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Editorial

Preface to “Geometry and Topology with Applications”

Daniele Ettore Otera

Institute of Data Science and Digital Technologies, Vilnius University, Akademijos St. 4,
LT-08663 Vilnius, Lithuania; daniele.otera@mif.vu.lt

1. Motivation

Geometry is a very active research field in pure mathematics, with a history and tradition
going back to the antiquity. One of its first goals was in connection with precise land
measurements, and the work of Euclid has been fundamental for the systematic and
abstract generalization of the concrete geometric concepts already known in that period.
He created a model (nowadays called Euclidean geometry) that remained unsurpassed for
hundreds of years.

More than a millennium later came Euler, Gauss, Lobachevsky, Riemann, Hilbert
and Poincaré: their ideas led to the birth of works that brought together the various
mathematical theories elaborated previously. New types of geometries were born (for
instance, non-Euclidean geometries, differential geometry, Riemannian geometry, and hyperbolic
geometry), and the interactions and applications with other branches of mathematics carried
out to more profound, interesting and powerful developments.

These progresses have given rise to several new research fields in pure and applied
mathematics (such as differential topology, complex analysis, algebraic geometry, the
theory of general relativity, chaos theory, low-dimensional topology, geometric analysis,
and algebraic topology) and deep problems and questions (such as the Riemann hypothesis,
Hilbert’s 23 problems, the n-body problem, or the notorious Poincaré conjecture).

In the second half of the recent century, geometry has experienced rapid growth thanks
to its interactions with other areas of mathematics, such as analysis, algebra, and topology,
as well as with applications, mostly in mathematical physics. However, recently it has also
been used in statistics, graph theory, machine learning, information theory, and the study
of complex networks.

Geometry is indeed a very broad subject. If we take in consideration all of its man-
ifestations, then it can surely be regarded as one of the major areas of research in mod-
ern mathematics.

Geometry can be found almost everywhere, and geometric intuition can be used and
exploited in many cases. With this approach, one can find a new perspective that introduces
a geometric component, facilitating both pure research, visualization, and the proof writing.

This is just the leitmotif of the Special Issue “Geometry and Topology with Applications”
in a broad sense.

Following this spirit, I will focus this brief exposition of geometry and topology on
the two specific branches I prefer and know the most, and which seem to me to be very
thorough: geometric topology and geometric group theory. Despite this, other research fields
were also considered in this Special Issue.

2. The Development of Geometric Topology

The importance of research in geometry stems in part from its position at the cross-
roads of many active fields in mathematics, such as topology, analysis, partial differential
equations, Lie groups and group theory, in part from its close connection to theoretical
physics and mechanics.

On the other hand, the so-called (general) topology (literally the study of “places and
forms”) as an independent research branch of pure mathematics goes back to Hausdorff
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(even though it originates in the work of Euler and Riemann) and then to Poincaré himself,
who can actually be considered the true founder and father of modern algebraic topology.

More recently, two of the greatest geometers of the recent century, namely William
P. Thurston and Mikhail L. Gromov, have contributed in a revolutionary way to make an
epochal turning point to the study of both geometry and topology by considering their
interactions and ties.

Thurston gave an immense boost to the development of hyperbolic geometry,
low-dimensional topology, and geometric topology, while Gromov’s work ranged from
Riemannian geometry to differential topology, from group theory to graph theory, and
from analysis to probability.

2.1. On Thurston’s Work

William Thurston has been the dominant figure in the study of geometry and topology
in three dimensions. In 1982, he was awarded the Fields Medal for his contribution in
these fields [1–3].Thurston’s main contribution is the venerable geometrization conjecture
(which includes that of Poincaré’s) [4]. It is a three-dimensional version of the Riemann
uniformization theorem proved at the end of the 19th century for surfaces. Thurston
described eight basic types of geometric objects, and he hypothesized that any three-
dimensional space could be obtained as a union of components of this type. Since then,
the interactions between geometry, topology, and analysis have become more dense, and
the branch called geometric topology has been subjected to immense development. The
geometrization conjecture was finally proved by Grigori Perelman in 2003, with methods
from geometric analysis and partial differential equations [4].

To be more precise, the Riemann uniformization theorem says that a simply connected
Riemann surface supports one of the three classical geometries (Euclidean, spherical, or
hyperbolic). On the other hand, not every 3-manifold can support a single geometry.
Thurston’s conjecture states instead that every 3-manifold can be canonically decomposed
into pieces, each of which supports one and only one specific geometric structure among
the eight possible geometries of the third dimension (called Thurston’s geometries).

Thurston proved the geometrization conjecture for a large class of 3-manifolds, called
Haken manifolds. Shortly after, Richard Hamilton proved it for closed 3-manifolds with
a metric of a positive Ricci curvature. He also provided a detailed program aimed to
prove the full geometrization conjecture by means of the so-called Ricci flow with surgery
(a certain partial differential equation for a Riemannian metric with singularities), which
was efficiently carried out by Perelman in 2003 and completed, in the following years, by
several other mathematicians who filled in the complete details of their arguments.

So, thanks to the work of these mathematicians, we have now both a proof of the
Poincaré conjecture and precise knowledge of the world of closed 3-manifolds.

2.2. On Gromov’s Work

After leaving the USSR, working in the USA, and then as a permanent professor at
the IHES near Paris, the Russian–French mathematician Mikhail Gromov was awarded the
Oswald Veblen Prize in Geometry in 1981, the Wolf Prize in Mathematics in 1993, and finally,
in 2009, won the prestigious Abel Prize “for his revolutionary contributions to geometry”.

Besides his profound contributions to differential geometry [5], symplectic geometry,
algebraic topology and analysis [6,7], Gromov also initiated and developed a new deep the-
ory, which correlates geometric and topological invariants of spaces (manifolds, simplicial
complexes, or graphs) to properties of algebraic objects (discrete groups or algebras) [8,9].
In his work on this subject, there were so much ideas, new techniques, and methods that
a new branch of mathematics, called the geometric group theory, originated after it, (or, at
least, its establishment as a distinct area of modern mathematics). Gromov’s theorem on
groups of polynomial growth [10] still remains the best and the main result in this field.

In his work, Gromov introduced, in addition to a variety of theories and countless
profound results, the h-principle, the theory of convex integration, the notion of almost-flat
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manifolds, the Gromov–Hausdorff metric together with the Gromov–Hausdorff distance,
the notion of hyperbolic group, the theory of random groups, and the theory of pseudo-
holomorphic curves.

Asymptotic geometry, hyperbolic groups, expander graphs, and the study of random
groups and graphs [11] are today among the branches of mathematics that experienced
a big expansion in recent years, also thanks to his applications in contemporary sciences,
informatics, and in applied mathematics too.

During the recent decades, various works, especially those of Cannon, Serre, Stallings,
Sela, Rips, and Thurston himself, introduced new techniques of combinatorial and com-
putational nature for the study of groups and graphs [12] with applications to computer
science, complexity theory, and the theory of formal languages.

3. Some Details About This Special Issue

The aim of this Special Issue, titled “Geometry and Topology with Applications”, was
to attract and present new interesting papers concerning geometry and/or topology, in a
broad sense, with applications. In total, 33 manuscripts were submitted to be considered for
publication, and only 12 were accepted. These papers were written by scientists working in
prestigious universities or known research centers in France, Italy, Lithuania, Croatia, Korea,
South Africa, Serbia, Uzbekistan, Saudi Arabia, United Arab Emirates, China, and Jordan.

Let us mention that, among the published articles, there are two interesting survey
papers: one dealing with the topology and geometry of discrete groups and the other one
with the open problems of the topology in the fourth dimension. These two reviews perform
an excellent job in providing a background, context, and a very readable discussion on
these topics. They are certainly recommended for researchers interested in low-dimensional
topology and related questions in the geometric group theory.

4. Conclusions

We hope that the published works will have a positive impact on the international
scientific community working in geometry, topology, group theory, and their applications,
inspiring other researchers to further develop the topics addressed in this Special Issue.
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Curves Related to the Gergonne Point in an Isotropic Plane
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Abstract: The notion of the Gergonne point of a triangle in the Euclidean plane is very well known,
and the study of them in the isotropic setting has already appeared earlier. In this paper, we give two
generalizations of the Gergonne point of a triangle in the isotropic plane, and we study several curves
related to them. The first generalization is based on the fact that for the triangle ABC and its contact
triangle AiBiCi, there is a pencil of circles such that each circle km from the pencil the lines AAm, BBm,
CCm is concurrent at a point Gm, where Am, Bm, Cm are points on km parallel to Ai, Bi, Ci, respectively.
To introduce the second generalization of the Gergonne point, we prove that for the triangle ABC,
point I and three lines q1, q2, q3 through I there are two points G1,2 such that for the points Q1, Q2, Q3

on q1, q2, q3 with d(I, Q1) = d(I, Q2) = d(I, Q3), the lines AQ1, BQ2 and CQ3 are concurrent at G1,2.
We achieve these results by using the standardization of the triangle in the isotropic plane and simple
analytical method.

Keywords: isotropic plane; Gergonne point; generalized Gergonne points

MSC: 51N25

1. Introduction

An isotropic plane is a projective plane with an absolute figure ( f , F) consisting of a
real line f and a real point F ∈ f . Isotropic lines are all lines incident with F, and isotropic
points are all points incident with f . Two lines intersecting at an isotropic point are called
parallel lines. Analogously, any pair of distinct points joined by an isotropic line is said
to be parallel. The standard affine model of the isotropic plane is obtained by setting
x0 = 0 for the equation of f , and (0, 0, 1) for the coordinates of F. In this model, the

coordinates of points are defined by x =
x1

x0
, y =

x2

x0
. The isotropic lines are given by the

equations x = const. The points A = (xA, yA) and B = (xB, yB) are parallel if xA = xB. The
isotropic distance d(A, B) of a pair of non-parallel points is defined by d(A, B) = xB − xA,
as explained in [1].

We say that a triangle in the isotropic plane is allowable if all its sides are non-isotropic
lines. It was shown in [2] that each allowable triangle can be set in the standard position by
choosing an appropriate coordinate system. Such a triangle ABC is inscribed into the circle
with the equation y = x2 and has vertices of the form

A(a, a2), B(b, b2), C(c, c2), (1)

with a + b + c = 0.
The following abbreviations

p = abc, q = ab + bc + ca, (2)

Mathematics 2023, 11, 1562. https://doi.org/10.3390/math11071562 https://www.mdpi.com/journal/mathematics5
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together with their repercussions

a2 + b2 + c2 = −2q, a3 + b3 + c3 = 3p, (3)

will be useful. In order to prove that some geometric fact is valid for each allowable triangle,
it is sufficient to prove it for a standard triangle.

The Gergonne point of a triangle in the isotropic plane was studied in [3], where it
was shown that the incircle (excircle) of the standard triangle ABC has the equation

ki ... y =
1
4

x2 − q, (4)

and the contact points are given by

Ai(−2a, bc− 2q), Bi(−2b, ca− 2q), Ci(−2c, ab− 2q). (5)

The common intersection point

Γ
(
−3p

q
,−4q

3

)
(6)

of the lines AAi, BBi, and CCi is called the Gergonne point of the triangle ABC.
We study some curves related to the Gergonne point in the isotropic plane, and we

present a sort of generalizations of the Gergonne point in the Euclidean case.

2. Materials and Methods

The Gergonne point of the triangle ABC in the Euclidean plane is the intersection
point of three lines AAi, BBi, CCi, where Ai, Bi, Ci are the contact points of the triangle and
its incircle. In [4], the following generalization is given: let c be a circle concentric to the
inscribed circle with the center I and let Ai, Bi, Ci be the intersections of c with IAi, IBi, ICi,
respectively. Then, the lines AAi, BBi, and CCi are concurrent. The analogous situation in
the isotropic plane is described in Theorem 1. In order to make the proofs simpler, we use
the standardization of triangles. The calculation tool is purely analytical.

3. Results

Let K(m) be the pencil of circles km with the equation of the form

km ... y =
1
4

x2 + m, (7)

where m ∈ R. The inscribed circle ki belongs to the pencil K(m).

Theorem 1. Let ABC be the standard triangle, AiBiCi its contact triangle, and km a circle of the
pencil K(m) given by the Equation (7). Let Am, Bm, Cm be the points of km parallel to Ai, Bi, Ci,
respectively. The lines AAm, BBm, CCm are concurrent at a point Gm.
When the circle km runs through the pencil K(m), the points Gm form a special hyperbola.

Proof of Theorem 1. The points Am, Bm, Cm ∈ km parallel to Ai, Bi, Ci have the coordinates

Am(−2a, a2 + m), Bm(−2b, b2 + m), Cm(−2c, c2 + m).

Therefore, the lines AAm, BBm, CCm have the equations

y = − m
3a

x + a2 +
m
3

, y = − m
3b

x + b2 +
m
3

, y = −m
3c

x + c2 +
m
3

.

6
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They all pass through the point

Gm

(
3p
m

,−q +
m
3

)
. (8)

Indeed, the calculation − m
3a

3p
m

+ a2 +
m
3

= − abc
a

+ a(−b − c) +
m
3

= −q +
m
3

gives a
proof for the line AAm.

All points Gm lie on the conic

xy + qx− p = 0,

which is according to [1], a special hyperbola, see Figure 1.

A

B

C

Ai

Bi

Ci �

Am

Bm

Cm

Gm

k ki

km

x

y

Figure 1. The locus of generalized Gergonne points of the triangle ABC.

The point Gm from Theorem 1 can be called the generalized Gergonne point for the
triangle ABC and the circle km.

The Gergonne point Γ of the triangle ABC is identical to G−q.
The locus of generalized Gergonne points also passes through the vertices of the

triangle ABC since G3bc = A, G3ca = B, and G3ab = C.
In [5,6], the authors gave some further generalizations of the concept of Gergonne point

in the Euclidean case. Here, we study some analogues of these results in the isotropic case.

Theorem 2. Let ABC be the standard triangle, I a point in the isotropic plane and q1, q2, q3 three
lines through I. There are at most two values d ∈ R\{0} such that for points Q1, Q2, Q3 on
q1, q2, q3 with d(I, Q1) = d(I, Q2) = d(I, Q3) = d, the lines AQ1, BQ2 and CQ3 are concurrent.

7
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Proof of Theorem 2. Let I be given by the coordinates (x, y), and let qi have the equations
y = ki(x− x) + y, i = 1, 2, 3. All points T such that d(I, T) = d lie on the isotropic line with
the equation x = x + d. Therefore, points Qi have coordinates (d + x, kid + y), see Figure 2.

A

B

C

I

Q1

Q2

Q3

q1

q2

q3

M12

M23
M13

m12

m23m13

G1

G2

x

y

Figure 2. Generalized Gergonne points G1, G2 for the triangle ABC, point I and lines q1, q2, q3

through I.

Thus,

AQ1 ... y =
k1d + y− a
d + x− a

(x− a) + a2,

BQ2 ... y =
k2d + y− b
d + x− b

(x− b) + b2, (9)

CQ3 ... y =
k3d + y− c
d + x− c

(x− c) + c2.

Let M12 = AQ1 ∩ BQ2, M23 = BQ2 ∩ CQ3, M13 = AQ1 ∩ CQ3. Some trivial but long
calculations deliver the following values of d for which these three points coincide

d1,2 =
−B ±√B2 − 4AC

2A , (10)

where

A = k1(c2 − b2) + k2(a2 − c2) + k3(b2 − a2) + k1k2(b− a) + k2k3(c− b) + k1k3(a− c),

B = k1(c3 − b3) + k2(a3 − c3) + k3(b3 − a3) + (k1k2 + 2k3x)(b2 − a2)

+(k1k3 + 2k2x)(a2 − c2) + (k2k3 + 2k1x)(c2 − b2) + (k1k2x− k3y)(b− a)

+(k2k3x− k1y)(c− b) + (k1k3x− k2y)(a− c),

C = (p− xy)[k1(c− b) + k2(a− c) + k3(b− a)] + x
[
k1(c3 − b3) + k2(a3 − c3) + k3(b3 − a3)

]
+(x2 − y)

[
k1(c2 − b2) + k2(a2 − c2) + k3(b2 − a2)

]
.

8
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The numbers d1,2 are real and different, real and identical, or a pair of complex
conjugate numbers depending on the value of B2 − 4AC.

The values d1,2 determine the points G1,2, the common points of the lines AQ1, BQ2,
and CQ3. The points G1 and G2 can be real and different, complex conjugate, or coinciding
depending on the value of B2 − 4AC. They are called generalized Gergonne points for the
triangle ABC and point I and lines q1, q2, q3, through it.

Remark: By eliminating the parameter d from the first two equations of (9), we obtain
the equation

(y− a)(x− a)− (x− a)(y− a2)

y− a2 − k1(x− a)
=

(y− b)(x− b)− (x− b)(y− b2)

y− b2 − k2(x− b)
. (11)

It represents the locus m12 of points M12 when d runs through R. The curve m12 is
obviously a conic. In the same manner, we conclude that the loci of M13 and M23 are conics
as well. According to Theorem 2, three loci m12, m13 and m23 share two further common
points G1,2 except the fixed point I, see Figure 2.

Note that, if directions k1, k2, k3 are given, B2 − 4AC from (10) is a quadratic function
of I(x, y). This means that there will be two, one, or none real points G1,2 depending
on whether the point I is located outside, on or inside the conic i with the equation
B2 − 4AC = 0, see Figure 3.

A

B

C

I

Q1

Q2

Q3

G1�G2

k1

k2
k3

q1

q2

q3

i

x

y

Figure 3. The locus i of all points I for which two generalized Gergonne points G1, G2 of the triangle
ABC in directions k1, k2, k3 coincide.

Now, we can also state:

Theorem 3. Let ABC be the standard triangle and k1, k2, k3 three directions. All points I for which
there is a unique value d ∈ R\{0} such that for points Q1, Q2, Q3 on lines q1, q2, q3 in directions
k1, k2, k3 with d(I, Q1) = d(I, Q2) = d(I, Q3) = d the lines AQ1, BQ2, and CQ3 are concurrent
lie on a parabola.

9



Mathematics 2023, 11, 1562

Proof of Theorem 3. It is left to prove that the conic i with the equation B2 − 4AC = 0 is a
parabola. After replacing x, y with x, y and introducing notations

D = k1(c2 − b2) + k2(a2 − c2) + k3(b2 − a2),

F = k1(c− b) + k2(a− c) + k3(b− a),

the terms of the highest degree in the equation of i are

[(A−D)x−Fy]2.

Thus, the conic i touches the absolute line in one point, the isotropic point of the line

y =
A−D
F x.

4. Discussion and Conclusions

This study gives a contribution to the very rich base of triangle properties in the
isotropic plane. We have proved that for a triangle ABC and its contact triangle AiBiCi,
there is a pencil of circles Km such that for each circle km from the pencil the lines AAm,
BBm, CCm are concurrent at a point Gm, where Am, Bm, Cm are points on km parallel to
Ai, Bi, Ci, respectively. When km runs through K(m), the generalized Gergonne points Gm
form a special hyperbola.

Further on, to each triangle ABC, a point I and three lines q1, q2, q3 through I we have
associated three conics intersecting at I and two generalized Gergonne points G1 and G2.
The existence of G1 and G2 follows from the existence of two values d such that for points
Q1, Q2, Q3 on q1, q2, q3 with d(I, Q1) = d(I, Q2) = d(I, Q3) = d the lines AQ1, BQ2 and
CQ3 are concurrent. For arbitrary directions, the points I, such that G1, G2 coincide, lie on
a parabola.

In the papers [7,8], the authors studied some further curves related to Gergonne points;
they studied the loci of Gergonne points in different pencils of triangles in the isotropic
plane. Hence, this paper completes the investigations given there.
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3. Beban-Brkić, J.; Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. On Gergonne point of the triangle in isotropic plane. Rad HAZU.
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Abstract: The Gauss–Bonnet formula finds applications in various fundamental fields. Global or
local analysis on the basis of this formula is possible only in integral form since the Gauss–Bonnet
formula depends on the choice of a simple region of an orientable smooth surface S. The objective
of the present paper is to construct a differential relation of the metric properties concerned at a
point on S. Pointwise analysis on S is possible through the differential relation, which is expected to
provide new geometrical insights into existing studies where the Gauss–Bonnet formula is applied in
integral form.
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1. Introduction

Let S be an orientable smooth surface in R3 and R a region of S with boundary.
Then the Gauss–Bonnet formula, which can be found in textbooks of classical differential
geometry (e.g., [1,2]), states that:∫∫

R
K +

∫
∂R

κg = 2πχ(R), (1)

where K is the Gaussian curvature over S, κg is the geodesic curvature over the boundary
∂R of R in S, and χ(R) is the Euler–Poincaré characteristic of R. Common to various
applications of the Gauss–Bonnet formula so far, any local or global analysis is viable only
in integral form, since the relation between geometry and topology depends on the choice
of R. For instance, the deflection angle of light by gravitational lensing has been calculated
on the basis of the Gauss–Bonnet formula, and the setup for integral regions is indispensable
for this calculation [3–17]. As a pioneering example of such an application, Gibbons and
Werner considered two regions of a static, spherically symmetric spacetime [5]: one is
bounded by two geodesics connecting the source and observer, and the other is a simply
connected, asymptotically flat region. The integral of Gaussian curvature over the former is
the key term for the calculation of the deflection angle. More precisely, the deflection angle
of light can be calculated for asymptotically flat spacetimes, as follows:

α = −
∫∫

So
Kdσ, (2)

where K is the Gaussian curvature over an optical surface and dσ is its element. This
formula can have different forms depending on physical situations (see, e.g., [4,9,12,13]),
but the integral of K is essential in common.

Turning the point of view from a simple region of S to its single point p, five metric
properties are concerned at p: the Gaussian curvature, the normal to S, the geodesic
curvatures of intersecting curves at p, their speeds, and the angles of intersection between

Mathematics 2023, 11, 2337. https://doi.org/10.3390/math11102337 https://www.mdpi.com/journal/mathematics12
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those curves. To the best of our knowledge, the differential relation between these five
geometric objects has not been uncovered so far. If this differential relation is constructed,
it will be employable for pointwise analysis on S. Further, as those five properties are
associated in the Gauss–Bonnet formula, it could provide new geometrical insights into
existing applications of the formula that inevitably relied on integral analysis. The objective
of the present paper is thus to construct a differential relation between the above-described
five geometric objects for a general extension of application of the Gauss–Bonnet formula
to differential analysis.

2. Preliminaries and the Main Results

Let r : U → S be a parametrization of S in an open set U ⊆ R2. We consider a rect-
angular domain D ⊂ U: [uc − Δu/2, uc + Δu/2]× [vc − Δv/2, vc + Δv/2], where (uc, vc)
is the coordinate of the center σc of D. In addition, we use P to denote the image under
r(u, v) of D. This image has four external angles and these are denoted by θi, i = 1, 2, 3, 4,
which are ordered in the positive orientation from the angle formed at the lower right
vertex of P. In addition, the positively oriented boundary of P consists of four curves and
these are denoted by ci, i = 1, 2, 3, 4, which are ordered in the same orientation from the
upper one. Apart from these curves, we use γi, i = 1, 2, 3, 4, to denote the subsets of r(u, v)
corresponding to the sides of D. These are represented as follows:

γ1(u) := r(u, vc + Δv/2), u ∈ [uc − Δu/2, uc + Δu/2]; (3)

γ2(v) := r(uc − Δu/2, v), v ∈ [vc − Δv/2, vc + Δv/2]; (4)

γ3(u) := r(u, vc − Δv/2), u ∈ [uc − Δu/2, uc + Δu/2]; (5)

γ4(v) := r(uc + Δu/2, v), v ∈ [vc − Δv/2, vc + Δv/2]. (6)

The trajectories of the boundary paths c1 and c2 are overlapped with those of γ1(u)
and γ2(v), respectively, but with opposite orientation. On the other hand, c3 and c4 are
compatible with γ3(u) and γ4(v), respectively. Figure 1 illustrates the introduced notations
on D and P.

Figure 1. A rectangular region in the uv-plane and the image under r of the rectangle.

Remark 1. It can be easily seen that P is a simple region of S and χ(P) = 1.

We present two definitions for the surface S and the parametrization r(u, v).

Definition 1. We define two real-valued functions Fa, Fb : r−1(S)→ R, as follows:

Fa(u, v) := κg
(
r(u, v = const)

)∣∣r′(u, v = const)
∣∣, (u, v) ∈ U; (7)

13
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Fb(u, v) := κg
(
r(u = const, v)

)∣∣r′(u = const, v)
∣∣, (u, v) ∈ U, (8)

where κg is the geodesic curvature of a coordinate curve on the map of r(u, v) and |r′(u, v =
const)| and |r′(u = const, v)| are the speeds of the coordinate curves v = const. and u = const.,
respectively.

Remark 2. Given that S is orientable and smooth, it can be easily seen that Fa(u, v) and Fb(u, v)
are at least of class C1(U). First, these two functions are explicitly written as follows:

Fa(u, v) =
〈ruu, n ∧ ru〉

|ru|2 , (9)

Fb(u, v) =
〈rvv, n ∧ rv〉
|rv|2 , (10)

where the subscripts u, v, uu, and vv denote the first- and second-order derivatives of r(u, v) with
respect to u and v and n is the unit normal to S. The coordinates of r(u, v) are of class Cω(U) since
S is smooth. In addition, every 2-form on S is positive by the definition of an orientable surface in [2],
so that |ru|, |rv| �= 0 in U. These two facts yield that the first-order derivatives of Fa(u, v) and
Fb(u, v) with respect to u and v are continuous in U.

Definition 2. Two intersecting coordinate lines at some point (u, v) ∈ U quadrisect a region
centered at the point, and the images under r(u, v) of the coordinate lines form an oriented angle of
intersection on each quadrant. These are measured by the positively turning displacements from
ru to rv, from rv to −ru, from −ru to −rv, and from −rv to ru, where ru and rv are the tangent
vectors to the coordinate curves v = const. and u = const., respectively. For such angles on each
point of S, we define four intersection angle functions such that φi : r−1(S) → R, i = 1, 2, 3, 4,
which are ordered in the positive orientation from the angle formed on the first quadrant. Figure 2
illustrates φi at pc = r(σc).

Figure 2. The intersection angle formed by two intersecting coordinate curves on (a–d) each of the
four quadrants.

Remark 3. The four intersection angle functions are related to each other; φ1 and φ2 are vertically
opposite to φ3 and φ4, respectively, and φ1 and φ3 are adjacent to φ2 and φ4, respectively. Therefore,
three relations between φi are established: φ1 = φ3, φ2 = φ4, and φ2 = π − φ1. In order to reduce
the notations φi, we substitute φ1 with φ and then, the others are naturally expressed in terms of φ
by those three relations: φ1 = φ3 = φ and φ2 = φ4 = π − φ.

The definition of φi seems redundant, but it helps the reader to systematically under-
stand the process of expressing the sum of θi in differential form in the proof of Theorem 1.
The following states our main results.
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Theorem 1. Let S be an orientable smooth surface in R3, and let r : U → S be a parametrization
of S in an open set U ⊆ R2. Then for each (u, v) ∈ U

K
∣∣N∣∣+(

∂Fb
∂u
− ∂Fa

∂v

)
− ∂2φ

∂u∂v
= 0, (11)

where K is the Gaussian curvature over S, N is the normal to S, Fa and Fb are the products of the
geodesic curvatures of the coordinate curves v = const. and u = const. and the speeds of those
curves, respectively, and φ is the positively oriented angle of intersection from the coordinate curve
v = const. to u = const. on S.

Corollary 1. The Gaussian curvature, which is explicitly expressed from the differential relation of
Theorem (1), is intrinsic for orientable smooth surfaces in R3.

3. Real Analyticity of φ

We present a lemma that states the real analyticity of φ. For the proof of this lemma,
we recall three propositions proven in [18].

Proposition 1 ([18], Proposition 2.2.3). Let f be a real analytic function defined on an open set
U ⊆ Rm. Then f is continuous and has continuous, real analytic partial derivatives of all orders.
Further, the indefinite integral of f with respect to any variable is real analytic.

Proposition 2 ([18], Proposition 2.2.2). Let U, V ⊆ Rm be open. If f : U → R and g : V → R

are real analytic, then f + g, f · g are real analytic on U ∩V, and f /g is real analytic on U ∩V ∩
{x : g(x) �= 0}.

Proposition 3 ([18], Proposition 2.2.8). If f1, f2, . . . , fm are real analytic in some neighborhood of
the point α ∈ Rk and g is real analytic in some neighborhood of the point ( f1(α), f2(α), . . . , fm(α)) ∈
Rm, then g[ f1(x), f2(x), . . . , fm(x)] is real analytic in a neighborhood of α.

Lemma 1. The intersection angle function φ(u, v) is real analytic in U.

Proof. As mentioned in Remark 2, |ru|, |rv| �= 0 in U. Accordingly, when r(u, v) is given
as ( f (u, v), g(u, v), h(u, v)), φ(u, v) can be explicitly written by the formula of the angle
between two nonzero vectors, as follows:

φ(u, v) = arccos
( 〈ru, rv〉
|ru||rv|

)
= arccos

(
fu fv + gugv + huhv√

f 2
u + g2

u + h2
u
√

f 2
v + g2

v + h2
v

)
, (12)

where the subscripts u and v denote the first-order derivatives of f (u, v), g(u, v), and h(u, v)
with respect to u and v. We shall prove this lemma by showing that the composite arc cosine
function in Equation (12) is real analytic in U, and this will proceed in a bottom-up way.

Since S is smooth, f (u, v), g(u, v), and h(u, v) are real analytic in U. By Proposition 1,
any derivatives of these functions with respect to u and v are thus real analytic, and further,
by Proposition 2, any products of these derivatives and any sums of these products are
also real analytic. The numerator of the input for arccos(x) is thus real analytic in U.
For the denominator,

√
f 2
u + g2

u + h2
u and

√
f 2
v + g2

v + h2
v are the compositions of

√
x and

f 2
u + g2

u + h2
u and

√
x and f 2

v + g2
v + h2

v, respectively. The inputs for
√

x are real analytic
in U for the same reason above. Further, these inputs cannot be equal to zero in U (as
mentioned at the beginning of this proof). Taking into account that the elementary function√

x, x ∈ R+, is real analytic in R+∗ , by Proposition 3,
√

f 2
u + g2

u + h2
u and

√
f 2
v + g2

v + h2
v are

real analytic in U. Further, by Proposition 2, so is the product of these two composite square
root functions. When put together, the numerator and denominator, again by Proposition 2,
the resultant rational function is real analytic in U. According to the Cauchy–Schwarz
inequality, the rational function, which is the input for arccos(x), can have an absolute
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value less than or equal to 1 in U. However, ru and rv are linearly independent by the
definition of an orientable surface, so that the absolute value is always less than 1 in U.
Taking into consideration that arccos(x), |x| ≤ 1, is real analytic in |x| < 1, by Proposition 3
this fact yields that the composite arc cosine function is real analytic in U.

4. Proofs

The outline for the proof of Theorem 1 is as follows. At a build-up stage, the Gauss–
Bonnet formula is applied to P to obtain a base equation. At the latter part, the base
equation is discretized and then the differential relation is derived by taking the limit of the
discretized equation as (Δu, Δv)→ (0, 0).

Proof of Theorem 1. The Gauss–Bonnet formula is rewritten for P:∫∫
P

KdA +
∫

∂P
κg(s)ds +

4

∑
i=1

θi = 2π. (13)

First, the integral of Gaussian curvature over P is given by the integral over D, as follows:∫∫
P

KdA =
∫∫

D
K
∣∣N∣∣dudv. (14)

Second, the integrals of geodesic curvature along the positively oriented boundary paths of
P are written. The geodesic curvature of an oriented regular curve contained in an oriented
surface changes sign when the orientation of the curve is reversed [1]. Accordingly,
the geodesic curvatures of c1 and c2 can be represented by those of γ1(u) and γ2(v) with
opposite signs, respectively:

κg(c1) = −κg(γ1(u)), (15)

κg(c2) = −κg(γ2(v)). (16)

On the other hand, the geodesic curvatures of c3 and c4 are compatible with those of γ3(u)
and γ4(v):

κg(c3) = κg(γ3(u)), (17)

κg(c4) = κg(γ4(v)). (18)

The integral of geodesic curvature along ci may be represented by that over γi, as follows:

∫
c1

κg(s)ds = −
∫ uc− Δu

2

uc+
Δu
2

−κg
(
γ1(u)

)∣∣γ′1(u)∣∣du, (19)

∫
c2

κg(s)ds = −
∫ vc− Δv

2

vc+
Δv
2

−κg
(
γ2(v)

)∣∣γ′2(v)∣∣dv, (20)

∫
c3

κg(s)ds =
∫ uc+

Δu
2

uc− Δu
2

κg
(
γ3(u)

)∣∣γ′3(u)∣∣du, (21)

∫
c4

κg(s)ds =
∫ vc+

Δv
2

vc− Δv
2

κg
(
γ4(v)

)∣∣γ′4(v)∣∣dv. (22)

By means of Definition 1, the integrands in the right sides of Equations (19)–(22) are sub-
stitutable with Fa(u, vc + Δv/2), Fb(uc − Δu/2, v), Fa(u, vc − Δv/2), and Fb(uc + Δu/2, v),
respectively. Accordingly, the above four integrals are rewritten in terms of Fa(u, v) and
Fb(u, v): ∫

c1

κg(s)ds =
∫ uc− Δu

2

uc+
Δu
2

Fa

(
u, vc +

Δv
2

)
du, (23)
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∫
c2

κg(s)ds =
∫ vc− Δv

2

vc+
Δv
2

Fb

(
uc − Δu

2
, v
)

dv, (24)

∫
c3

κg(s)ds =
∫ uc+

Δu
2

uc− Δu
2

Fa

(
u, vc − Δv

2

)
du, (25)

∫
c4

κg(s)ds =
∫ vc+

Δv
2

vc− Δv
2

Fb

(
uc +

Δu
2

, v
)

dv. (26)

By adding up these integrals,

4

∑
i=1

∫
ci

κg(s)ds =
∮

∂D
(Fadu + Fbdv). (27)

Since the positively oriented boundary ∂D of D is a simple closed, piecewise smooth curve,
and as stated in Remark 2, ∂Fb/∂u and ∂Fa/∂v are continuous in U, Green’s theorem holds
for the above integral. Accordingly, the integral along ∂D may be transformed into that
over D, as follows: ∮

∂D
(Fadu + Fbdv) =

∫∫
D

(
∂Fb
∂u
− ∂Fa

∂v

)
dudv. (28)

Third, the sum of the external angles of P is expressed in differential form. Since the
domain for P is a rectangle, those external angles are measured by the positively turning
displacements from ru to rv, from rv to −ru, from −ru to −rv, and from −rv to ru at the
vertices of P, respectively. This implies that the external angles θi can be represented in
terms of φi(u, v). Further, by the two relations established in Remark 3, θi is consequently
expressed in terms of φ:

θ1 = φ1

(
uc +

Δu
2

, vc − Δv
2

)
= φ

(
uc +

Δu
2

, vc − Δv
2

)
, (29)

θ2 = φ2

(
uc +

Δu
2

, vc +
Δv
2

)
= π − φ

(
uc +

Δu
2

, vc +
Δv
2

)
, (30)

θ3 = φ3

(
uc − Δu

2
, vc +

Δv
2

)
= φ

(
uc − Δu

2
, vc +

Δv
2

)
, (31)

θ4 = φ4

(
uc − Δu

2
, vc − Δv

2

)
= π − φ

(
uc − Δu

2
, vc − Δv

2

)
. (32)

Since φ(u, v) is real analytic in U (as stated in Lemma 1), φ(σ), where σ ∈ D is some point
in the neighborhood of σc, may be expanded at σc as a convergent Taylor-series if σ lies
within the region of convergence centered at σc. At this stage, it may be assumed that D
is small enough to satisfy that its vertices lie within the region of convergence. When the
values of φ(u, v) corresponding to the vertices of D are expanded as Taylor-series at σc,
this assumption ensures their convergence. The four Taylor-series expansions are written
as follows:
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φ
(

uc +
Δu
2 , vc − Δv

2

)
= φ(σc) +

∂φ
∂u

∣∣∣∣∣
σc

(
Δu
2

)
− ∂φ

∂v

∣∣∣∣∣
σc

(
Δv
2

)
+ 1

2

⎧⎨⎩ ∂2φ

∂u2

∣∣∣∣∣
σc

(
Δu
2

)2 − 2 ∂2φ
∂u∂v

∣∣∣∣∣
σc

(
Δu
2

)(
Δv
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
Δv
2

)2

⎫⎬⎭
+∑∞

n=3

⎧⎨⎩ 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)k
(

Δu
2

)n−k(Δv
2

)k

⎫⎬⎭,

(33)

φ
(

uc +
Δu
2 , vc +

Δv
2

)
= φ(σc) +

∂φ
∂u

∣∣∣∣∣
σc

(
Δu
2

)
+ ∂φ

∂v

∣∣∣∣∣
σc

(
Δv
2

)
+ 1

2

⎧⎨⎩ ∂2φ
∂u2

∣∣∣∣∣
σc

(
Δu
2

)2
+ 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
Δu
2

)(
Δv
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
Δv
2

)2
⎫⎬⎭

+∑∞
n=3

⎧⎨⎩ 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(
Δu
2

)n−k(Δv
2

)k

⎫⎬⎭,

(34)

φ
(

uc − Δu
2 , vc +

Δv
2

)
= φ(σc)− ∂φ

∂u

∣∣∣∣∣
σc

(
Δu
2

)
+ ∂φ

∂v

∣∣∣∣∣
σc

(
Δv
2

)
+ 1

2

⎧⎨⎩ ∂2φ
∂u2

∣∣∣∣∣
σc

(
Δu
2

)2 − 2 ∂2φ
∂u∂v

∣∣∣∣∣
σc

(
Δu
2

)(
Δv
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
Δv
2

)2

⎫⎬⎭
+∑∞

n=3

⎧⎨⎩ 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)n−k
(

Δu
2

)n−k(Δv
2

)k

⎫⎬⎭,

(35)

φ
(

uc − Δu
2 , vc − Δv

2

)
= φ(σc)− ∂φ

∂u

∣∣∣∣∣
σc

(
Δu
2

)
− ∂φ

∂v

∣∣∣∣∣
σc

(
Δv
2

)
+ 1

2

⎧⎨⎩ ∂2φ

∂u2

∣∣∣∣∣
σc

(
Δu
2

)2
+ 2 ∂2φ

∂u∂v

∣∣∣∣∣
σc

(
Δu
2

)(
Δv
2

)
+ ∂2φ

∂v2

∣∣∣∣∣
σc

(
Δv
2

)2
⎫⎬⎭

+∑∞
n=3

⎧⎨⎩ 1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

(−1)n
(

Δu
2

)n−k(Δv
2

)k

⎫⎬⎭.

(36)

By introducing these expanded series into Equations (29)–(32) and then adding up the
resultant equations,

4

∑
i=1

θi = 2π − ∂2φ

∂u∂v

∣∣∣∣∣
σc

ΔuΔv + R̃, (37)

where R̃ is the sum of the remainders:

R̃ = ∑∞
n=3

[
1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣∣
σc

{
(−1)k + (−1)

+(−1)n−k + (−1)n+1
}(

Δu
2

)n−k(Δv
2

)k
]

.

(38)

The sum of Equations (14), (28) and (37) follows from the Gauss–Bonnet formula:

∫∫
D

{
K
∣∣N∣∣+(

∂Fb
∂u
− ∂Fa

∂v

)}
dudv− ∂2φ

∂u∂v

∣∣∣∣∣
σc

ΔuΔv + R̃ = 0, (39)
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where 2π has been canceled out. Since S is orientable and smooth, the integrand of the
double integral in Equation (39) is continuous in D. The mean value theorem for definite
integrals thus holds for the integral term in Equation (39). Accordingly, there exists some
point σ∗ in the open region of D, such that

∫∫
D

{
K
∣∣N∣∣+(

∂Fb
∂u
− ∂Fa

∂v

)}
dudv =

{
K(σ∗)

∣∣N(σ∗)
∣∣+(

∂Fb
∂u

∣∣∣∣∣
σ∗
− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
ΔuΔv. (40)

By introducing the right side of Equation (40) into Equation (39),{
K(σ∗)

∣∣N(σ∗)
∣∣+(

∂Fb
∂u

∣∣∣∣∣
σ∗
− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
ΔuΔv− ∂2φ

∂u∂v

∣∣∣∣∣
σc

ΔuΔv + R̃ = 0. (41)

The above equation is then divided by ΔuΔv:{
K(σ∗)

∣∣N(σ∗)
∣∣+(

∂Fb
∂u

∣∣∣∣∣
σ∗
− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
− ∂2φ

∂u∂v

∣∣∣∣∣
σc

+
R̃

ΔuΔv
= 0. (42)

By taking the limit of this equation as (Δu, Δv)→ (0, 0),

lim(Δu,Δv)→(0,0)

{
K(σ∗)

∣∣N(σ∗)
∣∣+(

∂Fb
∂u

∣∣∣∣∣
σ∗
− ∂Fa

∂v

∣∣∣∣∣
σ∗

)}
− ∂2φ

∂u∂v

∣∣∣∣∣
σc

+ lim(Δu,Δv)→(0,0)

(
R̃

ΔuΔv

)
= 0.

(43)

Let I(u, v) be the integrand of the double integral in Equation (39). Since I(u, v) is continu-
ous in D (as mentioned above), the extreme value theorem holds for I(u, v). Accordingly,
there exist σm and σM in D, such that

I(σm) ≤ I(σ) ≤ I(σM), ∀σ ∈ D. (44)

By the way,
lim

(Δu,Δv)→(0,0)
I(σm) = lim

(Δu,Δv)→(0,0)
I(σM) = I(σc). (45)

Since I(σm) ≤ I(σ∗) ≤ I(σM), by the squeeze theorem

lim
(Δu,Δv)→(0,0)

I(σ∗) = I(σc). (46)

Therefore, σ∗ tends to σc as (Δu, Δv) → (0, 0). On the other hand, the remainder term in
Equation (42) is written as follows:

R̃
ΔuΔv = ∑∞

n=3

[
1
n! ∑n

k=0

(
n!

(n−k)!k!

)
∂(n)φ

∂u(n−k)∂v(k)

∣∣∣∣
σc

{
(−1)k + (−1)

+(−1)n−k + (−1)n+1
}(

1
4

)(
Δu
2

)n−k−1(Δv
2

)k−1
]

.

(47)

In the above equation, the sum of the power terms of (−1) in the braces vanishes for
all k for odd n and for even k for even n. All terms multiplied by this sum thus vanish
irrespective of Δu and Δv. On the other hand, all terms for odd k for even n tend to
zero as (Δu, Δv) → (0, 0). Together, R̃/(ΔuΔv) vanishes as (Δu, Δv) → (0, 0). Finally,
the differential relation at σc is obtained as follows:

K(σc)
∣∣N(σc)

∣∣+(
∂Fb
∂u

∣∣∣∣
σc

− ∂Fa

∂v

∣∣∣∣
σc

)
− ∂2φ

∂u∂v

∣∣∣∣
σc

= 0. (48)
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Since the point σc is arbitrary, the above relation holds for each σ ∈ U. This completes the
proof.

As a preliminary setup for the proof of Corollary 1, the coefficients of the first and
second fundamental forms of r(u, v) are denoted as follows:

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈rv, rv〉, (49)

L = 〈ruu, n〉, M = 〈ruv, n〉, N = 〈rvv, n〉. (50)

According to Gauss’ Theorema Egregium, the Gaussian curvature of an orientable
smooth surface embedded in R3 is intrinsic. As is well known, this is proved by showing
that the Gaussian curvature is represented in terms only of E,F,G, and their derivatives.
The proof of Corollary 1 will proceed in a similar fashion.

Proof of Corollary 1. First, the Gaussian curvature K is expressed as a functional from
Equation (11),

K =

(
∂Fa
∂v − ∂Fb

∂u

)
+ ∂2φ

∂u∂v∣∣N∣∣ . (51)

The two entities φ and |N| in this equation are straightforwardly written in terms of E, F,
and G:

φ = arccos
(

F√
EG

)
, (52)

|N| =
√

EG− F2. (53)

To express Fa as a whole in the desired form, each of the terms consisting of Fa in Equation (9)
is first rewritten:

n ∧ ru =
ru ∧ rv

|ru ∧ rv| ∧ ru

=
1√

EG− F2
(〈ru, ru〉rv − 〈rv, ru〉ru)

=
Erv − Fru√

EG− F2

(54)

and
ruu = Γu

uuru + Γv
uurv + Ln, (55)

where Γk
ij are the Christoffel symbols of S. Then

Fa =
〈ruu, n ∧ ru〉

|ru|2

=
〈Γu

uuru + Γv
uurv + Ln, Erv−Fru√

EG−F2 〉
E

=
1

E
√

EG− F2
(Γu

uu〈ru, Erv − Fru〉+ Γv
uu〈rv, Erv − Fru〉)

=
1

E
√

EG− F2

(
Γu

uu(EF− FE) + Γv
uu(EG− F2)

)
=

√
EG− F2

E
Γv

uu.

(56)
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We recall the expression of the Christoffel symbol Γv
uu, as follows:

Γv
uu = −E(Ev − 2Fu) + EuF

2(EG− F2)
. (57)

By introducing this expression into the above equation,

Fa = −E(Ev − 2Fu) + EuF
2E
√

EG− F2
. (58)

Similarly,

Fb =
G(Gu − 2Fv) + GvF

2G
√

EG− F2
. (59)

In substituting the rewritten expressions of φ, |N|, Fa, and Fb into the explicit expression
of K and then manipulating the derivatives contained therein, it involves only E, F, G,
and their derivatives. This completes the proof.

5. Concluding Remarks and Examples

In summary, for orientable smooth surfaces in R3 we constructed a differential relation
between five metric properties: K, |N|, Fa, Fb, and φ. The differential relation can be applied
to those surfaces given by either orthogonal or non-orthogonal parameterizations since
Theorem 1 has no loss of generality for parametrization. In representing the Gaussian
curvature explicitly from the differential relation of Theorem 1, the resultant equation may
be regarded as a specific form of the Brioschi formula. However, it is emphasized that
the objective of this study is not to establish a new expression for the Gaussian curvature,
but to facilitate a general extension of the application of the Gauss–Bonnet formula via a
differential relation of the metric properties of S.

We present examples of the differential relation of Theorem 1 by means of two surfaces
given by orthogonal and non-orthogonal parameterizations, respectively. For a systematic
investigation, we hereafter denote the three budgets of Equation (11) by IK, Iκg , and Iφ in
order, respectively.

Example 1. Let S1 be a unit sphere, and let r1 be a parametrization of S1 such that r1(u, v) =
(sin u cos v, sin u sin v, cos u), (u, v) ∈ (0, π) × (0, 2π). Taking into account that r1(u, v) is
orthogonal and the geodesic curvature of the great circle v = const. over S1 is equal to zero,
the differential relation of Equation (11) is reduced to a particularly elementary form, as follows:

K
∣∣N∣∣+ ∂Fb

∂u
= 0. (60)

For a computer-aided investigation, we consider a subset of U as a test interval: 0 < u < π at
v = π/6. We computed IK, Iκg , Iφ, and their sum for the considered interval. First, we confirmed
that the root-mean-square (r.m.s.) value of the sum is zero. Figure 3a shows the variations of the
three budgets as a function of u. The values of Iφ are trivially zero since r1 is orthogonal. On the
other hand, the values of IK counteract exactly those of Iκg .
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Figure 3. Budgets of the differential Equation (11) as a function of u for two surfaces: (a) at v = π/6
for a unit sphere and (b) at v = 0 for the monkey saddle.

Example 2. Let S2 be the “monkey saddle” given by r2(u, v) = (u, v, u3 − 3v2u), (u, v) ∈
(−∞, ∞)× (−∞, ∞). It is well known that S2 is an orientable smooth surface. We computed IK,
Iκg , and Iφ for a test interval: −1 ≤ u ≤ 1 at v = 0. For this case, the order of the r.m.s. value
of the sum is identified as 10−14, and we attribute this error to the floating-point precision in our
computation. As observed in Figure 3b, the sum of the three budgets agrees with the differential
relation of Equation (11), but now with the non-trivial values of Iφ.
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Abstract: In this short note, I present a very quick review of the peculiarities of dimension four
in geometric topology. I consider, in particular, the role of geometric simple connectivity (which
means handle decomposition without handles of index one) for both closed manifolds and open
manifolds and for finitely presented groups, together with some of recent developments in geometric
group theory.
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1. Introduction

Since about 1950, geometric topology has seen spectacular advances. However, deep
mysteries still remain, exactly in dimension four—the present main topic in this short paper.
In addition, since geometric topology is very closely related to group theory, I discuss that
as well here.

As soon as we are in dimensions strictly larger than three, there are three related
contexts in which manifolds can be studied: differentiable (DIFF), piecewise linear (PL)
and topological (TOP). We cannot go here into the deep interconnections between these
three distinct categories, and to a large extent, I restrict the discussion here to the DIFF case;
whenever not, this is explicitly stated. Of course, DIFF means C∞.

I think that at the origin of this topic is the famous Poincaré Conjecture [1] from 1904,
stating that each closed simply connected 3-manifold is homeomorphic to the 3-sphere
S3. In the 1930s, this was extended to the generalized Poincaré Conjecture: each closed
n-manifold homotopically equivalent to Sn is actually homeomorphic to Sn.

Very soon, mathematicians found out that as soon as one gets to n equals 3, things get
very hard, and it was believed that difficulties only increased with dimensions. However,
in about 1957, there was a big breakthrough that totally changed the perspective. Steve
Smale discovered that in dimensions 5 and more, things become even easier, and so he
proved the generalized Poincaré Conjecture in dimensions n ≥ 5 [2,3].

Soon, John Stallings found a different approach for the same problem [4]; many big
breakthroughs followed (see for instance [5,6]), and high-dimensional topology became a
rather well understood topic.

For further purposes, I only mention here another related important theorem of
Stallings [7]: there is a unique DIFF structure on the Euclidean space Rn, for any n ≥ 5.
More generally, John Milnor and Michel Kervaire [8,9] showed that, in those dimensions,
the possible DIFF structures are actually controlled by algebraic topology.

Then, around 1983, Mike Freedman proved the 4-dimensional TOP Poincaré Conjec-
ture, and then he also essentially cleaned up the structure of compact, simply connected
4-manifolds in the TOP case [10,11].

Next, using Freedman’s work and also the equations of Yang-Mills from quantum
field theory, Simon Donaldson showed, among many other things, that there are even
uncountably many DIFF structures on the 4-dimensional Euclidean space R4 [12,13].
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Finally, in 2002–2003, Grisha Perelman, using the Ricci flow, a nonlinear partial dif-
ferential equation in infinite dimensions stemming from differential geometry, proved the
3-dimensional Poincaré Conjecture and, at the same time, Thurston’s Conjecture on the
geometrization of all closed 3-manifolds [14–16].

This is a very brief account of the glamorous successes of geometric topology, too
brief indeed and incomplete, but sufficient to understand how things have been in recent
decades. Now, we can move to the open problems.

2. Open Problems and Dimension Four

The first problem (the very obvious one) is the DIFF 4-dimensional Poincaré Conjecture.
This is still a deep mystery, and the fact is that dimension four is really very special.

Here below, I present a list of items that make dimension four really very different
from all the others.

(A) Already in Smale’s work cited above, the notion of geometric simple connectivity
(GSC) arose, which I very briefly explain now (more about it is written in the Appendix at
the end of the paper).

The notion of handle-body decomposition is equivalent to a Morse function where
higher index singularities occur only for higher values of the function. A handle of index λ
(a λ-handle), is a copy of

Bλ × Bn−λ

that is attached to some union of lower index handles, along ∂Bλ × Bn−λ, and a manifold
is geometrically simply connected if it admits a handle-body decomposition where all the
1-handles are cancellable by appropriate 2-handles; in the Appendix to the paper, I offer a
more precise definition.

In any case, we have an obvious implication

GSC =⇒ π1 = 0,

but what about the converse implication?
Here is the complete answer for compact n-manifolds:
(A1) For n ≥ 5, the answer is yes, π1 = 0 implies GSC. This was actually one of the

main steps in Smale’s proof of the high-dimensional Poincaré Conjecture.
(A2) For n = 4, the answer is no. Very explicitly, the Po-Mazur manifolds, which are

non-trivial factors of the 5-ball discovered long ago by the present author and by Barry
Mazur [17,18] and which clearly are simply-connected, were shown many years later not
to be GSC by Andrew Casson. He never published his argument, but many people knew
about it, and personally, I learned it from Mike Freedman.

(A3) Finally, for n equal 3, the answer is again yes. Very explicitly, the corresponding
implication is equivalent to the original Poincaré Conjecture, proved by Perelman [14–16].

Similar results to (A1) and (A3) are true for open manifolds, provided one adds the
condition of simple connectivity at infinity (a space is said to be simply connected at infinity
if loops close to infinity can be collapsed to a point still staying close to infinity); see here,
for instance, the paper by Po-Tanasi [19].

When one moves then to the non-compact manifolds with a non-empty boundary,
then we enter largely uncharted territory, except for the very special spaces endowed with
high symmetry coming from geometric group theory. This is a territory which, together
with others, I have explored a great deal, and we return to it later.

(B) When we go to the issue of DIFF structures versus TOP structures on a given
n-manifold, then dimension four is again very special.

For the dimensions n = 1, 2 or 3, on a given manifold, one can largely ignore the
distinction between the two, while for n ≥ 5, the difference between DIFF and TOP is
controlled by algebraic topology.

On the other hand, when we move to dimension four, the situation is completely
different. The uncountable infinity of different DIFF structures on R4, already mentioned
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earlier, lays this in front of us. Clearly, algebraic topology is powerless here; is there maybe
some still-to-be-discovered quantum topology that could help us here? I certainly do not
know, and I do not know either whether there is some earthly connection between the
present item (B) and the previous one (A). However, there is a connection between our (B)
and the next item (C).

(C) It is only in dimension four that the Yang-Mills equations (and hence the Maxwell
equations) make sense. This is so because only in dimension four is the Hodge dual of a
2-form again a 2-form. Of course, some people might add that four is the dimension of our
space-time, but that argument does not very much appeal to me.

(D) Largely connected with the Poincaré Conjecture is the classical Schoenflies problem,
of about the same vintage. The issue here is whether an Sn−1 embedded in Sn divides it
into two copies of Bn.

Again, of course, there are the contexts DIFF, PL and TOP. In any case, since the
1920s, things were clear for n equal to three or less, and complete mystery lay beyond
that. Then, in the late 1950s, a few years before Smale, came the big breakthrough of Barry
Mazur [20,21], who was barely 18 at that time. Below is what Barry proved.

If Xn is any of the two manifolds into which Sn−1 divides Sn, then we have a home-
omorphism f from Xn − {a boundary point} to Bn − {a boundary point}, extending of
course to the boundary point as well, and this f is infinitely differentiable, except maybe at
that boundary point.

A few years later, using the heaviest artillery of high-dimensional topology, Smale and
Milnor-Kervaire proved that for dimensions n equal to 5 or more, the map f is C∞ even at
that boundary point.

Hence, if n ≥ 5, via Mazur, Smale and Milnor-Kervaire, we have that

Xn =
DIFF

Bn,

holding actually for all dimensions, EXCEPT for n = 4, where it is still a big open mystery!
I have managed to prove that in the 4-dimensional Schoenflies context, the Schoenflies

ball X4 is GSC [22]. Now, if we would manage to show that any DIFF compact 4-manifold
homotopically equivalent to the 4-ball is GSC, this would be a big step towards the DIFF 4-
dimensional Poincaré Conjecture; see [23]. Personally, I have some doubts concerning the
truth of the conjecture in question.

For more details on the topology of dimension 4 and its particularities, we refer to the
classic books by Akbulut [24], Freedman-Quinn [11], Gompf-Stipsicz [25] and Scorpan [26].

3. Discrete Groups

We end this short review paper with some words concerning geometric group theory—
a topic that is very closely connected with the things we have just discussed.

It concerns finitely presented groups (no other ones will be considered here) and the
geometric and topological properties of the universal covering spaces of the compact spaces
having as fundamental group, the group in question. According to the viewpoint of the
quasi-isometries of Misha Gromov [27], the groups and those universal covering spaces are
in fact equivalent objects, and so many topological properties make sense for groups as
well (see e.g., [28,29]).

Now, when Grisha Perelman proved the Poincaré Conjecture and Thurston’s ge-
ometrization, this had very important consequences for group theory as well. For instance,
it actually implied that any fundamental group of a compact 3-manifold is simply con-
nected at infinity, whereas, on the other hand, this turns out to be a very rare property
among discrete groups [30].

However, in the realm of group theory, descending from the old classical work of Max
Dehn, there is the notion of quasi-simple filtration (QSF), which for fundamental groups of
3-manifolds is equivalent to simple connectivity at infinity; in the appendix here below, I
define QSF rigorously.
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A few years ago, I managed to prove that all groups are QSF; see here the tril-
ogy [31–33] and also the review papers by Daniele Otera and myself [34,35]. Now, GSC
also makes sense for groups, and it is a stronger property than QSF.

Louis Funar, Daniele Otera and myself are currently working on a project to show that
all groups are actually GSC, continuing our previous research in this direction [36,37]. On
this topic, see also my forthcoming paper “On the Whitehead nightmare and related topics”
which will appear in an issue of the European Mathematical Journal dedicated to the 80th
birthday of the recent Abel prize winner Dennis Sullivan.

4. Appendix (Explaining Some Technical Terms)

4.1. On GSC

For a manifold Mn of dimension n, we consider a decomposition starting with an
n-ball if Mn is compact, or with a regular neighborhood of an infinite tree if Mn is not; then,
in increasing order of indices λ come handles

Hλ = Bλ × Bn−λ, (∂Hλ = ∂Bλ × Bn−λ ∪ Bλ × ∂Bn−λ),

with ∂Bλ× Bn−λ being the attaching zone to lower index handles and Bλ× ∂Bn−λ being the
“lateral surface”. For two handles H2

α, H1
β, we consider the incidence number aα,β, which

counts how many times the attaching zone of the 2-handle goes through the lateral surface
of the 1-handle; no signs are involved here.

We say that the manifold Mn is GSC if for the family of 1-handles

∑
i∈I

H1
i

we can find a family of 2-handles ∑j∈J H2
j with I ≈ J, such that the corresponding geometric

incidence matrix aji has the property “easy id + nilpotent” (equivalent to id + nilpotent in
the finite case), namely

aji = δji + bji, bji ∈ Z+, with bji > 0 =⇒ j > i.

For more detailed information about this fundamental notion in geometric topology,
low-dimensional topology and geometric group theory, see [19,28,38,39].

4.2. On Yang-Mills Equations

We consider a closed oriented 4-manifold M4 endowed with a complex bundle of
structure group G, having a connection A. This comes with a curvature form FA with
values in the 2-forms

Ω(M4,LG).

With this, we have Bianchi’s theorem

dAFA = 0.

If � is the Hodge operator between 2-forms, we also have the Yang-Mills equations
(written here without the source term), namely

dA � FA = 0.

In a more basic form, this means (with ε = charge, I = current (or source)) that

∂Fμν/∂xν + 2ε[Aν × Fμν] + Iμ = 0.

The unknown here is the connection A, and as soon as G involves two dimensions or
more, the equations are non-linear. For G = U(1), we find Maxwell.
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Note also that the Yang-Mills equations are at the core of the Standard Model of
elementary particles, but that is another story. For all the details of this interesting field, we
refer the reader to and recommend Donaldson’s wonderful book [13].

4.3. On QSF

A locally compact complex X is QSF (quasi-simply filtrated) if for every compact subset
k of X there is some abstract simply connected finite complex K coming with a commutative
diagram

k ⊂ i
> X

K
f

>

j
>

where j is an inclusion map, and f is some simplicial map satisfying the Dehn-type property
j(k) ∩M2( f ) = ∅ (where M2( f ) ⊂ K denotes the set of double points of f ).

This notion was introduced by Stephen Brick and Mike Mihalik in [40] (but see
also [28,29,41]), and they also proved the following useful concepts:

• If K1 and K2 are two finite complexes with the same fundamental group G, then K̃1 if
QSF if and only if K̃2 is QSF. In this case we say that the group G is QSF.

• For fundamental groups of finite 3-complexes, QSF is equivalent to simple connectivity
at infinity.

5. Conclusions

In this short survey paper, we have stressed once again that four-dimensional topology
is very special indeed and deserves to be further studied in depth. In addition, in dimension
4, as far as geometric topology is concerned, there are still big questions waiting to be
explored and solved. Furthermore, all these questions concern several distinct branches of
mathematics: we have differential geometry and topology, calculus, Riemannian geometry,
geometric topology, global analysis, combinatorial topology, algebraic topology, wild
topology, group theory, geometric group theory, mathematical physics, theoretical physics
and partial differential equations. It is a rich and vast research area, with connections to the
real world and applications in physics.
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Abstract: The primary goal of this research is to initiate the pairwise c-compact concept in topological
and bitopological spaces. This would make us to define the concept of c-compact space with some of
its generalization, and present some necessary notions such as the H-closed, the quasi compact and
extremely disconnected compact spaces in topological and bitopological spaces. As a consequence,
we derive numerous theoretical results that demonstrate the relations between c-separation axioms
and the c-compact spaces.

Keywords: pairwise compact; pairwise c-compact; pairwise H-closed; pairwise quasi compact space
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1. Introduction

Compactness owns a significant role in topology and also so for a certain of its more
grounded and weaker kinds. Among those kinds is H-closedness, whereby the theory
of such kinds was studied by Alexandroff et al. in 1929 [1]. Thirty years after that date,
Singal et al. discussed the spaces of nearly-compact type. In 1976, the S-compact space
was established as another type of compact spaces [2]. Many other researchers have
explored a few other types of compactness from time to time [3]. In this work, we intend
to introduce many new theoretical results of the weaker type of compact spaces for the
purpose of defining the c-compact space, and then generalizing such space to pairwise
c-compact space.

The notion of bitopological spaces is a set endowed with two topologies, and it might
be written as χ = (χ, β1, β2), where β1, β2 are topologies on χ. Typically, if the set is χ
and the topologies are β1 and β2, then the bitopological space is referred to as (χ, β1, β2).
Corresponding to well-known properties of topological spaces, there are versions for
bitopological spaces. We state some of them below for completeness:

• A bitopological space (χ, β1, β2) is pairwise compact if each cover {Ui | i ∈ I} of χ
with Ui ∈ β1 ∪ β2 contains a finite subcover. In this case, {Ui | i ∈ I}must contain at
least one member from β1 and at least one member from β2.

• A bitopological space (χ, β1, β2) is pairwise Hausdorff if for any two distinct points
x, y ∈ χ there exist disjoint U1 ∈ β1 and U2 ∈ β2 with x ∈ U1 and y ∈ U2.

• A bitopological space (χ, β1, β2) is pairwise zero-dimensional if opens in (χ, β1) which
are closed in (χ, β2) form a basis for (χ, β1), and opens in (χ, β2) which are closed in
(χ, β1) form a basis for (χ, β2).

The notion of bitopological space is associated with several previous studies that have
been performed on bitopological spaces through which every single one of topologies is just
a set of points that satisfies a set of axioms. With some common standard theoretical findings
characterized by Tietze extension, the so-called pairwise normal spaces, pairwise regular
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and pairwise Hausdorff were studied well in 1963 by Kelly [4]. Afterward, Kim (1968)
and Patty (1967) carried some further works out in the field of bitopological spaces [5,6].
Expand ability, nearly expand ability and feebly expand ability of bitoplogical spaces were
explained by Oudetallah in [7,8]. In addition, the space of pairwise r-compact was defined
well in bitopological spaces in [9].

For the reason of that the subject of c-compactness is one of the topological spaces’
subjects, we intend to deeply explore this subject in the bitopological spaces. Accordingly,
there will be a lot of theoretical results and findings that can be satisfied in these bitopolog-
ical spaces. We think that the results derived in this paper can find their applications in
some applications in the field of real analysis due to it is known, e.g., that (R, τu) doesn’t
represent a compact space, but (R, τu, τu) is a c-bitopological compact space. For instance,
this assertion ultimately allows one to apply the Heine-Borel Theorem, which is regarded
very important in the field of real analysis. In this article, we intend to propose a new
class of compact spaces, named the pairwise c-compact space (or simply p-c-compact) in
topological spaces and bitopological spaces. Accordingly, numerous results are generated
from this concept related to the H-closed, the quasi compact and extremely disconnected
compact spaces in the considered spaces. In addition, numerous other results associated
with relations between c-separation axioms and the c-compact spaces are derived as well.
However, the rest of this article is organized in the subsequent order: In the next part, we
define the p-c-compact space, and then we establish numerous results on the basis of this
space. In Section 3, we derive other several theorems associated with the connection of the
c-separation axioms with the c-compact spaces. Finally, the last section summarizes the
main points of this work.

2. On p-c-Compact Spaces

In this part, we aim to set a definition for the p-c-compact concept in topological
spaces and bitopological spaces. As a consequence, numerous other definitions related
to this concept are defined well. Those definitions are then used to derive numerous
generalizations and novel results associated with the H-closed, the quasi compact and
extremely disconnected compact spaces in topological spaces and bitopological spaces.
Herein, it is noteworthy to highlight that all preliminaries stated below, are considered an
important part of the contribution of this work. In particular, such preliminaries would
help us in establishing Theorems 2 and 3 stated at the end of this section in which the first
theorem determines a strong condition that makes the topological space χ is c-compact,
while the second theorem outlines another strong condition that can make the bitopological
space χ is p-compact.

Definition 1 ([10]). If B ⊆ χ and (χ, β) is a topological space. Then

(i) If B = B
o
, then B is regular open set of χ.

(ii) B = Bo if and only if B is regular closed set of χ.
(iii) There exists an open set � in which � ⊆ B ⊆ � if and only if B is a semi-open set in χ.

Definition 2. Consider (χ, β1, β2) is a bitopological space and B ⊆ χ. We say that

(i) B is a p-regular open set if B = Intβ1(CLβ1(B)) and B = Intβ2(CLβ2(B)).
(ii) B is a p-regular closed set if B = CLβ1(Intβ1(B)) and B = CLβ2(Intβ2(B)).
(ii) B is a p-semi-open set if there exists an open set ω in which ωβ1 ⊆ B ⊆ CLβ1(ω) and

ωβ2 ⊆ B ⊆ CLβ2(ω).

Remark 1. If (χ, β1, β2) is a bitopological space and B ⊆ χ, we have

• If χ− B is a p-regular open set, then B is called a p-regular closed set.
• If χ− B is a p-regular closed set, then B is called a p-regular open set.

Theorem 1. Consider (χ, β1, β2) is a bitopological space. Each p-open set is a p-semi-open set.
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Proof. Consider B is a p-regular open set. Then, we have Intβi (B) ⊆ B ⊆ CLβi (B), for all
i = 1, 2. So, we obtain ω ⊆ B ⊆ CLβi (ω), for all i = 1, 2. Therefore, B is a p-semi-open
set.

Definition 3 ([2]). If every open cover of χ has a finite subfamily whose closures cover χ, then the
topological space (χ, β) is called quasi H-closed space.

Definition 4 ([2]). If every βi-open cover of χ has a finite subfamily whose closures cover χ, the
bitopological space χ = (χ, β1, β2) is called p-quasi H-closed space, for all i = 1, 2.

Definition 5 ([11]). If every open cover has a finite subfamily such that the interior of the closures
of which covers χ, then the space (χ, β) is called nearly compact space.

Definition 6. If every βi-open cover of χ has a finite subfamily so that the interior of closures of
which covers χ, then the bitopological space χ = (χ, β1, β2) is called a p-nearly compact space, for
all i = 1, 2.

Definition 7 ([2,12]). If every semi-open cover of χ has a finite subfamily whose closure covers χ,
then the space (χ, β) is called S-closed space.

Definition 8. If every βi-semi open cover of χ has a finite subfamily whose closure covers χ, then
the bitopological space χ = (χ, β1, β2) is called a p-S-closed space, for all i = 1, 2.

Definition 9. Consider χ = (χ, β1, β2) is a bitopological space. It is said that χ is a p-c-compact
space if for all i, j = 1, 2 and �∼ = {ωα : α ∈ ∧} is a βi-open cover of A, there exists a finite

collection of βi-open sets ωα1 , ωα2 , . . . , ωαn such that A ⊂
n⋃

k=1

ωαk , for all i = 1, 2.

Definition 10 ([2,4]). A Housderff space χ = (χ, β) is defined as a p-H-closed space if for all open

cover �∼ = {ωα : α ∈ ∧} of χ, there exists a finite collection {ωαk}n
k=1 in which A ⊂

n⋃
k=1

ωαk .

Definition 11. A p-Housderff space χ = (χ, β1, β2) is defined as a p-H-closed space if βi-open

cover �∼ = {ωα : α ∈ ∧} has a finite βi-collection {ωαk}n
k=1 such that A ⊂

n⋃
k=1

ωαk , for all

i, j = 1, 2.

Definition 12 ([2]). A set A of a bitopological space is defined as regular open set if Int(A) = A.

Definition 13. If Int(A) = A in β1 and Int(A) = A in β2, then the subset A of bitopological
space (χ, β1, β2) is called a p-regular open set.

Theorem 2. Consider χ = (χ, β) is a topological space. Then, the space χ is c-compact if and only
if for all A subset of χ and for every �∼ = {ωα : α ∈ ∧} in which ωα is a regular open set and

covers A, there exists a finite collection {ωαk}n
k=1 of �∼ in which A ⊂

n⋃
k=1

ωαk .

Proof. ⇒ Consider χ is a c-compact space. Consider A ⊂ χ and �∼ = {ωα : α ∈ ∧} such

that �α is a regular open set and covers A. Then, we have Int(ωα) = ωα, for all α ∈ A.
Since Int(ωα) is open set for all α ∈ ∧, then by the c-compactness of χ the result is hold.
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⇐ Consider the condition here is to prove that χ is a c-compact space. For this purpose, we
consider that �∼ = {ωα : α ∈ ∧} is an open cover of A, ∀A ⊂ χ. So, we have

A ⊂ ⋃
α∈∧

ωα ⊂
⋃

α∈∧
ωα ⊂

⋃
α∈∧

Int(ωα).

Thus, {Int(ωα), α ∈ ∧} forms an open cover of A called Int(ωα) = vα, for all α ∈ ∧.
Therefore, A ⊂ ⋃

α∈∧
vα. Consequently, by the conditions of this theorem, we can have

A ⊂ ⋃
α∈∧

vαk , and hence χ is a c-compact space.

Theorem 3. Consider χ = (χ, β1, β2) is a bitopological space. The space χ is p-space if and only
if ∀A subset of χ and for every βi, �∼ = {ωα : α ∈ ∧} such that ωα is regular open set and covers

A, there exists a βi-finite collection {ωαk}n
k=1 of �∼ such that A ⊂

n⋃
k=1

ωαk , for all i = 1, 2.

Proof. ⇒ Consider χ is a p-c-compact space. Consider A ⊂ χ and �∼ = {ωα : α ∈ ∧} such

that ωα is regular open set and βi covers A, for all i = 1, 2. So, we have Int(ωα) = ωα, for
all α ∈ ∧ in βi, for all i = 1, 2. Now, since Int(ωα) is βi-open set for all α ∈ ∧ and for all
i = 1, 2, then by the p-c-compactness of χ, the result is hold.
⇐ Consider the state here is to show that χ is a p-c-compact space. To this end, we consider
�∼ = {ωα : α ∈ ∧} is a βi-open cover of A, for all A ⊂ χ and for all i = 1, 2. So, we have

A ⊂ ⋃
α∈∧

ωα ⊂
⋃

α∈∧
ωα ⊂

⋃
α∈∧

Int(ωα).

Consequently, {Int(ωα), α ∈ ∧} forms an open cover of A called Int(ωα) = vα,
∀α ∈ ∧. Therefore, we obtain A ⊂ ⋃

α∈∧
vα. Thus, by the conditions of this theorem, we can

have A ⊂ ⋃
α∈∧

vαk , and therefore χ is a p-c-compact space.

3. Relations between c-Separation Axioms and c-Compact Spaces

In the following content, we continue deriving numerous results theoretically, but
this time to demonstrate the relations between c-separation axioms and the c-compact
spaces. In what follows, we state two important definitions in relation to the topological
and bitopological spaces in which they would be very useful to establish the next theorems.

Definition 14. Consider χ = (χ, β) is a topological space. The space χ is said to be

(i) c− T0-space if for all θ �= ϑ ∈ χ, there exists an open set ωθ in χ in which θ ∈ ωθ and
ϑ /∈ ωθ , and there exists an open set vϑ in which ϑ ∈ vϑ and θ /∈ vϑ.

(ii) c-compact T1-space if for all θ �= ϑ in χ, there exists an open set ωθ in χ in which θ ∈ ωθ and
ϑ /∈ ωθ , and there exists an open set vϑ in χ in which ϑ /∈ vϑ and θ /∈ vϑ.

(iii) c-compact T2-space if for all θ �= ϑ in χ, there exist two open sets ωθ and vϑ in χ in which
θ ∈ ωθ , ϑ ∈ vϑ and ωθ ∩ vϑ = φ.

(iv) c-regular space if for all θ /∈ A such that A is a closed subset in χ, there exist two open sets
ωθ and vϑ in which θ ∈ ωθ , A ⊂ vA and ωθ ∩ vϑ = φ.

(v) c− T3-space if χ is a c− T1-space and c-regular space.
(vi) c− T4-space if χ is c-normal space and c-T1-space.
(vii) c-normal space if ∀ closed sets A and B in which A ∩ B = φ, there exist two open sets ωθ and

vϑ in which A ⊂ ωθ , B ⊂ vϑ and ωθ ∩ vϑ = φ.

Definition 15. Consider χ = (χ, β1, β2) is a bitopological space. The space χ is said to be
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(i) a p-c-T0-space if for all θ �= ϑ ∈ χ, ∃ωθ of a βi-open set in χ in which θ ∈ ωθ and ϑ /∈ ωθ ,
and ∃vϑ of a β j-open set in which ϑ ∈ vϑ and θ /∈ vϑ for all i, j = 1.

(ii) a p-c-compact T1-space if ∀θ �= ϑ in χ, ∃ωθ of a βi-open set in χ in which θ ∈ ωθ and
ϑ /∈ ωθ , and ∃vϑ of a β j-open set in χ in which ϑ /∈ vϑ and θ /∈ vϑ, for all i, j = 1, 2.

(iii) a p-c-compact T2-space, if for all θ �= ϑ in χ, ∃ωθ of a βi-open set and vϑ of a β j-open set in
χ in which θ ∈ ωθ , ϑ ∈ vϑ and ωθ ∩ vϑ = φ, ∀i, j = 1, 2.

(iv) a p-c-regular space if for all θ /∈ A and a βi-closed subset of χ, ∃ωθ of a βi-open set and vϑ of
a β j-open set in which θ ∈ ωθ , A ⊂ vA and ωθ ∩ vϑ = φ, for all i, j = 1, 2.

(v) a p-c-T3-space if χ is a p-c-T1-space and a p-c-regular space.
(vi) a p-c-normal space if for all A of a βi-closed set and for all B of a β j-closed set in which

A ∩ B = φ, ∃βi-open set and β j-open set in which A ⊂ ωθ , B ⊂ vϑ and ωθ ∩ vϑ = φ, for
all i, j = 1, 2.

(vii) a p-c-T4-space if χ is a p-c-normal space and a p-c-T1-space.

Theorem 4. Consider B is a c-compact subset in c-T2-space. For all θ �= ϑ, there exist two open
sets ωθ and vB in which θ ∈ ωθ , B ⊂ vB and ωθ ∩ vA

.
= φ.

Proof. Consider b ∈ B and θ �= a. Since θ /∈ B and χ is c-T2-space. So, there exist two open
sets ωθ(b) and v(b) in which ωθ(b) and b ∈ v(b) with ωθ(b) ∩ vαk (b) = φ. So, v∼ = {v(b) :

a ∈ B} is an open cover of B. Due to A ⊂ χ, then there exists a collection {vαθ
}n

k=1 in which

B ⊂
n⋃

k=1

vαk (b). Thus, we have θ ∈ vαk (b) and B ⊂ v, where v =
n⋃

k=1

vαk (b). As a result, we

can obtain

ω(b) ∩ v = ω(b) ∩
n⋃

k=1

vαk (b) =
n⋃

k=1

ω(b) ∩ vαk (b) =
n⋃

k=1

φ = φ,

and hence the result is hold.

Theorem 5. Consider B is a p-c-compact subset of a p-c-T2-space. For all θ �= ϑ, ∃βi-open set ωθ

and β j-open set vB in which θ ∈ ωθ and B ⊂ vB with ωθ ∩ vB
.
= φ, for all i = 1, 2.

Proof. Consider b ∈ B and θ �= a. Since θ /∈ B and χ is a p-c-T2-space, then ∃βi-open set
ωθ(b) and β j-open set v(b) in which ωθ(b) and b ∈ v(b) with ωθ(b) ∩ v(b) = φ, for i �= j,
i, j = 1, 2. Therefore, v∼ = {v(b) : a ∈ B} is an open cover of B, and due to B ⊂ χ, so there

exists a collection {vαθ
}n

k=1 in which B ⊂
n⋃

k=1

vαk (b). Thus, we obtain θ ∈ vα(b) and B ⊂ v,

where v =
n⋃

k=1

vαk(b). This implies

ω(b) ∩ v = ω(b) ∩
n⋃

k=1

vα(b) =
n⋃

k=1

ω(b) ∩ vα(b) =
n⋃

k=1

φ = φ.

Theorem 6. Consider A and B are two disjoint c-compact subsets of a p-T2-space χ = (χ, β). We
can sperate A and B by two disjoint open sets ωA and vB in which A ⊂ ωA and B ⊂ vB.

Proof. Consider we have two disjoint c-compact subsets A and B. Consider χ = (χ, β)
is a T2-space. Now, for all a ∈ A, we can obtain a /∈ B as A ∩ B = φ. Since B is a
c-compact subset of χ, so by Theorem 5, there exist two Bj-open sets ω(a) and v(B) in
which a ∈ ω(a) and B ⊂ v(B) with ω(a) ∩ v(B) = φ. Therefore, �∼ = {ω(a) : a ∈ A}
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represents an open cover of A, and hence A =
⋃

a∈A
(ω(a)). Due to A is c-compact subset,

there exists a regular open set {ωk(a) : k = 1, 2, . . . , n, ωk(a)} in which A ⊂
n⋃

k=1

Int(ωk(a)),

(say
n⋃

k=1

Int(ωk(a)) = ωA). So, we have A ⊂ ωA and B ⊂ vB in which ωA, vB are two open

sets. Thus, it is enough to show ωA ∩ vB = φ. To do so, one might have

ωA ∩ vB = (
n⋃

k=1

Int(ωk(a)) ∩VB =
n⋃

k=1

Int(ωk(a)) ∩VB.

But we have ωk(a)) ∩ vB = φ and Int(ωk(a)) ⊂ ωk(a). Therefore, we get

Int(ωk(a)) ∩VB = φ,

and hence ωA ∩ vB =
n⋃

k=1

φ = φ.

Theorem 7. Consider we have two disjoint Bi-c-compact subsets A and B of a p-T2-space χ =
(χ, β1, β2). We can sperate A and B by two disjoint Bj-open sets ωA and vB in which A ⊂ ωA
and B ⊂ vB, for all i �= j, i, j = 1, 2.

Proof. Consider we have two disjoint Bi−c−compact subsets A and B, for all i = 1, 2.
Consider χ = (χ, β1, β2) is a p-T2-space. For all a ∈ A, we have a /∈ Bas A ∩ B = φ. Since B
is Bi-c-compact subset of χ, so by Theorem 6, ∃Bj-open sets ω(a) and v(B) in which a ∈ ω(a)
and B ⊂ v(B) with ω(a)∩ v(B) = φ, for all i, j = 1, 2. Thus, �∼ = {ω(a) : a ∈ A} represents

an Bj-open cover of A, and so A =
⋃

a∈A
(ω(a)). Due to A is a Bi-c-compact subset, so there

exists a regular open set {ωk(a) : k = 1, 2, . . . , n, ωk(a)} in which A ⊂
n⋃

k=1

Int(ωk(a)), (say

n⋃
k=1

Int(ωk(a)) = ωA), for all i = 1, 2. Accordingly, A ⊂ ωA and B ⊂ vB such that ωA and

vB are two Bi-open sets, for all i = 1, 2. From this point, it is enough to show ωA ∩ vB = φ.
To do so, we have

ωA ∩ vB = (
n⋃

k=1

Int(ωk(a)) ∩VB =
n⋃

k=1

Int(ωk(a)) ∩ vB.

But ωk(a)) ∩ vB = φ and Int(ωk(a)) ⊂ ωk(a). Consequently, we have Int(ωk(a)) ∩
vB = φ, and hence

ωA ∩ vB =
n⋃

k=1

φ = φ.

In subsequent paragraphs, we first introduce a specific definition that illustrates the
concept of p-extremely disconnected bitopological space, followed by a certain theoret-
ical result associated with such a definition. Afterward, we continue exploring further
results in connection with the relationships between the c-separation axioms and the
c-compact spaces.

Definition 16. If every βi-open set is a βi-clopen set, then the bitopological space χ = (χ, β1, β2)
is called p-extremely disconnected, for all i = 1, 2.
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Theorem 8. The space χ = (χ, β1, β2) is a p-extremely disconnected compact space if and only if
it is a p-c-compact space.

Proof. Consider �∼ = {ωα : α ∈ ∧} is a βi-open cover of A, for all i = 1, 2. Consider

χ = (χ, β1, β2) is a p-extremely disconnected compact space and A be a subset of χ. Then,
A =

⋃
α∈∧

ωα and χ = (χ− A) ∪ A implies

χ = (χ− A) ∪ (
⋃

α∈∧
ωα).

As a result, U�∼
∗ = {χ− A, ωα : α ∈ ∧} represents an open cover of χ. Due to χ is a

p-compact space, then χ has a βi-finite subcover, say

χ = (χ− A) ∪ (
⋃

α∈∧
ωαk ) : k = 1, 2, . . . , n,

for all i = 1, 2. Consequently, we get χ = (χ− A) ∪
n⋃

k=1

ωαk . Thus, we attain A =
n⋃

k=1

ωαk .

Due to χ is a p-disconnected space, then ωαk = ωαk , for all k = 1, 2, . . . , n. Thus, A =
n⋃

k=1

ωαk

for χ is a p-c-compact space. Now, consider χ = (χ, β1, β2) is a p-extremely disconnected
c-compact space. Consider �∼ = {ωα : α ∈ ∧} is a βi-open cover of χ, for i = 1, 2 and

A ⊂ χ. So, �∼ is a βi-open cover of A, for all i = 1, 2. It means that A =
n⋃

k=1

ωαk . But, we

have

χ = A ∪ (χ− A) = (
n⋃

k=1

ωαk ) ∪ (χ− A).

So {χ− A, ωαk : k = 1, 2, . . . , n} is a finite subcover of χ, and therefore χ is a p-compact
space.

Theorem 9. Every compact space χ = (χ, β) is a c-compact space.

Proof. Consider �∼ = {ωα : α ∈ ∧} is an open cover of A, where A is a subset of χ. So,

{ωα : χ− A : α ∈ ∧} forms an open cover of χ. Due to χ is a compact space, we have

χ ⊂ (
n⋃

k=1

ωαk ) ∪ (χ− A), and so A ⊂
n⋃

k=1

ωαk ⊂
n⋃

k=1

ωαk . Therefore, {ωα1 , ωα2 , . . . , ωαn} is a

collection of �∼ and A ⊂
n⋃

k=1

ωαk . Therefore, χ is a c-compact space.

Theorem 10. Every p-compact space χ = (χ, β1, β2) is a p-c-compact space.

Proof. Consider i = 1, 2, and �∼ = {ωα : α ∈ ∧} is a βi-open cover of A, where A is a

subset of χ. So, {ωα : χ− A : α ∈ ∧} forms a βi-open cover of χ, for all i = 1, 2. Due to χ is

a p-compact space, then χ ⊂ (
n⋃

k=1

ωαk ) ∪ (χ− A), and so A ⊂
n⋃

k=1

ωαk ⊂
n⋃

k=1

ωαk . Therefore,

{ωα1 , ωα2 , . . . , ωαn} is a βi-collection of �∼ and A ⊂
n⋃

k=1

ωαk , for all i = 1, 2. Hence, χ is a

p-c-compact space.

Theorem 11. Every extremely disconnected nearly compact space χ = (χ, β) is a c-compact space.
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Proof. Consider (χ, β) is an extremely disconnected nearly compact space. Consider A ⊂ χ
and �∼ = {ωα : α ∈ ∧} is an open cover of A, so A ⊂ ⋃

α∈∧
ωα and χ− A covers it set. Thus,

{ωα, χ− A : α ∈ ∧} forms an open cover of χ. But χ is extremely disconnected, then ωα is
a clopen set ∀α ∈ ∧. Thus, we have ωα = ωα, and so ω◦α = ωα. Hence, we get ωα = ω◦α ,
which gives χ ⊂ (

⋃
α∈∧

ω◦α) ∪ (χ− A). Now, since χ is a nearly compact space, we have

χ ⊂ (
⋃

α∈∧
ω◦α) ∪ (χ− A), and so we have

A ⊂ (
n⋃

k=1

ω◦α) =⊂ (
n⋃

k=1

ω◦α).

Hence, χ is a c-compact space.

Theorem 12. Every p-extremely disconnected nearly compact space χ = (χ, β1, β2) is a p-c-
compact space.

Proof. Consider (χ, β1, β2) is a p-extremely disconnected nearly compact space. Consider
that A ⊂ χ and �∼ = {ωα : α ∈ ∧} is a βi-open cover of A, for all i = 1, 2. So, A ⊂ ⋃

α∈∧
ωα

and χ− A covers it set. So, we have {ωα, χ− A : α ∈ ∧} forms a βi-open cover of χ, for all
i = 1, 2. But, χ is p-extremely disconnected, which implies that ωα is a βi-clopen set for all
α ∈ ∧ and for all i = 1, 2. Therefore, ωα = ωα, and so ω◦α = ωα. Thus, we get ωα = ω◦α , and
consequently we obtain χ ⊂ (

⋃
α∈∧

ω◦α) ∪ (χ− A). Now, since χ is a p-nearly compact space,

then χ ⊂ (
⋃

α∈∧
ω◦α) ∪ (χ− A). This immediately gives

A ⊂
n⋃

k=1

ω◦α .

Hence, χ is a p-c-compact space.

Theorem 13. Every quasi H-closed space χ = (χ, β) is a c-compact space.

Proof. Consider (χ, β) is a quasi H-closed space. Consider A ⊂ χ and �∼ = {ωα : α ∈ ∧}
is an open cover of A. As a consequence, {ωα, χ− A} : α ∈ ∧} forms an open cover of χ,

which is a quasi H-closed. Consequently, we have χ ⊂ (
n⋃

k=1

ωαk ) ∪ (χ− A). Now, due to

(χ− A) covers χ− A, then A ⊂ (
n⋃

k=1

ωαk ), and hence χ is a c-compact space.

Theorem 14. Every quasi p-H-closed space χ = (χ, β1, β2) is a p-c-compact space.

Proof. Consider (χ, β1, β2) is a p-quasi H-closed space. Consider A ⊂ χ and �∼ = {ωα :

α ∈ ∧} is a βi-open cover of A, for all i = 1, 2. Then, {ωα, χ− A : α ∈ ∧} forms a p-open

cover of χ. Due to χ is quasi H-closed, we have χ ⊂ (
n⋃

k=1

ωαk ) ∪ (χ− A). Also, due to

(χ− A) covers χ− A, then A ⊂ (
n⋃

k=1

ωαk ), and hence χ is a p-c-compact space.

Theorem 15. If χ = (χ, β) is an H-closed and S-closed space, then it is a c-compact space.
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Proof. Consider χ = (χ, β) is an H-closed and S-closed space. Consider A is a subset of χ
and �∼ = {ωα : α ∈ ∧} is an open cover of A. Then, there exists α ∈ ∧ in which ωα ⊂ A

⊂ ωα as χ is an S-closed space. Thus, we have⋃
α∈∧

ωα ⊂ A ⊂ ⋃
α∈∧

ωα.

This implies that {ωα : α ∈ ∧} forms a cover of χ, which is also a closure of χ. In the

same regard, since χ is an H-closed space, we get A ⊂
n⋃

k=1

ωαk , and hence χ is a c-compact

space.

Theorem 16. Consider χ = (χ, β1, β2) is a p-H-closed and a p-S-closed space, then it is a
c-compact space.

Proof. Consider χ = (χ, β1, β2) is a p-H-closed and a p-S-closed space. Consider A is a
subset of χ and �∼ = {ωα : α ∈ ∧} is a βi-open cover of A, for all i = 1, 2. So, ∃α ∈ ∧
in which ωα ⊂ A as χ is a p-S-closed space. As a consequence

⋃
α∈∧

ωα ⊂ A ⊂ ⋃
α∈∧

ωα.

Therefore, {ωα : α ∈ ∧} forms a βi-H-closed cover of χ, for all i = 1, 2. Thus, because of χ

is p-H-closed space, then A ⊂
n⋃

k=1

ωαk . Hence, χ is a p-c-compact.

Theorem 17. If χ = (χ, β) is an extremely disconnected space, then the statements below are
equivalent:

(i) χ is c-compact with respect to the closed subspace.
(ii) χ is nearly compact.
(iii) χ is a quasi H-closed space.

Proof. (i→ii) Consider χ is c-compact and �∼ = {ωα : α ∈ ∧} is an open cover of χ. Now,

∀B ⊂ χ, we have �∼ is a cover of B. This means B ⊂ ⋃
α∈∧

ωα. But χ is a c-compact space,

so B ⊂
n⋃

k=1

ωα. Due to χ is an extremely disconnected space, so χ− B and ωαk are

clopen sets, for all k = 1, 2, . . . , n. Thus, ω◦αk
= ωαk , for all k = 1, 2, . . . , n. This implies

B ⊂ ω◦αk
, which means χ ⊂ (

n⋃
k=1

ω◦αk
) ∪ (χ− B). Consequently, {ω◦αk

χ− B, k =

1, 2, . . . , n} is a subcover of �∼ that covers χ. Thus, χ is nearly compact space.

(ii→iii) Consider χ is a nearly compact space and �∼ = {ωα : α ∈ ∧} is an open cover of

χ, so it has a finite subcover of interior of closure set, say {ω◦αk
χ− B, k = 1, 2, . . . , n}.

With the use of nearly compactness of χ, we attain χ ⊂ (
n⋃

k=1

ω◦αk
). Since χ is an

extremely disconnected space, then ωαk is a clopen set, for all k = 1, 2, . . . , n. Hence,

ω◦αk
= ωαk , and so χ ⊂

n⋃
k=1

ωα. This means that χ is an H-closed space.

(iii→i) Consider χ is an H-closed space and �∼ = {ωα : α ∈ ∧} is an open cover of B, where

B is a closed subspace of χ. Thus, �∼ is an open cover of B. Since χ is an H-closed
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space, so B ⊂ χ ⊂
n⋃

k=1

ωα. Also, due to χ is an extremely disconnected space, we

obtain B ⊂
n⋃

k=1

ωα. Hence, χ is a c-compact space.

Theorem 18. Consider χ = (χ, β1, β2) is a p-extremely disconnected space, then the following
are equivalent:

(i) χ is p-c-compact with respect to βi-closed subspace, for all i = 1, 2.
(ii) χ is p-nearly compact.
(iii) χ is a p-quasi H-closed space.

Proof. (i→ii) Consider χ is p-c-compact and �∼ = {ωα : α ∈ ∧} is a βi-open cover of

χ, for all i = 1, 2. Now, for all βi-closed set B ⊂ χ, we have �∼ is a βi-cover of B,

for all i = 1, 2. This means B ⊂ ⋃
α∈∧

ωα. But χ is a p-c-compact, which implies

B ⊂
n⋃

k=1

ωα. In this regard, since χ is a p-extremely disconnected space, so χ − B

and ωαk are βi-clopen sets, for all k = 1, 2, . . . , n and for all i = 1, 2. Thus, one might
get ω◦αk

= ωαk , for all k = 1, 2, . . . , n. As a result, B ⊂ ω◦αk
, which immediately

yields χ ⊂ (
n⋃

k=1

ω◦αk
) ∪ (χ− B). As a result, we have {ω◦αk

χ− B, k = 1, 2, . . . , n} is a

βi-subcover of �∼ of interior of closure of βi-open set that covers χ, for all i = 1, 2.

Hence, χ is a p-nearly compact space.
(ii→iii) Consider χ is a p-nearly compact space and �∼ = {ωα : α ∈ ∧} is a βi-open cover of

χ, for all i = 1, 2. Then, it possesses a finite βi-subcover of interior of closure set, say
{ω◦αk

χ− B, k = 1, 2, . . . , n}, for all i = 1, 2. By p-nearly compactness of χ, we have

χ ⊂ (
n⋃

k=1

ω◦αk
). Since χ is a p-extremely disconnected space, then ωαk is a βi-clopen

set, for all k = 1, 2, . . . , n and for all i = 1, 2. Hence, we have ω◦αk
= ωαk , which

consequently leads to χ ⊂
n⋃

k=1

ωα. Therefore, χ is a p-H-closed space.

(iii→i) Consider χ is a p-H-closed space and �∼ = {ωα : α ∈ ∧} is an βi-open cover of

B in which B is a βi-closed subspace of χ, for all i = 1, 2. Therefore, �∼ is a βi-open

cover of B, for all i = 1, 2. Due to χ is a p-H-closed space, then B ⊂ χ ⊂
n⋃

k=1

ωα.

Also, due to χ is a p-extremely disconnected space, then B ⊂
n⋃

k=1

ωα, and hence χ is a

p-c-compact space.

Theorem 19. The c-compactness possesses a hereditary property with respect to the closed subspace.

Proof. Consider χ is a c-compact space. Consider B is a closed subspace of χ and C
is a subset of B. Consider �∼ = {ωα : α ∈ ∧} is an open cover of β. Thus, we have

χ = C ∪ (χ − C). Because of C ⊂ B, then χ = C ∪ (χ − B). Therefore, we obtain χ =
(
⋃

α∈∧
ωα) ∪ (χ− B). This means that {ωα, χ− B : α ∈ ∧} forms an open cover. Since χ is
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c-compact, then every subset of χ might be covered by a finite subcover of closure of subset

of �∼ . So, we have β ⊂
n⋃

k=1

ωαk , and hence B is a c-compact space.

Theorem 20. The p-c-compactness possesses a hereditary property with respect to βi-closed sub-
space, for all i = 1, 2.

Proof. Consider χ is a p-c-compact space. Consider B is a βi-closed subspace of χ and C is
a βi-subset of B, for all i = 1, 2. Consider �∼ = {ωα : α ∈ ∧} is an βi-open cover of β, for

all i = 1, 2. Then, χ = C ∪ (χ− C). Since C ⊂ B, then χ = C ∪ (χ− B). This consequently
yields that χ = (

⋃
α∈∧

ωα) ∪ (χ− B), which gives {ωα, χ− B : α ∈ ∧} forms a βi-open cover,

for all i = 1, 2. Now, since χ is a p-c-compact space, then every subset of χ might be covered

by a finite βi-subcover of closure of subset of �∼ , for all i = 1, 2. So, we have β ⊂
n⋃

k=1

ωαk ,

which means that B is a p-c-compact space.

Theorem 21. If χ = (χ, β) is a c-compact, c− T2- and c-extremely disconnected space, then χ is
c− T4-space.

Proof. Consider χ = (χ, β) is a c-compact and c-T2-space. It is clearly that χ = (χ, β) is a
c-T1-space. Now, consider A and B be c-closed subsets of χ in which A ∩ B = φ. Due to χ
is a c-compact space, so by Theorem 20, A and B are two c-compact subsets of c-T2-space χ.
Also, by Theorem 20, there exist two c-open sets ωA and vB in which A ⊆ ωA and B ⊆ vB
with ωA ∩ vB = φ. Thus, χ is a c-T4-space.

Theorem 22. If χ = (χ, β1, β2) is a p-c-compact, p-c-T2- and p-c-extremely disconnected space,
then χ is a p-c-T4-space.

Proof. Consider χ = (χ, β1, β2) is a p-c-compact and p-c-T2-space. It is quite clear that
χ = (χ, β1, β2) is a p-c-T1-space. Now, consider A and B are two βi-c-closed subsets of χ
in which A ∩ B = φ, for all i = 1, 2. As a consequence, due to χ is a p-c-compact space,
then with the use of Theorem 21, A and B are βi-c-compact subsets of p-c-T2-space, for all
i = 1, 2. So, with the use of Theorem 21, there exist two βi-c-open sets ωA and vB in which
A ⊆ ωA and B ⊆ vB with ωA ∩ vB = φ, for all i = 1, 2. Thus, χ is a p-c-T4-space.

Theorem 23. Consider χ = (χ, β) is a c-T2- and c-extremely disconnected space. Every subset of
χ is closed set.

Proof. Consider A is a c-compact subset of χ and ϑ /∈ A. So, with the use of Theorem 22,
there exist two c-open sets ωθ and vA in which θ ∈ ωθ and A ⊆ vA with ωθ ∩ vA = φ.
Consequently, we have ω ⊆ (vA)

c, and because of A ⊆ v yields vc ⊆ Ac, then we have
θ ∈ ωθ ⊆ vc ⊂ Ac. As a result, due to ω is a c-open set, then Ac is r-open set, which means
that A is c-closed set.

Theorem 24. Consider χ = (χ, β1, β2) is a p-c-T2- and p-c-extremely disconnected space. Every
subset of χ is a βi-closed set, for all i = 1, 2.

Proof. Consider A is a βi-c-compact subset of χ and θ /∈ A, for all i = 1, 2. So, with the
help of Theorem 23, there exist two βi-c-open sets ωθ and vA in which θ ∈ ωθ and A ⊆ vA
with ωθ ∩ vA = φ, for all i = 1, 2. Therefore, we have ω ⊆ (vA)

c. Because of A ⊆ v leads
to vc ⊆ Ac, then we have θ ∈ ωθ ⊆ vc ⊂ Ac. Also, due to ω is a βi-c-open set, then Ac is a
βi-c-open set, for all i = 1, 2. Thus, A is βi-r-closed set, for all i = 1, 2.
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Theorem 25. If χ = (χ, β) is a c-compact, c-T2- and c-extremely disconnected space, then every
subset of χ is c-compact if and only if it is c-closed set.

Proof. ⇒ Consider A is a c-compact subset of χ, so with the help of Theorem 24, A is
c-closed set.
⇐ Consider A is a c-closed of a c-T2-extremely disconnected space, then by Theorem 24, A
is c-compact.

Theorem 26. If χ = (χ, β1, β2) is a p-c-compact, p-c-T2- and p-c-extremely disconnected space,
then every βi-subset of χ is a p-c-compact if and only if it is a βi-c-closed set, for all i = 1, 2.

Proof. ⇒ Consider A is a p-c-compact subset of χ, so with the help of Theorem 25, A is a
βi-c-closed set, for all i = 1, 2.
⇐ Consider A is a βi-c-closed of a p-c-compact, p-c-T2-extremely disconnected space, so
with the help of Theorem 25, A is a βi-c-compact, for all i = 1, 2.

4. Conclusions

In this work, we have initiated a novel concept, named the p-c-compact in topological
and bitopological spaces. Accordingly, we have defined the concept of c-compact space and
inferred some novel generalizations and results related to the H-closed, the quasi compact
and extremely disconnected compact spaces in topological and bitopological spaces. In
addition, we have derived several theoretical results that demonstrate the relations between
c-separation axioms and the c-compact spaces. However, this study can be extended to the
c-compactness in tritopological space (χ, β1, β2, β3), where β1, β2 and β3 are topologies on
χ. Based on this conception, many properties and results can be then inferred and derived
from such a study, which would be left to the future for further considerations.
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Abstract: We introduce a special vector field ω on a Riemannian manifold (Nm, g), such that the Lie
derivative of the metric g with respect to ω is equal to ρRic, where Ric is the Ricci tensor of (Nm, g)
and ρ is a smooth function on Nm. We call this vector field a ρ-Ricci vector field. We use the ρ-Ricci
vector field on a Riemannian manifold (Nm, g) and find two characterizations of the m-sphere Sm(α).
In the first result, we show that an m-dimensional compact and connected Riemannian manifold
(Nm, g) with nonzero scalar curvature admits a ρ-Ricci vector field ω such that ρ is a nonconstant
function and the integral of Ric(ω, ω) has a suitable lower bound that is necessary and sufficient
for (Nm, g) to be isometric to m-sphere Sm(α). In the second result, we show that an m-dimensional
complete and simply connected Riemannian manifold (Nm, g) of positive scalar curvature admits a
ρ-Ricci vector field ω such that ρ is a nontrivial solution of the Fischer–Marsden equation and the
squared length of the covariant derivative of ω has an appropriate upper bound, if and only if (Nm, g)
is isometric to m-sphere Sm(α).
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1. Introduction

An m-dimensional complete simply connected Riemannian manifold of constant
curvature α is isometric to one of the following spaces: the m-sphere Sm(α), the Euclidean
space Rm, or the hyperbolic space Hm(α), referred to as α > 0, α = 0, or α < 0, respectively
(cf. [1]). Because of this classification, there has been an interest in obtaining necessary
and sufficient conditions on complete Riemannian manifolds so that they are isometric to
one of the three model spaces Sm(α), Rm, and Hm(α), respectively. One of most sought
questions is about obtaining different characterizations of spheres Sm(α) among complete
Riemannian manifolds. In obtaining these characterizations, most of the time, the conformal
and Killing vector fields are used on an m-dimensional complete Riemannian manifold
(Nm, g) (cf. [2–11]). A vector field u on m-Riemannian manifold (Nm, g) is a conformal
vector field if the Lie derivative £ug has the expression

£ug = 2 f g,

where f is a smooth function called the conformal factor. If f = 0 in the above definition,
then u is called a Killing vector field.

In this paper, we are interested in a vector field ω on an m-dimensional Riemannian
manifold (Nm, g) that satisfies

1
2

£ωg = ρRic, (1)

where £ωg is the Lie-derivative of the metric g with respect to ω, ρ is a smooth function,
and Ric is the Ricci tensor of (Nm, g). We call ω satisfying Equation (1) a ρ-Ricci vector
field on (Nm, g). Naturally, if (Nm, g) is an Einstein manifold, then a ρ-Ricci vector field

Mathematics 2023, 11, 4622. https://doi.org/10.3390/math11224622 https://www.mdpi.com/journal/mathematics42
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ω is a conformal vector field on (Nm, g) (cf. [3,4]). If, in Equation (1), we take ρ = 0, then
the 0-Ricci vector field ω on (Nm, g) is a Killing vector field on (Nm, g) (cf. [12]). A ρ-Ricci
vector field on (Nm, g) is also a particular form of a potential field of a generalized soliton
(cf. [12]), with α = −ρ and β = γ = 0.

We could also approach to Equation (1) in another context (cf. [13]). On the m-
dimensional Riemannian manifold (Nm, g), take a smooth function ρ and consider a 1-
parameter family of metrics g(t) satisfying the generalized Ricci flow (or ρ-Ricci flow)
equation

∂tg = 2ρRic, g(0) = g. (2)

To reach a solution of above flow, we take a 1-parameter family of diffeomorphisms
ϕt : Nm → Nm generated by the family of vector fields W(t) and let σ(t) be a scale factor.
Then, we are interested in a solution of flow (2) of the form

g(t) = σ(t)ϕ∗t (g).

Differentiating the above equation with respect to t and substituting t = 0, while assuming
σ(0) = 1,

.
σ(0) = 0, W(0) = ω, and using ϕ0 = id, we obtain

£ωg− 2ρRic = 0,

which is Equation (1). Thus, a ρ-Ricci vector field ω on (Nm, g) can be considered as stable
solution of the flow (2).

We see that as a trivial example on the Euclidean space Rm, a constant vector field a is
a ρ-Ricci vector field for any smooth function ρ on Rm. Similarly on the complex Euclidean
space Cm with complex structure J and the vector field

ξ =
m

∑
i=1

zi ∂

∂zi ,

where z1, . . . , zm are Euclidean coordinates, the vector field ω = Jξ is a ρ-Ricci vector field
for any smooth function ρ on Cm.

Next, we show that on the sphere Sm(α) of constant curvature α, there are many ρ-Ricci
vector fields. With the embedding i : Sm(α)→ Rm+1 and unit normal ξ and shape operator
−√αI, upon taking a nonzero constant vector field b on the Euclidean space Rm+1, we have
b = ω + f ξ, where f = 〈b, ξ〉 and ω is the tangential component of b to the sphere Sm(α).
We denote the induced metric on the sphere Sm(α) by g and the Riemannian connection by
D. Then, differentiating the above equation with respect to the vector field X on Sm(α), we
have

DXω = −√α f X, ∇ f =
√

αω, (3)

where ∇ f is the gradient of f . Using the first equation in (3), it follows that

£ωg = −2
√

α f g

and the Ricci tensor of the sphere Sm(α) is given by

Ric = (m− 1)αg.

Thus, we see that the vector field ω on the sphere Sm(α) satisfies

1
2

£ωg = ρRic, ρ = − 1
(m− 1)

√
α

f , (4)

that is, ω is a ρ-Ricci vector field on the sphere Sm(α). Indeed, for each nonzero constant
vector field on the Euclidean space Rm+1, there is a ρ-Ricci vector field on the sphere Sm(α).
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The above example naturally leads to a question: Under what conditions is a compact
and connected m-dimensional Riemannian manifold (Nm, g) admitting a ρ-Ricci vector
field ω isometric to a m-sphere Sm(α)?

There are two well-known differential equations on a Riemannian manifold (Nm, g).
The first is Obata’s differential equation, namely (cf. [6,7]),

Hess(σ) = −ασg, (5)

where σ is a non-constant smooth function, α is a positive constant, and Hess(σ) is the
Hessian of σ defined by

Hess(σ)(X, Y) = g(DX∇σ, Y),

for smooth vector fields X, Y on Nm. Obata proved that a necessary and sufficient condition
for a complete and simply connected Riemannian manifold (Nm, g) to admit a nontrivial
solution of differential Equation (5) is that (Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).
The other differential equation on (Nm, g) is the Fischer–Marsden equation (cf. [14–19])

(Δσ)g + σRic = Hess(σ), (6)

where σ is a smooth function on Nm and Δσ = div(∇σ) is the Laplacian of σ. We shall
abbreviate the above Fischer–Marsden equation as FM-equation. Taking trace in the FM-
Equation (6), we obtain

Δσ = − τ

m− 1
σ, (7)

where τ = TrRic is the scalar curvature of the Riemannian manifold (Nm, g). It is known
that if (Nm, g) admits a nontrivial solution to the FM-equation, then the scalar curvature τ
is necessarily constant (cf. [14]).

Note that by Equation (3), the smooth function f on the sphere Sm(α) has the Hessian

Hess( f )(X, Y) = g(DX∇ f , Y) =
√

αg(DXω, Y) = −α f g(X, Y),

the Laplacian Δ f = div
(√

αω
)
= −mα f , and Ric = (m− 1)αg. Consequently, on Sm(α),

we see that
(Δ f )g + f Ric = Hess( f ), (8)

that is, f is a solution of the FM-equation on the sphere Sm(α). If we combine the two,
namely a Riemannian manifold (Nm, g) admits a ρ-Ricci vector field ω such that ρ is a
nontrivial solution of the FM-equation on (Nm, g), and seek an additional condition under
which (Nm, g) is isometric to Sm(α), we can notice that the ρ-Ricci vector field ω on the
sphere Sm(α) is a closed vector field. Therefore, in this paper, we use the closed ρ-Ricci
vector field ω on a Riemannian manifold (Nm, g) and answer these two question in Section
3, where we find two characterizations of the sphere Sm(α).

In respect to first question raised above, in Section 3, we show that if a closed ρ-Ricci
vector field ω on an m-dimensional compact and connected Riemannian manifold (Nm, g),
m > 2 with scalar curvature τ �= 0, and nonzero nonconstant function ρ satisfies∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2,

then the scalar curvature τ is a positive constant τ = m(m− 1)α, and (Nm, g) is isometric
to Sm(α) (cf. Theorem 1). Also, the converse holds. Moreover, in respect to the second
question raised above, we prove that if an m-dimensional complete and simply connected
Riemannian manifold (Nm, g) with scalar curvature τ > 0 admits a closed ρ-Ricci vector
field ω such that the function ρ is a nontrivial solution of the FM-equation and the length
of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2,
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then τ is a positive constant τ = m(m− 1)α and (Nm, g) is isometric to Sm(α) (cf. Theorem 2),
and the converse also holds.

2. Preliminaries

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold
(Nm, g). If β is the 1-form dual to ω, that is,

β(X) = g(ω, X), X ∈ Θ(TNm), (9)

where Θ(TNm) is the space of smooth sections of the tangent bundle TNm, then we have
dβ = 0. We denote by∇X the covariant derivative operator with respect to the Riemannian
connection on (Nm, g) and notice that for the closed ρ-Ricci vector field ω, we have

2g(∇Xω, Y) = g(∇Xω, Y) + g(∇Yω, X) + g(∇Xω, Y)− g(∇Yω, X)

= (£ωg)(X, Y) + dβ(X, Y) = 2ρRic(X, Y).

Thus, for a closed ρ-Ricci vector field ω, we have

∇Xω = ρTX, X ∈ Θ(TNm), (10)

where T is a symmetric operator called the Ricci operator given by

Ric(X, Y) = g(TX, Y).

Using the expression for the curvature tensor field R of (Nm, g)

R(X, Y)Z = [∇X ,∇Y]Z−∇[X.Y]Z, X, Y, Z ∈ Θ(TNm),

and Equation (10), we obtain

R(X, Y)ω = X(ρ)TY−Y(ρ)TX + ρ((∇XT)(Y)− (∇YT)(X)), (11)

X, Y ∈ Θ(TNm), where (∇XT)(Y) = ∇XTY− T(∇XY). The scalar curvature τ of (Nm, g)
is given by τ = TrT, where TrT is the trace of the symmetric operator T. Choosing a local
frame {F1, . . . , Fm} and using the definition of the Ricci tensor Ric

Ric(X, Y) =
m

∑
j=1

g
(

R
(

Fj, X
)
Y, Fj

)
,

together with Equation (3), we conclude that

Ric(Y, ω) = Ric(Y,∇ρ)− τY(ρ) + ρg

(
Y,

m

∑
j=1

(
∇Fj T

)
(Fj)

)
− ρY(τ), (12)

where ∇ρ is the gradient of ρ. It is known that the gradient of scalar curvature τ satisfies
(cf. [1])

1
2
∇τ =

m

∑
j=1

(
∇Fj T

)
(Fj). (13)

Consequently, Equation (12) takes the form

Ric(Y, ω) = Ric(Y,∇ρ)− τY(ρ)− 1
2

ρY(τ) (14)

and we have
T(ω) = T(∇ρ)− τ∇ρ− 1

2
ρ∇τ. (15)
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3. Characterizing Spheres via ρ-Ricci Fields

Let ω be a closed ρ-Ricci vector field on an m-dimensional Riemannian manifold
(Nm, g). We shall use ρ-Ricci vector field and find two characterizations of m-sphere Sm(α).
In our first result, we prove the following result:

Theorem 1. A closed ρ-Ricci vector field ω on an m-dimensional compact and connected Rieman-
nian manifold (Nm, g), m > 2 with scalar curvature τ �= 0 and nonzero nonconstant function ρ
satisfies ∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2,

if and only if, τ is a positive constant m(m− 1)α, and (Nm, g) is isometric to Sm(α).

Proof. Let (Nm, g) be an m-dimensional compact and connected Riemannian manifold,
m > 2 with scalar curvature τ �= 0 and ω be a closed ρ-Ricci vector field defined on (Nm, g)
with nonzero and nonconstant function ρ satisfying∫

M
Ric(ω, ω) ≥ m− 1

m

∫
M
(divω)2. (16)

Then using Equation (10), we have

divω = ρτ. (17)

Choosing a local orthonormal frame {F1, . . . , Fm} and using

‖T‖2 =
m

∑
j=1

g
(
TFj, TFj

)
and an outcome of Equation (10) as

(£ωg)(X, Y) = 2ρg(TX, Y), X, Y ∈ Θ(TNm),

we conclude
1
2
|£ωg|2 = 2ρ2‖T‖2. (18)

Note that, we have∥∥∥T − τ

m
I
∥∥∥2

=
m

∑
j=1

g
((

TEj − τ

m
Ej

)
,
(

TEj − τ

m
Ej

))
= ‖T‖2 +

1
m

τ2 − 2
m

∑
j=1

g
(

TEj,
τ

m
Ej

)
,

that is, ∥∥∥T − τ

m
I
∥∥∥2

= ‖T‖2 − 1
m

τ2. (19)

Now, using Equation (10), we have

ρ
(

TX− τ

m
X
)
=
(
∇Xω− τ

m
ρX

)
,
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which in view of a local frame {F1, . . . , Fm} on (Nm, g) implies

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
m

∑
j=1

g
(

ρ
(

TEj − τ

m
Ej

)
, ρ
(

TEj − τ

m
Ej

))
=

m

∑
j=1

g
(
∇Ej ω−

τ

m
ρEj,∇Ej ω−

τ

m
ρEj

)
= ‖∇ω‖2 +

1
m

τ2ρ2 − 2
m

τρdivω.

Using (17), in above equation, yields

ρ2
∥∥∥T − τ

m
I
∥∥∥2

= ‖∇ω‖2 − 1
m

τ2ρ2,

which upon integration gives∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
‖∇ω‖2 − 1

m
τ2ρ2

)
. (20)

Next, we recall the following integral formula (cf. [20])∫
Nm

(
Ric(ω, ω) +

1
2
|£ωg|2 − ‖∇ω‖2 − (divω)2

)
= 0,

and employing it in Equation (20), we conclude∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) +

1
2
|£ωg|2 − (divω)2 − 1

m
τ2ρ2

)
.

Using Equations (17) and (18) in the above equation yields∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) + 2ρ2‖T‖2 − τ2ρ2 − 1

m
τ2ρ2

)
,

that is,∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
Ric(ω, ω) + 2ρ2

(
‖T‖2 − 1

m
τ2ρ2

)
− τ2ρ2 +

1
m

τ2ρ2
)

.

In view of Equation (19), the above equation implies∫
Nm

ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
∫

Nm

(
m− 1

m
τ2ρ2 − Ric(ω, ω)

)
and substituting from Equation (17), it yields∫

Nm
ρ2
∥∥∥T − τ

m
I
∥∥∥2

=
m− 1

m

∫
Nm

(divω)2 −
∫

Nm
Ric(ω, ω).

Employing inequality (16) in the above equation, we conclude

ρ2
∥∥∥T − τ

m
I
∥∥∥2

= 0.

However, ρ �= 0 on connected Nm, gives

T =
τ

m
I. (21)
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Taking the covariant derivative in above equation, we have

(∇XT)(Y) =
1
m

X(τ)Y

and using a frame {F1, . . . , Fm} on (Nm, g) in above equation, we have

m

∑
j=1

(
∇Ej T

)
(Ej) =

1
m
∇τ.

Using Equation (13) in this equation, we arrive at

1
2
∇τ =

1
m
∇τ

and as m > 2, we conclude ∇τ = 0. Hence, the scalar curvature τ is a constant, and it is a
nonzero constant. Now, Equations (15) and (21) imply

τ

m
ω =

τ

m
∇ρ− τ∇ρ,

that is,
ω = −(m− 1)∇ρ (22)

and it gives divω = −(m− 1)Δρ, which, in view of Equation (17), implies τρ = −(m−
1)Δρ, that is,

−(m− 1)ρΔρ = τρ2.

Integrating the above equation by parts, we arrive at

(m− 1)
∫

Nm
‖∇ρ‖2 = τ

∫
Nm

ρ2.

Since ρ is a nonconstant, from the above equation, we conclude the constant τ > 0. We
put τ = m(m− 1)α for a positive constant α. Now, differentiating Equation (22) and using
Equations (10) and (21), we conclude

∇X∇ρ = −αρX, X ∈ Θ(TNm),

where ρ is a nonconstant function and α > 0 is a constant. Hence, Hess(ρ) = −αρg; that is,
(Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).

Conversely, suppose that (Nm, g) is isometric to the sphere Sm(α). Then, we know
that a nonzero constant vector field b on the ambient Euclidean space Rm+1 induces a
vector field ω on the sphere Sm(α), which, according to Equation (4), is a ρ-Ricci vector
field. Clearly, the scalar curvature of Sm(α) is given by τ = m(m− 1)α �= 0. We claim that
the function ρ is nonzero and nonconstant. If ρ = 0, then by Equation (4), we have f = 0,
which, in view of Equation (3), implies ω = 0, and this in turn will imply that the constant
vector field b = 0. This is contrary to the assumption that b is a nonzero constant vector
field. Hence, ρ �= 0. Now, suppose ρ is a constant; then, by Equation (4), f is a constant,
and by Equation (3), we have divω = −m

√
α f , which, by Stokes’s Theorem on compact

Sm(α), would imply f = 0. This in turn, by virtue of Equation (4), implies ρ = 0, which is a
contradiction, as seen above. Hence, the function ρ is nonzero and nonconstant.

Next, using Equations (3) and (4), we have

divω = m(m− 1)αρ (23)

and it gives ∫
Sm(α)

(divω)2 = m2(m− 1)2α2
∫

Sm(α)
ρ2. (24)
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Now, using Equation (4), we have

∇ρ = − 1
(m− 1)

√
α
∇ f , (25)

which, on using Equation (3), gives

∇ρ = − 1
m− 1

ω.

Taking divergence in the above equation and using Equation (23), we conclude Δρ = −mαρ,
that is, ρΔρ = −mαρ2. Integrating this equation by parts, we conclude∫

Sm(α)
‖∇ρ‖2 = mα

∫
Sm(α)

ρ2.

Treating this equation with Equation (24), we conclude∫
Sm(α)

(divω)2 = m(m− 1)2α
∫

Sm(α)
‖∇ρ‖2. (26)

Also, using Equations (3) and (25), we have

ω = −(m− 1)∇ρ

and it changes Equation (26) to∫
Sm(α)

(divω)2 = mα
∫

Sm(α)
‖ω‖2.

Finally, using Ric(ω, ω) = (m− 1)‖ω‖2 in the above equation, we conclude∫
Sm(α)

Ric(ω, ω) =
m− 1

m

∫
Sm(α)

(divω)2

and this finishes the proof.

Next, we consider a closed ρ-Ricci vector field on a compact and connected Riemannian
manifold (Nm, g) such that the smooth function ρ is a nontrivial solution of the FM-equation
and find yet another characterization of the sphere Sm(α). Indeed we prove the following
theorem.

Theorem 2. An m-dimensional complete and simply connected Riemannian manifold (Nm, g)
with scalar curvature τ > 0 admits a closed ρ-Ricci vector field ω such that the function ρ is a
nontrivial solution of the FM-equation and the length of covariant derivative of ω satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2,

if and only if τ is a positive constant τ = m(m− 1)α and (Nm, g) is isometric to Sm(α).

Proof. Suppose (Nm, g) is an m-dimensional complete and simply connected Riemannian
manifold with scalar curvature τ > 0, and it admits a closed ρ-Ricci vector field ω, where ρ
is a nontrivial solution of the FM-Equation (6) and the length of covariant derivative of ω
satisfies

‖∇ω‖2 ≤ 1
m

τ2ρ2. (27)
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For ρ, we define the operator Bρ by

BρX = ∇X∇ρ, X ∈ Θ(TNm),

then Bρ is a symmetric operator related to Hess(ρ) by

Hess(ρ)(X, Y) = g
(

BρX, Y
)
, X, Y ∈ Θ(TNm). (28)

As ρ is a nontrivial solution of the FM-equation, using Equations (6) and (28), we have

ρTX = BρX− (Δρ)X,

which, in view of Equation (7), becomes

BρX = ρTX− τ

m− 1
ρX. (29)

Note that owing to the fact that ρ is a nontrivial solution of the FM-equation on (Nm, g),
the scalar curvature τ is a constant and we put τ = m(m− 1)α for a constant α. Using
Equation (29), we have

BρX + αρX = ρTX− (m− 1)αρX, X ∈ Θ(TNm).

Now, using Equation (10) in the above equation, we have

BρX + αρX = ∇Xω− (m− 1)αρX, X ∈ Θ(TNm).

Taking a local frame {F1, . . . , Fm} on (Nm, g), by the above equation, we conclude

∥∥Bρ + αρI
∥∥2

=
m

∑
j=1

g
(

BρFj + αρFj, BρFj + αρFj
)

=
m

∑
j=1

g
(
∇Fj ω− (m− 1)αρFj,∇Fj ω− (m− 1)αρFj

)
= ‖∇ω‖2 + m(m− 1)2α2ρ2 − 2(m− 1)αρ(divω).

Now, using Equation (10), we have divω = τρ = m(m− 1)αρ, and inserting it in the above
equation, we arrive at ∥∥Bρ + αρI

∥∥2
= ‖∇ω‖2 −m(m− 1)2α2ρ2,

that is, ∥∥Bρ + αρI
∥∥2

= ‖∇ω‖2 − 1
m

τ2ρ2.

Using inequality (27) in the above equation results in

Bρ = −αρI,

that is,
Hess(ρ) = −αρg. (30)

Note that as τ > 0, the constant α > 0, and ρ is a nontrivial solution, ρ is a nonconstant func-
tion. Hence, by Equation (30), the complete and simply connected Riemannian manifold
(Nm, g) is isometric to the sphere Sm(α) (cf. [6,7]).
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Conversely, suppose that (Nm, g) is isometric to the sphere Sm(α). Then, by Equation (7),
the function f is a solution of FM-equation on the sphere Sm(α), which has a closed ρ-Ricci
vector field ω. The solution f of the FM-equation is related to ρ by Equation (4), that is,

f = −(m− 1)
√

αρ. (31)

In the proof of Theorem 1, we have seen that ρ is a nonconstant function on Sm(α). Moreover,
using Equation (31), we have

Δ f = −(m− 1)
√

αΔρ, Hess( f ) = −(m− 1)
√

αHess(ρ)

and the Equation (7) takes the form

−(m− 1)
√

α(Δρ)g + f Ric = −(m− 1)
√

αHess(ρ),

which, in view of Equation (31), changes to

(Δρ)g + ρRic = Hess(ρ).

Hence, ρ is a nontrivial solution of the FM-equation on the sphere Sm(α). Now, the Ricci
operator T of the sphere Sm(α) is given by T = (m− 1)αI and, therefore, Equation (10) on
Sm(α) is

∇Xω = (m− 1)αρX, X ∈ Θ(TSm(α)).

Using the expression for the scalar curvature τ = m(m− 1)α for the sphere Sm(α), we have

∇Xω =
τ

m
ρX, X ∈ Θ(TSm(α)).

This proves

‖∇ω‖2 =
1
m

τ2ρ2

and completes the proof.

4. Conclusions

In the previous section, we used a closed ρ-Ricci vector field ω on an m-dimensional
Riemannian manifold (Nm, g) to find two different characterizations of an m-sphere Sm(α).
The scope of studying ρ-Ricci vector fields on a Riemannian manifold is quite modest. We
observe that, in the previous section, we restricted the ρ-Ricci vector field ω to be closed,
which simplified the expression for the covariant derivative of ω. It will be interesting to
investigate whether we could achieve similar results after removing the restriction that the
ρ-Ricci vector field ω is closed. It will be an interesting future topic to study the geometry of
an m-dimensional Riemannian manifold (Nm, g) that admits a ρ-Ricci vector field ω, which
needs not be closed. In order to simplify the findings on an m-dimensional Riemannian
manifold (Nm, g) admitting a ρ-Ricci vector field ω which is not necessarily closed, we
could impose the restriction on the Ricci operator T of (Nm, g) to be a Codazzi-type tensor,
such that it satisfies

(∇XT)(Y) = (∇YT)(X), X, Y ∈ Θ(TNm).

Note that above restriction on (Nm, g) is slightly stronger than demanding the scalar
curvature be a constant.
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Abstract: In this paper, we study the space of G-permutation degree of some classes of topological
spaces and the properties of the functor SPn

G of G-permutation degree. In particular, we prove: (a) If a
topological space X is developable, then so is SPn

GX; (b) If X is a Moore space, then so is SPn
GX; (c) If

a topological space X is an M1-space, then so is SPn
GX; (d) If a topological space X is an M2-space,

then so is SPn
GX.

Keywords: functor of permutation degree; developable space; Moore space; M1-space; M2-space;
Nagata space

MSC: 18F60; 54B30; 54E99

1. Introduction

Let F be a covariant functor acting on a class of topological spaces. The following
natural general problem in the theory of covariant functors was posed by V. V. Fedorchuk
at the Prague Topological Symposium in 1981 (see [1]):

Let P be a topological property and F a covariant functor. If a topological space
X has the property P , then whether F(X) has the same property, and vice versa,
if F(X) has the property P , does the space X also have the property P?

This paper deals with such questions.
Let G be a subgroup of the symmetric group Sn, n ∈ N, of all permutations of the

set {1, 2, . . . , n}, and let X be a topological space. On the space Xn, define the following
equivalence relation rG: for elements x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Xn

x rG y ⇔ there is σ ∈ G with yi = xσ(i), 1 ≤ i ≤ n.

The relation rG is called the G-symmetric equivalence relation. The equivalence class
of an element x ∈ Xn is denoted by [x]G or [(x1, x2, . . . , xn)]G. The quotient space Xn/rG
(equipped with the quotient topology of the topology on Xn) is called the space of G-
permutation degree of X and is denoted by SPn

GX. The quotient mapping of Xn to this space
is denoted by πs

n,G; when G = Sn, one writes πs
G.

Let f : X → Y be a continuous mapping. Define the mapping SPn
G : SPn

GX → SPn
GY by

SPn
G f ([x]G) = [( f (x1), f (x2), . . . , f (xn))]G, [x]G ∈ SPn

GX.

It is easy to verify that SPn
G as defined is a functor in the category of compacta. This

functor is called the functor of G-permutation degree.

Mathematics 2023, 11, 4624. https://doi.org/10.3390/math11224624 https://www.mdpi.com/journal/mathematics53
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In [1,2], V. V. Fedorchuk and V. V. Filippov investigated the functor of G-permutation
degree, and it was proved that this functor is a normal functor in the category of compact
spaces and their continuous mappings.

In recent years, a number of studies have investigated various covariant functors, in
particular the functor of G-permutation degree, and their influence on some topological
properties (see, for instance, [3–6]). In [3,4], the index of boundedness, uniform connected-
ness, and homotopy properties of the space of G-permutation degree have been studied,
and it was shown in [4] that the functor SPn

G preserves the homotopy and the retraction
of topological spaces. References [5,6] deal with certain tightness-type properties and
Lindelöf-type properties of the space of G-permutation degree.

The current paper is devoted to the investigation of some classes of topological spaces
(such as developable spaces, Moore spaces, M1-spaces, M2-spaces, Lašnev’s and Nagata’s
spaces) in the space of G-permutation degree.

Throughout the paper, all spaces are assumed to be T1.
Observe that the space SPn

GX is related to the space expnX of nonempty ≤ n-element
subsets of X equipped with the Vietoris topology whose base form the sets of the form

O〈U1, U2, . . . , Uk〉 =
{

F ∈ expnX : F ⊂ ∪k
i=1Ui, F ∩Ui �= ∅, i = 1, . . . , k

}
where U1, U2, . . . , Uk are open subsets of X [2].

Observe that the mapping πh
n,G : SPn

GX → expn X assigning to each G-symmetric
equivalence class [(x1, x2, . . . , xn)]G the hypersymmetric equivalence class [(x1, x2, . . . , xn)]hc

containing it represents the functor expn as the factor functor of the functor SPn
G [1,2].

Also, the spaces SP2
GX and exp2X are homeomorphic, while it is not the case for n > 2 [2].

2. Results

In this section, we present the results obtained in this study.
For an open cover γ of a space X and a subset A of X, the star of A with respect to γ is

defined by St(A, γ) =
⋃{U ∈ γ : U ∩ A �= ∅}.

Let γ be an open cover of X. Obviously, SPn
Gγ = {πs

n,G(U1 × . . .×Un) = [U1 × . . .×
Un]G : U1, . . . , Un ∈ γ} is an open cover of SPn

GX.

Proposition 1. Let SPn
Gγ be an open cover of SPn

GX. For each [(x1, . . . , xn)]G ∈ SPn
GX, we have

St([(x1, . . . , xn)]G, SPn
Gγ) ⊂ [St(x1, γ)× . . .× St(xn, γ)]G.

Proof. Let [(y1, . . . , yn)]G ∈ St([(x1, . . . , xn)]G, SPn
Gγ). Then, there exists [U1× . . .×Un]G ∈

SPn
Gγ such that [(y1, . . . , yn)]G ∈ [U1 × . . .×Un]G. On the other hand, [U1 × . . .×Un]G ⊂

[V1× . . .×Vn]G if and only if
⋃n

i=1 Ui ⊂ ⋃n
i=1 Vi and for every Vi , i = 1, 2, . . . , n, there exists

a permutation σ ∈ G such that Uσ(i) ⊂ Vi. Hence, we obtain that [(y1, . . . , yn)]G ∈ [U1 ×
. . . × Un]G ⊂ [St(x1, γ) × . . . × St(xn, γ)]G. This means that St([(x1, . . . , xn)]G, SPn

Gγ) ⊂
[St(x1, γ)× . . .× St(xn, γ)]G.

Lemma 1. Let x1, x2, . . . , xn be points of X. For each i = 1, 2, . . . , n, let {Uim}∞
m=1 be a decreasing

sequence of nonempty subsets of X such that
⋂∞

m=1 Uim = {xi}. Then,

∞⋂
m=1

[U1m ×U2m × . . .×Unm]G = {[(x1, x2, . . . , xn)]G}.

Proof. Let i = 1, 2, . . . , n, and assume that [y1, y2, . . . , yn]G ∈ ⋂∞
m=1[U1m × U2m × . . . ×

Unm]G. Then, for each positive integer m, [y1, y2, . . . , yn]G ∈ [U1m ×U2m × . . . ×Unm]G.
This means that there exists a permutation σ ∈ G such that yi ∈ Uσ(i)m for all i = 1, 2, . . . , n.
In addition, yi ∈ ⋂∞

m=1 Uσ(i)m = {xσ(i)} for all i = 1, 2, . . . , n. Consequently, it follows that
yi = xσ(i). This means that [(y1, y2, . . . , yn)]G = [(x1, x2, . . . , xn)]G.
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Proposition 2. Let X be a space, and let x1, x2, . . . , xn be points of X. For each i = 1, n, let
Ui =

{Uim
}

m∈N be a local base of X at xi. Then, SPn
GU =

{[
U1m ×U2m × . . .×Unm

]
G : Uim ∈

Ui, i = 1, n
}

m∈N is a local base of SPn
GX at [(x1, x2, . . . , xn)]G.

Proof. Without loss of the generality, suppose that Uim+1 ⊂ Uim for every positive integer
m. Let SPn

GV be an open subset of SPn
GX which contains [(x1, x2, . . . , xn)]G. Then, there

exist open subsets V1, V2, . . . , Vn of X such that [(x1, x2, . . . , xn)]G ∈
[
V1×V2× . . .×Vn

]
G ⊂

SPn
GV. Put Vxi = ∩{V ∈ {V1, V2, . . . , Vn} : xi ∈ V

}
for every i = 1, n. Then, Vx1 , . . . , Vxn

are open subsets of X such that [(x1, x2, . . . , xn)]G ∈
[
Vx1 ×Vx2 × . . .×Vxn

]
G ⊂

[
V1 ×V2 ×

. . .×Vn
]

G ⊂ SPn
GV. Since Ui is a local base at xi, there exists a positive integer mi such that

xi ∈ Umii ⊂ Vxi . Let m = max{m1, . . . , mn}. Then, xi ∈ Umi ⊂ Vxi . Consequently,
[
U1m ×

U2m × . . .×Unm
]

G ∈ SPn
GU and [(x1, x2, . . . , xn)]G ∈

[
U1m ×U2m × . . .×Unm

]
G ⊂

[
Vx1 ×

Vx2 × . . .×Vxn

] ⊂ SPn
GV. Therefore, SPn

GU is a local base of SPn
GX at [(x1, x2, . . . , xn)]G.

A space X is developable [7,8] if there exists a sequence {γm : m ∈ N} of open covers
of X such that, for each x ∈ X, {St(x, γm) : m ∈ N} is a local base at x. Such a sequence
of covers is called a development for X. It is well known that every metrizable space is
developable, and every developable space is clearly first countable.

Remark 1. Clearly, the above definition of the developable space is equivalent to the following:
(a) For each x ∈ X and for each positive integer m such that St(x, γm) �= ∅, St(x, γm) is a

neighborhood of the point x, and
(b) For each x ∈ X and for each open U containing x, there exists a positive integer m such

that x ∈ St(x, γm) ⊂ U.

Theorem 1. If X is a developable space, then so is SPn
GX.

Proof. Assume that X is a developable space and {μm : m ∈ N} is a development for X.
For every m ∈ N, let

γm =

{ m⋂
j=1

Vj : Vj ∈ μj, j = 1, n
}

.

Then, {γm}m∈N is also a development for X such that St(x, γm+1) ⊂ St(x, γm) for all
x ∈ X and every m ∈ N. Put

SPn
Gγm =

{
[Um1 × . . .×Umn]G : Um1, . . . , Umn ∈ γm

}
.

It can be easily checked that SPn
Gγm is an open cover of SPn

GX for every m ∈ N.
Now, we will prove that for each [(x1, x2, . . . , xn)]G ∈ SPn

GX,
{St([(x1, x2, . . . , xn)]G, SPn

Gγm)}m∈N is a local base at [(x1, x2, . . . , xn)]G. Let SPn
GU be an

open subset of SPn
GX such that [(x1, x2, . . . , xn)]G ∈ SPn

GU. Then, there exist open sub-
sets U1, U2, . . . , Un of X such that [(x1, x2, . . . , xn)]G ∈ [U1 × U2 × . . . × Un]G ⊂ SPn

GU.
Since {St(xi, γm)}m∈N is a local base at xi for any i = 1, n, there exists a positive inte-
ger mi such that St(xi, γmi ) ⊂ Uxi =

⋂{
Uj : xi ∈ Uj, j = 1, n

}
. Then ,there exists

m ≥ max{m1, m2, . . . , mn} such that St(xi, γm) ⊂ St(xi, γmi ) for all i = 1, n. By Proposition
1, we have

[(x1, x2, . . . , xn)]G ∈ St([(x1, x2, . . . , xn)]G, SPn
Gγm)

⊂ [St(x1, γm1)× . . .× St(xn, γmn)]G

⊂ [Ux1 × . . .×Uxn ]G ⊂ [U1 × . . .×Un]G ⊂ SPn
GU.

By Statement (b) of Remark 1, it means that SPn
GX is a developable space.

A regular developable space is a Moore space [7,8].
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Proposition 3. If X is a Moore space, then so is SPn
GX.

Proof. By Theorem 1, if X is a developable space, then the space SPn
GX is also developable.

On the other hand, it is well known from [9] that regularity is preserved under the closed-
and-open mapping and Cartesian product. Therefore, if X is a regular space, then the space
SPn

GX is also regular.

A family U = {Uα}α∈A of subsets of a topological space is closure preserving [7,9] if⋃
α∈A0

Uα =
⋃

α∈A0
Uα for every A0 ⊂ A.

Theorem 2. If U is a closure-preserving family of subsets of X, then SPn
GU = {[U1 ×U2 × . . .×

Un]G : U1, U2, . . . , Un ∈ U} is a closure-preserving family of subsets of SPn
GX.

Proof. Let SPn
GU0 be a subfamily of SPn

GU and [(x1, x2, . . . , xn)]G ∈ SPn
GX \ ⋃{SPn

GW :
SPn

GW ∈ SPn
GU0}. Let Vi = X \⋃{U : xi ∈ X \U, U ∈ U}. Since U is a closure preserving

family of subsets of X, we have that Vi = X \⋃{U : xi ∈ X \U, U ∈ U}. This means that Vi
is an open subset of X and xi ∈ Vi for all i = 1, 2, . . . , n. Let SPn

GV = [V1 ×V2 × . . .×Vn]G.
Then, SPn

GV is open subset of SPn
GX, [(x1, x2, . . . , xn)]G ∈ SPn

GV and SPn
GV

⋂
SPn

GW = ∅ for
all SPn

GW ∈ SPn
GU0. Therefore, [(x1, x2, . . . , xn)]G ∈ SPn

GV ⊂ SPn
GX \ ⋃{SPn

GW : SPn
GW ∈

SPn
GU0}. It shows that [(x1, x2, . . . , xn)]G ∈ SPn

GX \ ⋃{SPn
GW : SPn

GW ∈ SPn
GU0}. Hence,

SPn
GU is a closure preserving family of subsets of SPn

GX.

A family U is called σ-closure preserving [7] if it is represented as a union of countably
many closure preserving subfamilies.

An M1-space [7,8] is a regular space having a σ-closure preserving base.

Example 1. Let Q denote the set of rational numbers. For x ∈ R, put Lx = {(x, y) : (x, y) ∈
R2, y > 0} and X = R∪ (

⋃{Lx : x ∈ R}). Define a base for a topology on X as follows: for any
s, t ∈ Q and z = (x, w) ∈ Lx such that 0 < s < w < t, we put U x

s,t(z) = {(x, y) : s < y < t},
and let U be the set of all such U x

s,t(z). For all r, s, t ∈ Q and z ∈ R such that s < z < t and r > 0,
we put

Vr,s,t(z) = (s, t) ∪ (
⋃{(w, y) : 0 < y < r, w ∈ (s, t) \ {z}})

, and let V be the set of all Vr,s,t(z). Now, put B = U ∪ V . Then one can check that B is a σ-closure
preserving base for X. It shows that X is an M1-space. Moreover, the space X is a first countable,
but non-metrizable space.

Theorem 3. If X is an M1-space, then so is SPn
GX.

Proof. Let X be an M1-space and U =
⋃∞

i=1 Ui be a σ-closure preserving base in X. Since the
union of two closure preserving family of subsets of X is also closure preserving, we assume
that Ui ⊂ Ui+1 for each i. For every positive integer i, set SPn

GUi = {[U1 ×U2 × . . .×Un]G :
U1, U2, . . . , Un ∈ Ui}. Obviously, SPn

GUi ⊂ SPn
GUi+1 for all positive integers i. By Theorem 2,

Ui is a closure preserving family of subsets of SPn
GX, and at the same time Ui is a family of

open subsets of SPn
GX. Therefore, SPn

GU =
⋃∞

i=1 SP
n
GUi is a σ-closure preserving family of

open subsets of SPn
GX.

Now, we will show that SPn
GU is a base for SPn

GX. Let [(x1, x2, . . . , xn)]G be an arbitrary
element of SPn

GX and SPn
GU be an open subset of SPn

GX such that [(x1, x2, . . . , xn)]G ∈
SPn

GU. Since U is a base for X, there exist U1, U2, . . . , Un ∈ U such that [(x1, x2, . . . , xn)]G ∈
[U1 ×U2 × . . .×Un]G ⊂ SPn

GU. Since Ui ⊂ Ui+1 for each positive integer i, there exists
i0 such that U1, U2, . . . , Un ∈ Ui0 . Then it follows that [U1 ×U2 × . . . ×Un]G ∈ SPn

GUi0 .
Therefore, SPn

GU is a base for SPn
GX. This means that SPn

GX is an M1-space.

A collection B of (not necessarily open) subsets of a regular space X is a quasi-base
in X [7] if whenever x ∈ X and U is a neighborhood of x, there exists a B ∈ B such that
x ∈ IntB ⊂ B ⊂ U.
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An M2-space [7,8] is a regular space having a σ-closure preserving quasi-base.

Theorem 4. If X is an M2-space, then so is SPn
GX.

Proof. Suppose that X is an M2-space and B =
⋃∞

i=1 Bi is a σ-closure preserving quasi-base.
Since the union of two closure-preserving family of subsets of X is also closure preserving,
we assume that Bi ⊂ Bi+1 for each i. For each positive integer i, put SPn

GBi = {[B1 × B2 ×
. . .× Bn]G : B1, B2, . . . , Bn ∈ Bi}. Obviously, SPn

GBi ⊂ SPn
GBi+1 for all i. By Theorem 2,

Bi is a closure preserving family of subsets of SPn
GX. Therefore, SPn

GB =
⋃∞

i=1 SP
n
GBi is a

σ-closure preserving family of subsets of SPn
GX.

Now, we will prove that SPn
GB is a quasi-base for SPn

GX. Let [(x1, x2, . . . , xn)]G be an
arbitrary element of SPn

GX and SPn
GV be an open subset of SPn

GX such that [(x1, x2, . . . , xn)]G ∈
SPn

GV. Consequently, there exist open subsets V1, V2, . . . , Vn of X such that [(x1, x2, . . . , xn)]G ∈
[V1 × V2 × . . . × Vn]G ⊂ SPn

GV. Since B is a quasi-base for X, there exist a permutation
σ ∈ G and Bσ(j) ∈ Bi such that xj ∈ IntBσ(j) ⊂ Vσ(j), where j = 1, 2, . . . , n. Note that
[(x1, x2, . . . , xn)]G ∈ [IntB1 × IntB2 × . . .× IntBn]G ⊂ Int([B1 × B2 × . . .× Bn]G) ⊂ [B1 ×
B2 × . . .× Bn]G ⊂ [V1 × V2 × . . .× Vn]G ⊂ SPn

GV. It shows that SPn
GB is a quasi-base for

SPn
GX.

Recall now that a space X is said to be stratifiable if f for every closed subset F ⊂
X there is a sequence of open subsets (U(F, k))k∈N such that (i) F =

⋂
k∈N U(F, k) =⋂

k∈N U(F, k), and (ii) if F1 ⊂ F2, then U(F1, k) ⊂ U(F2, k) for each k ∈ N. In the paper [10]
it was proved that a space is stratifiable if and only if it is M2. Therefore, we obtain
the following:

Corollary 1. If a space X is stratifiable, then so is SPn
GX.

A space X is a Lašnev space [7,8] if there exist a metric space Z and a continuous closed
mapping from Z onto X. Lašnev spaces are known to be M1-spaces.

Theorem 5. Let X be a space, and let n be a positive integer. If Xn is a Lašnev space, then so
is SPn

GX.

Proof. Suppose that Xn is a Lašnev space. Then, there exist a metric space Z and a
continuous closed mapping g : Z → Xn. Since πs

n,G : Xn → SPn
GX is a closed, onto

mapping, we obtain that the mapping πs
n,G ◦ g : Z → SPn

GX is also a closed mapping
from the metric space Z onto the space SPn

GX. This means that the space SPn
GX is a

Lašnev space.

Theorem 6 ([8]). Let X be a space. Then, X2 is a Lašnev space if and only if exp2X is a Lašnev space.

As we said in the Introduction, in Reference [2], it was shown that the spaces SP2X
and exp2X are homeomorphic. Hence, we obtain the following corollary.

Corollary 2. Let X be a space. Then, X2 is a Lašnev space if and only if SP2X is a Lašnev space.

A space X is a Nagata space [11] provided that for each x ∈ X, there exist sequences{
Um(x)

}
m∈N and

{
Vm(x)

}
m∈N of open neighborhoods of x such that for all x, y ∈ X:

(1)
{

Um(x)
}

m∈N is a local base at x;
(2) if y /∈ Um(x), then Vm(x) ∩Vm(y) = ∅ (or equivalently, if Vm(x) ∩Vm(y) �= ∅, then

x ∈ Um(y)).

The definition of the Nagata space is equivalent to the following [11,12]: a Nagata
space is a first countable stratifiable space.
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Corollary 3. Let X be a space, and let n be a positive integer. If X is a Nagata space, then so is SPn
GX.

3. Conclusions

This work is related to the following important question. Let F be a covariant functor
and P a topological property. If a space X has the property P , whether F(X) has the
same or some other property. We studied the preservation of certain classes of spaces
(developable spaces, Moore space, M1- and M2-spaces, Nagata spaces) under the influence
of the functor SPn

G of G-permutation degree. We proved that this functor preserves each
mentioned class of spaces. It would be interesting to study the preservation of these and
some other properties under the influence of other important functors.
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Abstract: In this paper, we provide a brief introduction to the main notions of geometric group theory
and of asymptotic topology of finitely generated groups. We will start by presenting the basis of
discrete groups and of the topology at infinity, then we will state some of the main theorems in these
fields. Our aim is to give a sample of how the presence of a group action may affect the geometry of
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of algebraic problems which may appear unrelated.
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1. Introduction

The central idea of the branch of mathematics called geometric group theory (briefly
GGT) is to study group theory from a geometrical viewpoint by means of geometric and
topological methods, for example with the notions of the fundamental group and covering
space (see [1] for an introduction to the subject).

Geometric group theory focuses in particular on those global geometric and topological
invariants which detect the shape at infinity of all universal covers of compact spaces having
the same fundamental group.

This research field has its origin in the work of Dehn from the beginning of the last
century. With his combinatorial approach, he initiated the study of two closely related
research areas: 3-manifolds in topology and infinite groups given by presentations in
algebra. His ability to use simple combinatorial diagrams to illustrate the synergy between
algebra, geometry and topology has made it clear that most of the topological properties of
covering spaces are related to the fundamental group and do not depend on its presentation
(and hence on the choice of the space one may associate with the group) (see [2]).

More recently, the field of geometric group theory has undergone impressive develop-
ment due to the work of Gromov [3–5]. The main novelty he introduced is that, instead of
studying groups algebraically, GGT uses both topological and geometric methods, since
one can consider group theory as “contained” in the vast area of geometry via the notions
of word metric and quasi-isometry.

The underlying idea is that, once a group is chosen, the class of all topological models
constructed from it should have some common global geometric conditions (at infinity).

For instance, let us consider the following construction. Start with a finitely generated
group Γ. For any such group, there exists a topological space X with π1(X) = Γ. The group
Γ acts effectively on the universal cover X̃ of X, and the quotient space for this action is X
itself (i.e., X̃/Γ = X). The space X can also be chosen to be a 2-complex, and, if the group is
finitely presented, X is compact.

Of course, both X and X̃ are not unique. On the other hand, some of the algebraic
properties of the group Γ are transferred into geometric/topological conditions of the space

Mathematics 2024, 12, 766. https://doi.org/10.3390/math12050766 https://www.mdpi.com/journal/mathematics59
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X̃ (or X), and one can refer to them as asymptotic (or geometric) properties. Vice versa,
there are also properties of X̃ (or of X) which depend only on Γ.

One of the first examples that comes to mind when thinking of a topological demon-
stration of an algebraic result is the well known theorem of Schreier, stating that any
subgroup H of a free group Fl on l generators (l ≥ 1 integer) is itself free (see [1,6]).

Here, we have a pure algebraic problem in a pure algebraic setting. The algebraic proof
of this fact involves a meticulous and tedious sequence of special transformations on the
subgroup’s generating set that reduces its length. On the other hand, the process is made
more straightforward with a change in perspective and method. More precisely, consider
the free group Fl as the fundamental group of a wedge of circles Xl and the covering space
associated with the subgroup H, namely p : X → Xl , where π1(X) = H. The space X
is actually a graph (since it is a cover of a graph), and hence, by contracting a maximal
tree T of X, one obtains another wedge of circles Xm which is homotopically equivalent
to X/T. Finally, by the van Kampen theorem, one obtains that H ∼= π1(X) ∼= π1(X/T) ∼=
π1(Xm) ∼= Fm, namely a free group.

This example shows how the use of geometry and topology can help to elucidate and
visualize the problem and how this can effectively reduce the length and the difficulties of
its solution.

In the next sections, we will provide some basic definitions of geometric group theory
and of asymptotic topology of groups in order to depict the strong interplay of geometry
and topology with group theory, in the spirit of this Special Issue.

2. Discrete Groups and Associated Spaces

For a discrete group, we simply mean a countable group with the discrete topology.

Definition 1. A discrete group Γ is said to be finitely generated if there is a finite set S of
generators (which means that any element g ∈ Γ is a product of finitely many powers of some of the
generators s ∈ S).

The group Γ is said to be finitely presented, Γ = 〈S | R〉, if, additionally, it possesses a finite
number of relators r ∈ R (i.e., words, made of elements of S, that are equal to the identity e).

Now, to any finitely generated group Γ with a generating set S, one can define a
somehow “natural” metric on it, which is called the word metric (for more details, see [1]).

Definition 2. Given a finitely generated group Γ and its generating set S, the length lS(g) of
any element g of Γ is the smallest integer n such that there exists a sequence (s1, s2, · · · , sn) of
generators in S for which g = s1s2 . . . sn. The distance of two elements a, b of Γ is

dS(a, b) = lS(a−1b).

Due to this definition, the pair (Γ, dS), i.e., the group together with the word metric,
becomes a metric space. So, the geometry and topology are already known to some extent
(even if the so-defined space is discrete).

However, we can do better. To any finitely generated group Γ, we may associate a
graph, called the Cayley graph of Γ (denoted Cay(Γ, S)), which depends on the generating
set S.

Definition 3. The vertex set of Cay(Γ, S) is Γ. Two vertices g, h are connected by an edge iff
dS(g, h) = 1, namely if and only if h = gs or gs−1, for some s ∈ S. Or, equivalently, any vertex g
is joined by an edge with all the vertices of the form gs, for s ∈ S.

Since the group Γ is finitely generated, this graph is locally finite. By construction it is
directed and labeled. Moreover, since S generates Γ, the Cayley graph is connected. Finally,
one can also define a “natural metric”, denoted also by dS, on Cay(Γ; S), as follows:

• One declares any edge to be of length 1;
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• The distance d(x; y) of any two points of the Cayley graph can be defined as the length
of the shortest path going from x to y.

In this way, the Cayley graph Cay(Γ; S) becomes a connected metric space containing
(isometrically) Γ. Obviously, it is finite/infinite if and only if Γ is. Furthermore, when
restricting this metric to Γ ⊂ Cay(Γ; S), one recovers just the word metric of Γ.

If the group Γ is finitely presented, it is possible to improve the construction of the
above in order to obtain a locally finite 2-dimensional space associated with it.

Let 〈S | R〉 be a finite presentation for a finitely presented group Γ.

Definition 4. The Cayley 2-complex of Γ = 〈S | R〉 is obtained by gluing a disk (i.e., a 2-cell)
to all the (closed) paths of the Cayley graph which are labeled by relators r ∈ R.

Remark 1. Obviously, the Cayley 2-complex is simply connected, because all closed paths in the
Cayley graph are labeled by words which are equal to 1 in Γ, and, by definition, the set of relatorsR
generates all the relations.

In most cases, the constructions described above are the most useful ones, but there
may be other situations where more of the topology must be determined, and, actually,
there is a second, different way to construct the Cayley graph and Cayley 2-complex in a
topological vein (see also [2]).

Consider the standard 2-complex XP associated with the presentation P = 〈S | R〉
as follows: Start with a bouquet of loops, i.e., the graph with just one vertex v and with
�S-edge loops at v (one for each s ∈ S), labeled by s. Now, for each relator r ∈ R one
attaches, along r, a 2-cell with l(r) sides (where l(g) is the length of g) to the bouquet of
circles. Obviously, according to the van Kampen theorem, π1(XP ) = Γ, and its universal
covering space X̃P is simply the Cayley 2-complex of Γ, whereas the 1-skeleton of X̃P is
the Cayley graph of Γ.

Large-Scale Equivalence

The aforementioned constructions depend on the presentation but not at a “large
scale”. This is the viewpoint of Gromov [4,5]. If spaces are similar (seen from a long
distance), then they should share some common properties that depend on the group that
acts on them.

In fact, the word metrics, Cayley graphs and Cayley 2-complexes constructed from
distinct presentations of the same group Γ are actually quasi-isometric (i.e., geometrically
and metrically “similar” in a rough sense).

Definition 5. A quasi-isometry between two metric spaces (X, dX) and (Y, dY) is a map f :
X → Y such that, for constants C and λ:

λ−1dX(x1, x2)− C ≤ dY
(

f (x1), f (x2)
) ≤ λdX(x1, x2) + C

and , ∀y ∈ Y, dY
(
y, f (X)

) ≤ C.

Roughly speaking, this means that the images of two points which are close (or very far
from each others) remain close (or very far), and any point of the target space is uniformly
close to the image of some point of the domain. Quasi-isometries do not distinguish small
details of the space but rather detect the global geometric behavior.

Since it turns out that an algebraic classification of the class of finitely presented groups
is not possible (because the word problem is undecidable), the main goal of geometric
group theory is to classify them “geometrically”, that is, up to quasi-isometries.

From this perspective, one is interested in properties of groups which are quasi-
isometry invariants (in fact called geometric or asymptotic properties).
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Remark 2.

• A quasi-isometry is not necessarily continuous. For instance, real numbers R and integers Z
are quasi-isometric.

• Any finitely generated group Γ (with finite generating set S) is quasi-isometric to its Cayley
graph Cay(Γ, S) (because the inclusion (Γ, dS) ↪→ Cay(Γ, dS) is a quasi-isometry).

• If S and T are two generating sets for the same group G, then the (distinct) metric spaces
(G, dS) and (G, dT) are quasi-isometric.

• As a consequence, given a finitely generated group, one can consider the word metric and the
Cayley graph (in the sense that they are well-defined, up to quasi-isometries).

Let us analyze some basic examples that can elucidate the geometric meaning of
quasi-isometries (see [1] for details).

• A metric space is quasi-isometric to a point if and only if it has a finite diameter.
• The group G is finite if and only if its Cayley graph is quasi-isometric to a point. Thus,

the quasi-isometry class of the trivial group coincides with the set of finite groups. This
is why GGT studies only infinite groups.

• The free abelian groups Zn and Zm are quasi-isometric if and only if n = m (i.e., they
have the same rank).

• The free group of rank 2, F2, is quasi-isometric to Fk, for any k ≥ 2.

Now, the obvious question is the following one: when are two groups quasi-isometric?
For a far more complete answer, see [1,5].

Definition 6. A geodesic in a metric space X is a map f : [a; b]→ X s.t. ∀s; t ∈ [a, b],

d( f (s); f (t)) = |s− t|.
A space X is called a geodesic space if any 2 points can be joined by a geodesic. This is

equivalent to saying that the distance between any 2 points is the length of the shortest path which
joins them.

The space X is said a proper metric space if any closed ball is compact.
An isometric action of a group Γ on a metric space X is said discrete if for any x ∈ X and

M ∈ [0; ∞), the set {g ∈ Γ|d(gx; x) < M} is finite.
The action is said co-compact if the quotient X/Γ is a compact space.

In what follows, and until the end of this section, we will refer to [1,2,5] for terminology.

Lemma 1. If X, Y are two proper geodesic metric spaces with Γ-actions which are discrete, cocom-
pact and by isometries, then Γ is finitely generated and the spaces X and Y are quasi-isometric.
(Consequently, X and Y are quasi-isometric to Cay(Γ; S)).

Corollary 1. The fundamental group of a closed Riemannian manifold is quasi-isometric to its
universal covering space.

Hence, we can deduce that [1]:

• If H ⊂ Γ is a subgroup of a finite index, then H and Γ are quasi-isometric.
• The fundamental group of a closed orientable surface of genus g ≥ 2 is quasi-isometric

to the hyperbolic plane H2.
• The circle S1 = R/Z has π1S1 = Z, and so Z is quasi-isometric to R.
• The torus Tn = Rn/Zn has π1Tn = Zn, and so Zn is quasi-isometric to Rn.
• The Euclidean space Rn is quasi-isometric to Rm if and only if n = m.
• The hyperbolic space Hn is quasi-isometric to Hm if and only if n = m.
• The hyperbolic space Hn and the Euclidean space Rn are not quasi-isometric.
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Theorem 1 (Gromov [3], Pansu [7]). A group is quasi-isometric to Rn if and only if it contains a
finite index subgroup isomorphic to Zn.

Theorem 2 (Gromov [5], Stallings [8]). If a group is quasi-isometric to the free group in two
generators, then it acts properly on some locally finite tree, and hence it is virtually free.

3. The Topology at Infinity

In this section, we will focus on a more topological aspect of GGT; in particular, we
will consider those topological properties of non-compact spaces which depend on some
group actions (for an accurate introduction to the subject, see [2]).

The topology at infinity may be defined as the study of global topological properties
of complements of compact subsets in open topological spaces. The topological behavior
“close to infinity” of non-compact spaces, especially open manifolds, in the presence of
a group action, is under study. The idea is to take a space X together with a filtration by
compact subsets Ci ⊂ X, such that Ci ⊂ Ci+1 and X = ∪iCi, and to look at the topology of
X− Ci as i goes to infinity.

3.1. Ends

The simplest topological property at infinity is the condition of being one-ended (or
connected at infinity). In other words, being one-ended is equivalent to say that, outside very
large compacts, there is only one “way to go to infinity” (for more details, see [1,2,9]).

In fact, with any topological space X, one can associate the so-called space of ends (that
corresponds, intuitively, to the different ways to go to infinity): it is the set of unbounded
connected component of X− K for large compact subspaces K of X.

The next results represent probably the very beginning of geometric group theory.

Theorem 3 (Hopf [10]). Let K be a finite simplicial complex. The number of ends of the universal
covering space K̃ of K depends only on π1(K).

Hence, it is possible to define the number of ends for a finitely generated group:

Definition 7. The number of ends e(G) of a group G is the number of ends of the universal
covering space K̃ of some (equivalently any) finite complex X having G as the fundamental group.

Remark 3. The number of ends of the finitely generated group G may also be defined as the number
of ends of (one of) its Cayley graph.

Theorem 4 (Hopf [10]). The number of ends of a group belongs to the set {0, 1, 2, ∞}.

Actually, if we have 3 ends, we may consider a compact subset C ⊂ K̃, outside of
which starts the three different ways to go to infinity e1, e2, e3. Hence, when a non-trivial
element of the group G = π1(X) translates C within K̃, it will belong to only one of these
directions, say, e1. However, outside gC, we must again have three directions to go to
infinity. In this new configuration, K̃ − gC, the two directions e2, e3 represent the same
direction to infinity. However, since e(G) = 3 and this number must be homogeneous
outside any large compact subset, the direction e1 should split in two different directions,
thus creating a new different end e4. Using this simple idea, one can prove that, in fact, if
e(G) > 2, then e(G) must be infinite (see [1,2]).

In the latter result, we have seen how the presence of a group, and hence of a group
action, puts very strong constraints on the topological behavior at infinity.

Theorem 5 (Gromov [5]). The number of ends of a group is a quasi-isometry invariant.
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Remark 4.

• The two last theorems are not true for general open manifolds.
• A group has 0 ends if and only if it is finite.
• The number of ends of Z is 2, while e(Zn), for n ≥ 2, is 1.
• The free group of rank 2 has infinitely many ends.

At this point, one may wonder whether it is possible to catch some algebraic condition
as from the topological notion of number of ends. This is the key problem in geometric
group theory: relating geometric properties of a group and its algebraic structure.

Theorem 6 (Hopf [10]). A group has 2 ends if and only if it has an infinite cyclic subgroup (i.e.,
Z) of finite index.

This result was then generalized by Stallings in the 1970s [8] (but see also [6]). He
provided a structure theorem for infinitely ended groups, and, as a result, Dunwoody
in [11] was able to prove the famous Wall’s Conjecture [12] for finitely presented groups
by giving a complete characterization of them starting from finite groups and one-ended
groups via a finite number of natural operations (called amalgamated free products and
HNN extensions over finite subgroups).

Theorem 7 (Stallings [8]). Let G be a finitely generated group with infinitely many ends.

• If G is torsion-free, then G is a non-trivial free product;
• Or G is a non-trivial free product with amalgamation, with finite amalgamated subgroup.

3.2. The Simple Connectivity at Infinity

Having in mind Stallings’ theorem and the fact that one-ended groups are the basic
pieces for constructing all discrete groups [11], one is led to the study of groups with one
end. Furthermore, the first topological notion needed in order to obtain a well-behaved
topology is the simple connectivity. Hence, one usually focuses on the behavior at infinity
of manifolds and groups with “simply connected ends”. Furthermore, for one-ended
spaces, the easiest and strongest topological “tameness” condition at infinity is the so-
called simple connectivity at infinity (see [2,9]). The simple connectivity at infinity tells us
approximately that loops which are very far away (i.e., “at infinity”) should bound disks
which are at a sufficient distance (i.e., “near the infinity”).

Definition 8. A connected, locally compact, topological space X with π1(X) = 0 is simply

connected at infinity (SCI) if for any compact k ⊆ X there exists a larger compact k ⊆ K ⊆ X
such that any closed loop in X− K is null homotopic in X− k.

Why is this condition so interesting and powerful? Because it turns out that, for
n ≥ 3, the simple connectivity at infinity just features Euclidean spaces Rn among open
contractible n-manifolds, as proven by the following theorem (that is actually a sum of
several extensive results of different authors).

Theorem 8 (Stallings [13]; Freedman [14]; Perelman [15]).

1. In dimension n ≥ 5, any differential manifold which is open, contractible and simply connected
at infinity is diffeomorphic to the Euclidean space Rn.

2. In dimension n = 4, the result is true only for topological manifolds.
3. Finally, in dimension n = 3, the same result holds for both topological and differential

manifolds.

Remark 5.

• As a corollary, one obtains that Euclidean space Rn, for n �= 4, admits a unique differential
structure.
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• On the other hand, R4 supports infinitely many different differential structures (Donald-
son [16]).

Now, what can we say about discrete groups?

Definition 9. A finitely presented group Γ is simply connected at infinity if the universal covering
space X̃ of some compact complex X, having Γ as fundamental group, is SCI.

Theorem 9.

• The simple connectivity at infinity is a well-defined property for finitely presented groups (in
the sense that it does not depend on the presentation) [17].

• The simple connectivity at infinity is also a quasi-isometry invariant of finitely presented
groups [18].

3.3. The Universal Covering Conjecture

Another interesting implication of the simple connectivity at infinity comes from its
connection with the so-called Universal Covering Conjecture. Since the 1960s, topologists
have studied the behavior at infinity of contractible universal covering spaces of closed 3-
manifolds and proposed the following problem/conjecture (for a more historical panoramic
view, see [9,19]):

Conjecture 1 (Universal Covering Conjecture). The universal covering space of a (connected,
orientable) closed, aspherical (i.e., with a contractible universal cover) 3-manifold is simply connected
at infinity. If the manifold is also irreducible, then the universal cover is R3.

• This conjecture is now a theorem due to Perelman’s recent proof of Thurston Ge-
ometrization Conjecture [15].

• On the other hand, the Universal Covering Conjecture fails in a higher dimension, as
proved by Davis in the 1980s.

Theorem 10 (Davis [20]). For any n ≥ 4, there exist closed, aspherical n-manifolds whose
universal covers are not homeomorphic to Euclidean spaces (in particular, they are not SCI).

So we are left with the following natural, interesting and difficult question:

Question 1. Are there topological conditions which characterize the class of contractible universal
covering spaces of closed manifolds?

3.4. Topological Filtrations

In the 1980s, Poénaru partially solved the Universal Covering Conjecture, for those
3-manifolds whose fundamental groups satisfy some geometric or topological conditions
(see, e.g., [21]), by “approximating” the universal cover with a filtration of compact and
simply connected 3-manifolds.

Definition 10. A topological space X is weakly geometrically simply connected (briefly
WGSC [22]) if it can be written as an ascending union of compact, connected and simply con-
nected subspaces. Namely, X is WGSC if it admits a filtration, X = ∪iKi, with Ki ⊂ Ki+1 and
such that Ki are compact, connected and with π1Ki = 0.

Definition 11. A simply connected complex X is quasi-simply filtered (QSF) if for any compact
sub-complex C ⊂ X there exists a simply connected compact complex K and a PL-map f : K → X
so that C ⊂ f (K) and f | f−1(C) : f−1(C)→ C is a PL-homeomorphism.

The latter condition simply means that every compact subset C of X can be included
(homeomorphically) inside of the image of an abstract compact and simply connected
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complex that is equipped with a simplicial map into X, whose set of double points lies
outside the compact C we started with. In other words, a topological space is QSF if it
admits a quasi-simple filtration, i.e., a filtration which can be “approximated” by finite,
simply connected complexes.

This topological notion has interesting group-theoretical ramifications, as testified by
the next results:

Theorem 11 (Brick–Mihalik [23]; Funar–Otera [22]).

• If K1, K2 are two presentation complexes for the same finitely presented group Γ, then K̃1 is
QSF ⇐⇒ K̃2 is QSF. (Ths implies the that QSF property is well-defined fro finitely presented
groups).

• Many finitely presented groups are QSF (see Remark 7).

The main reason for using this notion lies in the fact that, since for open 3-manifolds,
being simply connected at infinity is equivalent to being WGSC, in order to prove the
Universal Covering Conjecture, one simply needs a method which yields a filtration of the
universal cover of a closed 3-manifold.

Theorem 12 (Poénaru [24]). An open QSF 3-manifold is WGSC and hence simply connected at
infinity.

Remark 6. Thus, in order to verify the simple connectivity at infinity of the universal cover of
a closed 3-manifold, it suffices to construct a quasi-filtration of it (and this is much easier than
obtaining a whole WGSC filtration).

Theorem 13 (Poénaru [21]). Let M3 be a closed 3-manifold, and assume that Γ = π1(M3)
satisfies some “nice geometric condition”, then M̃3 is QSF (and hence simply connected at infinity).

Remark 7. The set of “nice geometric conditions” includes: Gromov hyperbolicity, Cannon almost-
convexity, automaticity and combability (in the sense of Thurston), geometric simple connectivity,
etc. In particular, the class of groups with a “nice geometry” is quite large (see, e.g., [9,25,26]).

4. Inverse Representations

The main tool for proving the last theorems of the previous section was the following
notion, invented and developed by Poénaru in [27] and thereafter utilized in his scientific
work (see [28] but also [19,26,29]):

Definition 12. Let M3 be a 3-manifold. A topological inverse representation for M3 is a non-
degenerate simplicial map

f : X2 −→ M3 such that:

• X2 is a simplicial 2-complex, which is QSF;
• The map f is “essentially surjective”, which means that M3 can be obtained from the closure

f (X2) with the addition of cells of dimensions λ = 2 and λ = 3;
• The map f is “zippable” (one can pass from X2 to f (X2) by an infinite sequence of “simple”

quotient maps fi of very special type, and this has a strong control over the singularities of f ).

This exotic notion seems to be suited for the world of 3-manifolds, but it turns out
that it can be used very well for discrete groups too. The necessary adjustment is to look at
groups as 3-dimensional objects. However, of course, not all groups are 3-manifold groups;
hence, one has to allow manifolds to have singularities.

Lemma 2. Any finitely presented group G = 〈S|R〉 can be seen as the fundamental group of a
compact but singular 3-manifold M3(G) associated with G.
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This is proved in [26,30]. Here, we can simply state that M3(G) is obtained by attaching
|R| handles of index 2 to a handlebody of genus |S|.

Definition 13. A topological inverse representation for a finitely presented group G is a topological
inverse representation of the 3-manifold M̃3(G).

In general, the image
Im( f ) ⊂ M3

and the set of double points of f ,

M2( f ) =
{

x ∈ X2 | �{ f−1( f (x))} > 1
} ⊂ X2,

are not closed subsets, and this is one of the main difficulties when dealing with inverse
representations [28]. Furthermore, as a result, the following definitions arise naturally:

Definition 14. A topological inverse representation is easy if f (X2) and M2( f ) are closed.

Definition 15. An easy group is a finitely presented group G admitting an easy inverse-
representation; this is a non-degenerate, zippable, quasi-surjective, simplicial map f : X2 → M̃3(G),
from a QSF complex X2, for which f (X2) and M2( f ) are closed subsets.

Here, below, we summarize the recent developments concerning this interesting
property of groups and manifolds.

Theorem 14 (Otera–Poénaru [30]). Easy groups are QSF.

Theorem 15 (Otera–Poénaru, [25]). Groups admitting Lipschitz and tame 0-combings are easy.

Theorem 16 (Otera–Poénaru, [31]). Given a finitely presented QSF group Γ, one can construct a
2-dimensional WGSC topological inverse representation, which is both easy and equivariant.

Conjecture 2 (Poénaru). All finitely presented groups are easy.

5. Conclusions

In this short essay, we intended to give an elementary idea of the close basic connec-
tions between geometry, topology and group theory, following the underlying idea of this
Special Issue. In particular, we have focused on two aspects, one quite geometric (geometric
group theory) and the other more topological (asymptotic topology).
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and new structural results for G∧̂G. Then, we investigate a generalization of the probability that two
randomly chosen elements of G commute: this notion is known as the “complete exterior degree” of
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new formula, which simplifies the numerical aspects which are connected with the evaluation of the
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1. Introduction and Formulation of the Main Results

In the present paper we deal only with topological Hausdorff groups. Topological
groups with a discrete topology are called discrete groups or abstract groups. Topological
groups with a compact topology are called compact groups. Of course, finite groups are
examples of discrete compact groups but the additive group Zp of the p-adic integers (p
prime) is an example of an infinite nondiscrete compact group, see Example 1.28 (i) and
Exercise E1.10 in [1]. The usual notion of an abelian tensor product of two abstract abelian
groups, which is described by Propositions A1.44, A1.45 and A1.46 of [1], has been adapted
to the context of profinite groups in §5.4 and §5.5 of [2], introducing the complete abelian
tensor product of two profinite abelian groups. Usually, one formulates a universal property
and then provides an explicit construction, as indicated in Lemma 5.5.1, Lemma 5.5.2 and
Proposition 5.5.4 of [2]. Brown and Loday [3,4] introduced the nonabelian tensor product
of two abstract groups, which are not necessarily abelian. Adapting the notion of Brown
and Loday to topological groups, the presence of a topology should be compatible with
the algebraic structure of the tensor product and some difficulties can appear even if we
consider compact groups.

Let us focus on a special class of compact groups. First of all, we mention from §1.1
of [2] that a topological space X, which arises as projective limit on a given (directed) set of
indices J, can be written as

X = lim←−
j∈J

Xj with Xj finite space endowed with the discrete topology ∀j ∈ J (1)
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and X is called profinite space. Secondly, we may look at finite groups and a projective limit

G = lim←−
j∈J

Gj with Gj finite p− group ∀j ∈ J (2)

is called a pro-p-group, as indicated by Definition 1.27 of [1]. These are special types
of profinite groups, that is, totally disconnected compact groups, which are described by
Theorem 1.34 of [1]. Several results of classification of compact groups involve maximal
closed subgroups which are pro-p-groups; just to give an idea, Corollaries 8.5, 8.6 and 8.8
of [1] classify compact abelian groups via their pro-p-subgroups; in particular Corollary 8.8
of [1] shows that any compact abelian group is totally disconnected if and only if it is the
direct product of pro-p-groups.

Following §3.3 of [2], if X is a profinite space, Fp(X) a pro-p-group and ι : X → Fp(X)

a continuous map such that Fp(X) = 〈ι(X)〉, we say that the pair (Fp(X), ι), or briefly
Fp(X), is a free pro-p-group on X, if the following universal property is satisfied

X

ϕ

��

ι �� Fp(X)

ψ

��
G

(3)

where ϕ : X → G is a continuous map into a pro-p-group G, ϕ(X) topologically generates
G (i.e., 〈ϕ(X)〉 = G) and ψ : Fp(X) → G is a continuous homomorphism such that (3)
commutes (i.e., ψ ◦ ι = ϕ). Diagram (3) describes a universal property defining Fp(X). The
reader can look at Theorem A3.28 of [1] for a more general perspective on the definition
of objects in a prescribed category by a universal property. Here, we assume that X
is nonempty and |X| ≥ 2 in order to avoid trivial examples. We also note that ι is an
embedding by Lemma 3.3.1 of [2] and that for every profinite space X there exists a unique
free pro-p-group Fp(X) on X by Proposition 3.3.2 of [2].

We recall briefly the details of the construction of Fp(X) here. For instance, if X is a
profinite space, F a free abstract group on X and N � F (i.e., N is a normal subgroup of F),
then one observes that

N (F) = {N � F | F/N finite p-group and X ∩ f N open in X, ∀ f ∈ F} (4)

is a filter basis which allows us to form the projective limit

lim
N∈N (F)

F/N =: Fp(X). (5)

This is a concrete construction of the free pro-p-group on X and we may check that
Fp(X) satisfies the universal property expressed by (3), as illustrated by Proposition 3.3.2
and Exercise 3.3.3 of [2]. Note also that Fp(X) possesses the topology induced by (4) and
is compatible with the structure of the projective limit. The same logic applies to any
filter basis and works in fact for free compact groups, but also for a free pro-C-group with
C an arbitrary class of finite groups closed under taking quotients and finite subdirect
products (and containing groups of order two). The reader may refer to Chapter 11 of [1],
to Chapter 3 of [2] and to [5] for more information on topological free groups.

We recall now that a Cantor cube is a topological space which is homeomorphic to a
product space {0, 1}ℵ for some infinite cardinal ℵ, see Definition A4.30 in [1]. A dyadic space
is a continuous image of a Cantor cube. Our first main result provides a new approach to
the notion of a complete nonabelian tensor square G⊗̂G of a pro-p-group G, originally studied
in [6,7] for pro-p-groups, but introduced by Brown and Loday [3,4] for finite groups.
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Theorem 1. Let G = lim←−
j∈J

Gj be a pro-p-group with Gj finite p-groups for all j ∈ J.

Then, there exists a profinite space Y such that the complete nonabelian tensor square G⊗̂G
is the pro-p-group which is topologically isomorphic to the quotient group Fp(Y)/K of the free
pro-p-group Fp(Y) on Y by the smallest closed normal subgroup K of Fp(Y) containing the set

{ι(gz, h)ι(g, h)−1ι(zg, hg)−1, ι(g, ht)ι(gh, th)−1ι(g, h)−1 | g, z, h, t ∈ G}.

Moreover, ι embeds Y into Fp(Y) and, if in addition G⊗̂G is metrizable, then G⊗̂G is a
dyadic space.

We should mention that Theorem 1 has been recently proved for arbitrary compact
groups in Theorem 1.4 of [8], involving the representation theory of compact groups. Here
we do not use the representation theory and offer an argument, which involves only
constructions via projective limits. The concrete description of Theorem 1 allows us to
illustrate our second main result.

First of all, we consider ∇̂(G) = 〈x⊗̂x | x ∈ G〉, which turns out to be a closed normal
subgroup of G⊗̂G, called a diagonal subgroup of G⊗̂G, and then we form the quotient

(G⊗̂G)/∇̂(G) = G∧̂G (6)

which is called a complete nonabelian exterior square of the pro-p-group G. We mention that
the set

ĈG(x) = {a ∈ G | a∧̂x = 1} (7)

is a closed subgroup of G, called a complete exterior centralizer of x in G (see [7,9]), and the
Haar measure μ on G, whose properties are illustraed by Theorem 2.8 and Exercise E2.3
in [1], allows us to introduce the complete exterior degree

d̂(G) :=
∫

G
μ(ĈG(x))dμ (8)

of the pro-p-group G. In particular, if G is finite and we consider the counting measure on
G, then we find the exterior degree o f f inite groups in [10–12]. The complete exterior center

Ẑ(G) =
⋂

x∈G
ĈG(x) = {a ∈ G | a∧̂x = 1, ∀x ∈ G}, (9)

plays a relevant role in [7,9] and is always a subgroup of the usual center Z(G) of G.
Secondly, we note that the notion of the FC-center is well known (i.e., it is the set of

elements with finite conjugacy classes) and investigated by Baer in 14.5.6 of [13] and by
Neumann in 14.5.9 and 14.5.11 of [13]. In case of a pro-p-group G the complete exterior
FC-center is more recent:

F̂C(G) := {x ∈ G | |G : ĈG(x)| is finite}. (10)

This set turns out to be a closed normal subgroup of G by Lemma 3 of [9].
Thirdly, we recall that a pro-p-group P is procyclic, if it is topologically generated by

a single element. As indicated by Proposition 2.7.1 of [2], a procyclic group P is either
isomorphic to Zp or to the cyclic group Z(pn) of p-power order (with n ≥ 1). Detecting
procyclic groups among totally disconnected compact groups turns out to be relevant for
several results of classification (for instance, they are involved in the theory of near abelian
compact groups, whose structure is described by Theorems 6, 15, 26, 35 in Overview of [14].
In particular, some homological notions such as the notion of the Schur multiplier should
be involved (see [2,14] and Definition 3 below). Our second main result is devoted to
recognize procyclic groups through the complete exterior degree.
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Theorem 2. For a pro-p-group G, the following conditions are satisfied:

(i). d̂(G) = 0 if and only if F̂C(G) is not open in G;
(ii). d̂(G) = 1 if and only if G is procyclic.

In particular, if G is a nonprocyclic pro-p-group with Ẑ(G) open in G, then there exists a finite
p-group E with number of conjugacy classes k(E) such that

d̂(G) = d̂(E) =
k(E)

∑
i=1

|ĈE(xi)|
|CE(xi)| . (11)

Note that Theorem 2 was inspired by a similar property, which was shown by Abdol-
lahi and others [15] for the probability d(G) that two randomly picked elements x, y commute in
a pro-p-group G. In fact, our third main result connects d̂(G) with d(G).

Theorem 3. If G is a pro-p-group with a trivial Schur multiplier, then there exists a finite p-group

H such that d(G) = d̂(G) = d̂(H)/|G : F̂C(G)|2.

Section 2 proves Theorem 1 and gives a formal description of complete nonabelian
tensor squares and complete nonabelian exterior squares in terms of quotients of free
pro-p-groups. Section 3 recalls some facts of homological algebra and previous bounds
on the exterior degree, setting the ground for the proofs of the remaining main theorems
which are given in Section 4. Examples appear at the end, in order to support the main
results. Notations and terminology are standard and follow [1,2,14,16].

2. The First Main Theorem and Its Proof

We say that a pro-p-group G acts compatibly and continuously on itself by conjugation,
if the action (a, b) ∈ G × G �→ ab ∈ G is continuous and the compatibility relations
x(y

z) = xz−1yz and t(z
y) = ty−1zy are satisfied for all x, y, z, t ∈ G.

Definition 1 (Continuous Crossed Pairings of Pro-p-Groups). Let A be a pro-p-group and
G another pro-p-group acting compatibly and continuously on itself by conjugation. A map
ϕ : G× G → A is called a continuous crossed pairing if for all g, h, t, z ∈ G we have

ϕ(gz, h) = ϕ(zg, hg) ϕ(g, h) and ϕ(g, ht) = ϕ(g, h) ϕ
(

gh, th
)

(12)

If G and A are profinite abelian groups, Definition 1 gives the notion of a bilinear contin-
uous map, or middle linear continuous map, according to §5.5 of [2]. It is possible to introduce
categorically the complete nonabelian tensor square via an appropriate universal property.

Definition 2 (Universal Property of Complete nonabelian Tensor Squares). Consider a pro-
p-group A and pro-p-group G acting compatibly and continuously on itself by conjugation. The
complete nonabelian tensor square of G is the pro-p-group G⊗̂G together with a continuous crossed
pairing ⊗̂ : (g, h) ∈ G × G �→ g⊗̂h ∈ G⊗̂G such that for any continuous crossed pairing
ϕ : G × G → A there is a unique homomorphism ϕ̂ : G⊗̂G → A of pro-p-groups making
commutative the following diagram (i.e., ϕ̂ ◦ ⊗̂ = ϕ)

G× G

ϕ

��

⊗̂
�� G⊗̂G

ϕ̂

��
A

(13)

Note the universal property of complete abelian tensor products in §5.5 of [2]. It is
also useful to compare Lemma 5.5.1, Lemma 5.5.2 and Proposition 5.4 of [2] with Theorems
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2.1 and 3.1 of [6], in order to understand how we generalize the results on complete abelian
tensor squares of profinite groups to complete nonabelian tensor squares of profinite groups.
We now begin with the proof of our first main result.

Proof of Theorem 1. First of all, we note that Y = G×G is a profinite space since we have

Y = G× G = lim←−
i∈J

Gi × lim←−
j∈J

Gj = lim←−
i,j∈J

(Gi × Gj). (14)

If ϕ : (g, h) ∈ Y �→ ϕ(g, h) ∈ A is a continuous crossed pairing of pro-p-groups, then
the universal property defining Fp(Y) implies that there is a continuous homomorphism
ϕ̂ : Fp(Y)→ A, which is unique in making commutative the following diagram:

Y ι ��

ϕ

��

Fp(Y)

ϕ̂

��

A

(15)

Here, ι is the embedding of Y into Fp(Y). Let K be the smallest closed normal subgroup of
Fp(Y) that is topologically generated by the elements

ι(gz, h)ι(g, h)−1ι(zg, hg)−1 and ι(g, ht)ι(gh, th)−1ι(g, h)−1 (16)

for all g, z, h, t ∈ G. Since ϕ is a crossed pairing,

ϕ̂
(

ι(gz, h)ι(g, h)−1ι(zg, hg)−1
)
= ϕ̂(ι(gz, h))ϕ̂

(
ι(g, h)−1

)
ϕ̂
(

ι(zg, hg)−1
)

(17)

= ϕ(gz, h)ϕ(g, h)−1 ϕ(zg, hg)−1 = ϕ(zg, hg)ϕ(g, h)ϕ(g, h)−1 ϕ(zg, hg)−1 = 1.

We also have for the same reason

ϕ̂
(

ι(g, ht)ι(gh, th)−1ι(g, h)−1
)
= ϕ̂(ι(g, ht)ϕ̂(ι(gh, th)−1)ϕ̂(ι(g, h)−1) (18)

= ϕ(g, ht)ϕ(gh, th)−1 ϕ(g, h)−1 = ϕ(g, h)ϕ(gh, th)ϕ(gh, th)−1 ϕ(g, h)−1 = 1.

Therefore, K ⊆ ker ϕ̂ and ϕ̂ is a continuous homomorphism of pro-p-groups vanishing on
the topological generators of K. Now, π : Fp(Y)→ Fp(Y)/K is the quotient homomorphism,
hence a surjective continuous homomorphism of pro-p-groups, and we may consider the
composition π ◦ ι : Y → Fp(Y)/K. In this situation, there is a continuous homomorphism
of pro-p-groups ϕ̂K : Fp(Y)/K → A, which is unique in making commutative the following
diagram

Fp(Y)/K

ϕ̂K

��

Yπ◦ι��

ϕ

��

ι �� Fp(Y)

ϕ̂

��

π

��

A

(19)

Setting G⊗̂G = Fp(Y)/K and g⊗̂h = π(ι(g, h)), Definition 2 is satisfied by the left
portion of the diagram above. Of course, we may repeat the proof taking any pro-p-group
which is topologically isomorphic to Fp(Y)/K and we reach the same conclusions. The first
part of Theorem 1 follows.
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Concerning the remaining part of the theorem, we shall note that G⊗̂G is a pro-p-group
and by a result of Alexandroff in Lemma A4.31 of [1], so it is a dyadic space, whenever it is
metrizable.

From Theorem A4.16 of [1], it can be useful to mention that first countable pro-p-groups
are always metrizable. This happens for instance when pro-p-groups are topologically
finitely generated. Therefore, one could also note from the proof above that if G is topo-
logically finitely generated, then so is G⊗̂G and in this situation automatically G⊗̂G is
metrizable, hence a dyadic space.

3. Some Observations on the Schur Multipliers

In the present section we report some results on the exterior degree in [2,7,9] but also
some results of homological algebra in [1,2,16]. Here, [G, G] denotes the closure of the
commutator subgroup

[G, G] = 〈[x, y] | x, y ∈ G〉 = 〈x−1y−1xy | x, y ∈ G〉. (20)

While in general Z(G) is a closed subgroup of a pro-p-group G, it can easily be seen that
this is not the case for [G, G], and so we need to consider [G, G] if we want to preserve both
its algebraic and topological structure in a pro-p-group, see [1].

Definition 3 (See [6,16]). The Schur multiplier M(G) of a pro-p-group G is defined to be the
second homology group H2(G,Zp) with coefficients in the ring Zp of the p-adic integers.

The above notion is largely used in [7,16–18] but it is useful to recall how Definition 3
should be interpreted in case of a finite p-group. For instance, we may consider a pro-p-
group on a countable set of indices, that is, G = lim←−

m∈N
Gm with each Gm finite p-group. The

situation does not change if G = lim←−
j∈J

Gj and J is an arbitrary set of indices, but take J being

countable as a temporary assumption.
From Proposition 6.5.7 of [2], there is a continuous homomorphism of pro-p-groups

such that

H2(G,Zp) = H2

(
lim←−
m∈N

Gm, lim←−
m∈N

Z

pmZ

)
� lim←−

m∈N
H2

(
Gm,

Z

pmZ

)
, (21)

where Z/pmZ = Z(pm) denotes the cyclic group of order pm as per Example 1.28 (i) of [1].
Let us carefully examine the construction of the above homology groups with coefficients
in Zp. Consider a free homogeneous Bar resolution (with each Ln free profinite Zp-modules on
the profinite space {(1, x1, . . . , xn) | xi ∈ G}) according to §6.2 in [2]

. . . −→ Ln
∂n−→Ln−1 −→ . . . L1 −→ L0

ε−→Zp −→ 0, (22)

where ∂n is the boundary map defined by

∂n(x0, x1, . . . , xn) =
n

∑
i=0

(−1)i (x0, x1, . . . xi−1, xi+i, . . . , xn), (23)

and ε is the augmentation map defined by

ε : x ∈ L0 �→ ε(x) = 1 ∈ Zp. (24)

Both (23) and (24) are continuous homomorphisms of pro-p-groups. Now, G is a
pro-p-group, Zp is a commutative pro-p-ring and we may consider B which is a pro-p right
[[ZpG]]-module, that is, a pro-p-module on the complete group algebra [[ZpG]]. See §5.1,

§5.2 and §5.3 of [2] for definitions and details. In this situation, Tor
[[ZpG]]
n (B,Zp) is the n-th
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left derived functor of the complete abelian tensor product, ⊗̂[[ZpG]] Zp, as noted in [2]
(§6.3), and so we have

. . . −→ B⊗̂[[ZpG]]Ln
∂n−→B⊗̂[[ZpG]]Ln−1 −→ . . .

∂2−→B⊗̂[[ZpG]]L1
∂1−→B⊗̂[[ZpG]]L0

ε−→Zp −→ 0. (25)

Since u⊗̂(x0, x1, . . . , xn) ∈ B⊗̂[[ZpG]]Ln �→ u⊗̂∂n(x0, x1, . . . , xn) ∈ B⊗̂[[ZpG]]Ln−1, we
may use the symbol ∂n in (23) also in (25), because it is induced by (23). In particular,
B = Zp can be regarded as a pro-p-module on [[ZpG]] and so we have

H2(G,Zp) = Tor
[[ZpG]]
2 (Zp,Zp) =

ker ∂2

im ∂3
. (26)

A careful examination of §6.8 of [2] suggests that we have a short exact sequence

0 −−−−→ Zp
p−−−−→ Zp

q−−−−→ Z
pZ −−−−→ 0 (27)

where p denotes the multiplication by p in Zp and q the limit map from Zp to Z/pZ arising
from the structure of the projective limit of Zp, and so there is a long exact sequence of
abelian pro-p-groups

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ)
δ2−−−−→

δ2−−−−→ H1(G,Zp)
p1−−−−→ H1(G,Zp)

q1−−−−→ H1(G,Z/pZ)
δ1−−−−→

δ1−−−−→ H0(G,Zp)
p0−−−−→ H0(G,Zp)

q0−−−−→ H0(G,Z/pZ)

(28)

where p1 and p2 are induced by p, q1 and q2 by q, and δ1 and δ2 are connecting continuous

homomorphisms. Since H0(G,Zp)
p0−→H0(G,Zp) = Zp

p−→Zp is a monomorphism, we have

H1(G,Zp)
p1−→H1(G,Zp) −→ H1(G,Z/pZ) −→ 0 (29)

and so (28) becomes

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ)
δ2−−−−→

δ2−−−−→ H1(G,Zp)
p1−−−−→ H1(G,Zp)

q1−−−−→ H1(G,Z/pZ) −−−−→ 0
(30)

On the other hand, Lemma 6.8.6 of [2] allows us to conclude that H1(G,Z/pZ) � G/Gp[G, G]
and H1(G,Zp) � G/[G, G]; hence, (23) becomes (up to isomorphisms of abelian pro-p-
groups) the following long exact sequence of abelian pro-p-groups

. . . −−−−→ H2(G,Zp)
p2−−−−→ H2(G,Zp)

q2−−−−→ H2(G,Z/pZ)
δ2−−−−→

δ2−−−−→ G/[G, G]
p1−−−−→ G/[G, G]

q1−−−−→ G/Gp[G, G] −−−−→ 0
(31)

We make two observations on the basis of the homological algebra, which was used.

Remark 1. Assume we start with G = G1 finite p-group, that is, G = G1 = G2 = G3 = . . .
in the projective limit describing G. Then, there is a presentation 1 → R → F → G → 1 for
G = F/R with F a free abstract group and R a normal subgroup of F. Applying Theorem
9.5.10 of [16], we obtain the isomorphism of finite abelian p-groups

H2(G,Z/pZ) � R ∩ (F′Fp)

[R, F]Fp , (32)
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where Fp = 〈ap | a ∈ F〉 denotes the subgroup of p-powers of F, [F, F] = F′ the commutator
subgroup of F and [R, F] = 〈[a, b] | a ∈ R, b ∈ F〉 ⊆ F′. In particular, the long exact
sequence (31) becomes in this situation

. . .
q2−−−−→ R ∩ (F′Fp)/[R, F]Fp δ2−−−−→ G/[G, G]

p1−−−−→ (33)

G/[G, G]
q1−−−−→ G/Gp[G, G] −−−−→ 0

so we may concretely visualize Definition 3 in the case of finite p-groups.

Note that (32) modifies the Hopf’s Formula for the Schur multiplier, which is available
in Theorem 9.5.6 of [16] and usually formulated as

H2(G,Z) � R ∩ F′

[R, F]
, (34)

when G = F/R is an arbitrary abstract group with presentation 1 → R → F → G → 1,
so not necessarily a finite p-group. Now, we make our second observation as a further
description of Definition 3.

Remark 2. Comparing (34) with (32), we note that the terms Fp and pZ are significant in the
case of finite p-groups and this justifies the construction of H2(G,Zp), which is designed for
infinite pro-p-groups as large projective limits of finite p-groups. The temporary assumption
of working with J countable facilitates the understanding of the functorial behavior in
(21), where H2(G,Zp) preserves the structure of projective limit. This relevant observation
and general versions of Hopf’s Formula such as (32) allow us to consider H2(G,Zp) as a
projective limit of smaller homology groups H2(Gm,Z/pmZ) when m tends to infinity. The
reader can find in [19] details of a categorical nature on Hopf Formulas.

Now we remove the temporary assumption to have a countable J and consider a
pro-p-group G which is a projective limit of Gj with an arbitrary set J of indices. Note that
Theorem 1 involves the nonabelian tensor square G⊗̂G of an arbitrary pro-p-group G and
one has the following maps

κ̂ : x⊗̂y ∈ G⊗̂G �→ [x, y] ∈ [G, G] and κ̂′ : x∧̂y ∈ G∧̂G �→ [x, y] ∈ [G, G], (35)

which are continuous surjective homomorphisms of pro-p-groups such that

Ĵ2(G) = ker κ̂ ⊇ ∇̂(G) and ker κ̂′ � M(G). (36)

We give a proof of the following result for convenience of the reader.

Lemma 1. In a pro-p-group G, the maps κ̂ and κ̂′ in (35) are continuous surjective homomorphisms
of pro-p-groups and the following diagram has rows which are central extensions of pro-p-groups

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|
⏐⏐) ε̂

⏐⏐) ∥∥∥
1 −−−−→ M(G) −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1.

(37)

Moreover, we have ker κ̂ ⊇ ∇̂(G) and there is a continuous isomorphism of pro-p-groups such that
ker κ̂′ � M(G).

Proof. From Definition 2, there are continuous crossed pairings ⊗̂ : (x, y) ∈ G × G �→
x⊗̂y ∈ G⊗̂G and κ : (x, y) ∈ G × G → [x, y] ∈ [G, G] of pro-p-groups, inducing the
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map κ̂ : x⊗̂y ∈ G⊗̂G �→ [x, y] ∈ [G, G], which is a continuous crossed pairing such that
κ̂ ◦ ⊗̂ = κ and the upper part of the following diagram is commutative

G× G

κ

��

⊗̂
�� G⊗̂G

κ̂

��

ε̂

��

[G, G] ��
κ̂′ G∧̂G

(38)

This shows that κ̂ is a continuous homomorphism of pro-p-groups. Note that κ̂ is surjective,
because κ̂ ◦ ⊗̂ = κ and κ is surjective by construction. Concerning κ̂′, we look at the lower
part of the same diagram, where ε̂ : G⊗̂G → G∧̂G is the natural projection of G⊗̂G onto
G∧̂G with ker ε̂ = ∇̂(G). Then, κ̂′ is induced by κ̂ modulo ∇̂(G) and is a continuous
homomorphism of pro-p-groups such that κ̂′ ◦ ε̂ = κ̂. Of course, ker ε̂ ⊆ ker κ̂ and, if
x⊗̂x ∈ ker ε̂ = ∇̂(G), then for all y⊗̂z ∈ G⊗̂G we have

(x⊗̂x) (y⊗̂z) (x⊗̂x)−1
= (y⊗̂z)[x,x]

=⇒ (x⊗̂x) (y⊗̂z) = (y⊗̂z) (x⊗̂x) (39)

showing that ker ε̂ ⊆ Z(G⊗̂G). Note that more generally the same argument applies to any
element a⊗̂b ∈ ker κ̂, in fact

(a⊗̂b) (y⊗̂z) (a⊗̂b)−1
= (y⊗̂z)[a,b]

=⇒ (a⊗̂b) (y⊗̂z) = (y⊗̂z) (a⊗̂b) (40)

hence, ker κ̂ ⊆ Z(G⊗̂G). We may conclude that both the sequence

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1 (41)

and the sequence

1 −−−−→ ker κ̂′ −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1. (42)

are short exact sequences, which describe central extensions of pro-p-groups. Considering
the restriction ε̂ | of ε̂ to Ĵ2(G) we may conclude that

1 −−−−→ Ĵ2(G) −−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|
⏐⏐) ε̂

⏐⏐) ∥∥∥
1 −−−−→ ker κ̂′ −−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1.

(43)

is a commutative diagram whose rows are central extensions of pro-p-groups. It re-
mains to show that ker κ̂′ is isomorphic as a pro-p-group to M(G). This is proved in [6]
(Proposition 2.2), so we omit the details here. The result follows.

Even if in principle ∇̂(G) may be a proper subgroup of Ĵ2(G), the computations show
that most of the time Ĵ2(G) = ∇̂(G) in case of finite groups (see [3,4]) and so (37) becomes
most of the time

1 −−−−→ ∇̂(G)
α−−−−→ G⊗̂G κ̂−−−−→ [G, G] −−−−→ 1

ε̂|
⏐⏐) ε̂

⏐⏐) ∥∥∥
1 −−−−→ M(G)

β−−−−→ G∧̂G κ̂′−−−−→ [G, G] −−−−→ 1

(44)

where α embeds ∇̂(G) into G⊗̂G and β is induced by α and by ε̂ | : x⊗̂x ∈ ∇̂(G) �→ x∧̂x ∈
M(G). Of course, if Ĵ2(G) �= ∇̂(G), then Im α ⊆ ker κ̂ and Im β ⊆ ker κ̂′, so we have
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inclusions and lose the exactness of the sequences, that is, the diagram (44) is no longer
formed by central extensions as rows but it is still (44) a commutative diagram.

Remark 3. In a finite p-group G, the quotient CG(x)/ĈG(x) is isomorphic to a subgroup of
the abelian group H2(G,Z) by the results in [7,10]. In particular, groups with H2(G,Z) = 1
have CG(x) = ĈG(x) for all x ∈ G and Z(G) = Ẑ(G) as well.

We recall that the commutativity degree of a pro-p-group G is defined by the formula

d(G) :=
∫

G
μ(CG(x))dμ, (45)

where μ is the Haar measure on G. This notion has been studied extensively in [20–23]
both in the finite case and in the infinite case. Of course, (45) represents for finite groups
the probability that a randomly picked pair (x, y) of elements of G× G commutes, that is,
satisfies the condition [x, y] = 1. Following the same notion at the level of elements for the
operator of exterior degree, instead of commutator, we find the probability that the same
randomly picked pair (x, y) of elements of G× G satisfies x∧̂y = 1 (instead of [x, y] = 1).
The two notions are related by the following result:

Lemma 2 (See [7], Theorem 1.1). A pro-p-group G satisfies the following inequality

d̂(G) ≤ d(G)−
(

p− 1
p

)(
μ(Z(G))− μ(Ẑ(G))

)
.

Furthermore, if M(G) is finite, then

d̂(G) ≥ μ(Ẑ(G)) +
1

|M(G)|
(

d(G)− μ(Ẑ(G))
)

.

It is also useful to mention that the abelian pro-p-group Z(G)/Ẑ(G) can be embedded
in the abelian pro-p-group M(G), involving some numerical invariants such as the rank of a
pro-p-group G

rk(G) = sup{m(H) | H = H subgroup of G}, (46)

where m(H) is the minimal number of elements which topologically generate H. If G is a
torsion-free pro-p-group, rk(G) = tf(G) is called the torsion-free rank, see [17].

Lemma 3 (See [7], Theorem 1.2). Let G be a pro-p-group such that rk(G/Ẑ(G)) = a, rk(M(G))
= b and tf(M(G)) = c.

(i). If M(G) is finite, then |Z(G)/Ẑ(G)| divides |M(G)|a.
(ii). If M(G) is infinite, then rk(Z(G)/Ẑ(G)) ≤ ba. In particular, if M(G) is torsion-free, then

tf(Z(G)/Ẑ(G)) ≤ ca.

Now, we recall a characterization for the extremal cases of exterior degree equal
to zero, or equal to one, via the notions of the complete exterior center and complete
exterior centralizer.

Lemma 4 (See [7], Proposition 3.3). A pro-p-group G has d̂(G) = 1 if and only if Ẑ(G) = G.

We report a result similar to that of Abdollahi and others [15] for compact groups.
This was at the origin of our investigations.

Lemma 5 (See [15], Theorem 1.1). In a pro-p-group G of d(G) > 0 there exists a finite p-group
H such that d(G) is proportional to d(H) via a constant α = |G : FC(G)|−2 depending only on
the FC-center FC(G) = {g ∈| |G : CG(g)| is f inite} of G. In particular, d(G) = α d(H).
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We note explicitly that the formulation above is designed for our present context.
It is also useful to collect some bounds, which can be obtained in terms of subgroups
and quotients.

Lemma 6 (See [7], Proposition 3.6 and Corollary 5.3). Assume that G is a pro-p-group.

(i). If N is a closed normal subgroup of G, then d̂(G) ≤ d̂(G/N) and the equality holds if
N ≤ Ẑ(G);

(ii). If G is abelian nonprocyclic, then

d̂(G) ≤ p2 + p− 1
p3

and the equality holds if and only if G/Ẑ(G) is p-elementary abelian of rank two;
(iii). If G is nonabelian and Ẑ(G) is a proper subgroup of Z(G), then

d̂(G) ≤ p3 + p− 1
p4 .

While the upper bounds on d̂(G) are useful to measure how far we are from the
extremal case d̂(G) = 1 in [0, 1], the lower bounds on d̂(G) may reveal the presence of
quotients, which are small enough.

Remark 4. From Lemma 2, a pro-p-group G always has d̂(G) ≤ d(G), and, if M(G) is
finite, μ(Ẑ(G)) is finite and μ(Ẑ(G)) �= d(G), then d(G) is nontrivially bounded from
below. Note that nontrivial lower bounds for d(G) imply that G is virtually abelian by [22].

4. Proofs of the Main Theorems

With the results of the previous section at hand, we show Theorem 2.

Proof of Theorem 2. (i). The normalized Haar measure μ on the pro-p-group G is a left
invariant Borel probability measure which respects the closed subgroups of G (see [22] for
terminology); hence, for any closed subgroup M of G and k ≥ 1, we have

μ(M) =

⎧⎪⎨⎪⎩
1
pk , if |G : M| = pk

0, if |G : M| = ∞.
(47)

Consider
d̂(G) =

∫
G

μ(ĈG(x))dμ(x). (48)

We have from (47) that μ(ĈG(x)) > 0 iff ĈG(x) has p-power index in G, that is, μ(ĈG(x)) =
0 iff ĈG(x) has infinite index in G iff x �∈ F̂C(G). Since μ is a nonnegative normalized Haar
measure on G, we have

0 = d̂(G) =
∫

G
μ(ĈG(x))dμ(x) ⇐⇒ μ(ĈG(x)) = 0, ∀x ∈ G (49)

iff x �∈ F̂C(G) for all x ∈ G iff there are no elements in the interior F̂C(G), i.e., F̂C(G)◦ = ∅
but we know that (any set so in particular) F̂C(G) is open iff F̂C(G)◦ = F̂C(G). This cannot
happen since 1 ∈ F̂C(G) and F̂C(G) �= ∅. Therefore, d̂(G) = 0 happens iff F̂C(G)◦ = ∅ iff
F̂C(G) is not open.

(ii). Assume that G is procyclic. If G � Z(pn) or G � Zp, then M(G) is trivial.
Hence, Ẑ(G) = Z(G) by Lemma 3 and so Ẑ(G) = Z(G) = G is abelian. The bounds of
Lemma 2 imply d̂(G) = 1. Conversely, assume that G is a pro-p-group with d̂(G) = 1.
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From Lemma 4, d̂(G) = 1 if and only if Ẑ(G) = G. Hence, G is abelian. Therefore, we
are assuming that G is an abelian pro-p-group of d̂(G) = 1. Either G is procyclic or G is
nonprocyclic. In the first case, the result follows. In the second case, Lemma 6 (ii) implies
p3 ≤ p2 + p− 1, which is a contradiction. Then, G must be necessarily procyclic.

(iii). Of course, d̂(G) ∈ [0, 1]. From (ii) above d̂(G) �= 1 iff G is nonprocyclic. On
the other hand, (i) above shows that d̂(G) = 0 iff F̂C(G)◦ = ∅. Since Ẑ(G) ⊆ F̂C(G)
and Ẑ(G) is open in G, we have Ẑ(G)◦ ⊆ F̂C(G)◦ hence F̂C(G)◦ �= ∅. This implies that
d̂(G) > 0. Therefore, a nonprocyclic pro-p-group G with Ẑ(G) open in G automatically
has d̂(G) ∈ (0, 1) and we may proceed with the proof of the formula for the computation
of the complete exterior degree. Consider Lemma 6 (i) and that Ẑ(G) is also closed in
G by Proposition A4.25 (ii) of [1] (in fact any open subgroup is closed). It follows that
G/Ẑ(G) � E is a finite p-group but also that

d̂(G) = d̂

(
G

Ẑ(G)

)
= d̂(E) =

k(E)

∑
i=1

|ĈE(xi)|
|CE(xi)| , (50)

where the last equality is due to [10] (Lemma 2.2).

Now, we proceed to prove another main result.

Proof of Theorem 3. From Lemmas 2 and 3 we have μ(Ẑ(G)) = μ(Z(G)) and d(G) = d̂(G).
Moreover, ĈG(x) = CG(x) for all x ∈ G in this situation; hence, F̂C(G) = FC(G). From
Lemma 5, we have a finite p-group H such that d(G) = d(H)/|G : FC(G)|2, that is,

d̂(G) = d̂(H)/|G : F̂C(G)|2.

As evidence of Theorem 2, we present the following construction.

Example 1. The present example appears in [9], so we report the main information only
and a few new computations. Consider the elementary abelian p-group

A = Z(p)(N) (51)

of countable rank, where Ai = 〈ai〉 = Z(p) is cyclic of order p and i ∈ N. Then, consider

B = Z(p)n = A1 × . . .× An (52)

elementary abelian p-subgroup of rank n of A. We have that

1 = d(B) > d̂(B) =
pn + pn−1 − 1

p2n−1 and 1 = d(A) ≥ p2 + p− 1
p3 > d̂(A). (53)

Note that the complete exterior degree of abelian pro-p-groups is also described by
Lemma 6 (ii). In fact, Theorem 2 shows that computations such as those in Lemma 6 are in
general tedious, so that formulas of reduction are very useful. In addition to Example 1, we
mention below a pro-p-group, whose structure is described in [17].

Example 2. Consider the infinite pro-2-group (with r ≥ 1 arbitrary)

G = 〈a, t | a2r = 1, a−1ta = t−1〉 = Z2 �Z(2r), (54)

which appears also in §1 of [18]. We have M(G) = 1 and so Z(G) = Ẑ(G) = 1, but also
d̂(G) = d(G) and ĈG(x) = CG(x) for all x ∈ G.

The following computations were carried out in Example 5.2 of [7] and are pre-
sented here for the convenience of the reader. First of all, we note that for i = 0 we have
μ(ĈG(ti)) = 1 but, for all i �= 0, μ(ĈG(ti)) = 1/2r and for all i and 1 ≤ j ≤ 2r − 1 instead
μ(ĈG(ajti)) = 0.
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If T = 〈t〉 = Z2, then

d̂(G) = μ(Ẑ(G)) +
∫

T−Ẑ(G)
μ(ĈG(x))dμ(x) +

∫
G−T

μ(ĈG(x))dμ(x) (55)

=
1
2r μ(T − {1}) = 1

2r μ(T) =
1
4r .

Theorem 2 cannot be used here and FC(G) = F̂C(G) = T is closed and open in G.
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Abstract: The use of the global mean first-passage time (GMFPT) in random walks on networks
has been widely explored in the field of statistical physics, both in theory and practical applications.
The GMFPT is the estimated interval of time needed to reach a state j in a system from a starting
state i. In contrast, there exists an intrinsic measure for a stochastic process, known as Kemeny’s
constant, which is independent of the initial state. In the literature, it has been used as a measure
of network efficiency. This article deals with a graph-spectrum-based method for finding both the
GMFPT and Kemeny’s constant of random walks on spiro-ring networks (that are organic compounds
with a particular graph structure). Furthermore, we calculate the Laplacian matrix for some specific
spiro-ring networks using the decomposition theorem of Laplacian polynomials. Moreover, using
the coefficients and roots of the resulting matrices, we establish some formulae for both GMFPT and
Kemeny’s constant in these spiro-ring networks.

Keywords: spiro-ring network; random walk; global mean first-passage time; Kemeny’s constant

MSC: 05C50; 05C81; 05C92

1. Introduction

The empirical investigation of real-world networks has inspired many scientists to
study complex chemical networks in detail. They have many useful applications in physics
and biophysics, as well as in quantum chemistry for molecular modeling, in statistical
mechanics for bulk matter properties, and in molecular dynamics simulations for the study
of molecular behavior. These networks aid in the understanding of atomic and molecular
structures, electronic properties, and fundamental physical origins in various physical
contexts of materials science.

Recently, several scientific research fields have shown a particular interest in the
study of random walks on complex networks. Random walks [1] are stochastic processes
characterized by irregular fluctuations, where each step in the process is determined
randomly, independently from past events. The mathematical theory of random walks has
been widely applied in several domains, such as machine learning [2], optimization [3],
artificial intelligence [4], engineering [5], biology [6], physics, and other disciplines [7,8].

In order to motivate our study, which concerns some specific chemical structures
called spiro compounds, and to provide an explanation of the physical significance and
justification behind the spreading processes on spiro-ring networks, we briefly highlight
some practical implications and potential real-world applications of our findings, even
if our main focus is more in chemistry than in physics. Random walks are often used as
essential models in the field of physical systems to describe the probabilistic movement of
particles or entities in different media, such as gases, liquids, or solids. To better understand
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the connections between the selected structures and physical processes, it is crucial to
investigate the fundamental principles and behaviors which lie behind them. This involves
exploring the geometric properties, topological arrangements, and dynamic aspects of
these formations.

1.1. Global Mean First-Passage Time and the Kemeny Constant

Given a network, the so-called first-passage time (FPT) [9] is the estimated time needed
by a random walker, starting from an initial point, to reach a particular target point. It
represents a sort of metric, associated with a random walk, which helps the understanding
of the physical system under observation. On the other hand, the global mean first-passage
time (GMFPT), denoted also by 〈T〉g (where g stands for ‘global’), is a related valuable tool
for analyzing the behavior of random walks, since it describes the average of the FPT’s
obtained from all of the source points in the network.

The GMFPT measures the information propagation efficiency, discovery time, and
predicted time for a random walker to visit a target node in a network. It is significant in
order to measure the capability of transport operations between nodes in the context of a
spiro-ring network. For instance, the GMFPT helps to indicate how quickly particles or
information can travel between nodes in spiro-ring networks.

It is useful to emphasize the relevance of the GMFPT over other metrics used to analyze
system dynamics. In fact, it presents a unique perspective by measuring the average time it
takes for a message, particle, or entity to move from one place to another within the system.
With this system-wide perspective, the GMFPT may measure the entire efficiency and
dynamics of communication or particle movements, allowing research to find bottlenecks,
inefficiencies, or preferred paths. Furthermore, its flexibility to varying system parameters,
enables its use in a variety of scenarios, making it an effective tool for evaluating a wide
range of systems, including networks, stochastic optimization [9], biological processes [10],
finance [11], complex network analysis [12], and many others.

On the other hand, another important probabilistic notion directly associated with
random walks in graphs and networks, is the Kemeny constant (also known as the Kemeny
score), denoted by K. It is a mathematical concept used to rank or order items based on
preferences or pairwise comparisons. In the 1950s, Kemeny and Snell [13] established a
model that represents the total time-scale associated with relaxation in a Markov chain or
kinetic network. In one sentence, the Kemeny constant roughly measures the expected time
it takes to go from a randomly chosen state of the network to another randomly chosen
one. What is interesting here is that this quantity only depends on the network, and not on
the chosen starting state!

The Kemeny constant can be thought of as an indicator of network effectiveness, since
it represents the estimated minimum number of steps for a random walk on the network to
attain a stationary distribution. It is a helpful statistic to differentiate networks on the basis
of their traversal times. Furthermore, the analysis of random walk behavior on a spiro-ring
network and the comparison of its characteristics with those of other networks requires the
application of the Kemeny constant. It can be used to figure out how information spreads
in a spiro-ring network.

The Kemeny constant has also sparked great attention in network research, graph
theory, and data analysis. For instance, it is used to compute the Kirchhoff index of graphs,
and it is offered as an objective function for optimization in graph clustering algorithms.

1.2. Notation and Definitions

All of the networks and graphs considered in this article are undirected and simple. Let
G be an undirected graph with |EG | = m and |VG | = n, where EG and VG are, respectively,
the sets of edges and of vertices of G. In this study, any standard notation and terminology
that are not defined will be as defined in the classical literature, e.g., [14].

Let DG = diag(d1, . . . , d|VG |) be the diagonal matrix representing the vertex degrees,
where di indicates the degree of the vertex vi in the graph G; and denote by AG the
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adjacency matrix, that is, the square matrix whose entry (i, j) is 1 if vi is adjacent to vj, and
0 otherwise. The standard matrix representation of a graph is given by its Laplacian matrix
LG , which may be defined as DG − AG . The Laplacian matrix is positive semi-definite, and
so its eigenvalues can be ordered in an ascending manner, and it turns out that a graph is
connected if and only if the first eigenvalue of its Laplacian matrix is zero (see [14]).

In order to evaluate the spread of the signal network, one may use the first-passage
time (FPT), that is, the time needed for a random walker to arrive at a target point starting
from a given origin in a minimum number of steps. But also the mean first-passage time
(MFPT), which is the average time it takes for a diffusing particle to reach a target position
for the first time. One area of research investigates just the relationships between the
distribution of the MFPT and the structural features of a network. This relationship can be
used to improve search efficiency, but it requires prior knowledge of the target. Hence, in
the absence of knowledge regarding the target node, the issue of search efficiency becomes
a very difficult problem.

The average expected time across all point pairings of a graph G, represented by
〈T(G)〉g, is referred to as the global mean first-passage time (g stands for global), and it is
defined as

〈T(G)〉g =
1

|VG |(|VG | − 1)
×∑

i �=j
Tij(G), (1)

where Tij is the number of steps taken for a random walker between nodes i and j.
For a linked network G with n nodes, Zhu et al. [15] and Gutman and Mohar [16] have

separately demonstrated that

n
n

∑
i=2

1
γi

= ∑
i<j

rij, (2)

where 0 = γ1 < γ2 ≤ γ3 ≤ . . . ≤ γn are the eigenvalues of L(G), and rij denotes the electric
resistance distance between the vertices of the graph G, namely, the resistance between the
two respective vertices of an electrical network corresponding to G, with the property that
the resistance of each bond joining adjacent vertices is 1.

Chandra et al. [17] presented a novel method for a connected graph G, discovering
the following relationship between Tij and rij:

Tij + Tji = 2|EG | × rij. (3)

Equation (3) implies, in particular, that ∑
i �=j

Tij(G) = 2|EG | × ∑
i<j

rij.

Therefore, by using all the equations above, we obtain formulae for MFPT:

〈T(G)〉g =
2|EG |

|VG |(|VG | − 1)
×∑

i<j
rij =

2|EG |
(|VG | − 1)

×
n

∑
i=2

1
γi

(4)

On the other hand the Kemeny constant is given by the following formula (see [18]):

K(SPn) =
n

∑
j=2

1
γj

, where, again, γj are the eigenvalues of L(G). (5)

Remark 1. Note that in both formulae, the first eigenvalue (i.e., for j = 1) is zero due to the
connectedness of the graph.

In order to give an idea of the importance and use of the Laplacian matrix in practical
applications, let us note that Xiao and Gutman [19] established the feasibility of calculating
the resistance distance using the eigenvalues of the Laplacian matrix. In 2018, Zhang
et al. [20] determined the GMFPT duration of random walks on Vicsek fractals by means
of the Laplacian matrix eigenvalues. In [21], Zeman et al. determined the GMFPT and
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Kemeny constant of a random walk of pentagonal networks. In 2021, Ali et al. [22,23]
obtained the resistance-distance-based indices of linear pentagonal–quadrilateral networks.
Topological indices for chemical graph products, carbon nanotubes, and generalized bridge
molecular graphs were discussed by Zhang et al. [24]. Finally, the study conducted by
Ullah et al. [25] determined degree-based topological indicators for molecular graphs.

In this article, motivated by previous works [26–28], we establish some explicit closed-
form formulae for the GMFPT and Kemeny constant in the context of spiro-ring networks,
using the Laplacian decomposition theorem. On the basis of the obtained results, compara-
tive studies are carried out for them.

1.3. Spiro-Ring Networks

Spiro compounds represent a fundamental category of cycloalkanes within the field
of organic chemistry. They are biologically active organic compounds with a particular
structure, that can be found in a wide variety of natural products. More specifically, these
compounds consist of two or more rings which have at least one common atom, represented
by a cut-vertex in the corresponding molecular graph. A spiro-hexagonal chain SPn is
created when a spiro compound consists of hexagonal rings and every cut-vertex is shared
by precisely two hexagons. The length of a spiro-hexagonal chain is defined as the number
of hexagons it contains. There are different types of substances based on the number of
spiro atoms (i.e., the common atoms) they contain, such as monospiro, dispiro, trispiro, and
so on. Three straight polyspiro alicyclic hydrocarbons are shown in Figure 1. The basic idea
and practical applications of modeling random paths on spiro-ring networks are related in
particular to the representation of the structures of spiro compounds in chemistry.

In the present work, we will examine a subcategory of unbranched multispiro molecules
whose corresponding graphs are referred to as spiro-hexagonal chains (or chain hexagonal
cacti [29], or six-membered ring spiro chains [30]). In particular, these chains, denoted by
SPn, consist of hexagonal rings, while the corresponding networks have 5n nodes and 6n
edges (see Figure 2).

Figure 1. (i) Dispiro[5,2,5]hexadecane, (ii) spiro[4,5]decane, and (iii) dispiro[3,2,3,2]dodecane.

Figure 2. A spiro-ring network SPn.

The choice of spiro-ring networks as the subject for our study is inspired by their
representation of spiro-compound structures in chemistry. Providing a better understand-
ing of the physical principles underpinning the modeling of random walks on molecular
structures gives valuable insights for the fundamental dynamics of molecular systems.
Random walks are a key framework used to describe the stochastic movement of particles,
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explore structural distance, and study the kinetics of molecular interactions. By revealing
the physical intuition and practical implications of modeling random walks on molecular
structures, researchers may increase their knowledge of complex systems and propose
novel ways for tackling contemporary issues.

Spreading processes, such as disease transmission or information propagation, are
complicated phenomena impacted by multiple variables, including network structure,
connection, and dynamics. Although spiro-ring-network-based theoretical models could
provide insight into certain elements of spreading processes, their relevance to actual
situations has to be carefully considered. Constructing physical spiro-ring networks and
performing controlled tests to confirm theoretical predictions may offer considerable ob-
stacles owing to the intricate architecture of these networks and the intricacy of spreading
processes. Additionally, turning theoretical models into practical applications, such as
creating efficient communication networks or forecasting disease outbreaks, needs exacting
empirical evidence and validation from empirical data.

2. Main Lemmas

In the present context, and all through the paper, a square matrix B of order n will be
represented by its characteristic polynomial ϕ(B), defined as follows: ϕ(B) = det(xIn − B).
Also, given a graph G, an automorphism of it will be represented as a permutation π of VG
(the set of vertices of the graph), for which the following property holds: vivk ∈ E(G) if and
only if π(vj)π(vk) is a path in G (where E(G) is the set of edges of the graph G). Finally,
from now on, we will use the notation 〈T〉g and K for the global mean first-passage time
(GMFPT) and the Kemeny constant, respectively.

Based on the vertex labeling of the spiro-ring network SPn shown in Figure 2, it is
clear that VG can be expressed as the union of three disjoint sets: V0 = {10, 20, . . . , n0},
V1 = {1, 2, . . . , 2n}, and V2 = {1̌, 2̌, . . . , 2̌n}. This means that |VG | = 5n, while |EG | = 6n. It
is also obvious that

π = (10)(20) · · · (n0)(1, 1̌)(2, 2̌) · · · (2n, 2̌n),

is an automorphism of SPn. Thus, the Laplacian matrix L(SPn) can be represented in the
form of the following block matrices:

L(SPn) =

⎛⎝LV00 LV01 LV02

LV10 LV11 LV12

LV20 LV21 LV22

⎞⎠,

where LVik represents the sub-matrix corresponding to the vertices of Vi and Vk, respectively,
where i, k ∈ {0, 1, 2}. Further, LV11 = LV22 thanks to the automorphism of G associated with
π. Let

P =

⎛⎜⎝In 0 0
0 1√

2
I2n

1√
2

I2n

0 1√
2

I2n − 1√
2

I2n

⎞⎟⎠
be the matrix of blocks whose dimensions are the same as those of the blocks in L(SPn).
Then, we have that

PL(SPn)P′ =
(

LR(SPn) 0
0 LS(SPn)

)
,

where P′ represents the transpose of P,

LR(SPn) =

(
LV00

√
2LV01√

2LV10 LV11 + LV12

)
, and LS(SPn) = LV11 − LV12 . (6)

The Laplacian polynomial decomposition theorem is expressed by the following
lemma:
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Lemma 1 ([31]). Assume that LR(SPn) and LS(SPn) are the matrices described above. Then,

ϕ(L(SPn)) = ϕ(LR(SPn)) · ϕ(LS(SPn)).

In accordance with Lemma 1, we initially determine the eigenvalues of the Laplacian
for SPn. Subsequently, we will provide the formula for the summation of the reciprocal and
products of the eigenvalues of the Laplacian. This formulation serves as the motivation
for calculating K and 〈T(G)〉g. According to the structure of Figure 2, we obtain that
LV00 = 4In and LV12 = O2n×2n So, LV01 and LV11 are matrices of sizes n× (2n) and (2n)×
(2n), respectively, as shown below:

LV01 =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 0 0 · · · −1
0 −1 −1 0 0 · · · 0
0 0 0 −1 −1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠, and LV11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · 0 0
−1 2 0 0 · · · 0 0
0 0 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2n×2n

.

Therefore,

LR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 · · · 0 −√2 0 0 0 0 · · · −√2
0 4 0 · · · 0 0 −√2 −√2 0 0 · · · 0
0 0 4 · · · 0 0 0 0 −√2 −√2 · · · 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
0 0 0 · · · 4 0 0 0 0 0 · · · 0

−√2 0 0 · · · 0 2 −1 0 0 0 · · · 0
0 −√2 0 · · · 0 −1 2 0 0 0 · · · 0
0 −√2 0 · · · 0 0 0 2 −1 0 · · · 0
0 0 −√2 · · · 0 0 0 −1 2 0 · · · 0
0 0 −√2 · · · 0 0 0 0 0 2 · · · 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
−√2 0 0 · · · 0 0 0 0 0 0 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3n×3n

,

and LS = LV11 .
The matrix determinant lemma can be used in order to calculate the determinant of a

square matrix of a rank-one perturbation.

Lemma 2 ([32]). Let H11, H12, H21, and H22 be matrices of orders n× m, n× n, m× n, and
m×m, respectively. Assume that H22 is invertible. Then,

det
(

H11 H12
H21 H22

)
= det(H22) · det(H11 − H12H−1

22 H21),

and H11 − H12H−1
22 H21 is called the Schur complement of H22.

3. Kemeny’s Constant and the GMFPT of Spiro-Ring Networks

Spiro-ring networks, known for their hexagonal configuration of interconnected nodes
in a spiral pattern, are widely used in several fields due to their specific topology and
features. Thanks to their distinctive topology, with a spiral arrangement of interconnected
nodes, they have various applications. Researchers can use the implications of the GMFPT
and the Kemeny constant to make informed choices that improve the reliability, efficiency,
and scalability of spiro-ring networks in many areas, like telecommunications, transporta-
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tion systems, and biological modeling. Furthermore, these observations provide new
opportunities for the creation of innovative applications and technologies which employ
the distinct characteristics of spiro-ring networks to tackle complex issues and propel
progress in connectivity and communication.

One can easily apply Lemma 1 and Equation (5) in order to obtain the Laplacian
spectrum of SPn by adding the eigenvalues LS and LR. In particular, we obtain the follow-
ing result.

Proposition 1. Let SPn be a spiro-ring network of length n. We have

K(SPn) =
3n

∑
j=2

1
φj

+
2n

∑
k=1

1
ψk

, n ≥ 2

where φj, with 1 ≤ j ≤ 3n, and ψk, with 1 ≤ k ≤ 2n, represent the eigenvalues of LR and LS,
respectively.

The following propositions give the formulae for
2n
∑

k=1

1
ψk

and
3n
∑

j=2

1
φj

in accordance with

the relationship between the roots and coefficients of LS and LR.

Proposition 2. Assume that 0 = ψ1 < ψ2 ≤ · · · ≤ ψ2n are the eigenvalues of LS. Then,
2n
∑

j=1

1
ψj

= 4n
3 , for n ≥ 2.

Proof. Let ϕ(LS) = x2n + c1x2n−1 + · · ·+ c2n−1x2 + c2n be the characteristic polynomial.
Now, we can precisely affirm that ψ1, ψ2, . . . , ψ2n are actually the roots of the equation
x2n−1 + c1 · x2n−2 + · · ·+ c2n−2 · x + c2n−1 = 0. By Vieta’s theorem,

2n

∑
j=1

1
ψj

=
(−1)2n−1c2n−1

(−1)2nc2n
= − c2n−1

det(LS)
. (7)

Lemma 3. The constant c2n−1 is equal to − 4
3 n · 3n.

Proof. We know that

LS =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2

2 −1
−1 2

. . .
2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2n×2n

.

We have det(LS(1)) = 3, det(LS(2)) = 9 and det(LS) = 3n, and so

c3n−1 =
2n

∑
j=1

det(−LS({j}|{j})) = (−1)2n−1
2n

∑
j=1

det(−LS({j}|{j}))

= −2
3

2n

∑
j=1

3n

= −4
3

n · 3n.
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As a result, we have proved Proposition 2.

Proposition 3. Assume that 0 = φ1 < φ2 ≤ · · · ≤ φ3n are the eigenvalues of LR. Then, we have

that
3n
∑

j=2

1
φj

= 75n2−11
120 .

Proof. As before, let ϕ(LR) = x3n + b1x3n−1 + · · ·+ b3n−2x2 + b3n−1x be the characteristic
polynomial. We can precisely determine φ2, φ3, . . . , φ3n as the roots of the equation: x3n−1 +
b1x3n−2 + · · ·+ b3n−2x + b3n−1 = 0. From Vieta’s formula, we have

3n

∑
j=2

1
φj

= − b3n−2

b3n−1
. (8)

The following two lemmas specify the expressions for b3n−2 and b3n−1,
respectively.

Lemma 4. b3n−1 = (−1)n−1 15
2 · n22n.

Proof. Refer to the Appendix A for the proof.

Lemma 5. b3n−2 = (−1)n2n 15(75n4−11n2)
16 .

Proof. Refer to the Appendix A for the proof. As a result, we have proved Proposi-
tion 3.

Theorem 1. Let SPn be a spiro-ring network of length n (i.e., with n hexagons) and denote by K
its Kemeny’s constant. Then,

K(SPn) =
75n2 + 160n− 11

120
.

Proof. Putting together Propositions 2 and 3 in the formula from Proposition 1, we obtain
the desired result.

Theorem 2. Let 〈T(SPn)〉g represent the GMFPT of SPn (a spiro-ring network of length n).
Then,

〈T(SPn)〉g =
12

5(5n− 1)

(
75n2 + 160n− 11

120

)
.

Proof. Putting together Propositions 2 and 3 in Equation (4), and noting that |ESPn | = 6n,
the desired result follows easily.

In order to overcome any potential limitations of the graph spectrum method, we used
the decomposition theorem of Laplacian polynomials to compute the Laplacian matrix,
GMFPT, and Kemeny’s constant for spiro-ring networks. This methodology enabled us
to surpass the constraints of the graph spectrum method by integrating supplementary
mathematical tools to obtain more precise analysis and outcomes.

Comparison

In this section, we present graphical representations of the relationship between Ke-
meny’s constant K and GMFPT 〈T〉g. The results obtained in Theorems 1 and 2 suggest
that, within the network scales under consideration, there exists a linear and direct pro-
portional connection between the quantities K(SPn) and 〈T(SPn)〉g as n varies. Our exact
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results are confirmed in Figure 3a,b, which indicate how K(SPn) and 〈T(SPn)〉g rises as
the value of n increases. Similarly, in Figure 4, we just compare K(SPn) and 〈T(SPn)〉g.
Our analysis presents some fresh perspectives that make it simple to identify the structure
of our network.

Figure 3. (a) Kemeny’s constant K(SPn) and (b) GMFPT 〈T(SPn)〉g.

Figure 4. Comparison of K(SPn) and 〈T(SPn)〉g.

The comparison study of Kemeny’s constant and the GMFPT entails the examination of
resulting metrics to evaluate the network efficiency, navigability, robustness, and scalability.
The GMFPT gives insight into the average time it takes for objects to traverse the spiro-ring
network, which is useful for assessing the overall network efficiency. Researchers can
evaluate the impact of various network configurations or characteristics on the network
efficiency and navigability by comparing the resulting matrices of the GMFPT and the
Kemeny constant. These comparative studies offer useful insights into the efficiency and
features of spiro-ring networks (see also Figure 5). They inform the design of networks,
optimization methodologies, and decision-making processes to improve network efficacy
in different applications.
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Figure 5. Comparative graph with existing spiro techniques.

4. Conclusions

In the present study, we have dealt with the analysis of some important quantities for
spiro-ring networks SPn that are very relevant in network theory. For instance, the famous
Kemeny constant K is a significant and valuable quantifier that finds several applications
in a wide range of topics, particularly within the realm of Markov chains; whereas the
GMFPT (global mean first-passage time) is the average of the mean first-passage times
over the starting point of the walker, and it is considered as a quantitative indicator of the
transport efficiency of a network.

In this paper, we emphasize the importance of employing the Laplacian matrix when
analyzing graph structures, specifically when performing operations like partitioning a
graph into communities or clusters. We demonstrate that the Laplacian matrix’s eigenvalues
provide useful insights into different elements of a graph, such as its connectivity qualities,
spectrum, and the behavior of random walks inside the network. The Laplacian matrix is a
powerful tool that may be utilized to analyze the intricate architecture of complex networks,
such as social networks, transportation networks, and biological networks.

For instance, through the utilization of the spectra of the Laplacian of SPn, precise
closed-form formulae have been established both for the GMFPT and K for SPn networks.
Finally, we performed a graphic comparison between them. The results derived from this
study will be useful for further investigations in the field of network science.

Research in the field of deterministic structures is both relevant and intriguing due to
the significant advancements in supramolecular experimental methods, which enable the
chemical synthesis of a wide range of polymers with controlled molecular architectures,
including molecular fractals. These models could assist in chemistry by providing insight
into solvent effects, molecule binding, and reaction kinetics, which can then be used to
develop novel materials or catalysts. Random walk models are used in biophysics to clarify
the processes of molecular transport inside cells, the folding dynamics of proteins, and
the building of biomolecular complexes. Furthermore, the ideas described in studies of
spreading processes on spiro-ring networks could be applied to random graph models
defined by blocked structures, such as the stochastic block model (SBM). The SBM is a
widely used probabilistic model for modeling networks with a community structure, where
nodes are divided into blocks or communities with dense connections inside blocks and
sparser connections between blocks. Furthermore, expanding the research to blocked
structures allows for the examination of other aspects that may affect spreading processes,
such as the number and density of communities, the strength of inter-community linkages,
and the existence of overlapping communities.
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Appendix A

Lemma A1. Let m ∈ {1, 2, . . . , 2n} and Am =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1

1 − 3
2

1
2

1
2 − 3

2 1
1 − 3

2
. . .

− 3
2 1

1 − 3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
m×m

.

Then, det(Am) =

⎧⎪⎨⎪⎩
(

1
2

)m
2 ( 3m

4 + 1
)
, when m is even;

−
(

1
2

)m−1
2 ( 3m+3

4
)
, when m is odd.

Proof. When m = 1, 2, 3, 4, we have det(Am) = − 3
2 , 5

4 ,− 3
2 , 1, respectively, and for 5 ≤ m ≤

2n, we possess the recurrence relationship det(Am) = det(Am−2)− 1
4 det(Am−4). When

this relationship is resolved, we have

det(Am) =

⎧⎪⎨⎪⎩
(

1
2

)m
2 ( 3m

4 + 1
)
, when m is even;

−
(

1
2

) m−1
2 ( 3m+3

4
)
, when m is odd.

Lemma A2. Let m ∈ {1, 2, . . . , 2n} and Dm =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2

1
2

1
2 − 3

2 1
1 − 3

2
1
2

1
2 − 3

2
. . .

− 3
2

1
2

1
2 − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
m×m

.

Then, det(Dm) =
(

1
2

) m
2 ( 3m

4 + 1
)
, when m is even.

Proof. It follows in the same vein as for the above Lemma A1.

Lemma A3. Let m ∈ {1, 2, . . . , 2n} and Cm =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 − 3

2
1
2

1
2 − 3

2 1
1 − 3

2
. . .

− 3
2

1
2

1
2 − 3

2 1
1 − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
m×m

.

Then, det(Cm) =

⎧⎪⎨⎪⎩
(

1
2

)m
2 ( 3m

2 + 1
)
, when m is even;

−
(

1
2

)m−1
2
(

3m+1
2

)
, when m is odd.
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Proof. Let ej represent the m-vector (0, . . . , 0, 1, 0, . . . , 0), with 1 at the jth position. Then,
we have Cm = Am − 1

2 e1eT
1 .

So, det(Cm) = det(Am)− 1
2 eT

1 adj(Am)e1 = det(Am)− 1
2 co f [Am(1, 1)]. (Here, we denote by

cof[N(j, k)] the cofactor of the entry located at position (j, k) of a square matrix N).
Now, det(C1) = −2, det(C2) = 2, det(C3) = − 5

2 , and det(C4) =
7
4 . Hence, the lemma

is proved for m = 1, 2, 3, 4. In the other cases, when 5 ≤ m ≤ 2n, we obtain

det(Cm) =

{
det(Am)− 1

2 det(Am−1), when m is even;
det(Am)− 1

2 det(Dm−1), when m is odd.

=

⎧⎪⎨⎪⎩
(

1
2

) m
2 ( 3m

2 + 1
)
, when m is even;

−
(

1
2

)m−1
2
(

3m+1
2

)
, when m is odd.

And the result follows for any m = 1, 2, . . . , 2n.

Proof of Lemma 4. Let B({j}|{k}) represent the sub-matrix of B created by deleting its
jth row and kth column of B. To find b3n−1 we proceed to examine the subsequent cases.
Case A1. Let us consider 1 ≤ j ≤ n, then

det(−LR({j}|{j})) =
∣∣∣∣ −4In−1 −√2LV01({j}|{})
−√2LV01({j}|{})T χ

∣∣∣∣ = ∣∣∣∣−4In−1 0
0 !

∣∣∣∣,
where ! = χ + 1

2 LV01({j}|{})T LV01({j}|{}) and χ = −LV11 .
By Lemma 2, we have det(−LR({j}|{j})) = det(−4In−1)det(!), for j = 1, 2, . . . , n.
To estimate the det(!), we have to examine the sub-cases listed below.
Subcase 1(a): When j = 1, let R2n = χ + 1

2 LV01({1}|{})T LV01({1}|{}). Then,

R2n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 − 3

2
1
2

1
2 − 3

2 1
. . .

− 3
2

1
2

1
2 − 3

2 1
1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2n×2n

= C2n +
1
2 e2neT

2n.

So,

det(!2n) = det(C2n) +
1
2

eT
2nadj(C2n)e2n (see Lemma A3)

= det(C2n) +
1
2

co f [C2n(2n, 2n)]

=

(
1
2

)n
(3n + 1) +

1
2

(
1
2

)n−1
(3n− 1)

=

(
1
2

)n
6n.

Subcase 1(b): When 1 ≤ j ≤ n,

χ +
1
2

LV01 ({j}|{})T LV01 ({j}|{})

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1 0 0 · · · 0 0 0 0 · · · 1

2
1 − 3

2
1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · −2 0 0 0 · · · 0
0 0 0 0 · · · 0 −2 1 0 · · · 0
0 0 0 0 · · · 0 0 − 3

2
1
2 · · · 0

0 0 0 0 · · · 0 0 1
2 − 3

2 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

1
2 0 0 0 · · · 0 0 0 0 · · · − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2n×2n
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1 0 0 · · · 0 0 0 0 · · · 0

1 − 3
2

1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · −2 0 0 0 · · · 0
0 0 0 0 · · · 0 −2 1 0 · · · 0
0 0 0 0 · · · 0 0 − 3

2
1
2 · · · 0

0 0 0 0 · · · 0 0 1
2 − 3

2 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 0 0 · · · − 3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
2

e1eT
2n +

1
2

e2neT
1

=

(
C2j−2 0

0 C2n−2j+2

)
+

1
2

e1eT
2n +

1
2

e2neT
1 (see Lemma A3).

Since, det
((

C2j−2 0
0 C2n−2j+2

)
+ 1

2 e1eT
2n

)
= det

(
C2j−2 0

0 C2n−2j+2

)
,

det
(

χ +
1
2

LV01({j}|{})T LV01({j}|{})
)
= det(C2j−2) · det(C2n−2j+2)

+ (−1)2n+1 1
2
· 1

2
det(C2j−3) · det(C2n−2j+1)

=

(
1
2

)n
6n.

Therefore, det
(

χ + 1
2 LV01({j}|{})T LV01({j}|{})

)
=
(

1
2

)n
6n, for 1 ≤ j ≤ n.

Case A2. Take the case when n + 1 ≤ j ≤ 3n, let r = j− n, we have

det(−LR({r}|{r})) =
∣∣∣∣ −4In −√2LV01 ({}|{r})
−√2LV01 ({}|{r})T χ({r}|{r})

∣∣∣∣ = ∣∣∣−4In 0
0 !1

∣∣∣,
where !1 = χ({r}|{r}) + 1

2 LV01({}|{r})T LV01({}|{r}) and χ = −LV11 .
Apply Lemma 2, −4In in the preceding determinant, we have det(−LR({r}|{r})) =
det(−4In) · det(!1), for r = 1, 2, . . . , 2n. To estimate det(!1), the following subcases need
our attention:
Subcase 2(a): If 1 ≤ r ≤ 2n,

!1 =χ({r}|{r}) + 1
2

LV01 ({}|{r})T LV01 ({}|{r})

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1 0 0 · · · 0 0 0 0 · · · 1

2
1 − 3

2
1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · − 3
2 0 0 0 · · · 0

0 0 0 0 · · · 0 − 3
2 · · · 0 0 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
0 0 0 0 · · · 0 0 · · · − 3

2
1
2 0

0 0 0 0 · · · 0 0 · · · 1
2 − 3

2 1
1
2 0 0 0 · · · 0 0 · · · 0 1 − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2n−1×2n−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1 0 0 · · · 0 0 0 0 · · · 0

1 − 3
2

1
2 0 · · · 0 0 0 0 · · · 0

0 1
2 − 3

2 1 · · · 0 0 0 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 0 · · · − 3
2 0 0 0 · · · 0

0 0 0 0 · · · 0 − 3
2 · · · 0 0 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
0 0 0 0 · · · 0 0 · · · − 3

2
1
2 0

0 0 0 0 · · · 0 0 · · · 1
2 − 3

2 1
0 0 0 0 · · · 0 0 · · · 0 1 − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
2

e1eT
2n−1 +

1
2

e2n−1eT
1
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=

(
Ar−1 0

0 A2n−r

)
+

1
2

e1eT
2n−1 +

1
2

e2n−1eT
1 (see Lemma A1)

= χ1 +
1
2

e2n−1eT
1 , where χ1 =

(
Ar−1 0

0 A2n−r

)
.

Since det
(

χ1 +
1
2 e1eT

2n−1

)
= det(χ1) = det(Ar−1) · det(A2n−r), then we have that

det
(

χ1 +
1
2

e1eT
2n−1 +

1
2

e2n−1eT
1 )

)
=

det
(

χ1 +
1
2

e1eT
2n−1

)
+

1
2

eT
1 · adj

(
χ1 +

1
2

e1eT
2n−1

)
· e2n−1 ={

det(χ1) + (−1)2n−1 det(Ar−2)·det(D2n−r−1)
4 , if r =odd;

det(χ1) + (−1)2n−1 det(A2n−r−1)·det(Dr−2)
4 , if r =even.

= −
(

1
2

)n
3n.

Subcase 2(b): If r = 2n, then:

det
(

χ({r}|{r}) + 1
2

LV01({r}|{})T LV01({}|{r})
)
= det(A2n−1)

= −
(

1
2

)n
3n.

Therefore, for 1 ≤ r ≤ 2n, i.e., for n + 1 ≤ j ≤ 3n, one has

det
(

χ({r}|{r}) + 1
2

LV01({}|{r})T LV01({}|{r})
)
= −

(
1
2

)n
3n.

So,

α3n−1 =
3n

∑
j=1

det(−LR({j}|{j}))

=
n

∑
j=1

det
(
− LR({j}|{j})

)
+

3n

∑
j=n+1

det
(
− LR({j}|{j})

)

=
n

∑
j=1

(−4)n−1 ·
(

1
2

)n
6n +

3n

∑
j=n+1

(−4)n · (−1)
(

1
2

)n
3n

= (−1)n−12n−1 · 15n2.

Proof of Lemma 5. Denote by B({j, k}|{j, k}) the sub-matrix of the matrix B after deleting
the jth and kth rows and their corresponding columns. Thus,

α3n−2 = ∑
1≤j<k≤3n

det(−LR({j, k}|{j, k}))

=

⎛⎜⎜⎝ ∑
1≤j<k≤n

+ ∑
n+1≤j<k≤3n

+ ∑
1≤j≤n

n+1≤k≤3n

⎞⎟⎟⎠det(−LR({j, k}|{j, k})).

Therefore, we evaluate the subsequent cases.
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Case A3. Take the case if 1 ≤ j ≤ n,

det(−LR({j, k}|{j, k}) =

∣∣∣∣∣ −4In−2 −√2LV01({j, k}|{})
−√2LV01({j, k}|{})T χ

∣∣∣∣∣, where χ = −LV11 .

Now, we have the subcases listed below.
Subcase 3.1: If j = 1 and 2 ≤ k ≤ n, apply the Schur complement, we have

det
(

χ +
1
2

LV01({j, k}|{j, k})T LVV01({j, k}|{j, k})
)
=

∣∣∣∣R2k−2 0
0 R2n−2k+2

∣∣∣∣
= det(R2k−2) · det(R2n−2k+2)

=

(
1
2

)n
36(k− j)(n− k + 1).

Subcase 3.2: If 1 < j < k ≤ n, R′ = χ + 1
2 LV01({j, k}|{j, k})T LVV01({j, k}|{j, k})

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2 1 0 0 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 1
2

1 − 3
2

1
2 0 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 0
0 1

2 − 3
2 1 · · · 0 0 0 0 · · ·

0 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · −2 0 0 0 · · ·
0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 −2 1 0 · · ·
0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1 − 3

2
1
2 · · ·

0 0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 1

2 − 3
2 · · ·

0 0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0 0 0 0 · · ·
− 3

2 1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
1 −2 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
0 0 −2 1 0 · · · 0 0
0 0 0 0 · · · 0 0 0 0 · · ·
0 0 1 − 3

2
1
2 · · · 0 0

0 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 1

2 − 3
2 · · · 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 0 0 · · · − 3

2 1
1
2 0 0 0 · · · 0 0 0 0 · · ·
0 0 0 0 0 · · · 1 − 3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝C2j−2 0 0
0 R2k−2j 0
0 0 C2n−2k+2

⎞⎠+
1
2

e1eT
2n +

1
2

e2neT
1 .
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Now, det

⎡⎣⎛⎝C2j−2 0 0
0 R2k−2j 0
0 0 C2n−2k+2

⎞⎠+ 1
2 e1eT

2n

⎤⎦ = det(C2j−2)det(R2k−2j)det(C2n−2k+2). Then,

det(R′) = det(C2j−2)det(R2k−2j)det(C2n−2k+2)

+ (−1)2n+1 1
4

det(C2j−3) · det(C2n−2k+1)

=

(
1
2

)n
36(k− j)(n− k + 1).

So, if 1 ≤ j < k ≤ n,

∑
1≤j<k≤n

det(−LR({j, k}|{j, k})) = (−4)n−2 ∑
1≤j<k≤n

(
1
2

)n
36(k− j)(n− k + 1)

= (−4)n−2
(

1
2

)n
3n2(n− 1)(n + 1).

Case A4. Consider the case when n + 1 ≤ j < k ≤ 3n,

det(−LR({j, k}|{j, k}) =
∣∣∣∣∣ −4In −√2LV01({}|{j, k})
−√2LV01({}|{j, k})T χ({j, k}|{j, k})

∣∣∣∣∣ =
∣∣∣∣−4In 0

0 !4

∣∣∣∣,
where !4 = χ({j, k}|{j, k}) + 1

2 LV01({}|{j, k})T LVV01({}|{j, k}) and χ = −LV11 .
det(−LR({j, k}|{j, k}) = det(−4In)det(!4).
Let r = j− n and t = k− n. We must examine the next subcases.
Subcase 4.1: 1 < r < t < 2n, r-even and t-odd or r and t are both odd or both even, we
have

!4 =

⎛⎝ Ar−1 0 1
2 e1eT

2n
0 At−r−1 0

1
2 e2neT

1 0 A2n−t

⎞⎠.

Subcase 4.2: 1 < r < t < 2n, r-odd and t-even, so

!4 =

⎛⎝ Ar−1 0 1
2 e1eT

2n
0 Dt−r−1 0

1
2 e2neT

1 0 A2n−t

⎞⎠.

Subcase 4.3: r = 1, 1 < t < 2n, and t even, we have

!4 =

(
Dt−2 0

0 A2n−t

)
.

Subcase 4.4: r = 1, 1 < t < 2n, and t-odd, we have

!4 =

(
At−2 0

0 A2n−t

)
.

Subcase 4.5: 1 < r < 2n, r = 2n, and r-even, we have

!4 =

(
Ar−1 0

0 A2n−r−1

)
.

Subcase 4.6: 1 < r < 2n, r = 2n, and r-odd, we have

!4 =

(
Ar−1 0

0 D2n−r−1

)
.

As previously, we can proceed as follows:
χ({j, k}|{j, k}) + 1

2 LV01({}|{j, k})T LVV01({}|{j, k}) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
9
(

1
2

)n+2
(t− r)(2n− t + r), if {r, t} are both even or both odd;(

1
2

)n+2
(3t− 3r− 1)(6n− 3t + 3r + 1), if r =odd, t =even;(

1
2

)n+2
(3t− 3r + 1)(6n− 3t + 3r− 1), if r =even, t =odd.
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So,

∑
n+1≤j<k≤3n

det(−LR({j, k}|{j, k})) = (−4)n
(

1
2

)n+2
{

∑
1≤r<t≤2n

{r,t}={even or odd}

9(t− r)(2n− t + r)

+ ∑
1≤r<t≤2n

r−odd,t−even

(3t− 3r− 1)(6n− 3t + 3r + 1)

+ ∑
1≤r<t≤2n

r−even,t−odd

(3t− 3r + 1)(6n− 3t + 3r− 1)

}

= (−4)n
(

1
2

)n+2
{6n(n2 − 1) + (n− 1)(3n2 + n + 2) + (n + 1)(3n2 − n + 2)}

= (−4)n
(

1
2

)n
n2(3n2 − 1).

Case A5. Suppose that 1 ≤ j ≤ n and n + 1 ≤ k ≤ 3n. In such a case, we have

that ∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k})) =

∣∣∣∣−4In−1 V
VT χ({k}|{k})

∣∣∣∣, where V is a submatrix

of −√2L01 created by removing the jth row and kth column of −√2L01. Taking t = k− n,
we can compute det(χ({t}|{t}) + 1

2 VTV):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−1(36(−j2+iq+in)−9(t2+2qn)+8(6j−3t−3n−2))
2n+1 , if j > 1, t < 2j− 2 and even;

(−1)n−1(36(−j2+iq+in)−9(t2+2qn)+30(2j−t−n−1)+5)
2n+1 , if j > 1, 1 < t < 2j− 2 and odd;

(−1)n−1(36(−j2+iq−in)−9(t2+2qn)+8(6j−3qn−3n−2))
2n+1 , if j > 1, 2n > t > 2j− 2 and even;

(−1)n−1(36(−j2+iq−in)−9(t2+2qn)+30(2j−qn−n−1)+5)
2n+1 , if j > 1, t > 2j− 1 and odd;

(−1)n−1(9(2nq−t2)+6(t−n)−1)
2n+1 , if j = 1, t =odd;

(−1)n−1(9(2nq−t2)+12(t−n)−4)
2n+1 , if j = 1, t =even;

(−1)n−1(3n−1)
2n−1 , if j > 1, t = 2j− 1 or 2j− 2;

(−1)n−1(9(ni−j2)+4(6j−3n−4))
2n−1 , if j > 1, t = 1;

(−1)n−1(9(ni−j2)+6(2j−n)−4)
2n−1 , if j > 1, t = 2n.

We have

∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k})) = −(−4)n−1
(

1
2

)n−1
n2(3n2 + 1).

Thus,

α3n−2 = ∑
1≤j<k≤3n

det(−LR({j, k}|{j, k})) = ∑
1≤j<k≤n

det(−LR({j, k}|{j, k}))

+ ∑
n+1≤j<k≤3n

det(−LR({j, k}|{j, k})) + ∑
1≤j<n

n+1≤k≤3n

det(−LR({j, k}|{j, k}))

= (−4)n−2
(

1
2

)n
3n2(n2 − 1) + (−4)n

(
1
2

)n
(3n4 − n2)

+ (−4)n−1
(

1
2

)n−1
n2(3n2 + 1)

= −2nn2 15(75n2 − 11)
16

.
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Abstract: Dupin cyclides are classical algebraic surfaces of low degree. Recently, they have gained
popularity in computer-aided geometric design (CAGD) and architecture owing to the fact that
they contain many circles. We derive algebraic conditions that fully characterize the Dupin cyclides
passing through a fixed circle. The results are applied to the basic problem in CAGD of the blending
of Dupin cyclides along circles.

Keywords: Dupin cyclide; cyclide blending; CAGD

MSC: 65D17; 14Q30

1. Introduction

Dupin and Darboux cyclides are remarkable algebraic surfaces of degree four or three
that contain many circles. They were discovered, respectively, by Charles Dupin [1] and
Gaston Darboux [2] in the 19th century. Over the past few decades, they have gained
popularity in computer-aided geometric design (CAGD) and architecture, making them
interesting and important subjects for investigation. Dupin cyclides are used predominantly
for blending surfaces along circles to model elaborate CAGD surfaces [3–10] or smoothly
blending Dupin cyclides with natural quadrics and canal surfaces along the circles [11–16].

The prototypical example of a Dupin cyclide is a torus of revolution with major radius
R and minor radius r. A canonical implicit equation of a torus is(

x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2) = 0. (1)

We must have r < R for a smooth torus surface. A torus contains two orthogonal circles
through each point. These circles are curvature lines of the torus and are called principal
circles. A smooth torus has two additional circles through each point on a bitangent plane
to the torus; see Figure 1a. They are called Villarceau circles [17].

A Dupin cyclide is the image of a torus under a Möbius transformation: for example,
an inversion with respect to a sphere. These transformations preserve the angles and the
set of circles and lines on the surfaces [18,19]. Accordingly, smooth Dupin cyclides inherit
the property of having two principal circles and two Villarceau circles through each point;
see Figure 1b. Some of these circles may degenerate to straight lines.

The implicit equation for a Dupin cyclide is of degree four or three and can be written
in the form

a0
(
x2 + y2 + z2)2

+ 2(b1x + b2y + b3z)
(
x2 + y2 + z2)

+ c1x2 + c2y2 + c3z2 + 2d1yz + 2d2xz + 2d3xy (2)
+ 2e1x + 2e2y + 2e3z + f0 = 0,

with some a0, b1, . . . , f0 ∈ R. For general values of the coefficients, this implicit equation
defines a more general surface called a Darboux cyclide [20]. These cyclides typically
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have six circles through each point, and they are more challenging to use in geometric
modeling [21]. The practical problem of distinguishing Dupin cyclides among Darboux
cyclides is considered in [18].

The basic problem considered in this paper is the smooth blending of two Dupin
cyclides along a fixed circle. Our approach is to match implicit equations (2) for the
two Dupin cyclides we blend. To solve the basic problem algebraically, we first consider
the general linear family of Darboux cyclides passing through a fixed circle. Then, we
use the results in [18] to characterize the smaller family of Dupin cyclides in terms of
the algebraic relations for the free coefficients of the general family of Darboux cyclides.
This is considered in Section 3 together with the formulation of the main results of the
paper. We prove them separately for quartic and cubic equations in Sections 4 and 5. The
smooth blending between two implicit equations of Dupin cyclides along a fixed circle is
investigated in Section 6. In the last section, we express the Möbius invariant from [18] of
Dupin cyclides as applied to our particular families of Dupin cyclides.

(a) (b)

Figure 1. A smooth torus (a) and a smooth Dupin cyclide (b). The solid circles are principal circles,
and the dashed circles are Villarceau circles.

2. Preliminaries

First off, let us recall the salient results in [18] on distinguishing Dupin cyclides among
Darboux cyclides. They are formulated using the following abbreviations of algebraic
expressions in the coefficients in (2):

B0 = b2
1 + b2

2 + b2
3,

C0 = c1 + c2 + c3,

E0 = e2
1 + e2

2 + e2
3,

W1 = c1c2 + c1c3 + c2c3 − d2
1 − d2

2 − d2
3,

W2 = c1c2c3 + 2d1d2d3 − c1d2
1 − c2d2

2 − c3d2
3,

W3 = b2
1c1 + b2

2c2 + b2
3c3 + 2b2b3d1 + 2b1b3d2 + 2b1b2d3,

W4 = c1e2
1 + c2e2

2 + c3e2
3 + 2d1e2e3 + 2d2e1e3 + 2d3e1e2.

Let σ12, σ13 denote the permutations of the variables b1, b2, b3; c1, c2, c3; d1, d2, d3; and e1, e2, e3
that permute the indices 1, 2 or 1, 3, respectively.

To recognize quartic Dupin cyclides among the form (2), we can assume a0 = 1 by
dividing all coefficients by a0. Then, we apply the shift

(x, y, z) �→ (x, y, z)− 1
2 (b1, b2, b3) (3)

to remove the cubic terms and reduce the equation to an intermediate Darboux form:(
x2 + y2 + z2)2

+ c1x2 + c2y2 + c3z2 + 2d1yz + 2d2xz + 2d3xy (4)

+ 2e1x + 2e2y + 2e3z + f0 = 0.

Theorem 1. The surface in R3 defined by (4) is a Dupin cyclide only if the 12 equations
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K1 = 0, σ12K1 = 0, σ13K1 = 0, L1 = 0, σ12L1 = 0, σ13L1 = 0,
M1 = 0, σ12M1 = 0, σ13M1 = 0, N1 = 0, N2 = 0, N3 = 0,

are satisfied, where

K1 = (c3 − c2)e2e3 + d1(e2
2 − e2

3) + (d2e2 − d3e3)e1,

L1 =
(
W1 + 4 f0 − (c2 + c3)

2 − d2
2 − d2

3
)
e1

+
(
C0d3 + c3d3 − d1d2

)
e2 +

(
C0d2 + c2d2 − d1d3

)
e3,

M1 = 2(c1e1 + d3e2 + d2e3)(W1 + 4 f0) + e1(W2 − C0W1 − 4E0),

N1 =
(
4W1 + 12 f0 − 3C2

0
)
(W1 + 4 f0)− 2C0(W2 − C0W1 − 6E0)− 4 W4,

N2 = 4(W2−C0W1−2E0)(W1+4 f0) +
(
C2

0−4 f0
)(

W2+C0W1+8C0 f0−4E0
)
,

N3 =
(

W2 + C0W1 + 8C0 f0 − 4E0
)2 − 4(W1 + 4 f0)

3.

Proof. This result is covered by [18] (Proposition 3.6). We consider and use only the
formulated necessity in the proof of the main new Theorem 3.

Theorem 2. The surface in R3 defined by (2) is a cubic Dupin cyclide only if the following
equations are satisfied:

a0 = 0, e1 = 1
4 E1, e2 = 1

4 σ12E1, e3 = 1
4 σ13E1, (5)

f0 =
W3

4B2
0

(
W3

B0
− C0

)2
+

W3W1

4B2
0

+
W2 − C0W1

4B0
, (6)

where

E1 = − b1

B0

(
W3

B0
− c2 − c3

)2
+

2b2
1

B2
0
(b3c3d2 + b2c2d3)− 4b1

B2
0
(b3d2 + b2d3)

2

+
2(b3d2 + b2d3)

B2
0

(b2
2c1 + b2

3c1 − 2b2b3d1)− 2b2b3

B2
0

(c2 − c3)(b2d2 − b3d3)

+
b1

B0

(
(c1 − c2)(c1 − c3)− d2

1 + d2
2 + d2

3
)
+

2d1

B0
(b2d2 + b3d3).

Proof. This is covered by [18] (Theorem 2.4).

3. Main Results

Without loss of generality, we assume that a fixed circle Γ ⊂ R3 with radius r > 0 is
given by the equations

x = 0, y2 + z2 = r2. (7)

The Darboux cyclides passing through the circle Γ form a linear subspace of the space of
coefficients in (2), as we formulate in Lemma 1. Computing the variety of Dupin cyclides
passing through the circle Γ is less trivial. The defining equations are obtained by restricting
the coefficients of (2) to cyclides passing through Γ and by considering the effects on the
equations in Theorems 1 and 2.

Lemma 1. A Darboux cyclide passing through the circle Γ has an implicit equation of the form

u0(x2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x + u2y + u3z + u4)

+ 2x
(
v1x + v2y + v3z + v4

)
= 0, (8)

where u0, u1, u2, u3, u4, v1, v2, v3, v4 are real coefficients.
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Proof. The equation of a Darboux cyclide passing through the circle Γ will be in the ideal
generated by x and y2 + z2 − r2 of the polynomial ring R(r)[x, y, z] over the field R(r). The
terms of degree four and three should match the Darboux form (2). Therefore, we expand
the generator y2 + z2 − r2 to x2 + y2 + z2 − r2 so that the quartic and cubic terms

u0(x2 + y2 + z2 − r2)2 + 2(x2 + y2 + z2 − r2)(u1x + u2y + u3z),

are contained in the ideal of the circle Γ. The remaining terms of degree � 2 should be in
the same ideal; hence, they have the shape

2u4(x2 + y2 + z2 − r2) + 2x
(
v1x + v2y + v3z + v4

)
.

Following this lemma, the ambient-space of Darboux cyclides passing through the
circle Γ are identified as P8, with the coordinates (u0 : . . . : u4 : v1 : . . . : v4). The Dupin
cyclides defined over R are represented by real points on an algebraic variety DΓ in this
projective space. If we consider the radius r as a variable, the variety DΓ should be
invariant under the scaling of (x, y, z) ∈ R3. Accordingly, the obtained equations can be
checked to also be weighted-homogeneous, with weight 1 for r and the respective weights
0, 1, 1, 1, 2, 2, 2, 2, 3 of the coordinates of P8. We assume r to be a parameter r �= 0 in our
proofs and computations.

We define the variety DΓ of Dupin cyclides as a specialized image of the variety
D0 in [18] (Figure 1) that represents the whole variety of Dupin cyclides within the
projective family (2) of Darboux cyclides. The specialization is identified by the projective
subfamily (8). The variety DΓ turns out to be reducible and to have several components
with a maximum dimension of four. Section 4 provides a brief description distinguishing
those components. We are interested in the components that generically correspond to
irreducible cyclide surfaces defined over R. There are two components fulfilling this
interest, which reflects the fact that the circle Γ could be either a principal or a Villarceau
circle on a Dupin cyclide; see Section 4. Accordingly, we split the main result into two
Theorems as follows.

Theorem 3. The surface in R3 defined by (8) is an irreducible Dupin cyclide containing Γ as a
Villarceau circle if and only if the equations

v4 − 2r2u1 = 0, v1 + 2u4 − 2r2u0 = 0, (9)

u2v2 + u3v3 − 2u1u4 = 0, 4r2(u2
1 + u2

2 + u2
3)− 4u2

4 − v2
2 − v2

3 = 0, (10)

and the inequality
u2

4 < r2(u2
2 + u2

3) (11)

are satisfied.

Theorem 4. The surface in R3 defined by (8) is an irreducible Dupin cyclide containing Γ as a
principal circle only if the ranks of the following two matrices are equal to 1:
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N =

⎛⎝ u2 v2
u3 v3
u4 v4

⎞⎠, (12)

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2 v2(v4 − 2r2u1)
u3 v3(v4 − 2r2u1)
u4 v4(v4 − 2r2u1)

2u0 v2
2 + v2

3 − 4r2u2
1

u1 4r2u0v4 − 2r2(u2v2 + u3v3)− 4r2u1(v1 + u4)
v1 4r4(u2

2 + u2
3 + 2u0v1)− 4r2(v1 + u4)

2 − (v4 − 2r2u1)
2

v2 −8r4u1u2 − 4r2v2(v1 + u4 − 2r2u0)
v3 −8r4u1u3 − 4r2v3(v1 + u4 − 2r2u0)
v4 −8r4u1u4 − 4r2v4(v1 + u4 − 2r2u0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

Remark 1. The rank conditions mean vanishing of the 2× 2 minors of the matrices N and M.
The 2× 2 minors from the first three rows ofM differ from the minors of N by the common factor
v4 − 2r2u1. Incidentally, this factor appears as an equation for the Villarceau case. Localizing with
(v4 − 2r2u1)

−1 leads to the ideal for the principal circle case. But the Villarceau case equations of
Theorem 3 do not imply a lesser rank ofM, as the second column does not necessarily vanish fully,
particularly in the fourth row. Rather similarly, the 2× 2 minors from the last three rows of M
differ from the minors of N by the common factor −8r4u1, as the terms −4r2vi(v1 + u4 − 2r2u0)
are proportional to the first column. Therefore, the 2× 2 minors formed only by the first three rows
or only by the last three rows ofM can be ignored.

Remark 2. The Hilbert series of the two algebraic varieties described by Theorems 3 and 4 can be
computed using computer algebra systems Maple or Singular. The principal circle component of DΓ
has the Hilbert series Hp(t)/(1− t)4, where

Hp(t) = 1 + 4t + 7t2 − 10t3 + 10t4 − 5t5 + t6. (14)

Hence, the dimension of the variety equals 4, and the degree equals Hp(1) = 8. The Zariski closure
of the Villarceau circle component is a complete intersection. The Hilbert series of this component is
(1 + 2t + t2)/(1− t)4. Hence, the dimension of this variety equals 4, and the degree equals 4.

4. Distinguishing Principal and Villarceau Circles

As we will analyze in Section 5, the specialized variety DΓ of Dupin cyclides turns out
to be reducible. We discard some of the components because they:
• Either represent only reducible cyclide surfaces: namely, a pair of touching spheres

(where one of the spheres could be a plane or degenerates to a point); see Remark 4;
• Or generically represent cyclide surfaces with complex (rather than real) coefficients

in (8); real surfaces appear only in lower-dimensional intersections with the two main
families described in Theorems 3 and 4.
We claim that the two main families are distinguished by the homotopy class of Γ as

either a principal circle or a Villarceau circle. These two homotopical types can be discerned
by inspecting the type of Γ on representative surfaces under Möbius transformations
(which are finite compositions of inversions). Indeed, principal circles are preserved [19]
(Theorem 3.14) by Möbius transformations. The components of DΓ are invariant under
the continuous action of Möbius transformations that fix the circle Γ. As mentioned in the
introduction, any Dupin cyclide can be obtained from a torus by a Möbius transformation.
Further, the torus can be chosen to pass through the circle Γ (by Euclidean similarity),
and that circle can be considered as fixed. Therefore, it is enough to check the homotopy
types for the toruses on both main components. Furthermore, the “vertical” principal
circles (around the tube) and the “horizontal” principal circles (around the hole) can be
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interchanged by a Möbius transformation centered inside the torus tube; see [18] (§6.1).
Hence, we consider only a fixed “vertical” principal circle in a moment.

Under Euclidean similarities, we can move the torus (1) so that the circle Γ is a
principal circle (with radius r) or a Villarceau circle (with radius R). The principal circles
on the vertical plane x = 0 are given by (y± R)2 + z2 = r2. Identifying one of those circles
with Γ by the shift y �→ y + R, we obtain an equation of the form (8) with

(u0 : u1 : u2 : u3 : u4 : v1 : v2 : v3 : v4) = (1 : 0 :−2R : 0 : 2R2 :−2R2 : 0 : 0 : 0) (15)

for the representative (under the Möbius transformations) tori with Γ as a principal circle.
It is straightforward to check that the second columns of N and M consist of zeroes for
the representative tori (15), while the second and fourth equations of Theorem 3 are not
satisfied generically. Hence, Theorem 4 covers the cases where Γ is a principal circle.

Now consider a Villarceau circle of the torus (1) on the plane z = αx + βy, where
α = r/�, β = 0, � =

√
R2 − r2. It is moved onto Γ by the Euclidean transformation

(x, y, z) �→
(

rx + �z
R

, r− y,
rz− �x

R

)
. (16)

Then the torus equation becomes(
x2 + y2 + z2 − 2ry + R2)2 − 4

(
(rx + �z)2 + R2(y− r)2) = 0. (17)

This identifies (8) with

(u0 : u1 : u2 : u3 : u4 : v1 : v2 : v3 : v4) = (1 : 0 :−2r : 0 : 2r2 : 2R2 − 4r2 : 0 :−4r� : 0) (18)

as an implicit equation for the representative tori with Γ as a Villarceau circle. The
representative tori (18) satisfy the equations of Theorem 3, while the rows with u2 and u0
in the first column form a lower-triangular matrix with non-zero determinant generically.
Hence, Theorem 3 describes the cases with Γ as a Villarceau circle.

Remark 3. We must have u2
4 � r2(u2

2 + u2
3) for real points on the Villarceau circle component.

Indeed, eliminating v3 in (10) gives a quadratic equation for v2 with the discriminant

16u2
3(u

2
1 + u2

2 + u2
3)
(
r2u2

2 + r2u2
3 − u2

4
)
, (19)

which has to be non-negative. The strict inequality (11) throws away horn cyclides; see the case
J0 = 0 in Section 7. Villarceau circles on horn cyclides coincide with “vertical" principal circles
(that is, those around the tube). The Villarceau and principle circle components intersect exactly at
the locus of horn Dupin cyclides on DΓ. In fact, Equations (9) and (10) together with rank N < 2
imply the equation r2(u2

2 + u2
3) = u2

4 for horn cyclides already; then, the second column of M
reduces to zero entries.

Remark 4. The variety DΓ contains a component of dimension 4 (and degree 10) that represents
reducible surfaces (8) of two touching spheres (or a sphere and a tangent plane). This component is
defined by the 2× 2 minors of the matrix

L =

⎛⎜⎜⎜⎜⎜⎜⎝
u2 v2
u3 v3
u4 v4

u0v2 2(u1v2 − u2v1)
u0v3 2(u1v3 − u3v1)
u0v4 2(u1v4 − u4v1)

⎞⎟⎟⎟⎟⎟⎟⎠, (20)

and the additional equation

4r2(u2
1 + u2

2 + u2
3) + v2

2 + v2
3 − 8v1(r2u0 − u4)− 4v4u1 − 4u2

4 = 0. (21)
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The condition rank L � 1 alone gives a reducible surface (8). Its spherical (or plane) components
are defined by

x2 + y2 + z2 + sx− r2 = 0, (22)

u0(x2 + y2 + z2) + (2u1 − su0)x + 2u2y + 2u3z + 2u4 − r2u0 = 0, (23)

where s = vi/ui for some or (usually) all i ∈ {1, 2, 3}. Equation (21) is the touching condition.
The touching point is

(x, y, z) = −
(
s(u2

2 + u2
3 − 2u0u4) + 2u1u4, u2(su1 − 2v1 + 2u4), u3(su1 − 2v1 + 2u4)

)
2
(
u2

1 + u2
2 + u2

3 − 2u0v1
) .

Further, we have surface degeneration to the circle Γ when rank(L) = 0 and u1 = 0, v1 = 2r2u0.
If we restrict the principal circle component to rank(L) = 0, we have degeneration to a double
sphere. The intersection of this degenerate component with the principal circle component represents
the cases when the touching point is on Γ. The intersection with the Villarceau component represents
a sphere through Γ and a point on Γ; this intersection has a lower dimension of two and is contained
in the principal circle component as well.

5. Proving Theorems 3 and 4
Let us define the ring

RΓ = R(r)[u1, u2, u3, u4, v1, v2, v3, v4], (24)

and let us denote the 2× 2 minors N as

T2 = u3v4 − u4v3, (25)
T3 = u2v4 − u4v2, (26)
T4 = u2v3 − u3v2. (27)

Let us also denote

U0 = u2
1 + u2

2 + u2
3. (28)

We define the variety DΓ in Section 3 as the specialized image of the variety D0 in [18]
(Figure 1). The variety D0, including the cubic part of Theorem 2, can be obtained from
the 12 equations of Theorem 1 by applying the shift (3) backwards and homogenizing
with a0, as explained in [18] (§5). By straightforward Euclidean equivalence of cyclide
surfaces, it is enough to consider (8) separately as a quartic equation that can be simplified
by translating to (4) or as a cubic equation. Accordingly, we split the proofs into two cases
and use Theorems 1 and 2 in a parallel way. We arrive at parallel options to simplify the
reducible variety DΓ from the full consideration of equations in those Theorems. Most of
the particular equations or factors considered by us appear naturally in examined Gröbner
bases. Even if an equation like (31) appears as an arbitrary choice, a formal proof does not
have to justify the consideration.

5.1. Proof for Quartic Cyclides
Without loss of generality, we may assume u0 = 1 while considering quartic cyclides.

To apply Theorem 1, it is necessary to apply the shift (3) with (b1, b2, b3) = (u1, u2, u3) so as
to bring the cyclide equation (8) to the form (4). The obtained expression is
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(
x2 + y2 + z2

)2
+

(
2(u4 + v1 − r2)− u2

1 −
U0

2

)
x2

+

(
2(u4 − r2)− u2

2 −
U0

2

)
y2 +

(
2(u4 − r2)− u2

3 −
U0

2

)
z2

− 2u2u3yz + 2(v3 − u1u3)xz + 2(v2 − u1u2)xy (29)
− (2u1v1 + u2v2 + u3v3 − 2v4 − u1(U0 − 2u4))x
− (u1v2 − u2(U0 − 2u4))y− (u1v3 − u3(U0 − 2u4))z

− 3U2
0

16
+

U0(u4 + r2) + u1(u1v1 + u2v2 + u3v3 − 2v4)

2
− 2r2u4 + r4 = 0.

Identification with the coefficients c1, c2, . . . , f0 in (4) defines the ring homomorphism

ρ : R[c1, c2, c3, d1, d2, d3, e1, e2, e3, f0]→ RΓ.

Let IΓ ⊂ RΓ denote the ideal generated by the ρ-images of the 12 polynomials in Theorem 1.
The polynomials in this ideal have to vanish when (8) is a Dupin cyclide. The polynomial
ρ(K1) factors inRΓ: namely, ρ(K1) = − 1

4 T4V0, where

V0 = u2
1 (2u1u4−u2v2−u3v3)+(u2

2+u2
3−2u4)(2u1u4+2u1v1+u2v2+u3v3−2v4).

This shows that the variety defined by IΓ is reducible. To investigate real points of the
variety, we consider three possible options: T4 �= 0, V0 �= 0, and T4 = V0 = 0.

First, assume that T4 �= 0. Elimination of v2, v3, v4 gives the product V1V2 ∈ IΓ in the
remaining variables, where

V1 = v1 + 2u4 − 2r2, V2 = (u2
1 + u2

2 + u2
3 − 2u4)

2 + 4r2u2
1. (30)

If V2 = 0, then U0 − 2u4 = 0, u1 = 0 as we look only for real components. The augmented
ideal contains this sum of squares: v2

4 + r2V2
1 = 0. Therefore, V1 = 0 is inevitable for the

real components with T4 �= 0. The ideal IΓ + (V1) inRΓ[T−1
4 ] contains several multiples of

the polynomial V3 = v4 − 2r2u1. Localizing V3 �= 0 gives the trivial ideal ofRΓ[T−1
4 , V−1

3 ],
which is, hence, an empty variety. With V3 = 0, we obtain the equations of Theorem 3 in
the homogenized form with u0. The points on the corresponding variety describe cases
when Γ is a Villarceau circle, as analyzed in Section 4.

Secondly, assume that V0 �= 0. Localization of IΓ in the ring RΓ[V−1
0 ] gives an ideal

generated by the 2× 2 minors of the matrix L in (20) and the additional equation (21) with
u0 = 1. Here, we obtain the reducible Dupin cyclides of Remark 4.

The last option is T4 = V0 = 0. We notice polynomial multiples of T2
2 + T2

3 in the
Gröbner basis of (IΓ, T4, V0). Localization at T2

2 + T2
3 �= 0 gives an ideal that contains the

four polynomials of Theorem 3. Hence, it describes some points in the Villarceau circle
component (of the option T4 �= 0). We assume further that T2 = T3 = 0. Consideration of
the following polynomial allows further progress:

V4 = (2r2u1 + v4)(U0 − 2u4 − 2v1)− u1(4r2u4 + v2
2 + v2

3)

+ (v1 − 4r2)(u2v2 + u3v3) + 8r2v4. (31)

The localization V4 �= 0 leads to a subcase (describing touching spheres) of the
option V0 �= 0. Hence, we assume that V4 = 0. Elimination of v2, v3, v4 in the ideal
(IΓ, T2, T3, T4, V0, V4) leads to some generators that factor with

V5 = u2
1(u

2
2 + u2

3) + (u2
2 + u2

3 − 2u4)
2. (32)

The further localization V5 �= 0 leads to the principal circle component in Theorem 4. The
remaining case V5 = 0 splits into these two subcases, as we are interested in the real points
only:
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(i) u1 �= 0, so that u2 = u3 = 0, and eventually u4 = 0. The obtained ideal is
reducible, with the prominent factor V6 = u2

1(v
2
2 + v2

3) + 4v2
4 after elimination of

v1. The localization V7 �= 0 belongs to the principal circle component. The case
V6 = 0 simplifies to v2 = v3 = v4 = 2v1 − u2

1 = 0, and the cyclide degenerates to a
double-sphere case.

(ii) u1 = 0, u2
2 + u2

3 − 2u4 = 0. Elimination of the variables u1, u2, u3, u4 gives us a
principal ideal, and the generator factors with

V7 = (v2
2 + v2

3)
3 + (v1v2

2 + v1v2
3 + 2v2

4)
2. (33)

The localization V7 �= 0 belongs to the principal circle component. With V7 = 0 we get
v2 = v3 = v4 = 0, and the resulting ideal contains the product (u2

2 + u2
3 + 2v1)

2(u2
2 +

u2
3 + 2v1 − 4r2). Either of the factors leads to points on the principal circle component.

5.2. Proof for Cubic Cyclides
We use Theorem 2 to recognize cubic Dupin cyclides in the form (8) with u0 = 0. The

equation is first transformed to the form (2)

2(u1x + u2y + u3z)(x2 + y2 + z2) + 2(u4 + v1)x2 + 2u4y2 + 2u4z2

+2v2xy + 2v3xz + 2(v4 − r2u1)x− 2r2u2y− 2r2u3z− 2r2u4 = 0. (34)

Let
ρ0 : R[b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3, f0]→ RΓ.

be the ring homomorphism defined by the coefficient identification. Since ρ0(B0) = U0, all
remaining computations are considered over the localized ring RΓ[U−1

0 ]. Let us denote
by I∗Γ the ideal generated by the numerators of the ρ0-images of the four equations in
Theorem 2. This ideal contains the product T4V∗0 , where

V∗0 = 2u1u4U0 + 2u1v1(u2
2 + u2

3) + (u2v2 + u3v3)(u2
2 + u2

3 − u2
1). (35)

Like in the quartic case, we consider the three options: T4 �= 0, V∗0 �= 0, and T4 = V∗0 = 0.
The localization T4 �= 0 gives us directly the u0 = 0 part of the Villarceau circle

component in Theorem 3.
Localizing V∗0 �= 0 gives an ideal containing the 2× 2 minors of the matrix L and

Equation (21). This case describes only reducible cyclides of Remark 4.
With T4 = V∗0 = 0, the ideal (I∗Γ , T4, V∗0 ) contains the sum of squares T2

2 + T2
3 . Hence,

T2 = T3 = 0 since we are looking only for real points of the variety DΓ. The further
candidate for localization to consider is

V∗1 = 4r2u2
1 + v2

2 + v2
3 − 4u1v4. (36)

By comparing Gröebner bases, the localization of (I∗Γ , T2, T3, T4, V∗0 ) at V∗1 �= 0 indeed
coincides with the ideal of the principal circle defined by the 2× 2 minors of N and M.
The remaining case V∗1 = 0 can be localized further at V∗2 = u2

2 + u2
3 + u2

4. The localization
V∗2 �= 0 defines points on the principal circle component. The case V∗2 = 0 simplifies
to u2 = u3 = u4 = 0, and the cyclide equation degenerates to a subcase of a touching
sphere + plane case.

6. Smooth Blending of Cyclides

Here, we apply the main results to the practical problem of blending smoothly two
Dupin cyclides along a common circle. Smooth blending in this context means that the
cyclides share tangent planes along their common circle.

Lemma 2. Consider two cyclide equations of the form (8) with possibly different coefficients
u0, . . . , u4, v1, . . . , v4. Then they are joined smoothly along the circle Γ if and only if the
rational function
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F (y, z) =
v2y + v3z + v4

u2y + u3z + u4
(37)

is the same function on the circle Γ for both cyclides.

Proof. The normal vector of cyclides (8) along the circle Γ is defined by the gradient of the
defining polynomial. The gradient is computed as(

v2y + v3z + v4, 2y(u2y + u3z + u4), 2z(u2y + u3z + u4)
)
.

On the two given cyclides, the paired gradient vectors should be proportional along the
circle in order to obtain smooth blending. After the division by u2y + u3z + u4, the gradient
vectors are rescaled to

(F (y, z), 2y, 2z
)

for direct comparison.

A special case is when the rational function (37) is a constant on Γ. This is equivalent
to rank(N ) = 1. Therefore, the rational function F is constant when Γ is a principal circle
case of a Dupin cyclide. As the following Lemma implies, the envelope surface of tangent
planes of any cyclide equation satisfying rank(N ) = 1 along Γ is a circular cone or cylinder.
It is known [7] that the envelope appearing as a cone or cylinder occurs in the case of Dupin
cyclides if the circle is principal. This is due to the representation of Dupin cyclides as canal
surfaces, where they are considered as conics in the four-dimensional Minkowski space,
and the tangent lines to those conics represent circular cones or cylinders; see [7] for details.

Lemma 3. If the function F (y, z) ≡ λ on the circle Γ for some constant λ, then the envelope
surface of tangent planes of the cyclide (8) along Γ is given by the equation

y2 + z2 =

(
r− λx

2r

)2
. (38)

It is a circular cone if λ �= 0 or a cylinder if λ = 0.

Proof. We parametrize the circle by (0, r cos ϕ, r sin ϕ). The envelope line passing through
such a point is orthogonal to the rescaled gradient vector

(
λ, 2r cos φ, 2r sin φ

)
and to

the tangent vector (0,− sin φ, cos φ) to the circle. The line therefore follows the direction
of the cross-product vector (2r,−λ cos φ,−λ sin φ). The envelope of tangent planes is
parametrized therefore as

(x, y, z) = (0, r cos ϕ, r sin ϕ) + t (2r,−λ cos ϕ,−λ sin ϕ). (39)

Hence, x = 2rt, y2 + z2 = (r− λt)2. Elimination of t gives (38).

Remark 5. The envelope of tangent planes degenerates to the plane x = 0 of the circle Γ when
λ = ∞. If the circle is a Villarceau circle, then the envelope of tangent planes is a more complicated
surface of degree four. As mentioned in Remark 3, the condition rank(N ) = 1 combined with the
equations of the Villarceau component leads to singular horn cyclides. On the other hand, the cone
envelope occurs also in the degenerate case of Remark 4.

6.1. Smooth Blending along Principal Circles
In this section, we focus on smooth blending between Dupin cyclides having Γ as a

principal circle. The main case to investigate is by fixing a tangent cone along the circle Γ
and finding Dupin cyclides that fit the blending conditions along the circle; see Figure 2a.

Proposition 1. Let us fix the parameter λ �= 0 and the cone (38) containing the circle Γ. The
Dupin cyclides that join the fixed cone smoothly along Γ as a principle circle are fully characterized
by the five equations
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v2 = λu2, v3 = λu3, v4 = λu4, (40)

4r2u1(λu0 − u1) + λ2(u2
2 + u2

3)− 2λu0u4 = 0, (41)

16r4(λu0 − u1)
2 + 4λ2r2u2

1 − λ2(λ2 + 4r2)(u2
2 + u2

3)− 8λ2r2u0v1 = 0. (42)

Proof. From Lemmas 2 and 3, the tangency conditions along the circle are given by vi = λui
for i ∈ {2, 3, 4}. We specialize u0, v2, v3, v4 in the ideal generated by the 2 × 2 minors
of N and M and obtain an ideal Iλ in Rλ = R(r)[u1, u2, u3, u4, v1, λ, λ−1]. We notice
many multiples of u2, u3, u4 in a Gröbner basis of Iλ. If u2u3u4 �= 0, we obtain an ideal
I∗λ ⊂ Rλ[(u2u3u4)

−1] generated by the five equations of the proposition. The points with
u2u3u4 = 0 satisfy the equations of I∗λ ∪ Rλ by checking the cases u2 = u3 = u4 = 0,
ui = 0, ujuk �= 0 or ui = uj = 0, uk �= 0 with i, j, k ∈ {2, 3, 4} being pairwise distinct. Each
of the resulting idealsRΓ[λ, λ−1] contains I∗λ ∪Rλ.

Remark 6. The five equations of Proposition 1 are linear in the five variables u4, v1, v2, v3, v4.
Hence, we can easily solve the equations for those variables and obtain a parametrization of the
family of Dupin cyclides touching the cone along the circle Γ. Apart from the first three equations,
the variables u2, u3 appear only within the expression u2

2 + u2
3, representing a rotational degree of

freedom: rotating the two Dupin cyclide patches independently around the x-axis preserves the
smooth blending along the circle Γ.

The limit cases λ = 0 and λ = ∞ contain interesting families of Dupin cyclides as well.
The family with λ = 0 allows us to blend two toruses or a torus with a Dupin cyclide; see
Figure 2b–d. The family in the case λ = ∞ allows us to blend a Dupin cyclide with a plane;
see Figure 2e.

Proposition 2. Let us fix the cylinder defined by the parameter λ = 0 in (38). The only Dupin
cyclides that join this cylinder smoothly along Γ are characterized by the equations

u1 = v2 = v3 = v4 = 0, (43)

2r2u0v1 + r2(u2
2 + u2

3)− (v1 + u4)
2 = 0. (44)

Those Dupin cyclides are symmetric with respect to plane x = 0 of the circle Γ.

Proof. The equations v2 = v3 = v4 = 0 follow from the condition λ = 0 and the tangent
conditions in Lemma 2. With those constraints, the ideal of the principal circle component
reduces to the other two equations u1 = 0 and (44). The symmetry property with the plane
x = 0 follows from Equation (43).

Proposition 3. Let us fix the plane x = 0 (of the circle Γ) defined by the parameter λ = ∞ in (38).
The only Dupin cyclides that join this plane smoothly along the circle Γ are characterized by the
equations

u2 = u3 = u4 = 0, v4 = 2r2u1, (45)

16r4u2
0 + 4r2u2

1 − (v2
2 + v2

3)− 8r2u0v1 = 0. (46)

This family of Dupin cyclides is preserved by the reflection with respect to the plane of the circle.
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(a) (1 :− 49
30 : 0 : 76

15 : 323
30 :− 1669

120 : 0 :− 76
15 :− 323

30 )

(1 :−2 :−5 : 0 : 17
2 :− 93

8 : 5 : 0 :− 17
2 )

(b) (1 : 0 :−3 : 0 : 9
2 :− 9

2 : 0 : 0 : 0)

(1 : 0 : 0 : 76
15 : 323

30 :− 361
30 : 0 : 0 : 0)

(c) (1 : 0 : 5 : 0 : 25
2 :− 25

2 : 0 : 0 : 0)

(1 : 0 :−3 : 0 : 9
2 :− 9

2 : 0 : 0 : 0)

(d) (1 : 0 : 0 : 0 :−4 : 8 : 0 : 0 : 0)

(1 : 0 :−3 : 0 : 9
2 :− 9

2 : 0 : 0 : 0)

(e) (1 : a : 0 : 0 : 0 : 1
2 a2 + 15

8 : 1 : 0 : 2a) (f) (1 + t : 0 : 1 : 0 : 12
13 : 2

13 + 2t : 0 :− 10
13 : 0)

Figure 2. Two Dupin cyclide equations with different coefficient values (u0 : . . . : u4 : v1 : . . . : v4)

are smoothly blended along the circle Γ with r = 1. The two cyclides on (e) are obtained from the
parameter values a = 1 and a = 1.8. The two cyclides on (f) are obtained from the parameter values
t = 0 and t = 0.4.

Proof. Similar to the proof of Proposition 2. The equations u2 = u3 = u4 = 0 follow from
the tangent condition λ = ∞, and the ideal of the principal circle component reduces to the
other two equations of the proposition. The reflection (x, y, z) �→ (−x, y, z) with respect to
the plane x = 0 preserves the coefficients u0, u2, u3, u4, v1 and symmetries u1, v2, v3, v4 to
−u1,−v2,−v3,−v4 in (8). This transformation preserves Equations (45) and (46).
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Remark 7. The cubic cyclides with u0 = 0 in the family of Proposition 3 degenerate to reducible
surfaces: namely, the cases of touching sphere + plane.

It is interesting to distinguish torus surfaces in the principal circle component. We get
two cases depending on the position of the circle Γ (wrapping around the torus hole or
around the torus tube). Figure 2c,d illustrate two different configurations of torus blending
using those two kinds of principal circles. The circle wraps around the torus tube of both
toruses in Figure 2c. The circle wraps around the torus tube for one torus and around the
torus hole for the other torus in Figure 2d. The examples satisfy the pertinent algebraic
conditions exactly; this article does not consider the issue of numerical stability.

Proposition 4. Equation (8) defines a torus having Γ as the principal circle if and only if one of the
following applies:
(i) u0 = 1, u2

2 + u2
3 = 2u0u4, v1 = −u4, v2 = v3 = v4 = 0;

(ii) u0 = 1, u2 = u3 = v2 = v3 = 0, u4 =
2r2u1(λ− u1)

λ2 ,

v1 =
λ2u2

1 + 4r2(λ− u1)
2

2λ2 , v4 = λu4 =
2r2u1(λ− u1)

λ
.

Proof. Assume that the circle Γ is wrapping around the torus tube. Then we have a tangent
cylinder along the circle, defined by v2 = v3 = v4 = 0 as in Proposition 2. The cross section
of (8) with the plane x = 0 is a pair of circles with the same radius (Γ, Γ′):

Γ′ : x =

(
y +

u2

u0

)2
+

(
z +

u3

u0

)2
− r2u2

0 − 2u0u4 + u2
2 + u2

3
u2

0
= 0.

We need u2
2 + u2

3 = 2u0u4 for the equality of radii. Equation (44) then factors into (v1 +
u4)(v1 + u4 − 2r2u0). Due to the rotations in the yz-plane that preserve the circle Γ, we
can assume that the revolution axis of the torus is parallel to the z-axis. Then u3 = 0, and
we say u2 =

√
2u0u4. Note that u0u4 > 0 by the derived equation u2

2 + u2
3 = 2u0u4. The

rotated cyclide equation must be

u0

(
x2 +

(
y−

√
u4

2u0

)2

+ z2 − r2 +
u4

2u0

)2

− 2u4

(
y−

√
u4

2u0

)2

+ 2v1x2 = 0. (47)

Comparing with (1), we recognize a torus equation (with shifted y) when v1 = −u4. The
other option v1 = 2r2u0 − u4 gives a surface that is not symmetric around the revolution
axis; hence, that is not a torus. This shows possibility (i).

Assume now that the circle Γ is wrapping around the torus hole. Then we have a
tangent cone along the circle, i.e., v2 = λu2, v3 = λu3, v4 = λu4 as in Proposition 1. The
section with x = 0 should be a pair of concentric circles. Hence, u2 = u3 = 0. Again, with
u0 = 1 and the parametrization in Proposition 1, the cyclide equation reduces to((

x +
u1

2

)2
+ y2 + z2 +

r2(λ− u1)
2

λ2 − u2
1(λ

2 + 4r2)

4λ2

)2

− 4r2(λ− u1)
2

λ2 (y2 + z2) = 0.

This is a torus equation, comparable to (1).

6.2. Smooth Blending along Villarceau Circles
By Remarks 3 and 5, it is not possible to smoothly blend a Dupin cyclide that has

Γ as a principle circle with a Dupin cyclide that has Γ as a Villarceau circle. It is left to
investigate blending between cyclides in the Villarceau circle component. The following
result is illustrated in Figure 2f.
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Proposition 5. Let D denote a Dupin cyclide (8) that has Γ as a Villarceau circle. The only Dupin
cyclides that join D smoothly along Γ are obtained by perturbing the equation of D by

(x2 + y2 + z2 − r2)2 + 4r2x2.

Those cyclides have Γ as a Villarceau circle.

Proof. Let D′ = (u0 : u′1 : . . . : u′4 : v′1 : . . . : v′4) be a Dupin cyclide that has Γ as a Villarceau
circle and assume that D′ and D are smoothly blending along the circle Γ. We obtain the
matrix equation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 1 0 0 0
−2r2 0 0 0 0 0 0 1

0 r2v2 0 v4 0 −r2u2 0 −u4
0 0 r2v3 v4 0 0 −r2u3 −u4
0 v3 v2 0 0 −u3 −u2 0
0 v4 0 v2 0 −u4 0 −u2
0 0 v4 v3 0 0 −u4 −u3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′1
u′2
u′3
u′4
v′1
v′2
v′3
v′4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2r2u0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first two rows of the matrix are linear equations obtained from D′ being in the Villarceau
circle component. The last five rows are the tangency conditions for the given Dupin cyclide
D from Lemma 2. Note that the 7× 8 matrix has the full rank seven symbolically. We must
have vi �= 0 for some i ∈ {2, 3, 4} to avoid rank N < 2 and degeneracy to a horn cyclide.
Then, by setting s = u′i/vi, we can solve

u′j = suj, v′j = svj, for j ∈ {2, 3, 4}, (48)

u′1 = s
v4

2r2 = su1, v′1 = 2r2u0 − 2su4. (49)

After dividing the equation of D′ by s, all coefficients are fixed except v′1 = 2r2u0/s− 2u4,
and u0 becomes u0/s. Hence, with t = u0/s− u0, u0 and v′1 become u0 + t and 2r2u0 −
2u4 + 2r2t = v1 + 2r2t, respectively. This is exactly a perturbation by amount t.

7. The Möbius Invariant J0

In this section, we compute a Möbius invariant denoted by J0 [18] (Section 6) for Dupin
cyclides in the Villarceau and principal circle components described by Theorems 3 and 4,
respectively. This invariant extends the Möbius invariant

J0 =
r2

R2

(
1− r2

R2

)
(50)

for toruses to the Dupin cyclides. The smooth Dupin cyclides are characterized by 0 < J0 �
1/4, and the singular Dupin cyclides are characterized by J0 � 0. A singular Dupin cyclide
can be obtained from a spindle or a horn torus (see Figure 3) by Möbius transformations.

(a) (b)

Figure 3. A cutaway view of singular toruses: (a) a spindle torus (J0 < 0, r > R); (b) a horn torus
(J0 = 0, r = R).
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We use [18] ((6.15) and (6.17)) to compute J0 for, respectively, the quartic equation (8)
with u0 �= 0 and the cubic equation (8) with u0 = 0. The obtained expression gives the
Möbius invariant when the equation defines a Dupin cyclide. It is convenient to subtract
1/4 from J0 and obtain a perfect square expression frequently. Let us denote by Ĵ0 the
remainder 1/4− J0. The goal is to have a compact equivalent formula for J0 in each of the
two components.

Obtaining a J0-expression for quartic Dupin cyclides in the principal circle case is not
straightforward. Consider the ideal Iλ generated by the five equations of Proposition 1. By
incorporating separately the numerator and the denominator of Ĵ0 in the ideal Iλ and by
eliminating the linear variables u4, v1, . . . , v4, we obtain a representative numerator and a
representative denominator with a common factor. This gives a new expression of Ĵ0 up to
a constant multiplier. It is easy to find this constant by solving it from the difference of the
two expressions of Ĵ0 modulo Iλ. The resulting J0 expression is

J0 =
1
4
−
(
8r4(λu0 − u1)

2 − 4r2(λ2 + 4r2)u2
1 + λ2(λ2 + 2r2)(u2

2 + u2
3)
)2

16r4
(
4r2(λu0 − u1)2 − λ2(u2

2 + u2
3)
)2 . (51)

By further elimination of u2
2 + u2

3 using (41)–(42), we obtain the more compact form

J0 =
1
4
−
(
4r4λu0 − 2r2(λ2 + 6r2)u1 + λ(λ2 + 2r2)u4

)2

16r4
(
2r2λu0 − 2r2u1 − λu4

)2 . (52)

It is interesting that this compact form (52) also covers the J0 expression of the family of
cubic Dupin cyclides u0 = 0 in Proposition 1.

Since the majority of Dupin cyclides in the principal circle component belong to the
family of Dupin cyclides in Proposition 1, three equivalent expressions for J0 in the principal
circle component are obtained by substituting λ = vi/ui into (52) for each i = 2, 3, 4. The
equality of two different J0 expressions can be checked by reducing the numerator of the
difference between them modulo the ideal of the principal circle component.

In the two limiting cases of Propositions 2 and 3 of the principal circle component, we
use the same method and obtain the expression

J0 =
1
4
− (4r2u0 − 4u4 − 3v1)

2

4v2
1

(53)

for the family λ = 0 of Proposition 2, and

J0 =
1
4
− (3r2u0 − v1)

2

4r4u2
0

(54)

for the family λ = ∞ of Proposition 3. Note that the latter formula is always well-defined
because the family of Proposition 3 does not contain irreducible cubic Dupin cyclides by
Remark 7.

In the Villarceau circle case, the simplification of J0 in [18] (6.15) modulo the
equations (9) and (10) is straightforward. Elimination of v2, v3, and v4 gives a common
factor of the numerator and the denominator and leads to the expression

J0 =
r2u2

2 + r2u2
3 − u2

4
16(r2u2

2 + r2u2
3 − u2

4) + 4v2
1

. (55)

Alternative eliminations give
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J0 =
1
4
− r2v2

1
4
(
r2(v2

1 + v2
2 + v2

3)− v2
4
) , (56)

=
1
4
− v2

1
16r2

(
u2

2 + u2
3 + u0v1 − r2u2

0
) . (57)

These expressions are applicable to cubic Dupin cyclides as well. The invariant values
should be positive because singular cyclides have no real Villarceau circles. Indeed, the
numerator in (55) is positive by the inequality u2

4 < r2u2
2 + r2u2

3 in (11). The denominator is
positive as well from the same condition. The limiting case u2

4 = r2u2
2 + r2u2

3 of Theorem 3
represents horn cyclides since J0 = 0 from (55), as mentioned in Remark 3.

8. Conclusions

This paper derives the algebraic conditions that fully characterize the general family
of Dupin cyclides passing through the fixed circle (7). The algebraic conditions restrict
the coefficients of the general family (8) of Darboux cyclides passing through the circle.
The main results are divided to Theorems 3 and 4, which reflect the position of the circle
as either a Villarceau circle or a principal circle of the Dupin cyclides. The two obtained
general families are four-dimensional; see Remark 2. The main results can be applied to
check whether a particular surface (8) is a Dupin cyclide or to generate parametric families
of Dupin cyclides (by considering subvarieties of DΓ).

The found algebraic conditions are used in Section 6 to characterize and exemplify
pairs of Dupin cyclides that blend smoothly along circles. The construction of smooth
blending constitutes the basic application of Dupin cyclides in CAGD. The focal case
of smooth blending requires fixing a tangent cone along the circle (7), which reduces
the dimension of general families of smoothly matching Dupin cyclides to three; see
Proposition 1. Even if we would like to join two Dupin cyclides continuously along a circle
at a constant angle [9], the straightforward way of modeling is to fix the tangent cones
meeting at the desired angle. This leads to choosing within two distinct families of Dupin
cyclides in the context of Section 6. The J0-invariant of Section 7 determines (up to Möbius
transformations) the proportions of a whole Dupin cyclide.

Using implicit equations like (8) rather than parametrizations amounts to an alternative
technique of blending cyclides. Like in [18], the algebraic conditions on implicit equations
for Dupin cyclides are quite non-linear. Their derivation and concise presentation required
particular earnestness and attention. The derivation in Section 5 was facilitated by the
computer algebra systems Maple 2018 and Singular 4.2.1, employment of a Gröbner basis,
elimination and localization techniques, and syzygy computations [22].

Future work may establish blending routines of using implicit equations for Dupin
cyclides and compare their practicability, efficiency, and accuracy to existing parametriza-
tion techniques [3–8]. The results could be applied to uniformize investigation of blending
Dupin cyclides at two fixed circles or on fixed spheres, cones, or cylinders [11–16].
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Abstract: A fundamental aspect of network analysis involves pinpointing nodes that hold significant
positions within the network. Graph theory has emerged as a powerful mathematical tool for this
purpose, and there exist numerous graph-theoretic parameters for analyzing the stability of the
system. Within this framework, various graph-theoretic parameters contribute to network analysis.
One such parameter used in network analysis is the so-called closeness, which serves as a structural
measure to assess the efficiency of a node’s ability to interact with other nodes in the network.
Mathematically, it measures the reciprocal of the sum of the shortest distances from a node to all other
nodes in the network. A bipartite network is a particular type of network in which the nodes can be
divided into two disjoint sets such that no two nodes within the same set are adjacent. This paper
mainly studies the problem of determining the network that maximize the closeness within bipartite
networks. To be more specific, we identify those networks that maximize the closeness over bipartite
networks with a fixed number of nodes and one of the fixed parameters: connectivity, dissociation
number, cut edges, and diameter.

Keywords: closeness; bipartite graph; connectivity; dissociation number; diameter; cut edge

MSC: 05C12; 05C35; 68M15

1. Introduction

A network is typically depicted using an undirected simple graph, where nodes
represent vertices and the connections between them are represented by edges. The central
aspect of network analysis involves identifying which nodes hold significant positions
within the network. Graph theory has become one of the most powerful mathematical
tools in network analysis, offering numerous techniques and methodologies. One of the
most important tasks of network analysis is to determine which nodes or links are more
critical in a network. One such parameter, closeness, serves as a means of identifying nodes
capable of efficiently disseminating information throughout the network. In simpler terms,
a node with high closeness is one that can reach other nodes in the network quickly and
efficiently. It signifies that the node is closely connected to the rest of the network and can
potentially influence or be influenced by other nodes more rapidly than nodes with lower
closeness values. Nodes with high closeness are crucial in various network applications,
such as communication networks, social networks, and transportation networks, as they
can facilitate rapid information flow, influence decision-making processes, and enhance
overall network resilience. Thus, understanding the closeness of nodes provides valuable
insights into the structural and functional characteristics of complex networks.

Closeness is measured on a scale from 0 to 1. A node with a value nearing 0 suggests
it is relatively distant from other nodes within the network. Consequently, reaching other
nodes from this point necessitates traversing numerous links. Conversely, a node with a
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value approaching 1 indicates it is in close proximity to other nodes. As a result, only a few
connections are needed to reach neighbouring nodes from this node within the network.

Freeman first introduced the concept of closeness [1], but it turned out to be ineffective
for disconnected graphs and exhibited weaknesses during graph operations. Addressing
the first limitation, Latora and Marchiori introduced a novel measure of closeness for
disconnected graphs [2], yet it still remains susceptible to the second weakness. Subse-
quently, Danglachev proposed an alternative definition [3], which effectively addresses
the challenges posed by disconnected graphs and facilitates the creation of convenient
formulas for graph operations. Following this definition of closeness, various vulnerability
measures have been formulated to quantify the resilience of a network. Among these
novel measures are the vertex (or edge) residual closeness parameters, which assess the
closeness of a graph following the removal of vertices (or edges) [3]. Another measure
is the additional closeness, which identifies the maximum potential of the closeness of a
network, by means of the addition of a connection [4,5]. For further information on these
new finer parameters, we recommend referring to [6–12].

The computation of closeness across various classes of graphs has gained significant
attention in recent years [3,13–15]. For instance, Danglachev investigated the closeness
of splitting graphs [16]. In [17], the same author determined the closeness of line graphs
for certain fundamental graphs, as well as the closeness of line graphs connected by a
bridge of two basic graphs. Closeness formulas for various graph classes were derived by
Golpek [18]. Poklukar and Žerovnik [19] identified the graphs that minimize and maximize
closeness among all connected graphs and trees with a fixed order, respectively. They also
determined the graphs that uniquely maximize closeness among all cacti of fixed order
and number of cycles, posing an open problem for the minimum case. The open problem
posed by Poklukar and Žerovnik [19] was solved by Hayat and Xu [20], which obtained the
unique graph that minimizes closeness across all cacti with fixed numbers of vertices and
cycles. The notion of closeness in spectral graph theory was recently combined by Zheng
and Zhou [21]. They also investigated the closeness matrix and established the connection
between the closeness eigenvalues and the graph structure.

Basic Notations and Definitions

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For a
vertex v ∈ V(G), NG(v) refers to the set of vertices adjacent to v in G. The degree of a
vertex v ∈ V(G), denoted by dG(v), is the number of vertices in NG(v). A pendent vertex in
a graph is a vertex with degree one and an edge incident to a pendent vertex is called a
pendent edge. For an edge e ∈ E(G), G− e denotes the subgraph of G obtained by removing
e, and G + xy represents a graph formed from G by adding an edge between x and y, where
x, y ∈ V(G). Deleting a vertex v ∈ V(G) (along with its incident edges) from G is denoted
by G − v. The union of two graphs H1 and H2, denoted by H1 ∪ H2 is the graph with
V(H1 ∪ H2) = V(H1) ∪ V(H2) and E(H1 ∪ H2) = E(H1) ∪ E(H2). The join of two graphs
H1 and H2, denoted by H1 ∨ H2 is a graph obtained from H1 and H2 by joining each vertex
of H1 to all vertices of H2. For disjoint graphs H1, H2, . . . , Ht with t ≥ 3, the sequential join
H1 ∨ H2 ∨ · · · ∨ Ht is the graph obtained from H1, H2, . . . , Ht by joining each vertex of H1
to all vertices of H2 and then joining each vertex of H2 to all vertices of H3, and continuing
in this manner, finally connecting each vertex of Ht−1 to all vertices of Ht. For simplicity,
tG (and [t]G) is used to represent the union (and sequential join) of t disjoint copies of
G. For example tK1 = Kt which is the t isolated vertices and [a]H1 ∨ H2 ∨ [b]H3 is the
sequential join H1 ∨ H1 ∨ · · · ∨ H1︸ ︷︷ ︸

a

∨H2 ∨ H3 ∨ H3 ∨ · · · ∨ H3︸ ︷︷ ︸
b

.

A matching in G is a set of edges that do not have a set of common vertices. A perfect
matching in G is a matching that covers each vertex of G.

For vertices u, v ∈ V(G), the distance between u and v in G is the length of the
shortest path connecting them, and denoted by dG(u, v). Whereas, the diameter of G is the
maximum distance between any pair of vertices in G.
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By Pn and Kn we denote the path and complete graph on n vertices, respectively.
In [3], for a vertex u of G, the closeness of u in G is defined as

CG(u) = ∑
v∈V(G)\{u}

2−dG(u,v).

The closeness of G is defined as

C(G) = ∑
u∈V(G)

CG(u) = ∑
u∈V(G)

∑
v∈V(G)\{u}

2−dG(u,v).

A bipartite graph is a graph in which V(G) can be divided into two disjoint subsets
V1 and V2 such that no two vertices within the same set are adjacent. A bipartite graph in
which every two vertices from different partition classes are adjacent is called complete,
and it is denoted by Ka,b, where a = |V1|, b = |V2|. Bipartite graphs serve as powerful tools
for modeling complex systems with two distinct sets of entities, enabling analyses of and
solutions to a wide range of real-world problems across different domains [22,23].

The (vertex) connectivity of a graph G is the minimum number of vertices whose
removal from G results in a disconnected graph or in the trivial graph, and it is denoted by
k(G). If G is trivial or disconnected, then k(G) = 0, obviously. An edge e of a connected
graph G is a cut edge if G− e is disconnected. A subset M ⊆ V(G) is called a dissociation set
if the induced subgraph G[M] does not include P3 as a subgraph. A maximum dissociation
set of G is one with the greatest cardinality. Finally, the dissociation number of G is the
cardinality of a maximum dissociation set within G.

In order to explore the connection between closeness and the structural characteristics
of a graph, we will investigate extremal problems aimed at maximizing closeness within
certain classes of bipartite graphs.

2. Main Results

In this section we will state our results. Specifically, we will determine those graphs
which maximize closeness over the bipartite graphs of order n and one of the fixed parame-
ters, such as dissociation number, connectivity, cut edges, and diameter.

The following Lemma will be helpful for the proofs of the main results.

Lemma 1 ([3,12]). If u and v are vertices in a graph G where there is no edge between them, then
adding the edge uv increases the closeness of G.

Our first main result establishes an upper bound on the closeness of a bipartite
graphs with a fixed order and dissociation number α, and identified the graph that attain
the bound.

Theorem 1. Let G be a bipartite graph of order n with dissociation number α. Then,

C(G) ≤ n(n− 1)
4

+
α(n− α)

2

with equality if and only if G ∼= Kα,n−α.

For r ≥ 1, we define Nr as the graph comprising r isolated vertices. Let Br(m1, m2) be
the graph obtained from Nr and K1 ∪ Km1,m2 by adding the edges between the vertices in
Nr and the vertices belonging to partitions of size m1 in Km1,m2 and K1, respectively (see
Figure 1). It is evident that Kr,n−r = Br(n− r− 1, 0).
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m1

m2r

Figure 1. The graph Br(m1, m2).

Our second result identifies the graph that maximizes the closeness within bipartite
graphs of order n and fixed connectivity r.

Theorem 2. Let G be a bipartite graph of order n with connectivity r, where 1 ≤ r ≤ $ n−1
2 %.

Then,

C(G) ≤ 1
4

(⌈
n− 2r− 1

2

⌉
+ 6r + 1

)⌈
n− 2r− 1

2

⌉
+

⌈
n− 2r− 1

2

⌉⌊
n− 2r− 1

2

⌋
+

1
4

(⌊
n− 2r− 1

2

⌋
+ 6r

)⌊
n− 2r− 1

2

⌋
+

r(3r + 2)
2

with equality if and only if G ∼= Br

(⌈
n−2r−1

2

⌉
+ r,

⌊
n−2r−1

2

⌋)
.

For positive integers s, �, and n, where 2 ≤ s ≤ n−�
2 , let A�(s, n− s− �) be the graph

obtained by attaching � pendent vertices to a vertex with degree n− s− � in Ks,n−s−� (see
Figure 2).

n-s-l

s

l

Figure 2. The graph A�(s, n− s− �).

The next result characterizes all bipartite graphs with n vertices and � cut edges having
the largest closeness.

Theorem 3. Let G be a bipartite graph of order n ≥ 5 with � cut edges.

(i) If � = n− 1, then C(G) ≤ (n−1)(n+2)
4 with equality if and only if G ∼= K1,n−1;

(ii) If 3n
4 − 3 ≤ � ≤ n − 4, then C(G) ≤ n2+3n−3�−8

4 with equality if and only if
G ∼= A�(2, n− 2− �).
In the following cases, 1 ≤ � ≤ 3n

4 − 3.
(iii) If 3n− 4� ≡ 0(mod 6), then C(G) ≤ 27n2−18n+20�2+54�−27n�

72 with equality if and only if
G ∼= A�(

n
2 − 2�

3 , n
2 − �

3 );
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(iv) If 3n− 4� ≡ 1(mod 6), then C(G) ≤ 27n2−18n+20�2+55�−27n�−1
72 with equality if and only

if G ∼= A�(
n
2 − 2�

3 − 1
6 , n

2 − �
3 + 1

6 );
(v) If 3n− 4� ≡ 2(mod 6), then C(G) ≤ 27n2−18n+20�2+56�−27n�−4

72 with equality if and only
if G ∼= A�(

n
2 − 2�

3 − 1
3 , n

2 − �
3 + 1

3 );
(vi) If 3n− 4� ≡ 3(mod 6), then C(G) ≤ 27n2−18n+20�2+57�−27n�−9

72 with equality if and only
if G ∼= A�(

n
2 − 2�

3 − 1
2 , n

2 − �
3 + 1

2 );
(vii) If 3n− 4� ≡ 4(mod 6), then C(G) ≤ 27n2−18n+20�2+52�−27n�−4

72 with equality if and only
if G ∼= A�(

n
2 − 2�

3 + 1
3 , n

2 − �
3 − 1

3 );
(viii) If 3n− 4� ≡ 5(mod 6), then C(G) ≤ 27n2−18n+20�2+53�−27n�−1

72 with equality if and only
if G ∼= A�(

n
2 − 2�

3 + 1
6 , n

2 − �
3 − 1

6 ).

In a bipartite graph G with n vertices and diameter d, suppose P = u0u1 · · · ud repre-
sents a diametrical path of G. We can then partition V(G) as follows:

V(G) = X0 ∪ X1 ∪ · · · ∪ Xd, (1)

where X0 = u0 and Xi = v ∈ V(G) : dG(v, u0) = i for i = 1, 2, . . . , d.
Let

F(n, d) = [(d− 1)/2]K1 ∨ $(n− d− 1)/2%K1 ∨ &(n− d− 1)/2'K1 ∨ [(d− 1)/2]K1,

where d is odd. Let

H(n, d) = {H(n, d) = [d/2− 1]K1 ∨ aK1 ∨ $(n− d + 2)/2%K1 ∨ bK1 ∨ [d/2− 1]K1},

where d is even, and a + b = &(n− d + 2)/2'.
Clearly, F(n, d) is a bipartite graph of order n with diameter d, andH(n, d) is a set of

n-vertex bipartite graphs having diameter d.
Evidently, K2 (resp. Pn) is the unique bipartite graph of diameter one (resp. n− 1).

In what follows, we consider 2 ≤ d ≤ n− 2.
Our last main result identifies the bipartite graphs with n vertices and diameter d that

maximize the closeness.

Theorem 4. Let G be a bipartite graph of order n with diameter d having maximum closeness.
(i) If d = 2, then G ∼= K$ n

2 %,& n
2 ';

(ii) If d ≥ 3, then G ∼= F(n, d) for odd d, and G ∈ H(n, d) otherwise.

3. Proof of Theorem 1

In this section, we give the proof of Theorem 1, which establishes an upper bound on
the closeness of a bipartite graphs with a fixed order and dissociation number α, and we
identify the graph that attains the bound.

Proof. Let G be a bipartite graph of order n and dissociation number α that maximizes
C(G). Denote the partition of V(G) as (V1, V2), assuming without loss of generality that
|V1| ≥ |V2|. Let Q be the maximum dissociation set of G. Then |V1| ≤ |Q| = α. If |V1| = α,
then by Lemma 1, G ∼= Kα,n−α.

Now, we consider the case where |V1| < α. Let Q = Q1 ∪Q2 with Q1 ⊆ V1, Q2 ⊆ V2,
and Q′1 = Q \Q1, Q′2 = Q \Q2. It can be observed that |Q′2| < |Q1| and |Q′1| < |Q2|. Since
G is a bipartite graph with maximum closeness, by Lemma 1, each vertex in Q1 (resp. Q′1)
is adjacent to each vertex in Q2 (resp. V2).
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If |Q1| ≤ |Q2|, then there exists S ⊆ Q2 with |Q2| = |S| such that G[Q1 ∪ S] forms a
perfect matching. Thus, we have:

C(G) =
1
4
[
2|Q1||Q′1|+ 2|Q′2||Q2|+ |Q1|(|Q1| − 1) + |Q2|(|Q2| − 1) + |Q′1|(|Q′1| − 1)

+|Q′2|(|Q′2| − 1)
]
+

1
2
[
2|Q1||Q′1|+ 2|Q′1||Q′2|+ 2|Q′1||Q2|+ 2|Q1|

]
+

1
8
[2|Q1|(|Q1| − 1) + 2|Q1|(|Q2| − |Q1|)],

and

C(K|Q1|+|Q2|,|Q′1|+|Q′2|) =
1
4
[
(|Q1|+ |Q2|)(|Q1|+ |Q2| − 1) + (|Q′1|+ |Q′2|)(|Q′1|+ |Q′2| − 1))

]
+

1
2
[
2(|Q1|+ |Q2|)(|Q′1|+ |Q′2|)

]
.

We deduce,

C(G)− C(K|Q1|+|Q2|,|Q′1|+|Q′2|) =
1
4
[|Q1|(3 + 2|Q′1| − 4|Q′2| − |Q2|)

]
+

1
2
[|Q′2|(|Q′1| − |Q2|)

]
.

Note that since G is connected, we have max|Q′1|, |Q′2| ≥ 1. If |Q′1| = 0, then |Q′2| ≥ 1,
implying 2 ≤ |Q1| ≤ |Q2|. If |Q′1| ≥ 1, then 2 ≤ |Q2|, and thus C(G) < C(K|Q1|+ |Q2|,
|Q′1|+ |Q′2|), which contradicts α(G) = |Q| = |Q1|+ |Q2| = α(K|Q1|+ |Q2|, |Q′1|+ |Q′2|).

If |Q1| > |Q2|, then by a similar argument as above, we arrive at a contradiction to the
choice of G. Therefore, G ∼= Kα,n−α. By direct calculation, we obtain:

C(Kα,n−α) = [α(α− 1) + (n− α)(n− α− 1)]× 2−2 + [2α(n− α)]× 2−1

=
n(n− 1)

4
+

α(n− α)

2
.

4. Proof of Theorem 2

To establish the main result, we first require the following Lemma.

Lemma 2. Let a, b and r be positive integers.
(i) If r + b > a, then C(Br(a, b)) < C(Br(a + 1, b− 1));
(ii) If r + b + 1 < a, then C(Br(a, b)) < C(Br(a− 1, b + 1)).

Proof. By the definition of closeness, we have

C(Br(a, b)) =[2a + 2rb + r(r− 1) + a(a− 1) + b(b− 1)]× 2−2

+ (2r + 2ra + 2ab)× 2−1 + 2b× 2−3,

C(Br(a + 1, b− 1)) =[2(a + 1) + 2r(b− 1) + r(r− 1) + a(a + 1) + (b− 1)(b− 2)]× 2−2

+ [2r + 2r(a + 1) + 2(a + 1)(b− 1)]× 2−1 + 2(b− 1)× 2−3,

and

C(Br(a− 1, b + 1)) =[2(a− 1) + 2r(b + 1) + r(r− 1) + (a− 1)(a− 2) + b(b + 1)]× 2−2

+ [2r + 2r(a− 1) + 2(a− 1)(b + 1)]× 2−1 + 2(b + 1)× 2−3.
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(i) If r + b > a, we have

C(Br(a, b))− C(Br(a + 1, b− 1))

= (2r− 2a + 2b− 4)× 2−2 + (−2r + 2a− 2b + 2)× 2−1 + 2× 2−3

= [2a + 1− 2(b + r)]× 2−2 < 0.

Thus, C(Br(a, b)) < C(Br(a + 1, b− 1)).
(i) If r + b + 1 < a, we have

C(Br(a, b))− C(Br(a− 1, b + 1))

= (−2r + 2a− 2b)× 2−2 + (2r− 2a + 2b + 2)× 2−1 − 2× 2−3

= [−2a + 2(b + r + 1) + 1]× 2−2 < 0.

Thus, C(Br(a, b)) < C(Br(a− 1, b + 1)).

By Lemma 3 (ii), we immediately get the following Corollary.

Corollary 1. If 1 ≤ r ≤ $ n−1
2 %, then C(Kr,n−r) < C(Br(n− r− 2, 1)).

Proof. By direct calculation, we have

C
(

Br

(⌈
n− 2r− 1

2

⌉
+ r,

⌊
n− 2r− 1

2

⌋))
=

1
2

[
2r + 2r

(⌈
n− 2r− 1

2

⌉
+ r

)
+ 2

(⌈
n− 2r− 1

2

⌉
+ r

)⌊
n− 2r− 1

2

⌋]
+

1
4

[
2
(⌈

n− 2r− 1
2

⌉
+ r

)
+

(⌈
n− 2r− 1

2

⌉
+ r

)(⌈
n− 2r− 1

2

⌉
+ r− 1

)
+

⌊
n− 2r− 1

2

⌋(⌊
n− 2r− 1

2

⌋
− 1

)
+ 2r

⌊
n− 2r− 1

2

⌋
+ r(r− 1)

]
+

2
8

⌊
n− 2r− 1

2

⌋
=

1
4

(⌈
n− 2r− 1

2

⌉
+ 6r + 1

)⌈
n− 2r− 1

2

⌉
+

⌈
n− 2r− 1

2

⌉⌊
n− 2r− 1

2

⌋
+

1
4

(⌊
n− 2r− 1

2

⌋
+ 6r

)⌊
n− 2r− 1

2

⌋
+

r(3r + 2)
2

.

Let G be a bipartite graph of order n and connectivity r such that C(G) is maximized.
Let W ⊆ G contain r vertices, and let H1, H2, . . . , Hk be the components of G−W, where
k ≥ 2. If any component Hi of G−W contains at least two vertices, then by Lemma 1, it
must be a complete bipartite graph. If one of the components is a singleton set, denoted as
Hi = v, then v is adjacent to all vertices in W; otherwise, if G’s connectivity is less than r,
G[W] contains isolated vertices.

Case 1. At least one component of G−W comprises a minimum of two vertices.

In this case, G −W comprises exactly two components. Otherwise, by introduc-
ing some edges in G, we would obtain a complete bipartite graph G′ among the ver-
tices of H1 ∪ H2 ∪ · · · ∪ Hk−1, with order n and connectivity r. According to Lemma 1,
C(G) < C(G′), contradicting the maximality of G. Let H1 and H2 be the components of
G. Then either H1 = K1 or H2 = K1. Otherwise, G−U has the partitions (M1, M2) and
(Q1, Q2), respectively. Let W = W1 ∪W2 represent the bipartition of W. As G possesses
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maximum closeness, by Lemma 1, there must exist edges between the vertices of M1 and
M2, Q1 and Q2, W1 and W2. Considering the definition of closeness, we have:

C(G) =
1
4
[2|M1||W1|+ 2|M1||Q1|+ 2|M2||Q2|+ 2|M2||W2|+ 2|W1||Q1|+ 2|W2||Q2|

+|M1|(|M1| − 1) + |M2|(|M2| − 1) + |Q1|(|Q1| − 1) + |Q2|(|Q2| − 1)

+|W1|(|W1| − 1) + |W2|(|W2| − 1)] +
1
8
[2|M1||Q2|+ 2|M2||Q1|]

+
1
2
[2|M1|(|M2|+ |W2|) + 2|W1|(|M2|+ |W2|+ |Q2|) + 2|Q1|(|W2|+ |Q2|)].

Note that |W2|+ |Q2| ≥ |W|, and |Q2| ≥ |W1|. Let Q2 = YUZ, and G′ = G− {q1z : q1 ∈
V(Q1), z ∈ V(Z)}+ {m1q2 : m1 ∈ V(M1), q2 ∈ V(Q2)}+ {qm2 : q ∈ V(Q1) \ {q1}, m2 ∈
V(M2)}. Clearly, G′ is a bipartite graph of order n having vertex cut W2 ∪ Y contain r
vertices. We have

C(G′) =1
4
[(|M1|+ |Q1|+ |W1|)(|M1|+ |Q1|+ |W1| − 1)

+ (|M2|+ |Q2|+ |W2|)(|M2|+ |Q2|+ |W2| − 1)] +
1
8
[2|M2|+ 2|Q2| − 2|W1|]

+
1
2
[2(|M1|+ |Q1|+ |W1| − 1)(|M2|+ |Q2|+ |W2|) + 2(|W1|+ |W2|)].

So

C(G)− C(G′) =− 3
4
[|M2|(|Q1| − 1) + |Q2|(|M1| − 1) + |W1|] < 0

this leads to a contradiction. Without loss of generality, let us assume that H2 = K1 = u.
Then, H1 = Ka,b, and u is connected to all vertices of W, while each vertex of W is connected
to every vertex of H1 that is in the same partition as u. Thus, G = Br(a, b), where r = |W|,
and a ≥ r. Since G maximizes closeness, by Lemma 3, we have r + b− 1 ≤ a ≤ r + b + 1,
which implies G ∼= Br

(⌈
n−2r−1

2

⌉
+ r,

⌊
n−2r−1

2

⌋)
.

Case 2. All components of G−W consist of a single vertex.

In this case G = Kn−r,r. By Corollary 1, k ≥ $ n−1
2 %.

Hence, G ∼= Br

(⌈
n−2r−1

2

⌉
+ r,

⌊
n−2r−1

2

⌋)
.

5. Proof of Theorem 3

Lemma 3 ([19]). Let G represent a connected graph containing a cut edge e = uv. Let G′ denote
the graph resulting from contracting edge e into a new vertex w, which becomes adjacent to every
vertex in NG(u) ∪ NG(v) except for u and v, and then attaching a pendent edge at w. Then
C(G′) > C(G).

Lemma 4. Let u, v be the two vertices on the same partition of a complete bipartite graph H, and G
be a graph formed from H by attaching pendent vertices x1, x2, . . . , xs (resp. y1, y2, . . . , yt) to u
(resp. v) . Let G′ = G− {uxi : i = 1, 2, . . . , s}+ {vxi : i = 1, 2, . . . , s}. Then, C(G′) > C(G).
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Proof. By the definition of closeness, we have

C(G′)− C(G)

= 2
s

∑
i=1

(
2−dG′ (xi ,u) − 2−dG(xi ,u)

)
+ 2

s

∑
i=1

(
2−dG′ (xi ,v) − 2−dG(xi ,v)

)
+ 2

s

∑
i=1

t

∑
j=1

(
2−dG′ (xi ,yj) − 2−dG(xi ,yj)

)
= 2

s

∑
i=1

(
2−[dG(xi ,u)+2] − 2−dG(xi ,u)

)
+ 2

s

∑
i=1

(
2−[dG(xi ,v)−2] − 2−dG(xi ,v)

)
+ 2

s

∑
i=1

t

∑
j=1

(
2−[dG(xi ,yj)−2] − 2−dG(xi ,yj)

)
= 2

s

∑
i=1

2−dG(xi ,u)[2−2 − 1] + 2
s

∑
i=1

2−dG(xi ,u)[2−2 − 1]

+ 2
s

∑
i=1

t

∑
j=1

2−dG(xi ,yj)[2−2 − 1]

=
6a + 3ab

8
> 0.

Hence, C(G′) > C(G).

Lemma 5. Let Kp,q be a graph with vertex partition Vp = {x1, . . . , xp} and Vq = {y1, . . . , yq},
and G be a graph obtained from Kp,q by attaching pendent vertices a1, a2, . . . , as (resp. b1, b2, . . . , bt)
to x2 (resp. y2) . Let G′ = G − {x2ai : i = 1, 2, . . . , s} + {y2ai : i = 1, 2, . . . , s}. Then,
C(G′) > C(G).

Proof. By the definition of closeness, we have

C(G′)− C(G)

= 2
s

∑
i=1

t

∑
j=1

(
2−dG′ (ai ,bj) − 2−dG(ai ,bj)

)
+ 2

s

∑
i=1

p

∑
j=1

(
2−dG′ (ai ,xj) − 2−dG(ai ,xj)

)
+ 2

s

∑
i=1

q

∑
j=1

(
2−dG′ (ai ,yj) − 2−dG(ai ,yj)

)
= 2

s

∑
i=1

t

∑
j=1

(
2−[dG(ai ,bj)−1] − 2−dG(ai ,bj)

)
+ 2

s

∑
i=1

p

∑
j=1

(
2−[dG(ai ,xj)+1] − 2−dG(ai ,xj)

)
+ 2

s

∑
i=1

q

∑
j=1

(
2−[dG(ai ,yj)−1] − 2−dG(ai ,yj)

)
= 2

s

∑
i=1

t

∑
j=1

2−dG(ai ,bj)[2− 1] + 2
s

∑
i=1

p

∑
j=1

2−dG(ai ,xj)[2−1 − 1]

+ 2
s

∑
i=1

q

∑
j=1

2−dG(ai ,yj)[2− 1]

=
ab
4

> 0.

Hence, C(G′) > C(G).

Proof. For � = n − 1, K1,n−1 stands as the unique bipartite graph, with its closeness
calculated directly as C(K1,n−1) =

(n−1)(n+2)
4 .
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Consider a bipartite graph G of order n containing � cut edges, maximizing C(G).
Note that for any bipartite graph with � cut edges, � �= n− 2 and � �= n− 3. Hereafter, we
consider the case 1 ≤ � ≤ n− 4. Let e1, e2, . . . , e� denote the � cut edges of G. Our claim
is that each component of G \ {e1, e2, . . . , e�} forms either a single vertex or a complete
bipartite graph.

Suppose there exists a component H of G \ {e1, e2, . . . , e�} that is not a complete
bipartite graph. Let G′ be the graph formed by adding an edge between two vertices from
different partitions in H. Then, according to Lemma 1, C(G′) > C(G), contradicting the
selection of G. Thus, each component of G \ {e1, e2, . . . , e�} is either a single vertex or a
complete bipartite graph. By Lemma 3, e1, e2, . . . , e� must be pendent edges in G. Since G is
a complete bipartite graph, these edges must be incident to a single vertex, denoted as s.
Therefore, G ∼= A�(s, n− s− �) by Lemmas 4 and 5.

By direct calculation, we have

C(A�(s, n− s− �)) = g(s) =
−2s2 + (2n− 3�)s + n2 − n + 3�

4
.

For 3n
4 − 3 ≤ � ≤ n− 4, we get C(G) ≤ g(2) = n2+3n−3�−8

4 with equality if and only if
G ∼= A�(2, n− 2− �).

For 1 ≤ � ≤ 3n
4 − 3, we obtain

max g(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g( n
2 − 2�

3 ), if 3n− 4� ≡ 0(mod 6);
g( n

2 − 2�
3 − 1

6 ), if 3n− 4� ≡ 1(mod 6);
g( n

2 − 2�
3 − 1

3 ), if 3n− 4� ≡ 2(mod 6);
g( n

2 − 2�
3 − 1

2 ), if 3n− 4� ≡ 3(mod 6);
g( n

2 − 2�
3 + 1

3 ), if 3n− 4� ≡ 4(mod 6);
g( n

2 − 2�
3 + 1

6 ), if 3n− 4� ≡ 5(mod 6).

Therefore, we get

C(S) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

27n2−18n+20�2+54�−27n�
72 , with equality iff G ∼= A�(

n
2 − 2�

3 , n
2 − �

3 );
27n2−18n+20�2+55�−27n�−1

72 , with equality iff G ∼= A�(
n
2 − 2�

3 − 1
6 , n

2 − �
3 + 1

6 );
27n2−18n+20�2+56�−27n�−4

72 , with equality iff G ∼= A�(
n
2 − 2�

3 − 1
3 , n

2 − �
3 + 1

3 );
27n2−18n+20�2+57�−27n�−9

72 , with equality iff G ∼= A�(
n
2 − 2�

3 − 1
2 , n

2 − �
3 + 1

2 );
27n2−18n+20�2+52�−27n�−4

72 , with equality iff G ∼= A�(
n
2 − 2�

3 + 1
3 , n

2 − �
3 − 1

3 );
27n2−18n+20�2+53�−27n�−1

72 , with equality iff G ∼= A�(
n
2 − 2�

3 + 1
6 , n

2 − �
3 − 1

6 ).

This completes the proof.

6. Proof of Theorem 4

Proof. Let G be a bipartite graph of order n and diameter d with maximum closeness. Let
(V1, V2) be the partition of V(G).

(i) If d = 2, then by Lemma 1, G ∼= Kt,n−t where t, n− t ≥ 2. By direct calculation,
we get

C(Kt,n−t) =
n(n− 1)

4
+

t(n− t)
2

≤ n(n− 1)
4

+
1
2

⌊n
2

⌋⌈n
2

⌉
with equality if and only if t =

⌊ n
2
⌋
, n− t =

⌈ n
2
⌉
, i.e., G ∼= K$ n

2 %,& n
2 '.

(ii) Let P = u0u1 · · · ud represent a diametrical path of G. Then G maintains the same
vertex partition as that described in Equation (1). We proceed with the following claims.
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Claim 1. For i = 1, 2, . . . , d, all the vertices in G[Xi] are isolated and |Xd| = 1.

Proof. Let us assume there are two vertices, x1 and x2, in some Xi such that there is an
edge between them, x1x2 ∈ E(G[Xi]). This implies the existence of two paths, P1 and P2,
between x0 and x1 (or between x0 and x2). The combination of P1, P2, and the edge x1x2
forms an odd cycle in G. Specifically, if P1 and P2 do not share any internal vertex, then
their union with x1x2 creates an odd cycle. Otherwise, if u is the last common internal
vertex of P1 and P2, then combining P1(u, x1) with P2(u, x2) and x1x2 forms an odd cycle.
This contradicts the assumption of G being bipartite.

In case |Xd| ≥ 2, we can select w ∈ Xd \ ud and augment G by adding edges
wx3 : x3 ∈ Xd−3. This augmentation results in a bipartite graph G′ of order n and diameter
d, featuring a vertex partition X0 ∪ X1 ∪ · · · ∪ (Xd−2 ∪ w) ∪ Xd−1 ∪ (Xd \ w). According to
Lemma 1, C(G′) > C(G), leading to a contradiction. Hence, |Xd| = 1.

Claim 2. G[Xi−1 ∪ Xi] is a complete bipartite graph for each i = 1, 2, . . . , d.

Proof. Let us assume that for some i, G[Xi−1 ∪ Xi] is not a complete bipartite graph.
According to claim 1, all vertices in G[Xi] are isolated, and |Xd| = 1. Now, consider
v1 ∈ Xi−1 and v2 ∈ Xi. We create a new graph, G′ = G + v1v2. It is evident that G′ is a
bipartite graph of order n with diameter d. Using Lemma 1, we deduce that C(G′) > C(G),
which contradicts our earlier assumption. Hence, we conclude that G[Xi−1 ∪ Xi] is a
complete bipartite graph for each i = 1, 2, . . . , d.

Claim 3. (i) If d ≥ 3 is odd, then

|X0| = |X1| = |X2| = · · · = |X d−3
2
| = |X d+3

2
| = · · · = |Xd−1| = |Xd| = 1,

and
∣∣∣|X d−1

2
| − |X d+1

2
|
∣∣∣ ≤ 1.

(ii) I f d ≥ 3 is even, then
|X0| = |X1| = |X2| = · · · = |X d−4

2
| = |X d+4

2
| = · · · = |Xd−1| = |Xd| = 1,

and
∣∣∣|X d−2

2
|+ |X d+2

2
| − |X d

2
|
∣∣∣ ≤ 1.

Proof. (i) When d = 3, the result is straightforward. We now focus on the case where d ≥ 5.
Given that |X0| = |Xd| = 1, we aim to demonstrate that |X1| = |X2| = · · · = |X d−3

2
| =

|X d+3
2
| = · · · = |Xd−1| = 1.

Let us assume |X1| ≥ 2. Consider G′ = G − u0x1 + x1x4, where x1 ∈ X1 and

x4 ∈ X4. From the construction of G′, it is evident that CG(x1) = CG′(x1) +
3
8 −

d
∑

i=4

3|Xi |
2i−1 ,

CG(v) = CG′(v) + 3
8 for each v ∈ X0, CG(v) = CG′(v) for each v ∈ (X1 \ {x1}) ∪ X2 ∪ X3,

CG(v) = CG′(v)− 3
2i−1 for each v ∈ X4 ∪ X5 ∪ · · · ∪ Xd. We get

C(G)− C(G′) = ∑
u∈V(G)

CG(u)− ∑
u∈V(G′)

CG′(u)

= ∑
u∈X0

[CG(u)− CG′(u)] +
d

∑
i=4

∑
u∈Xi

[CG(u)− CG′(u)] + CG(x1)− CG′(x1)

=
3
8
−

d

∑
i=4

3
2i−1 +

3
8
−

d

∑
i=4

3|Xi|
2i−1

=
3
4
− 3

d

∑
i=4

1 + |Xi|
2i−1 < 0,

implying C(G) < C(G′), a contradiction to the choice of G. Thus, |X1| = 1. Similarly, we
can show that |X2| = · · · = |X d−3

2
| = |X d+3

2
| = · · · = |Xd−1| = 1.
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Next we show that if d ≥ 3 is odd, then
∣∣∣|X d−1

2
| − |X d+1

2
|
∣∣∣ ≤ 1. Without loss of gener-

ality, we assume that |X d−1
2
| ≥ |X d+1

2
|. Then, it suffices to show that |X d−1

2
| − |X d+1

2
| ≤ 1.

Suppose that |X d−1
2
| − |X d+1

2
| ≥ 2. Choose z ∈ X d−1

2
, and let G′ = G − zu + zv, where

u ∈ X d+1
2

, v ∈ X d+3
2

. Then, the vertex partition of G′ is X0 ∪ X1 ∪ · · · ∪ X d+3
2
∪ (X d−1

2
\

{z}) ∪ (X d+1
2
∪ {z}) ∪ X d+3

2
∪ · · · ∪ Xd. By direct calculation, we have

C(G)− C(G′) =
[

1
4
|X d−1

2
|+ (|X d+1

2
| − 1)

]
−
[
(|X d−1

2
| − 1) +

1
4
|X d+1

2
|
]

=− 3
4

(
|X d−1

2
| − |X d+1

2
|
)
< 0,

i.e., C(G) < C(G′) a contradiction. Thus,
∣∣∣|X d−1

2
| − |X d+1

2
|
∣∣∣ ≤ 1.

(ii) By the same arguments as above, we can show that |X0| = |X1| = |X2| =
· · · = |X d−4

2
| = |X d+4

2
| = · · · = |Xd−1| = |Xd| = 1. To complete the proof it suffices

to show that
∣∣∣|X d−2

2
|+ |X d+2

2
| − |X d

2
|
∣∣∣ ≤ 1. Without loss of generality, we assume that

|X d−2
2
| + |X d+2

2
| > |X d

2
|. Suppose that

∣∣∣|X d−2
2
|+ |X d+2

2
| − |X d

2
|
∣∣∣ ≥ 2. Since one of X d−2

2
and X d+2

2
contains at least two vertices. Assume that |X d−2

2
| ≥ 2. Choose w ∈ X d−2

2
,

and let G′′ = G− wu + wv, where u ∈ X d
2
, v ∈ X d+2

2
. Then, the vertex partition of G′′ is

X0 ∪ X1 ∪ · · · ∪ (X d−2
2
\ {z}) ∪ (X d

2
∪ {z}) ∪ X d+2

2
∪ · · · ∪ Xd. We have

C(G)− C(G′) =
[

1
4
(|X d−2

2
|+ |X d+2

2
|) + (|X d

2
| − 1)

]
−
[
(|X d−2

2
|+ |X d+2

2
| − 1) +

1
4
|X d

2
|
]

=− 3
4

(
|X d−2

2
|+ |X d+2

2
| − |X d

2
|
)
< 0,

i.e., C(G) < C(G′) a contradiction. This completes the proof of Claim 3.
Observing that |X d−1

2
| − |X d+1

2
| = n− d + 1 for odd d, and |X d−2

2
|+ |X d+2

2
| − |X d

2
| =

n− d + 2, we conclude the following:
For odd d, G is isomorphic to F(n, d). For even d, G belongs toH(n, d).

7. Concluding Remarks

In this study, we have identified the networks that maximize the closeness over the
bipartite networks with a given number of nodes and one of the fixed parameters like
dissociation number, connectivity, cut edges, and diameter. However, the characterization
of networks which minimize closeness within this same category remains an open problem.
Actually, this represents an interesting and consecutive research problem, i.e., to identify
the networks that minimize closeness over the bipartite networks with fixed number of
nodes and one of the fixed parameters such as dissociation number, connectivity, cut edges,
and diameter.
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Abstract: The topological Dehn twists have several applications in mathematical sciences as well as
in physical sciences. The interplay between homotopy theory and Dehn twists exposes a rich set
of properties. This paper generalizes the Dehn twists by proposing the notion of pre-twisted space,
orientations of twists and the formation of pointed based space under a homeomorphic continuous
function. It is shown that the Dehn twisted homotopy under non-retraction admits a left lifting
property (LLP) through the local homeomorphism. The LLP extends the principles of Hurewicz
fibration by avoiding pullback. Moreover, this paper illustrates that the Dehn twisted homotopy up
to a base point in a based space can be formed by considering retraction. As a result, two disjoint
continuous functions become point-wise continuous at the base point under retracted homotopy
twists. Interestingly, the oriented Dehn twists of a pre-twisted space under homotopy retraction
mutually commute in a contractible space.

Keywords: topology; Dehn twist; homotopy; retraction

MSC: 54E15; 55P05; 55P15

1. Introduction

In general, the mathematical concepts of twisting have applications in physical sys-
tems and in mathematics, which have interplays with topology as well as the topological
dynamics of the respective systems [1–4]. Interestingly, algebraic operator-based twisting
can be formulated by employing the homotopy theory of Donovan–Karoubi, and it leads to
the notion of symmetric spectra of a topological space (E, X) under retraction as well as the

twist M(k)× M(l) twist−−→M(l)× M(k), where E is the total space, X is the retracted topolog-
ical space and M(k)×M(l) represents a Cartesian product of monoids [5,6]. A Dehn twist
is a special class of twisted structure, which can be formulated by employing the algebraic
operators (named after mathematician Max Dehn). Interestingly, if we consider that the
topological surface is a Klein bottle, then the Dehn twist and the corresponding Y− home-
omorphism are essentially the varieties of automorphisms [1]. Dehn twists have several
applications in analyzing physical systems [1–3]. It is known that the topologically ordered
state of matter is stable if it is in a topologically trivial state preventing degeneracy [2].
However, under degeneracy, Dehn twists can be applied to form braid structures, and
corresponding nontrivial operations are obtained. Moreover, from the application point of
view, it is shown that Dehn twists encode the topological spins of parity-symmetric anyons
(i.e., the exchanges of such anyons) in a physical system [1,2]. In addition to applications
in physical systems, a Dehn twist has interplays with homotopy and associated algebraic
structures, exposing a rich set of interesting mathematical properties. First, we present
the concept of a Dehn twist, in brief (Section 1.1). Next, we present the motivation and
contributions made in this paper in Sections 1.2 and 1.3, respectively. In this paper, the unit
interval in real values is denoted by I; the index set is denoted by Λ; and the sets of real
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numbers and integers are denoted by R, Z, respectively. If A and B are homeomorphic,
then it is denoted as Hom(A, B).

1.1. General Dehn Twist

Let us consider an oriented (arbitrary) surface of genus g, represented as (S, g), contain-
ing a simple closed curve f : I → S . Suppose Nf is a regular neighborhood of the curve f (.)
and there exists an orientation-preserving homeomorphism given by h : S1 × I → Nf . If
the function Tf : S1 × I → S1 × I is a directed twist such that Tf (θ, t) = (θ ± 2πt, t), t ∈ I,
then we can define a standard Dehn twist as follows [7,8]:

Definition 1. If the continuous function Tf : S → S is a homeomorphism on (S, g), then it is a
Dehn twist about f : I → S if it preserves the following properties:

[x ∈ Nf ]⇒ [Tf (x) = (h ◦ Tf ◦ h−1)(x)],
[x ∈ S\Nf ]⇒ [Tf (x) = x].

(1)

Remark 1. Note that a Dehn twist can have directions, such as a right twist or left twist, as
indicated by the corresponding signs. Moreover, if we consider two simple closed (disjoint) curves
f : I → S and v : I → S in an isotopy class, then the Dehn twist admits the commutative algebraic

property, which is given as Tf Tv = TvTf .

The fundamental property of a Dehn twist is its uniqueness, as presented in the
following Lemma [7]:

Lemma 1. If we consider two Dehn twists Tf : S → S and Tv : S → S about the respective
disjoint and simple closed curves, then we can conclude that [Tf = Tv]⇒ [ f (I) = v(I)] and
[ f (I) �= v(I)]⇒ [Tf �= Tv] .

It is interesting to note that a Dehn twist can be formulated considering a fundamental
group π1(S, p) on a surface (S, g) without requiring any additional modifications of the
concept [8].

1.2. Motivation

Homotopy analysis methods have wide arrays of applications. For example, homo-
topy analysis methods are applied for solving integrodifferential equations by admitting
the convergence criteria of the associated series [9]. Note that in such applications, the
homotopy is employed as an operator. Interestingly, the metrizable topological space
of Grothendieck manifold admits the coarse sheaf cohomology as well as cohomology
groups [10]. In this case, the coarse cohomologies are homotopy invariant [10]. There
are interplays between the homotopy of algebraic topology, Dehn twists and the lifting
with a rich set of properties. For example, suppose Tor2 ⊂ R2 is a flat torus and there
exists the area-preserving homeomorphism f : Tor2 → Tor2 , where f (.) is homotopic to
the identity of the respective flat torus. If fl : R2 → R2 is a lifting of f (.), then there is
a rotation set ρ( fl), which is a generalization of the rotational number of circle homeo-
morphisms preserving the orientations [11]. Moreover, let us consider a (area-preserving)
homeomorphism f : TD(Tor2)→ TD(Tor2) , where TD(Tor2) denotes a set of homotopic
Dehn twists of the respective flat torus. If fTl : TD(Tor2)→ S1 × R is lifting with a zero
vertical rotational number, then all points have uniformly bounded motion under the
corresponding lifting [12,13]. This has applications in dynamical systems and in fixed point
theory [13]. Note that the aforesaid topological properties are restricted to the flat torus
under Dehn twists while preserving the area.

It is known that homotopy and retraction are two inter-related concepts in algebraic
topology, where Dehn twists play an interesting role. Thus, the relevant motivating question
is as follows: can we further generalize or extend a Dehn twist in relation to its application in
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homotopy and retraction? More specifically, interesting questions are (1) what are the topological
properties of interactions between extended Dehn twists and non-contractible spaces under homotopy;
(2) what are the interplays between the homotopic retraction of a topological space and Dehn twists?
Furthermore, the question is as follows: is there any lifting of such twisted homotopy and what
is its relationship with Hurewicz fibration? This paper addresses these questions in relative
detail from the viewpoint of algebraic topology.

1.3. Contributions

First, we note the following fundamental observation presented as Theorem 1 [14]. We
present our proof (formulated by the author of this paper) of the corresponding theorem
(Theorem 1).

Theorem 1. If f : I → (S, g) is a simple closed curve on a compact oriented surface (S, g) of genus
g, then the generalized Dehn twists about f : I → (S, g) generate automorphism of fundamental
group π(S, f (0)). Moreover, it forms the corresponding homotopy class [ f ] on (S, g) under the
Dehn twists.

Proof. Let (S, g) be a compact oriented surface of genus g. Suppose A ⊂ S is a con-
nected based subspace such that f : I → A is a simple closed curve with the base point
f (0) = f (1) = b. Thus, it forms a fundamental group π1(A, b) on (S, g). If TD : A → A is
a base point preserving a Dehn twist about f : I → A , then TD( f (I)) admits the conditions
given by (1) Hom(TD( f (I)), f (I)), (2) Hom(TD( f (I)), S1) and (3) Tn

D({b}) ∼= {b}, where
1 ≤ n < +∞. Thus, it results in the formation of homotopy class [ f ] = {Tn

D( f (I)) : n ∈ [1, k],
k < +∞}, where ∀h ∈ [ f ] and the fundamental group π1(A, b) admits automorphism
under a finite number of Dehn twists. �

The important constraint on TD( f (I)) is that it should result in a set of simple closed
curves in the homotopy class [ f ] within the based space.

Theorem 1 and our proof illustrate that a based topological space plays an interesting
role in generating fundamental groups under Dehn twists. This paper introduces the notion
of pre-twisted space and the formation of an f − base space under homeomorphism, such
that the f − base space essentially becomes a based topological space. The formulation of a
generalized as well as an extended Dehn twist of a pre-twisted space is presented in this
paper, where a Dehn twist has a specific orientation and the Dehn twists with opposite
orientations mutually commute. We show that a non-contractible space can be subjected
to the extended Dehn twists under homotopy and the resulting twisted homotopy with
non-retraction can be lifted (LLP) by employing the local homeomorphism. Thus, the
proposed formulation extends the principles of Hurewicz fibration by avoiding pullback.
Furthermore, the topological properties of twisted homotopy up to an f − base point
with retraction under a Dehn twist are presented in this paper. As a result, two disjoint
continuous functions become continuous at the f − base point under the Dehn-twisted
homotopy with retraction. We show that the commutative relation between the homotopic
retraction and Dehn twists is preserved.

The rest of the paper is organized as follows: Section 2 presents preliminary concepts.
The definitions of pre-twisted space, extended Dehn twists and twisted homotopy are
presented in Section 3. The topological properties of the varieties of twisted homotopies
are presented in Section 4. Finally, Section 5 concludes the paper.

2. Preliminaries

We present the preliminary concepts in two parts. First, we present the results related
to Dehn twists in Section 2.1. Next, we present the discussions about the Dehn twists,
isotopy and fibration in Section 2.2.
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2.1. Curves and Dehn Twists

Suppose we consider an oriented surface of genus g represented as (S, g) and let
f : I → S be a simple closed curve. The curve is called trivial if A ⊂ S : f (I) = ∂A and it

maintains the condition given by Hom(Ao, D2), where D2 = Do
2 represents an open disk.

Note that every trivial curve f : I → S admits a Dehn twist, which is equivalent to the
corresponding diffeomorphism [15]. There is an inter-relationship between the closed
curve, the Dehn twist about the curve and the respective automorphic homeomorphism of
a closed surface, which is presented as follows [15,16]:

Lemma 2. Let (S, g) denote a closed surface S of genus g and the two-sided closed curve on S be
given as f : I → S . Suppose Tf is a Dehn twist about f (.) and h : S → S is an automorphic home-
omorphism preserving f : I → S . If the Dehn twist Tf reverses the orientations of neighborhoods
of f : I → S , then the following properties are preserved:

Tf = h(Tf )
−1h−1,

∀n ∈ Z : (Tf )
2n = (Tf )

n(Tf )
n.

(2)

The corresponding commutator under homeomorphism can be denoted as [(Tf )
n, h].

Note that in this case, the closed two-sided curve is not bounding any disk. The concept
of a compression body and the associated Dehn twist on a manifold with a boundary are
defined as follows [17]:

Definition 2. A compression body is a connected three-manifold M3 generated from a compact
surface S with no components such that the Hom(S, S2) property is preserved, where S× {1} is
the attached one-handle.

It is important to note that a compression body is irreducible.

Definition 3. Let M3 be a three-manifold with a boundary and the continuous function h : M3 → M3

be a homeomorphism. The function restricted to boundary h
∣∣
∂M3 : M3 → M3 is a Dehn twist if it

is isotopic to the identity of the subspace and it is complement to a set of closed as well as simple
curves

{
fi : I → ∂M3 : i ∈ Λ

}
, such that [i �= k]⇒ [ fi(I) ∩ fk(I) = ϕ] .

Remark 2. Note that the Dehn twist on a closed surface about a closed two-sided curve does not
bound any disk. However, in the case of manifold with a boundary, the Dehn twist (restricted to the
boundary) about a set of disjoint closed and simple curves essentially bounds a set of disks generated
by { fi(I)}.

This leads to the following theorem involving the Dehn twist of a compression
body [17]:

Theorem 2. Let S be a compression body and h : S → S be a homeomorphism. The Dehn twist
about the function h : S → S is a composition of a set of Dehn twists about the simple, closed and
disjoint curves { fi : I → ∂S : i ∈ Λ}, which are isotopic, and each of fi(I) bounds a disk such that
the Hom( fi(I), S1) condition is maintained.

There are interplays between the Dehn twists and the intersection numbers of multiple
simple closed curves generated by f : I → S and g : I → S on the surface (S, g) with genus
g. Let us denote the intersection number as λ =| f (I) ∩ g(I)|. This results in the commuta-
tive invariance theorem of Dehn twists of Tf , Tg if the λ = 0 condition is maintained on the
surface [18].
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Theorem 3. If f : I → S and g : I → S are two-sided curves on the surface (S, g) such that
Hom( f (I), S1) and Hom(g(I), S1) conditions are maintained, then ∃j, k ∈ Z+ such that the
following implication is admitted: [(Tf )

j(Tg)
k = (Tg)

k(Tf )
j]⇒ [λ = 0] .

The proof of the commutative invariance under multiple Dehn twists about the non-
intersecting curves is detailed in [18]. A similar result can be extended to Lagrangian
n-sphere Sn

L embedded within the symplectic m-manifold Mm for m = n = 2 admitting
Milnor fibration, where the twist is a standard Dehn twist [19]. Moreover, in such a case,
the standard Dehn twist commutes considering two disjoint Lagrangian Sn

L for n = 2.
Interestingly, there may not be any inter-relationship between two Dehn twists, even if the
intersection number is non-zero, which is presented in the Ishida theorem as follows [19]:

Theorem 4. Let a surface of genus g and the puncture p be given as (S, g, p). Suppose two simple
closed curves are f : I → (S, g, p) and g : I → (S, g, p) such that λ ≥ 2. In this case, there is no
inter-relationship between the Dehn twists Tf , Tg.

Note that the value of λ is considered to be minimum in this case. A detailed discussion
is given in [19,20].

2.2. Dehn Twists, Isotopy and Fibration

The topological properties of Dehn twists vary depending on the dimensions of the
spaces. The Dehn twist around a non-trivial loop on a surface (S, g > 1) with a non-
zero genus generates a one-dimensional Teichmüller disk [21]. A Teichmüller disk is
completely geodesic with respect to the Teichmüller metric. If we consider a two-manifold
M2 representing a surface, then there is an isotopy λ : M2 × [0, 1]→ M2 without fixing
∂M2 such that it is homotopic up to a periodic and irreducible variety [22]. If h : M2 → M2

is a homeomorphism fixing ∂M2, then the fractional Dehn twist coefficient of h(.) represents
the winding number of the arc {b} × [0, 1], where b ∈ ∂M2 is a base point [22].

Interestingly, there is an inter-relationship between the fundamental group and
Hurewicz arc system on a two-disk (represented as D2). Let us consider a Lefschetz
fibration f : X → D2 , where X is a compact four-manifold. Let us choose a base point
b ∈ ∂D2 and a finite set of points {pi} ⊂ (D2)

o. If we consider a set of arcs {Ai} ⊂ D2 such
that Ai ∩ Ak = {b}, then 〈{pi}, {Ai}〉 is a Hurewicz arc system admitting a right-handed
Dehn twist generating π1(D2\{pi}, b), which is called the Hurewicz generator system [23].

It is known that the Dehn twists of various four-manifolds may not always preserve
the smooth isotopy with respect to the identity function along the twist. For example,
Kronheimer and Mrowka have shown that if we consider a manifold K3#K3, then the Dehn
twist along the submanifold S3 within the respective manifold does not admit smooth
isotopy with respect to the identity function [24,25]. In order to avoid non-smooth isotopy,
the sequences of stabilizations are often necessary. Interestingly, the Dehn twist along S3

within K3#K3 cannot be made smooth after a single stabilization [24].

3. Homotopy Under Dehn Twists: Definitions

Let a topological space be given as (X, τX) such that dim(X) = n and n ∈ (1,+∞).
We denote a real plane of dimension m ≤ n as RPm, and a planar convex open m-disk
is denoted as Dm = {x ∈ RPm :|x|< 1}. If we consider a topological subspace F ⊂ X,
then the corresponding homotopy can be formulated through Hn : F× I → Y by fol-
lowing the conventions of algebraic topology. Let us denote a homotopic subspace of
A = F× {a ∈ I} as A(F,a) ⊂ F× I. Moreover, if f : I → F× I is a continuous function such
that f ({b} ⊂ I) ∩ A(F,a) = {xab}, then we represent the position of the point xab as p(θb, a),
where θb is a clock-wise angular displacement with respect to a fixed reference point on
A(F,a). Let us consider the low-dimensional topological space such that n ≤ 3, for simplicity.
First, we present the definition of pre-twist θDp of a Dehn variety as follows:
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Definition 4. Let X ⊂ R2 be a topological space and F ⊂ X such that the Hom(F, D2) condition
is preserved. If f : I → ∂F× I and g : I → ∂F× I are two disjoint continuous functions, where
g(.) maintains the Hom(g(I), Pg ⊂ RP1) property, then θDp ≥ 0 is the pre-twist of a Dehn variety
if the following conditions are maintained:

{xac} = g(I) ∩ A(F,a),
{xab} = f (I) ∩ A(F,a),
θDp =

∣∣p(θc, a)− p(θb, a)
∣∣. (3)

It is important to note that θDp ≥ 0 is considered as extremely small, such that
infθDp = lim

k→M
(2π/k) in general, where M ∈ (1,+∞] and M >> 1. It is important to note

that in the remaining sections of this paper, we are algebraically denoting the position
p(θb, a) and the corresponding point xab together as p(θb, a) to avoid representational
complexities (i.e., xab ≡ p(θb, a) for simplicity).

Definition 5. Let U be a simply connected topological space such that U = U and let f : U → Y
be a continuous function. The ordered pair (U, f )Y is defined as an f − base forming a fixed based
space (Y, y∗) f if f (U) = {y∗}. The point y∗ is called an f − base point in Y.

Note that the f − base (U, f )Y admits homeomorphism such that if h : Y → V is a
homeomorphism, then (h ◦ f )(U) = h(y∗).

Remark 3. There exists an H2∗ : F× I → Y , which is a null-homotopy up to an f − base point
y∗ ∈ Y in a fixed-based space (Y, y∗) f such that H2∗(A(F,1)) = {y∗}. Note that in this case,
F is also a simply connected space. Moreover, if r : F → F is a retraction and h : F → Y is
continuous, then ∃c ∈ F such that (h ◦ r)(F) = h(c) = {y∗}. Furthermore, it can be observed
that H2∗(A(F,1)) = (h ◦ r)(F), indicating that in this case, H2∗ : F× I → Y is a null-homotopic
retraction up to the f − base point y∗.

Definition 6. Let a continuous function be given as ΔD(±mε) : F× I → F× I , where ε ∈ R+ and
m ∈ Z+. The function ΔD(±mε) is an extended Dehn twist if ∀p(θDp, t) ∈ F× {t}; the function
induces twist as ΔD(±mε)(p(θDp, t)) = p((θDp ± 2πmεt), t), such that ε ∈ (0, 1] and t ∈ I.

The extended Dehn twist generalizes the standard Dehn twist by admitting a variable
factor or weight ε of the twist, while covering a finite order m ∈ [1,+∞) of the twist. Note
that the extended Dehn twist introduces the notion of the direction of a twist within a
homotopy space.

Remark 4. If we consider that ε = 1, then the extended twist ΔD(±mε) is transformed into a
standard Dehn twist of order m. If we consider a positively (clock-wise) oriented twist ΔD(+mε), then
the corresponding inverse is given by ΔD(−mε). It is important to note that, in general, the directed
as well as extended Dehn twists are mutually commutative such that they admit the condition given
as (ΔD(+mε) ◦ ΔD(−mε)) = (ΔD(−mε) ◦ ΔD(+mε)) = idF×I , where idF×I : F× I → F× I is an
identity function.

4. Topological Properties

In this section, we present the topological properties of extended Dehn twists on two
varieties of homotopy spaces. First, we present the topological analysis of the application
of an extended Dehn twist on a homotopy space, which is not contractible and not null-
homotopic. Next, we consider a null-homotopic topological space and we apply the
extended Dehn twist on the respective homotopy space.
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4.1. Extended Dehn Twist in Non-Contractible Space

Let us consider a continuous function g : I → S1 × I such that the Hom(g(I), Pg ⊂ RP1)
property is maintained. Suppose we consider that p(θDp, 0) = g(0) and p(θDp, 1) = g(1).
Suppose a homotopy is given by H : S1 × I → E and a covering map is given by q : E → X .
We define a homotopy under the extended Dehn twist, which is given by HΔ : S1 × I → X ,
such that the following algebraic properties are preserved:

t ∈ [0, 1] : HΔ(S1 × {t}) ∼= (H ◦ ΔD(±mε))(S1 × {t}),
t ∈ [0, 1] : Hom(HΔ(S1 × {t}), S1 × {t}). (4)

Note that, in this particular case, we can consider that θDp = 0 with respect to
Pg ⊂ RP1 and the corresponding twisted homotopy can be formulated as HΔ(S1 × {t}) =
q∗(H ◦ΔD(±mε))(S1×{t}). As a result, we obtain ΔD(±11)(p(0, t) ∈ S1×{t}) = p(±2πt, t),
where t ∈ [0, 1]. It results in the following commutative diagram as illustrated in Figure 1,
where (H ◦ ΔD(±mε)) : S1 × I → E is a homotopy lifting under the extended Dehn twist
and h : E → S1 × {0} is a local homeomorphism in E:

Figure 1. Twisted homotopy lifting and fibration with no retraction.

Interestingly, the homotopy lifting under the extended Dehn twist with no retraction
have resemblances to the Hurewicz fibration with necessary modifications.

Remark 5. It is important to note that the covering map of a homotopic extended Dehn
twist q : E → X has a left lifting property (LLP) because it admits the condition given by
(q ◦ (H ◦ ΔD(±mε)) ◦ i ◦ h) = (HΔ ◦ i). Furthermore, the lifting (H ◦ ΔD(±mε)) : S1 × I → E is
a twisted homotopy lifting because it preserves the q∗H ◦ ΔD(±mε) = HΔ property.

Theorem 5. If HΔ : S1 × I → X is a twisted homotopy with mε = 1, then it admits the following
two properties: (a) HΔ(S1, 0) ∼= H(S1, 0) and (b) HΔ(S1, 1) ∼= H(S1, 1).

Proof. Let us consider a twisted homotopy HΔ : S1 × I → X . Note that in this case,
ΔD(±11)(p(0, t) ∈ S1 × {t}) = p(±2πt, t) for all t ∈ [0, 1]. Let us consider an identity
function given as id : S1 × I → S1 × I . As a result, the extended Dehn twist results in the
following properties:

ΔD(±11)(S1 × {0}) = id(S1 × {0}),
and,
ΔD(±11)(S1 × {1}) = id(S1 × {1}).

(5)

Hence, we can conclude that HΔ(S1, 0) ∼= H(S1, 0) and HΔ(S1, 1) ∼= H(S1, 1) because
HΔ(S1, 0) = q∗H ◦ id(S1, 0) and HΔ(S1, 1) = q∗H ◦ id(S1, 1). �
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4.2. Homotopic Retraction Under Extended Dehn Twist

In this section, we consider that the three-space A(F,a) ⊂ F× I can be topologically
retracted and it is null-homotopic. If we first apply the extended Dehn twist to A(F,a) as
ΔD(±mε)(A(F,a)), and next, we apply retraction under r : A(F,a) → (B(F,a) ⊂ A(F,a)) , then
we obtain the following equations:

ΔD(±mε)(p(θDp, a) ∈ ∂A(F,a)) = p(θDp ± 2πmεa, a),
(r ◦ ΔD(±mε))(p(θDp, a)) = p(θDp ± 2πmεa, a)B ∈ ∂B(F,a).

(6)

If we apply the extended Dehn twist and retraction in the reverse order, then it results
in the following equations:

p(θDp, a) ∈ ∂A(F,a),
r(A(F,a)) = B(F,a),
p(θDp, a)B ∈ ∂B(F,a),
ΔD(±mε)(p(θDp, a)B) = p(θDp ± 2πmεa, a)B.

(7)

It leads to the following commutative diagram illustrated in Figure 2.

Figure 2. Commutative diagram for retraction and extended Dehn twist.

It is relatively easy to observe that the aforesaid commutative property is admitted for
all points in the null-homotopic space. This results in the following theorem:

Theorem 6. Let H2∗ : F× I → Y be a null-homotopic retraction up to y∗ ∈ Y in (Y, y∗) f , where
it preserves the Hom(F, D2) property. If h : I → ∂F× I and g : I → ∂F× I are two disjoint
continuous functions, then it results in H2∗(F×{g(1)})∩H2∗(F×{h(1)}) = {y∗} in (Y, y∗) f .

Proof. Let F ⊂ X ⊂ R2 be a topological space such that the Hom(F, D2) property
is maintained and H2∗ : F × I → Y is the corresponding homotopy. Let us consider
that H2∗ : F × I → Y is a null-homotopy up to an f − base point y∗ in (Y, y∗) f such that
H2∗(A(F,1)) = {y∗}. This implies that there is a retraction with embedding
(i ◦ r) : A(F,1) → (Y, y∗) f such that (i ◦ r)(A(F,1)) = H2∗(A(F,1)), where r : A(F,1) → A(F,1)
is a retraction with r(A(F,1)) = {x1b} ⊂ A(F,1) and i : A(F,1) → (Y, y∗) f is the respective
(injective) embedding with i(x1b) = y∗. Thus, the homotopy H2∗ : F× I → Y is a null-
homotopic retraction variety. Let us consider that h : I → ∂F× I and g : I → ∂F× I are
two disjoint continuous functions such that h(1) ∈ ∂A(F,1) and g(1) ∈ ∂A(F,1).
As H2∗ : F× I → Y is a null-homotopic retraction, we can infer that
H2∗(F×{g(1)}) = H2∗(F×{h(1)}). Hence, we conclude that H2∗(F×{g(1)})∩ H2∗(F×
{h(1)}) = (i ◦ r)(A(F,1)) in (Y, y∗) f . It results in the following commutative diagram as
illustrated in Figure 3, where u : I → F× {1} and v : I → F× {1} are two constant (con-
tinuous) functions such that u(I) = {x1k} and v(I) = {x1c} within the topological space.
�
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Figure 3. Commutative diagram representing Theorem 6.

This immediately leads to the following corollary:

Corollary 1. There exist two injective embeddings under homotopy H2∗ and the restrictions
in F× I, which are given as iemH2∗ : (F× I)

∣∣∣g → (Y, y∗) f and iemH2∗ : (F× I)
∣∣∣h → (Y, y∗) f

such that iemH2∗((F× I)
∣∣g) ∩ iemH2∗((F× I)

∣∣h) = {y∗} .

We can view this as the admission of the base-point preservation principle within a
based topological space.

Remark 6. Finally, this is to note that the proposed concepts and formulations (excluding our proof
of Theorem 1) in this paper are employing the elements of algebraic topology without resorting to the
algebraic operator theory of twisted structures. Moreover, the proposed formulations generalize the
Dehn twist under retraction in terms of algebraic topology. It would be interesting to investigate
the relationships between the proposed concepts and the twisted (algebraic) K-theoretical structures
in future.

5. Conclusions

The general form of Dehn twists can be extended involving the pre-twisted topological
based spaces and the orientations of twists, where the based space is formed through the
continuous function retaining homeomorphism. Extended Dehn twists can be applied
to homotopy under two conditions: (1) the non-retraction of a space and (2) under the
retraction of the topological space. The resulting twisted homotopies behave differently.
The Dehn twisted homotopy with non-retraction can admit a left lifting property (LLP)
by following the modified form of Hurewicz fibration, avoiding pullback. However, the
Dehn twisted homotopy under retraction up to the base point within a based space admits
the point-wise continuity of two disjoint continuous functions at the base point. In a
contractible space, the extended Dehn twists and retractions mutually commute.
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