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Coupling Changes in Runoff and Sediment and Their
Relationships with Erosion Energy and Underlying Surface in
the Wuding River Basin, China

Qiannan Yang, Haidong Gao *, Yong Han, Zhanbin Li and Kexin Lu

State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology,
Xi’an 710048, China
* Correspondence: hdgao@xaut.edu.cn; Tel.: +86-29-8231-2658

Abstract: Investigating the changes in the runoff and sediment coupling relationship in the Middle
Yellow River Basin of China can not only deepen the understanding of soil loss control in arid areas,
but also help solve key issues of regional ecological protection. Since the 1960s, soil- and water-
conservation projects have been implemented in the Middle Yellow River Basin, inducing a significant
reduction in runoff and sediment and changes in the relationship between runoff and sediment.
The study identified the change points of coupling relationship between runoff and sediment in the
Wuding River Basin (WRB) by constructing a diagnostic method based on coupling coordination
degree and the Pettitt test; the study validated this using the Copula function and analyzed the
impacts of erosion energy and underlying surface factors. The results showed the following: (1) the
method based on coupling coordination degree and the Pettit test could accurately reflect the coupling
relationship of runoff and sediment and identify two change points (1971 and 1996); (2) runoff and
sediment in the WRB decreased gradually over three periods (P1, 1960–1970; P2, 1971–1995; P3,
1996–2020), with an average annual runoff of 15.34 × 108, 10.72 × 108, and 8.32 × 108 m3 and average
annual sediment load of 1.84 × 108, 0.82 × 108, and 0.32 × 108 t, respectively; (3) the maximum
possible joint design value of runoff and sediment under different return periods in P1 were all the
highest, followed by P2 and P3, and the larger the return period, the higher the maximum possible
joint design value; (4) runoff erosion power could promote runoff and sediment in PE (1960–2020),
P1, P2 and P3 at a significant level, check dams and terrace could decrease runoff and sediment
significantly in PE, and the highest contribution to runoff reduction was check dam (95.4%), while
the highest contribution to sediment reduction was REP (93.8%). The study can provide a new way
to analyze the changes in the runoff and sediment relationship and provide scientific support for
runoff and sediment regulation in the Middle Yellow River Basin.

Keywords: runoff; sediment load; copula function; runoff erosion power; underlying surface

1. Introduction

A good runoff and sediment relationship is critical to the health of the river system and
beneficial to regional ecosystem stability, economic prosperity, and human well-being [1–3].
Normally, runoff and sediment in the river system is mainly induced by rainfall and underlying
surfaces, which dominate the amount of rainfall converted into runoff generated sediment
yield [4,5]. As such indicating relationships among runoff, sediment and underlying surfaces
can help to assess the effectiveness of conservation measures and improvements in river
management [6,7].

As the primary source of sediment of the Yellow River, especially for the coarse
sediment-producing area, to mitigate the severe soil loss in the Middle Yellow River
Basin (MYRB) has always been a hot research topic [8]. After more than 60 years of
comprehensive management, sediment in the MYRB during 2001 to 2018 decreased by 85%
compared with that during 1919 to 1959 [9]. The major cause of this exciting result is the
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many conservation measures that have been adopted in the MYRB since the 1960s. These
measures mainly contain check dam construction, terracing, tree and grass planting, which
were implemented rapidly in the 1970s, 1980s and 1990s, respectively [10]. Among them,
check dams constructed in gullies decrease sediment of river outlets by trapping upstream
sediment [11]. Terraces reduce sediment by absorbing slope rainwater and diminishing
runoff energy [12]. Vegetation restoration can improve soil property and enhance soil
anti-erodibility so as to control runoff and sediment entering gullies [13]. Therefore, check
dams and terraces were the primary factors to reduce sediment during the 1970s to 1980s.
Meanwhile, vegetation restoration plays a key role after 1999, especially the Grain for Green
project, which was implemented on the Loess Plateau to combat soil and water loss into
the Yellow River.

The runoff and sediment reduction in the MYRB mainly due to the decrease in runoff
and sediment of sub-catchments in this region [14], especially for the Wuding River Basin
(WRB), which was the most significant sediment reduction tributary [15]. Since the 1960s,
the underlying surface of the WRB has been gradually changed for check dam and terrace
construction to enhance grain production [16]. After the 1970s, runoff and sediment sharply
decreased, mainly due to the impacts of the underlying surface, while precipitation and
evapotranspiration had little influence [17]. By using elasticity coefficient method, Jin
and Li calculated the contribution of underlying surfaces, such as check dams and vege-
tation restoration, for runoff reduction accounting for 78.75% and for sediment reduction
accounting for 87.78% [18]. Shi et al. obtained similar results in that the contribution of
underlying surfaces to runoff and sediment reduction in the WRB was 75% and 89%, respec-
tively [19]. Of course, some researchers also proposed that the contribution of precipitation
and underlying surfaces to runoff and sediment reduction was approximately equal [20].

The essence of soil erosion is the process of erosion energy dissipation, transmission
and redistribution [21]. And the change processes of erosion energy mainly take runoff
as medium [22]. Improved underlying surfaces can change the movement state of runoff
on slope and then regulate erosion energy, which dominates sediment transportation [23].
However, few have attempted to investigate the coupling changes in runoff and sediment
and the responses to runoff erosion energy. In this paper, we applied the entirety perspective
to indicate the coupling change characteristics of runoff and sediment in the WRB and
the impacts of erosion energy and the underlying surface. The specific objectives were as
follows: (1) to reveal the coupling change characteristics of runoff and sediment in different
periods by using the coupling coordination degree model; (2) to determine the responses
of sediment to erosion energy; and (3) to compare the importance of impacting factors to
runoff and sediment change.

2. Materials and Methods

2.1. Site Description

The WRB (37◦02′–39◦00′ N, 107◦47′–110◦34′ E) is the primary tributary of the Yellow
River, which is located in the hinterland of the Loess Plateau (Figure 1). The whole area of
the WRB is about 30,261 km2, and the main channel length is 491 km. The elevation of the
basin ranges from 600 to 1800 m and average slope of the riverbed is 1.8‰. The landform
located in the south of main channel mainly belongs to the hilly–gully region, while the
north of the main channel is situated in the wind–sandy region. The basin has a temperate
continental monsoon climate. The average annual precipitation was 388 mm between 1960
and 2020, with 70% occurring from June to September. The average and maximum rainfall
intensity is 5.4 mm h−1 and 51.2 mm h−1, respectively. The annual temperature ranges
from 7.9 ◦C to 11.2 ◦C. The loess soil and aeolian sandy soil are the most widely distributed
in the basin. Limited by higher temperature and good soil permeability, snowmelt erosion
does not occur. As precipitation decreases from southeast to northwest, vegetation types in
the southeast of the basin are mainly composed of forest steppe, while the north is mainly
composed of desert steppe. Soil erosion in the basin worsens from northwest to southeast.
However, because soil- and water-conservation construction has gradually been carried

2



Land 2024, 13, 496

out since the 1960s, especially the implementation of the Returning Farmland to Forests
and Grassland Project, soil and water loss in the whole basin has significantly improved.

 

Figure 1. Location of the WRB.

2.2. Data Preparation

Precipitation and runoff data used in the study were all from the Yellow River Basin
Hydrological Yearbook from 1960 to 2020. The average daily runoff data came from the control
hydrological station, Baijiachuan. The areal precipitation of the WRB was calculated using
the Tyson polygon based on daily average precipitation data, which came from 36 rain-gauge
stations in the WRB, including Hanjiamao, Hengshan, Zhaoshiyao, Suide, etc.

Land-use data came from the V1.0 dataset, a fine classification product of 30 m global
land cover developed by the Aerospace Information Research Institute, Chinese Academy
of Sciences [24]. The study used two periods of land-use data from 1985 and 2019, and the
main types of land use were arable land, forest land, grassland, water body, construction
land, and unused land, respectively.

The NDVI came from two datasets: GIMMS NDVI and MODIS NDVI. The GIMMS
NDVI dataset was sourced from the National Oceanic and Atmospheric Administration
“https://psl.noaa.gov (accessed on 12 April 2016)”, with a time series from 1983 to 2015.
The spatial resolution of GIMMS NDVI is 8 km with a temporal resolution of 15 days. The
MODIS NDVI dataset was sourced from the National Aeronautics and Space Administra-
tion “https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 4 July 2021)”, with a time
series from 2000 to 2020. The spatial resolution of MODIS NDVI is 250 m and the temporal
resolution is 16 days. According to the method proposed by Jia et al. [25], the study merged
two time series together and extended the length of NDVI data from 1983 to 2020.

The information regarding check dams, especially large check dams, contained con-
struction time, coordinates, controlled area, storage capacity and cumulative siltation
capacity, which came from the 2011 National Water Resources Census. The information
regarding terrace from 1960 to 2011 came from the 2011 National Water Resources Census,
and others from 2011 to 2015 were extracted from the V1.0 dataset.

2.3. Methods
2.3.1. Coupling Coordination Degree Model

For a river system, the changes in runoff and its sediment are not independent [26].
Therefore, this study applied the coupling coordination degree to analyze the relationship
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between runoff and sediment in order to explore the coupling changes in runoff and
sediment in the WRB. The formula is as follows:

D = (C · T)1/2 (1)

T = au1 + bu2 (2)

where D represents the coupling coordination degree; C represents the coupling degree;
T represents the comprehensive harmonic index of runoff subsystem and sediment subsys-
tem; u1 and u2, respectively, represent contributions of the runoff subsystem and sediment
subsystem to the overall river system; and a and b represent the undetermined coefficients,
which often consider that the importance of two subsystems is equal, so a = b = 0.5.

The formula of C is as follows:

C = 2

{
u1 · u2

(u1 + u2)
2

}1/2

(3)

In the study, indicators of the runoff subsystem and sediment subsystem corresponded
to runoff and sediment of the WRB, respectively. The study assumed that the larger the
value of D, the better the coupling relationship of runoff and sediment.

2.3.2. Pettitt Test

The Pettitt test is a nonparametric test method that was conducted by A. Pettitt, which
is based on the Mann–Whitney statistical function and used to determine the change in
time series [27]. Assuming time t is the most likely point in which change occurs, the time
series can then be divided into two parts before and after it. The two samples are x1, x2, . . .,
xt, and xt+1, xt+2, . . ., xN. The formula for Ut,N is as follows:

Ut,N =
t

∑
i=1

N

∑
j=i+1

sgn(xi − xj) (4)

where if (xi − xj) > 0, sgn(xi − xj) = 1; if (xi − xj) = 0, sgn(xi − xj) = 0; if (xi − xj) < 0,
sgn(xi − xj) = −1.

When |Ut,N | reaches the maximum value, the corresponding xt is considered the
possible change point. The significance level (p) can be calculated by the following formula:

p = 2e(
−6U2

t,N
N2+N3 ) (5)

When p ≤ 0.05, the detected change point is just a significant change point.

2.3.3. Joint Distribution Function Fitting

The copula function is a linking function that can be used to describe the joint distri-
bution of multiple variables and can connect any two marginal distribution functions [28].
As such, the calculation of marginal distribution model and joint distribution model are
all based on it. When fitting marginal distribution of runoff and sediment, three popular
probability distributions in hydrological analysis were used. They are Gamma distribution,
Lognormal distribution and GEV (Generalized Extreme Value) distribution. Meanwhile,
the K-S (Kolmogorov–Smirnov) test was used to examine the marginal distribution, and the
AIC (Akaike information criterion) minimum criterion was used to determine the optimal
marginal distribution [29]. The probability density functions of three marginal distributions
are as follows:

(1) Gamma distribution

f (x|α, β ) =
1

βαΓ(α)
xα−1e−

x
β (6)
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where α represents shape parameters; β represents scale parameter.
(2) Lognormal distribution

f (x|μ, σ ) =
1

x
√

2πσ
e−

(ln x−μ)2

2σ2 (7)

where μ represents the mean value of logarithm of variable; σ represents the standard
deviation of logarithm of variable.

(3) GEV distribution

f (x|k, σ, μ ) =
1
σ

[
1 − k

(
x − μ

σ

) 1
k −1

]
e−[1−k( x−μ

σ )]
1
k

(8)

where k represents shape parameters; σ represents scale parameter; μ represents
position parameter.

When fitting the joint distribution of runoff and sediment, three popular copula
functions of Archimedean type were selected. Detailed information is shown in Table 1.

Table 1. Three popular copula functions of Archimedean type.

Name Function Parameter Value Relationship between τ and θ

Clayton Copula C(n, v) =
(
u−θ + v−θ − 1

)−1/θ θ > 0 τ = θ
2+θ

Frank Copula C(n, v) = − 1
θ

[
1 +

(
e−θu−1

)(
e−θv−1

)
(e−θ−1)

]
θ∈R τ = 1 − 4

θ

[
− 1

θ

0∫
−θ

t
exp(t)−1 dt − 1

]

Gumbel-
Hougaard Copula C(n, v) = exp

{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

θ ≥ 1 τ = 1 − 1
θ

The parameter estimation of the joint distribution function was determined using the
maximum likelihood method. By calculating R2 of cumulative probabilities and empirical
cumulative probabilities of three distribution functions, the optimal joint distribution
function for runoff and sediment was selected.

2.3.4. Joint Return Period and Joint Design Value Calculating

The “OR” joint return period was used as the design control value for safety or risk to
characterize the risk that runoff and sediment encounter [30]. For the risk, the occurring
probability of unexpected events was considered, so we mainly considered the joint return
period of runoff (X) and sediment (Y). The formula of the joint return period is as follows:

TOR =
1

P(X > x ∨ Y > y)
=

1
1 − C(FX(x), FY(y))

=
1

1 − C(u, v)
(9)

where TOR represents the joint return period, which stands for the return period when the
design value of any one of the two variables (X and Y) was exceeded. C(u, v) represents the
joint distribution function of the marginal distributions (u and v) for X and Y.

For any given joint return period, there are countless combinations of runoff (x) and
sediment (y) theoretically that meet the design criteria. When the joint probability density
function f (x, y) reaches its maximum value, the joint design value combination (x, y) is just
the maximum possible combination for that return period [31]. The formula is as follows:

{
max : f (x, y) = C

(
Fx(x), Fy(y)

)
fx(x) fy(y)

C
(

Fx(x), Fy(y)
)
= 1 − 1/TOR

(10)

2.3.5. Cross-Wavelet Transform and Wavelet Coherence

Cross-wavelet transform is a signal analysis technique that combines wavelet trans-
form with cross spectral analysis. This method can analyze the degree of mutual rela-
tionship between two time series in the time–frequency domain and identify the phase
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relationship of the time series in time–frequency space. The main approach is to extract
the cross-wavelet energy spectrum and the coherence spectrum. The energy spectrum can
reflect the relationship between two time series in the high-energy region, while the coher-
ence spectrum focuses on the relationship between the two time series in the low-energy
region [32]. Assuming that the continuous transformation results of two time series X (t)
and Y (t) are Wx

n (t) and Wy
n (t) respectively, then the cross-wavelet spectrum is as follows:

Wxy
n (t) = Wx

n (t) · Wy∗
n (t) (11)

The wavelet coherence spectrum is as follows:

R2
n(t) =

∣∣∣M(t−1Wxy
n (t))

∣∣∣2
M(t−1|Wx

n (t)|2) · M(t−1
∣∣∣Wy

n (t)
∣∣∣2) (12)

where Wy∗
n (t) represents the complex conjugate of Wy

n (t); M represents the Smoother;∣∣∣Wxy
n (t)

∣∣∣ represents the cross-wavelet spectral density of Wxy
n (t) and its value reflects the

degree of significant correlation between the two time series in the high-energy region;∣∣∣M(t−1Wxy
n (t))

∣∣∣2 represents the cross-product of wave amplitude of two time series at a

certain frequency; M(t−1|Wx
n (t)|2) and M(t−1

∣∣∣Wy
n (t)

∣∣∣2) represent the amplitude of two
time series’ vibration waves, respectively.

2.3.6. Runoff Erosion Power

In order to determine the annual runoff erosion power, we used the formula proposed
by Cheng et al. [33], which is:

REP = Q′
m · Hy (13)

Q′
m =

Qm

A
(14)

Hy =
Qy · Δt

A
(15)

where REP represents runoff erosion power, the unit is m4 s−1 km−2; Q′
m represents the

maximum runoff modulus, the unit is m3 s−1 km−2, the value is the ratio of Qm to A; Hy
represents average annual runoff depth, the unit is m; Qm represents peak flow modulus,
the unit is m3 s−1 km−2; A represents the area of the WRB, the unit is km−2; Qy represents
average annual runoff amount, the unit is m3 s−1, the value is equal to the sum of monthly
runoff amount within the year divided by 12; Δt represents time interval, the value is
2592 × 103 s, which is calculated based on 30 days per month.

2.3.7. Elastic Coefficient

The elastic coefficient approach, which is based on the Budyko hypothesis, has been
frequently used to quantify the key driving factors of runoff and sediment change [34].
Zhang recommended the concept of elasticity for evaluating the sensitivity of sediment
to changes in impacting factors [35]. The impacting factors (REP, check dam, terrace and
NDVI) elasticity of runoff, sediment (εX−Y) are as follows:

εX−Y =
ΔYa/Y
ΔXa/X

=
(Ya − Y)/Y
(Xa − X)/X

(16)

where Ya represents the annual value of runoff, sediment load; Xa represents the annual
value of one of the four factors; ΔYa represents the changes in Ya induced by Xa; ΔXa
represents changes in annual X; Y represents the average value of Ya; X represents the
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average value of Xa. The positive value of εX−Y means Y increased with X, while the
negative value means Y decreased with X increased.

Based on εX−Y, the study estimated the contribution rate of four impacting factors to runoff
and sediment changes. The contribution rate (CX) was calculated by the following formula:

CX = εX−Y
Y
X

· ΔXP
ΔYP

× 100% (17)

where ΔYp represents the difference between the average value of Ya in the change period and
average value of Ya in the reference period; ΔXp represents the difference between the average
value of Xa in the change period and the average value of Xa in the reference period.

3. Results

3.1. Runoff and Sediment Relationship and Change Diagnosis
3.1.1. Coupling Changes in Runoff and Sediment

Figure 2a shows the time series plot of the coupling coordination degree of runoff and
sediment load in the WRB from 1960 to 2020. Except for the 1960s, the values of coupling
coordination degree were generally kept above 0.8. The maximum value of coupling
coordination degree was 0.96 in 2005, while the minimum value was 0.60 in 1964. The
coupling relationship between runoff and sediment in the basin has always been at a high
level. The change points of the coupling coordination degree of runoff and sediment load
in the WRB were 1971 and 1996 (Figure 2b). The coupling relationship between runoff
and sediment load changed significantly in 1971 and 1996. The two change points were
consistent with the results that were calculated by Zhou et al., which were 1971 and 1997 in
the WRB [17].

 
(a) (b) 

Figure 2. Coupling changes in runoff and sediment load and its change points in the WRB from 1960
to 2020. (a) The coupling coordination degree of runoff and sediment; (b) the Pettitt test result of
coupling coordination degree.

3.1.2. Change Point Verification Based on Copula Function

By using the copula function, the study constructed the optimal joint distribution
cumulative probability between runoff and sediment and validated the change points of the
relationship between runoff and sediment (Figure 3). Due to the fact that all annual runoff
and sediment loads have passed the K-S test, the four common theoretical distribution
functions can be used to describe annual runoff and sediment load. On this basis, the
linear moment method was used to estimate the parameters of four theoretical distribution
functions, and the R2 between the empirical cumulative probabilities of annual runoff and
annual sediment load and the cumulative probabilities of the four theoretical distribution
functions was calculated separately. According to the principle of R2 maximum, the optimal
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distribution functions for annual runoff and annual sediment load in the WRB from 1960 to
2020 were all GEV-type distribution (Figure 3a,b).

Figure 3. Cumulative probability of optimal copula joint distribution of runoff and sediment in the
WRB from 1960 to 2020. (a) The cumulative probability of runoff; (b) the cumulative probability of
sediment load; (c) the joint cumulative probability of runoff and sediment; (d) the Pettitt test result of
joint cumulative probability.

Based on the AIC criterion, Gumbel Copula was selected as the optimal copula from three
Archimedean copulas. Then, it was used to connect the optimal marginal distribution function
of runoff and sediment and to calculate the cumulative probability of the joint distribution
function of it in the WRB (Figure 3c). Furthermore, the Pettitt test was used once more to
identify the cumulative probability of the joint distribution function of runoff and sediment.
The results are shown in Figure 3d. The cumulative probability of the joint distribution
function of runoff and sediment in the WRB also showed significant change in 1971 and 1996.
Therefore, the change diagnosis method for runoff and sediment relationship based on the
coupling coordination degree can accurately identify the change point.

3.2. Characteristics of Runoff and Sediment before and after Change Points

In Figure 4, runoff of the WRB increased in P1 and P3 and decreased in P2, while
sediment load only increased in P1 (1960–1970) and decreased in P2 (1971–1995) and P3
(1996–2020). However, in fact, runoff and sediment load in the basin showed a downwards
trend wholly from 1960 to 2020. Precipitation in the three periods was 209.3 mm, 353.5 mm
and 425.6 mm, respectively. And precipitation in the WRB has increased significantly
(p < 0.01) over the past 60 years. The statistical results indicate that average annual runoff
of the WRB gradually decreased in the three periods, with values of 15.34 × 108 m3,
10.72 × 108 m3 and 8.32 × 108 m3, respectively. Average annual sediment load also gradually
decreased in the three periods, with values of 1.84 × 108 t, 0.82 × 108 t and 0.32 × 108 t,
respectively. Sediment load in three periods decreased more significantly than runoff.

Average annual runoff in P2 and P3 decreased by 30.1% and 47.8%, respectively,
compared to P1. Meanwhile, average annual sediment load in P2 and P3 decreased by
55.4% and 82.6%, respectively, compared to P1. Moreover, the CV of runoff was 0.17 in P1
and 0.16 in P2 and P3. However, the CV of sediment load was 0.62 in P1, 0.76 in P2 and
0.89 in P3. The fluctuation of sediment load was more intense than runoff. It reflected that
compared with runoff, sediment was more vulnerable to the impacting factors.
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Figure 4. Changes in precipitation, runoff and sediment load in the WRB for three periods.

3.3. Joint Recurrence Characteristics of Runoff and Sediment

Analyzing the joint return period and joint design values of runoff and sediment can
help indicate runoff and sediment change characteristics in the WRB and provide new
management ideas for ecological construction in this basin. In Figure 5, it can be seen
that under the same return period, the maximum possible joint design values of runoff
and sediment load in the WRB were gradually decreased from P1 to P3. And with the
return period increased, the maximum possible joint design value of runoff and sediment
increased. However, under the return period of 200 years, the maximum possible joint
design value of sediment in P2 was slightly smaller than that in P3. With soil and water
conservation on the Loess Plateau promoted, the maximum possible joint design value
of runoff and sediment in the WRB gradually decreased. However, there might appear a
sharp increase in sediment due to extreme rainfall in some years.

Figure 5. Cont.
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Figure 5. Joint return period of runoff and sediment and its maximum possible combined design
value in the WRB for three periods. (a–c) is the maximum possible combined design value under
different joint return periods in P1, P2 and P3, respectively.

In Table 2, the change rates of maximum possible joint design value of runoff in P2
and P3 were smaller than sediment load at five return periods. Compared with P1, the
maximum possible joint design value of runoff decreased by about 32% in P2, while the
maximum possible joint design value of sediment decreased by 42% to 56%; the maximum
possible joint design value of runoff in the WRB in P3 decreased by about 46%, while the
maximum possible joint design value of sediment decreased by 42% to 72%. Compared
with P2, the maximum possible joint design value of runoff in P3 maintained the decrease
rate at 20%, while the decrease rate of maximum possible joint design value of sediment
displayed large differences that changed by −36% to 0%.

Table 2. Changing rates of maximum possible joint design value of runoff and sediment under
different return periods in the WRB.

Joint Return Period Period Compared with P1 Compared with P2

10 years
P2 (−31.69, −55.17)

P3 (−45.63, −71.35) (−20.41, −36.09)

20 years
P2 (−32.02, −52.58)

P3 (−45.95, −65.62) (−20.49, −27.49)

50 years
P2 (−32.46, −48.87)

P3 (−46.30, −57.33) (−20.50, −16.54)

100 years
P2 (−32.67, −45.88)

P3 (−46.52, −50.25) (−20.58, −8.07)

200 years
P2 (−32.92, −42.64)

P3 (−46.71, −42.19) (−20.56, 0.79)

Since the 1960s, human activities, such as the construction of check dams, returning
farmland to forest and irrigation, have led to a significant decrease in runoff and sediment
in the WRB. Among them, returning farmland to forests and irrigation played a dominant
role in runoff changes, while the construction of check dams played a dominant role in
sediment load changes [36]. Moreover, the lifespan of small- and medium-sized check
dams, which were built in the 1970s and 1980s, are mostly less than 20 years. Most of them
were silted up or even failed after the middle of the 1990s. This is also the main reason for
the significant change rates in the maximum possible joint design value of sediment in P2
and P3.
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4. Discussion

4.1. Impacts of Runoff Erosion Energy on Sediment

As the underlying surface continually changes, runoff and its erosion energy in the
WRB also changes accordingly [37]. Therefore, analyzing the relationship between runoff
erosion energy and sediment can effectively demonstrate the regulating effects of underly-
ing surface on improving soil erosion. As such, REP was selected as the erosion dynamics
index to reveal the impact of underlying surface on sediment load in the basin from the per-
spective of runoff erosion energy. In Figure 6, sediment load in the WRB increased linearly
with the increase in REP for three periods. The linear fitting relationship between sediment
and REP in P2 was the best, with R2 of 0.88 (Figure 6b). The linear fitting relationship
between sediment and REP in P3 was the worst, with R2 of only 0.35 (Figure 6c). The slope
of the linear fitting function between REP and sediment was P1 > P2 > P3, indicating that
the erosion capacity of unit runoff was gradually decreasing. The continuous promotion of
soil- and water-conservation measures in the basin over the past 60 years has profoundly
changed the erosion features of runoff erosion energy, ultimately acting out a decrease
in sediment.

 
(a) (b) (c) 

Figure 6. Relationships between REP and sediment load in the WRB under three periods. (a) The
relationship in P1; (b) the relationship in P2; (c) the relationship in P3.

On the basis of previous results and experiments, Moore and Burch indicated that
sediment load increased with unit runoff erosion power linearly, especially for sediment
particles with sizes of 0.2 mm and 0.3 mm [38]. By using an indoor scouring experiment, Li
et al. proposed that the greater the runoff erosion energy consumed, the more sediment
particles were detached and transported; the relationship between them was logarithmic
function [21]. Based on pervious experiences and experiments, and by setting up five
discharge intensities and ten slope gradients, Li et al. considered that runoff erosion power
and sediment load existed in a linear relationship, and the higher the discharge intensity,
the faster the speed that sediment load increased with runoff erosion power [23].

The study conducted cross-wavelet analysis on the relationship between REP and
sediment load in order to support the periodic changes in sediment load and REP. Figure 7a
showed the cross-wavelet energy spectrum of annual REP and annual sediment load in
the WRB. There was a resonance period between annual REP and annual sediment load,
which was about 0–4 years from 1962 to 1980. However, the change in annual REP lagged
behind the change in annual sediment load from 1962 to 1970, while it stayed ahead in the
opposite position from 1970 to 1980. Based on the wavelet coherence spectrum (Figure 7b),
approximately 85% of the area was highly correlated between annual REP and annual
sediment load in the entire time–frequency domain of the low-energy region. It indicated
that REP was a representative factor affecting sediment load.
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Figure 7. Cross-wavelet transform of annual sediment and annual REP in the WRB. (a) The cross-
wavelet energy spectrum; (b) the wavelet coherence spectrum. Note: The black thin line vertebral
body represents the effective spectral value area, and the black thick line within the area represents
a confidence interval of significance level of 0.05. Arrows reflect phase difference: arrows pointing
0~90 degrees and 270~360 degrees indicate that the change phase of annual REP and annual sediment
load is consistent; arrows pointing 90~270 degrees indicate that the change phase of annual REP and
annual sediment load is opposite; arrows pointing 0~180 degrees indicate that annual REP change
leads annual sediment transport change; and arrows pointing 180~360 degrees indicate that annual
REP change lags behind annual sediment load change.

4.2. Impacts of Underlying Surface Change on Runoff and Sediment
4.2.1. Check Dam and Terrace Construction

Compared with other conservation measures, check dam has more obvious advantages
in blocking sand, silting up the land and increasing grain yield, and it is widely promoted
in the Loess Plateau. Since the 1960s, the WRB has gradually implemented soil- and
water-conservation measures, including terrace and check dam. In Figure 8a, there are
tremendous changes in cumulative number and cumulative siltation capacity (CSC) of
large check dams in the WRB over the past 60 years. Up to 2008, there were 1184 large check
dams in the WRB, with the CSC of 13.97 × 108 m3. It also can be seen that 1967–1975 was
the first rapid construction period of check dams in the WRB, and the second peak appeared
after 2000. Terrace was also widely constructed in the WRB and showed a continuous
increase in cumulative area over the past 60 years, with a particularly fast growth rate from
1960 to 2000 (Figure 8b). After 2000, the construction speed of terrace in the WRB gradually
slowed down. And until 2015, the cumulative area reached 1224.29 km2. The terrace area
(TA) in the watershed during 2001 to 2015 increased by 5.62 km2 annually, which is much
lower than that during 1960 to 2000 (increased by 27.78 km2 annually).

Figure 8. Change trend in large check dam and terrace in the WRB. (a) The variation curve of CSC
and cumulative number of check dam; (b) the variation curve of TA.
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Combined with Figure 4, large dam constructed in the 1970s significantly reduced
runoff and sediment in the WRB during that period and became the main reason for change
point of coupling coordination between runoff and sediment in 1971. In addition, with
most of check dams constructed in the 1970s and 1980s gradually filled up, their retention
effects decreased, which also led to the increase in runoff and sediment in the mid to late
1990s [39]. In the WRB, Xu et al. thought that with effective area of check dams reached
its highest value in the 1980s and decreased after the 1990s, which led to the rebound of
sediment load [40]. Unfortunately, the changes in TA did not coincide with runoff and
sediment in the study period. It seems that the influence of check dam on changes in runoff
and sediment in the WRB was more significant than that of terrace. On the time scale
of single rainfall, the contribution of check dams to sediment reduction was higher than
terraces. Taking the “7•26” rainstorm in 2017 as an example, sediment load reduced by
conservation measures in the Chabagou watershed reached 79%, of which check dams
contributed 58% and higher than terraces [41].

4.2.2. Vegetation Restoration

Affected by human activities and climate change, as well as the structure, process and
pattern of land use, the Loess Plateau region has undergone significant changes, which has
led to changes in surface ecological and hydrological processes [42]. From Figure 9, it can
be seen that the overall change in land use in the WRB over the past 30 years was a decrease
in the area of cropland and barren land and an increase in the area of shrubland, grassland,
water body and construction land. The area of cropland and barren land decreased from
668.22 km2 and 317.75 km2 in 1985 to 510.31 km2 and 95.33 km2 in 2019, respectively. The
corresponding decrease proportion was 5.6% and 9.8%. The area of shrubland, grassland,
water area and construction land increased from 0.27 km2, 1780.26 km2, 6.03 km2 and
6.30 km2 in 1985 to 3.37 km2, 2197.68 km2, 7.51 km2 and 18.65 km2 in 2019, respectively.
The corresponding increase proportion was 0.1%, 14.7%, 0.1% and 0.4%.

 

Figure 9. Land-use changes in the WRB.

The decrease in the cropland and barren land’s area, as well as the increase in shrub-
land and grassland’s area, induced a significant improvement in the vegetation conditions
in the basin. By interpreting remote sensing images, the increased shrubland and grassland
in the WRB mostly transformed from rehabilitated land or abandoned land [43,44]. Since
the implementation of the “Returning Farmland to Forests and Grassland” project in 1999,
vegetation restoration in the WRB has made remarkable achievements. After 2000, NDVI
has increased at an average annual rate of 0.01 to 0.48 in 2020 (Figure 10).
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Figure 10. NDVI changes in the WRB from 1983 to 2020.

Because vegetation can intercept more runoff than barren land and construction
land [45], the increase in shrubland and grassland could be the cause of runoff reduction.
Most of all, the infiltration capacity of shrubland and grassland is stronger than other land
use [46]. Therefore, it is likely that vegetation restoration in the WRB caused the decrease in
runoff and sediment. The effects of land type change on runoff and sediment load has been
investigated in several catchments. In the Cau River catchment, Phan et al. identified that if
11.07% of vegetation land converted to cropland, runoff and sediment load could increase
by 3.93% and 8.94%, respectively [47]. In the Be River catchment, Khoi et al. reported that
approximately 14.07% of shrubland converted to cropland during 1990 to 2001; thus, runoff
and sediment load increased by 1.2% and 11.3%, respectively [48].

4.3. Relationships between Runoff, Sediment and Impacting Factors

The correlation analysis of Pr (precipitation), REP, CSC, TA, and NDVI with runoff and
sediment load is shown in Table 3. The negative correlation relationships between Pr and
runoff and sediment load were all poor in PE. It seems that precipitation did not promote
runoff and sediment load throughout the entire study period on the surface. Actually, it
was because the contributions of conservation measures to runoff and sediment reduction
were too high (even over 100%), which hid the contribution of Pr. Similar results actually
existed in the Zhifanggou watershed [49] and the Qingshui River Basin [50]. In addition,
since precipitation, runoff and sediment load all increased in P1 (Figure 4), Pr and runoff,
sediment load had a significant positive correlation relationships (p < 0.01).

Table 3. Relationships between runoff and sediment and impacting factors in the WRB.

Index Period Pr REP CSC TA NDVI

Runoff

PE −0.216 0.892 *** −0.809 *** −0.779 *** −0.152
P1 0.778 ** 0.859 *** 0.193 0.253
P2 0.558 ** 0.825 *** −0.328 −0.354
P3 0.547 0.852 *** −0.596 * −0.036 0.397 *

Sediment
load

PE −0.138 0.916 *** −0.550 *** −0.540 *** −0.477 **
P1 0.842 ** 0.829 ** 0.349 0.466
P2 0.345 0.938 *** −0.071 0.028
P3 −0.093 0.590 ** −0.530 −0.737 *** −0.455 *

Note: PE represents the entire research period from 1960 to 2020; *** represents significant at 0.001 level; **
represents significant at 0.01 level; * represents significant at 0.05 level; Pr represents precipitation.

The correlation coefficients between REP and runoff were all above 0.82 at four periods,
which showed a highly significant correlation. The correlation relationship between REP
and sediment load also reached a significant level (p < 0.01). CSC and TA all showed highly
significant negative correlation with runoff and sediment load in PE, but CSC correlated
with runoff (p < 0.05) and TA correlated with sediment load in P3 (p < 0.001). NDVI
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had a significant negative correlation with sediment load in PE and P3 (p < 0.05), but
showed a complex relationship with runoff. The correlation between NDVI and runoff
was not significant in PE but significant in P3 (p < 0.05). Among three conservation
measures, engineering measures represented by check dam showed the most significant
sediment reduction function [41]. Moreover, when vegetation condition reached a good
level, vegetation could significantly reduce sediment while increasing runoff to a certain
degree [51,52]. The inner cause was vegetation, which led to a regional precipitation
increase and ultimately produced more runoff [53,54].

The elastic coefficients’ absolute value of REP, CSC, TA and NDVI to sediment was
all higher than to runoff in Table 4. When REP increased by 1 m4 s−1 km−2, runoff and
sediment increased by 0.32 × 108 m3 and 1.18 × 108 t, respectively. When CSC increased
by 1 × 108 m3, runoff and sediment decreased by 0.47 × 108 m3 and 0.98 × 108 t, respec-
tively. When TA increased by 1 km2, runoff and sediment decreased by 0.39×108 m3 and
0.92 × 108 t, respectively. When NDVI increased by 1, runoff and sediment decreased by
0.12 × 108 m3 and 1.98 × 108 t, respectively. As the same type of measure, the sediment
retaining ability of check dam was better than terrace [55,56]. For runoff reduction, the
contribution rate of CSC was the highest (95.4%), followed by REP (72.6%), TA (71.1%)
and NDVI (25.4%). For sediment reduction, the contribution rate of REP was the highest
(93.8%), followed by CSC (85.1%), NDVI (75.8%) and TA (63.0%). The contribution rate
of CSC and TA to runoff change was higher than sediment. This was because check dam
and terrace reduced sediment mainly by intercepting runoff [57]. The contribution rate of
NDVI to sediment reduction was significantly higher than runoff. This is related to the
property of vegetation with stronger sediment and weaker runoff controlling [58].

Table 4. Elastic coefficients and contribution rates of impacting factors to runoff and sediment.

Index

REP CSC TA NDVI

Runoff
Sediment

Load
Runoff

Sediment
Load

Runoff
Sediment

Load
Runoff

Sediment
Load

εX−Y 0.32 1.18 −0.47 −0.98 −0.39 −0.92 −0.12 −1.98
CX 72.6% 93.8% 95.4% 85.1% 71.1% 63.0% 25.4% 75.8%

Note: The reference period of REP, CSC and TA are all 1960–1970, and the change period of them are
1970–2020, 1970–2008, 1970–2015, respectively; the reference period of NDVI is 1983–1999, and the change
period is 2000–2020.

The contribution of underlying surface to runoff and sediment load in the MYRB
has been calculated by several researchers. By comparing runoff and sediment change of
two basins from 1956 to 2010, Sun et al. reported that contributions of underlying surface to
runoff and sediment reduction in the Jialu River Basin were 97.3% and 95.8%, respectively,
and in the Kuye River Basin, they were 86.1% and 80.5%, respectively [59]. Similar results
were also obtained in the Lan River Basin. Ma et al. calculated that with underlying surface
improved, the contribution of conservation measures to runoff and sediment reduction
during 1999 to 2018 even reached 117.9% and 103.5%, respectively, which can be compared
with the reference period (1955–1982) [60]. It could be said that changes in underlying
surface caused by conservation measures are the main factor affecting runoff and sediment
reduction in the WRB. However, with underlying surface improved, the hydrological
connectivity of the WRB decreased continuously, leading to more runoff being intercepted
and infiltrated [61]. Less runoff meant less sediment transportation, so the ultimate result
was decreased sediment load in the WRB. Meanwhile, since REP was calculated based on
runoff, the relationship between them was definitely very close, and so was the relationship
between REP and sediment load (Table 3). But once runoff with low sediment concentration
is generated, REP in the basin increases rapidly, inducing a large amount of sediment [62].
This may explain why the contribution of REP to sediment load was the highest compared
with underlying surface.
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5. Conclusions

Based on runoff and sediment data from 1960 to 2020, and supplemented with under-
lying surface information, this study evaluated the coupling relationship between runoff
and sediment in the WRB and revealed the impacts of erosion energy and underlying
surface. Finally, the study reached the following conclusions:

(1) By constructing a diagnostic method based on coupling coordination degree for
change point in runoff and sediment relationship, it was identified that there are two
change points in the runoff and sediment coupling relationship in the WRB, which
were 1971 and 1996. The copula joint distribution of runoff and sediment verified
that there were indeed two change points. The diagnosis method for the runoff and
sediment coupling relationship can be used to identify the change point. Runoff and
sediment decreased gradually in three periods.

(2) Under the same return period, the value of maximum possible joint design value of
runoff and sediment in P1 were all the highest, followed by P2 and P3. The change
trend in the return period was similar to the maximum possible joint design value.
The change rates of the maximum possible joint design value of runoff in P2 and P3
were smaller than sediment under five return periods. With the underlying surface
improved, the change rates of maximum possible joint design value decreased.

(3) Although sediment increased with the increase in REP in three periods, the erosion
capacity of unit runoff was gradually decreased. The resonance period between annual
REP and annual sediment load was about 0–4 years from 1962 to 1980. Approximately
85% of the area was highly correlated between REP and sediment load. REP could
significantly increase runoff and sediment in PE, P1, P2 and P3. The contribution rates
of REP to runoff and sediment were 72.6% and 93.8%, respectively. Check dam and
terrace could significantly decrease runoff and sediment in PE; the contribution rates
of them to runoff reduction were 95.4% and 71.1%, respectively, and their contribution
rates to sediment reduction were 85.1% and 63.0%, respectively. NDVI could decrease
sediment in PE and increase runoff in P3.
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Abstract: Soil erosion is a challenge worldwide, including in China. The dendrogeomorphic method
was applied, for the first time, at Xiaolong Mts in Gansu Province to obtain a quantitative estimate of
the soil erosion rate. The dataset built in this pilot study allowed the identification of exhumation
texture in exposed roots between 1967 and 2002. The calculated mean erosion rate estimates (Era)
ranged from 2.6 to 16.5 mm yr−1 and showed an increase with the slope steepness (s). The best fitting
linear model (Era = 0.043(±0.017) × s + 3.09(±1.04); R2 = 0.20; R2

adj = 0.16; F = 6.18; p = 0.02) could be
used in future research to determine and to map soil denudation in this part of the Xiaolong Mts. No-
table associations were found between erosive rainfalls and root exhumation events. Daily (Rx1day)
and 5-day (Rx5day) precipitation totals of 56 and 73 mm, respectively, seem to be critical thresholds
which if exceeded will always induce root exhumation in the same year or in the consecutive season
in the forest of the Xiaolong Mts in the studied period.

Keywords: dendrogeomorphology; erosion rate; tree roots; wood anatomy; China

1. Introduction

Soil erosion is a primary driver of land degradation worldwide [1]. Reduction in land
degradation caused by soil erosion is one of the main issues among the United Nations’
adopted Sustainable Development Goals [2]. China, in particular, faces a substantial soil
erosion challenge. According to the national soil erosion survey conducted by the Ministry
of Water Resources of the People’s Republic of China in 2011, the total soil loss area was
approximately 1.29 million km2, meaning 13.5% of the land area of the country [3]. China’s
Loess Plateau has long been one of the most severely eroded areas not only within the
country but on Earth [4].

The rainfall–runoff process is primarily responsible for causing soil erosion and trans-
porting soil [5,6], driving the detachment of soil particles by rain splash [7–10] and the
downslope transport of soil particles by runoff [11]. Extreme weather events, especially
heavy rainfall [12], remove an increasing amount of soil from unprotected surfaces. A recent
assessment project found an increase in rainfall erosivity for most regions in China. Under
the SSP1-RCP2.6 and SSP5-RCP8.5 scenarios, the rainfall erosivity factor is expected to rise
by 18.9 and 19.8% for the near-term and 26.0 and 46.5% for the long-term, respectively [13],
underlining the importance of improved understanding of the generation, impacts, and
future trends of extreme rainfall erosivity [12].

There are a multitude of studies describing and measuring the pattern and rate of
soil erosion, ranging from the simple pin method up to high-resolution terrestrial laser
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scanning [14,15]. However, time series longer than a couple of years are rare, and decadal-
scale measurements—mostly represented by fallout radionuclides—lack annual temporal
resolution [16–18].

Estimation and modelling of soil erosion are important issues in environmental as-
sessment in Asian mountains as well [19–21]. Numerous soil erosion studies are related to
arable soils [5,22], while forested regions are much more neglected in this respect [23]. This
dichotomy is likely explained by the fact that soil loss and runoff rates on land covered by
grass and trees are one to three orders of magnitude lower than rates on cropland [6].

Plant growth and vegetational succession can be hindered by erosion to varying
degrees [24–26]. Root exhumation is the process where roots growing underground appear
at the soil surface due to natural or human-made causes. As the erosion process progresses,
exposed roots start to appear [24].

Schulman’s [27] seminal paper started the ‘career’ of root-based soil erosion studies.
The recognition that tree roots are suitable for dating [28] was also a key step in the de-
velopment of root-ring-based erosion rate quantification. First, the age of exposed roots
was determined [29], and then the starting asymmetry of buttress roots was dated [30],
and dating cambium damage was the method used [31] later. When cambium is damaged,
it dies back, and growth is discontinued along certain sectors of the root circumference.
However, segments that are diametrically opposed, usually in lower parts, continue grow-
ing. It was a ‘revolutionary’ new method in assessing erosion rates over millennia [30].
A further step in methodological development was recognizing that growth rings, which
are mostly concentric in underground settings, tend to change to elliptical cross-section
of various eccentricities when exposed [32]. Dating the initiation of reaction wood for-
mation in exposed roots, in combination with scar-induced cambium dieback, became a
further indicator of initial root exposure [31]. Owing to the experience gained during the
past decades, dendrogeomorphological analysis of exposed tree roots has evolved into an
established method capable of dating soil erosion with annual accuracy on a decadal to
centennial temporal scale [33]. Both sheet erosion of slopes and linear erosion of gullies
can be quantified by dendrogeomorphological analysis of exposed tree roots yielding
medium-term erosion rates [33]. Theoretically, roots of all tree and shrub species can be
used for the determination of erosion rates [34], although anatomical ambiguities could
make the application of the method impossible in certain cases.

Great dendrogeomorphological studies were carried out in subregions of the USA,
the Mediterranean area, and in the Alps (see Stoffel, Corona, Ballesteros-Cánovas, and
Bodoque [33], for an exhaustive list). However, we are aware only four studies in China,
one on hillslopes in the temperate north [23] and few more on karsts in the subtropical
south [35–37]. Inland continental regions, such as Gansu Province, are neglected in this
respect. The total soil loss area makes up 76,112 km2 in Gansu Province out of which ~18%
is forest and shrub according to the interpolated maps of the national soil erosion survey of
China completed in 2011 [3]. In the light of this, the dendrogeomorphological method offers
itself to be applied for soil erosion estimation in the forested areas of Gansu Province. In
the present paper, we illustrate selected root cross-sections from Gansu Province, People’s
Republic of China, and apply these features to quantify root exhumation caused by soil
erosion for the first time in this region.

2. Materials and Methods

2.1. Site

The Xiaolong Mts are located in the West Qinling Mountain Range near Tianshui city
and located in Tianshui area (34◦26′27′′ N, 106◦07′29′′ E, and 2085 m above sea level) in
eastern Gansu Province (Figure 1). Gansu Province is locating in the southwestern sector of
the erosion hotspot of China’s Loess Plateau [4].

Abundant forest coverage is maintained by orographic precipitation. Natural mixed
pine–oak forests dominated by Chinese pine (Pinus tabulaeformis) and Liaotung oak (Quercus
wutaishanica Mayr) occur also relatively frequently at certain places in this region [38]. The
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mountain has steep ridges, where many roots are conveniently exposed. The bedrock is
coarse granite bearing thin soil cover classified as Leptic Cambisol, characterized by an
organic matter content of 15 g kg−1 and a high content of sand and silt. The coarse soil
structure is prone to water erosion. Gullies or small debris cones were not observed on the
studied slopes so sheet erosion can be assumed to be the dominant type of soil erosion.

Figure 1. Location of Xiaolong Mts near Tianshui city. The study area is indicated in the main
map (white ellipse), while the enlarged region is indicated by the black square to show the wider
geographical context in the inset globe. Map source: GoogleEarth 2024. Inset graph: climate diagram
for the Tianshui meteorological station showing the monthly mean temperature (solid line) and
monthly precipitation (bar).

The region is at the marginal area of the Asian summer monsoon. Mean annual
temperature is 10.9 ◦C and annual precipitation total is 520 mm at the nearby meteorological
station (Tianshui). Annual rainfall is clearly concentrated in a wet season centered on July
to September, registering ~51% of the annual precipitation total during these three months
(Figure 1). The long-term average rainfall erosivity factor, the so-called R-factor, is moderate
(~900 to 1000 MJ mm ha−1 h−1 a−1) in this region [39]. The soil erosion rate at the study
site is around 10 t ha−1 a−1, but there are also areas with higher annual rates in the
surroundings [3].

2.2. Sampling and Measurements

Procedures involved in the root-based reconstruction of soil erosion processes followed
standard working steps [33]. Thirty root disk samples were taken (coded from SMM101
to SMM130) using a hand-saw in May 2010 (Table 1 and Table S1). The exhumed roots
were collected during a survey of several hectares of slopes (Figure 2). In the vicinity of
the exhumed roots, trees were spaced 1 to 4 m apart. Roots extend up to several meters
from the trees, so unfortunately, for roots exhumed further away from the trunk, it was not
possible to clearly identify which root belonged to which tree (Figure 2A). Therefore, we
cannot say that each sample belongs to a different tree, but it is very likely. A single disc
sample was taken from a root.
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Table 1. Exhumed root samples with the inferred basic input parameters and estimated average
soil erosion rate taken from Xiaolong Mts, Gansu, China. Variable codes in the topmost row refer to
Equation (1). Estimated uncertainty of Era is presented in brackets.

Variable in
Equation (1)

- C D NRex Era

Sample Code
Slope

Steepness
Average

Exposure 1
Exposure to

Root Top

Years Elapsed
Since First
Exposure

Average
Erosion Rate

% mm mm yr mm yr−1

SMM101 36.4 89 0 42 3.3 (0.1)
SMM102 17.6 13.5 0 14 4.5 (0.2)
SMM103 17.6 12 2 21 2.9 (0.1)
SMM104 46.6 20 9 8 7.6 (0.4)
SMM105 46.6 40 2 19 4.6 (0.2)
SMM106 57.7 47 1.7 21 4.5 (0.1)
SMM107 57.7 28.5 1.5 15 5.1 (0.2)
SMM108 57.7 7 0 9 6.3 (0.3)
SMM109 17.6 40 4.5 16 5.3 (0.2)
SMM110 36.4 17 7.5 11 5.4 (0.3)
SMM111 17.6 128 5 37 4.7 (0.1)
SMM112 17.6 25 5 11 6.4 (0.3)
SMM113 36.4 63 2 24 4.6 (0.1)
SMM114 36.4 32 4 27 2.9 (0.1)
SMM115 70.0 87 6 29 4.5 (0.1)
SMM116 36.4 51 10 21 4.3 (0.1)
SMM117 46.6 117 0 27 6.2 (0.1)
SMM118 70.0 51 5 34 2.8 (0.1)
SMM119 57.7 68 15 40 2.6 (0.1)
SMM123 57.7 210 0 28 9.3 (0.1)
SMM124 119.2 345 0 24 16.5 (0.1)
SMM125 83.9 83 1.5 35 3.8 (0.1)
SMM126 83.9 175 0 40 5.6 (0.1)
SMM127 83.9 110 14 43 3.4 (0.1)
SMM128 83.9 140 0.5 27 7.0 (0.1)
SMM129 119.2 128 5.5 27 6.4 (0.1)
SMM130 46.6 108 0 30 5.3 (0.1)

1 Mean of field measurements at both sides of the exposed root section. For the original field measurements see
Table S1.

Figure 2. Field photos of exhumed roots. (A) A network of exhumed roots probably belonging to
multiple trees. The position of sample SMM109 is shown. (B) Exhumed roots parallel to the slope.
The position of sample SMM118 is shown.

Needed parameters to quantify the erosion rate are the thickness of the eroded soil
layer since exposure and the number of rings grown since exposure. Data for the first are
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measured both in the field (see Section 2.2.1) and in the laboratory (Figure 3); for the second,
they are measured exclusively in the lab (see Section 2.2.2).

Figure 3. The scheme of measurements on exhumed roots. Soil-covered root: circular annual rings.
Exhumed root: elliptical rings. To be measured in the field: A and B are the exhumation data of the
top of the root above the soil surface on opposing sides of the root. C is the average of A and B. To be
measured in the laboratory: D is the distance of the (first) exhumation marker from top of the root.
ε is the thickness of the soil cover above the root at the appearance of the first exhumation marker.
C − D + ε is the estimated total eroded thickness of soil since the first exhumation marker.

2.2.1. Field Methods

The following data were recorded for each sample: angle and aspect of slope and
whether the root is parallel, perpendicular, or oblique to the slope. A detailed methodologi-
cal description is provided in a separate paper [40]; only the key steps are listed below.

• Roots overgrowing stones in the soil were not sampled: these cannot grow downwards,
i.e., their pith possibly moves upwards due to growth in diameter [41].

• Roots at least a meter away from stems were selected to avoid reaction wood poten-
tially grown by the stress of the moving stem or erosion being overestimated due to
the pull of the stem [42–44].

• Ground surface was carefully cleared of leaf litter, taking care not to remove any soil.
• A cross was marked on the topmost portion of the root with indelible ink.
• A photo was taken for documentation (Figure 2).
• Azimuth and tilt of the slope were measured by a geological compass or by a simple

compass and tiltmeter and rounded to the nearest 5◦.
• Direction of the root was recorded relative to the dip of the slope (parallel, perpendicu-

lar, or oblique). We note that we found that exposed roots in all directions were useful
in the soil erosion reconstruction despite the recommendation of [33], in the caption to
his Figure 10).
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• Height of the cross-marked top portion of the root above the homogeneous slope was
measured on both sides [33] to the closest millimeter with the help of ruler and level
or with a caliper; this measurement was always made in vertical direction (i.e., not
perpendicularly to the slope, see Figure 3) and the average of the two values was used
in calculations (see Section 2.3).

• Soil was removed from both sides and from below the root for easy access for sawing.
• A disk of ~20 to 50 mm thickness was sawed from the root (thickness was determined

so as to allow the sample to be held easily by fingers during grinding and polishing,
see Section 2.2.2).

2.2.2. Laboratory Methods

Specimens of sawn disks were left to dry as necessary (often for weeks) before grinding
and polishing by a belt sander using the facilities of the Budapest Tree-Ring Laboratory [45].
Particular care was taken to preserve the cross marking on the top of the sample.

• Direction of the top marker (drawn in the field) was marked again on at least one face
of the disk.

• Both faces were grinded on a belt sander using progressively finer grit sizes [46]
beginning with P120 (~125 μm) and ultimately finishing with P400 (33.5–36.5 μm),
which is usually enough for an almost polishing-level quality of the sanded face.
Occasionally, in the case of very fine rings, we hand-sanded portions of the disk with
a P800 (20.8–22.8 μm) sandpaper.

• Exhumation markers, both geometrical and textural [40], were identified (see
Section 2.2.3) under the microscope and marked with pencil.

• The number of rings was counted from the outermost ring grown during the year of
sampling towards the pith and calendar years were assigned. The outermost ring in
this case was incomplete since sampling was carried out in the growing season. The
rings were checked over the entire transect to also account for the frequently observed
wedging rings.

• Calendar years were assigned to exhumation markers.
• Distance between pith and the top of the sample was measured to the nearest 0.5 mm

using a ruler or a caliper (Figure 3). Independent measurements of this parameter
were performed to characterize the uncertainty of the laboratory measurements (see
Appendix A).

• Distance between the first exhumation marker and the top of the sample was similarly
measured to the nearest 0.5 mm using a ruler or a caliper (Figure 3).

2.2.3. Exhumation Markers in Conifers

Roots, when exhumed above ground, display various features in their altered tissue.
A detailed treatment is provided and anatomical exposure markers are discussed in a
separate paper [40]. Here, we briefly discuss only the markers used in the present study,
recognizable without specialist equipment. Recognition of these features allows us to date
the exhumation and decide whether it was slow or fast [40]. Features are grouped as (1)
change from root texture to stem texture (gradual or sudden), (2) formation of reaction
wood of increased ring width and lignin content, (3) injuries causing wounds and their
overgrowth ring patterns, and (4) phenolic staining.

1. Change from root texture to stem texture (Figure 4A). Soil-covered roots are largely
protected from frost and drought. The reduced environmental signals mostly yield
uniformly sized cell lumina and thin walls in the earlywood of conifer roots. Latewood
is often a single row of cells only. Exposure to aboveground conditions usually yields
smaller cell lumina and thicker cell walls, both in the earlywood and in the latewood.
In macroscopic view, this change is displayed as lighter belowground and darker
aboveground rings. Latewood is particularly affected by aboveground conditions: it
is significantly thicker than the underground latewood. In short: roots produce xylem
similar to that of stems after exposure to aboveground conditions [47].
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Figure 4. Examples of exhumation markers in exposed conifer roots. (A) Stepwise change from
root texture to stem texture. Light, concentric rings with narrow latewood were substituted by
increasingly elliptical rings with wide latewood (thin arrow) in the year of rapid exhumation. Later,
irregular rings of reaction wood (thick arrow) mark the effect of mechanical stress. Resin ducts visible
throughout. (B) Distorted symmetry. Narrow rings with thin latewood belong to underground roots.
Rapid exhumation yielded reaction wood of wide rings and thick latewood (arrow). (C) Wound.
Gradual change from root texture (narrow rings with barely visible latewood) in the center to stem
texture along the margins is observed. It is evidence for gradual exhumation. There is a wound on top
(arrow) overgrown by subsequent rings and covered by bark. Brownish phenolic compounds indicate
the presence of another wound, out of the plane of the section. Resin ducts visible throughout. Scale:
10 × 10 mm grid pattern in black background.

2. Reaction wood is formed in the wood under mechanical stress. Conifers’ reaction
wood has wider rings than normal. The first ring with reaction wood dates the
exhumation of the root. Multiple tilting events in the same stem may be recognized
by changes in—among others—orientation of compression wood [33].

3. Distorted symmetry (Figure 4B). The growth of rings with eccentric symmetry and of
reaction wood goes hand-in-hand [31]. Root exhumation, mass movement, or tilting
of the plant can disturb this symmetry.

4. Wounds (Figure 4C) are caused by injury to the root by mechanical means, mostly
above ground, rarely below ground. If the cambium is damaged and suffers dieback,
growth is stopped at that place, bark falls off, and an open wound is formed.

5. Phenolic staining (by dark, reddish-brown compounds) adjacent to the wound
(Figure 4C). These precipitates isolate the open wound from infection by bacteria
and fungi. External surface of the stain is parallel with a ring—this is the year when
the injury occurred.

2.3. Calculations and Evaluation

Unclearly discernible ring boundaries accompanied with dense/narrow tree-ring
structure were observed in three semi-ring porous samples, presumably derived from
Quercus wutaishanica roots, which could not be used for further evaluation. However, all
the conifer samples (n = 27) were suitable for erosion dating.

Values of field-measured exhumation on both sides of the root (A and B) are averaged
(C) since most roots enclosed an angle with the dip of the slope and were exhumed
asymmetrically (Figure 3). Since roots overgrowing stones were not sampled, we assumed
stability of the root axis through time. In this case, only the subsequent growth of the upper
part of the root (D) since exposure must be subtracted from the field-measured exhumation
of the root section [41]. It was demonstrated that anatomical changes associated with root
exposure can occur already when the soil cover is reduced below a critical thickness [36,41],
resulting in a bias. A species-specific estimate of this bias was not determined for the
study area, but the mean value (ε ∼= 50 mm) reported for roots of Pinus genera in previous
studies [36,41] was taken. Exhumation rate—interpreted as mean annual erosion rate
(Era)—was calculated since first exhumation as follows:
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Era = (C − D + ε)/NRex (1)

where NRex stands for the number of growth rings counted following the oldest exhumation
mark, with consideration of incomplete rings grown only in a portion of circumference.
It practically equals the years elapsed since the exposure of the root. The measurement unit
of C, D, and ε parameters is mm.

Measurement uncertainty of the field measurements (A and B) can be assigned
to ±2 mm, which corresponds to the reading uncertainty of the millimeter-scaled ruler
based on our own long field experience. Measurement uncertainty of the lab measurements
(D) was assigned to ±1.2 mm if D > 0, since standard deviation of the lab measurement was
overwhelmingly found below this value (Appendix A) while measurement uncertainity
was assigned to 0 when D = 0. Individual uncertainties of the components were combined
following the Gaussian error propagation approach [48].

Monthly precipitation totals and the monthly maximum daily precipitation sum
(Rx1day) corresponding to the study site were retrieved from CRU TS4.07 [49] and HadEX2 [50]
datasets, respectively, and combined to estimate monthly rainfall erosivity factor (R) fol-
lowing the Monthly III model of [51] as follows:

Rmonth = 0.077 × Pmonth × Rx1daymonth (2)

Monthly estimates of the rainfall erosivity factor were aggregated for each year to
approximate the yearly erosivity factor (R), since better prediction capabilities resulted
from using the finer resolution rainfall data as inputs at a given erosivity timescale and by
summing results for coarser erosivity timescales [51].

Most soil erosion is induced by a small number of intense rainstorms with short
duration and high rainfall intensity [12]. To account for the rainfall events or series of
events within a year, annual Rx1day and maximum consecutive 5-day precipitation amount
(Rx5day) were considered as indicators of short-period erosional activity for each year,
retrieved again from HadEX2 [50]. The time series were screened to find the highest
index values below which a root exhumation event did not occur and the lowest index
in which exceedance was always accompanied by a root exhumation event. These index
values could serve as empirical thresholds to define calm and intense conditions for soil
erosional activity.

3. Results and Discussion

3.1. Rate and Time of Erosion

The first appearance of exhumation texture in the studied root sections appeared in 19
years between 1967 and 2002 (Table S1). More than one root exhumation appearance was
dated to five years, and the most represented year is 1983 with four initiations; however,
there is no obvious temporal clustering in the occurrence of the root exhumation events. We
tend to interpret this as suggesting that the detected erosion events cannot be dominated
anthropogenic causes, but this allows us to infer the evolution of erosion processes caused
by natural factors over time.

The calculated erosion rate estimates ranged from 2.6 to 16.5 mm yr−1 (Table 1). These
values fit well to the published dendrogeomorphic reconstructions of erosion rates [33].
The limited data at hand is obviously insufficient to evaluate any potential difference
related to slope facing. However, the expected positive association between slope steepness
and erosion rate [20,52,53] is well reflected in the dataset (Figure 5). It is in agreement
with the findings of other dendrogeomorphic studies detecting a positive relation between
slope angle and erosion rates robustly at different timescales [36,41]. These observations
further strengthen the credibility of root exhumation-based erosion rate estimates, which
is worth emphasis since a recent analysis of erosion and runoff measurements on erosion
plots in non-crop land use types in China did not find a systematic association with slope
gradient either with the soil losses or with the runoff rates [6]. The presented regression
model between slope steepness as an independent variable and erosion rate as a dependent
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variable (Figure 5) could be used in future research to determine and to map soil denudation
in this part of the Xiaolong Mts without the need for expensive instrumentation.

Figure 5. Estimated soil erosion rate (Era) and slope steepness (s) in the Xiaolong Mts (Gansu Province,
China) and the derived linear regression model.

3.2. Coincidence between Wet Summers and Root-Based Erosion Events in the Xiaolong Mts
between 1967 and 2002

Dendrogeomorphic evidence of root exhumation was lacking in each year when the
sum of the estimated yearly erosivity factor did not reach 822 MJ mm ha−1 h−1 a−1, while
R > 1448 MJ mm ha−1 h−1 a−1 was always accompanied by root exposure evidence either
in the same year or in the consecutive season (Figure 6). Considering the current estimate
of the average R-factor (~1000 MJ mm ha−1 h−1 a−1) in this region [39], this suggests that a
yearly R-factor exceeding by ~45% the long-term average always induces major erosion
in the pine forest of the Xiaolong Mts. The projected average R-factor increase ranges
from 26 up to 46.5% for the long-term (2076–2100) in mainland China depending on the
considered climate change scenario [13]. Taking this range of increase, the average erosivity
factor might become the norm for inducing root exhumation in the Xiaolong Mts by the
end of the 21st century. The match between the longest period continuously recording
root exhumation (1980–1983) and the time interval (1978–1983) experiencing an estimated
yearly R-factor > 1365 MJ mm ha−1 h−1 a−1 in all but one year (Figure 6) strengthens the
view that an increase >40% in the R-factor is surely a critical forecast for the soil erosion in
this region.

Since the projected R-factor increase is primarily attributed to the elevated probability
of extreme precipitation events [13], the temporal correspondence between extreme rainfall
events and soil erosion events deserves scrutiny considering their strong coupling [12].
A simple visual inspection revealed notable associations between erosive rainfalls and root
exhumation events. A root exhumation event was not documented in the Xiaolong Mts
between 1965 and 2010 if the maximum daily precipitation sum (Rx1day) was below 30 mm.
If an Rx1day exceeding 56 mm appeared in a year, then it was always accompanied by
root exposure evidence either in the same year or in the consecutive season. This empirical
threshold is close to, although slightly above, the erosive rainstorm criterion for daily
rainfall durations in the Loess Plateau [54]. Similar correspondence was observed with the
maximum consecutive 5-day precipitation amount (Rx5day), as well. A root exhumation
event did not occur in the Xiaolong Mts between 1965 and 2010 if the Rx5day was below
45 mm in two consecutive years. However, if the Rx5day exceeded 73 mm in a year then
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it was always accompanied by root exposure evidence either in the same year or in the
consecutive season (Figure 6). These empirically identified thresholds of extreme rainfall
events can contribute practical clues considering the impact of extreme rainfall erosivity on
soil erosion, and improving rainfall erosivity estimation [12] in the forest environments of
the Xiaolong Mts, or maybe even for the wider Gansu region.

Figure 6. Root exhumation events documented in the Xiaolong Mts (Gansu Province, China) and
annual rainfall erosivity indicators between 1965 and 2010. (A) Annual sum of detected root ex-
humation markers; (B) annual sum of monthly estimates of rainfall erosivity factor (Equation (2) and
Section 2.3); (C) yearly maximum consecutive 5-day precipitation amount (Rx5day) retrieved from
HadEX2 [50] corresponding to the study site.

The lack of identified exposure events after 2002 (Figure 6), or even any exposure scar
after 2005 (Table S1), is tempting to link to the documented decrease in soil erosion in the
Loess Plateau region between 2000 and 2008 [4], leading to praise for the efficacy of the
great efforts targeting soil and water conservation, such as Grain for Green across China’s
Loess Plateau. However, we are afraid that this pattern instead points to a methodological
limitation which needs improvement in future applications. Smaller root(let)s potentially
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experience and are capable of documenting the most recent exposure events, and could be
too small to attract attention in the field. In this dataset, for instance, the smallest sampled
roots were ~1 cm wide. A general methodological suggestion can be to also pay special
attention to the strings of small exposed root(let)s.

3.3. Microscopic versus Macroscopic Analysis

Recently, there has been a shift in studies of root-based erosion measurements from
ring width variations and textural changes towards microscopic analysis and dating of
exposure [24,33,55]. While the latter method is certainly more sensitive to oncoming ex-
humation and can sense the approach of soil surface even a few years before it reaches the
root [41], it needs special wood anatomical equipment and is time-consuming. Despite all
above-mentioned limitations, the presented results argue that the ‘old-fashioned’ identifi-
cation of tree ring pattern features is capable of promoting further studies in this field by
those who have no access to a specialized laboratory.

4. Conclusions

Based upon the anatomical changes of exposed tree roots of Chinese pine (Pinus
tabulaeformis) from the Xiaolong Mts near Tianshui city, Gansu, China, we reconstructed a
soil erosion history dating back to the late 1960s and quantitative estimates of soil erosion
rate were developed for the first time. A linear regression model between slope steepness
as an independent variable and erosion rate was established and could be used in future
research to determine soil denudation in this part of the Xiaolong Mts.

The correspondence between an erosivity factor exceeding 1448 MJ mm ha−1 h−1 a−1

in the year or in the preceding year of a root exhumation event indicates a threshold of soil
erosion in the studied pine forest environment. Furthermore, daily and 5-day precipitation
totals of 56 and 73 mm, respectively, seem to be critical thresholds which if exceeded it
will always induce root exhumation in the same year or in the consecutive season. The
projected increase of the R-factor is primarily attributed to the elevated probability of
extreme precipitation events [13], and together with the documented strong coupling
between heavy rainfall extremes and soil erosion [12] highlights the need for enhanced soil
and water conservation measures in Gansu Province to mitigate the challenges posed by
ongoing climate change. The lack of reconstructed data after 2002 in this dataset might be
due to a sampling bias as the strings of the smallest exposed root(let)s can be unrecognized
and unintentionally avoided in the field.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land13060771/s1, Table S1: Complementary data for the
exhumed root samples collected in Xiaolong Mts near Tianshui city (Gansu, China) in May 2010 for
dendrogeomorphological analysis.
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Appendix A

In order to characterize the uncertainty of the laboratory measurements, pith-to-top
distances were measured by two analysts (A, B) independently on each of the 30 sampled
root discs. B researcher performed two measurements, and in some cases repeated the
measurement another time. So finally, at least three measurements were available on the
same parameter and the subjectivity bias could be also evaluated comparing the data
obtained from A and B researchers’ measurements.

Measurement results of the two independent analysts show excellent agreement
(Figure A1A); the difference between the measured data is ≤1 mm in 70% of the cases
(Figure A1B). The negative intercept of the regression slope (Figure A1A), and the slightly
skewed histogram of the inset chart showing the distribution of the difference between
measured values of A researcher and the mean of the measurements of B researcher
(Figure A1B) suggest that A researcher tended to measure slightly larger distances.

The histogram showing the distribution of the standard deviation of the pith-to-
top distance recorded for all root discs shows that overwhelmingly (>90%) it was below
1.2 mm. To provide a quantitative estimate on the uncertainty of the laboratory distance
measurements, we adopted this value which includes both the uncertainty of the repeated
measurements and the subjectivity error of independent analysts.

Figure A1. Assessing uncertainty of the laboratory distance measurements of the study. (A) Cross-
plot between pit-to-top distance measured on the 30 studied root discs by A and B researcher;
(B) histogram of the difference between the measurements of A and B researcher; (C) distribution
of the standard deviation of the pith-to-top distance records for all root discs calculated from the
merged dataset.
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Abstract: Mitigating soil erosion‘s effects have been prioritized since the early 20th century. Rainfall
simulators and analytical prediction models are used to determine soil erosion susceptibility. This
study used different methodologies to measure soil erodibility in two hydrographic sub-basins, the
Renato and Caiabi, in the Middle and Upper Teles Pires River in Mato Grosso state, Brazil. The
rainfall simulator showed a higher range of K-factor values for the Renato sub-basin of 0.0009 to
0.0086 Mg × h × (MJ × mm)−1 and a lower range of K-factor values for the Caiabi sub-basin of
0.0014 to 0.0031 Mg × h × (MJ × mm)−1. Soil loss equations similarly estimated a higher range
of K-factor values for the Renato of 0.0008 to 0.0990 Mg × h × (MJ × mm)−1 and a lower range of
K-factor values for the Caiabi of 0.0014 to 0.0846 Mg × h × (MJ × mm)−1. There was no significant
difference at the 5% level for the K factor determined by the rainfall simulator for both sub-basins.
Equations specified in Bouyoucos (1935) and Lombardi Neto and Bertoni (1975) showed significant
correlation (5%) for farming systems in the Caiabi sub-basin. Indirect methodologies that performed
well for correlation were equations 2 and 3 from Roloff and Denardin (1994), which use iron and
aluminum as parameters. Soil erosion was most influenced by physical texture parameters of the
region’s soil.

Keywords: analytical methods; erodibility; soil erosion; rainfall simulator; Universal Soil Loss
Equation

1. Introduction

Soil erosion can reflect problems of an economic, social, and mainly environmental
nature [1]. Soil erosion is also considered to be a factor that triggers concern worldwide due
to the historical prevalence of crop production involving plowing, harrowing, cultivation,
and other forms of soil disturbance from repeated tillage [2]. Excessive tillage can result in
poor agro-environmental management, which can result in greater soil degradation and
degeneration [3]. In Latin America, deforestation of native habitats for agriculture and
livestock, such as in the Brazilian Amazon, results in high soil erosion due to direct exposure
of the soil [4]. In Sub-Saharan Africa, subsistence farming and expansion into pastures
also cause severe soil degradation [5,6]. In Europe, the outcomes vary with agricultural
practices and soil conservation regulations [7].
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Globally, soil erosion rates are variable, ranging from 17 to 40 metric tons (t) hectare
(ha)−1 year (yr)−1 [8]. Similarly in Brazil for plot-scale surface runoff studies involving
natural precipitation, soil loss for major annual commodity crop sequences (e.g., culti-
vated crop, fallow, etc.) ranges from 5 t ha−1 yr−1 for sugarcane (Saccharum officinarum)
to 26.7 t ha−1 yr−1 for peanut (Arachis hypogaea) to 50.3 t ha−1 yr−1 for bare fallow [9].
Undisturbed land cover, such as forests, can have erosion rates below 0.5 t ha−1 yr−1 [8].
Perennial crops such as pasture in Brazil also have lower erosion rates averaging 6.5 t ha−1

yr−1 of soil loss measured in plot-scale surface runoff studies [9].
The Universal Soil Loss Equation developed by Wischmeier and Smith [10] became

widespread throughout the world. It is an empirical model that seeks to estimate soil loss
through mathematical equations. The Universal Soil Loss Equation (USLE) models erosion
through explanatory variables of rainfall erosivity (R), erodibility (K), length of slope (L),
slope (S), management (C), and conservation practices (P) [11,12].

Erosion models are widely used to estimate soil loss [13]. The assessment of soil
erosion in various countries around the world is based on the Universal Soil Loss Equation
(USLE), which is widely accepted [14]. For example, the USLE was applied in studies,
such as that by Mahamud et al. (2021) [13], to predict soil loss in the Cameron Highlands,
Malaysia. It was also used to estimate soil erosion in Tzicatlacoyan, Puebla, Mexico [15], to
analyze soil erosion in the Nan River basin, Thailand [16], and for the integrated use of GIS
models and USLE in the Hulan River basin, Northeast China [17].

The erodibility (K factor) is complex since it requires the determination of factors such
as physical and chemical soil parameters [18] and the configuration of the aptitude that
the soil has in tolerating erosive processes [11]. This erodibility can be determined directly
or indirectly. To determine the K factor, Marques et al. [4] and Denardin [19] explain that
there are three known methodologies: natural rainfall, rainfall simulators, and erodibility
estimates through the verification of physical and chemical attributes using prediction
equations related to soil variables.

To provide examples of the applicability of the K factor according to the USLE standard
worldwide, several studies can be cited. Gupta et al. (2024) [20] conducted a comprehensive
analysis of soil erodibility, considering the effects of saturated hydraulic conductivity.
Marques et al. (2019) [4] estimated the K factor to assess the average annual soil erosion and
sediment production in the Córrego Água Azul basin, located in the central-west region
of Brazil. Addis et al. (2015) [5] aimed to estimate the soil erodibility factor (K) using the
USLE nomogram and analyze the spatial distribution of the K factor in a watershed in
Ethiopia. Additionally, Ojo et al. (2023) [6] investigated the impacts of soil conservation
practices on erodibility, with the goal of improving erosion management and agricultural
productivity in Ido, Oyo State, southwestern Nigeria.

The use of rainfall simulators is an important tool for obtaining data on erodibility in
relatively short periods. It is also a piece of equipment that is commonly used in cultivated
areas in order to evaluate the infiltration of water into the soil [21]. Rainfall simulators
allow for more rapid data collection of simulated rainfall conditions, which can contribute
to more dynamic understanding of elements such as surface runoff, water infiltration,
and soil loss [22]. In the Renato and Caiabi River sub-basins in the state of Mato Grosso,
Brazil where this study was conducted, rainfall simulation indicates soil erosion is more
dependent on the degree of soil disturbance in commodity cropping systems rather than
geographic location in the watershed [23].

This region of Mato Grosso state, Brazil is characterized by high to very high rates of
soil erosion [24]. The Renato and Caiabi sub-basins, as with other areas in Mato Grosso,
saw a shift from native forest and savannah to cultivated crops and extensive pasture over
the past 35 years [25]. Compared to native forest/habitat, commodity cropping resulted in
physical soil degradation in the Renato sub-basin and crops/pasture reduced soil water
conductivity in the Caiabi sub-basin [26]. Both the Renato and Caiabi River sub-basins feed
into the Teles Pires River, which eventually feeds into the Amazon River. Increased soil
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erosion from crops/pasture can contribute to higher sediment loads in the Teles Pires River,
particularly during the rainy season from October to March [27].

In Brazil, information about the K factor is considered scarce due to the presence
of different types of Brazilian soils. These different types of soils can represent a range
of distinct values even within a single soil class [28]. In this context, when dealing with
regional/tropical watersheds, the choice of the best model for studying the K factor could
lead to consistent results for soil loss prevention [4].

The importance of this research is reflected in the determination of the K factor
indirectly for soils in the region, which is crucial for understanding the erosion process
and enabling the mitigation of erosive effects for different land uses. This will allow for
more effective soil conservation. Additionally, this approach will stimulate reflection on
the necessary care in soil management, especially in the context of agribusiness. It will also
promote scientific debate and may encourage the development of new studies on other
perspectives regarding soil erodibility.

Given the environmental importance of reducing soil erosion in Brazil, it is critical to
better validate soil loss equations such as the Universal Soil Loss Equation (USLE) with
real-world data. The USLE is best calibrated to region-specific areas [29]. The objectives
of this study were to (1) distinguish differences in soil characteristics and to (2) determine
the soil erodibility or K factor part of the USLE equation in both cultivated farmland and
pasture in two sub-basins located in the Middle and Upper Teles Pires River region, in the
northern part of Mato Grosso state, Brazil. Soil erosion data were obtained through direct
field observations using a rainfall simulator. Empirical equations were also used to model
soil erosion, and these were compared to observed soil erosion during rainfall simulation.

2. Materials and Methods

2.1. Study Area

The study area corresponds to the sub-basins of the Renato River and Caiabi River,
which are both sub-basins of the Renato River positioned between the geographic coor-
dinates, longitudes 55◦11′47.333′′ W and 55◦11′31′′ W and latitudes 11◦3′52.609′′ S and
11◦22′40.65′′ S. The Caiabi River sub-basin is positioned between the coordinates of longi-
tudes 55◦27′3.909′′ W and 55◦20′30.97′′ W and latitudes 12◦9′2.976′′ S and 12◦17′55.006′′ S.
Located between the municipalities of Itaúba and Cláudia is the sub-basin of the Renato
River, which is approximately 65 kilometers (km) to the south of the Caiabi River sub-basin,
located between the municipalities of Sinop and Vera, Mato Grosso state, Brazil. Figure 1
shows the areas of both sub-basins.

The Renato and Caiabi River sub-basins have areas of 1341 km2 and 519 km2, respec-
tively. The Renato sub-basin has soils such as Dystrophic Red Oxisol and Red–Yellow Oxisol
Dystrophic. The Caiabi sub-basin is dominated by Dystrophic Red–Yellow Oxisol. These
classifications were identified according to the Brazilian Soil Classification System [30]. The
experiment was conducted in plots (0.70 m2) in three areas of both sub-basins: the source,
the middle of the basin, and the mouth of the river basin. There were four replicates for
each treatment.

35



Land 2024, 13, 1442

Figure 1. Location of the (A) Renato sub-basin, and the (B) Caiabi sub-basin in the state of Mato
Grosso, Brazil. Sub-basin divisions are by geography (source, middle, and mouth), soil collection
points, and the areas under tillage and in pasture. Source: the authors.

2.2. Rainfall Simulation to Measure Soil Erosion

Following methods described in detail in Alves et al. [23], the rainfall simulation
was conducted under two agricultural systems, one grain crop and the other pasture.
Agricultural systems in the Renato River and Caiabi River basins commonly involve
soybean (Glycine max) followed by corn (Zea mays) throughout the year, starting with
soybean in October and ending with the corn harvest in June. The pasture evaluated occurs
year-round, and the predominant grass cultivated is Brachiaria brizantha spp. Because the
study took place in a single harvest, the treatments used were soybean (Glycine max) and
Brachiaria brizantha spp. for the Caiabi River basin and corn (Zea mays) and Brachiaria
brizantha spp. for the Renato River basin.

The plots studied were 0.70 meter (m) wide and 1.0 m long (area of 0.70 m2), and
were evaluated at a depth of 0 to 10 centimeters. When bare soil was encountered, the
plot was prepared with rakes. The ramps had average slopes in both experimental areas
between 3 and 5 degrees. The InfiAsper rainfall simulator used was developed by So-
brinho et al. (2008) [31]. Before the application of the simulated rainfall, all plots received
pre-wetting using standard drippers. The device was calibrated before each simulated
rainfall in order to maintain constant rainfall, according to the methodology described
by Sobrinho et al. in (2003) [32]. The equipment was calibrated to produce rainfall with an
intensity of 75 millimeters hour−1 (mm h−1), a characteristic of designated precipitation
observed over a 10-year period in the region [33].

2.3. Soil Sampling

Deformed and undeformed soil samples were collected in order to measure the follow-
ing components: soil density (Sd), macroporosity (Ma), microporosity (Mi), total porosity
(Tp), hydraulic conductivity through constant load permeameter, particle size analysis,
organic matter (Om), particle density (Pd), chemical analysis of iron (Fe), aluminum (Al),
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and sand sieving. Particle size analysis was conducted by the pipette method with dis-
persion in water and 1 mol L−1 of NaOH. The particle density was determined by the
volumetric flask method. All these analyses strictly followed the methodology described
by Teixeira et al. [34].

2.4. Calculation of Rainfall Kinetic Energy

To calculate the kinetic energy of simulated rainfall, the methodology adapted from
Foster et al. [35] was used. This is described in Equation (1):

EC = 0.119 + 0.0873 log I (1)

where EC = the kinetic energy, in megajoules (MJ) × (hectare)−1 and I = the rainfall intensity
in mm h−1.

2.5. Calculation of Soil Components
2.5.1. Soil Erosivity Index and Soil Erodibility

To determine the erosivity index (EI30) expressed in MJ × mm × (ha × h)−1, the
maximum water depth that occurred in 30 min was identified. Next, the maximum
precipitation intensity was calculated using the equation proposed by Wischmeier in
1959 [36], represented by Equation (2):

EI30 = EC × I30 (2)

where EI30 = soil erosivity, in MJ mm × (hectare h)−1; EC = the kinetic energy in MJ ×
(hectare)−1, and I30 = the maximum rainfall intensity that occurred in 30 min, measured
in mm h−1.

The material containing water and sediment was taken for weighing and dried in
an oven at 221 ◦F for an average period of 24 h to determine the runoff volume and the
soil mass.

Soil erodibility can be estimated using Equation (3), using the elements soil loss
(A) and the soil erosivity index (EI30). The C factors of soil management and P factors
of conservation practices were a value of 1, considering the standard plot conditions
established by Wischmeier and Smith in 1978 [10]:

K =
A
R

(3)

where K is soil erodibility measured in Mg (1 Mg = 1 million grams = 1 metric ton) × h ×
(MJ × mm)−1. A is soil loss in Mg × (ha × h)−1 and R is rainfall erosivity in MJ × mm ×
(hectare × h)−1.

2.5.2. Equation for Soil Loss

Universal Soil Loss Equation (USLE) standard values for slope length and slope
gradient were considered and Equation (4) was used to adjust these to research plots. This
adjustment used the equation proposed by Wischmeier and Smith [10]:

LS =

(
L

22.1

)
m ×

(
0.065 + 0.0454 + 0.0065 × S2

)
(4)

where S = land slope in %; L = land length in meters; m = 0.2 for S ≤ 1%; m = 0.3 for
3% ≥ S >1%; m = 0.4 for 5% ≥ S > 3%; and m= 0.5 for S > 5%. Empirical equations for
evaluating the soil erodibility (K) factor of the USLE, expressed as Mg × h × (MJ × mm)−1,
were tested and the equations used are presented as follows.
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2.5.3. Equations Used to Estimate Soil Erodibility

The K factor in the USLE can be calculated using numerous equations. One of these
equations is the Bouyoucos 1935 [37] method and is specified as Equation (5):

K =
% o f sand + % o f silt

% o f clay
× 1

100
(5)

where soil composition is specified as percentages of sand, clay, and silt. The Lima et al. [38]
method adapted for Brazilian Latosols by Marques et al. [39] is summarized in Equation (6):

K = [1.451 × 10−10 × (120 − Om) × Ma1.14] + [0.0043(S − 2)] + [0.0033(P − 2)] (6)

where Ma represents the soil texture and expresses the sum of the silt in grams kilogram−1

(g kg−1) and very fine sand (g kg−1) contents multiplied by 1000 minus the clay content
(g kg−1), where dispersion was conducted in water. Om expresses the organic matter
content (g kg−1), S represents the soil structure class, and P expresses the hydraulic perme-
ability. Here S and P are dimensionless factors. The morphological description of the soil
was evaluated through field observations and also according to that described by the Office
of Planning of the State of Mato Grosso [40]. For the study of the Renato and Caiabi River
sub-basins, the soil structure was defined as fine granular assuming use of their code 2.

The Wischmeier et al. 1978 [10] method for soils of the United States of America
estimate soil erodibility (K) specified in Equation (7):

K = 1.451 × 10−10 × (120 − Om) × M1.14 + 0.0043(S − 2) + 0.0033(P − 2). (7)

This equation has the same parameters as Equation (6); however, M represents the
soil texture and expresses the sum of the silt (g kg−1) and very fine sand (g kg−1) contents
multiplied by 1000 minus the clay content (g kg−1). Here, dispersion was conducted in
sodium hydroxide (NaOH at 1 mol L−1). Structure (S) and permeability (P) were coded
as described in Wischmeier et al. in 1971 [41], where S is coded as: very fine granular =
1; fine granular = 2; medium/coarse granular and subangular blocks = 3; and massive
laminar = 4. The P is coded as: fast = 1; moderate to fast = 2; moderate = 3; moderate to
slow = 4; and slow = 5; and very slow = 6.

Lombardi Neto and Bertoni (1975) [42] outline another method for estimating K based
on Middleton 1930 [43] outlined in Equation (8):

K =
% clay dispersed in water/% total clay

% clay total/% moisture equivalent
. (8)

Roloff and Denardin 1994 [44] proposed another method for estimating K specified in
Equation (9) as:

K = (0.0049 × P) + (3.31 × 10−5 × Mm0.5) (9)

where Mm is the silt content (g kg−1) multiplied by the sum of silt and fine sand (g kg−1)
and the particle size analysis disposing of 1 mol L−1 of NaOH. Roloff and Denardin [44]
used another method for estimating K which requires iron extraction and was developed
for soils in the Paraná region shown in Equation (10):

K = (9.17 × 10−5 × Mm0.5) − (5.26 × 10−5 × Fe) + (1.76 × 10−5 × FS) (10)

where iron (Fe) is related to the Fe2O3 content of air-dried fine soil fraction (ADFS) extracted
by sulfuric attack, where fine soil (FS) is related to the fine sand content (g kg−1) using
1 mol L−1 of NaOH as a dispersant. Finally, Roloff and Denardin [44] use another equation
for estimating K which requires aluminum extraction:

K = (1.038 × 10−4 × Mm0.5) − (4.54 × 10−5 × Al) (11)
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where Mm refers to the silt content (g kg−1) multiplied by the sum of silt and fine sand
(g kg−1); Al is related to the aluminum oxide (Al2O3) content of the ADFS fraction extracted
by sulfuric acid with particle size analysis using 1 mol L−1 of NaOH as a dispersant.

2.6. Soil Erodibility by Soil Textural Class and Soil Organic Matter Content

Soil erodibility (K) can also vary by the soil type and soil organic matter content.
Table 1 presents estimates for K developed by McKague 2023 [45]. Average values of K are
specified by different soil texture (e.g., sand, silt, and clay) as well as organic matter content
both below and above 2%. These estimates of K were adapted by Lima et al., 2007 [46].

Table 1. Distribution of the predefined values of erodibility in relation to soil textural class and
organic matter content based on McKague 2023 [45].

Soil Erodibility (K) in Mg × h × (MJ × mm)−1

Organic Organic

Soil Textural Class Mean Matter (<2%) Matter (>2%)

Very clayey 0.022 0.025 0.020
Clayey 0.029 0.032 0.028
Clay loam 0.040 0.043 0.037
Loam 0.040 0.045 0.034
Sandy loam 0.005 0.007 0.005
Sandy 0.003 0.004 0.001
Sandy clay loam 0.026 - 0.026
Sandy loam 0.017 0.018 0.016
Silty loam 0.050 0.054 0.049
Silty clay 0.034 0.036 0.034
Silty clay loam 0.042 0.046 0.040

3. Results

The data were submitted to the non-parametric Kruskal–Wallis 5% probability test and
Dwass–Steel–Chritchlow–Fligner post HOC test (p < 0.05). These tests were used to verify
the differences between sub-basin positions and treatments. Averages were evaluated at
the 5% significance level (p < 0.05).

We paid attention to possible differences that could be found in both the Renato
and Caiabi River basins because they present different land use and occupation times for
each sub-basin. These two sub-basins also differ from each other chronologically, as can
be observed through satellite images over the years, starting in the 1970s [47]. Table 2
shows the values of the particle size analysis and Table 3 shows the values determined for
sand fractionation.

Table 2. Particle size distribution in different treatments of the soils studied along the sub-basins of
the Renato and Caiabi rivers, Mato Grosso state, Brazil.

Sub-Basin Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use Dispersant Region Total Sand Silt Clay Total Sand Silt Clay

Cultivated NaOH Source 75.20 A 8.62 A 16.20 A 42.50 A 29.60 A 27.90 A
Middle 82.90 B 4.23 A 12.90 A 76.60 B 5.64 B 17.80 B
Mouth 73.90 A 6.70 A 19.40 B 78.50 B 5.90 B 15.60 B
CV% 7 56 22 27 87 33

Water Source 82.00 A 10.30 A 7.69 A 59.90 A 27.40 A 12.60 A
Middle 85.80 B 8.52 B 5.70 B 81.30 B 11.60 B 7.15 B
Mouth 80.70 A 12.60 A 6.70 A 85.00 C 6.84 C 8.14 B
CV% 3 20 16 15 61 33
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Table 2. Cont.

Sub-Basin Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use Dispersant Region Total Sand Silt Clay Total Sand Silt Clay

Pasture NaOH Source 80.40 A 3.67 A 15.90 A 49.20 A 14.70 A 36.10 A
Middle 83.20 A 3.94 A 12.90 A 49.20 A 16.20 A 34.60 A
Mouth 81.90 A 3.36 A 14.70 A 84.40 B 4.63 B 11.00 B
CV% 2 29 14 29 51 45

Water Source 87.10 A 7.32 A 5.58 A 66.90 A 17.30 A 15.80 A
Middle 86.60 A 6.93 A 6.43 A 65.40 A 15.90 A 18.70 A
Mouth 88.40 A 8.02 A 3.57 B 88.40 B 5.94 B 5.66 B
CV% 2 13 28 15 43 45

1 Equal capital letters in the column do not differ significantly from each other by the non-parametric Kruskal–
Wallis test (p < 0.05). CV% = coefficient of variation percentage.

Table 3. Distribution of sand fractionation of the soils studied along the sub-basins of the Renato and
Caiabi rivers, Mato Grosso state, Brazil.

Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use Disper-sant
Sub-

Basin
Region

Very
Coarse
Sand

Coarse
Sand

Med.
Sand

Fine
Sand

Very
Fine
Sand

Very
Coarse
Sand

Coarse
Sand

Med.
Sand

Fine
Sand

Very
Fine
Sand

Cultivated NaOH Source 0.10 A 0.15 A 9.55 A 7.39 A 1.33 A 0.30 A 0.32 A 9.73 A 2.49 A 1.40 A
Middle 0.13 A 0.16 A 10.80 A 7.67 A 1.73 A 0.07 B 0.12 B 15.14 B 3.90 B 0.97 A
Mouth 0.14 A 0.13 A 5.92 B 11.31 B 0.61 B 0.08 B 0.15 B 17.93 C 2.37 A 0.61 B
CV% 71 52 28 28 45 69 62 40 51 45

Water Source 0.03 A 0.19 A 8.60 A 9.67 A 1.79 A 0.27 A 0.78 A 7.73 A 3.77 A 2.37 A
Middle 0.04 A 0.16 A 10.40 A 8.07 A 1.73 A 0.03 B 0.13 B 12.78 A 5.55 B 1.75 A
Mouth 0.20 B 0.22 A 9.58 A 7.87 A 2.22 A 0.04 B 0.16 B 14.10 C 5.08 B 1.67 A
CV% 84 55 15 13 17 107 89 25 18 18

Pasture NaOH Source 0.03 A 0.08 A 11.99 A 6.31 A 1.65 A 0.08 A 0.24 A 6.95 A 4.47 A 0.79 A
Middle 0.10 B 0.14 A 11.31 A 7.04 A 1.83 A 0.45 B 0.26 A 8.15 A 3.11 A 0.67 A
Mouth 0.14 B 0.07 A 16.93 B 2.31 B 0.79 B 0.04 A 0.08 B 19.33 B 1.98 B 0.63 A
CV% 74 52 21 51 48 104 47 49 69 22

Water Source 0.01 A 0.12 A 10.60 A 8.63 A 2.24 A 0.04 A 0.43 A 9.20 A 5.11 A 1.89 A
Middle 0.03 A 0.10 A 12.90 A 6.94 A 1.67 B 0.09 A 0.61 B 9.25 A 4.83 A 1.41 A
Mouth 0.16 B 0.07 A 17.80 B 2.98 B 1.05 C 0.10 A 0.16 C 13.10 B 6.53 A 2.20 A
CV% 103 24 24 40 39 72 56 21 22 25

1 Equal capital letters in the column do not differ significantly from each other by Kruskal–Wallis non-parametric
test (p < 0.05). Particle size range (millimeter(s) or mm) for very coarse sand (1 mm), coarse sand (1 to
0.50 mm), medium sand (0.49 to 0.25 mm), fine sand (0.24 to 0.13 mm), and very fine sand (0.12 to 0.06 mm).
CV% = coefficient of variation.

The granulometric analysis for the Renato sub-basin (Table 2) demonstrated a higher
concentration of sand in the middle of the sub-basin, followed by the source. The same did
not occur for the Caiabi sub-basin, where the sand fraction made up a higher proportion of
granular composition in the mouth region, followed by the middle part of the sub-basin.
The fine sand (FS) and very fine sand (VFS) averaged 7.17 and 4.10 g kg−1 and 1.55 and
1.36 g kg−1 for Renato and Caiabi, respectively.

Table 4 shows the averages for permeability (cm h−1), particle density (Mg m−3), as
well as unitless parameters M (dispersed in NaOH), Ma (dispersed in water), permeability
code (P), and structure code. The permeability for Renato and Caiabi averaged 5.41 and
4.41 cm h−1, respectively. The average particle density remained at 2.5 Mg m−3 for both
pasture and tillage in both sub-basins. Regarding the Ma parameter, there was an increase
in its value with the dispersion processed in water. The increase in the Ma parameter in
this study confirms the observations made by Lima et al. in 1990 [38] that attribute such an
increase to the dispersion conducted in water.
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Table 4. Distribution of mean values for permeability, particle density, the M parameter (dispersed
in NaOH), the Ma parameter (dispersed in water), permeability code (P), and structure code in the
sub-basins of the Renato and Caiabi Rivers, Mato Grosso state, Brazil.

Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land
Use

Sub-
Basin

Region

Perm-
eability

(cm
h−1)

Particle
Density

(Mg
m−3)

M
Parameter

Ma
Parameter

P
Code

Structure
Code

Perm-
Eability

(cm
h−1)

Particle
Density

(Mg
m−3)

M
Parameter

Ma
Para-
meter

P
Code

Structure
Code

Cultivated Source 4.49 A 2.60 A 854.2 1121.3 4 2 5.60 A 2.09 A 2258.9 2604.9 3 2
Middle 7.01 A 2.67 A 518.4 979.5 3 2 5.26 A 2.47 B 557.0 1244.5 4 2
Mouth 3.91 A 2.57 A 588.0 1384.5 4 2 6.08 A 2.52 B 550.3 791.6 3 2
CV% 65 4 19 9

Pasture Source 8.56 A 2.58 A 449.7 899.2 3 2 1.55 A 2.42 A 989.3 1618.2 5 2
Middle 3.25 A 2.55 A 481.6 803.8 4 2 3.16 B 2.31 A 1105.4 1409.8 4 2
Mouth 5.21 A 2.62 B 354.8 859.3 3 2 4.84 B 2.61 B 467.0 773.9 4 2
CV% 66 4 13 6

1 Equal capital letters in the column do not differ significantly by the non-parametric Kruskal–Wallis test
(p < 0.05); permeability values obtained through constant load permeameter and P = hydraulic permeability
code. CV% = coefficient of variation.

According to Table 5, it was observed that organic matter varied for the two sub-basins.
However, the Caiabi sub-basin has a higher percentage of land area devoted to cultivated
crops (59.24%) compared to the Renato sub-basin (13.41%), while for a perennial pasture,
this was the opposite at 6.26% versus 15.94% [26]. For this scenario, organic matter content
is considered one of the main soil stabilization agents [48].

Table 5. Distribution of the average values of the chemical analysis of organic matter, iron, and
aluminum of soils sampled in the Renato and Caiabi River sub-basins, Mato Grosso state, Brazil.

Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use
Sub-Basin

Region

Organic
Matter

(dag kg−1)

Fe2O3

(mg dm−3)

Al2O3

(cmolc
dm−3)

Organic
Matter

(dag kg−1)

Fe2O3

(mg dm−3)

Al2O3

(cmolc
dm−3)

Cultivated Source 2.76 A 47.0 A 0.06 A 5.14 A 26.5 A 0.04 A
Middle 2.59 A 44.5 A 0.04 B 3.32 B 28.0 A 0.03 A
Mouth 3.46 A 36.5 B 0.03 B 3.07 B 20.5 A 0.05 A
CV% 25 16 49 31 22 30

Pasture Source 1.64 A 63.5 A 0.36 A 3.80 A 75.5 A 0.05 A
Middle 1.92 A 67.0 A 0.11 A 4.87 B 50.0 B 0.04 A
Mouth 1.94 A 92.0 A 0.36 A 1.89 C 42.5 B 0.07 A
CV% 19 25 82 38 26 27

1 Equal capital letters in the column do not differ significantly from each other by the non-parametric Kruskal–
Wallis test (p < 0.05). Fe2O3 = iron oxide, and Al2O3 = aluminum-derived oxide. CV% = coefficient of variation.

Chemical evaluation showed that areas under agricultural cultivation had the lowest
levels of iron (Fe) and aluminum (Al). Additionally, a decrease in Fe and Al can contribute
to the soil leaching process, which can be accelerated by the intensive tillage used in these
farming areas. The importance of Fe and Al oxides is linked to their cohesive ability to
act as cementing agents, which intensely favors agglutination. These elements are present
mainly in soils in tropical climates such as those found in Brazil [49]. Fe and Al oxides are
associated with chemical weathering [28], primarily in Oxisols. Such agglutination can
reduce the impact of raindrops, hindering the disaggregation of particles through surface
runoff [50]. Table 5 presents the chemical values of soil evaluated from both the Renato
and Caiabi sub-basins.

The kinetic energy produced for the events ranged from 0.278 to 0.287 MJ hectare−1.
The erosivity among all rainfall events obtained minimum of 1065.73 and maximum of
1214.36 MJ × mm × (hectare × h)−1 for both sub-basins. Soil loss ranged from 0.178
to 0.813 Mg hectare−1 h−1, specifically for the Renato sub-basin and 0.205 to 0.359 Mg
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ha−1 h−1 for the Caiabi sub-basin. Table 6 presents other values observed by the rainfall
simulator.

Table 6. Distribution of mean values of soil loss, precipitation intensity, length and slope, and
erodibility factor (K) in the Renato and Caiabi River sub-basins, Mato Grosso state, Brazil.

Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use
Sub-

Basin
Region

Soil Loss
(Mg ha−1

h−1)

Precipitation
Intensity

(MJ × mm
× (h ×
ha ×

year)−1)

Length
and

Slope
(m)

K
(Mg × h ×

(MJ ×
mm)−1)

Soil Loss
(Mg ha−1

h−1)

Precipitation
Intensity

(MJ × mm
× (h ×
ha ×

year)−1)

Length
and

Slope
(m)

K (Mg × h
× (MJ ×
mm)−1)

Cultivated Source 0.676 A 1174.38 A 0.114 A 0.0052 A 0.306 A 1206.26 A 0.082 A 0.0031 A
Middle 0.813 A 1137.88 A 0.102 A 0.0086 A 0.275 A 1120.75 A 0.134 B 0.0020 A
Mouth 0.622 A 1065.73 A 0.102 A 0.0058 A 0.205 A 1145.15 A 0.143 B 0.0012 A
CV% 63 8 8 76 43 5 29 52

Pasture Source 0.431 A 1157.06 A 0.143 A 0.0025 A 0.359 A 1141.41 A 0.204 A 0.0017 A
Middle 0.505 A 1214.36 A 0.163 A 0.0026 A 0.327 A 1154.30 A 0.156 B 0.0016 A
Mouth 0.178 B 1150.50 A 0.177 A 0.0009 B 0.205 A 1126.98 A 0.137 B 0.0014 A
CV% 88 4 17 96 63 6 20 57

1 Equal capital letters in the column do not differ significantly from each other by the non-parametric Kruskal–
Wallis test (p < 0.05). CV% = coefficient of variation.

The K values ranged from 0.0009 to 0.0086 Mg × h × (MJ × mm)−1 for SBR (higher
intensity) and 0.0014 to 0.0031 Mg × h × (MJ × mm)−1 (lower intensity), the middle of
the Renato River sub-basin and the source of the Caiabi River sub-basin being the most
susceptible areas. However, the results of the statistical test indicate that there was no
significant difference at 5% probability for the analysis of factor K tied to the positions of
the sub-basins.

It can be seen that the tillage and pasture systems did not interfere with erodibility.
This suggests that the K factor is not altered through the use and management of the soil,
but rather with the physical–chemical characteristics of the land. The observed field data
using the rainfall simulator and estimated soil erodibility using indirect methodologies
such as equations for K factor from the literature were not linked to sediment transfer along
the sub-basins. However, these results appear to be connected to the intrinsic characteristics
of the soil.

Related to anthropic actions, the factors that draw greater attention to the characteris-
tics of these results may be linked to the intense interventions and movement of agricultural
machinery [51], as well as the intense use of tillage in agricultural areas [52]. This includes
exposure of soil without vegetation and pastures that were intensely trampled by animals.
Both intensive tillage and animal traffic in pastures can accelerate soil erosion and degrada-
tion. It is worth noting that erodibility does not depend only on the textural relationship
and cohesion between particles, but also on parameters such as soil structure and chem-
istry [49]. These elements may have influenced the erodibility characteristics in both the
Renato and Caiabi River sub-basins.

The Caiabi River sub-basin source showed the lowest density value (1.03 kg dm−3)
among both sub-basins, and the highest value of microporosity followed by total porosity
were observed for this region of spring whose granulometric condition was classified as
clayey. Macroporosity ranged from 0.02 kg dm−3 to 0.12 kg dm−3 for the Renato sub-basin
and 0.02 kg dm−3 to 0.14 kg dm−3 for the Caiabi sub-basin. Table 7 shows the values for
the attributes macroporosity, microporosity, total porosity, soil density, and organic matter
throughout both sub-basins.
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Table 7. Distribution of mean values for the attributes macroporosity, microporosity, total porosity,
and soil density in the Renato and Caiabi River sub-basins, Mato Grosso state, Brazil.

Renato Sub-Basin (%) 1 Caiabi Sub-Basin (%) 1

Land Use
Sub-

Basin
Region

Micro-
Porosity

(m3 m−3)

Macro-
Porosity

(m3 m−3)

Total
Porosity

(m3 m−3)

Soil
Density

(kg
dm−3)

Micro-
Porosity

(m3 m−3)

Macro-
Porosity

(m3 m−3)

Total
Porosity

(m3 m−3)

Soil
Density

(kg
dm−3)

Cultivated Source 0.27 A 0.09 A 0.36 A 1.57 A 0.43 A 0.08 A 0.52 A 1.03 A
Middle 0.27 A 0.10 A 0.37 A 1.51 A 0.29 B 0.07 A 0.36 B 1.48 B
Mouth 0.36 B 0.08 A 0.44 B 1.57 A 0.28 B 0.10 A 0.38 B 1.51 B
CV% 15 28 10 4 24 47 19 18

Pasture Source 0.27 A 0.11 A 0.38 A 1.52 A 0.40 A 0.02 A 0.45 A 1.41 A
Middle 0.35 A 0.02 B 0.37 A 1.59 A 0.37 A 0.05 B 0.48 A 1.30 B
Mouth 0.26 A 0.12 A 0.38 A 1.74 B 0.24 B 0.14 B 0.50 B 1.59 C
CV% 17 73 6 8 24 70 9 9

1 Equal capital letters in the column do not differ significantly by the non-parametric Kruskal–Wallis test (p < 0.05).
CV% = coefficient of variation.

Table 8 presents the erodibility results and Table 9 presents the values of the correlation
performed through the items observed by the use of the rain simulator and estimated
through the indirect methodologies. Regarding the estimation models, the results point
to intensity in the distribution of K values. For RSB the indirect models presented range
from 0.0008 to 0.0990 Mg × h × (MJ × mm)−1 (greater intensity) and for SBC ranges
from 0.0014 to 0.0846 Mg × h × (MJ × mm)−1 (less intensity). Although this range was
considered small. In general, the equations that presented alpha (0.05) significance level
were the equations of Bouyoucos [37] and Lombardi Neto and Bertoni [42]. However, these
correlations presented were negative, leading values in opposite directions for cultivated
areas in the Caiabi sub-basin. Moderate and positive correlation was observed with values
between 0.469 and 0.660, where the pasture of the Renato sub-basin presented the greatest
number of contrasts with moderate correlation.

Table 8. Distribution of erodibility values (K factor) estimated by indirect methodologies along the
Renato and Caiabi River sub-basins, Mato Grosso state, Brazil.

Source Used for Soil
Erodibility Value

Renato Sub-Basin
(Mg × h × (MJ × mm)−1) 1

Caiabi Sub-Basin
(Mg × h × (MJ × mm)−1) 1

Land Use (K Factor) Source Middle Mouth CV% Source Middle Mouth CV%

Cultivated Boyoucos (1935) [37] 0.0528 Aa 0.0681 Aa 0.0427 Ba 25 0.0282 Aa 0.0464 Ba 0.0541 Bb 31
Lima et al. (1990) [38] 0.0102 Ab 0.0076 Ab 0.0122 Ab 32 0.0173 Aa 0.0088 Ab 0.0067 Ab 50
Lombardi Neto and
Bertoni (1975) [42] 0.0811 Aa 0.0942 Aa 0.0480 Ba 38 0.0381 Aa 0.0574 Ba 0.0846 Ba 39

Roloff and Denardin
(1994) [44] 0.0188 Ab 0.0162 Ab 0.0199 Ab 21 0.0194 Aa 0.0162 Ab 0.0174

Ab 19

Roloff and Denardin
(1994) [44] 0.0073 Ab 0.0024 Ab 0.0056 Bb 85 0.0436 Ab 0.0029 Bb 0.0023 Bb 126

Roloff and Denardin
(1994) [44] 0.0083 Ab 0.0027 Bb 0.0063 Ab 85 0.0493 Ab 0.0033 Bb 0.0026 Bb 126

McKague (2023) [45] 0.0160 Ab 0.0110 Ab 0.0210 Ab 38 0.0355 Aa 0.0160 Ab 0.0165 Bb 42
Wischmeier and
Smith (1978) [10] 0.0083 Ab 0.0041 Ab 0.0077 Ab 48 0.0150 Aa 0.0040 Bb 0.0050 Bb 68

Pasture Boyoucos (1935) [37] 0.0539 Aa 0.0679 Aa 0.0587 Aa 16 0.0178 Aa 0.0190 Aa 0.0835 Ba 84
Lima et al. (1990) [38] 0.0083 Ab 0.0090 Ab 0.0086 Ab 24 0.0154 Aa 0.0111 Ba 0.0080 Cb 29
Lombardi Neto and
Bertoni (1975) [42] 0.0573 Aa 0.0990 Ba 0.0449 Aa 40 0.0294 Aa 0.0365 Bb 0.1260 Ca 76

Roloff and Denardin
(1994) [44] 0.0174 Ab 0.0198 Ab 0.0185 Ab 16 0.0226 Aa 0.0202 Aa 0.0186 Ba 13

Roloff and Denardin
(1994) [44] 0.0019 Ab 0.0017 Ab 0.0008 Ab 52 0.0137 Aa 0.0158 Aa 0.0014 Bb 79
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Table 8. Cont.

Source Used for Soil
Erodibility Value

Renato Sub-Basin
(Mg × h × (MJ × mm)−1) 1

Caiabi Sub-Basin
(Mg × h × (MJ × mm)−1) 1

Land Use (K Factor) Source Middle Mouth CV% Source Middle Mouth CV%

Roloff and Denardin
(1994) [44] 0.0021 Ab 0.0020 Ab 0.0009 Ab 52 0.0155 Aa 0.0179 Aa 0.0016 Bb 79

McKague (2023) [45] 0.0175 Ab 0.0083 Bb 0.0143 Ab 41 0.0287 Aa 0.0260 Aa 0.0093 Bb 46
Wischmeier and
Smith (1978) [10] 0.0046 Ab 0.0065 Ab 0.0047 Ab 40 0.0109 Aa 0.0092 Aa 0.0056 Bb 32

1 Same capital letters in the row do not differ significantly from each other by the non-parametric Kruskal–
Wallis test (p < 0.05). Same lower-case letters in the column do not differ significantly from each other by the
non-parametric Kruskal–Wallis test (p < 0.05). CV% = coefficient of variation.

Table 9. Correlation between direct soil erodibility values measured using a rainfall simulator and
indirect values estimated from K factor equations from the literature in the Renato and Caiabi River
sub-basins, Mato Grosso state, Brazil.

Source Used for Soil Correlation Coefficients

Erodibility Value Renato Sub-Basin 1 Caiabi Sub-Basin 1

(K Factor) Cultivated Pasture Cultivated Pasture

Boyoucos (1935) [37] 0.245 0.322 −0.660 * 0.042
Lima et al. (1990) [38] −0.126 0.322 0.497 0.154
Lombardi Neto and Bertoni (1975) [42] 0.210 0.483 −0.587 * 0.147
Roloff and Denardin (1994) [44] −0.126 0.559 0.021 0.147
Roloff and Denardin (1994) [44] −0.469 0.510 0.287 0.231
Roloff and Denardin (1994) [44] −0.469 0.510 0.287 0.231
McKague (2023) [45] −0.484 −0.451 0.486 0.165
Wischmeier and Smith (1978) [10] −0.035 0.441 0.217 0.224

1 Values in bold and asterisk * are different from 0 at a significance level of alpha = 0.05 (5%). Significantly higher
averages were identified at the source of the Caiabi River sub-basin compared to other regions, especially in
cultivated and pasture areas. Overall, for the Renato sub-basin, there were little statistically significant differences
in the averages from one area of the sub-basin compared to another. These statistically significant differences can
be found in cultivated areas at the mouth of the sub-basin.

4. Discussion

4.1. Comparisons and Contrasts to Prior Studies

When evaluating the equation of Bouyoucos 1935 [37], it was found that this model
presented a significant difference (5%) in relation to the other indirect methodologies
evaluated for most of the cultivated and pasture areas in both the Renato and Caiabi River
sub-basins. High values were also observed by da Rocha Lima et al., 2021 [53] who detected
erodibility for a dark red Oxisol at 0.0790 Mg × h × (MJ × mm)−1 and for a dystrophic
purple Oxisol at 0.0290 Mg × h × (MJ × mm)−1. The same can be verified in the model
proposed by Lombardi Neto and Bertoni 1975 [42], which also presented a significant
difference (5%) and the explanation may be related to the smaller number of parameters
associated with this model.

Analyzing the other equations, there was no significant difference in the means be-
tween the methodologies evaluated. The model adapted by Lima et al. in 1990 [38] pointed
to an increase in erodibility values compared to the Wischmeier and Smith 1978 [10] method.
The interpretation for this can be addressed by Lima et al. [38], who discuss that the clay
element when flocculated resembles the performance of silt and very fine sand for Latosols.
The Wischmeier and Smith [10] model had higher values for the K factor observed in the
source region in the Caiabi sub-basin. However, the highest susceptibility in the Renato
sub-basin occurred in the source area of the sub-basin for cultivated areas and in the middle
part of the sub-basin for pasture.

Generally, Oxisols are known for having low silt contents and structurally have
granular characteristics. This contributes to a greater flow of hydraulic conductivity in
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the soil. Therefore, the estimation of erodibility through methodologies that focus on
parameters such as conductivity and percentages of silt in its composition can reduce the
values of K factor when analyzed in Oxisols [38].

Godoi et al. [18] explain an analysis for results with low values estimated by the
Wischmeier and Smith [10] model. This can be explained as a function of fixed values in
the structure code because indexed values can contribute to uncertainties in the erodibility
results. On the other hand, there is insufficient measurable data for this attribute, which
contributes to assumptions of soil structure.

The model developed by McKague 2023 [45] obtained moderate correlation for most
of the systems with the exception of the pastureland of the Caiabi sub-basin. Here, there
was weak correlation (0.165). The models proposed by Roloff and Denardin [44] had one of
the best correlations among all the methodologies, especially for models 2 and 3, which had
iron and aluminum being intrinsically linked to weathered Oxisols [54]. Methodologies 2
and 3 from Roloff and Denardin [44] had moderate correlation for most of the systems of
the sub-basins.

According to Godoi et al. [18], Oxisols present less susceptibility to erosion than other
soils. However, this soil type becomes much more susceptible when exposed to intensive
agricultural land use. The same observation applies in the context of both sub-basins of the
study, especially in relation to the soil in the Caiabi River sub-basin. The Caiabi has areas
that were deforested much longer ago for agricultural production compared to the Renato
sub-basin.

From the perspective of the correlation between direct and indirect methods, Silva
et al. [55] concluded that when determining the erodibility of latosols in the Cerrado,
indirect methods may not provide statistically accurate estimates when compared to the
direct method to calculate the absolute value of the erodibility factor. However, in the study
of the Renato and Caiabi Rivers sub-basin, equations 2 and 3 by Roloff and Denardin [44],
which use elements such as iron and aluminum as parameters, showed reasonable to
moderate correlations, especially as they are latosols.

Di Raimo et al. (2019) [50] studied various soils from the state of Mato Grosso using
indirect methodologies for determining erodibility. The authors employed the equations of
Wischmeier and Smith (1978) [10] and Denardin (1990) [19]. They determined an erodibility
range for the oxisols in the region from 0.0019 to 0.0340 Mg × h × MJ−1 × mm−1.

Marques et al. [4], using indirect methodologies, determined erodibility values of
0.0080 and 0.0060 Mg × h × MJ−1 × mm−1 for Typic Eutrophic Red Latosol (LVe) and
Typic Dystrophic Red Latosol (LVd), respectively. Using a rainfall simulator, they found
concentrations of 0.0030 and 0.0020 Mg × h × MJ−1 × mm−1 for LVe and LVd, respectively.
These values are similar to the results we obtained using a rainfall simulator for the Renato
and Caiabi river sub-basins.

4.2. Implications of Research

The identification of soil erodibility in cultivated and pasture areas in the Renato
and Caiabi Rivers sub-basins contributes to a better understanding of the factors that
influence erosion in these specific ecosystems. Understanding the mechanisms related
to erodibility makes it possible to mitigate the complex effects of erosion [24]. In the
most varied uses and occupations, soil management policies can promote the effective
use of new conservation mechanisms. In this sense, the analysis of erodibility in different
scenarios aims to detect characteristics intrinsic to the soil, which may vary over time or
due to agricultural activities, without forgetting that the soil can be modified mainly by
compaction processes, agricultural mechanization, and trampling by cattle.

The research conducted in this study has substantial social implications, especially
for rural communities. Preventing soil degradation allows communities to maintain the
productivity of their land, supporting livelihoods and preventing potential risks of eco-
nomic losses due to poor soil health. In addition, effective land management is critical
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for environmental sustainability, which results in benefits for society at large in terms of
preserving ecosystems and natural resources.

Frequently tested methodologies can provide improvements in the phases of soil
erodibility determination. This can lead to better soil management practices, increasing crop
yields, and ensuring food security. Another important point is that the correct adjustment
of parameters for specific soil prediction models directly results in adequate performance
of the tested model and the reliability of the data obtained. Magalhães et al. [56], used a
soil and water prediction model (GeoWEPP) to evaluate sediment production in different
land uses and considered it extremely important to observe the geographic conditions
of the environment to be tested. This study emphasized that it is essential to correctly
insert data according to geographic and environmental characteristics [56]. Our results can
be used to update 14 other erosion/sediment transport models in addition to USLE and
GeoWEPP [57]. Our results can also help validate machine learning techniques that were
developed to globally map the K factor for soils [58].

The appropriate selection of techniques compatible with soil availability and variability
in specific environmental conditions not only refines existing theoretical frameworks on the
topic, but also suggests a more focused approach to modeling soil erosion, emphasizing the
need for adaptable and sensitive methodologies to the environment. Throughout our study,
however, it was observed that the models proposed by Lombardi Neto and Bertoni [42], in
addition to geographic information and inclusion of a smaller number of parameters could
result in significantly different erodibility estimates if a smaller number of parameters is
included. This suggests the need to generate new models that integrate a greater number
of appropriate criteria. Composing mixed models that combine multiple approaches can
provide a more accurate and comprehensive assessment of soil erodibility.

5. Conclusions

Experiments with a rainfall simulator indicated higher values and also variation in the
K factor for the Renato sub-basin ranging from 0.0009 to 0.0086 Mg × h × (MJ × mm)−1

and lower values and also variation for the Caiabi sub-basin at 0.0014 to 0.0031 Mg × h
× (MJ × mm)−1. Indirect methodologies also estimated a higher K factor for the Renato
River sub-basin at 0.0008 to 0.0990 Mg × h × (MJ × mm)−1 and lower for the Caiabi River
sub-basin at 0.0014 to 0.0846 Mg × h × (MJ × mm)−1. There was no significant difference
at the 5% level of the K factor determined by the rainfall simulator for both sub-basins. The
equations of Bouyoucos (1935) [37] and Lombardi Neto and Bertoni (1975) [42] presented
significant (5%) correlation for cultivated soils surveyed in the Caiabi River sub-basin.
The indirect methodologies that obtained reasonable correlation and that showed the best
performance were equations 2 and 3 from Roloff and Denardin (1994) [44] that use iron
and aluminum as parameters. The elements that most influenced soil erodibility were the
physical textures of the soil. This study aims to open new studies for future investigations
on the subject, keeping in mind the focus on new methods of corroboration in various
scenarios, such as different soil categories, different climatic conditions, and the most varied
use and occupation of land. Furthermore, the insertion of improved technologies, such as
remote sensing and geoprocessing, could increase the precision of erosion and erodibility
estimates and become more developed, reliable, and applicable anywhere.
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Abstract: The distribution of Scots pine (Pinus sylvestris L.) forests, particularly the Vaccinio myrtillo-
Pinetum type, is determined by edaphic conditions, and although clear-cutting is used to promote
regeneration, it remains controversial. This study evaluated the changes in non-living (forest floor
and dead wood) and living (mosses, herbs, and dwarf shrubs) ground cover in clear-cut areas and
reforested Scots pine stands. Continuous ground cover studies were conducted in clear-cuts, with
samples collected over three years after clear-cutting, while data from 8–80-year-old and mature Scots
pine stands were collected using the chronological series method with a consistent methodology in
temporary plots. The research has shown that, as ecosystem recovery progresses, similarity to the
mature forest increases, and a threshold stand age has been identified, beyond which the ecological
changes induced by clear-cutting diminish. The study findings demonstrated that clear-cutting in
Pinetum vaccinio-myrtillosum-type forest stands lead to a rapid increase in herb and dwarf shrub cover
due to reduced competition for light and nutrients. However, clear-cutting caused a significant decline
in forest-specific species and a drastic reduction in forest floor and dead wood mass, with a gradual
recovery of moss cover over 10–30 years. These findings highlight the importance of managing
clear-cutting practices to balance immediate vegetative responses with long-term ecosystem stability
and biodiversity conservation.

Keywords: Pinus sylvestris; clear-cutting; ground vegetation; forest floor; biomass

1. Introduction

Understanding the dynamics of Scots pine (Pinus sylvestris L.) forests in recovering
ground cover following clear-cutting is essential for sustainable forest management and
biodiversity conservation. Clear-cutting, a common forestry practice, significantly impacts
forest ecosystems, particularly on the forest floor and mineral soil [1–3]. Numerous studies
have investigated the short-term effects of clear-cutting on chemical indices of forest ecosys-
tems, emphasizing significant effects on the soil structure, nutrient dynamics, and microbial
activity. Post-harvest changes in soil moisture and elemental composition, important for
nutrient fluxes and retention, have been observed [4,5]. Clear-cutting significantly affects
nitrogen (N) and C cycling, critical to maintaining soil fertility and overall forest health [6,7].
Clear-cutting has also affected the soil water chemistry, increasing soil nutrient leaching and
acidification [8,9]. In addition, dissolved organic carbon (DOC) concentrations increased
significantly in boreal forest waters after logging, affecting water quality and nutrient
dynamics [9]. Previous studies reported a direct biochemical response of soil organisms to
forest cover removal with significant changes in soil respiration and microbial activity [10].

More specifically, research focusing on the changes in different vegetation groups after
clear-cutting primarily concentrated on the initial years post-harvesting [4,7,11–15]. Much
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of the research focuses on the impact of a single forestry activity, leading to sparse and
highly specific data that can lead to conflicting results [16]. Few studies have assessed
changes in both living and dead ground cover in Scots pine forests after clear-cutting or
during the age of stand rotation in Europe [17].

Previous studies have shown that both edaphic and climatic conditions are critical
factors that alter land cover ecological responses to clear-cutting, influencing nutrient
cycling, biomass production, and overall vegetation dynamics. The effects of various
soil types and climatic conditions on vegetation recovery and soil nutrient cycling after
clear-cutting have been previously emphasized [18,19]. Similarly, the role of soil properties
and climate in influencing changes in plant biomass and nutrient pools in boreal forests
has been analyzed, demonstrating that soil moisture and temperature regimes are crucial
factors in altering plant community composition and biomass recovery [5,20].

Earlier, it was found that living and non-living ground cover elements in the for-
est ecosystem closely interact with each other [21]. The living ground vegetation was
identified as a key element for a successful process after clear-cutting. The importance
of ground cover in early forest succession and its influence on ecosystem functions
was widely discussed [22–25]. The effects of clear-cutting on plant community com-
position and succession have been studied, revealing how early successional species
establish and influence the development of subsequent stands [26,27]. Similarly, the
early stages of forest stand formation have been investigated, highlighting the crucial
role of ground cover vegetation in these processes [28,29]. Vegetation plays a critical
role in nutrient cycling in clear-cutting areas and throughout the stand rotation, as well
as in maintaining soil fertility and facilitating the recovery of forest ecosystems after
clear-cutting [12,25,29–31].

In Lithuania, the distribution of Scots pine forests, particularly of Vaccinio myrtillo-
Pinetum forest type, is largely determined by edaphic conditions. These forests typically
grow on low-fertility sandy soils with a normal moisture regime dominating the region
among other forest types. Despite the most suitable soil type for Scots pine, the natural
transition from Scots pine to Norway spruce (Picea abies (L.) H. Karst.) is common in this
forest type [23]. Norway spruce has been observed to grow more successfully under Scots
pine canopies due to the optimal light regime, while Scots pine understory regeneration is
often limited [32]. To ensure the dominance of Scots pine in the next forest generation, clear-
cutting is purposefully applied in mature Scots pine forests to create favorable conditions.
Furthermore, clear-cutting practices continue to raise environmental and biodiversity
debates, highlighting the need for a better understanding of the processes involved and for
detailed research to find optimal solutions.

One of the indicator layers of Scots pine forest—living and non-living ground
cover—is crucial for assessing the changes after clear-cutting, and it could be assumed
that the recovery of this layer is essential for the overall dynamics of a stable ecosystem.
This study aimed to evaluate changes in the ground cover layers in clear-cuts followed
by reforested Scots pine stands over their development until maturity age. This study
defined ground cover as the layer covering the mineral soil, including forest floor and
dead wood, as the non-living ground cover layer, and ground vegetation, including
mosses, herbs, and dwarf shrubs, as the living ground cover layer. For this study, we
hypothesized that (1) clear-cutting in Pinetum vaccinio-myrtillosum-type Scots pine stands
initially reduces forest-specific species and forest floor mass but increases herb and dwarf
shrub cover within 2–3 years, and (2) the moss cover and mass characteristics for mature
stands, influenced by canopy density changes, gradually recovers over 15–20 years after
clear-cutting, playing a crucial role in stabilizing ground cover.
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2. Materials and Methods

2.1. Study Design and Characteristics

The study on the threshold age of Scots pine forests for the recovery of ground cover
following clear-cuttings was performed at the three Regional Divisions of State Forest
Enterprise in the middle, south, and southeastern parts of Lithuania (Figure 1).

 

Figure 1. Research scheme: three research objects (Trakai, Varėna, and Kazlų Rūda), each included
study sites of selected 1–3-year-old clear-cuts and 8–10-, 15–20-, 30–40-, 70–80-, and 110–130-year-old
Scots pine stands.

Study sites included at least 90% Scots pine trees, which, as far as is historically known,
were reforested after clear-cutting (Table 1). The study was carried out from 2020 to 2023.
Permanent study plots of approximately 2000 m2 (2001.38 m2) with a radius of 25.24 m
were established in clear-cuts to continuously conduct the ground cover evaluation for
three years (Figure 1), i.e., in clear-cuts that were 1, 2, and 3 years old. To establish fresh
clear-cuts, the mature Scots pine forest was harvested through clear-cutting, with the stems
and logging residues, except stumps and roots, removed from the cutting site. The 2- and
3-year-old clear-cuts were reforested with artificially planted Scots pine trees. The study
plots in the clear-cuts, designated for continuous vegetation assessment, were carefully
replanted with Scots pine trees, ensuring that the vegetation layer and forest floor remained
undisturbed. The chronosequence method was applied to explore changes in ground cover
in the stands of different ages over stand rotation. The age of available stands varied
insignificantly in objects. Therefore, the 8–10-, 15–20-, 30–40-, 70–80-, and 110–130-year-
old stands were selected for the study. In the stands of different ages, temporary study
plots of the same size as in clear-cuts were established (Figure 1). Altogether, seven study
plots, including two plots in 1- 2-, and 3-year-old clear-cut sites and one site in each 8–10-,
15–20-, 30–40-, 70–80-, and 110–130-year-old Scots pine stands were selected in each of
three research objects. The sites were chosen at close distances—up to 2 km—from each
other within each object. All study sites represented comparable meteorological and soil
conditions. According to the 1991–2020 normal climate, in Lithuania, the mean annual
temperature was 7.4 ◦C, and the mean annual precipitation was 695 mm. The soil was
characterized by low fertility with coarse sand, low (<5%) clay and silt content, and normal
moisture [33]. The soil was classified as Albic Arenosol [34], and the forest vegetation
type was classified as Vaccinio-myrtilliosa. The dominant ground vegetation species were
Pleurozium schreberi (Brid.) Mitt., Hylocomium splendens (Hedw.) Schimp., Ptilium crista-
castrensis (Hedw.) De Not., Vaccinium myrtillus L., and V. vitis-idaea L [21,23,33,35]. These
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characteristics well represented the Vaccinio myrtillo-Pinetum forest type in Lithuania, which
was classified according to the Lithuanian Forest Site Type classification in [35].

Table 1. The characteristics of the Scots pine stands are derived from the State Forest Cadastre
(Lithuania) and tree height measurements of planted Scots pine stands collected during this study in
2020–2023.

Object
Stand Composition

*
Stand Age

(Years)
DBH (cm) Height (m) Stocking Level *** Volume (m3 ha−1)

Trakai
54◦44′ N,
24◦80′ E
54◦44′ N,
24◦80′ E

90P10E 2 ** - - 6000 trees ha−1 -
90P10E 2 ** - - 6000 trees ha−1 -

100P 10 5 4.5 0.9 20
100P 15 9 7 0.8 60

90P10E 30 14 15 0.8 160
100P 70 25 26 0.7 280
100P 135 46 30 0.7 415

Varėna
54◦26′ N,
24◦53′ E
54◦25′ N,
24◦53′ E

90P10B 2 ** - - 6000 trees ha−1 -
100P 2 ** - - 6000 trees ha−1 -

90P10B 8 3 2.5 0.9 14
90P10B 15 5 6 1.0 50

100P 39 13 16 0.8 120
100P 70 21 24 0.9 300
100P 110 34 27 0.8 360

Kazlų Rūda
54◦76′ N,
23◦40′ E
54◦73′ N,
23◦47′ E

100P 2 ** - - 7000 trees ha−1 -
100P 2 ** - - 5000 trees ha−1 -

90P10B 8 4 3.1 0.9 19
90P10B 15 8 4.8 0.9 70
90P10B 30 14 15 0.9 150

100P 77 29 28 0.9 400
90P10E 117 38 31 0.7 320

* Stand composition shown in % of each species totaling 100%: P—Scots pine (Pinus sylvestris), E—Norway spruce
(Picea abies), and B—birch (Betula sp.). ** Scots pine seedlings for reforestation were grown in the forest nursery for
two years before planting, as is the standard practice. *** Stocking level, available from the State Forest Cadastre
(Lithuania), describes the ratio of the sums of diameters of the measured and normal stands when the normal
stand is equated to 1 and indicates a stand in which the tree crowns are completely closed. As the State Forest
Cadastre does not provide data on the stocking level in reforested clear-cuts, tree density was evaluated specially
for this study and shown as the number of trees per 1 ha.

2.2. Assessment of Ground Vegetation Cover

As previously mentioned, the ground cover, which lay on the mineral soil, included
ground vegetation, including mosses, herbs, and dwarf shrubs (living layer), as well as
forest floor and dead wood (non-living/dead layer) [36]. In ground cover, the following
parameters were assessed: (1) ground vegetation species composition and percentage cover,
(2) forest floor and ground vegetation biomass, and (3) dead wood accumulation.

Vegetation coverage was assessed each July from 2020 to 2023, during the peak growth
period for herbaceous plants in the climatic region. Vegetation was observed within
systematically arranged one-square-meter (1 m2) quadrats. A special frame marked with a
one-square-decimeter (1 dm2) grid was used to estimate each vegetation quadrat species’
percentage cover visually. A total of 25 m2 per study site was assessed.

The ground vegetation species were categorized into four vertical strata: moss layer,
herbs (non-woody and woody plants up to 0.5 m), shrubs (woody vegetation from 0.5 to
5.0 m), and trees (woody vegetation exceeding 5.0 m in height). The mean value of each
species cover was calculated per site.

To evaluate the importance of vegetation species within an ecosystem, the prominence
value (PV) was calculated using Formula (1):

PV =
√

D × P (1)
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where P is the mean cover, %, and D is the frequency, determined as the number of subplots
in which the species was detected divided by the total number of subplots [37].

To quantify the compositional dissimilarity between two different sites, the Bray–
Curtis coefficient was calculated using Formula (2):

BCjk = 1 −
2∑

p
i=1 min(Nik, Nik

)
∑

p
i=1(N ij + Nik

) (2)

where Nij is the cover (%) of species i at site j, Nik is the cover (%) of species i at site k, and p
is the total number of species in the samples.

2.3. Assessment of Forest Floor, Ground Vegetation Mass, and Dead Wood Accumulation

The mass of the forest floor and aboveground vegetation (mosses, herbs, and dwarf
shrubs) was determined using physical sampling within a 25 × 25 cm metallic frame.
The forest floor was defined as all dead organic material on the surface of the mineral
soil. It included recognizable material, such as annual litter composed of dead needles,
twigs and small branches, dead herbs, and also fragmented and humified layers composed
of unidentifiable decomposed fragments of organic material. All the mosses and herbs
inside the area of the frame were clipped and placed in a paper bag. If no vegetation was
within the frame area, its biomass was zero. The removed vegetation was thoroughly
grouped into individual species, placing them in separate bags. For mass determination,
composite samples of the forest floor and aboveground parts of vegetation were obtained
from 5 subsamples (n = 5) oven-dried at 105 ◦C to a constant mass and weighed.

Dead wood accumulation in clear-cut sites and Scots pine stands of different ages were
assessed using a methodology adapted to Lithuanian conditions [38]. Four systematically
selected 100 m2 (10 × 10 m) plots within a 2000 m2 area were used. All dead wood elements
were recorded within the plots, including standing dead trees, logs, lying dead trunks,
fallen branches, and stumps larger than or equal to 5 cm in diameter. The decomposition
stages of dead wood were categorized into five classes: 1st class, described as recently dead
or fresh wood; 2nd class, slightly dead or fairly hard wood without bark, not yet rotted; 3rd
class, medium decayed or fairly soft wood; 4th class, very decayed, soft and fragmented
wood; and 5th class, almost decomposed, soft and rotten wood [38].

2.4. Canopy Density Assessment

A spherical crown densiometer was used to measure stand canopy density in 8–10-,
15–20-, 30–40-, 70–80-, and 110–130-year-old Scots pine. Measurements were taken at the
center of each 10 × 10 m plot (Figure 1), with five measurement locations per plot.

2.5. Calculations and Statistical Analysis

To find the significant differences between the sites, ANOVA followed by a post hoc
LSD test was used. Data are presented as the means ± standard error (SE). Different letters
next to the mean values show statistically significant differences at p < 0.05 between the
sites. Statistical analyses were conducted using STATISTICA 12.0 (StatSoft. Inc. 2007,
Tulsa, OK, USA) software. Using R statistical software (Version 4.4.0), we visualized the
Bray–Curtis dissimilarity index, clearly comparing species compositions in different sites.

3. Results

3.1. Change of Living Ground Cover at Different Forest Succession Stages

Similar trends in the mean coverage of mosses and herbaceous plants along the stand
age groups were determined in the research objects of Trakai, Varėna, and Kazlų Rūda. The
moss coverage dominated the living ground cover of the Vaccinio myrtillo-Pinetum forest
type (Table 2 and Figure 2A). The mean cover (Table 2) and the proportion (Figure 2A) of
mosses in the 1-year-old clear-cuts were lower than that in the Scots pine stand. However,
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the lowest cover was found in the 3-year-old clear-cuts, which decreased by approximately
3 times in Kazlų Rūda and 17 times in Trakai compared to the 1-year-old clear-cut.

Table 2. Mean cover ± SE (%) of the forest floor, mosses, and vascular plants in the 1–3-year-old
clear-cuts and 8–130-year-old Scots pine stands in Trakai, Varėna, and Kazlų Rūda objects. Different
letters indicate statistically significant differences between the stands of different ages at p < 0.05.

Object
Ground Cover

Layer

Clear-Cut (Years) Scots Pine Stands (Years)

1 2 3 8–10 15–20 30–40 70–80 110–130

Cover (%)

Trakai
Mosses 56.2 ± 4.2 c 18.1 ± 3.3 b 6.5 ± 1.2 a 53.0 ± 4.4 c 59.8 ± 6.3 c 92.5 ± 1.3 d 96.0 ± 2.4 d 88.9 ± 3.5 d

Vascular plants 14.5 ± 2.1 a 23.2 ± 2.3 b 52.2 ± 2.2 d 59.0 ± 4.4 d 34.6 ± 1.4 c 24.1 ± 7.1 b 39.6 ± 3.1 c 16.6 ± 3.1 a

Forest floor 95.8 ± 1.7 cd 39.6 ± 4.7 a 56.2 ± 5.3 b 80.1 ± 4.8 c 99.8 ± 0.1 d 100.0 ± 0.0 d 100.0 ± 0.0 d 100.0 ± 0.0 d

Varėna
Mosses 44.0 ± 5.7 c 12.0 ± 3.2 b 2.6 ± 0.5 a 43.0 ± 4.5 c 64.9 ± 4.2 d 96.0 ± 2.6 e 92.6 ± 1.5 e 90.3 ± 3.5 e

Vascular plants 15.2 ± 1.7 a 16. 7 ± 1.7 a 40.7 ± 3.2 c 28.6 ± 3.8 b 23.8 ± 2.7 b 12.4 ± 3.0 a 21.3 ± 3.6 b 23.3 ± 4.6 b

Forest floor 65.8 ± 5.2 b 35.7 ± 5.2 a 35.9 ± 4.7 a 34.6 ± 7.7 a 86.3 ± 3.3 c 100.0 ± 0.0 d 100.0 ± 0.0 d 99.9 ± 0.2 d

Kazlų
Rūda

Mosses 18.8 ± 2.0 c 10.9 ± 0.8 b 6.5 ± 0.5 a 27.8 ± 1.7 d 77.8 ± 4.3 e 87.4 ± 6.8 e 97.9 ± 11.9 f 93.3 ± 9.8 f

Vascular plants 33.6 ± 0.7 c 29.6 ± 0.8 b 66.9 ± 1.1 d 53.2 ± 2.4 d 28.2 ± 0.8 b 21.5 ± 0.6 a 34.9 ± 1.6 c 26.7 ± 1.5 b

Forest floor 68.2 ± 4.1 a 56.2 ± 3.9 a 79.8 ± 4.2 b 92.2 ± 5.5 c 99.2 ± 0.6 c 99.5 ± 0.5 c 94.8 ± 5.0 c 99.9 ± 0.2 c
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Figure 2. The percentage distribution (%) of living ground cover (A) and vascular plant cover (B),
each calculated from the total living ground cover (100%) and total vascular plant cover (100%),
respectively, in the 1–3-year-old clear-cuts and 8–130-year-old Scots pine stands (aggregated data
from three sites).
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The moss cover started to recover in the 10-year-old stands, and the mosses became
dominant in the living ground cover in the 15-year-old stands. Contrary to the vascular
plants, the highest mean moss cover was found in the 30–70-year-old stands. Vascular
plants showed a quick response and ability to exploit the conditions created after clear-
cutting in all research objects. The mean coverage of the vascular plants was slightly higher
in the 1-year-old clear-cuts in the Trakai object and 25.6% higher in Kazlų Rūda. However,
in the Varėna object, 34.7% lower mean coverage of the vascular plants was found in the
1-year-old clear-cuts. Higher vascular plant coverage was found in the 3-year-old clear-cuts:
their coverage was 1.7–3.1 times higher than in the mature stand (Table 2). The mean
vascular plant cover peak was fixed until the stands reached 8–10 years of age. The lowest
mean coverage of dwarf shrubs and herbs was observed in the 30-year-old forest, except
for the Trakai object.

During stand rotation, dwarf shrubs prevailed in the vascular plant coverage of all
objects (Figure 2B). The second prevailing growth form was graminoids, followed by forbs.
The latter were predominant only in the 2- and 3-year-old clear-cuts. In the stands of
the 70–80 age group, the moss cover reached its maximum, and so did the dwarf shrubs.
However, in the mature stand, a smaller percentage of dwarf shrubs was assessed.

The Bray–Curtis coefficients were calculated for Varėna, Trakai, and Kazlų Rūda
(Figure 3). The analysis focused on the dissimilarity between different pairs of time points
within each object. In the Trakai object, significant dissimilarities of 0.675 to 0.782 were
found between 1- and 2-year-old clear-cuts, 3-year-old clear-cuts and 15-year-old stands,
and 3-year-old clear-cuts and 70-year-old stands. Moderate dissimilarities of 0.668 to
0.675 were identified between 2-year-old clear-cuts and 10-year-old stands, 2-year-old
clear-cuts and 15-year-old stands, and 15- and 30-year-old stands. The lowest Bray–Curtis
coefficients, 0.260 and 0.566, were found between the 30- and 70-year-old stands and
between 1-year-old clear-cuts and 110-year-old stands, respectively. In the Varėna object,
the highest dissimilarities—the Bray–Curtis coefficients were from 0.856 to 0.895—were
observed between the 3-year-old clear-cuts and 15-year-old stands, 3-year-old clear-cuts
and 70-year-old stands, and 3-year-old clear-cuts and 110-year-old stands (Figure 3B).
The 1- and 2-year-old clear-cuts, 2- and 3-year-old clear-cuts, and 1-year-old clear-cuts
and 70-year-old stands showed moderate similarity (0.441–0.549). Lower dissimilarities
from 0.327 to 0.383 were identified between the 1-year-old clear-cuts and 110-year-old
stands and between the 15-year-old and 30-year-old stands. In the Kazlų Rūda object, the
indicated dissimilarities in pairs were as follows: the highest from 0.826 to 0.833 between
2- and 3-year-old clear-cuts, 2-year-old clear-cuts and 30-year-old stands, and 3-year-old
clear-cuts and 70-year-old stands; the moderate—from 0.512 to 0.755—between 1- and
2-year-old clear-cuts, 2-year-old clear-cuts and 10-year-old stands, and 3-year-old clear-cuts
and 30-year-old stands; and the lowest Bray–Curtis coefficient of 0.126 was between 70-
and 110-year-old stands (Figure 3C).

The Bray–Curtis coefficient revealed that the species composition and mean ground
coverage of 2–3-year-old clear-cuts differed the most from those of mature stands (Figure 3).
Starting from the thirties, the species composition becomes closer to that of mature stands
as they age.

Being sensitive to edaphic, relief, and climatic conditions and their changes, the living
ground cover showed variations in species composition among the research objects in
the stands of the same age group. This range led to a relatively large variation in species
composition, especially in the initial age of stand formation (Table 3). However, Vaccinium
myrtillus L. and Vaccinium vitis-idaea L. were found to be the most significant species among
the vascular plants in all the studied objects. Clear-cuttings decreased Vaccinium myrtillus
cover in the clear-cuts, but it still retained dominant in the coverage of vascular plants with
a PV 54.30 (Table 3). The highest coverage and frequency of Vaccinium myrtillus was found
in the pre-mature stands, and the highest prominence value (PV) of 205.2 was estimated.
In the mature stands, the PV of Vaccinium myrtillus was also high, amounting to 148.8.
The dominance of the Vaccinium Vitis-idea was different: the highest PV (174.1) was in the

56



Land 2024, 13, 1477

8–10-year-old stands and lasted for 30–40 years with a PV of 122.3. Calluna vulgaris L. (Hull)
also had comparatively high PV at the 8–10-year-old stand, except for the Varėna object.
Site-specific variations were found in the Trakai and Kazlų Rūda objects. Rubus idaeus L.
and Pteridium aquilinum (L.) were frequent and had significant cover in the clear-cuts and
young stands [36]. In contrast, Festuca rubra (Hack. ex Čelak.) Fritsch dominated the living
ground cover in the clear-cuts of the Varėna object.

  

 

 
 

B A 

C 

Figure 3. Pair distances between the 1–3-year-old clear-cuts and 8–130-year-old Scots pine stands,
illustrated for three sites: Trakai (A), Varėna (B), and Kazlų Rūda (C).

Data analysis from three research objects showed that mosses had the highest promi-
nence value in the living ground cover in this forest type. For example, the prominence
value of Pleurozium schreberi (Brid.) Mitt. in the 30–80-year-old stands varied within the
range of 478.7–499.7. It was 2.4 times higher than Vaccinium myrtillus PV during its domi-
nance period. Hylocomium splendens (Hedw.) Scimp. and Dicranum sp. were characterized
by those with the highest coverage and frequency after Pleurozium schreberi, emphasizing
those species with the highest PV in Vaccinio myrtillo-Pinetum forests. However, it should
be noted that Hylocomium splendens had the highest PV of 552.38 in the mature stands,
exceeding the PV of Pleurozium schreberi (Table 3). Dicranum sp. was most significant in
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the 15–40-year-old stands. In addition, a decrease in the PV of Hylocomium splendens in
clear-cuts described this species as the most sensitive to clear-cutting in this forest type. The
individuals of Hylocomium splendens had diminished viability in the 1-year-old clear-cuts.
Later, their coverage drastically decreased by 98.2% in the 3-year-old clear-cuts compared to
those found in the mature stands. In 8–10-year-old stands, after clear-cutting, Politrichum sp.
and Pohlia nutants (Hedw.) Lindb. become more abundant and frequent at the living cover
for a short period of stand cover formation.

Table 3. Prominence value of vascular plants and moss species in the 1–3-year-old clear-cuts and
8–130-year-old Scots pine stands (aggregated data from three sites).

Species of Vascular
Plants/Mosses

Clear-Cuts (Years) Scots Pine Stands (Years)

1 2 3 8–10 15–20 30–40 70–80 110–130

Prominence Value

Vaccinium myrtillus L. 76.81 ± 31.57 46.38 ± 15.71 54.30 ± 19.07 25.81 ± 21.03 19.85 ± 9.42 88.02 ± 32.30 205.20 ± 64.96 148.82 ± 58.96

Vaccinium vitis-idaea L. 17.08 ± 7.53 16.43 ± 8.27 32.02 ± 15.25 174.07 ± 53.06 122.32 ± 64.94 44.28 ± 11.64 85.43 ± 37.94 44.37 ± 24.73

Calluna vulgaris L.
(Hull) 12.24 ± 12.07 2.17 ± 1.96 3.55 ± 1.79 159.68 ± 73.25 20.63 ± 12.22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Rubus idaeus L. 6.35 ± 6.07 27.71 ± 25.30 111.35 ± 81.78 15.34 ± 15.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Festuca sp. 20.92 ± 20.56 19.29 ± 19.28 84.48 ± 82.18 16.88 ± 16.81 34.40 ± 34.40 11.46 ± 11.46 3.69 ± 3.69 6.33 ± 6.33

Pteridium aquilinum (L.) 10.14 ± 0.34 17.81 ± 2.16 23.23 ± 9.02 0.00 ± 0.00 47.48 ± 47.48 4.85 ± 4.85 0.00 ± 0.00 0.00 ± 0.00

Pleurozium schreberi
(Brid.) Mitt. 200.71 ± 65.92 75.01 ± 29.23 12.58 ± 4.92 164.89 ± 76.84 323.01 ± 109.80 499.69 ± 15.99 478.67 ± 198.73 207.64 ± 42.94

Hylocomium splendens
(Hedw.) Scimp. 85.96 ± 49.44 5.34 ± 4.37 1.29 ± 0.16 31.10 ± 26.79 33.84 ± 31.12 167.31 ± 84.32 323.81 ± 219.68 552.38 ± 77.06

Dicranum sp. 24.43 ± 11.83 11.97 ± 7.35 7.48 ± 6.26 20.68 ± 4.57 126.16 ± 13.03 157.36 ± 119.17 42.96 ± 36.84 20.68 ± 13.27

Ptilium crista-castrensis
(Hedw.) De Not 4.98 ± 4.54 6.47 ± 6.46 5.09 ± 5.09 10.20 ± 10.20 9.88 ± 8.13 11.66 ± 11.03 50.17 ± 25.03 31.60 ± 28.85

Cirriphyllum piliferum
(Hed.) Grout 00.00 ± 0.00 00.00 ± 0.00 00.00 ± 0.00 7.30 ± 7.30 83.64 ± 83.64 4.64 ± 4.64 00.00 ± 0.00 00.00 ± 0.00

Polytrichum sp. 00.00 ± 0.00 0.41 ± 0.36 0.47 ± 0.47 67.82 ± 44.00 12.83 ± 11.49 2.28 ± 2.16 6.91 ± 6.91 00.00 ± 0.00

3.2. Ground Cover Layer Mass Dynamics and Relationships

Changes in the stand cover affected the mass of typical forest vascular plants and
mosses. For vascular plants, there was an initial increase in mass, rising from 0.6 t ha−1 in
the 1-year-old clear-cut to a peak of 2.5 t ha−1 in 8–10-year-old Scots pine stands (Figure 4A).
After this peak, a decline was found, with the mass decreasing to 1.8 t ha−1 in 15–20-year-
old stands and further decreasing to 0.3 t ha−1 in 30–40-year-old stands. A partial recovery
occurred in 80-year-old stands, where the mass reached 1.1 t ha−1 and slightly declined
again to 0.8 t ha−1 in the mature stands. In contrast, mosses showed an initial decline
in mass, decreasing from 1 t ha−1 in the 1-year-old clear-cut to a low of 0.1 t ha−1 in the
3-year-old clear-cut (Figure 4A). Also, it was two times smaller in the fresh clear-cuts than
in mature stands. A steady recovery was found from the third year after clear-cutting, with
the mass of the mosses increasing to 2.1 t ha−1 in the 15–20-year-old Scots pine stands.
Already, in the 8–10-year-old stand, the mass of the mosses was about seven times higher
than in the 2–3-year-old clear-cut sites. This upward trend continued, stabilizing around
2.3–2.4 t ha−1 when the stands reached 40 years. The mosses generally dominated the living
ground cover and comprised about 52% of the mass in 15–20-year-old stands. Furthermore,
in 30–40-year-old stands, mosses comprised about 90% of the total living ground cover; in
70–130-year-old stands, mosses accounted for 64–70% of the total biomass.

The loss of stand cover due to clear-cutting has a drastic negative effect on the forest
floor, as the annual litterfall is significantly reduced. The loss of tree cover leads to changes
in the microclimate, contributing to more intensive microbial activity and forest floor
decomposition. The dynamics of the forest floor and dead wood mass over time are
shown in Figure 4B. Initially, the forest floor mass declined significantly, decreasing from
approximately 32 t ha−1 in the 1-year-old clear-cuts to nearly 6 t ha−1 in the 8–10-year-old
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Scots pine stands. After this period, the forest floor mass gradually recovered, increasing
to 14 t ha−1 in 40-year-old stands. Notably, this upward trend continued, and the forest
floor mass reached 38.5 t ha−1 in the mature stand. Overall, in 2–3-year-old clear-cuts and
8–10–year-old stands, the forest floor mass was 75–85% lower than in mature stands. In
contrast, the dead wood mass showed different dynamics. It remained stable at 6 t ha−1

during the first three years after clear-cutting. However, a notable decline occurred in
10-year-old stands, with the mass decreasing to 2.8 t ha−1. After this period, the dead
wood mass partially recovered, reaching 4 t ha−1 in the 20-year-old stands. When the stand
reached 40 years, the dead wood mass stabilized at approximately 3.3 t ha−1, showing little
to no change until the stand reached 130 years.
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Figure 4. The trend of living (A) and non-living (B) ground cover mass in Scots pine stands of Pinetum
vaccinio-myrtillosum type throughout the rotation period following clear-cutting (aggregated data
from three sites).

A positive correlation of moss mass with the average density of the tree canopy
(R2 = 0.629) was found (Figure 5). The biomass of herbaceous plants and dwarf shrubs at
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different stand ages differed significantly. Changes in microclimatic conditions, reduced
competition with tree cover, and ongoing changes in soil chemical indicators positively
influenced the aboveground biomass of vascular plants [39]. The biomass of vascular
plants in 2–3-year-old clear-cuts was 2.8–3.9 times higher than in 1-year-old clear-cuts and
2.0–2.8 times higher than in the mature stands. The biomass of herbs and dwarf shrubs
showed an increasing trend until the stands reached 15–20 years old. The predominant
part of the biomass of the vascular plants in the total biomass of the living ground cover
was found in 2–3-year-old clear-cuts, where it accounted for 86.8–90.5% of the total living
biomass, and in 8-year-old stands, where it accounted for 60.8%.
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Figure 5. Relations between the mean aboveground mass of vascular plants and mosses (kg ha−1)
with the mean stand canopy density in the 1–3-year-old clear-cuts and 8–130-year-old Scots pine
stands (aggregated data from three sites).

In the total moss biomass, the largest biomass shares of Pleurozium schreberi, Hylo-
comium splendens, and Dicranum sp. were found (Figure 6A). Pleurozium schreberi biomass in
the 8–10-year-old stand was comparable to that in the mature stands. In the 15–20-year-old
stands, this mass exceeded the mass assessed in mature stands by 2.2 times. In the later age
groups of the stand, the biomass of Pleurozium schreberi slightly decreased, and Hylocomium
splendens started prevailing. Dicranum sp. seem to be prevailing in the young stands. The
8–10-year-old stands were characterized by twice as much biomass as the mature stands. Its
biomass consistently increased with the stand age until the stand reached 30–40 years, and
here, the Dicranum sp. mass was 7.1 times higher than in the mature stands. Meanwhile,
the biomass of Hylocomium splendens has recovered the mature stand level in 70–80-year-old
Scots pine forests.

The aboveground biomass of herbs and dwarf shrubs consisted of similar species
in all stands. Vaccinium myrtillus and Vaccinium vitis-idea comprised a major biomass
proportion of vascular plants (Figure 6B). As shown above, a decrease in the total biomass
of vascular plants was observed in 30–40-year-old pine forests (See Figure 4). However,
starting from 30–40-year-old pine forests, the biomass of Vaccinium myrtillus comprised
32% of the total plant biomass and showed an increasing trend with the increasing stand
age (Figure 6B). The highest biomass of Vaccinium myrtillus was found in 70–130-year-
old stands. Meanwhile, the biomass of Vaccinium vitis-idaea accounted for 11–16% of the
total vascular plant biomass in clear-cuts and varied between 39.2 and 47.9% of the total
vascular plant biomass of the living ground cover in 8–80-year-old stands. The biomass
of Vaccinium vitis-idaea in 8–20-year-old pine forests was 3.7 times higher than in mature
stands. However, the variable mass of other species more common in these stands, such as
Calluna vulgaris and Festuca sp., was fixed until the stand reached about 20–30 years of age.
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Figure 6. The percentage of vascular plant (key species of herbs and dwarf shrubs) mass (A) and
moss species mass (B) of the total vascular plant and moss mass, respectively, and aboveground
biomass (kg ha−1) of the living ground cover (Total) in 1–3-year-old clear-cuts and 8–130-year-old
Scots pine stands (aggregated data from three sites).

A moderately strong negative correlation between the mass of vascular plants and the
mass of the forest floor was determined (R2 = 0.570) (Figure 7). Still, no correlations were
found between the biomass of moss and the mass of the forest floor.
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Figure 7. Relations between the biomass of living soil cover elements (t ha−1) and the mean forest
floor mass (t ha−1) in the 1–3-year-old clear-cuts and 8–130-year-old Scots pine stands (aggregated
data from three sites).

4. Discussion

Reduced competition with the main stand layers due to light and nutrients after the
clear-cutting and soil scarification for the reforestation preparation positively affected the
abundance of vascular plant mean coverage [24,25,40]. Like previous studies [5,15], our
results indicated a slight reduction in vascular plant cover in the 1-year-old clear-cuts.
Herbs and dwarf shrub cover increased in the 2–3-year-old clear-cuts, exceeding the cover
found in mature stands. Previous studies also confirmed this trend, which observed
an increased herbaceous plant cover after logging [26,27,29,30,41]. These changes often
occur at the expense of forest-related families such as Ericaceae ([5,15]. Although Ericaceae
remained dominant in clear-cut areas, their projective cover was significantly reduced.
Forest-specific vascular species, such as Goodyera repens (L.) R. Br., Lycopodium clavatum L.,
and Chimaphila umbellata (L.), W. P. C. Barton also showed similar trends [26,29]. On
the other hand, newcomer herbaceous plants and dwarf shrubs play an important role
in reducing the leaching of soil nutrients [12,25,29]. Tall herbs create more favorable
conditions for the survival of forest-related species that avoid sunlight [29]. As an example
from the present study, in the 2–3-year-old clear-cuts, more Pleurozium schreberi was found
under taller plants than under direct sunlight. Meanwhile, in the later stages of stand
formation, light transmission becomes one of the limiting factors, because the parameters
of the trees increase, and the canopy layer develops. As a result, the amount of nutrients
consumed by the trees also increases, leading to the disappearance of plant species that
require more nitrogen and light at this stage [42,43]. The amount of light and nutrients
available to the living ground cover significantly influence the distribution of vascular
plants under the canopy [44,45]. This study also showed a decrease in the mean coverage
of vascular plants in 30–40 years (see Figure 4). However, an increase in the moss cover
was observed. The stability of the species composition in the living ground cover of
Pinetum vaccinio-myrtillosum pine stands was achieved in the middle-aged stands, mostly
30–70 years old, after clear-cutting. For 15–20 years after clear-cutting, moss cover has
become prevalent, covering 67.5%. After 30 years, it covered more than 90%. During
this study, it was found that mosses were the dominant vegetation, covering more than
90.8–95.5% of the total ground cover in stands older than 30 years, among which, Pleurozium
schreberi, Hylocomium splendens, Dicranum polysetum, and Ptilium crista-castrensis prevailed.
According to Kumar et al. [30], mosses tend to have lower requirements for light and
soil fertility, leading to their dominance in conifer stands on oligotrophic mineral soil
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of normal moisture. However, continuous sunlight, increased wind speed, and reduced
relative humidity caused by clear-cutting, create unfavorable conditions for moss survival
in clear-cuts [12]. Therefore, the mean moss cover in 3-year-old clear-cuts decreased more
than 17 times, and the biomass was almost 8 times lower than in mature stands. This
distinguishes mosses as having a rapid response to the changed environment after clear-
cutting and with higher intensity than other ground layer components [27].

The emergence of new species, such as Pohlia nutans, Polytrichum commune L., and
Polytrichum juniperinum Hedw, characterized clear-cut sites. The most affected moss species
after clear-cutting was Hylocomium splendens; it recovered up to the mature stand level only
in the premature stands in the 70–80-year-old stands. Pleurozium schreberi and Dicranum
polysetum, after significant reduction in the cover and biomass in clear-cuts, reached pre-
clear-cutting coverage and biomass in 10–30-year-old stands. While Palviainen et al. [12]
noticed that this time interval was seven years. Palviainen et al. [12] also discussed that
Hylocomium splendens react more negatively to logging than other species due to slower
reproduction and colonization processes, higher moisture requirements, and sensitivity
to sunlight. Meanwhile, Kelly & Connolly [46] observed that Hylocomium splendens is
intolerant to calcium-rich soils. Previous research found a negative correlation between the
projection cover of Hylocomium splendens and the total calcium concentration in the forest
floor and mineral soil [21].

The obtained species composition and mean coverage of mosses during this research
corresponded to the previously determined trends and represented the moss species charac-
teristic of the Pinetum vaccinio-myrtillosum forest type [21,23,35]. Overall, 15–20 years after
clear-cutting could be considered the threshold for successful restoration of mean moss
cover in the Pinetum vaccinio-myrtillosum forest type, as the mean moss cover projection
reached 67.5% of the ground cover. Additionally, moss biomass comprised 51.0% of the
living ground cover biomass in this restoration period. According to the results of previous
studies, in mature Pinetum vaccinio-myrtillosum pine forests, the cover of vascular plants
was 14–40%, and the moss cover was 80–85% [47,48].

In total ground cover biomass, which consisted of living ground cover (moss, herba-
ceous plants, and dwarf shrubs) and non-living ground cover (forest floor and dead trees)
biomass, the highest mass was found on the forest floor. In the first year after clear-cutting,
the biomass of the forest floor started to decrease due to the higher activity of microor-
ganisms [49,50]. However, the larger than usual amounts of fresh dead wood left after
felling compensated for the loss of biomass in the non-living ground cover. Therefore, in
clear-cuts, the biomass of the non-living ground cover remained like that in the mature
stands (see Figure 4). In older clear-cuts and stands, despite the decline in forest floor
biomass compared to the biomass of mature forests, the largest proportion of biomass in
the non-living cover remained in the forest floor.

The biomass peak of the living ground cover in Pinetum vaccinio-myrtillosum pine
forests, both mosses and herbaceous plants with dwarf shrubs, was found in the
8–20-year-old stands. The biomass of herbaceous and dwarf shrub cover increased
rapidly at the stand initiation stage and significantly decreased in the 30-year-old stand,
i.e., at the highest stocking level of the stands. Later, due to forestry activities, an increase
in the dwarf shrub biomass was observed in thinned stands, while the biomass of the
mosses remained dominant. Similar patterns have been recorded in other studies [42,51].
According to Kumar et al. [30], the cover of conifer stands favors the growth of mosses
due to the formation of coarse litter, C:N ratio and acidic pH medium, and relatively
low nutrient content. Additionally, Pleurozium schreberi is known to have a relationship
with cyanobacteria responsible for N fixation. Increasing competition with the canopy
for light and nutrients results in a struggle for N, so the ability to fix N improves N
availability to mosses [52].

Even though living ground cover biomass averaged just between 3.8 and 32.6% of the
total ground cover biomass per rotation, living ground cover plays a significant role in CO2
absorption [30]. Already in the early stages of tree succession, the living ground cover can
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enrich the soil with organic matter, absorbing excess nutrients in the clear-cut sites and
relatively quickly returning them to the soil, thereby contributing to retaining soil nutrients
and reducing their leaching.

5. Conclusions

This study showed the ecological impact of clear-cutting on Pinetum vaccinio-myrtillosum
pine stands. The study observed that reduced the competition for light and nutrients
positively affected vascular plant abundance, with a significant increase in herb and dwarf
shrub cover within 2–3 years after clear-cutting compared to mature Scots pine stands.
The results indicated a substantial decline in forest-specific species immediately following
clear-cutting, with a gradual recovery of moss cover, particularly Pleurozium schreberi and
Dicranum polysetum, to pre-clear-cutting levels within 10–30 years. The mosses showed
a restoration threshold around 15–20 years post-clear-cutting, achieving 67.5% ground
cover and contributing 51.0% of the living ground cover biomass during this period. Clear-
cutting drastically reduced the forest floor and dead wood mass, decreasing forest floor
mass by 75–85% in 2–3-year-old and 8–10-year-old stands compared to mature stands due
to reduced litterfall and increased nutrient leaching. Moss mass showed the most significant
decline in 2–3-year-old clear-cuts compared to mature stands but started to recover in the
8–10-year-old stands, comprising a major portion of the living ground cover in older stands.
These findings emphasize the critical role of mosses in stabilizing ground cover. Lastly, the
study highlighted the importance of managing clear-cutting practices to balance immediate
vegetative responses with long-term ecosystem stability and biodiversity conservation.
The rapid recovery of herbaceous plants and dwarf shrubs aids in nutrient retention and
reduces leaching. Furthermore, the slower restoration of moss cover plays a crucial role in
maintaining forest floor stability and ecological functions.
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of clear-cuts in Scots pine-dominated forests on Vaccinium myrtillus and Vaccinium vitis-idaea vegetative characteristics, and
accumulation of phenolic compounds. Balt. For. 2019, 24, 278–286.

3. Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau,
J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For.
Ecol. Manag. 2020, 466, 118127. [CrossRef]

4. Finér, L.; Mannerkoski, H.; Piirainen, S.; Starr, M. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in
eastern Finland and changes associated with clear-cutting. For. Ecol. Manag. 2003, 174, 51–63. [CrossRef]

5. Palviainen, M. Logging residues and ground vegetation in nutrient dynamics of a clear-cut boreal forest. Diss. For. 2005, 12, 38.
[CrossRef]

64



Land 2024, 13, 1477

6. Gundersen, P.; Schmidt, I.K.; Raulund-Rasmussen, K. Leaching of nitrate from temperate forests-effects of air pollution and forest
management. Environ. Rev. 2006, 14, 1–57. [CrossRef]

7. Hedwall, P.-O.; Grip, H.; Linder, S.; Lövdahl, L.; Nilsson, U.; Bergh, J. Effects of clear-cutting and slash removal on soil water
chemistry and forest-floor vegetation in a nutrient optimised Norway spruce stand. Silva Fenn. 2013, 47, 933. [CrossRef]

8. Häkkinen, M.; Heikkinen, J.; Mäkipää, R. Soil carbon stock increases in the organic layer of boreal middle-aged stands. Biogeo-
sciences 2011, 8, 1279–1289. [CrossRef]

9. Schelker, J.; Eklof, K.; Bishop, K.; Laudon, H. Effects of forestry operations on dissolved organic carbon concentrations and export
in boreal first-order streams. J. Geophys. Res. Biogeosci. 2012, 117, G1. [CrossRef]

10. Zhu, X.; Zhang, W.; Chen, H.; Mo, J. Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: A review. Acta
Ecol. Sin. 2015, 35, 35–43. [CrossRef]

11. Balandier, P.; Collet, C.; Miller, J.H.; Reynolds, P.E.; Zedaker, S.M. Designing forest vegetation management strategies based on
the mechanisms and dynamics of crop tree competition by neighbouring vegetation. Forestry 2005, 79, 3–27. [CrossRef]

12. Palviainen, M.; Finér, L.; Mannerkoski, H.; Piirainen, S.; Starr, M. Responses of ground vegetation species to clear-cutting in a
boreal forest: Aboveground biomass and nutrient contents during the first 7 years. Ecol. Res. 2005, 20, 652–660. [CrossRef]

13. Parker, W.C.; Pitt, D.G.; Morneault, A.E. Influence of woody and herbaceous competition on microclimate and growth of eastern
white pine (Pinus strobus L.) seedlings planted in a central Ontario clearcut. For. Ecol. Manag. 2009, 258, 2013–2025. [CrossRef]

14. Vanha-Majamaa, I.; Shorohova, E.; Kushnevskaya, H.; Jalonen, J. Resilience of understory vegetation after variable retention
felling in boreal Norway spruce forests—A ten-year perspective. For. Ecol. Manag. 2017, 393, 12–28. [CrossRef]
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Abstract: Understanding the effects of short-term artificial revegetation on preventing soil degra-
dation in erosion gullies of black soil areas is essential to choosing the most suitable species of
vegetation for controlling the development of erosion gullies. A field experiment with short-term
artificial revegetation with herbaceous species (Medicago sativa L., Glycyrrhiza pallidiflora Maxim.,
Elytrigia repens (L.) Desv. ex Nevski, Rheum palmatum L., Asparagus officinalis L., Trifolium repens
L., Bromus inermis Leyss., Elymus dahuricus Turcz.) and a runoff scouring test were conducted in a
typical erosion gully in a black soil area. Soil erosion, physicochemical characteristics, and shoot/root
characteristics were measured to evaluate the effects of short-term artificial revegetation. Short-term
artificial revegetation significantly decreased (p < 0.05) sediment yield by 91.1% ± 7.2% compared
with that of bare soil. Soil total nitrogen (TN), total potassium (TP), available phosphorus (AP), cation
exchange capacity (CEC), water-stable aggregates > 0.25 mm (WR0.25), and aggregate mean weight
diameter (MWD) and mean geometric diameter (GWD) were significantly correlated with vegetated
treatments, indicating they were factors sensitive to short-term artificial revegetation. Except for
total potassium (TK), the other soil characteristics decreased in vegetated treatments. In addition to
increasing TK, vegetated treatments also increased soil available nitrogen (AN)/TN ratios in the short
term. The overall effects of different herbaceous species on soil and water conservation, soil quality,
and vegetation growth were evaluated, and Trifolium repens L. is the most suitable for preventing soil
degradation in an erosion gully. The results of this study will provide a reference for the restoration
and protection of the ecological environment in black soil areas with gully erosion.

Keywords: vegetation restoration; soil aggregate size fractions; sediment yield; root characteristics;
soil physicochemical characteristics

1. Introduction

Soil erosion is a global phenomenon that is becoming increasingly important, especially
in the context of climate change. Gully erosion occurs across a wide range of environments
as a sign of land degradation. Agricultural fields are damaged by gully erosion, sediments
are lost, and surface soil quality is compromised [1,2]. In Northeast China, the mainly
black and fertile soils are essential for grain production, and therefore play a crucial role in
national food security. However, as of 2020, 666.7 thousand gullies were reported in the
region (Songliao River Water Resources Commission of the Ministry of Water Resources,
http://www.slwr.gov.cn/, accessed on 1 May 2024). As erosion gullies expand annually,
they encroach on arable land by 7.39 km2 y−1 [3]. The annual loss in grain yields due to
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gully erosion is approximately 36.2 × 108 kg, which represents 10% of the country’s total
grain supply (National Earth System Science Data Center, http://northeast.geodata.cn,
accessed on 1 May 2024).

Combating the gully erosion is very necessary to prevent land degradation in black
soil. Erosion gullies develop by headcuts and expanding gully slopes. Trees and shrubs
are commonly used types of vegetation to prevent gully wall expansion and effectively
control gully erosion [4]. Although the mechanisms by which vegetation conserves water
and soil are well understood [5,6], planting trees or shrubs to control gully erosion has
some drawbacks. First, the trees planted may not be suitable for the environment. It is
generally true that native forest trees retain soil and water better than shrubs and grasslands,
but when planted, the effects can be very different [7]. Second, the effects of trees and
shrubs are slow to develop because of the long growing periods. Third, in contrast to
nonintercepted drops, those intercepted by tall trees without an understory can be larger
and have greater kinetic energy, which can lead to soil crusting, surface runoff generation,
and gully formation [8,9]. Last, shrubland is hydraulically more efficient than grassland,
leading to higher runoff and erosion rates [10].

Herbaceous revegetation can effectively reduce soil and water loss [11,12], and it
conserves more soil and water compared with trees and shrubs on gully slopes [7,13].
On gully slopes, herbaceous canopies, roots, and litter all play a role in controlling soil
erosion [14]. In addition to intercepting and diverting rainwater, herbaceous vegetation
canopies provide physical protection to soils by reducing the impact of raindrops and
reducing “splash” effects [15]. As with the canopy, litter can serve as a protective barrier,
while roots can hold soil in place, trap sediment, and add organic substances to soil,
thus improving soil structure [16]. The infiltrability and structural stability of soil are
improved by plant roots and reduce gully erosion [4]. Roots play a major role in soil
resistance to concentrated flow erosion by virtue of the characteristics of their fibrils
(fibrils < 1.0 mm in diameter), which are distributed densely at a depth of 0–30 cm [17].
It may be helpful to use herbaceous revegetation studies to understand the relationships
between herbaceous species and soil characteristics, and to select the species that are most
suitable for restoration [18,19]. Several soil quality characteristics are commonly evaluated
under different vegetation treatments, including total phosphorus, bulk density, aggregate
stability, saturated hydraulic conductivity, and macroporosity [20,21]. It is crucial to fully
understand how to restore degraded soils, determining the responses of soil nutrients and
structure to revegetation.

Compared with trees and shrubs, herbaceous vegetation has the advantages of low
cost, efficiency, and multiple roles. According to Wang et al. [22], grassland has important
effects on erosion control. In addition, the cost of controlling gully erosion by herbaceous
vegetation is expected to be only a third of that by trees or shrubs. Last, planted forage
grass has a short growing period, and the effects are apparent in one year. Yan et al. [23]
also found that herbaceous vegetation on gully slopes decreased runoff and soil loss by
19–30% and 78–97%, respectively. However, few managers use herbaceous vegetation
to measure whether it can control the active degrading soil quality in gullies. Whether
short-term artificial herbaceous revegetation is suitable for controlling erosion gullies and
preventing soil degradation on gully slopes in black soil regions remains uncertain. In
addition, little is known about which herbaceous species are suitable for preventing soil
degradation in gully slopes.

To examine the effects of different species of short-term herbaceous vegetation on the
soil quality in gully slopes and then select the species best suited for controlling soil degra-
dation in an erosion gully of a black soil region, we conducted a field artificial revegetation
experiment and a runoff scouring experiment with eight species of herbs. Study objectives
included determining (1) the role of herbaceous vegetation in preventing soil and water
loss on gully slopes; (2) the effects of short-term artificial herbaceous vegetation restoration
on soil physicochemical properties; and (3) the suitable herbaceous species to combat soil
degradation in an erosion gully. The hypotheses are as follows: (1) herbaceous revegetation
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can reduce soil erosion on gully slopes; (2) short-term artificial herbaceous revegetation
will improve the soil quality.

2. Materials and Methods

2.1. Study Area

The erosion gully was in Zhaoguojun Village of Baiquan County in Heilongjiang
Province (47◦23′45.23′′–47◦23′54.18′′ N, 126◦16′21.03′′–126◦16′25.52′′ E; Figure 1), China.
The length of the erosion gully was 789 m, and the area of the gully was 1.1 ha. The mean
depth of the erosion gully was 5 m. The longitudinal gradient of the gully was 61.3‰.
The average annual temperature in the region is 1.5 ◦C, and the average annual rainfall is
530 mm. The soil is a silt loam soil and classified as Mollisol (also called black soil), with
a soil depth of 30–50 cm. Soils and their parent materials are generally acidic to alkaline,
with varying textures ranging from loam to clay loam, with most sola consisting mainly of
clay loam. The land use types are forests and sloped croplands (3◦ to 5◦).

 
Figure 1. Location of the study site in Baiquan County, Heilongjiang Province, China, with the color
image showing the erosion gully examined in the study. Note: (a) is the location of the study site,
(b) is the aerial view of the experimental gully slope before artificial revegetation, and (c) is the aerial
view of the experimental gully slope after artificial revegetation.

2.2. Experimental Setup

In May 2018, eight species of perennial herbaceous plants were planted on the gully
slope (Table S1), and bare soil was used for the control (BARE). Rheum palmatum L. (RH) is
a perennial herb in the Caryophyllales, Polygonaceae, and Rheum L. Asparagus officinalis L.
(AS) is a perennial herb in the Asparagales, Liliaceae, and Asparagus L. Elymus dahuricus
Turcz. (ET) is a perennial herb in the Gramineae, and Elymus Linn. Medicago sativa L. (ME)
is a perennial herb in the Rosaceae, Leguminosae, and Medicago L. Glycyrrhiza pallidiflora
Maxim. (GL) is a perennial herb in the Rosaceae, Leguminosae, and Glycyrrhiza L. Elytrigia
repens (L.) Desv.ex Nevski. (EN) is a perennial herb in the Gramineae, and Elytrigia Desv.
Trifolium repens L. (TR) is a perennial herb in the Fabales Bromhead, Leguminosae, and
Trifolium L. Bromus inermis Leyss. (BR) is a perennial herb in the Gramineae, and Bromus L.
Fabaceae can fix nitrogen (N), a potentially important contribution in degraded soils. The
Fabaceae and Gramineae plants were achieved by strip sowing with a 30 cm row spacing
and 2–3 cm depth. AS was also sown using strip sowing with a row spacing of 30 cm and a
sowing depth of 4–6 cm. RH was transplanted with a 30 cm row spacing with 1–2 plants
per hole, growing to 15 cm, and a plant spacing of 50 cm. The germination rate and clarity
were obtained (GB 6141 seed quality grading of Leguminosae and GB 6142 seed quality
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grading of Gramineae). Six replicate photos of each plot were taken at a height of 1.5 m, and
PCOVER software (Version 3.00) was used to obtain the vegetation coverage (VC, %).

2.3. Runoff Scouring Experiment

Sixteen months after sowing, we conducted a field runoff scouring experiment, in
September 2019. Three months before the runoff scouring experiment, each species of
herbaceous plant was surrounded in three replicate runoff plots (2 m × 1 m). To isolate
treatments, a steel sheet was embedded to a soil depth of 0.1 m around each runoff plot.
Plastic pipes, valves, a buffer tank, and a water supply tank were used to supply water
to the runoff plot [23]. An attachment was designed to connect the buffer tank to the
water supply tank at its bottom. Until the runoff plot was filled with water, water from
the water supply tank spilled into the buffer tank, ensuring uniform water flow that was
stable and nonpressurized. In order to ensure adequate water supplementation during the
experiment, two trucks supplied filtered water. The flow discharge was controlled using
an adjusting valve and measured three times before and after each experiment. First, the
soil of a runoff plot was saturated with water with a watering can to prevent the water
from infiltrating into it. According to the maximum rainfall intensity (75 mm h−1) in the
area (China Meteorological Data Service Centre, https://data.cma.cn/, accessed on 1 May
2024), the flow discharge was set at 0.24 L s−1, which was controlled by a switch. Runoff
velocity was measured with a staining method. Each runoff scouring experiment was
conducted three times. After the start and at the end of the experiment, three 5 s runoff
samples were collected. Sediment yield was collected for 5 s every 15 s. As a measure of
sediment concentration, samples were dried at 105 ◦C until a constant weight was reached
(SC, g cm−3).

Surface runoff (SR, mm), sediment yield (SY, g m−2), and soil erosion rate (ER,
g m−2 s−1) during the observation time (t, s) were calculated using Equations (1)–(4),
respectively, as follows:

SR = V/LW × 103 (1)

SY = M/LW (2)

M = V × SC × 1000 (3)

ER = SY/t (4)

where V is the runoff volume (m3); L and W are the length (m) and width (m) of the plot,
respectively; and M is the amount of soil loss (g).

The mean flow velocity (u, m s−1) was calculated as the product between surface flow
velocity (us, m s−1) and the correction factor (α = 0.67). We measured the us every 2 min
at a marked 1 m distance with five replications using the KMnO4 coloration technique.
An accurate 1.0 mm steel rule was used to measure flow width (w, m) at three runoff
observation sections. The flow hydraulic parameter unit flow discharge (q, m2 s−1), flow
depth (h, m), flow shear stress (τ, Pa), stream power (ω, W m−2), Reynolds number (Re),
and Froude number (Fr) were calculated using Equations (5)–(10), respectively, as follows:

q = Q/w (5)

h = q/u (6)

τ = 	gRJ (7)

ω = uτ (8)
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Re = uR/υ0 (9)

Fr = u/
√

gh (10)

where Q is flow discharge (m3 s−1); 	 is the water density (kg m−3); g is the constant of
gravity (m s−2); R is the hydraulic radius (m), which is equal to the mean flow depth; J is
the hydraulic gradient, which is equal to the sine of the soil surface slope angle; and υ0 is
the kinematical viscosity (m2 s−1).

2.4. Soil Sampling and Laboratory Analysis

Before Frost’s Descent in 2018, a 1 m long sample section was randomly selected
within the plant row of each plot. Three replications were carried out. We recorded the
number of plants in each sample area. In the following year, the number of surviving plants
was investigated after the plants in the sample area had resumed growth to calculate the
resume growth rate of the plant. The resume growth rate = N (number of surviving plants
before winter)/N1 (number of surviving plants after winter) × 100%.

Soil samples were collected outside the runoff plot with shovels before runoff scouring
experiments at depths of 0–5 and 5–10 cm. Three samples were collected from the top
to bottom of the gully slope and then composited as one soil sample. The sampling
process was repeated three times per vegetated treatment and the bare soil. Drying was
allowed to take place naturally by storing soil samples in well-ventilated conditions. Dried
soils were sieved through a 200 μm mesh. Sieved soils were analyzed for physical and
chemical properties.

The aggregate size distribution was measured by a slow-wetting method, with 50 g of
air-dried soil that passed through a 10 mm sieve placed on the top of three nested sieves
(2.0, 0.25, and 0.053 mm mesh) and submerged in tap water for 10 min. For 2 min, the
wet sieve apparatus (DIK-2001, Daiki Rika Kogyo Co., Ltd., Saitama, Japan) was oscillated
3 cm up and down at a rate of 30 cycles per minute. Using the resistant soil materials on
top of each sieve and the remaining unstable aggregates (<0.25 mm), all materials were
oven-dried at 50 ◦C for 48 h. The wet aggregate stability (WAS) of the soil aggregates that
remained above the sieves was calculated by weighing them after oven-drying:

WAS = (weight of aggregates on sieves/50 g) × 100% (11)

The bulk density (BD) of the undisturbed soil was determined using a cutting ring
(volume = 100 cm3) and oven-dried at 105 ◦C to a constant weight. By analyzing soil particle
size distribution with a Mastersizer 2000 laser sizer (Malvern Instruments Ltd., Malvern,
UK), soils were divided into sand, silt, and clay fractions. Soil BD, field capacity (FC), water
content (SWC), and porosity (P) were measured separately by steel ring (volume = 100 cm3)
and gravimetric methods. Soil aeration porosity was calculated as the difference between P
and FC.

Soil organic carbon (SOC) and total nitrogen (TN) contents were determined by a Euro
single elemental analyzer (Euro Vector, Milan, Italy). We measured soil total potassium (TK)
using flame photometry, and soil nitrogen (AN) using Kang Hui dishes [24]. Soil available
phosphorus (AP) was measured using a molybdenum–antimony resistance colorimetric
method [25]. The soil cation exchange capacity (CEC) was determined by the CH3COONH4
exchange method, while the soil pH level was measured using a pH meter (S20P-K; Mettler-
Toledo, Greifensee, Switzerland) in suspension with a 1:2.5 soil-to-water ratio.

After runoff scouring experiments, plants were clipped above the soil surface, sorted
by species, and oven-dried for 48 h at 65 ◦C to a constant mass, then weighed to calculate
shoot dry weight (SDW, kg ha−1). Topsoil root samples were collected by digging a
randomly selected soil block of 20 cm (width) × 20 cm (length) × 30 cm (depth). After
immersing a soil block in water for 12 h, intact and clean roots were collected by washing
three times in water. Specific root length (SRL, m g−1), root/shoot ratio (RSR), root length
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density (RLD, cm cm−3), root surface area density (RSD, cm2 cm−3), and root volume (RV,
cm3) were analyzed by a scanner (Expression 1640XL, Epson, Nagano-ken, Japan) and the
WinRHIZO 2004a root analysis system (Regent Instrument Inc., Quebec, QC, Canada). RLD
and RSD are the ratios of root length and surface area, respectively, and soil volume. Root
biomass was determined by oven-drying at 65 ◦C for 48 h to a constant mass.

2.5. Statistical Analyses

The soil properties of eight species were compared with analysis of variance (ANOVA;
t-test) and least significant difference (LSD), both at significance level p < 0.05. The coeffi-
cients of correlation between soil clay content, root characteristics, and aggregate character-
istics were determined using Pearson correlation analysis with p < 0.05. Analysis of the
data and data processing were performed using SPSS 22 (SPSS Inc., Chicago, IL, USA) and
Origin 2021 (Origin Lab Corp., Northampton, MA, USA). ArcGIS 10.6 (Esri Inc., Redlands,
CA, USA) was used to generate the study area map. Principal component analysis was
performed with SPSSAU (https://spssau.com/, accessed on 1 May 2024) to obtain scores
to evaluate the effects of short-term artificial revegetation.

3. Results

3.1. Adaptability of Artificial Revegetation

Differences in the timing of growth stages demonstrated the adaptability of artificial
revegetation on the gully slope (Tables S1 and S2). Resume growth is an important indictor
in evaluating vegetation adaptability. BR and RH were the first species to resume growth
on 3 May. Most of the species returned to green during the first 10 d period of May. The
last species to resume growth was GL on June 10. The resume growth ratio varied from
60% to 92% and was greater than 90% for ME, GL, and TR.

There were large differences in shoot and root characteristics among treatments with
different herbaceous species. GL had the largest shoot dry weight (34,817 ± 12,106 kg ha−1,
p < 0.05), whereas AS had the smallest (425 ± 150 kg ha−1, p > 0.05, Figure 2A). EN had
the largest specific root length (1.094 ± 0.240 m g−1, p > 0.05), whereas RH had the
smallest (0.004 ± 0.004 m g−1, p > 0.05, Figure 2B). RH had the largest root/shoot ratio
(2.93 ± 0.76, p < 0.05), whereas EN had the smallest (0.36 ± 0.06, p > 0.05, Figure 2C).
As shown in Figure 2D, BR had the largest root length density (0.94 ± 0.10 cm cm−3,
p < 0.05), whereas GL had the smallest (0.03 ± 0.01 cm cm−3, p > 0.05). BR had the largest
root surface area density (0.06 ± 0.00 cm2 cm−3, p > 0.05), whereas GL had the smallest
(0.01 ± 0.00 cm2 cm−3, p > 0.05, Figure 2E). As shown in Figure 2F, RH had the largest root
volume (135.2 ± 68.1 cm3, p < 0.05), whereas ET had the smallest (8.1 ± 0.2 cm3, p > 0.05).

3.2. Factors Sensitive to Short-Term Artificial Revegetation

According to the correlation matrix shown in Figure 3, the factors SY, ER, TN, TK,
AP, CEC, water-stable aggregates (>0.25 mm) (WR0.25), aggregate mean weight diameter
(MWD), and aggregate geometric mean diameter (GWD) were significantly correlated with
vegetated treatments (p < 0.05). Thus, those factors were sensitive to short-term artificial
revegetation. The factors are analyzed in detail in the following paragraphs.

3.3. Effects of Artificial Revegetation on Reducing Soil and Water Loss

An important function of herbaceous vegetation in controlling gully wall expansion is
to reduce surface runoff and sediment loss. Compared with bare soil without vegetation
coverage (BARE), vegetated treatments reduced average sediment yield by 91.1% ± 7.2%
during runoff scouring (Figure 4). Among the herbaceous species, sediment yield was most
reduced with TR (p > 0.05). By contrast, the highest sediment yield was with AS. Vegetation
coverage of RH, AS, and ET was lower than that of ME, GL, EN, TR, and BR. Surface runoff
was not significantly different between vegetated treatments and BARE (p > 0.05). Among
the herbaceous species (Table S3), flow hydraulic parameters varied with species. AS had
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the largest q and RH had the smallest q. AS had the largest Re and RH had the smallest Re.
BR had the largest Fr and GL had the smallest Fr.

Figure 2. Shoot and root characteristics ((A) shoot dry weight; (B) specific root length; (C) root shoot
ratio; (D) root length density; (E) root surface area density; (F) root volume) of eight herbaceous
species used in vegetation restoration of a gully slope. Values are mean ± SE (n = 3).
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Figure 3. Correlation matrix for vegetation treatments and related soil characteristics. The color of
each square is proportional to the value of Pearson’s correlation coefficient. Red indicates a positive
correlation (dark green, r = 1); blue indicates a negative correlation (dark red, r = 1). * p < 0.05;
** p < 0.01; *** p < 0.001. Abbreviations: SY, sediment yield; SR, surface runoff; ER, erosion rate; TN,
soil total nitrogen; SOC, soil organic carbon; BD, soil bulk density; SWC, soil water content; FC, field
capacity; SP, soil porosity; TK, soil total potassium; AP, soil available phosphorus; AN, soil available
N; CEC, cation exchange capacity; WR0.25, water-stable aggregates (>0.25 mm); MWD, aggregate
mean weight diameter; GWD, aggregate mean geometric diameter.

Figure 4. Sediment yield, surface runoff, and vegetation coverage with different species of herbaceous
vegetation. Values are mean ± SE (n = 3).

74



Land 2024, 13, 1486

3.4. Responses of Soil Physicochemical Characteristics to Artificial Revegetation

Soil physical characteristics varied with herbaceous species (Figure 5 and Table 1).
Soil aggregate fractions varied with species of herbaceous vegetation (Figure 5). Four
fractions of soil aggregates were evaluated: macroaggregates (>2.0 mm), small macroag-
gregates (0.25–2.0 mm), microaggregates (0.053–0.25 mm), and silt plus clay (<0.053 mm).
In both 0–5 cm (Figure 5A) and 5–10 cm (Figure 5B) soil layers, the silt plus clay fraction
in vegetated plots was larger than that in BARE. To analyze the relations, t-tests were
used to compare the differences in soil aggregate fractions between BARE and vegetated
treatments. In the 0–5 cm layer, the silt plus clay fraction in BARE (1.63% ± 1.86%) was
lower than that in vegetated treatments (7.51% ± 3.34%, p = 0.020). In the 5–10 cm layer,
the silt plus clay fraction in BARE (4.43% ± 3.82%) was also lower than that in vegetated
treatments (5.76% ± 2.13%, p = 0.471). In the 0–5 cm layer, WR0.25 were a larger fraction
in BARE (92.11% ± 4.32%) than in vegetated treatments (84.78% ± 4.88%, p = 0.049). In
the 5–10 cm layer, WR0.25 were also a larger fraction in BARE (92.31% ± 2.25%) than in
vegetated treatments (84.78% ± 4.88%, p = 0.093). Thus, vegetated treatments increased
the silt plus clay fraction and decreased the macroaggregate fraction of soil aggregates.
However, the differences between BARE and vegetated treatments in the 5–10 cm layer
were not significant (p > 0.05). In the 0–5 cm soil layer, the MWD (20.68 ± 9.21 mm) and
GWD (14.44 ± 13.81 mm) of BARE were greater than those in vegetated treatments (MWD:
8.67 ± 3.97 mm; GWD: 1.82 ± 1.85 mm). By contrast, in the 5–10 cm soil layer, the MWD
(3.72 ± 1.59 mm) and GWD (1.34 ± 0.33 mm) of BARE were smaller than those in vegetated
treatments (MWD: 7.61 ± 1.66 mm; GWD: 2.30 ± 1.62 mm).

Figure 5. Soil aggregate fractions with different herbaceous species on an erosion gully slope.
(A) 0–5 cm soil depth; (B) 5–10 cm soil depth.
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Soil chemical properties (Table 2) are expressed as the difference between vegetated
treatments and BARE at the 0–10 cm depth in Figure S1. The mean value of the CEC under
vegetated treatments (19.55 ± 0.67 cmol kg−1) was lower by approximately 15% than that
under the BARE condition (22.94 ± 1.43 cmol kg−1, Figure S1d). The mean values of total
N (0.92 ± 0.40 g kg−1, Figure S1e) and AP (23.94 ± 5.67 mg kg−1, Figure S1b) were lower
under vegetated treatments by approximately 39% than those under the BARE condition
(TN: 1.53± 0.35 g kg−1; AP: 36.08 ± 0.84 mg kg−1). By contrast, the mean value of TK
(7.07 ± 1.86 g kg−1, Figure S1a) under vegetated treatments increased by more than 59%
compared with that under the BARE condition (4.43 ± 0.08 g kg−1). The mean value
of the AN/TN ratio under vegetated treatments (0.07 ± 0.05, Figure S1f) was greater by
approximately 134% than that under the BARE condition (0.03 ± 0.01). The not-significant
related factors (p > 0.05) in Figure 3 are AN (Figure S1c) and SOC (Figure S1g), which were
lower under vegetated treatments (42.66 ± 3.28 mg kg−1 and 10.39 ± 5.71 g kg−1) than
those under the BARE condition (46.00 ± 1.24 mg kg−1 and 13.46 ± 0.97 g kg−1).

Table 2. Soil chemical characteristics with different herbaceous species.

Soil Layer Species
pH

(mol L−1)
CEC

(cmol kg−1)
SOC

(g kg−1)
TN (g kg−1)

AN
(mg kg−1)

AN/TN
AP

(mg kg−1)
TK (g kg−1)

0–10 cm

RH 5.95 ± 0.24 18.72 ± 1.31 16.10 ± 4.20 1.37 ± 0.30 46.22 ± 3.08 0.04 ± 0.01 31.91 ± 2.93 6.38 ± 2.15
AS 6.17 ± 0.08 18.87 ± 0.77 8.68 ± 1.31 0.92 ± 0.07 43.29 ± 3.04 0.05 ± 0.00 19.12 ± 8.91 8.44 ± 1.33
ET 6.17 ± 0.10 19.34 ± 0.90 1.03 ± 0.45 0.23 ± 0.07 37.68 ± 6.05 0.19 ± 0.08 18.13 ± 8.66 3.45 ± 0.44
ME 5.81 ± 0.18 19.37 ± 1.80 6.74 ± 5.66 0.74 ± 0.53 41.83 ± 7.89 0.11 ± 0.13 31.04 ± 3.48 6.11 ± 1.13
GL 6.03 ± 0.09 20.50 ± 1.53 6.17 ± 1.61 0.54 ± 0.17 38.81 ± 1.50 0.08 ± 0.03 22.22 ± 5.37 6.34 ± 3.62

EN 6.03 ± 0.04 19.35 ± 1.05 17.80 ± 7.70 1.31 ± 0.54 47.33 ±
10.79 0.04 ± 0.02 19.82 ± 7.22 8.90 ± 0.68

TR 5.92 ± 0.13 20.51 ± 1.11 14.28 ± 6.03 1.23 ± 0.44 43.18 ± 0.29 0.04 ± 0.02 28.71 ± 0.40 8.60 ± 0.82
BR 6.00 ± 0.08 19.78 ± 0.79 12.35 ± 7.19 1.06 ± 0.44 42.95 ± 3.00 0.05 ± 0.02 20.61 ± 7.05 8.33 ± 0.81

BARE 6.07 ± 0.05 22.94 ± 1.43 13.46 ± 0.97 1.53 ± 0.35 46.00 ± 1.24 0.03 ± 0.01 36.08 ± 0.84 4.43 ± 0.08
Mean value
of vegetated
treatments

6.01 ± 0.12 19.55 ± 0.67 10.39 ± 5.71 0.92 ± 0.40 42.66 ± 3.28 0.07 ± 0.05 23.94 ± 5.67 7.07 ± 1.86

Note: RH: Rheum palmatum L., AS: Asparagus officinalis L., ET: Elymus dahuricus Turcz. ME: Medicago sativa L., GL:
Glycyrrhiza pallidiflora Maxim., EN: Elytrigia repens (L.) Desv.ex Nevski, TR: Trifolium repens L., BR: Bromus inermis
Leyss. BARE: no vegetation coverage.

3.5. Evaluation of Short-Term Artificial Revegetation

Principal component analysis was conducted to evaluate the short-term effects of
artificial revegetation on an erosion gully. The evaluation was based on effects on soil and
water conservation, soil quality, and vegetation growth (Table 3). The evaluation of soil and
water conservation was based on SY, SR, τ, ω, Re, and Fr (Table S3). The weighting of each
parameter was 18.19%, 14.40%, 17.32%, 16.25%, 17.75%, and 16.09%, and the evaluation
scores for the eight herbaceous species were ranked AS > RH > ET > ME > GL > BR >
EN > TR. In this evaluation, the higher the ranking was, the worse the soil and water
conservation effect. The evaluation of soil quality was based on SOC, TN, C/N ratio, sand,
silt, clay, pH, BD, FC, SP, TK, AP, AN, CEC, WR0.25, MWD, and GWD. The weighting of
each parameter was 5.24%, 5.50%, 4.98%, 5.91%, 6.11%, 4.77%, 4.89%, 6.29%, 5.62%, 6.29%,
5.70%, 5.59%, 5.99%, 4.70%, 5.91%, 5.49%, and 4.82%, and the evaluation scores were ranked
TR > BR > EN > RH > ME > GL > AS > ET. The evaluation of vegetation growth was based
on VC, SDW, SRL, RSR, RLD, RSD, and RV. The weighting of each parameter was 12.67%,
13.50%, 13.79%, 15.06%, 14.39, 15.23%, and 15.37%, and the evaluation scores were ranked
BR > EN > TR > AS > ET > ME > RH > GL.
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Table 3. Comprehensive evaluation scores for effects of artificial revegetation by different herbaceous
species in an erosion gully on soil and water conservation, soil quality, and vegetation growth.

Species
Evaluation Aspects

Soil and Water
Conservation

Soil Quality Vegetation Growth

RH 0.08 0.15 −1.26
AS 3.16 −0.61 −0.06
ET −0.01 −3.42 −0.26
ME −0.11 −0.02 −0.37
GL −0.44 −0.13 −1.50
EN −0.97 0.87 0.86
TR −0.98 1.79 0.68
BR −0.73 1.37 1.92

Note: RH: Rheum palmatum L., AS: Asparagus officinalis L., ET: Elymus dahuricus Turcz. ME: Medicago sativa L.,
GL: Glycyrrhiza pallidiflora Maxim., EN: Elytrigia repens (L.) Desv.ex Nevski, TR: Trifolium repens L., BR: Bromus
inermis Leyss.

The selection of suitable herbaceous species for artificial revegetation is very important
in preventing soil degradation in erosion gullies. Based on the objectives, the suitable
herbaceous species varied a bit. However, the TR, BR, and EN consistently had the top
three rankings by score in all three aspects evaluated. This means that the three herbaceous
species (TR, BR, and EN) were suitable for preventing soil degradation in erosion gullies.
Based on the characteristics and growing period of the herbaceous vegetation planted
(Tables S1 and S2), TR was better than BR and EN. Therefore, TR was the most suitable
species for use in artificial revegetation to prevent soil degradation in an erosion gully.

4. Discussion

4.1. The Effects of Artificial Revegetation with Herbaceous Species on Soil Erosion

Reducing soil erosion is critical for controlling gully development [4]. Artificial
revegetation can quickly alter soil surface properties and reduce soil losses during surface
runoff [23]. In Figure 3, vegetation treatments had a strong relationship with sediment
yield (SY) and erosion rate (ER). MWD and GWD were significant factors influencing the
SY and ER. Increased aggregate stability will reduce soil erosion by minimizing rainfall-
induced aggregate disturbance and increasing soil pores [26,27]. However, the lower
MWD and GWD with revegetated treatments (Table 1) did not result in increased sediment
output (Figure 3). This meant that vegetation cover played an essential role in lowering
sediment yield.

Figure 4 shows how vegetation treatments reduced soil erosion. Soil erosion was
directly linked to vegetation features [7]. Previous research has shown that vegetation
coverage, and shoot and root traits all have an impact on soil erosion. However, in
our investigation, vegetation coverage was not significantly related to sediment output
(p > 0.05). In prior research, the role of vegetation coverage was to minimize rainfall
kinetic energy and prevent soil particles from dispersing [11]. The influence of herbaceous
vegetation cover was not investigated because our study focused on runoff scouring tests.
However, the roots of herbaceous vegetation play an important role in soil stabilization [28].
AS produced more sediment than other vegetated treatments due to its poor vegetation
coverage (Figure 4).

4.2. Changes in Soil Physicochemical Characteristics

Short-term (16 months) artificial revegetation of an erosion gully slope with herba-
ceous vegetation did not improve soil quality. It significantly decreased soil nutrient
concentrations (except TK), WR0.25, and aggregate water stability compared with bare soil.

Although sediment yield decreased with revegetated treatments, the WR0.25, MWD,
and GWD suggested short-term herbaceous species revegetation destroyed soil structure
and, instead of conserving nutrients, released them for plant uptake. Abiotic and biotic
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processes (e.g., SOM and microorganisms) interact to form soil aggregates as a result of
aggregation and fragmentation processes [29]. The decreased aggregate stability can be
attributed to vegetation root penetration. By affecting the size of aggregates and the con-
nectivity or size by producing [30] or clogging [31] pores, root penetration primarily affects
soil structure. Growing roots can cause soil particles and aggregates to become pressed
by growing roots during the initial stages of vegetation growth [32,33]. It is unavoidable
that the growth of roots leads to a reduction in the porosity of rhizosphere soil when the
penetration resistance of soil is greater than the pressure. Also, thickened and lengthened
roots can disperse soil particles or aggregates [34] and crack macroaggregates [35]. Al-
though short-term artificial revegetation did not increase aggerate stability in this study
(Figure 3), aggerate stability appeared to tend toward future increases, with increased large
macroaggregates (Figure 5).

In previous studies, soil nutrients increased after vegetation restoration [36–38]. How-
ever, in our study, SOC and AN were not sensitive to short-term artificial revegetation. The
soil nutrient-preserving capability (represented by the CEC) decreased with the vegetated
treatments (Figure 3). With the exception of TK, soil nutrients were generally lower under
vegetation treatment than in bare soil. One reason to explain the lack of sensitivity could
be that because the herbaceous litter input was relatively small, the C input to the soil
was also relatively small during the experiment. Secondly, a shallow root system, weak
soil consolidation, and the need for plants to absorb nutrients are also factors to consider.
The input of soil nutrients was less than the nutrients consumed by vegetation growth in
the short term. The third reason was the breakdown of soil aggregate. Newly imported
nutrients can benefit from soil aggregates because they provide physical protection and
reduce their accessibility by microbes [39–41]. However, with the breakdown of soil ag-
gregate by root penetration, the soil nutrients are mineralized and lost [42]. The decrease
in WR0.25 (Figure 5) mainly caused by the breakdown of soil aggregates could contribute
to the loss of SOC and soil nutrients. The last reason could be the “priming effect”. The
input of vegetation litter with a high C:N ratio can lead to priming effects and acceler-
ate the decomposition of native SOC [43]. Compared with farmland soils, the addition
of exogenous organic matter (vegetation litter) to gully slope soil with a relatively low
SOC content may lead to greater stimulation of microbial activity and consequently drive
increases in the decomposition of native SOC [44]. Although the TN under vegetated
treatments (0.09% ± 0.04%) was lower than that under bare soil (0.15% ± 0.04%), the AN
was not significantly different between bare soil and vegetated treatments. The results
indicated that short-term artificial revegetation increases the AN/TN ratio. Available N
consists of “temporary and slow-acting reservoirs” of SON, which are the main sources of
easily mineralized N in soil [45]. As herbaceous vegetation has a relatively short life cycle
and turnover, the soil microorganisms use readily decomposable litter from herbaceous
vegetation to increase their AN/TN ratios. The increased AN/TN ratio can lead to a
relatively rapid rate of soil N cycling [46]. The increase in TK indicated that soil K in an
erosion gully could be restored under artificial revegetation in a short time, consistent with
the results of Liu and Wang [47]. One reason for the rapid recovery could be that K is not a
limiting element in the black soil area. Another reason for the increase could be the high
contents of K returned in plant litter leading to soil K enrichment.

4.3. The Evaluation of Herbaceous Species

The goal of our study was to find suitable herbaceous species to prevent soil degrada-
tion in a black soil erosion gully based on three aspects. To our surprise, the top-ranked
three species (BR, EN, and TR, in Section 3.5) were the same in all aspects evaluated. Vege-
tation coverage is a critical factor affecting soil and water loss [11]. Yan et al. [23] found
that increasing vegetation coverage will reduce soil and water loss in the same place. In
that regard, the TR was best in controlling gully development. Improving soil quality is
another role of artificial revegetation [48]. TR revegetation increased the SOC contents,
reduced soil nutrient loss, and functioned best among the herbaceous species, followed
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by BR and EN. The vegetation growth status is also very important in controlling gully
development [23]. Root characteristics are important vegetation growth indexes that decide
the role of herbaceous species in changing soil characteristics (Figure S2). A root density
increase leads to the formation of stable macroaggregates because roots and associated
fungi form a mesh that entangles fine soil particles. In addition, roots produce exudates
that can serve as adhesives and may stimulate the activity of microbes, both of which
contribute to soil aggregate stability [49,50]. Based on the above reasons, the BR was best
in preventing soil degradation among the herbaceous species, followed by TR and EN.
Although BR, EN, and TR were the top-ranked three species in all aspects evaluated, the
TR was the best of them based on the germination rate, clarity, and resume growth ratio.

Artificial revegetation is typically accomplished with trees and shrubs in degraded
areas [51]. However, comparing the results with herbaceous species with those with trees
and shrubs, herbaceous species played a more important role in reducing soil and water
loss, soil nutrient loss, and soil carbon loss [13,52]. Especially in some serious eroding
environments like erosion gully slopes, trees and shrubs have been difficult to grow, with
few nutrients and poor soil structure [53]. Herbaceous species were demonstrated to be a
viable alternative in our study.

5. Conclusions

The effects of short-term artificial revegetation with herbaceous species in preventing
soil degradation in an erosion gully of a black soil area were evaluated. A field runoff scour-
ing experiment verified that artificial revegetation conserved soil and water, conserving soil
by decreasing sediment yields. There were significant differences in soil TN, TK, and AP
between vegetated treatments and bare soil. With a decrease in CEC, soil TK and AN/TN
increased under short-term vegetated treatments. Although WR0.25 decreased under vege-
tated treatments, the silt plus clay fraction (<0.053 mm) was greater than that with bare soil.
On the basis of a comprehensive evaluation of the effects on soil and water conservation,
soil quality, and vegetation growth, TR is recommended as the most suitable herbaceous
species to prevent soil degradation on an erosion gully slope. Although short-term revege-
tation did not improve soil quality in gullies, continuous vegetation growth will strengthen
the potential to regulate gully formation and soil degradation. Leguminosae herbaceous
species such as TR, which have a high vegetation coverage, are excellent alternatives for
gully restoration. Artificial revegetation with herbaceous species has been shown to be
an effective method for reducing soil erosion in gullies. Given the cost and time involved
with herbaceous species, we believe that artificial revegetation with herbaceous species or a
combination of trees, shrubs, and herbaceous species is a sustainable strategy to minimize
soil degradation in a black soil erosion gully in Northeast China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13091486/s1, Figure S1: Soil nutrient properties expressed
as the difference between vegetated treatments and bare soil at the 0–10-cm depth under different
herbaceous species. (a) Total potassium (TK), (b) available phosphorus (AP), (c) available nitrogen
(AN), (d) cation exchange capacity (CEC), (e) total N (TN), (f) AN/TN ratio, and (g) soil organic
carbon (SOC). Values are Mean ± SE (n = 3). RH: Rheum palmatum L., AS: Asparagus officinalis L., ET:
Elymus dahuricus Turcz. ME: Medicago sativa L., GL: Glycyrrhiza pallidiflora Maxim., EN: Elytrigia repens
(L.) Desv.ex Nevski, TR: Trifolium repens L., BR: Bromus inermis Leyss.; Figure S2: Correlation matrix
for vegetation treatments and related soil and vegetation characteristics. The color of each square is
proportional to the value of Pearson’s correlation coefficient. red indicates a positive correlation (dark
green, r = 1); blue indicates a negative correlation (dark red, r = 1). * p < 0.05; ** p < 0.01; *** p < 0.001.
Abbreviations: VC, vegetation covergae; SDW, shoot dry weight; SRL, specific root length; R/S, root
shoot ratio; RLD, root length density; RSAD, root surface area density; RV, root volume; TN, soil total
nitrogen; SOC, soil organic carbon; BD, soil bulk density; SWC, soil water content; FC, field capacity;
SP, soil porosity; TK, soil total potassium; AP, soil avaliable phosphorus; AN, soil avaliable N; CEC,
cation exchange capacity; WR0.25, water stable aggregates (>0.25 mm); MWD, aggregate mean weight
diameter; GWD, aggregate mean geometric diameter volume; Table S1: Species and characteristics of
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herbaceous vegetation planted on an erosion gully slope with 12◦ gradient; Table S2: Dates of growth
stages of herbaceous species used in vegetation restoration of a gully slope (2018–2019); Table S3: Soil
erosion and flow hydraulic parameters under different herbaceous species.
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Abstract: Co-management is a promising forest governance strategy that integrates local communities’
traditional rights and forest dependencies while aiming to improve forest cover and ecosystem health.
Bangladesh, facing high deforestation rates and limited per capita forest area, has implemented
co-management initiatives since 2003 to restore forest cover and support the livelihoods of forest-
dependent communities. While the socio-economic impacts of co-management are well studied, its
effects on forest cover remain underexplored. This study addresses that gap by using three common
spectral vegetation indices (NDVI, EVI, and MSAVI), calculated from Landsat 7 data, to analyze forest
cover changes in five major protected areas under co-management. The results indicated that dense
forest cover (41–71%) was initially prevalent in these areas, but a significant decline occurred between
2004 and 2015, with slope values ranging from −3.7 to −0.96. In contrast, the non-co-managed
control site exhibited a much smaller decline (slope: −0.48 to −0.62) across all indices. Notable
increases in agricultural land and forest–agriculture mosaics were also observed in the protected
areas under co-management. Global Forest Watch data further confirmed substantial forest cover
loss, particularly in CWS (158.77 ha) and SNP (0.49 ha). These findings highlight the need to reassess
co-management strategies to address ongoing forest degradation.

Keywords: co-management; protected area; vegetation cover; vegetation indices; tropical forest; Bangladesh

1. Introduction

Forest ecosystems require innovative and sustainable management approaches to
maintain their social, economic, and environmental functions [1]. The growing dependency
on forest resources necessitates shared responsibilities among stakeholders, including
forest resource users and decision-makers, for sustainable forest management [2]. In recent
years, influential actors such as governments and international donors have promoted
forest management models that involve resource users and other stakeholders in forest
conservation efforts [3].

Co-management, which distributes roles, responsibilities, authority, and entitlements
among government and non-government actors, aims to conserve and restore forest
ecosystems while supporting the livelihoods of forest-dependent communities [4]. By
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fostering partnerships between forest-dependent communities and government actors, co-
management integrates the social, political, cultural, economic, and environmental factors
contributing to forest destruction and resource inequality [5]. It also facilitates knowl-
edge exchange between local communities and government actors for informed decision-
making and awareness of forest conservation challenges and opportunities [6]. While
several studies [7–9] have examined the socio-economic and environmental components
of co-management, fewer [10,11] have addressed its effects on forest cover, particularly in
developing countries.

The efficacy of co-management in conserving forest cover and biodiversity varies
globally. In countries like Ethiopia [12], Malawi [13], Honduras [14], and Nepal [14,15],
co-management has proven effective, while in the Miombo woodlands of Malawi [16]
and in Haui Lu Luang, Thailand [17], it has shown limited success. Studies highlight that
co-management works best when local communities are engaged from the planning to
implementation stages (e.g., co-management in Nepal) [6]. Since project planning and
implementation contexts vary across countries, it is important to evaluate co-management
outcomes at a national level to identify best forest management practices that can be
replicated globally.

Bangladesh launched its first community forestry project, Betagi-Pomora, in 1979 to ad-
dress severe deforestation pressure [18]. Despite a nationwide logging ban from 1970 to 1980,
the Betagi-Pomora project demonstrated the potential for community involvement in
forest restoration and improving local livelihoods [19]. However, legal constraints, in-
cluding the Bangladesh Forest Act 1927 and the Wildlife Preservation Act 1974, limited
the broader adoption of co-management [20]. To address this gap, the Bangladesh For-
est Department (BFD) initiated the Nishorgo Support Project (NSP) from 2004 to 2008,
funded by the US Agency for International Development (USAID), involving five pro-
tected areas: Lawachara National Park (LNP), Satchari National Park (SNP), Rema-Kalenga
Wildlife Sanctuary (RKWS), Chunati Wildlife Sanctuary (CWS), and Teknaf Wildlife Sanctu-
ary (TWS) [20]. The NSP aimed to involve local stakeholders in managing and conserving
forests and implementing socio-economic programs to reduce forest dependency [21]. The
NSP was later expanded to 12 more protected areas under the Integrated Protected Area
Co-management (IPAC) project (2007–2013) [22] with a focus on stakeholder engagement
and capacity building [23]. This was further extended to 21 protected areas under the
Climate-Resilient Ecosystems and Livelihoods (CREL) project (2013–2018) [24]. Later, co-
management was expanded to a total of 38 protected areas under the Sustainable Forests
and Livelihoods (SUFAL) (2018–2023) and Bangladesh Ecosystems Activity (2021–2026)
projects [25]. Thus, we are not considering the CREL and SUFAL timeframe (2016–2024) in
the present study because our main goals involve the initial five protected areas.

Despite these efforts, understanding the national success of co-management is chal-
lenging due to varying management goals and the implementation context of the projects
across different socio-ecological zones. Previous studies have predominantly assessed the
socio-economic impacts of co-management [8,26], with limited focus on forest restoration
outcomes. To bridge this knowledge gap, this study uses ‘forest cover change’ as a proxy
of forest restoration for evaluating the effectiveness of co-management [27] in the five
protected areas where the NSP started in 2004 using remote sensing and GIS techniques.

Assessing the impact of co-management on vegetation cover change through remote
sensing and GIS techniques requires methodological rigor. Many previous studies mostly
relied on Landsat 5–8 [12,14,28] and Sentinel [29] data to generate land-use maps or spectral
vegetation indices. However, the discontinuation of Landsat 5 in 2013 and the Landsat 7
scan-line corrector (SLC) failure in 2003 complicated the creation of continuous times series
prior to Landsat 8’s launch in 2013. Studies that combine data from Landsat 5, 7, and 8
without cross-calibration [12,29] may introduce biases in vegetation cover estimates [30].
The use of land-use maps derived from individual bands can be misleading in hetero-
geneous vegetation canopies without proper ground-truthing [31]. Spectral vegetation
indices, such as the widely used NDVI [12,17], are generally more reliable than land-use
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maps for assessing vegetation cover change [32] but are sensitive to atmospheric conditions
and background soil moisture conditions [31]. Combining multiple vegetation indices can
effectively mitigate this issue and improve accuracy [31,32]. Some studies have used MODIS
(~1 km resolution) images for vegetation cover change detection [17], but its coarse spatial
resolution limits the detection of small-scale changes. Therefore, employing a more robust
method is essential for accurately evaluating the impact of co-management on forest cover.

Previous studies [8,33] on co-management in Bangladesh suffer from the method-
ological shortcomings discussed above, potentially leading to unreliable outcomes. For
example, Islam et al. [8] observed an overall improvement in forest cover in CWS under
co-management, while Islam et al. (2016) [34] reported rapid forest cover loss in the same
forest. Similarly, no significant forest cover change was observed in LNP and TWS by
Islam et al. [8], whereas Ahmed et al. [35], observed negative trends in LNP, SNP, and
RKWS. However, no comprehensive study has explored the spatial and temporal forest
cover change across all five protected areas (LNP, SNP, RKWS, CWS, and TWS) during
the NSP-IPAC project period (2004–2013) or compared these changes to non-co-managed
protected areas.

A comprehensive evaluation of the impact of co-management on forest cover is essen-
tial to determine the effectiveness of this approach in Bangladesh. This study addresses this
need by assessing forest cover changes in five protected areas (SNP, LNP, RKWS, CWS, and
TWS) under co-management compared to a non-co-managed control site, Rajkandi Reserve
Forest (RRF). Using Landsat 7 imagery (2003–2015) and multiple spectral vegetation indices
(NDVI, EVI, and MSAVI), this study aims to assess whether co-management schemes have
positively influenced forest cover. The findings may help guide decision-makers in refining
site-specific co-management practices.

2. Materials and Methods

2.1. Description of the Five Study Protected Areas

Teknaf Wildlife Sanctuary (TWS), with an area of 11,615 ha (Figure 1), includes
115 small villages with varying degrees of forest dependency [36]. TWS is dominated
by evergreen trees with a total of 535 species, of which 178 are herbs, 110 are shrubs,
150 are trees, 87 are climbers, and 10 are epiphytes [36]. The Asian elephant (Elephas max-
imus) is an important species of conservation at TWS. The sanctuary area has a moist
subtropical climate (temperature: 15–32 ◦C) with frequent and heavy rainfall (130–940 mm)
during the monsoon season (May to October) [37]. In 2006, a total of eight co-management
committees covering 48 villages around the TWS were formed.

Rema Kalenga Wildlife Sanctuary (RKWS) has an area of 1095 ha (Figure 1). The
sanctuary includes 45 villages with 24,000 inhabitants with a diverse range of depen-
dency on forest resources [38]. The forest hosts a rich biodiversity, comprising 634 plant
species, 167 bird species, 7 amphibian species, 18 reptile species, and 37 mammal species.
Endangered primates such as Hoolock hoolock and Trachypithecus phayrei are found in the
sanctuary [39]. The region exhibits a moist tropical climate, with an average annual rain-
fall of 4162 mm and temperatures ranging from 9.6 ◦C to 34.8 ◦C [39]. Management of
the RKWS sanctuary is overseen by a co-management council and committee focused on
conserving forest resources and landscape integrity while promoting alternative income
sources to reduce local dependence on forest resources [21].

Satchari National Park (SNP) has an area of 243 ha (Figure 1). There are 73 villages
in and around SNP with various degrees of involvement of local communities with the
park [26]. Vegetation of the SNP is evergreen, with 200 ha of “natural” forest and the rest
with secondary vegetation and planted forest. The national park is critical for protecting
globally threatened mammals like the Western hoolock gibbon (Hylobates hoolock), capped
langur (Trachypithecus pileatus), and Phayre’s leaf monkey (Trachypithecus phayrei) [26]. The
average annual rainfall in this area is 4162 mm, and temperatures usually range from 12 ◦C
to 32 ◦C [40]. Co-management at SNP comprises a co-management council, co-management
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committee, people’s forum, village conservation forums, community patrol groups, and
forest conservation clubs/youth clubs [26].

Figure 1. Map of the study areas. Here, TWS = Teknaf Wildlife Sanctuary, RKWS = Rema-Kalenga
Wildlife Sanctuary, SNP = Satchari National Park, LNP = Lawachara National Park, CWS = Chunati
Wildlife Sanctuary, and RRF = Rajkandi Reserve Forest. The left figure shows the relative position of
the study areas within the Bangladesh context. The land-use map is generated from true color band
composite (B4, B3, B2) of Sentinel-2A images of October/November 2024.

Lawachara National Park (LNP) was declared a protected forest in 1996 with an area
of 1250 ha (Figure 1). There are 26 villages, mostly with ethnic community settlements
located within the LNP, and the villagers have varying degrees of forest dependence [41].
LNP is a faunal biodiversity hotspot with 26 mammals (including five primates), 246 birds,
4 amphibians, and 6 reptile species [42]. The average air temperature varies between 26.8 ◦C
(February) and 36.1 ◦C (June). The annual average rainfall of this area is ~4000 mm, with
maximum rainfall from June to September [43]. In 2005, the LNP formed a co-management
committee involving members from the local grassroots to administrative level to create
alternative income opportunities to reduce the forest dependency of local people.

Chunati Wildlife Sanctuary (CWS) has a hilly to mountainous physiography and
an area of 7764 ha (Figure 1) [44]. The climate of CWS is typically subtropical, with an
average annual rainfall of 2493 mm, and the average temperature varies from 25.7 ◦C
in January to 32.5 ◦C in May [22]. There are 60 villages in and around the CWS with
various degrees of dependency on forest resource collection and betel leaf (Piper betel)
cultivation [8]. The forest comprises 890 ha bush, 84 ha garjan (Dipterocarpus spp.), 13 ha
small crown high forest, 11 ha open, 1458 ha plantation, 2761 scattered forest area, and
9 ha water bodies. CWS is one of the most important protected areas of Bangladesh as
it is an important habitat of globally threatened Asian elephants (Elephas maximus). Co-
management activities were implemented under two co-management committees to reduce
over-exploitation and increase forest cover [8].
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Rajkandi Reserve Forest (RRF) in north-eastern Bangladesh (24◦15′0′′ N, 91◦55′0′′ E)
spans 5295.55 ha with medium to steep slopes and water streams (Figure 1). As this forest
has not been under co-management but falls within the same eco-region, we considered RRF
as a control site. The brown, sandy clay loam to clay loam soils of RRF support a diverse
forest ecosystem that includes a total of 549 angiosperm species across 123 families [45].
RRF experiences warm, humid weather, with temperatures averaging 27 ◦C in February
and reaching up to 36 ◦C in June. High humidity prevails, ranging from 74% in March to
89% in July. Annual rainfall averages 4000 mm, peaking during the southwest monsoon
from June to September [45].

2.2. Satellite Image Collection and Processing

Given that the projects with core co-management objectives were implemented be-
tween 2004 and 2013, other projects, such as SUFAL (2016–2024), which had different
objectives, were excluded from this analysis. For the purposes of this study, 2003 was
selected as the baseline year, with 2015 designated as the endpoint for assessing the co-
management effects on forest cover restoration.

2.2.1. Base Map Collection

The base maps for the six protected areas (LNP, SNP, RKWS, TWS, CWS, and RRF)
were collected from the Nishorgo Support Project reports. These maps include boundary,
mouza, and Upazila maps [46]. Shapefiles of these protected areas were collected from the
World Database of Protected Areas [47].

2.2.2. Acquisition of Long-Term Satellite Image

Since our temporal window of interest spans from 2003 to 2015, we initially considered
using Landsat 5, 7, and 8 for data acquisition. However, their respective operational
periods—Landsat 5 (1984–2013) and Landsat 8 (2013–present)—did not fully align with the
study timeframe. Consequently, Landsat 7 was selected as the optimal choice to ensure
continuous data availability throughout the period of interest.

The Landsat 7 ETM+ satellite data from 2003 to 2015 for the six protected areas
were downloaded from the United States Geological Survey (USGS) official website
(https://earthexplorer.usgs.gov; accessed on 5 March 2022). All the downloaded images
had a spatial resolution of 30 m × 30 m and a cloud cover of less than 20%. A total of
1105 images were downloaded for the six study areas (406 for TWS, 207 for SNP, 164 for
RKWS, 99 for LNP, 112 for CWS, and 117 for RRF) from 2003–2015. For each study site
in each year, we considered images from winter (November–February), summer (March–
June), and rainy (July–October) seasons to accommodate seasonal changes that can induce
strong differences in vegetated scenes [48]. Landsat 7 data used for this study were stan-
dard Level-2 terrain-corrected (L2T) products that are already radiometrically adjusted and
atmospherically corrected [49,50]. Through the LEDAPS project, the digital number values
were finally converted to surface reflectance values [51].

2.2.3. Filtering the Bad-Quality Pixels

Filtering bad pixels is important for time series analysis, particularly with vegeta-
tion indices. If, for example, bad pixels are included in a phenology study, the results
might not show the true surface characteristics of seasonal vegetation growth [52]. Cloud-
contaminated pixels can lower the indices’ values and measurements; for example, the
timings of ‘green up’ or peak maturity will appear later than they occurred [53]. A quality
assessment (QA) band is included with each Landsat 7 image to filter affected pixels. QA
bits enhance the reliability of Landsat-derived analyses by identifying pixels potentially
impacted by surface conditions, cloud contamination, or sensor issues [54]. The pixel values
in the Level-2 QA band were converted into 16-bit binary form before use, and a criteria
table was developed (Table S1) to filter out the bad-quality pixels.
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2.2.4. Scan Line Error (SLC) Correction

Landsat 7 enhanced thematic mapper (ETM+) sensor had a failure of the scan line
corrector (SLC) on 31 May 2003, resulting in images with wedge-shaped gaps on both sides
of each scene. Scaramuzza et al. [55] developed a technique that can fill gaps in one scene
with data from the nearest (same season) Landsat 7 scene. On an array of good-quality
pixels, a linear transform is applied to the ‘filling’ image to adjust it based on the standard
deviation and mean values of each band of each scene. We implemented this algorithm
using the ENVI 5.3. The ENVI plugin ‘landsat_gapfill.sav’ [56] performs this correction by
utilizing a secondary image from the same season (with minimal cloud cover) as a reference.
A linear transformation is applied to the reference image to adjust its mean and standard
deviation for each band, ensuring compatibility with the SLC-off image. This process
effectively fills the missing data, restoring the image for further analysis [57] (Figure 2).

Figure 2. (a) Landsat 7 image (path 136 row 35) with SLC failure (9 November 2008) (b) SLC-corrected
images through the nearest Landsat images (25 November 2008) using [56] algorithm.

2.3. Calculation of Spectral Vegetation Indices

Before finalizing the approach for determining forest cover change, we evaluated both pixel-
based classification (PBC) and object-based classification (OBC) methods. While OBC can offer
advantages in certain contexts, its performance is highly dependent on the segmentation scale
and the availability of high-resolution imagery. Given that our study site contains numerous
small and highly fragmented areas, we opted for PBC, as it allowed us to classify each pixel
individually, minimizing the risk of over- or under-segmentation errors [58].

In PBC approach, several spectral vegetation indices have been proposed for the en-
hancement and extraction of vegetation information from satellite images. In this study, we
used the most common indices such as vegetation index (NDVI), enhanced vegetation index
(EVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index
(MSAVI) [59]. Using the surface reflectance values, NDVI was calculated as Equation (1):

NDVI =
NIR − R
NIR + R

(1)

where NIR and R represent surface reflectance in near-infrared and red bands.
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EVI was calculated as Equation (2):

EVI = G
NIR − R

NIR + C1R − C2B + L
(2)

where, NIR, R, and B represent the surface reflectance in the near-infrared, red, and blue
bands, respectively. G is the gain factor, while C1 and C2 are aerosol scattering correction
coefficients for the red band, using the blue band. L is the soil adjustment factor [60]. In
this study, G = 2.5, C1 = 6.0, C2 = 7.5, and L = 1 were applied [59].

SAVI is employed to correct NDVI for soil brightness effects in areas with low veg-
etation cover. SAVI, derived from Landsat surface reflectance, is calculated as the ratio
between R and NIR values, incorporating a soil brightness correction factor (L), set to 0.5 to
account for most land cover types [61]:

SAVI =
NIR − R

NIR + R + L
× (1 + L) (3)

The MSAVI minimizes the effect of bare soil on the SAVI. It is calculated as Equation (4),
a ratio between the R and NIR values with an inductive L function applied to maximize
the reduction of soil effects on the vegetation signal [59]:

MSAVI = 2 × ρNIR + 1 −
√
(2ρNIR + 1)2 − 8(ρNIR − ρRED)

2
(4)

Here, ρ represents the atmospherically corrected surface reflectance in a particular band,
while L is the canopy background adjustment factor, accounting for nonlinear radiant transfer
of NIR and R through the canopy. At higher vegetation (NDVI > 0.6), this L factor value was
considered 0 and in medium to lower vegetation cover (NDVI < 0.6) it was 0.5 [62].

For each year and study area, we had at least one image per season, resulting in at least
three vegetation index rasters annually. Prior to trend analysis, we calculated multi-season
composite images using the median value of each pixel, rather than the mean, to minimize
the influence of outliers and extreme seasonal or atmospheric variations. This approach
ensured a more robust representation of long-term trends.

Using the annual composite spectral vegetation rasters, we analyzed the net change
in vegetation indices relative to the base year of 2003. First, we subtracted the vegetation
index rasters from 2004 to 2015 from the 2003 base raster, generating new rasters with pixel
values indicating either an increase (positive) or decrease (negative) in vegetation indices
compared to 2003. Second, we calculated the net change (%) annually using Equation (5),
which considered the area:

Net change (%) =
positive change pixel number − Negative change pixel number

Total pixel number
× 100 (5)

2.4. Land Cover Classification

Although we initially considered NDVI, MSAVI, SAVI, and EVI for analyzing forest
cover change, SAVI was excluded due to its high correlation with MSAVI (r = 0.9, p = 0.01).
Using spectral vegetation indices derived from Landsat 7 ETM+ satellite images, we
classified each protected area into one of five land-use and land-cover (LULC) types:
(a) barren, waterbodies, and built-up areas; (b) agriculture; (c) a mix of agriculture and
forest; (d) dense forest; and (e) highly dense forest. Threshold values for NDVI, MSAVI,
and EVI were employed to determine these land use classes. Standard vegetation index
thresholds (Table 1) were adapted from the USGS website and refined for our study areas
by testing several points against Google Maps imagery from the same year (Figure 3).
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Table 1. Adjusted threshold of spectral index values used in this study for LULCC.

Land Use Land Cover Classes
Threshold Value

NDVI EVI MSAVI

Barren, with waterbodies, and built-up 0–0.19 0–0.14 0–0.19

Agriculture 0.2–0.4 0.15–0.29 0.2–0.3

A mix of agriculture and forest 0.41–0.6 0.3–0.34 0.31–0.41

Dense forest 0.61–0.8 0.35–0.54 0.42–0.65

Highly dense forest >0.8 >0.55 >0.65

Figure 3. Schematic flowchart illustrating the sequence of satellite image processing steps used in
this study.

2.5. Statistical Analysis

Satellite image bulk downloading, pre-processing, spectral indices calculations, and
statistical analyses were conducted in the R statistical software (version 4.0.3) [63]. To
test the significance and the magnitude (increasing or decreasing) of trends in LULC
classes in the protected areas of Bangladesh since the initiation of the co-management
approach, the Mann–Kendall (M–K) trend test and the Theil–Sen slope estimator were
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utilized in this study, respectively. The Mann–Kendall test was conducted using the
“Kendall” R-package [64]; slope analysis was done using “Robslopes” R-package [65].

3. Results

The LULC classification based on NDVI, MSAVI, and EVI values indicated that in all
six protected areas, the largest proportion of land was covered by dense forests (~41–71%)
followed by forest–agriculture mosaic (~19–47%), agriculture (~4–8%), highly dense forests
(~0.5–2.2%), and barren-building-waterbody (~0.3–0.4%). The overall pattern in land cover
was consistent for the three vegetation indices, but the proportion of land cover classes
varied among the protected areas (Table 2 and Figure 4).

Table 2. Summary of Mann–Kendall (M–K) tests and Theil–Sen slopes for land use and land cover
(LULC) change trends based on NDVI, MSAVI, and EVI values over the period of 2003 to 2015 for
five pilot protected areas in Bangladesh for co-management project.

PAs LULC Classes NDVI MSAVI EVI

Tau p Slope Tau p Slope Tau p Slope

Overall

Barren-
building-

waterbody
−0.38 <0.01 −2.1 × 10−17 −0.25 <0.01 9.8 × 10−16 −0.29 <0.01 1.05 × 10−16

Agriculture −0.17 0.04 0.01 −0.22 <0.01 0.04 −0.15 0.07 0.09

Forest–
agriculture

mosaic
0.13 0.12 2.59 0.37 <0.01 1.00 −0.13 0.10 1.13

Dense forest −0.15 0.07 −3.7 −0.28 <0.01 −1.74 0.29 <0.01 −0.96

Highly
dense forest −0.15 0.08 1.3 × 10−17 −0.28 <0.01 −6.9 × 10−2 −0.12 0.16 −0.003

CWS

Barren-
building-

waterbody
−0.02 0.95 0.00 0.38 0.07 0.01 0.05 0.85 0.0009

Agriculture 0.46 0.03 0.25 0.76 <0.01 0.91 0.48 0.02 0.63

Forest–
agriculture

mosaic
0.28 0.20 2.43 0.53 0.01 1.34 0.64 <0.01 2.94

Dense forest −0.25 0.24 −2.15 −0.59 <0.01 −1.74 −0.12 0.58 −0.96

Highly
dense forest −0.66 <0.01 −0.04 −0.82 <0.01 −0.023 −0.28 0.20 −0.009

TWS

Barren-
building-

waterbody
0.87 <0.01 1.73 0.77 <0.01 0.455 0.30 0.16 0.05

Agriculture 0.69 <0.01 1.87 0.35 0.09 0.57 0.74 <0.01 1.39

Forest–
agriculture

mosaic
−0.25 0.24 −3.75 0.05 0.85 0.202 0.17 0.42 0.43

Dense forest 0.07 0.76 0.25 −0.33 0.12 −1.28 −0.43 0.04 −1.11

Highly
dense forest 0.24 0.28 0.002 −0.30 0.19 −0.0007 −0.35 0.09 −0.016
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Table 2. Cont.

PAs LULC Classes NDVI MSAVI EVI

Tau p Slope Tau p Slope Tau p Slope

LNP

Barren-
building-

waterbody
1.0 1.0 0.00 −0.14 0.56 0.00 0.19 0.50 0.00

Agriculture −0.23 0.31 −0.0006 −0.46 0.03 −0.61 −0.15 0.50 −0.023

Forest–
agriculture

mosaic
−0.05 0.854 −0.017 −0.56 <0.01 −4.62 −0.05 0.85 −0.22

Dense forest −0.10 0.669 −0.387 0.667 <0.01 6.55 0.05 0.85 0.08

Highly
dense forest 0.38 0.09 0.158 0.49 0.03 0.03 0.20 0.38 0.02

SNP

Barren-
building-

waterbody
−0.32 0.22 0.00 0.09 0.738 0.00 −0.07 0.84 0.00

Agriculture 0.55 0.01 0.021 −0.19 0.389 −0.12 0.185 0.43 0.00

Forest–
agriculture

mosaic
0.53 0.01 2.53 0.64 <0.01 3.62 0.41 0.05 1.70

Dense forest −0.61 <0.01 −2.08 −0.69 <0.01 −3.64 −0.48 0.02 −1.78

Highly
dense forest −0.05 0.86 0.00 −0.05 0.86 0.00 −0.37 0.10 −0.023

RKWS

Barren-
building-

waterbody
−0.02 1.0 0.00 −0.14 0.54 −0.003 −0.25 0.27 −0.0002

Agriculture −0.23 0.29 −0.01 0.33 0.12 0.47 −0.20 0.36 −0.23

Forest–
agriculture

mosaic
0.61 <0.01 5.42 0.53 0.01 3.92 0.43 0.04 1.14

Dense forest −0.53 0.01 −4.58 −0.48 0.02 −4.27 −0.33 0.12 −0.62

Highly
dense forest 0.07 0.79 0.00 −0.13 0.61 0.00 0.20 0.38 0.006

RRF

Barren-
building-

waterbody
0.008 0.92 0.024 0.05 0.51 0.02 0.01 0.87 0.02

Agriculture 0.14 0.08 1.35 0.11 0.16 1.02 0.15 0.05 0.99

Forest–
agriculture

mosaic
0.23 <0.01 2.44 0.14 0.07 2.22 0.29 <0.001 2.09

Dense forest −0.32 <0.001 −2.88 −0.20 0.01 −2.63 −0.21 <0.01 −2.36

Highly
dense forest −0.05 0.55 −0.47 −0.11 0.20 −0.46 −0.13 0.09 −0.52

93



Land 2024, 13, 1709

Figure 4. Theil–Sen LULC change trends in five co-managed protected areas in Bangladesh over
time (2003–2015) based on NDVI, MSAVI, and EVI. Black solid lines indicate overall trends, while
colored lines indicate corresponding protected areas, including CWS (Chunati Wildlife Sanctuary),
LNP (Lawachara National Park), RKWS (Rema-Kalenga Wildlife Sanctuary), SNP (Satchari National
Park), TWS (Teknaf Wildlife Sanctuary), and one non-co-managed area Rajkandi Reserve Forest (RRF)
as control site.

3.1. Overall Trend of Land Cover Change in the Six Study Areas over the Co-Management Period

The Mann–Kendall (M–K) test was used to assess significance, and the Theil–Sen
test was applied for slope estimation. Our overall results indicated that the propor-
tion of dense forest decreased significantly (MSAVI and EVI: p < 0.01; NDVI: p = 0.07)
over the co-management period in the five protected areas, with higher slopes (−3.7 to
−0.96) compared to other land cover classes. RRF showed similarly large decreases in
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dense forest areas in non-comanaged areas, with NDVI, EVI, and MSAVI ranging between
−2.88 to −2.36 (p < 0.01) for slopes. Conversely, both agriculture and forest–agriculture
mosaic land cover classes increased significantly, with agriculture having lower slope values
(0.01–0.09, p < 0.05) than those of the forest–agriculture mosaic (1–2.53; MSAVI: p < 0.01)
in co-management sites. On the other hand, highly dense forest and barren-building-
waterbody land cover classes remained unchanged with fluctuating (positive/negative)
but extremely low slope values. For the highly dense forest cover class, the slope values
ranged from −6.9 × 10−2 to 1.3 × 10−17, and for the barren-building-waterbody classes,
slope values ranged from 9.8 × 10−16 to −2.1 × 10−17 (see Table 1 and Figure 4). In the
control site RRF, the barren-building-waterbody class showed minimal change with non-
significant slope values (NDVI: 0.024, MSAVI: 0.05, EVI: 0.02). Agriculture exhibited a
positive trend with significant slope values (NDVI: 1.35, MSAVI: 1.02, EVI: 0.99). The forest–
agriculture mosaic displayed significant growth with highly significant slope values (NDVI:
2.44, MSAVI: 2.22, EVI: 2.09). Dense forests experienced a significant decline (p < 0.001)
in slope values (NDVI: −2.88, MSAVI: −2.63, EVI: −2.36). Highly dense forest showed
non-significant trends (NDVI: −0.47, MSAVI: −0.11, EVI: −0.13) with p-values ranging
from 0.55 to 0.20, indicating stability in this land cover class within the RRF.

3.2. Protected Area-Specific Trends in Land Cover Change during the Co-Management Period

Our analysis showed a highly variable land cover change among the protected areas
during the co-management period. The proportion of dense forest declined with time
in the SNP, TWS, RKWS, and CWS while increasing in LNP. On the other hand, the
proportion of agriculture and forest–agriculture mosaic increased in the SNP, TWS, RKWS,
and CWS while declining in LNP. The patterns of the highly dense forest and barren-
building-waterbody classes were similar across the protected areas during the study period.

Although the dense forest cover was dominant, the proportion of dense forest in SNP
declined significantly [NDVI slope: −2.08 (p < 0.01); MSAVI: −3.64 (p < 0.01); EVI: −1.78
(p = 0.02)] from ~90% to 0.5–1% (Figure 4d,i,n). The largest decline slope in dense forest
cover was observed in RKWS [NDVI slope: −4.58 (p < 0.01); MSAVI slope: −4.27 (p < 0.05)].
Similarly, in CWS [EVI slope: −1.11 (p < 0.05)] and TWS [EVI slope: −1.11 (p < 0.05)], the
proportion of dense forest cover declined significantly. The proportion of dense forests in
CWS, as indicated by NDVI, decreased from ~70% in 2003 to ~34.5% in 2015. The MSAVI
and EVI also showed similar decreasing trends of dense forest cover with slightly different
magnitudes in TWS throughout the period. Unlike other protected areas, in LNP, there was
a significant increase [MSAVI slope: 6.55 (p < 0.01)] in the dense forest from ~1% (in 2003) to
~80% (in 2015); however, non-significant trends were found in NDVI and EVI (see Table 2).

Similarly, the forest–agriculture mosaic in SNP increased significantly (Table 2) from
10–17% in 2003 to 94.5–98% in 2015 (see Figure 4c,h,m). A similar pattern was also observed
for the forest–agriculture mosaic in RKWS [NDVI slope: 5.42 (p < 0.01); MSAVI slope: 3.92
(p = 0.01); EVI slope: 1.14 (p = 0.04)] throughout the co-management period (Figure 4c,h,m),
with a decreasing trend in the first few years and then increasing to reach ~80–90% cover.
The forest–agriculture mosaic in CWS also showed a significant increasing trend [NDVI
slope: 2.43 (p = 0.20); MSAVI slope: 1.34 (p = 0.01); EVI slope: 2.94 (p < 0.01)]. In LNP,
however, this pattern was the opposite and showed a significant decreasing trend [NDVI
slope: −0.017 (p = 0.85); MSAVI slope: −4.62 (p ≤ 0.01); EVI slope: −0.22 (p = 0.85)]
throughout the study period.

The agriculture land cover in SNP increased slightly from 0% (2003) to 4.5–7.5% (2015)
with a slope ranging from −0.12 to 0.02 and was only significant (Table 1) for NDVI-
based classification (slope = 0.021; p = 0.01) (Figure 4b,g,i). Although the overall trend
was not significant in RKWS, NDVI-based classification showed that agriculture land
cover was below 1% in 2003, increased to ~3% during 2005–2006, decreased to ~1%, and
remained the same afterward. MSAVI and EVI-based classification also showed a similar
pattern for RKWS. In TWS, the agriculture land cover trend showed a significant positive
slope with values ranging from 0.57–1.87. Agriculture land cover increased significantly
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[NDVI slope: 0.25 (p = 0.03); MSAVI slope: 0.91 (p < 0.01); EVI slope: 0.63 (p = 0.02)] in CWS
during the co-management. In 2003, the proportion of agricultural land use accounted for
~4%, ~19%, and 11.5%, while in 2015, they reached ~24%, ~25%, and ~28% based on NDVI,
MSAVI, and EVI classifications, respectively. Unlike other protected areas, in LNP, there was
a significant decreasing trend in agricultural land cover throughout the study period [NDVI
slope: −0.0006 (p = 0.31); MSAVI slope: −0.61 (p = 0.03); EVI slope: −0.023 (p = 0.50)].

There were no significant trends in highly dense forest land cover in SNP in 2003–2015
except a slight temporary gain in 2007–2009 (~2% based on MSAVI) (Figure 4e,j,o) with
trend slope values ranging from 0.00–0.023 (Table 1). In CWS, highly dense forest cover
decreased significantly with very low slope values [NDVI slope: −0.04 (p ≤ 0.01); MSAVI
slope: −0.02 (p ≤ 0.01); EVI slope: −0.009 (p = 0.20)]. The proportion of highly dense forest
cover in RKWS was below ~1% at the beginning of co-management and remained the same
throughout the study period with no significant trend. Likewise, based on both NDVI
and EVI, the proportion of highly dense forests in TWS declined from 6–13% (2003) to
below ~1% (2015), although the trend was not significant. EVI-based classification showed
a marginally significant (p = 0.09) decline with a low slope value (−0.016). Unlike other
protected areas, a significant increasing trend was observed for highly dense forest cover
in LNP from 2003 (0%) to 2015 (~5.5%) based on MSAVI (slope = 0.03, p = 0.03), while the
NDVI-based trend (slope = 0.158, p = 0.09) was marginally significant.

Moreover, no trend was observed for the proportion of the barren-building-waterbody
class over time in SNP, CWS, LNP, and RKWS, which was below ~1% at the inception of
the co-management approach in 2004 and remained the same throughout the study period
based on all spectral indices (Table 2; Figure 4a,f,k). In contrast, in TWS, this land cover
class increased significantly [NDVI slope: 1.73 (p < 0.01); MSAVI slope: 0.45 (p < 0.01)]
throughout the study period. The proportion of the barren-building-waterbody class
increased from ~1% to ~17.5% (NDVI), ~1% to ~5.5% (MSAVI), and ~1% to ~4.5% (EVI).

In RRF as our control site, our analysis of land cover dynamics revealed distinctive
patterns across various classes. The barren-building-waterbody class exhibited minimal
changes with non-significant trends (NDVI slope: 0.024, p = 0.92; MSAVI slope: 0.02,
p = 0.51; EVI slope: 0.02, p = 0.87) (Table 2, Figure 4a,f,k). Agriculture showed a significant
positive trend (NDVI slope: 1.35, p = 0.08; MSAVI slope: 1.02, p = 0.16; EVI slope: 0.99,
p = 0.05), indicating an increase over the study period (Table 2, Figure 4b,g,l). The forest–
agriculture mosaic experienced substantial growth with highly significant trends across all
spectral indices (NDVI slope: 2.44, p < 0.01; MSAVI slope: 2.22, p = 0.07; EVI slope: 2.09,
p < 0.001) (Table 2, Figure 4c,h,m). Dense forests exhibited a significant decline (NDVI slope:
−2.88, p < 0.001; MSAVI: −2.63, p = 0.01; EVI: −2.36, p < 0.01), indicating a noteworthy
reduction in coverage (Table 2, Figure 4d,i,n). Highly dense forest, however, demonstrated
non-significant trends (NDVI slope: −0.47, p = 0.55; MSAVI slope: −0.46, p = 0.20; EVI
slope: −0.52, p = 0.09) in this land cover class within the RRF (Table 2, Figure 4e,j,o).

3.3. Pixel-to-Pixel Changes of Spectral Indices over Time

The pixel-to-pixel change expressed as the percentage of area change of NDVI, MSAVI,
and EVI values to the 2003 pixel values provided detailed dynamics of land cover change
in the study areas over the co-management period. Starting from 2004, all study areas
showed a similar pattern until 2006, and they diverged during 2011–2012, where CWS
and TWS had a net negative change and LNP, SNP, and RKWS had a net positive change
in NDVI, MSAVI, and EVI values (Figure 5). After that, the pattern was reversed for all
protected areas and turned into a negative change except for TWS. From 2013 onwards,
the negative change continued for CWS and SNP, TWS oscillated between positive and
negative changes, and LNP and RKWS started to show positive change for the rest of the
study period. On the other hand, our non-co-managed protected area RRF exhibited a
continuous negative trend from 2003 to 2015.
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Figure 5. Net change (%) of vegetation indices (NDVI, EVI, and MSAVI) compared to the base year (2003)
(Calculated from Equation (5) in the Methods). The NSP co-management project timeline was from 2004
to 2008, the IPAC timeline was from 2007 to 2013, and the CREL projects were from 2013 to 2015.

3.4. Forest Cover Change from Global Forest Watch Data

To support our current analysis, historical forest cover loss (ha/year) for the six pro-
tected areas included in this study was retrieved from the Global Forest Watch database
to assess the general deforestation trend (2003–2015) in the area (Figure 6). Over 10 years,
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the highest total forest cover loss occurred in CWS (158.77 ha), while the lowest was in
SNP (0.49 ha). In LNP, the total forest cover loss was estimated to be 15.45 ha through-
out 2005–2015 with a peak loss of 5.8 ± 0.44 ha (mean ± SD) in 2009. In CWS, the
peak forest cover loss occurred in 2006 (36.2 ± 1.3 ha), 2009 (24.2 ± 1.3 ha), and 2012
(36 ± 1.7 ha). In RKWS, total forest cover loss over the period was 128.42 ha with a peak
loss of 68.6 ± 5.36 ha in 2007. In TWS, a total of 154.42 ha and the highest loss (16.4 ± 1.3 ha)
occurred in 2011 (Figure 6). In the control site RRF, the total forest cover loss over the study
period amounted to 77.8 ha. The most substantial annual loss occurred in 2006, reaching
48.2 ± 2.17 ha. Notably, 2008 and 2009 witnessed significant losses of 34.6 ± 0.8 ha and
37.2 ± 4.38 ha, respectively (Figure 6).

Figure 6. Forest cover loss (ha) from the Global Forest Watch data in six protected areas from 2005 to
2015. Here, RRF = Rajkandi Reserve Forest, CWS = Chunati Wildlife Sanctuary, LNP = Lawachara
National Park, RKWS = Rema-Kalenga Wildlife Sanctuary, SNP = Satchari National Park, and
TWS = Teknaf Wildlife Sanctuary.

4. Discussion

4.1. Co-Management Reduces Forest Cover in Major Protected Areas of Bangladesh

A decline in dense forest cover was found in SNP, TWS, RKWS, and CWS during the
co-management period (2004–2015), with the CWS also showing a significant decrease in
highly dense forests (Figure 4). This is consistent with findings from prior studies that re-
ported deforestation during certain co-management periods in the TWS [36], RKWS [66,67],
SNP [68], and CWS [33,44,69,70]. One of the major drivers for the reduced forest cover
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was the expansion of agricultural land, with the overall increase in agriculture and forest–
agriculture mixed land cover being observed for most protected areas (Figure 4; Table 2).
High economic return was likely the major motivation for the conversion of forests to
agricultural land. With agricultural land, local communities can generate more annual
income by growing cash crops with short-term returns, such as betel leaf [33,36]. Due to
a similar economic incentive, Islam et al. (2020) [71] found that the co-management approach
reduced forest biodiversity because fast-growing, exotic, and valuable timber species were
preferred over slow-growing native tree species in tree plantation programs in protected areas.

Urban expansion, forest dependency, and ineffective policy enforcement also play
important roles in the decreased forest cover in the protected areas. Land expansion
due to increased population may result in land encroachment for human settlement and
infrastructure development [36], which require tree removal and land clearance. In addition,
local communities and ethnic communities have a high dependency on forests and forest
resources [36], which may directly contribute to forest cover loss through activities such
as illegal logging and cattle grazing [33]. The high forest dependency of local households
may be due to the lack of alternative non-forest income sources, suggesting the necessity of
reducing the forest dependency of local people to enhance forest conservation. Studies on
RKWS [38] and SNP [26] revealed that the co-management approach shifted strong forest
dependency toward alternative income generation activities, which may potentially reduce
the loss of forest cover. Ineffective co-management policy enforcement may also contribute
to the failure of forest conservation in the protected areas. The different demands and
mistrust among different stakeholders and the limited engagement of local communities in
decision-making and enforcement processes [36,44] likely resulted in the local communities’
fear of losing the forest land and the resources and unwillingness to protect the forests [66].
In addition, since long-term land tenure is not available and the benefits of protecting
forests are unclear [22], the incentive for forest protection was weak for local people. Other
land cover types, such as barren land, buildings, and waterbodies, were found to gradually
increase during the co-management period, being consistent with the increased barren land
from 2005–2015 in the study conducted by Islam et al., (2018) [44].

4.2. Co-Management Increases Forest Cover in LNP

In general, the co-management approach has been effective in increasing highly
dense and dense forests in LNP during 2004–2015 (see Figure 4; Table 2). The results
contradict the findings from Islam et al. (2019) [8] that indicated a decreased forest cover
in LNP from 2011–2017 due to illegal logging but are consistent with recent studies [69]
that revealed the fluctuating but increasing trend of dense forest cover during the co-
management period. The increased dense and highly dense forests were mainly due to
the conversion of agricultural and forest–agricultural mixed land into forests, indicated by
the significant declines of agricultural and forest–agricultural mosaic land areas (Figure 4;
Table 2). Such land cover changes likely resulted from the creation of alternative income-
generation activities and reduced forest dependency of local communities in LNP [72,73].
The co-management approach provided alternative income-generating activities, such as
training and educational programs, and diverse employment opportunities, such as jobs
associated with ecotourism, that generated higher and stable income and/or returns but
lower risks relative to intense forest wood extraction and illegal logging, so deforestation
activities in the protected areas decreased [72]. The increased forest cover was also likely
attributed to the experimental plantation in the LNP by the Bangladesh Forest Research
Institute (BFRI) in 2015 [8]. In addition, economic incentives (e.g., paid jobs associated with
forest conservation) were provided for forest protection and the close participation and
engagement of local households in forest conservation, and decision-making processes
were encouraged in the co-management approach in the LNP; thus, forest cover and
biodiversity both improved under the co-management practice [69,74]. However, some
studies have shown a decreased biodiversity in the LNP during the co-management period
due to the establishment of fast-growing valuable timber species (e.g., Acacia auriculiformis)
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as a monocultural tree plantation [71]. Overall, the involvement of local communities in
the co-management has been found to be the key factor in improving the livelihood of the
communities from financial, social, physical, natural, and human aspects and enhancing
sustainable forest restoration [73,75]. In addition, the moderate to high scores that the forest
conservation outcomes received in the survey of local people indicate high satisfaction
with the co-management practices [76]. This indicates the importance of inclusion and/or
enforcement of indigenous and mixed-species plantations in reforestation practice in future
co-management plans.

4.3. Co-Management Impact on Total Vegetation Cover in the Five Pilot Protected Areas

Co-management had varying effects on total vegetation cover across the five pilot
protected areas. Specifically, vegetation cover increased in LNP, SNP, and RKWS, while
declines were observed in CWS and TWS relative to the pre-co-management baseline in
2003 (Figure 4). The sharp reduction in vegetation cover in CWS aligns with Global Forest
Watch data, which highlights significant vegetation loss, particularly in 2006, 2009, and
2012 (Figures 4 and 5). Similarly, LNP experienced notable vegetation declines in 2006 and
2012, which corresponds to the Global Forest Watch observations. These reductions may be
attributed to illegal tree removal activities, particularly in 2011 [8].

Overall, the findings in our study are consistent with the previous studies that high-
light the differential impacts of co-management on vegetation cover, which can vary
depending on specific protected areas and management strategies. For instance, the ob-
served loss of vegetation in CWS is consistent with studies by Islam et al. (2018) [44] and
Rahman and Islam (2021) [70], who reported significant declines in vegetation cover during
co-management periods, likely driven by agricultural expansion and illegal logging. These
findings underscore the challenges of implementing effective co-management in areas
experiencing high socioeconomic pressures, where forest conservation often competes with
local livelihood needs.

Conversely, the positive impacts of co-management observed in LNP, SNP, and RKWS
are consistent with recent studies [69,73], suggesting that co-management can mitigate
deforestation by providing alternative income-generation activities for local communities.
Community-based conservation initiatives, such as ecotourism employment and other
livelihood programs, have likely contributed to reduced dependence on forest resources,
thereby alleviating deforestation pressures [26,72]. The net positive values of NDVI, EVI,
and MSAVI in LNP, SNP, and RKWS can be attributed to increased total vegetation cover
in the forests and crops in agricultural land. Nevertheless, while these gains are promising,
prioritizing the enhancement of forest cover remains critical to preserving dense forests
and maintaining biodiversity [69,74].

Several studies have emphasized the integral role of forest cover restoration and
biodiversity conservation in sustaining forest ecosystem services. For example, Masum
et al. (2023) [69] and Ferdous (2015) [74] advocate for reforestation and conservation policies
that prioritize mixed-species planting, which enhances forest health and biodiversity. These
strategies are critical for ensuring the long-term ecological stability of protected areas under
co-management frameworks.

4.4. Forest and Total Vegetation Cover in Forests Without Co-Management Practices

While recent studies have extensively examined the effects of co-management on
land use and vegetation cover dynamics in protected areas [36,66,68,69], the Rajkandi
Reserve Forest (RRF), which operates without a co-management framework and served
as the control site in this study, has received comparatively little attention. Our findings
indicate that RRF experienced a decline in dense forest cover alongside an increase in
agricultural lands and forest–agriculture mosaic areas between 2003 and 2015 (Table 2;
Figure 4). Additionally, the overall forest cover in RRF showed a decreasing trend during
this period (Figures 5 and 6).
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These observations are consistent with projections of declining forest cover in RRF,
with the mean forest cover estimated to decrease from 13,782 ha in 1988–2018 to 11,986 ha by
2100 [35]. This trend suggests that, in the absence of co-management practices, the conversion of
forested areas into agricultural lands may accelerate, as local communities prioritize agricultural
expansion driven by economic necessity over forest conservation efforts.

Our results also align with findings from Haque et al. (2018) [45], who reported a rich
angiosperm flora in RRF but noted significant pressures from land use changes. While the
number of angiosperm species in RRF was higher than in CWS, it remained lower than
in RKWS and LNP, underscoring the need for targeted conservation interventions in this
region. The identification of 25 threatened species in RRF highlights the critical need to
protect both forest cover and biodiversity [45].

Since the effectiveness of the co-management practice strongly varies across protected
areas, the development of policies tailored specifically to RRF is essential. Our study suggests
the importance of incorporating reforestation efforts and engaging local communities in
forest management strategies to mitigate further deforestation and promote biodiversity
conservation.

5. Conclusions

Our study conducted a rigorous assessment of the impact of co-management on forest
cover in five pilot protected areas where co-management initiatives began in Bangladesh.
Using spectral vegetation indices derived from remote sensing data, we identified signifi-
cant decreases in dense forest coverage alongside increases in agricultural lands and forest–
agriculture mosaics. These findings highlight the urgent need for enhanced co-management
strategies that more effectively address the underlying drivers of deforestation.

Methodologically, our research fills a critical gap by providing a comprehensive
analysis of overall forest cover changes resulting from co-management practices. The
use of rigorous remote sensing techniques allowed for precise quantification of spatial
and temporal variations in vegetation cover, thereby strengthening the reliability of our
conclusions. This robust approach offers valuable insights into the effectiveness of co-
management strategies and their impact on forest conservation.

The implications of our study are significant for policy formulation in Bangladesh
and globally. Targeted conservation efforts are imperative, especially in areas experiencing
substantial forest loss such as CWS and SNP. Our findings underscore the importance of
developing adaptive forest governance frameworks that prioritize community engagement
and enhance ecosystem resilience. By incorporating scientific evidence into policymak-
ing, stakeholders can devise more effective strategies for deforestation mitigation and
biodiversity conservation.

Globally, this research contributes to the discourse on sustainable forest management
by demonstrating both the potential benefits and limitations of co-management approaches.
It emphasizes the necessity for policies that are context-specific, addressing local socioeco-
nomic pressures while fostering community participation. The methodologies and insights
presented in this study can inform policymakers, conservationists, and community leaders
worldwide, aiding in the development of more effective forest conservation strategies
across diverse ecological, political, and cultural landscapes.
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Abstract: This study aims to present a methodological approach based on the objectives of the Nature
Restoration Law and the concept of Forest Landscape Restoration to identify areas that are best
suited for the implementation of Nature-based Solutions for the improvement of landscape and
habitat status in the city of Campobasso (1028.64 km2). Using open data (ISPRA ecosystem services
and regional land use capability), an expert based approach (questionnaire), and a multicriteria
analysis (Analytical Hierarchy Process), the Total Ecosystem Services Value index was determined as
a weighted additive sum of the criteria considered. The index was then classified into eight clusters,
and the land use “Cropland” was extracted. Cluster 1 croplands (740.09 Ha) were identified as
the areas to be allocated to Nature-based Solutions since they were those characterized by fewer
ecosystem services provisioning, while Cluster 8 croplands (482.88 Ha) were identified as valuable
areas to be preserved. It was then possible to compare the “Forest” areas currently present in the
study area with those of a possible future scenario, represented by the areas occupied today by forest
with the addition of Cluster 1 croplands. A landscape analysis was conducted; it showed greater
dispersion and fragmentation of forest patches in the future scenario, but also greater connectivity
and thus greater ecological functionality of the patches.

Keywords: forest; multicriteria analysis; Urban Atlas; Nature-based Solutions; croplands; ecosystem
services; landscape analysis

1. Introduction

Urbanization is proceeding at an extremely fast pace; for the first time since 2008,
more than half of the world’s population lives in cities [1], and it is estimated that this will
affect 66% of 9.8 billion people by 2050, mainly due to the social and economic process that
has progressively resulted in the abandonment of rural, hilly, and mountainous areas [2]
and the consequent process of urbanization. As a result, built-up land is expanding, while
surrounding natural environments and green areas within urban areas are threatened [3].
In fact, urban sprawl has a substantial ecological footprint and is a driver of land use
change [4]. Although cities occupy only 2% of the earth’s surface, people are already using
75% of all natural resources [1]. This implies the configuration of available urban green
spaces as central elements in increasing the quality of urban settings and local resilience,
resulting in positive impacts on people’s health and well-being [5].

It is important to develop a network of green infrastructure, not just ancillary green,
so that it can cope with the high complexity and dynamism of urban areas [6]. Another
fundamental aspect to consider at the planning level is the structure and choice of areas to
be allocated to green spaces, as well as their type. In general, different types of green spaces
should be planned with an emphasis on biodiversity and the use of native species [5]. It is
necessary for green infrastructures to be well planned as they can contribute differently to
the provision of ecosystem services (ES), depending on the vegetation types and different
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types of green spaces and corridors (e.g., urban trees and rows), patches (e.g., isolated
trees), and matrices (e.g., urban and peri-urban forests) [7]. Urban and Peri-urban forests
(UPFs) provide multiple ES; in particular, they mitigate the microclimate and reduce
pollution through pollutant sequestration, promote carbon storage, and are crucial for
erosion control [8]. In addition, they are important as habitats for rare animal and plant
species, as well as for biodiversity and pollination [3]. In some contexts, their role is also
relevant in providing citizens with provisioning services such as nuts, berries, mushrooms,
herbs, and hunting [9]. In addition, there are numerous physical benefits associated with
green spaces; they improve mental health and well-being [10], reduce stress caused by
modern lifestyles [11], and may have lasting psychological benefits [12]; benefits related
to longevity have also been found [13]. Promoting UPFs by securing the ES they produce
is incredibly important for human well-being and future generations; however, UPFs are
threatened by accelerated urbanization, deforestation, and climate change, which also affect
their ability to provide ES [14]. In addition, according to recent estimates [15], between 60
and 70% of European Union (EU) soils are unhealthy, being subject to erosion, compaction,
organic matter reduction, pollution, biodiversity loss, salinization, and sealing. When soil
is healthy, it can provide provisioning, regulating, supporting, and cultural services, e.g.,
EU croplands and grasslands produce ES amounting to 76 billion euros per year, of which
only one-third is directly related to agricultural production [15].

According to the Report on Land Consumption, Spatial Dynamics and Ecosystem
Services by the SNPA (National Service for Environmental Protection) [16], land consump-
tion affects an average of 19 hectares per day in Italy, with a cemented surface area of
about 21,500 km2. This phenomenon is mainly due to urban expansion, which makes the
soil impermeable, thus resulting in a greater susceptibility to flooding and increased heat
waves, to the loss of biodiversity, green areas, and ES, and decreased resilience [17,18],
with a damage of 8 billion euros per year [16]. Urban sprawl, together with road networks
and constructions, also leads to the loss and fragmentation of agricultural lands, which
can impact agricultural process inputs [19]. Peri-urban agriculture represents a substantial
contribution to ES, acting as a groundwater table recharge zone and stormwater runoff
sink and enhancing the aesthetic appeal while providing food security [20]. Focusing on
Nature-based Solutions, increasing green infrastructures could lead to the improvement of
ecosystem health by reconnecting fragmented natural and semi-natural environments and
restoring damaged habitats to provide more goods and services [21].

The Nature-based Solutions (NbS) term first appeared in the early 2000s, primar-
ily in the context of solving agricultural issues, such as the use of habitats to mitigate
farm effluent [22], later giving great emphasis to NbS to major contemporary societal chal-
lenges, such as climate change [23]. It is an umbrella concept that encompasses a range
of ecosystem-related terms and approaches that address societal challenges [24]. This
concept represents a set of environmentally friendly alternatives that support the provision
and maintenance of ES, and it integrates into other concepts, such as those of green and
blue infrastructure, urban forestry, ecological engineering, etc. The strength of NbS lies in
providing co-benefits and generating advantageous solutions (e.g., multifunctionality) [25].
According to the European Commission, an action can be addressed as NbS if it uses nature
or natural processes if it enhances or provides social, economic, and environmental benefits,
and if it has a net benefit on biodiversity [26], such as vertical forests in urban settings [27].
The accumulated knowledge on NbS demonstrates that they are locally attuned solutions
to the social context and generate multiple benefits [28]; their use could address climate
change and biodiversity loss while supporting various sustainable development goals [29].
In this regard, governmental and nongovernmental organizations are providing funds
globally to implement NbS [30], with the main focus on reforestation and afforestation
programs [31] such as the EU’s “Three billion trees” [32] and the “Great Green Wall” [33].
Sustainable and successful NbS must deliver benefits for biodiversity and people [34];
trade-offs and synergies play a key role in NbS design [24].
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Due to pressure from rapid urbanization and increased vulnerability to risks associ-
ated with climate change in cities around the world, NbS are increasingly being promoted
and integrated, especially into urban planning [30,35,36]; however, their importance is
also increasing in agricultural and forestry landscapes, with a multitude of benefits, as
biodiversity conservation [37]. In fact, climate change is affecting European ecosystems and
human well-being, and it is estimated that there will soon be even greater threats related
to ecosystems and the socioeconomic system [38]. NbS are increasingly seen as central
elements in various areas due to their efficiency in coping with climate change-related
extreme events through mitigation and adaptation actions, preserving human health and
psychosocial well-being, improving air quality, and increasing landscape connectivity [25].
A limitation, however, is land availability, which is a barrier to implementing NbS within
cities [35]. Another limitation is associated with the fact that policy instruments for the
implementation of NbS are mostly related to the municipal sphere and not at the land-
scape or higher levels of planning, which would instead allow the multifunctionality of
NbS to be enhanced [39]. To make NbS efficient, they require integrated, cross-sectoral
planning and governance strategies for their integration and deployment [40], as well
as the involvement of numerous stakeholders, whose contribution is essential for NbS’
long-term success [41,42]. Despite their widespread deployment in cities, there are still
numerous challenges related to NbS, including the lack of information about their benefits,
uncertainties about the inadequacy of existing planning systems, as well as how to plan,
design, implement, and manage them adequately [43]. In fact, it is more challenging
to manage NbS relying on restoration efforts than the conservation and management of
native vegetation. It is fundamentally important to consider the presence of barriers to
implementing NbS in degraded areas [44].

Brian Alan et al. [45] review shows that most of the studies on NBSs focus on specific
aspects, including

• barriers/enablers of NBS;
• public participation/engagement/education;
• monitoring/evaluation of NbS project outcomes;
• policy and governance issues;
• social issues;
• private sector involvement.

Few studies evaluate ecological data or ES for the identification of such areas; pref-
erence is given to specific factors based on the function that NbS will have, such as land
use [46], intrinsic characteristics of soils [47], landscape elements [48] or, at most, ES are
evaluated but not the methodologies for identifying areas for NbS [49].

The aim of this study was to present a proper methodology approach to identify
degraded agricultural areas for restoration through NbS interventions to improve the
landscape and habitat status. The areas were identified from the level of ES provision and
obtained through an expert-based approach.

2. Materials and Methods

2.1. Study Area

The study area is represented by the Urban Atlas [50] of the Province of Campobasso
(Figure 1), which includes 38 municipalities in the Molise Region, Italy, which is also part
of the study area of the PNRR-NBFC (National Biodiversity Future Center) project [51].
This choice was motivated by the desire to analyze the landscape system and the green
infrastructure from a broader perspective than the mere administrative boundaries of the
single city (Campobasso), which acts as a hub, in line with the political and planning
guidelines of recent years.
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Figure 1. Study area.

The study area is 1028.64 km2, the minimum altitude is 148 m above sea level (Mu-
nicipality of Macchia Valfortore), while the maximum altitude is 1086 m above sea level
(Municipality of Cercemaggiore). From a landscape point of view, according to the ISPRA
(Higher Institute for Environmental Protection and Research) Map of Types and Physio-
graphic Units of Landscape of Italy [52], the study area is classified as Terrigenous Hills
Units consisting of terrigenous lithologies, with contrasted morphology, and Terrigenous
Mountains Units in which the mountainous reliefs are characterized by terrigenous litholo-
gies consisting of marls, clays, and sands. The high erodibility of these lithologies, along
with the tendency for the drainage network to deepen, contributes to the modest elevation
of the reliefs, which are prone to landslides and water erosion.

The 2018 ISPRA National Land Cover Map [53] with a 10 m spatial resolution was used
to characterize the land use and cover. The map was obtained through the integration of
data from the Copernicus Program’s Land Monitoring Service with ISPRA’s Land Use data.
The choice of data referring to 2018 was dictated by the fact that the most recent ES data used
for the computations are available for 2018 only. The study area has a strong agricultural
vocation, mainly represented by arable land; in fact, these areas characterize around 63% of
the territory, followed by forests that occupy 25%, non-agricultural meadows that occupy
just over 6%, and artificial surfaces that occupy just under 5% of the territory, respectively.

According to the last ISPRA Report on Soil Consumption [54], around 20% of the
province of Campobasso will be affected by soil consumption in 2022, for a total area of
12,337 hectares. In 2018, the reference year in this study, it is 12,822 hectares [55].

2.2. Methodology

The methodology (Figure 2) is based on the use of a series of available map layers
related to ES delivery to develop a model that is extendable to a national scale and replica-
ble in other case studies for the identification of areas characterized by low ES provision
or situations of ecological degradation where environmental restoration interventions
are needed. Interest fell on agricultural areas, particularly “Croplands”, which occupy
50.83% of the entire area, to identify “valuable” areas characterized by high ES provision
and adequate land capability and those “degraded” to restore through NbS interventions.
Through a Landscape Ecology analysis, a comparison was also made in terms of ecological
connectivity and functionality, making a comparison between the current ecological net-
work arrangement present in the study area and a hypothetical scenario in which the areas
identified by the above model are subject to NbS interventions.
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Figure 2. Study workflow.

2.3. Assessment of Ecosystem Services Provided in the Study Area

The ES maps used were created with the InVEST (Integrated Valuation of Ecosystem
Services and Tradeoffs, provided by the Natural Capital Project) (ver. 3.3.0) [56] suite of
models, which provide biophysical and economic analysis of the ESs delivered by the area.
The software consists of several independent packages to evaluate 17 ESs belonging to
all four ES categories of the Millennium Ecosystem Assessment (MEA) [18]. The model
associates each land use class with a value of ES delivery. What ensures the quality and
accuracy of the outputs is the ability to take advantage of accurate inputs on land use
and land biophysical characteristics, which are then used by the model to calculate ES
delivery in biophysical and, therefore, economic terms [57,58]. InVEST models suite uses
cartography derived from the integration of High-Resolution Layers [59], Corine Land
Cover, and the 2012 [60] national land use map [58].

According to Munafò [58], four of the 17 ESs selected are the most suitable for the agri-
cultural field—carbon storage and sequestration, habitat quality, agricultural production,
and pollination (Figure 3).

(a) (b)

(c) (d)

Figure 3. InVEST maps. (a) CSS; (b) HbQ; (c) AP; (d) Pol.
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2.3.1. Carbon Storage and Sequestration (CSS)

CCS is a regulating service; to varying degrees, all terrestrial ecosystems contribute to
providing this ES. In general, it can be said that the more natural the ecosystem, the greater
its capacity to store and sequester carbon. Natural and semi-natural environments have
the highest potential for sequestration and storage [57]. The estimation of this service in
biophysical terms is achieved by spatializing the tons of carbon stored for each land use
type [58].

2.3.2. Habitat Quality (HbQ)

HbQ is a supporting service; in fact, it is used as a proxy for assessing the state of land
biodiversity [61]. Due to multiple pressures, such as land use change, sealing, urbanization,
etc., habitats are subject to degradation and alteration, ecosystem fragmentation, and
reduced ecological resilience. The InVEST model outputs a dimensionless index of quality
ranging from 0 to 1; this index expresses values that are not absolute values of quality but
rather relative to the environmental conditions of the study area; the value associated with
each unit is derived from the relationship between each unit and neighboring units [58].

2.3.3. Agricultural Production (AP)

AP is part of the provisioning services, an important service related to the many areas
used for productive purposes in agriculture. This service is influenced by climatic-stational
factors, such as latitude, climate, exposure, slope, altitude, etc., and the type of use, whether
intensive or extensive. Soil consumption, in the context of agricultural production, leads to
loss of service in the present and the future since the soil is a nonrenewable resource [61].
For the assessment of this ES, the average agricultural values were used, divided, and
spatialized for each rural region [58]. The study area is characterized by four of the seven
rural regions of Molise (specifically 1, 2, 4, and 6) [62].

2.3.4. Pollination (Pol)

Pol is a very important regulating service; it is provided by pollinating animal organ-
isms, such as bees and bumblebees, and by agents, such as wind and water. This service is
guaranteed depending on the availability of nesting habitat and floral resources, climate,
and the foraging distance of pollinators, that is, the distance that must be traveled to reach
nectar and pollen sources. The InVEST model outputs a dimensionless Pol index ranging
from 0 to 1, depending on the suitability of a given portion of land to host pollinators [63].
For further details on the InVEST model and the mapping used, see ISPRA [58].

2.4. Land Capability (LCap)

LCap, also referred to as “natural use”, is an indispensable element in land use
planning and development policies; it is based on many soil parameters, such as clinometry,
erosion, rockiness, flooding frequency, soil depth, soil composition (clay, sand, silt) and
hydromorphy. Indeed, land use that deviates greatly from its natural use causes severe
impacts on the environment, including soil erosion and reduced fertility [64]. The land
capability classification was developed by the U.S. Department of Soil Conservation Service;
it is useful for assessing the distribution of constraints, including slope, erosion risk,
climatic conditions, and soil depth, that create restrictions in agriculture. Eight classes
have been defined; the first four, with different propensities, are found to be appropriate
for agricultural activity, while the latter have more restrictions (Figure 4). For further
information, see Klingebiel A. & Montgomery [65].
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Figure 4. Land capability in the study area.

2.5. Normalization of Criteria

Since the information used was very heterogeneous in terms of data types and units
of measurement, it was necessary to harmonize it through normalization to make it compa-
rable and usable by the model.

For the CSS, HbQ, Pol, and AP services, normalization was performed on the minimum
and maximum values, i.e., by setting the minimum value of the service in the study area to
0 and the maximum to 1 and scaling the intermediate values linearly again.

As for the normalization of LCap, however, 0 corresponds to built-up areas, which
have no propensity for agricultural use, while one corresponds to areas with little or no
restrictions and, therefore, with a better propensity for agricultural use.

2.6. Multi-Criteria Analysis for the Assessment of Ecosystem Services and Identification of
Valuable and Degraded Areas

The approach used to identify areas for NbS is based on multi-criteria analysis (MCA).
MCA represents an umbrella concept that encompasses more than a hundred methods
that evaluate an object by considering different dimensions of interest and the interactions
between multiple, often conflicting objectives and different decision criteria and metrics.
The performance of an option against the various objectives and criteria, which can be
assigned different weights, in this case from 0 to 1, are identified by scores. Higher scores
are associated with higher performances [66].

The Analytic Hierarchy Process (AHP) method, developed by Thomas L. Saaty be-
tween 1971 and 1975 and later improved and integrated within spatially explicit models
and tools (e.g., GIS), was chosen. This method organizes information by having different
criteria interacting in different ways so that they are able to reflect their relative importance
to the objective at hand [67]. The criteria used for the analysis model were the four ESs and
the LCap.

To give weight to each of the five criteria, an expert-based approach was followed by
administering a questionnaire to 19 experts in academia from the following disciplinary
fields: Forestry, Environmental Sciences, Biological Sciences, Economics, and Natural
Sciences. This questionnaire was structured to compare all criteria with each other in pairs,
in a pairwise comparison, assigning a relative weight based on five options.

• Equally important (1);
• Moderately more important (3);
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• Strongly more important (5);
• Clearly more important (7);
• Extremely more important (9).

Sixteen of the 19 experts answered the questionnaire; each questionnaire was subse-
quently analyzed using the Weight Tool of the IDRISI Selva software (Free ver. 17.0) to
determine the relative weight assigned by each expert to each criterion considered.

The software output provides the relative weight of the criteria associated with each
questionnaire and the Consistency Ratio (CR). The CR is a measure of the consistency of
the judgment matrix, and it shows the probability that the values in the pair comparison
matrix are randomly generated [68]. Thomas L. Saaty defines CR as

CR =
CI

Mean Random CI

The CR is defined as the ratio of the Consistency Index (CI) to the average of the CIs
obtained from a large sample of randomly generated matrices.

In turn, CI is defined as

CI =
λmax−n

n − 1

where λmax is the largest principal eigenvalue of a positive pairwise comparison matrix.
The index, in each case, is only based on pairwise comparisons that have already been
made previously.

According to Saaty, the CR is acceptable if its value is less than 10% (between 0 and
0.10); however, a value of up to 20% (<0.20) is also considered tolerable [69]. Of the 16 CR
values, six were out of the acceptable/tolerable range because they had a value higher
than 0.20; therefore, they were not examined, as they were inconsistent according to the
methodology adopted. The average value of all the CRs considered (Table 1) was 0.103,
which is considered acceptable.

Table 1. Relative weights of considered criteria.

HbQ Pol LCap CSS AP CR

Q1 0.1687 0.1687 0.4195 0.0743 0.1687 0.03
Q3 0.5557 0.1193 0.0572 0.2337 0.034 0.10
Q4 0.2896 0.1367 0.2552 0.2724 0.0461 0.08
Q5 0.3349 0.1195 0.2945 0.1243 0.1268 0.2
Q7 0.3686 0.2339 0.1335 0.0546 0.2093 0.07
Q8 0.327 0.3643 0.1004 0.1376 0.0707 0.08
Q9 0.5131 0.259 0.0514 0.1481 0.0285 0.08
Q12 0.3257 0.3799 0.1101 0.1451 0.0393 0.08
Q13 0.4533 0.1148 0.1353 0.0821 0.2145 0.16
Q16 0.3188 0.2832 0.0699 0.2969 0.0311 0.15

The relative values of the individual criteria defined by the questionnaires are shown
in Table 1.

The final weights to be given to the five criteria are shown in Table 2 and are equal to
the average of the relative weights given in Table 1. This sum must always be equal to 1.

Table 2. Weights assigned to layers using expert based approach and respective standard deviation.

Criteria Weight Standard Dev.

HbQ 0.36554 0.11
Pol 0.21793 0.10

LCap 0.1627 0.12
CSS 0.15691 0.08
AP 0.0969 0.08
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For completeness, the standard deviation was also calculated for each criterion considered.

2.6.1. Weighted Sum of the Considered Criteria

Once all criteria were normalized, the weighted sum was performed using the weights
obtained previously. The final index, the Total Ecosystem Services Value (TESV) [70], was
then equal to

TESV = ∑ HbQn ∗ w + APn ∗ w + Poln ∗ w + SSCn ∗ w + LCapn ∗ w

where subscript n denotes the normalized (0 to 1) scale value of the individual ES while w
denotes its relative weight obtained by the expert-based approach. The TESV values range
from a minimum of 0 to a maximum of 1.

2.6.2. Clustering of TESV Index: K-Means for Grids

To clearly identify valuable and degraded areas, the TESV index was clustered using
the K-means clustering algorithm “Hill-Climbing” in the SAGA GIS environment.

According to the eight land capability classes, eight clusters were generated, with a
distribution of increasing values from cluster 1 to cluster 8; cluster 1, i.e., the one character-
ized by lower ES provision and lower agricultural land use predisposition, was considered,
from which the areas of “Cropland” were extracted to identify the areas to be targeted for
NbS interventions.

2.7. Analysis of Changes in Terms of Landscape Fragmentation and Ecological Connectivity
2.7.1. Current Forest and Future Scenarios

Once the arable land to be targeted for NbS interventions was identified, starting from
the current forest area map (current scenario), a hypothetical future scenario (potential
scenario) was created, in which the current forest area is added to the newly created areas
related to the “Cropland” areas of Cluster 1. To assess the possible changes in terms of
ecological connectivity and functionality in the two scenarios, maps of both the current and
potential forests were produced. This analysis was conducted using Landscape Ecology
techniques, the discipline that studies and implements the relationship between spatial
patterns and ecological processes at multiple scales and organizational levels [71].

2.7.2. Landscape Metrics

The ecological connectivity and functionality analysis of the two scenarios was con-
ducted using a set of class and landscape metrics referring to the land use class “Forest” by
means of the Fragstats 4.2 software [72].

The selected metrics are shown in Table 3.

Table 3. Selected class and landscape metrics.

Class Metrics Landscape Metrics

Patch Density (PD)
Landscape Similarity Index (LSI)

Total Core Area (TCA)
Euclidean Nearest Neighbor Distance

(ENN_MN)
Euclidean Nearest Neighbor Distance
(Area–Weighted Mean) (ENN_AM)

Percentage of like adjacencies (PLADJ)
Normalized Landscape shape index (NLSI)

Average Area (AREA_MN)
Mean Radius of Gyration (GYRATE_MN)
Number of Disjunct Core Area (NDCA)

Disjunct Core Area Density (DCAD)
Aggregation Index (AI)
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3. Results

3.1. Processing of the Final Cartography (TESV Index)

The analysis of data (Table 4) showed that the spatial distribution of the TESV index
in the study area ranges from 0.046 to 0.823, with an average value of around 0.451 and
a coefficient of a variation of 19.06%. Almost 45% of the area is classified as intermediate
clusters 4 and 5; the highest values are concentrated in the south, particularly the southwest
and northwest, while the lowest values are in the east. The spatial distribution of the TESV
index is shown in Figure 5a.

Table 4. Range of values for each identified cluster (A), and area both in hectares and percentage by
cluster (B).

A B

Cluster
Minimum

Value
Maximum

Value
Cluster Area (Ha) Area %

1 0.046 0.268 1 3470.3 3.37
2 0.268 0.348 2 8139.9 7.91
3 0.348 0.403 3 12,930.2 12.57
4 0.403 0.446 4 18,292.2 17.78
5 0.446 0.484 5 25,334.4 24.63
6 0.484 0.529 6 20,966.9 20.38
7 0.529 0.597 7 9011.6 8.76
8 0.597 0.823 8 4718.2 4.59

(a) (b)

Figure 5. (a) Spatialized TESV index; (b) Clusters identified with K-means for grids from SAGA GIS.

After the spatialization of the TESV index, it was clustered into eight clusters according
to the index values. Figure 5b shows the spatial distribution of the TESV index ranked in
the eight clusters mentioned above.

Following the identification of the eight clusters, it was possible to extract only the
cluster area of “Cropland” (Table 5) in order to analyze the distribution of the clusters
within this land use class. As for the total area, the highest values are mostly concentrated in
the southern part of the study area, while the lowest ones are in the eastern part (Figure 6).
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Table 5. Percentage of individual clusters compared to the area of the class “Croplands”.

Cluster Area (Ha) Area %

1 740.09 1.42
2 3450.09 6.60
3 5991.32 11.46
4 10,637.76 20.35
5 16,843.73 32.22
6 12,116.36 23.18
7 2012.49 3.85
8 482.88 0.92

Figure 6. Distribution of clusters according to “Croplands”.

More than 70% of “Croplands” are represented by intermediate clusters (4, 5, and 6),
with a range from 0.403 to 0.529.

3.2. Cartographies of Valuable Areas and Degraded Areas

Cluster 8 is identified as the one representing the most valuable areas based on the
highest TESV values, with a range between 0.597 and 0.823 (Figure 7b). These areas cover
a total of 4718.2 hectares, accounting for just 4.59% of the study area, and are predomi-
nantly located in the southwest. Only 9.5% of total valuable areas (448.23 Ha) fall within
Natura2000 sites. In addition, just 10.23% of cluster 8 areas (482.88 Ha) are classified under
the “Croplands” land use class.
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(a) (b)

Figure 7. (a) Cluster 1 detailing those falling under Croplands; (b) Cluster 8 detailing those falling
under Croplands.

On the other hand, the areas to be designated for NbS have the most degraded
agricultural land use, particularly those in Cluster 1 of the “Croplands” class (Figure 7a),
which represent 1.42% of this land use class (740.09 hectares). This portion represents 0.72%
of the entire study area, and 22.62% (750.21 hectares) of “Croplands” in cluster 1 fall within
the Natura2000 protected areas.

3.3. Future Scenarios: Potential Forest

By transforming the “Croplands” land use of Cluster 1 into forests and adding them
to the “Forest” class, it was possible to obtain the map of potential forests, which would
occur if these agricultural areas were subject to NbS interventions (Figure 8). The current
“Forest” covers an area of 25,976.06 hectares, while the potential forest would have an area
of 26,718.36 hectares, with an increase of 2.86% over the present situation (+742.30 hectares).

Figure 8. Potential Forest. In red are the newly added areas (cluster 1 Croplands).
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In the current scenario, 18.20% of the “Forest” (4727.38 hectares) are Natura2000 areas;
in the potential scenario, however, these increase to 49.38 hectares.

3.4. Analysis of Metrics

To investigate how connectivity and ecological functionality vary between the two
scenarios, current forest, and potential forest, class, and landscape metrics were calculated
using Fragstats software (ver. 4.2.1).

Table 6 shows the results obtained as outputs for the class metrics.

Table 6. Class metrics comparison between current and potential forest.

Metrics Current Forest Potential Forest

PD 4.8177 7.6036
LSI 96.6678 109.9036

TCA 26,269.55 27,011.85
ENN_MN 50.9801 44.3603
ENN_AM 28.2223 26.0803

PLADJ 94.0350 93.3110
NLSI 0.0591 0.0663

Analyzing the difference between current forest and potential forest (Table 6), it is
evident that PD increases, in line with the addition of new patches from agricultural land.
The same trend can be seen with the LSI, as the increase in forest class patches automatically
makes them less rare. The increase in TCA is interesting, and it denotes an increase in patch
contiguity and a reduction in fragmentation and edge effect; ENN_MN decreases, which
means that the distance between patches decreases as their number increases, even in areas
initially lacking “Forest” land use class, which was confirmed by ENN_AM. The reduction
in the PLADJ shows a reduction in patch density not due to a reduction in number but
to a greater dispersion of patches, resulting in greater fragmentation of the forest due to
the addition of new patches. In addition, the increase in NLSI is indicative of greater class
complexity and irregularity.

Table 7 shows the results obtained as outputs for the landscape metrics.

Table 7. Landscape metrics comparison between current and potential forest.

Metrics Current Forest Potential Forest

AREA_MN 2.7146 1.7686
GYRATE_MN 28.9786 22.7855

NDCA 9677 15,273
DCAD 4.8177 7.6036

AI 94.0930 93.3679

The “landscape” metrics considered (Table 7) are in line with the considerations made
above for the “class” metrics. The AREA_MN increases due to the addition of new smaller
forest patches. Also, the decrease in GYRATE_MN represents a reduction in the dispersion
of patches around their center of mass, hence greater connectivity. The increase in NDCA
denotes the increase in core areas, i.e., the increase in portions of habitat that are far from
the edge and not affected by the edge effect, supported by the increase in DCAD. The
reduction in AI, moreover, tends to emphasize a lower aggregation of particles, mainly due
to the increase of forest patches even in areas that were initially devoid and, consequently,
a greater dispersion of patches.

4. Discussion

4.1. Analysis Model

While developing the analysis model, it soon became clear that there was limited
literature on the subject, not for what concerns mapping ESs, which are widely covered
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and studied, but more for identifying areas characterized by poor ES delivery to be im-
proved and for the extraction of degraded areas. Fahrudin et al. [73] stand out among
the studies; its aim was to identify priority areas for afforestation and reforestation using
an approach that integrates MCA and machine learning techniques based on indicators
of ES, fire susceptibility, and environmental pressure. It is a multi-indicator approach,
as this study, but uses different ES—carbon sequestration for climate change mitigation,
biodiversity, and clean water. The present study differs both in the choice of parameters
and areas, which in this case was achieved through the historical analysis of areas that have
experienced deforestation due to various factors; however, the Fahrudin et al. survey was
conducted on areas that were, in any case, characterized by disturbance, while the present
study investigates low ES provision and inappropriate land use, according to the Land
Capability map.

Another study examined was that of Coelho et al. [68], who developed a similar
methodology, using AHP to develop an EVI (Environmental Vulnerability Index) based
on four criteria—land use adequacy (like LCap), a burned area, erosion susceptibility,
and quantitative water balance. The weights of the criteria derive from an expert-based
approach. The final index was then spatialized, and five areas of equal size were divided
within the study area. However, in addition to environmental factors, our study also
considers economic factors, which were ignored by Coelho et al.

Among the few examples of models found, it was then decided to base this study on
the one conducted by the working group of the University of Molise, in collaboration with
ISPRA, on the Metropolitan City of Rome (MCR) [74], whose aim was the identification of
agricultural areas of greater and lesser value. The MCR model used 4 ESs (CSS, QHb, Imp,
and AP), then normalized and summed them together. In this study, as well as adding
the information related to LCap, which influences the capacity of ESs to be delivered, it
was decided to include an expert-based approach to get the weight of individual criteria to
finally define the TESV index.

However, there are still some aspects that could be improved. The choice to submit
the questionnaire only to experts was dictated by the need to have competent people in
the investigation, but in a subsequent phase, stakeholders could also be involved, such
as policymakers, local communities, as well as environmental NGOs, to obtain a broader
opinion, not in particular in the definition of this index, but first for the choice of priority
areas for intervention and what other needs the NbS to be created should satisfy, thus
giving indications on the type and characteristics of the NbS to be created.

Another possible aspect to consider is related to the nature of ownership, public or
private, of the identified areas. This information is fundamental for defining the manage-
ment and restoration policies of the territory. In Italy, this information is accessible thanks
to the national land cadastre, which is totally computerized and georeferenced, allowing it
to be interrogated in order to know the ownership of each parcel. The system also allows a
WMS (Web Map Service) to be used with all GIS software. Starting from the cartography of
degraded agricultural areas to improve through NbS would make it possible to overlap
the two layers and identify the parcels of interest and, thus, also the ownership in an
exact manner. Nevertheless, areas around infrastructures are mostly publicly owned but
managed by different entities depending on the infrastructure typology, so it would be
possible to access public funding for NbS interventions in these areas. It would be useful to
check the feasibility of projects aimed at improving the delivery of ES by minimizing the
implications for private properties or by providing for public/private agreements aimed at
improving the return for both [75].

The proposed model could be easily replicable for most of the Italian Regions; the
availability of national data regarding the 4 ESs considered would allow for a large-scale
analysis. In addition to this, it has been verified that 14 of the Italian regions have publicly
accessible land capability maps available online, while the remaining seven may also have
such maps, though they are not directly accessible online. For example, the Molise land
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capability map was not directly accessible, but it was provided by the Molise Regional
Geological Services.

4.2. Distribution of Clusters

Looking at the distribution of the TESV index throughout the study area, it is possible
to state that the most prevalent values are the average ones. In fact, the most represented
clusters are Clusters 4, 5, and 6 (values between 0.403 and 0.529), with an average TESV
of 0.451. In fact, the valuable areas (Cluster 8), together with those of lesser value (Custer
1), occupy less than 8% of the entire territory; if only agricultural areas are analyzed, out
of the total of about 52,274 hectares, the percentage of the territory occupied by Clusters 1
and 8 is 2.34%. Parallel to the need to act on the rehabilitation of low TESV areas, the low
presence of high value agricultural areas triggers considerations as to whether NbS should
be used to increase them.

To analyze the location of degraded areas, a 60 m buffer was made around the urban
land use of the ISPRA land use map (code 11000), in accordance with SNPA [16], to identify
areas subject to influence by anthropogenic disturbances and to assess the percentage of
degraded areas that fall within this buffer. Of the 3470.3 total hectares in Cluster 1, 70.61%
fall within the buffer, while of the 740.09 hectares of arable land in the same Cluster, 86.18%
(2990.7 Ha) fall within the buffer (Figure 9).

Figure 9. Degraded areas and 60 m urban buffer.

The output is in line with the values of the HbQ service, which is also the ES given
the highest relative weight by most experts. As stated by Sallustio et al. [61], the quality
and degradation of habitats are highly dependent on the distribution and intensity of
anthropogenic impacts, and consequently also on the proximity of the disturbance, as well
as on the suitability of a given portion of land to host species and habitats. The impact
on HbQ increases as the distance from the disturbance decreases. The fact that the areas
of greatest degradation fall largely within the buffer is a significant finding. Targeted
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interventions could, in fact, encourage an increase in the quality of contiguous agricultural
areas (e.g., through agroforestry facilities, which would increase the supply of ESs within
the areas under consideration). In addition, they also prevent further land consumption
due to unprofitable agricultural areas, which could be abandoned or built upon, further
implementing land consumption and the deterioration of the structural and functional
characteristics of the landscape matrix as a whole.

4.3. Connectivity

Linear soil sealing (e.g., roads and highways) plays a real barrier effect on migratory
routes and animal movements in general, thus resulting in a serious threat to biodiversity [76].

The Landscape Ecology analysis was useful in highlighting an increase in the disper-
sion of the forest land use class, due, however, not to the fragmentation of existing patches,
as they have not been reduced or converted to other land uses, but to the increase in the
number of small forest patches (“Croplands”, Cluster 1) within areas initially devoid of this
land use. A further problem is that, unfortunately, in some agricultural landscapes, these
small forest patches are decreasing, including in Molise [77]. Another relevant aspect is the
increase in core areas as well as increased patch complexity and irregularity, highlighted,
respectively, by the TCA and NLSI class metrics together with the DCAD landscape metric.
Despite forest fragmentation and disaggregation increase, the ENN_MN and ENN_AM
class metrics emphasize greater connectivity. In fact, the increase in the number of smaller
patches decreases their spacing, which renders better connectivity at the landscape level,
which is highlighted by the GYRATE_MN landscape metric. The newly added patches can
be configured as true steppingstones, fostering the connectivity and movement of species,
and represent the starting point for the creation of continuous linear elements and green
corridors, mainly close to the road network, also in line with the National Urban Green
Strategy [2], whose purpose is to implement the Ecological Network at the national level,
fostering connectivity between different areas (human, agricultural and natural).

4.4. Which NbS?

The choice of NbS to use to improve the delivery of ES is mainly dictated by the
characteristics and location of degraded areas. For the rehabilitation and improvement of
areas close to roads, one might consider investing mainly in green corridors or peri-urban
forests. Much depends, however, on the type of ES to be enhanced, the available budget for
its implementation and maintenance [78,79], or other policy-planning requirements.

It is crucial to plant trees, either isolated or in groups, as they are considered the best
natural element to increase the spectrum of ES provisions [25], and they have the potential
to reach high-standard restoration goals [80]; tree planting, in fact, would play a positive
role in increasing connectivity and ecological restoration. Also not to be underestimated is
the aesthetic perception of the landscape and how it might improve because of tree planting.
A survey conducted by Di Cristofaro et al. [81] emphasized the aesthetic preference towards
landscapes rich in out-of-forest trees in anthropized contexts, confirming the theory that
the most common landscape preference is for increased exposure to nature, even more so
in highly built-up areas.

Ultimately, the present experiment has highlighted the validity of the TESV index for
identifying degraded areas and areas of value as a tool to support wide area spatial planning,
as a connecting element between guidelines and policies, and the detailed planning level at
a municipal scale, in line with Munafò et al. [74]. Since most works focus on the city and
site scales [82], it could be an important approach to assess areas for NbS implementation
at different scales.

The choice of the most suitable NbS for each case can be made with specific tools, such
as those provided by the NBFC Project—Nature-based Solutions and Ecological Restoration
(Spoke 4) [51]. The objectives of this project also included the implementation of a catalog
and tool to support the design of NbS for the restoration and maximization of ecosystem
services based on scientific evidence obtained in the field and laboratory through innovative
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approaches. Planned actions include the cataloging of NbS case studies in degraded areas
and the assessment of their impact, identification and testing of the most suitable tree and
herbaceous species for NbS implementation.

5. Conclusions

The MCA applied for the identification of agricultural areas for NbS interventions
seemed suitable for achieving our outlined objective; this method can be improved, but
it is already possible to extend it to most of the national regions. The provision of ES
in urban and peri-urban areas is an increasingly topical and relevant issue, considering
that built-up land is expanding, urban permeable unforested lands are decreasing [83],
and this brings with it a number of future challenges; land consumption is increasingly
impactful and, in order to improve the lives of citizens, as well as the quality of productive
agricultural land, it is important to incentivize such provisions. NbS could ultimately
be the central aspect of achieving this goal in a variety of ways. The first way could be
Agroforestry restoration [84], encouraged and financed by the European Union policy
from the Common Agricultural Policy (CAP) [85], which provides numerous provisioning,
regulating, cultural, and supporting ecosystem services and environmental benefits while
promoting ecointensification based on more efficient use of the resources [86].

Moreover, this methodology could be excellent support at various levels of planning,
first and foremost at the municipal level, where there is often a shortage of funds to conduct
ground surveys, direct management policies, and implement the structure of ecological
networks at the national level. In addition, reducing fragmentation and fostering greater
connectivity between urban, agricultural, and natural areas could improve the delivery of
a multitude of ES, including cultural ones.

Author Contributions: Conceptualization, B.P., and M.O.; methodology, M.O.; software, M.O., and
B.P.; validation, M.O.; formal analysis, B.P.; investigation, M.O., and B.P.; resources, M.O.; data
curation, M.O.; writing—original draft preparation, M.O.; writing—reviewing and editing, B.P.;
supervision, M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Biodiversity Future Center (NBFC); project funded
under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4—
Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of the
Italian Ministry of University and Research funded by the European Union—NextGenerationEU;
Award Number Project code CN_00000033, Concession Decree No. 1034 of 17 June 2022 adopted
by the Italian Ministry of University and Research, CUP H73C22000300001, Project title “National
Biodiversity Future Center—NBFC”.

Data Availability Statement: The data that support the findings of this study are available from
the corresponding author upon reasonable request and approval from the study site representative
coauthors. The data are not publicly available because they are part of ongoing research.

Acknowledgments: The authors would like to thank Lorenzo Sallustio for the methodological
support and supervision of some phases of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; Food and Agriculture Organization
of the United Nations (FAO): Rome, Italy, 2016; ISBN 9789251094426.

2. Atelli, M.; Blasi, C.; Boldini, G.; Cignini, B.; Cosenza, G.; Emiliani, V.; Marchetti, M.; Maria Maggiore, A.; Pericoli, T.; Ricciardi, A.;
et al. Strategia Nazionale Del Verde Urbano (Comitato Del Verde Pubblico); Ministero dell’Ambiente e della Sicurezza Energetica:
Rome, Italy, 2018.

3. Baumeister, C.F.; Gerstenberg, T.; Plieninger, T.; Schraml, U. Exploring Cultural Ecosystem Service Hotspots: Linking Multiple
Urban Forest Features with Public Participation Mapping Data. Urban For. Urban Green. 2020, 48, 126561. [CrossRef]

4. Churkina, G. Modeling the Carbon Cycle of Urban Systems. Ecol Modell 2008, 216, 107–113. [CrossRef]
5. World Health Organization—Regional Office for Europe. Urban Green Spaces: A Brief for Action; WHO: Geneva, Switzerland, 2017.

121



Land 2024, 13, 1954

6. Fusaro, L.; Salvatori, E.; Mereu, S.; Marando, F.; Scassellati, E.; Abbate, G.; Manes, F. Urban and Peri-Urban Forests in the
Metropolitan Area of Rome: Ecophysiological Response of Quercus ilex L. in Two Green Infrastructures in an Ecosystem Services
Perspective. Urban For. Urban Green. 2015, 14, 1147–1156. [CrossRef]

7. Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built
Environ. 2007, 33, 115–133. [CrossRef]

8. Pulighe, G.; Fava, F.; Lupia, F. Insights and Opportunities from Mapping Ecosystem Services of Urban Green Spaces and Potentials
in Planning. Ecosyst. Serv. 2016, 22, 1–10. [CrossRef]

9. Poe, M.R.; LeCompte, J.; McLain, R.; Hurley, P. Urban Foraging and the Relational Ecologies of Belonging. Soc. Cult. Geogr. 2014,
15, 901–919. [CrossRef]

10. Lee, A.C.K.; Maheswaran, R. The Health Benefits of Urban Green Spaces: A Review of the Evidence. J. Public. Health 2011, 33,
212–222. [CrossRef]

11. Campagnaro, T.; Vecchiato, D.; Arnberger, A.; Celegato, R.; Da Re, R.; Rizzetto, R.; Semenzato, P.; Sitzia, T.; Tempesta, T.; Cattaneo,
D. General, Stress Relief and Perceived Safety Preferences for Green Spaces in the Historic City of Padua (Italy). Urban For. Urban
Green. 2020, 52, 126695. [CrossRef]

12. Sacker, A.; Cable, N. Do Adolescent Leisure-Time Physical Activities Foster Health and Well-Being in Adulthood? Evidence from
Two British Birth Cohorts. Eur. J. Public Health 2006, 16, 331–335. [CrossRef]

13. Takano, T.; Nakamura, K.; Watanabe, M. Urban Residential Environments and Senior Citizens’ Longevity in Megacity Areas: The
Importance of Walkable Green Spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [CrossRef]

14. Cueva, J.; Yakouchenkova, I.A.; Fröhlich, K.; Dermann, A.F.; Dermann, F.; Köhler, M.; Grossmann, J.; Meier, W.; Bauhus, J.;
Schröder, D.; et al. Synergies and Trade-Offs in Ecosystem Services from Urban and Peri-urban Forests and Their Implication to
Sustainable City Design and Planning. Sustain. Cities Soc. 2022, 82, 103903. [CrossRef]

15. Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2021; Report SNPA 22/21; SNPA: Rome,
Italy, 2021; ISBN 978-88-448-1059-7.

16. Munafò, M. (Ed.) Consumo Di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2022; Report SNPA 32/22; SNPA: Rome,
Italy, 2022; ISBN 978-88-448-1124-2.

17. Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social Metabolism, Landscape Change and Land-Use Planning in the Barcelona
Metropolitan Region. Land Use Policy 2010, 27, 497–510. [CrossRef]

18. Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; A Report of the Millennium Ecosystem Assessment;
Island Press: Washington, DC, USA, 2005.

19. Youssef, A.; Sewilam, H.; Khadr, Z. Impact of Urban Sprawl on Agriculture Lands in Greater Cairo. J. Urban Plan. Dev. 2020, 146,
05020027. [CrossRef]

20. Parece, T.E.; Campbell, J.B. Geospatial Evaluation for Urban Agriculture Land Inventory. Int. J. Appl. Geospat. Res. 2017, 8, 43–63.
[CrossRef]

21. European Union. Building a Green Infrastructure for Europe; Publ. Office of the European Union: Luxembourg, 2013; ISBN
978-92-793-3428-3.

22. Potschin, M.; Haines-Young, R.H. Nature-Based Solutions ESMERALDA-Enhancing Ecosystem Services Mapping for Policy and Decision
Making View Project; European Commission: Luxembourg, 2015.

23. Eisenberg, B. Nature Based Solutions-Technical Handbook INTERESS-I: Integrierte Strategien Zur Stärkung Urbaner Blau-Grüner
Infrastrukturen View Project Space Syntax and Open Space Planning View Project; UnaLab: Eindhoven, The Netherlands, 2019.
[CrossRef]

24. Price, R. Nature-Based Solutions (NbS)-What Are They and What Are the Barriers and Enablers to Their Use? Institute of Development
Studies: Brighton, UK, 2021.

25. Di Pirro, E.; Sallustio, L.; Castellar, J.A.C.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Facing Multiple Environmental Challenges
through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. Forests 2022, 13, 548. [CrossRef]

26. Science for Environment Policy. FUTURE BRIEF: The Solution is in Nature–Issue 24; Brief Produced for the European Commission
DG Environment; Science Communication Unit, UWE Bristol: Bristol, UK, 2021.
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Abstract: Disentangling the responses of total soil organic carbon (SOC), organic carbon fractions and
soil aggregate stability to various vegetation types is essential for better understanding the carbon
cycling process in terrestrial ecosystems, maintaining soil quality and mitigating global warming.
To study the effects of vegetation types on soil aggregates in a specific area, the desert riverbanks
of arid regions were studied. We set up experiments using three typical vegetation types in the
arid zone of the Tarim River Basin (TRB), including Forestland, Shrubland, and Grassland. The
total SOC content in the bulk soil and different soil aggregates was determined by oxidation with
K2Cr2O7 and H2SO4, and three carbon fractions (F1, very labile; F2, inert; F3, oxidizable resistant)
were classified according to the degree of oxidation using the modified Walkley-Black method. The
total SOC and three carbon fractions in the soil were significantly greater in the Forestland than
in the other vegetation types, and the effect was more pronounced in macro-aggregate (MA) than
in the other aggregates. In the bulk soil and soil aggregates, the percentages of F1, F2 and F3 in
the total SOC with mean values of 0.36%, 0.28% and 0.36%, respectively, at soil depths of 0–20 cm,
indicated that stabilizing carbon is the major carbon fraction of the SOC. The stability of the SOC
in the aggregates across each vegetation type was greater in the lower layer (10–20 cm) than in the
topsoil layer (0–10 cm). The SOC stability and MA content were positively related to the SOC in
the soil aggregates and its F2 and F3 fractions (p < 0.05). In summary, the Forestland significantly
increased the SOC content and enhanced SOC stability. Conservation measures for poplar forests in
vulnerable arid zones can sustainably accumulate SOC sequestration.

Keywords: vegetation type; aggregate composition; oxidizable carbon fraction; SOC stability

1. Introduction

Soil is the reservoir of the greatest amount of carbon in terrestrial ecosystems, with
a carbon storage capacity approximately 3–4 times that of vegetation carbon pools, and
2–3 times that of atmospheric carbon pools [1,2]. Therefore, even minor fluctuations in
SOC storage can have significant implications for atmospheric CO2 concentrations, thereby
influencing climate change [3,4]. Additionally, soil organic carbon (SOC) is one of the core
characteristics of soil, playing a crucial role in plant growth and soil fertility, and directly
affects soil quality [5]. The composition of soil aggregates and the stability of organic
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carbon in the aggregates determine the soil structure and are considered effective targets
of soil quality [6]. Vegetation type is a primary factor influencing the composition of soil
aggregates and their ability to sequester carbon, as it alters the input of organic residues
and modifies soil management practices [7]. Vegetation rehabilitation and afforestation can
significantly increase the number of carbon sinks within terrestrial ecosystems and serve as
crucial pathways for achieving carbon neutrality and mitigating global climate change [8,9].
Consequently, a comprehensive understanding of the soil aggregate composition and
aggregate stability across various vegetation types is critical for sustaining SOC storage
and enhancing the ecological functions of soil ecosystems [2].

Soil aggregates are the basic units of soil structure and are significant indicators of soil
quality and health [10]. Macro-aggregate (MA) (>250 μm) exhibits greater porosity, pro-
viding sufficient moisture and oxygen to facilitate the microbial decomposition of organic
carbon. In contrast, as the pore size decreases in micro-aggregate (MI) (53 μm–250 μm) and
silt–clay aggregates (SC) (<53 μm), the reduction in moisture and oxygen contents hinders
the microbial degradation of the organic carbon encapsulated within the aggregates [11].
Vegetation type changes can lead to significant alterations in the composition of soil aggre-
gates through the formation or disruption of aggregates, thereby affecting the SOC content
of various soil aggregates [12]. Vegetation rehabilitation increases the input of organic
carbon by increasing vegetation biomass, which in turn contributes to the formation of
soil aggregates and improves aggregate stability [13]. Research has revealed that with
increasing duration of vegetation rehabilitation, soil aggregate stability improves, and both
the mean weight diameter and geometric mean diameter tend to increase [14]. Additionally,
the SOC content within soil aggregates of various particle sizes also increases over time [15].
Vegetation rehabilitation enhances the accumulation of SOC in MA while also increasing
the content of inert components in MI, thereby improving the stability of SOC [16]. In-
creased MA helps maintain soil aggregate stability during the rehabilitation of vegetation
protection [17]. The increase in aggregate stability can increase the physical protection of
SOC within the aggregates [18]. Moreover, recent studies have employed stable carbon
isotope technology to examine the stability and turnover of organic carbon within soil
aggregates during vegetation rehabilitation. This research further aids in understanding the
direction and intensity of carbon flow [19]. As forest succession progresses, the movement
of organic carbon toward MI intensifies, which increases the stability of SOC [20].

The stability of SOC is a crucial element that controls soil carbon emissions and stor-
age [21], and plays a significant role in maintaining the carbon balance and addressing
global climate change [22]. In recent years, the study of SOC stabilization mechanisms dur-
ing vegetation rehabilitation processes has become a focus and a challenge of research [23].
Stable SOC has a longer average residence time in the soil [24]. As vegetation rehabilita-
tion progresses, the accumulation and decomposition of root biomass and litter increase
the SOC content [25]. SOC is a continuous complex composed of a range of molecular
structures, from simple to complex [26]. Carbohydrates and proteins that enter the soil
initially decompose under the selective action of microorganisms and enzymes, resulting
in the accumulation of more complex and resistant chemical structures [27]. It is widely
known that the percentage of variable and stable SOC fractions in the total SOC content
could be used to determine the stability of the SOC [28,29]. To elucidate the stability
of SOC during the vegetation rehabilitation process, physical, chemical, and biological
measures are employed to isolate organic carbon components with varying properties
and stabilities [30,31]. On this basis, researchers both domestically and internationally
have employed acid or alkaline extraction methods to quantify the recalcitrance of organic
carbon [32,33]. Research has shown that afforestation significantly increases the levels of
SOC, active organic carbon, recalcitrant organic carbon, and microbial biomass carbon.
Additionally, both the soil carbon stock index and the carbon management index gradually
increased [34,35]. The transition from agricultural land to forest increases the content of
SOC components, particularly the levels of recalcitrant organic carbon [16,36]. In summary,
vegetation rehabilitation effectively improved the stability of the SOC while also increasing
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the stability of the SOC pool. At this stage, the response of the labile and stabilizing carbon
components in relation to soil aggregates to vegetation types in arid zones has not been
well explained. This lack of knowledge is not conducive to an in depth understanding of
the mechanisms of SOC sequestration and SOC stabilization in fragile dryland vegetation.

Over the past two decades, the Chinese government and the Basin Authority have
implemented a series of vegetation restoration measures in the Tarim River Basin (TRB) [37].
However, the effects of vegetation type on the carbon dynamics of different soil aggregates
remain unclear. In this study, we hypothesized that rehabilitation measures in poplar forests
could increase the concentration and stability of soil organic carbon in soil aggregates to
promote long-term SOC sequestration. The main objectives of this study were (1) to
determine the composition of the soil aggregates of three different size classes, (2) to
compare the changes in the contents of total SOC and different carbon fractions with
different levels of oxidizability associated with aggregates in various vegetation types, and
(3) to evaluate the stability of SOC in the soil aggregates of various vegetation types and
the correlation of their related indicators. This research can elucidate the mechanisms of
SOC sequestration with different vegetation types, providing valuable insights for future
ecological rehabilitation and carbon sink management in arid regions.

2. Materials and Methods

2.1. Study Area

This study area is a natural poplar forest and desert shrub forest in the TRB Key
Ecological Protection Area, Xinjiang (39◦35′~40◦25′ N, 79◦45′~80◦55′ E) (Figure 1). It is a key
area for ensuring the ecological security of southern and northwestern Xinjiang. The study
area has a typical warm temperate arid desert climate, with a multiyear average temperature
of 10.4 ◦C, a high potential evaporation rate of 1899.8 mm and an annual precipitation
of 50.5 mm. The soils in this area are saline–alkali soils according to the Chinese soil
classification system. The vegetation types are mainly forest dominated by euphratica,
shrubs and semishrubs dominated by tamarix ramosissima and lycium ruthenicum Murr. The
ecological degradation of natural vegetation, mainly poplar forests, can be attributed to a
combination of natural elements such as climate change and anthropogenic factors such as
increased agricultural land use [38].

Figure 1. Map of the study area and the sampling sites.

The trend of ecological degradation in the source area has become increasingly evi-
dent, which can be attributed to the high level of ecological impact on the oasis economy,
agriculture, and animal husbandry within the TRB. In June 2016, Xinjiang comprehensively
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carried out an integrated program for safeguarding poplar forests in the study area, and the
TRB Management Bureau took advantage of the favorable timing of the incoming water
during the flood season to provide emergency water replenishment to the key rehabilitation
areas of poplar forests. Therefore, at this stage, the region shows a tendency for desert land
to be converted to vegetation-type land [39].

2.2. Experimental Design and Soil Sampling

After a comprehensive inventory of vegetation types was conducted, soil samples were
acquired from the forest, shrubland, and grassland areas in August 2022. Four replicate
standard collection points were randomly established within the area of each monoculture
vegetation type. The distance between any soil collection sample point for each vegetation
type was greater than 40 m. The separation among sampling points beyond the spatial
dependence of most soil properties (>13.5 m) should be adequately ensured [40–42]. A
total of 12 standard soil sample collection areas (three vegetation types × four samples)
were set up for the study. After the removal of the soil surface litter and biomass, samples
were obtained from soil depths ranging from 0 to 10 cm and from 10 to 20 cm depth at
each sample plot by using a soil auger. At each sample collection site for each vegetation
type, four soil samples were again randomly collected within every soil horizon, and
the soil was mixed to homogeneity at the same soil depth. The obtained soil samples
were placed in the laboratory and dried naturally in a room temperature environment.
After the removal of visible plant debris, all the soil samples collected were equally sep-
arated into two parts. One part was sieved through a 2 mm sieve, milled and processed,
and then further passed through a 0.25 mm sieve and used to survey and evaluate the
SOC content and SOC fraction in the bulk soil; the other part was used to measure the
aggregate fraction.

The wet sieve method was used to make accurate measurements of the percentage of
the particle size composition of the soil aggregates [36]. The soil samples were first placed
in a container filled with distilled water, slowly wetted for 5 min and then submerged in
distilled water for another 5 min. The soil samples were then transferred to the sieve
set of the soil aggregates analyzer. The amplitude of the soil aggregate analyzer was set
at 3 cm, and the oscillation frequency was 32 r min−1 for 10 min. Pretreated bulk soil
samples of 60 g were separated by passing them through sieves of 0.25 and 0.053 mm.
Three soil aggregate samples with diameters greater than 0.25 mm (MA), 0.25–0.053 mm
(MI) and less than 0.053 mm (SC) were obtained. The sieved samples were dried at 50 ◦C
for more than 36 h until a steady weight was reached, after which they were weighed
to obtain the contents of all the aggregates. The percentages of aggregates of various
particle sizes were calculated. Finally, the dried soil aggregate samples were ground to a
powdery consistency, passed through a 0.25 mm sieve and stored in sample packets for
SOC measurement.

The total SOC content was measured by oxidation with K2Cr2O7 and H2SO4 [43].
Depending on the degree of oxidation of the SOC, this study was based on previous studies
in which the SOC fractions were detected [33]. The modified Walkley and Black method
is as follows; 10 mL of 0.5 M K2Cr2O7 was mixed with 2.5 and 10 mL of 18 M H2SO4 to
obtain two ratios of 0.25:1 and 1:1 acid–aqueous solutions. The proportions of the solutions
were equivalent to 3 M and 9 M H2SO4, respectively. The three carbon fractions were tested
under conditions of increased oxidizing intensity [29,33]. F1: very labile carbon (organic
carbon oxidizable under 3 M H2SO4), F2: inert carbon (organic carbon oxidizable among
3 M H2SO4 and 9 M H2SO4), and F3: oxidizable resistant carbon (difference between total
SOC and organic carbon oxidizable under 9 M H2SO4). F3 represents organic carbon that
cannot be oxidized with 9 M H2SO4.

2.3. Calculation of SOC Stability

SOC stability involves the accumulation of SOC in the soil, its retention time, and its
response to environmental influences. The change in the ratio of F1 fractions to stabilized
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carbon fractions in total SOC provides an effective measure for the analysis of SOC stability
under ecological rehabilitation measures in different vegetation types [44,45]. Therefore,
the proportions of the three SOC fractions were calculated with the following formula:

Proportion of oxizizable SOC fraction =
Content of SOC fractions

Total SOC content
(1)

where the SOC fractions are F1 (very labile carbon), F2 (inert carbon), and F3 (oxidizable
resistant carbon), respectively (g kg−1). The total SOC content is the organic carbon content
of the bulk soil and aggregates of different grain sizes (g kg−1).

The ratio of the F1 content to the difference in the total SOC content and the labile
carbon content is defined as the stability of the SOC [28,46]. Building on previous research,
we used methodologies for calculating SOC stability indicators. The calculation formula is
as follows:

Stability of SOC = 1 − F1 content
total SOC content − F1 content

(2)

where the stability of the SOC represents the soil stability indicator (SSI). F1 (very labile
carbon) is the very labile carbon content (g kg−1).

2.4. Statistical Analyses

The raw data were processed and summarized with Microsoft Excel 2019 software.
SPSS 24.0 was used for statistical analysis of all the data. The effects of various indicators
involved in soil organic carbon stability were compared across the three vegetation types
using one-way ANOVA and two-way ANOVA. Origin 8.0 software was used for graphing
and correlation analysis.

3. Results

3.1. Composition Characteristics of the Soil Aggregates

Vegetation type significantly affects the formation of soil aggregates (Figure 2). How-
ever, there was no significant effect of soil depth on aggregate composition in the 0–10 and
10–20 cm soil depth ranges, with similar trends in aggregate composition in the surface
and underlying soils. The MA content under Forest (14.72%) was significantly higher than
that under Shrubland (3.95%) and Grassland (3.28%), and the MI content under Shrubland
(56.10%) was significantly higher than that under Forest (32.51%) and Grassland (29.81%)
at soil depths of 0–20 cm. While the SC content under Grassland was significantly greater
than that under Forest and Shrubland at the soil depths of 0–10 cm, the SC content and MA
content under Forest and Grassland were significantly greater than that under Shrubland
at soil depths of 10–20 cm.

The proportions of the various soil aggregates at the 0–20 cm depth differed signifi-
cantly among the vegetation types. The total amount of SC content in the Forest was the
highest, followed by that in the MI content, and that in the MA content was the lowest. The
total amount of MI content in the Shrubland was the highest, followed by that in the SC
content, and that in the MA content was the lowest. The total amount of SC content in the
Grassland was the highest, followed by that in the MI content, and that in the MA content
was the lowest. The average contents of MA, MI, and SC at the 0–20 cm depth under the
three vegetation types were 7.31%, 39.47% and 53.21%, respectively.
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Figure 2. Percentages of the various soil aggregates in the bulk soil of the three vegetation types.
(Different capital letters show significant differences between different vegetation types. Different
lowercase letters show significant differences between different soil aggregate classes. The whiskers
represent the standard deviation among the four repetitions for each vegetation type (p < 0.05)).

3.2. SOC Content in the Bulk Soil and Soil Aggregates

Vegetation type, soil depth and soil aggregate size had important effects on the to-
tal SOC content (Table 1). For all the vegetation types, the SOC content in the surface
soil (0–10 cm) aggregates was significantly higher than that in the lower soil aggregates
(10–20 cm) (Table 2). Compared with the SOC content at the 10–20 cm depth, the average
SOC contents in the bulk soil, MA, MI and SC under the three vegetation types were 3.66,
10.15, 2.83 and 2.56 g kg−1 higher in 0–10 cm. Forests, shrublands, and grasslands all had
the highest total SOC content in MA. Among the three vegetation types at the 0–20 cm
depth, the average total SOC content was greater and statistically higher in MA (145.16%),
MI (183.72%), and SC (203.97%).

Table 1. The vegetation type, soil aggregate size and fraction of SOC were analyzed by two-
way ANOVA.

SOC F1 F2 F3 Stability of SOC

Target Group Df F p F p F p F p F p

0–10 cm

Vegetation types (VT) 2 12.34 <0.001 13.23 <0.001 17.65 <0.001 3.47 0.046 2.40 0.110
Aggregates (AG) 3 11.33 <0.001 11.93 <0.001 11.15 <0.001 5.36 0.011 2.67 0.087

VT × AG 6 2.34 0.081 3.21 0.028 2.06 0.115 1.03 0.409 2.45 0.070
10–20 cm

Vegetation types (VT) 2 10.66 <0.001 6.53 0.005 15.93 <0.001 7.64 0.002 1.77 0.189
Aggregates (AG) 3 6.89 0.004 6.04 0.007 6.68 0.004 6.04 0.007 0.08 0.928

VT × AG 6 3.25 0.027 2.78 0.047 3.10 0.032 3.24 0.027 0.91 0.471

Table 2. Content of SOC under the various vegetation types (unit: g kg−1) (the meanings of the
uppercase and lowercase letters are the same as those in the notes to Figure 2). The values are the
means ± standard errors.

Vegetation Types Bulk Soil MA MI SC

Soil depth 0–10 cm
Forest 16.88 (±1.35) Ab 39.92 (±10.55) Aa 14.94 (±4.65) Ab 10.62 (±2.75) Ab

Shrubland 4.52 (±2.83) Bab 12.04 (±3.97) Ba 2.80 (±1.09) Bb 5.67 (±0.39) Bab
Grassland 4.06 (±1.75) Bb 12.24 (±2.95) Ba 3.77 (±0.90) Bb 3.66 (±0.22) Bb

Soil depth 10–20 cm
Forest 8.87 (±2.12) Ab 23.44 (±7.44) Aa 7.52 (±2.35) Ab 6.19 (±0.91) Ab

Shrubland 2.64 (±0.41) Bab 4.79 (±1.07) Ba 2.09 (±0.56) Bb 3.37 (±0.38) Bab
Grassland 2.98 (±0.25) Bb 5.51 (±0.83) Ba 3.40 (±0.75) Bb 2.71 (±0.10) Bb
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The organic carbon contents of the soil MA, MI and SC varied in the ranges of
4.79–39.92, 2.09–14.94, and 2.71–10.62 g kg−1, respectively, across the three vegetation
types in the study area. Underneath the forest, the average SOC content (16.05 g kg−1)
in the bulk soil and different soil aggregates was significantly higher than that in the
Shrubland and Grassland at depths of 0–20 cm. There were no significant differences in the
organic carbon contents of the shrubs and grasses, with mean values of 4.05 g kg−1 and
4.79 g kg−1, respectively.

3.3. Content of the SOC Fractions with Various Degrees of Oxidizability

The contents of the SOC fractions (F1–F3) in the soil aggregates of the various vegeta-
tion types varied significantly at the 0–10 cm and 10–20 cm depths (Tables 1 and 3). Among
the soil aggregates of all vegetation types, the organic carbon content of each F fraction
was the highest for aggregates with particle sizes greater than 0.25 mm (MA), which was
significantly higher than those with particle sizes of 0.25–0.053 mm (MI) and 0.053 mm (SC),
with the exception of shrubland MI and SC in F1. Moreover, in the Forest types, the organic
carbon content of the 0.25–0.053 mm (MI) particles in the aggregates of the F2 fraction was
higher than that of the MI particles in the F1 and F3 fractions. For the oxidizable resistant
carbon fraction (F3), the organic carbon content in the soil aggregates with a particle size
greater than that in the 0.25 mm (MA) was significantly higher than 0.25–0.053 mm (MI)
and 0.053 mm (SC) under the forest type. Under the shrubland and grassland types, the
organic carbon content of the soil aggregates > 0.25 mm (MA) was higher than that of the
0.053 mm (SC) and 0.25–0.053 mm (MI). In the bulk soil, MA, MI and SC, the contents of
the different carbon fractions at the 0–10 cm depths were 2.98, 7.43, 2.75, and 2.12 g kg−1

for F1; 2.95, 7.61, 2.53, and 2.20 g kg−1 for F2; and 2.56, 6.35, 1.88, and 2.33 g kg−1 for
F3, respectively. In contrast, at the 10–20 cm depths, the contents of the F1 to F3 carbon
fractions decreased significantly, specifically by 1.68, 4.09, 1.33, and 1.44 g kg−1 for F1; 1.42,
3.71, 1.44, and 1.03 g kg−1 for F2; and 1.73, 3.45, 1.56, and 1.62 g kg−1 for F3, respectively.

There were significant differences in the content of SOC in the soil and its fractions
across the various vegetation types (Tables 1 and 3). The average contents of F1, F2 and F3
in the bulk soil, MA, MI, and SC in the Forest land were greater than those in the Shrubland
and Grassland. The highest F1, F2 and F3 contents among the three vegetation types were
found in the Forest. The differences in the F1 contents in the soil among the Shrubland
types were not significant. Irrespective of soil aggregates, contents of F1, F2, and F3 in the
Forest were significantly greater than those in the other two vegetation types (Table 3).

Table 3. Oxidative degradability of SOC fractions among aggregate size classes and vegetation types
(unit: g kg−1) (the meanings of the uppercase and lowercase letters are the same as those in the notes
to Figure 2).

Soil Aggregates Forest Shrubland Grassland

Soil depth: 0–10 cm

F1

Bulk soil 5.75 (±1.67) Ab 1.58 (±0.28) Ba 1.60 (±0.13) Bb
MA 14.18 (±3.50) Aa 3.26 (±1.07) Ba 4.86 (±0.64) Ba
MI 5.63 (±1.94) Ab 1.19 (±0.30) Ba 1.42 (±0.31) Bb
SC 3.05 (±1.10) Ab 1.83 (±0.25) Aa 1.48 (±0.20) Ab

F2

Bulk soil 6.78 (±1.76) Ab 0.88 (±0.41) Bb 1.18 (±0.53) Bb
MA 14.99 (±2.98) Aa 3.52 (±1.88) Ba 4.33 (±1.75) Ba
MI 5.79 (±2.11) Ab 0.65 (±0.53) Bb 1.16 (±0.58) Bb
SC 4.77 (±1.25) Ab 0.84 (±0.12) Bb 0.98 (±0.45) Bb

F3

Bulk soil 4.34 (±0.84) Ab 2.06 (±0.26) Bb 1.28 (±0.38) Bb
MA 10.75 (±5.16) Aa 5.26 (±1.15) ABa 3.04 (±1.07) Ba
MI 3.52 (±0.70) Ab 0.95 (±0.29) Bc 1.18 (±0.32) Bb
SC 2.79 (±0.46) Ab 2.99 (±0.59) Aab 1.21 (±0.48) Ab
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Table 3. Cont.

Soil Aggregates Forest Shrubland Grassland

Soil depth: 10–20 cm

F1

Bulk soil 2.91 (±0.89) Aab 0.89 (±0.13) Bab 1.25 (±0.26) ABa
MA 8.39 (±3.07) Aa 1.88 (±0.50) Ba 1.99 (±0.39) Ba
MI 1.89 (±0.66) Ab 0.81 (±0.17) Ab 1.30 (±0.23) Aa
SC 2.17 (±0.66) Ab 0.94 (±0.21) Aab 1.20 (±0.29) Aa

F2

Bulk soil 3.29 (±0.70) Ab 0.46 (±0.24) Ba 0.50 (±0.21) Ba
MA 8.45 (±2.51) Aa 1.01 (±0.53) Ba 1.67 (±0.82) Ba
MI 3.43 (±0.90) Ab 0.32 (±0.18) Ba 0.58 (±0.35) Ba
SC 2.01 (±0.24) Ab 0.66 (±0.33) Ba 0.42 (±0.15) Ba

F3

Bulk soil 2.67 (±0.56) Ab 1.29 (±0.16) Bab 1.23 (±0.08) Ba
MA 6.60 (±1.91) Aa 1.90 (±0.27) Ba 1.85 (±0.64) Ba
MI 2.20 (±0.85) Ab 0.97 (±0.31) Ab 1.52 (±0.33) Aa
SC 2.00 (±0.17) Ab 1.77 (±0.20) Aab 1.08 (±0.12) Ba

3.4. Stability of SOC Under Various Vegetation Types

The percentage of SOC in the total SOC content varied with vegetation type (Figure 3),
as did that in the bulk soils and various soil aggregates. F1, F2 and F3 in the total SOC
showed mean values of 0.36%, 0.28% and 0.36%, respectively, at soil depths of 0–20 cm. In
bulk soil, the F1 percentage under the Grassland was greater than that across the Forest
and Shrubland, the F2 percentage in the Forest was greater than that across the Shrubland
and Grassland, and the F3 percentage across the Shrubland was greater than that across the
Forest and Grassland. In MA, the percentages of F1 and F2 in the Forestland and Grassland
areas were greater than those in the Shrubland area, whereas the F3 percentages in the
Shrubland were greater than those in the Forest and Grassland. No difference was found
for F1, F2, and F3 in the MA between the Forest and Grassland. Different from MA, the
percentages of F1 in MI under the Shrubland were significantly greater than those across
the Forest and Grassland. The percentages of F2 in the SC in the Forest were greater than
those across the Shrubland and Grassland, and the percentages of F1 and F3 were lower
than those in the other two vegetation types.

The percentages of the SOC fractions in the total SOC content were similar at the
10–20 cm soil depth compared to 0–10 cm across the different vegetation types. In MI, the
percentages of F1 in the Shrubland were greater than those in the Forest and Grassland.
The percentages of F2 in MA under Forest were greater than those across the Shrubland
and Grassland.

The mean values of the stability of SOC in the bulk soil, MA, MI and SC were 0.44,
0.44, 0.38 and 0.46 for all the vegetation types in the 0–20 cm soil layer range, respectively
(Figure 4). The results of one-way ANOVA indicated that the effects of vegetation type on
SOC stability were numerically different but not significant. In bulk soil (soil depth:
0–10 cm: F = 1.275, p = 0.325; soil depth: 10–20 cm; F = 0.681, p = 0.53), MA (soil
depth: 0–10 cm: F = 3.173, p = 0.091; soil depth: 10–20 cm; F = 0.273, p = 0.767), MI
(soil depth: 0–10 cm: F = 1.728, p = 0.232; soil depth: 10–20 cm; F = 4.664, p = 0.041), and SC
(soil depth: 0–10 cm: F = 2.592, p = 0.129; soil depth: 10–20 cm; F = 0.411, p = 0.675).

The highest SOC stabilization values were found in the Forestland with soil depths of
0–10 cm in the bulk soils, MI and SC. The highest SOC stabilization values were found in
the Forest land in the 10–20 cm soil layers of the bulk, MA and MI soils. The highest values
for SOC of stability under Shrubland were found only in the 0–10 cm MA and 10–20 cm SC
layers. However, Grasslands had lower values for SOC stability in 0–20 cm soil layer, and
the differences were not significant (Figure 4).
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Figure 3. Proportion of the F1–F3 fractions in the bulk soil and aggregates. (Different capital letters
indicate significant differences between different vegetation types. Different lowercase letters indicate
significant differences between SOC fractions (p < 0.05)).

3.5. Correlation Analysis Between the SOC Stability and SOC Fractions of Different Aggregates
and SOC Content

The SOC stability indices (SSIs) and MA content were positively correlated with the
SOC content in the soil aggregates, but negatively correlated with the SC content (Figure 5).
The organic carbon content of the aggregates had a more pronounced positive correlation
with the F2 and F3 fractions. The MI content was negatively correlated with the SC content,
MA-associated carbon content and content of the SOC fractions with MA, but positively
correlated with the F3 fractions in terms of the MI-associated carbon content. The SC
content was negatively correlated with the SOC content in the soil aggregates and its
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fractions (Figure 5). There was a positive correlation between the SOC content associated
with the various aggregates and the SOC fractionation content (Figure 5).

  

Figure 4. Stability of SOC in soil under various vegetation types and aggregate sizes. (The meanings
of the uppercase and lowercase letters are the same as those in the notes to Figure 2).

Figure 5. Correlation of the SOC stability index impact indicators. (* represents significant correlations
at p < 0.05).
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4. Discussion

4.1. Dynamic Characterization of the Composition of Soil Aggregates and Its SOC Content

Soil aggregation is an important pathway for soil carbon sequestration [47]. The higher
the content of MA, the better the structure and erosion resistance of the soil. Vegetation
type has a significant effect on the composition of soil aggregates (Figure 2). In the present
study, it was found that the composition of soil aggregates in the surface layer (0–10 cm)
and the lower layer (10–20 cm) were characterized similarly. Grassland had the highest
levels of SC, shrublands had the highest levels of MI, and forestlands had significantly
higher levels of MA than shrublands and grasslands. The study showed that grassland
soils were the least structured and had the lowest erosion resistance, and that shrublands
had a significant role in promoting MI formation, whereas forestlands had the best stability
of soil aggregates, soil structure, and soil erosion resistance. This finding supported the
results of [12]. Differences in organic matter inputs and outputs, soil physical properties
and microbial activity across vegetation types affect the composition of SOC across grain
size aggregates [48,49].

Previous studies have shown that the SOC content increases with the size of the soil
aggregates and that new organic matter derived from plant litter or roots is predominantly
stored within MA [50]. In this study, the SOC content in forestland areas was significantly
greater than that in shrublands and grasslands, indicating substantial potential for SOC
sequestration at the research site. An increase in SOC content can lead to the produc-
tion of more resistant binding agents, such as humic acid compounds, polysaccharides,
and root exudates, thereby enhancing the formation of soil aggregates [51,52]. The posi-
tive correlation between the MA content and the SOC content in the soil was confirmed
(Figure 5), suggesting that the increase in MA content can be attributed to the increase in
the SOC content. Furthermore, soil MA serves as the primary reservoir for SOC, and the
results of this study support this conclusion. Therefore, the implementation of poplar forest
conservation projects can promote positive vegetation succession. This, to some extent, can
facilitate the sequestration of organic carbon in soil MI and increase the organic carbon
content in soil MA, ultimately improving soil quality (Table 2) (Figure 6).

 
Figure 6. SOC fraction content in soil across the various vegetation types.

Previous studies have demonstrated that the SOC content in soil aggregates decreases
with increasing soil depth [6,53]. In this study, the SOC content in soil aggregates from the
top soil layer (0–10 cm) showed a more significant variation compared to that in aggregates
from the lower layer (10–20 cm) (Table 1). This difference is attributed to the accumulation
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of fresh organic matter in the topsoil, such as plant biomass, litter, and root exudates.
Owing to the protective effects of vegetation growth on soil, forested areas can significantly
reduce soil erosion caused by rainfall and wind [5,53]. This is a key reason why the SOC
content in forested soils is significantly higher in the topsoil than in the lower layer.

Additionally, previous studies have reported that vegetation type significantly affects
the content of SOC in deep soils, particularly at depths greater than 20 cm [54,55]. In this
study, we focused only on investigating the influences of vegetation type on the stability of
soil aggregates and associated carbon in surface soils (0–20 cm). Therefore, the impact of
vegetation type on the stability of soil aggregate-associated carbon in deep soils (greater
than 20 cm) represents a valuable direction for future research.

4.2. Characteristics of Oxidizable SOC Fractions in Soil Aggregates and SOC Stability

Separating stable carbon into more components with varying stability can elucidate the
differences in stable carbon fractions among the three vegetation types. This approach aids
in gaining a deeper understanding of how vegetation type changes affect SOC fractions and
their stability [32]. Changes in the sources of SOC (such as plant litter, microbial products,
and root exudates) resulting from different vegetation types directly affect the contents
of carbon fractions with varying stabilities in the soil [56,57]. The contents of different
SOC fractions exhibit varying trends of change with increasing aggregate size. This study
demonstrated significant differences in the SOC fractions in the soil across the various
vegetation types (Table 3 and Figure 7). The results of this study are similar to those of
previous studies, showing that the SOC content in forest soils is significantly greater than
that in other vegetation types, both in bulk soil and across the F1 to F3 carbon fractions
(Table 3) [49]. These results further confirm that forest conservation and rehabilitation
measures are beneficial for carbon sequestration.

  

Figure 7. Contents of the SOC fractions in the bulk soil and soil aggregates.

The F1 fraction is extremely oxidizable and sensitive to changes in vegetation type.
Monitoring the changes in this carbon fraction is scientifically important for revealing
the adaptation mechanism of ecosystems to environmental perturbations. Changes in the
percentage of F1 fraction and stabilized carbon fraction in the total SOC are important
indicators for assessing changes in SOC stability [4]. In the results of this study, under
all vegetation type patterns, in the bulk soil and soil aggregates, the percentages of F1,
F2, and F3 in the total SOC, with mean values of 0.36%, 0.28% and 0.36%, respectively, at
soil depths of 0–20 cm, showed that stable carbon was the predominant carbon fraction
in this study area (Figure 3). The stability of organic carbon in the aggregates under each
vegetation type was increased in the lower layer (10–20 cm) compared with the top soil layer
(0–10 cm). The SOC Stability and MA content were positively correlated with the SOC in
the soil aggregates and their F2 and F3 fractions.
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Soil stability and erosion resistance are significantly correlated with the content of
MA (>250 μm) in the soil [18]. Therefore, the composition of soil aggregates of different
sizes directly influences the stability of soil aggregates. The positive correlations between
the soil aggregate stability indices and the SOC content and the MA content (Figure 5),
showed that the highest soil aggregate stability indices values under the Forestland were
mainly attributed to the formation of MA [50,58] and the organic matter inputs from forest
litter [12,51]. Previous studies have also confirmed the positive response of soil aggre-
gate stability to afforestation, showing an increase in aggregate stability at a soil depth of
0–20 cm following afforestation [12,59]. Furthermore, soil aggregate stability is influenced
by various factors, including vegetation composition type, ecological management mea-
sures, soil characteristics and climatic conditions.

In future vegetation rehabilitation efforts, SOC in the TRB is expected to continue
accumulating. This study examines the variations and mechanisms of SOC stability under
various vegetation types. The increased stability of soil aggregates during vegetation
rehabilitation may contribute to the enhanced stability of SOC [13,47,60]. Owing to the
intricacies of elements influencing organic carbon stability, research in this area varies across
regions. For example, some studies have focused on aggregate protection mechanisms [36],
whereas others have emphasized microbial-driven mechanisms [61]. There is a lack of
comprehensive exploration of the main driving mechanisms of SOC stability. An increasing
number of researchers are inclined to believe that the mechanisms governing SOC stability
result from a complex interplay of multiple processes [15]. Therefore, future research should
consider the combined effects of multiple mechanisms to obtain a thorough understanding
of the factors influencing SOC stability and identify the dominant mechanisms involved.

5. Conclusions

Taking the key ecological rehabilitation area of the TRB in the arid zone as the research
object, the effects of vegetation type changes on the stability of total SOC, SOC fractions
with different degrees of oxidation and bulk soils as well as the SOC stability of different
soil aggregates were quantitatively analyzed. The results of the study showed that the total
SOC and three carbon fractions were significantly greater in forestland than in the other two
vegetation types, and the effect was more pronounced in MA than in the other aggregates,
revealing that MA made a greater contribution to the increase in total SOC in the soil. In
the bulk soil and soil aggregates, F1 to F3 were found in total SOC with mean values of 0.36,
0.28 and 0.36 (at soil depths of 0–20 cm), which showed that stable carbon was the major
carbon fraction. The stability of organic carbon in aggregates with each vegetation type
was increased in the lower layer compared with the top soil layer. The SOC Stability and
MA content were positively correlated with the SOC in the soil aggregates and their F2 and
F3 fractions. The implementation of special actions for the ecological protection of poplar
forests in ecologically important rehabilitation areas may be the best measure to increase
SOC sequestration under different vegetation types. The results clarified the dynamics of
SOC in soil aggregates under the three vegetation types, which is of great significance for
regional soil carbon sequestration and provides valuable insights into the improvement of
SOC storage in the TRB key ecological rehabilitation areas in Northwest China.
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9. Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, J. The Effects of Tree Species and Substrate on Carbon

Sequestration and Chemical and Biological Properties in Reforested Post-Mining Soils. Geoderma 2017, 292, 9–16. [CrossRef]
10. Zhang, S.; Ren, T.; Zhou, X.; Fang, Y.; Liao, S.; Cong, R.; Lu, J. Effects of Rapeseed/Wheat-Rice Rotation and Fertilization on Soil

Nutrients and Distribution of Aggregate Carbon and Nitrogen. Acta Pedol. Sin. 2022, 59, 194–205.
11. Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate

Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon. Nat. Commun. 2021, 12, 4115. [CrossRef]
[PubMed]

12. Bai, Y.; Zhou, Y.; He, H. Effects of Rehabilitation through Afforestation on Soil Aggregate Stability and Aggregate-Associated
Carbon after Forest Fires in Subtropical China. Geoderma 2020, 376, 114548. [CrossRef]

13. Deng, L.; Wang, K.; Tang, Z.; Shangguan, Z. Soil Organic Carbon Dynamics Following Natural Vegetation Restoration: Evidence
from Stable Carbon Isotopes (δ13C). Agric. Ecosyst. Environ. 2016, 221, 235–244. [CrossRef]

14. Zhang, Q.; Liu, J.; Yang, L.; Wei, W. Effect of vegetation restoration on stability and erosion resistance of soil aggregates in
semi-arid loess region. Acta Ecol. Sin. 2022, 42, 9057–9068.

15. Pan, Y.; He, Z.; Liu, Y.; Dong, L.; Lv, W.; Shangguan, Z.; Deng, L. Dynamics of soil aggregate-associated organic carbon during
secondary forest succession in the Loess Plateau, China. Acta Ecol. Sin. 2021, 41, 5195–5203.

16. Wang, A.; Zha, T.; Zhang, Z. Variations in Soil Organic Carbon Storage and Stability with Vegetation Restoration Stages on the
Loess Plateau of China. CATENA 2023, 228, 107142. [CrossRef]

17. Wang, B.; Xu, G.; Ma, T.; Chen, L.; Cheng, Y.; Li, P.; Li, Z.; Zhang, Y. Effects of Vegetation Restoration on Soil Aggregates, Organic
Carbon, and Nitrogen in the Loess Plateau of China. Catena 2023, 231, 107340. [CrossRef]

18. Deng, L.; Kim, D.; Peng, C.; Shangguan, Z. Controls of Soil and Aggregate-associated Organic Carbon Variations Following
Natural Vegetation Restoration on the L Oess P Lateau in C Hina. Land Degrad. Dev. 2018, 29, 3974–3984. [CrossRef]

19. Gunina, A.; Kuzyakov, Y. Pathways of Litter C by Formation of Aggregates and SOM Density Fractions: Implications from 13C
Natural Abundance. Soil Biol. Biochem. 2014, 71, 95–104. [CrossRef]

20. Shi, J.; Deng, L.; Gunina, A.; Alharbi, S.; Wang, K.; Li, J.; Liu, Y.; Shangguan, Z.; Kuzyakov, Y. Carbon Stabilization Pathways in
Soil Aggregates during Long-Term Forest Succession: Implications from δ13C Signatures. Soil Biol. Biochem. 2023, 180, 108988.
[CrossRef]

21. Tao, F.; Lehmann, J.; Wang, Y.-P.; Jiang, L.; Ahrens, B.; Viatkin, K.; Manzoni, S.; Houlton, B.Z.; Huang, Y.; Huang, X.; et al. Reply to
“Beyond Microbial Carbon Use Efficiency”. Natl. Sci. Rev. 2024, 11, nwae058. [CrossRef]

22. Jha, P.; Lakaria, B.L.; Biswas, A.K.; Saha, R.; Mahapatra, P.; Agrawal, B.K.; Sahi, D.K.; Wanjari, R.H.; Lal, R.; Singh, M.; et al. Effects
of Carbon Input on Soil Carbon Stability and Nitrogen Dynamics. Agric. Ecosyst. Environ. 2014, 189, 36–42. [CrossRef]

23. Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann,
J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [CrossRef]
[PubMed]

24. Wang, Q.-K.; Wang, S.-L.; Zhong, M.-C. Ecosystem Carbon Storage and Soil Organic Carbon Stability in Pure and Mixed Stands
of Cunninghamia Lanceolata and Michelia Macclurei. Plant Soil 2013, 370, 295–304. [CrossRef]

25. Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau
Is Approaching Sustainable Water Resource Limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [CrossRef]

26. Feng, X.; Simpson, M.J. The Distribution and Degradation of Biomarkers in Alberta Grassland Soil Profiles. Org. Geochem. 2007,
38, 1558–1570. [CrossRef]

27. Huang, X.; Liu, X.; Liu, J.; Chen, H. Iron-Bound Organic Carbon and Their Determinants in Peatlands of China. Geoderma 2021,
391, 114974. [CrossRef]

139



Land 2024, 13, 2157

28. Liu, H.; Zhang, J.; Ai, Z.; Wu, Y.; Xu, H.; Li, Q.; Xue, S.; Liu, G. 16-Year Fertilization Changes the Dynamics of Soil Oxidizable
Organic Carbon Fractions and the Stability of Soil Organic Carbon in Soybean-Corn Agroecosystem. Agric. Ecosyst. Environ. 2018,
265, 320–330. [CrossRef]

29. Hazra, K.K.; Nath, C.P.; Singh, U.; Praharaj, C.S.; Kumar, N.; Singh, S.S.; Singh, N.P. Diversification of Maize-Wheat Cropping
System with Legumes and Integrated Nutrient Management Increases Soil Aggregation and Carbon Sequestration. Geoderma
2019, 353, 308–319. [CrossRef]

30. Yuan, X.; Qin, W.; Xu, H.; Zhang, Z.; Zhou, H.; Zhu, B. Sensitivity of Soil Carbon Dynamics to Nitrogen and Phosphorus
Enrichment in an Alpine Meadow. Soil Biol. Biochem. 2020, 150, 107984. [CrossRef]

31. Cheng, M.; An, S. Responses of Soil Nitrogen, Phosphorous and Organic Matter to Vegetation Succession on the Loess Plateau of
China. J. Arid Land 2015, 7, 216–223. [CrossRef]

32. Plante, A.F.; Conant, R.T.; Paul, E.A.; Paustian, K.; Six, J. Acid Hydrolysis of Easily Dispersed and Microaggregate-derived Silt-
and Clay-sized Fractions to Isolate Resistant Soil Organic Matter. Eur. J. Soil Sci. 2006, 57, 456–467. [CrossRef]

33. Chan, K.Y.; Bowman, A.; Oates, A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under
different pasture leys. Soil Sci. 2001, 166, 61–67. [CrossRef]

34. Shi, J.; Song, M.; Yang, L.; Zhao, F.; Wu, J.; Li, J.; Yu, Z.; Li, A.; Shangguan, Z.; Deng, L. Recalcitrant Organic Carbon Plays a
Key Role in Soil Carbon Sequestration along a Long-Term Vegetation Succession on the Loess Plateau. Catena 2023, 233, 107528.
[CrossRef]

35. Yu, P.; Li, Y.; Liu, S.; Liu, J.; Ding, Z.; Ma, M.; Tang, X. Afforestation Influences Soil Organic Carbon and Its Fractions Associated
with Aggregates in a Karst Region of Southwest China. Sci. Total Environ. 2022, 814, 152710. [CrossRef]

36. Yu, P.; Liu, J.; Tang, H.; Ci, E.; Tang, X.; Liu, S.; Ding, Z.; Ma, M. The Increased Soil Aggregate Stability and Aggregate-Associated
Carbon by Farmland Use Change in a Karst Region of Southwest China. Catena 2023, 231, 107284. [CrossRef]

37. Qian, K.; Ma, X.; Yan, W.; Li, J.; Xu, S.; Liu, Y.; Luo, C.; Yu, W.; Yu, X.; Wang, Y.; et al. Trade-Offs and Synergies among Ecosystem
Services in Inland River Basins under the Influence of Ecological Water Transfer Project: A Case Study on the Tarim River Basin.
Sci. Total Environ. 2024, 908, 168248. [CrossRef]

38. Zhang, Q.; Sun, C.; Chen, Y.; Chen, W.; Xiang, Y.; Li, J.; Liu, Y. Recent Oasis Dynamics and Ecological Security in the Tarim River
Basin, Central Asia. Sustainability 2022, 14, 3372. [CrossRef]

39. Zhang, J.; Li, J.; Bao, A.; Bai, J.; Liu, Y.; Huang, Y. Effectiveness assessment of ecological restoration of Populus euphratica forest in
the Tarim River Basin during 2013—2020. Arid Land Geogr. 2022, 45, 1824–1835.

40. Zhong, Z.; Han, X.; Xu, Y.; Zhang, W.; Fu, S.; Liu, W.; Ren, C.; Yang, G.; Ren, G. Effects of Land Use Change on Organic
Carbon Dynamics Associated with Soil Aggregate Fractions on the Loess Plateau, China. Land Degrad. Dev. 2019, 30, 1070–1082.
[CrossRef]

41. Marriott, C.A.; Hudson, G.; Hamilton, D.; Neilson, R.; Boag, B.; Handley, L.L.; Wishart, J.; Scrimgeour, C.M.; Robinson, D.
Spatial Variability of Soil Total C and N and Their Stable Isotopes in an Upland Scottish Grassland. Plant Soil 1997, 196, 151–162.
[CrossRef]

42. Yu, P.; Liu, J.; Tang, H.; Sun, X.; Liu, S.; Tang, X.; Ding, Z.; Ma, M.; Ci, E. Establishing a Soil Quality Index to Evaluate Soil Quality
after Afforestation in a Karst Region of Southwest China. Catena 2023, 230, 107237. [CrossRef]

43. Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the Minimum Data Set and Quantitative Soil Quality Indexing of Alkaline
Soils under Different Land Uses in Northeastern China. Sci. Total Environ. 2018, 616–617, 564–571. [CrossRef]

44. Modak, K.; Ghosh, A.; Bhattacharyya, R.; Biswas, D.R.; Das, T.K.; Das, S.; Singh, G. Response of Oxidative Stability of Aggregate-
Associated Soil Organic Carbon and Deep Soil Carbon Sequestration to Zero-Tillage in Subtropical India. Soil Tillage Res. 2019,
195, 104370. [CrossRef]

45. Yu, P.; Han, K.; Li, Q.; Zhou, D. Soil Organic Carbon Fractions Are Affected by Different Land Uses in an Agro-Pastoral
Transitional Zone in Northeastern China. Ecol. Indic. 2017, 73, 331–337. [CrossRef]

46. Diederich, K.M.; Ruark, M.D.; Krishnan, K.; Arriaga, F.J.; Silva, E.M. Increasing Labile Soil Carbon and Nitrogen Fractions Require
a Change in System, Rather Than Practice. Soil Sci. Soc. Am. J. 2019, 83, 1733–1745. [CrossRef]

47. Panettieri, M.; Rumpel, C.; Dignac, M.-F.; Chabbi, A. Does Grassland Introduction into Cropping Cycles Affect Carbon Dynamics
through Changes of Allocation of Soil Organic Matter within Aggregate Fractions? Sci. Total Environ. 2017, 576, 251–263.
[CrossRef]

48. Ran, Y.; Ma, M.; Liu, Y.; Zhou, Y.; Sun, X.; Wu, S.; Huang, P. Hydrological Stress Regimes Regulate Effects of Binding Agents on
Soil Aggregate Stability in the Riparian Zones. Catena 2021, 196, 104815. [CrossRef]

49. Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.; Malik, R.K.; Bhattacharyya, R.; McDonald, A.
Impact of Conservation Tillage in Rice–Based Cropping Systems on Soil Aggregation, Carbon Pools and Nutrients. Geoderma
2019, 340, 104–114. [CrossRef]

50. Huang, R.; Lan, M.; Liu, J.; Gao, M. Soil Aggregate and Organic Carbon Distribution at Dry Land Soil and Paddy Soil: The Role of
Different Straws Returning. Environ. Sci. Pollut. Res. 2017, 24, 27942–27952. [CrossRef]

51. Zhong, Z.; Wu, S.; Lu, X.; Ren, Z.; Wu, Q.; Xu, M.; Ren, C.; Yang, G.; Han, X. Organic Carbon, Nitrogen Accumulation, and Soil
Aggregate Dynamics as Affected by Vegetation Restoration Patterns in the Loess Plateau of China. Catena 2021, 196, 104867.
[CrossRef]

140



Land 2024, 13, 2157

52. An, J.; Wu, Y.; Wu, X.; Wang, L.; Xiao, P. Soil Aggregate Loss Affected by Raindrop Impact and Runoff under Surface Hydrologic
Conditions within Contour Ridge Systems. Soil Tillage Res. 2021, 209, 104937. [CrossRef]

53. Yu, P.; Liu, S.; Han, K.; Guan, S.; Zhou, D. Conversion of Cropland to Forage Land and Grassland Increases Soil Labile Carbon
and Enzyme Activities in Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 83–91. [CrossRef]

54. Kochiieru, M.; Feiziene, D.; Feiza, V.; Volungevicius, J.; Velykis, A.; Slepetiene, A.; Deveikyte, I.; Seibutis, V. Freezing-Thawing
Impact on Aggregate Stability as Affected by Land Management, Soil Genesis and Soil Chemical and Physical Quality. Soil Tillage
Res. 2020, 203, 104705. [CrossRef]

55. Yang, S.; Dong, Y.; Song, X.; Wu, H.; Zhao, X.; Yang, J.; Chen, S.; Smith, J.; Zhang, G.-L. Vertical Distribution and Influencing
Factors of Deep Soil Organic Carbon in a Typical Subtropical Agricultural Watershed. Agric. Ecosyst. Environ. 2022, 339, 108141.
[CrossRef]

56. Somasundaram, J.; Chaudhary, R.S.; Awanish Kumar, D.; Biswas, A.K.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Jha, P.; Sankar, M.;
Patra, A.K.; et al. Effect of Contrasting Tillage and Cropping Systems on Soil Aggregation, Carbon Pools and Aggregate-associated
Carbon in Rainfed Vertisols. Eur. J. Soil Sci. 2018, 69, 879–891. [CrossRef]

57. Bordonal, R.D.O.; Lal, R.; Ronquim, C.C.; De Figueiredo, E.B.; Carvalho, J.L.N.; Maldonado, W.; Milori, D.M.B.P.; La Scala, N.
Changes in Quantity and Quality of Soil Carbon Due to the Land-Use Conversion to Sugarcane (Saccharum officinarum) Plantation
in Southern Brazil. Agric. Ecosyst. Environ. 2017, 240, 54–65. [CrossRef]

58. Okolo, C.C.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Eze, P.N. Accumulation of Organic Carbon in Various Soil Aggregate Sizes
under Different Land Use Systems in a Semi-Arid Environment. Agric. Ecosyst. Environ. 2020, 297, 106924. [CrossRef]

59. Demenois, J.; Rey, F.; Ibanez, T.; Stokes, A.; Carriconde, F. Linkages between Root Traits, Soil Fungi and Aggregate Stability in
Tropical Plant Communities along a Successional Vegetation Gradient. Plant Soil 2018, 424, 319–334. [CrossRef]

60. Luan, H.; Gao, W.; Tang, J.; Li, R.; Li, M.; Zhang, H.; Chen, X.; Masiliunas, D.; Huang, S. Aggregate-Associated Changes in
Nutrient Properties, Microbial Community and Functions in a Greenhouse Vegetable Field Based on an Eight-Year Fertilization
Experiment of China. J. Integr. Agric. 2020, 19, 2530–2548. [CrossRef]

61. Liu, Y.; Zhu, G.; Hai, X.; Li, J.; Shangguan, Z.; Peng, C.; Deng, L. Long-Term Forest Succession Improves Plant Diversity and Soil
Quality but Not Significantly Increase Soil Microbial Diversity: Evidence from the Loess Plateau. Ecol. Eng. 2020, 142, 105631.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

141



Academic Editors: Jianye Li,

Weida Gao, Wei Hu, Qiang Chen and

Xingyi Zhang

Received: 18 October 2024

Revised: 9 December 2024

Accepted: 23 December 2024

Published: 30 December 2024

Citation: Podhrázská, J.; Szturc, J.;
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Abstract: Climate change affects all sectors of human activity. Agricultural management
is influenced by changes in temperature and precipitation distribution both during the
growing season and in the non-growing period. The contribution of snowmelt erosion to
the total annual loss of arable soil has not yet been sufficiently emphasized. Based on the
USLE principle, an equation for soil loss caused by snowmelt was derived, and the erosion
potential of snow was determined for the conditions in the Czech Republic. In the foothill
area of Větřkovice, an analysis of changes in selected climatic characteristics in the years
1961–2020 was elaborated. It was shown that the area is warming and the number of days
with temperatures below 0 ◦C is decreasing. The total annual precipitation decreased by
18 mm. Furthermore, the erosion potential was compared in two referential periods for
both the entire Czech Republic and the Větřkovice area, and a case study of soil loss due to
snowmelt erosion was prepared. Despite a slight reduction in the erosion potential in the
model area, the erosion shear from snowmelt reaches values higher than the permissible
limit.

Keywords: erosion potential; climatic characteristics; foothill area; soil loss; non-vegetation
period; snow water equivalent

1. Introduction

Snow is one of the most variable elements of the hydrological cycle [1]; therefore,
snowmelt combined with rain and soil freezing can lead to severe erosion, even in less
vulnerable areas [2]. According to [3], soil erosion is one of the main global environmental
problems limiting the sustainable development of the ecological environment. As stated [4],
soil loss caused by snowmelt runoff constitutes a significant part of the total annual soil
erosion in mid to high latitudes, as confirmed by [5–7]. In these vulnerable areas, snowmelt
erosion can cause serious damage to soil quality and health, water quality, crop yields,
and overall ecological balance [8,9]. With the increasing melting of glaciers and decreasing
snow cover, the impact of snowmelt on hydrological processes and soil erosion is becoming
more serious [10]. Annual snowfall only accounts for 5% of the total global precipitation,
as stated by [11]. Due to the spatial heterogeneity of snow distribution and the complexity
of snowmelt processes, snowmelt runoff in mid to high latitudes likely causes even more
severe soil erosion than water erosion [12–15], as evidenced by erosion studies [16–18].
This is further confirmed by [19], who demonstrated that water flows much faster on a
frozen slope than on a thawed slope. Erosion caused by snowmelt has its own distinct
characteristics [20], such as snowmelt runoff being sensitive to changes in radiation and air
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temperature, the soil surface being affected by freezing and thawing, the frozen-soil layer
reducing infiltration, and low vegetation cover during the snowmelt period.

The primary characteristic of snowmelt erosion is the freezing of soil during the
winter, leading to the exclusion of water from the soil, which forms ice crystals around
soil aggregates. These crystals break up soil aggregates, resulting in fine particles that
are released and transported during snowmelt [10]. The thawed topsoil becomes muddy
and susceptible to erosional damage. Another effect of soil freezing is increased soil
erodibility in the spring months, when the potential for water infiltration into lower layers
is significantly reduced [9]. In this period, relatively strong erosion occurs in the surface
layer, even though the amount of melting snow is small. The erosion process during
snowmelt is accelerated by the arrival of warm air masses accompanied by rainfall [21,22].
According to [23], the temporal variability of snow cover and the spatial heterogeneity
of soil freezing, together with rain-on-snow events, cause complex and dynamic runoff.
Ref. [24] found that the rate of snowmelt and infiltration of rain into frozen soil depends
largely on the initial water content, frost depth, and soil temperature.

Snow cover is also an important indicator of the climatic character of winter. The
analysis of spatial and temporal variability of snow cover in a watershed helps to assess
changes in flood regimes [25], predicting snowmelt runoff in the spring period [26]; it is
also an important indicator for assessing air temperature in climate studies [27].

Snowmelt, soil freezing, and related erosion events exhibit significant spatial variabil-
ity [28]. According to [29], spring snowmelt, as well as repeated snowmelt during winter,
contributes to annual water runoff and soil particle removal from the entire watershed. Soil
particles released by melting snow water are deposited at the foot of slopes when their
velocity decreases. Fine soil particles, however, are transported to watercourses, where they
constitute most of the sediment. This unchanneled runoff from melting snow causes soil
loss if not protected by vegetation and can lead to seasonal flooding [30–32]. Soil erosion
increases with slope steepness and length and depends on spring weather conditions
as well as those during winter and autumn [33]. The microrelief of cultivated land also
significantly affects soil erosion. The most intense soil erosion is observed on fields plowed
along the slope and is significantly less intense on fields cultivated along the contour lines,
as ridges and furrows reduce and impede the flow of water from melting snow. It was also
found by [18] that the protective effect of vegetation in the spring is small, and the risk of
erosion is particularly high in areas where autumn plowing leaves the soil unprotected.
According to [34], there has been a significant increase in temperature characteristics in the
Czech Republic between 1961 and 2019. Due to rising temperatures, an increase in the ratio
of rainfall to snowfall, especially at the beginning and end of the cold season, and thus less
snow accumulation during the winter season, is expected [35].

In practice, two approaches are used to calculate snowmelt runoff. The first is the
energy balance method and the second is the temperature index method. A more accurate
alternative to represent snowpack processes is the energy balance method. The energy
balance approach is data-intensive because melting is derived from the balance of incoming
and outgoing energy components. In contrast, temperature-index models, also called
degree-day models, use only air temperature to estimate melt rates [36]. The use of
temperature indices (degree days) is based on an assumed relationship between ablation
and air temperature, which is usually expressed as positive temperature sums [37].

Snow accumulation and melt are further influenced by various factors, primarily
elevation, wind, exposure, slope, and vegetation cover. According to [38], vegetation
is the most significant influencing factor. Other factors such as elevation, orientation,
and exposure to the prevailing wind direction act in combination and it is not possible
to clearly determine a dominant factor. The melting rate is usually significantly lower
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than the intensity of rainfall, which is commonly recorded in mm·day−1. However, the
soil is frozen and saturated with water in the surface layer during winter, reducing the
infiltration rate. As a result, a significant portion of the meltwater runs off, and thus the
runoff coefficient from snowmelt on frozen soil is usually higher than that of rainwater.
Normal values of snowmelt runoff range from 1.0 to 15 mm·day−1. Although erosion
caused by meltwater does not reach the same intensity as erosion caused by rainfall runoff,
it acts over a larger area with little vegetation protection, making soil erosion one of the
primary consequences [21,22].

Erosion models provide a powerful tool for investigating snowmelt erosion. Concep-
tual models, which are based on empirical relationships between variables, and physical
models, which are grounded in the physics of snowmelt, are commonly employed in such
studies [39]. Some of the physical models used include SWAT (Soil and Water Assessment
Tool), WEPP (Water Erosion Prediction Project), EUROSEM (European Soil Erosion Mod-
els), and LISEM (Limburg Soil Erosion Model). The Czech hydrometeorological institute
(CHMI) uses the SNOW17 model to simulate the accumulation and melting of snow cover.
The model combines the two main approaches to snow cover modeling. A simple energy
balance is used in the case of liquid precipitation. In other cases, a degree-day approach is
used.

Empirical models are mostly based on the derivation of a universal soil loss equation
(USLE) (e.g., RUSLE—Revised Universal Soil Loss Equation, MUSLE—Modified Universal
Soil Loss Equation, SHI—The Russian State Hydrological Institute model), as stated by [10].

Based on the USLE principle, ref. [21] derived an equation for soil loss caused by
snowmelt for the conditions of the Czech Republic. This equation has been further used
in other studies [40] by determining the R factor value in the post-harvest period and
the snowmelt erosion, calculating the total annual soil loss for a selected area using the
approach according to [21]. The application of USLE and its modification according to [21]
was also dealt with by [41], who presented a method for assessing the erosive potential of
snow cover based on data available from the Czech Hydrometeorological Institute (CHMI).
The study by [42] presents an evaluation of the erosive potential of snow for the territory of
the Czech Republic in the cold periods of 1980/1981 to 2009/2010.

This study focuses on the application of a method developed by [21,42] for determining
changes in snow erosion potential in the conditions of the Czech Republic during two
referential periods and the interpretation of this method for specific conditions of a foothill
area.

2. Materials and Methods

The intensity of erosion caused by snowmelt, according to [21], is based on the univer-
sal soil loss equation [43], where the rainfall erosivity factor R is replaced by the snowmelt
rate factor m (mm·day−1) in a maximum 20-day period, in which the most intense thawing
takes place and the factor of amount of water derived from snow during the 20-day period
is h (cm). The combination of both factor m and h could be assigned as erosive potential of
snow cover. The amount of water produced by snowmelt (h) and the snowmelt rate (m)
can be derived from long-term measurements at meteorological stations using databases of
snow water equivalent (SWE) and snow cover depth (SCE) [41,44].

2.1. Determination of the Potential of Snowmelt Erosion

The combination of SWE and SCE factors can be collectively referred to as the erosion
potential of water accumulated in the snow cover (Ep). The determination of Ep values
using data from available climatic stations can be used for the areal distribution of the risk
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of soil erosion caused by snowmelt. This approach was used to assess the erosion potential
for the conditions of the Czech Republic.

To evaluate the impact of climate change on factors causing snowmelt erosion, two
periods were selected for the analysis: 1981–2010 and 1991–2020.

The erosion potential was calculated for a dataset of 235 Czech Hydrometeorological
Institute (CHMI) climatological and precipitation stations, selected based on data availabil-
ity. The daily values of SWE and SCE were used for the so-called cold period of the year,
specifically from October to the following May. In total, data from 1980/1981 to 2019/2020
were processed. Starting from the day with the highest snow water equivalent, the number
of days until the total snow depth reached zero was counted. If this did not happen, a
maximum of 20 melting days was considered for the erosion potential calculation. From
the annual values, average erosion potential values (Ep were calculated for two periods of
1981–2010 and 1991–2020).

2.2. Regionalization of the Potential of Snowmelt Erosion in the Czech Republic

A point layer was processed in ArcGIS Pro 3.3.1 from the set of snowmelt erosion
potential values for the periods 1981–2010 and 1991–2020. The snowmelt erosion potential
values for individual stations were interpolated across the Czech Republic using regression
kriging, dependent on several parameters such as altitude, slope, and aspect, including
corrections to the estimated value to maintain the value corresponding to the station’s
location. The interpolation was performed using tools contained in the ProClimDB software
(Climahom, Prague, Czech Republic, www.climahom.eu). The resulting raster model with
a spatial resolution of 500 m × 500 m was subsequently processed in the ArcGIS software
environment, and the raster was smoothed using the low-pass filter method.

The categorization of values was carried out by classifying the erosion potential raster
into 5 categories. The boundaries of each category were set at the 20th, 40th, 60th, and 80th
percentiles of the raster erosion potential values for the given periods. This categorization
using the percentiles was carried out to determine relatively equally extensive areas within
the Czech Republic. Subsequently, the area of land falling into each category and period
was calculated.

2.3. Study Area Větřkovice

The study area of Větřkovice—located in the foothills of the Nízký Jeseník mountains
in the northeastern part of the Czech Republic—(Figure 1) was selected for interpreting the
risk of erosion from snowmelt using erosion potential values.

The average altitude of this area is 480–500 m above sea level. The area is characterized
by a climate with a very short, moderately cool, and humid summer, a long transition
period with a moderately cool spring and mild autumn, and a long, mild to moderately
humid winter with a long duration of snow cover. The average annual air temperature in
the locality is 7.6 ◦C, and in winter it is −1.7 ◦C, with the coldest month being January.

As part of the analysis of climatic characteristics, average values for individual months,
the year, and seasons were calculated for the locality, focusing on the evaluation primarily
in winter and the cold half-year (October to March). To assess the possible change in
the occurrence of snowmelt erosion, trends in the time series of climatic characteristics
related to erosion in winter period were also processed. The trends were determined from
long-term climate data for the period 1961–2020.

145



Land 2025, 14, 55

Figure 1. Location of the study area and the analyzed land blocks (EHP).

To compare the impact of changing climatic characteristics on the risk of erosion
from snowmelt, long-term average soil loss was analyzed on selected land blocks in the
Větřkovice locality, depending on the snow erosion potential (Ep) for the two referential
periods of 1981/2010 and 1991/2020 according to the modified equation by [21].

ES = EP·k·LS·C·P·K [t·ha−1·year−1] (1)

ES—Intensity of erosion [t·ha−1·year−1];
EP—The erosion potential [−];
k—The runoff coefficient.
LS—The topographic factors [−];
C—The cropping management factor in the period of dangerous snowmelt [−];
P—The supporting practices factor [−];
K—The soil erodibility factor [t·ha−1].

The calculation of erosion intensity using the equation required the determination of
specific factor values.

2.4. Factors LS, P, and K

These factors are determined using standard procedures according to the calculation
method for water erosion.

2.5. The Runoff Coefficient (k)

The value of the runoff coefficient during the snowmelt period varies between 0.7 and
1.5 depending on the soil freezing. In the case where data on soil freezing are not available,
it is possible to use the mean value of the runoff water coefficient k = 1.
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2.6. The Vegetation Cover Efficiency Factor in the Period of Dangerous Snowmelt (C)

This factor was determined based on the equation [45,46].

CNO = 0.8656·CVO + 0.128 (2)

CNO—C factor for non-vegetation season;
CVO—C factor for vegetation season.

3. Results

3.1. Overview of Climatological Characteristics of the Větřkovice Area Regard to Snowmelt Erosion
and Its Trend

From the daily values of a set of climatic characteristics from the Vítkov meteorological
station near Opava, data on the average, minimum, and maximum air temperature, total
precipitation, new snow cover (i.e., daily increase in snow cover), number of days with
a minimum temperature below 0 ◦C, and number of days with total high of snow cover
above 1 cm were processed. The results are documented in Tables 1 and 2.

Table 1. Average annual, monthly, and seasonal values of climatological characteristics for the period
1961–2020.

Trends—Period 1961–2020 Year Winter Spring Summer Autumn X.-III. IV.-IX.

mean temperature ◦C 7.60 −1.70 7.40 16.70 7.90 1.30 13.80
maximum temperature ◦C 12.00 1.20 12.30 22.30 12.00 4.70 19.20
minimum temperature ◦C 3.30 −4.70 2.60 11.20 4.20 −1.90 8.50

number of days with minimum temperature below 0
◦C 119.00 72.60 27.50 0.00 18.60 110.70 8.70

number of days with total snow depth above 1 cm 70.80 53.30 11.90 0.00 5.70 68.90 1.90
depth of new snow (cm) 119.20 80.90 22.60 0.00 15.00 113.50 6.40
precipitation total (mm) 679.70 105.30 170.20 254.10 149.70 233.80 445.10

Table 2. Trend values of individual characteristics for months, years, and seasons for the period
1961–2020 at Větřkovice (orange is statistically significant trend, p = 0.05).

Trends—Period 1961–2020 Year Winter Spring Summer Autumn X.-III. Iv.-IX.

mean temperature ◦C 0.380 0.390 0.350 0.500 0.230 0.360 0.400
maximum temperature ◦C 0.400 0.350 0.410 0.580 0.230 0.360 0.460
minimum temperature ◦C 0.370 0.430 0.250 0.470 0.300 0.400 0.350

number of days with minimum temperature below 0
◦C −5.100 −2.010 −1.250 0.00 −1.310 −4.590 −0.610

number of days with total snow depth above 1 cm −6.405 −3.370 −1.699 −0.016 −0.784 −5.606 −0.134
depth of new snow (cm) −14.005 −6.896 −2.097 −0.016 −3.341 −13.609 −1.013
precipitation total (mm) −18.017 −5.606 −10.130 −5.678 4.186 −12.030 −7.936

As part of the trend analysis, linear trends for temperature characteristics were tested
using the t-test, and for precipitation characteristics, the Mann–Kendall non-parametric
trend test was performed. The results are presented in Figures 2–4. (The graph shows
the trend value, i.e., the change in the value of the characteristic over 10 years for months,
years, and seasons. Orange columns indicate whether the trend is statistically significant;
gray indicates insignificance).
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Figure 2. Values of the linear trend in mean temperature (A), minimum temperature (B), number
of days with minimum temperature below 0 ◦C (C), and number of days with total snow cover
above 1 cm (D) in ◦C/10 years for months, years, and seasons for the period 1961–2020 at Větřkovice
(orange indicates statistically significant trend, p = 0.05).

Figure 3. Values and course of mean temperature (A), minimum temperature (B), number of days
with minimum temperature below 0 ◦C (C), and number of days with total snow cover above 1 cm
(D) in ◦C/10 years for the period 1961–2020 at Větřkovice.
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Figure 4. Linear trend (A) and course of values (B) of the amount of new snow cover (in cm/10 years)
for months, years, and seasons from 1961 to 2020 at Větřkovice (orange indicates statistically signifi-
cant trend, p = 0.05).

The analysis of annual and seasonal averages, minimums, and maximums tempera-
tures clearly shows a significant increase in values towards the present. This is confirmed
by the identified trends, where a statistically significant increasing trend in temperature
characteristics is evident for most months, as well as for annual and seasonal values. In
the winter period, a temperature increase trend of 0.4 ◦C per 10 years was found, while in
spring, the average and maximum temperatures show an increase of 0.4 ◦C per 10 years,
and the minimum temperature has a slightly lower increase of approximately 0.3 ◦C per
10 years. Consistent with this, there is also a trend in a decreasing number of days with
a minimum temperature below 0 ◦C. The annual number of these days, which averages
119 per year, is decreasing at a rate of about 5 days per 10 years. This means that there is a
gradual and significant increase in the occurrence of days with snowmelt or precipitation
in the form of rain during the winter period. Regarding precipitation, the average annual
precipitation in the period 1961–2020 is 679.7 mm, and in the cold half-year, it is 233.8 mm.
A statistically significant decreasing trend in precipitation is evident both in annual values
and in values for the spring season, and it is also present in the amounts in the cold half-year.
The trend in decreasing annual precipitation is 18 mm per 10 years, in the spring season it
is approximately 10 mm per 10 years, and in the cold half-year, a decrease of 12 mm per
10 years is recorded (see Table 2). Similarly, there is a change in the recorded sums of total
new snow depth, which averages 119.2 cm in the locality. A significant decreasing trend
of 14 cm per 10 years was proven for annual values, and in the autumn season, the total
sum of new snow decreases by a trend of 3.3 cm per 10 years. An interesting indicator
for the future estimation of snowmelt erosion development can also be the characteristic
of the number of days with a total high of snow cover above 1 cm. On average, there are
about 71 such days in the locality per year. According to the trend analysis, a statistically
significant decreasing trend of 6.4 days per 10 years was recorded in annual values; for the
winter season this was 3.4 days/10 years and in the spring season 1.7 days/10 years.

Warming is also evident from observed measurements across Europe, and the fre-
quency of weather extremes is increasing [47]. The average annual air temperature in-
creased by 0.3 ◦C per decade between 1961 and 2018, and in the last 28 years (1991–2018), it
has risen by 0.9 ◦C compared to the 1961–1990 average, such as in the Czech Republic [48].
The trends in increasing temperatures within the three reference periods are also confirmed
by [34].

The trends in climatic characteristics in the Větřkovice area correspond with the
scenarios processed by [48] for the Czech Republic, where we can expect an increase in air
temperature of at least 2 ◦C by the end of this century compared to the reference period
1981–2010. The highest increase in maximum air temperatures will occur in winter and
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the lowest in spring. Furthermore, it is expected that by the end of the century, the annual
average precipitation in the Czech Republic will increase by 7–16%. There will be an
increase in winter precipitation, which may rise by up to 35% by the end of the 21st century,
while summer precipitation will decrease. Based on analyses of climatic characteristics
and their scenarios in the territory of Ukraine, ref. [49] indicates that episodes of snowmelt
will likely decrease, but solid precipitation will be replaced by liquid precipitation. This
phenomenon will require further study of the impact of liquid precipitation in the winter
period on soil erosion.

3.2. The Differences in Erosion Potential Values for the Given Periods

Table 3 shows a gradual trend in decreasing areas with high erosion potential (>85.1)
and, conversely, an increase the area of regions where lower EP values (6.1–26) were
analyzed. This may indicate a decrease in the risk of erosion events in higher-altitude
areas, where the amount of fallen snow is decreasing. However, areas with lower erosion
potential in the winter period may be affected over a larger area. Since these are mostly
areas with intensive farming on arable land than in the foothill areas, more significant
erosion events associated with snowmelt may occur here.

Table 3. Area representation of individual categories of erosion potential values for two periods
within years 1981–2020 as a percentage of the area of Czech Republic.

Erosion Potential 1981–2010 1991–2020

0–6 17.5 18.8
6.1–26 20.0 22.9

26.1–49 19.4 20.8
49.1–85 19.8 19.9
>85.1 23.2 17.6

By interpolating the erosion potential values across the area of the Czech Republic,
erosion potential maps were generated for the analyzed periods of 1981–2010 and 1991–2020
(Figures 5 and 6).

Figure 5. The erosion potential map for the referential period 1981–2010.
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Figure 6. The erosion potential map for the referential period 1991–2020.

These maps were used to determine erosion potential values for two referential periods
in the Větřkovice locality. Using a modified equation [21], the amount of erosion runoff
on erosion-assessed areas was calculated and their difference compared. Methods for
quantifying erosion processes from snowmelt are still rarely published. Most publications
present complex models for quantifying erosion from snowmelt [50] or its intensity [51].

An erosion potential map for the referential period of 1981–2010 published by [42]
presented results of erosion potential analysis from only 50 climatic stations. The newly
processed maps in Figures 5 and 6 represent a more detailed distribution of erosion potential
and newly define the boundaries of individual categories. They allow the comparison of
changes in erosion potential during the two referential periods.

3.3. Analysis of Erosion Risk in the Větřkovice Area Using Erosion Potential Maps

The erosion potential (EP) for the studied area was determined from the erosion
potential maps. The EP value was used in two variants: erosion potential from the referential
period of 1981–2010 (EP past = 54.40) and erosion potential from the referential period of
1991–2020 (EP pres = 50.45).

For the factor of runoff water, a value of k = 1 was determined. The LS factor was
determined based on the digital elevation model (DEM) using the USLE2D program
algorithm (McCool). The K factor was determined according to the soil characteristics of
the area (main soil type). Its value is 0.41 (soils highly susceptible to erosion). The CNO

factor was recalculated based on the determined CVO for the area of interest (CVO = 0.024).
For the non-vegetation period, CNO = 0.305. The limit value for soil loss was set according
to [52] (decree on the protection of agricultural land against erosion) at 9 t·ha−1·y−1.

GIS tools were used on a digital elevation model (DEM) to calculate the degree of
erosion risk. Four land blocks (EHP 1–4) were evaluated (see Figure 1). The results of the
analysis are shown in Table 4.
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Table 4. Intensity of snowmelt erosion for two values of erosion potential. (Exceeded erosion limit in
red).

The Percentage Share of the Es Value Interval [t·ha−1·y−1]

EHP Area [ha] <4 4.01–8 8.01–12 12.01–16 16.01–20 >20 Es (�)
Esp

(Permissible)

EP pres 50.40 (1991–2020)

1 138.70 34.80 16.00 13.30 10.90 7.90 17.10 11.45 9.00
2 81.93 42.80 15.80 9.70 8.30 8.30 15.00 9.78 9.00
3 58.43 48.20 11.30 6.80 6.10 5.30 22.20 10.31 9.00
4 16.65 41.20 20.30 13.20 9.30 7.10 9.00 8.06 9.00

295.70 � 9.90 9.00

EP past 54.40 (1981–2010)

1 168.70 33.50 15.40 12.60 10.40 8.70 19.50 12.36 9.00
2 81.93 41.10 15.60 10.00 7.10 8.30 17.90 10.56 9.00
3 58.43 46.80 11.20 7.40 5.30 5.20 24.10 11.13 9.00
4 16.65 38.90 20.50 12.60 9.50 7.20 11.20 8.70 9.00

295.70 � 10.69 9.00

The results of the analysis indicate a slight decrease in the intensity of erosion caused
by snowmelt due to changing climatic conditions. However, the observed values still
exceed the limits set by legislation [52]. Considering the erosion potential derived from the
map processed for the referential period 1991–2020, the average soil loss due to erosion is
9.9 t·ha−1·y−1. When considering the past EP values determined from the data of 1981–2010,
the average soil loss is 10.69 t·ha−1·y−1. Overall, there is an average reduction in erosion
intensity in the winter period by 0.79 t·ha−1·y−1. Nevertheless, attention must be paid to
erosion from snowmelt, as demonstrated by [4], who found that soil losses were higher
during snowmelt periods than during rainfall periods in the northeastern China watershed
due to higher surface runoff in early spring. Reduced soil infiltrability during snowmelt
periods also significantly contributed to this higher surface runoff. Work by [17] studied
the causes of erosion in potato fields and found large soil losses (10–15 t·ha−1·y−1) caused
by snowmelt. In agricultural areas of European Russia, [53] determined the intensity of soil
erosion over periods of snowmelt and storm runoff, as well as the total annual soil loss. The
average soil erosion in the studied area is 4.04 t·ha−1·y−1, considering the soil protection
coefficients of agricultural vegetation. In the annual soil loss due to erosion, rainfall runoff
erosion predominates at 3.78 t·ha−1·y−1, while snowmelt erosion is significantly lower
at only 0.26 t·ha−1·y−1. In the Czech Republic, [46] calculated the average long-term soil
loss due to water from melting snow for selected localities. The calculated soil loss in the
non-vegetation period was up to 36 t·ha−1·y−1.

4. Conclusions

The analysis of the development of climatic characteristics of the studied area in the
years 1961–2020, with an emphasis on the winter period, showed the following significant
results:

i. There is an increase in average, maximum, and minimum air temperatures, and
accordingly, a decrease in the number of days with temperatures below 0 ◦C. The
warming of the area is also associated with a decrease in the total depth of new snow
cover by 3.3 cm per 10 years and a decrease in the number of days with snow cover
height above 1 cm by 6.4 days per 10 years.

ii. The total decrease in precipitation amounts is 12 mm per 10 years in the cold half of
the year, and for annual totals, it is 18 mm per 10 years.
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iii. From the CHMI database, the erosion potential of snow was calculated at 235 climatic
stations. The erosion potential values for individual stations were interpolated across
the area of the Czech Republic using the method of regression kriging into an erosion
potential map for two referential periods. The results show a change in the spatial
distribution of erosion potential values. High EP values, occurring in foothill and
mountainous areas that are mostly grass-covered, are decreasing in area. The spatial
share of lower EP values, located mainly in lower altitudes and predominantly arable,
is increasing. In these areas, more significant erosion events associated with snowmelt
on arable land may occur.

iv. The comparison of erosion potential calculated for two referential periods (1981–
2010 and 1991–2020) in the Větřkovice case area showed a slight decrease in erosion
potential value in the referential period of 1991–2020, which corresponds with the
analyses of changes in climatic characteristics in the studied area. However, the soil
loss due to snowmelt erosion, calculated for selected localities, still exceeds the values
set by current legislation by 0.9 t·ha−1·y−1.

In view of the above findings from the analyses, it follows that in the future, the locality
is expected to experience further increases in temperatures, both in annual values and in
the winter season, along with a decrease in the number of days supporting the formation
of continuous snow cover and the total precipitation in the form of snow. However,
considering that despite the decrease in the number of days with snow cover, snow still
occurs sufficiently in the locality during the winter period, this, combined with the trend
in rising winter temperatures and thus a higher probability of rainfall, may indicate more
frequent episodes of rapid snowmelt in the future, leading to intensified soil erosion
processes.

This fact can be alarming because soil losses due to erosion from both snowmelt
and winter liquid precipitation must be considered in the context of year-round erosion
events. The total soil loss due to erosion, including that in the non-vegetation period,
has not yet been summarized within the Czech Republic, despite potentially exceeding
the set limits. Temperature fluctuations can promote more intense snowmelt, leading to
more frequent soil particle transport in the winter period and increased sediment presence
in watercourses. For these reasons, despite the decreasing amount of snow cover in the
winter period, it is necessary to continue addressing the issue of erosion processes in the
non-vegetation period. Currently, there are various models for determining erosion from
snowmelt; however, the application of snowmelt erosion models in practical research
is minimal, which hinders the updating and development of snowmelt erosion models
and leads to low model adaptability in the current climate change and multi-extreme
event-prone environment.
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Abstract: The uncontrolled expansion of mining activities has caused severe environmen-
tal impacts in semi-arid regions, endangering fragile ecosystems and water resources.
This study aimed to propose a decision-making model to identify land use and land
cover changes in the semi-arid region of Pernambuco, Brazil, caused by mining through
a spatiotemporal analysis using high-resolution images from the PlanetScope satellite
constellation. The methodology consisted of monitoring and evaluating environmental
impacts using the k-Nearest Neighbors (kNN) algorithm, spectral indices (Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI)), and
hydrological data, covering the period from 2018 to 2023. As a result, a 3.28% reduction
in vegetated areas and a 6.62% increase in urban areas were identified over five years,
suggesting landscape transformation, possibly influenced by the expansion of mining
and development activities. The application of kNN yielded an Overall Accuracy (OA)
greater than 99% and a Kappa index of 0.98, demonstrating the effectiveness of the adopted
methodology. However, challenges were encountered in distinguishing between construc-
tions and bare soil, with the Jeffries–Matusita distance (JMD) analysis indicating a value
below 0.34, while the similarity between water and vegetation highlights the need for
more comprehensive training data. The results indicated that between 2018 and 2023,
there was a marked degradation of vegetation and a significant increase in built-up areas,
especially near water bodies. This trend reflects the intense human intervention in the
region and reinforces the need for public policies aimed at mitigating these impacts, as
well as promoting environmental recovery in the affected areas. This approach proves
the potential of remote sensing and machine learning techniques to effectively monitor
environmental changes, reinforcing strategies for sustainable management in mining areas.
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1. Introduction

Land use has been one of the main drivers of landscape transformations over the years,
with human activities such as agriculture, urbanization, and mining exerting significant
pressure on natural ecosystems. In this context, remote sensing technologies have emerged
as crucial tools for mapping and monitoring these changes, providing essential data for the
sustainable management of natural resources.

Areas under the influence of mining are regions densely occupied by enterprises or
exploited lands, often marked by intense conflicts between economic interests and environ-
mental protection [1]. According to Buczyńska et al. [2], the impacts of mineral extraction
from surface or underground mining methods include continuous deformations, large-
scale land leveling, groundwater depletion, soil and groundwater contamination, and dust
pollution. All these effects can negatively influence the preservation of vegetation within
and around the mining area. In this context, robust analysis of social and environmental
data at local and regional scales is essential for regulators and mining companies to identify,
monitor, mitigate, and sustainably manage the environmental and socioeconomic impacts
of mining [3].

Mining has been one of the main landscape transformation agents over the years.
Estimates suggest that mining and quarrying activities have altered approximately 0.3 to
0.8 million square kilometers of land worldwide, and this trend continues to grow [4,5].
However, existing research highlights gaps related to understanding the specific impacts
of mining in semi-arid areas, where the effects of soil degradation, water contamination,
and deforestation are exacerbated by adverse climatic conditions [6,7]. In the case of gold
mining near protected areas in South America, significant deforestation has occurred,
driven by the rise in gold prices during the global economic crisis of 2008 [8–10].

In Northeastern Brazil, mining activities have been identified as a catalyst for envi-
ronmental degradation, affecting soil quality, water resources, biodiversity, and human
health [11,12]. Changes associated with Artisanal and Small-Scale Gold Mining in the
landscape (roads and airstrips) typically include deforestation to access gold deposits
and settlements [13]. Unregulated mineral processing also leads to soil and water body
pollution by heavy metals, especially increased mercury levels [14–16].

The National Mining Agency (ANM) highlights the importance of the region for min-
eral production in Brazil, with Pernambuco being a small center for gold exploration [11].
Brazilian legislation, including the National Environmental Policy (Law No. 6.938/81), the
Mining Code (Decree-Law No. 227/1967), and Federal Decree No. 97.632/1989, which
regulates the Degraded Area Recovery Plan (PRAD), emphasizes the need for responsible
mining practices to minimize negative impacts on the environment and local communi-
ties [17].

Mining activities impact land cover, vegetation, and soil properties, requiring ef-
fective monitoring approaches [18]. The growing interest in monitoring illegal mining
activities through remote sensing (RS) is a response to the increasing environmental and
socioeconomic impacts these activities pose globally [19]. Camalan et al. [20] presented a
socio-environmental approach to unregulated mining in various ecosystems, emphasizing
the importance of RS techniques in mitigating these environmental impacts.

The environmental impacts of gold mining, such as water pollution and land degra-
dation, are well-detected using RS data and techniques. Therefore, their use provides
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substantial benefits for detecting, mapping, and monitoring gold mining activities and
their effects, especially those associated with local mining [21].

Images from different satellites with medium and high spatial resolutions have been
used to identify various mining activities and their environmental impacts on the Earth’s
surface. According to Shikhov et al. [7], optical images are analyzed using multiple ap-
proaches such as supervised and unsupervised classification, spectral indices, time-series
analysis, and several machine learning algorithms, including k-Nearest Neighbors (kNN),
artificial neural networks (ANNs), decision trees (DTs), support vector machines (SVMs),
random forests (RFs), and classification and regression trees. According to Lua and Weng
(2007), the results of soil surface mapping are influenced not only by the adequacy of the
images but also by the correct choice of processing and classification methods.

Based on the results of an extensive literature review, Song et al. [22] presented
progress in RS monitoring research regarding land use and land cover changes in mining
areas. The authors focused on the application and perspectives of RS techniques in the
context of biodiversity ecological environment monitoring, highlighting aspects related
to landscape structure, vegetation changes, soil environment, surface conditions, and
atmospheric environment in mining areas.

RS technologies are widely used to identify natural features or physical objects on the
Earth’s surface, utilizing various spatial, temporal, spectral, and resolution datasets [23–26],
serving as effective sources for identifying the environmental impacts of gold mining,
such as water contamination and soil degradation [21]. These technologies offer signifi-
cant advantages for detecting, mapping, and monitoring gold mining activities and their
effects [27–29].

To overcome the limitations of spatiotemporal frequency in land use and land cover
surveys, the availability of optical images from PlanetScope Planet Labs’ constellation of
nanosatellites emerged in 2016. The PlanetScope constellation, consisting of more than
180 CubeSats in sun-synchronized orbits, capable of capturing multispectral images with
a resolution ranging from 3.7 to 4.1 m depending on altitude [30], has a daily revisit,
making it essential for the immediate detection of land changes as well as monitoring the
expansion or maintenance of existing activities. This network has the unique capability of
daily capturing free images of the entire planet, achieving an impressive coverage of up to
200,000,000 km2 [30].

The Normalized Difference Vegetation Index (NDVI) [31] and the Normalized Differ-
ence Water Index (NDWI) [32] can, respectively, provide information on vegetation and
water presence in mining areas. Several studies over the past five years have demonstrated
the potential of the NDVI and NDWI spectral indices for mapping and monitoring land
use and land cover in mining areas. Padró et al. [33] used high-resolution multispectral
images acquired with an Unmanned Aerial System (UAV) and Soil Adjusted Vegetation
Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), NDVI, and NDWI indices
to evaluate vegetation development in a restored limestone quarry. Nascimento et al. [34]
developed a systematic image analysis approach based on geographic objects (GEOBIA) to
map revegetated areas and quantify land use and land cover changes in open-pit mines
in the Carajás/Amazon region/Brazil from high spatial resolution satellite images (Geo-
Eye, WorldView-3, and IKONOS) from 2011 to 2015 and the NDVI and NDWI spectral
indices. Stančič et al. [35] used Landsat 8 and Sentinel-2 data to monitor the Soča River
area in Slovenia using SAM (Spectral Angle Mapper) and fuzzy SSMA (Spectral Signal
Mixture Analysis) classification methods, additionally introducing NDVI, NDWI, and other
complementary indices into the classification algorithm. McKenna et al. [36] presented an
extensive RS literature review, focusing on the ecological rehabilitation of mining sites.
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RS data are used to observe three main aspects related to gold mining: deforestation
or changes in land cover, water pollution from mining near rivers, detection of turbidity
levels in river channels, and estimating the presence of mercury [37–39]. Fonseca et al. [10]
analyzed land use and cover changes in gold ore areas in the Brazilian Amazon rainforest
using Landsat images and the RF classifier. Shikhov et al. [7] evaluated the extent of soil
degradation caused by gold mining in the Magadan region of China and its changes in
the 21st century, based on Landsat/Sentinel-2 satellite data. Zaki et al. [40] used the kNN
machine learning algorithm to estimate mineral resources (predicting the gold grade in the
Quartz Ridge area) and analyze the impact of its unregulated extraction on land use and
land cover.

The integration of RS techniques and machine learning algorithms, such as kNN,
combined with spectral sensitivity studies of targets using indices, emerge as essential
tools in monitoring land cover in mining areas, enabling spatiotemporal analysis with
precision and effectiveness [41,42]. This methodological approach allows for identifying
and quantifying changes in vegetation and soil moisture, providing crucial data to assess the
environmental impacts resulting from mining activities. Pacheco et al. [43] demonstrated
the applicability of this technique in mapping areas affected by forest fires in Portugal,
efficiently using kNN to classify Landsat-8, Sentinel-2, and Terra satellite images. Noi
and Kappas [44] highlight that, although kNN may be slightly more sensitive to training
sample size compared to other algorithms like SVM, it still presents high Overall Accuracy,
especially when the sample size is sufficient.

In this context, this study proposes a decision support model for sustainable moni-
toring of mining activities in semi-arid regions of Brazil, offering an innovative integrated
analysis of sensing and machine learning using high-resolution orbital images to spatially
analyze environmental variability within and around areas impacted by mining. The
approach combines the kNN classifier with spectral indices such as NDVI and NDWI,
derived from PlanetScope satellite images, covering the period from 2018 to 2023. This
model aims to address existing gaps in the literature by offering an integrated analysis that
tackles both the socio-environmental impacts and the efficiency in monitoring landscape
transformations in semi-arid scenarios, with an emphasis on the Serita-Cedro region. How-
ever, it is noteworthy that the methodology proposed in this study can be implemented
to evaluate the spatiotemporal behavior of land cover in other mining regions with arid
and/or semi-arid climatic characteristics.

2. Materials and Methods

The methodology adopted to identify changes in the landscape of the semi-arid region
of Pernambuco, caused by the presence of mining areas, consisted of the following steps:
data acquisition, processing, and results generation (Figure 1).

In the first step, data acquisition was carried out with the selection of scenes, consid-
ering factors such as broad coverage, absence of clouds, periods of low rainfall incidence,
and availability of data sharing via cloud platforms. Additionally, as the vegetation of
the Caatinga biome, present in the study area, is sensitive to rainfall [45], it is necessary
to analyze the response of spectral indices concerning vegetation, considering the effects
of precipitation. In this regard, precipitation data for the study region during the image
acquisition period was obtained from the Pernambuco Water and Climate Agency (APAC).

Next, land use and land cover mapping were developed. Initially, the spectral indices
were calculated, followed by class training. At this stage, due to factors such as the sensor’s
spatial resolution and the diversity of land uses in the area, four classes were chosen: water,
vegetation, bare soil, and urban patches (built-up areas). The vegetation class was grouped

160



Land 2025, 14, 325

into herbaceous and shrub vegetation, while the water class included both watercourses
and water bodies.

Figure 1. Workflow of the methodology employed in this study. The diagram illustrates the sequential
steps, including data acquisition, data processing, and results and analysis, leading to the final
results. Key processes such as “Satellite and hydrological data”, “Land cover mapping with kNN”,
“Identification of land use and land cover changes”, and “Mapping accuracy analysis with kNN” are
highlighted to emphasize the core components of the approach.

As a result, the landscape changes caused by mining infrastructure were identified
through thematic maps and quantified using class extraction and separability. The classifica-
tion accuracy relative to the image was established through evaluation parameters: Overall
Accuracy (OA), Kappa index, Omission Errors (OEs), and Commission Errors (CEs).

2.1. Study Area

The investigated region (Figure 2) is a polygon designated for gold mining activities,
covering an area of 459.33 km2, with a 6 km buffer zone from the Serrita-Cedro Project,
which is part of the National Program for the Study of Mining Districts, conducted by
the National Department of Mineral Production (DNPM), in the semi-arid region of the
Brazilian state of Pernambuco.

This area, in its first phase (1994–1995), focused on the investigation of gold mineral-
ization, encompassing an area of 580 km2 [46]. Over the years, the area has been subject
to exploration, with increased investment since 2020 by the mining company Trilha Gold
Capital (TGC). According to the Brazilian Mining Institute (IBRAM), all studies conducted
in the Serrita Project follow the standards of the Australian Joint Ore Reserves Committee
(JORC) code, along with environmental regulations and laws from the relevant authorities,
ensuring maximum credibility and accuracy in the research activities in the area [47].

However, gold mining is often accompanied by soil and vegetation destruction, land-
scape fragmentation, and biodiversity loss, as well as the disruption of ecosystem services
flows [48]. Additionally, it stands as a significant driver of deforestation, unique in the
severity of its impacts, leaving behind a highly altered landscape [36].

The climate of the region is semi-arid and hot, classified as Bshw according to Köppen
(https://www.gloh2o.org/koppen/, accessed on 1 April 2024), with a distinct rainy season
(from February to May) and dry periods (from June to January). The vegetation cover con-
sists of xerophytic Caatinga, characterized by heterogeneous vegetation, whose vegetative
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vigor is sensitive to precipitation [45]. The terrain is hilly, with elevations averaging around
480 m above sea level.

 

Figure 2. Map of the study area. The investigated region, designated for gold mining activities, is
outlined by a red rectangle, and encompasses 459.33 km2, including a 6 km buffer zone around the
Serrita-Cedro Project. The boundary of the Serrita-Cedro Project, part of the National Program for the
Study of Mining Districts conducted by the National Department of Mineral Production (DNPM), is
indicated by a yellow line. The area is located in the semi-arid region of Pernambuco, Brazil.

Gold mining in the semi-arid region of Pernambuco, Brazil, is predominantly con-
ducted by corporate companies, such as the Serrita-Cedro Project, managed by Trilha
Gold Capital. Despite these regulations, mining activities continue to be associated with
environmental degradation, such as deforestation and significant land use changes. The
mining sector faces the challenge of aligning its production processes with environmental
and social sustainability requirements. As noted by IBRAM [47], incorporating responsible
practices is increasingly essential for maintaining competitiveness in the market, given the
growing environmental and social demands from investors and consumers.

In this context, the use of satellite images combined with machine learning models
presents a valuable tool for better understanding landscape changes in areas associated
with gold mining practices [13].

2.2. Materials
2.2.1. Satellite Data

Two scenes of orbital images from the PlanetScope Instruments mission, from 2018 and
2023, were used, both acquired in October, a period of low rainfall in the region [49]. The
analysis of the Caatinga’s vegetation cover is more effective during the dry season, as the
vegetation is sensitive to minimal moisture, which can cause false positives during rainy
periods [45,50]. The PlanetScope constellation, managed by Planet Labs, consists of over
130 satellites that offer daily global coverage [51]. The images provided by PlanetScope
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(PS) include four spectral bands: blue, green, red, and near-infrared (NIR), with a spatial
resolution of 3 m and a radiometric resolution of 16 bits [52]. The images from PSB.SD
and PS2 sensors used in this study, along with their characteristics and acquisition dates
(https://www.planet.com/, accessed on 4 March 2024), are presented in Table 1.

Table 1. Technical specifications of PlanetScope images.

Image ID Acquisition Date Sensor Spectral Range

120231031_120836_24_24a1 31 October 2023 PSB.SD

Blue: 465–515 nm
Green: 547–585 nm
Red: 650–680 nm
NIR: 845–885 nm

220181020_122327_0e0e 20 October 2018 PS2

Blue: 455–515 nm
Green: 500–590 nm
Red: 590–670 nm
NIR: 780–860 nm

Iqbal et al. [53], using the kNN model with PlanetScope images to map native and
invasive species distributions in two forest reserves in Pakistan, highlighted the images’
good performance in identifying targets compared to the Sentinel-2 MSI sensor.

2.2.2. Hydrological Data

The Caatinga vegetation has shown sensitivity to available rainfall [45,50,54]. In this
context, analyzing the relationship between the Caatinga vegetation cover and precipitation
becomes a key element for the accuracy of the results obtained when mapping land use
and occupation in the study region. During October 2018, two rainy days were recorded
(17 October 2018 and 18 October 2018), totaling 69.9 mm for the month and 818.9 mm for
the year. In 2023, there were no rainy days, with monthly rainfall of 0 mm and 733 mm
annually [55].

2.3. Methods
2.3.1. Spectral Indices

After pre-processing the PlanetScope satellite images, the NDVI and NDWI spectral
indices were calculated based on their respective operations, and the results were analyzed
using the Jeffries–Matusita distance (JMD) [56].

NDVI serves as an effective indicator of active plant biomass or, otherwise, vegetation
vitality. Developed by Rouse et al. [31], the NDVI ranges from −1 to 1, obtained using
Equation (1):

NDVI =
(NIR − RED)

(NIR + RED)
(1)

where NIR is the reflectance in the near-infrared band, and RED is the reflectance in the
visible red band.

This index helps differentiate vegetated areas from other land covers, such as artificial
ones, and allows for the assessment of the overall vegetation condition [57]. Addition-
ally, NDVI enables the demarcation and monitoring of vegetation zones, as well as the
recognition of any anomalies or changes in the observed area. This indicator is useful for
monitoring seasonal variations in vegetation, though its effectiveness depends on surface
reflection characteristics [58].

NDWI, using the green and near-infrared bands, is an efficient indicator for monitoring
the presence and distribution of water in terrestrial and aquatic surfaces. This index is
particularly effective in identifying water bodies and assessing moisture in vegetation,
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contributing to irrigation and water resource management studies [59]. NDWI is also
helpful in detecting flooded areas and analyzing soil water saturation, making it a valuable
tool for environmental and agricultural planning [32]. The NDWI ranges from −1 to 1 and
is calculated using Equation (2):

NDWI =
(Green − NIR)
(Green − NIR)

(2)

where NIR is the reflectance in the near-infrared band, and Green is the reflectance in the
visible green band.

2.3.2. Jeffries–Matusita Distance

JMD is a statistical metric used to evaluate the separability between classes in RS data.
JMD is particularly useful for quantifying the distinction between probability distributions
of classes, which is critical in multispectral image classification [60]. JMD is based on
Bhattacharyya distance, which measures the overlap between two statistical distributions,
and is transformed to the range [0, 2] [56]. The formula for calculating JMD between two
classes is given by Equation (3):

JMD = 2
√

1 − e−B (3)

where B is the Bhattacharyya index (measure) that quantifies the overlap between two prob-
ability distributions. This measure is based on the means and variances of the characteristics
of each class given by Equation (4).

B =
1
8
(μ1 − μ2)

T ∑−1
(μ1 − μ2) +

1
2

ln

(
|∑|√|∑1||∑2|

)
(4)

where μ represents the mean, ∑ the average covariance matrix, and |∑| the determinant of
the covariance matrix for each class. High JMD values indicate greater separability between
classes, while lower values suggest significant overlap, making it difficult to distinguish
between them [60].

2.3.3. k-Nearest Neighbors (kNN) Classification

The kNN classification algorithm is a simple yet powerful method used for classifica-
tion and regression. Introduced by Cover and Hart [61], kNN operates on the principle
that similar samples tend to be close to each other in feature space, as highlighted by James
et al. [62]. This algorithm identifies the k nearest neighbors of an unknown sample within
the training set, assigning the sample to the most common class (or the average of the
responses) among these neighbors.

The distance between samples, fundamental to the operation of kNN, can be calculated
in several ways. The most common is the Euclidean distance, given by Equation (5):

d(p, q) =

√
m

∑
i=1

(pi −qi)
2 (5)

Equation (5) calculates the distance between two samples, p and q, each with m
features, illustrating how the algorithm navigates the multidimensional space. The choice
of k is a critical aspect that directly influences the algorithm’s performance. A very small
k may make the model overly sensitive to data noise, while a very large k may cause it
to overlook class distribution nuances. It is recommended to experiment with various k
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values and potentially use validation methods, such as cross-validation, to determine the
optimal k.

Cross-validation, as described by Kohavi [63], is a technique used to assess a statistical
model’s generalization ability and to tune hyperparameters, such as k in kNN. The most
common cross-validation method is k-fold, which divides the dataset into k subsets. The
model is trained k times, each time using k-1 subsets for training and the remaining subset
for testing. The model’s performance is then evaluated by averaging the results obtained in
each of the k iterations.

kNN, along with cross-validation, offers a robust approach to data classification,
leveraging the algorithm’s simplicity and the efficacy of cross-validation to adjust hyperpa-
rameters and assessing the model’s generalization ability for new data.

The choice of the kNN algorithm over the previously mentioned models (ANN, DT,
RF, and SVM) was based on its simplicity of implementation, high accuracy in scenarios
with balanced data, and results previously reported in the literature [61–63]. Recent
studies [40,64–66] have demonstrated that in land use and land cover analyses in mining
regions, kNN achieves comparable or superior performance in Overall Accuracy and
Kappa when compared to more complex methods, particularly when applied to datasets
with a limited number of training samples, as in this study. Furthermore, the interpretative
nature of kNN enables a more direct analysis of the impact of spectral distance on results,
facilitating the identification of specific challenges, such as separability between classes
with similar spectral characteristics, for example, vegetation and urban area.

2.3.4. Samples and Training

The training samples were extracted from both 2018 and 2023 images, generating two
training sets, each representing four classes of interest: water, urban area, vegetation, and
bare soil. For this initial process, the open-source software QGIS, version 3.34.2-Prizren [67],
was used, where the training preparation involved collecting several sample polygons
for each class. The selection was made through the manual analysis of composite images
(RGBs). After visual interpretation, the masks were saved in shapefile format, allowing
them to be accessed and processed in the subsequent stage.

The definition of land use and land cover classes (water, urban area, vegetation, and
bare soil) was based on the main features observed in the study area, which is characterized
by mining activities in semi-arid regions [47]. Although other categories, such as croplands,
may be common in some semi-arid regions, they did not stand out significantly in the
investigated area, as they were often confused with native vegetation or bare soil due to
spectral similarity. Moreover, the spatial resolution of the images used (3 m) limited the
ability to identify subtle differences between small-scale croplands and the herbaceous or
shrub vegetation of the Caatinga.

In this study, the data were partitioned for training and testing the kNN model, with
80% of the data used for training and 20% for testing. This partitioning ratio was selected
considering the moderate size of the dataset, enabling the model to effectively learn the
class characteristics while ensuring a robust evaluation of its performance. The achieved
accuracy of 0.99 was based on this partition, which may be influenced by the size and
quality of the data. However, this division is considered appropriate for the context of
the study.

Training was conducted using the R programming 4.4.2 language through the RStudio
software 2024.04.7 [68]. The two sets of samples for the four classes were used with cross-
validation, where the dataset was randomly divided into 10 subsets (or “folds”), and the
model was trained 10 times, each time using 9 of the subsets for training and the remaining
subset for testing, for each sample set.
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2.3.5. Accuracy Analysis of the Classification

The use of CE and OE metrics is essential for evaluating model errors in RS systems,
allowing for a more detailed and precise analysis of the model’s ability to correctly identify
positive cases and avoid incorrectly classifying positives. The CE metric is calculated by
the proportion of false positives relative to the total number of events classified as positive,
while the OE metric is calculated by the proportion of false negatives relative to the total
number of actual positive events. OE can be calculated by Equation (6):

OE =
False Negatives(FN)

True Positives(TP) + False Negatives(FN)
(6)

Subsequently, CE can be calculated by Equation (7):

CE =
False Positives(FP)

True Positives(TP) + False Positives(FP)
(7)

These parameters allow monitoring of prediction accuracy and are widely used in RS
literature, as highlighted by Sano et al. [69] and Tejado-Ramos et al. [70].

The Overall Accuracy (OA) and the Kappa Index were also used as parameters for
analyzing the thematic accuracy of the mapping.

OA is used to measure the model’s prediction accuracy and is the ratio of correctly
classified samples to the total number of samples [71]. The OA can be calculated using
Equation (8):

OA =
∑n

i=1 xii

N
(8)

where Xii represents the number of correctly classified samples along the diagonal, and N
is the total number of samples. The higher the OA value, the better the overall prediction
accuracy of the model.

The Kappa Coefficient is used to measure classification accuracy and is calculated
according to Equation (9).

Kappa =
P0 − PC

Pp − PC
(9)

where P0 is the proportion of correctly simulated pixels, Pp is the proportion of correctly
predicted pixels in an ideal situation, and PC is the proportion of correctly predicted pixels
in a random situation. The closer the kappa coefficient is to 1, the better the classification
result matches the actual situation [71].

2.3.6. Quantitative Analysis of Classified Areas

After the image classification process, each pixel was assigned a value to one of the
four predefined classes, where the value 1 corresponds to water, 2 to urban area, 3 to bare
soil, and 4 to vegetation. The quantitative analysis was conducted by summing the pixels of
each class for the analyzed years. The PlanetScope satellite images have a spatial resolution
of 3 × 3 m, which implies an area of 9 m2 per pixel. To facilitate quantitative analysis,
the total area of each class was converted from m2 to km2, allowing for a more accessible
comparison of classified areas between the years 2018 and 2023.

3. Results

3.1. Monitoring of Land Use and Occupation

Thematic land use and occupation maps (Figure 3) were generated through classifica-
tion using the kNN algorithm. The classes analyzed were water, urban area, bare soil, and
vegetation, allowing the identification of landscape changes between 2018 and 2023.
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Figure 3. Thematic land use and occupation maps for 2018 and 2023: (a) classified image for 2018 and
(b) classified image for 2023, generated using the kNN algorithm. The maps highlight four classes:
water, urban area, bare soil, and vegetation. The comparison reveals a noticeable increase in built-up
areas and a proportional reduction in vegetated areas, particularly near natural water resources,
indicating accelerated loss of riparian forests. Bare soil areas remained largely unchanged over the
five-year period.

In Figure 3, there is a noticeable increase in built-up areas proportional to a reduction
in vegetated areas, especially in regions near natural water resources, indicating acceler-
ated loss of riparian forests. On the other hand, bare soil areas did not show significant
visible changes. The “urban area” class includes roofs of structures such as houses, ware-
houses, sports courts (with ceramic or metallic coverings), and paved roads like asphalt or
cobblestone streets. The cartographic conventions for linear features such as roads were
incorporated into the maps using the photointerpretation method on PlanetScope images,
complemented by data from the Brazilian National Department of Transport Infrastructure
(DNIT) (https://servicos.dnit.gov.br/vgeo/, accessed on 4 April 2024). This approach
allowed for the identification of roads in the study area with high precision, considering
the 3 m spatial resolution of the analyzed images. The analysis revealed that several roads
are closely related to mining areas, indicating a possible correlation between the expansion
of road infrastructure and increased productive activities. This methodology revealed a
significant expansion of the road network during the analyzed period, contributing directly
to the growth of the built-up area identified in the maps. The inclusion of these features
highlights the essential role of roads and other constructions in shaping the landscape,
thereby explaining the changes observed in the urban class from 2018 to 2023.

By comparing the classifications from 2018 and 2023, a reduction of approximately
2.10% in vegetation over the five years was identified, as shown in Figure 4.
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Figure 4. Thematic land use map highlighting deforested areas between 2018 and 2023. This
map emphasizes the reduction of approximately 2.10% in vegetation during the five-year period,
particularly in regions adjacent to water resources, reflecting the extent of deforestation.

Data extraction enabled the quantification of land use and occupation classes, as
shown in Figure 5.

Figure 5. Quantification of land use and occupation classes (in km2) for 2018 and 2023. The graph
highlights significant changes in land use over the five-year period, including a 9.68 km2 (3.28%)
decrease in vegetation cover, a 0.44 km2 (22.80%) reduction in water areas, and a 20.31 km2 (11.52%)
decrease in bare soil. Conversely, built-up areas increased by 30.43 km2 (142.53%), reflecting urban
expansion. The percentages are relative to the total study area of 459.33 km2.

In 2023, vegetation cover decreased by 9.68 km2, which is equivalent to 3.28% com-
pared to the vegetation area in 2018 and 2.11% of the total area of 459.33 km2. Rainfall over
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the period studied fell considerably, which may have influenced changes in the Caatinga
vegetation. This decrease was particularly noticeable in October 2023, when there was no
precipitation. The lower availability of water may have reduced the natural regeneration
capacity of vegetation, contributing to the decrease in vegetation cover, between 2018
and 2023. If the downward trend in precipitation continues, it is possible that the impact
on vegetation will intensify, exacerbating the effects of anthropogenic activities, such as
mining, and affecting the long-term health of vegetation.

Water areas also decreased by 0.44 km2, representing a 22.80% reduction compared
to the area in 2018 and 0.09% of the total area. Bare soil areas showed a decrease of
20.31 km2, which corresponds to an 11.52% reduction compared to 2018 and 4.42% of
the total area. Conversely, built-up areas increased by 30.43 km2, representing a 142.53%
increase compared to 2018 and 6.62% of the total area.

Some areas classified as deforested under the influence of mining were identified as
artisanal gold mining activities through Google Earth validation, supporting the accuracy
of the classification results. In these regions, it was observed that farmers converted
areas originally designated for agriculture and grazed into clear-cut zones with extensive
excavations in search of gold. These actions are directly linked to the presence of the
Serrita-Cedro Project in the region, which has drawn significant attention from informal
gold miners. The conversion of agricultural and pastureland into mining sites has caused
significant impacts on land use and land cover, along with environmental and social
consequences, highlighting the need for continuous monitoring and proper regulation.

3.2. Separability Analysis

The separability between the land use and cover classes mapped by kNN was evalu-
ated using the JMD. Tables 2 and 3 show the JMD values for the years 2018 and 2023.

Table 2. JMD for the year 2018.

Class 1 Class 2 Blue Green Red NIR NDVI NDWI

Water Urban area 0.819 0.719 1.187 1.993 1.144 1.435
Water Bare soil 0.983 0.819 1.022 1.992 1.452 1.770

Urban area Bare soil 0.165 0.108 0.116 0.024 0.273 0.330
Water Vegetation 0.408 0.570 0.528 1.980 1.827 1.953

Urban area Vegetation 1.317 1.410 1.690 1.628 1.710 0.904
Bare soil Vegetation 1.521 1.612 1.649 1.551 1.529 1.398

Table 3. JMD for the year 2023.

Class 1 Class 2 Blue Green Red NIR NDVI NDWI

Water Urban area 1.478 1.545 1.987 2.000 1.276 1.909
Water Bare soil 1.911 1.880 1.991 1.999 1.591 1.957

Urban area Bare soil 0.154 0.129 0.053 0.262 0.213 0.245
Water Vegetation 0.644 0.060 1.408 1.980 1.948 1.996

Urban area Vegetation 1.324 1.622 1.900 1.815 1.816 1.178
Bare soil Vegetation 1.824 1.910 1.936 1.839 1.867 1.840

In 2018, the separability between water and vegetation, with NDVI (1.827), NDWI
(1.953), and the NIR band (1.980), was high, indicating a good distinction between these
classes. However, the separability between urban area and vegetation showed values below
1 for NDWI, suggesting less consistency in distinguishing these classes. Following the same
evaluation pattern used for 2018, the separability between the classes for 2023 was assessed
(Table 3).
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In 2023, the JMD values also indicated good separability for the water vs. vegetation
classes, with an emphasis on NDWI (1.996). For urban area vs. vegetation, the separability
was effective, with high values in the red band (1.900), NIR (1.815), NDVI (1.816), and
NDWI (1.178). The separability between bare soil and vegetation remained high for all
variables, with values above 1.823.

3.3. Accuracy of kNN Classification

The classification was evaluated using the accuracy parameters OA, Kappa index, OE,
CE, and cross-validation, as shown in Figure 6.

Figure 6. Comparison between accuracy (cross-validation) and the number of the training neighbors
(k) for the years 2018 and 2023.

In 2018, the accuracy decreases continuously as k increases, going from approximately
0.9899 with k = 5 to 0.9894 with k = 9. This indicates that in 2018, the increase in the number
of neighbors had a negative impact on the model’s performance, with k = 5 being the
best performer. In 2023, there is a different trend, the accuracy peaks at k = 7, reaching
approximately 0.9900, and then starts to decrease for higher values of k. This indicates that
the choice of k = 7 was optimal in the 2023 scenario. Based on the classification defined by
Landis and Koch [72], these results suggest that the classification was not only accurate,
but also consistent and reliable.

These results indicate good precision and agreement between the classification and the
actual landscape. In this context, it is demonstrated that the model has precise classification
potential, producing results that are very close to the actual or expected values. The narrow
confidence interval suggests a high probability that the model’s actual accuracy is within
this range, which is indicative of consistent results [73]. Figure 7 presents a comparison
between the classification using the kNN algorithm and an RGB composite, with the
PlanetScope bands.
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Figure 7. Comparison between the classification using the kNN algorithm and an RGB composite,
with the PlanetScope bands for the years 2018 and 2023: (a) sample area of the classified image for
2018; (b) sample area of the PlanetScope image (RGB) for the classified area in 2018; (c) sample area
of the classified image for 2023; (d) sample area of the PlanetScope image (RGB) for the classified area
in 2023.

Through Figure 7, it is possible to spatially identify the results obtained with the OA
and Kappa index parameters; however, an analysis of OE and CE is necessary, as conducted
in this study, to identify the presence of false positives and false negatives. Table 4 presents
the verification results of these parameters.

Table 4. Omission Errors (OEs) and Commission Errors (CEs) for the years 2018 and 2023.

Classes
2018 2023

OE CE OE CE

Water 0 0 0 0
Urban area 22.10% 6.18% 24.67% 2.57%

Bare soil 0.6% 2.53% 0.37% 2.02%
Vegetation 0.01% 0 0.29% 0.19%

It can be observed in Table 4 that, in the “Vegetation” class, there was a slight improve-
ment over time, with low commission and omission errors reflecting a high accuracy in
detecting this class. In contrast, the omission and commission errors for “Bare soil” in-
creased from 2018 to 2023, indicating a slight decline in detection accuracy and a moderate
tendency toward overclassification. However, as with “Vegetation”, the errors remained
low. These results are consistent with previous studies [33], which suggest that soil and
vegetation classes in the Caatinga tend to vary little compared to reference products. This
behavior is associated with the consolidated use of these areas and the low anthropogenic
interference in the Caatinga biome landscape [11].
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The “Urban area” class showed the highest error values, though with an improve-
ment in omission error, suggesting greater effectiveness in detecting urban area over time
(Table 4). On the other hand, the commission error increased considerably, indicating a
greater tendency to misclassify other classes as urban area in 2023. The spectral similarity
between urban soil and bare soil classes, which share spectral characteristics, may have
contributed to the significant omission and commission errors in this category, as illustrated
in Table 4 and discussed by [10].

For the “Water” class, the omission error remained at 0% from 2018 to 2023, indicating
high accuracy in identifying this class in both years. However, the commission error
increased slightly from 0% to 0.07%, suggesting a slight tendency to overestimate the
area of water bodies in 2023. These results also corroborate previous studies [22], which
highlight the high detection quality of water bodies, attributed to their high spectral
absorption characteristics compared to general soil and vegetation classes.

The water bodies identified in the study area, primarily small lakes and intermittent
ponds, reflect the typical seasonal dynamics of the semi-arid region of Pernambuco, influ-
enced by variations in precipitation and evapotranspiration patterns. This characteristic
directly impacts local gold mining practices, which are not exclusively reliant on perennial
water bodies such as streams. Instead, mining operations frequently occur in dry areas
or near intermittent water bodies, often utilizing artificial systems for ore washing. This
reality was incorporated into the revised maps, which now more accurately highlight the
spatial distribution of these water resources in the context of mining activities, providing a
more robust foundation for environmental impact analysis.

The high OE in the Constructions class reveals that the model failed to correctly
identify many true positive cases, while the high CE indicates that the model mistakenly
classified some cases as belonging to the class when they did not. These results highlight
the need for improvements or adjustments in the model to increase both sensitivity and
specificity, reducing the rates of false negatives and false positives (Figure 8).

Figure 8. Classification analysis with false positives in 2018 northwest of Cedro-PE city: (a) samples
indicated in the classified image; (b) samples indicated in the PlanetScope image (RGB); (c) false
positives in the bare soil area; (d) false positives in the bare soil area; (e,f) false positives in the
water target.
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Figure 8 shows areas that, although devoid of constructions, were erroneously classi-
fied as such. These false positives generated in the classification can be attributed to the
characteristics of the materials used in the construction roofs, which are predominantly
clay. In Figure 9, a visualization of the coverage of a constructed area in the study region is
presented, comparing PlanetScope images and the Google Earth platform.

Figure 9. Example of a constructed area in the study region: (a) sample built-up area (PlanetScope
scene) and (b) sample built-up area (Google Earth image base).

Due to the satellite’s spatial resolution, the lot boundaries are not well-defined, and
non-ceramic roofs are merged with areas of bare soil. Additionally, the area features
frequent arborization between lots, which can also result in spectral mixing for the con-
struction target.

4. Discussion

The experimental results revealed significant changes in land use and land cover
between 2018 and 2023, with a 3.28% decrease in vegetation cover and a 6.62% increase
in urbanized areas. These figures highlight the accelerated impact of mining activities,
especially in the direct influence area along water bodies, where an increase in riparian
vegetation loss was observed. The effectiveness of the kNN algorithm, demonstrated by
an Overall Accuracy above 99% and a Kappa index of 0.98, reinforces its applicability in
mining-impacted scenarios. However, the identified challenges, such as spectral overlap
between urban area and exposed soil, reflect the need for complementary methods, such as
textural variables or images with higher spatial resolution.

The reduction in the “water” class may be related to the decrease in precipitation
recorded in October 2023, a month with little or no rain in the region. However, data
variations may also be attributed to possible classification errors between bare soil and
constructions, caused by the spectral similarity of the objects due to the sensor’s spatial
resolution. According to Novo et al. [74], different types of land cover have distinct spectral
signatures, but the similarity of these signatures under certain conditions can result in
classification errors. This phenomenon is particularly challenging in RS, demanding refined
techniques to ensure greater accuracy.
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The separability analysis between land use and land cover classes, using JMD associ-
ated with the NDVI and NDWI spectral indices, demonstrated high effectiveness, especially
in distinguishing between Water and Vegetation classes. The results corroborate studies
such as those by Shikhov et al. [7], who also observed a strong correlation between mining
activities and their influence on the environmental degradation process. However, while
other studies often report difficulties in detecting water in mined areas, the use of the
NDWI in this work ensured clear separability for the water class, as evidenced by the
high Jeffries–Matusita distance values (>1.95). This result is consistent with the findings of
Foody [75], who emphasized the importance of vegetation indices like NDVI in improving
the separation of classes with distinct spectral characteristics, such as dense vegetation and
water bodies.

Another relevant point is the high separability observed for the Bare soil vs. Vegetation
class, particularly with the Red and NIR bands. Xie et al. [76] point out that the use of
these bands, associated with vegetation indices, significantly improves the discrimination
of bare soil due to the high reflectance in the red and near-infrared bands. These authors
also suggest that the combination of spectral indices and specific bands can improve the
accuracy of classification in mined and deforested areas, as observed in their study.

However, the low separability between Constructions and Vegetation, especially for
NDWI, reflects a frequent challenge in using spectral indices in urban areas. Yang et al. [77]
identify similar limitations when using spectral indices to separate urban areas from
vegetation, pointing to the need for post-processing techniques, such as the integration of
textural variables, to overcome spectral mixing problems. Additionally, Pal and Foody [78]
also discuss how the spectral similarity between construction materials and bare soil can
complicate classification, requiring more refined adjustments to the classification algorithm.

The use of multiple spectral bands in combination with NDVI and NDWI indices, as
evaluated through JMD, proved to be an effective strategy for improving class separability.
Camps-Valls et al. [79] highlight that the use of machine learning techniques, such as
kNN, in combination with spectral bands and derived indices, can maximize classification
accuracy, especially in areas where the distinction between classes is difficult due to complex
spectral signatures.

The accuracy of kNN in the years 2018 and 2023, with values above 99% and a Kappa
index over 0.98, indicates excellent performance of the machine learning model in land use
and cover classification. These results are consistent with the study by Zaki et al. [39], who
also achieved high precision using machine learning algorithms to predict mineralization
in mined areas. The robustness of the Kappa index in both studies demonstrates that,
even in complex scenarios such as mining environments, kNN can provide consistent and
reliable classifications.

The precision of kNN in this study highlights the efficiency of combining NDVI and
NDWI spectral indices with the machine learning algorithm, something also supported
by Fonseca et al. [10]. They pointed out that the integration of temporal spectral indices,
such as NDVI, substantially improves the detection of changes in artisanal and small-scale
mining areas. The high global accuracy values observed for 2018 and 2023 suggest that
kNN can be a reliable alternative for monitoring land use changes, especially in regions
with mining activities.

However, OE and CE identified, particularly in the Constructions class, indicate
room for improvement, especially in differentiating between urban areas and bare soil,
as also reported by Shikhov et al. [7]. The errors observed in this study may be related
to the spatial resolution of the PlanetScope sensor and the spectral similarity between
construction materials and bare soil, as discussed by Isidro et al. [40]. Improvements in
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spectral segmentation techniques or the use of sensors with higher spatial resolution could
potentially reduce these errors.

These results reinforce the relevance of using robust machine learning methodologies,
such as kNN, for monitoring land use and cover in mining areas, but also point to the need
for model adjustments to improve its sensitivity in certain classes, such as built-up areas
and bare soil. The difficulties encountered in distinguishing between urban soil and bare
soil classes are largely due to their spectral similarity and the sensor’s spatial resolution.
To overcome these limitations, future studies could explore integrating textural variables
derived from high-resolution imagery or employing hybrid classifiers that combine ma-
chine learning with texture analysis. This approach could improve the accuracy of class
separation in complex urban environments.

The selection of land use and land cover classes was a critical step in the methodology.
The delineation of categories was based on predominant features that were most relevant to
the study’s objectives, considering the spectral and spatial limitations of PlanetScope images.
The integration of categories such as croplands was considered but proved unfeasible in the
study area due to the low expressiveness of this class and the difficulty in distinguishing
cultivated lands from native vegetation or bare soil. Future research could explore the use
of sensors with higher spectral resolution or complementary techniques to enhance the
detail of the classes.

Evaluating surface mining areas through high spatial resolution satellite images is an
efficient tool for monitoring and assessing land cover and use changes in mining complexes.
It is important to highlight that high spatial resolution satellite images from the PlanetScope
constellation have been freely available since 2017, making them an important data source
for land use and cover monitoring in general.

The analysis based on PlanetScope images, combined with visual validation through
Google Earth, has proven to be a powerful tool for monitoring land use and land cover
changes in areas affected by mining. PlanetScope’s ability to provide daily high-resolution
images, coupled with the use of machine learning algorithms such as kNN, allows for the
rapid identification of impacted areas and the prioritization of mitigation actions. This
approach can also be integrated into public management systems, enabling regulatory
bodies such as the National Mining Agency (ANM) to use updated data to monitor mining
activities in near real time. This integration provides a solid foundation for monitoring ille-
gal activities, planning environmental recovery strategies, and promoting more sustainable
use of mineral resources.

This technical association allows for spatial and temporal validation of the obtained
data, especially in areas where the 3 m spatial resolution of PlanetScope may generate
uncertainties due to spectral similarities between classes, such as urban area and exposed
soil. Additionally, the use of historical images from Google Earth enables a retrospective
analysis of environmental transformations, enriching the understanding of spatial dynamics
and providing a visual history to support strategic decisions in environmental and mining
management. This integrated approach demonstrates considerable potential for future
applications in continuous monitoring and environmental oversight, contributing to greater
accuracy in identifying environmental impacts in mining-affected areas.

Other methodological advances should focus on recognizing and distinguishing dif-
ferent stages of rehabilitation in mining areas (e.g., herbaceous, shrub, and forest cover)
from high-resolution satellite systems and unmanned aerial vehicles to remotely track the
environmental progress of revegetation areas [33].

According to Tang et al. [80], environmental changes caused by human factors, such
as industrialization, urbanization, economy, and technology, surpass even those caused by
natural factors in intensity and have a decisive impact on short-term land cover changes in
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mining areas, where social and economic factors are more important. As a result, the tradi-
tional farming mode may be affected, leading to the destruction of the ecological environment.

The expansion of mining activities and the associated vegetation degradation in the
Serrita-Cedro Project region have caused significant environmental and socioeconomic
impacts. From an environmental perspective, extensive vegetation removal has led to a
loss of biodiversity and a decline in ecosystem services. This degradation has disrupted the
local hydrological cycle, increasing erosion risks and reducing soil infiltration. Furthermore,
waste generated by mining activities has polluted soil and water resources, compromis-
ing the quality of essential water supplies for local communities. These environmental
challenges have heightened the region’s ecological vulnerabilities, threatening long-term
sustainability [81].

From a socioeconomic perspective, mining activities in the Serrita-Cedro Project
and other areas in Brazil have provided immediate economic opportunities, such as job
creation and increased local income. However, economic dependence on mining has
left communities vulnerable, particularly as mines near resource depletion. Additionally,
the displacement of local populations and territorial conflicts have impacted traditional
communities, exacerbating social inequalities. Atmospheric pollution from mining activities
has further contributed to a rise in respiratory diseases, highlighting the need for more
robust strategies to mitigate these damages [82].

RS monitoring and evaluation of the effects of mining on long-term changes can
provide a solid understanding to guide mine ecological restoration and local ecosystem
sustainability [83], despite some limitations of this technology. However, in the future, with
the development of new sensors and satellites with better resolutions, integrated with new
methodological processes, RS monitoring of mining areas will become more efficient.

5. Conclusions

The spatiotemporal analysis of mining areas in the semi-arid region of Pernambuco,
utilizing high-resolution images from 2018 and 2023 and machine learning techniques,
highlighted the magnitude of the environmental transformations occurring in the region.
The data revealed a reduction in vegetation cover and a significant increase in urban areas
and bare soil, which are direct reflections of the expansion of mining activities. These
results underscore the continuous pressure that these activities exert on local ecosystems,
especially in sensitive regions like the Caatinga, where biodiversity is already naturally
adapted to extreme climate and soil conditions.

The applied methodology, which combined the kNN algorithm and the NDVI and
NDWI spectral indices, demonstrated accuracy in image classification and landscape
change identification. With an accuracy exceeding 99% and a Kappa index above 0.98,
the methodology was effective in detecting impacted areas, confirming the potential of
these tools in environmental monitoring in mining areas. However, some challenges
were observed, such as the separability between the classes of urban area and bare soil,
suggesting that future adjustments in modeling may further increase the precision of
the results.

The findings indicate that between 2018 and 2023, there was a marked degradation of
vegetation and a significant increase in built areas, especially near water bodies. This trend
reflects the intense human intervention in the region and reinforces the need for public
policies aimed at mitigating these impacts, as well as promoting environmental recovery in
affected areas.

The uncontrolled expansion of mining poses a threat to environmental sustainability,
endangering local communities that rely on natural resources for their livelihoods. The
results obtained in this study demonstrated that mining activities significantly influenced

176



Land 2025, 14, 325

changes in land use and cover in the analyzed region. However, this study reaffirms the
importance of using RS and machine learning technologies in environmental monitoring,
especially in vulnerable areas like the Brazilian semi-arid region. Furthermore, it highlights
the need for regulation and responsible management of mining activities, to adopt more
sustainable practices that balance economic development and environmental preservation.

This work provided an in-depth understanding of spatiotemporal changes in land
cover, emphasizing the importance of RS and spatial data analysis in environmental moni-
toring. The classification system adopted in this study was suitable for representing the
main land use and land cover transformations in the mining area under investigation.
However, we acknowledge that the inclusion of additional categories, such as croplands,
could enrich the analysis in regions where such features are more prominent, especially
using higher-resolution images and refined methodologies.

For future research, it is suggested to expand the training dataset and explore other
machine learning techniques to enhance classification. Additionally, it is recommended to
conduct further studies to investigate the impact of land use policies and climate change
on vegetation dynamics in mining areas, aiming to contribute to conservation strategies
and sustainable development.

It is also noted that the methodology tested in this study could be implemented to
assess the spatiotemporal behavior of land cover in other mining regions with arid and/or
semi-arid climatic characteristics.
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2. Buczy’nska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing
and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland). Remote Sens. 2023, 15, 719. [CrossRef]

3. Ern, A.M.L.E.; Arts, D.; Crawford, D.; Bonifacio, V.; Labatos, B.V., Jr.; Ngo, K.D.; John, R.; Owen, J.R.; Gibbins, C.; Lechner, A.M.
Socio-environmental land cover time-series analysis of mining landscapes using Google Earth Engine and web-based mapping.
Remote Sens. Appl. Soc. Environ. 2021, 21, 100458–100460. [CrossRef]

4. Hook, R.L.; Martín-Duque, J.F.; Pedraza, J. Land transformation by humans: A review. In GSA Today, 12th ed.; Housen, B., Ed.;
Geological Society of America Today: Boulder, CO, USA, 2012; Volume 22, pp. 1–10.

177



Land 2025, 14, 325

5. Keenan, R.J.; Reams, G.A.; Achard, F.; De Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the
FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [CrossRef]

6. Chetty, S.; Pillay, L.; Humphries, M.S. Gold mining’s toxic legacy: Pollutant transport and accumulation in the Klip River
catchment, Johannesburg. S. Afr. J. Sci. 2021, 117, 8668–8678. [CrossRef]

7. Shikhov, A.; Ilyushina, P.; Makarieva, O.; Zemlianskova, A.; Mozgina, M. Satellite-Based Mapping of Gold-Mining-Related
Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sens. 2023, 15, 3564. [CrossRef]

8. Alessi, M.A.; Chirico, P.G.; Millones, M. Artisanal Mining River Dredge Detection Using SAR: A Method Comparison. Remote
Sens. 2023, 15, 5701. [CrossRef]

9. Akbar, S.; Abdolmaleki, M.; Ghadernejad, S.; Esmaeili, K. Applying Knowledge-Based and Data-Driven Methods to Improve Ore
Grade Control of Blast Hole Drill Cuttings Using Hyperspectral Imaging. Remote Sens. 2024, 16, 2823. [CrossRef]

10. Fonseca, A.; Marshall, M.T.; Salama, S. Enhanced Detection of Artisanal Small-Scale Mining with Spectral and Textural Segmenta-
tion of Landsat Time Series. Remote Sens. 2024, 16, 1749. [CrossRef]

11. Silva, N.L.; Fonseca, B.M. Spatio-temporal land use landandcover changesanalysisin the São Thomé das Letras municipality. Cad.
Geogr. 2016, 26, 45. [CrossRef]

12. Bezerra, J.J.L.; Lira, W.B.; Silva, T.d.C. Impactos ambientais causados pela mineração: Uma análise da percepção de pequenos
mineradores do município de Frei Martinho—PB. Rev. Monogr. Ambient. 2020, 19, 75–95. [CrossRef]

13. Lobo, F.; Costa, M.; Novo, E.; Telmer, K. Distribution of Artisanal and Small-Scale Gold Mining in the Tapajós River Basin
(Brazilian Amazon) over the Past 40 Years and Relationship with Water Siltation. Remote Sens. 2016, 8, 579. [CrossRef]

14. Corbett, T.; O’Faircheallaigh, C.; Regan, A. ‘Designated areas’ and the regulation of artisanal and small-scale mining. Land Use
Policy 2017, 68, 393–401. [CrossRef]

15. Fritz, M.; Mcquilken, J.; Collins, N.; Weldegiorgis, F. Global Trends in Artisanal and Small-Scale Mining (ASM): A Review of
Key Numbers and Issues. International Institute for Sustainable Development (IISD). 2022. Available online: https://www.iisd.
org/publications/report/global-trends-artisanal-and-small-scale-mining-asm-review-key-numbers-and (accessed on 8 August
2024).

16. Bansah, K.J.; Dumakor-Dupey, N.K.; Kansake, B.A.; Assan, E.; Bekui, P. Socioeconomic and environmental assessment of informal
artisanal and small-scale mining in Ghana. J. Clean. Prod. 2018, 202, 465–475. [CrossRef]

17. BRAZIL. Lei nº 6.938, de 31 de Agosto de 1981. Dispõe Sobre a Política Nacional do Meio Ambiente, Seus fins e Mecanismos de
Formulação e Aplicação, e dá Outras Providências. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 02 set. 1981.
2024. Available online: https://www.planalto.gov.br/ccivil_03/Leis/L6938.htm (accessed on 19 September 2024).

18. Acharya, P.; Fangzhou Liu, F. Mining, Minerals, and Sustainable Development: A Review of Key Social and Environmental Issues.
Available online: https://open.library.ubc.ca/soa/cIRcle/collections/59368/items/1.0438161 (accessed on 25 October 2024).
[CrossRef]

19. Michałowska, K.; Pirowski, T.; Głowienka, E.; Szypuła, B.; Malinverni, E.S. Sustainable Monitoring of Mining Activities:
Decision-Making Model Using Spectral Indexes. Remote Sens. 2024, 16, 388. [CrossRef]

20. Camalan, S.; Cui, K.; Pauca, V.P.; Alqahtani, S.; Silman, M.; Chan, R.; Plemmons, R.J.; Dethier, E.N.; Fernandez, L.E.; Lutz, D.A.
Change Detection of Amazonian Alluvial Gold Mining Using Deep Learning and Sentinel-2 Imagery. Remote Sens. 2022, 14, 1746.
[CrossRef]

21. Li, Y.; Zhao, H.; Fan, J. Application of Remote Sensing Technology in Mine Environment Monitoring. MATEC Web Conf. 2015, 22,
04008. [CrossRef]

22. Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int.
J. Environ. Res. Public Health 2020, 17, 1846. [CrossRef]

23. Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting
artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sens. Environ. 2020, 248, 111970.
[CrossRef]

24. Kimijima, S.; Sakakibara, M.; Nagai, M. Detection of Artisanal and Small-Scale Gold Mining Activities and Their Transformation
Using Earth Observation, Nighttime Light, and Precipitation Data. Int. J. Environ. Res. Public Health 2021, 18, 10954. [CrossRef]

25. Kimijima, S.; Sakakibara, M.; Nagai, M. Characterizing Time-Series Roving Artisanal and Small-Scale Gold Mining Activities in
Indonesia Using Sentinel-1 Data. Int. J. Environ. Res. Public Health 2022, 19, 6266. [CrossRef] [PubMed]

26. Alarcon-Aguirre, G.; Mamani, M.M.; Canahuire-Robles, R.R.; Zavaleta, T.V.; Valdeiglesias, J.P.; Revoredo, J.D.; Achata, L.R.;
Enciso, D.R.; Garate-Quispe, J. Forest Loss Related to Brazil Nut Production in Non-Timber Forest Product Concessions in a
Micro-Watershed in the Peruvian Amazon. Remote Sens. 2023, 15, 5438. [CrossRef]

27. Werner, T.T.; Mudd, G.M.; Schipper, A.M.; Huijbregts, M.A.J.; Taneja, L.; Northey, S.A. Global-scale remote sensing of mine areas
and analysis of factors explaining their extent. Glob. Environ. Chang. 2020, 60, 102007. [CrossRef]

178



Land 2025, 14, 325

28. Ilyushina, P.G.; Shikhov, A.N. Makarieva, Satellite-Based Mapping of the Negative Impact of Gold Mining Enterprises on the
Natural Environment of the Cryolithozone (Using the Example of Magadan Oblast). Izv. Atmos. Ocean. Phys. 2023, 59, 1093–1102.
[CrossRef]

29. Kimijima, S.; Nagai, M.; Sakakibara, M. Distribution of Enhanced Potentially Toxic Element Contaminations Due to Natural and
Coexisting Gold Mining Activities Using Planet Smallsat Constellations. Remote Sens. 2023, 15, 861. [CrossRef]

30. PLANET LABS a. Planet Imagery Product Specifications. 2024. Available online: https://www.planet.com/products/ (accessed
on 9 May 2024).

31. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA. Goddard
Space Flight Center 3d ERTS-1 Symp.; Volume 1, Sect. A 1974. Available online: https://ntrs.nasa.gov/citations/19740022614
(accessed on 25 October 2024).

32. Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from spac. Remote Sens.
Environ. 1996, 58, 257–266. [CrossRef]

33. Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring Opencast Mine Restorations Using
Unmanned Aerial System (UAS) Imagery. Sci. Total Environ. 2019, 657, 1602–1614. [CrossRef]

34. Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R., Jr.; Santos, D.C.; Costa, M.F. Land Cover Changes in
Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data. Remote Sens. 2020, 12, 611. [CrossRef]
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