1− μ2)μ2ν−1

]

+
Te

mev
e2k2

m
2me

∫ 1

0
dμμ. (20)

The integral
∫ 1

0 dμ (1− μ2)μ−3 is formally divergent. To regularize the divergence, we in-

troduce the lower limit,
∫ 1

0 dμ (1− μ2)μ−3 →
∫ 1

μmin
dμ (1− μ2)μ−3 = (1− μ2

min)/(2μ2
min) +

ln μmin. The other μ integral is evaluated in a straightforward manner:
∫ 1

0 dμ(1−μ2)μ2ν−1 =
1/[2ν(ν + 1)]. Making use of all this, we have

f = C exp

(
−
∫ x

dx′
2x′(a + x′2)

a[1 + (x′2/κW)ν+1] + x′2

)
, x =

v
αe

,

a =
2Λ

(ωpe/Ωe)2βe
, κW =

1
βe

(
2ν(ν + 1)Λ
(ckW/Ωe)2ν

) 1
ν+1

,

Λ =
1− μ2

min
2μ2

min
+ ln μmin. (21)

Here, we have made use of (c/αe)2(Ωe/ωpe)2 = B2
0/(8πn0Te) = 1/βe. This is a three-

parameter model distribution, with ν, a, and κW being the adjustable parameters. If we
consider the limit of a → ∞, then we have

fW only = C exp

(
−2
∫ x

dx′
x′

1 + (x′2/κW)ν+1

)
. (22)

In this limit, the contribution from electrostatic Langmuir-mode fluctuation, that is, the
term x′2 in both the numerator and denominator within the integrand, is ignored. This
limiting form can be termed the W-only distribution. However, if we take the limit of
a → 0, then we simply have

fL only = C exp
(
−2
∫ x

x′ dx′
)
= C exp

(
−x2

)
, (23)

the Maxwell–Boltzmann (MB) distribution. In this limit, the contribution from the whistler-
mode related terms are ignored, and, thus, this limit can be termed the L-only distribu-
tion. Another interesting limit is when κW → ∞. In this limit, the contribution from
the background turbulence disappears, and the resulting distribution is that of the MD
distribution again.

The parameters a and κW , in turn, are determined by μmin, ωpe/Ωe, βe, ν, and ckW/Ωe.
The parameter ω2

pe/Ω2
e can be determined from the solar wind data. Also, βe is known

from the data. The fitting parameters ckW/Ωe and ν relate to the spectral profile of the
solar wind turbulence in the whistler-mode frequency range. Thus, these parameters can
also be determined from observational properties. The truly free parameter is Λ, which is
determined from the choice of μmin. Let us consider the resonance condition, kvμ + Ωe = 0
or μ = −Ωe/(kv). We are interested in the minimum value for μ. In the formal μ integral,
this is taken to be μmin = 0, but this means either k → ∞ or v → ∞, neither of which are
physical. For whistler turbulence and fluctuations in the low-frequency limit, we choose
the maximum k by ckmax/ωpe ∼ 1 or so. For the velocity v, we generally determine the
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maximum value to be sufficiently higher than the thermal speed, vmax � αe. From this, we
may see that μmin ∼ −Ωe/(kmaxvmax), which, while small, can have a substantial range of
freedom. If, for instance, we choose μmin ∼ 10−6 or so, then we obtain Λ ∼ 1010. However,
if we choose μmax to be approximately 10−4 or so, then we have Λ ∼ 106 and so on and
so forth. With this information, let us consider the ratio a/κW . If we choose ν = 1, which
implies k−2 spectral behavior associated with the whistler frequency range turbulence, then
we have

a
κW

=
(ckW/Ωe)

(ωpe/Ωe)2βe
Λ1/2. (24)

Suppose we take (ωpe/Ωe)2βe = 102 and ckW/Ωe = 0.2. Then, by choosing Λ = 2.25× 106

or so, we arrive at a/κW ∼ 3. If, however, (ωpe/Ωe)2βe = 104, then the choice of Λ =
2.25× 1010 leads to the similar value of a/κW ∼ 3. In the solar wind, the ratio ωpe/Ωe can
be quite high, ranging from O(10) to O(102). The electron beta value in the solar wind
can range from β ∼ O(10−2) to O(1) or so, hence the above two choices of parameters,
(ωpe/Ωe)2βe = 102 and (ωpe/Ωe)2βe = 104. The choice of ckW/Ωe = 0.2 relates to the
turbulence property in that this number represents the maximum effective range of whistler-
mode turbulence in the wave number space. Since the low-frequency whistler mode is
characterized by ckW/Ωe < 1, such a choice is eminently reasonable. The above estimation
of the crucial dimensionless parameter a/κW , of course, is a rough exercise, and more
precise attempts should be made by surveying the 1 au data. However, in view of the
uncertainty associated with the lower limit of the cosine of the pitch angle, μmin, we defer
the more accurate attempts for future.

With these considerations, we construct the asymptotic electron velocity distribution
function (21) by performing a numerical indefinite integration over the dimensionless
velocity x = v/αe. The result is displayed in Figure 6, where we display on the left-hand
panel the case for a/κW = 3 with a = 30 and κW = 10. For all the examples, we restrict
ourselves to ν = 1. As visual guides, we plot the so-called L-only and W-only limiting case
distributions. We also plot the inverse power-law velocity slop v−6.5. In the solar wind,
such an asymptotic high-velocity tail distribution is often observed [29]. On the right-hand
panel, we show the velocity distribution by varying the parameter a, which ranges from
a = 1 to 10 to 20 to 30. Other parameters are fixed: κW = 10 and ν = 1. Figure 6 thus
demonstrates that the combined effects of background turbulence and finite spontaneously
emitted fluctuations are capable of producing the electron velocity distribution function
that remarkably resembles the observed distribution in the solar wind. We should note,
however, that there exists a certain degree of freedom in our choice of parameters a and κW ,
in particular, their ratio, a/κW , which turns out to be important for determining the shape
of the velocity distribution function, as the right-hand panel of Figure 6 indicates.

Figure 6. [Left] The three-parameter electron velocity distribution function f versus x = v/αe, for
a = 30, κW = 10, and ν = 1. [Right] The variation in the input parameter a, which ranges from a = 1
to 10 to 20 to 30.
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5. Summary

The main purpose of the present paper was to put forth a first principle theory of the
steady-state electron velocity distribution function with non-thermal characteristics, which
resembles the quiet-time solar wind electron distribution detected in the near-Earth space
environment. Unlike the previous model [27], which invoked the steady-state Langmuir
turbulence and the accompanying kappa distribution, the present paper employed the
combined influence of the background solar wind turbulence in the whistler frequency
range, as well as the quasi-thermal electromagnetic and electrostatic fluctuations. The
resulting model electron distribution function was given in terms of an exponential function
of an indefinite velocity integral, which does not in general lend itself to further closed-form
analytical manipulations—Equation (21)—but must, in general, be computed by numerical
means. Under a reasonable set of assumptions and input conditions, we have found that
the resulting numerical calculation leads to a velocity distribution function whose profile is
reminiscent of the measured distribution in space.

The formal electron velocity distribution function in the steady-state was given by
Equation (21), and this mathematical expression contains the effects of background fluctua-
tions as well as the impact of the pre-existing whistler-mode turbulence. This contrasts to
the formal solution (14), which reflects the influence of electrostatic thermal fluctuations
and the enhanced Langmuir wave turbulence. It is possible to construct a more general
formal distribution by combining the effects of both the electrostatic and electromagnetic
thermal fluctuations on the electrons, as well as the influence of enhanced electrostatic
(Langmuir) and electromagnetic (whistler) turbulence intensities. The result is

f (x) = C exp

(
−
∫ x

dx′
2x′(a + x′2)

a[1 + (x′2/κW)ν+1] + (1 + x′2/κL)x′2

)
, x =

v
αe

. (25)

Here, κL = 2ω2
pe/(kLα)2, as defined in Equation (15). With this form of the electron

distribution function, we now summarily discuss the various limits. Suppose that we
ignore the influence of background turbulence altogether. This amounts to taking κW → ∞
and κL → ∞, which leads to

fMB(x) = C exp(−x2) (κW → ∞, κL → ∞). (26)

Thus, in the absence of turbulence, we obtain the MB distribution, which is as expected.
Ignoring the influence of electromagnetic whistler modes, both the thermal fluctuations
and the enhanced pre-existing turbulence, is equivalent to taking the limit of a → 0, which
leads to the generalized form of the L-only distribution—see Equation (23)—which also
happens to be the same kappa distribution discussed in Equation (14)

fL only(x) = fκ(x) = C
(

1 +
x2

κL

)−κL

(a → 0). (27)

If, however, we are to ignore the influence of electrostatic modes, both the thermal fluctua-
tions and enhanced Langmuir turbulence, then all we need to do is consider the limit of
a � 1,

fW only(x) = C exp

(
−
∫ x

dx′
2x′

1 + (x′2/κW)ν+1

)
(a � 1). (28)

This form of limiting solution was referred to as the W-only distribution in Equation (22),
but this stand-alone solution is not a realistic model since the electrostatic fluctuations
cannot simply be ignored. Nevertheless, at least as a mathematical exercise, one can
certainly entertain such a limit. In our final solution (21), we have considered the limit of
κL → ∞, while other parameters, a and κW , are considered finite.

The overall concept of charged particles maintaining a steady-state wave–particle
interaction with steady-state turbulence and fluctuations is an example of a stationary state
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far from equilibrium [79]. Such a state, in turn, may be considered as an example of the
non-extensive statistical state [18,19]. It is in this regard that the present paper is relevant
to the Special Issue “Nonadditive Entropies and Nonextensive Statistical Mechanics”.
The fact that the space plasma, which is governed by a long-range electromagnetic force,
frequently exhibits a kappa-like non-thermal distribution function is in a way not too
surprising in that, thanks to Tsallis’s pioneering work, we now have a rather insightful
understanding that any system with a long-range interaction is likely to be governed by
a non-extensive, non-additive statistical principle. The present paper, as with the related
earlier work [27], provides the physical “mechanism” that leads to a concrete example of a
kappa-like non-thermal phase space distribution function.
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Abstract: Currently, there is no widely accepted consensus regarding a consistent thermodynamic
framework within the special relativity paradigm. However, by postulating that the inverse tempera-
ture 4-vector, denoted as β, is future-directed and time-like, intriguing insights emerge. Specifically,
it is demonstrated that the q-dependent Tsallis distribution can be conceptualized as a de Sitterian
deformation of the relativistic Maxwell–Jüttner distribution. In this context, the curvature of the de
Sitter space-time is characterized by

√
Λ/3, where Λ represents the cosmological constant within the

ΛCDM standard model for cosmology. For a simple gas composed of particles with proper mass m,
and within the framework of quantum statistical de Sitterian considerations, the Tsallis parameter q
exhibits a dependence on the cosmological constant given by q = 1 + �c

√
Λ/n, where �c = h̄/mc is

the Compton length of the particle and n is a positive numerical factor, the determination of which
awaits observational confirmation. This formulation establishes a novel connection between the
Tsallis distribution, quantum statistics, and the cosmological constant, shedding light on the intricate
interplay between relativistic thermodynamics and fundamental cosmological parameters.

Keywords: Maxwell–Jüttner distribution; Tsallis distribution; de Sitter quantum field; ΛCDM
standard model

1. Preamble: Temperature, Heat, and Entropy, That Obscure Objects of Desire

It is opportune to start out this contribution by quoting what de Broglie wrote in Ref. [1]
about the relation between entropy invariance and relativistic variance of temperature
(translated from French):

It is well known that entropy, alongside the space-time interval, electric charge, and
mechanical action, is one of the fundamental “invariants” of the theory of relativity. To
convince oneself of this, it is enough to recall that, according to Boltzmann, the entropy
of a macroscopic state is proportional to the logarithm of the number of microstates that
realize that state. To strengthen this reasoning, one can argue that, on the one hand, the
definition of entropy involves a integer number of microstates, and, on the other hand, the
transformation of entropy during a Galilean reference frame change must be expressed
as a continuous function of the relative velocity of the reference frames. Consequently,
this continuous function is necessarily constant and equal to unity, which means that
entropy is constant.

Let us now give more insights about what “relativistic thermodynamics” could be. In
relativistic thermodynamics (i.e., in accordance with special relativity), there exist three
points of view [2], distinguished from the way heat ΔQ and temperature T transform under
a Lorentz boost from frameR0 (e.g., laboratory) to comoving frameRwith velocity v = vn̂

relative toR0 and Lorentz factor

γ(v) =
1√

1− v2/c2
. (1)
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(a) The covariant viewpoint (Einstein [3], Planck [4], de Broglie [1] . . . ),

ΔQ = ΔQ0γ−1 , T = T0γ−1. (2)

(b) The anti-covariant one (Ott [5], Arzelies [6], . . . ),

ΔQ = ΔQ0γ , T = T0γ. (3)

(c) The invariant one, “nothing changes” (Landsberg [7,8], . . . ),

ΔQ = ΔQ0 , T = T0. (4)

Also note that, for some authors (Landsberg [9], Sewell [10], . . . ), “there is no mean-
ingful law of temperature under boosts”.

Nevertheless, more recent approaches (e.g., Ref. [11]) show that there is a covariant
relativistic thermodynamics with proper absolute temperature in full agreement with
relativistic hydrodynamics.

In this paper, we adopt the viewpoint in Section 1 and review de Broglie’s arguments in
Section 2. In Section 3, we remind you of the construction of the so-called Maxwell–Jüttner
distribution presented by Synge in Ref. [12]. In Section 4, we then present the de Sitter
space-time, its geometric description as a hyperboloid embedded in the 1 + 4 Minkowski
space-time, and give some insights of the fully covariant quantum field theory of free scalar
massive elementary systems propagating on this manifold. In Section 5, we then develop
our arguments in favor of a novel connection between the Tsallis distribution, quantum
statistics, and the cosmological constant, shedding light on the intricate interplay between
relativistic thermodynamics and fundamental cosmological parameters. A few comments
end our paper in Section 6.

2. Relativistic Covariance of Temperature According to de Broglie (1948)

Here, we give an account of the de Broglie arguments given in Ref. [1] in favor of the
covariant viewpoint (a).

Let us consider a body B with proper frame R0, and total proper mass M0. It is
assumed to be in thermodynamical equilibrium with temperature T0 and fixed volume V0
(e.g., a gas enclosed with surrounding rigid wall). Let us then observe B from an inertial
frameR, in which B has constant velocity v = vn̂ relative toR0. We suppose that a source
inR provides B with heat ΔQ. In order to keep the velocity v of B constant, work W has
to be performed on B. Its proper mass is consequently modified M0 → M′

0. Then, from
energy conservation,

(M′
0 −M0)γc2 = ΔQ + W , γ = γ(v) =

1√
1− v2/c2

, (5)

and the relativistic second Newton law,

ΔP = M′
0γv−M0γv =

∫
Fdt =

1
v

∫
Fvdt =

W
v

, (6)

we derive

ΔQ =
c2

v2 γ−2W = (M′
0 −M0)c2γ−2 . (7)

In frameR0, there is no work performed (the volume is constant), there is just trans-
mitted heat ΔQ0 = (M′

0 −M0)c2. By comparison with (7), one infers that heat transforms
as

ΔQ = ΔQ0γ−1 . (8)
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Since the entropy S =
∫ dQ

T is relativistic invariant, S = S0, temperature finally
transforms as

T = T0γ−1 (9)

3. Maxwell–Jüttner Distribution

We now present a relativistic version of the Maxwell–Boltzmann distribution for
simple gases, namely the Maxwell–Jüttner distribution [13–15]. We follow the derivation
given by Synge in Ref. [12]; see also Ref. [16], and the recent article [17] for a comprehensive
list of references. Note that this distribution is defined on the mass hyperboloid, and not
expressed in terms of velocities (see the recent [18] and references therein).

Our notations [19] for event four-vector x in the Minkowskian space-time M1,3 and
for four-momentum k are the following:

M1,3 � x = (xμ) = (x0 = x0, xi = −xi, i = 1, 2, 3) ≡ (x0, x) , (10)

equipped with the metric ds2 = (dx0)2 − dx · x ≡ gμνdxμdxν, gμν = diag(1,−1,−1,−1),

k = (kμ) = (k0, k). (11)

The Minkowskian inner product is noted by:

x · x′ = gμνxμx′ν = xμx′μ = x0x′0 − x · x′. (12)

Let k be four-momentum, pointing toward point A of the mass shell hyperboloid
V+

m = {k , k · k = m2c2}, and an infinitesimal hyperbolic interval at A, with length

dσ = mc dω , (13)

where dω =
d3k

k0
is the Lorentz-invariant element on V+

m . Given a time-like unit vector n,

and a straight line Δ passing through the origin and orthogonal (in the M1,3 metric sense)
to n, denote by dΩ the length of the projection of dσ on Δ along n. As is illustrated in
Figure 1, one easily proves that

dΩ = |k · n|dω (= d3k if n = (1, 0)). (14)
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Figure 1. n is a time-like unit vector, Δ is a straight line passing through the origin and orthogonal (in
the Minkowskian metric sense) to n. The 4-momentum k = (kμ) = (k0, k) points toward a point A of
the mass shell hyperboloid V+

m = {k , k · k = m2c2}. dΩ is the length of the projection, along n, of an
infinitesimal hyperbolic interval at A of length dσ = mcdω.
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The sample population consists of those particles with world lines cutting the in-
finitesimal space-like segment dΣ orthogonal to the time-like unit vector n, as is shown in
Figure 2.

�����������

�
�
�

�
�
�
�
�
��

�
�

�
�

�
�

��

M = (x0, x)

dΣ

R C

�
�

�
�

�
��
n

Figure 2. C is the portion of the null cone starting at the event M = (x0, x) and limited by the
infinitesimal space-like segment dΣ orthogonal to the time-like unit vector n. R is the region
delimited by M, the portion of the light cone C, and dΣ.

Every particle that traverses the segment C of the null cone between M and dΣ must
also traverse dΣ (causal cone). Consequently, regardless of the collisions that take place
within the infinitesimal regionR bounded by M, the segment of the light cone C, and dΣ,
the number of particles crossing Σ, is predetermined as the number crossing C:

ν = N · n dΣ = dΣ
∫
V+

m

N (x, k)dΩ , (15)

where N is the numerical-flux four-vector and N (x, k) is the distribution function. By
the conservation of four-momentum at each collision in a simple gas, the flux of four-
momentum across dΣ is predetermined as the flux across C,

Tμ · n dΣ = dΣ
∫
V+

m

N (x, k) ckμdΩ , (16)

where T = (Tμν) is the energy-momentum tensor.
The most probable distribution functionN at M is that which maximizes the following

entropy integral:

F = −dΣ
∫
V+

m

N (x, k) logN (x, k)dΩ. (17)

Variational calculus with five Lagrange x-dependent multipliers α and ημ associated
with constraints on ν and Tμ · n, respectively, leads to the solution

N (x, k) = C(x) exp(−η(x) · k) , C = eα−1. (18)

Scalar C and time-like four-vector η are determined by the constraints on ν = N · n dΣ
and Tμ · n dΣ:

C
∫
V+

m

kμ e−η·k dω = Nμ , C
∫
V+

m

ckμkν e−η·k dω = Tμν. (19)

established by taking into account that n is arbitrary.
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With the equations of conservation

∂ · N = 0 , ∂ · Tμ = 0 , (20)

We finally obtain as many equations as the 19 functions of x: C, η, N, T. The following
partition function is essential for all relevant calculations.

Z(η) :=
∫
V+

m

e−η·k d3k

k0
=

4πmc√
η · η K1

(
mc
√

η · η
)

(21)

where Kν is the modified Bessel function [20]. Hence, the components of the numerical flux
four-vector N and of the energy tensor T in (19) are given in terms of derivatives of Z and,
finally, in terms of Bessel functions by

Nμ = −C
∂Z
∂ημ = C

4πm2c2ημ

η · η K2

(
mc
√

η · η
)

, (22)

Tμν = Cc
∂2Z

∂ημ∂ην
= C4πm2c3

⎡
⎣mc

K3

(
mc√η · η

)
(η · η)3/2 ημην −

K2

(
mc√η · η

)
η · η gμν

⎤
⎦. (23)

For a simple gas consisting of material particles of proper mass m, the components of
the energy–momentum tensor T are given by

Tμν = (ρ + p)uμuν − pgμν , (24)

where ρ is the mean density, p is the pressure, and u =
(

uμ =
dxμ

ds

)
, u · u = 1, is the mean

four-velocity of the fluid. Hence, by identification with (23), Synge [12] proved that a
relativistic gas consisting of material particles of proper mass m is a perfect fluid through the
relations:

uμ =
ημ√
η · η , (25)

ρ + p = C4πm3c4
K3

(
mc√η · η

)
√

η · η , (26)

p = C4πm2c3
K2

(
mc√η · η

)
η · η . (27)

From (26) and (27), we derive the expression of the density:

ρ = C
4πm3c4√

η · η
K1

(
mc√η · η

)
+ K3

(
mc√η · η

)
2

= −C
4πm3c4√

η · η K′2
(

mc
√

η · η
)

. (28)

Let us define the invariant quantity, i.e., the projection of the numerical flux (57) along
the four-velocity of the fluid,

N0 = N · u = C
4πm2c2√

η · η K2

(
mc
√

η · η
)

. (29)
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This expression, which represents the number of particles per unit length (“numerical
density”) in the rest frame of the fluid (u0 = 1), allows us to determine the function
C = C(x), and to eventually write Distribution (18) as:

N (x, k) =
N0

m2ckBTaK2(mc2/kBTa)
exp
(
− cu · k

kBTa

)
. (30)

The term Ta := c/(kB
√

η · η), where kB is the Boltzmann constant, is a “relativistic”
absolute temperature. It is precisely the relativistic invariant, which might fit pointview (c).

Note that, with this expression, (27) reads as the usual gas law:

p = N0kBTa. (31)

The Maxwell–Boltzmann non relativistic distribution (in the space of momenta) is
recovered by considering the limit at kBTa 
 mc2 in the rest frame of the fluid:

K2

(
mc2

kBTa

)
≈
√

πkBTa

2mc2 e−
mc2

kBTa

⇒ N (x, k)

≈ N0(2πmkBTa)
−3/2 exp

(
− k0c−mc2

kBTa

)
≈ N0(2πmkBTa)

−3/2 exp
(
− k2

2mkBTa

)
. (32)

Inverse Temperature Four-Vector

The found distribution (30) on the Minkowskian mass shell for a simple gas consisting
of particles of proper mass m leads us to introduce the relativistic thermodynamic, future
directed, time-like four-coldness vector β, as the four-version of the reciprocal of the
thermodynamic temperature (see also Ref. [2]):

cu
kBTa

≡ β = (β0 = β0 > 0, βi = −βi) = (β0, β), (33)

with absolute coldness as relativistic invariant,√
β · β =

c
kBTa

≡ βa . (34)

It is precisely the way the component β0 transforms under a Lorentz boost, β′0 =
γ(v)(β0 − v · β/c), which explains the way the temperature transforms à la de Broglie,
T �→ T′ = Tγ−1. So, in the follow-up, we call Maxwell–Jüttner distribution the following
relativistic invariant:

N (β, k) =
N0

mcK1(mcβa)
exp
(
−β · k

)
, (35)

where the space-time dependence holds through the coldness four-vector coldness field
β = β(x).

4. de Sitter Material

We now turn our attention to the de Sitter (dS) space-time and some important features
of a dS covariant quantum field theory.

4.1. de Sitter Geometry

The de Sitter space-time can be viewed as a hyperboloid embedded in a five-dimensional
Minkowski space M1,4 with metric gαβ =diag(1,−1,−1,−1,−1) (see Figure 3). Of course,
one should keep in mind that all choices of one point in the manifold as an origin are
physically equivalent, as are the points of the Minkowski space-time M1,3.

MR ≡ {x ∈ R
5; x2 = gαβ xαxβ = −R2}, α, β = 0, 1, 2, 3, 4 , (36)
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where the pseudo-radius R (or inverse of curvature) is given by R =

√
3
Λ

within the

cosmological ΛCDM standard model. The de Sitter symmetry group is the group SO0(1, 4)
of proper (i.e., det . = 1) and orthochronous (to be precised later) transformations of the
manifold (36). This group has ten (Killing) generators Kαβ = xα∂β − xβ∂α.

Figure 3. The de Sitter space-time as viewed as a one-sheet hyperboloid embedded in Minkowski
space M1,4.

4.2. Flat Minkowskian Limit of de Sitter Geometry

Let us choose the global coordinates ct ∈ R, n ∈ S2, r/R ∈ [0, π] for the dS manifold
MR. They are defined by:

MR � x = (x0, x1, x2, x3, x4) ≡ (x0, x, x4)

= (R sinh(ct/R), R cosh(ct/R) sin(r/R)n, R cosh(ct/R) cos(r/R)) ≡ x(t, x). (37)

At the limit R → ∞, and the manifold MR →M1,3, the Minkowski space-time tangent
to MR at, say, the de Sitter point OdS = (0, 0, R), chosen as the origin, since

MR � x ≈
R→∞

(ct, r = r n, R) ≡ (�, R) , � ∈M1,3. (38)

At this limit, the de Sitter group becomes the Poincaré group:

lim
R→∞

SO0(1, 4) = P↑+(1, 3) = M1,3 � SO0(1, 3). (39)

Consistently, the ten de Sitter Killing generators contract (in the Wigner–Inönü sense) to
their Poincaré counterparts Kμν, Πμ, μ = 0, 1, 2, 3, after rescaling the four K4μ −→ Πμ = K4μ/R.

4.3. de Sitter Plane Waves as Binomial Deformations of Minkowskian Plane Waves

The de Sitter (scalar) plane waves are defined in [21] as

φτ,ξ(x) =
(

x · ξ
R

)τ

, x ∈ MR , ξ ∈ C1,4 , (40)

where C1,4 = {ξ ∈ R5 , ξ · ξ = 0} is the null cone in M1,4. They are solutions of the
Klein–Gordon-like equation

1
2

Mαβ Mαβφτ,ξ(x) ≡ R2�Rφτ,ξ(x) = τ(τ + 3)φτ,ξ(x) ,
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where Mαβ = −i
(
xα∂β − xβ∂α

)
is the quantum representation of the Killing vector Kαβ,

and �R stands for the d’Alembertian operator on MR. For the values

τ = −3
2
+ iν , ν ∈ R , (41)

they describe free quantum motions of “massive” scalar particles on MR. The term “massive”
is justified by the flat Minkowskian limit R → ∞, i.e., Λ → 0. This limit is understood as
follows.

(i) First, one has the Garidi [22] relation between proper mass m (curvature independent)
of the spinless particle and the parameter ν ≥ 0:

m =
h̄

Rc

[
ν2 +

1
4

]1/2
⇔ ν =

√
R2m2c2

h̄2 − 1
4
≈

R large

Rmc
h̄

=
mc
h̄

√
3
Λ

. (42)

The quantity
h̄cν

R
is a kind of at rest de Sitterian energy, which is distinct of the proper

mass energy mc2 if Λ �= 0.
(ii) Then, with the mass shell parameterization ξ =

(
ξ0 = k0

mc , ξ = k
mc , ξ4 = 1

)
∈ C+1,4, one

obtains at the limit R → ∞:

φτ,ξ(x) = (x · ξ/R)−3/2+iν →
R→∞

eik·�/h̄ , � = (ct, r). (43)

This relation allows us to consider Function (40) as deformation of the plane waves
propagating in the Minkowskian space-time M1,4. This pivotal property justifies the name
“dS plane waves” granted to Function (40).

4.4. Analytic Extension of dS Plane Waves for dS QFT

The dS plane waves φτ,ξ(x) =

(
x · ξ

R

)τ

, τ = −3/2 + iν, are not defined on all

MR, due to the possible change of sign of x · ξ. A solution to this drawback is found
through the extension to the tubular domains in the complexified hyperboloid MC

R ={
z = x + iy ∈ C5 , z2 = gαβ zαzβ = −R2 or, equivalently, x2 − y2 = −R2 , x · y = 0

}
:

T ± := T± ∩MC
R , T± := M1,4 + iV±, (44)

where the forward and backward light cones V± :=
{

x ∈M1,4 , x0 ≷
√

x2 + (x4)2
}

allow
for a causal ordering in M1,4.

Then, the extended plane waves φτ,ξ(z) =
(

z · ξ
R

)τ

are globally defined for z ∈ T ±

and ξ ∈ C+1,4.
These analytic extensions allow for a consistent QFT for free scalar fields on MR: the

two-point Wightman functionWν(x, x′) = 〈Ω, φ(x)φ(x′)Ω〉 can be extended to the com-
plex covariant, maximally analytic, two-point function having the spectral representation
in terms of these extended plane waves:

Wν(z, z′) = cν

∫
V+

m∪V−m
(z · ξ)−3/2+iν(ξ · z′)−3/2−iν dk

k0
, z ∈ T − , z′ ∈ T +. (45)

Details are found in Ref. [21] and in the recent volume [23].
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4.5. KMS Interpretation of Wν(z, z′) Analyticity

From the analyticity of Wν(z, z′), we deduce thatWν(x, x′) defines a 2iπR/c periodic
analytic function of t, whose domain is the periodic cut plane

C
cut
x,x′ = {t ∈ C , Im(t) �= 2nπR/c , n ∈ Z} ∪ {t , t− 2inπR/c ∈ Ix,x′ , n ∈ Z} , (46)

where Ix,x′ is the real interval on which (x − x′)2 < 0. Hence, Wν(z, z′) is analytic in
the strip

{t ∈ C , 0 < Im(t) < 2iπR/c} , (47)

and satisfies

Wν(x′(t + t′, x), x) = lim
ε→0+

Wν

(
(x, x′(t + t′ + 2iπR/c− iε, x)

)
, t′ ∈ R . (48)

This is a KMS relation at (∼ Hawking) temperature

TΛ =
h̄c

2πkBR
:=

h̄c
2πkB

√
Λ
3

. (49)

5. de Sitterian Tsallis Distribution

5.1. Tsallis Entropy and Distribution: A Short Reminder

Given a discrete (resp. continuous) set of probabilities {pi} (resp. continuous x �→ p(x))
with ∑i pi = 1 (resp.

∫
p(x)dx = 1), and a real q, the Tsallis entropy [24] is defined as

Sq(pi) = k
1

q− 1

(
1−∑

i
pq

i

)
resp. Sq[p] =

1
q− 1

(
1−

∫
(p(x))qdx

)
. (50)

As q → 1, Sq(pi) → SBG(p) = −k ∑i pi ln pi (Boltzmann–Gibbs). The Tsallis entropy
is non additive for two independent systems, A and B, for which p(A ∪ B) = p(A) p(B),
Sq(A ∪ B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B). A Tsallis distribution is a probability
distribution derived from the maximization of the Tsallis entropy under appropriate con-
straints. The so-called q-exponential Tsallis distribution has the probability density function

(2− q)λ[1− (1− q)λx]1/(1−q) ≡ (2− q)λeq(−λx) , (51)

where q < 2 and λ > 0 (rate) arise from the maximization of the Tsallis entropy under
appropriate constraints, including constraining the domain to be positive. More details are
given, for instance, in Ref. [25].

Let us now show how the Tsallis distribution can be viewed as a Λ-deformation of the
Maxwell–Jüttner distribution.

5.2. Coldness in de Sitter

Analogous with the de Sitter plane waves, we introduce the following distributions
on the subset ∼ V+

m of the null cone C+1,4 = {ξ ∈M1,4 , ξ · ξ = 0 , ξ0 > 0}:

φτ,ξ(x) =
(
b · ξ

B

)τ

, b ∈ MB , ξ =

(
k0

mc
> 0,

k

mc
,−1

)
, (52)

where one should note the negative value −1 for ξ4, and

MB ≡ {b ∈M1,4 , b2 = gαβ bαbβ = −B2}, α, β = 0, 1, 2, 3, 4 , (53)

is the manifold of the “de Sitterian five-vector coldness fields” b = b(x).
Like for MR, we use global coordinates on MB:

β0 ∈ R , β = ‖β‖n ∈ R
3 , ‖β‖/B ∈ [0, π] , (54)
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with

MB � b ≡ b(β) = (b0, b1, b2, b3, b4) ≡ (b0,b, b4)

=
(

B sinh(β0/B), B cosh(β0/B) sin(‖β‖/B)n,−B cosh(β0/B) cos(‖β‖/B)
)

, (55)

in such a way that at large B we recover the Minkowskian coldness β:

MB � b ∼
B→∞

(β, B).

We now need to connect the de Sitterian coldness scale B with Λ. Inspired by the

relativistic invariant βa =
c

kBTa
and the KMS temperature TΛ = h̄c

2πkB

√
Λ
3 , we write

B ∝
2π

h̄

√
3
Λ

, i.e., B =
n

h̄
√

Λ
, (56)

where n is a numerical factor. Note that, with the values

Λcurrent = 1.1056× 10−52 m−2 , h̄ = 1.054571817 . . .× 10−34 J s ,

one obtains B ≈ 0.9× 1060 n SI (inverse of a momentum).

5.3. A de Sitterian Tsallis Distribution

We now consider the distribution on MB × V+
m with B = n

h̄
√

Λ
:

N (b, k) = CB

(
b · ξ

B

)−mcB
= CB

(
b0

B
k0

mc
− b

B
· k

mc
+

b4

B

)−mcB

. (57)

b ∈ MB , ξ =

(
k0

mc
> 0,

k

mc
,−1

)
,

where the constant CB involves an associated Legendre function of the First Kind [26].
With the global coordinates (55), and with the constraint β0/B ∈ [0, π/2), the distri-

bution N (b, k) reads

N (b, k)

= CB

(
cosh(β0/B) cos(‖β‖/B) + sinh(β0/B)

k0

mc
− cosh(β0/B) sin(‖β‖/B)

n · k
mc

)−mcB

= CB exp
[
−mcB log

(
cosh(β0/B) cos(‖β‖/B)

)]
× exp

[
−mcB log

(
1 +

sinh(β0/B) k0

mc − cosh(β0/B) sin(‖β‖/B) n·k
mc

cosh(β0/B) cos(‖β‖/B)

)]
. (58)

At large B this expression becomes the Maxwell–Jüttner distribution:

N (b, k) ∼
B→∞

CBe−β·k.

Hence, going back to the original expression

N (b, k) = CB

(
b · ξ

B

)−mcB
= CB

(
b0

B
k0

mc
− b

B
· k

mc
+

b4

B

)−mcB

= CB

(
b4

B

)−mcB (
1 +

b · k
b4mc

)−mcB
, b := (b0,b),
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and introducing

q = 1 +
1

mcB
= 1 +

h̄
√

Λ
mcn

, (59)

We finally obtain the Tsallis-type distribution

N (b, k) = CB

(
b4

B

)−mcB(
1− (1− q)

B
b4 b · k

) 1
1−q

. (60)

Analogously to (21) and all subsequent determinations of thermodynamical quantities,
the following partition function is essential for their transcriptions to the de Sitter case:

ZdS(b, k) =
(
b4

B

)−mcB ∫
V+

m

(
1 +

b · k
b4mc

)−mcB d3k

k0
(61)

= 4πm2c2
(
b4

B

)−mcB ∫ ∞

0

(
1 +
(
b0

b4

)
cosh t

)−mcB
sinh2 t dt. (62)

With the following integral representation of the associated Legendre function of the
First Kind Pμ

ν (z) [26],

Pμ
ν (z) =

2−ν
(
z2 − 1

)−μ/2

Γ(−ν− μ)Γ(ν + 1)

∫ ∞

0
(z + cosh t)−ν−μ−1 sinh2ν+1 t dt , (63)

valid for z /∈ (−∞,−1] and Re(−μ) > Re(ν) > −1, the function (61) reads as

ZdS(b, k) = (8π)3/2Γ(1−mcB)
(

B
b0

)mcB
(

B2 − b · b
b2

0

)mcB/2−3/4

PmcB−3/2
1/2

(
b4

b0

)
. (64)

6. Conclusions

In this contribution, we have forged a groundbreaking link between the Tsallis dis-
tribution, quantum statistics, and the cosmological constant, illuminating the complex
interplay between relativistic thermodynamics and a fundamental cosmological parameter.

Our key findings are encapsulated in Equations (59) and (60). The intricate technical
details of the associated thermodynamic features (flux number, energy-momentum tensor,
etc.) in the de Sitter space-time, along with their physical (and astrophysical!) implications
and determinations (e.g., numerical factor(s) n), are reserved for future exploration. In
this endeavor, analogous studies, such as those found in Refs. [27,28], may provide useful
insights and avenues for the advancement of this project.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. de Broglie, L. Sur la variance relativiste de la température. Cah. Phys. 1948, 31, 1–11.
2. Wu, Z.C. Inverse Temperature 4-vector in Special Relativity. Eur. Phys. Lett. 2009, 88, 20005. [CrossRef]
3. Einstein, A. Ueber das Relativitaetsprinzip und die aus demselben gezogenen Folgerungen. Jahrb. Rad. Elektr. 1907, 4, 411.
4. Planck, M. Zur Dynamik bewegter Systeme. Ann. Phys. 1908, 26, 1–35. [CrossRef]
5. Ott, H. Lorentz-Transformation der Wärme und der Temperatur. Zeitschr. Phys. 1963, 175, 70–104. [CrossRef]
6. Arzeliès, H. Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques. Nuov. Cim. 1965,

35, 792–804. [CrossRef]
7. Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1966, 212, 571–572. [CrossRef]
8. Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1967, 214, 903–904. [CrossRef]

109



Entropy 2024, 26, 273

9. Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. Phys. Lett. A 1996, 223, 401–403.
[CrossRef]

10. Sewell, G.L. On the question of temperature transformations under Lorentz and Galilei boosts. J. Phys. A Math. Theor. 2008,
41, 382003. [CrossRef]

11. Bíró, T.S.; Ván, P. About the temperature of moving bodies. EPL 2010, 89, 30001. [CrossRef]
12. Synge, J.L. The Relativistic Gas; North-Holland Publishing Company: Amsterdam, The Netherlands, 1957.
13. Jüttner, F. Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie. Ann. Phys. 1911, 339, 856–882. [CrossRef]
14. van Dantzig, D. On the phenomenological thermodynamics of moving matter. Physica 1939, 6, 673–704. [CrossRef]
15. Taub, A.H. Relativistic Ranirine-Hugoniot Equations. Phys. Rev. 1948, 74, 328–334. [CrossRef]
16. Gazeau, J.-P.; Graffi, S. Quantum Harmonic Oscillator: A Relativistic and Statistical Point of View. Boll. Della Unione Mat. Ital. A

1997, 3, 815–839.
17. Chacón-Acosta, G.; Dagdug Hugo, L.; Morales-Técotl, A. Manifestly covariant Jüttner distribution and equipartition theorem.

Phys. Rev. E 2010, 81, 021126. [CrossRef] [PubMed]
18. Curado, E.M.F.; Cedeño, C.E.; Soares, I.D.; Tsallis, C. Relativistic gas: Lorentz-invariant distribution for the velocities. Chaos 2022,

32, 103110. [CrossRef]
19. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 2.
20. Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer:

Berlin/Heidelberg, Germany, 1966.
21. Bros, J.; Gazeau, J.-P.; Moschella, U. Quantum Field Theory in the de Sitter Universe. Phys. Rev. Lett. 1994, 73, 1746–1749.

[CrossRef] [PubMed]
22. Garidi, T. What is mass in desitterian physics? arXiv 2003, arXiv:hep-th/0309104.
23. Enayati, M.; Gazeau, J.-P.; Pejhan, H.; Wang, A. The de Sitter (dS) Group and Its Representations, an Introduction to Elementary Systems

and Modeling the Dark Energy Universe; Springer: Berlin/Heidelberg, Germany, 2022.
24. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
25. Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356.

[CrossRef]
26. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau

of Standards: Gaithersburg, MD, USA, 1964.
27. Bíró, T.S. Gyulassy, M.; Schram, Z. Unruh gamma radiation at RHIC. Phys. Lett. B 2012, 708, 276–279. [CrossRef]
28. Bíró, T.S.; Czinner,V.G. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy.

Phys. Lett. B 2013, 726, 861–865. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

110



Citation: Jensen, H.J.; Tempesta, P.

Group Structure as a Foundation for

Entropies. Entropy 2024, 26, 266.

https://doi.org/10.3390/e26030266

Academic Editors: Antony N. Beris

and Wolfgang Muschik

Received: 24 January 2024

Revised: 6 March 2024

Accepted: 15 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Group Structure as a Foundation for Entropies

Henrik Jeldtoft Jensen 1,2,* and Piergiulio Tempesta 3,4

1 Centre for Complexity Science and Department of Mathematics, Imperial College London, South Kensington
Campus, London SW7 2AZ, UK

2 Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259, Nagatsuta-cho,
Yokohama 226-8502, Japan

3 Departamento de Fisica Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain;
p.tempesta@fis.ucm.es

4 Instituto de Ciencias Matemáticas (ICMAT), 28049 Madrid, Spain
* Correspondence: h.jensen@imperial.ac.uk

Abstract: Entropy can signify different things. For instance, heat transfer in thermodynamics or a
measure of information in data analysis. Many entropies have been introduced, and it can be difficult
to ascertain their respective importance and merits. Here, we consider entropy in an abstract sense,
as a functional on a probability space, and we review how being able to handle the trivial case of
non-interacting systems, together with the subtle requirement of extensivity, allows for a systematic
classification of the functional form.

Keywords: entropy; composability; extensivity; information theory; power laws; group theory

1. Introduction

The term “entropy” is used extensively in the modern scientific literature. Originating
in the 19th-century theory of thermal dynamics [1], the concept is now, to a near bewildering
extent, used widely in one form or another across many sciences. For example, entropy is
at the foundation of information theory [2] and is of crucial use in computer science [3,4].
Also, neurosciences make use of entropy both as a tool to characterize and interpret data
from brain scans [5] and, more fundamentally, in theories of the dynamics of the brain and
mind [6]. Generally speaking, entropy is a fundamental notion in complexity science [7].
Here, we present a brief review of some recent mathematical developments in the theory
of entropy.

In mathematical terms, an entropy is a functional S[p] defined on a space of probability
distributions p = (p1, p2, . . . , pW) associated with a W-dimensional event space. Thus, we
use the word “entropy” with the same meaning it assumes, for instance, in the case of
Rényi’s entropy, without direct reference to thermodynamics. From this perspective, the
relevance of entropies is clear. They can be considered as analytic tools that can help in the
analysis of the inter-dependencies within the system behind a given event space. Similarly,
their use in information-theoretic analysis of time series is likewise natural. The connection
between entropies as mathematical functionals and the thermodynamic entropy of Clausius
defined in terms of heat transfer is much less immediate. Here, we will concentrate on the
mathematical aspects of entropies as functionals and only make a few comments on the
possible connection to thermodynamics.

The first question to tackle is which functional form of S[p] yields useful entropies.
i.e., how to limit the infinite number of choices for S[p]. It is well known that the Boltzmann–
Gibbs–Shannon form

SBGS[p] =
W

∑
i=1

pi log
1
pi

(1)

(we assume kB = 1) is the unique possibility if one assumes that the entropy must satisfy
the four Shannon–Kinchin (SK) axioms [8]:
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(SK1) (Continuity). The function S(p1, . . . , pW) is continuous with respect to all its argu-
ments.

(SK2) (Maximum principle). The function S(p1, . . . , pW) takes its maximum value over the
uniform distribution pi = 1/W, i = 1, . . . , W.

(SK3) (Expansibility). Adding an event of zero probability to a probability distribution
does not change its entropy: S(p1, . . . , pW , 0) = S(p1, . . . , pW).

(SK4) (Additivity). Given two subsystems A, B of a statistical system, S(A ∪ B) = S(A) +
S(B|A).

Therefore, to derive entropies of a functional form different from the one in Equation (1),
it is necessary to go beyond the four SK axioms. Various strategies in this respect have been
adopted in the literature.

Let us start by recalling Constantino Tsallis’s elegant observation [9] that the formula

Sq[p] = k
1−∑W

i=1 pq
i

q− 1
, p = (p1, p2, . . . , pW) ∈ [0, 1]W , k ∈ R+ (2)

provides a possible generalization of Boltzmann’s entropy. This is the case in the sense
that Sq is a functional on the space of probability distributions p : {1, 2, . . . , W} �→ [0, 1]W ,
and in the limit q → 1, the entropy Sq[p] becomes equal to the Boltzmann–Gibbs–Shannon
entropy in Equation (1). Tsallis’s 1988 article [9] has inspired a tremendous effort to
generalize Boltzmann’s entropy in different scenarios, including what we will review in
this paper. Tsallis pointed out that the entropy Sq fulfills a specific procedure for combining
independent systems which can be seen as a generalization of the additivity property (SK4)
of the Boltzmann–Gibbs–Shannon entropy. In particular, Tsallis suggested that the free
parameter q should be determined by requiring that Sq for a given system is extensive (for
a recent reference to Tsallis’s argument, see [10]), i.e., that in the uniform case where the
probabilities are pi = 1/W for all i = 1, 2, . . . , W, the entropy Sq ∝ N for n → ∞, where
N denotes the number of components in the system under analysis. For clarity, we note
that when considering physical systems, the entropy may become volume-dependent; for
example, because the number of states available, W, depends on the volume. Volume
dependence can also enter through the probabilities p∗i determined by the maximum
entropy principle.

Although the Tsallis entropy does not fulfill axiom SK4 in its original form and hence
is non-additive, it does satisfy a composition relation different from addition.

Another set of non-Boltzmann–Gibbs–Shannon entropies was derived by Hanel and
Thurner [11] by simply discarding axiom SK4 and then determining the functional form
from the asymptotic behavior of the number of events, or states, W, as a function of the
number of components in the system. However, in this approach, there is no systematic rule
for handling the computation of the entropy of a system consisting of independent parts.

It is well known that in physics, the investigation of required symmetries has often
been helpful. Think of Einstein’s use of the symmetry between different reference frames
to derive special and general relativity theory. Consider also the eightfold way and the
derivation of QCD. Additionally, consider the application of symmetry and group theory to
atomic spectra. Therefore, it seems natural to, rather than discarding the fourth SK axiom,
replace it in a way informed by the symmetry properties (and related group-theoretic
restrictions) that an entropy must necessarily satisfy. Consequently, the question is, which
symmetry cannot be ignored when dealing with entropies?

The fourth SK axiom addresses how the entropy of a system AB, consisting of two
independent parts A and B, can be expressed as a sum of the entropy of A and the entropy
of B. Tsallis entropy also allows the entropy of AB to be expressed in terms of the entropy
of the two parts, not as a sum but as a generalized combination of the entropies of the parts.

The notion of group entropy, introduced in [12,13], goes one step further and exploits
the idea that the process of combining two independent systems can be seen as a group
operation. The group entropies satisfy the three first SK axioms, as well as a fourth
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one, which consists of a generalized composition procedure making use of formal group
theory [14,15].

This approach leads to axiomatically defined entropies, whose composition rule is
defined in terms of the generator G(t) of a suitable formal group law, namely

S[p] =
G
(

ln ∑W
i=1 pα

i
)

1− α
with α > 0 and α �= 1. (3)

Although this restricts the allowed functional forms available for an entropy, it does
not uniquely determine the entropy as the four SK axioms do. Below, we will discuss how
the analysis of combining independent systems using formal group theory, together with
requiring extensivity, allows for a systematic classification of entropies in “universality
classes”. These classes are defined by taking into account how fast the number of available
states W grows with the number of components N. We accomplish this by starting with
a more general functional non-trace form than the one given in Equation (2). For details,
see [12].

By generalizing the Tsallis functional form and requiring composability together with
extensivity, we are able to regard Tsallis entropy as the composable entropy associated with
systems where interdependence between their components forces W to grow slowly, namely
as a power of N. Below, we will discuss why composability on the entire probability space
is an indispensable property of an entropy. We will also address the need for extensivity in
a general sense. We will point out that extensivity can be very relevant even beyond the
thermodynamic need for a well-defined limit as the number of components approaches
infinity. For example, extensivity is essential for using an entropy as a measure of the
complexity of a time series or for handling power-law probability distributions.

2. Why Composability

The need for composability does not arise because real systems can always be re-
garded as a simple combination of subsystems. The requirement is, in a sense, a logical
necessity [16]. When we consider two independent systems with state spaces A and B, we
should obtain the same result if we compute the entropy of the Cartesian combined system
A× B as if we first compute the entropy of A and B separately and then afterward decide
to consider them as one combined system. By Cartesian combination, we mean that the
system A× B is given by the set of states {(a, b)|a ∈ A, b ∈ B}, with the probabilities for
the individual states given by p(a, b) = p(a)p(b). This Cartesian combination immediately
suggests familiar properties from group theory. The composition is as follows:

Commutative: Since we have state spaces in mind, we consider A× B = B× A. The
ordering is immaterial.
Associative: A× (B× C) = (A× B)× C.
“Neutral” element: A× B ∼ A if B = {b}. In other words, A× B is essentially the
same set as A if B consists of one element only. In terms of state spaces, all sets with
one state only are considered to be identical, that is, indistinguishable. In this sense, a
unique “neutral” element exists in our composition process. Accordingly, we want
the entropy of a probability distribution on a set containing a single element to be
zero: indeed, it would correspond to a certainty configuration. Moreover, we want
the entropy of A× B to be equal to the entropy of A if the entropy of B is zero.

The group structure of the Cartesian combination of the event spaces for systems
must also be satisfied by the entropy functional operating on the corresponding probability
spaces. This can be ensured by employing formal group theory [16]. Define the entropy
using the expression in Equation (3), where the function G(t) = t + ∑∞

k=2 βktk is the “group
generator”. Here, the formal power series G(t) is said to be the group exponential in the
formal group literature [15]. The combination of independent systems is now expressed as

S(A× B) = φ(S(A), S(B)), (4)
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where the function φ(x, y) is given by φ(x, y) = G(G−1(x) + G−1(y)). Given a formal
group law, namely when φ(x, y) is a formal power series in two variables, it is possible to
prove that there exists a one-variable formal power series ψ(x) such that φ(x, ψ(x)) = 0.
This series represents the formal inverse and completes the group structure.

3. Why Extensivity

Let us first recall the definitions of extensivity and additivity. We say that an entropy is
extensive if the entropy per component is finite in the limit of infinitely many components, i.e.,

lim
N→∞

S(N)/N = constant < ∞ (5)

An entropy is additive if, for two statistically independent systems A and B, the entropy of
the two systems considered as a combined system is equal to the sum of the entropies, i.e.,

S(A + B) = S(A) + S(B). (6)

When considering the thermodynamics of macroscopic systems with the number of
constituents, N, of the order of Avogadro’s number, the usual procedure is to compute
quantities such as the thermodynamic free energy F for an arbitrary value of N. The limit
of large, essentially infinite systems is then handled by considering intensive quantities,
e.g., the free energy per constituent. Hence, for an entropy to be thermodynamically useful,
it needs to be extensive, given the fundamental thermodynamic relation F = E− TS. Since
the temperature T is an intensive quantity, the entropy must be extensive. Thus, we need
the limit limN→∞ S(N)/N to be well defined.

Outside thermodynamics, entropy finds a significant application within informa-
tion theory as a tool to characterize the complexity of a deterministic or random process
generating a time series. More precisely, we can associate with a time series an ordinal
representation formed by all ordinal patterns of length L ∈ N assigned [17]. Assuming
that all different patterns are allowed for a process, we have W(L) = L!, and each pattern
i will occur with a probability of pi = 1/L!. The Boltzmann–Gibbs–Shannon entropy in
Equation (1) is given by SShan[p] = ln L! � L ln L− L. So, we obtain a diverging entropy
rate S[p]/L as the length of the time series increases. As we will see, this is a common situ-
ation since random processes exhibit super-exponential growth in the number of permitted
patterns. Again, extensivity enters into play. Thus, we would need an entropy that grows
proportionally to the number of allowed patterns in the considered time series.

The widespread occurrence of power-law probability distributions in nature, either
exact or approximate, has long been the focus of self-organized criticality (for an overview,
see [18,19]). It is now clear that power-law distributions with fat tails are common, and for
this reason, it seems natural to consider the extent to which the workhorse of information
theory, the Shannon entropy, can be used as a meaningful entropic measure for such
distributions.

Consider a probability distribution of the following form:

PS(s) =
A
sa for s = 1, 2, . . . , s(N)max. (7)

Here, A is a normalization factor and a is a positive exponent. The variable s denotes the
“size” of some process, e.g., an avalanche or a structure such as a spatial cluster. When
s(N)max grows with N, the usual Boltzmann–Gibbs–Shannon entropy will, in general, not
allow a well-defined limit S[PS](N)/N as N → ∞.

4. The Structure of the Group Entropies

Here, we explain why the expression in Equation (3) is a good starting point for
deriving generalized entropies. First, we address why we choose the argument of the
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generating function G(t) to be ln ∑i pα
i . We also comment on the so-called trace form of the

group entropies given by

S[p] =
W

∑
i=1

piG(ln
1
pi
). (8)

Finally, we briefly recapitulate how the functional form of G(t) is determined by
reference to formal group theory and the requirement that S[p] is extensive on the uniform
(also denoted as the microcanonical) ensemble, given by

pi =
1

W(N)
, for i = 1, 2 . . . , W(N). (9)

The structure of Equation (3) is used as the starting point because G(t) being a group
generator ensures composability for all distributions pi, not only the uniform distributions.
And, taking the argument to be ln ∑i pα

i enables this functional form to generate a range of
well-known entropies, including Boltzmann–Gibbs–Shannon, Rényi, and Tsallis [12]. More
specifically, if one chooses

G(t) =
eat − ebt

(a− b)(α− β)
(10)

one recovers the Boltzmann–Gibbs–Shannon entropy in the limit α → 1; Rényi’s entropy in
the double limit a → 0, b → 0; and Tsallis’s entropy in the double limit a → 1, b → 0.

4.1. Extensivity and the Group Law G(T)

Let us now briefly describe how the requirement of extensivity determines the group
law G(t) in Equation (3). Details can be found in [20,21]. For a given dependence of the
number of available states W(N), we want to ensure that the entropy given in Equation (3)
is extensive, i.e., that on the uniform ensemble pi = 1/W(N) for i = 1, . . . , W(N) we have
limN→∞ S[p]/N = constant.

We can express this as

S
(

pi =
1

W

)
= λN. (11)

Asymptotically, we have

S
(

1
W

)
=

G(ln(W1−α)

1− α
≈ λN. (12)

Then, we invert the relation between S and G, which, by Equation (12), amounts to inverting
the relation between G and N. For G(t) to generate a group law, we must require G(0) =
0 [12,16], so we adjust the expression for G(t) accordingly and conclude that

G(t) = λ(1− α){W−1[exp(
t

1− α
)]−W−1(1)}. (13)

Hence, given the asymptotic behavior of W(N), we derive different corresponding en-
tropies. In the expressions below, λ ∈ R+, α > 0, and α �= 1 are free parameters.
Non-trace-form case:

(I) Algebraic, W(N) = Na

S[p] = λ

{
exp

[
ln(∑

W(N)
i=1 pα

i )

a(1− α)

]
− 1

}
. (14)

(II) Exponential, W(N) = kN

S[p] =
λ

ln k
ln(∑

W(N)
i=1 pα

i )

1− α
. (15)
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This is, of course, the Rényi entropy.
(III) Super-exponential, W(N) = NγN

S[p] = λ

{
exp

[
L
( ln ∑

W(N)
i=1 pα

i
γ(1− α)

)]
− 1

}
. (16)

This entropy was recently studied in relation to a simple model in which the compo-
nents can form emergent paired states in addition to the combination of single-particle
states [22].

So far, we have only considered the so-called non-trace form of the group entropies
given in Equation (3). A set of entropies can be constructed in the same manner, starting
with the trace-form ansatz in Equation (8).

4.2. Trace-Form Group Entropies

It is interesting to observe that the ansatz in Equation (8) directly leads to either the
Boltzmann, the Tsallis, or an entirely new entropy, depending on the asymptotic behavior
of W(N). By applying the procedure described in Section 4.1, we obtain the following three
classes corresponding to the ones considered for the non-trace case.
Trace-form case:

(I) Algebraic, W(N) = Na

S[p] = λ ∑
W(N)
i=1 pi

[
( 1

pi
)

1
a − 1

]
(17)

= 1
q−1 (1−∑

W(N)
i=1 pq

i ). (18)

To emphasize the relation with the Tsallis q-entropy, we have introduced q = 1− 1/a
and λ = 1/(1− q). Note that the parameter q is determined by the exponent a, so it is
controlled entirely by W(N).

(II) Exponential, W(N) = kN , k > 0

S[p] =
λ

ln k

W(N)

∑
i=1

pi ln
1
pi

. (19)

This is the Boltzmann–Gibbs–Shannon entropy.
(III) Super-exponential, W(N) = NγN , γ > 0

S[p] = λ
W(N)

∑
i=1

pi

{
exp
[

L(− ln pi
γ

)

]
− 1
}

. (20)

4.3. Examples of Systems and Corresponding Group Entropies

To illustrate the classification of group entropies based on the asymptotic behavior of
W(N), we consider three Ising-type models:

(a) The Ising model on a random network [11].
(b) The usual Ising model, for example, with nearest-neighbor interaction on a hyper-

cubical lattice.
(c) The so-called pairing model in which Ising spins can form paired states [22].

Let E denote the total energy of the system. We are interested in the asymptotic behavior
of the number of possible states for the three models as a function of N for fixed energy
per component ε = E/N. First, consider (a). As explained in [11], W(N) ∼ Na when the
fraction of interaction links, the connectance, in the considered network, is kept constant
as the number of nodes N is increased. The exponent a is given by the ratio between the
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energy density and the connectance. The entropy corresponding to this functional form of
W(N) is, for all values of the exponent a, given by the Tsallis entropy [21].

The entropy corresponding to the standard Ising model (case (b)) with W(N) = 2N is
the Boltzmann–Gibbs–Shannon entropy. The pairing version of the Ising model (case (c))
admits a super-exponential growth in the number of states W(N) ∼ NγN , leading us to a
new functional form of the entropy [22]

Sγ,α[p] = exp

[
L

(
ln ∑W

i=1 pα
i

γ(1− α)

)]
− 1. (21)

5. Group Entropies and the Ubiquity of the Q-Exponential Distribution

It is well known that the q-exponential form relating to the Tsallis q-entropy provides
a very good fit to an impressively broad range of data sets (see, e.g., [10]). This may, at
first, appear puzzling given that we saw in Section 4.1 that the Tsallis entropy corresponds
to one of the three classes considered here, namely systems with strong interdependence
between the components that W(N) ∼ Na. The reason that the q-exponential appears to be
much more pervasive than one would expect, given that the q-entropy is restricted to the
case W(N) ∼ Na, may be due to the following.

Consider the maximum entropy principle. For all the classes of entropies considered
in Section 4, the probability distribution that maximizes the entropy is a q-exponential.
The probability distribution for the specific case of W(N) ∼ kN is the usual exponential
Boltzmann distribution. But since the Boltzmann distribution is the limiting case of the
q-exponential for q → 1, we can say that, independently of the asymptotic behavior of
W(N), the maximum entropy principle always leads to q-exponential distributions [21].

How can this be? The reason is the functional form of the argument

x ≡ ln
N

∑
i=1

pα
i

of the ansatz in Equation (3). When one applies Lagrange multipliers and extremizes the
entropy in Equation (3), the q-exponential functional form will arise from the derivative
∂x/∂pi. The remaining factors in the expression for the derivative of S[p] will depend on
the functional form of the group law G(t) but will formally just be a constant if evaluated
on the maximizing distribution p∗ and do not depend explicitly on pi.

6. An Entropic Measure of Complexity

Fully interacting complex systems possess a number of microstates W(N) that may be
different from the Cartesian exponential case W(N) = ΠN

i=1ki, where ki is the number of
states available to component number i in isolation. When interactions freeze out states,
W(N) can grow slower than exponentially with increasing N. In contrast, when interactions
allow for the creation of new states from the combination of components, W(N) can grow
faster than exponentially. As an example, think of hydrogen atoms that form hydrogen
molecules H + H → H2. The states of H2 are not just the Cartesian product of free single
hydrogen atomic states.

The possible difference between the cardinality of the state space of the fully interacting
system and the state space formed as a Cartesian product of the states available to the
individual components can be used to construct a new measure of the degree of emergent
interdependence among the components of a complex system. We can think of this as a
quantitative measure of the degree of complexity in a given system. We imagine the entire
system AB to be divided into two parts, A and B, and compare the entropy of the system
A× B, obtained by combining the micro-sates of the two parts as a Cartesian product, with
the system AB, obtained by allowing full interaction between the components of A and
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those of B. We denote by AB this fully interacting system. The complexity measure is given
by [20]

Δ(AB) = S(A× B)− S(AB) = φ(S(A), S(B))− S(AB). (22)

From the dependence of Δ(AB) on the number of components in the separate systems
A and B, one can, in principle, determine the kind of emergence generated by the interac-
tions in a specific complex system. In [20], we conjectured that the number of available
states for the brain grows faster than exponentially in the number of brain regions involved.
It might, at first, appear impossible to check this conjecture. However, experiments like
those conducted on rat brain tissue, such as the famous avalanche experiment by Beggs
and Plentz [23], seem to open up the possibility for a study of Δ(AB) as a function of tissue
size. We imagine it would be possible to study a piece of tissue of size N and one of size 2N,
allowing, at least in principle, to determine how Δ(AB) behaves for such a neuronal system.
A different, although related, notion of complexity, the defect entropy, was proposed in [24].

7. Group Entropy Theory and Data Analysis

The theory of group entropies has recently proved to be relevant in data analysis. One
important reason for this relevance is extensivity. When the number of patterns that may
occur in a given time sequence depends, in a non-exponential way, on the length L of the
sequence, the Shannon-based entropy of the sequence S(L) will not permit a well-defined
entropy rate S(L)/L because the Shannon entropy will not be extensive in L. This may,
for example, pose a problem for the widely used Lempel–Ziv [25] complexity measure.
This is similar to the discussion above concerning how the Boltzmann-Gibbs-Shannon
entropy fails to be extensive on state spaces that grow non-exponential in the number of
constituents. We will see below that time series very often contain a number of patterns
that grow super-exponentially in the length of the sequence.

To discuss this fundamental application of group entropies, we start with a brief
review of the ordinal analysis of time-series data. We follow the discussion and notations
in [17,26,27]. Consider the time series

(xt)t≥0 = x0, x1, . . . , xt, . . .

where t represents a discrete time and xt ∈ R. Let L ≥ 2. We introduce the sequence of
length L (or L-sequence)

xL
t := xt, xt+1, . . . , xt+L−1

Let ρ0, ρ1, . . . , ρL−1 be the permutation of 0, 1, . . . , L− 1 such that

xt+ρ0 < xt+ρ1 < . . . < xt+ρL−1 . (23)

We denote the rank vector of the sequence xL
t as follows:

rt := (ρ0, ρ1, . . . , ρL−1), (24)

The rank vectors
rt are called ordinal patterns of length L (or L-ordinal patterns). The sequence xL

t is said
to be “of type” rt. In this way, given the original time series (xt)t≥0, we have constructed an
ordinal representation associated with it: the family of all ordinal patterns (rt)t≥0 of length L.

We denote by SL the group of the L! permutations of 0, 1, . . . , L− 1, which represents
the set of symbols (also called “alphabet”) of the ordinal representation.

In the following, we consider discrete-time stationary processes X = (Xt)t≥0, both
deterministic and random, taking values in a closed interval I ⊂ R. We define a “deter-
ministic process” as a “one-dimensional dynamical system” (I,B, μ, f ), where I is the state
space (a bounded interval of R), B is the “Borel σ-algebra” of I, μ is a “measure” such that
μ(I) = 1, and f : I → I is a μ-invariant map. In this case, the image (Xt)t≥0 of X is the
orbit of X0, i.e., (Xt)t≥0 = ( f t(X0))t≥0, where f 0(X0) = X0 ∈ I and f t(X0) = f ( f t−1(X0)).
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First, we associate with an ordinal representation the probability p(r) of finding an ordinal
pattern of a given rank r ∈ SL. To this aim, we assume the stationary condition: for k ≤ L− 1,
the probability of Xt < Xt+k cannot depend on t. This condition ensures that estimates
of p(r) converge as data increase. Non-stationary processes with stationary increments,
such as the fractional Brownian motion and the fractional Gaussian noise, satisfy the
condition above.

7.1. Metric and Topological Permutation Entropy

Let X be a deterministic or random process taking real values. Let p(r) be the probabil-
ity of a sequence XL

t generated by X being of type r, and let p = p(r) be the corresponding
probability distribution. We define the following:

(i) If p(r) > 0, then r is a permitted pattern for X.
(ii) If p(r) = 0, then r is a forbidden pattern.

The permutation metric entropy of order L of p is defined as

H∗(XL
0 ) = − ∑

r∈SL

p(r) ln p(r). (25)

The topological entropy of order L of the finite process XL
t , H∗0 (XL

t ) is the upper limit of the
values of the permutation metric entropy of order L. Formally, we obtain it by assuming
that all allowed patterns of length L are equiprobable:

H∗0 (XL
t ) := lnAL(X), (26)

where AL(X) is the number of allowed patterns of length L for X. It is evident that the
following inequalities hold:

H∗(XL
0 ) ≤ lnAL(X) ≤ ln L!

We observe that AL(X) = L! if all L-ordinal patterns are allowed.

7.2. Bandt–Pompe Permutation Entropy

In their seminal paper [28], Bandt and Pompe introduced the following notions:

• Permutation metric entropy of X:

hM(X) := lim sup
L→∞

1
L

H∗(XL
0 ) = − lim sup

L→∞

1
L ∑

r∈SL
p(r) ln p(r),

where XL
0 = X0, . . . , XL−1.

• Topological permutation entropy of X:

hT(X) := lim sup
L→∞

1
L

H∗0 (XL
0 ) = lim sup

L→∞

1
L

lnNL(X).

An important question is, what is the relationship between the permutation metric
entropy and the standard Kolmogorov–Sinai (KS) entropy of a map?

Let f be a strictly piecewise monotone map on a closed interval I ⊂ R. The vast
majority of, if not all, one-dimensional maps used in concrete applications belong to the
class of piecewise monotone maps. In [29], it was proved that

hM( f ) = hKS( f ).

The same relation holds for the topological versions of the two entropies. This is a
fundamental result since it allows us to compute the KS entropy using the ordinal analysis
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approach. The above theorem and its generalizations imply that the number of permitted
patterns of length L for a deterministic process grows exponentially as L increases.

|L-permitted patterns for deterministic X = f | ∼ eτ( f )L,

where τ( f ) is the topological KS entropy. In turn, this implies that the number of prohibited
patterns grows super-exponentially.

At the other extreme, we have random processes without prohibited patterns. An
elementary example is white noise. According to Stirling’s formula,

|L-possible patterns | = L! ∼ eL ln L.

It is also worth noting that noisy deterministic time series may not have prohibited patterns.
For example, in the case of dynamics on a non-trivial attractor where the orbits are

dense, observational white noise will “destroy” all prohibited patterns, regardless of how
little the noise is.

In general, random processes exhibit super-exponential growth in permitted patterns.
Random processes can also have prohibited patterns. In this case, the growth will be

“intermediate,” meaning it is still super-exponential but subfactorial.

7.3. A Fundamental Problem

For random processes without prohibited patterns, the permutation entropy diverges
in the limit as L → ∞:

hT(X) = lim
L→∞

1
L

ln|L-possible permitted patterns| = lim
L→∞

1
L

ln L! = lim
L→∞

ln L = ∞

Also, in general, hM(X) = ∞. Therefore, it is natural to consider the problem of extending
the notion of permutation entropy to make it an intrinsically finite quantity. We assume
that for a random process X,

|L-possible permitted patterns for X| ∼ eg(L).

where g(L) is a certain function that depends on the type of process considered.
Can we find a suitable, generalized permutation entropy that converges as L → ∞?

7.4. Group Entropies and Ordinal Analysis

We can obtain a new solution to this problem through the theory of group entropies.
Philosophy: Instead of using the Shannon-type permutation entropy introduced by

Bandt and Pompe as a universal entropy valid for all random processes, we will adapt our
entropic measure to the specific problem we wish to address:

• We will classify our processes into complexity classes, defined by complexity functions
g(t). These classes, in ordinal analysis, represent a notion entirely analogous to the
universality class described earlier (inspired by statistical mechanics).

• Each complexity class will correspond to a group permutation entropy, i.e., a specific
information measure designed for the class under consideration.

• This measure will be convergent as L → ∞.

Functions and Complexity Classes

A process X is said to belong to the complexity class g if

ln |allowed L-patterns for X|︸ ︷︷ ︸
AL(X)

∼ g(L) for L → ∞.
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The bi-continuous function g(t) is called the complexity function of X. The process X belongs
to the exponential class if

g(L) = cL (c > 0)

X belongs to the factorial class if
g(L) = L ln L

Example 1. A deterministic process X belongs to the exponential class. A random process X like
white noise (X i.i.d.) belongs to the factorial class.
A process X belongs to the subfactorial class if one of the following conditions holds:

(i)

g(L) = o(L ln L)

(ii)

g(L) = cL ln L; with ; 0 < c < 1

Example 2. Processes with

g(L) = L ln(k) L; ; (ln(k) L ≡ ln ◦ ln ◦ · · · ◦ ln︸ ︷︷ ︸(L)
k times

) with k ≥ 2

belong to subfactorial class (i). Processes with g(L) = cL ln L, 0 < c < 1 can also be constructed
explicitly.

7.5. Group Permutation Entropy

Main Result: The conventional permutation entropy of Bandt–Pompe can be consis-
tently generalized. According to our philosophy, the complexity class g “dictates” its associated
permutation entropy, which becomes finite in the limit of large L.

Definition 1. The group entropy of order L for a process X of class g is

Z∗g,α(pL) = g−1(Rα(pL))− g−1(0)

where pL is the probability distribution of the L-ordinal patterns of X0L = X0, . . . , XL−1 and
Rα(pL) is the Rényi entropy. The corresponding topological group entropy of order L is

Z∗g,0(pL) = g−1(lnAL(X))− g−1(0)

The group metric permutation entropy is

z∗g,α(X) = lim
L→∞

1
L

g−1(Rα(pL))

The topological group permutation entropy is

z∗g,0(X) = lim
L→∞

1
L

g−1(lnAL(X))

The functions defined in this manner are group entropies. Furthermore, they satisfy the inequalities

0 ≤ z∗g,α(X) ≤ z∗g,0(X) = 1 ∀α > 0.

The following are various examples of group permutation entropies:
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(a) For gexp(t) = ct : Z∗gexp,α(pL) =
1
c

Rα(pL)

(b) For gfac(t) = t ln t : Z∗gfac,α(pL) = eL[Rα(pL)] − 1

(c) For gsub(t) = ct ln t (0 < c < 1) : Z∗gsub,α(pL) = eL[Rα(pL)/c] − 1 (27)

8. Thermodynamics

The application of non-Boltzmann–Gibbs–Shannon entropies to thermodynamics is
subtle. We recall that in standard thermodynamics, it is possible to interpret the Lagrange
multiplier corresponding to the constraint on the average energy as the inverse of the
physical temperature. However, it is not clear if a similar procedure can be adopted for any
generalized entropy.

One can certainly derive the probability weights p∗i corresponding to the extrema of

J = S− λ1(∑ pi −N )− λ2(∑
i

Ei pi − E) (28)

and we can compute the entropy for these weights S[p∗i ]. However, given an arbitrary gen-
eralized entropy S, we do not know if, for some physical systems, there exists a relationship
between S[p∗i ] and Clausius’s thermodynamic entropy defined in terms of heat flow. Hence,
to us, the relationship between generalized entropies and thermodynamics in the sense of
a theory of heat and energy of physical systems, apart from several interesting analogies,
remains an open field of research. Detailed discussions concerning the construction of
generalized thermostatistics for the case of the Tsallis entropy Sq are available, e.g., in the
monographs in [30,31].

9. Discussion

The group entropy formalism described has the pleasant property that all group
entropies arise systematically and transparently from a set of underlying axioms combined
with the requirement of extensivity. This approach is in contrast to those adopted to define
many of the existing entropies, which, sometimes, are intuitively proposed or justified by
axioms that ignore the need for composability. Many of the most commonly used entropies
are included and classified within the group theoretic framework.

The use of information measures adapted to the universality classes of systems, which
are extensive by construction, looks promising in several application contexts, such as the
study of neural interconnections in the human brain, classical and quantum information
geometry, and data analysis in a broad sense. We plan to further investigate complex
systems with super-exponentially growing state spaces as a paradigmatic class of examples
where these new ideas can be fruitfully tested.

10. Conclusions

We have reviewed a group-theoretic approach to the classification and characterization
of entropies, regarded as functionals on spaces of probability distributions. The theoretical
framework proposed is axiomatic and generalizes the set of Shannon–Khinchin axioms by
replacing the fourth additivity axiom with a more general composition axiom. Perhaps the
most relevant achievement so far is the systematic classification of the multitude of existing
entropies in terms of the rate at which the corresponding dimension of the state space grows
with the number of components in the system. A related result is a constructive procedure
for entropies, which exhibit extensivity on state spaces of any assigned growth rate. In
turn, this property triggers the application of group entropies to information geometry and
data analysis.
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Abstract: We explore formal similarities and mathematical transformation formulas between general
trace-form entropies and the Gini index, originally used in quantifying income and wealth inequalities.
We utilize the notion of gintropy introduced in our earlier works as a certain property of the Lorenz
curve drawn in the map of the tail-integrated cumulative population and wealth fractions. In
particular, we rediscover Tsallis’ q-entropy formula related to the Pareto distribution. As a novel
result, we express the traditional entropy in terms of gintropy and reconstruct further non-additive
formulas. A dynamical model calculation of the evolution of Gini index is also presented.

Keywords: entropy; Gini index; Lorenz curve; non-extensive

1. Motivation

This paper responds to a call by the journal Entropy to accompany various contribu-
tions in honor of Constantino Tsallis’ 80th birthday. Professor Tsallis initiated the field
of non-extensive statistical mechanics with his seminal paper in 1988 [1] and kept this
field flourishing with his continuous activity since then. One of his recent books on Non-
Extensive Statistical Mechanics [2], has the subtitle “Approaching a Complex World”. It
characterizes the range of research fields, beyond physics, where non-additive entropy
formulas can be applied [3–7]. Adding a physicist’s approach to the mathematical prede-
cessor formulas, such as Rényi entropy [8], and further generalizations of the Boltzmannian
log-formula proliferating in the field of informatics and mathematics [9–12], his work is
acknowledged to date in a wide and strengthening community of researchers dealing with
complexity [13–20].

Over the years, newcomers and opponents of non-extensive thermodynamics have
often argued that using any formula between entropy and probability besides the classical
Boltzmann–Gibbs–Shannon version can only then be generally applied, and it is advised to
use it if it moves beyond merely being an alternative formal possibility—when it must be
applied. Therefore, there is an ongoing challenge to find real-world data and applications
that can only be described by a non-Boltzmannian entropy formula. Such cases are found
with increasing frequency in complex systems. An interesting approach is presented in [21]:
it shows how to analyze nuclear production data to reveal non-extensive thermodynamics.
(Our earlier calculations of fluctuations and deviations from an exponential kinetic energy
distribution due to the finiteness of a heat bath, presented in several publications, should
not be cited here, because the Editors at MDPI consider self-citations, even one sixth of the
total, to be biased and unnecessary.)

Entropy 2024, 26, 185. https://doi.org/10.3390/e26030185 https://www.mdpi.com/journal/entropy124
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The Tsallis and Rényi entropy formulas are monotonic functions of one another; there-
fore, their respective canonical equilibrium distribution functions coincide, not accounting
for constant factors related to the partition sum. Since the Rényi entropy is defined as

SR =
1

1− q
ln ∑

i
pq

i , (1)

and the Tsallis entropy as

ST =
∑i(pq

i − pi)

1− q
=

eSR(1−q) − 1
1− q

, (2)

one obtains, in the canonical approach to the physical energy distribution,

∂ST
∂pi

= eSR(1−q) ∂SR
∂pi

= βEi + α. (3)

The actual energy level is denoted by Ei in this formula, while α and β are Lagrange
multipliers. The former is related to the partition function and the latter to the absolute
temperature (via the average value of the energy). The prefactor Equation (3) is independent
of pi; therefore, the functional forms of the canonical PDFs coincide, reconstructing the
Pareto or Lomax distribution [22–25].

In a microcanonical approach, all trace-form entropies are maximal at the distribution
uniform in x, provided that the non-trivial function in the formula satisfies the general
properties of non-negativity and convexity. Constraining the expectation value of the base
variable, 〈x〉, of which we intend to study the probability density function, P(x), leads to
an entropy depending on the constrained value, say α + β〈E〉 for an energy (E) distribution.
These functions, of course, vary. The properties of entropy formulas also differ: while the
Rényi entropy is additive for the factorization of probabilities and the Tsallis q-entropy is
not, the q-entropy is formally an expectation value and the Rényi entropy is not.

In this paper, we first briefly review the Gini index and the Lorenz curve, spanning
a map of the tail-cumulative fractions of a population and the wealth owned by this
population. We furthermore review the definition and basic properties of gintropy, defined
as the difference between the above two cumulatives. Following this, we introduce some
gintropy formulas being formal doubles of well-known and used entropies. Finally, we
explore the transformations from one (entropic) view to the other (gintropic view) and
present a dynamical model calculation of the evolution of the Gini index based on a
master equation.

2. About Gintropy

In our search for additional motivation for the use of non-Boltzmannian entropy
formulas, we encounter the Gini index [26–28], classically used in income and wealth data
analyses. It measures the expectation value of the absolute difference, 〈|x− y|〉, normalized
by that of the sum, 〈x + y〉 = 2〈x〉, when taking both variables from the same distribution.
It delivers values between zero and one (100%):

G =
〈|x− y|〉
〈x + y〉 =

1
2〈x〉

∞∫
0

dx
∞∫

x

dy|y− x|P(x)P(y). (4)

Here, P(x) is the underlying PDF. This formula can be transformed into several alternate
forms, as has been shown in Ref. [29] in detail. We have also found that a function defined
by tail-cumulative functions, gintropy, has properties very similar to those of an entropy–
probability trace formula function.

125



Entropy 2024, 26, 185

Two basic tail-cumulative functions constitute the definition and usefulness of gintropy.
The first is the cumulative population,

C(x) ≡
∞∫

x

dy P(y), (5)

and the second is the cumulative wealth normalized by its average value (also called the
scaled and (from below) truncated expectation value),

F(x) ≡
∞∫

x

dy
y
〈x〉P(y). (6)

We note here that the notions “population” and “wealth” are used in a general sense:
any type of real random variable x associated with a well-defined PDF, P(x), has a tail-
cumulative fraction (cf. Equation (5)) and a scaled fraction of the occurrence of the basic
variable defined in Equation (6). For example, x may denote the number of citations that
an individual author receives and P(x) the distribution of this number in the analyzed
population. Then, C(x) is the fraction of papers cited x times or more, and F(x) is the
fraction of citations received for these relative to all citations [30]. The above definitions
and the following analysis of gintropy can be used for any PDF defined on non-negative
variables x ≥ 0 and having a finite expectation value.

The Lorenz map [31] plots the essence of a PDF on a C− F plane. Since always F ≥ C,
following from the positivity of the PDF, P(x), the Lorenz curve always runs on this map
above or on the diagonal. At x = ∞, both quantities are vanishing, F(∞) = C(∞) = 0,
because the integration range shrinks to zero, and they also coincide at x = 0, following
from their normalized definitions: F(0) = C(0) = 1. The Gini index can be described as
the area fraction between the Lorenz curve and the diagonal to the whole upper triangle
(with an area of 1/2). The quantity of gintropy, introduced by us in an earlier work [29], is
the difference

σ ≡ F− C. (7)

This is a function of the fiducial variable x, and it vanishes as a function only for those
PDFs that allow only a single value for x. The gintropy is non-negative and it shows
a definite sign of curvature. On the Lorenz map, it is best viewed and expressed as a
function of C. The connection between these two variables, derived from Equation (5), is
given by dC/dx = −P(x). Likewise, dF/dx = −xP(x)/〈x〉 follows from the definition in
Equation (6). Then, it is easy to establish that it has a maximum exactly at the average case,
x = 〈x〉:

dσ

dC
=

dF
dC
− 1 =

x
〈x〉 − 1. (8)

The second derivative of gintropy in the Lorenz map is always negative:

d2σ

dC2 =
1
〈x〉

dx
dC

= − 1
〈x〉P(x)

< 0. (9)

As a consequence, the gintropy, σ(C), has a single maximum (between two maxima, there
would be a region with an opposite-sign second derivative for a continuous function). This
maximum can be expressed as a function of the average value:

σmax = F(〈x〉)− C(〈x〉). (10)
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Finally, the Gini index itself is twice the area under the gintropy:

G = 2
1∫

0

dC σ(C). (11)

3. Entropy from Gintropy

It is important to consider a few simple cases for gintropy. First of all, a PDF allowing
only a singular value, such as P(x) = δ(x− a), leads to vanishing gintropy. Then, σ = 0
for all C ∈ [0, 1]. This case is degenerate; the second derivative is also zero across the
whole interval and there is no definite maximum. A few examples have been discussed in
Ref. [29]. Here, we use the Tsallis–Pareto distribution, as a limiting case, as it includes the
Boltzmann–Gibbs exponential too. The tail-cumulative function is given as a two-parameter
set with a power-law tail and the proper C(0) = 1 normalization:

C(x) = (1 + ax)−b. (12)

Here, a and b are positive. It follows a PDF,

P(x) = ab(1 + ax)−b−1, (13)

an expectation value of 〈x〉 = 1/a(b− 1), and finally a gintropy formula:

σ = abx(1 + ax)−b = b
(

C1−1/b − C
)

. (14)

Related to the more popular form, one uses q = 1− 1/b as a parameter and arrives at the
q-gintropy formula:

σq(C) =
C q − C
1− q

. (15)

The q → 1 limit of this formula is the Boltzmann–Gibbs–Shannon relation:

σ1(C) = −C ln C. (16)

The Gini index in the Tsallis–Pareto case is easily obtained as being

G =
2

1− q

1∫
0

(C q − C)dC =
1

q + 1
. (17)

The formal analogy between the expressions of gintropy in terms of the tail-cumulative
data population on the one hand and the entropy density in terms of the PDF on the other
hand is obvious (cf. Equation (15)). Moreover, the general form of trace entropy is given as

S =

∞∫
0

dx P(x) s(1/P(x)), (18)

while the Gini index is obtained according to our previous discussion above as

G =

∞∫
0

dx P(x) 2σ(C(x)). (19)

Here, we utilize the fact that
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1∫
0

dC f (C) =

∞∫
0

dx P(x) f (C(x)) (20)

for an arbitrary integrand, f (C(x)).
Despite the intriguing analogies, we do not have a quantity that would be equivalent to

the total entropy in social and econophysics. On the other hand, the nontrivial identification,
2σ(C(x)) = s(P(x)), would make the Gini index equal to the entropy, G = S. Since P(x) is
a negative derivative of the cumulative function C(x), the above G = S correspondence is
a complex differential equation for C. It may therefore be valid only for a single PDF, P(X),
for the solution of the above implicit differential equation. In conclusion, gintropy cannot
be replaced by entropy for a general PDF.

Let us review, briefly, how to obtain the general trace-form entropy once the gintropy,
σ(C), is known. To begin with, one uses a general function, s(1/P), in the definition of
entropy with the required non-negativity and convexity properties. Due to its relation to
the fiducial PDF, P(x), and using Equation (18), we obtain

S =

∞∫
0

dx P(x) s(1/P(x)) =

1∫
0

dC s
(
−〈x〉σ′′

)
(21)

with the short-hand notation

σ′′ ≡ d2σ

dC2 . (22)

In particular, the Boltzmann entropy becomes

SBG = ln〈x〉 +
1∫

0

dC ln(−σ′′(C)). (23)

4. Dynamics of the Gini Index

After the introduction of gintropy, the authors of [32] provided several examples for
different socioeconomic systems and compared the inequality measure G for their wealth
distribution. Here, we supplement this steady picture with a dynamic one. We demonstrate,
based on the example of the linear growth with reset (LGGR) model [33,34], that the Gini
index mostly (i.e., not accounting for a short overshoot period, probably of numerical
origin) increases monotonically, as the wealth distribution tends towards the stationary
Tsallis–Pareto distribution. This behavior of the Gini index is not yet proven for the general
case, in contrast to the entropy, cf. [32].

As in [32], the society members may have k ≥ 0 discrete units of wealth. We assume
that these members of the society acquire another unit of wealth with a rate that is linear to
their actual wealth value (the rich get richer effect). We also incorporate a constant reset
rate as in [32].

The evolution equation for the probability density function of the wealth distribution
in the LGGR model is applied here to a binned wealth representation. In this case, the
evolution equation, denoting ∂P

∂t with an overdot, reads

Ṗ(k, t) = μ(k− 1)P(k− 1, t)− (μ(k) + γ(k))P(k, t), (24)

where P(k, t) is the actual fraction of people in the wealth slot around k. In other words,
one becomes richer with a state-dependent rate, μ(k), while there is a reset mechanism
to zero wealth with the rate γ(k). This means not only a ruin probability rate, but also
includes any type of exit of people, receiving the income k, from the studied population
(e.g., resorting to pensions or the decay of hadrons containing energy k). The boundary
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condition at P(0, t) ensures that
∞
∑

k=0
P(k, t) = 1 remains constant in time. This requirement

results in
Ṗ(0, t) = 〈γ〉(t) − (γ(0) + μ(0))P(0, t), (25)

with 〈γ〉(t) = ∑k kP(k, t).
We solve Equation (24) as a time recursion problem, with the linear μ(k) = ak + b and

the constant γ(k) = γ parameter functions. In the numerical simulation, we discretize the
possible values of k and use them as an integer index. Starting from a theoretical society
where everybody has zero wealth, P(k, 0) = δ(k) is represented by a Kronecker delta δk,0,
delivering a vanishing Gini index, G = 0. Moreover, the whole Lorenz curve shrinks in this
case to the diagonal and correspondingly the gintropy vanishes everywhere as a function
of either k or C(k).

The growth rate μ(k), which is linear in k, is a common choice when dealing with the
distribution of network hubs’ connection numbers and is called a preferential rate [35–38].
Obviously, the linear assumption is the mathematically simplest between all possible mod-
els. Nevertheless, further assumptions, such as a quadratic one, also can be made. The linear
preference in the growth rate, utilized in the present discussion, together with a constant
reset rate, has the Tsallis–Pareto distribution as the stationary PDF in the LGGR model.

We also observe in our numerical simulations that the Tsallis–Pareto power-law tailed
wealth distribution develops, as was already anticipated in Ref. [32], cf. Figure 1. Fur-
thermore, in Ref. [39], analytical expressions were given for the evolution of a general
distribution for the cases with constant rates and for the presently discussed case of a linear
growth rate with a constant reset rate.

Figure 1. The time evolution of the wealth distribution starting from a society in which everybody
has zero wealth.

We follow the time evolution of the Lorenz curve, F vs. C, as well as the time-
dependent Gini index. The results of the numerical calculation are shown in the upper and
lower panels of Figure 2, respectively.

As can be observed, the wealth inequality grows in this theoretical example until
it reaches its stationary position. The apparent slight overshoot at mid-time may be a
numerical consequence of the time discretization. Recent, yet unpublished, analytical
calculations of the time evolution of the Gini index in the very unique case studied numeri-
cally in the present paper indicate that G(t) would monotonically increase from zero to its
stationary value. These somewhat laborious calculations will be published in a separate
paper. On the other hand, since the Gini index is not an entropy underlying the second law
in thermodynamics, the issue of the monotonity of the Gini index’s evolution in the general
case calls for further investigations for a better understanding.
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Figure 2. Time evolution of the Lorenz curve (upper panel) and the Gini index (lower panel). The
steady dotted line in the lower panel corresponds to the final stationary Gini index.

5. Summary

In summary, the quantity of gintropy, the difference between two tail-cumulative
integrals of any PDF defined on non-negative values, features a formal dependence on the
cumulative data population fraction having the form of various entropy formulas in terms
of the original PDF [32]. In this paper, the particular form of Tsallis entropy was discussed
in some detail.

The Gini index, used in economic studies to describe income and wealth inequality
in societies, is an integral of the gintropy-cumulative data population fraction function.
However, the Gini index–total entropy correspondence cannot be generally held, but only
for a special PDF, given the trace entropy formula specification. Without this, the gintropic
view of known entropy formulas can be obtained by expressing the PDF with the help of
the gintropy’s second derivative with respect to the cumulative data population fraction
and the average value of the base variable.

Time evolution in the particular but widespread case of a linear growth rate paired
with a uniform reset rate was obtained numerically to demonstrate the evolution of the
Gini index in time. A slight overshoot beyond its stationary value has been observed, so the
Gini index does not appear to behave similarly to entropy in this particular case. However,
to obtain a final conclusion, the scaling with the finite index space size should be studied.
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Abstract: Kleiber’s empirical law, which describes that metabolism increases as the mass to the power
3/4, has arguably remained life sciences’ enigma since its formal uncovering in 1930. Why is this
behavior sustained over many orders of magnitude? There have been quantitative rationalizations
put forward for both plants and animals based on realistic mechanisms. However, universality in
scaling laws of this kind, like in critical phenomena, has not yet received substantiation. Here, we
provide an account, with quantitative reproduction of the available data, of the metabolism for these
two biology kingdoms by means of broad arguments based on statistical mechanics and nonlinear
dynamics. We consider iterated renormalization group (RG) fixed-point maps that are associated
with an extensive generalized (Tsallis) entropy. We find two unique universality classes that satisfy
the 3/4 power law. One corresponds to preferential attachment processes—rich gets richer—and the
other to critical processes that suppress the effort for motion. We discuss and generalize our findings
to other empirical laws that exhibit similar situations, using data based on general but different
concepts that form a conjugate pair that gives rise to the same power-law exponents.

Keywords: Kleiber’s law; allometry; nonlinear dynamics; complex systems; statistical mechanics

1. Introduction

At least two of the kingdoms of biology on earth, plant and animal, seem to have found
sustainable coexistence over an extended period of time. This is perhaps best quantified via
the metabolic rates of organisms. When these rates are sorted out according to their mass,
a robust scaling relation emerges, a power law with an exponent close to 3/4 spanning
several orders of magnitude for both kingdoms. This is known as Kleiber’s law [1–4] or,
more generally, allometric scaling [5–15]. Since its discovery, this scaling law has attracted
attention, and many attempts have been put forward towards its understanding [5–15].
One instance is to consider dissipation via a surface-to-volume ratio that indicates a slightly
different value for the exponent, 2/3 [5,15,16]. Other more structured developments
are (i) a branching scheme for plants with unassisted conveyance of raw materials and
nutrients [6,7,14] and (ii) a set of scaling laws for animals that require a pump to propel raw
materials and nutrients [6,9–11]. In our case, we look for a general principled conjugate pair
of kingdom universality classes without reference to mechanisms but linked to a nonlinear
dynamical approach that, in turn, can be couched in the language of statistical mechanics.

Over the last few years, we have developed a general theoretical procedure [17–19] to
quantitatively reproduce the distributions of many real types of ranked data. The approach
is based on dissipative nonlinear dynamics of low dimensionality. See also in [17–19] earlier
references on how our approach developed. We specifically consider iterated maps at or
near a tangent bifurcation [20,21]. A central role is played by the renormalization group
(RG) fixed-point map f ∗(x) for the route out of chaos known as intermittency [21–23]. A
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brief recall [21–23] for the derivation of f ∗(x) is to consider that a generic (one-dimensional)
map in the neighborhood of tangency at x = 0 with the identity function reads,

f (x) = x + u|x|z, (1)

where we omitted higher-order terms, u is a constant, and the power z defines the nonlin-
earity at tangency. The customarily applied [21,22] RG transformation for this nonlinear
dynamical route to (or out of) chaos is the functional composition f ( f (x)); the RG flow
occurs in the space of functions tangent to the identity; and its RG fixed-point, the map
f ∗(x), satisfies

f ∗( f ∗(x)) = γ−1 f ∗(γx), (2)

where the scaling parameter γ is to be determined, while the first two terms of the expansion
of f ∗(x) must reproduce f (x) in Equation (1). The fixed-point map f ∗(x) was obtained in
analytical closed form by Hu and Rudnick over 40 years ago [22]. This is

f ∗(x) = x expz(uxz−1), (3)

where xz−1 ≡ sign(x) | x |z−1, and where expz is the q-deformed exponential function,
expq(x) ≡ [1 + (1− q)x]1/(1−q). The scaling parameter is γ = 21/(z−1). All the trajectories
xt, t = 0, 1, 2, . . . , of f ∗(x) have the form [23]

xt = x0 expz(xz−1
0 ut). (4)

That is, for all z, u, and x0, any pair of trajectories can be transformed into each other via
appropriate rescaling of these parameters. Interestingly, as we describe here, the tangency
feature of f ∗(x) present for z ≥ 2 transforms below z = 2, first, into a cusp and then into a
different map shape relevant to our description of Kleiber’s law below.

It is worth mentioning that the fixed-point maps f ∗(x) for the other (and only) two
routes to (or out of) chaos, period doubling and quasi-periodicity [24], were originally
obtained numerically via approximations of their power series representation [21]. Their
analytical closed-form expressions, also in terms of the q-exponential function expq(x),
have become known only very recently [25]. The inverse function of the q-exponential, the
q-logarithm, is given by lnq(x) ≡ [x1−q − 1/(1− q)]. Both functions reduce, respectively,
to the ordinary exponential and logarithmic functions when q = 1. The latter pair of
functions plays a central role in ordinary statistical mechanics, while the q-deformed pair is
correspondingly central for the Tsallis generalized statistical mechanics [26,27]. When the
deformation parameter q (the nonlinearity z in f ∗(x)) falls within 1 < q < ∞, both expq(x)
and lnq(x) asymptotically approach power laws.

Actually, the origin of the rank distributions approach was expressed in a stochastic
process language [28], but we provided a precise analogy [18] that converts the random
variable description of the ranked data sample into a deterministic iterated map trajectory,
xt, t = 0, 1, 2. . . , for the same data. The starting point in the stochastic approach is a parent
(or source) probability distribution P(N) for the data samples of magnitudes N. The parent
distribution is assumed to take the form of a power law P(N) = aN−α, a being a constant
factor, α > 1, together with the limits α = 1 and α −→ ∞, hyperbolic and exponential
decay, respectively. The rank distributions are obtained from the parent distribution P(N)
via integration. First, obtain the complementary cumulative distribution Π(N(k), Nmax)
of P(N),

Π(N(k), Nmax) = a
∫ Nmax

N(k)
N−αdN, (5)

where the magnitudes in a sample with N items are sorted out starting with the largest,
Nmax, and continuing with decreasing magnitudes down to N(k), and where k = 0, 1, 2, . . . ,
is the rank variable, with k = 0 for Nmax. We call the function N(k) the size-rank distribu-
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tion, though technically, it is a quantile [29]. On the other hand, the rank k is equal to NΠ
so that Equation (5) becomes

lnα N(k) = lnα Nmax − (aN )−1k, (6)

where we used the q-deformed logarithm expression. The size-rank distribution N(k) is
explicitly obtained from Equation (6) by making use of the q-deformed inverse functions.
This is

N(k) = Nmax expα[−Nα−1
max (aN )−1k]. (7)

The translation from the language of rank distributions into that for the trajectories of
the RG fixed-point map f ∗(x) is obtained via t = k, x0 = −Nmax, xt = −N(k), u = 1/aN ,
and z = α [17–19]. Notice that the trajectory xt that translates into N(k) takes place at the
left x < 0 of the point of tangency x = 0. Furthermore, the map that corresponds to the
parent distribution P(N), the starting point, is given by Equation (1), rewritten as [18]

f (x) = x + u/P(−x). (8)

In the following Section 2, we succinctly present our approach to reproduce rank
distributions of very diverse kinds with emphasis on the features that are prominent to
our consideration of Kleiber’s law. These are universality classes indicated by the values
of the exponent α (also denoted as the deformation q or the nonlinearity z, α = q = z). In
particular, we focus on the location of the conjugate pairs (q, Q), values where the deformed
exponential and its inverse function, the deformed logarithm, share the same power law
decay. When referring to these pairs, we write q for expq and Q for lnQ. These pairs include
a limit for validity of ordinary statistical mechanics (q = 1, Q −→ ∞), the frequency and
magnitude coincidence for Zipf’s law [30] (q = 2, Q = 2), and other cases mentioned
below. In the next Section 3, we extend the approach to incorporate rates of change of key
quantities, as it is the case of metabolism in biology. As we shall see, this extension involves
the consideration of the RG fixed-point map for the tangent bifurcation into a different
regime (that for values of the nonlinearity z < 2). In Section 4, we present our results for
Kleiber’s law as derived from our formalism by specific choices of universality classes that
represent the guiding principle of each biological kingdom. Finally, in Section 5, we discuss
our results in connection with the Tsallis generalized entropy.

2. Rank Distributions and Their Universality Classes

Importantly, particularly for our purposes here, there is a well-defined conceptual
distinction concerning rank distributions, on the one hand, those referring to magnitudes,
sizes, and, on the other hand, those referring to frequencies, occurrences. According to our
approach [17], the former, N(k), k = 0, 1, 2, · · · , is given by Equation (7), while the latter,
denoted as F(k′), k′ = 0, 1, 2, · · · , is given by

F(k′) = aN [lnα Nmax − lnα k′], (9)

where we have rewritten Equation (6) by introducing the changes of the variables F = NΠ
and k′ = N. The non-normalized frequency-rank distribution F(k′) is often used as it is
constructed directly from the numbers of occurrences in data samples. These functions are
inverses of each other and asymptotically exhibit the same power-law exponent ζ = −1
with q = Q = 2 for the Zipf class (city sizes or moon crater diameters obey the same
power law as occurrences of words or earthquake frequencies) [19]. Interestingly, when
α = q = Q = 2, the asymptotic power-law rank interval for both the q-exponential and the
Q-logarithm displays the same exponent ζ = 1/(1− q) = (1−Q) = −1.

Typically, ranked finite data samples show power-law decay only through an interme-
diate rank interval with different conducts for small and large ranks. The prevailing focus
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of interest in this central power-law interval in real finite data rank distributions and not
on the small and large rank deviations from the power law led to the same identification
as Zipf’s law for both magnitude and frequency ranked data samples. However, we can
clearly distinguish between these two qualities in our formalism [17]. Additionally, we can
choose a parent distribution from the start to represent ‘frequency’ instead of ‘magnitude’
and find that the values of q and Q appear interchanged [17]. Alternatively, we can use the
precise analogy that exists between the trajectories of the RG fixed-point map f ∗(x) with
the rank distributions derived from a parent distribution P(N). As we have seen, our ap-
proach leads to rank distributions expressions in terms of q-exponential and q-logarithmic
functions. These expressions reproduce real behavior for small rank, whereas the finite-size
effect observed for large rank is also obtained quantitatively simply via the shift of the map
f ∗(x) off tangency [18]. Ordinary exponential decay of rank distributions occurs for the
pair of exponents α = 1 and α −→ ∞ for both magnitudes and frequencies. All other values
of (1 < α < ∞) lead to rank distributions of the form in Equations (7) and (9) [17–19].

We now assign some meaning, backed by real data examples, to natural numbered
values of the exponent α = z = q. In the limit when α = 1, hyperbolic P(N) and linear
iterated map, we obtain exponential decay for N(k) consistent with the ordinary statistical
mechanics q = 1. See the comment at the end of this Section. Magnitudes and frequencies
take values within real number intervals without restriction (a real data case we have
analyzed is that of infant mortality [18]). We have also shown that this case applies to
Benford’s first digit law [17]. When α = 2, we have a borderline case that corresponds
to the classical Zipf’s law [30]. There are many real data examples that illustrate this
circumstance [18,19]. Magnitudes (or frequencies) do not fill real number intervals but
much less, like an infinite numerable set (e.g., an infinite vocabulary). When α = 2, the
map f (x) is tangent to the identity line with nonzero curvature and trajectories develop
hyperbolic power-law behavior, ζ = −1, near tangency. For an ample discussion of this
borderline case, see Ref. [19]. For α = 3, we have selective behavior that corresponds to rich-
gets-richer processes that is analogous to preferential attachment network growth [31,32].
This is represented by a map f (x) with cubic tangency with the identity line. We end this
list with α = 4, when f (x) displays vanishing curvature at tangency with the identity line, a
circumstance analogous to critical point behavior where displacements in the neighborhood
of tangency (or criticality) have (thermodynamic potential) vanishing cost [33].

We have made a clear distinction between data that result from quantities related to
the consideration of sizes or magnitudes and data produced by temporal behaviors that
manifest as frequencies. We turn our attention now to the occurrence of conjugate univer-
sality classes (given by pairs of specific values of α) that asymptotically generate power-law
scaling laws that have the same exponents. Here, we point out examples for rank distribu-
tions, but in the next section, we focus on dissipation or other rates such as in the case of
Kleiber’s law. These are shown in Figure 1, where the q-exponential (magnitudes) exhibits
the same power-law exponent ζ as its inverse function, the Q-logarithm (frequencies). The
(q, Q)-indexes for this condition satisfy the simple relation ζ = 1− Q = 1/(1− q). A
prominent case we have already pointed out is Q = q = 2, the borderline case [19] for
the empirical Zipf’s law. Another example corresponds to the Boltzmann–Gibbs statistics.
When q = 1, the q-exponential and q-logarithmic functions become the ordinary expo-
nential and logarithmic functions, respectively. Likewise, when q = 1, Tsallis entropy
reduces to the Boltzmann–Gibbs or Shannon expression. See Refs. [26,27] for an extended
description. The value we have quoted for α = q = 1, the Fibonacci number set [19]
(illustrated by infant mortality [18]), is conjugate to Q −→ ∞ displayed by the factorial
number set [19] (illustrated by gun ownerships per capita [18]). Additionally, when Q −→ ∞
the q-exponential and the q-logarithm become the ordinary exponential and logarithmic
functions, but with the roles interchanged.
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Figure 1. Upper panel shows the locus for identical power-law exponent ζ shown (within an interval
of the independent variable) by the q-exponential function and its inverse function, the Q-logarithm.
That is, ζ = 1/(1 − q) = 1 − Q. There are two mirror branches. The dots show the values of
the conjugate pairs (q, Q) relevant for Zipf’s law (2, 2), Kleiber’s law (−1/3, 1/4), and Hack’s law
(−1/2, 1/3). See text. Lower panel. The same as above but a three-dimensional rendering that shows
the value of the power-law exponent ζ. See text.

3. Scaling of Rates and Characteristic Times and Their Universality Classes

We extend here our formalism for rank distributions to incorporate in it the determi-
nation of other important quantities. Specifically, we consider now the concept of rate, or
equivalently, its reciprocal, the characteristic time, relevant, for instance, to Kleiber’s law.
The particular example of interest here is the metabolic M (or energy dissipation) rate of
organisms as a function of the individual mass or volume N. We start with the parent or
source probability distribution for the metabolism of a living organism P(M), where M
shall be considered to be a function of the organism size N. If metabolic rate values are
to span real number intervals compatible with ordinary statistical mechanics, we have
P(M) = aM−1, a being a constant factor. Recall that α = 1 returns the ordinary exponential
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and logarithmic functions to the rank distribution expressions Equations (7) and (9). This is
similar to the exponential decay of configurational distributions, and access via the logarithm
to thermodynamic potentials form partition functions in ordinary statistical mechanics.

We now particularize the parent distribution to a specific universality class α ≥ 1,
e.g., a kingdom in biology. We consider then the parent distribution P(R) = cRα, c being a
constant, for an energy dissipation rate, or metabolic rate, R. Here, the size or magnitude is
the reciprocal, the characteristic time T = R−1. As we pointed out, the value of α, which
specifies the universality class, carries a general meaning. This choice determines not only
the form of the rank distributions but also, as we see now, rates such as R. As a consequence
of the two parent distributions, P(M) and P(R), we have introduced a new function, R(M),
that follows the power law R(M) = bM−1/α. We have the following differential equation:

dM
dN

= R(M(N)) = bM− 1
α , (10)

with b = a/c. Considering that the use of data for metabolism to illustrate Kleiber’s law
is sorted out from small to large organism mass or volume N, we integrate the above to
obtain the cumulative metabolic rate μ(M(N)):

μ(M(N)) =
∫ M(N)

M0

R(M′)dM′ = b
∫ M(N)

M0

M′−1/αdM′ . (11)

If μ(M(N)) is normalized, this is equal to N/bN , where N is the sum total of sizes in the
data sample. After integration, we have

N
bN =

1
1− α−1 M(N)1−α−1 − 1

1− α−1 M1−α−1

0 = lnα−1 M(N)− lnα−1 M0 (12)

and solving for M(N), we have

M(N) = M0 expα−1

[
Mα−1−1

0 (bN )−1N
]
. (13)

Just as it is the case we have described above for rank distributions, here, we can also
establish an exact analogy between the rate M(N) and the trajectories of the RG fixed-point
map. Equations (12) and (13) are equivalent to Equations (14) and (15), respectively,

lnz(xt) = lnz(x0) + ut (14)

and
xt = x0 expz(x0

z−1ut) (15)

provided that we adopt the following identifications: N = t, M0 = x0, M(N) = xt, α−1 = z,
(bN )−1 = u, and μ(M) = ∑t

τ=0 xτ . Except for a sign in the trajectory positions, these are
the same that exhibit the equivalence between the stochastic process led by the parent
distribution P(N) and the nonlinear iterated map f (x) [17–19]. That is, the trajectories of
the RG fixed-point map for the tangent bifurcation reproduce the metabolism data of our
formalism. However, there is an important issue here: the RG fixed-point map

f ∗(x) = x expz(uxz−1) (16)

departs from the condition α = z = q ≥ 2 and enters a previously unexplored regime.
In Figure 2, we show f ∗(x) for a range of positive and negative values of α = z = q.
In this figure, we observe in red/orange/yellow the known case z ≥ 2 that consists of
two branches, one that displays tangency with the identity function and the other at the
bottom-right quadrant. Trajectories originated in this regime experience two different
growth rates, slow growth at the left of the origin and superexponential growth at the right
of the origin. If the RG fixed-point map is perturbed away from tangency, trajectories will
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exhibit intermittency, a nonlinear phenomenon we have employed in previous descriptions
about complex systems from our nonlinear dynamical perspective. See Sections 2.3, 3.3,
and 4.3 in Ref. [34]. When z ≤ 2 tangency transforms into a cusp; the cusp is made of
straight lines when the nonlinearity reaches z = 1, and consequently, the trajectories either
decay exponentially (x < 0) or grow exponentially (x > 0). Below z = 1, the cusp separates
from the identity line and becomes rounded as z distances from 1. The next limit case is
z = 0, where the curvature of the map vanishes and trajectories grow linearly with time.
As z < 0, a curvature develops opposite to the identity line, as is shown in Figure 2 in
green-blue. Trajectories originated in this regime experience two different growth rates, fast
growth near the origin and slower growth far from the origin, x � 0. See also Figure 3.

Figure 2. The RG fixed-point map f ∗(x) for the tangent bifurcation in Equation (3) shown for an
extended range of values of the nonlinearity z. A two-branch map occurs for z > 1 with one branch
tangent with the identity line. When 0 ≤ z ≤ 2, the left branch shows a cusp touching the identity
line up to z ≥ 1. The branch at the right moves fast to infinity and dissapears at and below z ≤ 1. The
map separates from the identity line for 0 ≤ z ≤ 1 and shows positive curvature around x = 0. When
0 ≤ z, the shape of the map is inverted, showing now negative curvature around x = 0. See text.

Figure 3. Similar to Figure 2, but showing more detail in the neighborhood of x = 0. The inset shows
the cusp feature. See text.
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4. Rich Gets Richer and Effortless Motion

We choose for the vegetable kingdom the universality class α = 3 that we have identi-
fied to represent the rich-gets-richer principle or, in a network language, the preferential
attachment processes [32]. In the preferential attachment network model [32], the connec-
tivity (or degree) distribution is given by P(L) = cL−3, where L is the degree, or number of
links stemming out of a node. This is equivalent to the parent distribution with α = 3 we
have chosen for the vegetable kingdom. This implies the metabolic rate

R(M) = bM−1/3 (17)

and the iterated map
f (x) = x + ux−1/3 (18)

from which we obtain (see Equation (15)) the RG fixed-point map f ∗(x) trajectories

xt = x0 exp−1/3(x−1/3−1
0 ut) −→ [4/3ut]3/4, t � (3/4u)x4/3

0 . (19)

That is, with t = N and xt = M(N), we obtain, in accordance with Kleiber’s law, the scaling
law M(N) ∼ N3/4 for the metabolism M(N). See Figure 4. Notice that we have considered
for the vegetable kingdom the metabolic rate R(M) to be associated with ‘magnitude’ in
our formalism in the sense previously described above.

Figure 4. Reproduction of Kleiber’s law for the vegetable kingdom using data for plant respiration
rates. Blue dots are data taken from [14]. Black dots are data taken from [35]. The red line is from
Equation (19). See text.

Next, we consider the animal kingdom and choose the universality class α = 4 that
represents criticality, e.g., the absence of a (quadratic) curvature term in a Landau free
energy [33]. In the Landau theory, the free energy functional is assumed to be an analytic
function of the order parameter η. A typical example is a magnet, for which the free energy
is a function only of even powers of η, and where the first (quadratic) term is a function of
temperature T. At the phase transition, T = Tc, a critical point, the quadratic term vanishes,
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making the next quartic term the dominant term. As a consequence, small displacements
around the rest (or equilibrium) are costless.

However, as a difference with the above Equations (17)–(19), the metabolic rate R(M)
is now considered to be associated with ‘frequency’, not ‘magnitude’, in the sense described
in the previous sections. We can start our analysis of this case with a parent distribution
P(F) ∼ F−β, β = 4 and proceed to determine M(N). However, as we know, this is
equivalent to evaluating the functional inverse of the RG fixed-point map trajectories
xt+1 = f ∗(xt) that correspond to the map

f (x) = x + ux1/4. (20)

We have (see Equation (14))

t = u−1[ln1/4 xt − ln1/4 x0] −→ 4/3u−1x3/4
t , xt � x0. (21)

Now t = M(N) and xt = N, as the conjugate pair of the trajectory in Equation (19) with
q = −1/3, is the inverse function of the trajectory with Q = 1/4. That is, we obtain again,
in accordance with Kleiber’s law, the scaling law M(N) ∼ N3/4 for the metabolism M(N)
of the animal kingdom. See Figure 5.

The occurrence of the same power-law exponent 3/4 for the metabolism of the two
kingdoms involved in Kleiber’s law, plants and animals, appears as one instance in the
locus of conjugate values for the pairs of deformation exponents (q, Q) for the q-exponential
and the Q-logarithmic functions shown in Figure 1.

Another possible example of a conjugate pair (q, Q) that involves a tight relationship
between ‘magnitudes’ and ‘frequencies’ is that of river flow. In this case, we have Hack’s
law that relates river lengths with flow through transverse sections [36]. Hack’s law
shows the scaling of the largest upstream length Lmax with its total cumulative area Amax,
Lmax ∼ Ah

max, where h ∼ 0.57 [37]. This river structure can be theoretically approximated,
among other possibilities [37], by the ‘directed network model’ [37] that complies with
(q = −1/2, Q = 1/3) and yields ζ = h = 2/3 [37].

Figure 5. Reproduction of Kleiber’s law for the animal kingdom using data for basal metabolic rates.
Mammals (red) [38] and avians (black) [39]. The blue line is from Equation (21). See text.
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5. Summary and Discussion

We have extended our nonlinear dynamical approach that reproduces real data for
rank distributions [17–19], functions that decay either exponentially or as a power law (e.g.,
Zipf’s law), to other measurable quantities, like dissipation rates as functions of mass or
volume of organisms (geological, biological, urban), functions that increase exponentially
or as power laws (e.g., Kleiber’s law). We have emphasized the presence of universality
classes (given by the exponent values α of the parent or source distributions P(N) ∼ N−α).
These exponent values coincide with the nonlinearity exponent z of the iterated map
f (x) equivalent to P(N) and with values of the deformation parameter q of the deformed
exponential in the RG fixed-point map f ∗(x) ruling in the background, α = z = q. We have,
in particular, focused on the occurrence of conjugate pairs of deformation values (q, Q) that
display the same power-law exponent ζ (within appropriate intervals of the independent
variable: rank k, iteration time t, mass or volume N) for the q-exponential function and
its functional inverse, the Q-logarithm. See Figure 1. One important instance is that of
Zipf’s law (q = 2, Q = 2), a situation in which our approach is capable of distinguishing
between magnitude-rank and frequency-rank distributions [17]. Additionally, significantly,
at these deformation values (q = 2, Q = 2), the RG fixed-point map f ∗(x) is at a borderline
(signaled, e.g., by the divergence of prime number reciprocals [19]), where the shape of
f ∗(x) undergoes an important transformation (see Figures 2 and 3).

The transformation undergone by f ∗(x) at z = 2 is precisely the feature that we have
taken advantage of to extend our approach from rank distributions to the description of
scaling laws for quantities such as rates of dissipation as a function of system size (e.g.,
metabolic rates). Figure 2 shows f ∗(x) for a range of values of its nonlinearity z. When
z > 1, the RG map has two branches, one of them tangent with the identity line. The map
develops a cusp at x = 0 as z −→ 1, while for z ≤ 1, the second branch vanishes. The cusp
becomes disconnected with the identity line just below z = 1 and from there shows an
indentation (positive curvature) around x = 0. The shape of f ∗(x) transforms again at
z = 0 when the curvature near x = 0 changes sign.

What we have done here is to show that the trajectories produced by the RG fixed-point
map, in one case 0 < z < 1 and in the other case −1 < z < 0, are capable of quantitatively
reproducing the metabolism data involved in Kleiber’s law. Our reasoning started by
choosing two universality class exponent values: α = z = q = 3 (for ‘magnitudes’,
representing ‘rich gets richer’) and α = z = q = 4 (for ‘frequencies’, representing null
cost for small displacement motion). With these values, we formulated the RG fixed-point
map and its trajectories that yield us the desired function M(N), with metabolism being a
function of individual mass or volume N. The chosen values α = 3 and α = 4 became, in
our formalism, one pair of conjugate values (q = −1/3, Q = 1/4) that have the property
of producing the same value of the scaling exponent 3/4 in M(N) ∼ N3/4, or Kleiber’s law.
See Figures 1, 4 and 5.

Recently [25], we have demonstrated that the trajectories of all RG fixed-point maps for
the three known routes to chaos (intermittency, period doubling, and quasi-periodicity [24])
can be couched in the statistical–mechanical language of the (discrete time) Landau–
Ginzburg (LG) equation. Additionally, the associated Lyapunov function [40] is precisely
the expression for the Tsallis entropy [25]. Equation (10) is a particular case of the LG equa-
tion used to describe the most probable evolution of processes in statistical–mechanical sys-
tems. See [25] and references therein. The role of time t in the LG equation in Equation (10)
is taken by the mass N, while M is a macroscopic variable relevant to the process described.
For the plant kingdom, the differential equation’s driving force is the power law M−1/3.
This driving force is the (functional) derivative of the Lyapunov function. This function
represents a generalized thermodynamic potential and evolves monotonically as t, or N,
increases along the solution of the LG equation [25]. In the case of Equations (10) and (17),
it is given by

Sq = lnq M, q = 1/3. (22)
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The Tsallis entropy above corresponds to a uniformly distributed set of events. It merely
states that every time unit that makes up the characteristic time T = R−1 for an organism
of mass N equally contributes to its total value T(N). Furthermore, for large N

Sq ∼ M(N)4/3 = [N3/4]4/3 = N; (23)

i.e., the Tsallis entropy in Equation (22) is extensive for the mass N. A parallel argument for
the animal kingdom, which takes into account that the conjugate pair (q, Q) involves func-
tions inverse to each other, leads too to an extensive Tsallis entropy. Moreover, considering
that data for Kleiber’s law consist of a list (or lists) of measured values of metabolic rates
for a set (or sets) of species, we can write the rate equation in Equation (10) for discrete time.
Clearly, this is the nonlinear iterated map in Equation (18) that, under the requirement that
functional composition is equivalent to rescaling, leads to the RG fixed-point map f ∗(x) in
Equations (3) or (16) with z = −1/3, and similarly with Equation (20).

It is important to emphasize that our approach leads to analytical closed-form ex-
pressions for the metabolic rate R(M) in terms of the q-exponential and q-logarithmic
functions in Equations (19) and (21). The power laws with the exponent 3/4 correspond to
the asymptotic, large N, behavior of these expressions. The full set of properties of R(M)
includes consideration of the entire positive real number interval, small and large N. The
small N conduct of the q-deformed functions may explain the observed 2/3 exponent in
some data samples. Meanwhile, finite-size effects present for large N can be quantitatively
reproduced via the shift of the maps involved away or towards the identity function, as
it has been done for the rank distributions [17–19] . Therefore, the study presented here
is yet another example of a complex system problem where the Tsallis generalized sta-
tistical mechanics provide pertinent results. Other issues addressed that involve Tsallis
generalized entropy and related quantities are [34] within condensed matter physics: the
formation of glasses, the transformation of a conductor into an insulator, and critical point
fluctuations; concerning complex systems problems, the phenomenon of self-organization
and the development of diversity (biological or social, like languages); and, as described
here, the comprehension of empirical laws, like those relating to the universality of ranked
data or the power-law scalings present in allometry. A common feature in all these cases is
that access to their configurational space is severely hindered to a point where the allowed
configurational space has a vanishing measure with respect to the initial setup [25]. This
restriction is naturally provided by the attractors at the transitions to chaos present in the
nonlinear dissipative maps employed to model these subjects [25].

As a finishing remark, we would like to bring attention to a set of curious circum-
stances where low-dimensional nonlinear dynamics have inadvertently been used to model
complex systems. Such is the case of the “cobweb theorem” in economics [41,42], where
successive iterations are employed to model actual price dependence on past offer. The
next instance is in the study of biological rhythms [43], where cobweb plots are referred to
as “zig-zag lines from cause to effect”. These encounters with nonlinear dynamics occurred
years before the subject was more formally advanced with the use of the RG technique
as in the works of Feigenbaum [44] and Hu and Rudnick [22], but point towards its use
in the modeling of complex phenomena. Ours is a quantitative attempt to establish a
methodology based on nonlinear dynamics to study complex systems.

We wish a joyful 80th birthday to Constantino Tsallis.
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Abstract: The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear
size L is computed, considering the first and last particles in thermal contact with heat baths at higher
and lower temperatures, Th and Tl (Th > Tl), respectively. These particles at the extremities of the chain
are subjected to standard Langevin dynamics, whereas all remaining rotators (i = 2, · · · , L− 1) interact
by means of nearest-neighbor ferromagnetic couplings and evolve in time following their own equations
of motion, being investigated numerically through molecular-dynamics numerical simulations. Fourier’s
law for the heat flux is verified numerically, with the thermal conductivity becoming independent of the
lattice size in the limit L → ∞, scaling with the temperature, as κ(T) ∼ T−2.25, where T = (Th + Tl)/2.
Moreover, the thermal conductance, σ(L, T) ≡ κ(T)/L, is well-fitted by a function, which is typical of
nonextensive statistical mechanics, according to σ(L, T) = A expq(−Bxη), where A and B are constants,
x = L0.475T, q = 2.28± 0.04, and η = 2.88± 0.04.

Keywords: Fourier’s law; generalized entropies; non-equilibrium physics; stochastic processes

1. Introduction

Two centuries ago, Fourier proposed the law for heat conduction in a given macroscopic
system, where the heat flux varies linearly with the temperature gradient, J ∝ −∇T [1]. For a
simple one-dimensional system (e.g., a metallic bar along the x̂ axis, J = Jx̂), the heat flux J
(rate of heat per unit area) is given by

J = −κ
dT
dx

, (1)

where κ is known as thermal conductivity. In principle, κ may depend on the temperature,
although most measurements are carried at room temperature, leading to values of κ for
many materials (see, e.g., Ref. [2]). Usually, metals (like silver, copper, and gold) present
large values of κ, and are considered good heat conductors, whereas poor heat conductors
(such as air and glass fiber) are characterized by small thermal conductivities; typically, the
ratio between the thermal conductivities of these two limiting cases may differ by a 104

factor. In most cases, good thermal conductors are also good electrical conductors, and
obey the Wiedemann–Franz law, which states that the ratio of their thermal and electrical
conductivities follows a simple formula, being directly proportional to the temperature [3].

In recent years, numerous studies have been conducted to validate Fourier’s law in
a wide variety of physical systems, both experimentally and theoretically. Particularly,
investigations for which microscopic ingredients may be responsible for the property of
heat conduction were carried out, and it has been verified that thermal conductivity may be
generated by different types of particles (or quasi-particles). In the case of good electrical
conductors, the most significant contribution to thermal conductivity comes from free
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electrons, whereas in electrical insulators, such contributions may arise from quasi-particles,
like phonons and magnons, or even from defects. For instance, for antiferromagnetic
electrical insulators, such as Sr2CuO3 and SrCuO2, which surprisingly behave as S = 1/2

Heisenberg chains, magnons yield the most relevant contribution for the thermal
conductivity, which can be fitted by a 1/T2 law, at high temperatures [4]. In these ma-
terials, the low-temperature regime presents ballistic-like heat conduction, increasing as
the size of the system increases, while the high-temperature regime presents normal heat
conduction [5–7].

Being a classical result, there is, in principle, no reason why Fourier’s law should gen-
erally apply to physical systems. This aspect has generated controversies in the literature,
both in experimental and theoretical studies (for a comprehensive theoretical discussion,
see, e.g., Ref. [8]). As a typical anomaly, the thermal conductivity κ (which should be an
intensive quantity) appears, in many cases, to depend on the size of the system, e.g., on
the total number of constituents, as it happens for chains of nonlinear oscillators, where
κ increases with the total number of elements [9]. This anomaly is usually considered a
failure of Fourier’s law. In addition, non-Fourier heat conduction can also emerge from
the Maxwell–Cattaneo–Vernotte hyperbolic heat equation, which represents the relativistic
version of the heat equation [10]. Recent advances in non-Fourier heat conduction can be
found in the work by Benenti et al. [11].

Several experimental investigations have verified Fourier’s law in a diverse range of
systems [4,12–15], including coal and rocks from coalfields [13], as well as two-dimensional
materials [14,15]. On the other hand, some authors claim to have found anomalies [16],
or even violations of this law for silicon nanowires [17], carbon nanotubes [18], and low-
dimensional nanoscale systems [19]. Furthermore, a curious crossover, induced by disorder,
was observed in quantum wires, where, by gradually increasing disorder, one goes from a
low-disorder regime, where the law is apparently not valid, to another regime characterized
by a uniform temperature gradient inside the wire, in agreement with Fourier’s law [20,21].

From the theoretical point of view, many authors have investigated Fourier’s law
in a wide diversity of models [9,22–46], like a Lorentz gas [23], biological [30] and small
quantum systems [29], chains of coupled harmonic [31] or anharmonic [9,28,34] oscillators,
models characterized by long-range [38,46] or disordered [41] interactions, as well as
systems of coupled classical rotators [42–45]. In the case of a coupled XY nearest-neighbor-
interacting rotator chain [44], the temperature dependence of the thermal conductance was
well-fitted by a q-Gaussian distribution,

Pq(u) = P0 expq(−βu2) , (2)

defined in terms of the q-exponential function,

expq(u) = [1 + (1− q)u]1/(1−q)
+ ;

(
exp1(u) = exp(u)

)
, (3)

where P0 ≡ Pq(0) and [y]+ = y, for y > 0 (zero otherwise). The distribution in Equation (2)
is very common in the context of nonextensive statistical mechanics [47], since it appears
from the extremization of the generalized entropy, known as Sq, characterized by a real
index q [48],

Sq = k
W

∑
i=1

pi

(
lnq

1
pi

)
, (4)

where we introduced the q-logarithm definition,

lnq u =
u1−q − 1

1− q
; (ln1 u = ln u) . (5)

Therefore, one recovers Boltzmann–Gibbs (BG) entropy,

SBG = −k
W

∑
i=1

pi ln pi , (6)
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as limq→1 Sq = SBG, whereas in the microcanonical ensemble, where all microstates present
equal probability, pi = 1/W, Equation (4) becomes,

Sq = k lnq W . (7)

Above, the q-exponential function in Equation (3) appears precisely as the inverse function
of the q-logarithm of Equation (5), i.e., expq(lnq u) = lnq(expq(u)) = u.

Since the introduction of the entropy Sq in Equation (4), a large amount of works
appeared in the literature, defining generalized functions and distributions (see, e.g.,
Ref. [47]). In particular, a recent study based on superstatistics has found a stretched
q-exponential probability distribution [49],

Pq(u) = P0 expq(−β|u|η) (0 < η ≤ 1), (8)

as well as its associated entropic form.
As already mentioned, the latest advances in experimental techniques made it pos-

sible to investigate thermal and transport properties and, hence, Fourier’s law, in low-
dimensional (or even finite-size) systems, like two-dimensional materials [14,15], silicon
nanowires [17], carbon nanotubes [18], and low-dimensional nanoscale systems [19]. These
measurements motivate computational studies in finite-size systems of particles that present
their own equations of motion, e.g., systems of interacting classical rotators, whose dynam-
ics may be followed through the direct integration of their equations of motion. In this way,
one may validate (or not) Fourier’s law, by computing the temperature and size dependence
of the thermal conductance. A recent analysis of a system of coupled nearest-neighbor-
interacting classical XY rotators [45], on d-dimensional lattices (d = 1, 2, 3) of linear size L,
has shown that, for a wider range of temperatures, the temperature dependence of the
thermal conductance was better fitted by a more general ansatz than the q-Gaussian distri-
bution of Equation (2). In fact, Fourier’s law was validated in Ref. [45] by fitting the thermal
conductance in terms of the functional form of Equation (8), with values of η(d) > 2.

In the present work, we analyze the thermal conductance of a one-dimensional clas-
sical inertial Heisenberg model of linear size L, considering the first and last particles in
thermal contact with heat baths at temperatures Th and Tl (Th > Tl), respectively. All re-
maining rotators (i = 2, · · · , L− 1) interact by means of nearest-neighbor ferromagnetic
couplings and evolve in time through molecular-dynamics numerical simulations. For this
classical model, we specifically concentrate on the high-temperature limit, where there
is no need for a spin wave approach, such as the Holstein–Primakoff quantum transfor-
mations. Our numerical data validate Fourier’s law, and similar to those of Ref. [45], the
thermal conductance is well-fitted by the functional form of Equation (8). The present
results suggest that this form should apply in general for the thermal conductance of
nearest-neighbor-interacting systems of classical rotators. In the Section 2, we define the
model and the numerical procedure; in Section 3, we present and discuss our results; in
Section 4, we present our conclusions.

2. Materials and Methods

The one-dimensional classical inertial Heisenberg model, for a system of L-interacting
rotators, is defined by the Hamiltonian,

H =
1
2

L

∑
i=1

�2
i +

1
2 ∑
〈ij〉

(
1− Si · Sj

)
, (9)

where �i ≡ (�ix, �iy, �iz) and Si ≡ (Six, Siy, Siz) represent, respectively, continuously varying
angular momenta and spin variables at each site of the linear chain, whereas ∑〈ij〉 denote
summations over pairs of nearest-neighbor spins; herein, we set, without loss of generality,
kB, moments of inertia, and ferromagnetic couplings, all equal to the unit. Moreover,
spins present the unit norm, S2

i = 1, and at each site, angular momentum �i must be
perpendicular to Si, yielding �i · Si = 0; these two constraints are imposed at the initial
state and should be preserved throughout the whole time evolution.
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One should notice that, in contrast to a system of coupled classical XY rotators, where
canonical conjugate polar coordinates are commonly used [45], in the Heisenberg case, one
often chooses Cartesian coordinates [50–52]. The reason for this is essentially technical,
since in terms of spherical coordinates (more precisely, θ, φ, and their canonical conjugates
�θ , �φ), a troublesome term (1/ sin2 θ) appears in the corresponding equations of motion,
leading to numerical difficulties [53,54]. However, some of the analytical results to be
derived next recover those of the classical inertial XY model for Si = (sin θi, cos θi, 0) and
�i = �iẑ.

It is important to mention that previous research on the thermal conductivity has
been carried out for a classical one-dimensional Heisenberg spin model, by using Monte
Carlo and Langevin numerical simulations [55], as well as for a classical one-dimensional
spin-phonon system, through linear-response theory and the Green–Kubo formula [56].
These investigations did not take into account the kinetic contribution in Equation (9), so
that in order to obtain the thermal conductivity they assumed the validity of Fourier’s law.
The main advantage of the introduction of the kinetic term in Equation (9) concerns the
possibility of deriving equations of motion, making it feasible to follow the time evolution
of the system through molecular-dynamics simulations, by a numerical integration of such
equations. This technique allows one to validate Fourier’s law, as well as obtain its thermal
conductivity directly.

In order to carry out this procedure, we consider an open chain of rotators with the first
and last particles in thermal contact with heat baths at higher and lower temperatures, Th
and Tl (Th > Tl), respectively (cf. Figure 1), whereas all remaining rotators (i = 2, · · · , L− 1)
follow their usual equations of motion (see, e.g., Refs. [50–52]). In this way, one has for sites
i = 2, . . . , L− 1,

Ṡi = �i × Si ,

�̇i = Si × (Si+1 + Si−1) ,
(10)

whereas the rotators at extremities follow standard Langevin dynamics,

�̇1 = −γh�1 + S1 × S2 + ηh ,

�̇L = −γl�L + SL × SL−1 + ηl .
(11)

Above, γh and γl represent friction coefficients, whereas ηh and ηl denote independent
three-dimensional vectors, ηh ≡ (ηhx, ηhy, ηhz), ηl ≡ (ηlx, ηly, ηlz), where each Cartesian
component stands for a Gaussian white noise with zero mean and correlated in time,

〈ηhμ(t)〉 = 〈ηlμ(t)〉 = 0 ,

〈ηhμ(t)ηlν(t′)〉 = 〈ηhμ(t′)ηlν(t)〉 = 0 ,

〈ηhμ(t)ηhν(t′)〉 = 2δμνγhThδ(t− t′) ,

〈ηlμ(t)ηlν(t′)〉 = 2δμνγlTlδ(t− t′) ,

(12)

with the indexes μ and ν denoting Cartesian components; from now on, we will set the
friction coefficients γh and γl equal to the unit. One should mention that different types of
thermostats have been used to investigate transport properties in systems out of equilibrium
(see, e.g., Ref. [42] for an application of Nosé–Hoover thermostats to a system of interacting
planar rotators); however, for the present Heisenberg chain, we found it more convenient
to use standard Langevin thermostats, as defined above.

The condition of a constant norm for the spin variables yields

dSi
dt

=
d(Si · Si)

1/2

dt
= 0 ⇒ Si · Ṡi = 0 , (13)

which should be used together with �i · Si = 0 in order to eliminate �̈i and calculate S̈i from
Equations (10) and (11). For rotators at sites i = 2, · · · , L− 1, one has

S̈i = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + Ṡ2

i

]
Si , (14)
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whereas, for those at extremities,

S̈1 = −Ṡ1 + S2 −
[
S1 · S2 + Ṡ2

1

]
S1 + S1 × ηh ,

S̈L = −ṠL + SL−1 −
[
SL · SL−1 + Ṡ2

L

]
SL + SL × ηl .

(15)

For the system illustrated in Figure 1, we will consider the temperatures of the heat
baths differing by 2ε, with ε representing a positive dimensionless parameter; moreover,
the temperature parameter T = (Th + Tl)/2 will vary in a certain range of positive values.
Equations (14) and (15) are transformed into first-order differential equations (e.g., by
defining a new variable Vi ≡ Ṡi) to be solved numerically through the velocity Verlet
method [57,58], with a time step dt = 0.005, for different lattice sizes L (please, see the
Appendix A). The rotators at the bulk (i= 2, · · · , L− 1) follow a continuity equation,

dEi
dt

= −(Ji − Ji−1) , (16)

where

Ei =
1
2
�2

i +
1
2 ∑

j=i±1

(
1− Si · Sj

)
, (17)

so the stationary state is attained for (dEi/dt) = 0, i.e., Ji = Ji−1. The derivation is simple,
since from Equation (13) and �i · Si = 0, we have Ṡ2

i = �2
i , hence,

d
dt

Ei = Ṡi · S̈i −
1
2

[
Ṡi · (Si+1 + Si−1) + Si ·

(
Ṡi+1 + Ṡi−1

)]
. (18)

This equation, together with Equation (14), yields

d
dt

Ei =
1
2

[
Ṡi · (Si+1 + Si−1)− Si ·

(
Ṡi+1 + Ṡi−1

)]
= 0 (19)

at the stationary state. Data are obtained at stationary states, which, as usual, take longer
to reach for increasing lattice sizes. For numerical reasons, to decrease fluctuations in the
bulk due to the noise, we compute an average heat flux by discarding a certain number
of particles p near the extremities (typically p � 0.15L). In this way, we define an average
heat flux as

J ≡ 1
L− 2p

L−p

∑
i=p+1

〈Ji〉 , (20)

Ji =
1
2

(
Si · Ṡi+1 − Si+1 · Ṡi

)
, (21)

whereas 〈..〉 denotes time and sample averages, which will be described next.
Let us emphasize that for Si = (sin θi, cos θi, 0) and �i = �iẑ, one recovers the expression

for the heat flux of the classical inertial XY model, i.e., Ji =
1
2 (�i + �i+1)sin (θi − θi+1) [45,59],

showing the appropriateness of the Cartesian-coordinate approach used herein for the
classical inertial Heisenberg model.

Let us now describe the time evolution procedure; for a time step dt = 0.005, each
unit of time corresponds to 200 integrations of the equations of motion. We considered a
transient of 5× 107 time units to compute the averages 〈Ji〉 in Equation (20), and checked
that this transient time was sufficient to fulfill the condition Ji = Ji−1 (within, at least,
a three-decimal digits accuracy), for all values of L analyzed. After that, simulations
were carried out for an additional interval of 2× 108 time units (leading to a total time of
2.5× 108 for each simulation). The interval 2× 108 was divided into 80 equally spaced
windows of 2.5× 106 time units, so that time averages were taken inside each window;
then an additional sample average was taken over these 80 time windows, leading to the
averages 〈Ji〉.
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Rh Rl

1 2 3 4 L-3 L-2 L-1 L

J

BULK

Figure 1. Illustration of the system defined in Equation (9), where the rotators at extremities of the
chain are subjected to heat baths at different temperatures. The hot (Rh) and cold (Rl) reservoirs are
at temperatures Th = T(1 + ε) and Tl = T(1− ε), respectively, leading to an average heat flux J = Jx

throughout the bulk (see text). The rotators at sites i = 2, . . . , L− 1 interact with their respective
nearest neighbors.

Using the results of Equation (20), one may calculate the thermal conductivity of
Equation (1), and consequently, the thermal conductance,

σ =
J

Th − Tl
=

J
2Tε

≡ κ

L
. (22)

In the next section, we present the results of both quantities, obtained from the numerical
procedure described above.

3. Results

We simulate the system of Figure 1 for different lattice sizes, namely, L = 50, 70, 100, 140,
considering the heat-bath temperatures differing by 2ε, with ε = 0.125. The temperature
parameter T = (Th + Tl)/2 varied in the interval 0 < T ≤ 3.5, capturing both low- and
high-temperature regimes. The values of L (L ≥ 50) were chosen adequately to guarantee
that the thermal conductivity κ did not present any dependence on the size L in the
high-temperature regime, as expected.

In Figure 2, we present numerical data for the thermal conductivity Figure 2a and
thermal conductance Figure 2b versus temperature (log–log representations) and different
sizes L. The similar qualitative behaviors of the data displayed in both properties of
Figure 2, for different values of L, evidence that the sizes considered in the present analysis
(L ≥ 50) are sufficiently large, in the sense that finite-size effects do not play a relevant
role. In Figure 2a, we exhibit κ(L, T) (the dependence of the thermal conductivity on the
size L, used herein, will become clear below), showing a crossover between two distinct
regimes (for T � 0.3), as described next. (i) A low-temperature regime, where κ depends
on the size L, decreasing smoothly for increasing temperatures (L fixed). The plots of
Figure 2a show that, in the limit T → 0, an extrapolated value, κ(L, 0) ≡ limT→0 κ(L, T),
increases with L. Such a low-temperature increase with L has been observed in other one-
dimensional models (see, e.g., Refs. [42–45]) and is reminiscent of the behavior expected
for a chain of coupled classical harmonic oscillators. This anomaly is attributed to the
classical approach used herein, indicating that for low temperatures, a quantum–mechanical
procedure should be applied. (ii) A high-temperature regime, where κ essentially does
not depend on L (in the limit L → ∞), as expected from Fourier’s law. Moreover, in
this regime, one notices that κ decreases with the temperature as it generally occurs with
liquids and solids. For increasing temperature, the thermal conductivity of most liquids
usually decreases as the liquid expands and the molecules move apart; in the case of solids,
due to lattice distortions, higher temperatures make it more difficult for electrons to flow,
leading to a reduction in their thermal conductivity. The results of Figure 2a indicate
that the thermal conductivity becomes independent of the lattice size in the limit L → ∞,
scaling with the temperature as κ(T) ∼ T−2.25 at high temperatures. Therefore, the system
becomes a thermal insulator at high temperatures, approaching this state according to
κ(T) ∼ T−2.25. Despite the simplicity of the one-dimensional classical inertial Heisenberg
model of Figure 1, the present results are very close to experimental verifications in some
antiferromagnetic electrical insulators, such as the Heisenberg chain cuprates Sr2CuO3
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and SrCuO2, for which the thermal conductivity is well-fitted by a 1/T2 law at high
temperatures [4]. We should note that the one-dimensional Heisenberg model with nearest-
neighbor ferromagnetic interactions, defined by the Hamiltonian of Equation (9), does not
present an equilibrium phase transition, being characterized by a paramagnetic state for
all temperatures T > 0. In this case, one may perform the following transformations in
the Hamiltonian of Equation (9), leaving it unaltered: 1/2 → −1/2 (which incorporates
the coupling constant), as well as Sj → −Sj, keeping Si unchanged. Consequently, the
Hamiltonian of Equation (9) applies to antiferromagnetic systems at high temperatures,
as well.

κ

(a)

σ

(b)

Figure 2. (Color online) Numerical data for the thermal conductivity [panel (a)] and thermal
conductance [panel (b)] are represented versus temperature (log–log plots) for different sizes
(L = 50, 70, 100, 140) of the one-dimensional classical inertial Heisenberg model. One notices a
crossover between the low- and high-temperature regimes for T � 0.3. As expected, higher tempera-
tures amplify the effects of the multiplicative noise, which is proportional to the square root of the
corresponding temperatures (Th, Tl), currently leading to larger fluctuations in numerical data, as
shown in panel (a). All quantities shown are dimensionless.

The same data of Figure 2a are exhibited in Figure 2b where we plot the thermal
conductance σ(L, T) = κ(L, T)/L versus temperature, characterized by the two dis-
tinct temperature regimes described above. The low-temperature regime shows that
the zero-temperature extrapolated value κ(L, 0) scales as κ(L, 0) ∼ L, leading to σ(L, 0) ≡
limT→0 κ(L, T)/L � 0.5. Such low-temperature results are in full agreement with those
obtained in previous simulations of coupled classical XY rotators [42–45]. On the other
hand, in the high-temperature regime, the thermal conductance presents a dependence on
L, as expected.

In Figure 3, we exhibit the thermal-conductance data of Figure 2b in conveniently
chosen variables, yielding a data collapse for all values of L considered. The full line
essentially represents the form of Equation (8), so that one writes

σ(L, T) = A expq(−Bxη) , (23)

where x = L0.475T, q = 2.28± 0.04, η = 2.88± 0.04, A = 0.492± 0.002, and B = 0.33± 0.04.
Notice that this value of η lies outside the range of what is commonly known as “stretched”
[cf. Equation (8)], so that the form above should be considered rather as a “shrinked”
q-exponential.
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σ

Figure 3. The plots for the thermal conductance of Figure 2b are shown in a log–log representation,
for a conveniently chosen abscissa (x = L0.475T), leading to a collapse of data for all values of
L considered. The fitting (full line) is given by the function of Equation (23).

It should be mentioned that, in the case of coupled nearest-neighbor-interacting
classical XY rotators on d-dimensional lattices (d = 1, 2, 3) [45], the thermal conductance
was also fitted by the form of Equation (23), with values of η(d) > 2. In particular, in the
one-dimensional case, such a fitting was attained for x = L0.3T, q = 1.7, and η = 2.335,
showing that these numbers present a dependence on the number of spin components
(n = 2, for XY spins and n = 3, for Heisenberg spins), as well as on the lattice dimension
d. It is important to mention that the generalized forms in Equations (8) and (23) have
been used in the literature for an appropriate description of a wide variety of physical
phenomena, like velocity measurements in a turbulent Couette–Taylor flow [60], relaxation
curves of RKKY spin glasses, such as CuMn and AuFe [61], cumulative distribution for the
magnitude of earthquakes [62], and more recently, for the thermal conductance of a system
of interacting XY rotators [45]. Moreover, its associated entropic form has been studied in
detail in Ref. [49].

By defining the abscissa variable of Figure 3 in the general form x = Lγ(n,d)T, and
using the q-exponential definition of Equation (3), the slope of the high-temperature part of
the thermal-conductance data scales with L, as

σ ∼ L−[η(n,d)γ(n,d)]/[q(n,d)−1] , (24)

where we introduce the dependence (n, d) on all indices. Since the thermal conductivity
(κ = Lσ) should not depend on the size L (in the limit L → ∞), Fourier’s law becomes
valid for

η(n, d)γ(n, d)
q(n, d)− 1

= 1 . (25)

The data of Figure 3 lead to [η(3, 1)γ(3, 1)]/[q(3, 1)− 1] = 1.069± 0.083, whereas those
for XY rotators on d-dimensional lattices yield 1.0007, 0.95, and 0.93, for d = 1, 2, and 3,
respectively [45], indicating the validation of Fourier’s law for systems of coupled nearest-
neighbor-interacting classical n-vector rotators, through the thermal conductance form
of Equation (23).

Recently, similar analyses were carried out for an XY Hamiltonian with anisotropies,
in such a way to approach the Ising model in particular limits [63]. All the results for
the quantity in Equation (25), computed up to the moment, are summarized in Table 1,
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where one notices that finite-size effects play an important role in increasing dimensions,
as expected.

Table 1. Values of the ratio ηγ/(q− 1) (highlighted in blue color) analyzed up to the moment: n = 1
(d = 1) [63], n = 2 (dimensions d = 1, 2, 3) [45], together with the present results for n = 3 (d = 1).
In all cases studied, the limit of Equation (25) is numerically approached.

ηγ

q− 1
d = 1

(linear chain)
d = 2

(square lattice)
d = 3

(simple cubic lattice)

n = 1
(Ising ferromagnet)

1.0063
q = 1.65, η = 1.94, γ = 0.336 - -

n = 2
(XY ferromagnet)

1.0007
q = 1.7, η = 2.335, γ = 0.3 0.95

q = 3.2, η = 5.23, γ = 0.4
0.93

q = 3.5, η = 5.42, γ = 0.43

n = 3
(Heisenberg ferromagnet)

1.069
q = 2.28, η = 2.88, γ = 0.475 - -

4. Conclusions

We studied the heat flow along a one-dimensional classical inertial Heisenberg model
of linear size L, by considering the first and last particles in thermal contact with heat baths
at different temperatures, Th and Tl (Th > Tl), respectively. These particles at the extremities
of the chain were subjected to standard Langevin dynamics, whereas all remaining rotators
(i = 2, · · · , L− 1) interacted by means of nearest-neighbor ferromagnetic couplings and
evolved in time following their own classical equations of motion, being investigated
numerically through molecular-dynamics numerical simulations.

Fourier’s law for the heat flux was verified numerically, and both thermal conduc-
tivity κ(T) and thermal conductance σ(L, T) = κ(T)/L were computed, by defining
T = (Th + Tl)/2. The slope of the high-temperature part of thermal-conductance data
scales with the system size was σ ∼ L−1.069, indicating that in the limit L → ∞, one
should obtain a thermal conductivity independent of L. Indeed, in this limit, we found
κ(T) ∼ T−2.25 for high temperatures. The thermal-conductance data were well-fitted by the
function σ(L, T) = A expq(−Bxη), typical of nonextensive statistical mechanics, where A
and B are constants, x = L0.475T, q = 2.28± 0.04, and η = 2.88± 0.04. This fitting augments
the applicability of such a function, which has been used for describing several physical
phenomena in the literature, like velocity measurements in a turbulent Couette–Taylor
flow [60], relaxation curves of RKKY spin glasses [61], cumulative distribution for the
magnitude of earthquakes [62], and thermal conductance of a system of interacting XY
rotators [45]. Since the value of η found herein lies outside the range of what is commonly
known as “stretched” (0 < η ≤ 1), herein, we refer to this fitting function of a “shrinked”
q-exponential. The present results reinforce those obtained recently for XY rotators on
d-dimensional lattices [45], indicating that Fourier’s law should be generally valid for
systems of coupled nearest-neighbor-interacting classical n-vector rotators, through the
“shrinked” q-exponential function for the thermal conductance, with the indices q(n, d) and
η(n, d) presenting a dependence on the number of spin components and lattice dimension.

Despite the simplicity of the model considered herein, the results for the thermal
thermal conductivity at high temperatures (κ(T) ∼ T−2.25) are very close to experimental
verifications in some antiferromagnetic electrical insulators, such as the Heisenberg chain
cuprates Sr2CuO3 and SrCuO2, for which thermal conductivity is well-fitted by a 1/T2 law
at high temperatures [4]. At equilibrium, the present model exhibits a paramagnetic state
for all temperatures, so that its Hamiltonian may be shown to cover both ferromagnetic
and antiferromagnetic systems. The present results show that even for models exhibiting
simple equilibrium properties, one may have out-of-equilibrium regimes characterized
by transport properties typical of nonextensive statistical mechanics, like the ones found
herein. Since nonextensive statistical mechanics have been used in the description of a
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wide variety of complex systems, one expects that the present results should be applicable
to many of these systems in diverse, non-equilibrium regimes.

In summary, we demonstrated that (i) for the classical one-dimensional inertial fer-
romagnetic Heisenberg model, the (macroscopic) Fourier-law is validated from (micro-
scopic) first principles, i.e., the temperature-dependent thermal conductivity is, in the
high-temperature regime, finite and independent of the system size (the low-temperature
regime is to be handled within a quantum grounding, which is out of the goal of the
present paper); (ii) For all temperatures and sizes, the thermal conductivity appears to be
consistent with q-statistics since it can be neatly collapsed within a shrunken q-exponential
form; (iii) within this shrunken q-exponential form, a single universal condition, namely
η(n,d)γ(n,d)

q(n,d)−1 = 1, validates the Fourier law for the n-vector models for n = 1, 2, 3, which
constitutes a numerical indication that this centennial macroscopic law is possibly valid for
all values of (n, d), where n → ∞ and n → 0 correspond to the spherical model and ‘self-
avoiding walk’, respectively. It is not our present aim to review the rich existing literature
on the validity of the Fourier law within diverse classical and quantum approaches, but we
rather restrict our focus to analytical and numerical first-principle approaches of classical
systems that are similar to the present one.
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Appendix A. Numerical Procedures

Let us focus on the numerical integration of the equations of motion of the classical
inertial Heisenberg chain. Considering the change of variable Ṡi = Vi, we have the
following equations of motion:

Ṡi = Vi for all i

V̇i = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + V2

i

]
Si , i = 2, . . . , L− 1

V̇1 = −V1 + S2 −
[
S1 · S2 + V2

1

]
S1 + S1 × ηh ,

V̇L = −VL + SL−1 −
[
SL · SL−1 + V2

L

]
SL + SL × ηl .

(A1)

which is a system of 6L first-order differential equations. To solve the set of equations
entirely with the velocity Verlet method, we need to define ηh/l =

√
2Th/l/dt wh/l , where w

is a vector of dimensionless Gaussian white noises and dt is the time-step of the integration.
Therefore, we have the following discretized procedure:

Sk+1
i = Sk

i + Vi dt +
1
2

Fk
i (dt)2

Vk+1
i = Vk

i +
1
2
(Fk

i + Fk+1
i )dt

(A2)

where the generalized forces are as follows:
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Fi = (Si+1 + Si−1)−
[
Si · (Si+1 + Si−1) + V2

i

]
Si , i = 2, . . . , L− 1

F1 = −V1 + S2 −
[
S1 · S2 + V2

1

]
S1 +

√
2Th
dt

(S1 ×wh) ,

FL = −VL + SL−1 −
[
SL · SL−1 + V2

L

]
SL +

√
2Tl
dt

(SL ×wl) .

(A3)

Notice that (dt)−1/2 in the stochastic part of the forces is equivalent to (dt)3/2 and
(dt)1/2 in Fk

i (dt)2 and Fk
i dt respectively; this equivalence contains weak order 1/2 and

strong order 3/2 properties.
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Abstract: In this study, we investigate a nonlinear diffusion process in which particles stochastically
reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the
porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical
and numerical calculations to obtain and interpret the probability distribution of the position of the
particles and the mean square displacement. These results are further compared and shown to agree
with the results of numerical simulations. Our findings show that a system of this kind exhibits
non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and
stationary states that simultaneously depend on the nonlinearity and resetting rate.

Keywords: Tsallis entropy; q-exponentials; anomalous diffusion; Lévy distributions

1. Introduction

Stochastic processes are one of the most captivating occurrences in the natural world
and significantly impact various contexts. Diffusion completely depends on these processes,
determining the type of diffusion the system manifests. For example, Markovian processes
are typical of the Brownian motion characterized by a linear dependence on the mean
square displacement, i.e., 〈(Δx)2〉 ∼ t, and can be connected with the Gaussian distribution.
On the other hand, the non-Markovian processes can be connected to extensions of the
Brownian motion where the sub- or super-diffusion is present. In these cases, we have a
nonlinear time dependence on the mean-square displacement, e.g., 〈(Δx)2〉 ∼ tσ, where
σ < 1 and σ > 1 correspond to sub- and superdiffusion, respectively. Other behaviors for
the mean-square displacement are also possible, such as 〈(Δx)2〉 ∼ lnσ t, which characterize
an ultraslow diffusion. Behind each of these processes, we have a density of probability,
which is the solution of the differential equation related to the type of stochastic process
present in the system. The usual diffusion is connected to Markovian processes, which have
the Gaussian distribution as a solution. Several kinds of differential equations can emerge
in the context of non-Markovian processes. The porous media equation is one of them, as a
consequence of a Langevin equation with multiplicative noise [1,2] with implications in
different contexts [3,4]. It is given by

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρν(x, t) , (1)
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where D is the diffusion coefficient and ρ(x, t) represents the probability distribution of
finding a particle around position x at time t. Equation (1) can be obtained by using differ-
ent approaches, such as the ones present in Refs. [1,5,6]. This equation has been successfully
applied in many situations such as heavy-ion collisions [7], climate modeling, particles
with repulsive power-law interactions [8], life sciences [9], and hydrological setting [10].
Further, it can be related to the Tsallis formalism [11] and connected to the thermostatistic
aspects [12], similar to the standard diffusion equation and the Boltzmann–Gibbs statistics.
These scenarios and others related to stochastic processes are part of the diffusion phe-
nomena, which can be found in different contexts and are essential mechanisms in nature.
The diffusion can often appear combined with different phenomena such as stochastic
resetting [13,14], a process in which particles are stochastically repositioned to their initial
positions at a constant rate (see, for example, Figure 1).
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Figure 1. This figure illustrates the stochastic resetting process. The red and blue lines represent
the stochastic motion of two particles, which after some time restart the motion (black points) with
some rate.

Examples of systems with stochastic reset include the production of proteins by ribo-
somes [15], visual working memory in humans [16], protein identification in DNA [17], and
animal foraging [18]. Motivated by this myriad of possible applications, several works have
systematically investigated the combination of diffusion with stochastic resetting [19–26].
Other phenomena that are often combined with diffusion are the reaction–diffusion pro-
cesses, which play an essential role in different contexts such as physics [4,27,28] and
biology [29,30]. Despite this increasing interest in studying diffusion with stochastic reset-
ting and reaction processes, much less attention has been paid to considering nonlinear
diffusion processes.

Here, we help to fill this gap by investigating a diffusive process governed by a
nonlinear diffusion equation with stochastic resetting and linear reaction processes, both
irreversible and reversible. We consider the diffusion governed by Equation (1), a nonlinear
equation whose solutions are distributions asymptotically characterized by a compact or a
long-tailed behavior. In the last case, we can relate them with the Lévy distributions [31,32],
characterized asymptotically by power laws. The results that emerge from this context
combine different processes, i.e., the nonlinear diffusion, which may exhibit compact or
long-tailed solutions, reaction terms, and stochastic resetting. It is also worth mentioning
that the nonlinear diffusion equation considered here can be connected to unusual char-
acteristics such as fractal and multifractal properties, e.g., present in a porous media. The
reaction terms can be used to simulate different situations. One of them is the case where
the substrate can immobilize the particles. Another can result in an intermittent motion,
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where the terms are related to the motion and pause while the diffusion proceeds [27].
We perform analytical and numerical analysis for this nonlinear diffusion process with
stochastic resetting and reaction terms. In particular, we found an analytical solution for
the stationary state when reaction terms are absent, in terms of the q-exponential, which
has a power-law behavior. The analytical solution for the stationary state is also obtained
when a reversible reaction process is considered. These solutions, given in terms of the
q-exponentials [33], are different from the standard cases discussed in Refs. [19,34]. This fea-
ture can be connected to the diffusion process, which is governed by a nonlinear diffusion
equation instead of the usual one and results in a correlated anomalous diffusion [35,36].

The remainder of this manuscript is organized as follows. Section 2 defines the diffu-
sion equation, presents the approach to finding its solution, and describes the probability
distribution of the positions of particles and the mean square displacement for stochastic
resetting for different scenarios. This section also considers the first passage-time distribu-
tion and reaction terms for the nonlinear diffusion process with resetting. Finally, Section 3
concludes this work with an overview of our main findings.

2. Nonlinear Diffusion Equation with Stochastic Resetting

Let us start our analysis by considering a system subjected to the following diffu-
sion equation:

∂

∂t
ρ(x, t) = D

∂2

∂x2 [ρ(x, t)]ν − r
[
ρ(x, t)− δ(x− x′)

]
, (2)

where ρ(x, t) represents the probability distribution of finding a particle around position
x at time t, r is the rate under which particles stochastically reset their positions to x′,
ν is a parameter associated with the properties of the media, and D is a constant cor-
responding to the usual diffusion coefficient. It is worth mentioning that we will also
consider some extensions of Equation (2) and implications for the reset process. The solu-
tion of this equation in the absence of the resetting term, that is, for r = 0, can be found
in terms of the q-exponential present in the Tsallis formalism [11], which is based on the
following entropy:

Sq =
k

q− 1

{
1−

∫
dx[ρ(x, t)]q

}
, (3)

where q represents a degree of nonextensivity and k is a constant. Equation (3) recovers the
Boltzmann–Gibbs entropy in the limit of q → 1. In particular, it is possible to show that the
solution is given by

ρ(x, t) =
1

Φ(t)
expq

[
− k′x2

2(2− q)DΦ2(t)

]
, (4)

where q = 2− ν and the q-exponential is defined as follows:

expq[x] =

{
[1 + (1− q)x]

1
1−q , x ≥ 1/(q− 1)

0 , x < 1/(q− 1)
, (5)

and Φ(t) = [(1 + ν)k′t]
1

1+ν , with

k′ = 2νDπ

⎧⎪⎪⎨
⎪⎪⎩

1
1−ν

[
Γ( 1

1−ν− 1
2 )

Γ( 1
1−ν )

]2
, ν < 1

1
ν−1

[
Γ( 1

ν−1−1)
Γ( 1

ν−1+
3
2 )

]2
, ν > 1

. (6)

The mean square displacement for this case is given by σ2
x(t) = 〈(x− 〈x〉)2〉 ∝ t2/(1+ν),

which implies that depending on the values of ν, sub, normal, or superdiffusion can be
obtained. Another interesting point about these solutions is their connection with the
Lévy distributions for q > 1 or ν < 1 as discussed in Refs. [31,32].
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Equation (2) may be obtained from a random walk approach for r �= 0, similar to the
standard case [37,38]; however, with a nonlinear dependence to obtain the nonlinearity
present in the diffusive term. To proceed this way, we follow the approach of Ref. [39], yielding

ρ(x, t + τ) =
∫ ∞

−∞
e−rτΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+ {1−Ψ[x, t; ρ(x, t)]}e−rτρ(x, t) +
(
1− e−rτ

){
ρ(x, t)−R[ρ(x, t)]

}
. (7)

By taking the limits τ → 0 and x′ → 0 as discussed in Ref. [39], it is possible to simplify
Equation (7) and obtain

∂

∂t
ρ(x, t) =

∂2

∂x2

{
Ψ[x, t; ρ(x, t)]ρ(x, t)

}
− rR[ρ(x, t)] , (8)

which for Ψ[x, t; ρ(x, t)] = D[ρ(x, t)]ν−1 and R[ρ(x, t)] = (ρ(x, t)− δ(x− x′)) recovers
Equation (2). In fact, replacing the previous expressions for Ψ[x, t; ρ(x, t)] andR[ρ(x, t)] in
Equation (8), we obtain the following:

∂

∂t
ρ(x, t) = D

∂2

∂x2 [ρ(x, t)]ν − r
[
ρ(x, t)− δ(x− x′)

]
. (9)

We notice that Ψ[x, t; ρ(x, t)] directly influences the behavior exhibited by the particles
during the diffusion process, which can lead us to normal or anomalous diffusion. It is
also possible to consider situations with different regimes of diffusion depending on the
expressions used for Ψ[x, t; ρ(x, t)]. Later, we examine a case characterized by two different
regimes, i.e., Ψ[x, t; ρ(x, t)] = D1 + Dν[ρ(x, t)]ν−1, where one of the processes is normal
and another is anomalous. Formulating the stochastic resetting in terms of a Langevin
equation is also possible using the procedure employed in Ref. [21]. To do this, we need
to consider the following equation ẋ =

√
Ψ[x, t; ρ(x, t)]ξ(t), where ξ(t) is a stochastic

variable, i.e., a Gaussian white noise [39] with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 ∝ δ(t− t′). In this
manner, Equation (2) (or Equation (8)) can be obtained from a random walk approach with
a nonlinear dependence on the probability density function connected to the dynamics of
the walkers or employing a stochastic equation with a nonlinear term that is coupled with
a nonlinear diffusion equation.

By performing some numerical calculations, it is possible to find the solution for
Equation (2) as shown in Figure 2a,b for ν > 1 and ν < 1 at three different moments in
time. To do this, the system was defined in the interval [−5000, 5000] and discretized in
increments of dx = 2× 10−2, with dt = 10−6, to numerically explore the evolution of
time and obtain the results exhibited in these figures. These values for dx and dt verify
the condition Ddt/

(
dx2) < 1/2 required for the stability of the solutions during the time

evolution of the initial condition to satisfy the boundary conditions [28,40].

(a) (b)

Figure 2. Profile of the distribution obtained from Equation (2) for (a) ν = 1.2 and (b) ν = 0.8 by
considering different values of time. For illustrative purposes, we consider D = 1, ρ(x, 0) = δ(x),
x′ = 0, and r = 20.
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Figure 3 exhibits the time-dependence of the mean square displacement for the cases
shown in Figure 2a,b. The system reaches a stationary state for long times as in the standard
case, i.e., for ν = 1, when the resetting is considered. We have an anomalous diffusion
for short times in both cases, as shown in Figure 3. We have a superdiffusion for ν < 1,
whereas the subdiffusion behavior is verified for ν > 1.

Figure 3. Time-dependence of the mean square displacement, i.e., σ2
x (t) = 〈(x − 〈x〉)2〉, obtained

from Equation (2) when ν = 0.8 (green line) and ν = 1.2 (black line). The red and blue lines were
incorporated to evidence the behavior of the mean square displacement for short times. Again, for
illustrative purposes, we consider D = 1, ρ(x, 0) = δ(x), x′ = 0, and r = 20.

The result shown in Figure 3 for the stationary state allows us to consider, in the
asymptotic limit of t → ∞, the following equation:

D
∂2

∂x2 [ρst(x)]ν − r
[
ρst(x)− δ(x− x′)

]
= 0 , (10)

where ρst(x) = limt→∞ ρ(x, t). It is possible to verify that the solution of Equation (10) is
given by

ρst(x) =
1
Z expq

[
− β|x− x′|

]
, (11)

with Zβ = 2/(2− q), ν = 3− 2q, and

β =

[
r

2Dν

(
2

2− q

)3−2q
] 1

4−2q

. (12)

Equation (11), for the particular case q = 1 (or ν = 1), leads to the result obtained in Ref. [14]
for the normal case. Figure 4 illustrates the numerical result obtained from Equation (2) for
long times, i.e., in the stationary scenario, and the previous analytical result, obtained for
Equation (11). It reveals a strong agreement between the numerical and analytical results
when we examine two different values of the ν parameter: the analytical result depicted for
ν = 0.8, with a solid black line and ν = 1.2, with a solid green line, while the dotted red
line represents the numerical result. In both cases, we employ a stochastic resetting rate
of r = 20.
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Figure 4. Comparison of the trends of the analytical results (black and green solid lines), given by
Equation (11), with the numerical results (red dotted lines), obtained for Equation (2) when ν = 0.8
and ν = 1.2. As before, the calculations consider D = 1, ρ(x, 0) = δ(x), x′ = 0, and r = 20.

We may also consider the survival probability and the first passage time distribution
for the situation we are analyzing. To proceed further, we consider the following boundary
condition: ρ(0, t) = ρ(∞, t) = 0, which implies assuming the presence of an absorbent
surface at x = 0, and fix, as an initial condition, ρ(x, 0) = δ(x − x0). In this framework,
Equation (8) becomes

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρν(x, t)− r
[
ρ(x, t)− S(t)δ(x− x′)

]
, (13)

where S(t) =
∫ ∞

0 dxρ(x, t) is the survival probability. The first passage time distribution
can be found by using Equation [41]

F(t) = − ∂

∂t

∫ ∞

0
dxρ(x, t) = − ∂

∂t
S(t) . (14)

Figures 5–7, for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0, depict some cases
with fixed values of the diffusion coefficient D = 1 and position x′ = x0, for ν = 1.2
and ρ(x, 0) = δ(x− x0).

Figure 5. The probability distribution function obtained from Equation (13) when ν = 1.2
for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0. We consider, for simplicity,
D = 1, ρ(x, 0) = δ(x− x0), and x′ = x0.
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Figure 6. Time-dependence of the survival probability using Equation (13) for various values of the
resetting rate r, with ν = 1.2 for the boundary conditions ρ(0, t) = 0 and ρ(∞, t) = 0. We consider,
again, D = 1, ρ(x, 0) = δ(x− x0), and x′ = x0.

Figure 7. The first passage time distribution obtained from Equation (14) for ν = 1.2 and the boundary
conditions ρ(0, t) = 0 and ρ(∞, t) = 0. Again, for simplicity, we consider D = 1, ρ(x, 0) = δ(x− x0),
and x′ = x0.

From Figure 5, we may conclude that the quantity of particles decreases with increasing
rate r, demonstrating that the particles can find the absorbent surface more easily for large
values of the stochastic resetting rate. A similar behavior is illustrated in Figure 6, where we
observe the changing dynamics of particle survival probability over time. An increase in
the rate parameter r corresponds to faster adsorption of the particles at the surface. Figure 7
presents a graph illustrating the first passage time distribution over time, with the curves
representing the analytical results obtained from Equation (14).

Another challenging scenario, which emerges when the system is subjected to the
resetting process, is represented by the presence of a subtract that immobilizes the particles
while the diffusion proceeds. To face this case, we can consider the following equation:

ρ(x, t + τ) =
∫ ∞

−∞
e−ατΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+
{

1−Ψ[x, t; ρ(x, t)]
}

e−ατρ(x, t) +
(
1− e−ατ

){
ρ(x, t)−R[ρ(x, t)]

}
. (15)

From this equation, it is possible to obtain the following diffusion equation:
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∂

∂t
ρ(x, t) =

∂2

∂x2

{
Ψ[x, t; ρ(x, t)]ρ(x, t)

}
− r
[
ρ(x, t)− e−αtδ(x− x′)

]
− αρ(x, t) , (16)

in which Ψ[x, t; ρ(x, t)] = D[ρ(x, t)]ν−1 andR[ρ(x, t)] = ρ(x, t) + (r/α)
[
ρ(x, t) −e−αtδ(x−

x′)
]
. This equation differs from Equation (2) by the presence of a reaction term that

immobilizes particles with the rate α. Note that the resetting term considers the exponential
e−αt multiplied by the delta function. This factor corresponds to the time behavior of the
survival probability in this case. In the absence of the resetting term, it is possible to find
the solution in terms of the q-exponential as in the previous case, and it is given by

ρ(x, t) = e−αt 1
Φα(t)

expq

[
− k′x2

2(2− q)DΦ2
α(t)

]
, (17)

with

Φα(t) =
{

1 + ν

(1− ν)α

[
e(1−ν)αt − 1

]} 1
1+ν

. (18)

In the case of an intermittent motion, we have to consider the following time behavior
for S1(t) =

(
α2/αt

)(
1− α2e−αtt/αt

)
, where αt = α1 + α2. In this scenario, the process of

resetting and motion is governed by the constants α1 and α2, and the equations are given by

∂

∂t
ρ1(x, t) = D

∂2

∂x2 ρν
1(x, t)− r

[
ρ1(x, t)− S1(t)δ(x− x′)

]
− α1ρ1(x, t) + α2ρ2(x, t) (19)

and
∂

∂t
ρ2(x, t) = α1ρ1(x, t)− α2ρ2(x, t) . (20)

From an analytical point of view, it is possible to find the solution of the linear case, i.e.,
ν = 1. It is

ρ1(x, t) = ρ0(x, t) +
∞

∑
n=1

(−α1)
n
∫ ∞

−∞
dxn

∫ t

0
dtnG2(x− xn, t− tn)

×
∫ ∞

−∞
dxn−1

∫ tn

0
dtn−1G2(xn − xn−1, tn − tn−1) · · ·

×
∫ ∞

−∞
dx1

∫ t2

0
dt1G2(x2 − x1, t2 − t1)ρ0(x1, t1) (21)

and

ρ2(x, t) = α1

∫ t

0
dt′e−α2(t−t′)ρ1(x, t′) , (22)

where

ρ0(x, t) = G1(x, t) + r
∫ t

0
dt′S1(t′)G1(x, t− t′) , (23)

G2(x, t) = G1(x, t) +
∫ t

0
dt′eα2t′ G1(x, t− t′) , (24)

and

G1(x, t) = e−rt−x2/(4Dt)/
√

4πDt . (25)

Figures 8 and 9 illustrate the behavior of the mean square displacement and the distributions
obtained from Equations (19) and (20) for different values of ν. For Equations (19) and (20),
it is also possible to find the stationary solution, i.e., the one in the limit t → ∞. We consider
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that in this limit, α1ρ1(x, t) is nearly equivalent to α2ρ2(x, t), and thus we solve the
equation

D
∂2

∂x2

[
ρ1(2),st(x)

]ν
− r
[
ρ1(2),st(x)− S1(2),stδ(x− x′)

]
= 0 , (26)

where ρ1(2),st(x) = limt→∞ ρ1(2)(x, t) and S1(2),st = limt→∞ S1(2)(t). It is possible to verify
that the solution of Equation (26) is given by

ρ1(2),st(x) =
1
Z1(2)

expq

[
− β1|x− x′|

]
, (27)

with Z1(2)β1(2)S1(2),st = 2/(2− q), ν = 3− 2q, and

β1(2) =

⎡
⎣ r

2DνS2−2q
1(2),st

(
2

2− q

)3−2q
⎤
⎦

1
4−2q

. (28)

Figure 8. Profiles of the probability distributions obtained from Equations (19) and (20), when ν = 1.2.
(a) exhibits the time-dependence of the mean square displacement for the distributions ρ1(x, t) and
ρ2(x, t); (b) and (c) show the spatial profiles of ρ1(x, t) and ρ2(x, t). The curves were drawn for D = 1,
r = 20, ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, and α1 = α2 = 5, for illustrative purposes.

167



Entropy 2023, 25, 1647

Figure 9. The same as in Figure 8 for ν = 0.8.

Figures 10 and 11 exhibit the stationary solution for ρ1(x, t) and ρ2(x, t) from the
numerical and the analytical point of view.

Figure 10. Comparison of the analytical results (black and green solid lines), given by Equation (27),
ρ2,st(x) = (α1/α2)ρ1,st(x), with the numerical results (red dotted lines) obtained from Equation (2) for
ν = 1.2. The curves were drawn for D = 1, r = 10, ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, α1 = 2, and α2 = 5.
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Figure 11. The same as in Figure 10 for the case ν = 0.8.

Let us reconsider the random walk approach for r �= 0, i.e., Equation (7), given by

ρ(x, t + τ) =
∫ ∞

−∞
e−rτΨ[x− x′, t; ρ(x− x′, t)]ρ(x− x′, t)Φ(x′)dx′

+ {1−Ψ[x, t; ρ(x, t)]}e−rτρ(x, t) +
(
1− e−rτ

){
ρ(x, t)−R[ρ(x, t)]

}
,(29)

which for Ψ[x, t; ρ(x, t)] = D1 + Dν[ρ(x, t)]ν−1 implies that the diffusion is governed by the
following equation

∂

∂t
ρ(x, t) = D1

∂2

∂x2 ρ(x, t) + Dν
∂2

∂x2 [ρ(x, t)]ν − rR[ρ(x, t)] , (30)

withR[ρ(x, t)] = ρ(x, t)− δ(x− x′) in connection with the stochastic resetting. Equation (30)
has two different diffusive terms, which allows us to obtain two different regimes, where
one of the processes is normal and the other is anomalous. Figure 12 illustrates the behavior
of the mean square displacement and stationary distributions obtained from Equation (30)
for different values of the diffusion coefficients for ν = 1.2. The first regime, which is shown
in Figure 12 for the mean square displacement, is anomalous, and the second is normal
before reaching the stationary state.

Figure 12. Time-dependence of the mean square displacement obtained from Equation (30) for
different values of diffusion coefficients. The inset corresponds to the stationary distribution for
different diffusion coefficients. We consider, for illustrative purposes, ν = 1.2, x′ = 0, and the initial
condition ρ(x, 0) = δ(x), for r = 0.5.
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3. Discussion and Conclusions

We have investigated the diffusion process governed by a nonlinear diffusion equation
when stochastic resetting and linear reaction terms are present. The nonlinear diffusion
equation analyzed is the porous media equation with the diffusive part characterized by a
single nonlinear term or a combination of different terms, resulting in different diffusion
regimes. One of the solutions of Equation (2), in the absence of stochastic resetting and
reaction terms, is given in terms of the q-Gaussian, as discussed in Section 2. It is different
from the normal one expressed in terms of the Gaussian distribution as a consequence of
the stochastic processes related to the motion of the particles [1]. It presents an anomalous
behavior evidenced by the time dependence of the mean square displacement, which can be
connected with sub- and superdiffusion. Under the influence of stochastic resetting, these
processes exhibit a stationary state that differs from the expected exponential, characterized
by a power-law behavior, as illustrated in Figure 4. This feature is a consequence of the
nature of the diffusion process promoted by the nonlinear term, which can be connected to
the correlated anomalous diffusion [35,36]. These general results extend the ones obtained in
Refs. [19,34]. Subsequently, we analyzed the reaction process in this context by considering an
irreversible and reversible scenario. The first case can be related to a substrate that immobilizes
the particles while diffusion proceeds. The stationary solution is absent in a different way
from the other scenarios. The second case can be considered an intermittent process between
the resting and the motion with some rates. For this case, we also obtained a stationary
solution in terms of the q-exponential, evidencing the influence of the nature of the diffusion
on the stochastic resetting. The diffusion process represented by Equation (1) is described
by power-law distributions, which promote a different behavior from the normal one for the
stochastic resetting and, consequently, a stationary solution expressed in terms of a power-law.

We also analyzed a situation characterized by different diffusion regimes, such that the
first regime is slower than the normal one, while the second is faster before the stationary
state is reached. We verified that these changes in the diffusion equation directly influence
the resetting process, leading the system to exhibit anomalous behavior. These features also
open the possibility of considering mixing between different cases, such as the fractional
diffusion equations [42–44] and nonlinear diffusion equations, which results in fractional
nonlinear diffusion equations [45]. Combining different equations will produce a wide class
of behaviors to describe a variety of scenarios. Finally, we hope that the results found here
can be useful in discussing the processes related to the nonlinear diffusion equation when the
stochastic process is present.
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Abstract: Utilizing the Modified Hagedorn function with embedded flow, we analyze the transverse
momenta (pT) and transverse mass (mT) spectra of π+ in Au–Au, Cu–Cu, and d–Au collisions at√

sNN = 200 GeV across various centrality bins. Our study reveals the centrality and system size
dependence of key freezeout parameters, including kinetic freezeout temperature (T0), transverse
flow velocity (βT), entropy-related parameter (n), and kinetic freezeout volume (V). Specifically,
T0 and n increase from central to peripheral collisions, while βT and V show the opposite trend.
These parameters also exhibit system size dependence; T0 and βT are smaller in larger collision
systems, whereas V is larger. Importantly, central collisions correspond to a stiffer Equation of
State (EOS), characterized by larger βT and smaller T0, while peripheral collisions indicate a softer
EOS. These insights are crucial for understanding the properties of Quark–Gluon Plasma (QGP)
and offer valuable constraints for Quantum Chromodynamics (QCD) models at high temperatures
and densities.
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1. Introduction

The collisions of heavy ions at relativistic energies in the laboratory allow the creation
as well as the investigation of the hot and dense QCD matter [1–3]. The QCD phase diagram
can be probed by tuning of collision energy, which enables the possibility of producing
nuclear matter at various temperatures and baryon densities. The Relativistic Heavy Ion
Collider (RHIC) [4,5] and Large Hadron Collider (LHC) [6–8] provide the opportunity
to produce a medium that has the thermodynamic conditions of high temperatures and
negligible baryon chemical potentials. This medium can be studied with high precision
using the first-principle QCD calculations [9–13] within the Lattice QCD (lQCD) framework.
The moderate temperature and finite net baryon densities in QCD can be created by
lowering the beam energies. The application of lQCD to the study of such a matter is
limited due to the so-called sign problem. However, there are current and future accelerator
facilities, such as RHIC [14], Super Proton Synchrotron (SPS) [15,16], Nuclotron-based
Ion Collider (NICA) [17], and the Facility for Anti-proton Ion Research (FAIR) [18,19],
which have carried out or plan to conduct diverse experimental programs to explore
this part of the QCD phase diagram. The sequence of events in relativistic heavy ion
collisions involving the generation of hot and dense matter can be outlined as follows: a
pre-equilibrium phase, the attainment of thermal (or chemical) equilibrium among partons,
the potential formation of Quark–Gluon Plasma (QGP) or a mixed state of QGP and hadron
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gas, the emergence of a gas comprising hot interacting hadrons, and, ultimately, a freezeout
state where the produced hadrons cease strong interactions. As the produced hadrons
encapsulate information pertaining to the collision dynamics and the comprehensive
spacetime evolution of the system from its initial to final stages, a precise assessment of
transverse momentum (pT) distributions and yields of identified hadrons in relation to
collision geometry becomes crucial for comprehending the dynamics and properties of the
generated matter.

The freezeout conditions of the fireball have great importance and have been one
of the compelling topics in the study of heavy ion collisions at various energies and in
different centrality intervals. From the analysis of two-particle correlations [20,21] and
hadron yields, the freezeout is claimed to occur in two stages: (1) chemical freezeout, where
the particle ratio stabilizes as the inelastic scattering stops; and (2) kinetic freezeout, where
the momentum distribution of the particles is frozen.

The kinetic freezeout stage is very important in the evolution of heavy ion collisions
because it provides information about the properties of nuclear matter and the underlying
dynamics of the strong interactions. Different hydrodynamic models [22–26] can be used
to investigate the hot and dense matter in terms of various parameters to be extracted. In
the present work, the (pT) spectra of pions in Au–Au, Cu–Cu, and d–Au interactions at
200 GeV in several centrality intervals are analyzed by the Modified Hagedorn function
with the embedded flow to extract T0, βT , n, and V. All these parameters are discussed in
our previous works in detail [27–30]. The T0 is the temperature at which the QGP is already
transformed into a gas of hadrons and the interactions between the particles cease. The
βT is the collective motion of the particles in the transverse direction, perpendicular to the
beam axis, due to the pressure gradients within the QGP. It should be noted that we took
pions because they are the most abundant particles that are produced in collisions.

The subsequent sections of the paper follow this structure: Section 2 outlines the
methodology and formal framework, Section 3 delves into the discussion of results, and
Section 4 provides the concluding remarks.

2. The Method and Formalism

The pT parameters of the final state particles have great importance in high-energy
physics and are distributed among several components. These components include the soft,
hard, very soft, and very hard components, which are discussed in detail in our previous
work [31]. Let us bind our discussion to the soft and hard components. Several functions
and distributions may be used to describe the pT spectra. Some distributions may describe
soft components, while some of them may be used to describe both the soft and hard
components. The pT range of 0–2 or 2.5 GeV/c can be referred to as the soft component,
while the range above that is considered the hard component.

Various versions of the Tsallis distribution function , rooted in non-extensive Tsallis
statistics, have become widely used models for describing the pT distributions of hadrons in
high-energy collisions [32–35]. Unlike others, the Tsallis function offers a distinct advantage:
it is directly linked to thermodynamics through entropy [35]. The Tsallis function includes
a crucial parameter, the non-extensivity index q, which indicates how much the particle pT
distribution deviates from the Boltzmann–Gibbs exponential distribution. Additionally,
the parameter q serves as a measure of the system’s departure from equilibrium or thermal
equilibrium [36]. The significance of q and its profound physical implications, directly
related to thermodynamics, have been reaffirmed in recent research by Tsallis [33].

The Tsallis function at mid-rapidity in its most basic form is provided as [37,38]

f (pT) = C
(

1 + (q− 1)
mT
T

)−1/(q−1)

, (1)

C denotes the normalized constant, while T represents the effective temperature. This

temperature, encompassing the flow effect, is defined as T =

√
T0(1+βT)
(1−βT)

. As cited in [38–40],
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the Tsallis distribution, expressed in the following form, aligns with thermodynamic
principles:

f (pT) = C
(

1 + (q− 1)
mT
T

)−q/(q−1)

, (2)

The βT is incorporated into a QCD-inspired (power law) Hagedorn function using a
straightforward Lorentz transformation [41,42]. This approach effectively replicated the
observed extended ranges of momentum spectra for final particles in both heavy-ion and
pp collisions at high energies.

For the description of the hard component of the pT spectra, one may use the Hagedorn
function [43], which is described by the inverse power law [44–46]

1
N

d2N
2πpTdpTdy

= C
(

1 +
mT
p0

)−n

, (3)

and
mT =

√
(m0)2 + (pT)2, (4)

In the given context, N denotes the number of particles, and pT (mT) represents the trans-
verse momentum (mass) of these particles. The parameters p0 and n are variables allowed
to vary freely during the fitting process, with the latter expressed as n = (q− 1)−1. The
value m0 corresponds to the rest mass of the pion, which is 0.139 GeV/c2 [47].

Equations (1) and (3) are mathematically identical when one sets p0 = nT0 and
n = (q− 1)−1. So, Equation (3) becomes

1
N

d2N
2πpTdpTdy

= C
(

1 +
mT
nT0

)−n

. (5)

In the current work, the simplest transformation is used to incorporate the collective
transverse (radial) flow into Equation (5) mT −→ < γt > (mT − pT/βT)

−n, such that
Equation (5) becomes

f (pT) = C
(

1 +
< γT > (mT − pT < βT >)

nT0

)−n

, (6)

This is the Hagedorn function with embedded flow, where C = gV/(2π)2 is the
normalization constant and V is the kinetic freezeout volume. T0 and βT represent the
kinetic freezeout temperature and transverse flow velocity, respectively. n is a parameter
that is related to non-extensivity, and γt = 1/

√
1− < βT >2. One can further read about

the Hagedorn model with the embedded flow in Refs. [41,48]. Before proceeding to the next
section, we would like to clarify that, if the hard component is included, we can apply the
superposition principle to combine Equations (3) and (6), as indicated by references [27,31].

3. Results and Discussion

The pT (mT) spectra of π+ in Au–Au, Cu–Cu, and d–Au collisions at
√

sNN = 200 GeV
are presented in Figure 1. We have analyzed pT spectra in various centrality bins. The
data are taken from [49–51], denoted by different symbols for different centrality intervals.
One can see that the model provides a good fit to the experimental data. The values of the
extracted parameters and χ2 are presented in Table 1. The data/fit in the lower segment of
each panel, and the values of χ2 show the quality of the fit. The normalization constant C
is integrated into the equations to normalize them to unity, while N0 is used to compare the
experimental data with the model fit and is considered as the multiplicity parameter.
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Figure 1. pT spectra of π+ produced in (a) Au–Au, (b) Cu–Cu, and (c) d–Au collisions in various
centrality intervals at

√
sNN = 200 GeV. The experimental data from the PHENIX and BRAHMS

collaborations are taken from [49–51], while the solid lines represent the fit results of the model. The
lower segment in each panel provides the data/fit.

Table 1. Collision, centrality, the extracted parameters (T0, βT , and n), fitting constant (N0), χ2, and
degrees of freedom (dof) corresponding to the graphs in Figure 1.

Collision Centrality T0 (GeV) βT n V( f m3) N0 χ2/dof

Au–Au 0–5% 0.065± 0.004 0.380± 0.008 8.4± 0.5 5568± 131 680± 37 31/25
5–10% 0.070± 0.004 0.365± 0.005 8.5± 0.3 5400± 113 280± 28 28/25

10–15% 0.075± 0.005 0.345± 0.007 8.7± 1.1 5357± 108 120± 19 76/25
15–20% 0.081± 0.005 0.331± 0.009 8.75± 0.5 5224± 111 55± 9.2 15.8/25
20–30% 0.087± 0.004 0.320± 0.010 8.8± 0.4 5102± 102 21± 4 11/25
30–40% 0.095± 0.006 0.304± 0.008 9.5± 0.5 5000± 106 10± 0.6 3.3/21
40–50% 0.104± 0.005 0.288± 0.008 10± 1.1 4800± 90 5.5± 0.4 13.4/25
50–60% 0.111± 0.006 0.270± 0.009 11± 1.1 4670± 100 3.5± 0.3 5.8/25
60–70% 0.120± 0.004 0.255± 0.009 12± 1.2 4535± 109 1.7± 0.22 2/25
70–80% 0.126± 0.004 0.241± 0.007 16± 1.2 4404± 102 0.95± 0.08 159/25
80–92% 0.130± 0.004 0.220± 0.007 19± 1.2 4300± 102 0.5± 0.04 57/25

Cu–Cu 0–10% 0.074± 0.005 0.421± 0.011 8.1± 0.6 5307± 127 5.2± 0.3 1/10
10–30% 0.093± 0.006 0.400± 0.008 10.3± 1.4 5183± 141 0.25± 0.04 0.4/10
30–50% 0.111± 0.006 0.370± 0.011 14.7± 1.3 5007± 136 0.02± 0.004 1/10
50–70% 0.120± 0.004 0.342± 0.010 17± 2 4800± 139 0.0035± 0.0005 1.3/10

d–Au 0–20% 0.082± 0.007 0.445± 0.009 10.9± 1 4529± 135 0.01± 0.003 4/21
20–40% 0.118± 0.005 0.409± 0.009 14.5± 1.5 4400± 152 5× 10−4 ± 4× 10−5 7/23
40–60% 0.129± 0.004 0.381± 0.010 13.1± 1.4 4346± 147 4× 10−6 ± 6× 10−7 3/21
60–88% 0.142± 0.006 0.352± 0.012 15.3± 2.1 4231± 163 1.6× 10−7 ± 5× 10−8 7.2/21
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The extracted parameters, T0, βT , n, and V, as a function of centrality and system
size, are shown in Figure 2. Figure 2a shows that T0 increases toward peripheral collisions,
indicating that the fireball lifetime decreases towards the peripheral collisions. On the other
hand, βT decreases as we move to non-central collisions as the pressure gradient decreases
toward peripheral collisions. We know that T0 in heavy ion collisions is sensitive to the
thermal and dynamical properties of the created system and βT characterizes the collective
motion of the particles in the transverse direction. The fluctuations in these quantities are
determined by the interplay between the preliminary conditions, the expansion dynamics,
and the freezeout process. Basically, in peripheral collisions, the weak pressure gradients
result in a more gradual cooling of the system and, hence, lower βT , and the particle density
decreases more slowly, which results in larger T0 in peripheral collisions compared to central
collisions. Therefore, larger T0 corresponds to smaller βT in peripheral collisions, indicating
a short-lived fireball with a steady expansion of the system. Our results agree with the
STAR results at 200 GeV [52], but the specific parameter values differ. The parameters
obtained by BRAHMS [50] are relatively larger than ours. The variation in parameter values
is attributed to different models. These findings are also consistent with those obtained
from the blast wave model [52], accurately reflecting the physical reality of the collisions.
Our model includes the non-extensive parameter, which offers a more suitable description
of particle spectra in extreme conditions and accounts for deviations from equilibrium in
non-extensive systems. The disparity between the T0 values in our work and the chemical
freezeout temperature extracted from the statistical and thermal models [49] is substantial.
This difference may be due to the complex dynamics and non-equilibrium effects in high-
energy systems, such as 200 GeV, which encompass processes like hadronization and
hadronic rescattering. Precisely measuring chemical and kinetic freezeout temperatures
in experiments is challenging, and the discrepancy in these temperatures underscores the
difficulty in extracting these values from experimental data.

We also see (Figure 2a) that T0 depends on the colliding system’s size. For a larger
system, the T0 is smaller. Similarly, in Figure 2b, βT has the same behavior as the system
size. Large colliding nuclei can provide a larger volume of the system, which results in a
longer expansion time and a lower energy density at the time of kinetic freezeout. This
leads the particles to have less time to interact and thermalize with each other, leading to a
lower T0. On the other hand, we know that βT refers to the collective motion of the particles
in the transverse direction, perpendicular to the beam axis. This velocity can be generated
by the pressure gradients created by the initial collision and subsequent expansion of the
system. Therefore, a larger βT can also correspond to a smaller system size as the particles
will be more spread out in the transverse direction due to their collective motion. The
smaller βT for large systems in the current work can be explained in terms of, in larger
collision systems, there is typically a higher initial energy density, which can lead to a
longer duration of the early dense stage of the collision. Additionally, because of the longer
interaction time and larger system size, the expansion can be more gradual and less violent.
As a result, the transverse flow velocity may increase more slowly.

Figure 2c provides the result of the dependence of n on centrality. Basically, n = (q− 1)−1,
and q is the non-extensive parameter [36,53]. The parameter q is used to explain the deviation
from thermal equilibrium and can be used for quantification of the fluctuations in temperature
around the equilibrated value of temperature. The parameter q and temperature can be
interconnected as

q− 1 =
Var(T0)

< T0 >
(7)

Larger (small) q refers to a large (small) deviation in the system from thermal equilibrium,
where larger q corresponds to smaller n. In the present work, the central collisions are
far from thermal equilibrium because the value of n is smaller in central collisions, and
it increases toward peripheral collisions, which means that the peripheral collisions are
closer to equilibrium. The above statement seems unusual but it is not. It is possible
that the peripheral collisions may have a closer approach to equilibrium than the central
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collision systems, which can be explained in terms of higher energy densities and more
violent interactions being experienced by the system in central collisions, where there is a
greater overlap between the colliding nuclei. This may cause the system to expand and cool
quickly, which could shorten the amount of time it takes for the particles to reach thermal
equilibrium. Central collisions may therefore show non-equilibrium features. Peripheral
collisions, on the other hand, involve lower energy densities and less overlap. The system
can evolve more slowly in peripheral collisions due to the longer interaction times, even
though the overall energy deposited is lower. The system may become more “equilibrated”
in terms of conventional thermodynamic properties as a result of this prolonged evolution,
which may give the particles more chances to achieve a state of thermal equilibrium.
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Figure 2. T0, βT , n, and V are shown in centrality classes in panels (a), (b), (c), and (d), respectively.
Different symbols with different colors in all four panels of Figure 2 demonstrate different collision
systems. The change in these symbols towards the right shows their dependence on centrality.

The dependence of (V) is shown in Figure 2d. One can see that V depends on both
the system size and collision centrality. This occurs because central collisions are associated
with larger initial bulk systems at higher energies. This, in turn, results in longer evolution
times and the formation of larger partonic systems. Naturally, a larger partonic system
corresponds to a larger V. Meanwhile, the scenario is the opposite regarding the periphery,
where V becomes smaller. V is also dependent on the system size. The larger the system,
the larger the V. The fact behind this is that a large number of particles are produced in
larger systems; as a result, larger volume is required to accommodate these particles at the
time of kinetic freezeout.

Figure 3 shows the multiplicity parameter (N0) as a function of centrality and the
size of the collision system. Central collisions correspond to large multiplicity because the
overlapping region contains huge energy during the collision. At the time of ion collision,
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a high-temperature and high-density medium of quarks and gluons known as the QGP
is produced. This plasma quickly expands and cools, eventually breaking up into a large
number of particles. In other words, the multiplicity of particles produced in the central
collisions is related to the energy density of the QGP. High energy density means that there
are more particles per unit volume, leading to a larger number of particles. This is why
central collisions, which have the highest energy densities, are more likely to produce a
large number of particles. When the centrality decreases, the energy densities in the system
also decrease, which results in smaller multiplicity.
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Figure 3. The variation in N0 with centrality and size of the interacting system.

Before advancing to the conclusion, we would like to emphasize that the present
work is very important because, in heavy ion collisions, the T0 and βT are two important
observables that are related to the EOS of the QGP. The EOS describes the relationship
between the thermodynamic variables of the QGP, such as temperature, pressure, and
energy density.

The relationship between the T0 and the βT can be used to constrain the EOS of the
QGP. In this work, the higher values of βT and smaller values of T0 in the highest centrality
correspond to a stiffer EOS, showing large pressure. The stiffer EOS is due to a large
pressure gradient and lower T0, which will lead to a faster expansion of the QGP and a
larger pressure gradient, resulting in greater collective motion of the particles. Conversely,
peripheral collisions correspond to a softer EOS, which shows a slower expansion. The
softer EOS corresponds to lower pressure for a given energy density, which will result in a
smaller βT and a higher T0. This is because a softer EOS will lead to a slower expansion
of the QGP and a smaller pressure gradient, resulting in lesser collective motion of the
particles. A stiffer EOS indicates a stronger interaction between the quarks and gluons in
QGP, whereas a softer EOS indicates a weaker interaction. This information is important
for understanding the properties of the QGP and for constraining theoretical models of
QCD at high temperatures and densities.
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4. Conclusions

The transverse momentum (mass) spectra of π+ at
√

sNN = 200 GeV in different
centrality bins of Au–Au, Cu–Cu, and d–Au collisions are analyzed, and the freezeout
parameters are extracted. The extracted parameters are the T0, βT , kinetic freezeout, and
the non-extensive parameter.

We presented the dependence of the extracted parameters on centrality as well as on
the size of the interacting system. The T0 shows a declining trend from peripheral to central
collisions, which shows a short-lived fireball in central collisions. On the other hand, the βT
shows an opposite trend from peripheral to central to peripheral collisions, which suggests
a large pressure gradient in a central collision that results in a quicker expansion of the
system. The T0 and βT have a negative correlation. The larger the T0, the smaller the βT .
Furthermore, the V follows the trend of the βT , which indicates that a greater number of
participant nucleons take part in central collisions. The parameter n follows the trend of the
T0, showing that the peripheral collisions come to an equilibrium state easily. The above
parameters also depend on the size of the colliding system. Large colliding systems have
smaller T0 and βT , and larger V.
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Abstract: This work focuses on exploring the properties of past Tsallis entropy as it applies to order
statistics. The relationship between the past Tsallis entropy of an ordered variable in the context of
any continuous probability law and the past Tsallis entropy of the ordered variable resulting from a
uniform continuous probability law is worked out. For order statistics, this method offers important
insights into the characteristics and behavior of the dynamic Tsallis entropy, which is associated
with past events. In addition, we investigate how to find a bound for the new dynamic information
measure related to the lifetime unit under various conditions and whether it is monotonic with respect
to the time when the device is idle. By exploring these properties and also investigating the monotonic
behavior of the new dynamic information measure, we contribute to a broader understanding of
order statistics and related entropy quantities.

Keywords: order statistics; past Tsallis entropy; Shannon entropy; past lifetime; (n− i+1)-out-of-n structure

1. Introduction

The mathematical study of the storage, transmission, and quantification of information
is known as information theory. The field of applied mathematics lies at the intersection
of statistical mechanics, computer science, electrical engineering, probability theory, and
statistics. A foundational method for determining the level of uncertainty in random events
is provided by information theory. Its applications are many and are outlined in Shannon’s
influential work [1]. Entropy is an important parameter in information theory. The degree
of uncertainty regarding the value of a random variable or the outcome of a random process
is measured by entropy. For example, determining the outcome of a fair coin toss provides
less information (lower entropy and lower uncertainty) than determining the outcome
of a dice roll where six equally likely outcomes are obtained. Relative entropy, the error
exponent, mutual information, and channel capacity are some other important metrics in
information theory. Source coding, algorithmic complexity theory, algorithmic information
theory, and information-theoretic security are important subfields of information theory.

Applications of the basic concepts of information theory include channel coding/error
detection and correction and source coding/data compression. The development of the
Internet, the compact disk, the viability of cell phones, and the Voyager space missions
have all benefited greatly from its influence. Statistical inference, cryptography, neurobi-
ology, perception, linguistics, thermophysics, molecular dynamics, quantum computing,
black holes, information retrieval, intelligence, plagiarism detection, pattern recognition,
anomaly detection, and even the creation of art are other areas where the theory has
found application.

Probability theory and statistics form the basis of information theory, in which quan-
tifiable data is usually expressed in the form of bits. Information measures of distributions
associated with random variables are a frequent topic of discussion in information theory.
Entropy is a crucial metric that serves as the basis for numerous other measurements.
The information measure of a single random variable can be quantified thanks to entropy.

Entropy 2023, 25, 1581. https://doi.org/10.3390/e25121581 https://www.mdpi.com/journal/entropy183
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Mutual information, which is defined as a measure of the joint information of two random
variables and can be used to characterize their correlation, is another helpful idea. The first
number sets a limit on the rate at which the data generated from independent samples with
the given distribution can be successfully compressed. It is a property of the probability
distribution of a random variable. The second number, which represents the maximum rate
of reliable communication over a noisy channel in the limiting case of long block lengths,
is a property of the joint distribution of two random variables when the joint distribution
determines the channel statistics.

When analyzing a random variable (rv) X that is non-negative and has a cumulative
distribution function (cdf) F(x), which is continuous, and a probability density function
(pdf) f (x), the Tsallis entropy of order α is an important measure, which is elucidated in [2]
as follows:

Hα(X) = kα

[∫ ∞

0
( f (x))αdx− 1

]
, (1)

where kα = 1/(1− α) with α > 0, α �= 1. Note that Hα(X) = kα[E( f α−1(F−1(U)))− 1]
in which F−1(u) represents the right-continuous inverse of F and U is a random number
(according to the uniform distribution) from the unit interval. The Tsallis entropy can yield
nonpositive values in general, but appropriate choices of α can ensure non-negativity. It is
worth noting that as α approaches one, H(X) converges to the Shannon differential entropy
as E(− ln f (X)), thereby signifying an important relationship.

In situations involving the analysis of the random lifetime X of a newly introduced
system, Hα(X) is commonly used to quantify the unsureness inherent in a fresh unit.
Despite this, there are cases where operators know the age of the system. To be more
specific, assume that they are aware that the system has been in use during an interval time
with a length t. Then, they can calculate the amount of uncertainty in the residual lifetime
after t, i.e., Xt = [X− t | X > t], so that X stands for the original lifetime of the system. In
such cases, the conventional Tsallis entropy Hα(X) does not provide the desired insight.
Therefore, a novel quantity, the Tsallis entropy for the residual lifetime of the device of the
lifetime unit under consideration, is introduced to address this limitation as follows:

Hα(X; t) = kα

[∫ ∞

0
f α
t (x)dx− 1

]

= kα

[∫ ∞

t

(
f (x)
S(t)

)α

dx− 1
]

, (2)

in which ft(x) = f (x+t)
S(t) represents the pdf of Xt. The term S(t) corresponds to the reliability

function (rf) of X. The new dynamic information quantity takes into account the system’s
age and provides a more accurate measure of uncertainty in scenarios where this temporal
information is available. Several recent studies have contributed to the generalization of
the new measure, as discussed in Nanda and Paul [3], Rajesh and Sunoj [4], Toomaj and
Agh Atabay [5], and the references therein.

Uncertainty is a pervasive feature found in various systems in nature, which is in-
fluenced by future events and even past events. This has led to the development of an
interdependent concept of entropy that encapsulates the amount of uncertainty induced by
incidents in the past. The past entropy is different from the residual entropy, in which the
quantification of uncertainty is regarded to be influenced by events in the future. The study
of entropy for past events and the relevant applications that have arisen have been accom-
plished by many researchers. The works carried out by Di Crescenzo and Longobardi [6]
and Nair and Sunoj [7] have shed light on this topic. The research carried out by Gupta et
al. [8] on the aspects and use of past entropy for order statistics was helpful in this area. In
particular, they studied and performed stochastic comparisons between the entropy of the
remaining lifetime of a lifespan and the entropy of the past lifetime of the lifespan, where
the lifespan was quantified with respect to an ordered random variable.
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Consider an rv X and assume it signifies the system’s lifetime. The pdf of
Xt = [t − X|X < t] is ft(x) = f (t − x)/F(t), in which x ∈ (0, t). Now, the past Tsal-
lis entropy (PTE) as a function of t, the time of an observation of past failure of the system,
is recognized by (see, e.g., Kayid and Alshehri [9])

Hα(X; t) = kα

[∫ t

0
f α
t (x)dx− 1

]
, (3)

for every t ∈ (0,+∞). We emphasize that Hα(X; t) has a wide range of possible values,
from negative infinity to positive infinity. In the context of system failures, Hα(X; t) serves
as a metric to quantify the uncertainty related to the inactivity time of a system, especially
if it has experienced a failure at time t.

Extensive research has been conducted in the literature to explore Tsallis entropy’s nu-
merous characteristics and statistical uses. For detailed insights, we recommend the work of
Asadi et al. [10], Nanda and Paul [3], Zhang [11], Maasoumi [12], Abe [13], Asadi et al. [14],
and the sources provided in these works. These sources provide comprehensive discussions
on the topic and offer a deeper understanding of Tsallis entropy in various contexts.

In this paper, our main goal is to scrutinize the traits of PTE in terms of ordered
variables. We focus on X1, . . . , Xn, as n identical random variables, which are independent
and follow F. The order statistic refers to the ordering of these sample values in ascending
order so that Xi:n represents the ith ordered variable. These statistics have important roles
in various areas of probability and statistics, as they allow for the description of probability
distributions, the evaluation of the fit of data to certain models, the quality control of prod-
ucts or processes, the analysis of the reliability of systems or components, and numerous
other applications. For a thorough understanding of the theory and applications of order
statistics, we recommend the comprehensive review by David and Nagaraja [15]. The de-
gree of predictability of an ordered random variable is usually related to its distribution; the
entropy of this random variable can actually access this property. It is worth exploring the
quantification of information for ordered random variables, including order statistics as a
general class of statistics relevant to survival analysis and systems engineering. Aspects of
information for order statistics have garnered significant attention from researchers in the
literature. Several studies have explored various information properties associated with or-
der statistics. For instance, Wong and Chen [16] demonstrated that the discrepancy among
the mean entropy of ordered variables and the empirical entropy remains unchanged.
They further established that, for distributions which are symmetric, the entropy of ordered
variables exhibits symmetry around the median. Park [17] established some relations to ac-
quire the entropy of ordered variables. Ebrahimi et al. [18] studied the information features
of ordered random variables using Shannon entropy and the Kullback–Leibler distance.
Similarly, Abbasnejad and Arghami [19] and Baratpour and Khammar [20] obtained similar
results for the Renyi and Tsallis entropy of ordered random variables, respectively. Despite
these efforts, the Tsallis entropy of the past lifetime of ordered variables has not been
considered in literature thus far. It is commonly known that the past Tsallis entropy can be
used to measure the amount of information that can be gleaned from historical observations
in order to improve the forecasts of future events. This motivates us to investigate aspects
of the Tsallis entropy of the past lifetime distribution of order statistics. By building upon
existing research, our study aims to contribute significantly to this area by examining the
behaviors of past Tsallis entropy examples for ordered variables. By highlighting previ-
ous studies and emphasizing the gap in the literature regarding the investigation of past
Tsallis entropy examples in order statistics, we establish the significance and novelty of
our research.

The current work’s outcomes are organized as follows: In Section 2, we derive the
representation of PTE for order statistics denoted as Xi:n, which is arisen from a sample
taken from an arbitrary distribution recognized by cdf F. We express this PTE on the basis
of the PTE for ordered variables from a sample selected according to the law of uniform
probability. We derive upper and lower bounds to approximate the PTE, since equations
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with exact solutions for the PTE of order statistics are frequently unavailable for many
statistical models. We provide several illustrative examples to demonstrate the practicality
and usefulness of these bounds. In addition, we scrutinize the monotonicity of the PTE
for the extremum of a sample provided that some convenient conditions are satisfied. We
find that the PTEs of the extremum of a random sample exhibit monotonic behavior as the
sample’s number of individuals rises. However, we counter this observation by presenting
a counterexample that demonstrates the nonmonotonic behavior of PTE for Xi:n based on
n. To further analyze the monotonic behavior, we examine the PTE of order statistics Xi:n
with respect to the index of order statistics i. Our results show that the PTE of Xi:n does not
change monotonically with i.

“ In what follows in the paper, the notations “≤st” and “≤lr” will be used to indicate
the usual stochastic order and the likelihood ratio order, respectively. For a more detailed
discussion on definitions and properties of these stochastic orders, the reader can refer to
Shaked and Shanthikumar [21]. ”

2. Past Tsallis Entropy of Order Statistics

Here, we acquire an expression that relates the PTE of the ordinal statistic to the PTE of
an ordered random variable based on a set of values that are randomly generated according
to the law of uniform probability. Let us consider the pdf and the rf of Xi:n denoted as
fi:n(x) and Fi:n(x), respectively, where i = 1, . . . , n. We have the following relationships:

fi:n(x) =
1

B(i, n− i + 1)
(F(x))i−1(S(x))n−i f (x), x > 0, (4)

Fi:n(x) =
n

∑
k=i

(
n
k

)
(F(x))k(S(x))n−k, x > 0, (5)

in which B(a, b) represents the complete beta function (see [15] for more details). Addition-
ally, the cdf of Xi:n, i.e., the function Fi:n, is derived as

Fi:n(x) =
BF(x)(i, n− i + 1)

B(i, n− i + 1)
, (6)

where Bx(a, b) represents the lower incomplete beta function. Hereafter, we shall write
Y ∼ Bt(a, b) to specifiy that the rv Y follows a beta distribution truncated on [0, t], which
has density

fY(y) =
1

Bt(a, b)
ya−1(1− y)b−1, 0 ≤ y ≤ t. (7)

In our context, we are concerned with the analysis of Tsallis entropy, which is measured
by the cdf or pdf of the rv Xi:n. In this way, one quantifies the strength of the uncertainty
induced by [t− Xi:n|Xi:n ≤ t] in terms of how predictable the elapsed time since the failure
time of a system is. In the reliability literature, (n− i + 1)-out-of-n structures have proven
to be very useful for modeling the life lengths of typical systems. In such systems, the
functionality is guaranteed only if at least (n− i + 1) of the n units or constituents in the
system are operational. A system with separate component lifetimes is headed in this way.
Furthermore, a consistent distribution of the component lifetimes is assumed. The lifetime
of the components in the system is denoted by X1, X2, . . . , Xn. The lifetime of the system is
determined by the ordered rv Xi:n, where the value of i is the position of the order statistic.
When i = 1, this corresponds to a serial system, while i = n represents a parallel system.
In the context of (n− i + 1)-out-of-n structures that have experienced failures before time
t, the PTE of Xi:n serves as a measure of entropy associated with the past lifetimes of the
system. This dynamic entropy measure provides system designers with valuable insights
into the entropy of the lifetime of systems with (n− i + 1)-out-of-n structures operating at
a given time t.
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To increase the computational efficiency, we introduce a lemma that establishes the
relationship the PTE of ordered uniformly distributed rvs has with the beta function in
its imperfect form. From a practical perspective, this link is essential, since it makes
the computation of PTE easier. Since it only requires a few simple computations, the
demonstration of this lemma—which flows immediately from the definition of PTE—is not
included here.

Lemma 1. Suppose we have drawn a random sample of size n from (0, 1) according to the law of
uniform probability. Let we arrange the sample values in ascending order, where Ui:n is the ith order
statistic. Then,

Hα(Ui:n; t) =
1
ᾱ

[
Bt(αiᾱ, 1 + nα− iα)

Bα
t (i, 1 + n− i)

− 1
]

, 0 < t < 1,

for all α > 0, α �= 1, with ᾱ = 1− α.

This lemma provides researchers and practitioners with a useful tool to work out
the PTE of the ordered variables of a sample adopted from uniform distribution. The
computation can be conveniently performed via the imperfect beta function. In Figure 1,
the plot of Hα(Ui : n; t) is exhibited for various amounts of α, where i takes the values
1, 2, · · · , 5, and the total number of observations is n = 5. The figure illustrates that there is
no inherent monotonic relationship between the order statistics. The next theorem shows
how the PTE of the order statistic Xi:n is related to the PTE of the order statistic calculated
for a uniform distribution.

Figure 1. Amounts of Hα(Ui:n; t) for α = 0.2 (left console) and α = 2 (right console ) for various
choices of 0 < t < 1.

Theorem 1. The past Tsallis entropy of Xi:n, for all α ∈ (0,+∞), α �= 1, can be expressed as
follows:

Hα(Xi:n; t) =
1
ᾱ

[
(ᾱHα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))]− 1

]
, t ∈ (0,+∞), (8)

so that Yi ∼ BF(x)(αi + ᾱ, 1 + α(n− i)).

Proof. Remember that kα = 1/(1− α). By making the change in variables as u = F(x),
based on the formulas given in (2), (4), and (6), we obtain:
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Hα(Xi:n; t) = kα

[∫ t

0

(
fi:n(x)
Si:n(t)

)α

dx− 1
]

= kα

[∫ t

0

(
Fi−1(x)Sn−i(x) f (x)

BF(t)(i, 1 + n− i)

)α

dx− 1

]

= kα

[
BF(t)(αi + ᾱ, 1 + α(n− i))

Bα
F(t)(i, n− i + 1)

∫ t

0

Fα(i−1)(x)Sα(n−i)(x) f α(x)
BF(t)(αi + ᾱ, 1 + α(n− i))

dx− 1

]

= kα

[
BF(t)(αi + ᾱ, 1 + α(n− i))

Bα
F(t)(i, 1 + n− i)

∫ F(t)

0

uα(i−1)(1− u)α(n−i) f α−1(F−1(u))
BF(t)(αi + ᾱ, 1 + α(n− i))

du− 1

]

= kα

[
(ᾱHα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))]− 1

]
, t > 0. (9)

The recent equality above is due to Lemma 1. This finalizes the proof.

1
ᾱ

⎡
⎢⎣
∫ exp(−1/t)

0 xα(i−1)(1− x)α(n−i)(− log(x))α−1dx(∫ exp(−1/t)
0 xi−1(1− x)n−idx

)α dx− 1

⎤
⎥⎦

Upon further calculation, it can be deduced that when the order α approaches unity
in Equation (8), the Shannon entropy of the ith ordered variable from a set of random
variables adopted from F can be expressed as follows:

H(Xi:n; t) = H(Ui:n; F(t))−E[ f (F−1(Yi))],

in which Yi ∼ BF(t)(i, n− i + 1). This specific result for t = ∞ has previously been derived
by Ebrahimi et al. [18]. Next, we establish a fundamental result concerning the problem of
monotonicity of the PTE of an rv X, provided that X fulfills the decreasing reversed hazard
rate (DRHR) trait. More precisely, we say that X possesses the DRHR if the reversed hazard
rate (rhr) function it has, i.e., the function τ(x) = d

dx ln(F(x)), decreases monotonically for
all x > 0.

Lemma 2. If Xi:n denotes the ith order statistic obtained from a sample following a DRHR distri-
bution, then Xi:n is also a DRHR.

Proof. We can express the rhr function of Xi:n as follows:

τi:n(t) =
fi:n(t)
Fi:n(t)

= h
(

F(t)
S(t)

)
τ(t), t > 0, (10)

where

h(x) =
xi

B(i, 1 + n− i)∑n
k=i (

n
k)xk , x > 0.

Under the assumption that X is a DRHR, according to Equation (10), the distribution of
Xi:n is a DRHR if, and only if, h(x) decreases in x > 0. Evidently, h(x) indeed decreases in
x, thus completing the proof.

We now demonstrate how the behavior of the new information measure is influenced
by the DRHR feature of X.

Theorem 2. If X induces the DRHR feature, then the Tsallis entropy Hα(Xi:n; t) increases in t for
every α ∈ (0,+∞).
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Proof. The DRHR trait of the distribution of X further induces that the distribution of
Xi:n also has the DRHR trait, as stated in Lemma 2. The proof is obtained directly using
Theorem 2 of the paper by Kayid et al. [9].

Using an example, we illustrate the application of Theorems 1 and 2.

Example 1. We contemplate a distribution with the cdf F(x) = x2 for x ∈ (0, 1) to be the
distribution of the components’ lifetimes. It is evident that f (F−1(u)) = 2

√
u for 0 < u < 1.

Using this information, we can derive the expression:

E[ f α−1(F−1(Yi))] =
2α−1Bt2(α(i− 1

2 ) +
1
2 , 1 + α(n− i))

Bt2(αi + ᾱ, 1 + α(n− i))
,

Furthermore, we can obtain:

Hα(Ui:n; F(t)) =
1
ᾱ

[
Bt2(αi + ᾱ, 1 + α(n− i))

Bα
t2(i, 1 + n− i)

− 1

]
.

Using Equation (8), we deduce that

Hα(Xi:n; t) =
1
ᾱ

[
2α−1Bt2(α(i− 1

2 ) +
1
2 , 1 + α(n− i))

Bα
t2(i, 1 + n− i)

− 1

]
, i = 1, 2, · · · , n. (11)

In Figure 2, we have plotted Hα(Xi:n; t) for various amounts of α with i = 1, · · · , 5 and
n = 5. It can be observed that the PTR increases with t, which aligns with the expectation
from Theorem 2.

Figure 2. The amounts of Hα(Xi:n; t) for α = 0.2 (left console) and α = 2 (right console) with regard
to t.

Unfortunately, convenient statements for the PTE of ordered rvs are not available in
some situations for many distributions. Given this limitation, we are motivated to explore
alternative approaches to characterizing the PTE of order statistics. We therefore propose
to establish thresholds for the PTE of order statistics. To this end, we present the following
theorem as a conclusive proof that provides valuable insight into the nature of these bounds
and their applicability in practical scenarios.
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Theorem 3. Consider a nonnegative rv X, which is continuous having pdf f and cdf F. Suppose we
haveM = f (m) < +∞, in which m plays the role of the mode of the underlying distribution with
density F such that f (x) ≤M. Then, for every α ∈ (0,+∞), we obtain

Hα(Xi:n; t) ≥ 1
ᾱ

[
((ᾱ)Hα(Ui:n; F(t)) + 1)Mα−1 − 1

]
.

Proof. Because for every α ∈ (1,+∞)(α ∈ (0, 1))), one has

f α−1(F−1(u)) ≤ (≥)Mα−1,

one can write
E[ f α−1(F−1(Yi))] ≤ (≥)Mα−1.

The desired conclusion now clearly follows from the use of (8). This concludes the proof of
the theorem.

The recent result introduces a boundary on the PTE of Xi:n, i.e., the function which is signified
by Hα(Xi:n; t). This limiting value is expressed via the PTE of the ordered variable of a set of
random variables selected according to the uniform probability law and, further, the mode of
the distribution under consideration, which is represented by m. This result yields a quantitative
measure of the lower bound of the PTE with regard to the distribution mode and offers intriguing
insights into the uncertainty features of Xi:n. Based on Theorem 4, we show the bound of the PTE
on the ordered rvs for a few standard and reputable distributions in Table 1.

Table 1. Lower bound on Hα(Xi:n; t) derived from Theorem 4.

pdf Bounds

f (x) = 2
π(1+x2)

, x > 0, ≥ 1
ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))

(
2
π

)−ᾱ
− 1
]

f (x) = 2
σ
√

2π
e−(x−μ)2/2σ2

, x ∈ (μ,+∞), μ > 0, ≥ 1
ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))

(
2

σ
√

2π

)−ᾱ
− 1
]

f (x) = λ
β e−

(x−μ)
β (1− e−

(x−μ)
β )λ−1, x ∈ (μ,+∞), μ > 0, ≥ 1

ᾱ

[
(1 + ᾱHα(Ui:n; F(t)))(β(1− 1

λ )
1−λ)ᾱ − 1

]
f (x) = bc

Γ(c) xc−1e−bx, x > 0, ≥ 1
1−α

[
(1 + ᾱHα(Ui:n; F(t)))( b(c−1)c−1e1−c

Γ(c) )−ᾱ − 1
]

The following result establishes an upper boundary condition for the new information
measure of the system with parallel structure with regard to the rhr of the distribution
under consideration.

Theorem 4. Let the distribution of X fulfill the DRHR trait. For α > 1, we have the inequality

Hα(Xn:n; t) ≤ α− τα−1(t)
α(α− 1)

,

in which τ(t) is the rhr of X, which is a decreasing function by assumption.

Proof. Since the distribution of X has a decreasing rhr function, thus Theorem 2 provides
that Hα(Xn:n; t) increases as t increases. Therefore, based on Theorem 3 of Kayid and
Alshehri [9], we have

Hα(Xn:n; t) ≤ kα
α− τα−1

n:n (t)
α

≤ kα
α− τα−1(t)

α
, t > 0,

in which kα = 1/(1− α). Since τn:n(t) = nτ(t) ≥ τ(t), the last inequality is easily obtained
for α > 1, and the proof is now complete.
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Next, we delve into the monotone behavior of the PTE of extreme order statistics with
components whose lifetimes are uniformly distributed.

Lemma 3. In a system with parallel (series) structure in which components have random lifetimes
following a uniform probability law, the PTE of the lifetime of the device is decreasing with respect
to the components’ number.

Proof. We give the proof when the system operates in parallel. Analogous reasoning can
be applied to a series system. Let us set two rvs Z1 and Zα with densities f1(z) and fα(z),
respectively, which are given by the following:

f1(z) =
zn−1∫ t

0 xn−1dx
and fα(z) =

zα(n−1)∫ t
0 xα(n−1)dx

, z ∈ (0, t).

Next, one obtains

ξn = Hα(Un:n; t) =
1
ᾱ

⎡
⎢⎣
∫ t

0 xα(n−1)dx(∫ t
0 xn−1dx

)α − 1

⎤
⎥⎦, 0 < t < 1. (12)

Let us assume that n ∈ [1,+∞). Then, we suppose that the derivative of ξn with regard to
n is well defined. We have the following:

∂ξn

∂n
=

1
ᾱ

∂ςn

∂n
,

where

ςn =

∫ t
0 xα(n−1)dx(∫ t
0 xn−1dx

)α .

It is evident that for α ∈ (1,+∞)(α ∈ (0, 1)):

∂ςn

∂n
=

αA(t)
Bα(t)

(
E[ln(Zα)]−E[ln(Z1)]

)
≥ (≤)0, (13)

where

A(t) =
∫ t

0
xα(n−1)dx, and also B(t) =

∫ t

0
xn−1dx.

It is readily seen that for α ∈ (1,+∞)(α ∈ (0, 1)), it holds that Zα is greater (less) than
Z1 in usual stochastic order. Consequently, ln(z) increases as z grows; as an application
of Theorem 1.A.3. of [21], one has E[ln(Zα)] ≥ (≤)E[ln(Z1)]. Hence, (13) is positive
(negative), and as a result, ξn decreases as n grows. Consequently, it is deduced that
the PTE of the life length of a system with parallel units decreases as the number of
components increases.

A large class of distributions consists of those that have density functions that decrease
as the value increases. Some examples of these distributions are exponential, Pareto, and
mixtures of distributions, among others. There are also distributions that have density
functions that increase as the value increases like the power distribution. We will use the
result from the previous lemma to establish the next theorem by which distributions that
have density functions that are either increasing or decreasing are involved.

Theorem 5. Suppose that f is the pdf of the component’s lifetime in a parallel (series) system, and
let f be an increasing (a decreasing) function. Then, the PTE of the system’s lifetime decreases as
n grows.
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Proof. Assuming that Yn ∼ BF(t)(α(n− 1) + 1, 1), then fYn(y) indicates the density of Yn.
It is evident that

fYn+1(y)
fYn(y)

=
BF(t)(α(n− 1) + 1, 1)

BF(t)(αn + 1, 1)
yα, 0 < y < F(t),

increases as y grows. This in turn concludes that Yn is less than or equal to Yn+1 in likelihood
ratio order and, therefore, Yn is less than or equal to Yn+1 in usual stochastic order also. In
addition, α ∈ (1,+∞)(α ∈ (0, 1)), f−ᾱ(F−1(x)) increases (decreases)as x grows. Therefore,

E[ f α−1(F−1(Yn))] ≤ (≥)E[ f α−1(F−1(Yn+1)]. (14)

From Theorem 3, for α ∈ (1,+∞)(α ∈ (0, 1)), one obtains

1 + ᾱHα(Xn:n; t) = [1 + ᾱHα(Un:n; F(t))]E[ f−ᾱ(F−1(Yn))]

≤ (≥) [1 + ᾱHα(Un:n; F(t))]E[ f−ᾱ(F−1(Yn+1))]

≤ (≥) [1 + ᾱHα(Un+1:n+1; F(t))]E[ f−ᾱ(F−1(Yn+1))]

= 1 + ᾱHα(Xn+1:n+1; t).

The initial inequality is obtained by noting that 1+ ᾱHα(Un:n; F(t)) is nonnegative, whereas
the last one is due to Lemma 3(i). Thus, we deduce that Hα(Xn:n; t) ≥ Hα(Xn+1:n+1; t) for
all t ∈ (0,+∞).

The following example shows that this Theorem does not work for all kinds of systems
with an (n− i + 1)-out-of-n structure.

Example 2. We presume a system is operational when more than or equal to (n− 1) of
the n components in the system are in operation. It is then not difficult to observe that
the system’s random lifetime is X2:n. The components are assumed to have an identical
distribution, which is uniform on (0, 1). In Figure 3, we see how the PTE of X2:n changes
with n when α = 2 and t = 0.2. In fact, it is observed in the graph that the PTE of the system
does not always decrease as n increases. For example, it reveals that Hα(X2:2; 0.2) is less
than that of Hα(X2:n; 0.2) for n = 3, 4, . . . , 23.

Figure 3. The amounts of the PTE for several choices of n in a system with an (n − 1)-out-of-n
structure with an underlying uniform distribution and where α = 2 when t = 0.2.
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3. Conclusions

We investigated the idea of PTE for order statistics in this paper. A novel method
has been suggested by us to merge the PTE of ordered random variables belonging to
a continuous distribution set with the PTE of the ordered random variables belonging
to a set of random numbers selected from a uniform distribution. This relationship aids
in our comprehension of PTE’s characteristics and behavior for various distributions.
Additionally, because it is challenging to derive precise formulas for the PTE of order
statistics, we have discovered constraints that offer helpful approximations and enable
a deeper comprehension of their characteristics. The derived limits and bounds can be
applied to evaluate the PTE and compare its values in different situations from different
perspectives. In addition, we have investigated how the index of ordered random variables,
denoted by i, and the number of observations, denoted by n, affect PTE. In order to
corroborate our findings and show how our method is applicable, we included examples.
These illustrations showed the usefulness of PTE for ordered random variables and the
adaptability of our approach to various distributions. In short, the current work improves
the perception of PTE for ordered random variables by providing the connections this
quantity has with other measures, by obtaining bounds and exploring the effects of the
position of the ordered variable, and by determining the impact of the size of the sample
under consideration. The findings reported in this paper provide useful and profitable
intuitions for professionals engaged in the analysis of information measures and statistical
inferential procedures.
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Abstract: The standard (Bose–Einstein/Fermi–Dirac, or Maxwell–Boltzmann) distribution from the
relativistic ideal gas model is used to study the transverse momentum (pT) spectra of identified
charged hadrons (π−, π+, K−, K+, p̄, and p) with different rapidities produced in inelastic proton–
proton (pp) collisions at a Super Proton Synchrotron (SPS). The experimental data measured using
the NA61/SHINE Collaboration at the center-of-mass (c.m.) energies

√
s = 6.3, 7.7, 8.8, 12.3, and

17.3 GeV are fitted well with the distribution. It is shown that the effective temperature (Te f f or T),
kinetic freeze-out temperature (T0), and initial temperature (Ti) decrease with the increase in rapidity
and increase with the increase in c.m. energy. The kinetic freeze-out volume (V) extracted from the
π−, π+, K−, K+, and p̄ spectra decreases with the rapidity and increase with the c.m. energy. The
opposite tendency of V, extracted from the p spectra, is observed to be increasing with the rapidity
and decreasing with the c.m. energy due to the effect of leading protons.

Keywords: transverse momentum spectra; identified charged hadrons; effective temperature; kinetic
freeze-out temperature; initial temperature; kinetic free-out volume

PACS: 12.40.Ee; 13.85.Hd; 24.10.Pa

1. Introduction

The existence of confinement and asymptotic freedom in Quantum Chromodynamics
(QCD) has led to many conjectures about the thermodynamic and transport properties of
hot and dense matter. Because of confinement, nuclear matter should be composed of low-
energy hadrons, and it is considered a weakly interacting gas of hadrons. On the other hand,
at very high energies, asymptotic freedom means that the interactions between quarks and
gluons are very weak, and the nuclear matter is considered as a weakly coupling gas of
quarks and gluons. There should be a phase transition between these two configurations,
in which the degrees of freedom of hadrons disappear and Quark–Gluon Plasma (QGP) is
formed, which is generated at a sufficiently high temperature or density [1–6]. QGP existed
in the very early universe (a few microseconds after the Big Bang), and some forms of this
matter may still exist in the core of neutron stars. Ultra-relativistic heavy-ion collisions
have provided opportunities to systematically create and study different phases of bulk
nuclear matter.

Several experiments performed at the Super Proton Synchrotron (SPS) [7,8], Rela-
tivistic Heavy Ion Collider (RHIC) [2,3,9–15], and Large Hadron Collider (LHC) [16–19]
have reported abundant experimental data. The system of proton–proton (pp) collisions is
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usually used as a reference measurement for heavy ion collisions, as it has several valence
quarks involved in the collisions. Collective flow is one of the characteristics of the thermal
dense medium of this strongly interacting matter. The generated medium expands collec-
tively such that the flow effect is expected to be distinguished from the thermal motion,
which reflects the temperature. The heavy ion physics community has been fascinated
by observing unexpected collective behavior in high-multiplicity pp collision events. It is
therefore necessary and important to study pp collisions.

The transverse momentum (pT) spectra of identified charged hadrons produced in rel-
ativistic or high-energy collisions contain abundant information on the collision dynamics
and the evolution properties of the system from the initial stage to the end of freeze-out
phase [20]. Traditionally, it is believed that the flattening of the pT spectra with high multi-
plicity is a signal for the formation of a mixed phase of de-confined partons and hadrons.
In the hydrodynamical model, the slopes of pT spectra are co-determined by the kinetic
freeze-out temperature and the transverse expansion flow of the collision system [21]. The
study of pT spectra can reveal information related to the effective temperature (Te f f or T)
of the system. A plateau-like region observed in the excitation function of T is considered a
possible signal for the formation of mixed-phases, similar to the temperature dependence
of entropy observed in the first-order phase transition. In addition, in order to understand
the phase transition from QGP to hadronic matter, the transverse momentum density is
often studied.

In the physical process of high-energy heavy ion collisions, at least four temperatures
are often used, namely initial temperature (Ti), chemical freeze-out temperature (Tch),
kinetic (or thermal) freeze-out temperature (T0), and T. These temperatures correspond to
different stages of collisions. The excitation degree of the interaction system at the initial
stage is described by Ti, at which hadrons undergo elastic and inelastic interactions in the
hadronic medium. Due to the shortage of research methods, there is limited research on Ti
in the community, which should be based on the pT . With the decrease in temperature, the
system begins to form hadronic matter and enters the chemical freeze-out stage. Under
the condition of maintaining a certain degree of local dynamic equilibrium through quasi-
elastic resonance scattering, the final stable hadronic yield has almost no change [22–25].
The Tch, and baryon chemical potential (μB) at this stage can be obtained by using various
thermodynamic models [3,26–28]. After the chemical freeze-out stage, the system further
expands as the interactions become weak. Finally, the system enters the kinetic freeze-out
stage as the elastic collisions between hadrons disappear.

In this paper, the pT spectra of identified charged hadrons (π−, π+, K−, K+, p̄, and
p) with different rapidities produced in inelastic pp collisions at the center-of-mass (c.m.)
energies

√
s = 6.3, 7.7, 8.8, 12.3, and 17.3 GeV at the SPS [29] are studied, where the

c.m. energy is also referred to as collision energy. Although the nonextensive distribution
of the Tsallis statistics [30–35] has been widely used in recent years, the standard (Bose–
Einstein/Fermi–Dirac, or Maxwell–Boltzmann) distribution from the relativistic ideal gas
model is still used to extract T directly and then to obtain the average transverse momentum

(〈pT〉), root-mean-square transverse momentum (
√
〈p2

T〉), T0, and Ti indirectly.
The remainder of this paper is structured as follows. The formalism and method are

described in Section 2. Results and discussion are provided in Section 3. In Section 4, we
summarize our main observations and conclusions.

2. Formalism and Method

The particles produced in inelastic pp collisions are thought to be controlled by two
main mechanisms or excitation degrees. The low-pT region, which is less than 1–2 GeV/c
is dominated by the soft excitation process [36,37]. The high-pT region that is more than
1–2 GeV/c is governed by the hard scattering process [36,37]. The soft process corresponds
to a low excitation degree, and the hard process implies a high excitation degree. The
two-mechanism scheme is only one possible choice in understanding particle production.
If the particles are distributed in a very wide pT region, one should consider the multiple
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mechanisms or excitation degrees. If the particles are distributed in a relatively narrow pT
region, one may choose the single mechanism or excitation degree. In the two-mechanism
scenario, it is currently believed that most light-flavor particles are produced in the soft
process. The spectrum in the low-pT region shows exponential behavior, which can be
fitted by the thermal distribution [38–40]. Heavy-flavor particles and some light-flavor
particles are produced in the hard process. The spectrum in high-pT region shows inverse
power-law behavior and can be fitted using the Hagedorn [41,42], Tsallis–Levy [31,32], or
Tsallis–Pareto-type functions [32–35].

In this investigation, the light particle spectra in the low-pT region in inelastic pp
collisions at the SPS are studied by using the most basic thermal distribution, the standard
distribution, which comes from the relativistic ideal gas model. The invariant particle
momentum (p) distribution described by the standard distribution can be given by [30]

E
d3N
d3 p

=
1

2πpT

d2N
dydpT

=
gV

(2π)3 E
[

exp
(

E− μ

T

)
+ S
]−1

, (1)

where N is the particle number, g is the degeneracy factor, V is the volume, μ is the
chemical potential,

E =
√

p2 + m2
0 = mT cosh y (2)

is the energy,

mT =
√

p2
T + m2

0 (3)

is the transverse mass,

y =
1
2

ln
(

1 + βz

1− βz

)
= tanh−1(βz) (4)

is the rapidity, βz is the longitudinal velocity, and S = −1, 1, and 0 correspond to the
Bose–Einstein, Fermi–Dirac, and Maxwell–Boltzmann statistics, respectively.

For the wide pT spectra, if a multi-component standard distribution

E
d3N
d3 p

=
1

2πpT

d2N
dydpT

=
n

∑
i=1

gVi
(2π)3 E

[
exp

(
E− μ

Ti

)
+ S
]−1

(5)

can be used in the fit, one may obtain multiple temperatures, that is, the temperature
fluctuation. Here, n denotes the number of components. Let ki (i = 1, 2, . . . , n) denote
the relative fraction of the i-th component, and Vi and Ti are the volume and temperature
corresponding to the i-th component, respectively. Naturally, one has

V =
n

∑
i=1

Vi, T =
n

∑
i=1

kiTi,
n

∑
i=1

ki = 1. (6)

Here, ki = Vi/V.
Because of the temperature fluctuation, there are interactions among different sub-

systems or local sources due to the exchange of heat energy. This causes the couplings of
entropy functions of various subsystems. The total entropy is then the sum of the entropies
of subsystems plus the entropies of the couplings. The temperature fluctuation in the
multi-component standard distribution is a way to explain the origin of the Tsallis distribu-
tion. Generally, the pT spectra, which can be fitted using the multi-component standard
distribution, can also be fitted using the Tsallis distribution. Because of the influence of the
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entropy index (q), the temperature value extracted from the Tsallis distribution is smaller
than that from the multi-component standard distribution. In fact, in the fit using the
Tsallis distribution, increasing T and/or q can increase the particle yield in the high-pT
region conveniently.

The data sample analyzed in the present work is in the low-pT region. This implies
that the standard distribution can be used. In the standard distribution, the unit-density
function of y and pT is written as

d2N
dydpT

=
gV

(2π)2 pTmT cosh y

×
[

exp
(

mT cosh y− μ

T

)
+ S
]−1

. (7)

Then, the density function of pT is

dN
dpT

=
gV

(2π)2 pTmT

∫ ymax

ymin

cosh y

×
[

exp
(

mT cosh y− μ

T

)
+ S
]−1

dy, (8)

where ymin and ymax are the minimum and maximum rapidities in the rapidity interval,
respectively. The density function of y is

dN
dy

=
gV

(2π)2 cosh y
∫ pT max

0
pTmT

×
[

exp
(

mT cosh y− μ

T

)
+ S
]−1

dpT , (9)

where pT max is the maximum pT in the considered rapidity interval. Although pT max can
be mathematically infinite, it is only large enough in physics due to the limitations of the
conservation of energy and momentum.

No matter what the specific form of particle momentum distribution is used, the
probability density function of pT is written in general as

f (pT) =
1
N

dN
dpT

. (10)

Naturally, f (pT) is normalized to 1. That is,
∫ ∞

0
f (pT)dpT = 1. (11)

One has the average transverse momentum,

〈pT〉 =
∫ ∞

0 pT f (pT)dpT∫ ∞
0 f (pT)dpT

=
∫ ∞

0
pT f (pT)dpT , (12)

and the root-mean-square pT ,

√
〈p2

T〉 =

√√√√∫ ∞
0 p2

T f (pT)dpT∫ ∞
0 f (pT)dpT

=

√∫ ∞

0
p2

T f (pT)dpT . (13)

In principle, there are three independent chemical potentials, baryon (μB), electric
charge or isospin (μI), and strangeness (μS), which are related to the three conserved
charges. Although the chemical potential, μπ (μK or μp), of the pion (kaon or proton) can
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be written in terms of the above three chemical potentials [43–49], we obtained them by
using an alternative method in the present work for more convenience.

Considering the yield ratio [kj (j = π, K, and p)] of negatively to positively charged
hadrons (j− to j+), the corresponding chemical potentials (μj− and μj+ ), and the corre-
sponding source temperature (Tj− and Tj+ ), one has that the relationship between kj and μj
is [20,50–53]

kj ≡
j−

j+
= exp

(
μj−

Tj−
−

μj+

Tj+

)
= exp

(
−

2μj

Tj

)
(14)

if the conditions

Tj− = Tj+ = Tj, μj− = −μj+ = −μj (15)

are satisfied. Here, j− and j+ also denote the yields of negative and positive hadrons
respectively. kj can be obtained simply from the experimental data, and Tj should be the
chemical kinetic-freezing temperature Tch, which is slightly larger than or equal to the
effective temperature T due to the short lifetime of the system formed in pp collisions. One
has Tj ≈ T in this work.

Further, one has

μj = −
1
2

Tj ln kj. (16)

Obviously, μj is energy-dependent due to Tj and kj being energy-dependent. Based on a
collection of large amounts of experimental data, our previous work [52,53] presents the
excitation functions of μj in pp and central heavy ion collisions, which can be used for
a direct extraction for this study. In particular, μj decreases quickly with the increase in
energy in pp collisions in the concerned SPS energy range. However, the tendency of μπ

in central heavy ion collisions is opposite to that in pp collisions, though the tendency of
μK is similar, and that of μp is also similar in the two collisions. The three μj in both the
collisions are close to 0 at around 100 GeV and above.

The chemical freeze-out temperature Tch in central heavy ion collisions is also energy-
dependent [43–49], which shows a tendency for a rapid increase at a few GeV and then
saturation at dozens of GeV and above. In view of the fact that the tendency of Tch has a
parameterized excitation function with unanimity in the community, the present work does
not study Tch parameter.

Generally, the kinetic freeze-out temperature T0 has a tendency of a rapid increase at a
few GeV, and then an ambiguous tendency (increase, decrease, or saturation) appears at
dozens of GeV and above. It is worth studying the tendency of T0 further. A thermal-related
method shows that [54]

T0 =
〈pT〉
2κ0

, (17)

where κ0 = 3.07 is a coefficient, and a value 2 is introduced by us because two participant
partons (one from the projectile and the other from the target) are assumed to contribute
to 〈pT〉. This formula gives an approximate consistent tendency of T0 as another thermal-
related method [55], which shows T0 to be proportional to 〈pT〉 and the coefficient to be
energy-related, though the results from the two methods are not the same.

The initial temperature Ti, which is comparable to the experimental data, is less studied
in the community. According to the string percolation model [56–58], Ti is expressed as

Ti =

√
〈p2

T〉
2F(ξ)

, (18)
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where

F(ξ) =

√
1− exp(−ξ)

ξ
(19)

is the color-suppression factor related to the dimensionless percolation density parameter
ξ. In pp collisions, F(ξ) ∼ 1 due to the low string overlap probability. As an initial quantity,
Ti should reflect the excitation degree of the system at the parton level. Correspondingly,
the final quantity T0 should also be extracted at the parton level. This is also the reason that
the value of 2 is introduced by us in the denominator of the T0 expression if one assumes
that two participant partons are the energy sources in the formation of a particle.

The kinetic energy of a particle’s directional movement should not be reflected in the
temperature parameters. The experimental data used in this paper were all measured in
the forward-rapidity region. In order to remove the influence of directional motion, one
can directly shift the forward rapidity and its interval to the mid-rapidity with the same
interval width during the fitting process. In this paper, we integrate y from ymin = −0.1
to ymax = 0.1 in the fit to give a more accurate result, though y ≈ 0 and cosh y ≈ 1
near the mid-rapidity. The small difference (<1%) between the accurate and approximate
calculations appears mainly in the normalization but not in the temperature parameter.

The method of least squares based on obtaining the minimum χ2 is adopted to obtain
the best parameters and their uncertainties. The treatment method is given in Appendix A.

3. Results and Discussion

Figures 1 and 2 show the rapidity-dependent double differential pT spectra, d2N/dydpT,
of π− and π+ respectively, produced in inelastic pp collisions at the SPS. Panels (a)–(e)
correspond to the results of

√
s = 6.3, 7.7, 8.8, 12.3, and 17.3 GeV, respectively. The symbols

represent the experimental data at different y, with an interval width of 0.2 units, measured
using the NA61/SHINE Collaboration [29], and the curves are our results fitted from the
Bose–Einstein distribution. In order to see the fitting effect more clearly, the experimental
data and fitting results at different rapidities are multiplied by different factors labeled in
the panel for scaling. The values of related free parameters (T), the normalization constant
(V), χ2, and the number of degrees of freedom (ndof) for the curves in Figures 1 and 2 are
listed in Table A1 in Appendix B. One can see that the fitting results with the Bose–Einstein
distribution are in good agreement with the experimental data of π− and π+ spectra,
measured using the NA61/SHINE Collaboration in pp collisions at different

√
s and in

different y intervals.
Similarly, Figures 1–4 show the rapidity-dependent d2N/dydpT of K− and K+, re-

spectively, produced in inelastic pp collisions at different
√

s. The values of T, V, and
χ2/ndof for the curves in Figures 3 and 4 are listed in Table A2 in Appendix B. One can
see that the fitting results from the Bose–Einstein distribution are in agreement with the
experimental data of K− and K+, measured by the NA61/SHINE Collaboration in pp
collisions at different

√
s and in different y intervals.

Similar to Figures 1–4, Figures 5 and 6 show the rapidity-dependent d2N/dydpT of p̄
and p, respectively, produced in inelastic pp collisions at different

√
s. The experimental

data of p̄ at
√

s = 6.3 GeV in Figure 5 are not available. The values of T, V, and χ2/ndof
for the curves in Figures 5 and 6 are listed in Table A3 in Appendix B. One can see that
the pT spectra of p̄ and p in pp collisions are shown to obey approximately the Fermi–
Dirac distribution.
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Figure 1. The spectra of π− produced in pp collisions at
√

s = (a) 6.3, (b) 7.7, (c) 8.8, (d) 12.3, and
(e) 17.3 GeV at different y with an interval width of 0.2. The symbols represent the experimental
data measured by the NA61/SHINE Collaboration [29] and the curves are the fitting results from the
Bose–Einstein distribution.
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Figure 2. The spectra of π+ produced in pp collisions at
√

s = (a) 6.3, (b) 7.7, (c) 8.8, (d) 12.3,
and (e) 17.3 GeV at different y. The symbols represent the experimental data measured by the
NA61/SHINE Collaboration [29] and the curves are the fitting results from the Bose–Einstein
distribution.
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Figure 3. The spectra of K− produced in pp collisions at
√

s = (a) 6.3, (b) 7.7, (c) 8.8, (d) 12.3,
and (e) 17.3 GeV at different y. The symbols represent the experimental data measured by the
NA61/SHINE Collaboration [29] and the curves are the fitting results from the Bose–Einstein
distribution.
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Figure 4. The spectra of K+ produced in pp collisions at
√

s = (a) 6.3, (b) 7.7, (c) 8.8, (d) 12.3,
and (e) 17.3 GeV at different y. The symbols represent the experimental data measured by the
NA61/SHINE Collaboration [29] and the curves are the fitting results from the Bose–Einstein
distribution.
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Figure 5. The spectra of p̄ produced in pp collisions at
√

s = (a) 7.7, (b) 8.8, (c) 12.3, and (d) 17.3 at
different y. The symbols represent the experimental data measured by the NA61/SHINE Collabora-
tion [29] and the curves are the fitting results from the Fermi–Dirac distribution.

To show more intuitively the dependence of the free parameter T and derived quanti-
ties (the kinetic freeze-out temperature T0 and initial temperature Ti) on rapidity, y, and
c.m. energy,

√
s, Figures 7–10 show the relations of T–y, T0–y, Ti–y, and V–y at different√

s, respectively, and Figures 11–14 show the relations of T–
√

s, T0–
√

s, Ti–
√

s, and V–
√

s
at different y, respectively. Panels (a)–(f) correspond to the results from π−, π+, K−, K+, p̄,
and p spectra, respectively. These figures show some changing trends of parameters.

In most cases, one can generally see that T, T0, and Ti decrease (increase) with
the increase in y (

√
s). There is a tendency of saturation for the three temperatures at√

s = 7.7 GeV and above. Being the initial energy of a saturation effect, 7.7 GeV is a special
energy at which the reaction products are proton-dominated and above which the products
are meson-dominated. For π−, π+, K−, K+, and p̄ spectra, the extracted V also decreases
(increases) with the increase in y (

√
s). However, for p spectra, the extracted V shows an

opposite tendency, increasing (decreasing) with the increase in y (
√

s).
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Figure 6. The spectra of p produced in pp collisions at
√

s = (a) 6.3, (b) 7.7, (c) 8.8, (d) 12.3,
and (e) 17.3 GeV at different y. The symbols represent the experimental data measured by the
NA61/SHINE Collaboration [29] and the curves are the fitting results from the Fermi–Dirac
distribution.
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There is an isospin and mass independence of T. This property is exactly that of Tch,
which implies a single scenario of chemical freeze-out. However, although T0 and Ti are
isospin-independent, they increase with the increase in mass. The mass dependence of
T0 is a reflection of a mass-dependent differential kinetic freeze-out scenario or multiple
kinetic freeze-out scenarios. The mass dependence of Ti means that the formation moments
of different particles are different. With the increase in T0 (Ti), massive particles are emitted
(formed) earlier. On average, this work shows that p̄(p) are emitted (formed) earlier than
K∓, and K∓ are emitted (formed) earlier than π∓, though the relaxation times for the
emissions (formations) of different particles can overlap.

Except for V from the p spectra, the tendencies of other parameters from the p spectra,
and the tendencies of parameters from the spectra of other particles are easy to understand.
It is expected that the local system in the mid-rapidity region has more deposited energy
than that in the forward region. Meanwhile, the collision system at a higher energy has
more deposited energy than that at lower energy. This results in a higher excitation degree
(then higher temperature) at the mid-rapidity and more produced particles (then larger
volume) at a higher energy.

The V tendency from the p spectra is opposite to that from the spectra of other
particles. The reason is that the pre-existing leading protons affect the p spectra. Because of
the leading protons appearing in the forward region, the number of protons and then the
volume of a proton source in the fixed interval are small at the mid-rapidity. At a higher
energy, the leading protons appear in the more forward region, which leads to a smaller
V in the fixed interval in the rapidity space. In the present work, the fixed interval is that
Δy = ymax − ymin = 0.2.

The values of V depend on particle mass and charge. Excluding the case of p, which
contains pre-existing leading protons in the pp system, V decreases significantly with
the increase in mass, and positive hadrons correspond to the larger V of the emission
source. This is because the larger the mass, the more difficult it is to produce this particle.
Meanwhile, there is an electromagnetic exclusion (attraction) between positive (negative)
hadrons and pre-existing protons. This causes larger (smaller) V with an emission source
of positive (negative) hadrons.

Generally, the effective temperature T is proportional to the mean transverse mo-
mentum 〈pT〉. The present work shows that Tπ− ≈ 0.351〈pT〉π− , Tπ+ ≈ 0.348〈pT〉π+ ,
TK− ≈ 0.284〈pT〉K− , TK+ ≈ 0.293〈pT〉K+ , Tp̄ ≈ 0.234〈pT〉 p̄, and Tp ≈ 0.240〈pT〉p. Here, the
type of a particle appears as the subscript label of the related quantity. The ratio of T/〈pT〉 is
approximately independent of a particle mass. This is consistent with the ratios of T0/〈pT〉
and Ti/

√
〈p2

T〉, which are independent of particle mass according to Equations (17) and (18).
As only a free parameter, T does not show an obvious dependence on particle type

or mass. However, it is hard to extract exact information from T because it is not a real
temperature, because it also contains the contribution of transverse flow. T0 is smaller than
Ti due to the fact that T0 is “measured” at the kinetic freeze-out stage (the final one), and Ti
is “measured” at the initial stage. From the initial stage to the final one, the system becomes
colder and colder. This is indeed observed in the present work.
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Figure 7. Dependence of T on y at different
√

s from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 8. Dependence of T0 on y at different
√

s from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 9. Dependence of Ti on y at different
√

s from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 10. Dependence of V on y at different
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Figure 11. Dependence of T on
√

s at different y from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 12. Dependence of T0 on
√

s at different y from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 13. Dependence of Ti on
√

s at different y from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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Figure 14. Dependence of V on
√

s at different y from the spectra of (a) π−, (b) π+, (c) K−, (d) K+,
(e) p̄, and (f) p.
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In the above discussions, although chemical potential μ runs through the entire process,
it is an insensitive quantity in the fit and not a free parameter due to the fact that it depends
on Tch and kj. Our previous work [52,53] shows that, from 6.3 to 17.3 GeV, μπ+ , μK+ , and μp
are around 0.041–0.017, 0.110–0.042, and 0.510–0.180 GeV, respectively, which are directly
used in this work. These results have excluded the contributions from resonance decays [59].
Although the resonance decays contribute considerably to the yields of negative and
positive hadrons, they contribute to the yield ratios, and then, the chemical potentials are
small [52,53].

Before the summary and conclusions, it should be pointed out that the data sets
analyzed by us are in a narrow and low-pT range and obey the standard distribution. We
believe that even if the narrow spectra are in a high-pT range, the standard distribution
can be used, and a high temperature can be obtained. The success of this work reflects that
the classical concept and distribution can still play a great role in the field of high-energy
collisions, though the application is in a local region. In our opinion, when researchers
search for novel theoretical models, they first need to take into account classical theories.

Although the topic has been extensively studied in many papers for the SPS, RHIC,
and LHC heavy-ion collisions and outline the validity of a nonextensive statistical distribu-
tion [60–66], those investigations used the spectra in a wide pT range. It is unanimous that
for the wide pT spectra, a two-, three-, or multi-component standard distribution is needed
in the fit. Then, a temperature fluctuation can be observed from the multi-component stan-
dard distribution. At this point, the Tsallis distribution is needed. This is the relationship
between the standard distribution and the Tsallis distribution in the fit process.

In addition, in comparison with Hanbury–Brown–Twiss (HBT) results [67], large
values of volume are obtained in the present work. The reason is that different volumes are
studied. Generally, the former describes the system size in the initial state of collisions, and
the latter is a reflection of the size of an expanded fireball in the final state (at the kinetic
freeze-out) of collisions. Obviously, the latter is much larger than the former. The values of
the three temperatures obtained in the present work seem reasonable.

4. Summary and Conclusions

The main observations and conclusions are summarized here.
(a) The transverse momentum spectra of the identified charged hadrons (π−, π+, K−,

K+, p̄, and p) with different rapidities produced in proton–proton collisions at center-of-
mass energies

√
s = 6.3, 7.7, 8.8, 12.3, and 17.3 GeV have been studied using the standard

distribution. The fitted results are in agreement with the experimental data measured by
the NA61/SHINE Collaboration at the SPS. The effective temperature T, kinetic freeze-out
temperature T0, initial temperature Ti, and kinetic freeze-out volume V are extracted. The
present work shows that the standard distribution coming from the relativistic ideal gas
model works well in some cases.

(b) In most cases, T, T0, and Ti decrease with the increase in rapidity y and increase
with the increase in

√
s. There is a tendency of saturation for the three temperatures

at
√

s = 7.7 GeV and above. From a quick increase to a slow saturation in the three
temperatures, the transition energy 7.7 GeV is the boundary for proton-dominated and
meson-dominated final states. For the spectra of produced hadrons (π−, π+, K−, K+, and
p̄), the extracted V also decreases with the increase in y and increases with the increase in√

s. For the spectra of p, the extracted V increases with the increase in y and decreases with
the increase in

√
s. This is opposite to other hadrons because p contains the pre-existing

leading protons, which affect the result.
(c) The three temperatures do not show an obvious isospin dependence. However,

V shows a significant isospin dependence. The reason for the isospin dependence of V
is the electromagnetic interactions between positive (negative) hadrons and pre-existing
protons. The exclusion (attraction) between positive (negative) hadrons and pre-existing
protons causes larger (smaller) V of an emission source of positive (negative) hadrons.
Compared with the three temperature types, V shows a larger mass dependence. The mass
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dependence of V is also a reflection of a mass-dependent differential kinetic freeze-out
scenario or multiple kinetic freeze-out scenario.
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Appendix A. The Method to Obtain the Parameter and its Uncertainty

Let

yi = f (xi), i = 1, 2, . . . , n (A1)

be the model value of the i-th fitting point. The physical quantities or parameters,
λ (λ1, λ2, . . . , λj), can be obtained by fitting the experimental data, where j is the number
of parameters, which includes the normalization constant. One has

χ2 =
n

∑
i=1

[ f (xi)−Yi]
2

(δYi)2 , (A2)

where n is the number of fitting points, Yi represents the experimental value, and δYi
represents the uncertainty of the experimental value, usually including statistical and
systematic uncertainties.

Due to the small particle number of pT samples being studied in this paper, the
parameter uncertainty is assumed to follow the Student’s distribution (shortened to the
t-distribution) [68],

f (λ | ν) =
( ν

ν+λ2 )
ν+1

2 Γ( ν+1
2 )

√
μπΓ( ν

2 )
, (A3)

where ν represents the ndof and Γ(x) represents the Gamma function. With the increase
in ν, the t-distribution gradually approaches the normal or Gaussian distribution N(0, 1).
When ν approaches 1, the t-distribution approaches the Cauchy distribution.

In the present fitting, a 0.5% confidence interval is used to describe the parameter
uncertainty. This means that there is a 0.5% probability that the parameter will fall within
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(λj − tσ, λj + tσ), where σ is the standard deviation of each parameter and t satisfies
the equation

P =
∫ tσ

−tσ
f (λ)dλ = 0.005. (A4)

The standard deviation of each parameter can be calculated using

σ =

√
(JT

λ Jλ)−1 s2

ν
, (A5)

where

(Jλ)ij =
∂[ f (xi)−Yi]

∂λj
(A6)

is the Jacobian matrix and determinant of the model, JT
λ is the transpose of the Jacobian

matrix, the superscript −1 represents matrix inversion, and

s2 =
n

∑
i=1

[ f (xi)−Yi]
2 (A7)

is the variance. Then, the corresponding best parameter is given by

λj ∈ [λj − tσj,j, λj + tσj,j] (A8)

with an uncertainty of tσj,j.
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Abstract: This paper is about Dirichlet averages in the matrix-variate case or averages of functions
over the Dirichlet measure in the complex domain. The classical power mean contains the harmonic
mean, arithmetic mean and geometric mean (Hardy, Littlewood and Polya), which is generalized to
the y-mean by de Finetti and hypergeometric mean by Carlson; see the references herein. Carlson’s
hypergeometric mean averages a scalar function over a real scalar variable type-1 Dirichlet measure,
which is known in the current literature as the Dirichlet average of that function. The idea is
examined when there is a type-1 or type-2 Dirichlet density in the complex domain. Averages of
several functions are computed in such Dirichlet densities in the complex domain. Dirichlet measures
are defined when the matrices are Hermitian positive definite. Some applications are also discussed.

Keywords: Dirichlet average; generalized type-1; type-2 Dirichlet measures; functions of matrix
argument; Dirichlet measures in the complex domain
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1. Introduction

Dirichlet averages are a type of weighted average used in mathematics and statis-
tics. Given a function f (x) and a probability distribution p(x) defined over a domain D,
the Dirichlet average of f (x) over D with respect to p(x) is defined as:

〈 f 〉p =
1
|D|

∫
D

f (x)p(x)dx,

where |D| is the measure of the domain D. Intuitively, the Dirichlet average is the average
value of f (x) weighted by the probability distribution p(x) over the domain D. The name
“Dirichlet average” comes from the fact that the formula for the average involves an
integral that is similar to the Dirichlet integral, which is an important integral in the
theory of functions of a complex variable. Dirichlet averages have connections to many
other important mathematical concepts, such as harmonic analysis, the Fourier series,
and the theory of functions of a complex variable. Dirichlet averages play an important
role in various problems in number theory, including the study of prime numbers and
the distribution of arithmetic functions; see [1,2], etc. [3] used Dirichlet averages in the
study of random matrices. Dirichlet averages are used in the study of option pricing
and risk management in finance; see [4,5] used it in the study of Bayesian inference and
probabilistic modeling in machine learning. Dirichlet averages are used in the study of
natural language processing and text analysis; see [6]. Overall, Dirichlet averages are an
important mathematical tool that have many applications in various disciplines. They
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provide a way to compute the average value of a function over a probability distribution
and have connections to many other important mathematical concepts.

In [7], there is a discussion of the classical power mean, which contains the harmonic,
arithmetic and geometric means. The classical weighted average is of the following form:

f (b) = [w1zb
1 + . . . + wnzb

n]
1
b .

where all the quantities are real scalar and where w′ = (w1, . . . , wn), z′ = (z1, . . . , zn),
zj > 0, wj > 0, j = 1, . . . , n, and ∑n

j=1 wj = 1 with a prime denoting the transpose.
For b = 1, f (1) gives ∑n

j=1 wjzj or the arithmetic mean; when b = −1, f (−1) provides

[∑j(
wj
zj
)]−1 = the harmonic mean and when b → 0+, then f (0+) yields ∏n

j=1 z
wj
j = the

geometric mean. This weighted mean f (b) is generalized to the y-mean by de Finetti [8]
and to the hypergeometric mean by Carlson [9]. A real scalar variable type-1 Dirichlet
measure is involved for the weights (w1, . . . , wn−1) in Carlson’s generalization, and then
average of a given function is taken over this Dirichlet measure. In the current literature this
is known as Dirichlet average of that function, the function need not reduce to the classical
arithmetic, harmonic, and geometric means. Additionally, Carlson offered a comprehensive
and in-depth examination of the many types of Dirichlet averages Carlson developed the
notion of the Dirichlet average in his work, see also [9–14]. The integral mean of a function
with respect to the Dirichlet measure is known as its “Drichlet average”.

The paper is organized as follows: Section 1 gives the basic concepts for developing
the theory of the matrix-variate Dirichlet measure in complex domain. Dirichlet averages
for a function of matrix argument in the complex domain are developed in Section 2.
In Section 3, we discuss the complex matrix-variate type-2 Dirichlet measure and averages
over some useful matrix-variate functions. The rectangular matrix-variate Dirichlet measure
is presented in Section 4. In Section 5, we establish the connection between Dirichlet
averages and Tsallis entropy. Section 6 provides an elaborate account of the diverse sub-
domains in which the technology finds valuable applications.

Complex Domain

In the present paper, we consider Dirichlet averages of various functions over Dirichlet
measures in the complex domain in the matrix-variate cases. All matrices appearing in
this paper are Hermitian positive definite and p × p unless stated otherwise. In order
to distinguish, matrices in the complex domain will be denoted by a tilde as X̃ and real
matrices will be written without the tilde as X. We consider real-valued scalar functions
of the complex matrix argument and such functions will be averaged over a complex
matrix-variate Dirichlet measure. The following standard notations will be used: det(X̃)
will mean the determinant of the complex matrix variable X̃. The absolute value of the
determinant will be denoted by |det(·)|. This means that if det(X̃) = a + ib, i =

√
−1 then√

(a + ib)(a− ib) = (a2 + b2)
1
2 = |det(X̃)|. tr(·) will denote the trace of (·).

∫
X̃ is integral

over all X̃, where X̃ may be rectangular, square or positive definite. X̃ > O means that the
p× p matrix X̃ is Hermitian positive definite. Constant matrices, whether real or in the
complex domain, will be written without the tilde unless the fact is to be stressed, and in
that case, we use a tilde. O < A < X̃ < B means A > O, X̃− A > O, B− X̃ > O, where A
and B are p× p constant positive definite matrices. Then,

∫
O<A<X̃<B

f (X̃)dX̃ =
∫ B

A
f (X̃)dX̃,

means the integral over the Hermitian positive definite matrix X̃ > O. When O < A <
X̃ < B and f (X̃) is a real-valued scalar function of matrix argument, X̃ and dX̃ stand
for the wedge product of differentials. Hence, for Z̃ = (z̃jk) = X + iY, a m× n matrix of
distinct variables z̃jk’s, where X and Y are real matrices, i = +

√
−1. Then, the differential

element dZ̃ = dX ∧ dY, with dX and dY being the wedge products of differentials in X
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and Y, respectively. For example, dX = ∧m
j=1 ∧n

k=1 dxjk if X = (xjk) and m× n. When Z̃ is
Hermitian, then X = X′(symmetric) and Y = −Y′(skew symmetric), where prime denotes
the transpose. In this case, dX = ∧p

j≥k=1dxjk = ∧p
j≤k=1dxjk and dY = ∧p

j<k=1dyjk =

∧p
j>k=1dyjk.

∫
X̃>O f (X̃)dX̃ means the integral over the Hermitian positive definite matrix

X̃ > O. It is a multivariate integral over all x̃jk’s where X̃ = (x̃jk), x̃jk’s are in the complex
domain. The complex matrix-variate gamma function will be denoted by Γ̃p(α), which has
the following expression and integral representation:

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1) . . . Γ(α− (p− 1)),"(α) > p− 1 (1)

and
Γ̃p(α) =

∫
X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃,"(α) > p− 1 (2)

where "(·) means the real part of (·) and the integration is over all Hermitian positive
definite matrix X̃. For our computations to follow, we will need some Jacobians of transfor-
mations in the complex domain. These will be listed here without proofs. For the proofs
and for other such Jacobians, see [15].

Lemma 1. Let X̃ and Ỹ be m× n with mn distinct complex variables as elements. Let A be m×m
and B be n× n nonsingular constant matrices. Then

Ỹ = AX̃B, det(A) �= 0, det(B) �= 0 ⇒ dỸ = [det(A∗A)]n[det(B∗B)]mdX̃ (3)

where A∗ and B∗ denote the conjugate transposes of A and B, respectively; if X, Y, A, B are real then

Y = AXB ⇒ dY = [det(A)]n[det(B)]mdX (3a)

and if a is a scalar quantity then

Ỹ = aX̃ ⇒ dỸ = |a|2mndX̃. (3b)

Lemma 2. Let X̃ be p× p and Hermitian matrix of distinct complex variables as elements, except for
Hermitianness. Let A be a nonsingular constant matrix. Then

Ỹ = AX̃A∗ ⇒ dỸ = |det(A)|−2pdX̃. (4)

If A, X, Y, X = X′ are real then

Y = AXA′ ⇒ dY = [det(A)]p+1dX. (4a)

If Y, X, a, X = X′ and a scalar, then

Y = aX → dY = a
p(p+1)

2 dX (4b)

Lemma 3. Let X̃ be p× p and nonsingular with the regular inverse X̃−1. Then

Ỹ = X̃−1 ⇒ dỸ =

{
|det(X̃∗X̃)|−2pdX̃ for a general X̃
|det(X̃∗X̃)|−pdX̃ for X̃ = X̃∗ or X̃ = −X̃∗

(5)

Lemma 4. Let X̃ be p× p Hermitian positive definite of distinct elements, except for Hermitian
positive definiteness. Let T̃ be a lower triangular matrix where T̃ = (t̃jk), t̃jk = 0, j < k, t̃jk, j ≥ k
are distinct, t̃kk = tkk > 0, k = 1, . . . , p, that is, the diagonal elements are real and positive. Then

X̃ = T̃T̃∗ ⇒ dX̃ = 2p{
p

∏
k=1

t2(p−k)+1
kk }dT̃. (6)
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With the help of Lemma 4, we can evaluate the complex matrix-variate gamma integral
in (2) and show that it is equal to the expression in (1). When Lemma 4 is applied to the
integral in (2), the integral splits into p integrals of the form

p

∏
k=1

2
∫ ∞

0
(t2

kk)
(α−p)+ 1

2 (2(p−k)+1)e−t2
kk dtkk =

p

∏
k=1

Γ(α− (k− 1)),"(α) > k− 1, k = 1, . . . , p

which results in the final condition as "(α) > p− 1, and p(p− 1)/2 integrals of the form

∏
j>k

∫ ∞

−∞
e−|t̃jk |2 dt̃jk = ∏

j>k

∫ ∞

−∞

∫ ∞

−∞
e−(t

2
jk1+t2

jk2)dtjk1 ∧ dtjk2

= ∏
j>k

√
π
√

π = π
p(p−1)

2 , |t̃jk|2 = t2
jk1 + t2

jk2.

Thus, the integral in (2) reduces to the expression in (1).

Lemma 5. Let X̃ be n × p, n ≥ p matrix of full rank p. Let S̃ = X̃∗X̃, a p × p Hermitian
positive definite matrix. Let dX̃ and dS̃ denote the wedge product of the differentials in X̃ and S̃,
respectively. Then

dX̃ = |det(S̃)|n−p πnp

Γ̃p(n)
dS̃. (7)

This is a very important result because X̃ is a rectangular matrix with mn distinct elements,
whereas S̃ is Hermitian positive definite and p× p. With the help of the above lemmas, we will
average a few functions over the Dirichlet measures in the complex domain.

2. Dirichlet Averages for Functions of Matrix Argument in the Complex Domain

The Dirichlet distributions of real types 1 and 2 are generalized to standard distribu-
tions of beta and type-2. The literature contains these distributions, their characteristics,
and a few generalizations in the form of Liouville distributions. Dirichlet type-1 and type-2
matrix-variate analogues can be found in the literature; [15] is one example. Generalizations
of matrix variables to the Liouville family can be observed in [16]. Matrix-variate distribu-
tions, not generalized Dirichlet, may be seen from [17–19] provides examples of the use of
scalar variable Dirichlet models in random division and other geometrical possibilities.

All the matrices appearing in this section are p× p Hermitian positive definite unless
stated otherwise. Consider the following complex matrix-variate type-1 Dirichlet measure:

f1(X̃1, . . . , X̃k) = D̃k|det(X̃1)|α1−p . . . |det(X̃k)|αk−p

× |det(I − X̃1 − . . .− X̃k)|αk+1−p (8)

where X̃1, . . . X̃k are p× p Hermitian positive definite, that is, X̃j > O, j = 1, . . . , k, such
that I − X̃j > O, j = 1, . . . , k, I − (X̃1 + . . . + X̃k) > O. The normalizing constant D̃k can
be evaluated by integrating out matrices one at a time and the individual integrals are
evaluated by using a complex matrix-variate type-1 beta integral of the form

∫ I

O
|det(X̃)|α−p|det(I − X̃)|β−pdX̃ =

Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
,"(α) > p− 1,"(β) > p− 1 (9)

where Γ̃p(α) is given in (1). It can be shown that the normalizing constant is the following:

D̃k =
Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1) . . . Γ̃p(αk+1)
(10)

for "(αj) > p − 1, j = 1, . . . , k + 1. Since (10) is a probability measure, f (X̃1, . . . , X̃k) is
non-negative for all X̃j, j = 1, · · · , k and the total integral is one. It is a Dirichlet measure
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associated with a Dirichlet density, and it is also a statistical density; hence, we can denote
the averages of given functions as the expected values of those functions, denoted by E(·).
Let us consider a few functions and take their averages over the complex matrix-variate
Dirichlet measure in (8). Let

φ1(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (11)

Then, the average of (11) over the measure in (8) is given by

E[φ1] = D̃k

∫
X̃1,...,X̃k

|det(X̃1)|α1+γ1−p . . . |det(X̃k)|αk+γk−p

× |det(I − X̃1 − . . .− X̃k)|αk+1−pdX̃1 ∧ . . . .∧ dX̃k.

Note that the only change is that αj is changed to αj + γj for j = 1, . . . , k; hence, the result is
available from the normalizing constant. That is,

E[φ1] = {
k

∏
j=1

Γ̃p(αj + γj)

Γ̃p(αj)
} Γ̃p(α1 + . . . + αk)

Γ̃p(α1 + γ1 + . . . + αk + γk + αk+1)
, (12)

for "(αj + γj) > p− 1, j = 1, . . . , k,"(αk+1) > p− 1. Let

φ2(X̃1, . . . , X̃k) = |det(I − X̃1 − . . .− X̃k)|δ. (13)

Then, in the integral for E[φ2] the only change is that the parameter αk+1 is changed to
αk+1 + δ. Hence, the result is available from the normalizing constant D̃k. That is,

E[φ2] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1 + . . . + αk+1 + δ)
(14)

for "(αk+1 + δ) > p − 1,"(αj) > p − 1, j = 1, . . . , k. The structure in (14) is also the
structure of the δ-th moment of the determinant of the matrix with a complex matrix-
variate type-1 beta distribution. Hence, this φ2 has an equivalent representation in terms of
the determinant of a matrix with a complex matrix-variate type-1 beta distribution. Let

φ3(X̃1, . . . , X̃k) = etr(X̃1). (15)

Let us evaluate the Dirichlet average for k = 2. Then

E[φ3] = D̃2

∫
X̃1,X̃2

etr(X̃1)|det(X̃1)|α1−p|det(X̃2)|α2−p

× |det(I − X̃1 − X̃2)|α3−pdX̃1 ∧ . . . ∧ dX̃3.

Take out I − X̃1 from |det(I − X̃1 − X̃2)| and make the transformation

Ũ2 = (I − X̃1)
− 1

2 X̃2(I − X̃1)
− 1

2 .

Then, from Lemma 2, dŨ2 = |det(I − X̃1)|−pdX̃2. Now, Ũ2 can be integrated out by using
a complex matrix-variate type-1 beta integral given in (9). That is,

∫
O<Ũ2<I

|det(Ũ2)|α2−p|det(I − Ũ2)|α3−pdŨ2 =
Γ̃p(α2)Γ̃p(α3)

Γ̃p(α2 + α3)
(16)

for "(α2) > p− 1,"(α3) > p− 1. The X̃1 integral to be evaluated is the following:∫
X̃1

etr(X̃1)|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1. (17)
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In order to evaluate the integral in (17), we can expand the exponential part by using zonal
polynomials for complex argument; see [15,20]. We need a few notations and results from
zonal polynomial expansions of determinants. The generalized Pochhammer symbol is
the following:

[a]M =
p

∏
j=1

(a− j + 1)kj
=

Γ̃p(a, M)

Γ̃p(a)
, Γ̃p(a, M) = Γ̃p(a)[a]M (18)

where the usual Pochhmmer symbol is

(a)m = a(a + 1) . . . (a + m− 1), a �= 0, (a)0 = 1 (19)

and M represents the partition, M = (m1, . . . , mp), m1 ≥ m2 ≥ . . . ≥ mp, m1 + . . . + mp = m
and the zonal polynomial expansion for the exponential function is the following:

etr(X̃) =
∞

∑
m=0

∑
M

C̃M(X̃)

m!
(20)

where C̃M(X̃) is zonal polynomial of order m in the complex matrix argument X̃; see (6.1.18)
of [15]. One result on zonal polynomial that we require will be stated here as a lemma.

Lemma 6. ∫
O<Z̃<I

|det(Z̃)|α−p|det(I − Z̃)|β−pC̃M(Z̃Ã)dZ̃

=
Γ̃p(α, M)Γ̃p(β)

Γ̃p(α + β, M)
C̃M(Ã)

=
Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)

(α)M
(α + β)M

C̃M(Ã), (21)

see also (6.1.21) of [15], for "(α) > p− 1,"(β) > p− 1, Ã > O. By using (21), we can evaluate
the X̃1-integral in E[φ3]. That is,∫

O<X̃1<I
etr(AX̃1)|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1

=
∞

∑
m=0

∑
M

∫
O<X̃1<I

C̃M(ÃX̃1)

m!
|det(X̃1)|α1−p|det(I − X̃1)|α2+α3−pdX̃1

=
∞

∑
m=0

∑
M

C̃M(Ã)

m!
Γ̃p(α1, M)Γ̃p(α2 + α3)

Γ̃p(α1 + α2 + α3, M)
.

Now, with the result on X̃2-integral, D̃2 and the above result will result in all the gamma products
being canceled and the final result is the following:

E[φ3] =
∞

∑
m=0

∑
M

C̃M(Ã)

m!
(α1)M

(α1 + α2 + α3)M
= 1F1(α1; α1 + α2 + α3; Ã) (22)

for "(αj) > p− 1, j = 1, 2, 3 and 1F1 is a confluent hypergeometric function of complex matrix
argument Ã.

3. Dirichlet Averages in Complex Matrix-Variate Type-2 Dirichlet Measure

Consider the type-2 Dirichlet measure

f2(X̃1, . . . , X̃k) = D̃k|det(X̃1)|α1−p . . . |det(X̃k)|αk−p

× |det(I + X̃1 + . . . + X̃k)|−(α1+...+αk+1) (23)

232



Entropy 2023, 25, 1534

for "(αj) > p− 1, j = 1, . . . , k + 1 and it can be seen that the normalizing constant is the
same as that in the type-1 Dirichlet measure. Let us evaluate some Dirichlet averages in the
measure (23). Let

φ4(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (24)

Then, when the average is taken, the change is that αj changes to αj + γj, j = 1, . . . , k;
hence, one should be able to find the value from the normalizing constant by adjusting for
αk+1. Write (α1 + . . . + αk+1) = (α1 + γ1 + . . . + αk + γk) + (αk+1 − γ1 − . . .− γk). That
is, replace αj by αj + γj, j = 1, . . . , k and replace αk+1 by αk+1 − γ1 − . . .− γk to obtain the
result from the normalizing constant. Therefore,

E[φ4] = {
k

∏
j=1

Γ̃p(αj + γj)

Γ̃p(αj)
} Γ̃p(αk+1 − γ1 − . . .− γk)

Γ̃p(αk+1)
(25)

for "(αj + γj) > p− 1, j = 1, . . . , k and "(αk+1 − γ1 − . . .− γk) > p− 1,"(αk+1) > p− 1.
Thus, only a few moments will exist, interpreting E[φ4] as the product moment of the
determinants of X̃1, . . . X̃k. Let

φ5(X̃1, . . . , X̃k) = |det(I + X̃1 + . . . + X̃k)|−δ. (26)

Then, when the average is taken the only change in the integral is that αk+1 is changed to
αk+1 + δ ; hence, from the normalizing constant the result is the following:

E[φ5] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1)

Γ̃p(α1 + . . . + αk+1 + δ)
, (27)

for "(αk+1 + δ) > p− 1, the other conditions on the parameters for D̃k remain the same.
Observe that if "(δ) > 0, then the structure in (27) is that of the δ-th moment of the
determinant of a complex matrix-variate type-1 beta matrix. Thus, this type-2 form gives a
type-1 form result. Let

φ6(X̃1, X̃2) = e−tr(AX̃1)|det(I + X̃1)|α1+α3 . (28)

Then, the Dirichlet average of φ6 in the complex matrix-variate type-2 Dirichlet measure in
(23) for k = 2 is the following:

E[φ6] = D̃2

∫
X̃1,X̃2

e−tr(X̃1)|det(I + X̃1)|α2+α3 |det(X̃1)|α1−p|det(X̃2)|α2−p

× |det(I + X̃1 + X̃2)|−(α1+α2+α3)dX̃1 ∧ . . . dX̃3.

Take out (I + X̃1) from I + X̃1 + X̃2 and make the transformation

Ũ2 = (I + X̃1)
− 1

2 X̃2(I + X̃1)
− 1

2 ⇒ dŨ2 = |det(I + X̃1)|−pdX̃2.

The Ũ2-integral gives

∫
Ũ2>O

|det(Ũ2)|α2−p|det(I + Ũ2)|−(α1+α2+α3)dŨ2 =
Γ̃p(α2)Γ̃p(α1 + α3)

Γ̃p(α1 + α2 + α3)
. (29)

Observe that the exponent becomes zero and the factor containing |det(I + X̃1)| disappears.
Then, the X̃1-integral is∫

X̃1>O
|det(X̃1)|α1−pe−tr(AX̃1)dX̃1 = Γ̃p(α1)|det(A)|−α1 . (30)

233



Entropy 2023, 25, 1534

The results from (29), (30) and D̃2 gives the final result as follows:

E[φ6] =
Γ̃p(α1 + α3)

Γ̃p(α3)
|det(A)|−α1 (31)

and the original conditions on the parameters remain the same and no further conditions
are needed, where A > O. Note that if φ6 did not have the factor |det(I + X̃1)|α1+α3 , a
factor containing |det(I + X̃1)| would also have been present, then the X̃1-integral would
have gone in terms of a Whittaker function of matrix argument; see [15].

4. Dirichlet Averages in Complex Rectangular Matrix-Variate Dirichlet Measure

Let Bj be nj × nj a Hermitian positive definite constant matrix and let B
1
2
j denote the

Hermitian positive definite square root of Bj. Let X̃j be a nj × p, nj ≥ p matrix of full rank
p so that X̃∗j X̃j = S̃j > O or S̃j is a Hermitian positive definite. Observe that for p = 1,
X̃∗j BjX̃j is a positive definite Hermitian form. Hence, our results to follow will also cover
results on Hermitian forms. Consider the model

f3(X̃1, . . . , X̃k) = G̃k|det(X̃∗1 B1X̃1)|α1 . . . |det(X̃∗k BkX̃k)|αk

× |det(I − X̃∗1 B1X̃1 − . . .− X̃∗k BkX̃k)|αk+1−p (32)

where G̃k is the normalizing constant and O < X̃∗j BjX̃j < I, j = 1, . . . , k, O < X̃∗1 B1X̃1 + . . .+
X̃∗k BkX̃k < I, j = 1, . . . , k. The normalizing constant is evaluated by using the following

procedure. Let Ỹj = B
1
2
j X̃j ⇒ dỸj = |det(Bj)|pdX̃j from Lemma 1. Let Ỹ∗j Ỹj = S̃j. Then,

from Lemma 5 we have

dỸj =
πnj p

Γ̃p(nj)
|det(S̃j)|nj−pdX̃j. (33)

Then,

dX̃1 ∧ . . . ∧ dX̃k = {
k

∏
j=1

πnj p

Γ̃p(nj)
|det(B̃j)|−p|det(S̃j)|nj−p}dS̃1 ∧ . . . ∧ dS̃k. (34)

Since the total integral is 1, we have

1 =
∫

X̃1,...X̃k

f3(X̃1, . . . , X̃k)dX̃1 ∧ . . . ∧ dX̃k

= G̃k{
k

∏
j=1

πnj p

Γ̃p(nj)
}
∫

S̃1,...,S̃k

|det(S̃1)|α1+n1−p . . .

× |det(S̃k)|αk+nk−p|det(I − S̃1 − . . .− S̃k)|αk+1−pdS̃1 ∧ . . . ∧ dS̃k.

Now, evaluating the type-1 Dirichlet integrals over the S̃j’s, one obtains the following result:

G̃k = {
k

∏
j=1
|det(Bj)|p

Γ̃p(nj)

πnj p
1

Γ̃p(αj + nj)
}

× Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk)

Γ̃p(αk+1)
(35)
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for Bj > O,"(αj + nj) > p− 1, j = 1, . . . , k,"(αk+1) > p− 1. Thus, (32) with (35) defines
a rectangular complex matrix-variate type-1 Dirichlet measure. There is a corresponding
type-2 Dirichlet measure, given by the following:

f4(X̃1, . . . , X̃k) = G̃k|det(X̃1)|α1 . . . |det(X̃k)|αk

× |det(I + X̃1 + . . . + X̃k)|−(α1+...+αk+1+n1+...+nk) (36)

for Bj > O,"(αj + nj) > p− 1, j = 1, . . . , k,"(αk+1) > p− 1 and G̃k is the same as the one
appearing in (35). Let us compute the Dirichlet averages of some functions in the type-2
rectangular complex matrix-variate Dirichlet measure in (36). Let

φ7(X̃1, . . . , X̃k) = |det(X̃1)|γ1 . . . |det(X̃k)|γk . (37)

Then, when we take the expected value of φ7 in (36) the only change is that αj changes to αj +
γj, j = 1, . . . , k ; hence, the final result is available from the normalizing constant. Therefore

E[φ7] = {
k

∏
j=1

Γ̃p(αj + nj + γj)

Γ̃p(αj + nj)
} Γ̃p(αk+1 − γ1 − . . .− γk)

Γ̃p(αk+1)
(38)

for "(αj + nj + γj) > p − 1, j = 1, . . . , k,"(αk+1 − γ1 − . . . − γk) > p − 1,"(αk+1) >
p− 1. Let

φ8(X̃1, . . . , X̃k) = |det(I + X̃1 + . . . + X̃k)|−δ. (39)

Then, the only change is that αk+1 goes to αk+1 + δ in the integral and no other change is
there ; hence, the average is available from the normalizing constant. That is,

E[φ8] =
Γ̃p(αk+1 + δ)

Γ̃p(αk+1)

Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk)

Γ̃p(α1 + . . . + αk+1 + n1 + . . . + nk + δ)
(40)

for "(αj + nj) > p− 1, j = 1, . . . , k,"(αk+1 + δ) > p− 1,"(αk+1) > p− 1.
The case p = 1 in the complex rectangular matrix-variate type-1 Dirichlet measure is

very interesting. We have a set of Hermitian positive definite quadratic forms here having
a joint density of the following form:

f5(X̃1, . . . , X̃k) = G̃k[X̃∗1 B1X̃1]
α1 . . . [X̃∗k BkX̃k]

αk

× |det(I − [X̃∗1 B1X̃1]− . . .− [X̃∗k BkX̃k])|αk+1−p (41)

where Bj > O, and X̃∗j BjX̃j is a scalar quantity, j = 1, . . . , k. Consider the same types

of transformations as before. Ỹj = B
1
2
j X̃j. Then, Ỹ∗j Ỹj = |ỹj1|2 + . . . + |ỹjnj |2 or the sum

or squares of the absolute values of ỹjr where Ỹ∗j = (ỹ∗j1, . . . , ỹ∗jnj
). This is an isotropic

point in in the 2nj-dimensional Euclidean space. From here, one can establish various
connections to geometrical probability problems; see [19]. Also, (41) is associated with the
theory of generalized Hermitian forms in pathway models; see [21]. Let us evaluate the
h-th moment of

φ9(X̃1, . . . , X̃k) = [X̃∗1 B1X̃1 + . . . + X̃∗k BkX̃k]
h (42)

for p = 1. For p > 1 we have seen that this is not available directly but moments of
|det(I − X̃∗1 B1X̃1 − . . .− X̃∗k BkX̃k)| was available. But for p = 1, one can obtain the h-th
moment of both for an arbitrary h. By computing the h-th moment of [1− X̃∗1 B1X̃1 − . . .−
X̃∗k BkX̃k], for p = 1, we note that for arbitrary h, this quantity and its complementary
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part [X̃∗1 B1X̃1 + . . . + X̃∗k BkX̃k] are both scalar variable type-1 beta distributed with the
parameters (αk+1, ∑k

j=1(αj + nj)) and (∑k
j=1(αj + nj), αk+1), respectively. Then,

E[φ9] =
Γ̃p(∑k

j=1(αj + nj) + h)

Γ̃p(∑k
j=1(αj + nj))

Γ̃p(∑k
j=1(αj + nj) + αk+1)

Γ̃p(∑k
j=1(αj + nj) + αk+1 + h)

(43)

for "(αj) > p − 1, j = 1, . . . , k + 1,"(∑k
j=1(αj + nj) + h) > p − 1. Consider φ9 in the

complex matrix-variate type-2 Dirichlet measure for p = 1. Then, the h-th moment will
reduce to the following:

E[φ9] =
Γ̃p(∑k

j=1(αj + nj) + h)

Γ̃p(∑k
j=1(αj + nj))

Γ̃p(αk+1 − h)
Γ̃p(αk+1)

(44)

for "(αk+1 − h) > p− 1,"(αj) > p− 1, j = 1, . . . , k + 1,"(∑k
j=1(αj + nj) + h) > p− 1.

Many such results can be obtained for the type-1 and type-2 Dirichlet measures in
Hermitian positive definite Dirichlet measures or in rectangular matrix-variate Dirich-
let measures.

5. A Connection to Tsallis Statistics of Non-Extensive Statistical Mechanics

Ref. [22] introduced an entropy measure and, by optimizing this entropy in an escort
density, and under the constraint that the first moment in the escort density is prefixed
which will correspond to a physical law of conservation of energy, obtained the famous
Tsallis statistics of non-extensive statistical mechanics. Tsallis entropy is a variant of Havrda–
Charvát entropy; see [23]. Havrda–Charvát entropy is an α-generalized Shannon entropy
and Shannon entropy in the discrete distribution is the following:

S( f ) = −C
k

∑
j=1

pj ln pj, pj > 0, j = 1, . . . , k, p1 + . . . + pk = 1 (45)

and its continuous version is the following:

S( f ) = −C
∫

x
f (x) ln f (x)dx, f (x) ≥ 0 for all x and

∫
x

f (x)dx = 1 (46)

where C is a constant. A generalized entropy, introduced by Mathai, is a variant of Havrda–
Charvát entropy and Tsallis entropy in the real scalar variable case, but Mathai’s entropy is
set in a very general framework. It is the following:

Mα( f ) =

∫
X [ f (X)]

1+ a−α
η dX− 1

α− a
, α �= a, η > 0 (47)

where a is a fixed anchoring point, α is the parameter of interest, η > 0 is a fixed scaling
factor or unit of measurement, f (X) is a real-valued scalar function of X such that f (X) ≥ 0
for all X,

∫
X f (X)dX = 1 or f (X) is a statistical density where X can be a scalar or vector

or matrix or a collection of matrices in the real or complex domain and dX is the wedge
product of all distinct real scalar variables in X. For example, if X′ = [x1, . . . , xp], where
xj, j = 1, . . . , p are distinct real scalar variables and a prime denoting the transpose, then
dX = dx1 ∧ . . . ∧ dxp = dX′. For two real scalar variables x and y, the wedge product
of differentials is defined as dx ∧ dy = −dy ∧ dx, so that dx ∧ dx = 0, dy ∧ dy = 0.
If X = (xij) is a p× q matrix of distinct real scalar variables xij’s, then dX = ∧p

i=1 ∧
q
j=1 dxij.

If X̃ = X1 + iX2, i =
√
(−1), X1, X2 is real, then dX̃ = dX1 ∧ dX2. If X = [X1, . . . , Xk],

a collection of matrices in the real domain, then dX = dX1 ∧ . . . ∧ dXk. If X̃ = [X̃1, . . . , X̃k],

then dX̃ = dX̃1 ∧ . . . ∧ dX̃k. Thus, (47) is the expected value of [ f (X)]
a−α

η , where the
deviation of α from the anchoring point a is measured in terms of η units.
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When α → a in the real scalar case, we can see that (47) goes to Shannon’s entropy of
(46). But (47) is set up in a very general framework. Let us consider (47) when X is a p× 1
vector of distinct real scalar positive variables, xj > 0, j = 1, . . . , p and let x1 + . . . + xp < 1
so that the xj’s are in a unit ball. Let us optimize (47) under two product moment type
constraints. Let

A = E[xα1−1
1 . . . x

αp−1
p ]

a−α
η and B = E[(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj)]

for "(αj) > 0, j = 1, . . . , p, where "(·) denotes the real part of (·). Let the constraints
be A is prefixed and B is prefixed. If we use calculus of variation to optimize (47) under
the above constraints, then the Euler equation is the following, where λ1 and λ2 are
Lagrangian multipliers:

∂

∂ f
{ f 1+ a−α

η − λ1(xα1−1
1 . . . x

αp−1
p )

a−α
η f − λ2(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj) f } = 0 ⇒

(1 +
a− α

η
) f

a−α
η = λ1(xα1−1

1 . . . x
αp−1
p )

a−α
η + λ2(xα1−1

1 . . . x
αp−1
p )

a−α
η (

p

∑
j=1

xj)⇒

f = λ3xα1−1
1 . . . x

αp−1
p [1 + λ4

p

∑
j=1

xj]
η

a−α

for some λ3 and λ4. Let α < a. Then, let us take λ4 = −b(a− α), b > 0 so that the right side
of the above equation for f can form a density with λ3 being the normalizing constant there.
If λ4 = b(a− α) with b > 0, α < a, then the right side of f will be a positive exponential
function and will not produce a density. Then,

f = λ3xα1−1
1 . . . x

αp−1
p [1− b(a− α)(x1 + . . . + xp)]

η
a−α , η > 0, b > 0, α < a (48)

is a Mathai’s pathway form of real scalar type-1 Dirichlet density. When α > a, then (48)
switches into a real scalar type-2 Dirichlet density with the corresponding normalizing constant.

Note that for q = 1, a q× q Hermitian positive definite matrix is a real scalar positive
variable. Hence, (48) holds in the real and complex cases for q = 1 of q× q real positive
definite or Hermitian positive definite matrices X1, . . . , Xp or X̃1, . . . , X̃p. The above is an
example of the connection of type-1 and type-2 Dirichlet models to Tsallis entropy.

6. Applications

For our applications in the theory of special functions, fractional calculus, mechan-
ics, biology, probability, and stochastic processes, Dirichlet averages and their diverse
approaches are used. In this section, the main areas where the applications of Dirichlet
averages are presented:

6.1. Special Functions

Dirichlet averages were introduced by Carlson in his 1977 work. Carlson [10–13]
observed that the straightforward idea of this kind of averaging generalizes and unifies a
wide range of special functions, including various orthogonal polynomials and generalized
hyper-geometric functions. The relationship between Dirichlet splines and an important
class of hypergeometric functions of several variables is given in [14,24]. Numerous
investigations of B-splines, including those by [14,25,26], used Dirichlet averages.

6.2. Fractional Calculus

The Dirichlet average of elementary functions like power function, exponential func-
tion, etc. is given by many notable mathematicians. There are many results available in
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the literature converting the elementary function into the summation form after taking the
Dirichlet average of those functions, using the fractional integral, and obtaining new results;
see [27–32]. Those results will be used in the future by mathematicians and scientists in a
variety of fields.

6.3. Statistical Mechanics

Statistical mechanics is a branch of physics that studies the behaviour of large systems
of particles, such as gases, liquids, and solids. In statistical mechanics, entropy is a measure
of the degree of disorder or randomness in a system; for more details, see [33,34]. The
greater the entropy, the more disordered the system. Dirichlet averages and statistical
mechanics are connected through the concept of entropy. Dirichlet averages are a type
of mathematical average that weighs a set of values according to a given probability
distribution. For example, given a set of values x1, x2, . . . , xn and a probability distribution
p1, p2, . . . , pn, the Dirichlet average is defined as:

D(p, x) =
n

∑
i=1

pixi.

Statistical mechanics is a branch of physics that studies the behavior of large systems of
particles, such as gases, liquids, and solids. The connection between Dirichlet averages
and statistical mechanics comes from the fact that the Dirichlet average can be seen as a
type of average energy of a system weighted by a probability distribution. In statistical
mechanics, the average energy of a system is also weighted by a probability distribution,
and the entropy of the system is related to the probability distribution of the energy states.
In particular, the Boltzmann entropy of a system is given by:

S = −k
n

∑
i=1

pi ln pi,

where k is the Boltzmann constant. This formula shows that the entropy of a system is
proportional to the negative logarithm of the probability distribution of the energy states.
Thus, Dirichlet averages and statistical mechanics are connected through the concept
of entropy, which relates the average energy of a system to the probability distribution
of its energy states. Dirichlet forms and their applications to quantum mechanics and
statistical mechanics were established by [35]. Connections between Dirichlet distributions
and a scale-invariant probabilistic model based on Leibniz-like pyramids are introduced
by [36]. Ref. [37] showed that marginalizing the joint distribution of individual energies is
a symmetric Dirichlet distribution.

6.4. Gene Expression Modeling

Clustering is a key data processing technique for interpreting microarray data and
determining genetic networks. Hierarchical Dirichlet processes (HDP) clustering is able to
capture the hierarchical elements that are common in biological data, such as gene expres-
sion data, by including a hierarchical structure into the statistical model. [38] presented a
hierarchical Dirichlet process model for gene expression clustering.

6.5. Geometrical Probability

Thomas and Mathai [39] propose a generalized Dirichlet model application to geomet-
rical probability problems. When the linearly independent random points in Euclidean n
space have highly general real rectangle matrix-variate beta density, the volumes of random
parallelotopes are explored. In order to evaluate statistical hypotheses, structural decompo-
sition is provided, and random volumes are linked to generalized Dirichlet models and
likelihood ratio criteria. This makes it possible to calculate percentage points of random
volumes using the generalized Dirichlet marginal’s p-values.
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6.6. Bayesian Analysis

Carlson’s original definition of Dirichlet averages is expressed as mixed multinomial
distributions’ probability-generating functions. They also significantly contribute to the
solution of elliptic integrals and have several connections to statistical applications. Ref. [40]
found that several nested families are built for Bayesian inference in multinomial sampling
and contingency tables that generalize the Dirichlet distributions. These distributions
can be used to model populations of personal probabilities evolving under the process of
inference from statistical data.

7. Conclusions

In this study, the fundamental ideas for the theory development of the matrix-variate
Dirichlet measure in the complex domain are presented. The complex matrix-variate type-2
Dirichlet measure and averages over some useful matrix-variate functions are discussed.
We establish the Dirichlet measure of the rectangular matrix-variate and the relationship
between Tsallis entropy and Dirichlet averages and identify a few applications in various
domains. Additionally, a few applications are covered.
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Abstract: Seismic data have improved in quality and quantity over the past few decades, enabling
better statistical analysis. Statistical physics has proposed new ways to deal with these data to
focus the attention on specific matters. The present paper combines these two progressions to find
indicators that can help in the definition of areas where seismic risk is developing. Our data comes
from the IPOC catalog for 2007 to 2014. It covers the intense seismic activity near Iquique in Northern
Chile during March/April 2014. Centered in these hypocenters we concentrate on the rectangle
Lat−18

−22 and Lon−72
−68 and deepness between 5 and 70 km, where the major earthquakes originate.

The analysis was performed using two complementary techniques: Tsallis entropy and mutability
(dynamical entropy). Two possible forecasting indicators emerge: (1) Tsallis entropy (mutability)
increases (decreases) broadly about two years before the main MW8.1 earthquake. (2) Tsallis entropy
(mutability) sharply decreases (increases) a few weeks before the MW8.1 earthquake. The first one is
about energy accumulation, and the second one is because of energy relaxation in the parallelepiped
of interest. We discuss the implications of these behaviors and project them for possible future studies.

Keywords: Tsallis entropy; information theory; subduction seismicity

1. Introduction

We can approach a variety of problems in physics through statistical mechanics.
Some examples include real magnetization systems [1,2], spin models [3,4], molecular
interactions [5], fluids [6], space plasmas [7,8] among others. However, statistical mechanics
can be also useful in more complex systems such as social interactions [9], traffic [10], wind
energy [11], and earthquakes [12–17]. A common key element in this variety of applications
is entropy, which directly points to the accessible states under given conditions. Magnetic
systems and rocks under tension could both alter their configuration spaces making some
external manifestations more probable/improbable. When we speak about probability
of states we are reaching the domain of entropy, that “lives” in the configuration space.
Entropy can be defined in different ways. This paper focuses on two forms: Tsallis entropy
and mutability (or dynamical entropy).

In recent years, studies of entropy in earthquakes have been used to show the evolution
of the seismic systems in time. These studies have relied on datasets coming from different
zones of the Earth. In a quick summary, we can mention the following recent developments:
(i) Shannon entropy has been found useful in identifying earthquake risk areas [18]; (ii) a
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study established the way both the Shannon entropy and mutability reflect the seismic
activity [19]; (iii) researchers have recently tested Tsallis entropy in different seismic zones
of the world [20,21].

In addition, in all the studies previously mentioned we can use the concept of natural
time. This concept has proven to be very useful in the study of earthquakes. The natural
time allows one to follow a time series step-by-step through a scaling of the time such as
χk = k/N where k follows the occurrence of a seismic event in time [22,23]. In the present
paper, we will use it for comparison only so a simpler form is enough: the enumeration
of events.

In the present article, we revisit the same seismic area of our recent articles [19,24]
with the purpose of completing the study with the following recent developments: (a) for
the first time we report mutability on the sequence of magnitudes (before we investigated
it on intervals); (b) for the first time we compare and discuss Tsallis entropy and mutability
on the same footage: this allows us to call the later “dynamical entropy”; (c) we perform
a tuning process to detect the importance of the size of the time window to analyze the
dynamical process; (d) we conduct a progressive approximation to days and hours prior to
the large earthquake to detect premonitory signs and we believe we can report a couple of
them; (e) we conclude that the aftershock regime closed quickly in this area and energy
continues to accumulate at levels similar to those before the 2014 earthquakes.

2. Methodology

2.1. Data Source

Chile is placed close and almost parallel to the border of the subduction zone between
the Nazca Plate and the South American Plate. This is a source of seismicity in a wide
range of magnitudes along different geographical conditions. In recent years, scientists
have concentrated their attention on the seismicity of the northern zone of Chile. IPOC
is an outcome of this effort, which is a network of institutions from Europe and South
America. Its networks have measured earthquakes on the Peru-Chile coastal margin for
decades. This network’s seismic data is helpful to understand the seismic dynamics in
northern Chile and to identify potential risks.

Scientists are interested in the Northern zone of Chile because of its frequent earthquakes
and the fact that there have been no major earthquakes in the recent past. The last historical
mega-thrust earthquake in the northern zone of Chile was in 1877 [25–27]. A partial list of
important recent earthquakes is: Antofagasta (1991) Mw8.0 [28], Tarapaca (2005) Mw7.7 [29],
Tocopilla (2007) Mw7.7 [30], and Iquique (2014) Mw6.6, Mw8.1, Mw7.6 [31,32]. Each one
of the previous large seisms generated a powerful chain of aftershocks. This seismicity
is mainly shallow at intermediate depths (less than 80 km). The quality of the data has
improved with time due to better stations, more stations, and more coordination among
seismological institutions. This is the main reason to consider only a few years before 2014,
up to 2007 considering the Tocopilla seism as the last previous event.

The Iquique earthquake has a complex structure that deserves a dedicated investigation.
In its simplest form, it can be viewed as a triple earthquake in 2014: Mw6.6 on 03.16, Mw8.1
on 04.01 and Mw7.6 on 04.03. Each of the previous earthquakes generated aftershock
activity. Even the first one (the weakest of the three) had two important aftershocks Mw6.4
on 03.17 and on 03.23, and several others over Mw6.0. Alternatively, one can consider that
the Mw8.1 seism is the important one here, declaring all previous activity in the area as pre-
shock and what came afterwards as aftershock activity; the Mw7.6 earthquake is absorbed
within the aftershock of the larger one. However, one can also choose to consider this last
seism on its own, with its aftershock regime and rupture area. This is an anticipation of the
results and discussions to be represented below.
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It is also important to consider some previous discussions concerning the aftershock
activity in this region [31–33], and a zone with a low coupling [27]. Socquet et al. in
2017 [34] showed that the major shock was led by an acceleration that started aproximately
eigth months before the large earthquake. Jara et al. 2017 [35] found a strong link between
shallow and intermediate depth seismic activity, showing that it may have caused the
Iquique earthquake. All this evidence points to the understanding of the physical process
behind the occurrence of a great earthquake and it is to this understanding that this work
also contributes.

2.2. Handling of Data

We center our attention on the large Iquique earthquake (1 April 2014) with Mw 8.1
located at 19.589◦ South Latitude and 70.940◦ West Longitude; its depth was 19.91 km (data
from IPOC catalogue [36]), its preshock activity and the aftershock activity recorded in the
IOPC catalogue. The epicenter was situated 95 km Northwest of Iquique city and a tsunami
alert was issued for Chile, Peru and Ecuador, which was later extended to Colombia and
Panama. Viewed in this way, the major shock is preceded by an intense foreshock sequence
and followed by a large Mw7.6 [37] as is shown in Figure 1.

Figure 1. Number of daily earthquakes in the selected IPOC catalogue from years 2007 to 2014, fully
displayed in the inset. On the abscissa axis in the main body, day 0 corresponds to 1 April 2014,
coinciding with the Mw8.1 earthquake. It can be noticed that the pre−shock activity appears about
17 days before. The aftershock response extended months afterwards.

Preparing the initial dataset comprises three steps. First, we chose the epicentral area
according to the main event coordinates. We drew a “rectangle” with Lat−18

−22 and Lon−72
−68

based on the main event coordinates, and found 65,050 seisms in the IPOC catalogue. We
considered all these seisms to calculate the Gutenberg-Richter relationship to define the
threshold magnitude M0 (we used the MAXC technique [38] because it is a simple method
for the goals we pursue). The second step involved setting up a M02.2 that is shown in the
peak of the red triangles in Figure 2.

We consider all the seisms within the parallelepiped defined by Lat−18
−22 and Lon−72

−68
and 200 km depth. Longitude and depth are used as coordinates to make a map of all
earthquakes, regardless of latitude. Dots represent the location of seisms in Figure 3. A
careful look at this figure unveils the two plates, with the subduction front defining a
downward diagonal from West to East.
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Figure 2. We analyzed the data from the IPOC catalog using the Gutenberg-Richter law, including
earthquakes from 2007 to 2014 with epicenters within 18 ◦S–22 ◦S and 68 ◦W–72 ◦W. Circles denote the
cumulative number of earthquakes; triangles denote the abundance of earthquakes for a magnitude.
Based on the maximum curvature (MAXC) technique (Wiemer and Wyss, 2000), M0 = 2.2.

The third step is the right panel of Figure 3 where now depth is the only variable
while seisms result in a histogram giving the abundance of seisms as a function of
depth. A bimodal is clearly appreciated, where the lower component receives most of its
contributions from a mixture of tectonic (Continental Plate) and intra-plate earthquakes.
The large deep distribution is originated within the Nazca plate. The first group of
earthquakes deserves our full attention, as those earthquakes caused the most damage
and could trigger deadly tsunamis. For this reason, we set the deepness filter at 70 km,
corresponding to the minimum of the distribution in the right panel of Figure 3.

Moreover, we left out the shallower first 5 km to avoid contamination coming from
the mining work conducted in the area. Earthquakes from 5 to 70 km will be handled in the
rest of this paper. We make this cut in the dataset to focus this analysis in the zone close to
the hypocenter. The number of earthquakes left for study after previous filtering is 10,640.

Figure 3. Depth distribution of earthquakes at different longitudes. Seisms at different latitudes are
accumulated on this two−dimensional view. A histogram with respect to depth is presented on the
right panel.

Finally, Figure 4 presents the epicentral zone with the selected earthquakes.
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Figure 4. Epicentral map of the area under study: the black circle marks the city of Iquique, 95 km
from the epicenter. Magnitude of the seisms are illustrated by both a proportional diameter and the
color of the circles: yellow 3.0 ≤ Mw ≤ 3.9, cyan 4.0 ≤ Mw ≤ 4.9, pink 5.0 ≤ Mw ≤ 5.9, orange
6.0 ≤ Mw ≤ 6.9. The red star positions the great earthquake of Iquique with Mw8.1, while the red
triangle shows the epicenter of its main aftershock with Mw7.6.

2.3. Tsallis Entropy

Let start by considering an earthquake as a critical phenomenon in a complex system
(fracture zone) that experiences a phase transition from a non-equilibrium state (where
stresses and strain in crust lead to fault slip) to another state (where stresses and strain
have become to relax); several physical models have been developed to describe their
essential properties [13,15,23,39–42]. Thereby, the maximum entropy principle has widely
been applied in many out-of-equilibrium systems in physics (and other sciences), providing
novel insights into their macroscopic states [43]. Sotolongo-Costa and Posadas (2004) [20]
introduced the fragment-asperity interaction model for earthquake dynamics (SCP model)
based on the non-extensive statistical formalism; in this model, the released seismic energy
is related to the size of the fragments that fill the space between fault blocks. According to
the SCP model, if N (>M) is the cumulative distribution of the number of earthquakes N
with magnitude greater than M, then:

log(N(> M)) = log(N) +
2− q
1− q

log
(

1 + a(q− 1)(2− q)
1−q
q−2 102M

)
. (1)

where a is a real number expressing the proportionality between the released seismic
energy and the size of the fragments, and q is the entropic index from Tsallis entropy.
Equation (1) appropriately generalizes the Gutenberg–Richter relationship over a broad
range of magnitudes [43] and exhibits an excellent fit to earthquake datasets [14,20,44,45].
In fact, the Gutenberg–Richter law can be easily deduced as [12,46]:

b = 2
2− q
q− 1

. (2)
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Moreover, q values obtained from different regions of the world [12] are all q ≈ 1.5− 1.7,
suggesting the universality of this constant.

Recently, Posadas and Sotolongo-Costa (2023) [24] established the entropy of fragments
and asperities within fault fractures (i.e., within gouge fault zones) and determine their
behavior during an earthquake. Authors assume the hypothesis that prior to an earthquake,
the state of the system, characterized by a range of fragment sizes and stress distribution
forms many “microstates” compatible with fragment distribution; such entropy can be
assumed to be (relatively) large. During an earthquake, fragments are broken, while
asperities and barriers are overcome. Furthermore, fragment sizes become homogenized
and this decreases the number of possible “microstates”, as such, entropy decreases. As
this process is abrupt and rapid, the entropy decreases suddenly; it subsequently recovers
as stress starts to re-accumulate. From a statistical mechanics perspective, the higher the
number of microstates, the higher the entropy and vice versa.

Tsallis entropy (Equation (1)) for a continuous distribution p(σ) of fragments of sizes
σ is given by (for simplicity we set k = 1):

S =
1−
∫ ∞

0 pq(σ)dσ

q− 1
, (3)

subject to two restrictions: ∫ ∞

0
p(σ)dσ = 1 (4)

and ∫ ∞

0
σpq(σ)dσ = 〈〈σ〉〉q, (5)

where 〈〈σ〉〉q is the mean of the distribution. Therefore, the maximum entropy principle
allows us to form the following Lagrangian:

L(p) =
1−
∫ ∞

0 pq(σ)dσ

q− 1
− α

∫ ∞

0
p(σ)dσ− β

∫ ∞

0
σpq(σ)dσ. (6)

where α and β are the Lagrange multipliers. Imposing the Lagrangian to be extreme:

∂L
∂p

= 0 (7)

after some algebra it is possible to find that:

p(σ) =

[
1−q

q α
] 1

q−1

[1 + βσ(q− 1)]
1

q−1
, (8)

where, implicitly, a cut-off condition has been used for the denominator [47]. Finally, by
substituting Equation (8) into that of non-extensive entropy (Equation (3)) and solving the
integral in the numerator [21], we can obtain:

S =
1−
∫ ∞

0 pq(σ)dσ

q− 1
=

1− (2− q)
1

2−q

q− 1
. (9)

This equation allows us to find the value of the entropy for a dataset and to study its
behavior as a function of the non-extensive q parameter; therefore, if a windowing process
is carried out (i.e., choosing a certain number of earthquakes and sliding the window in
time), it is possible to visualize the dynamic evolution of the seismic series in terms of
non-extensive entropy. The process is as follows:

1. First, the time window W is determined for the calculation of entropy; in other
words, the minimum number of earthquakes used to calculate S from Equation (9). In
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general, the final window size is a reasonable compromise between the required resolution
and smoothing results.

2. Second, parameter b from the Gutenberg–Richter relationship for the chosen
window W is determined; this can be calculated from the classical expression of Aki
(1965) [48] and the subsequent correction by Utsu (1965) [49]:

b =
log(e)

M̄−
(

M0 − ΔM
2

) , (10)

where M0 is the threshold magnitude; ΔM is the resolution of the magnitude (usually
ΔM = 0.1); and M̄ is the average value of all possible magnitudes, which is given by:

M̄ =
∫ ∞

M0

Mp(M)dM. (11)

The estimation of M0 is performed, as we noted before, using the maximum curvature
(MAXC) technique [38].

3. Finally, approximation according to Sarlis et al. (2010) [12] Equation (2) is used
to determine q; then, the non-extensive entropy is computed for each time t following
Equation (9). By convention, the time attributed to each point of the analyses is the time of
the last seismic event considered in each window.

2.4. Mutability

Information content is valuable information leading to entropy in different ways [50–52].
During the last decade or so a dynamical entropy called mutability has been introduced in an
empirical way to characterize information content in a data sequence [53].

To obtain the value of mutability, we first create a vector file with the sequence or
time series to be recognized (Monte Carlo simulation of the magnetization of a system,
magnitude of consecutive earthquakes in a given region, variations in the value of a given
economical asset, and similar sequences of measurable evolving quantities). All registers
have the same number of digits filling with zeroes the empty positions. The number of
bytes occupied by this vector file is w. This file is then compressed and the compressed file
occupies w∗ bytes. Then, the value of the mutability for this sequence is defined as the ratio:

μ(α) =
w∗

w
, (12)

where α represents the set of parameters that characterize the system (size, temperature, etc.).
In principle any data compressor can accomplish this task and blzip2 was used

previously [54]. However, data compressors are based on search for repetitive chains
of characters, which can accidentally occur without a physical meaning. To cope with
this inaccuracy, a data compressor based on exact matching of physically meaningful
information was developed under the name “world length zipper” (wlzip for short)
which will be summarized next [54].

2.5. Algorithm of the Data Recognizer

The compressed or recognized file is a map constructed from the original, according
to an algorithm that obeys the following rules:

(a) Navigate to the first register of the original file, copy it onto the compressed file as
a first register followed by a space and then the digit 0 to indicate the beginning or
origin of the new file.

(b) Select the following register in the original file and compare it to the already stored
register(s) in the compressed file.
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- If this register already exists then navigate to its row, leave a space and write to
the right the “distance” or number of registers since it was previously found in
the original file.

- If the register repeats itself immediately after, place a comma and the number of
consecutive repetitions.

- If this register is new, then write it at a new row followed a space and then the
distance to the first register.

(c) Navigate to next register and repeat the procedure given in (b) until the last register
in the file.

So now we have the original file with weight w and the compressed file with weight
w∗. According to Equation (12) the mutability of the original file measured in this way is
w∗/w.

We illustrate the concept of mutability and the use of wlzip by two sequences of
50 seisms each, both obtained from the filtered catalog defined above.

The first sequence, called “Before”, lists the magnitudes of the 50 seisms beginning
on 1 February 2014, covering a few days before the 6.6 earthquake. Their sequential
magnitudes are: 2.4, 4.0, 3.8, 4.0, 2,2, 4.6, 3.5, 2.9, 2.2, 3.0, 4.1, 3.1, 3.1, 4.3, 4.3, 3.6, 5.5, 3.5, 2.4,
3.5, 2.7, 2.5, 2.2, 2.5, 2.3, 2.5, 2.6, 3.3, 2.4, 2.9, 2.6, 2.8, 2.3, 2.2, 2.2, 2.4, 3.8, 4.1, 2.8, 2.4, 2.5, 2.2,
2.5, 2.8, 2.3, 2.5, 3.4, 4.0, 4.0, 2.9.

The second one, called “After”, gathers the sequence of magnitudes of the 50 seisms
beginning with the 6.6 earthquake of March 16, 2014 and obtains the 49 following seisms.
The list is the following: 6.6, 4.5, 4.8, 4.1, 3.1, 5.2, 4.8, 4.2, 3.8, 3.5 3.1, 4.8, 3.7, 3.1, 3.6, 3.3, 3.1,
4.0, 2.7, 3.5 3.2, 4.8, 2.8, 3.5, 2.4, 4.7, 3.0, 2.9, 3.2, 4.1 4.3, 4.0, 5.1, 3.3, 4.3, 3.4, 3.8, 4.7, 3.1, 3.1
2.6, 4.7, 3.4, 3.3, 3.7, 4.7, 3.0, 3.1, 3.7, 3.4.

The procedure is illustrated in Table 1. The left-hand-side is the compressed file of
“Before” called “BeforeC” and the right-hand-side is the compressed file of “After”, namely,
“AfterC”.

Let us begin with “Before”. We obtain its first register in the first row of “BeforeC”
followed by its position 0 at the origin. The following register is 4.0 (new) and just one
position from the first one. The next register is 3.8 (new), two positions from the origin.
The next one is 4.0, which is already listed so we navigate to its row in BeforeC and write a
2 to the right, meaning that its new position is two rows below its previous appearance.
The next register is 2.2 which is new and four positions from the origin. Similarly, we
continue with the new ones 4.6, 3.5 and 2.9. However, then we find 2.2 which we found
found positions before so we add a 4 to its row. We continue to the magnitude 3.0 found
nine positions from the origin. Next is also a new one: 4.1, ten positions distant from the
origin. The following one is 3.1, also new, but repeats itself immediately so we write its
coordinate 11 then a comma and then the number of repetitions which is two. Something
similar happens with magnitude 4.3 coming next. In this way we can continue applying
the rules above to complete the file “Before”. We perform a similar procedure to the file
“After”.

One first results is obvious: The length of “After” is larger than the one of “Before”
and so it is its span of values. When the mutability is measured for these two files the
result is 0.94 for “Before” and 1.00 for “After”. It is clear that the aftershock regime brings
in a larger variety of magnitudes so the information content increases and so does the
mutability (dynamical entropy).

Columns identified by fB and fA give the abundance or frequency of this value in
the sequence. So these columns give the histograms for the sequences Before and After,
respectively. However, columns marked as MapB and MapA also represent a histogram,
but with an internal structure related to the dynamics of the sequence. This is the basis
of the difference between the mutability and other forms of entropy where it is only the
distribution of values that matters, regardless of the way the sequence was produced.
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Table 1. Illustration of the generation of the compressed files. The first column is just an enumeration
of lines. The second, third and fourth (sixth, seventh and eighth) columns refer to the rules applied to
file “Before” (“After”), giving the magnitude M, the relative coordinates to construct the map and the
corresponding frequencies of the magnitudes of that row. Details are given in the text.

Before After

n M MapB fB M MapA fA

1 2.4 0 18 10 7 4 5 6.6 0 1

2 4.0 1 2 44,2 4 4.5 1 1

3 3.8 2 34 2 4.8 2 4 5 10 4

4 2.2 4 4 14 11,2 8 6 4.1 3 26 2

5 4.6 5 1 3.1 4 6 3 3 22,2 9 7

6 3.5 6 11 2 3 5.2 5 1

7 2.9 7 22 20 3 4.2 7 1

8 3.0 9 1 3.8 8 28 2

9 4.1 10 27 2 3.5 9 10 4 3

10 3.1 11,2 2 3.7 12 32 4 3

11 4.3 13,2 2 3.6 14 1

12 3.6 15 1 3.3 15 18 10 3

13 5.5 16 1 4.0 17 14 2

14 2.7 20 1 2.7 18 1

15 2.5 21 2 2 15 2 3 6 3.2 20 8 2

16 2.3 24 8 12 3 2.8 22 1

17 2.6 26 4 2 2.4 24 1

18 3.3 27 1 4.7 25 12 4 4 4

19 2.8 31 7 5 3 3.0 26 20 2

20 3.4 46 1 2.9 27 1

21 4.3 30 4 2

22 5.1 32 1

23 3.4 35 7 7 3

24 2.6 40 1

2.6. Tuning the Information Recognizer

The algorithm is now a powerful program that we offer for free—email
ee.vogel@ufrontera.cl to download it. This allows us to distinguish and process different
data according to what is appropriate for each system. The following adjustments need
to be made:

(i) Is this a static calculation (entire file, just once) or a dynamical calculation through
time windows? Answer: it is dynamic through windows with W registers.

(ii) Are these successive independent or overlapping windows? Answer: we use overlapping
successive windows.

(iii) If they overlap, what is the size of the overlap? We consider here a displacement of
just one register between consecutive windows so the overlap is W − 1 events.

(iv) In step (b) of the algorithm described above, a numeric comparison is performed
between two registers. How many digits and which digits bear the most sensitive
information to perform this comparison? An estimation is possible after inspecting
the data, but we let wlzip itself find the digits that lead to a better precision. The
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comparison is restricted to the r digits from position i and the following r− 1 digits;
this is denoted (i,r). In the examples of Table 1, all comparisons were for i = 1, r = 3
(the dot needs to be compared as well).

(v) If precision is needed, wlzip has the feature of handling different numeric bases
(quaternary, binary, . . . ) which can help to discriminate intermediate positions.

WLZIP applies to any parameter P(t) stored in a vector file and indeed it has been
used to recognize phase transitions or criticality in different fields: magnetism [54,55],
econophysics [56], polymer deposition on surfaces [57,58], wind energy optimization [59].

The first application of wlzip to seismology came recently using data from a Chilean
catalogue measured by CSN [60] finding the variations in wlzip results years and months
prior to large earthquakes [61]. Then the study was extended to four zones along the
subduction trench, comparing their dynamics by means of Shannon entropy and
mutability [19]. More recently, a deepness analysis of the same “rectangle” near Iquique
was performed by means of Tsallis entropy [24].

3. Results

The earthquakes of 2014 have raised several questions concerning their dynamics.
Here, we addressed their study computing the Tsallis entropy for the first time focusing on
the magnitude of the quakes, complemented by the mutability on the same data. For the
first time, we will compare these two entropies based on an analysis over time.

Figure 5 plots the Tsallis entropy for successive overlapping time windows defined by
the last W seisms. (A) W = 256; (B) W = 512; (C) W = 1024; (D) W = 2048. Abscissas reflect
real time in days with major ticks close to a year mark. Let us examine plot (A) where, apart
from oscillations, we see a broad valley around day 800, a maximum or “swelling” around
day 1600, and stronger oscillations with a sharp decrease near day 2600, which roughly
coincides with the big earthquake. Then, Tsallis entropy partially recovers in an oscillatory
way during the aftershock regime. In Figure 5B–D we can observe similar behaviors, except
that oscillations are damped due to a larger statistics upon increasing the window spans.
The larger W values also displaces the texture of the curves a bit to the right. The three
main earthquakes that mark these complex seismic behaviors are shown by stars with the
magnitudes displaced in the inset. They were vertically split since otherwise they would
overlap at this scale.

It is interesting to notice how these four figures show a consistent increment in the
Tsallis entropy before an abrupt decay. We believe this is a manifestation of the subduction
process where the large fragments in between the Nazca plate and the South American
plate prevent sliding. However, possibilities in which the dynamics can change increase
with time leading to an increase in Tsallis entropy [21]. This effect begins about two years
before the large earthquake which is in agreement with Socquet et al. in 2017 [34], who
detected an increase in the acceleration in the displacement of the plates several months
before the large earthquake.

When the fragments fracture, smaller pieces tend to fill in the interspace, thus lubricating
the sliding of one plate with respect to the other. This leads to a sudden decrease in the Tsallis
entropy to denote the time of the major seism and the beginning of the aftershock regime.

In addition, we should mention that prior to the large earthquakes events are mostly
independent: their epicenters are at different locations, no time correlation is observed, and
magnitudes are moderate. Thus, during the apparent calm period, mostly uncorrelated
seisms are produced. The large Mw8.1 earthquake fractures the fragments, unleashing
a variety of correlated seismic chains in little time, causing an abrupt decrease in Tsallis
entropy. As the underground layers settle, the near equilibrium goes back to the situation
months or years before the violent earthquake.

In Figure 6A–D we present the mutability results for the same seisms, using the same
time windows of previous figure. In all cases the plots sharply increase when the moving
windows reach the time of three main earthquakes; for more clarity their times are marked
using particular symbols as given in the inset. The main feature of these figures is the
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abrupt growth of mutability during the earthquake period. Larger time windows moderate
the oscillations, but the sharp peak near day 2600 prevails in all of them. A more subtle
feature becomes more pronounced as the time window increases: for years before the
activity of 2010, the mutability goes through a maximum then it decreases reaching a
minimum. It then quickly recovers, maximizing during the great seismic activity.

Figure 5. Tsallis entropy on magnitude sequence in terms of real time, using four different dynamic
windows W as indicated in the code on top. (A) With 256 seismic events, (B) with 512 seismic events,
(C) with 1024 seismic events and (D) with 2048 seismic events. Stars give the time of the most
important earthquakes of the series whose magnitude is given in the inset.

Figures 5 and 6 show an inverse behavior. To understand the behavior of the mutability
we must remember that it is essentially based on the special kind of histogram constructed
in the way shown in Table 1. Just before the main seisms, the series are comparable to
the case of BeforeC in Table 1: lower mutability. During and after the large seisms, the
mutability is closer to the situation represented by the column AfterC in Table 1, namely,
larger mutability values. So the mutability decreases during the calm periods before an
earthquake at the same time the Tsallis entropy grows. During the large seisms and their
immediate aftershock activity the mutability sharply grows at the same time Tsallis entropy
sharply decreases. Turning to the aftershock period, Tsallis entropy gradually increases
while the mutability gradually decreases, both in oscillatory ways.

In Figure 7 we use a window of 512 seismic events and we compute the Tsallis entropy
and the mutability before the large earthquake of magnitude Mw8.1, stopping short before
including the main earthquake. Thus this series presents the instant picture 80, 40, 20
and 2 days before the major earthquake. Several features are of interest here. First, Tsallis
entropy and mutability progress in complementary ways; this is probably due to the fact
that Tsallis entropy is based on the real space, while mutability looks at the states in the
configuration space. Second, a rather pronounced change in the dynamics of both Tsallis
entropy and mutability is already noticeable 80 days before April 1, where no important
seism has been reported. Third, this is confirmed 40 days prior the large earthquake, where
both curves present a slight turn back. This picture remained frozen until 20 days before.
Then, in the picture taken 2 days before, we have a pronounced change in both curves—a
product of the 6.6 seism of March 16 and the subsequent aftershock activity. Fourth, this
premonitory behavior is additional and shorter in time than the previously mentioned
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maximization (minimization) of the Tsallis entropy (mutability) around the years 2011 and
2012, namely, two years in advance.

Figure 6. Mutability on magnitude sequence in real time using four different dynamic windows W
as indicated in the insets. Construction is similar to previous figure but this time we choose to report
the time in days, grouped in years. Stars report the three major earthquakes as given in the inset.

Figure 7. Approximation to the main shock by a dynamical window of W = 512 events. The data
is the same in the four plots but time is stopped at 80, 40, 20 or 2 days before the strongest Mw8.1
quake. Eventually, a video could be a more appropriate way to represent this evolution, but the most
relevant information is obtained from these four pictures. The black curve represents mutability and
the blue curve Tsallis entropy.
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These results show how the Tsallis entropy and the dynamic entropy could notify a
change in the configuration of the seismic system days before the occurrence of a large
earthquake being a contribution to the evaluation of seismic hazards in this zone. Eventually,
this way of introducing the approach to the critical moment could be presented in video
formto further stress the anticipation signals the system emitted before the breakdown.

Finally, Figure 8 is a remake of Figure 6 but now using the 10,640 seismic events as
natural time along the abscissa axis. In this way the sequence is better appreciated. Thus,
for instance, the symbols marking the three main earthquakes indicated in the inset open
up, allowing to appreciate the role of each seism in each plot. The decrease in mutability
before the leading earthquake is clearly manifested, especially for W = 512 and over.

More work has to be performed before claiming this could evolve into a method to
diagnose seismic risk, but at the moment we leave it as a proposal or hypothesis. To delve
deeper into this matter, catalogues of quality similar to IPOC are necessary, validated over
many years or decades in different regions of the world. We shall attempt to conduct this
with time whenever is possible.

Figure 8. Mutability on magnitude sequence in natural time using four different dynamic windows
W as indicated in the insets. Despite that the data is the same as in Figure 6, the texture of the curve
looks different. In particular, the stars denoting the main seisms now open up.

4. Conclusions

The accommodation of the ground layers under the Earth’s surface is accompanied
by a variation in the energy of the system which is at times released in sudden ruptures
and slides with catastrophic consequences in the events known as earthquakes. However,
this transit from states prior and after the seism mean also a change in the entropy of the
system (“cube” formed by the rectangle on the globe and the defined deepness).

This is an out-of-equilibrium system, since external fields act on it to provoke changes.
In our case, the Nazca plate is coming from the West submerging under the Continental
plate. Asperities make this process a discontinuous one. For many years, large rocks can
prevent the flow of the plates until they fracture. The number of possible states for the
system is not constant and varies with time according to the hidden physics under the
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planet’s surface. However, we can have an indication of the way they change looking at
the sequence of seismic data they produce.

The simultaneous application of both Tsallis entropy and mutability (dynamical
entropy) to the magnitude series for the first time proved to render valuable information.
Despite that magnitudes span no more than about 50 different values between 2.2 to about
7, they can recognize meaningful states on which a statistical analysis can be performed.
In the past, mutability was applied to interval series [61], where meaningful values span
about three orders of magnitude with intervals expressed in minutes as the time unit.

Tsallis entropy of magnitudes grows during the time the system accumulates tension
and energy. Mutability on the same magnitude series decreases during that period. This
behavior can be highlighted by choosing appropriate observation windows to analyse
the dynamics. Thus, Tsallis entropy responds to the conditions in the real space, while
mutability is driven by the accessible states in the configuration space.

We can perform the analysis of the seismic sequence either in real time or in natural
time. Therefore, the combination of both pictures is very useful for a detailed understanding
of the dynamical process. The most recent results within the data provided by the IPOC
catalogue show that this zone recovered rather quickly to the conditions before the major
earthquakes, which is a clear sign that energy accumulation resumed.
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Abstract: The healthy function of the vestibular system (VS) is of vital importance for individuals to
carry out their daily activities independently and safely. This study carries out Tsallis entropy (TE)-
based analysis on insole force sensor data in order to extract features to differentiate between healthy
and VS-diseased individuals. Using a specifically developed algorithm, we detrend the acquired data
to examine the fluctuation around the trend curve in order to consider the individual’s walking habit
and thus increase the accuracy in diagnosis. It is observed that the TE value increases for diseased
people as an indicator of the problem of maintaining balance. As one of the main contributions of this
study, in contrast to studies in the literature that focus on gait dynamics requiring extensive walking
time, we directly process the instantaneous pressure values, enabling a significant reduction in the
data acquisition period. The extracted feature set is then inputted into fundamental classification
algorithms, with support vector machine (SVM) demonstrating the highest performance, achieving
an average accuracy of 95%. This study constitutes a significant step in a larger project aiming to
identify the specific VS disease together with its stage. The performance achieved in this study
provides a strong motivation to further explore this topic.

Keywords: vestibular disorders; insole force sensors; gait analysis; Tsallis entropy; detrending;
feature extraction; classification

1. Introduction

The vestibular system (VS) is a perceptual system responsible for providing the brain
with information regarding spatial orientation, head position, and motion. Additionally, it
plays a crucial role in maintaining balance and stability [1]. Despite numerous studies in
various medical fields, the detection of vestibular disorders is an area that has not received
sufficient attention yet. This study aims to fill this gap by utilizing Tsallis entropy (TE) as a
tool to identify VS-related diseases.

Various methods are employed in the literature to identify the specific VS problem but
the most popular clinical method is still computerized dynamic posturography (CDP) [2].
The state-of-the-art methods are based on utilizing classification techniques following a
machine learning step where the features are extracted from gait data. Gait data refer
to the collection of information about an individual’s walking patterns and habits. They
capture various aspects of walking, such as force, rhythm, speed, and variability in different
components of the gait cycle. The gait cycle is a complex activity consisting of two main
phases: the stance phase, in which the foot remains on the ground, and the swing phase,
in which the foot moves forward. By analyzing gait data, we can detect irregularities
and deviations that differ from what is considered a ‘normal’ gait. These deviations
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can be indicative of a variety of health conditions, from musculoskeletal problems to
neurological disorders.

The gait data are especially used to give information about balance disorders related
to different diseases. Within this context, gait analysis has emerged as a valuable tool in the
diagnosis and monitoring of neurodegenerative diseases, providing objective measures
to assess motor impairments associated with these conditions. It has been extensively uti-
lized in the evaluation of diseases such as Parkinson’s disease (PD), Huntington’s disease
(HD), amyotrophic lateral sclerosis (ALS), and other related disorders. Numerous studies
have demonstrated the effectiveness of gait analysis in identifying disease-specific gait
abnormalities and distinguishing between different neurodegenerative conditions. As an
example, Nir Giladi et al. proposed a new clinical classification scheme for gait and posture
and discussed the use of gait analysis in identifying disease-specific gait abnormalities [3].
Bovonsunthonchai et al. investigated the use of spatiotemporal gait variables in distinguish-
ing between three cognitive status groups and discussed the potential of gait analysis as a
tool for early detection of neurodegenerative conditions [4]. Guo Yao et al. summarized the
research on the effectiveness and accuracy of different gait analysis systems and machine
learning algorithms in detecting Parkinson’s disease based on gait analysis [5].

As an example of the use of gait data to evaluate balance disorders associated with
dysfunction in the VS, A. R. Wagner et al. discussed how gait analysis can be used to assess
vestibular-related impairments in older adults, and how these impairments can impact
balance control [6]. In [7], Ikizoğlu and Heyderov search for significant features from IMU-
sensor-based data to diagnose VS disorders. In [8], Agrawal et al. utilize wireless pressure
sensors embedded in insoles along with machine learning models to predict fall risks,
achieving promising results. In [9], Schmidheiny et al. focus on the discriminant validity
and test–retest reproducibility of a gait assessment in patients with vestibular dysfunction.

In this study, our aim was to utilize contemporary classification methods to extract
pertinent characteristics from gait data for the purpose of diagnosing VS-dysfunction-based
balance disorders. To accomplish this objective, we employed an innovative approach that
involved TE values as the feature. TE offers a framework for characterizing the statistical
properties of complex systems and thus it is capable of defining non-extensive systems.
TE has proven to be effective in diverse domains such as physics, information theory, and
economics, enabling a more comprehensive analysis and understanding of systems with
long-range correlations and heavy-tailed distributions [10]. As an example of the applica-
tion of TE in the field of biomedical engineering, Zhang et al. investigated the dependency
of the TE of EEG data on the burst signals after cardiac arrest [11]. Similarly, Tong et al.
used the TE of EEG signals as a measure of brain injury in their study [12]. Considering
the human gait to exhibit non-extensive behavior with long range correlations [13–16],
we expected TE to be rather helpful in analyzing the balance performance of individuals.
Thus, by applying TE to gait data, our objective was to capture vital information concern-
ing the behavior and dynamics of the VS, which can contribute to the identification of
related diseases.

This study is an important step within a larger project which we are conducting
together with the audiologists at The Medical School Cerrahpaşa-Istanbul. We aim to
develop a diagnosing system to identify the specific disease that is the source of the VS
dysfunction causing imbalance. We also aim to determine the stage of the problem. The
first step in this process is the classification of the individual as healthy or suffering. For
this classification, we are searching for primary discriminative features. We collect various
features which will then enter a feature reduction/selection process. According to the
experience of the audiologists, these primary features are expected to be obtained from
relatively short data acquisition periods, in order to not put the patient in stress, and thus
increase the accuracy of the whole system. In [7], we discussed the effectiveness of features
obtained from IMU sensor data, such as average step length, average speed, step symmetry,
knee bending angle, lateral/posterior waist swing, etc., where we achieved an accuracy
around 90%. In [17], we presented a feature based on insole pressure sensor data called
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fractal spectrum width that had an accuracy around 98% in distinguishing between the
classes in the first step of the entire process. This study is also based on the same data
as that one, but it looks for new features based on Tsallis entropy that would be effective
in the feature selection/reduction process. We set our accuracy threshold as 90% for any
individual feature to advance to the reduction stage.

We can briefly summarize the contributions we have brought with this study as
follows: Most studies have focused on features related to gait analysis, such as stride time,
stance time, etc., which require a relatively long walking time. This study aims to shorten
the data acquisition period by capturing features from short walks. Pressure data collected
from wearable insole sensors are used for feature extraction. This approach allows data to
be obtained in daily life, helping the patient avoid the stress of the clinical environment and
potentially improving the accuracy of the diagnosis [18,19]. We detrend the normalized
raw data, allowing the identification of individual specific fluctuations around the trend,
thereby increasing the accuracy. As one of our basic contributions, we propose a specific
algorithm to determine the trend curve in each walking step. This process leads to a better
ability to distinguish temporary imbalance from unusual walking habits.

After feature extraction, the extracted features were used to train models using classi-
fication methods. The main classification categories included decision trees (DT), discrimi-
nant analysis, logistic regression, naïve Bayes, support vector machine (SVM), k-nearest
neighbors (KNN), kernel approximation, ensemble, and neural networks.

Considering the flow of the study, the rest of this article is structured as follows:
The Materials and Methods section provides comprehensive details on TE. Subsequently,
in the Data Acquisition Process section, a thorough explanation is given regarding the
data collection process. In the Data Processing section, the step-by-step procedures for
transforming the raw data into distinct features are elaborated upon. The outcomes of the
subsequent experiments are presented comparatively within the Results section. Lastly, in
the Discussion section, the results are analyzed, inferences are drawn, and future prospects
regarding the utilization of the outcomes within the broader project are mentioned.

2. Materials and Methods

2.1. Entropy, Tsallis Entropy—Brief Background

Entropy is a property that is mostly used as a measure to describe the chaotic level
of a dynamic system. The well-known Shannon entropy (SE) based on Boltzmann–Gibbs
statistical mechanics and formulated as

SE = −∑N
i=1 piln(p i), (1)

is capable of describing the structure of extensive systems with short-term microscopic
correlations [20,21]. In (1), the Boltzmann constant is taken as k = 1, N is the number of
microstates, and pi stands for the probability of the i-th microstate.

For systems with long-term interactions, however, or systems presenting long-term
memory effect, the effectiveness of applying SE for the abovementioned purpose de-
creases [22]. At this point, forming the generalized structure of Boltzmann–Gibbs statistics,
the Tsallis entropy (TE) within the non-extensive statistics contributes significantly to
finding the hidden information in the time series [23].

TE has found applications in various fields, including biomedical research. In the
context of biomedicine, TE has proven to be a valuable tool for analyzing complex systems
and understanding the dynamics of biological processes, with its main advantage being
the ability to capture the non-linear and long-range dependencies present in biological
systems [12,17].

The Tsallis entropy with k = 1 is defined as

TE =
1

q− 1

(
1−∑N

i=1 pq
i

)
, (2)
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where q (qεR) is a parameter to indicate the degree of non-additivity [24]. This is because,
for two independent systems X and Y, we have

TE(X + Y) = TE(X) + TE(Y) + (1− q)TE(X)TE(Y), (3)

where (1 − q) is a measure of deviation from additivity. q > 1 and q < 1 correspond
to sub-extensive and super-extensive statistics, respectively [12,25]. For q = 1 we have
TE = SE, corresponding to extensive statistics. In (2), N is the number of possible states
and pi represents the probability of the i-th state. The determination of the value of the
parameter q does not have specific criteria, but rather depends on the specific characteristics
of the analyzed dataset [26]. By adjusting the value of q, the entropy metric can be tailored
to capture particular features inherent in the analyzed dataset.

2.2. Data Collection

We recall that the data used in this study are the same as in our previous study [17].
When the gait analysis studies in the literature are examined, it is seen that the

distribution of weight is concentrated especially at four main points on the soles of the
feet, as depicted in Figure 1a [27–31]. Also in this study, these four points were chosen for
the placement of the sensors in line with the opinions of several academics in the field of
audiology, who are acknowledged in the Acknowledgments section.

 
 

(a) (b) 

Figure 1. (a) Sensor placement on the insole; (b) numbering of the sensors S0 to S7 (top view) [17].

To ensure data collection without disturbing the natural walking patterns of the
participants, 5 pairs of insoles with different sizes (36, 38, 40, 42, 44—according to European
standards) were manufactured. Prior to the commencement of the experiment, the correctly
sized insoles were inserted into the subjects’ shoes. For the production of the insoles, a
durable and soft plastic material commonly employed in the manufacturing of orthopedic
products was utilized.

Force-sensitive resistors (FSR) were chosen as pressure sensors, as they are widely used
in gait analysis applications and offer several advantages [32]. Considering the physical
dimensions and the acceptable repeatability feature, the FSR402-short tail model from
Interlink was selected [33]. The characteristics of the sensor can be found in Table 1. The
sensors on the insoles were numbered S0 to S7, as seen in Figure 1b.

Some explanatory information about the characteristics in Table 1 can be given as
follows: Repeatability is a measure of the scattering of results for multiple measurements
under the same conditions. For our sensor, the maximum deviation of the results of
successive measurements of the same measurand from the mean is given as ±2%. Idle
resistance is the resistance of the resistive force sensor when no force is applied to it.
Hysteresis is a measure of how far the system output is different depending on whether a
specific input value was reached by increasing vs. decreasing the input. Rise time is the
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time it takes for the system/sensor output to change from 10% to 90% of its final value.
This time, given in Table 1 as less than 3 microseconds, shows that the sensor responds
rapidly to the force/change in force applied to it.

Table 1. Characteristics of the FSR402-short tail sensors.

Parameter Value

operation range 0.2 N–20 N
physical dimensions φpad 18.3 mm, φsens 12.7 mm

thickness 0.46 mm
repeatability ±2%

idle resistance >10 MΩ
hysteresis 10% max.
rising time <3 μs

Data collection was carried out in the clinical setting of the Audiology Department
at Cerrahpaşa Medical School, Istanbul University—Istanbul, Türkiye. The process was
conducted in compliance with the principles outlined in the Helsinki Declaration. Before
starting the process, approval was obtained from the Istanbul University Ethics Committee
(Approval number: A-57/07.07.2015). In addition, informed consent was obtained from
all subjects before participation in the study. For individuals with VS problems, their
conditions had already been diagnosed by the audiologists using conventional systems
(computerized dynamic posturography-CDP).

Data were collected on weekends to minimize the subjects’ stress and avoid inter-
ference from other nearby devices. The subjects were asked to walk the 12 m long path
twice. The first walk aimed to help them become familiar with the environment and
reduce any possible stress, while the data from the second walk were used for analysis
in general. In some cases, subjects walked a third time when needed as a result of the
audiologists’ observations.

The pressure sensor data collected with the Arduino Mega device placed on the
subjects were transferred to the laptop wirelessly via an HC-06 Bluetooth unit. Sampling
was performed from all sensors simultaneously at a rate of 20 samples per second. In order
to convert the force to voltage, a 1 kΩ resistor in series with the FSR served as a voltage
divider. As the next step, we calibrated this structure in the lab since the FSR has a highly
non-linear characteristic curve. Supplying the structure with 5 V DC voltage presented an
average function as

w = e
vo+0.2245

0.9265 , (4)

where w (N) is the weight applied onto the sensor and vo (V) is the output voltage. A 10%
deviation from the values obtained by Equation (4) was taken as the criterion that would
disqualify the relevant sensor from being used in the experiments.

Informative data about the participants are listed in Table 2.

Table 2. Information about the subjects.

Healthy (30) Diseased (30)
Male (15) Female (15) Male (13) Female (17)

age 54.3 ± 8.5 55.1 ± 7.9 54.5 ± 8.5 56.8 ± 7.2
mass (kg) 66.6 ± 9.8 65.1 ± 8.8 65.9 ± 10.2 64.9 ± 7.9

height (cm) 169.2 ± 10.0 164.0 ± 6.2 170.3 ± 8.8 163.4 ± 5.7

The distribution of the subjects whose specific disease was detected by CDP by audiol-
ogists is given in Table 3.
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Table 3. The distribution of diseased subjects.

Male Female

BPPV * 6 8
UVW * 3 4
Meniere 3 3

Vestibular Neuritis 1 2
(*) BPPV—benign paroxysmal positional vertigo, UVW—unilateral vestibular weakness.

To ensure the confidentiality and privacy of all participants, their identities have been
anonymized for publication of this article.

2.3. Data Processing

In order to interpret the results more accurately on the basis of the subject, the obtained
data were preprocessed before feature extraction. Thus, the feature extraction process was
carried out in six stages.

Stage 1—Framing useful data

We framed the useful part of the whole walk, and data corresponding to the first and
last steps were extracted from the overall data. Thus, data on steps with missing dynamic
behavior were excluded from the evaluation.

Stage 2—Determining the intervals when the foot is actively touching the ground

Of all the gait data, only those corresponding to the time intervals during which the
foot is actively touching the ground provide useful information. These intervals were
determined for each foot as follows:

• All the sensor data were normalized to the range 0–1 as

Xnorm =
X− Xmin

Xmax − Xmin
, (5)

where X is the original/raw data and Xmin and Xmax represent the minimum and maximum
values, respectively.

• The maximum of all sensor data (Smax) was determined. As an example, for the right
foot, these data were obtained as SRmax = max(S0, S1, S2, S3).

• A threshold was set so that the foot was interpreted as being in the air for the time
interval where Smax remained below this threshold value.

The process is visualized for a sample subject in Figure 2; there, the individual sensor
data are marked in different colors, their maximum in black, and the foot-in-the-air position
is shown as zero amplitude.

Stage 3—Interpolation

As mentioned in the ‘Data Collection’ section, the sampling frequency for data ac-
quisition was 20 Hz. On the other hand, for meaningful entropy calculation, we need a
significant number of bins in the histogram of the relevant data, as well as a sufficient
number of samples in each bin. Therefore, we applied 20-fold interpolation to all the sensor
data. Prior to the interpolation process, the segments where the feet were not in contact
with the ground were removed from the data sequences. The process is illustrated in
Figure 3 for a sample subject. Linear interpolation was not preferred in order to maintain
accuracy without compromising the representation of the data. Instead, the cubic Hermite
interpolation method was chosen as the interpolation technique. This method provides a
smoother and more accurate representation of the data while preserving its integrity [34].
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Figure 2. Normalizing the data followed by determining the intervals when the foot is actively
touching the ground.

 

Figure 3. Twenty-fold interpolated data of some sensors after removal of segments where the foot
does not actively touch the floor.

Stage 4—Detrending

To classify an individual as healthy or diseased, we are concerned with the deviation
of the data from those corresponding to the person’s walking habit. Therefore, we first
determined the trend data related to the walking habit. The process illustrated in Figure 4
can be briefly explained as follows: For each step, the trend curve of the previous step
is scaled in the time axis using the ‘nearest-neighbor interpolation’ method based on the
length of the current step data; thus, we equate both the current and previous step data
lengths. A trend dataset is then generated for the current step i using Equation (6).

Ti = Fi f or i = 1

Ti = αFi + (1− α)Ťi−1 f or i = 2, 3, . . . , n.
(6)

Here, Ti is the current-step trend data, and Fi stands for the current step data. Ť
denotes the trend data whose length is scaled, and α is a coefficient indicating the degree to
which the previous trend curve is approximated to the current step data set. αmax represents
the maximum rate of change that each data point of the trend curve can exhibit from one
step to the next, for which the value 0.23 was statistically determined, considering data
from healthy subjects. We note that αmax serves as a parameter to achieve a balance between
flexibility in trend curve adaptation and avoiding overfitting, and although it has a role
in shaping the trend curve, the key features of our analysis remain relatively insensitive
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to its exact value. The process is terminated when the α value reaches αmax or the error
defined as ε = mean {|Ti − Fi|} falls below a threshold so that it is considered negligible.
The threshold level is set as 10−6.

Figure 4. Flowchart of the algorithm developed to generate the stepwise trend curves.

Figure 5 presents the trend curves and the detrended dataset for a sample VS-diseased
subject.

  
(a) (b) 

Figure 5. (a) Trend curves and (b) curves of detrended dataset for a sample VS-diseased subject. Red
vertical lines indicate the active stepping intervals of the foot; blue vertical lines indicate the active
usage intervals of the relevant sensor.
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Stage 5—Tsallis Entropy Calculations

At this stage, the TE calculation was performed with the help of the histograms
generated from the detrended data. The process was performed for both the data for the
entire gait from each sensor and for all the step data within the gait cycle. For each sensor,
the data corresponding to the intervals in which the relevant sensor was not actively used
were extracted from the data set. These intervals are marked as black bars in Figure 6a for
a sample data set. Histograms were obtained from the absolute values of the detrended
dataset, where the maximum number of bins was determined as 25 in order to achieve an
acceptable granularity. Figure 6b illustrates the corresponding histograms for the data set
in Figure 6a.

  
(a) (b) 

Figure 6. For a sample diseased subject (no. 30): (a) absolute values of the detrended data in Figure 5b
and the step-by-step TE values (black bars indicate ranges in which the corresponding sensor is
inactive); (b) histograms derived from the data for the entire gait (sensor-inactive intervals removed).

As mentioned in Section 2.1, the selection of the q parameter value in TE calculation
does not have a predefined criterion, it rather depends on the specific characteristics of the
analyzed data set. The best q value that would achieve the highest accuracy for our data sets
and therefore maximize the discriminatory power of TE was determined to be 0.82 by an
iterative process. In the process of determining the q value, nine classification algorithms of
the learning models outlined in Stage 6 took part with a 10-fold cross-validation technique.
The ratios of the models attaining the highest success were employed as the benchmark.
The learning success rates vs. q values are depicted in Figure 7.
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Figure 7. Dependency of the learning success on Tsallis parameter (q) value.

Stage 6—Feature Extraction

As stated in the introduction, although human gait seems to have a regular pattern, a
literature review reveals that fluctuations are observed in this pattern. For healthy people,
these fluctuations are long-range correlated. However, this correlation weakens for people
with balance problems. Thus, the TE value could be a significant measure to classify
individuals as healthy or diseased. In this study, we leveraged two TE-based possibilities
to identify VS-dysfunction-based problems. One was to consider the TE value of the entire
gait cycle, and the other was to examine the change in TE value from step to step. For the
second case, we decided to examine the deviation of the TE value from zero, because in
the ideal case it is clear that the step-to-step change of entropy for a healthy person would
be zero. Thus, for this case, the data set containing the step-by-step entropy values was
expanded by adding the negatives of all data values, and the standard deviation of the
newly created data set (σ(E′)) was calculated as given by Equation (7).

E = {e1, e2, . . . , en} where ek ∈ R f or k ∈ Z+,
E′ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en} = {x1, x2, . . . , xn, xn+1, xn+2, . . . , x2n}

σ(E′) =

√
1

2n ∗
2n

∑
i=1

(xi − μ)2
(7)

In Equation (7), ek is the TE value of the k-th step data, E denotes the set of step-by-step
TE values, and E′ represents the expanded set.

We had four sensors under each foot, so, eight sensors in total. Using both the TE
value of the entire gait cycle for each sensor as well as the stepwise variation in the TEs, we
had a total of 16 features that served for machine learning. For the classification process,
we used the Matlab R2021b Classification Learner Tool (on MSI GE75 Raider 10875H). A
10-fold cross-validation technique was applied, where approximately 25% of the total data
(from 15 subjects) was used for testing and the remainder (from 45 subjects) for training.

The process of classification training involved utilizing nine different model categories:
decision trees (DT), discriminant analysis, logistic regression, naïve Bayes, support vector
machine (SVM), k-nearest neighbors (KNN), kernel approximation, ensemble, and neural
networks. Considering the sub-models of these categories that were used, such as ‘Course:
4, Medium: 20, Fine: 100’ for the maximum number of splits in the decision tree category, a
total of thirty-two models were involved in the process.

Among all the classifiers examined, SVM (Gaussian), KNN (cosine, k = 10), and
logistic regression showed the three best performances. Regarding these classifiers, the
KNN algorithm determines the class membership of an object/vector by examining its k
nearest neighbors [35]. In this study, the k value yielding the best result was determined
to be 10. Logistic regression is a statistical model used to predict the probability of a
dependent variable belonging to two or more classes in a dataset [36]. SVM seeks to find
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an optimal hyperplane to separate data clusters [37]. These three algorithms are among the
most widely used in studies on biomedical signals in the literature [38–43].

3. Results

In this section, a comparative analysis is made based on data collected from both
healthy and VS-diseased individuals. The comparison commences from the detrending
stage of processing the sensor data, as described in the Data Processing section.

Figure 8 facilitates observation of discernible variations in the data from sensor S3
during walking for sample healthy and diseased individuals. Additionally, it visualizes the
detrended data, i.e., the difference between the step data and the trend curve.

  
(a) (b) 

  
(c) (d) 

Figure 8. Sample interpolated S3 sensory data and the stepwise trend curves of (a) a healthy subject
and (c) a VS-diseased subject; detrended data from (b) a healthy subject and (d) a VS-diseased subject.

To see the effect of the proposed trending algorithm, trend curves were created using
2nd-, 3rd-, and 4th-degree curve-fitting polynomials and the results were compared. The
classification accuracies obtained with the different trending methods are listed in Table 4.

Table 4. Classification accuracies with different trend generation methods.

Classification Model Proposed Algorithm
Second-Degree

Polynomial
Third-Degree
Polynomial

Fourth-Degree
Polynomial

SVM-Gaussian 95.0% 71.7% 76.3% 81.7%
Logistic regression (LR) 95.0% 63.3% 78.3% 76.3%

KNN-cosine 93.3% 66.7% 70.0% 78.3%

Model with highest
accuracy

95.0%
(with SVM-G and LR)

83.3%
(with Ensemble-Bagged

Trees)

83.3%
(with Decision

Trees-Fine/Med.)

86.7%
(with Ensemble Subsp.

Discr.)

Figure 9 shows graphs of the detrended data with absolute values taken from Figure 8b,d
and the histograms produced from these graphs. In Figure 9a,c, the black bars indicate
the inactive periods of the related sensor. For these sample subjects and sensor data, the
maximum step-by-step change in the TE value for the healthy subject was calculated as
0.63, whereas it was 0.99 for the VS-diseased person. The TE value for the entire gait cycle
was calculated as 1.243 for the healthy individual and 2.356 for the suffering subject. In
Table 5, the TE values are listed for these sample subjects for all sensor data. Figure 10
summarizes the entire-gait TE values for all participants.
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(a) (b) 

  
(c) (d) 

Figure 9. (a,c) Detrended data with absolute values taken from Figure 8b,d; (b,d) histograms pro-
duced from these graphs.

Table 5. TE values calculated from each sensor’s data for sample subjects.

Healthy Subject (no. 22) VS Subject (no. 30)
Sensor Entire Gait Stepwise Max Entire Gait Stepwise Max

S0 1.39 0.98 1.29 0.80
S1 2.15 0.83 2.10 1.02
S2 1.38 0.72 1.58 1.03
S3 1.24 0.63 2.36 0.99
S4 1.08 0.87 1.61 1.08
S5 1.38 0.79 1.96 0.67
S6 1.36 0.82 1.64 0.17
S7 1.54 0.86 1.98 1.56

 

Figure 10. Box plot of the entire-gait TE values for all participants. S: sensor, H: healthy, VS: diseased.

As described in Data Processing section, thirty-two classifiers provided by the Clas-
sification Learner Tool in Matlab were trained using sixteen features with ten-fold cross-
validation. The average accuracies of the major classification algorithms are listed in
Tables 6 and 7 and Figure 11 display the confusion matrices and corresponding receiver
operating characteristic (ROC) curves for one of the ten training test set pairs of the top
three classifiers.
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Table 6. Accuracy of major classification algorithms.

Algorithm Accuracy (%)

SVM (Gaussian) 95.0
Logistic regression 95.0

KNN (cosine) 93.3
Neural network (wide) 93.3

Kernel (SVM) 91.7
Ensemble (bagged tree) 88.3

Naïve Bayes (kernel) 86.7
Quadratic discriminant 78.3

Decision tree (fine) 73.3

Table 7. Confusion matrices for one of the ten training test set pairs.

Predicted Class
SVM (Gaussian) Logistic Regression KNN (Cosine)

H D H D H D

H 30 0 29 1 28 2
D 3 27 2 27 2 28

   
(a) (b) (c) 

Figure 11. ROC curves associated with (a) the support vector machine (SVM) model with Gaussian
kernel, (b) logistic regression, and (c) the k-nearest neighbors (KNN) algorithm using cosine similarity
in Table 7.

4. Discussion

This study was carried out in conjunction with a project where our ultimate goal is
to identify the specific diseases of individuals suffering from VS dysfunction, along with
the level of the problem. In the full version of the project, a machine learning process will
be conducted using distinctive features as input. For this purpose, features that will be
effective in defining the problem are being sought and all of them will be placed in the
candidate features basket, that is, they will be selected to take part in the feature reduction
stage. According to the experience of the audiologists with whom we conducted the
experiments, some important points need to be considered when collecting data from
patients in order to achieve a high level of accuracy in diagnosis. These are particularly
obtaining the data in a short time and collecting it under stress-free conditions. Having
taken these guidelines into account, and thus aiming to capture the features from a short
walk, we performed multifractal detrended fluctuation analysis (MFDFA) in our previous
study [17]. Our current study also used these same data as our previous work but it
provided additional features for the feature selection/reduction step.

In this study, we utilized TE-based methods for feature extraction from gait data
collected from insole pressure/force sensors. The reason for considering the TE was its
ability to capture the level of the fluctuations in the detrended data, providing insight into
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the complexity and irregularity of the gait pattern. Unlike other entropies, TE enables a
parameterized analysis, offering flexibility in quantifying uncertainty and capturing certain
characteristics of the data distribution.

Data from eight insole sensors, four under each foot, were first normalized and
then detrended to provide information about fluctuation around the trend curve of the
individual. With this process, we aimed to consider the gait habit of the person in order
not to misinterpret an unusual gait habit as identifying a balance disorder. As one of the
effective innovations brought by this study, we developed an algorithm that determines the
trend curve at each step. The efficiency of this algorithm can be seen when the results are
compared with other curve fitting methods. Using our algorithm, we achieved an average
accuracy of 95% in distinguishing VS patients from healthy subjects, while the best rate
was 86.7% even with a fourth-order curve-fitting polynomial. A total of sixteen features
were involved in the classification process, eight of which were derived from the TEs of
the entire gait cycle and the other eight from the step-by-step TE change for each sensor.
The TE value for the entire gait cycle and the step-by-step variation in the TE value were
observed to be greater in VS patients than in healthy individuals, which we explained by
the high data deviation around the trend curve for these individuals. The TE parameter q
was determined experimentally as 0.82. As we can see from Figure 10, of all the sensor data,
those from the under-the-heel sensors (S0 and S4) contributed the least to the classification
process, such that the differences in TE values for these data were the smallest. This is easy
to explain, as the sensors in question were placed at points where even a diseased person
does not show a significant fluctuation.

Regarding the data collection time, the subjects had to walk for around 10–15 s. As
we described in detail in [17], this time period is much shorter than most experiments in
the literature, meeting the expectations of the respected audiologists we consulted with
throughout the project. Despite such a short test time, high accuracy was achieved by
processing the instantaneous values of the gait data using appropriate methods rather than
dealing with step-based features such as stride time, stance time, etc.

The SVM with Gaussian kernel and logistic regression performed best in the clas-
sification process with 95%, followed by KNN (cosine) and neural network (wide) with
93.3%. At this point, we would like to emphasize that we had defined our criterion for
categorizing any feature as distinctive and labeling it as a candidate for feature reduction
as an individual accuracy level threshold of 90% [17]; thus, the TE-based features passed
this evaluation stage successfully. On the other hand, we believe that a more reliable result
will be achieved with an increase in the number of participants.

In addition to the numerical values presented in the Results section, we provide further
statistical data in Table 8, in order to provide a fuller picture of the results.

Table 8. Some statistical data about the top two classification algorithms.

Statistical Property SVM (Gaussian) Logistic Regression

accuracy (%) 95.0 95.0
sensitivity (%) 91.6 94.0
specificity (%) 97.9 95.1

F1 Score 0.945 0.943
MCC 0.899 0.891

Currently, we are conducting experiments for the binary classification phase of the
larger project so that an individual can be described as ‘suffering’ or ‘healthy’. As we stated
in [17], features that take into account the trends specific to an individual are expected to
be quite effective in determining the stage of the problem. So, we look forward to using
these features also for this future step of the whole project.
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Abstract: The effects of nonextensive electrons on nonlinear ion acoustic waves in dusty negative
ion plasmas with ion–dust collisions are investigated. Analytical results show that both solitary and
shock waves are supported in this system. The wave propagation is governed by a Korteweg–de Vries
Burgers-type equation. The coefficients of this equation are modified by the nonextensive parameter
q. Numerical calculations indicate that the amplitude of solitary wave and oscillatory shock can be
obviously modified by the nonextensive electrons, but the monotonic shock is little affected.

Keywords: ion acoustic waves; nonextensive statistics; kappa distribution; Korteweg–de Vries
Burgers equation

1. Introduction

Ion acoustic wave (IAW) is a low-frequency electrostatic wave that can be com-
monly observed in space and experimental plasmas. Its linear or nonlinear properties
have long been studied in the past decades. Examples include Landau damping [1,2],
IAW instabilities [3,4], solitary wave propagation [5,6], etc. Among the above wave phe-
nomena, ion acoustic solitary and shock wave problems occupy an important place in
studies of plasmas. Early research on IAW can be traced back to the 1960s. Biscamp et
al. theoretically investigated the shock structure and formation of IAW in a collisionless
plasma [7]. They found that the wave can be described by a Korteweg–de Vries Burgers
(KdVB) equation. For the first time, Ikezi et al. observed the shock wave structure in a novel
double-plasma device [8]. Das gave systematic studies on IA solitary and shock waves in
plasmas with negative ions [9]. Since then, explorations of IAW in muti-components plas-
mas have attracted much attention. The pioneering works by Shukla and Silin showed that
IAW could also be supported in dusty plasma, namely dust–ion acoustic wave (DIAW) [10].
The dust grains, which have micrometer or sub-micrometer sizes, are ubiquitous in space
and laboratory environments, such as solar wind [11], planetary rings [12], the interstellar
medium [13], the Earth’s lower ionosphere [14], semiconductor processing devices [15]
and fusion plasmas [16]. A number of authors have shown that the existence of charged
dust grains could modify the dynamical behavior of electrostatic waves in plasmas. These
modifications may be due to the charge variation [17,18], dust size distribution [19], dust
density waves [20], temperature [1,21], etc. Therefore, the wave properties in dusty plas-
mas would be quite complicated but interesting, especially for the coherent structure of
IAW. Meanwhile, numerical simulation have shown that particle distributions of fluid
systems, such as multiphase flows [22] and high-speed compressible flow [23–25], usually
deviate from Maxwellin distribution. As a typical fluid system, plasma usually exhibits a
power-law form distribution and cannot be modeled by Maxwellian distribution [26–28].
For instance, data from spacecraft or laboratory plasmas observations often reveal that
plasmas often process a number of superthermal electrons (energetic particles). These
high-energy particles make the plasmas obviously deviate from the Maxwellian. Vasyli-
unas was the first to give an empirical power-law form expression called generalized
Lorentzian (kappa) distribution to model these superthermal particles [29]. They found
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that the plasmas can be well fitted by kappa distribution. Recently, Leubner [30], Livadiotis
and McComas [31–33] have theoretically proven that the kappa-type distributions are a
consequence of Tsallis distribution in nonextensive statistics [34]. Nonextensive statistics
was first introduced by Tsallis [34] and further developed by many others. In nonextensive
statistics, the nonadditive q-entropy has the form,

Sq = kB

∫
( f q − f )dx3dv3

1− q
, (1)

where f is the probabilistic distribution function, and q is a real parameter different from
unity, specifying the degree of nonextensivity. It was proven that q is related to the
temperature gradient and the gravitational potential [35]. The physical meaning of q is
connected to the non-isothermal (nonequilibrium stationary state) nature of the systems
with long-range interactions.

Nowadays, nonextensive statistics have successfully been applied to a number of
systems [36,37] and become a powerful tool to analyze complex systems with Coulomb
long-range [38], self-gravitating interactions [39,40], astrophysics [41] and plasma physics
phenomena such as ion acoustic instability [26], dust acoustic instability [27], permeating
plasmas [42,43], transport [44], diffusion [45], viscosity [46], and statistical uncertainty [47]
effects. For plasma waves, examples could be numerous. For instance, Lima et al. discussed
the dispersion relations and Landau damping for electrostatic plane–wave propagation in
a collisionless thermal plasma in the context of nonextensive statistics [48]. Tribeche et al.
explored arbitrary amplitude ion acoustic solitary waves in a two-component plasma with
a nonextensive electron velocity distribution. Their results showed that the ion acoustic
solitary wave amplitude was sensitive to the nonextensive parameter q [49]. EI-Awady
and Moslem studied the generation of nonlinear ionacoustic rogue and solitary waves in a
plasma with nonextensive electrons and positrons [50]. The results from their work show
a dependence of both solitary and rogue wave profiles on the nonextensive parameter.
Recently, Yasmin et al. analyzed the modification of DIA shock waves in an unmagnetized,
collisionless, dissipative dusty plasma containing nonextensive electrons [51]. They found
that shock compression and rarefaction are sensitive to the degree of the nonextensivity of
electrons.

Former studies on wave properties in nonextensive plasmas usually assume the
plasmas are collisionless. This is reasonable for dustless plasmas, as collisions between
ions and electrons are rare. However, when dust grains are encountered in plasmas,
due to the large size of dust grains, the collisional effects of ions/electrons with dust
grains may not be neglected. Recently, Misra et al. proved that, in a Maxwellian dusty
plasma with negative ions, ion–dust collisions play a crucial role in the dissipation of ion
acoustic solitary wave and shocks (IASWS) propagation [52]. Therefore, the nonlinear wave
structure of non-Maxwellian plasmas, which have not been investigated before, would be
very interesting and worth exploring. The aim of the present paper is to investigate the
nonextensivity of electrons on IASWS in multi-ion plasma with ion–dust collisions. The
paper is arranged as follows: In Section 2, basic equations for describing the system are
given. In Section 3, following the standard reductive perturbation method, a KdV Burgers
type equation are obtained. In Section 4, numerical calculations with related parameters
and the nonextensive index q are carried out to check the nonextensivity of electrons on
IASWS. Finally in Section 5, the summary and conclusive remarks are given.

2. Governing Equations

In this paper, we consider a fully ionized one-dimensional, unmagnetized collisional
dusty plasma consisting of nonextensive electrons, positive and negative cold fluid ions,
and immobile dust grains. The charge neutrality condition gives:

np0 − ni0 − ne0 ± Zdnd0 = 0, (2)

274



Entropy 2023, 25, 1363

where nj0 is the unperturbed number density of species j (j stands for the electrons, dust
grains, and positive and negative ions respectively), Zd is the charge number of dust
particles, the sign ± before Zd represents the positively (negatively) charged dust. If we let
μe = ne0/nn0, μd = Zd0nd0/nn0 and μi = np0/nn0, then Equation (2) can be written as,

μi − μe ± μd − 1 = 0. (3)

The basic equations for describing the dynamics of one-dimensional plasma systems
are the following:

∂nj

∂t
+

∂

∂x
(
njVj

)
= 0, (4)(

d
dt

+ νjd

)
Vj = −

Qj

mj

∂φ

∂x
−

3kBTj

mjn2
j0
·

∂n2
j

∂x
+ ηj

∂2Vj

∂x2 , (5)

∂2φ

∂x2 = 4πe
(
ne − np + nn ∓ Zdnd

)
, (6)

where nj,Vj, Qj, mj and Tj are the number density, velocity, mass, charge and temperature of
j-species ions, respectively; φ is the electrostatic potential; νjd is the collision rate of j-species
ions with dust particles; ηi is the viscosity coefficient due to ion–dust collisions; and kB
is the Boltzmann constant. For simplicity, let us introduce the following dimensionless
physical quantities:

η̄j → ηj/λ2
Dωpd, ν̄jd → νjd/ωpd, φ → eφ/kBTe,

nj → nj/nj0, Vj → Vj/cs, x → x/λD, t → t ·ωpd

where λD =
√

kB/4πZdnd0e2 is the Debye length, ωpj =
√

4πnn0e2/mj is the plasma

frequency, cs =
√

ZdkBTe/md is the thermal speed, σj = Tj/Te and β j = mn/mj. The
nondimensional form of Equations (4)–(6) become,

∂nj

∂t
+

∂

∂x
(
njVj

)
= 0, (7)(

d
dt

+ ν̄jd

)
Vj = −β j

(
∂φ

∂x
+

3
2

σj
∂n2

j

∂x

)
+ η̄j

∂2Vj

∂x2 , (8)

∂2φ

∂x2 = Zdnd + μene − μinp + nn. (9)

We assume that the electrons in the plasma obey the normalized nonextensive electron
distribution:

ne = [1 + (q− 1)φ](q+1)/2(q−1), (10)

where q is the nonextensive parameter that describes the nonextensivity of the electrons.

3. Derivation of the KdV Burgers Type Equation

Following the routing procedure, we employ the standard reductive perturbation
technique to derive the evolution equation for DIAW. First, let us introduce the new
variables of space and time:

ξ = ε1/2(x−U0t), τ = ε3/2t, (11)

where ε is a small parameter characterizing the strength of the nonlinearity, U0 is the wave
speed in the moving frame of reference. We also introduce ν̄jd = ε3/2ν̄j0 and ηjd = ε1/2ηj0 ,
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where ν̄j0 and ηj0 are of the order of unity or less. Next, we expand the dynamical variables
as

nj = 1 + εn(1)
j + ε2n(2)

j + · · · , (12)

Vj = εV(1)
j + ε2V(1)

j + · · · , (13)

φ = εφ(1) + ε2φ(2) + · · · . (14)

Then we substitute Equations (12)–(14) into Equations (7)–(9) and equate the terms of
the same powers of ε. From the ε3/2 terms, we have,

n(1)
j = αjφ

(1), V(1)
j = αjU0φ(1), (15)

where αj = ±β j/
(
U2

0 − 3β jσj
)
. Here, the sign ± corresponds to the positive and negative

ions, respectively. U0 has the form of

U2
0 =

1
2(q + 1)μe

{
s±
√

s2 − 12(1 + q)βμe
[
2σp + 3(1 + q)μeσpσn + 2μiσn

]}
, (16)

where
s = 2 + 2βμi + 3(1 + q)(σn + βσp)μe. (17)

The ± sign in Equation (16) indicates that there are two values. This means that the
plasmas contain two types of ion acoustic waves, the fast mode (+) and the slow one (−).
Detailed discussions related to these two modes are given in Section 4. Now, we proceed to
the next order of ε, and the following equations for the second order perturbed quantities
are obtained:

αj
∂φ(1)

∂τ
−U0

∂n(2)
j

∂ξ
+ α2

j U0

∂
[
φ(1)
]2

∂ξ
+

∂V(2)
j

∂ξ
= 0, (18)

(
∂

∂τ
+ ν̄j0

)
αjU0φ(1) +

1
2

α2
j

(
U2

0 + 3β jσj

)∂
[
φ(1)
]2

∂ξ

= U0

⎡
⎣∂V(2)

j

∂ξ
+ η̄j0αj

⎤
⎦∂2φ(1)

∂ξ2 − β j

⎡
⎣3σj

∂n(2)
j

∂ξ
± ∂φ(2)

∂ξ

⎤
⎦, (19)

∂3φ(1)

∂ξ3 =
∂n(2)

n
∂ξ

− μi
∂n(2)

p

∂ξ
+ μe

(
1 + q

2

)⎡⎢⎣∂φ(2)

∂ξ
+

3− q
4
·

∂
(

φ(1)
)2

∂ξ

⎤
⎥⎦. (20)

Putting Equation (14) into Equations (18)–(20) and eliminating the second-order quan-
tities, we obtain the following KdVB-type equation:

∂Φ
∂τ

+ AΦ
∂Φ
∂ξ

+ B
∂3Φ
∂ξ3 − η

∂2Φ
∂ξ2 + νΦ = 0, (21)

where we set Φ = φ(1). The coefficients A, B, η and ν, which represent the nonlinearity,
dispersion, dissipation due to ion kinematic viscosities and ion–dust collisions, respectively,
can be written as,
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A =
3α3

pμi
(
U2

0 + βσp
)
+ 3α3

nβ
(
U2

0 + σn
)
+ β
(

3−q
2

)(
αn − μiαp

)
2U0

(
βα2

n + α2
pμi

) , (22)

B =
β

2U0

(
βα2

n + α2
pμi

) , (23)

η =
η̄n0α2

nβ + η̄p0α2
pμi

2
(

βα2
n + α2

pμi

) , (24)

ν =
ν̄n0α2

nβ + ν̄p0α2
pμi

2
(

βα2
n + α2

pμi

) . (25)

One may see that the evolution of Equation (21) has the same form as obtained by
Misra et al. [52]. However, the coefficients A, B, η and ν, which determine the formation
and evolution of ion acoustic wave structures, are modified by the nonextensive parameter
q. It can be verified that in the limit q → 1, the Maxwellian counterparts of these coefficients
will be recovered [52]. The effects of these modifications due to nonextensivity will be
analyzed in Section 4.

4. Numerical Results and Discussion

Equation (21) is a modified KdV Burgers equation that describes the DIAW in a
collisional dusty plasma. The effects of the coefficients A, B, η and ν on the wave evolution
for Maxweillian plasmas were discussed by Misra et al. in detail [52]. Therefore, here we
just investigate the effects of the nonextensivity of the system. Since the exact solution of
Equation (21) is still unknown, in order to obtain the effects of the nonextensivity of the
wave evolution, we numerically investigate the influences of the nonextensive parameter q
on the coefficients A, B, η and ν, respectively. During our calculation, the following space
and laboratory observed parameters are employed (see Reference [52] for more details) for
negatively charged dust, mn = 146mproton, mn = 39mproton, Te ∼ Tp ∼ 0.2 eV, Tn ∼ Te/8,
nn0 ∼ 2× 109, ηp0 = 0.3, ηn0 = 0.5, νp0 = 0.01, νp0 = 0.01, where mproton is the mass of
protons. For positively charged dust, mn = 146mproton, mn = 39mproton, Te ∼ Tp ∼ 0.2 eV,
Tn ∼ Te/2, nn0 ∼ 2× 109, ηp0 = 0.5, ηn0 = 0.3, νp0 = 0.5, and νp0 = 0.3.

Figure 1 shows that the nonlinearity coefficient A varies with μi for positively and
negatively charged dust, respectively. As shown in Figure 1, with increasing μi, the strength
of A will increase in subplots (a)–(c) but decrease in subplot (d). We can also obtain that if
A has a growing trend, with fixed μi, the sub-extensive case (q > 1) has the largest value,
while the super-extensive case (q < 1) has the smallest one. If A has a decreasing trend
[subplot (d)], the nonextensive effects are opposite to those of (a)–(c), then the subextensive
case (q < 1) has the largest value. Therefore, the nonextensivity of the system has an
enhancement on the growth or decrease in A.

Figure 2 gives that the dispersion coefficient B varies with the ion density ratio μi.
From the figure, it is found that B will monotonically decrease with the growth in μi. The left
panels (subplots (a) and (c)) indicate that the nonextensive effects on B are obvious. In the
right panels (subplots (b) and (d)), it is found that the three lines are nearly overlapped. In
this case, the effect of nonextensivity is quite weak. Amplification of the curves shows that
with the growth of μi, the system nonextensivity has enhancement on the growth/decrease
in the dispersion coefficient B. Therefore, the effects of nonextensivity are the same as those
of A.
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Figure 1. The nonlinearity coefficient A versus the positive-to-negative ion density ratio μi for
plasmas with positive (subplots (a,b)) and negative (subplots (c,d)) charged dusts. The left panels
(subplots (a,c)) corresponding to the positive sign in U0

2 (in Equation (16)) and the right ones (subplots
(b,d)) are negative. Lines in each subplot represent different nonextensive q values, where the blue
dotted lines represent q = 1.2 , the red solid lines represent q = 1.0 and the green dashed lines
represent q = 0.8, respectively.

Figure 2. The nonlinearity coefficient B versus the positive-to-negative ion density ratio μi for
plasmas with positive (subplots (a,b)) and negative (subplots (c,d)) charged dusts. The left panels
(subplots (a,c)) corresponding to the positive sign in U0

2 (in Equation (16)) and the right ones (subplots
(b,d)) are negative. Lines in each subplot represent different nonextensive q values that are the same
as that in Figure 1.

In Figure 3, we depict that the variation of η varies with the ion density ratio μi. As
we can see, for the left panels (subplots (a) and (c)), which correspond to the sign in U2

0
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is positive, η will increase with the growing of μi. On the other hand, when the sign in
U2

0 is negative (subplots (b) and (d)), η will decrease as μi is increasing. When the dust is
positively charged [the above panels (subplots (a) and (b))], η will have a decreasing trend.
It is also seen that if the dust charge is positive, for different q, the changing of η is not
significant. It means that the nonextensivity of the system on η is quite weak. However,
when the dust is negatively charged, (subplots (c) and (d)), the nonextensivity will have a
significant effect on η. When η has a growing trend, the larger the nonextensive parameter
q is, the higher the value of η. It is the opposite when η has a decreasing trend, the larger the
nonextensive parameter q, the lower the value of η. Therefore, the system’s nonextensivity
will enhance the growing/decreasing of η. The nonextensive parameter q has the same
effects as that of A or B.

Figure 3. The nonlinearity coefficient B versus the positive-to-negative ion density ratio μi for
plasmas with positive (subplots (a,b)) and negative (subplots (c,d)) charged dusts. The left panels
(subplots (a,c)) corresponding to the positive sign in U0

2 (in Equation (16)) and the right ones
(subplots (b,d)) are negative. Lines in each subplot represent different nonextensive q values, where
the blue dotted lines represent q = 1.2, the red solid lines represent q = 1.0 and the green dashed
lines represent q = 0.8, respectively.

Figure 4 gives the ion–dust collisions coefficient ν versus the positive-to-negative
ion density ratio ui. As is shown, when the sign in U2

0 is positive (subplots (a) and (c)),
ν will decrease with the increasing of μi. When the sign in U2

0 is negative (subplots (b)
and (d)), the trend is the opposite and ν will increase as μi is increasing. It can be also
seen that for different q, the changing of ν is not significant except the case of negative
charged dust with the sign in U2

0 being negative. The enlarged view of the curves shows
that the sub-extensive electrons (q > 1) can enhance the growing/decreasing of ν, while
the super-extensive ones (q < 1) will weaken it. Equation (21) is a KdV Burgers-type
equation with a damping term; it has no analytical solution. In order to investigate the
effects of nonextensive electrons on the evolution of the wave, we numerically calculate
Equation (21) under different conditions. The results are shown in Figures 5–8.
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Figure 4. The ion–dust collisions coefficient ν versus the positive-to-negative ion density ratio
ui for plasmas with positive (subplots (a,b)) and negative (subplots (c,d)) charged dust. Lines in
each subplot represent different nonextensive q values that are the same as that in Figure 1. Other
parameters are the same as Figure 1.

Figure 5 corresponds to the case of negative charged dust and positive sign in U2
0 .

Here, we let ui = 1.5. In this case, the value A > B � η ∼ ν. Approximately, Equation (21),
can be taken as a KdV equation. Therefore, we use a solitary wave solution as the initial
condition Φ(ξ) = 3v0/A ∗ sech2[ξ/(2

√
B/v0)], where v0 = 0.6 is the wave speed. The

wave evolutions for super-extensive (q < 1), Maxwellian (q = 1.0) and sub-extensive
(q > 1) electrons are shown in Figure 5a–c, respectively. Figure 5d gives the wave profiles
of the three cases at τ = 50. As shown in Figure 5, all three cases have damping effects due
to ion–dust collisions and the amplitudes of Φ will decrease with τ. From Figure 5d, it is
obvious that q = 1.6 has the largest amplitude, while q = 0.4 has the smallest one. Therefore,
the nonextensivity will suppress the damping effect induced by ion–dust collisions.

Figure 5. Wave evolutions with negative charged dust and positive sign in U2
0 for (a) super-extensive

(q = 0.4), (b) Maxwellian (q = 1.0), (c) sub-extensive electrons (q = 1.6) and (d) wave amplitudes of
the three cases at τ = 50.
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Figure 6 depicts the wave evolutions of negatively charged dust and a negative sign in
U2

0 . We let ui = 1.5 and the initial condition is set as−(2v0/B)Exp[(−η/2B)ξ]Cos(
√

v0/Bξ),
where v0 = 0.1 is the wave speed. The numerical results of Equation (21) show that mono-
tonic shock waves will be formed. Compared with the negative sign in the U2

0 case, the
three curves in Figure 6d almost coincide with each other. Therefore in this case, the
nonextensive effects on wave evolution are quite weak.

Figure 6. Wave profiles with negative charged dust and negative sign in U2
0 for (a) super-extensive

(q = 0.4), (b) Maxwellian (q = 1.0), (c) sub-extensive electrons (q = 1.6) and (d) wave amplitudes of
the three cases at τ = 5.

Figure 7 gives the wave evolution profiles of positive charged dust and positive sign in
U2

0 . Here we let ui = 5/7. The initial condition is set as Φ(ξ) = 3v0/A ∗ sech2[ξ/(2
√

B/v0)],
where v0 = 0.6 is the wave speed. Similar to that of Figure 5, ion acoustic solitary waves
will be formed. The sub-extensive case has the largest amplitude, and the super-extensive
has the smallest one.

Figure 7. Wave evolution profiles with positive charged dust and positive sign in U2
0 for (a) super-

extensive (q = 0.4), (b) Maxwellian (q = 1.0), (c) sub-extensive electrons (q = 1.6) and (d) wave
amplitudes of the three cases at τ = 5.
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Figure 8 gives the wave evolution profiles of positive charged dust and negative
sign in U2

0 . Here, as that in Figure 7, we let ui = 5/7. The initial condition is set as
−(2v0/B)Exp[(−η/2B)ξ]Cos(

√
v0/Bξ), where v0 = 0.1 is the wave speed. Other parame-

ters are the same as those of Figure 6. The numerical results show that oscillatory shock
waves will be formed, and the system’s nonextensivity mainly affects the wave oscillatory
amplitude. Compare with Figure 6, we can find that the wave speed v0 will determine
whether it is a oscillatory shock wave or monotonic one. When the speed is small, it is more
likely to form a monotonic shock wave, while if the speed is large, a oscillatory shock wave
will be formed [53].

Figure 8. Wave evolution profiles with positive charged dust and negative sign in U2
0 for (a) super-

extensive (q = 0.4), (b) Maxwellian (q = 1), (c) sub-extensive electrons (q = 1.6) and (d) wave
amplitudes of the three cases at τ = 10.

5. Summary and Conclusions

In this paper, we studied the dust–ion acoustic waves in a collisional dusty plasma
with negative ions. With the help of the reductive perturbation technique, we found that
the wave evolution can be modeled by the KdV Burgers type equation with a damping term
that is related to the ion–dust collisions. This plasma system has four types of ion acoustic
waves, fast/slow mode with positive/negative ions, respectively. We analyze the effects
of nonextensive electrons on wave evolution through numerical methods. Our results
show that the nonextensive electrons will affect the wave amplitude. If the wave has a
growing trend, the sub-extensive electrons (q > 1) will enhance the wave amplitude, while
the super-extensive ones (q < 1) will weaken it. If the wave has a decreasing trend, the
sub-extensive electrons will enhance the wave’s decreasing trend, while the super-extensive
ones will weaken it. Furthermore, we expect that our investigation will be helpful for future
investigations on dust–ion acoustic solitary and shock waves.
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The following abbreviations are used in this manuscript:

IAW Ion Acoustic Wave
DIAW Dust–Ion Acoustic Wave
IASWS Ion Acoustic Solitary Wave and Shocks
KdVB Korteweg–de Vries Burgers
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Abstract: We consider an N fermion system at low temperature T in which we encounter special
particle number values Nm exhibiting special traits. These values arise when focusing attention upon
the degree of mixture (DM) of the pertinent quantum states. Given the coupling constant of the
Hamiltonian, the DMs stay constant for all N-values but experience sudden jumps at the Nm. For
a quantum state described by the matrix ρ, its purity is expressed by Trρ2 and then the degree of
mixture is given by 1− Trρ2, a quantity that coincides with the entropy Sq for q = 2. Thus, Tsallis
entropy of index two faithfully represents the degree of mixing of a state, that is, it measures the
extent to which the state departs from maximal purity. Macroscopic manifestations of the degree of
mixing can be observed through various physical quantities. Our present study is closely related
to properties of many-fermion systems that are usually manipulated at zero temperature. Here, we
wish to study the subject at finite temperature. The Gibbs ensemble is appealed to. Some interesting
insights are thereby gained.

Keywords: Tsallis entropy; many-fermion systems; mixture degree; finite temperature; magic numbers

1. Introduction

Tsallis q-entropy, also known as non-extensive entropy, is an alternative entropy
measure introduced by Constantino Tsallis in 1988. Unlike the traditional Shannon entropy
or Boltzmann–Gibbs entropy, which are based on logarithmic functions, Tsallis entropy
incorporates a power-law function to capture certain characteristics of diverse physical
scenarios, in particular, those involving complex systems. For instance, Tsallis entropy
has been used to describe physical systems that exhibit long-range interactions, such as
self-gravitating systems, turbulent flows, and systems with power-law distributions [1–14].
It provides a framework to characterize the statistical properties of these systems and has
connections to generalized statistical mechanics and information theory. It is worth noting
that Tsallis entropy has its own set of mathematical properties and implications, and its
interpretation and applicability depend on the context and field of study [1–7].

Tsallis entropy has also been used to investigate a various range of quantum phenom-
ena (see, for example, [8–14] and references therein). Some of these studies deal with the
explicit application of Tsallis thermostatistics to describe particular quantum systems. It is
worth noting, however, that Tsallis entropy also proved to be valuable for the analysis of
quantum phenomena not related to Tsallis thermostatistics. In this sense, Tsallis entropy
is already an important member of the general tool-kit employed by quantum scientists.
Indeed, Tsallis entropy can nowadays be found mentioned in monographs devoted to as-
pects of quantum science, such as quantum entanglement [15] or quantum information [16],
which are not necessarily linked to the Tsallis statistical theory. In particular, the entropy
Sq, associated with the value q = 2 of the Tsallis parameter, which is sometimes referred
to as linear entropy, is a widely used measure of the degree of mixedness exhibited by
a quantum state.
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Present Goal

The aim of the present effort is to employ the S2 entropy to characterize some features
of many-fermion systems at low temperature, which constitute finite-temperature remnants
of basic properties, related to quantum phase transitions, exhibited by these systems at zero
temperature.

In particular, this work is devoted to studying properties of the quantum mixing-
degree quantifier and of its manifestations at finite, but very low, temperatures.

2. Preliminaries

2.1. Quantum Mixing-Degree Quantifier

In quantum mechanics, quantum states can exist in two fundamental forms: pure
states and mixed states. A pure state is a state that can be described by a single, normalized
wave function, and it exhibits maximal coherence and well-defined quantum properties.
On the other hand, a mixed state is a statistical ensemble of pure states, each with its
associated probability. It exhibits less coherence and may have probabilistic uncertainties.
The degree of mixing or superposition in a quantum state is measured here by the mixing
quantifier Cf .

Cf is equal to unity less than the quantum purity Py. The purity of a quantum state
quantifies its coherence and is a measure of how close the state is to being pure. It is defined
as the trace of the square of the state’s density matrix ρ as Py = Tr(ρ2). For a pure state, the
purity is equal to 1, while for a mixed state, the purity is less than 1.

2.2. Usefulness of Exactly Solvable Many-Body Systems

In this work, we employ an exactly solvable model. Exactly solvable many-body
systems are of great importance and usefulness in various areas of physics and related
disciplines. These systems are analytically solvable, meaning their quantum states, dynam-
ics, and properties can be described using closed-form mathematical expressions. Their
usefulness stems from the deep insights they provide into the behavior of complex quan-
tum systems, as well as their role in serving as benchmarks for testing and developing
theoretical methods. Here are some key advantages and applications of exactly solvable
many-body systems:

• Insight into quantum phenomena: Exactly solvable many-body systems often serve
as simple and tractable models that exhibit essential quantum phenomena, such as
quantum phase transitions, entanglement, and quantum correlations. They provide
valuable intuition and understanding of fundamental quantum concepts.

• Testing quantum theories: Because these systems are analytically solvable, they are
ideal for testing and validating theoretical methods and approximations used in more
complicated systems. They allow researchers to check the accuracy and efficiency of
numerical algorithms and analytical techniques.

• Educational tools: Exactly solvable many-body systems are commonly used as edu-
cational tools in teaching quantum mechanics and statistical physics. They provide
students with concrete examples to illustrate abstract concepts and principles.

• Foundation for approximations: Many-body systems that are exactly solvable often
serve as the foundation for developing approximate methods applicable to more
complex systems. These methods include mean-field theory, perturbation theory, and
variational approaches.

• Condensed matter physics: Exactly solvable models play a crucial role in understand-
ing phase transitions and critical phenomena in condensed matter physics. They shed
light on the emergence of collective behaviors in large systems.

• Quantum information theory: Solvable models are essential in quantum informa-
tion theory, particularly in studies related to quantum computing, quantum error
correction, and quantum communication protocols.
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• Benchmarking numerical techniques: Exactly solvable models provide precise results
that can be used as benchmarks to assess the accuracy and efficiency of numerical
techniques, such as Monte Carlo simulations, tensor network methods, and a density-
matrix renormalization group (DMRG).

In summary, exactly solvable many-body systems are indispensable tools in under-
standing and exploring quantum phenomena, testing theoretical methods, and providing
insights into the behavior of complex quantum systems. Their importance extends beyond
theoretical physics and has applications in condensed matter physics, quantum information,
and related fields. In nuclear physics, a model of this type that has enjoyed considerable
attention is the so-called Lipkin one [17,18]. We discuss here a variant of such a model.

2.3. Using Very Low Temperature Statistical Mechanics Techniques to Approximate
Ground-State Properties

Using very low temperature statistical mechanics techniques is a powerful and com-
mon approach to approximate ground-state properties of quantum systems. Ground-state
properties are of fundamental importance as they represent the system’s lowest energy
state, and understanding them is crucial for gaining insights into the system’s behavior
and properties. At very low temperatures (close to absolute zero), thermal fluctuations
become negligible, and the system tends to occupy its ground state more predominantly.
This allows for various low-temperature approximations that simplify the analysis and
computation of ground-state properties.

This procedure, which we use in this work, is an essential tool for studying ground-
state properties in various physical systems, including condensed matter physics, quantum
chemistry, and quantum information theory. They allow researchers to gain insights into
the behavior of complex quantum systems and provide a foundation for understanding and
engineering quantum materials and technologies. Concomitant references are given below.

2.4. Magic Numbers in Many-Fermion Systems

In the context of nuclear physics, “magic numbers” refer to specific numbers of protons
or neutrons in atomic nuclei that correspond to particularly stable and strongly bound
configurations. These magic numbers are associated with closed-shell configurations,
which have special quantum properties resulting in enhanced stability and distinct nuclear
properties. For protons, the magic numbers are 2, 8, 20, 28, 50, 82, and 126, representing the
number of protons needed to fill complete shells in the nuclear potential. For example, the
nuclei with proton numbers 2, 8, 20, 28, 50, 82, and 126 (helium-4, oxygen-16, calcium-40,
nickel-48, tin-100, and lead-208, respectively) are particularly stable and are known as
“doubly magic” nuclei. Similarly, for neutrons, the magic numbers are 2, 8, 20, 28, 50, 82,
and 126, representing the number of neutrons needed to fill complete shells in the nuclear
potential. Nuclei with both proton and neutron magic numbers are especially stable and
have unique nuclear properties.

Magic numbers play a crucial role in the nuclear structure and have significant impli-
cations in various nuclear processes, such as nuclear reactions and nuclear astrophysics.
They also form the basis for understanding the behavior of nucleons (protons and neu-
trons) in the nuclear potential and are essential for interpreting nuclear data and predicting
nuclear properties.

The concept of magic numbers extends beyond nuclear physics to other many-fermion
systems, such as atomic and molecular clusters, where similar patterns of enhanced stability
due to closed-shell configurations can be observed. Magic numbers in these systems have
important consequences for their chemical and physical properties. Overall, magic numbers
are fundamental in understanding the structure and stability of many-fermion systems and
have far-reaching implications in various areas of physics and chemistry.

We will find them here, in an abstract many-fermions system.
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2.5. Expanding on Our Present Objectives

The quantum N-fermion system exhibits various properties, some of them indeed
intricate [10,19–31]. We will study manifestations of quantum properties at a very low finite
temperature. How? As described by statistical mechanics and with reference to an exactly
solvable model. This model is able to illuminate some interesting theoretical effects. We
speak of a many-fermion model of the Hubbard model kind [28].

As stated above, thermal statistical manipulation of many-fermion body behavior
at finite temperature can yield interesting insights [29]. Accordingly, we appeal here to
an exactly solvable Lipkin-like model (LLM) [17,18] at finite temperature and consider
the pertinent structural traits in the framework of Gibbs’ canonical ensemble formalism.
LLMs are nontrivial, finite, easily solvable fermion systems [17,18]. Indeed, they are quite
useful testing grounds for envisaging new many-body approaches and using them, as we
always have, for an exact solution with which to compare our approximations. In this
effort, we work with one of the Lipkin model variants, called the AFP (Abecasis–Faessler–
Plastino) model [26,32–34].

3. The AFP Model Structure

The AFP model can be regarded as a very simplified atomic nucleus containing N
nucleons in just two levels. It is exactly solvable. The model considers a quite simple
fermion–fermion interaction of strength v. In nature, of course, the coupling constants are
fixed. In the model, of course, we vary it so as to observe how much the ground-state traits
are affected by v changes. We also study the model behavior for different N, as we have
in nature nuclei with quite distinct nucleon numbers, whose ground states display quite
different traits.

Our model possesses N = 2 Ω fermions that occupy two different N-fold degenerate
single-particle (sp) energy levels. They are characterized by an sp energy gap ε. This entails
4Ω sp microstates. Two quantum numbers (μ = ±1 and p = 1, 2, . . . , N) are associated
with a given microstate p, μ >. The first one, called μ, adopts the values μ = −1 (lower
level) and μ = +1 (upper level). The second runs from unity to N. This remaining quantum
number, called p, is baptized as a quasi-spin or pseudo-spin, which singles out a specific
microstate pertaining to the 2N-fold degeneracy. In the pair p, μ is viewed as a “site” that
can be occupied (by a fermion) or empty. Lipkin fixes

N = 2J. (1)

Here, J is a sort of angular momentum. Lipkin [17,29] uses special operators called
quasi-spin ones. Below, we use the usual creation operators C+

p,μ and the associated
destruction ones Cp,μ for creating or destroying a fermion at a site |p, μ >.

3.1. Quasi-Spin Operators

Quasi-spin operators J are mathematical constructs used to describe certain collective
properties of a many-body system. These operators arise in various areas of physics, such as
nuclear physics, condensed matter physics, and quantum optics, where systems can exhibit
collective behavior due to interactions between constituent particles. Quasi-spin operators
are particularly useful in cases where the collective behavior resembles the behavior of
spin systems, hence the name “quasi-spin”. The concept of quasi-spin originates from the
analogy between the properties of many-body systems and those of spin systems, which
are well-understood and widely used in quantum mechanics. In a spin system, the angular
momentum operators (spin operators) obey the commutation relations of the SU2 algebra,
and they play a fundamental role in characterizing the system’s angular momentum and
magnetic properties. In many-body systems, the quasi-spin operators are introduced to
represent collective excitations or modes that behave similarly to angular momentum.
These operators often have algebraic properties resembling the SU2 algebra, making them
suitable for describing the collective dynamics of the system. Overall, quasi-spin operators
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offer a valuable tool in theoretical physics for investigating collective behavior in complex
many-body systems, facilitating the understanding of emergent phenomena, and enabling
the development of analytical and numerical techniques to study these systems in different
physical contexts.

In nuclear physics, for example, in the AFP model considered here, one utilizes
quasi-spin operators to describe the collective behavior of nucleons in a nucleus. The
specific form and properties of the quasi-spin operators depend on the nature of the
many-body system being studied and the interactions between its constituents. They
are introduced to simplify the description of collective phenomena and, as stated above,
provide a powerful mathematical framework for treating many interacting fermions. One
has for these operators the definitions

Jz = ∑
p,μ

μ C+
p,μCp,μ, (2)

J+ = ∑
p

C+
p,+Cp,−, (3)

J− = ∑
p

C+
p,−Cp,+, (4)

and the Casimir operator

J2 = J2
z +

1
2
(J+ J− + J− J+). (5)

The eigenvalues of J2 take the form J(J + 1) and the Lipkin Hamiltonian reads (v is
a coupling constant)

H = εJz +
v
4
(J2

+ + J2
−). (6)

3.2. The AFP Model

It displays [26,32,33,35] a similar quasi-spin structure. One uses the operators

Gij =
2Ω

∑
p=1

C+
pi,Cp,j (7)

Also, v is the two-body-interaction coupling constant. Our Hamiltonian is

HAFP = ε
N

∑
i

Gi,i + V(Jx − J2
x). (8)

Jx is the sum [J+ + J−]/2. Its eigenvalues are En(c, J) [17,18].
For the AFP Hamiltonian matrix, please see Appendix A.

4. Working within the Gibbs Ensemble Framework

The procedure is described in detail in [35]. All thermal quantities of interest are
deduced from the partition function Z [19]. We construct Z using probabilities assigned
to the models’ microscopic states. Their energies are Ei [19]. Some important macroscopic
quantifiers are computed as in [19]. These indicators, together with Z, derive from the
canonical probability distributions [19] Pn(v, J, β). β is the inverse temperature. The
pertinent expressions are given in [19]. We call the mean energy U and the free energy F:

Pn(v, J, β) =
1

Z(v, J, β)
e−βEn(v,J) (9)
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Z(v, J, β) =
N

∑
n=0

e−βEn(v,J) (10)

U(v, J, β) = 〈E〉 = −∂lnZ(v, J, β)

∂β

=
N
∑

n=0
En(v, J)Pn(v, J, β)

=
1

Z(v, J, β)

N
∑

n=0
En(v, J)e−βEn(v,J)

(11)

S(v, J, β) = 1−
N

∑
n=0

Pn(v, J, β) ln[Pn(v, J, β)] (12)

F(v, J, β) = U(v, J, β)− T S(v, J, β). (13)

The thermal quantifiers above provide much more information than the one obtained
via just the quantum resources of zero temperature T [19]. Taking a low enough T, our
quantifiers above yield a good representation of the T = 0 scenario [19]. Below, we will
adopt the high enough β = 20 value.

A State’s ρ Degree of Mixture Cf

As is well-known in quantum mechanics, the degree of mixture Cf of a given state
represented by ρ is given by [36]

Cf = 1− Trρ2 = 1−∑
i

p2
i , (14)

where Trρ2 is the so-called “Purity” Py. Note that we have Cf = 0 and Py = 1 for pure states.
Cf is a very important quantity for us here. Because the Tsallis practitioner will immediately
recognize that Equation (14) is Tsallis’ entropy of index q = 2, i.e., S2. One encounters
a direct link (equality) between S2 and Cf .

In probability terms, one has Py = ∑N
n=0(Pn(v, J, β))2 and Cf = S2 = 1− P2

y .

5. Present Results for Our Main Quantifier S2

5.1. Results as a Function of the Particle Number

Remember that we work at finite temperature but for very low T values, so that T = 0
remnants are very pronounced ones. In our first graph (Figure 1), we depict S2 = Cf versus
the fermion number for several values of the coupling constant v. Remarkably enough,
given the v value, for all N values but one, S2 = Cf = 0, entailing finite-temperature purity:
T is not high enough to generate mixing. This is an interesting result. However, given v, this
happens for specific values of N and only for them.

This effect occurs for all v and we encounter a special N value (= Nm) for which S2,
and the mixing degree, suddenly grows. Here, we borrow the described “magic number”
Nm(v) from nuclear physics such that the system experiences a noticeable amount of
mixing. Magic numbers are rather typical features of fermion systems. We discover that as
v diminishes, Nm grows.

Let us now discuss the results depicted in Figure 2 below. One notices there that given
N, Cf vs. v presents a peak at a particular value of v, where Cf = 0.5. We look at these
special values in Figure 2:
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Figure 1. We plot Cf = S2 vs. N for several v-values, with β = 20. Purity prevails, with intriguing
exceptions. v−colors are assigned in this way: v = 0.5 (violet); v = 0.3 (rose); v = 0.2 (brown);
v = 0.1 (grey); v = 0.05 (orange); v = 0.03 (blue); v = 0.01 (black); v = 0.001 (green); v = 0 (red).
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Figure 2. We plot Cf versus N for the v-values listed in Table 1. The peaks occur at the corresponding
N values of Table 1. However, we see that Cf ceases to be zero for some fermion numbers that are
neighbors of Nm, which are marked with dots in the graph.
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5.2. Energetic Interpretation of the Nm

Let E0(N) stand for the energy of the ground state of our Hamiltonian matrix and,
further, let E1(N) be the energy of the associated first excited state. Consider their difference,
that is, the excitation energy of the first level above the ground state.

A(N) = E1 − E0. (15)

We see in Table 1 that these two energies are much closer to each other for Nm than
for Nm−1 or Nm+1. With regard to Figure 1, we next list in Table 1 the energy differences A
for several number-of-particles triplets, Nm−2, Nm, and Nm+2. These triplets are associated
with the peaks in Figure 1, in the way we discuss next.

Table 1. Values of the energy difference A(N) = E1 − E0 for the number-of-particles triplets associ-
ated with the peaks in Figure 1. The values at the center of the triplet exhibit quasi-degeneracy as
likely being responsible for the magic number peculiarity. That is, the two energies E1 and E2 are
much closer to each other for Nm than for Nm−1 or Nm+1.

Color Line v Nm Am−2 Am Am+2

Black 0.01 58 0.1629 0.0129 0.2243

Blue 0.03 22 0.1959 0.1123 0.5503

Orange 0.05 14 0.2689 0.0755 0.6447

At Nm, we see that the energy difference A is very small, which in turn generates a
sort of quasi-degeneracy of the two lowest-lying states of our Hamiltonian matrix, which
favors mixing. A is instead larger for Nm±1 than for Nm.

5.3. Results as a Function of the Coupling Constant v

We now consider the behavior of the mixing degree Cf = S2 as a function of the
Hamiltonian’s coupling constant v for different values of N. See Figure 3, which displays
an illustrative example. Even if purity prevails overall, magic numbers become noticeable
again, but this time with reference to v values. We have a magic number for every v.

0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

v

C
f

Figure 3. We plot Cf = S2 vs. v for β = 20. Colors are as follows: N = 2 (red); N = 4 (blue);
N = 6 (green); = 8 (black); N = 10 (orange). See that we confront here magic v-regions (windows),
whose size diminishes as N grows. Outside these windows, the mixing degree vanishes.
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5.4. Effects of the S2 Peaks on Macroscopic Quantities

Let us compute the mean energy <U>, and the Shannon entropy S versus v. The
results are depicted in Figure 4. The magic character manifests itself in slope changes for
the mean energy and in peaks for the two entropies.
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Figure 4. We find Cf = S2 (left), <U> (center), and Shannon’s S (right) confront vs. v for N =

2, 4, . . . , 10, with β = 20. One sees that <U> displays slope changes at the v values associated with
entropic peaks. Regarding the trait <U>, this fact shows the existence of critical values for the
coupling constants at which the mean energy suffers a slope change. These critical values are found
within the areas covered by the S2 peaks.

6. Conclusions

Statistical mechanics often appeals to probability models so as to describe the behavior
of systems composed of a large number of microscopic constituents. In this work, our
constituents are interacting fermions and the ensembles are the canonical Gibbs ones.
We work at very low temperatures so as to use results as useful proxies for many-body
features at zero temperature. Remnants of these results survive very well at low T and are
much easier to deal with than appealing directly to the many-fermions system’s structural
properties. We have appealed to a well-known exactly solvable many-fermion system so as
to discuss exact results. More specifically, we have investigated fermion dynamical traits
associated to the mixing degree of the pertinent many-body states using Tsallis entropy for
q = 2.

There are two important quantities in this paper: the fermion number N (a quantity
that in a sense defines the system (think of an atomic nucleus)) and the Hamiltonian’s
coupling constant v, which is a mere (although very important) parameter. Considering
the system’s microstates (MS) at a very low temperature, we find that, given the v-value,
the MS remain pure, at our finite low T, for all N, but with the exception of a special
one, which we call “magic” and denote by Nm. Magic numbers are typical in fermion
systems [23]. Here, for each v, there is a corresponding Nm, which is smaller the larger the
coupling constant is. Table 1 assigns responsibility for the existence of magic numbers to
a quasi-degeneracy of the ground state and the first excited one. This happens, of course,
at zero temperature, but remnants of such a trait persist at low temperatures. The special
quantities, which we call magic, are discrete (of course). One has Cf = 0.5 at the peaks.

We emphasize that the magic mixing degree is not caused by temperature. It originates, as
stated above, in a quasi-degeneracy of the Hamiltonian’s two lowest-lying eigen-energies.
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Appendix A. Our Hamiltonian Matrix

For the AFP, one deals with ( see from Equation (6) of [33]) the Hamiltonian matrix:

〈n′|HAFP|n〉 = (n− J)δn′ ,n +
1
2

v{2(2J2 + J + n2 − 2Jn)δn′ ,n

+2
√
(2J − n)(n + 1)δn′ ,n+1 + 2

√
(2J − n + 1)nδn′ ,n−1

−
√
(2J − n− 1)(n + 2)(2J − n)(n + 1)δn′ ,n+2

−
√
(2J − n + 2)(n− 1)(2J − n + 1)nδn′ ,n−2

(A1)
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Abstract: Measuring the uncertainty of the lifetime of technical systems has become increasingly
important in recent years. This criterion is useful to measure the predictability of a system over
its lifetime. In this paper, we assume a coherent system consisting of n components and having
a property where at time t, all components of the system are alive. We then apply the system
signature to determine and use the Tsallis entropy of the remaining lifetime of a coherent system. It is
a useful criterion for measuring the predictability of the lifetime of a system. Various results, such
as bounds and order properties for the said entropy, are investigated. The results of this work can
be used to compare the predictability of the remaining lifetime between two coherent systems with
known signatures.

Keywords: coherent system; residual Tsallis entropy; Shannon entropy; system signature

1. Introduction

For engineers, the performance and quantification of uncertainties over the lifetime of
a system is critical. The reliability of a system decreases as uncertainty increases, and sys-
tems with longer lifetimes and lower uncertainty are better systems (see, e.g., Ebrahimi and
Pellery, [1]). It has found applications in numerous areas described in Shannon’s seminal
work, [2]. Information theory provides a measure of the uncertainty associated with a ran-
dom phenomenon. If X is a nonnegative random variable with an absolutely continuous
cumulative distribution function (CDF) F(x) and density function f (x), the Tsallis entropy
of order α, defined by (see [3]), is

Hα(X) = Hα( f ) =
1

1− α

[∫ ∞

0
f α(x)dx− 1

]
,

=
1

1− α
[E( f α−1(X))− 1] (1)

for all α > 0, α �= 1, where E(·) denotes the expected value. In general, the Tsallis entropy
can be negative, but it can also be non-negative if one chooses an appropriate value for α. It
is obvious that H( f ) = limα→1 Hα( f ) and thus reduces to the Shannon differential entropy.
It is known that the Shannon differential entropy is additive in the sense that for two
independent random variables X and Y, H(X, Y) = H(X) + H(Y), where (X, Y) denotes
the common random variable. However, the Tsallis entropy is non-additive in the sense that
Hα(X, Y) = Hα(X) + Hα(Y) + (1− α)Hα(X)Hα(Y). Because of the flexibility of Tsallis en-
tropy compared to Shannon entropy, non-additive entropy measures find their justification
in many areas of information theory, physics, chemistry, and engineering.

If X denotes the lifetime of a new system, then Hα(X) measures the uncertainty of
the new system. In some cases, agents know something about the current age of the system.
For example, one may know that the system is in operation at time t and is interested
in measuring the uncertainty of its remaining lifetime, that is, Xt = X − t|X > t. Then
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Entropy 2023, 25, 550

Hα(X) is no longer useful in such situations. Accordingly, the residual Tsallis entropy is
defined as

Hα(Xt) =
1

1− α

[∫ ∞

0
f α
t (x)dx− 1

]
=

1
1− α

[∫ ∞

t

(
f (x)
S(t)

)α

dx− 1
]

, (2)

=
1

1− α

[∫ 1

0
f α−1
t (S−1

t (u))du− 1
]

, α > 0, (3)

where

ft(x) =
f (x + t)

S(t)
, x, t > 0,

is the probability density function (PDF) of Xt, S(t) = P(X > t) is the survival function
of X and S−1

t (u) = inf{x; St(x) ≥ u} is the quantile function of St(x) = S(x + t)/S(t),
x, t > 0. Various properties, generalizations and applications of Hα(Xt) are investigated
by Asadi et al. [4], Nanda and Paul [5], Zhang [6], Irshad et al. [7], Rajesh and Sunoj [8],
Toomaj and Agh Atabay [9], Mohamed et al. [10], among others.

Several properties and statistical applications of Tsallis entropy have been studied
in the literature, which you can read in Maasoumi [11], Abe [12], Asadi et al. [13] and
the references therein. Recently, Alomani and Kayid [14] investigated some additional
properties of Tsallis entropy, including its connection with the usual stochastic order, as well
as some other properties of the dynamical version of this measure and bounds. Moreover,
they investigated some properties of Tsallis entropy for the lifetime of a coherent and mixed
system. It is suitable to study the behavior of the uncertainty of the new system in terms
of Tsallis entropy. For other applications and researchers concerned with measuring
the uncertainty of reliability systems, we refer readers to [15–18] and the references therein.
In contrast to the work of Alomani and Kayid [14], the aim of this work is to study
some uncertainty properties of a coherent system consisting of n components and having
the property that at time t, all components of the system are alive. In fact, we generalize
the results of the work published in the literature. To this end, we use the concept of system
signature to determine the Tsallis entropy of the remaining lifetime of a coherent system.

The results of this paper are organized as follows: In Section 2, we provide an expres-
sion for the Tsallis entropy of a coherent system under the assumption that all components
have survived to time t. For this purpose, we used the concept of system signature when
the lifetimes of the components in a coherent system are independent and identically dis-
tributed. The ordering properties of the residual Tsallis entropy of two coherent systems are
studied in Section 3 based on some ordering properties of system signatures even without
simple calculations. Section 4 presents some useful bounds. Finally, Section 5 gives some
conclusions and further detailed remarks.

Throughout the paper, “≤st”, “≤hr”, “≤lr” and “≤d” stand for stochastic, hazard rate,
likelihood ratio and dispersive orders, respectively; for more details on these orderings,
we refer the reader to Shaked and Shanthikumar [19].

2. Tsallis Entropy of the System in Terms of Signature Vectors of the System

In this section, the concept of system signature is used to define the Tsallis entropy
of the remaining lifetime of a coherent system with an arbitrary system-level structure,
assuming that all components of the system are functioning at time t. An n-dimensional
vector p = (p1, . . . , pn) whose i-th element pi = P(T = Xi:n), i = 1, 2, . . . , n; is the sig-
nature of such a system where Xi:n is the i-th order statistic of the n independent and
identically distributed (i.i.d.) component lifetimes X = (X1, . . . , Xn), that is, the time of
the i-th component failure, and T is the failure time of the system; (see Samaniego [20]).
Consider a coherent system with independent and identically distributed component life-
times X1, . . . , Xn and a known signature vector p = (p1, . . . , pn). If T1,n

t = [T − t|X1:n > t],
represents the remaining lifetime of the system under the condition that at time t, all com-
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ponents of the system are functioning, then from the results of Khaledi and Shaked [21]
the survival function of T1,n

t can be expressed as

P(T1,n
t > x) =

n

∑
i=1

piP(Xi:n − t > x|X1:n > t),

=
n

∑
i=1

piP(Tt
1,i,n > x), (4)

where T1,i,n
t = [Xi:n − t|X1:n > t], i = 1, 2, · · · , n, denotes the remaining lifetime of an i-out-

of-n system under the condition that all components at time t. The survival and probability
density functions of T1,i,n

t are given by

P(Tt
1,i,n > x) =

i−1

∑
k=0

(
n
k

)
(1− St(x))k(St(x))n−k, x, t > 0, (5)

and

fTt
1,i,n(x) =

Γ(n + 1)
Γ(i)Γ(n− i + 1)

(1− St(x))i−1(St(x))n−i ft(x), x, t > 0, (6)

respectively, where Γ(·) is the complete gamma function. It follows that

fT1,n
t
(x) =

n

∑
i=1

pi fTt
1,i,n(x), x, t > 0. (7)

In what follows, we focus on the study of the Tsallis entropy of the random variable T1,n
t ,

which measures the degree of uncertainty contained in the density of [T − t|X1:n > t],
in terms of the predictability of the remaining lifetime of the system in terms of Tsallis
entropy. The probability integral transformation V = St(T1,n

t ) plays a crucial role in our
goal. It is clear that Ui:n = St(T1,i,n

t ) follows from a beta distribution with parameters
n− i + 1 and i with the PDF

gi(u) =
Γ(n + 1)

Γ(i)Γ(n− i + 1)
(1− u)i−1un−i, 0 < u < 1, i = 1, · · · , n. (8)

In the forthcoming proposition, we provide an expression for the Tsallis entropy of Tt
1,n by

using the earlier transformation formulas.

Theorem 1. The Tsallis entropy of Tt
1,n can be expressed as follows:

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du− 1
]

, t > 0, (9)

for all α > 0.

Proof. By using the change of u = St(x), from (2) and (6) we obtain

Hα(Tt
1,n) =

1
1− α

[∫ ∞

0

(
fTt

1,n(x)
)α

dx− 1
]

=
1

1− α

[∫ ∞

0

(
n

∑
i=1

pi fTt
1,i,n(x)

)α

dx− 1

]

=
1

1− α

[∫ 1

0

(
n

∑
i=1

pigi(u)

)α(
ft(S−1

t (u))
)α−1

dx− 1

]

=
1

1− α

[∫ 1

0
gα

V(u)
(

ft(S−1
t (u))

)α−1
du− 1

]
.
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In the last equality gV(u) = ∑n
i=1 pigi(u) is the PDF of V denotes the lifetime of the system

with independent and identically distributed uniform distribution.

In the specail case, if we consider an i-out-of-n system with the system signature
p = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, · · · , n, then Equation (9) reduces to

Hα(T1,i,n
t ) =

1
1− α

[∫ 1

0
gα

i (u)
(

ft(S−1
t (u))

)α−1
du− 1

]
, (10)

for all t > 0.
The next theorem immediately follows by Theorem 1 from the aging properties of their

components. We recall that X has increasing (decreasing) failure rate (IFR(DFR)) if St(x) is
decreasing (increasing) in x for all t > 0.

Theorem 2. If X is IFR (DFR), then Hα(Tt
1,n) is decreasing (increasing) in t for all α > 0.

Proof. We just prove it when X is IFR where the proof for the DFR is similar. It is easy
to see that ft(S−1

t (u)) = uλt(S−1
t (u)), 0 < u < 1. This implies that Equation (9) can be

rewritten as

(1− α)Hα(Tt
1,n) + 1 =

∫ 1

0
gα

V(u)u
α−1
(

λt(S−1
t (u))

)α−1
du, (11)

for all α > 0. On the other hand, one can conclude that S−1
t (u) = S−1(uS(t))− t, for all

0 < u < 1, and hence we have

λt(S−1
t (u)) = λ(S−1

t (u) + t) = λ(S−1(uS(t))), 0 < u < 1. (12)

If t1 ≤ t2, then S−1(uS(t1)) ≤ S−1(uS(t2)). Thus, when F is IFR, then for all α > 1(0 < α ≤ 1),
we have∫ 1

0
gα

V(u)u
α−1
(

λt1(S
−1
t1

(u))
)α−1

du =
∫ 1

0
gα

V(u)u
α−1
(

λ(S−1(uS(t1)))
)α−1

du

≤ (≥)
∫ 1

0
gα

V(u)u
α−1
(

λ(S−1(uS(t2)))
)α−1

du

=
∫ 1

0
gα

V(u)u
α−1
(

λt2(S
−1
t2

(u))
)α−1

du,

for all t1 ≤ t2. Using (11), we obtain

(1− α)Hα(Tt1
1,n) + 1 ≤ (≥)(1− α)Hα(Tt2

1,n) + 1,

for all α > 1(0 < α ≤ 1). This implies that Hα(Tt1
1,n) ≥ Hα(Tt2

1,n) for all α > 0 and this
completes the proof.

The next example illustrates the results of Theorems 1 and 2.

Example 1. Consider a coherent system with system signature p = (0, 1/2, 1/4, 1/4). The
exact value of Hα(Tt

1,4) can be calculated using the relation (9) given the lifetime distributions of
the components. For this purpose, let us assume the following lifetime distributions.

(i) Consider a Pareto type II with the survival function

S(t) = (1 + t)−k, k, t > 0. (13)

It is not hard to see that

Hα(Tt
1,4) =

1
1− α

[(
k

1 + t

)α−1 ∫ 1

0
u

(α−1)(k+1)
k gα

V(u)du− 1

]
, t > 0.
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It is obvious that the Tsallis entropy of Hα(Tt
1,4) is an increasing function of time t. Thus,

the uncertainty of the conditional lifetime Tt
1,4 increases as t increases. We recall that this

distribution has the DFR property.
(ii) Let us suppose that X has a Weibull distribution with the shape parameter k with the survival

function
S(t) = e−tk

, k, t > 0. (14)

After some manipulation, we have

Hα(Tt
1,4) =

1
1− α

[
kα−1

∫ 1

0

(
tk − log u

)(1− 1
k )(α−1)

uα−1gα
V(u)du− 1

]
, t > 0.

It is difficult to find an explicit expression for the above relation, and therefore we are forced
to calculate it numerically. In Figure 1 we have plotted the entropy of Tt

1,4 as a function of
time t for values of α = 0, 2 and α = 2 and k > 0. In this case, it is known that X is DFR
when α = 0, 1. As expected from Theorem 2, it is obvious that Hα(Tt

1,4) is increasing in t for
α = 0, 1. The results are shown in Figure 1.

Figure 1. The exact values of Hα(Tt
1,4) with respect to t for the Weibull distribution for values of

α = 0.2 and α = 2 when k > 0.

Below, we compare the Tsallis entropies of two coherent systems from their lifetimes
and their residual lifetimes.

Theorem 3. Consider a coherent system with independent and identically distributed IFR(DFR)
component lifetimes. Then Hα(Tt

1,n) ≤ (≥)Hα(T) for all α > 0.

Proof. We prove it when X is IFR where the proof for DFR property is similar. Since X is
IFR, Theorem 3.B.25 of Shaked and Shanthikumar [19] implies that X ≥d Xt, that is

ft(S−1
t (u)) ≥ f (S−1(u)), 0 < u < 1,

for all t > 0. If α > 1 (0 < α < 1), so we have

∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du ≥ (≤)
∫ 1

0
gα

V(u) f α−1(S−1(u))du, t > 0. (15)

300



Entropy 2023, 25, 550

Thus, from (9) and (15), we obtain

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u) f α−1
t (S−1

t (u))du− 1
]

≤ 1
1− α

[∫ 1

0
gα

V(u) f α−1(S−1(u))du− 1
]
= Hα(T).

Therefore, the proof is completed.

Theorem 4. If X is DFR, then a lower bound for Hα(T1,n
t ) is given as follows:

Hα(Tt
1,n) ≥ Hα(T)

S(t)
+

1
1− α

(
1

S(t)
− 1
)

,

for all α > 0.

Proof. Since X is DFR, then it is NWU (i.e., St(x) ≥ S(x), x, t ≥ 0.) This implies that

S−1
t (u) + t ≥ S−1(u), t ≥ 0,

for all 0 < u < 1. On the other hand, it is known that when X is DFR, the PDF f is
decreasing which implies that

f α−1(S−1
t (u) + t) ≤ (≥) f α−1(S−1(u)), 0 < u < 1,

for all α > 1 (0 < α < 1). From (9), one can conclude that

Hα(Tt
1,n) =

1
1− α

[∫ 1

0
gα

V(u)
f α−1(S−1

t (u) + t)
S(t)

du− 1

]

≥ 1
1− α

[∫ 1

0
gα

V(u)
f α−1(S−1(u))

S(t)
du− 1

]

=
1

1− α

[
(1− α)Hα(T) + 1

S(t)
− 1
]

,

for all α > 0, and this completes the proof.

3. Entropy Ordering of Two Coherent Systems

Given the imponderables of two coherent systems, this section discusses the par-
tial ordering of their conditional lifetimes. Based on various existing orderings between
the component lifetimes and their signature vectors, we find some results for the entropy
ordering of two coherent systems. The next theorem compares the entropies of the residual
lifetimes of two coherent systems.

Theorem 5. Let TX,1,n
t = [T − t|X1:n > t] and TY,1,n

t = [T − t|Y1:n > t] denote the resid-
ual lifetimes of two coherent systems with the same signatures and n i.i.d component lifetimes
X1, . . . , Xn and Y1, . . . , Yn from cdfs F and G, respectively. If X ≤d Y and X or Y is IFR, then
Hα(TX,1,n

t ) ≤ Hα(TY,1,n
t ) for all α > 0.

Proof. As a result of the relation (9), it is sufficient to demonstrate that Xt ≤d Yt. Due to
the assumption that X ≤d Y and X or Y is IFR, the proof of Theorem 5 of Ebrahimi and
Kirmani [22] means that Xt ≤d Yt, and this concludes the proof.

Example 2. Let us assume two coherent systems with residual lifetimes TX,1,4
t and TY,1,4

t with
the common signature p = ( 1

2 , 1
4 , 1

4 , 0). Suppose that X ∼ W(3, 1) and Y ∼ W(2, 1), where
W(k, 1) stands for the Weibull distribution with the survival function given in (14). It is easy to see
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that X ≤d Y. Moreover, X and Y are both IFR. Thus, Theorem 5 yields that Hα(TX,1,4
t ) ≤ Hα(TY,1,4

t )
for all α > 0. The plot of the Tsallis entropies of these systems is displayed in Figure 2.

Figure 2. The exact values of Hα(TX,1,4
t ) (blue color) and Hα(TY,1,4

t ) (red color) with respect to t for
values of α = 0.2 and α = 2.

Next, we compare the residual Tsallis entropies of two coherent systems with the same
component lifetimes and different structures.

Theorem 6. Let T1,n
1,t = [T1 − t|X1:n > t] and T1,n

2,t = [T2 − t|X1:n > t] represent the residual
lifetimes of two coherent systems with signature vectors p1 and p2, respectively. Assume that
the system’s components are independent and identically distributed according to the common CDF,
F. Additionally, let p1 ≤lr p2. Then,

(i) if ft(S−1
t (u)) is increasing in u for all t > 0, then Hα(T1,n

1,t ) ≥ Hα(T1,n
2,t ) for all α > 0.

(ii) if ft(S−1
t (u)) is decreasing in u for all t > 0, then Hα(T1,n

1,t ) ≤ Hα(T1,n
2,t ) for all α > 0.

Proof. (i) First, we note that the Equation (9) can be rewritten as follows:

(1− α)Hα(Tti
1,n) + 1 =

∫ 1

0
gα

Vi
(u)du

∫ 1

0
g�Vi

(u)
(

ft(S−1
t (u))

)α−1
du, (i = 1, 2), (16)

where V� has the PDF as

g�V(u) =
gα

V(u)∫ 1
0 gα

V(u)du
, 0 < u < 1.

Assumption s1 ≤lr s2 implies V1 ≤lr V2, and this means that V�
1 ≤lr V�

2 , which means that

g�V2
(u)

g�V1
(u)

∝
(

gV2(u)
gV1(u)

)α

is increasing in u for all α > 0, and hence, V�
1 ≤st V�

2 . When α > 1(0 < α < 1), we obtain

∫ 1

0
g�V1

(u)
(

ft(S−1
t (u))

)α−1
du ≤ (≥)

∫ 1

0
g�V2

(u)
(

ft(S−1
t (u))

)α−1
du, (17)

where the inequality in (17) is obtained by noting that the conditions V�
1 ≤st V�

2 imply
E[π(V�

1 )] ≤ E[π(V�
2 )] for all increasing (decreasing) functions π. Therefore, relation (16) gives

(1− α)Hα(Tt1
1,n) + 1 ≤ (≥)(1− α)Hα(Tt2

1,n) + 1,
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or equivalently, Hα(T1,t
1,n) ≥ Hα(T2,t

1,n) for all α > 0. Part (ii) can be similarly obtained.

The next example gives an application of Theorem 6.

Example 3. Let us consider the two coherent systems of order 4 displayed in Figure 3 with residual
lifetimes T1,4

1,t = [T1 − t|X1:4 > t] (left panel) and T1,4
2,t = [T2 − t|X1:4 > t] (right panel). It is

not hard to see that the signatures of these systems are p1 = ( 1
2 , 1

2 , 0, 0) and p2 = ( 1
4 , 1

4 , 1
2 , 0),

respectively. Assume that the component lifetimes are independent and identically distributed
according to the following survival function,

S(t) = (1 + t)−2, t > 0.

1 2

3

4

1 3

2

4

Figure 3. Two coherent systems with the likelihood ration ordered signature.

After some calculation, one can obtain ft(S−1
t (u)) = 2u

√
u

1+t , t > 0. This function is increasing
in u for all t > 0. Hence, due to Theorem 6, it holds that Hα(T1,4

1,t ) ≥ Hα(T1,4
2,t ) for all α > 0.

4. Some Useful Bounds

When the complexity is high and the number of components is large, it is difficult to
compute the Hα(T1,n

t ) of a coherent system. This situation is frequently encountered in practice.
Under such circumstances, a Tsallis entropy bound can be useful to estimate the lifetime of
a coherent system. To see some recent research on bounds on the uncertainty of the lifetime of
coherent systems, we refer the reader, for example, to Refs. [15,16,23] and the references there.
In the following theorem, we provide bounds on the residual Tsallis entropy of the lifetime of
the coherent system in terms of the residual Tsallis entropy of the parent distribution Hα(Xt).

Theorem 7. Let T1,n
t = [T − t|X1:n > t] represent the residual lifetime of a coherent system

consisting of n independent and identically distributed component lifetimes having the common
CDF F with the signature p = (p1, · · · , pn). Suppose that Hα(T1,n

t ) < ∞ for all α > 0. It
holds that

Hα(T1,n
t ) ≥ (Bn(p))

αHα(Xt) +
(Bn(p))

α − 1
1− α

, (18)

for all α > 1 and

Hα(T1,n
t ) ≤ (Bn(p))

αHα(Xt) +
(Bn(p))

α − 1
1− α

, (19)

for 0 < α < 1 where Bn(p) = ∑n
i=1 pigi(pi), and pi =

n−i
n−1 .

Proof. It can be clearly verified that the mode of the beta distribution with parameters
n− i + 1 and i is pi =

n−i
n−1 . Therefore, we obtain

gV(v) ≤
n

∑
i=1

pigi(pi) = Bn(p), 0 < v < 1.
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Thus, for α > 1 (0 < α < 1), we have

1 + (1− α)Hα(T1,n
t ) =

∫ 1

0
gα

V(v) f α−1
t (S−1

t (v))dv

≤ (Bn(p))
α
∫ 1

0
f α−1
t (S−1

t (v))dv

= (Bn(p))
α[(1− α)Hα(Xt) + 1].

The last equality is obtained from (3), from which the desired result follows.

The bounds given in (18) and (19) are very valuable when the number of components
is large or the structure of the system is complicated. Now, we obtain a public lower bound
using properties of the Tsallis information measure and mathematical concepts.

Theorem 8. Under the requirements of the Theorem 7, we have

Hα(T1,n
t ) ≥ HL

α (T
1,n
t ), (20)

where HL
α (T

1,n
t ) = ∑n

i=1 pi Hα(Tt
1,i,n) for all α > 0.

Proof. Recalling Jensen’s inequality for the convex function tα (it is concave (convex) for
0 < α < 1 (α > 1)), it holds that(

n

∑
i=1

pi fT1,i,n
t

(x)

)α

≥ (≤)
n

∑
i=1

pi f α
T1,i,n

t
(x), t > 0,

and hence, we obtain

(∫ ∞

0
f α
T1,n

t
(x)dx

)
≥ (≤)

(
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx

)
. (21)

Since 1− α > 0 (1− α < 0), by multiplying both sides of (21) in 1/(1− α), we obtain

Hα(T) ≥ 1
1− α

[
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx− 1

]

=
1

1− α

[
n

∑
i=1

pi

∫ ∞

0
f α
T1,i,n

t
(x)dx−

n

∑
i=1

pi

]

=
n

∑
i=1

pi

[
1

1− α

(∫ ∞

0
f α
T1,i,n

t
(x)dx− 1

)]

=
n

∑
i=1

pi Hα(Tt
1,i,n),

and this completes the proof.

Notice that the equality in (20) holds for i-out-of-n systems in the sense that we have
pj = 0, for j �= i, and pj = 1, for j = i, and then Hα(T1,n

t ) = Hα(T1,i,n
t ). When the lower

bounds for 0 < α < 1 in both parts of Theorems 7 and 8 can be computed, one may use
the maximum of the two lower bounds.

Example 4. Let T1,5
t = [T − t|X1:5 > t] represent the residual lifetime of a coherent system

with the signature p = (0, 3
10 , 5

10 , 2
10 , 0) consisting of n = 5 independent and identically

distributed component lifetimes having a uniform distribution in [0, 1]. It is easy to ver-
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ify that B5(p) = 2.22. Thus, by Theorem 7, the Tsallis entropy of T1,5
t is bounded for

α > 1 (0 < α < 1), as follows:

Hα(T1,n
t ) ≥ 2.22α(1− t)1−α − 1

1− α
,

for all α > 1 and

Hα(T1,n
t ) ≤ 2.22α(1− t)1−α − 1

1− α
,

for 0 < α < 1. Moreover, the lower bound given in (20) can be obtained as follows:

Hα(T1,3
t ) ≥ 1

1− α

[
(1− t)1−α

n

∑
i=1

pi

∫ 1

0
gα

i (u)du− 1

]
, t > 0, (22)

for all α > 0. Assuming uniform distribution for the component lifetimes, we computed
the bounds given by (19) (dashed line), as well as the exact value of Hα(T1,3

t ) obtained
directly from (9), and also the bounds given by (22) (dotted line). The results are displayed
in Figure 4. As we can see, regarding the lower bound in (22) (dotted line) for α > 1, it is
better than the lower bound given by (19).

Figure 4. Exact value of Hα(T1,3
t ) (solid line), as well as the corresponding lower bounds (18) (dashed

line) and (19) (dotted line) for the standard uniform distribution concerning time t.

5. Conclusions

Intuitively, it is better to have systems that work longer and whose remaining life is
less uncertain. We can make more accurate predictions when a system has low uncertainty.
The Tsallis entropy of a system is an important measure for designing systems based on
these facts. If we have some information about the lifetime of the system at time t, for
example, that the system will still function at age t, then we may be interested in quantifying
the predictability of the remaining lifetime. In this work, we presented a simple assertion
for the Tsallis entropy of the system lifetime for the case where all components contained
in the system are in operation at time t. Several properties of the proposed measure were
discussed. In addition, some partial stochastic orderings between the remaining lifetimes
of two coherent systems were discussed in terms of their Tsallis entropy using the concept
of a system signature. Numerous examples were also given to illustrate the results.
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