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1. Introduction

Electroencephalography (EEG), as a well-established, non-invasive tool, has been
successfully applied to a wide range of conditions due to its many evident advantages,
such as economy, portability, easy operation, easy accessibility, and widespread availability
in hospitals. EEG signals, with ultra-high time resolution, are vital in understanding brain
functions. Traditionally, considerable attention in EEG signal processing and analysis has
been paid to understanding brain activities from various perspectives, such as the detection
and identification of abnormal frequencies in specific biological states, spatial–temporal
and morphological characteristics of neurological disorder behaviours (e.g., paroxysmal or
persistent discharges), the response of the brain nervous/neurological system to external
stimuli, and the effects and responses to intermittent photic stimulation [1].

The past few years have seen rapid and significant advancement in signal processing,
signal-based analysis, artificial intelligence (AI), machine learning (ML), and many other
signal-based and data-driven techniques, propelling EEG signal processing into a new era
with exciting progress in many areas, in order to meet growing demands and challenges
in various real applications [2]. For example, some important nonlinear features of brain
dynamics, which cannot be uncovered using traditional methods, may be revealed through
analyzing associated EEG signals using state-of-the-art techniques and therefore facilitate
the applications of EEG in various fields [3,4].

Recent years have witnessed an increasing number of EEG signal processing
applications, aided by ML, AI, and other signal-based techniques in nearly all fields of
science and engineering including neuroscience [5], clinical studies [6], brain–machine
interfaces [7], cognitive science and psychology [8], human factors [9], and social
interactions [10], to mention but a few. Methods and algorithms have been or are being
developed to solve either the existing problems or emerging challenges faced by the
world [11].

It is now the right time to delve further and deeper into investigations of EEG signal
processing techniques. This Special Issue serves as a platform for the dissemination of the
latest research results, findings, and trends in EEG signal processing and their applications,
with particular attention to applications of machine learning and deep neural network
methods. A total of 18 papers were collated as a part of this Special Issue and they can be
roughly classified into six groups as follows:

Sensors 2025, 25, 805 https://doi.org/10.3390/s25030805
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• Brain–computer interfaces (Papers 1, 7, 11, and 16)
• Brain and neurological disorder detection and diagnosis (Papers 2, 3, 9, 12, 14, and 17)
• Cognitive and psychology studies (Papers 4, 10 and 15)
• Healthcare including mental health, pain identification, and depression diagnosis

(Papers 5, 8, and 13)
• Brain functional connectivity (Paper 6)
• EEG artifact reduction and removal (Paper 18)

2. Overview of Contributions

In the following section, a short overview of each of the above six topics is provided,
followed by a brief summary of each of the papers in the corresponding topic group.

2.1. EEG-Based Brain–Computer Interface

An EEG-based Brain–Computer Interface (BCI) is a system that uses EEG electrodes
to measure brain activity and translate the associated signals into specific commands to
drive external devices [12]. Initially, these applications were developed to assist patients,
helping them regain normalcy in their lives. However, over time, BICs have also found
significant use in non-medical domains, improving efficiency and collaboration among
healthy individuals and aiding in personal development [12].

The authors of Paper 1 (Mwata-Velu et al.) proposed an embedded multi-task classifier
based on motor imagery using the EEGNet toolbox (which is a compact Convolutional
Network platform for EEG-based BCIs) and implemented the designed BCI system into a
NVIDIA Jetson TX2 hardware platform. The performance of the proposed EEG-BCI system
was tested on a public dataset, with the experimental results showing that the proposed
system was suitable for online applications.

The authors of Paper 7 (Farabbi and Mainardi) presented a novel approach to
enhancing Error Potential (ErrP) detection during single-trial (ST) stimulation tasks
using conventional Convolutional Neural Networks (CNNs). The performance of the
proposed approach was tested on an open-access EEG dataset, with the experimental results
providing strong evidence that the proposed method was highly effective in improving
ST-ErrP accuracy compared with several baseline methods.

The authors of Paper 11 (Khabti et al.) proposed a new Fusion Convolutional
Neural Network with Attention blocks (FCNNA) model for optimal channel selection
and multiclass Motor Imagery (MI) classification. The experimental results on a benchmark
dataset (i.e., the BCI IV 2a dataset) showed that the proposed EEG-MI model outperformed
the compared channel selection and classification methods.

The authors of Paper 16 (Dillen et al.) proposed an innovative control approach to
assistive robotics by integrating BCI and eye-tracking techniques into a shared control
system for a mobile augmented reality user interface. The system was designed to
facilitate individuals with physical disabilities, particularly those with impaired motor
function. While the research findings indicated that the shared BCI control system is
effective for task completion and demonstrated the feasibility of the shared control strategy,
the current efficiency of the BCI still requires further improvement for practical real-world
applications.

2.2. Brain and Neurological Disorder Detection and Diagnosis

Brain and neurological disorders represent major global healthcare issues. Early
detection of any disorder is crucial for curing patients or helping to prevent disease
progression. Signal-based and data-driven modelling techniques, such as time–frequency
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analysis, information theory, machine learning, and artificial intelligence methods, are
being increasingly used in brain and neurological disorder detection and diagnosis [13].

The authors of Paper 2 (Jurdana et al.) introduced a novel method for estimating
instantaneous frequencies and group delays, which can be used to better detect seizures
with both spike and oscillatory characteristics. The main advantage of the proposed method
is that it makes use of Localised Rényi Entropies (LREs) to generate time–frequency
information that better characterises the relevant signals.

The authors of Paper 3 (Vitório et al.) aimed to understand Parkinson’s disease
(PD) by analysing the associated scalp EEG (sEEG) signals. The authors delve into
investigating whether PD patients present distinct brain electrocortical activity during
regular walking and during obstacle avoidance walking in comparison with healthy
individuals. Experiments were carried out on 14 healthy older adults and 15 patients
with PD. The research findings suggest that the PD patent EEG signals showed a greater
proportion of low-frequency neuronal firing in brain areas related to motor commands and
sensorimotor integration during walking.

The authors of Paper 9 (Vieira et al.) presented a feature dimensionality reduction
method for epileptic seizure detection, aimed at reducing the number of channels required
for classification and therefore making better use of the interpretability of machine learning
models. The performance of the proposed method was tested on a publicly accessible
dataset provided by the University of Beirut Medical Center. The proposed method showed
an advantage in solving tasks with a relatively smaller number of channels, enabling the
development of effective mobile applications for epileptic seizure detection.

The authors of Paper 12 (Wang et al.) proposed a feature extraction method by
designing a multimodal dual-stream neural network model, constructed using convolution
and Long Short-Term Memory (LSTM) neural networks. An advantage of the proposed
method is that it can make use of several types of features in time and frequency domains,
in addition to various signal differential features. According to the experimental results for
experiments performed on several benchmark datasets, the proposed method outperformed
comparable methods.

The authors of Paper 14 (Zhou et al.) designed a novel and interesting unsupervised
approach for exploratory EEG analysis by defining low-dimensional prototypes in latent
space, based on which EEG clustering and classification are performed. The proposed
method was acquired by using Wavelet transform, a Generative Adversarial Network
(GAN), and an extended Stein Latent Optimisation (SLO) scheme for the GAN. The
proposed approach, W-SLOGAN, showed promising performance for diagnosing epilepsy
subtypes and classifying multiple labelled EEG data.

The authors of Paper 17 (Aziz et al.) introduced an innovative automated approach
for detecting Schizophrenia based on EEG signals. The approach was developed by
using a fast independent component analysis method to remove artefacts from raw
EEG data first and then using a novel Automated Log Energy-based Empirical Wavelet
Reconstruction (ALEEWR) method to reconstruct decomposed signals to obtain relevant
EEG signatures. The results of experiments performed on a benchmark dataset showed
that the proposed approach appeared to achieve exceptionally excellent performance for
Schizophrenia detection compared to many existing methods.

2.3. EEG for Cognitive and Psychology Studies

In addition to its application in studying brain and neurological disorders as mentioned
above, EEG has been increasingly applied to different areas of cognitive and psychology
research, such as cognitive load, attention, memory, and emotional processing [14,15]. One
important application is neurofeedback training, where individuals learn to regulate their

3
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brain activity, showing promise in treating conditions such as Attention-Deficit/Hyperactivity
Disorder (ADHD) and anxiety [16]. EEG is also used in conjunction with other neuroimaging
techniques, such as fMRI and MEG, to provide a more comprehensive and better
understanding of brain dynamics [17].

The authors of Paper 4 (Wang et al.) presented a feasibility study on investigating
drivers’ brain activity patterns by performing simulations of various levels of cognitive
load based on four designed driving tasks. The authors used deep neural networks and
four Support Vector Machines (SVMs) to classify EEG signals measured to differentiate
driving conditions. The research results and findings show potential in improving the
performance of the human–machine interface of vehicles and thus help to improve safety.

The authors of Paper 10 (Phukhachee et al.) introduced a new method to identify
the cognitive motivation effect with a reduced number of EEG electrodes. The authors
hypothesised that the temporal relationship of brain activities between attention- and
memorisation-related areas could aid in identifying the effect of motivation on remembering
the associated stimulus, with the number of electrodes reduced to two (i.e., the FCz and P3
electrodes). They proposed a method based on the temporal association rule mining (TARM)
concept to identify the motivation effect from the temporal relationship of brain activities
between attention and memorisation areas while the participants are being motivated. The
proposed approach was implemented using an SVM, whose hyper-parameters were
obtained by using the Artificial Bee Colony (ABC) algorithm. The results of experiments on
a benchmark dataset provide valuable support for the original hypothesis.

The authors of Paper 15 (Ji et al.) carried out investigations on understanding and
detecting pilots’ psychological workload during turning phases using EEG signals collected
from pilots during left and right turns in simulated flight scenarios. The analysis includes
the changes in EEG signals, variations in EEG power, and the correlations between EEG
power and turning maneuvers. The results given by the designed SVM classifier showed
that significant changes occurred in the energy ratio of beta waves and Shannon entropy
during left and right turns compared to the cruising phase. The research findings are
potentially useful for flight training and enhancing flight safety.

2.4. Healthcare—Mental Health, Pain Identification, and Depression Diagnosis

EEG represents a powerful tool in healthcare, particularly for mental health, pain
identification, and depression diagnosis. In mental health, EEG is used to diagnose
and monitor psychiatric and neuropsychiatric disorders [18,19]. It helps in identifying
abnormalities in brain activity that may be associated with conditions such as epilepsy,
which often coexists with psychiatric disorders [19]. EEG can also be used to study and
modify local cerebral disorders related to abnormal behaviour [18]. In pain identification,
EEG-based pain identification involves analyzing brain signals to detect and quantify
pain [20,21]. In depression diagnosis, EEG is used in diagnosing depression by detecting
specific physiological changes in the brain [22]. Advanced machine learning and deep
learning techniques have been applied to EEG data to improve diagnostic accuracy [23].
These methods involve the analysis of neural oscillations and asymmetries in brain activity
to identify depression more precisely.

The authors of Paper 5 (Xu et al.) proposed a framework for depressive disorder (DD)
recognition based on six frontal-channel EEG data sources. Two deep learning models, a
multi-resolution CNN (MRCNN) combined with LSTM and an MRCNN combined with
residual squeeze and excitation (RSE), were built to extract features and classify EEG
signals. The results of experiments performed on a publicly available dataset with 128 EEG
channels showed that the proposed approach effectively diagnosed depressive disorder.
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The authors of Paper 8 (Alreshidi et al.) focused on predicting pilot mental states using
EEG data. They developed an interpretable model to detect four mental states, namely,
channelised attention, diverted attention, startle/surprise, and normal state. The SHapley
Additive exPlanations (SHAP) values were used to identify the top 10 most influential
features for each mental state. The work represents a significant advancement in the field
of EEG-based pilot mental state detection.

The authors of Paper 13 (Segning et al.) presented a pilot study on the detection and
evaluation of the magnitude of chronic pain. They introduced a scale-independent measure,
referred to as the coefficient of variation of the upper envelope (CVUE), to characterise
the associated EEG signals and used the measure to compare the degree of variation from
one time-series to another. Experiments were carried out on three groups of volunteers,
involving 41 participants with different types and different levels of chronic pain. The
experimental results showed that the proposed method can effectively quantify pain in a
population living with chronic pain.

2.5. Brain Functional Connectivity

Functional connectivity (FC) is a concept in neuroscience that is concerned with the
temporal dependency of neuronal activation patterns in different brain regions, reflecting
the statistical dependencies between these areas. Essentially, this concept is concerned
with understanding how different parts of the brain communicate with one another
over time. The main statistical measures used in FC include correlation, covariance,
spectral coherence, and phase locking. Correlation measures the strength and direction of
the linear relationship between two variables. Covariance indicates the extent to which
two variables change together. Spectral coherence assesses the consistency of the phase
relationship between two signals across different frequencies. Phase locking measures phase
synchronisation between two signals. These dependencies can be highly time-dependent,
fluctuating on multiple time scales from milliseconds to seconds, reflecting the dynamic
nature of brain activity. Functional connectivity has important applications in both
research and clinical settings. It can be used to understand normal brain function, identify
biomarkers for neurological and psychiatric disorders, and even guide interventions and
treatments [24].

The authors of Paper 6 (Siviero et al.) applied a Bayesian estimation approach to
estimate Transcranial Magnetic Stimulation (TMS)-evoked potentials (TEPs) from EEG
data; such an approach has not been investigated in the context of transcranial magnetic
stimulation combined with electroencephalography (TMS–EEG). The authors designed
a self-tuning optimised Kalman (STOK) filter in conjunction with the information partial
directed coherence (iPDC) measure to capture the rapid dynamics of information flow
patterns, based on which time-varying connectivity matrices were derived. Graph analysis
was then conducted to assess key network properties, offering a better understanding of
how visual information is propagated across brain networks.

2.6. EEG Artifact Reduction and Removal

Artifacts are always undesired in EEG modelling and analysis as they distort the
measurements of the signals of interest [25]. EEG signals can be compromised to some
degree in either the time or frequency domain or both by artifacts stemming from internal
or external sources [26]. There are a few major challenges in EEG artifact reduction
and removal in many real applications, such as the requirement of calibration and
effective evaluation criteria, the lack of EEG artifact benchmarks, and the existence of
diversified artifacts.
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The authors of Paper 18 (Hazarika et al.) proposed a novel approach that employed the
artifact subspace reconstruction (ASR) algorithm to remove artifacts from single-channel
EEG data. They introduced an embedded ASR (E-ASR) method to improve the efficiency
of artifact removal. The proposed method was tested on a self-created, semi-simulated
dataset. The experimental results showed the excellent overall performance of the proposed
approach for handling single-channel EEG data.

Author Contributions: Conceptualization, H.-L.W. and Y.Z.; writing—original draft preparation,
H.-L.W.; writing—review and editing, Y.G., F.H., Y.Z.; project administration, Y.Z. All authors have
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Abstract: Nowadays, Brain–Computer Interfaces (BCIs) still captivate large interest because of multiple
advantages offered in numerous domains, explicitly assisting people with motor disabilities in
communicating with the surrounding environment. However, challenges of portability, instantaneous
processing time, and accurate data processing remain for numerous BCI system setups. This work
implements an embedded multi-tasks classifier based on motor imagery using the EEGNet network
integrated into the NVIDIA Jetson TX2 card. Therefore, two strategies are developed to select the
most discriminant channels. The former uses the accuracy based-classifier criterion, while the latter
evaluates electrode mutual information to form discriminant channel subsets. Next, the EEGNet
network is implemented to classify discriminant channel signals. Additionally, a cyclic learning
algorithm is implemented at the software level to accelerate the model learning convergence and
fully profit from the NJT2 hardware resources. Finally, motor imagery Electroencephalogram (EEG)
signals provided by HaLT’s public benchmark were used, in addition to the k-fold cross-validation
method. Average accuracies of 83.7% and 81.3% were achieved by classifying EEG signals per subject
and motor imagery task, respectively. Each task was processed with an average latency of 48.7 ms.
This framework offers an alternative for online EEG-BCI systems’ requirements, dealing with short
processing times and reliable classification accuracy.

Keywords: electroencephalogram; motor imagery; EEGNet; NVIDIA Jetson TX2; brain–computer
interface; HaLT dataset

1. Introduction

Applications based on Brain–Computer Interfaces (BCI) are numerous in the recent
literature due to their benefits in various domains [1]. Typically, BCI systems use brain
signals to allow effective communication between a given user and local surroundings.
BCI-based electroencephalographic signals (EEG) are the most implemented because of
recent advances in brain electrical functioning studies and reliable technologies [2,3].
Such EEG signals were used by Fraiwan et al. [4] to evaluate the subjects’ enjoyment
and visual interest in experiencing museum expositions. For instance, BCI-based EEG
signals are used in biomedical applications for mental and cognitive disease diagnoses
and rehabilitation [5,6]. Lastly, Hekmatmanesh et al. [7] proposed a systematic review of
terrestrial and aerial Brain–Controlled Vehicles (BCVs) based on EEG, Electrooculographic
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(EOG), and Electromyographic (EMG) signals. Commonly, for BCI-based control systems,
EEG signal patterns such as Steady-State Evoked Potentials (SSVEP) [8] and their variants
are converted into commands to control wheelchairs, drones, prostheses, and arm robots,
to cite a few.

Motor Imagery EEG signals (MI–EEG) are more interesting for EEG–BCI systems
because the subject under test voluntarily generates such signals; thus, it can be used to
control external applications [9,10] or for medical research [11,12]. Recent advances in
developing BCIs based on MI signals focus on improving classification accuracy while
reducing processing time and processing-unit computational resources [13,14]. This
prevailing tendency is mainly motivated by online application requirements in robotics
and specialized medicine to complete accurate and brief tasks satisfactorily [15]. In this
sense, Huang et al. [16] controlled an integrated wheelchair robotic arm implementing a
hybrid BCI based on EEG and EOG signals. Therefore, the robotic arm and wheelchair
applications needed both high-accuracy classifications of left- and right-hand MI tasks and
system portability to complete reliable actions. In another study, Al-Nuaimi et al. [17]
implemented a controlled drone-based P300 BCI for military use, dealing with high
accuracy, brief processing time, and BCI portability.

Concretely, numerous methods are used in the literature to conjointly address short
processing time, reliable accuracy, and portability challenges. In this sense, channel selection
-based strategies aim to process signals from a few discriminant electrodes instead of using all
electrodes, reducing data size and processing algorithms’ complexity and, consequently, the
processing time. For example, Moctezuma et al. [18] proposed the Non-dominated Sorting
Genetic Algorithm II in the emotion recognition BCI with wearable EEG systems, selecting a
set of 8–10 EEG channels instead of the 32 available. In parallel, various techniques based on
deep learning offer satisfactory results without EEG signal preprocessing or implementing
complex learning acceleration algorithms. Such an approach reduces the processing time
significantly depending on the implemented neural architectures [19,20]. Other strategies
typically work on hardware-based levels using traditionally powerful processing units
despite the robustness of reliable data and algorithms [21,22].

Fortunately, advances in hardware re-configurable design technology have enabled
the development of embedded electronic boards with powerful computing resources [23].
Those embedded boards are microcomputers generally supporting complex data processing,
ensuring portability and reduced signal processing time because of dedicated core resources.
Meanwhile, Majoros and Oniga [24] implemented a MI–EEG classifier based on a deep
learning architecture for BCI applications on a Field-Programmable Gate Arrays (FPGA) card.
Their work achieved an accuracy of 97.7%, classifying imagined tasks of opening and closing
fists or feet into three classes; the neutral task was included. Further, Dabas et al. [25] used
the Arduino Uno board to classify hand-gripping MI trials from channels C3 and C4 using
the Support Vector Machines (SVM) classifier.

On the other hand, deep learning architectures have proven to have high performance
as EEG signal classifiers in recent works, especially the compact convolutional neural
network for EEG-based BCI (EEGNet) and its variants proposed by Lawhern et al. [26].
In this sense, Zhu et al. [27] developed an ensemble learning coupled to the EEGNet
network to improve the ear-EEG signals’ classification for SSVEP-based BCI, achieving an
accuracy of 81.74%. Lastly, Feng et al. [28] implemented a real-time EEGNet classifier on
an FPGA board, using only 2.54% of the board’s resources and consuming 3.66% of the
maximum power available. Similarly, Tsukahara et al. [29] achieved an accuracy of 88.75%,
implementing the EEGNet architecture on a Virtex-7 FPGA platform to classify EEG data
from the MNE dataset.

This work develops an embedded MI tasks classifier for BCI systems based on the
EEGNet network by using the NJT2 board. The framework develops a subject-dependent
classification approach, where data from each subject are processed separately. Therefore,
the MI movements to be classified are the tongue, passive, left and right hands, and left
and right legs. In the first step, the Accuracy Rating-based Classifier method (ARbC)
and Channels Mutual Information-based Approach (CMIbA) are developed to make up
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discriminant channel subsets. Next, MI signals from discriminant channels are processed
to be classified into the six aforementioned classes using the EEGNet network.

The main contributions of this paper are summarized as follows,

1. Results comparison of channel selection between the ARbC method and CMIbA.
2. Reliable accuracy results of the tongue, passive, left and right hands, and left and right

legs MI tasks classification.
3. Processing time reduction using the NJT2 platform resources.
4. Convergence acceleration of the learning process implementing the Cyclic Learning

Rate (CLR) algorithm.

In sum, this work deals with processing time reduction and reliable classification
accuracy for embedded EEG BCI-based applications.

2. Related Works

In the recent literature on embedded BCIs (EBCI) based on MI–EEG signals, numerous
works dealing with brief processing time and high classification accuracy have been
proposed [30,31]. Embedded platform-based BCI designs aim to build low-cost and
low-power consumption systems, meeting user adaptability and dedicating available
resources to application-specific functions. Belwafi et al. [23] proposed a review of EBCI
systems focusing on pathological disorders, functional substitution, and most implemented
architectures. Despite recent advances in embedding computational architectures design,
they reported a few of the EBCI systems presented in the related literature.

Generally, the central processing unit of the EBCI is ported by a microprocessor or
microcontroller integrated into FPGA cards, Arduino boards, Nvidia’s developer cards, or
specifically dedicated platforms. In this sense, Ma et al. [32] implemented a classifier-based
convolutional neural network into a Xilinx FPGA platform to classify MI–EEG signals.
Comparatively, implementing the same model on a portable computer equipped with
the NVIDIA GeForce GTX1070 i7-7700 resources, the configured FPGA was revealed
to be eight times faster than the PC, achieving an average classification accuracy of
over 80%. Lately, EBCI systems-based EEG classifiers have been implemented into the
NJT2 board, taking advantage of the NVIDIA® Jetson™ board deployment [33]. In fact,
Khatwani et al. [34] implemented a convolutional neural network model into Artix-7 FPGA
and NJT2 platforms to detect artifacts carried in EEG signals of multiple channels. Based
on the basic ICA algorithm, their method achieved an average accuracy of 74 %, detecting
seven different artifact types using 64 EEG channels. In another recent framework [35],
convolutional stacked auto-encoder and convolutional long short-term memory models
were proposed to classify MI–EEG signals for drone control using the NJT2 board. A
latency time of 10 ms was reported for generating drone navigation commands based on
left-hand and right-hand imagined movement. Similarly, Ascari et al. [36] implemented a
networked nodes modular architecture hosted on the NJT2 platform for outdoor portability.
The average accuracy of 50% was achieved based on the subject-specific classification
processing EEG signals from Cz, Pz, and {Cz, Pz} channels with an average offset between
streams of 0 ± 0 ms.

On the other hand, the EEGNet has been implemented more frequently on FPGA
boards than on other platforms for EBCI-based EEG signals in the recent literature [37].
Moreover, Hernandez-Ruiz et al. [38] implemented an EEGNet-based architecture into
an FPGA board to classify MI–EEG signals, achieving accuracies of 83.15%, 75.74%, and
65.75% for the defined tasks. Lately, Enériz et al. [39] utilized the Xilinx Zynq FPGA to set
up a real-time EEGNet-based BCI. Table 1 summarizes the recent state-of-the-art focused
on related works.
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Table 1. The state-of-the-art summary of related works. Ch means the number of channels.

Works Platform Dataset Ch
Latency
per Task

Khatwani et al. [34] NJT2 Own 64 ≤84.1 ms
Maiti et al. [35] NJT2 BCI competition IV 3 9–10 ms
Ascari et al. [36] NJT2 Own 2 0 ± 0 ms

Finally, regarding the recent literature based on HaLT’s dataset [40], Yan et al. [41] used
the referred public dataset to improve classification accuracy by designing an attention
mechanism and global features aggregation based on deep learning. They reported an
average accuracy of 76.7% for classifying EEG signals of twelve subjects with the EEGNet
network. In another work, Keerthi Krishnan and Soman [42] proposed a variational
mode-decomposed EEG-spectrum image model for MI classification using the dataset
provided by [40]. Their work achieved an average accuracy of 90.2 ± 4.34% with the
EEGNet network converting EEG signals from C3, Cz, and C4 channels into spectrum
images by using the variational mode decomposition (VMD) and the short-time Fourier
transform (STFT). Likewise, a generative adversarial network (GAN) was proposed by
An et al. [43] to denoise MI-EEG signals using the same dataset. Lately, the EEGNet
network has been implemented to classify MI–EEG signal-based BCI utilizing HaLT’s
benchmark [44]. An average classification accuracy of 80.9 ± 8.6% was achieved by classifying
EEG signals from eight channels. In sum, taking advantage of more than five BCI interaction
paradigms, Kaya’s dataset offers a wide range of BCI implementation possibilities to the
related literature. Table 2 presents Kaya’s experiment’s data organization related to six
mental imagery tasks. The referred BCI interaction paradigm contemplates 6 MI tasks
executed by 12 subjects, each with a determined number of sessions.

Table 2. Summary of BCI interaction paradigm data related to six mental imagery tasks, as presented
in [40].

No. Subject Classes Sessions Samples

1 A 6 3 2877
2 B 6 3 2869
3 C 6 2 1916
4 E 6 3 2855
5 F 6 3 2879
6 G 6 3 2867
7 H 6 2 1912
8 I 6 2 1836
9 J 6 1 946

10 K 6 2 1914
11 L 6 2 1904
12 M 6 3 2866

13 All 6 29 27,641

3. Materials and Methods

The method developed in this work addresses the practical challenge of multi-class
classification and expedited processing of EEG signals on dedicated platforms using
the NJT2 development board and the artificial neural network EEGNet. All developed
processing algorithms are integrated directly into the NJT2 embedded platform to exploit
hardware resources.

3.1. Overall Flowchart

Figure 1 presents the high-level general diagram of the proposed method. Two main
steps are developed to process MI–EEG signals. The first one aims to select discriminant
channels employing two approaches (ARbC and CMIbA), while the second implements

12



Sensors 2023, 23, 4164

the EEGNet network to classify discriminant channel features. The ARbC approach also
utilizes the EEGNet architecture but with parameters adapted to single-channel signals.

MI-EEG signals

ARbC approach

CMIbA

EEGNet based
classifier

Channels selection methods Classification Output

1 2

3

4

5

6

Figure 1. The proposed method overall flowchart. EEG signals of six MI tasks are provided by [40].
The red rectangle centered on the circle refers to “Passive” and moves according to the subject’s
MI task. The first step consists of selecting discriminant channels from the 19 provided. Next, two
comparative methods are used: the ARbC method and the CMIbA. Therefore, the EEGNet network
classifies the feature signals into six classes to give the output.

3.2. Referred Public Dataset

The dataset published in [40] was used to implement the proposed method. Explicitly,
this work used EEG data provided by the BCI interaction paradigm related to six mental
imagery states. On a Graphical User Interface (eGUI), a fixation point considered the
neutral starting point for tasks was presented to experiment participants. Each trial began
with an action signal to imagine movements of the right and left hands, closing and opening
the respective fist once, movements of the right and left leg briefly, and movements of the
tongue or a circle as a passive response for 1.0 s. For example, the tongue MI task was
interpreted as the imaginative pronunciation of a distinct letter as “el”. At the same time,
participants did not engage in any voluntary mental imagery until the subsequent trial
began for the passive state. These visual stimuli were presented on the eGUI once to the
participants in each trial and in sequential order, as presented in Table 3.

Table 3. The BCI interaction segment for imagining limbs motion, following the eGUI’s visual stimuli.

Relaxation 1 −→ 2 −→ 3 −→ 4 −→ 5 −→ 6 −→
Left hand Right hand Passive Left leg Tongue Right leg

A total of 29 recording sessions were performed by seven males and five females
aged between 20 and 35 who were declared healthy for the experiment. Each session
contains a sequence of BCI interaction segments recorded with a break of 2.0 min, and each
trial requires an average of 3.0 s. Accordingly, this BCI interaction contains 87 interaction
segments for all 29 sessions in the referred dataset.

MI–EEG signals were recorded using the EEG-1200 JE-921A standard medical equipment.
A total of 19 EEG channels placed according to the standard 10–20 electrodes placement
system (see Figure 2) provided the benchmark EEG signals.
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F3 FzF7 F4 F8
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Figure 2. Channels’ spatial location on the skull in making the referred dataset. According to the
10–20 system, uppercase letters define the brain cortex where an electrode is placed. F for Frontal, T for
temporal, P for parietal, and O for occipital cortex. The lowercase ”z” is utilized to locate electrodes on
the skull’s longitudinal axis. A1 and A2 mean left and right reference voltage electrodes, respectively.

The Neurofax software was used to record data at 200 Hz, and hardware pass-band
filters of 0.53–70 Hz were applied to all recorded EEG signals. It is worth mentioning that
the EEG-1200 equipment integrates a hardware notch filter at 50 or 60 Hz to isolate EEG
signals from electrical grid interference. Figure 3 presents the experimental paradigm’s
data acquisition and processing overview.

MI - EEG Neurofax ASCII File Offline

Analysis

Neurofax DB

eGUI

Figure 3. Overview of the EEG acquisition and processing in the experimental paradigm. The
red rectangle on the eGUI moves over the specific limb icon as a visual stimulus to engage the
respective mental task of imagined movement. MI–EEG signals from six mental states were recorded
by EEG-1200 equipment and processed using Neurofax recording software [40]. In addition, ASCII
data were converted into Matlab files for further processing.

3.3. NVIDIA Jetson TX2 Embedded Board

The NJT2 is a power-efficient embedded computing device mainly designed for
artificial intelligence applications. Building around an NVIDIA PascalTM-family GPU with
8 GB and 59.7 GB/s of memory and bandwidth, respectively, this supercomputer on a
module integrates a wide range of standard hardware interfaces. It is also considered a
fast and power-efficient platform for robust data applications; the NJT2 card has been used
successfully in recent research [34–36].

The NVIDIA SDK manager based on Ubuntu is the operating system used on the
NJT2 card, accessible from [45]. After installing the operating system, a host computer
must load the modules into a Micro-SD card following the steps provided in [46]. Once the
Jetson software with the SDK Manager is installed, the NJT2 card is ready to be used as
an embedded computer. Additionally, the specific libraries are installed according to the
application requirements. Table 4 summarizes the main characteristics of the NJT2 card
used to implement the present project, according to the serial number provided.
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Table 4. NVIDIA Jetson TX2 main characteristics and resources.

Label Characteristics

NJT2 board Serial 0320218091017, model 699-82597-0000-501 C

GPU 256-core NVIDIA PascalTM GPU architecture with
256 NVIDIA CUDA cores

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM®

Cortex®-A57 MPCore
Memory 8 GB 128-bit LPDDR4 Memory 1866 MHx—59.7 GB/s
Storage 32 GB eMMC 5.1
Computing capacity 1.33 TFLOPs
Power consumption 7.5 W/15 W
Mechanical 69.6 mm × 45 mm, 260-pin edge Connector
Networking 10/100/1000 BASE-T, 802.11ac WLAN, Bluetooth

3.4. The EEGNet Network Architecture

EEGNet is a compact convolutional network proposed by Vernon et al. [26]. It
demonstrated its effectiveness in processing EEG signals for BCI-based systems, considering
the numerous related works [47–49]. Three convolutional layers are configured in the
EEGNet. EEG raw data are first convolved in the temporal layer (Part a) using frequency
filters, as shown in Figure 4.

EEG signals 
(Subjects, Channels,

Samples)

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Output

Output

Output

Kernel

Kernel

Kernel

Output

Output

Output

Classification

Input data Conv2D Depthwise Conv2D Separable Conv2D Classification

(Part a) (Part b) (Part c) (Part d)

Figure 4. The encapsulated EEGNet structure. EEG signals were organized by subject, channel, and
sample length. This data matrix was expanded to four dimensions fulfilling the EEGNet input matrix
dimension. In Part (a), temporal features are extracted by Conv2D, and in Part (b), spatial filters are
applied to enhance feature maps. Then, feature maps are combined in Separable Conv2D (Part (c)),
providing the output class probability (Part (d)).

Next, EEG feature maps extracted from the temporal convolutional layer (Part (a))
serve as input for the depthwise convolutional layer (Part (b)), where frequency-specific
spatial filters are applied to each feature map. Finally, the separable convolution layer
(Part (c)) combines the depthwise and pointwise convolutions of feature maps, both
individually and together, to provide an optimal classification (Part (d)). The depthwise and
separable convolution layers are activated by the Exponential Linear Unit (ELU) function,
defined by

f (�xi) =

{
xi for x ≥ 0,

exi − 1 otherwise,
(1)

while the output dense layer uses the Softmax activation function,

σ(�xi) =
exi

∑N
j=1 exj

, ∀�x = [x1, x2, . . . , xN ]
ᵀ, (2)

to predict the output probability of sequence �xi to be classified in class N. Therefore,
Equation (2) is considered a normalized probability distribution of output feature sequences.
Consequently, an important key for implementing EEGNet is the number of filters for each
layer and the kernels’ length. Table 5 shows the EEGNet’s input parameters.
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Table 5. Configurable input parameters of the EEGNet network, modified from [26].

Parameters Descriptions

nb_classes Number of classes to classify
Chans Number of channels
Samples Number of EEG data time points
DropourRate Dropout fraction

kerneLength Length of temporal convolution in the first layer (Conv2D).

F1, F2 Numbers of temporal filters (F1) and pointwise filters (F2)
to learn.

D Number of spatial filters to learn within each kerneLength
dropoutType Either SpatialDropout2D or Dropout

3.5. Data Processing

Subjects and channels provide EEG data from the referred benchmark. The number
of samples was set to 170, corresponding to the duration of 0.85 s per task, remembering
that dataset signals were recorded at 200 Hz. This allowed the removal of artifacts at
the beginning and the end of each task signal. Therefore, the first signal processing step
consists of channel discrimination to constitute contributing channel subsets. Two strategies
were implemented to select the discriminant channels among the 19 provided. The ARbC
approach uses the EEGNet network to classify signals of each channel, aiming to constitute
the subset of six and eight channels with higher classification accuracy. In contrast, CMIbA
utilizes the channels’ mutual information to evaluate how different the cross-entropy
measurement value is. The channel selection by the above-mentioned methods was made
on the mixed signals of all 12 subjects, i.e., considering signals of the whole dataset. In
fact, the constituted discriminant channel subsets can be more suitable for any subject
considered separately and be served for the subjects’ performance comparison purposes.

Thus, the ARbC method aims to increase the amount of useful training data allowing
the neural network to learn more discriminating features. In fact, the proposed software-level
approach uses a group-utility metric-based channel selection strategy to improve classification
accuracy [50,51]. Hence, the EEGNet network was configured by setting temporal filters
(F1), pointwise filters (F2), and spatial filters (D) to four. This EEGNet filter value choice was
made according to preliminary training tests to find the classifier’s optimal configuration
according to data features. The model was compiled with the categorical cross-entropy
loss function, and the Nadam optimizer was set to 0.001. The network was trained with
2000 epochs, with a batch size of 330, using 10-fold cross-validation. Consequently, two
subsets of six and eight discriminant channels were formed.

According to information theory, the mutual information between two random variables
σ and ρ is given by

I(σ, ρ) = K(σ) + K(ρ)− K(σ, ρ), (3)

where K represents the complexity of information carried by each variable. In the case of
probabilistic variables, (3) can be written as

I(X,Y) = H(X) + H(Y)− H(X,Y), (4)

where H is the self-information entropy. Based on the assumption that independent random
variables should not share mutual information, Kullback–Leibler Divergence (KLD) was
used to assess how far a joint distribution of channel signals is from the distribution of
their products.

Let P and Q be two probability distributions on the finite channel set
S = [1, i, · · · , j, · · · , 19], clustering channels signals of the nth subject. KLD, or the relative
entropy between P and Q, is given by

KLD(P || Q) = ∑
a ∈ S

P(a) log
P(a)
Q(a)

, (5)
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where P(a) is the occurrence probability of the ath datum. Therefore, mutual information is
found evaluating the KLD as,

I(Si ; Sj) = KLD(P(Si , Sj) || P(Si)P(Sj)), (6)

where P(Si) and P(Sj) represent signal distributions of channels i and j, respectively,
and P(Si , Sj) is a joint distribution. Equation (6) was computed by considering a given
channel and its neighbors, two by two, then by pair grouping, based on channel individual
distribution to obtain the discriminating channels subset.

• If Si and Sj are independents,

P(a , b) = P(a)P(b). (7)

Therefore,
KLD(P(a) · P(b)||(P(a) · P(b)) = 0. (8)

• If Si = Sj,

I(Si ; Si) = ∑
a ∈ S

Si(a) log
Si(a)
Si(a)2

= ∑
a ∈ S

Si(a) log
1

Si(a)
= H(Si),

(9)

where H is the self-entropy distribution. Entropy values of two-by-two channel combinations
are calculated, that is, the entropy of 171 combinations considering 19 channels. Next,
channel combinations with entropy values different from zero are combined with the
remaining channels to constitute discriminating channel groups. This process is repeated
until a group of n channels with the same self-entropy distribution is constituted. Finally,
the Discriminant Channel Subset (DCS) is constituted as follows,

DCS = [1, · · · , n], ∀ n ≤ 19 & DCS ⊂ S, (10)

where n is the nth discriminant channel for all subjects’ signals.
In the next stage, signals of discriminant channel subsets were processed by configuring

the EEGNet with new parameters in Keras and TensorFlow, as shown in Table 6. New
parameter configuration changes took into account the number of channels, the optimization
of hyperparameters, and the learning acceleration at the software level.

EEG data were arranged as a four-dimension tensor to meet the EEGNet’s input
dimension [26], receiving the number of samples, the number of channels, the length of
the sample, and the unitary position by the input layer. Parameter k in Table 6 refers
to the number of channels, taking a value of six or eight depending on the channel
discriminant set. The proposed architecture was configured with four temporal filters
(F1) in the Conv2D convolutional layer, using 16 parameters for k set to six or eight. After
the batch normalization, the Depthwise Conv2D layer activated by the ELU function
uses 96 or 128 parameters depending on the discriminating set to learn spatial filters in
the temporal convolution, setting the number of spatial filters (D) to 4. For its part, the
separable Conv2D layer was configured with 16 pointwise filters (F2), and 512 parameters
were used to learn within each kernel length. Both EEGNet configurations for the channel
selection and processing steps were compiled and trained into the NJT2 board using a batch
size of 330, a categorical cross-entropy loss function, and the Nadam optimizer set to 0.0001.
The CLR algorithm with a triangular window was also set between 10−6 and 5 × 10−2

to accelerate the learning process by training the EEGNet model with a low number of
epochs. Thus, the EEGNet model in the classification stage was trained with 1500 instead
of 2000 epochs, using 10 repetitions to validate the results.
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Table 6. EEGNet parameters for processing k discriminant channel signals. This study used k = 6
and k = 8 discriminant channels.

Layer (Type) Output Shape Parameters

Input Layer (None, k, 170, 1) 0
Conv2D (None, k, 170, 4) 16
Batch_normalization_1 (None, k, 170, 4) 16
Depthwise_conv2D (None, 1, 170, 16) 96/128
Batch_normalization_2 (None, 1, 170, 16) 64
Activation_1 (None, 1, 170, 16) 0
Average_pooling2D_1 (None, 1, 42, 16) 0
Dropout_1 (None, 1, 42, 16) 0
Separable_conv2D (None, 1, 42, 16) 512
Batch_normalization_3 (None, 1, 42, 64) 64
Activation_2 (None, 1, 42, 16) 0
Average_pooling2D_2 (None, 1, 5, 16) 0
Dropout_2 (None, 1, 5, 16) 0
Flatten (None, 80) 0
Dense (None, 6) 486
Softmax (None, 6) 0

4. Numerical Results

The k-fold cross-validation method was used both in the channel selection and
processing steps to validate the achieved results. Therefore, numerical results were obtained
by setting k to 10, meaning that the dataset was repeatedly partitioned into ten subsets,
where nine were used for training and one for testing each kth iteration. This validation
method allows for checking that the model is efficient for different randomized inputs or
for some data streams, nothing else. In the channel selection steps, for the ARbC method
and CMIbA, training and test sets were formed from signals of all subjects, using nine for
training and one for testing. Once the sets of discriminating channels have been constituted,
the classification process is performed by exploiting the signals of each subject, taken
individually. The proposed model was evaluated using the classification metric given by

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

where TP corresponds to true positive when k features are correctly assigned to class K,
TN means true negative when m features of other classes than K are unassigned to class K,
and FP as false positive are all features erroneously classified into class K. Additionally,
the confusion matrix metric was used to evaluate the implemented classifier performance
discriminating MI tasks.

4.1. Channel Selection Results

Processing EEG signals of all subjects by channel, higher classification accuracies were
obtained in the order reported in Table 7. Hence, discriminant channel subsets for all the
subjects were formed by combining signals of the channel, providing higher accuracy than
those of the seven remaining channels, delivering the best accuracies. In the case of P4 and
O2 channel selection giving the same classification accuracy (36.7%), tests revealed reliable
accuracies in adding the P4 channel to the seven discriminant channels already constituted
instead of the O2 channel.
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Table 7. Achieved classification accuracies by implementing the ARbC approach to constitute
discriminating channel sets. The highest accuracy is highlighted in blue, while the seven highest
accuracies are shown in boldface.

Ref. Channel Brain Area Accuracy (%)

1 Fp1 Frontal (attention) 39.5
2 Fp2 Frontal (Judgment restrains impulses) 39.1
3 F7 Frontal (Verbal expression) 38.4
4 F3 Frontal (Motor planning of left-upper extremity) 36.4
5 Fz Frontal central (Motor planning (midline)) 36.4
6 F4 Frontal (Motor planning of left-upper extremity) 35.1
7 F8 Frontal (Emotional expression) 39.2
8 T3 Temporal (Verbal memory) 34.7
9 C3 Central (sensorimotor integration (right)) 36.5

10 Cz Central (sensorimotor integration (midline)) 37.0
11 C4 Central (sensorimotor integration (left)) 35.9
12 T4 Temporal (Emotional memory) 35.9
13 T5 Temporal (Verbal understanding) 36.3
14 P3 Parietal (cognitive processing special temporal) 37.4
15 Pz Parietal (cognitive processing) 35.7
16 P4 Parietal (“Math word problems”, “Non-verbal reasoning”) 36.7
17 T6 Temporal (Emotional understanding and motivation) 36.4
18 O1 Occipital (visual processing) 37.0
19 O2 Occipital (visual processing) 36.7

Meanwhile, the channel mutual information approach allowed the formation of six
and eight discriminant channel subsets, as presented in Table 8. The number of discriminant
channels was determined according to the algorithm proposed in [47], where 6 discriminant
electrodes were chosen among the 19 available. In addition, the same subjects participated
in the paradigm explored in [47] that was presented in this work, where EEG signals were
recorded with the same equipment. Concisely, channel combination tests revealed reliable
classification accuracy for subsets of six and eight discriminant channels.

The EEG data point distribution was explored using a t-distributed Stochastic
Neighborhood Embedding approach (t-SNE) [52] to visualize data clusters according to the
class labels. In the case of multi-class EEG data, t-SNE distributions help to visualize high
dimensional data considering the nonlinear relationship between features and targeted
classes. Therefore, Figure 5 shows the EEG data clusters after selecting six and eight
discriminant channels using the ARbC method and CMIbA.

Therefore, only MI–EEG signals from discriminant channel subsets were processed to
evaluate the proposed method’s performance.

4.2. Results Processing Discriminant Channel Signals

From a general point of view, the results obtained by developing the ARbC method
and CMIbA revealed differences considering achieved accuracies and the taxonomy of
discriminant channels. The channel selection methods developed refer to whole dataset
signals. Table 7 presents average accuracies using the ARbC to classify all dataset signals by
channel. According to the ARbC selection algorithm, the eight high-accuracy values were
obtained with Fp1, F8, Fp2, F7, P3, Cz, O1, and P4 channel signals, in this order, respectively.
For its part, CMIbA allowed the forming of a discriminant channel subset by selecting
P4, T6, T3, P3, F4, O2, Fp2, and Fz channels. Therefore, {Fp1,F8,Fp2,F7,P3,Cz,O1,P4}
and {P4,T6,T3,P3,F4,O2,Fp2,Fz} discriminant channel subsets were constituted from the
19 provided, proceeding by the ARbC method and CMIbA. Both approaches have the Fp2,
P3, and P4 channels in common, considering the subset of eight discriminant channels,
while five of those are different. The difference in the taxonomy of channel subsets is
explained by the particularity of metrics used by the ARbC method and CMIbA, and also
by the signal spread of each channel when mixed with data from other channels.
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Figure 5. t-SNE distribution illustrations of selected channels’ signals for all subjects using
the ARbC method and CMIbA before the main processing step. All figures were plotted in
2-D embedded space using the Euclidean metric, setting the nearest neighbors’ number at
10, the number of iterations for the optimization at 1000, and the gradient norm at 0.0001.
(a) ARbC: six-channel combination: distribution of {Fp1,F8,Fp2,F7,P3,Cz} channel signals, (b) CMIbA:
six-channel combination: distribution of {P4,T6,T3,P3,F4,O2} channel signals, (c) ARbC: eight-channel
combination: distribution of {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} channel signals, (d) CMIbA: eight-channel
combination: distribution of {P4,T6,T3,P3,F4,O2,Fp2,Fz} channel signals.

The results of processing MI–EEG signals from the discriminant channel subset are
shown in Table 8. Next, the signals of the selected channels per subject are processed;
subject A performed EEG data classification, achieving 86.8% and 89.0% accuracy with
the ARbC method and CMIbA, respectively. For its part, subject B achieved an accuracy
of 68.0% using the ARbC method using data from eight discriminant channels, compared
to 76.3% with CMIbA. For all subjects, increasing the number of discriminant channels
revealed improvements in classification accuracy, except for subject K using the ARbC
method. According to Table 7, adding two more discriminant channels to subject H
using the ARbC method decreased the classification accuracy compared to other subjects.
The same observation is made for subject J. The best accuracy was achieved by subject J
combining eight discriminating channels with CMIbA (99.7%), while the lower accuracy of
53.7% was obtained using subject I, processing six channel signals.
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Table 8. Results achieved with the implemented channel selection approaches.

Subject Channel Average Accuracies (%) Depending on the Number of Channels

Selection 6 Accuracy 8 Accuracy

A ARbC {Fp1,F8,Fp2,F7,P3,Cz} 80.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 86.8
CMIbA {P4,T6,T3,P3,F4,O2} 86.5 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 89.0

B ARbC {Fp1,F8,Fp2,F7,P3,Cz} 63.9 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 68.0
CMIbA {P4,T6,T3,P3,F4,O2} 68.7 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 76.3

C ARbC {Fp1,F8,Fp2,F7,P3,Cz} 89.1 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 90.9
CMIbA {P4,T6,T3,P3,F4,O2} 83.0 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 92.2

E ARbC {Fp1,F8,Fp2,F7,P3,Cz} 76.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 78.3
CMIbA {P4,T6,T3,P3,F4,O2} 70.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 82.5

F ARbC {Fp1,F8,Fp2,F7,P3,Cz} 71.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 79.2
CMIbA {P4,T6,T3,P3,F4,O2} 72.4 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 80.4

G ARbC {Fp1,F8,Fp2,F7,P3,Cz} 84.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 86.0
CMIbA {P4,T6,T3,P3,F4,O2} 81.9 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 87.3

H ARbC {Fp1,F8,Fp2,F7,P3,Cz} 57.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 57.8
CMIbA {P4,T6,T3,P3,F4,O2} 56.2 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 65.5

I ARbC {Fp1,F8,Fp2,F7,P3,Cz} 56.4 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 57.6
CMIbA {P4,T6,T3,P3,F4,O2} 53.7 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 67.9

J ARbC {Fp1,F8,Fp2,F7,P3,Cz} 99.6 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 99.5
CMIbA {P4,T6,T3,P3,F4,O2} 98.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 99.7

K ARbC {Fp1,F8,Fp2,F7,P3,Cz} 83.0 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 79.4
CMIbA {P4,T6,T3,P3,F4,O2} 76.8 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 79.3

L ARbC {Fp1,F8,Fp2,F7,P3,Cz} 85.7 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 93.9
CMIbA {P4,T6,T3,P3,F4,O2} 90.4 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 98.0

M ARbC {Fp1,F8,Fp2,F7,P3,Cz} 78.7 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 83.7
CMIbA {P4,T6,T3,P3,F4,O2} 79.5 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 81.9

{A,B, . . ., M} ARbC {Fp1,F8,Fp2,F7,P3,Cz} 55.5 {Fp1,F8,Fp2,F7,P3,Cz,O1,P4} 59.3
CMIbA {P4,T6,T3,P3,F4,O2} 52.2 {P4,T6,T3,P3,F4,O2,Fp2,Fz} 55.2

Finally, concerning the classification accuracy per MI task, Table 9 summarizes the
confusion matrix average results by classifying each mental imagery task. Confusion
matrices diagonal results reported in the aforementioned table represent the coincidence
percentage between the predicted and the true labels for a given output data sequence.

For illustration purposes, Figure 6 presents EEG data related to the described imagined
movements for subject J’s Fp1 channel signals. It can be observed that signals corresponding
to the passive task are relatively close to magnitude zero before classifying.
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Table 9. Summary of confusion matrices’ diagonal results classifying MI tasks separately. The average
accuracies per MI task do not include “{A,B, . . ., M}” subjects. The CMIbA was used for that purpose.

Subject Average Accuracies (%) per MI Task

Left Hand Right Hand Passive Left Leg Tongue Right Leg

A 80 80 80 80 80 80
B 75 75 75 75 75 75
C 90 90 90 90 90 90
E 75 75 75 75 75 75
F 77 77 77 77 77 77
G 85 85 85 85 85 85
H 67 67 67 67 67 67
I 67 67 67 67 67 67
J 100 100 100 100 100 100
K 80 80 80 80 80 80
L 100 100 100 100 100 100
M 80 80 80 80 80 80

Average 81.3 81.3 81.3 81.3 81.3 81.3
{A, B, . . ., M} 57 57 57 57 57 57

(a)

(b)

Figure 6. Illustration of MI–EEG features before and after the classification using the EEGNet network.
In this example, subject J’s data are provided by the Fp1 channel. The window was set to 170 samples,
corresponding to task duration. The normalized magnitude is given in μV, while SPS and ρ mean
the number of samples per second and feature magnitude, respectively. (a) MI–EEG signals before
classification. (b) MI–EEG features after classification.
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5. Discussions

Two EEG channel-selection methods are evaluated on how each affects the classification
accuracy by increasing the number of channels, considering the same test subject and
network architecture. Regarding the cerebral cortices’ spatial activation and for all database
signals, almost all brain areas are activated during the experience paradigm. This behavior
does not mean that a particular subject would not have had a more activated cortex than
others, only that channels were selected based on all subjects’ signals. Further, classifying
the set of signals as indicated in Table 8 was carried out illustratively to provide information
on the classifier’s average performance (59.3% and 55.2%). However, practically, a BCI
system can exclusively be used by one subject at a time; what matters more is each subject’s
performance. The results demonstrate that one selection approach can be more effective
than the other, depending on the EEG data provided by each subject and on the number
of channels.

For subjects K and M, the ARbC method is efficient. In contrast, the CMIbA is suitable
for subjects A, B, C, E, F, G, H, I, J, and L. For subjects, C, E, G, H, I, J, and M, either the ARbC
method or CMIbA may be recommended depending on the number of discriminating
channels. For six discriminant channels, the ARbC method is suitable, while for eight
discriminant channels, the CMIbA is desirable.

Regarding classification accuracies, results achieved in this work are compared to
those published in the recent related works, as presented in Table 10. In [42], a VMD
mode approach to extract EEG features was implemented before using the EEGNet in
the classification step. Their work also implemented a subject-dependent classification
approach using the referred dataset. Comparing their results with those achieved in this
work, subjects A, C, J, and L performed data classification, while the remaining subjects
obtained the best results with the approach developed in [42]. This difference in the
accuracy evaluation is essentially due to the implemented strategies in the preprocessing
before classifying EEG signals. Lately, Yan et al. [41] proposed a similar work based on
Kaya’s benchmark. They reported an average accuracy of 76.79% in classifying MI-EEG
signals from 19 channels. This work achieved an average accuracy of 83.7% using eight
channel features.

Table 10. Comparison with other state-of-the-art methods related to the Halt dataset. Sel.Ch. means
selected channels, and μ is the average classification accuracy.

Subject

Works

Keerthi et al. [42] Yan et al. [41] Proposed Method
VMD + STFT + EEGNet EEGNet CbA/CbMI + EEGNet
Sel.Ch. Acc.(%) Sel.Ch. Acc.(%) Sel.Ch. Acc.(%)

A 3 86.74 19 87.40 8 89.0

B 3 97.42 19 67.22 8 76.3

C 3 82.93 19 82.36 8 92.2

E 3 91.84 19 76.94 8 82.5

F 3 94.27 19 70.32 8 80.4

G 3 89.02 19 89.33 8 87.3

H 3 87.25 19 43.46 8 65.5

I 3 90.18 19 44.25 8 67.9

J 3 88.55 19 98.84 8 99.7

K 3 85.76 19 81.03 6 83.0

L 3 92.49 19 95.35 8 98.0

M 3 96.01 19 84.93 8 83.7

μ – 90.20 – 76.79 – 83.7
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Focusing on the processing unit and the latency, another aspect targeted in this work,
Table 11 presents the latency per MI task per subject. The lower average latency of 36.7 ms
was obtained by subject J while classifying MI tasks; because of the low number of subject
J’s sessions.

Table 11. Summary of average latency per subject for classifying each MI task.

Subject Average Latency (ms) per MI Task

Left Hand Right Hand Passive Left Leg Tongue Right Leg

A 56.1 56.1 56.1 56.1 56.1 56.1
B 55.7 55.7 55.7 55.7 55.7 55.7
C 42.7 42.7 42.7 42.7 42.7 42.7
E 55.2 55.2 55.2 55.2 55.2 55.2
F 57.2 57.2 57.2 57.2 57.2 57.2
G 55.8 55.8 55.8 55.8 55.8 55.8
H 42.3 42.3 42.3 42.3 42.3 42.3
I 43.8 43.8 43.8 43.8 43.8 43.8
J 36.7 36.7 36.7 36.7 36.7 36.7
K 42.1 42.1 42.1 42.1 42.1 42.1
L 41.8 41.8 41.8 41.8 41.8 41.8
M 56.0 56.0 56.0 56.0 56.0 56.0

Average 48.7 48.7 48.7 48.7 48.7 48.7
{A,B, . . ., M} 135 135 135 135 135 135

Therefore, Table 12 compares this framework with similar works in the recent literature.
The purpose is to compare EEGNet network successful implementations on the NJT2 board
with the proposed method. Khatwani et al. [34] achieved a latency inferior to 84.1 ms
using 64 EEG channels to detect an artifact type. The maxima latency was evaluated at
84.1 ms classifying EEG artifacts. In this work, the average latency per task and per subject
was evaluated at 48.7 ms. For their parts, Maiti et al. [35] controlled a drone generating
commands with a maximum latency of 10 ms. From a particular point of view, this latency
improvement is essentially due to the few channels, compared to the number of channels
used in this work. In another work, Ascari et al. [36] processed EEG signals with an
average latency of 0 ± 0 ms using two channels. Despite the size of the datasets used in the
above-mentioned works, the number of channels used is a determinant factor in evaluating
the latency per MI task.

Table 12. Comparison with related works using neural network architectures on the NJT2 board.

Methods Platform Dataset
Number of Latency
Channels per Task

Khatwani et al. [34] NJT2 Own 64 ≤84.1 ms
Maiti et al. [35] NJT2 BCI competition IV 3 9–10 ms
Ascari et al. [36] NJT2 Own 2 0 ± 0 ms
Proposed method NJT2 HaLT [40] 6, 8 48.7 ms

Therefore, this framework uses robust EEG data provided by twelve subjects in
comparison to the mentioned works. Each MI task needed 48.7 ms to be classified,
processing signals from eight discriminant channels. Only 7.6% of the proposed method’s
NJT2 resources were used.

6. Conclusions

This work developed a multi-class classification of MI–EEG signals for BCI systems,
implementing EEGNet on the NJT2 platform. Prior to processing signals, two channel
-selection approaches were used to determine the discriminant channel subsets, the ARbC
approach, and CMIbA. Since discriminant channel subsets were made up, the EEGNet
classified MI–EEG signals into six classes. The results obtained prove the classification
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accuracy improvement using the two proposed channel selection approaches. Increasing
the number of channels allowed one approach to achieve more reliable accuracies than
the other approach, depending on the subject data. Processing acceleration strategies
implemented by utilizing the NJT2 platform resources and the CLR algorithm allowed
for dealing with the processing time challenge. The highest classification accuracy of
99.7% was achieved with subject J’s signals, processing data with a latency of 36.7 ms
per task. The successful carrying out of the classifier presented in this work is offered
as an alternative for the embedded BCI system’s development. However, based on the
approaches developed in this work, increasing the number of discriminating channels
beyond eight tends to decrease the classification accuracy. In future work, we expect to
control an electric car using the results achieved in this work. Moving forward, backward,
turning right and left, neutral, and accelerating are the expected tasks to be performed. The
framework’s source codes are available from 1 January 2023, on GitHub https://github.
com/Tatyvelu/Motor-Imagery-Multi-Tasks-Classification-for-BCIs-Using-the-Jetson-TX2
-board-and-a-Modified-EEGNet-A.
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TFLOPS Trillion Floating-Point Operations Per Second
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Abstract: Instantaneous frequency (IF) is commonly used in the analysis of electroencephalogram
(EEG) signals to detect oscillatory-type seizures. However, IF cannot be used to analyze seizures that
appear as spikes. In this paper, we present a novel method for the automatic estimation of IF and
group delay (GD) in order to detect seizures with both spike and oscillatory characteristics. Unlike
previous methods that use IF alone, the proposed method utilizes information obtained from localized
Rényi entropies (LREs) to generate a binary map that automatically identifies regions requiring a
different estimation strategy. The method combines IF estimation algorithms for multicomponent
signals with time and frequency support information to improve signal ridge estimation in the
time–frequency distribution (TFD). Our experimental results indicate the superiority of the proposed
combined IF and GD estimation approach over the IF estimation alone, without requiring any prior
knowledge about the input signal. The LRE-based mean squared error and mean absolute error
metrics showed improvements of up to 95.70% and 86.79%, respectively, for synthetic signals and up
to 46.45% and 36.61% for real-life EEG seizure signals.

Keywords: time–frequency distributions; Rényi entropy; instantaneous frequency; group delay; EEG

1. Introduction

Electroencephalogram (EEG) recordings are widely used for assessing brain disorders [1–3].
EEG is a noninvasive approach for detecting and predicting seizures [4–7], which can be difficult
to identify in infants. Recurrent seizures are the hallmark of epilepsy, one of the most prevalent
neurological disorders in humans. Identifying seizures in EEG recordings typically requires
real-time observation by a neurologist, leading to growing interest in automated methods for
seizure detection.

EEG signals are nonstationary, and therefore, time–frequency (TF) and time-scale
representations are commonly used for their analysis [6,8–21]. A time–frequency distri-
bution (TFD) enables us to describe signal energy simultaneously in time and frequency.
However, the most widely used TFDs, the quadratic TFDs (QTFDs), create highly oscilla-
tory artifacts, known as cross-terms, for signals with several components or at least one
nonlinear frequency-modulated (non-LFM) component [22–24]. Although the 2D low-pass
filters in the ambiguity function (AF) domain are often used to suppress cross-terms, they
may also suppress important components known as autoterms, resulting in a trade-off
between cross-term reduction and autoterm resolution. To overcome this trade-off, a variety
of filtering methods in the TF domain have been developed [22,25] as an alternative to
conventional filtering methods utilizing nonstationary signals in the time domain [26–28].
One of these advanced filtering methods that outperforms others is the adaptive directional
TFD (ADTFD), which achieves high resolution for multicomponent signals having multiple
directions of energy distribution in the TF domain, such as EEG seizure signals [7,29–32].
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Instantaneous frequency (IF) provides vital information on the time-varying spectral
changes in nonstationary signals. In the TF signal analysis, a number of IF estimation
methods have been developed [29,33–44]. However, IF is not as useful to characterize
signals composed of spikes, where an infinite amount of frequencies is present [45–47].
Such behavior is present in EEG seizure signals, for which the group delay (GD) has
been proven to be a better alternative to IF [46,47]. However, the limitation of the IF
estimation method proposed in [48], and hence, the approach in [46,47], is that the number
of components is required as input from a user, which limits its usage when no a priori
information is available and when the number of components varies over time.

In this paper, we present a novel method for generating a binary map that automati-
cally identifies distinct regions within the signal’s TFD, where either the IF or GD measure
is particularly suitable for analysis. Our method utilizes information about the local num-
ber of signal components obtained from the localized Rényi entropy (LRE) information,
namely the short-term Rényi entropy (STRE) [33,34] and the narrow-band Rényi entropy
(NBRE) [35,36], to detect components and segment the TFD accordingly. Unlike other
methods that require a priori knowledge of the number of components, our approach is
applicable to signals with unknown and time-varying numbers of components.

The resulting binary map is used in a joint IF and GD estimation method, which was
applied to two commonly used IF estimation algorithms in EEG signal analysis, namely
image-based [22,37,38] and blind-source separation (BSS) [15,39,40]. These methods were
selected for their suitability in an automatic environment, as they effectively use the
component time support information from the STRE. Our approach further incorporates
the frequency support information from the NBRE to estimate the GD and reduce the
dependency of the IF algorithms on the STRE accuracy, which can be achieved for the
considered signal examples.

Furthermore, we demonstrate that the shrinkage operator proposed in [35,36] for sparse
TFD reconstruction can be effectively used for IF and GD estimation, with competitive
performance compare with the image-based and BSS algorithms. We evaluate the per-
formance of our method using mean squared error (MSE) between the local number of
signal components before and after estimation, and we show the superior performance of
our combined IF and GD estimation approach over IF estimation alone on both synthetic
signals with additive noise and real-life EEG seizure signals.

The rest of this paper is organized as follows. Background theory, the proposed
method and the EEG dataset used in this study are described in Section 2. The obtained
results are thoroughly presented and discussed in Section 3. Finally, the paper’s conclusions
are summarized in Section 4.

2. Materials and Methods

2.1. Time–Frequency Signal Analysis

A multicomponent nonstationary signal, denoted as z(t), is defined as the analytic
associate of a real signal s(t) as

z(t) =
NC

∑
i=1

ai(t)ejϕi(t), (1)

where NC is the number of components, while ai(t) and ϕi(t) denote the instantaneous
amplitude and instantaneous phase of the signals i-th component, respectively. The ideal
TFD, ρ̂(t, f ), is a unit delta function following the crests of the ridges which represent the
IF, f0i (t), of the i-th component:

ρ̂(t, f ) =
NC

∑
i=1

a2
i (t)δ( f − f0i (t)), (2)

f0i (t) =
1

2π

d
dt

arg z(t) =
1

2π

dϕi(t)
dt

, (3)
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indicating the dominant frequency of the signal’s i-th component at a given time. A dual
(or inverse) of the IF, namely the GD, τdi

( f ), indicates the dominant time of the signal’s i-th
component at a given frequency:

τdi
( f ) = − 1

2π

d
d f

arg Z( f ), (4)

where Z( f ) is the Fourier transform of z(t). The definitions of IF and GD are closely
related, involving interchanging the time and frequency variables, with an extra minus
sign in Equation (4). In practice, the IF is obtained by determining the signal’s component
ridge across time slices of its TFD, while the GD is determined by determining the signal’s
component ridge across frequency slices of the TFD. In the vast majority of instances, the
ideal TFD is not achievable, because practical TFDs are not precisely localized and may be
affected by cross-terms [22].

The Wigner–Ville Distribution (WVD) is widely used as the most fundamental TFD,
defined as [22]:

W(t, f ) =
∫ ∞

−∞
z
(

t +
τ

2

)
z∗
(

t − τ

2

)
e−j2π f τdτ, (5)

and it provides an estimate of the IF/GD for a signal with a single LFM component
in the TF plane that is almost perfect. Yet, the cross-term vulnerability (when dealing
with multicomponent signals) necessitates proper cross-terms suppression. Using the AF,
A(ν, τ), calculated as

A(ν, τ) =
∫ ∞

−∞

∫ ∞

−∞
Wz(t, f )ej2π( f τ−νt)dtd f , (6)

the highly oscillatory cross-terms can be suppressed with a 2D low-pass filter, defining a
QTFD class of TFDs, ρ(t, f ):

A(ν, τ) = A(ν, τ)g(ν, τ), (7)

ρ(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
A(ν, τ)ej2π(νt− f τ)dνdτ, (8)

where g(ν, τ) is the low-pass filter kernel in the AF. The conventional approaches to kernel
design typically entail a compromise between the concentration of autoterms and the
suppression of cross-terms [22].

2.2. Adaptive Directional TFD

To circumvent the above problem of the conventional TFDs, the adaptive directional
TFD (ADTFD) that adjusts the direction of the smoothing kernel at each TF point in the TF
plane is introduced [7,29], and it is mathematically expressed as follows:

ρ(ad)(t, f ) = ρ(t, f ) ∗
t
∗
f

γθ(t, f ), (9)

where γθ(t, f ) is the smoothing kernel whose direction is controlled by θ, while the double
asterisk denotes double convolution in t and f . In this work, we used the Extended
Modified B Distribution (EMBD) as an underlying QTFD with its kernel:

g(ν, τ) =

∫ ∞
−∞ cosh−2βE(t)ej2πνtdt∫ ∞

−∞ cosh−2βE(t)dt
cosh−2αE(τ), (10)
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where αE = βE = 0.25 are the time and frequency smoothing parameters [7,29,31,32].
As γθ(t, f ), we selected the double-derivative directional Gaussian filter (DGF) as
in [7,29,31,32]:

γθ(t, f ) =
ab
2π

d2

d f 2
θ

e−a2t2
θ−b2 f 2

θ , (11)

where tθ = t cos(θ) + f sin(θ) and fθ = −t sin(θ) + f cos(θ), while parameters a and b
control the extent of smoothing along the time and frequency axes. The DGF has low-pass
characteristics along the time axis (e−a2t2

θ ), while it performs second-order differentiation
along the frequency axis ab

2π (
d2

d f 2
θ

e−b2 f 2
θ ). The direction angle of γθ(t, f ) is adapted locally

for each point in the TF domain by maximizing the correlation between the γθ(t, f ) and TF
ridges as

θ(t, f ) = arg max
θ

∣∣∣∣|ρ(t, f )| ∗
t
∗
f

γθ(t, f )
∣∣∣∣, (12)

where −π/2 ≤ θ ≤ π/2. The implementation of directional smoothing results in the sup-
pression of cross-terms and the enhancement of autoterms. The optimization of smoothing
kernel parameters and shape is necessary for achieving optimal performance, as they are
dependent on the signal being analyzed. Previous studies [7,29,31,32] have indicated that
assigning a small value to parameter a results in intensive smoothing along the major
axis, whereas a larger value for parameter b prevents the merging of close components.
To be more precise, a ∈ [2, 3], while b ∈ [5, 30]. In addition to shape parameters a and
b, the window length, WL, of the γθ(t, f ) affects the performance of the ADTFD. A filter
with a small WL value fails to resolve close components and eliminate cross-terms, but
it preserves the energy of short-duration components. Conversely, a larger WL value
achieves the opposite effect. The computational demand of the exhaustive search involving
all possible combinations of (a, b, WL) is significant. Therefore, we used a method for
the automatic parameter optimization of ADTFD, namely the locally adaptive-ADTFD
(LO-ADTFD) proposed in [31], where the final LO-ADTFD is obtained by choosing TF
points with the minimum value from a given set of ADTFDs {ρ(ad)1

(t, f ), ρ(ad)2
(t, f ), . . . }

and their respective parameters {(a1, b1, WL1), (a2, b2, WL2), . . . }:

ρ(lo)(t, f ) = min
k

(ρ(ad)k
(t, f )), (13)

where ρ(ad)k
(t, f ) is the k-th ADTFD in the defined set. That way, the LO-ADTFD preserves

the energy of short-duration signals while achieving high-resolution TFD with resolved
close components and suppressed cross-terms. In this work, we selected the parameter
(a, b) values from the following set {(3, 6), (3, 8), (2, 20), (2, 30)}, while WL was optimized
for each (a, b) pair using the concentration measure proposed in [41]:

M =
1

NtNf

⎛⎝ Nt

∑
t=1

Nf

∑
f=1

|ρ(ad)(t, f )| 1
2

⎞⎠2

, (14)

where Nt and Nf denote the numbers of time samples and frequency bins, respectively,
in range [Nt/8 : 4 : Nt/4] for the pairs {(3, 6), (2, 20)} and [Nt/4 : 4 : 3Nt/8] for the pairs
{(3, 8), (2, 30)}, as suggested in [31].

2.3. The Localized Rényi Entropy

The Rényi entropy, denoted by R(ρ(t, f )), is a comprehensive metric for signal com-
plexity in the TF plane [42–44], defined as

R(ρ(t, f )) =
1

1 − αR
log2

∫ ∞

−∞

∫ ∞

−∞

(
ρ(t, f )∫ ∞

−∞

∫ ∞
−∞ ρ(t, f ) dtd f

)αR

dtd f , (15)
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where for the odd integer parameter αR > 2 the cross-terms get integrated out from the
QTFD, ρ(t, f ), which is normalized with respect to its total energy [34,42].

To refine the global approach mentioned earlier, the counting attribute of the Rényi
entropy has been utilized to extract the local number of signal components from ρ(t, f )
using STRE [34]. To achieve this, the Rényi entropy of the extracted signal’s TFD is
compared with that of a reference TFD with a known number of component as follows:

NCρ(t, f )
t (t0) = 2R(Γt0{ρ(t, f )})−R(Γt0{ρref(t, f )}), (16)

where t denotes localization using time slices, and t0 is the observed time slice, while ρ(t, f )
and ρref(t, f ) denote the considered and reference TFD, respectively. The time-localization
operator Γt0 sets all TFD samples to zero, except those in the vicinity of t0:

Γt0{ρ(t, f )} =

{
ρ(t, f ), t ∈ [t0 − Θt/2, t0 + Θt/2],
0, otherwise,

(17)

where Θt is the parameter controlling the time-window length. The reference signal is a
cosine signal with an amplitude of 1 and a constant normalized frequency of 0.1, providing
a reference energy of a single component in each time slice [34].

In [35,36], more research reveals the weaknesses of STRE for specific signal types and
introduces NBRE to counteract them. Using NBRE, one may determine the local number
of signal components per frequency slice, f0, by substituting the frequency-localization
operator for the time-localization parameter in Equation (16) with the frequency-localization
operator:

Γ f0{ρ(t, f )} =

{
ρ(t, f ), f ∈ [ f0 − Θ f /2, f0 + Θ f /2],
0, otherwise,

(18)

where Θ f is the frequency window length. The reference signal is a delta function centered
at t = 15 [36]. Note that ρ(t, f ) and ρref(t, f ) have to be obtained with the same TFD with
reduced interference in order for the comparison to be valid.

The comparison between local numbers of components obtained from STRE and NBRE
are shown in Figure 1 for the synthetic signal z4LFM, with Nt = 256 samples composed of
four LFM components with different amplitudes embedded in additive Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) SNR = 3 dB. Figure 1b,c show the reasoning
behind introducing NBRE in [35,36]—an inaccurate increase in the local number of signal
components, NCt(t), is evident for signals whose components are more aligned with the
frequency axis (i.e., deviate from the method’s reference component), such as the signal
z4LFM, whose LO-ADTFD is shown in Figure 1a. On the other hand, when signals have
components more aligned with the time axis, STRE presents more accurate estimations of
the local number of signal components [35,36].

2.4. Multicomponent Instantaneous Frequency Estimation Algorithms
2.4.1. Image-Based Method

The first method for estimating the IF is an image processing method [37], which is
divided into two sequential steps. In the first step, local peaks of the TFD are detected
using its first and second derivatives as

B(IM)(t, f ) =

{
1, d

d f ρ(t, f ) = 0 and d2

d f 2 ρ(t, f ) < 0,

0, otherwise,
(19)

which generates a binary (t, f ) image consisting of ones on all peak locations and zeros
on all other points. This step usually provides peaks that do not belong exclusively to
the autoterms. Hence, in the second step, the IFs of signal components are extracted
by using the m-connectivity criterion derived from image processing. In this work, we
used m = 10, as in [7,22,37], which defines a 10-neighborhood set for a detected peak
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at location (x, y) as {(x − 1, y), (x − 1, y − 1), (x − 1, y + 1), (x − 1, y + 2), (x − 1, y − 2),
(x + 1, y), (x + 1, y − 1), (x + 1, y + 1), (x + 1, y + 2), (x + 1, y − 2)}. According to this
criterion, the points above and below the IF curves are not included, meaning that there
can be only one frequency at any time instant for any given signal component.

Finally, a threshold must be specified for the minimum time duration of a valid signal
component so that the final TFD contains only components that meet the threshold. In our
example, where no prior knowledge of the input signal is available, the threshold is deter-
mined by the least component time support information provided by the STRE. This method
demonstrated good computing efficiency and performance for real-world signals without
requiring previous knowledge of the components’ IF laws and amplitudes [7,22,37,38].

(a)

(b) (c)

Figure 1. For the considered signal zLFM(t): (a) ρ(lo)(t, f ); (b) the local number of signal components,
NCt(t), (ideal—dashed red line; obtained—solid blue line) obtained from the STRE; and (c) the local
number of signal components, NCf ( f ), (ideal—dashed red line; obtained—solid blue line) obtained
from the NBRE.

2.4.2. Blind-Source Separation Method

The second IF estimation method applied in this study is the blind-source separation
(BSS) method, which is an efficient method for the localization and extraction of components
from multicomponent signals in the TF domain [39]. The term “blind” refers to the provision
of a mixture of statistically independent components without prior knowledge of its
structure or number of components. The STRE’s information on the time supports of
components is included in the version of the approach utilized in this study, namely the
BSS-STRE [40], thus removing the need for several thresholds required by the original
method [39]. The steps of the BSS component extraction method are summarized below.

First, the TFD of a signal is computed, ρ(t, f ), and the corresponding NCt(t) from the
STRE is obtained. The algorithm then locates the largest TFD peak at (t0, f0) and calculates
the adaptive neighboring component frequency band, ΔB = BL + BR, for the time slice
ρ(t0, f0 − BL : f0 + BR). Next, the component is extracted at time-slice t0, and NCt(t0)
is reduced by 1. Following that, the previous steps of the method are repeated in both
directions around t0 as t0 ← t0 − 1 and t0 ← t0 + 1 until the component edges are detected
by the first derivation of |NCt(t)|, |NC′

t(t)| 
= 0. If there is at least one component remaining
in ρ(t, f ), the above steps are repeated for the succeeding component. The full pseudocode
of this method may be found in [15,40].

The BSS method results in several TFDs, each containing a single extracted component
from which the component IF is estimated in a separate vector. In order to be comparable
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with the B(IM)(t, f ), all estimated IFs will be displayed within a single binary TFD, denoted
by B(BSS)(t, f ).

Note that the ADTFD, or more precisely, its automatically optimized version LO-
ADTFD, is used as the underlying TFD in both estimation methods for this work, as its
superior performance has been demonstrated in numerous IF estimation applications
studies [38,45,46].

2.4.3. Limitations of the Considered IF Estimation Algorithms Based on STRE

The accuracy of IF estimation methods is highly dependent on the accuracy of STRE.
The findings in [35,36] indicate that STRE is unsuitable for signals whose components
deviate from the time axis, resulting in artificially increased NCt(t) and reduced estimation
accuracy. Since this issue may occur in real-life signals, the question arises as to which IF
estimation approach should be used for such signals. An incorrect NCt(t) in the image-
based IF estimation method can lead to either too low a threshold, resulting in interference
being classified as a true signal component, or too high a threshold, causing some true
signal components to be rejected. In the case of the BSS method, an incorrect NCt(t) can
result in incomplete extraction of signal components, and higher NCt(t) values may cause
the estimation of interference IFs.

In this paper, we aim to demonstrate the negative consequences of using an inap-
propriate localization approach in estimating the IFs of signal components. Specifically,
we show that such an approach can cause estimated IFs to be discontinuous and shifted
away from the true component ridge. Although polynomial functions can approximate
discontinuous estimation samples, the approximation error increases as more estimated
samples do not belong to the autoterms. This phenomenon is particularly problematic for
the image-based method, which requires a larger m-connectivity criterion to connect true
signal components. Otherwise, discontinuous signal components are often classified as
interference and fail to meet the threshold criteria. Increasing the m-connectivity criterion
is not recommended, as it can lead to the linking of interference terms. Our paper aims
to address these limitations by proposing the use of the frequency localization approach
and the estimation of the GD with information from the NBRE method for certain signals.
By doing so, we can minimize the negative effects of an inappropriate localization approach
on IF estimation.

2.5. The Proposed Rényi-Entropy-Based Method for Component Alignment Detection towards
Time or Frequency Axis

In this section, we present a novel method for the automatic detection of TFD regions
that require a time or frequency localization strategy. Such a strategy involves using TFD
analysis with time or frequency slices, linked to an estimate of IFs or GDs. To detect such
regions, we implemented the STRE and NBRE methods, which are sensitive to estimate
errors when dealing with signal components that vary from the methods’ respective
reference components. In this method, this sensitivity is turned into an advantage, as a
considerable increase in the local number of signal components can indicate the need for
an alternate localization strategy in a certain TFD region.

Next, the proposed method validates the detected increase in the local number of
signal components by comparing the quality of IF and GD estimations in the identified
TFD region. We observed that an incorrect localization approach can lead to discontinuous
and inaccurate IF or GD estimations.

To estimate the IF and GD trajectories, we employed an approach based on the
shrinkage operator proposed in [35,36] for sparse TFD reconstruction. The shrinkage
operator, denoted with shrinkt, f , operates independently for each time and frequency
slice and removes samples that do not belong to the autoterms. The autoterms are locally
associated with the NCt(t) or NCf ( f ) largest areas, where an area is calculated as a sum
of samples between the minima to the left and right of the detected local maxima. This
operator involves parameters δt and δ f , which control the number of samples around local
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maxima classified as autoterms [35,36]. Hence, by applying the shrinkage operator on
desired TFD with parameters δt = δ f = 1, we may extract only local maxima belonging to
signal autoterms, which basically represent the IF and GD estimations of signal components:

ρt(t, f ) = shrinkt{ρ(t, f )}∣∣
δt=1, ρ f (t, f ) = shrink f {ρ(t, f )}∣∣

δ f =1, (20)

where the t, f notation denotes shrinkage performed over time or frequency slices, while
ρt(t, f ) and ρ f (t, f ) denote the signal’s estimated IFs and GDs (or ridges), respectively.

To demonstrate the proposed method’s steps, we created a synthetic signal, zmix(t),
with Nt = 256 samples, consisting of two constant FM and four non-LFM components
with various different directions and time/frequency supports. Figure 2 illustrates the
LO-ADTFD of the signal, as well as its estimated IFs, ρt

(lo)(t, f ), and GDs, ρ
f
(lo)(t, f ). Ob-

serve that the estimate quality of signal components is distinct between ρt
(lo)(t, f ) and

ρ
f
(lo)(t, f ). Specifically, Figure 2b displays four discontinuous non-LFM components in

ρt
(lo)(t, f ) whose alignment deviates from the time axis. Alternatively, Figure 2c depicts

the same occurrence for ρ
f
(lo)(t, f ) but with inverse results. Now, the identical four non-

LFM components exhibit stronger connectivity than two constant FM components that are
aligned with the time axis.

(a)

(b) (c)

Figure 2. For the considered signal zmix(t): (a) ρ(lo)(t, f ); (b) estimated IFs, ρt
(lo)(t, f ); and (c) esti-

mated GDs, ρ
f
(lo)(t, f ).

To evaluate the quality of estimated IFs and GDs, we propose a metric based on the
number of continuously connected regions of TFD samples denoted by Nr. Specifically, a TFD
sample at location (x, y) is considered to be part of a region if it is connected to at least one
sample in its 8-neighborhood set: {(x− 1, y− 1), (x− 1, y), (x− 1, y+ 1), (x, y− 1), (x, y+ 1),
(x+ 1, y− 1), (x+ 1, y), (x+ 1, y+ 1)}. The resulting components are then counted to obtain
Nr. This way, the proposed metric detects and penalizes discontinuities in the estimated IF
or GD trajectories. Higher values of Nr indicate lower consistency among the estimated
components (i.e., autoterms), reflecting a lower quality of the estimated IF or GD trajectories.
In our proposed method, the result of the Nr metric serves as a decision-making factor in
each TFD region under consideration.

The objective of our proposed method is to generate a binary component alignment
map, denoted by BM(t, f ), that distinguishes TFD regions with components suitable for
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time or frequency localization using ones and zeros, respectively. We provide a comprehen-
sive description of the proposed method’s steps below:

1. The first step in the proposed approach involves calculating the TFD for a given signal
in the time domain, followed by estimation of the IFs and GDs using the shrinkage
operator, resulting in ρt(t, f ) and ρ f (t, f ), as shown in Figure 2.

2. Now, the values of Nr(ρt(t, f )) and Nr(ρ f (t, f )) are computed and compared. If
Nr(ρt(t, f )) ≤ Nr(ρ f (t, f )), the proposed method assumes that signal components are
primarily aligned with the time axis and generates BM(t, f ) using ones. Additionally,
the STRE method is employed to calculate NCt(t), which is used to investigate
local component behavior. Conversely, if Nr(ρt(t, f )) > Nr(ρ f (t, f )), the proposed
method generates BM(t, f ) using zeros and uses the NBRE with NCf ( f ) as the initial
localization approach.

3. The proposed algorithm examines the input NCt(t) or NCf ( f ) for pronounced local
maxima, which may indicate an inadequate local component for the current STRE
or NBRE approach. To identify such maxima, we first locate all local maxima within
NCt(t) (or NCf ( f )), followed by the calculation of the difference in the local number
of signal components, denoted as ΔNC, between the observed maximum and the
minima to the left and right. We consider all ΔNC ≥ 1.50 as “suspicious” intervals that
require further analysis. The chosen threshold value of 1.50 is based on the desire to
detect components that deviate from the respective time or frequency axis more than
the LFM component, with a starting and stopping normalized frequency at 0 and 0.5,
respectively. This component showed marginal accuracy for both approaches, with mean

numbers of local components obtained as 1
Nt

∑Nt
t=1 NCt(t) � 1

Nf
∑

Nf
f=1 NCf ( f ) � 1.48.

If all ΔNC values are less than 1.50, the algorithm outputs a BM(t, f ) consisting of
only ones or zeros and terminates. Otherwise, the algorithm proceeds to the next step
for further analysis.

4. Next, the algorithm identifies a segment of time (or frequency) slices from NCt(t) (or
NCf ( f )), where the edges are defined by local minima satisfying ΔNC ≥ 1.50. An
example of NCf ( f ) for the signal zmix(t) is shown in Figure 3a, where the first segment
is indicated by red dashed lines at frequency bins f1 and f2. The same segment is then
extracted from a TFD, within which an unsuitable signal component for the current
localization approach may be present. Figure 3b illustrates an example of ρ(lo)(t, f )
with the segment constrained by the previously detected frequency bins f1 and f2,
where a constant FM component needs to be further detected in the subsequent
algorithm steps as unsuitable for the frequency localization approach.

5. At this point, additional localization is performed within the segmented TFD by
computing the LRE in the opposite direction of the previous step. In particular, NCf ( f )
is calculated if Nr(ρt(t, f )) ≤ Nr(ρ f (t, f )), and NCt(t) is calculated if Nr(ρt(t, f )) >
Nr(ρ f (t, f )). We follow the same procedure as in the previous two steps, identifying
all local maxima and minima with ΔNC ≥ 1.50. Then, we detect all segments with
borders satisfying ΔNC ≥ 1.50, which define a 2D TF region or block within ρt(t, f )
and ρt(t, f ) that are evaluated in reference to the Nr value. If Nr is lower for a TFD
block within ρt(t, f ) than in ρ f (t, f ), it implies that a time localization technique is
more suited, and BM(t, f ) in positions specified with a TFD block is set to 1; otherwise,
it is set to 0. All the remaining estimated signal components that are saturated inside
minima with ΔNC < 1.50 belong to the current localization approach (which differs
from the localization approach in the previous step), and the corresponding TFD
block within the final BM(t, f ) changes its values from 1 ↔ 0. Finally, the Nr value
is compared in ρt(t, f ) and ρ f (t, f ) for time samples or frequency bins where no
component was detected (i.e., NCf ( f ) = 0 or NCt(t) = 0), and the BM(t, f ) is set to
0 or 1 based on the lower Nr value.
Figure 4 illustrates the procedure described in this section. Firstly, an LO-ADTFD
segment bounded in the range [ f1, f2] is extracted and subjected to an opposite LRE
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approach, such as STRE, to obtain the NCt(t), as shown in Figure 4a,b. The red dashed
lines in Figure 4b denote the segment detected using the NCt(t), which defines a TFD
block (t1 : t2, f1 : f2) for evaluation in ρt

(lo)(t, f ) and ρ
f
(lo)(t, f ), shown in Figure 4c,d,

respectively. The estimation of GDs within TFD blocks in red dashed lines exhibits
superior connectivity than IF estimation, leading to the BM(t1 : t2, f1 : f2) to remain
unchanged from the initial values of zero. Since the constant FM component detected
inside the green dashed lines does not produce inaccuracies in the NCt(t), as shown
in Figure 4b, the BM(t3 : t4, f1 : f2) is changed to one.

6. Steps 4 and 5 are repeated for the remaining detected segments in the NCt(t) (or
NCf ( f )) input, i.e., until all ΔNC ≥ 1.50 are examined.

Figure 5 illustrates the BM(t, f ) obtained for the signal zmix(t), demonstrating that
the proposed method effectively labeled both constant FM components for the time
localization approach.

(a) (b)

Figure 3. For the considered signal zmix(t): (a) the local number of signal components, NCf ( f ),
obtained from the NBRE method; (b) LO-ADTFD. Red dashed lines mark the first segment [ f1, f2]

chosen from NCf ( f ) in which a significant increase in NCf ( f ) is detected.

(a) (b)

(c) (d)

Figure 4. For the considered signal zmix(t): (a) segmented LO-ADTFD; (b) the local number of
signal components NCt(t) calculated on segmented LO-ADTFD; and (c) ρt

(lo)(t, f ); (d) ρ
f
(lo)(t, f ). Red

dashed lines mark detected segments that are evaluated with Nr measure in ρt
(lo)(t, f ) and ρ

f
(lo)(t, f ).

Green dashed lines mark a segment that is considered to have components suitable for the current
time localization approach.
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(a) (b)

Figure 5. For the considered signal zmix(t): (a) BM(t, f ); (b) BM(t, f ) with LO-ADTFD. Yellow and
dashed red rectangles point to the TF regions suitable for analysis using time slices, while the rest of
the TFD in blue should be analyzed using frequency slices.

2.6. Component Extraction Using the Component Alignment Map

The BM(t, f ) map obtained provides the means to extract signal components in the
TFD. Extraction of these components is not achieved individually but through two sets
of components: one suitable for localization through time slices and the other suitable for
localization through frequency bins. The extraction process is simplified by multiplying
the BM(t, f ) map with the TFD using the operator κ{·}, which we defined in two ways. To
derive the signal components corresponding to the localized approach through time slices,
the operator κt{·} is used:

κt{ρ(t, f )} =

{
ρ(t, f ), BM(t, f ) = 1,
0, BM(t, f ) = 0,

(21)

where, by multiplying the BM(t, f ) map with TFD, only the regions defined by the units
in BM(t, f ) are retained in TFD. Likewise, the operator κ f {·} is employed to obtain the
components corresponding to the localized approach through frequency bins:

κ f {ρ(t, f )} =

{
ρ(t, f ), BM(t, f ) = 0,
0, BM(t, f ) = 1,

(22)

by means of which only the TFD regions that are defined by zeros in BM(t, f ) are kept
in TFD.

Consequently, when max{BM(t, f )} = 1 and min{BM(t, f )} = 0, the input TFD can
be split into two TFDs, κt{ρ(t, f )} and κ f {ρ(t, f )}, enabling the local number of signal
components to be computed using the STRE and NBRE methods, respectively. Since both
κt{ρ(t, f )} and κ f {ρ(t, f )} are expected to contain components corresponding to the chosen
localization approach, more precise estimates of the local number of signal components
can be obtained compared with those obtained from the original TFD.

Figure 6 illustrates the results of applying the operators κt and κ f to the signal zmix(t).
The obtained κt{ρ(lo)(t, f )} and κ f {ρ(lo)(t, f )}, shown in Figure 6a,b, respectively, contain
components suitable for the chosen localization approach. This is further corroborated
by the NCt(t) and NCf ( f ) estimates in κt{ρ(lo)(t, f )} and κ f {ρ(lo)(t, f )}, respectively,
which lack significant inaccurate local maxima. Notably, the NCt(t) and NCf ( f ) estimates
obtained from the split TFDs are considerably more precise than those obtained from the
original TFD, as demonstrated in Figure 6c,d. However, it is important to emphasize that
the estimates of the local number of signal components should be interpreted in conjunction
with BM(t, f ), since they do not represent estimates of the entire TFD but rather of the TFD
regions specified within BM(t, f ).
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(a) (b)

(c) (d)

Figure 6. For the considered signal zmix(t): (a) κt{ρ(lo)(t, f )}; (b) κ f {ρ(lo)(t, f )}; (c) the local number
of signal components obtained by the STRE in starting TFD (red dashed line) and κt{ρ(lo)(t, f )} (blue
solid line); and (d) the local number of signal components obtained by the NBRE in starting TFD (red
dashed line) and κ f {ρ(lo)(t, f )} (blue solid line).

2.7. Method for an Automatic Estimation of IF and GD

Upon completion of the necessary prerequisites, we propose a new method that can
automatically estimate both the IF and GD of signal components in a TFD. This method
leverages the use of the binary map BM(t, f ) to identify the TFD regions that require IF or
GD estimation. Meanwhile, the behavior of the signal components, or autoterms, is defined
by the local number of signal components obtained through the STRE and NBRE methods
applied on TFDs with extracted components, κt{ρ(t, f )} and κ f {ρ(t, f )}, respectively.

The proposed method is composed of the following steps:

1. First, the input signal’s TFD is processed using the κt, f {·} operator to obtain two TFDs:
one TFD, κt{ρ(t, f )}, containing signal components suitable for IF estimation using
a time-slice approach, and another TFD, κ f {ρ(t, f )}, containing signal components
suitable for GD estimation using a frequency-slice approach.

2. Next, the IFs are estimated from κt{ρ(t, f )} using any IF estimation algorithm, the
result of which is denoted as Bt(t, f ).

3. A matrix transpose is applied to the discrete version of κ f {ρ(t, f )}, which interchanges
the time and frequency axes and enables GD estimation in frequency slices using the
same IF estimation algorithm approach, resulting in Bf (t, f ).

4. Finally, the IF and GD estimations are combined within a resulting binary TFD, B(t, f ),
which is an output of the proposed method summing Bt(t, f ) and Bf (t, f ).

The proposed method’s steps are visualized in Figure 7. We implemented the above-
proposed method in the considered IF estimation methods, which may be now considered
as IF/GD estimation algorithms utilizing both LRE methods, namely the image-based
STRE-NBRE and BSS-STRE-NBRE.
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ρ(t, f )

κt{ρ(t, f )}

TFD transpose
of κ f {ρ(t, f )}

Apply IF estima-
tion algorithm:

Bt(t, f ) (IFs)

Apply IF estima-
tion algorithm:
Bf (t, f ) (GDs)

B(t, f ) = Bt(t, f ) + Bf (t, f )

Figure 7. Simplified flowchart for the automatic IF and GD estimation for a given TFD.

It is worth noting that the combined estimates of the IF and GD may be extracted
from the estimates generated by the operator shrinkt, f {·}, previously used in the proposed
method for BM(t, f ) as

B(shrink)(t, f ) = κt{ρt(t, f )}+ κ f {ρ f (t, f )}. (23)

In the following section, the performance of the B(shrink)(t, f ) estimation is compared
with that of the image-based and BSS methods.

2.8. EEG Dataset Description

Seizure signals in EEG recordings are often modeled as multicomponent piecewise
FM signals:

s(t) =
NC

∑
i=1

ai(t)e
j2π
∫

f0i (τ)dτ . (24)

However , this model does not take into consideration the spikes or short-duration tran-
sients that are regularly seen in EEG readings. In order to account for these spikes, the
updated signal model that we use in this study is mathematically given as follows [7,30]:

s(t) =
NC

∑
i=1

ai(t)e
j2π
∫

f0i (τ)dτ +
NC

∑
i=1

δ(t − Ti), (25)

where Ti is a time-varying shift.
Analyzing signals that contain both rhythmic and spike features using traditional

TF techniques is challenging, as they have energy distributed along both the time and
frequency axes. Smoothing along the frequency axis can eliminate cross-terms created by
spikes, but it also reduces the resolution of the sinusoidal signal components. In addition,
such signals require the use of a combined IF and GD estimation method, as estimating
only the IFs fails to recover spike features [47,48].

We used a database of 200 EEG seizure segments, which were previously uploaded
as supplementary material in [38] and have been used in [7,30,32,47], from which an
illustrative example was chosen, as used in additional studies [22,31]. The data and relevant
code are publicly available at https://github.com/nabeelalikhan1/EEG-Classification-IF-
and-GD-features (accessed on 1 October 2022). The EEG recordings were obtained from
newborns at the NICU of the Royal Brisbane and Women’s Hospital, Brisbane, Australia,
using the MEDELEC Profile System. Twelve electrodes were placed according to the
international 10–20 standard, which were used to construct a 20-channel bipolar montage.
The recordings underwent prefiltering using an analog bandpass filter with a bandwidth
of 0.5 to 70 Hz. The signal was then sampled to 256 Hz before being digitally resampled to
32 Hz, as the majority of the signal energy is typically found below 12 Hz. The resulting
signal segment is 8 s in duration and acquired at a sampling rate of 32 Hz, resulting in a
total of Nt = 256 samples [7,30,32,38,47]. Previous studies have shown that a differentiator

41



Sensors 2023, 23, 4680

filter can be used to whiten the EEG background and enhance the signature of spikes in
EEG signals [30,47,49,50]. Hence, the proposed IF/GD estimation method’s performance
was tested on EEG seizure signal without, denoted as zEEG(t), and with a differentiatior
filter, denoted as zEEGfilt(t).

3. Results and Discussion

We compared the performance of the combined IF and GD estimation approach with
that of the IF estimation approach alone for both synthetic signals, zLFM(t) and zmix(t),
and real-life EEG seizure signals, zEEG(t) and zEEGfilt(t). It is important to note that for IF
estimation only, algorithms use the STRE method applied to an input LO-ADTFD. However,
for IF and GD estimation, the algorithms utilize the proposed method with BM(t, f ), along
with the STRE and NBRE methods applied to the extracted components from an input
LO-ADTFD using the proposed operators κt and κ f . We calculated the STRE and NBRE
using the parameter αR = 3, with Θt = Θ f = 11 for the synthetic signals zLFM(t) and
zmix(t) and Θt = Θ f = 5 for the signals zEEG(t) and zEEGfilt(t), in order to capture spike
features more precisely, which have been shown to be stable in [33,35,36,51].

To supplement the visual inspection of the results, it is important to quantify the
impact of missing estimated IFs and GDs on the connectivity of components in the signal.
Since the loss of components can occur at any point in the TFD, it is necessary to use a
performance indicator that can monitor local components. To achieve this, we utilized an
LRE-based indicator that has been shown to be effective in detecting reconstructed TFDs
with discontinuous autoterms in prior work [36]. Specifically, we employed two perfor-
mance indicators that measure the error between the local number of signal components
in the original LO-ADTFD with fully preserved auto terms (ρ(lo)(t, f )) and the TFD with
estimated IFs/GDs (B(t, f )), using mean squared error (MSE) given as

MSEt =
1

Nt

Nt

∑
t=1

⎛⎜⎜⎝ NC
ρ(lo)(t, f )
t (t)− NCB(t, f )

t (t)

max
(

NC
ρ(lo)(t, f )
t (t), NCB(t, f )

t (t)
)
⎞⎟⎟⎠

2

, (26)

MSE f =
1

Nf

Nf

∑
f=1

⎛⎜⎜⎝ NC
ρ(lo)(t, f )
f ( f )− NCB(t, f )

f ( f )

max
(

NC
ρ(lo)(t, f )
f ( f ), NCB(t, f )

f ( f )
)
⎞⎟⎟⎠

2

, (27)

MSEt, f =
MSEt + MSE f

2
, (28)

and mean absolute error (MAE) given as

MAEt =
1

Nt

Nt

∑
t=1

∣∣∣∣∣ NC
ρ(lo)(t, f )
t (t)− NCB(t, f )

t (t)

max
(

NC
ρ(lo)(t, f )
t (t), NCB(t, f )

t (t)
)∣∣∣∣∣, (29)

MAE f =
1

Nf

Nf

∑
f=1

∣∣∣∣∣ NC
ρ(lo)(t, f )
f ( f )− NCB(t, f )

f ( f )

max
(

NC
ρ(lo)(t, f )
f ( f ), NCB(t, f )

f ( f )
)∣∣∣∣∣, (30)

MAEt, f =
MAEt + MAE f

2
. (31)

Higher values of MSEt, f and MAEt, f indicate a greater amount of missing estimated
IFs and/or GDs in B(t, f ), suggesting that an inappropriate estimation strategy has been em-
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ployed. Normalizing the local component count enabled a fair MSE and MAE comparison
across signals.

3.1. Results for Synthetic Signals

The efficacy of the proposed BM(t, f ) was evaluated on the synthetic signal example
zLFM(t), with the results presented in Figure 8. Since all four LFM components of the signal
zLFM(t) deviate from the time axis, the estimated GDs, shown in Figure 8b, offer a better
connection than the estimated IFs, shown in Figure 8a. Consequently, the proposed method
generates the BM(t, f ) map, correctly highlighting the TFD regions along the signal’s
components for the frequency localization approach, as shown in Figure 8c,d.

(a) (b)

(c) (d)

Figure 8. For the considered signal zLFM(t): (a) estimated IFs, ρt
(lo)(t, f ); (b) estimated GDs, ρ

f
(lo)(t, f );

(c) BM(t, f ); and (d) BM(t, f ) with LO-ADTFD. Yellow and dashed red rectangles point to the TF
regions suitable for analysis using time slices, while the rest of the TFD in blue should be analyzed
using frequency slices.

In the case of the signal zLFM(t), Figure 9a demonstrates that the image-based STRE
method was incapable of linking TF peaks that deviate from the time axis, resulting in
the rejection of all four LFM autoterms and the estimation of interference terms that were
almost parallel to the time axis. However, when utilizing the proposed combined IF and
GD estimation, the autoterms were fully estimated with high connectivity (as shown in
Figure 9b). Nevertheless, some interference and noise terms were also estimated due to
the obtained spike in NCf ( f ) estimation shown in Figure 1c, which provided a frequency
support threshold that is too small. While the BSS-STRE method did not experience
difficulties with missing components, the estimated IFs were highly discontinuous, and
not all of them belonged to the autoterms, as shown in Figure 9c. Conversely, Figure 9d
demonstrates that the combined IF and GD estimation resulted in significantly improved
component connectivity, with nearly all samples belonging to the autoterms.
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(a) (b)

(c) (d)

Figure 9. Estimated IFs and GDs for the signal zLFM(t) in AWGN with SNR = 3 dB using (a) the
image-based STRE method; (b) the image-based STRE-NBRE method; (c) the BSS-STRE method; and
(d) the BSS-STRE-NBRE method.

Similar results were obtained for the signal zmix(t). The image-based STRE method
was unable to connect non-LFM components (or parts of components) that deviated from
the time axis, as illustrated in Figure 10a. Meanwhile, the BSS-STRE method produced
IF estimates that were discontinuous and dislocated from the true component ridge, as
seen in Figure 10c. However, the proposed combined IF and GD estimation significantly
improved the performance of both methods, as shown in Figure 10b,d. The performance
of the B(shrink)(t, f ) obtained by the shrinkage operator is depicted in Figure 11. For both
signal examples, the estimated component ridges in the TFD showed superior performance
compared with those obtained using the image-based method, while being very similar
to the BSS method, demonstrating high component connectivity and belonging to the
autoterms of the signal.

The results presented in Table 1 demonstrate a significant reduction in MSEt, f and
MAEt, f when using the proposed method for combined IF and GD estimation with STRE
and NBRE information. For the signals zLFM(t) and zmix(t), the image-based method’s
estimation improved by 71.25% and 81.11% in terms of MSEt, f and 50.09% and 62.70% in
terms of MAEt, f , respectively. The BSS method’s estimation also improved by 92.95% and
83.17% in terms of MSEt, f and 82.37% and 65.07% in terms of MAEt, f , respectively.

Moreover, the results demonstrate that the B(shrink)(t, f ) obtained using the shrinkage-
operator-based method for IF and GD estimation outperformed the image-based STRE and
BSS-STRE methods—MSEt, f and MAEt, f values improved by up to 95.62% and 86.52%,
respectively, for the signal zLFM(t) and 90.01% and 72.79%, respectively, for the signal
zmix(t). Moreover, the results show that the obtained B(shrink)(t, f ) is competitive with
the B(BSS)(t, f ) obtained using the BSS-STRE-NBRE algorithm, showing a reduction in
MSEt, f for zLFM(t) by 3.20%, while the rest of the indicators are slightly in favor of the
BSS-STRE-NBRE method (by up to 2.01%).
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(a) (b)

(c) (d)

Figure 10. Estimated IFs and GDs for the signal zmix(t) using (a) the image-based STRE method;
(b) the image-based STRE-NBRE method; (c) the BSS-STRE method; and (d) the BSS-STRE-NBRE
method.

(a) (b)

Figure 11. Estimated IFs and GDs obtained in B(shrink)(t, f ) using the shrinkage operator for the
signals: (a) zLFM(t); (b) zmix(t).

Table 1. Performance comparison between the combined IF and GD estimation versus the IF esti-
mation for the synthetic signals: zLFM(t) in AWGN with SNR = 3 dB and zmix(t). Values in bold
indicate the best-performing algorithm.

Algorithm Image-Based Image-Based BSS BSS
Shrinkage
Operator

Support
Information

STRE
STRE and

NBRE
STRE

STRE and
NBRE

STRE and
NBRE

Estimation IF IF and GD IF IF and GD IF and GD

Signal zLFM(t) in AWGN with SNR = 3 dB

MSEt, f 0.2487 0.0715 0.1517 0.0107 0.0109
MAEt, f 0.4059 0.2026 0.3041 0.0536 0.0547
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Table 1. Cont.

Algorithm Image-Based Image-Based BSS BSS
Shrinkage
Operator

Support
Information

STRE
STRE and

NBRE
STRE

STRE and
NBRE

STRE and
NBRE

Signal zmix(t)

MSEt, f 0.2123 0.0401 0.1301 0.0219 0.0212

MAEt, f 0.3925 0.1464 0.3046 0.1064 0.1068

Sensitivity to Noise

In this study, the proposed shrinkage-operator-based, BSS-STRE-NBRE and image-
based STRE-NBRE methods for estimating IF and GD were evaluated for their robustness to
noise. Synthetic signals, including zLFM(t) and zmix(t), were embedded in AWGN with an
SNR that varied between 0 and 10 dB in 1000 independent simulations. The F1 score metric,
which combines precision and recall, was used to evaluate the algorithm’s performance,
given as

Precision =
TP

TP + FP
, (32)

Recall =
TP

TP + FN
, (33)

F1 = 2 · Precision · Recall
Precision + Recall

, (34)

where true positives (TP) and true negatives (TN) indicate the number of samples that were
correctly estimated as a signal or noise/interference component, respectively, while false
positives (FP) and false negatives (FN) refer to the number of noise/interference or signal
samples that were incorrectly identified as signal or noise, respectively. Note that F1 values
range from 0 to 1, with higher values indicating better performance.

To further validate the F1 score metric, the 2D MSE between the noise-free and noisy
TFDs was calculated using the scaled and squared Frobenius norm as follows:

F-norm =
1

NtNf
||B(t, f )− B(noise)(t, f )||2F =

1
NtNf

Nt

∑
t=1

Nf

∑
f=1

|B(t, f )− B(noise)(t, f )|2. (35)

The F-norm value was defined as the squared norm of the difference between the two
TFDs, divided by the total number of time–frequency bins, Nt × Nf . A lower F-norm value
indicates better performance.

We evaluated the accuracy of the local number of signal component estimates by
computing the MSE between NCt(t) and NCf ( f ) for both noise-free and noisy signals
using Equation (3). The results, depicted in Figure 12, show that the LRE methods produce
stable estimates for SNR values above 1 dB. Moreover, the noise sensitivity of all IF/GD
estimation algorithms considered is determined by the sensitivity of LRE methods, as
indicated by the F1 and F-norm values shown in Figures 13 and 14. Notably, the image-
based STRE-NBRE method is more sensitive to noise than the shrinkage-operator-based
and BSS-STRE-NBRE methods, as even minor inaccuracies in the estimated local number
of signal components can result in poor threshold values, as seen in Figure 9b.
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(a) (b)

Figure 12. MSE between the local number of signal components estimated from noise-free and noisy
LO-ADTFDs in AWGN with SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 13. F1 values for evaluating the shrinkage-operator-based (blue line), BSS-STRE-NBRE (red
line) and image-based STRE-NBRE (green line) IF/GD estimation algorithms’ sensitivity to AWGN
in SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

(a) (b)

Figure 14. F-norm values for evaluating the shrinkage-operator-based (blue line), BSS-STRE-NBRE
(red line) and image-based STRE-NBRE methods’ (green line) IF/GD estimation algorithms’ sensitiv-
ity to AWGN in SNR = [0, 10] dB for the considered signals: (a) zLFM(t); (b) zmix(t).

3.2. Results for Real-Life EEG Seizure Signals

Figure 15a presents the time-domain representation of the signal zEEG(t), revealing
several spikes. These spikes are effectively captured in the TF domain using LO-ADTFD,
as demonstrated in Figure 15b,c for the original and filtered signals, zEEG(t) and zEEGfilt(t),
respectively, which also reveal an additional single sinusoidal component. Notably, the
differentiator filter significantly reduced the background noise and enhanced the desired
spike components, leading to a cleaner signal, zEEGfilt(t).
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(a)

(b) (c)

Figure 15. (a) EEG seizure signal considered in this study, zEEG(t), represented in time domain;
(b) LO-ADTFD of the signal zEEG(t); and (c) LO-ADTFD of the signal zEEGfilt (t).

Figure 16 demonstrates that the proposed BM(t, f ) effectively identified and separated
the spike and sinusoidal components in both signals, zEEG(t) and zEEGfilt(t). As a result,
Figure 17 displays the extracted sinusoidal and spike components in separate TFDs. The
local number of components, NCt(t) and NCf ( f ), estimated from these TFDs, shows a
significant reduction in inaccurate local maxima compared with those obtained from the
input LO-ADTFD, as illustrated in Figure 18.

(a) (b)

(c) (d)

Figure 16. (a) BM(t, f ) for the signal zEEG(t); (b) BM(t, f ) with LO-ADTFD for the signal zEEG(t);
(c) BM(t, f ) for the signal zEEGfilt (t); and (d) BM(t, f ) with LO-ADTFD for the signal zEEGfilt (t).
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(a) (b)

(c) (d)

Figure 17. Extracted components with (a) κt{ρ(lo)(t, f )} for the signal zEEG(t); (b) κ f {ρ(lo)(t, f )}
for the signal zEEG(t); (c) κt{ρ(lo)(t, f )} for the signal zEEGfilt (t); and (d) κ f {ρ(lo)(t, f )} for the
signal zEEGfilt (t).

(a) (b)

(c) (d)

Figure 18. Comparison between the local number of signal components obtained by STRE and NBRE
in starting TFD (dashed red line) and from extracted components using the proposed operators κt

and κ f (solid blue line) for the signals: (a,b) zEEG(t); (c,d) zEEGfilt (t).
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Figure 19 displays the estimated IFs and GDs of the existing approach in [47] for the
signals zEEG(t) and zEEGfilt(t). The IFs are estimated from the signal in the time domain,
while the GDs are obtained from the Fourier transform of a signal using the duality
property, which transposes a signal in the TF domain [47]. The results indicate that the
approach is effective in estimating the IFs and GDs for the filtered EEG signal zEEGfilt(t)
used in the original study [47]. However, the approach proved unsuitable for estimating
the GDs of the unfiltered signal zEEG(t) due to the presence of background noise and
the inconsistent number of components over the TF domain, leading to inaccurate GD
estimates, as illustrated in Figure 19d. Furthermore, it is worth noting that the user needs
to provide the global number of components to obtain these estimates, which may present
a practical limitation when acquiring an unknown signal.

Figures 20 and 21 compare the performance of the IF estimation methods against the
proposed mutual IFs and GDs estimations. As the spike and sinusoidal components are
perpendicular to each other, their estimated IFs exhibit completely opposite performances.
Specifically, all IF estimation methods successfully estimated the IFs of the sinusoidal
component, while the IF estimates of the spike components were highly discontinuous
and, especially for the unfiltered signal zEEG(t), indistinguishable from the background
samples. However, estimating the GDs for the spike components significantly improved
their connectivity and overall preservation, as shown in Figures 20 and 21, using all
considered IF and GD estimation methods.

(a) (b)

(c) (d)

Figure 19. Using the method proposed in [47]: (a) estimated IFs of the signal zEEGfilt (t); (b) estimated
GDs of the signal zEEGfilt (t); (c) estimated IFs of the signal zEEG(t); and (d) estimated GDs of the
signal zEEG(t).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 20. Estimated IFs and GDs using (a) the image-based STRE method for the signal zEEG(t); (b) the
image-based STRE-NBRE method for the signal zEEG(t); (c) the BSS-STRE method for the signal
zEEG(t); (d) the BSS-STRE-NBRE method for the signal zEEG(t); (e) the image-based STRE method
for the signal zEEGfilt (t); (f) the image-based STRE-NBRE method for the signal zEEGfilt (t); (g) the BSS-
STRE method for the signal zEEGfilt (t); and (h) the BSS-STRE-NBRE method for the signal zEEGfilt (t).
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(a) (b)

Figure 21. Estimated IFs and GDs obtained in B(shrink)(t, f ) using the shrinkage operator for the
signals: (a) zEEG(t); (b) zEEGfilt (t).

The numerical results of the mutual IF and GD estimations, presented on illustrative
zEEG(t) and averaged on a dataset containing 200 examples, are summarized in Table 2.
The results confirm that the combined IF and GD estimation approach outperforms the IF
estimation alone. Specifically, for the EEG dataset of unfiltered zEEG(t) signals, the image-
based STRE-NBRE and BSS-STRE-NBRE algorithms improved the MSEt, f and MAEt, f
indicators by up to 42.23% and 30.08%, respectively, compared with the image-based STRE
and BSS-STRE algorithms. Improvements were obtained for the dataset of filtered EEG
signals zEEGfilt(t) also, where the MSEt, f and MAEt, f indicators were reduced by up to
34.96% and 33.41%, respectively, considering the same algorithms, namely the image-
based STRE-NBRE and BSS-STRE-NBRE. Furthermore, the obtained results show the
superiority of the shrinkage operator to the image-based STRE and BSS-STRE algorithms,
with improvements of up to 46.45% and 36.61% for the dataset of zEEG(t) signals and up
to 31.71% and 30.35% for the dataset of zEEGfilt(t) signals in terms of MSEt, f and MAEt, f ,
respectively. Again, the shrinkage operator approach was shown to be competitive with
the BSS-STRE-NBRE algorithm.

Table 2. Performance comparison between the combined IF and GD estimation versus the IF esti-
mation for EEG seizure signals zEEG(t) and zEEGfilt (t). Values in bold indicate the best-performing
algorithm.

Algorithm Image-Based Image-Based BSS BSS
Shrinkage
Operator

Support
Information

STRE
STRE and

NBRE
STRE

STRE and
NBRE

STRE and
NBRE

Estimation IF IF and GD IF IF and GD IF and GD

Illustrative example of zEEG(t)

MSEt, f 0.0488 0.0265 0.0399 0.0215 0.0196

MAEt, f 0.1505 0.1081 0.1194 0.0955 0.0894

Illustrative example of zEEGfilt (t)

MSEt, f 0.0642 0.0516 0.0738 0.0481 0.0487
MAEt, f 0.2897 0.2012 0.3033 0.1972 0.1987

Dataset containing 200 examples of zEEG(t)

MSEt, f 0.0521 0.0301 0.0481 0.0288 0.0279

MAEt, f 0.1732 0.1211 0.1411 0.1122 0.1098

Dataset containing 200 examples of zEEGfilt (t)

MSEt, f 0.0728 0.0588 0.0801 0.0521 0.0547
MAEt, f 0.3120 0.2312 0.3325 0.2214 0.2316
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3.3. Interpretation of Obtained Results

The experimental results show that the proposed method, which generates a binary
map BM(t, f ), successfully identifies regions in the TFD that contain signal components
requiring different time or frequency localization approaches for all considered synthetic
and real-life EEG signals. Furthermore, it is shown that estimating the local number of
signal components on extracted TFDs significantly reduces local estimation inaccuracies
compared with the original estimate on the TFD with all components present.

The results obtained when comparing mutual IF and GD estimation with IF estimation
alone show a significant improvement in estimated component connectivity and preserva-
tion for all considered synthetic and real-life EEG signals. The image-based STRE-NBRE
and BSS-STRE-NBRE methods effectively used frequency support information from NBRE,
providing IF and GD estimates without requiring prior knowledge about the signal. The
results also show that IF and GD estimates can be obtained using the shrinkage operator
derived from sparse reconstruction, which has competitive performance compared with
the BSS algorithm, while both outperforming the image-based algorithm. Additionally,
the considered algorithms’ robustness to noise was connected with the STRE and NBRE
methods, where the BSS-STRE-NBRE and shrinkage-operator-based estimations outper-
formed the image-based STRE-NBRE algorithm for all considered SNRs. The image-based
algorithm’s dependence on LRE accuracy is the reason behind this, where even the smallest
error can cause a threshold that is too small or too large for the method.

The advantage of the BSS algorithm over the shrinkage operator is that it extracts
components one by one using the double-directional approach. This implies that the
estimated samples follow a line, which is evident when comparing Figures 9d and 11a.
However, this can be a disadvantage if interference is falsely chosen as a component due
to its higher maxima than the autoterm’s, as the BSS algorithm will force the estimation
of an interference. In this case, tracking the largest local surfaces instead of only local
maxima in the shrinkage operator can avoid some interference samples, as shown in
Figures 20d and 21a.

The results show that the proposed method is feasible to be used for estimating IFs
and GDs of EEG seizure signals, zEEG(t) and zEEGfilt(t). In the case of the filtered signal
zEEGfilt(t), the estimated IFs and GDs using the proposed method are competitive with the
approach in [47], with the significant advantage that the proposed method does not require
the number of components to be set in advance. However, for the unfiltered signal zEEG(t),
the proposed method outperforms the approach in [47] and shows feasibility for signals
whose number of components changes over time.

It should be noted that when extracting intersecting components that require different
localization approaches, a small portion of components near the intersection point may be
extracted in a different TFD. This phenomenon is evident in Figure 17a,b for the unfiltered
EEG signal zEEG(t), where we observe that small parts of spike components have been
extracted alongside the sinusoidal component. This behavior can be attributed to the
practical calculation of STRE and NBRE, where the sliding window with size Θt or Θ f
within the stable range defined in [33,51] detects a component’s time or frequency support
as a few samples or bins more than the ideal. Consequently, the TFD region borders in
the proposed BM(t, f ) are slightly wider than the actual component’s time or frequency
support to accommodate for this behavior.

4. Conclusions

The analysis of signals that exhibit both rhythmic and spike features, such as EEG
seizure signals, presents a significant challenge when utilizing conventional TF methods.
In order to extract valuable components that are distributed across both the time and
frequency axes, a comprehensive method is necessary. In this paper, we introduced a novel
method for automatically estimating the IF and GD of a signal in the TF domain. In order
to define TFD regions requiring a different time or frequency localization strategy, we
proposed a method for generating a binary map BM(t, f ) based on the information from

53



Sensors 2023, 23, 4680

LRE methods. An increase in the local number of signal components obtained using the
LRE methods was indicative of the presence of a component that may require a different
localization approach than what was observed, whereas measuring IF and GD estimates
with the proposed measure Nr was effective for identifying discontinuous estimates.

Through the implementation of the suggested BM(t, f ), we successfully extracted com-
ponents that necessitate either a time or frequency localization approach, thereby yielding
more accurate evaluations of the numbers of local components using the STRE and NBRE
methods. The STRE method’s reduced accuracy for certain signals prompted modifications
to image-based and BSS IF estimation algorithms, enabling them to efficiently incorporate
the NBRE method and decrease their dependence on the STRE method. The proposed
method yielded a notable enhancement in performance and facilitated the simultaneous
estimation of IF and GD.

The results obtained demonstrate that the proposed method’s combined IF and GD
estimation outperforms the IF estimation alone. This was demonstrated through the
analysis of noisy synthetic and real-life EEG seizure signals with characteristic rhythmic
and spike features. In contrast to current methodologies, the proposed approach does not
necessitate an a priori understanding of an input signal and is applicable to signals whose
number of components varies with time or frequency.

The following research efforts will focus on the advancement of characteristics that
can distinguish and categorize EEG signals from the surrounding environment, utilizing
the IF and GD evaluations derived from this study. Furthermore, a research area of interest
involves the creation of a concentration measure for TFDs utilizing the estimated IFs and
GDs. The primary objective of this measure will be to impose a penalty for the lack of
autoterms that occurs in signal processing using advanced TF techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

ADTFD Adaptive directional time–frequency distribution
AF Ambiguity function
AWGN Additive white Gaussian noise
BSS Blind-source separation
DGF Derivative directional Gaussian filter
EEG Electroencephalogram
EMBD Extended modified B distribution
GD Group delay
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IF Instantaneous frequency
LFM Linear frequency-modulated
LO-ADTFD Locally optimized adaptive directional time–frequency distribution
LRE Local Rényi entropy
MAE Mean absolute error
MSE Mean squared error
NBRE Narrow-band Rényi entropy
SNR Signal-to-noise ratio
STRE Short-term Rényi entropy
TF Time–frequency
TFD Time–frequency distribution
WVD Wigner–Ville distribution
QTFD Quadratic time–frequency distribution
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51. Saulig, N.; Lerga, J.; Miličić, S.; Tomasović, Z. Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals. Sensors
2022, 22, 8251. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

57



Citation: Vitório, R.; Lirani-Silva, E.;

Orcioli-Silva, D.; Beretta, V.S.;

Oliveira, A.S.; Gobbi, L.T.B.

Electrocortical Dynamics of Usual

Walking and the Planning to Step

over Obstacles in Parkinson’s

Disease. Sensors 2023, 23, 4866.

https://doi.org/10.3390/s23104866

Academic Editors: Yifan Zhao,

Hua-Liang Wei, Yuzhu Guo

and Fei He

Received: 28 February 2023

Revised: 9 May 2023

Accepted: 17 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Electrocortical Dynamics of Usual Walking and the Planning to
Step over Obstacles in Parkinson’s Disease

Rodrigo Vitório 1,2,3,*, Ellen Lirani-Silva 4, Diego Orcioli-Silva 1,2, Victor Spiandor Beretta 1,2,5,

Anderson Souza Oliveira 6 and Lilian Teresa Bucken Gobbi 1,2

1 Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro 13506-900, Brazil
2 Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
3 Department of Sport, Exercise and Rehabilitation, Northumbria University,

Newcastle upon Tyne NE1 8ST, UK
4 Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University,

Newcastle upon Tyne NE2 4HH, UK
5 School of Technology and Sciences, Sao Paulo State University (UNESP),

Presidente Prudente 19060-900, Brazil
6 Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark
* Correspondence: rodrigo.vitorio@northumbria.ac.uk

Abstract: The neural correlates of locomotion impairments observed in people with Parkinson’s
disease (PD) are not fully understood. We investigated whether people with PD present distinct
brain electrocortical activity during usual walking and the approach phase of obstacle avoidance
when compared to healthy individuals. Fifteen people with PD and fourteen older adults walked
overground in two conditions: usual walking and obstacle crossing. Scalp electroencephalogra-
phy (EEG) was recorded using a mobile 64-channel EEG system. Independent components were
clustered using a k-means clustering algorithm. Outcome measures included absolute power in
several frequency bands and alpha/beta ratio. During the usual walk, people with PD presented a
greater alpha/beta ratio in the left sensorimotor cortex than healthy individuals. While approaching
obstacles, both groups reduced alpha and beta power in the premotor and right sensorimotor cortices
(balance demand) and increased gamma power in the primary visual cortex (visual demand). Only
people with PD reduced alpha power and alpha/beta ratio in the left sensorimotor cortex when
approaching obstacles. These findings suggest that PD affects the cortical control of usual walking,
leading to a greater proportion of low-frequency (alpha) neuronal firing in the sensorimotor cortex.
Moreover, the planning for obstacle avoidance changes the electrocortical dynamics associated with
increased balance and visual demands. People with PD rely on increased sensorimotor integration to
modulate locomotion.

Keywords: gait; locomotion; movement disorders; EEG

1. Introduction

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neu-
rons of the substantia nigra pars compacta. Consequently, the output nuclei of the basal
ganglia become hyperactive and send excessive GABAergic (inhibitory) signaling to the
thalamus [1]. It has been shown that PD elicits bursts of activity at the beta band (13–30 Hz)
at different regions, which may interfere with the somatosensory control of movements [2].
Moreover, there is a reduction in excitatory signaling from the thalamus to many cortical
areas, including the primary motor cortex and primary somatosensory cortex [1]. Then,
people with PD show broad cortical dysfunction [3], which includes an overall slowing of
cortical activity (e.g., a widespread increase in spectral power in the alpha band as well
as a decrease in beta and gamma spectral power) [4]. As previous evidence suggests the
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involvement of multiple cortical regions in the control of human locomotion [5–8], PD-
related cortical dysfunction may play a role in the walking deficits observed in PD [9–11].
Therefore, it is relevant to assess cortical activity during walking tasks in people with PD.

It is well documented that PD impairs walking performance on both level ground
(i.e., usual walking) and uneven terrains [12]. Several behavioral studies have reported
shortened step length, reduced velocity, increased step-to-step variability, and difficulties
in adapting the stepping pattern to accommodate an obstacle in the path during both the
approach and crossing phases by people with PD [12–15]. Due to the significant impact of
PD on the neural control of locomotion [10,11], gait impairments and tripping over obstacles
have been identified as major causes of falls in PD [16,17]. Therefore, it is necessary to
underline the distinct influence of PD on the supraspinal control of locomotion when
postural control is challenged to avoid tripping over obstacles.

There are different methods to access brain activity during walking, such as functional
near-infrared spectroscopy (fNIRS) and scalp electroencephalography (EEG). Studies inves-
tigating fNIRS have reported greater prefrontal cortical activation during usual walking in
people with PD compared to healthy older adults [18], or during obstacle avoidance com-
pared to unobstructed walking [18–20]. However, fNIRS is not suitable to investigate the
rapid changes in brain dynamics required to achieve successful obstacle negotiation during
walking. High temporal resolution is possible using scalp EEG. Studies applying mobile
EEG have shown that greater balance demands during walking induce reductions in alpha
(9–13 Hz) and beta (13–30 Hz) EEG power in sensorimotor cortical areas [7,21,22] in healthy
individuals. Further, a recent mobile EEG study demonstrated that healthy young adults
present changes in the theta power at the frontal brain region that suggested proactive
control when negotiating obstacles [23]. However, only a few studies have applied mobile
EEG during locomotor tasks in PD.

PD modifies the electrocortical correlates of control during usual walking and while
approaching obstacles. Our recent mobile EEG studies applying single-channel analysis
showed an overall slowing of EEG recordings during walking in people with PD [19,20],
and condition- (from usual walking to approaching obstacles) and medication-specific
modulations. People with PD off medication presented lower gamma power than healthy
individuals in the posterior parietal cortex (CPz) while walking and approaching obsta-
cles [20]. This slowing of EEG recordings might represent a physiological marker for the
reduction in the excitatory signaling from the thalamus to sensorimotor cortical areas [1],
which contributes to gait deficits in PD. Similar findings were obtained by Stuart et al. [24],
who observed increased alpha power while walking in people with PD. Levodopa intake
increased beta and gamma power (CPz) in both walking conditions [20], suggesting po-
tential effects against the PD-related slowing of EEG recordings. Of particular relevance
to the treatment of gait impairments in PD, levodopa-related changes in EEG recordings
were associated with levodopa-related changes in gait parameters [20]. In addition, relative
to usual walking, people with PD reduced both alpha and beta power in channels corre-
sponding to sensorimotor areas (i.e., FCz, Cz and/or CPz) while approaching obstacles,
regardless of their medication state [19,20]. These findings suggest the involvement of
alpha and beta reductions to control balance during locomotion. Despite the interesting
findings, EEG studies regarding the control of locomotion in PD have been conducted
at a single-channel level [9,19,20], limiting the quality of the research outcomes due to
difficulties in determining the EEG signal source.

High-density EEG allows the identification of in-brain neural sources of electrocortical
dynamics, which present superior quality to describe the supraspinal control of move-
ments [5,25,26]. Extracting power spectral features from neural components related to the
electrocortical activity in people with PD during obstacle avoidance is a step forward to
better understanding the underlying neural mechanisms of PD-related walking impair-
ments. The power spectral parameters can also be further evaluated by generating specific
power ratios, such as the alpha/beta ratio, which has been suggested to indicate aperiodic
neural activity, as well as indicate specific neural features in neurological patients [27].
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Therefore, the use of power spectrum from in-brain components describing neural sources
of electrocortical activity can be a relevant tool for clinical evaluation and may inform the
development of enhanced treatment for walking impairments in PD.

The use of high-density EEG can help in unravelling the electrocortical signatures of
usual walking and in the planning to avoid an obstacle in PD. Therefore, the aim of this
study was to investigate whether people with PD present distinct electrocortical activity in
specific brain regions during usual walking and the approach phase of obstacle avoidance
when compared to healthy older adults. We first hypothesized that people with PD would
present in-brain EEG sources containing greater lower-frequency signals when compared to
healthy individuals, corroborating our previous EEG studies applying single-channel-level
analysis [19,20]. Second, we hypothesized that adapting the walking pattern to approach
an obstacle would reduce alpha and beta EEG power in sensorimotor cortical areas, due to
greater demands to modulate balance control [7,21,22]. Moreover, we hypothesized that
the obstacle condition would increase beta and/or gamma EEG power in the visual and
prefrontal cortices, due to increased visual [28] and cognitive demands [18] of obstacle
avoidance relative to usual walking.

2. Materials and Methods

2.1. Participants and Clinical Assessments

Fourteen healthy older adults and fifteen patients with PD participated in this study
(see Table 1 for group details). All individuals gave their informed consent for inclusion
before they participated in the study. The study procedures were conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the local Ethics Com-
mittee (# 39844814.5.0000.5465). Participants were recruited from our lab database. Patients
were selected on the criteria of having a confirmed PD diagnosis from at least one neurol-
ogist. The participants of both groups were included if they were able to walk unaided
and were community-dwelling. Exclusion criteria included the following: diagnosed major
depressive disorder; clinical diagnosis of dementia or other severe cognitive impairment
(according to recommendations for utilization of the Mini-Mental State Examination—
MMSE—in Brazil; cut-off = 20/24 points for illiterates and those who attended formal
education, respectively [29]); chronic musculoskeletal or neurological disease (other than
PD). An anamnesis was carried out to rule out conditions and impairments that could
interfere with the present experimental procedures and to obtain demographic information
(e.g., age, height, body mass, etc.). An experienced movement disorder specialist performed
a clinical assessment in order to test people with PD on the Unified Parkinson’s Disease
Rating Scale (UPDRS) and the Hoehn and Yahr Rating Scale (H&Y); they were tested in the
ON state of medication (approximately one hour after having taken a dose).

Table 1. Demographic characteristics of both groups.

Variables Parkinson Control Statistics

Sex (male/female) 6/9 5/9 X2 = 0.056, p = 0.812
Age (years) 70.8 (10.5) 70.9 (4.9) t = −0.02, p = 0.984

Body mass (kg) 69.6 (12.4) 69.4 (12.1) t = 0.046, p = 0.964
Height (cm) 162.2 (7.5) 160.8 (8.6) t = 0.449, p = 0.657

MMSE (0–30 score) 27.1 (1.5) 28.7 (1.1) Z = −2.786, p = 0.005 *
UPDRS I (0–16 score) 3.3 (1.9) - -
UPDRS II (0–52 score) 8.8 (4.8) - -

UPDRS III (0–108 score) 25.8 (9.3) - -
Hoehn and Yahr
[1/1.5/2/2.5/3] 1/4/5/4/1 - -

* significant difference between groups; MMSE, Mini-Mental State Examination; UPDRS, Unified Parkinson’s
Disease Rating Scale.

60



Sensors 2023, 23, 4866

2.2. Experimental Design and Gait Assessment

Participants walked, at their preferred pace, for 60 s around a 25.8 m oval circuit (with
two 6.5 m parallel straights). Two walking conditions were tested: usual walking and
obstacle crossing. For the obstacle condition, participants were instructed to step over
four foam obstacles (length × width × height: 3 × 60 × 10 cm), evenly spaced along the
walking path; this aspect of the protocol was meant to avoid the influence of different
inter-obstacle distance on the data as this aspect could add more variability to the study.
Four trials for each condition were performed in a random order.

Spatiotemporal gait parameters were recorded by a 5.74 m electronic walkway (200 Hz;
GAITRite®, CIR Systems, Inc., Franklin, NJ, USA) placed over one straight segment of the
circuit. A customized MATLAB algorithm (Mathworks, Natick, MA, USA) was used to
calculate the following gait parameters in both conditions (from the GAITRite output):
step length, step duration, step velocity, step width (mean of the recorded steps), and
step-to-step variability in the same parameters (standard deviation of the recorded steps).
For the obstacle condition, the calculated gait parameters referred to the approach phase
(i.e., the last four steps before the obstacle), allowing a fair comparison with the usual
walking condition.

2.3. EEG Recordings and Processing

All EEG signals were recorded using a mobile 64-channel system (eegoTM sports,
ANT Neuro, Enschede, The Netherlands), sampled at 1024 Hz. All processing and analy-
ses were performed in MATLAB, using scripts and functions based on EEGLAB 13.0.1b
(http://www.sccn.ucsd.edu/eeglab). Initially, individual EEG datasets of both usual walk-
ing and walking with obstacle conditions were merged into a single dataset for each
participant. The instants of the last heel contact prior to the obstacles were registered as
events into the EEG data streaming. For each participant, a similar number of events was
randomly created for the usual walking condition (relative to the obstacle condition). The
full single datasets were down-sampled to 512 Hz and band-pass filtered (2–50 Hz).

The filtered datasets were screened for the removal of channels exhibiting substantial
artifacts following procedures described elsewhere [26]. In general, 50 ± 3 EEG channels
were retained after applying all rejection methods (range: 44–55). We re-referenced the
remaining channels to an average reference. Subsequently, EEG data sectors presenting
exacerbated artifacts (originated from cable movements and/or abrupt head movements)
were removed from the continuous EEG datasets. No participants were excluded from the
analysis due to EEG artifact issues.

2.3.1. Independent Component Analysis (ICA)

To the cleaned datasets, an infomax ICA was applied to transform the EEG channel
data into temporally independent component signals. Approximately 1450 independent
components were extracted across all participants. The EEGLAB function ADJUST was
applied to objectively define independent components carrying artifacts, such as eye blinks,
muscle activity artifacts, and movement-related artifacts [30].

2.3.2. EEG Clustering

The DIPFIT function in EEGLAB was used to model each independent component
as an equivalent current dipole within a boundary element head model based on the
Montreal Neurological Institute standard brain (MNI, Montreal, QC, Canada). Independent
components were removed from further analysis if (1) they were marked as artifactual
components in the pre-processing analysis; (2) their best-fit equivalent current dipole
accounted for <85% of the variance seen at the scalp and (3) presented locations outside
the brain. Therefore, the population of independent components used for the clustering
was reduced from ~1450 to 198 across all 29 participants from both groups. In this study,
the clustering was performed including both PD and controls as a single group. The
rationale is that both patients and controls could present independent components at
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similar cortical regions, but the electrocortical properties of these components may be
group-dependent. The clustering was performed using a k-means clustering algorithm
available in EEGLAB on vectors jointly coding similarities in dipole location and scalp
topography. The clustering algorithm recommended the creation of 8 clusters, which were
maintained for analysis. Four of the eight clusters included independent components from
more than seven participants from each group (half of the original group study sample)
and were located in cortical areas (Table 2). Thus, we performed all further analyses only
on these four clusters of interest.

Table 2. Centroid location for all clusters of electrocortical sources containing independent compo-
nents from ≥7 participants from the Parkinson’s disease and control groups.

Functional Area Brodmann No. of Participants No. of ICs
(Centroid Location) Area (PD/Control) (PD/Control)

Left sensorimotor cortex 2 9/8 9/8
Right sensorimotor cortex 2 11/9 11/9

Visual cortex 17 11/9 11/9
Central premotor and SMA 6 9/7 9/7

PD, Parkinson’s disease; SMA, supplementary motor area; ICs, independent components.

2.3.3. EEG Absolute Power from Independent Components

For the obstacle condition, the EEG signals were epoched from −2.0 s to 0.5 s, from
the last step prior to overcoming the obstacle. The 2.5 s epochs allowed for the acquisi-
tion of electrocortical activity during the preparation/planning period prior to obstacle
crossing [31], including two full gait cycles prior to overcoming the obstacle, and the step
avoiding the obstacle. The same window (−2.0 s to 0.5 s) was used as a baseline. For
each participant, a matching number of epochs from the usual walking condition was
created for comparison with the obstacle condition. The baseline was removed from the
epoched datasets and calculated as the average log spectrum across all epochs from both
conditions. The absolute power of the power spectrum from each independent component
was subsequently averaged in the theta (5–8 Hz), alpha (9–13 Hz), beta (14–30 Hz), and low
gamma (31–50 Hz) frequency bands across the epoch time-course. In addition, the EEG
alpha/beta ratio was computed using the absolute power from the alpha and beta bands
for each independent component.

2.4. Statistical Analysis

For demographic data, unrelated sample Student’s t-tests, Mann–Whitney, and chi-
square tests were employed for between-group comparisons. For gait and EEG-dependent
variables, two-way ANOVAs (group × condition) were carried out, with repeated measures
in the condition factor. The interactions were further assessed with post hoc tests using
Bonferroni correction for multiple comparisons. Specifically for the EEG data, the analyses
were carried out separately for each cluster. All statistical analyses were run on SPSS for
Windows 18.0 and the p-value was set to 0.05.

3. Results

The two groups were not significantly different in sex, age, body mass, and height
(Table 1). People with PD presented mild to moderate disease severity (Table 1). Moreover,
people with PD, despite having preserved global cognitive function, obtained lower scores
in MMSE than older adults (Table 1).

3.1. Gait Parameters

The gait parameters for each group and condition are presented in Table 3. A signifi-
cant interaction between group and condition was observed for step width. Post hoc tests
revealed that the two groups had similar step widths during usual walking conditions,
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but only people with PD increased the step width in the obstacle condition (p < 0.001). No
other interactions between factors were observed for gait parameters.

Table 3. Gait parameters of people with Parkinson’s disease (PD) and healthy older adults in both
usual walking and obstacle conditions.

Variables Parkinson Control Group Condition Group × Condition
Step USU OBT USU OBT F p F p F p Post Hoc

Length (cm) 56.0
(6.6)

55.8
(7.3)

63.3
(6.6)

63.7
(8.2) 8.331 0.008 0.058 0.811 0.501 0.485

Duration (s) 0.52
(0.03)

0.56
(0.03)

0.53
(0.05)

0.56
(0.05) 0.137 0.714 176.968 0.001 2.622 0.117

Velocity (cm/s) 108.4
(14.2)

100.5
(15.5)

120.9
(17.4)

114.9
(17.7) 5.083 0.032 57.496 0.001 1.035 0.318

Width (cm) 9.2
(2.5)

10.1
(2.7)

8.6
(1.9)

8.6
(2.1) 1.440 0.241 9.737 0.004 11.070 0.003 PD: USU < OBT

Step variability

Length (cm) 2.42
(1.01)

6.50
(2.04)

1.93
(0.71)

5.30
(1.49) 4.064 0.054 t 132.582 0.001 2.623 0.117

Duration (s) 0.021
(0.011)

0.080
(0.025)

0.016
(0.004)

0.067
(0.017) 2.972 0.096 267.767 0.001 1.353 0.255

Velocity (cm/s) 6.8
(4.0)

11.2
(2.9)

5.3
(1.5)

11.1
(3.1) 0.682 0.416 71.509 0.001 1.601 0.217

Width (cm) 2.05
(0.62)

2.72
(0.86)

2.04
(0.49)

2.55
(0.60) 0.170 0.684 41.485 0.001 0.756 0.392

USU, usual walking; OBT, obstacle; PD, Parkinson’s disease; p-values marked in bold represent statistically
significant results.

A main effect of group was observed for step length and step velocity. Regardless of
the experimental condition, people with PD walked slower and with shorter step length
than older adults. A trend of group main effect was observed for step length variability,
which was greater for people with PD.

A main effect of condition was observed for step duration, step velocity, step length
variability, step duration variability, step velocity variability, and step width variability. Both
people with PD and older adults showed greater step duration and step-to-step variability
and slower step velocity in the obstacle condition than in the usual walking condition.

3.2. Electroencephalography

Four clusters presented independent components with neural characteristics and
locations in cortical regions: left and right sensorimotor cortex, supplementary motor area,
and primary visual cortex. Table 2 contains details regarding the clusters, and topographic
scalp maps of these clusters are shown in Figure 1.

3.2.1. Left Sensorimotor Cortex

A significant interaction between group and condition was observed for alpha power
[F = 7.974; p = 0.013] and alpha/beta ratio [F = 10.501; p = 0.005]. Post hoc tests revealed
that people with PD showed lower alpha power in the obstacle condition than in the
usual walking condition (p = 0.002), whereas older adults did not change alpha power
across experimental conditions (Figure 2A). Additionally, people with PD showed a greater
alpha/beta ratio than older adults in the usual walking condition (p = 0.016), and only
people with PD decreased alpha/beta ratio in the obstacle condition (p = 0.006; Figure 1). A
main effect of condition was observed for gamma power [F = 8.509; p = 0.011]. Compared
to usual walking, both people with PD and older adults increased gamma power in the
obstacle condition (Figure 2A).
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Figure 1. Top: Topographic plots for the four clusters identified. Bottom: Bar graphs show alpha/beta
ratio for people with PD (green) and healthy older adults (blue) in the usual walking and obstacle
condition. Circles represent individual values. a indicates significant differences between usual
walking and obstacle condition for people with PD; b indicates significant difference between people
with PD and healthy older adults.

 

Figure 2. Top: Electrocortical clusters of independent components plotted on the MNI brain. Blue
spheres represent independent components of healthy older adults and green spheres represent
independent components of people with PD. Red spheres represent the centroid locations for the
clusters ((A)—left sensorimotor cortex; (B)—right sensorimotor cortex). Bottom: Bar graphs show
absolute power for theta, alpha, beta, and gamma bands in the usual walking and obstacle condition.
Circles within the graphs represent individual values. a indicates significant difference between usual
walking and obstacle condition for people with PD; c indicates main effect of condition.

3.2.2. Right Sensorimotor Cortex

A significant interaction between group and condition was observed for alpha/beta
ratio [F = 4.951; p = 0.039]; people with PD presented greater alpha/beta ratio in the usual
walking condition than in the obstacle condition (p = 0.005; Figure 1), whereas older adults
did not change alpha/beta ratio across conditions. A main effect of condition was observed
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for theta [F = 8.179; p = 0.01], alpha [F = 14.910; p < 0.001], beta [F = 17.910; p < 0.001], and
gamma power [F = 6.025; p = 0.025]. Compared to usual walking, both people with PD and
older adults decreased theta, alpha, and beta power and increased gamma power in the
obstacle condition (Figure 2B).

3.2.3. Central Premotor and Supplementary Motor Area

A main effect of condition was observed for beta power [F = 14.623; p = 0.002]. Com-
pared to usual walking, both people with PD and older adults decreased beta power in the
obstacle condition (Figure 3A).

Figure 3. Top: Electrocortical clusters of independent components plotted on the MNI brain. Blue
spheres represent independent components of healthy older adults and green spheres represent
independent components of people with PD. Red spheres represent the centroid locations for the
clusters ((A)—middle premotor and supplementary motor area; (B)—visual cortex). Bottom: Bar
graphs show absolute power for theta, alpha, beta, and gamma bands in the usual walking and
obstacle condition. Circles within the graphs represent individual values. c indicates main effect
of condition.

3.2.4. Primary Visual Cortex

A main effect of condition was observed for gamma power [F = 18.808; p < 0.001].
Compared to usual walking, both people with PD and older adults increased gamma power
in the obstacle condition (Figure 3B).

4. Discussion

The current study investigated whether people with PD present distinct electrocortical
activity in specific brain regions during usual walking and the approach phase of obstacle
avoidance when compared to healthy older adults. The following findings reveal PD-
related changes in electrocortical activity for the control of locomotion: (i) people with
PD showed a greater alpha/beta ratio in the left sensorimotor cortex than older adults
during usual walking; (ii) people with PD reduced alpha power on the left sensorimotor
cortex and alpha/beta ratio on both left and right sensorimotor cortices when approaching
obstacles. Overall, these findings support our primary hypothesis and suggest that PD
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leads to a greater proportion of low-frequency neuronal firing (i.e., relative slowing of scalp
EEG) in the sensorimotor cortex that is responsible for motor commands and sensorimotor
integration. In addition, our results may suggest that difficulties in integrating sensorimotor
inputs to an ongoing ambulatory modulation in the presence of obstacles might help to
explain the tripping-related falls experienced by people with PD [32].

4.1. PD-Related Changes in the Cortical Control of Locomotion

Activity in the sensorimotor cortex during walking is affected by PD [33,34]. The
increased alpha/beta ratio observed in the left sensorimotor cortex in people with PD
during usual walking may be related to the excessive GABAergic inhibition of the basal
ganglia over the thalamus in PD [1,10]. Among other functions, the thalamus redistributes
sensory information and sends excitatory projections to several brain structures, including
the primary motor cortex and the somatosensory cortex [1,35,36]. As a consequence of
the reduced excitatory activity of the thalamus in PD (due to the excessive inhibitory
activity of the basal ganglia over the thalamus), patients’ sensorimotor cortices function
with greater proportion of slower waves (e.g., greater alpha/beta ratio) [4]. This may
represent the dysfunction of the so called “automatic locomotor network” [37] and/or
deficits in sensorimotor integration in PD [30]. Indeed, reduced gait automaticity and an
association between sensory deficits and gait impairments have been observed in PD [32].

PD leads to additional electrocortical changes while approaching an obstacle. In
the present study, only people with PD reduced alpha power (left) and alpha/beta ratio
(left and right) in the sensorimotor cortex in the obstacle condition. Reductions in the
alpha power in the somatosensory and primary motor cortex have been associated with
movement execution [38,39]. Therefore, we speculate that the relatively greater motor and
cognitive demands to avoid obstacles for people with PD induced the desynchronization
of additional cortical regions [13,14]. People with PD may rely on increased sensorimotor
integration to modulate locomotion and control balance while approaching an obstacle.

4.2. Gait and Electrocortical Modulations Required for Obstacle Avoidance

Adjustments in spatiotemporal gait parameters in the approach phase are necessary
for successful obstacle avoidance. We observed that both people with PD and older
adults decreased their walking speed and increased gait variability prior to overcoming
obstacles. Similar findings have been previously reported in the literature and can be
interpreted as a strategy for obtaining greater postural stability and having more time to
plan the crossing phase [14,19,20]. Moreover, only people with PD increased their step
width when approaching the obstacles, corroborating previous studies suggesting that
PD imposes additional demands on postural control [40]. This PD-specific step width
adjustment also aligns with the observed electrocortical modulations associated with
increased balance control.

Reductions in alpha and beta power, previously described in young adults [7,21,22],
seem to be involved in balance control while walking in people with PD and healthy
older adults. Studies using mobile EEG systems have shown the involvement of both
sensorimotor and premotor cortical regions in balance control during different locomotor
tasks in young adults. Wagner et al. [21] reported decreased alpha and beta power in the
sensorimotor cortex during active walking compared to robot-assisted walking, which
reduces balance demand, in young adults. Sipp et al. [7] observed a bilateral reduction
in the beta power from the sensorimotor cortex in young adults during walking on a
balance beam, which increases balance demand, when compared to treadmill walking.
Likewise, Bruijn et al. [22] found decreased beta power in the premotor cortex during the
less stable single support phase of gait, and increased beta power in this cortical region
during externally stabilized treadmill walking. Our results related to the right sensorimotor
and premotor cortical regions are in line with these previous studies. Both healthy older
adults and people with PD presented reductions in the alpha and beta power from the
premotor and sensorimotor cortices when planning how to overcome obstacles. Such a
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change in electrocortical activity may be linked to a greater involvement of these brain
regions in the monitoring of gait stability prior to engaging in obstacle avoidance.

Processing visual information during the approach phase is particularly relevant for
successful obstacle crossing. The activity of the primary visual cortex has been associated
with the level of visual attention and perception of visual stimuli. Alpha activity character-
izes idle arousal of the system, while beta bursts shift the visual system to an attention state
that allows for gamma synchronization and perception [41]. For example, Kaminski and
colleagues [42] observed that increased alertness, manifested by faster responses to target
visual stimuli, is accompanied by increased beta activity in the visual cortex. This higher
beta activity in response to visual stimuli was later associated with preserved cognitive
function [43]. In the present study, participants from both groups increased gamma power
at the primary visual cortex in the obstacle condition, corroborating a previous study from
our research group that evaluated EEG at the channel level [19]. Postural and stepping
adjustments to avoid obstacles require greater visual and cognitive engagement [28,44],
with it being previously shown that increased attentional demands during gait induced
greater changes in gamma activation in several cortical regions [45]. Moreover, obstacle
avoidance increases the activation of the prefrontal cortex in both healthy older adults and
people with PD [18,20], suggesting increased demands for executive function and attention.
Precision stepping tasks have also been shown to induce changes in electrocortical activity
in the visual cortex to cope with the postural adjustments to perform non-stereotypical
gait [46]. Therefore, the increased gamma power in the primary visual cortex in the obstacle
condition suggests a greater need for visual information, and, potentially, the integration of
inputs from cognitive, motor, and visual brain regions.

4.3. Clinical Implication and Future Directions

Our findings revealed specific PD-related changes in brain dynamics during walking,
which may contribute to improving the treatment of walking impairments. Specifically, the
greater proportion of low-frequency neuronal firing in the sensorimotor cortex observed in
people with PD can be modulated by dopaminergic medication. We have previously shown
that levodopa increases beta and gamma power (CPz) during walking [20], suggesting
the potential effects of dopaminergic medication against the PD-related slowing of EEG
recordings. It is likely that the levodopa-related increases in beta and gamma power (CPz)
are due to increased cortical excitability following levodopa intake [47]. Moreover, we
have observed that levodopa-related changes in EEG recordings were associated with
levodopa-related changes in gait parameters, highlighting specific cortical mechanisms
involved in gait improvement [20]. Therefore, high-density EEG outcomes recorded while
walking may serve as biomarkers to assess the response to treatment aiming to improve
gait in PD [24], but larger studies are needed. Future studies should investigate the effects
of other interventions, particularly non-invasive brain stimulation techniques [48–50], on
sensorimotor EEG outcomes recorded while walking in people with PD. Finally, future
studies should consider the effects of disease progression on EEG recordings during walking
in PD.

5. Conclusions

In summary, our results suggest that PD leads to a greater proportion of low-frequency
neuronal firing in brain areas related to motor commands and sensorimotor integration
during walking. Moreover, planning to avoid an obstacle changes the electrocortical
dynamics associated with increased balance and visual demands in both people with PD
and healthy older adults. People with PD rely on increased sensorimotor integration to
modulate locomotion and avoid obstacles.
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Abstract: A high cognitive load can overload a person, potentially resulting in catastrophic accidents.
It is therefore important to ensure the level of cognitive load associated with safety-critical tasks
(such as driving a vehicle) remains manageable for drivers, enabling them to respond appropriately
to changes in the driving environment. Although electroencephalography (EEG) has attracted
significant interest in cognitive load research, few studies have used EEG to investigate cognitive
load in the context of driving. This paper presents a feasibility study on the simulation of various
levels of cognitive load through designing and implementing four driving tasks. We employ machine
learning-based classification techniques using EEG recordings to differentiate driving conditions.
An EEG dataset containing these four driving tasks from a group of 20 participants was collected
to investigate whether EEG can be used as an indicator of changes in cognitive load. The collected
dataset was used to train four Deep Neural Networks and four Support Vector Machine classification
models. The results showed that the best model achieved a classification accuracy of 90.37%, utilising
statistical features from multiple frequency bands in 24 EEG channels. Furthermore, the Gamma
and Beta bands achieved higher classification accuracy than the Alpha and Theta bands during the
analysis. The outcomes of this study have the potential to enhance the Human–Machine Interface of
vehicles, contributing to improved safety.

Keywords: electroencephalography; machine learning; Deep Neural Network; Support Vector
Machine; cognitive load classification

1. Introduction

Cognitive load refers to the amount of working memory required to complete a task
within a specified time. Driving tasks require drivers to allocate specific amounts of physi-
cal and cognitive loads. Cognitive load plays a vital role in daily driving activities. The
Department of Transport of the UK government issued a Reported Road Casualties Great
Britain Annual Report in 2021 [1], showing that approximately 22% of road accidents
caused by distraction were serious or fatal. Numerous distractions, such as performing
secondary tasks, roadside distractions, and talking, can add to a driver’s cognitive load.
Increased driving-related cognitive load can impact the driver’s attention and lead to fa-
tigue [2]. Measuring drivers’ cognitive loads is important for improving the understanding
of driver behaviours and is thus worth investigating to enhance driver–vehicle interactions.
Considerable studies on measuring and estimating drivers’ cognitive loads have been con-
ducted using various methodologies in recent years. These methods fit into three different
categories [3]:

• Subjective Measures are conventionally measured with a questionnaire, asking subjects
to rate a task’s difficulty. The NASA Task Load Index (TLX) [4–8] and Subjective
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Workload Assessment Technique (SWAT) [9] are the two most common subjective
measurement methods used in this category. Subjective measurement cannot evaluate
time-varying qualities, and this method can also be affected by events towards the end
of the experiment at the time of the questionnaire’s administration [5,6].

• Performance measures—the performance of a participant is evaluated to gain insight
into cognitive load. Driving quality, response latency, and reaction times are frequently
used to gauge performance. Such measures are also often employed in detecting
distraction and fatigue. Various factors can influence performance measurement, in-
cluding individual differences, participants’ skill levels, and external variables [10–12].

• Psychophysiological measures include brainwave activity, heart rate variability cor-
related with task demands [13], eye blinking, pupil diameters, and head rotational
angles [14].

Electroencephalography (EEG), which records brain electrical activity, is a highly
attractive research method in driver-related cognitive load research. Signals from the
brain are propagated through the skull and detected on the scalp [15]. Due to the scalp’s
relatively low conductivity, EEG devices typically detect signals originating from the
brain’s cortices. EEG devices offer high temporal resolution (>1 kHz) but have limited
spatial resolution, typically ranging from 5 to 9 cm [16]. These signals tend to be noisy,
with a low signal-to-noise ratio due to susceptibility to physiological phenomena, such
as muscle movements, resulting in contaminated EEG data. The most common artefact
originates from eye blinks. The features used to classify EEG data in driving-related
research vary significantly across the literature. Some studies use frequency bands, such as
Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–14 Hz), Beta (14–30 Hz), and Gamma (30–100 Hz),
although the specific frequency ranges chosen may differ [17–26]. Other studies use features
generated from Power Spectrum Density (PSD) [27,28]. In addition to these frequency-
based features, features in the time and spatial domains have been well-studied [28–30].
Furthermore, a wide variety of classification models have been reported to further group
these features. The most common methods include Support Vector Machines (SVMs),
Long Short-Term Memory (LSTM) [17,31–33], Artificial Neural Networks (ANNs) [19],
Stacked Denoising Auto-Encoders (SDAEs) [25,27], and Convolutional Neural Networks
(CNNs) [17–19,24,30,33–36].

In recent years, there has been a growing interest in Functional Near-Infrared Spec-
troscopy (fNIRS) as a research tool. It measures changes in cerebral blood flow (CBF)
and related haemoglobin concentrations by utilising near-infrared light sources and de-
tectors placed on the scalp. fNIRS offers portability similar to EEG while avoiding elec-
tromyographic and blink artefacts. However, it has fewer channels compared with EEG
recordings and can be susceptible to variations in skin perfusion and scalp blood flow [16].
Aghajani et al. [8] achieved an accuracy ranging from 68% to 87% in classifying different
cognitive levels during N-Back tasks using an SVM model. Compared with recent fNIRS
research [37–39], there has been limited research utilising EEG to classify cognitive load
whilst driving. Notably, the study completed by Almogbel et al. [34] was based on the
results of a single participant, achieving an accuracy of 87% by using SVM with a Convo-
lutional Neural Network autoencoder (CNN-AE) as a feature extraction method for EEG
classification. Cui et al. [11] classified engagement, enjoyment, boredom, and frustration
where the cognitive load is not the main focus. It should be noted that in most existing
studies, cognitive load levels are simulated using various non-driving tasks, typically
N-Back tasks [40], or other visual or auditory tasks, such as the image-responding tasks
in research by Takada et al. [41] or the auditory stimuli and calculation task in research
by Faure et al. [42]. These tasks often demand high-level attention and can exhibit differ-
ent workload levels relatively easily, but they lack the context of driving, which requires
middle-level attention.

This research proposes a method for classifying different driving environments and
traffic densities that demand different cognitive load levels, using various DNN and SVM
machine learning-based classifiers. Unlike existing studies that focus on secondary tasks,
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the novelty of this paper lies in characterising the driver’s cognitive load effects during
various driving tasks, utilising EEG recordings collected from experimental studies. The
main contributions of this study include:

• A simulator-based experiment to generate different levels of cognitive load based on
four carefully designed driving tasks.

• Extraction of frequency-based features used to classify driving conditions by employ-
ing DNN and SVM machine learning-based classifiers.

• An exploration of the topological patterns of different frequency bands of brain waves
under driving tasks demanding varying levels of cognitive load.

2. Methodology

The methodology of this study consists of four main segments: data collection, data
pre-processing, feature generation, feature selection, and machine learning, as shown in
Figure 1. The data collection stage explains the experimental setup and the data collection
goals. The data pre-processing section describes how the obtained data are processed to
improve quality and remove artefacts due to eye movements. Feature generation describes
how EEG-based features are extracted from the dataset and prepared for machine learning.
Feature selection tests different features in frequency and time domains across different
EEG channels. Finally, machine learning describes the classification of datasets of features
using chosen machine learning models.

Figure 1. A block diagram displaying the four steps of the overall methodology.
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2.1. Data Collection

EEG data were collected for this experiment using a water-based Waveguard Net from
Ant Neuro. The device has 24 electrodes and is referenced from the Cz electrode, positioned
according to the international 10–20 system [43]. The sample rate was 256 Hz. The device
is relatively simple to set up compared with gel-based EEG caps, but it must be bathed in
saltwater for at least 10 min before fitting and recording. The complete set of sensors and
their locations are shown in Figure 2a. The device is shown in Figure 2c, and one snapshot
of the whole experiment setup is shown in Figure 2b. A total of 20 male participants took
part in the experiment. Each participant gave informed consent for this research to use and
publish the aggregated data. The average age of participants was 27.65 years old (ranging
from 22 to 42), and they all owned valid driving licenses. In addition, three participants
consumed coffee within 12 h of the experiment. Most of the experiments were conducted in
the morning, and participants were encouraged to ensure they had adequate sleep, which
was verified through the questionnaire. Experiments were conducted in a quiet office
area with stable lighting and air conditioning to minimise external interferences that cause
additional eye blinks or head movement. Throughout experiments, participants were not
allowed to engage in conversation with others.

Figure 2. Images displaying the experimental setup and a map showing routes followed by partici-
pants. (a) Complete sets of sensors and their locations. (b) Driver simulator setup. (c) Display of the
EEG sensor device. (d) Route map of the experiment; the red route shows the motorway route, and
the blue route shows the urban route.

The City Car Driving software was used for driving simulation. City Car Driving is a
PC platform driving simulation software designed for car learners to practice their driving
skills. This software can simulate different driving environments with different intensities
of cars and pedestrians. All participants were required to drive in automatic gear, partially
for simplicity and partly to limit the amount of muscle movement (to reduce the amount of
noise in EEG data). There were five sessions in the experiment:

• Practice: Participants were given time to become familiar with the driving simulator
and simulation software. After eight minutes, they were prompted and asked whether
they wanted to start the experiment. They could become familiar with the system for
as long as they wanted.
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• Motorway—no cars: Participants were asked to follow a motorway route until being
prompted to pull over on the left. In this session, there were no other cars (mean time
taken: 6 min and 57 s).

• Motorway—with cars: Participants repeated the same route as above. However, this
section included AI-controlled cars on the road (vehicle traffic density of 70%; mean
time taken: 8 min and 36 s).

• Urban—no cars: Participants were asked to travel along a route in an urban environ-
ment and follow instructions given by a GPS included in the software. In this session,
there were no other cars (mean time taken: 6 min and 1 s).

• Urban—with cars: Participants repeated the same route as above. However, this
section included AI-controlled cars on the road (vehicle traffic density of 30%; mean
time taken: 8 min and 6 s).

Each session took approximately 7–10 min and all participants were given a 5 min
break between each section to reduce the effect of build-up fatigue. Figure 2d illustrates
the motorway route (shown in red) and the urban route (shown in blue). The motorway
section consists of approximately 5 km of a single carriageway and approximately 8 km
of a motorway. The speed limit for driving on the motorway section is 110 km/h and
90 km/h on the single carriageway section. The urban route comprises a combination of
dual and single street roads, with a total length of approximately 8 km. The urban route
includes three traffic light junctions and two roundabout junctions, and all participants
are required to follow UK driving regulations at these junctions. In addition, the protocol
was counterbalanced so that half of the participants performed two motorway routes first,
while the other half completed urban routes first. This arrangement aimed to ensure that
any apparent decrease in cognitive load was not due to the participant feeling more familiar
with the simulation.

After completing all sessions, participants were required to rate the cognitive load
of four driving tasks (the training session was excluded) on a scale ranging from 1 to 10,
with 1 indicating the lowest cognitive load level and 10 representing the highest cognitive
load level. The outcomes are summarised in Figure 3. As expected, “Motorway—no car”
was rated as the task with the lowest load (mean: 1.9); “Urban—with cars” was rated as
the task with the highest load (mean: 4.9). Statistical analysis using ANOVA was applied
to the questionnaire results. The p-values for driving scenarios with cars and driving
scenarios without cars were found to be 0.00112 for the motorway route and 0.00053 for
the urban route. This indicates that the cognitive load during driving tasks with other cars
is significantly higher than that without other cars. Therefore, this experiment design is
promising to potentially simulate scenarios that require high or low cognitive loads.

Additionally, the rated load of the driving tasks with other cars exhibits greater
variation than that without other cars. Furthermore, these four tasks potentially represent
four different levels of cognitive load. This research hypothesises that the classification of
levels of cognitive load can be represented by the classification of EEG data of participants
completing these driving tasks.

2.2. Data Pre-Processing

Data from the beginning stage of each session and durations when the driving task was
interrupted by accidents or misoperation were excluded. These periods cannot accurately
reflect the desired driving workload. In total, 47,000 s of data were collected for all
participants, of which 35,000 s were preserved for analysis. This study employed the
MNE software package (an open-source Python package for exploring, visualising, and
analysing human neurophysiological data) [44] in Python to process the collected EEG data.
Firstly, a band-pass filter [0.2 Hz, 40 Hz] was applied to all data. The filter was applied using
a Hamming window with a 0.0194 Hz passband ripple and a 53 dB stopband attenuation.
Additionally, a low-pass frequency of 40 Hz was chosen to remove noise from the power
source. The EEG data from the entire experiment was separated into four segments based
on four driving tasks, while the data in the practice phase were neglected. To reduce the
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interference of muscle activities, such as eye blinks, we applied Independent Component
Analysis (ICA). It blindly decomposes a signal into a collection of signals from differing
sources using the fastica method in the ‘MNE’ module with 18 principal components. ICA
can determine which parts of EEG signals constitute artefacts due to the movements of
ocular muscles. The decomposed signals must be manually labelled, as those are believed
to represent the ocular artefacts. Since the ICA cannot perfectly identify the ocular artefacts
and there will be some human errors, the artefacts can never be removed entirely but are
significantly reduced using this method.

Figure 3. The cognitive load of driving tasks rated by participants.

2.3. Feature Generation and Feature Selection

This step comprises two subsections: feature generation, which primarily focuses on
noise reduction and creating features for subsequent selection, and feature selection, which
outlines the methodology for choosing various features for building the subsequent model.

2.3.1. Normalisation and Dataset Generation

Before generating the dataset for machine learning-based classification, the EEG data
were standardised for each channel to ensure the EEG signals from each participant were
normalised with a mean of 0 and a variance of 1. This operation was applied to each
segmented data portion before generating a set of features.

Before learning about features, the data were split into discrete time intervals to
increase the number of instances. For this purpose, the data were segmented into 1 s time
intervals using a sliding window with a 50% overlap. Before training the model, another
round of pre-processing was applied for each segment to further reduce the impact of
noise. We used a threshold equal to the 95th percentile of the Peak-to-Peak (PTP) values
across the data entries individually in each class. It removes any data segment containing
a channel with a PTP value above that threshold. PTP is the distance from the minimum
to maximum peak representing each data entry’s signal range. Any entry with a channel
containing a PTP value above the threshold is deemed too noisy and removed from the
dataset on which the model was trained and validated. After PTP removal, we were
left with 11,559 segments for the session of motorways without cars, 15,211 segments for

76



Sensors 2023, 23, 8528

motorways with cars, 12,131 segments for urban without cars, and 14,760 segments for
urban with cars.

2.3.2. Feature Selection

It is evident that the PSD of EEG recordings can effectively measure workload [45],
and, therefore, it was used as a single feature in this study. Four frequency bands are
defined as Theta (4–8 Hz), Alpha (8–14 Hz), Beta (14–30 Hz), and Gamma (30–40 Hz). First,
the PSD using the Welch method [46] was generated for each data entry to produce these
features. For each data entry, a PSD was generated using 72 frequency values ranging from
4 to 40 Hz with a resolution of 0.5 Hz.

The selected statistical features for each band include the mean, variance, and absolute
maximum amplitude of frequency response. In addition, the band power was generated
by integrating the PSD between selected frequency ranges, which was then divided by
the total power of the entire frequency range. This step gives a fraction representing the
ratio of power this frequency band contains with respect to the full frequency range. Each
feature was generated for each EEG channel and each frequency band, giving a set of
4 × 4 × 24 = 384 total features.

2.4. Machine Learning

For this study, the selected features were classified using a Deep Neural Network
(DNN) and a Support Vector Machine (SVM). The ‘Keras’ Module in the Tensorflow Python
library was used [47] to implement DNN, and the ‘Sklearn’ library was used to implement
SVM [48].

The first layer of a DNN is the input layer, which contains an array of input values
used as the feature inputs to the network. Next are fully connected layers, where the
main computation of the model takes place. Each edge in the diagram has an associated
weight value. The nodes in the current layer are multiplied by the weight along the edge
connected to the node to produce values associated with each node in the next layer. In
a fully connected network, each node is connected to each node in the next layer. Once
the value is obtained for the node, the next layer of nodes can be computed. An activation
function is applied to each layer’s output to augment the results. After calculating all the
fully connected layers, the output layer can be computed using the same method. An
activation function is applied to the output values, and a set of values associated with
each class type is obtained. Then, the most probable class is taken as the output class. The
training phase consists of learning the values associated with each edge by continuously
passing a set of data through the network and updating the edges according to the error
in the output. The exact method to update the edge weights depends on the optimiser in
‘Keras’ [49].

Eight different models were trained, half with a DNN and the other half with an SVM.
There are four classification tasks:

• Motorway-High-Low: The condition with other vehicles on the road was labelled as
high intensity of cars (indicating high cognitive load scenarios), and the condition
without other road users was labelled as intensity of cars (indicating low cognitive
load scenarios). Only the motorway data are included in this task.

• Urban-High-Low: The labelling process is the same as Motorway-High-Low, but only
the urban data are included.

• Combined-High-Low: The labelling process is the same as Motorway-High-Low, but
the urban and motorway data are included.

• Four-Class: In this task, each experiment session is given a separate class, resulting
in four classes: urban with no cars, urban with cars, motorway with no cars, and
motorway with cars.

Figure 4 shows the architecture of the used DNN model. The DNN architecture
includes two layers: one with 200 fully connected neurons and another with 100 fully
connected neurons. In three high-low tasks, there are two classes and, therefore, two output
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layers, while in the four-class task, there are four classes and, therefore, four output layers.
All output layers used a sigmoid activation function for all tasks. In addition, a binary-
cross-entropy loss function and the Keras’ Adam’ optimiser [50] were used for both 2-class
and 4-class classification tasks. The first layer used a linear activation function, and the
second used a Relu activation function. An epoch size of 200 was used to train the model.
In addition, three different measurements were used to represent the performance of the
produced models. The first is accuracy, which is represented by the following formula:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

where TP represents the True Positive, TN is the True Negative, FN is the False Negative,
and FP is the False Positive. This value represents the ratio of correct classifications to
incorrect classifications. When dealing with multiple classes, this is averaged across all
classes. However, additional performance values were measured since there may be a bias
in accuracy due to an unbalanced dataset. The following formula represents precision:

Precision =
TP

TP + FP
(2)

Figure 4. The architecture of the DNN model.

The precision represents the number of correct classifications out of the total number of
dataset entries identified as that class by the model. The following formula represents recall:

Recall =
TP

TP + FN
(3)

The recall represents the number of correct classifications from the total number of
dataset entries in that class. In addition to these classification performance indicators, a
confusion matrix is produced for each task to analyse the detailed performance.

For each model, average accuracy, precision, and recall were generated by training
the model using 10-fold cross-validation and leave-one-out cross-validation. For the 10-
fold cross-validation, the entire dataset was split into ten equally sized sets. Ten different
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datasets for machine learning were generated, using one of these folds as the testing set and
the remainder as the training set. This step was repeated ten times to ensure each folder
was used for validation. The drawback of using only one testing set is that the test accuracy
can vary greatly depending on which observations were used in the training and testing
sets. The resulting accuracy could be much larger or smaller if we used a different set of
observations for the training and testing sets. The k-folder cross-validation was employed
to address this limitation.

The leave-one-person-out cross-validation applies the same concept, but the data are
divided into different folders based on participants. The data from one participant are used
as the testing set, and others are used for training. This step is repeated 20 times in this
study to ensure each participant is used for validation. This validation approach aims to
test the performance of a model that learned from a group of subjects testing on another
subject to measure the variation across subjects.

3. Results

Table 1 shows the model performance of two validation approaches for four classi-
fication tasks using DNNs and SVMs. Using the selected features from EEG recordings,
the DNNs can effectively distinguish high and low intensities of cars with an accuracy of
around 85%. Even the four-class classification achieved an accuracy of up to 78%, which
indicates the different brain activities during the four driving tasks. Results also suggest
that when using the 10-fold cross-validation, the DNNs entirely outperform the SVMs. The
urban data show an 18.21% difference between the two models, and the motorway data
show a 17.98% difference. It is also observed that the two models behave similarly for the
Combined-high-low task and four-class, increasing by 17.41% and 29.90%, respectively. Ad-
ditionally, the accuracy, precision, and recall values are very close in each model, meaning
the models are not heavily biased towards one class in particular. Also, the classification
matrices of the DNN presented in Figure 5 show no extreme bias towards one class when
using the 10-fold cross-validation.

Table 1. Performance of the DNN and SVM classifiers on four data sets, using 10-fold cross-validation
and cross-participant validation.

Method Classification Task
10-Fold Cross Validation Cross-Participant Validation

Accuracy Precision Recall Accuracy Precision Recall

DNN

Urban-High-Low 84.26 ± 0.75% 84.27 ± 0.75% 84.26 ± 0.75% 49.52 ± 9.40% 49.53 ± 9.37% 49.54 ± 9.36%
Motorway-High-Low 90.37 ± 0.55% 90.37 ± 0.57% 90.37 ± 0.59% 59.52 ± 13.37% 59.54 ± 13.35% 59.52 ± 13.36%
Combined-High-Low 81.65 ± 0.73% 81.64 ± 0.73% 81.65 ± 0.72% 56.28 ± 6.41% 56.28 ± 6.41% 56.28 ± 6.41%

Four-Class 78.66 ± 0.56% 77.61 ± 0.73% 76.70 ± 0.94% 31.39 ± 6.76% 31.91 ± 7.24% 28.59 ± 6.50%

SVM

Urban-High-Low 66.05 ± 1.15% 65.87 ± 1.10% 66.00 ± 1.08% 48.96 ± 9.98% 48.42 ± 10.53% 48.65 ± 9.31%
Motorway-High-Low 72.39 ± 0.74% 72.72 ± 0.77% 73.18 ± 0.73% 58.26 ± 11.91% 58.79 ± 12.94% 57.46 ± 11.95%
Combined-High-Low 64.24 ± 0.53% 64.65 ± 0.54% 64.83 ± 0.55% 55.54 ± 7.66% 56.63 ± 7.94% 55.40 ± 6.96%

Four-Class 48.76 ± 0.66% 48.79 ± 0.70%4 49.00 ± 0.75% 30.47 ± 7.08% 30.77 ± 8.12% 30.03 ± 7.02%

However, the same trend is not observed when analysing results from the leave-one-
person-out validation. The results from both methods in Table 1 are close to the baseline
of 50% for the first three classification tasks and 30% for the last task. It suggests that
the features’ pattern that can distinguish high and low intensities of cars differs across
participants. The model performs more accurately when it sees data from each individual
during training. The 10-fold cross-validation mixes each individual’s data between the
training and validation sets. During the validation process, there is a high chance that the
model sees this individual’s data previously but in different epochs and learns key features
from them. There is, however, a chance that most of these learnt features are individually
dependent. The algorithm behaves similarly to a random method for features learnt from
certain subjects and tested on other subjects. This observation implies that the learned
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features are individually specific. However, this can still be useful to determine the load
level for individuals where specific machine learning model learns.

Figure 5. Classification matrices using DNN for 10-folder cross-validation. (a) Classification matrices
of High-Low two-class classification in urban environments. (b) Classification matrices of High-Low
two-class classification in motorway environments. (c) Classification matrices of High-Low two-class
classification combined. (d) Classification matrices of four-class classification.

The results shown here may link back to prior research about how cognitive load
is defined in the literature review. As suggested by O’Donnell and Eggemeier [50], the
cognitive load is “The portion of an individual’s limited mental capacity that is required
by task demands”. Cognitive load depends on working memory [51], and individuals’
perception and cognitive functions to complete a specific task can differ based on their
experiences and familiarity. Some individuals may have found each task in this experiment
extremely difficult and experienced a much higher load in the same tasks that others
found simple.

It was found that the results displayed by using the 10-fold cross-validation are
comparable to results shown by other experiments. For example, So et al. [21] reported
results ranging from 60.40 to 76.00% using an SVM to classify two levels of cognitive load,
while the results in this study display a range of 64.24–72.39% accuracy using an SVM with
two classes. However, it should be noted that very limited studies presented the results
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from a cross-participant validation. Cui et al. [11] used a cross-participant validation and
found large variations in some results. The proposed relative power + SVM model had
an accuracy ranging from 30.77 to 89.84% between subjects, suggesting the difficulty of
finding consistent features to differentiate cognitive load levels for all subjects.

Although the accuracy drops as expected for the four-class model, EEG data can
separate these four tasks efficiently with more than 77% accuracy. There may be a variation
in the cognitive load resulting in a change in feature values due to the GPS, turns, and
roundabouts in the urban route. In other words, the cognitive load level for each task
can be different. The model does suffer the same issue as the other three models with
cross-participant validation, obtaining an accuracy within 1σ of the random accuracy
of 25%.

4. Discussion

This section discusses and analyses the results to uncover significant findings. In
the first subsection, various other features, including power ratio, mean, variance, and
maximum values, are examined and compared with PSD. The frequency band analysis
subsection involves assessing different frequency bands, accompanied by the generation
of a topographic map. The limitations of the study are addressed in the last subsection,
discussing various constraints encountered.

4.1. Feature Analysis

This subsection explores the contribution to the classification of each feature. A
dedicated model was trained for each feature type based on bands and statistical values.
There are 32 models for four bands and four statistical values, and they were performed
for two-class datasets. The four-class dataset is not investigated here, as this analysis aims
to look at each feature’s impact on classifying the cognitive load. As analysed previously,
the cognitive load distinction is more apparent in two-class datasets. In addition, a DNN
with fewer neurons for each feature is available for the four-class dataset. The models were
trained using two layers of 10 neurons to reduce the amount of potential overfitting that
might occur.

Table 2 displays the results for the four bands and four statistical values. It can be
observed that the accuracy is higher when using higher frequency bands. The true reason
for this observation is unclear. However, there are studies suggesting that the Beta wave
is a carrier of visual attention in humans [51], and Gamma waves are shown to increase
when given a visual stimulus [52]. Both factors may cause this observation, as there is an
increase in visual stimuli when other cars are included on the road. These frequency bands
are further analysed in a later section.

Table 2. Accuracies of the band and statistical features of each dataset.

Feature Urban-High-Low Motorway-High-Low Combined-High-Low

Theta Band 64.22 ± 0.62% 67.66 ± 1.18% 62.99 ± 0.61%

Alpha Band 67.04 ± 0.77% 70.46 ± 0.70% 64.97 ± 0.59%

Beta Band 75.23 ± 0.69% 80.46 ± 0.87% 72.26 ± 0.86%

Gamma Band 81.04 ± 1.46% 87.74 ± 0.75% 79.33 ± 0.71%

Power Ratio 69.26 ± 1.41% 69.10 ± 0.89% 67.01 ± 0.93%

Mean 68.79 ± 0.96% 70.80 ± 1.20% 66.96 ± 0.78%

Variance 72.69 ± 0.91% 79.36 ± 1.06% 70.50 ± 0.45%

Absolute Max 66.63 ± 0.80% 70.02 ± 1.00% 65.25 ± 0.66%

In addition, whilst a high performance is observed in each statistical feature, the
variance measure tends to perform most accurately in each dataset. In the Motorway-
High-Low dataset, the variance feature achieved an accuracy of 79.36%, which was 8.56%
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greater than the following highest result. In the Urban-High-Low dataset, it performed
3.34% better; in the Combined-High-Low dataset, it performed 3.49% better. Among the
remaining features, no metric performs significantly worse than the rest. The differences
observed are probably due to random chance, as they remain within either 1σ or 2σ of
each other.

Figure 6 shows the results of the channel analysis displayed on a topographic map.
There is an apparent trend in the accuracy produced for each channel. In this diagram, the
red region represents regions of higher accuracy, and the blue region represents regions of
lower accuracy. The exact accuracy values are indicated on the colour bar. The greatest-
performing regions are consistent throughout each dataset. The most accurate regions
occur mainly along the frontal lobe, right temporal lobe, parietal lobe, and occipital lobe.
Regions with the most prominent accuracy among channels include ‘Fp1’, ‘Fp2’, ‘Fz’, ‘F4’,
‘F8’, ‘FT10’, ‘C3’, ‘C4’, ‘T8’, ‘TP10’, ‘P3’, ‘Pz’ ‘P4’, ‘P8’, and ‘O2’. In addition, no channel
performed worse than or within 2σ of 50%. Overall, the channel accuracy measurements
ranged from 54.96 to 65.38%.

Figure 6. Topographic maps of the accuracy values in each model.

4.2. Frequency Band Analysis

An investigation of frequency bands was performed to observe whether there were
any significant trends in the individual frequency bands across the experiments. This was
mostly inspired by trends in the previous section, where the accuracy values increased
as the frequency values of the bands increased. For this purpose, the mean and variance
values of Theta, Alpha, Beta, and Gamma were plotted by taking the median response from
each participant in each experimental segment. The purpose of taking the median was to
ignore anomalous values where the orders of magnitude were greater than other values.

Figures 7 and 8 display the results of this investigation, where some very noticeable
trends are observed. The mean and variance in each diagram’s middle parietal and occipital
regions consistently exhibited the smallest response values, while the frontal and side
regions showed significantly larger responses. Additionally, the contour shapes within
each band are highly similar. However, they differ in the intensities displayed within each
region, and there are noticeable differences between each classification task.

As should be expected, the intensity of the mean and variance decreased throughout
each band due to the natural shape of the PSD expected from the EEG data. Finally, there
are noticeable commonalities in shapes displayed by the distributions shown by the two
classes with cars and the two classes without cars. Figure 7 shows that although every class
peaks within the left and right temporal regions, both classes with cars display a reduced
response at the frontal region compared with those without cars in the Beta and Gamma
bands. In the Theta and Alpha bands, classes with cars show a stronger frontal response
than those without cars. A similar trend is seen in Figure 8. However, such commonalities
may be entirely down to random chance, and more work should be put into a detailed
investigation of the specifics of the frequency band behaviours in future works.
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Figure 7. Topographic maps displaying median means of the Theta, Alpha, Beta, and Gamma bands
across each section of experiment. (a) Theta band. (b) Alpha band. (c) Beta band. (d) Gamma band.

Figure 8. Topographic maps displaying the variance in Theta, Alpha, Beta, and Gamma bands across
each experiment section. (a) Theta band. (b) Alpha band. (c) Beta band. (d) Gamma band.

4.3. Limitations

Although the goals set for this study were met, there are some limitations which
need to be addressed in future studies. Firstly, in this experimental design, a simple self-
designed questionnaire was used to rate the cognitive load of each driving task. This
could lead to bias in rating the cognitive load with a single parameter. Conducting a
NASA-TLX questionnaire after all four sessions is challenging for participants due to
memory constraints. Essentially, the cognitive load levels simulated in this study are
relative rather than absolute, and we recognise this as a potential limitation. During the
experiment, we used an all-male cohort who we did not ask to refrain from neuroactive
stimulants, such as caffeine and nicotine. The influence of pulse and lateral eye movement
in EEG was considered during the analysis. Moreover, only the PSD was used as the
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feature for classification. In future studies, we plan to incorporate additional features, such
as amplitude-based features, brain functional connectivity, and effective connectivity to
improve classification performance further. Although the models perform well with the
10-folder cross-validation, they fail to perform at the same level using the cross-participant
validation. It implies the information/pattern the models learned from the dataset is not
general enough, and more subjects should be included in a more diverse (e.g., gender, age)
and well-described (e.g., quality of previous night’s sleep) cohort of participants to enhance
these positive initial findings.

5. Conclusions

Through a dedicated experiment, this study investigated drivers’ brain activity pat-
terns measured with EEG techniques for four driving tasks that required different levels
of cognitive load. Machine learning approaches were employed to classify the features
extracted from EEG recordings. This aim can be deemed a success, as the developed models
were able to classify the dataset between different tasks when using the 10-cross validation.
In addition, the classification accuracy values achieved for high and low cognitive loads
were comparable to the results of similar experiments, achieving accuracy values within
the ranges of 81.65 to 90.37%% when using a DNN and 64.24 to 72.39% when using an SVM.
Furthermore, the models could distinguish between all four classes with a 78.66% accuracy
using a DNN and a 48.76% accuracy using an SVM.

A collection of small DNNs trained on small samples of features could be used to
estimate each feature’s contribution. EEG channels in the scalp’s frontal, central, and right
regions were found to perform noticeably better. In addition, the Gamma and Beta bands
performed significantly better than the Theta and Alpha bands. This observation supports
the findings of the existing literature, which implies that Gamma and Beta bands tend to
change in response to visual stimuli and tasks [46,47]. Furthermore, it was found that the
variance measured outperformed other statistical measures for the PSD regions by between
3.34 and 8.56%, depending on the utilised dataset.
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Abstract: Depressive disorder (DD) has become one of the most common mental diseases, seriously
endangering both the affected person’s psychological and physical health. Nowadays, a DD diagnosis
mainly relies on the experience of clinical psychiatrists and subjective scales, lacking objective,
accurate, practical, and automatic diagnosis technologies. Recently, electroencephalogram (EEG)
signals have been widely applied for DD diagnosis, but mainly with high-density EEG, which can
severely limit the efficiency of the EEG data acquisition and reduce the practicability of diagnostic
techniques. The current study attempts to achieve accurate and practical DD diagnoses based on
combining frontal six-channel electroencephalogram (EEG) signals and deep learning models. To
this end, 10 min clinical resting-state EEG signals were collected from 41 DD patients and 34 healthy
controls (HCs). Two deep learning models, multi-resolution convolutional neural network (MRCNN)
combined with long short-term memory (LSTM) (named MRCNN-LSTM) and MRCNN combined
with residual squeeze and excitation (RSE) (named MRCNN-RSE), were proposed for DD recognition.
The results of this study showed that the higher EEG frequency band obtained the better classification
performance for DD diagnosis. The MRCNN-RSE model achieved the highest classification accuracy
of 98.48 ± 0.22% with 8–30 Hz EEG signals. These findings indicated that the proposed analytical
framework can provide an accurate and practical strategy for DD diagnosis, as well as essential
theoretical and technical support for the treatment and efficacy evaluation of DD.

Keywords: depressive disorder (DD); electroencephalogram (EEG); beta rhythm; convolutional
neural network (CNN); long short-term memory (LSTM); deep learning

1. Introduction

Depressive disorder (DD) is characterized by depressed mood, lack of interest, and loss
of pleasure, accompanied by corresponding changes in thinking and behavior [1–3]. It is
estimated that DD affects more than 300 million people worldwide and covers a wide range
of people [4]. According to the World Health Organization, DD is the largest single factor
of global disability [5]. As a common mental disease, DD substantially jeopardizes people’s
regular life, family, and daily work [6–8]. A report in The Lancet claimed that the ratio of
DD increased from 9.7% in 2019 to 19.8% in 2020 [9]. The onset of DD is related to a variety
of factors, including genetics, environment, individual experience, physiological factors,
and gender differences. Previous studies have reported a consistently higher incidence of
DD for females than for males [10,11]. Patients with DD lack self-cognition. It is difficult for
them to realize that they are suffering from complex psychiatric disorders like DD and may
engage in risky behaviors as a result. However, if DD is diagnosed in time and correctly,
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patients can receive treatment and obtain good curative effects [12]. To sum up, the accurate
and practical diagnosis of DD is crucial for patients.

The majority of current diagnostic techniques of DD rely on subjective scale assess-
ments and the clinical expertise of professional psychiatrists according to the diagnostic
criteria of DD, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).
Psychiatrists can understand the symptoms and manifestations of patients with DD [13,14],
including psychological, emotional, and behavioral changes, through these subjective
assessment methods. It is well known that different psychiatrists may have different di-
agnostic results for the same patient with DD, and the diagnostic accuracy varies greatly
and is highly subjective [15,16]. To make the diagnosis process of DD more objective and
accurate, intelligent diagnostic technology has become a research hotspot [17,18].

Neuroimaging techniques have been widely used to explore the alterations in brain
functions in recent years, such as electroencephalogram (EEG) [19], magnetoencephalogram
(MEG) [20], functional magnetic resonance imaging (fMRI) [21], etc. These brain imaging
techniques have also been applied to understanding the neuromechanisms and realizing
the automated intelligent diagnosis of mental disorders [22–24]. Due to the advantages of
being non-invasive, economical, and easy to operate, the EEG technique has high research
and application values in brain-science-related studies [25,26]. It has been reported that
EEG signals have apparent changes in different frequency bands and regions in patients
with DD [27–29]. Based on our brain functional mechanism of DD [19], it has been found
that the important neuro-electrophysiological characteristics of DD are mainly distributed
in the frontal region of the brain. Meanwhile, the response effects of antidepressant drugs
are also related to the dynamic change in EEG power in the frontal region [30,31]. To sum
up, this study attempted to achieve high DD recognition accuracy using frontal six-channel
EEG signals in combination with deep learning algorithms to improve the practicability of
DD diagnosis [32].

Deep learning algorithms are evolving rapidly and are widely used in various fields.
A deep learning framework can automatically extract features from EEG signals and
eliminate the constraints of artificial features. Deep learning can effectively improve
the generalization ability of classifiers, which have been widely used in DD diagnosis
research [33,34]. Among them, a convolutional neural network (CNN) can learn and extract
feature representations that are robust to input data [35], which is the core of the current
best architecture for processing data. Acharya et al. [36] used a CNN to detect DD with
EEG features and obtained high accuracy. The long short-term memory network (LSTM) is
another commonly used deep learning algorithm which has shown excellent performance
with many time series data. Combining these two types of networks for EEG signals, Betul
et al. developed a deep hybrid model based on CNN-LSTM architecture to classify the
EEG signals of left and right hemispheres and obtained accuracies of 99.12% and 97.66%,
respectively [37]. In brief, deep learning algorithms have a good application prospect in
DD recognition research.

This study attempted to achieve a high-accuracy and practical model for DD diagnosis
with frontal six-channel EEG data. Based on prior research, two deep learning models,
multi-resolution CNN (MRCNN) combined with LSTM (named MRCNN-LSTM) and
MRCNN combined with residual squeeze and excitation (RSE) (named MRCNN-RSE),
were proposed for comparison. Both of these models involved MRCNN to extract the
time–frequency domain aspects of EEG features, but two different strategies were used for
further extraction and the processing of the extracted features. In addition, the classification
performance of each rhythm is also discussed in this study to verify the significant change
in beta rhythm in DD patients.

2. Materials and Methods

2.1. Subjects

All DD patients, excluding those with depressive episodes due to bipolar disorder,
were collected from the designated hospital for psychosis, and the HCs were selected from

88



Sensors 2023, 23, 8639

the local community after a professional screening. We randomly recruited 41 patients with
DD (10 males and 31 females, respectively). This is consistent with the existing reports that
the prevalence of depression is higher in females than in males. Meanwhile, in order to
retain this original imbalance the in control group, we randomly selected 34 HCs (11 males
and 23 females, respectively). All participants completed the Hamilton Depression scale
(HAMD) before EEG data collection. All the HCs had a HAMD score of less than 7, while
DD patients had a HAMD score of more than 17. All included subjects were right-handed
and prohibited from drinking alcohol and taking psychotropic drugs for 8 h before EEG
recording. The age of patients with DD ranged from 19 to 61 years old, with an average age
of 45.22 ± 11.80 years old. The age of the HCs ranged from 21 to 57 years, with a mean age
of 40.18 ± 11.67 years. There was no significant difference in age between the DD group
and the HC group, and there was a significant difference in HAMD-17 scores, as shown in
Figure 1 for basic information. The experiment was approved by the Ethics Committee of
Zhejiang Normal University, and all participants signed a written informed consent form
before the experiment.

Figure 1. Clinical characteristics of DD and HC. * means p < 0.05, and ns means non significant.

2.2. Data Acquisition and Preprocessing

In the study, we collected 10 min of resting-state 16-channel EEG data from each
subject. The EEG acquisition device used in this study was an EEG TS215605 from Nicolet
Company. The EEG channels’ names and positions are shown in Figure 2. The subjects
were asked to sit in a chair in a comfortable sitting position with their eyes closed and their
attention focused on their breathing. Data acquisition was arranged in the professional
EEG lab. The whole EEG collection was implemented in a quiet environment. As is well
known, the installation time for EEG recording is highly related to the number of electrodes,
especially for non-specialists. An increase in the number of electrodes will naturally lead to
high test complexity, high analysis difficulty, and high time and economic costs, which can
constrain the practical applications of EEG-related products and systems, particularly to the
detriment of large-scale DD early-screening applications in schools and communities. Based
on our previous research on DD and the consideration of the accuracy and practicability
of the algorithm, this study selected six frontal EEG electrodes (shown in Figure 2) for
DD diagnosis.

89



Sensors 2023, 23, 8639

 

Figure 2. Sixteen EEG channels’ names and locations; red dots indicate the frontal six channels
selected for this study.

During the acquisition of EEG signals, it is easy to be disturbed by various factors such
as the environment, self-physiologies, and body movements. These noises can negatively
affect the signal quality. Preprocessing is a very important step in EEG data analysis which
can effectively improve the signal-to-noise ratio of the EEG signal and provide a reliable
basis for subsequent analysis and interpretation. The specific steps of EEG preprocessing
in this study are as follows:

(1) Downsampling

Downsampling refers to a reduction in the high sampling rate to a lower sampling
rate for the EEG signal, which mainly aims to reduce the amount of data and improve
computational efficiency. In this study, the original EEG signal sampling rate was reduced
from 250 Hz to 125 Hz.

(2) Baseline Correction

The main purpose of baseline correction is to eliminate the direct current (DC) offset
generated by the recorded signal, which affects the accuracy and comparability of the
signals. The baseline correction performed on the EEG signal can remove the DC offset to
make the mean of the signal become zero.

(3) Artifact Removal

The purpose of artifact removal is to improve the signal-to-noise ratio and to better
reveal the information contained in the EEG signal. The common artifacts in EEG signals
include electromyography artifacts, electrocardiograph artifacts, eye movement artifacts,
head movement artifacts, etc. In this study, independent component analysis (ICA) was
used to remove the artifacts.
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(4) Data segmentation

In this study, 4 s continuous EEG data were selected as the sample without data
superposition, resulting in 9354 samples for the DD group and 7443 samples for the
HC group.

(5) Filtering

Bandpass filtering is used to remove unwanted frequency components from the signal,
preserving the signal in a specific frequency range. By setting the cut-off frequency, the
bandpass filter filters out the signals below or above the frequency, and only the signals
within the range are retained. In this study, a 4-order Butterworth bandpass filter was
applied to the EEG data to extract the specific frequency range, such as theta (4–8 Hz),
alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta (13–30 Hz), 4–30 Hz, 8–30 Hz, and 10–30 Hz.

After the above five preprocessing procedures, the extracted 4 s continuous EEG data
were set as the inputs of the proposed deep learning models to explore the DD diagnosis
accuracies of the different frequency ranges. Particularly, among these frequency ranges,
the 4–30 HZ EEG signals were called the original data because they included all rhythms in
this frequency range.

2.3. Deep Learning Model Framework

In this current study, two deep learning models, MRCNN-LSTM and MRCNN-RSE,
were proposed for DD diagnosis. These two models were improved and derived from the
reports of previous studies that CNN-LSTM and CNN are the most commonly used basic
model frameworks in the DD detection field. In order to make the results more persuasive,
we selected four representative deep learning models according to the recent references
and applied them to our EEG data. These four models did not change their structures; they
only changed their parameters to fit our data. The specific descriptions of these models are
as follows.

2.3.1. MRCNN-LSTM Model Framework

The MRCNN-LSTM model structure is shown in Figure 3, and it mainly includes two
parts: MRCNN and LSTM. The first part of MRCNN uses three branches with different
convolution kernel sizes in parallel to extract EEG features with the CNN model. Each
branch uses a convolution kernel with different sizes to extract features with different
scales, and uses the ReLU activation function for nonlinear transformation to enhance
feature expressiveness. In the second part of LSTM, the features are spliced and input
into an LSTM layer to extract the timing information from the EEG features. The LSTM
layer remembers the previous state through a long short-term memory unit with a gating
mechanism and updates the state according to the new information input to capture the
temporal dependence of the data. The output of the LSTM layer is fed into a fully connected
layer and a Dropout layer to improve the generalization ability of the model and suppress
overfitting. Finally, binary classification is implemented by a softmax classifier to predict
the labels of the inputs.
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Figure 3. MRCNN-LSTM model architecture.
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2.3.2. MRCNN-RSE Model Framework

In accordance with the existing research results, a CNN model with multi-resolution
convolution kernels (MRCNN) is proposed in this study. As shown in Figure 4, the MRCNN
model contains two branches with two different convolution kernels. Three convolutional
layers and two maximum pooling layers are used in each branch. The convolution kernels
used in the first branch are set as 4, 3, and 3, respectively. The convolution kernels of the
second branch are set as 10, 3, and 3, respectively. In addition, each convolutional layer
includes a normalization layer for normalizing the input data, and a Gaussian error linear
unit (GELU) is used as the activation function; it is smoother than the traditional ReLU
activation function and can better deal with nonlinear features.

 

Figure 4. MRCNN architecture.
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To improve the learning performance of the MRCNN model, a calibration module was
designed for the features extracted by the convolutional layer to model the interdependence
between the features. The residual squeeze-and-excitation (RSE) block was used in the
MRCNN model, which is named MRCNN-RSE for short, to adaptively select the most
discriminative features. Specifically, the RSE block adaptively selects and readjusts features,
helping the model to better utilize contextual information in its local sensory field. In the
calibration module, two convolutional layers with a kernel and step size of 1 are used
to further extract features, the adaptive pooling layer is used to compress the features,
and then two fully connected layers are used to aggregate the information. The first layer
uses the ReLU activation function to reduce the dimension, and the second layer uses the
sigmoid activation function to increase the dimension. The specific structure for the RSE
block is shown in Figure 5.

 

Figure 5. Feature calibration module with RSE block in MRCNN-RSE model.
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To extract the interdependence between the extracted features in the MRCNN-RSE
model [38], the widely used self-attention mechanism is included in the model, which can
adaptively weigh the features of each position for the input data. Specifically, features
from each location interact with features from other locations to extract more global context
information. In this way, the model can better capture key features for the input data to
improve the model performance by assigning higher weights to regions of interest and
lower weights to regions of less interest. There are two Add and Normalize layers after the
features are weighted by the self-attention mechanism. Finally, the softmax layer is used as
the decision function.

2.3.3. Other Model Frameworks

(1) EEGNet

EEGNet is a compact convolutional neural network for EEG analysis. The EEGNet
algorithm has better generalization ability and higher performance with limited training
data. Liu et al. applied this deep learning framework, EEGNet, to depression diagnosis [39].
The framework consists of four main blocks: convolution, depthwise convolution, separable
convolution, and classification. In the convolution block, batch normalization is added. In
the depthwise convolutional block and separable convolutional block, batch normalization,
activation, average pooling, and Dropout are added. Finally, in the classification block,
the two categories, the DD group and the HC group, are identified directly using a fully
connected layer.

(2) DeprNet

Ayan Seal et al. proposed a deep learning model based on the convolutional neural
network, named DeprNet, for DD detection with EEG signals [40]. The DeprNet model
consists of five convolutional layers, five batch normalization layers, five max pooling
layers, and three fully connected layers. The softmax activation function is used in the last
fully connected layer and the leaky rectified linear unit (LeakyReLU) activation function
is used in all other layers, and finally, the classification is conducted using three fully
connected layers.

(3) 1DCNN-LSTM

Mumtaz et al. proposed a deep learning model combining one-dimensional CNN
(1DCNN) with LSTM (named as 1DCNN-LSTM) to detect depression [34]. The model of
1DCNN-LSTM is a cascaded formation of three 1D convolutional layers and two LSTM
layers. Max pooling and Dropout are embedded under each convolutional layer, and finally,
classification is performed using a fully connected layer.

(4) 2DCNN-LSTM

Zhang et al. proposed a 2DCNN-LSTM model to analyze the 128-channel EEG signals
for DD detection [35]. The model consists of four 2D convolutional layers and one LSTM
layer, with an activation function (Tanh) added after each 2D convolutional layer. Max
pooling is accessed after the second 2D convolutional layer for dimensionality reduction.
Dropout is accessed after the LSTM, and finally, the classification is performed using a fully
connected layer. Compared with the 1D convolutional layer, the 2D convolutional layer
can extract features in the spatiotemporal dimension, making it more capable for feature
extraction.

2.4. Model Evaluation

The confusion matrix is a matrix used to evaluate the performance of a classification
model, where each row represents the predicted class and each column represents the
actual class, as shown in Table 1. Each cell in the confusion matrix contains the number of
samples for the actual and predicted categories that are likely to be classified correctly (true
positive, TP; true negative, TN) or incorrectly (false positive, FP; false negative, FN). More
precisely, TP represents the number of samples that are positive and correctly predicted to
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be positive; FP represents the number of samples that are negative but incorrectly predicted
to be positive; FN represents the number of samples that are positive but incorrectly
predicted to be negative; TN represents the number of samples that are negative and
correctly predicted to be negative. Based on the confusion matrix, a series of evaluation
indices can be calculated, namely accuracy, precision, recall, and F1_score. As shown in
Formulas (1)–(4), accuracy refers to the proportion of correctly classified samples in the
total samples; precision refers to the proportion of correctly predicted positive samples in
all predicted positive samples; recall refers to the proportion of correctly predicted positive
samples in all positive samples; and F1_score is the harmonic average of the accuracy rate
and the recall rate.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2TP

2TP + FP + FN
(4)

Table 1. Confusion matrix.

Predicted Class

Actual Class
HC DD

HC TP FN
DD FP TN

In addition, for the training parameters of all deep learning models in this study,
batch_size was set as 32 and the maximum number of epochs was set as 200. A warmup
learning rate strategy was used, with an initial learning rate strategy of 5e-5, reaching 1e-3
after 20 rounds, and then gradually decaying to 5e-4, and the weight_decay was set as
0.001. Additionally, five cross-validations were used for all models to reduce the risk of
model overfitting and improve the generalization ability of the model.

3. Results

3.1. The Results of DD Classification Based on the MRCNN-LSTM Model

The results of DD classification based on the MRCNN-LSTM model are shown in
Table 2. The average accuracy rate of five cross-validation results is 95.34 ± 0.41%. Mean-
while, the accuracy of the theta rhythm, alpha1 rhythm, alpha2 rhythm, and beta rhythm
are 76.14 ± 0.81%, 76.90 ± 0.41%, 80.28 ± 0.66%, and 92.03 ± 0.37%, respectively. These
results indicate that a higher frequency band has a higher accuracy for DD recognition.

Table 2. The results of DD identification among four rhythms and the original data based on the
MRCNN-LSTM model.

Data Accuracy F1_Score Precision Recall

Theta 76.14 ± 0.81% 78.29 ± 1.16% 79.14 ± 1.45% 77.59 ± 3.28%
Alpha1 76.90 ± 0.41% 79.33 ± 0.37% 78.82 ±1.97% 79.98 ± 2.48%
Alpha2 80.28 ± 0.66% 82.56 ± 0.45% 80.98 ± 0.96% 84.21 ± 0.65%

Beta 92.03 ± 0.37% 92.78 ± 0.34% 93.27 ± 1.33% 92.33 ± 1.29%
Original Data 95.34 ± 0.41% 95.79 ± 0.33% 96.03 ± 1.44% 95.57 ± 1.10%

3.2. The Results of DD Classification Based on the MRCNN-RSE Model

As shown in Table 3 and Figure 6, the classification results based on the MRCNN-RSE
model have an accuracy of 98.47 ± 0.38% in DD recognition. Compared with the MRCNN-
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LSTM model in Table 2, the accuracies of the MRCNN-RSE are significantly improved
among all EEG rhythms and original EEG data. In addition, the DD recognition accuracy
of the beta rhythm is also higher than those of the other rhythms. As shown in Figure 6, the
results based on the MRCNN-RSE model have very smooth classification performances
after 100 epochs.

Table 3. DD identification results for the four rhythms and original data based on the MRCNN-RSE
model.

Data Accuracy F1_Score Precision Recall

Theta 80.75 ± 0.78% 82.64 ± 0.62% 83.17 ± 1.63% 82.18 ± 1.82%
Alpha1 79.15 ± 1.07% 81.31 ± 1.19% 81.24 ± 0.67% 81.42 ± 2.45%
Alpha2 83.27 ± 0.53% 84.73 ± 0.59% 85.92 ± 1.38% 83.63 ± 2.12%

Beta 97.13 ± 0.49% 97.36 ± 0.49% 98.30 ± 0.33% 96.44 ± 0.89%
Original Data 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%

Figure 6. Accuracy, precision, recall, and weighted F1-score using EEG to identify patients with
depressive disorder.

3.3. Classification Performances for DD Diagnosis with Different Frequency Bands Based on
MRCNN-RSE Model

The results of the classification performances for DD diagnosis with 4–30 Hz, 8–30 Hz,
10–30 Hz, and 13–30 Hz EEG signals are shown in Table 4 and Figure 7. It is shown that
8–30 Hz obtained slightly better classification performances for DD diagnosis compared
with 4–30 Hz, with higher Accuracy and a lower standard deviation. In addition, the desired
classification performance was also obtained for 10–30 Hz, which was not statistically
different from the 4–30 Hz results. However, the 10–30 Hz classification performance was
significantly lower. The above results show that we can use higher-frequency bands in
the DD automatic diagnostic system, which can effectively improve the efficiency of EEG
signal preprocessing.
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Table 4. DD identification results with different frequency bands based on MRCNN-RSE model.

Frequency Band Accuracy F1_Score Precision Recall

13–30 Hz 97.13 ± 0.49% 97.36 ± 0.49% 98.30 ± 0.33% 96.44 ± 0.89%
10–30 Hz 98.07 ± 0.22% 98.15 ± 0.21% 98.43 ± 0.59% 97.87 ± 0.58%
8–30 Hz 98.48 ± 0.22% 98.58 ± 0.17% 99.08 ± 0.33% 98.08 ± 0.34%
4–30 Hz 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%

Figure 7. The comparison results of 4–30 Hz, 8–30 Hz, 10–30 Hz, and 13–30 Hz EEG signals for
DD diagnosis based on MRCNN-RSE model. * represents p < 0.05, and ns represents no statistical
difference between the two groups.

3.4. Classification Performances for DD Diagnosis with Different Models Using 8–30 Hz
EEG Signals

It has been shown that 8–30 Hz EEG signals obtained the best classification perfor-
mances based on the MRCNN-RSE model. In this section, the performances of the EEGNet
model, the DeprNet model, the 1DCNN-LSTM model, the 2DCNN-LSTM model, and the
MRCNN-LSTM model are compared with that of the MRCNN-RSE model on the same
8–30 HZ EEG dataset. These models had the same training settings. The results of the
classification performances for DD diagnosis with these models are shown in Table 5. It is
shown that the average Accuracy of the EEGNet model, the DeprNet model, the 1DCNN-
LSTM model, the 2DCNN-LSTM model, the MRCNN-LSTM model, and the MRCNN-RSE
model on the same dataset is 90.07 ± 0.81%, 75.31 ± 0.45%, 87.37 ± 0.65%, 89.75 ± 0.29%,
95.38 ± 0.21%, and 98.47 ± 0.3%, respectively. The MRCNN-RES model still has the best
performance among these deep learning models.
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Table 5. The results of classification performances for DD diagnosis with different models using
8–30 Hz EEG signals.

Model Accuracy F1_Score Precision Recall

EEGNet [39] 90.07 ± 0.81% 90.65 ± 0.90% 90.55 ± 1.48% 90.83 ± 2.62%
DeprNet [40] 75.31 ± 0.45% 77.16 ± 1.66% 78.70 ± 2.73% 76.09 ± 5.47%

1DCNN-LSTM [34] 87.37 ± 0.65% 88.54 ± 0.48% 87.59 ± 2.75% 89.72 ± 3.21%
2DCNN-LSTM [35] 89.75 ± 0.29% 90.43 ± 1.53% 90.35 ± 0.80% 90.37 ± 0.41%

MRCNN-LSTM 95.38 ± 0.21% 95.66 ± 0.24% 95.49 ± 0.31% 95.84 ± 0.46%
MRCNN-RSE 98.47 ± 0.38% 98.65 ± 0.36% 98.63 ± 0.46% 98.66 ± 0.51%

4. Discussion

Previous research indicated that individuals with DD have altered functional con-
nectivity in the frontal cortex [19]. Based on the findings of our preceding research, this
study proposed to use frontal six-channel EEG signals in conjunction with a deep learn-
ing algorithm to diagnose DD, which considerably simplifies data collection efforts and
improves the practicability of DD screening. It was discovered that the beta rhythm has a
greater accuracy than theta, alpha1, and alpha2 rhythms, which indicated that beta had
a significant alteration in patients with DD. Simultaneously, MRCNN-RSE achieved the
highest accuracy of 98.48 ± 0.22% with 8–30 Hz EEG signals. A detailed discussion is
presented below.

4.1. Frontal Six-Channel EEG Signals Combined with Deep Learning Show an Excellent
Performance for DD Diagnosis

DD is highly related to abnormal brain functions and has dramatically altered func-
tional connectivity in the frontal area of the brain [41–44]. The frontal cortex is known to
play an important role in emotional cognition and working memory [45]. Bludau et al.
reported that patients with DD had a significantly smaller medial frontal pole compared
with HCs, which was significantly negatively correlated with the severity and course of
DD [43]. Coryell et al. evaluated the volume of the left side of the frontal cortex in 10 DD
patients and 10 HCs and concluded that patients with severe depressive disorder were
more likely to have an increase in the posterior frontal cortex [46]. There is rising evidence
that functional connections in the frontal regions of DD are dramatically altered [19]. There-
fore, this study advocated for DD diagnosis using the brain’s six frontal EEG channels in
conjunction with a current sophisticated deep learning algorithm to attain high accuracy
and practicability.

Recently, deep learning has had better predictive performance compared to traditional
machine learning for diagnosing depression [33,47]. Qu et al. [48] performed DD identifica-
tion on a dataset of 2546 veterans using deep learning and five other traditional machine
learning algorithms. The results showed that deep learning is more accurate in identifying
DD and its risk factors compared to traditional machine learning by ranking the key factors
of veterans and capturing the hidden pattern multilayer network structure in the data
to obtain better classification performances. Kour et al. [49] combined feature extraction
techniques and a hybrid deep learning model of CNN-LSTM for depression classification
and compared it with four traditional machine learning models for efficiency comparison,
and showed that the recognition accuracy on the benchmark dataset reached 96.78%, which
is better than the state-of-the-art traditional machine learning techniques. Deep learning,
with its technological advantages, has a stronger predictive ability in DD diagnosis [50];
therefore, this study advocates for the use of deep learning algorithms for the automatic
diagnosis of DD.

A previous study has demonstrated that more EEG channels for deep learning can
achieve high accuracy and few EEG channels may significantly reduce the accuracy of
DD diagnosis. It has been reported that Zhu et al. collected the resting state of 128 EEG
channels of 27 DD patients and 28 HCs, and finally achieved an accuracy of 96.50% for
DD and HC classification with their proposed CNN model [51]. Yang et al. proposed
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a gated temporal-separable attention network for EEG-based DD recognition, and the
classification accuracy on the EDRA dataset with 62 EEG channels and MODMA dataset
with 128 EEG channels was 98.33% and 97.56%, respectively [52]. Wei Liu et al. used a CNN
combined with gate-controlled loop units to extract sequence features and obtained an
accuracy of 89.63% on the publicly available dataset with 128 EEG channels [53]. In general,
more interaction information can be extracted for higher accuracy using high-density EEG.
However, high-density EEG (for example, 128 channels) can severely limit the efficiency
of data acquisition and reduce the practicability of the model. Some researchers have
attempted to detect DD with several EEG channels. For example, Cai et al. employed
a three-channel EEG collection system to gather EEG data from the FP1, FP2, and FPz
electrodes; nonetheless, the accuracy was only 78.24% [54]. In this study, a deep learning
model of MRCNN-RSE that performs well was proposed to identify DD with the frontal
six-channel EEG signals, and the accuracy was 98.47 ± 0.01%, which is close to those results
of high-density EEG, indicating that the strategy in this study has apparent advantages in
classifying DD.

4.2. Beta Rhythm Is Significantly Alerted in DD

EEG signals can be divided into different rhythms according to their frequency and
amplitude [55], such as delta, theta, alpha, beta, and gamma, which is an effective approach
for psychiatric diseases in EEG-related studies [56]. Studies have shown that EEG signals
change significantly with increasing levels of depression [57]. Henriques et al. [58] collected
EEG signals from 15 clinically depressed patients and 13 healthy individuals in resting state
with eyes closed and found that the activity in the left frontal lobe of depressed patients
was significantly lower than that of healthy individuals. Omel et al. found that the activity
of the left frontal lobe was significantly lower than that of healthy individuals by examining
EEG data [59]. It was found that the regional differences between the anterior and posterior
subdivisions of the brain in DD were reduced, and the difference in activity in the left
hemisphere relative to the right hemisphere was significant, while the possession attribute
of the EEG in depressed patients significantly reduced the relative strength of alpha and
beta rhythmic activity. Meanwhile, Knott et al. collected EEG signals from 70 depressed
patients and 23 healthy individuals and found that DD patients had relatively reduced
overall left hemisphere activity and generally lower delta, theta, alpha, and beta coherence
indices. They achieved a classification accuracy of 91.3% for patients and controls [60].
There are significant differences in EEG signals between DD patients and HCs, and brain
activity is affected by depression throughout the cerebral cortex.

The results of this study showed that the accuracy obtained in beta rhythm was
significantly higher than those in theta rhythm, alpha1 rhythm, and alpha2 rhythm for
DD recognition, which revealed that beta rhythm was significantly changed in patients
with DD. It is well known that beta rhythms are commonly associated with brain alertness,
attentional states, and emotions [19,61]. It has been found that beta EEG power is increased
in DD patients compared to HCs and plays an important role in the pathogenesis of DD [62].
Our previous study also found significant changes in the EEG features of power spectral
density, fuzzy entropy, and phase lag index of beta rhythms among DD patients, and
concluded that the characteristics of beta rhythms play a crucial role in identifying DD [19].
This study further revealed the significant changes in beta rhythms of DD patients through
deep learning algorithms, which provided additional important technical support for the
diagnosis, treatment, and efficacy assessment of DD.

4.3. Practical High-Frequency EEG Signals for DD Diagnosis: Evidence from Deep Learning

In the current study, we attempted to explore the effect of different EEG frequency
bands on the classification performances of DD diagnosis. It was discovered that 8–30 Hz
EEG signals obtained superior accuracy in DD diagnosis compared to 4–30 Hz EEG data.
High-frequency bands yielded good classification performance in a cognitive impairment
diagnostic study [63], with higher accuracy than full-frequency bands. Shalini Mahato et al.

100



Sensors 2023, 23, 8639

reported that the accuracy of DD diagnosis can be improved by using different frequency
combinations [64]. The results of previous studies have showed that frequency has a large
impact on DD classification performance [19]. Our results further confirm this conclusion
and extended that high- and wide-frequency EEG signals are better for DD classification.
More meaningfully, the use of high-frequency-band EEG data can effectively improve the
signal-to-noise ratio and reduce the preprocessing time of EEG data. The findings of this
study are of great significance for the development of automatic DD diagnosis.

4.4. Limitations

In this study, we achieved exciting DD recognition performance using only a few
frontal EEG signals and accelerated practical application of DD automated diagnostics,
but this study still has one shortcoming. This research included a limited number of
participants, with 41 individuals for the DD group and 34 individuals for the HC group,
which may be unable to accurately assess the generalization performance of the MRCNN-
RSE model. In future studies, we will continue to gather samples to promote the practical
implementation of the classification approach used in this work.

5. Conclusions

In this study, we proposed a technology framework for DD precision recognition
based on frontal six-channel EEG data and deep learning models. The MRCNN-RSE model
achieved a high accuracy of 98.48 ± 0.22% with 8–30 Hz EEG signals and was significantly
more accurate than other deep learning models, which is consistent with our previous
study using 16-channel EEG signals, indicating that this framework based on frontal EEG
signals combined with the MRCNN-RSE model for DD diagnosis is accurate and practical.
Our findings can provide a basic theory and technological support and greatly promote the
practicality and accuracy of DD diagnosis and efficacy evaluation.
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Abstract: (1) Background: Transcranial magnetic stimulation combined with electroencephalography
(TMS–EEG) provides a unique opportunity to investigate brain connectivity. However, possible
hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been
investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at
two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian
estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has
not been previously used in this context. To capture the rapid dynamics of information flow patterns,
we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information
partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices.
Subsequently, graph analysis was conducted to assess key network properties, providing insight into
the overall network organization of the brain network. (3) Results: Our findings revealed distinct
lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with
left stimulation facilitating enhanced communication between contralateral frontal regions and right
stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical
test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity
provide novel insights into brain networks involved in visual information processing, revealing the
hemispheric specificity of neural responses to occipital stimulation.

Keywords: TMS–EEG; occipital stimulation; TEP; brain functional connectivity; graph analysis

1. Introduction

Vision is the most frequently used sensory modality in everyday life and under-
standing what we see around us is conditional upon successful navigation of the external
environment. This represents a challenge that our brain is continuously called to face.
Within the domain of visual information processing, human brain hemispheres have long
been considered functionally comparable. However, a growing body of evidence suggests
the existence of a hemispheric specialization, according to which the two hemispheres
contribute to visual information processing in a complementary manner, where the left
hemisphere is assumed to prevail over the right one in processing local details of visual
stimuli, and the right hemisphere is assumed to prevail in handling global information [1].
Characterizing the dynamics of cortical activation over time and disentangling the nature
of the contribution of different brain areas to visual perception may provide potential better
insight into diagnostic and prognostic markers. In addition, a better knowledge of how
the involved brain areas are connected could also be crucial in the search for the recovery
mechanisms after brain injuries, thus becoming of great relevance in different clinical
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applications [2,3], such as assisting brain surgery by minimizing damage to critical brain
regions or devising personalized treatments for patients affected by visual field defects.

1.1. Brain Stimulation and Evoked Potentials

The investigation of human brain activity involves various brain stimulation or neu-
romodulation techniques [4–6], which are typically non-invasive, and limited contraindi-
cations and side effects can occur. Among these, transcranial magnetic stimulation is
widely adopted for studying cognitive functions for research purposes [4]. The effective-
ness of this technology has been validated in clinical applications for treating neurological
conditions [7,8], but also in neuropsychiatry [9] and psychology [10]. In principle, TMS
stimulates the brain through a brief high-intensity magnetic field applied to the surface
of the scalp [11]. TMS is capable of evoking cortical activity without causing significant
pain. It offers the flexibility to stimulate different brain areas by adjusting parameters, such
as pulse intensity, inter-pulse interval, coil type, coil orientation, and placement. Several
stimulation protocols have been developed, including, single-pulse stimulation and paired-
pulse TMS [12]. By inducing local neuron depolarization and eliciting action potentials,
single-pulse TMS is valuable for causal mapping of neural networks, investigating motor
and other non-motor systems, as well as the investigation of cortical excitability, inhibition,
and plasticity [13,14].

Extensive research has been conducted on the TMS stimulation of the primary motor
cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) resulting in well-understood
and reproducible peak responses [15]. On the other hand, the temporo-occipital cortex,
occipital, and cerebellar areas have been less investigated [16,17]. In particular, when TMS
is applied to the occipital cortex, it can induce visual sensations without light entering the
eyes, the so-called ‘phosphene’ [18,19].

TMS-evoked potentials (TEPs) can be measured when combining TMS with electroen-
cephalography (EEG), a non-invasive technique for monitoring brain activity with high
temporal resolution by placing the electrodes on the scalp. Thanks to EEG, complex neural
processes can be detected to evaluate the neurophysiological function of the brain at rest
or during specific tasks or stimulation paradigms. Indeed, TEPs are complex waveforms
with multiple peaks occurring within hundreds of milliseconds after the TMS pulse [15,20].
These waveforms consist of positive (P) and negative (N) deflections that reflect a spa-
tiotemporal superposition of excitatory and inhibitory postsynaptic potentials. A primary
response is typically associated with a brain activity underlying the target area and a
secondary response is related to the close or distant connected brain regions. Consequently,
TEPs provide a means to investigate the excitability and connectivity of the cortex [15].

Despite the great potential of TMS–EEG, the extraction of reliable TEPs is hampered by
several instrumental and physiological artifacts, and obtaining a ‘true’ noise-free response
is challenging [21]. The accuracy of the estimated TEPs also depends on the number of trials,
which directly impacts the signal-to-noise ratio (SNR). TEPs are embedded in a background
of spontaneous EEG activity. Typically, TEPs are determined by conventional averaging
(CA) which is performed by averaging the EEG recordings (sweeps or trials) acquired after
N stimuli. However, CA assumes that the TEP does not vary with the succession of stimuli
and the EEG noise remains stationary during the recordings. However, the EEG signal is
not stationary, except in short intervals typically lasting 1–2 s. Additionally, the CA does
not leverage any “a priori” knowledge of TEP and EEG, thus it fails to exploit potentially
valuable information and it cannot detect any possible TEP changes that may occur during
EEG recording. To overcome these limitations, several approaches have been proposed,
including weighted averaging techniques, optimal filtering methods, and single-sweep
approaches [22]. However, the absence of a “ground truth” against which the acquired
signal can be compared poses challenges in determining the most effective approaches to
obtain a signal free from artifacts. In the literature, alternative methods have been proposed
to improve SNR, especially when the number of trials is limited. These methods perform
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a single trial analysis based on “a priori” knowledge within Bayesian approaches [23,24],
time-frequency techniques [25], and Shannon entropy [26].

1.2. Brain Functional and Effective Connectivity

The co-registration of TMS–EEG represents a necessary step for the quantitative assessment
of the cortical excitability and brain connectivity of the human cortex [20,27]. In particular,
TMS–EEG offers the possibility of monitoring the temporal dynamics of brain connectiv-
ity [28–31]. Over time, the techniques used for analyzing, extracting, and interpreting the
brain networks have undergone rapid advancements, from simple assessment of temporal
correlation among multiple brain regions to more sophisticated models that incorporate
temporal variability and causal non-linear relationships [32]. In this domain, two well-
known and established approaches are functional (FC) and effective connectivity (EC).

FC is typically derived from bivariate or multivariate measures and reflects statistical
dependencies between different units of the brain. Bivariate synchrony measures capture
the level of synchronization between pairs of signals by using either linear measures, such
as correlation or coherence, or nonlinear dependencies, such as phase values or mutual
information [33]. Conversely, multivariate synchrony approaches aim to assign a singular
numerical value that quantifies the degree of synchronization within a group of signals.
Some examples are the omega estimator, the S-estimator, and its extension based on the
Rényi entropy [34,35]. Thus, FC measures the synchronism between signals allowing the
identification of a certain degree of association between different processes. However, it
does not give any measure of causality, namely understanding which of the two signals
pilots the other.

EC is defined as the influence that one neural system exerts over another through
causal or non-causal effects [36]. It focuses on understanding how information flows are
integrated within the brain network, delving into specific pathways and mechanisms of
neural activity. Specifically, the EC is a directed measure able to distinguish the incoming
and outgoing information flows, unlike the FC, which is insensitive to the direction. The
estimation of EC has been addressed through several strategies, which can be broadly
classified into model-based and model-free techniques. Model-based approaches require
the specification of structural parameters, whereas model-free methods, such as Granger
causality (GC) or transfer entropy, do not require such specifications. GC is one of the most
common methods aiming to statistically determine causality between variables using a
linear vector autoregressive (VAR) model. Directed transfer function (DTF) and partial
directed coherence (PDC) are two frequency domain representations of the GC [37]. DTF de-
termines the directional influences across the components in a multivariate framework [38].
On the contrary, PDC quantifies the direct pathway from variable j to variable i, excluding
the influence of other processes [37]. PDC offers an enhanced estimation of the directional
information flow between different regions of the brain compared to DTF. Indeed, it takes
into account both the direct and indirect influences among variables, leading to a more
comprehensive understanding of the underlying connectivity patterns [39]. The informa-
tion partial directed coherence (iPDC) is another spectral measure that considers the effects
of signal size when evaluating connection strength [40].

Traditionally, brain connectivity studies have focused on static or averaged connectiv-
ity patterns, assuming that the brain operates with fixed connectivity. Static connectivity
networks are obtained from the above-mentioned methods, thus they do not explain the
temporal variability of the brain connections [33]. However, the time course of functional
brain connectivity plays an important role in detecting the propagation of neuronal path-
ways and is a crucial aspect of understanding how the brain works, as it is well known
that the brain’s functional architecture varies over time [41]. For this reason, other methods
have been recently proposed to infer the time-variability of the network [42]. Methods
used to study time-varying brain connectivity include dynamic causal modeling (DCM),
sliding window approaches [43], and time-frequency analysis such as short-time DTF [39].
Markov model-based frameworks [44] and Kalman filter-based approaches [39,45] are other
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examples to model the time-varying brain networks. Dynamic functional connectivity
(dFC), also known as time-varying connectivity, has been primarily studied in the domain
of EEG or epilepsy [46] and functional magnetic resonance imaging (fMRI) [47], but not
exclusively. In particular, to obtain a network that is robust from noise, Pascucci et al.
proposed a self-tuning optimized Kalman (STOK) filter [48]. Its purpose was to ensure
accurate tracking of networks, precise temporal localization, and robustness to noise by
incorporating a self-adjusting memory decay and a recursive regularization technique. The
STOK filter was tested both in silico and with real data, and its performance was found to
be better than the one obtained by employing the traditional Kalman filter.

These methodologies provide insights into the dynamical organization of the brain and
its underlying processes in response to cognitive demands, task requirements, or neurologi-
cal conditions. Connectivity-based analysis has been proposed for many TMS–EEG studies,
with applications ranging from pathological conditions, such as Alzheimer’s disease [49]
to normal brain functioning [50]. Other studies provided tools for consciousness classifi-
cation (e.g., vegetative state and minimally conscious state). For example, Rosanova et al.
proposed a reliable approach to detect the recovery of consciousness by analyzing the
differences between hemispheres using EC models [2]. Similar findings were reported
by Ragazzoni et al. in an independent TMS–EEG study [51]. Moreover, several studies
investigated brain connectivity and the differences in information flow at rest versus the
execution of cognitive tasks [52,53]. In the context of occipital TMS, brain connectivity
analysis has already been used to examine its network-level effects, but the predominant
focus in the literature has mainly been on attention protocols [54] and visual adaptation [55],
leaving other potential applications relatively unexplored.

1.3. Brain Graph Networks

Graph theory has emerged as a powerful framework for studying brain connectivity,
representing the brain as a network of interconnected nodes (or vertices), which correspond
to neurons or brain regions, and links (or edges), which represent the relationships between
those regions [56]. Both local (functional segregation) and global (functional integration)
properties can be assessed through different measures of graphs. For example, centrality,
clustering, modularity, and connectivity patterns can be obtained to understand the im-
portance of specific nodes or regions, the presence of distinct functional modules, and the
overall integration of information. Graph theory has found extensive use in neuroscience,
particularly in studies using neuroimaging techniques, like fMRI and positron emission to-
mography (PET). The aim is to establish the human ’connectome’, a comprehensive map of
connections within the brain. Furthermore, graph networks provide a valuable framework
for studying how the activation or manipulation of specific nodes or edges affects cognitive
functions, such as perception or attention, and enable the study of network dynamics. For
example, Caeyenberghs et al. [57] investigated brain activity during cognitive control tasks
in patients with traumatic brain injury. They studied the performance and the topological
properties of the functional brain networks using a graph theoretical approach, showing
increased connectivity degree and strength, as well as higher values of local efficiency. The
effectiveness of the graph theory has been demonstrated in many TMS–EEG studies [53].
Most of them focused on clinical applications with the goal of examining altered networks
in various physiological or pathological conditions, since TMS–EEG enables the obser-
vation of dynamic responses within the targeted region and other specific connections.
However, the dynamics of brain connectivity and relative brain network pose an additional
layer of complexity. In terms of analysis, it involves examining the dynamic properties of
functional brain networks, such as the aforementioned strength, network efficiency, and
modular organization.

1.4. Aim of the Work

The aim of this study is to investigate the hemispheric differences in visual information
processing through a dynamic brain connectivity analysis in order to uncover the underly-
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ing mechanisms that contribute to the effects of occipital TMS. Specifically, the objective
is to analyze EEG data to identify connectivity patterns resulting from single-pulse TMS
delivered around the occipital EEG sites, O1 and O2 (in the left and right hemispheres,
respectively). To the best of our knowledge, this issue has never been addressed in the liter-
ature and, to achieve this, we employed different steps for the processing of EEG signals.
Since the aim is to explore the casual interaction among brain areas in a dynamic manner,
complex models that consider temporal variability are used. In detail, a Bayesian estima-
tion approach is used to extract the TEPs, which has been demonstrated to be powerful in
obtaining a reliable estimate of evoked potentials, especially when the number of trials is
limited. Then, the STOK filter is applied to track the fast changes in brain reorganization
and estimate the time-varying brain EC using iPDC. Furthermore, to assess the properties
and characteristics of the brain network, a graph analysis is performed employing the
betweenness centrality and degree measures. Lastly, statistical tests are implemented to
uncover the differences in visual processing between left and right TMS.

2. Materials and Methods

In this section, the TMS–EEG experimental protocol and participant recruitment are
first described (Sections 2.1–2.3, and Figure 1a). Then, the proposed TMS–EEG signal
processing framework is explained as depicted in Figure 1b. In particular, EEG data were
filtered as described in Section 2.4. A state-of-the-art Bayesian approach was used to
estimate the TEPs from the filtered EEG signals as described in Section 2.5. As described in
Section 2.6, the STOK filter was used for tracking the dynamic behavior of the directed brain
network, and the iPDC was estimated. Additional mathematical details of the Bayesian
approach and the STOK filter are reported in Appendix A and Appendix B, respectively.
The edges betweenness centrality and the node degree were calculated for each time-variant
directed connectivity matrix as reported in Section 2.7.

Figure 1. (a) Electrode placement and schematic representation of the experimental procedure:
(i) random interval (700–1000 ms), (ii) single-pulse TMS stimulation, (iii) phosphene awareness
assessment (up to 2000 ms), and (iv) inter-trial interval (1300 ms). (b) Signal processing pipeline
for assessing the differences between hemispheres after TMS stimulation. The proposed pipeline is
divided into preprocessing, TMS-evoked potential estimation, the time-varying effective connectivity
calculation, and the graph network.

2.1. Participants

The study recruited eighteen healthy subjects on a voluntary basis (10 females, mean
age 23.66 ± 3.54), who were all right-handed and had normal or corrected-to-normal vision.
All participants gave their informed consent in accordance with the Declaration of Helsinki.
Data were collected according to protocols approved by our local ethics committee. To
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ensure safety, a questionnaire was used to screen participants for potential TMS hazards,
and no contraindications were reported.

2.2. TMS Protocol and Experimental Protocol

Single-pulse TMS was delivered through a 70 mm figure-of-eight coil connected to a
Magstim Rapid2 system (maximum output 3.5 T, the Magstim Company Limited, Whitland,
UK). To prevent unnecessary neck muscle activation, the coil was positioned tangentially
to the scalp surface with the handle pointing upward. Through supra-threshold phosphene
induction, stimulation areas were functionally located around electrode positions O1 (left
hemisphere) and O2 (right hemisphere) of the 10-10 International System. Electrodes O1
and O2 were used as a starting point around which, in a ∼2 cm2 area, we selected the
hotspot eliciting the most consistent and clearest phosphenes while stimulating at supra-
threshold intensity. Neuronavigation taking advantage of individual structural MRI images
(SofTaxic, E.M.S., Bologna, Italy, and Polaris Vicra, NDI, Waterloo, ON, Canada) was used in
the course of the experiment (1) during the hotspot search, to monitor that the stimulation
was targeting early visual areas; (2) during the course of the experiment, to check for coil
displacements larger than 2 mm accuracy threshold; and (3) to reposition the coil exactly
on the hotspot after breaks between sessions. The individual phosphene threshold (PT)
was set using the automatic procedure of the ’Method of Constant Stimuli’ (MOCS) [58].
After the hotspot for each stimulation site was functionally identified, the PT was evaluated
using a computerized MOCS version: seven TMS intensities were used (ranging from 60%
to 78% of maximum stimulator output (MSO), with an increasing step of 3%). For each of
these intensities, seven pulses were delivered. Pulses from different stimulation intensities
were randomly interleaved, resulting in a randomized order of stimulation intensities.
After each TMS pulse, participants were asked to report any presence of phosphenes. The
resulting data were then fitted with a cumulative Logistic psychometric function via a
maximum likelihood criterion using the Matlab 2021b (MathWorks, Natick, MA, USA)
Palamedes toolbox (http://www.palamedestoolbox.org, accessed on 1 December 2021).
From the obtained function, we derived the PT intensity at which participants perceived
phosphenes in 50% of trials, and this intensity was employed during the experiment as
stimulation intensity.

2.3. Perception of Phosphenes: Protocol and Testing

Participants sat in a dark room, in front of a monitor, with their heads on a chin
rest to keep their eyes aligned with the central fixation point. They were instructed to
maintain their gaze on the fixation point throughout the experiment. Before the two experi-
mental sessions, a training session was performed to test participants for the perception
of phosphenes. Participants were initially debriefed about the functioning of TMS and
phosphenes [58,59]. Afterward, they had to wear a cap on which the positions of electrodes
O1 and O2 were labeled.

Experimenters then started administering single-pulse TMS around O1/O2 positions;
after each stimulation, participants were asked if they had seen something matching
phosphene characteristics in their visual field, and, if so, to give a short description of
these percepts. Once participants had sufficiently adapted to darkness and experimenters
were confident that they were reporting actual phosphenes, the stimulation conditions
(e.g., asking participants to fixate on a different point on the screen or to close their eyes)
were changed to test if participant reports still matched the expected characteristics for
phosphenes. Once the procedure was completed for one hemisphere, the other one un-
derwent testing. The criteria used to test for real phosphenes are in [59]: they appear in
the visual field contralateral to the stimulated hemisphere; they follow the participants’
gaze; and they appear independently of the eyes being closed or open. After being assessed
for real phosphene perception, participants underwent an MRI scan necessary for neu-
ronavigated TMS. Two consecutive sessions were carried out and single-pulse TMS was
administered to the left and right occipital cortex at PT intensity, with the order of the two
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stimulated sites counterbalanced across participants, while simultaneously recording EEG
data. In order to mask the audible TMS click, participants were asked to wear disposable
earplugs. First, a random interval with a duration of 700–1000 ms preceded the TMS
pulse; the stimulation was then administered and followed by up to 2000 ms, during which
participants had to report the presence or absence of a phosphene by pressing one of two
keyboard keys (the ‘m’ key with the right hand for phosphene present, the ‘z’ key with
left hand for phosphene absent). Finally, a 1300 ms inter-trial interval separated each trial
(Figure 1a). Moreover, 360 pulses divided into 6 blocks of 60 trials each were administered
during each session. Blocks were separated by a few minutes of rest, to prevent excessive
fatigue in participants.

2.4. EEG Recording and Preprocessing

A TMS-compatible EEG equipment (BrainAmp, Brain Products GmbH, Munich,
Germany) was used to record EEG activity (BrainVision Recorder, version 1.25). The
recording setup involved a Fast’n East cap containing a total of 59 scalp channels, with
additional electrodes used to monitor horizontal and vertical eye movements, as online
reference (RM) and as ground (AFz). All of them were TMS-compatible Ag/AgCl pellet pit
electrodes (Easycap GmbH, Herrsching, Germany). The electrode placement followed the
extended 10-10 International System (impedance was kept below 5 kΩ).

The EEG signal data analysis was performed offline using Matlab 2021b (Math-
Works, Natick, MA, USA) with the EEGLAB toolbox (version 2021.0) and the TMS–EEG
signal analyzer (TESA) extension [60]. The continuous raw signal digitized at 5000 Hz was
segmented into 1000 ms before and after the TMS pulse. The epochs were demeaned using
the entire epoch and the TMS pulse artifact was removed from −2 to 10 ms. It was replaced
with cubic interpolation to avoid ringing artifacts. Data were downsampled at 500 Hz.
A first independent component analysis (ICA) round, using the ’runica’ function, was
performed to remove the TMS artifacts followed by a zero-phase fourth-order Butterworth
filtering between 0.1 and 100 Hz with a band-stop filter (49–51 Hz). A second ICA was
used to remove blinks and muscle activity. To improve component decomposition, the
interpolated data from −2 to 10 ms after the TMS pulse were replaced with constant ampli-
tude values before each ICA, and then interpolated again afterward. The REST toolbox was
used to re-reference the data to a point at infinity [61]. Then, data were low-pass filtered at
40 Hz, and bad trials were automatically rejected through the TBT toolbox [62]. Further
details of the preprocessing pipeline are reported in the study by Rogasch et al. [60].

2.5. TEP Estimation

To estimate the TEPs, we used the Bayesian approach proposed by Sparacino et al.,
which is based on a sweep-by-sweep filtering strategy [23,24]. This approach incorpo-
rates a Bayesian framework by exploiting second-order statistical information on both
the unknown EP and the background EEG, which varies from one sweep to another. The
pre-stimulus EEG data are fitted with an autoregressive (AR) model and the unknown
TEP is treated as a multiple integration of a white noise process. In each single sweep, a
filtered response is obtained after the stimulus by applying a smoothing criterion. Then,
the TEP is obtained by computing a weighted average of the filtered sweeps. Within the
Bayesian framework, each sweep could be weighted according to its reliability, which
corresponds to the estimate of the filter error. Thus, the weight assigned from each sweep
is inversely proportional to the expected value of the squared norm of the filter error. For
a detailed mathematical formulation of this Bayesian smoothing method please refer to
Appendix A. Of note that, before computing the TEPs, the mean of pre-stimulus EEG data
was subtracted to each single sweep.

In order to compare the TEPs obtained through the CA method with those obtained
with Sparacino et al.’s Bayesian approach, the global mean field power (GMFP) was used.
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The GMFP is calculated considering the data from all recording electrodes and provides a
global measure. The GMFP measure is calculated as follows:

GMFP(t) =

√
∑K

i=1(Vi(t)− Vmean(t))2

K
(1)

where t is time, V is the voltage at channel i, Vmean is the average of the voltages in all
channels, and K is the total number of channels. Finally, a Wilcoxon signed-rank test
Bonferroni corrected, p < 0.05 was used to compare the two GMFPs for both left and right
occipital TMS.

2.6. Time-Varying iPDC Estimated through STOK Filter

In this study, we used the STOK filter, a powerful method for investigating the in-
formation flow and causal interactions under unknown noise conditions in the cognitive
domain. It embeds a self-tuning memory decay and a recursive regularization to guarantee
high accuracy in network tracking, temporal precision, and robustness to noise [48]. The
STOK filter is based on the time-varying multivariate autoregressive model (tvMVAR),
which provides a valuable framework for describing the dynamic behavior of multiple
repeated experiments involving physiological time series, such as the EEG signal. Indeed,
the EEG data can be viewed as realizations {Yt, t = t1, t2, . . . tT} of the same multivariate
stochastic process, as follows:

Yt =

⎡⎢⎢⎣
y(1)1,t . . . y(1)d,t

...
. . .

...
y(N)

1,t . . . y(N)
d,t

⎤⎥⎥⎦ (2)

where T is the length of each time series, N is the total number of trials, and d is the number
of electrodes.

In general, the tvMVAR model can be specified in the form of:

Yt =
p

∑
k=1

Ak,tYt−k + εt (3)

where Ak,t are the AR matrices containing the time-varying model coefficients, εt is the
zero mean white noise with covariance matrix Σε, and p is the model order. The STOK filter
was used to estimate the AR coefficients and the covariance matrix Σε. Then, it was used to
calculate the iPDC measure. Please refer to Appendix B for the mathematical formulation
of the STOK filter [48].

The iPDC is a multivariate spectral measure that compares only the directed influences
between any given pair of signals (i, j). The iPDC stands out among the various approaches
for extracting the EC measure by accurately considering the impact of the signal size when
evaluating the connection strength [40].

By defining B( f , t) as

B( f , t) = Id −
p

∑
k=1

Ak,te−j2π f k (4)

where Ak,t are the AR matrices estimated by the STOK filter at each time t, Id is the identity
matrix and j is the imaginary unit; the iPDC complex function from the time series j to the
time series i is obtained by:

iPDCi←j( f , t) = σ−1/2
εii

bij( f , t)√
bH

j ( f , t)Σ−1
ε bj( f , t)

(5)
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where bj( f , t) and bij( f , t) are the j-th column and the (j, i)-th element of the matrix B( f , t),
respectively, σεii is the (i, i)-th element of the innovation covariance matrix Σε [63], and
the H in bH

j ( f , t) stands for Hermitian transpose. The absolute value of iPDCi←j( f , t) is
usually analyzed.

The iPDC has been used in other studies demonstrating good performance. For
example, in Rubega et al., the iPDC was adopted to study brain connectivity in the visual
EP of face perception and in interictal epileptiform discharges in focal epilepsy [64].

2.7. Graph Networks and Statistical Analysis

By representing the brain as a graph, with nodes as brain regions (in this case EEG
electrodes) and edges as connections (in this case iPDC), we can quantify the network
properties. Among the network measures available, degree and centrality metrics are
particularly interesting in this context [53].

Specifically, the betweenness centrality is a measure of the fraction of all shortest paths
in the network that pass through a given node. Degree corresponds to the number of
connections of a node, proving an indicator of the node’s importance in the network [56].
Nodes with high degrees are considered influential hubs within the brain network. Differ-
ently, centrality measures the importance of a node or edge based on its position within
the network. Nodes or edges with high centrality are crucial for efficient information
transfer within the network. To assess the network centrality, the brain connectivity toolbox
(BCT) (https://sites.google.com/site/bctnet/home?authuser=0, accessed on 1 March 2023)
was used.

Differences in graph networks between two conditions were tested utilizing a Wilcoxon
signed-rank test with a significance level of p < 0.001.

3. Results

The following section presents the obtained results aiming at understanding the
propagation of the information in the brain network and its organization after the two
different TMS brain stimulations. In Section 3.1, we compare the TEPs obtained through the
CA and Sparacino et al. Bayesian approaches. Lastly, the statistically significant differences
between left and right TMS are presented in terms of iPDC, edges betweenness centrality,
and degree in Section 3.2.

3.1. TEPs Estimated through the Sparacino et al.’s Bayesian Approach

Figure 2 compares the GMFP for TEPs obtained using two different methods: the CA
and the Bayesian approach. The upper part of the figure represents the GMFP recorded
after left TMS stimulation (O1), while the lower part represents the GMFP recorded after
right TMS stimulation (O2). Gray-shaded areas indicate statistically significant differences
between the CA method and the Bayesian smoothing approach (Wilcoxon signed-rank
test Bonferroni corrected, p < 0.05). It can be observed that the two time series appear
different mainly in the first part of the GMFP after the TMS stimulation. This comparison
provides valuable insights into the performance discrepancies between the two. However,
it is important to note the lack of a “ground truth”, i.e., the true underlying potential in our
case, which prevents further validation through TEP simulations. The Bayesian smoothing
approach has been successfully validated in silico using other EP data, such as in [23]. This
prior validation supports its reliability in estimating TEP characteristics.
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Figure 2. Global mean field power calculated for TEP using the conventional averaging (CA)
method (blue) and the Bayesian smoothing approach (red) obtained from 360 sweeps. The upper
part referred to the left TMS stimulation and the lower part to the right TMS stimulation. Statistical
significance differences between the CA method and the Bayesian smoothing are indicated by gray
areas (Wilcoxon signed-rank test Bonferroni corrected, p < 0.05). Time is measured in ms and the
amplitude is in μV.

3.2. Time-Varying iPDC and Graph Analysis

Brain EC was investigated through time-varying iPDC analysis. Figure 3 illustrates
the results of the group analysis for the two stimulation sites. Figure 3a represents the con-
nectivity analysis for the left stimulation at site O1, while Figure 3b depicts the connectivity
analysis for the right stimulation at site O2. Each topoplot shows the directed connections
between brain channels in five different time windows, which are 12–24 ms, 24–48 ms,
48–92 ms, 92–124 ms, and 124–240 ms. These time windows were selected around the peaks
of the GMFP (Figure 2). An empirical threshold, expressed as a fixed percentage (50%) of
the max value, was applied to the topographic maps for the O1 and O2 stimulations for
visualization purposes, highlighting the strongest connections. To compare the differences
between the two hemispheres, the electrodes and their corresponding connectivity for the
right TMS stimulation were flipped from right to left (so that the two stimulation sites
were overlapped). The arrows in Figure 3c indicate statistically significant differences
between the two conditions (Wilcoxon signed-rank test uncorrected p < 0.001). These
findings provide insights into the dynamic patterns of brain connectivity associated with
the different stimulation sites. It is strongly visible that left occipital TMS produces a scalp
activation that propagates more along contralateral channels than right occipital TMS (see
Figure 3a,b). The statistical analysis reveals a divergence between the two stimulations
during the time window spanning from 48 to 92 ms, particularly in the frontal regions
of the contralateral hemisphere and between the occipital and frontal electrodes in the
same hemisphere. The connections in Figure 3c appear positive when the statistical test
detects that the stimulation at O1 is stronger than at O2 (see the blue arrows in Figure 3c).
Conversely, the connections are negative when the test detects that the stimulation at O2 is
more intense than at O1 (see the red arrows in Figure 3c).

114



Sensors 2023, 23, 8833

Figure 3. Time-varying brain connectivity analysis for stimulation sites. (a) TMS on O1; (b) TMS
on O2; (c) statistical significance differences between conditions are indicated by arrows (Wilcoxon
signed-rank test uncorrected p < 0.001). Red arrows indicate stronger connections following right
stimulation (O2) than left stimulation (O1). By contrast, blue arrows indicate stronger connections
following left stimulation (O1) than right stimulation (O2).

Betweenness centrality analysis of time-varying edges was performed to investigate
the importance of edges (connectivity links) between stimulation sites. Figure 4 shows
the results of this analysis for both left (O1) and right (O2) TMS stimulation. Figure 4a
represents the time-varying edges betweenness centrality analysis for left TMS, while
Figure 4b corresponds to the analysis for right TMS. The arrows in Figure 4c indicate
statistically significant differences between the conditions (Wilcoxon signed-rank test
uncorrected, p < 0.001). In this case, the significant EC connections are more restricted
and occur within the time windows of 48–92 ms and 92–124 ms. However, positive edges
(O1 > O2) are observed in the contralateral channels to the stimulation, while negative
ones (O2 > O1) are circumscribed to ipsilateral channels. This result suggests that these
connections play a central role in information transmission.

Figure 5 shows the degree metric of the graph network for the two stimulation sites.
Since the results depicted in Figures 3 and 4 showed stronger connections in the ipsilateral
hemisphere and the frontal regions of the contralateral hemisphere over time, here, the
brain was divided into four macro areas, i.e., ipsilateral (to the TMS stimulation) occipital,
ipsilateral frontal, contralateral occipital, and contralateral frontal. These areas are visu-
ally represented as light blue, green, yellow, and orange, respectively. For example, the
ipsilateral frontal area (light blue) includes the electrodes Fp1, AF7, AF3, F7, F5, F3, F1,
FT7, FC5, FC3, and FC1. All degree values within each specific area were grouped and
plotted for every time window by using a boxplot. Statistical differences between the left
and right TMS stimulation were depicted by black asterisks above boxplots in each time
window. This analysis revealed significant differences in degrees between left and right
TMS conditions in the contralateral frontal area from 24 ms to 240 ms, in the ipsilateral
occipital area from 124 to 240 ms, and the contralateral occipital area from 92 to 124 ms, as
assessed by statistical testing (Wilcoxon signed-rank test uncorrected p < 0.001).
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Figure 4. Time-varying edges betweenness centrality for stimulation sites. (a) Left (O1) TMS stimula-
tion; (b) right (O2) TMS stimulation; (c) statistical significance differences between conditions are
indicated by arrows (Wilcoxon signed-rank test uncorrected p < 0.001). Red arrows indicate stronger
values of the edges following right stimulation (O2) than left stimulation (O1). By contrast, blue
arrows indicate stronger values of the edge following left stimulation (O1) than right stimulation (O2).

Figure 5. (a) Electrode placement using the international 10-10 system covering the ipsilateral
frontal channels (highlighted in blue), contralateral frontal channels (highlighted in green), ipsilateral
occipital channels (highlighted in yellow), and contralateral occipital channels (highlighted in orange).
(b) Degree metric of graph networks in response to left vs. right TMS. Statistical significant differences
between conditions are indicated by asterisks above boxplots (Wilcoxon signed-rank test uncorrected
p < 0.001).

4. Discussion

Due to excellent temporal resolution, TMS–EEG has emerged as a powerful technique
to characterize TMS-induced connectivity from a functional perspective. Indeed, EEG
allows us to trace the trans-synaptic spread of activation to remote but interconnected
brain regions as a result of the local activation triggered by the magnetic stimulation of the
targeted cortical area. To the best of our knowledge, the study of hemispheric differences
within the visual domain has never been addressed by applying TMS to the early visual
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cortex and concurrently recording EEG signals. For this reason, we aimed at investigating
physiological hemispheric differences concerning the spatiotemporal dynamics of signal
propagation during occipital stimulation. To do this, a time-varying signal processing
pipeline was proposed based on existing techniques in order to understand how the brain
areas are involved during the occipital TMS–EEG stimulation.

4.1. Mapping the Asymmetries of Functional Connectivity within Visual Networks after Left and
Right Occipital TMS

Our findings show that, by targeting the left early visual cortex (O1), the resulting
TMS-induced signal propagation pattern involved more contralateral channels than the
right visual cortex stimulation, especially regarding frontal electrodes. Conversely, the
stimulation of the right early visual cortex (O2) elicited increased intra-hemispheric connec-
tivity, especially affecting occipital and frontal areas ipsilateral to the (right) stimulated site.
These results point towards a complex effect on visual signal propagation, by triggering
side-specific spatiotemporal dynamics, providing further support to the hypothesis that a
functional left–right hemispheric asymmetry exists for low-level functions as well. Since
Broca’s work on aphasia paved the way for modern neuropsychology by investigating
patients presenting with lateralized focused brain lesions [65,66], the human brain hemi-
spheres have no longer been considered functionally equivalent. Traditionally, however,
this lateralization was always thought to selectively concern high-level functions, such
as language and attention. The new data presented here prove an asymmetry across the
two hemispheres in visual information processing by highlighting that the right hemi-
sphere is the most dominant for visual function, at least under these circumstances. Indeed,
when stimulating the right hemisphere, brain connectivity is circumscribed to ipsilateral
channels, and no significant involvement of contralateral networks was found. This right-
hemispheric specialization for visual function is supported, to date, by many sources of
converging evidence, including behavioral and TMS studies [67,68], neuropsychological
evidence [69], electrophysiological findings [70], and neuroimaging results [71,72]. In-
terestingly, evidence from a previous TMS-fMRI study [71] highlights a key role of the
right frontal cortex in line with our results, revealing that frontal or parietal TMS adminis-
tered to the right rather than to the left hemisphere exerts a stronger influence upon the
visual cortices via back-projection. Intriguingly, our data show that such an effect can
also occur the other way around, namely stimulating the visual cortex and monitoring the
signal propagation towards right frontal areas, in a bottom-up fashion. Moreover, our data
possibly explain right-hemisphere lesions in frontal or parietal areas that lead to deficits
affecting the visual domain. Our results can also corroborate previously cited evidence
showing that the left hemisphere prevails in processing local visual details, while the right
hemisphere prevails in handling global visual information [67]. Indeed, participants in
our study were not asked to actively process any local details of a visual stimulus, and the
TMS-induced signal propagation pattern following the left hemisphere stimulation mostly
involved contralateral channels, pointing to the need for a right hemisphere involvement.
Differences in the brain response between the two hemispheres after single-pulse TMS
delivered to the temporo-occipital and dorsolateral prefrontal brain areas were also found
by Jarczok et al. [73]. The findings of this study show that TEPs are lateralized towards the
stimulated hemisphere.

Finally, in the context of TMS–EEG, a recent study focused on investigating how
attention promotes the gating of information from the sending area to the receiving areas,
achieved through dynamic changes in EC [54]. To probe the EC and cortical excitability
modulated by covertly shifted attention, TMS was used to perturb the right retinotopic
visual cortex in relation to attended and unattended locations. Stimulation of the con-
tralateral visual hemisphere resulted in stronger EEG responses and increased connectivity
compared to the ipsilateral hemisphere. The time-delayed phase locking value (tdPLV) was
used to estimate the effective connectivities between O2 and all other electrodes. However,
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while this allowed the evaluation of the inter-area phase synchronization, all the other
connections were not assessed.

In the long term, understanding whether—and to what extent—visual network con-
nectivity is functionally lateralized in the human brain is of paramount importance for
several reasons. Among others, it can have clinical implications [2], thereby helping to
predict the outcome of brain surgery when resection involves visually responsive areas.
At the same time, being aware of connectivity patterns characterizing the healthy brain
can also help to develop and customize rehabilitation interventions for visually impaired
patients as a function of the affected hemisphere.

4.2. Exploring Methodological Approaches for Dynamic Connectivity in TMS–EEG

The present study focuses on the methodological aspects that involve the application
of existing approaches in a novel context concerning the co-registration of TMS–EEG
as a result of early visual area stimulation. We propose a TMS–EEG signal processing
pipeline consisting of several phases: EEG preprocessing, TEP estimation, time-varying EC
exploration, and graph network analysis. Finally, statistical tests were applied to extract
and discern the significant differences between the stimulation sites.

Despite the robust methodology and clear results produced by this study, it is im-
portant to address the potential limitations associated with the experimental paradigm
and analysis methodologies. Firstly, to estimate the TEPs, we employed a state-of-the-art
Bayesian approach proposed by Sparacino et al. [23], which is particularly useful when
the number of collected sweeps is limited and high variability is exhibited. In the field
of TMS–EEG, the “ground truth” waveform of the TEP following occipital stimulation
remains unknown, preventing a direct comparison between the Bayesian approach and
the conventional one (i.e. CA) to demonstrate the superior performance of the former.
However, the Bayesian approach has been validated on other datasets [24]. In our study,
as shown in Figure 2, we observed significant differences between the potentials obtained
with the Bayesian framework and the CA method. Secondly, despite the multi-level analy-
sis involved in this study (TEP estimation, connectivity analysis with directionality, and
time-varying graph analysis), it is important to note that our methodology does not require
any manual parameter adjustment. One of the key strengths lies in the implementation
of a Bayesian approach for TEP estimation, where the final prediction error (FPE) is used
to determine the optimal order of the AR model. On the other hand, the estimation of
the dynamic connectivity is performed using the STOK filter, which does not require any
parameter selection, unless the optimal order of the AR model is once again estimated using
the Akaike criterion. This automated approach ensures that the methodology is consistent
and avoids potential biases that may arise from subjective parameter choices. In addition,
the basal activity before each stimulation was subtracted. By applying this normalization,
the different effects on brain connectivity after the stimulation can be compared among
subjects. Despite this, a larger sample will be considered to enhance reproducibility.

5. Conclusions

To conclude, our study demonstrates the importance of connectivity and graph analy-
sis measures in detecting hemispheric differences resulting from lateralized occipital TMS
stimulation protocols. By capturing the time-varying dynamics of brain connectivity, we
provided a more comprehensive understanding of how visual information is propagated
across brain networks.

Compared with previous studies where the visual system was long considered equiva-
lent across hemispheres, the observed electrophysiological patterns highlight hemispheric-
specific effects as a consequence of the TMS stimulation. Knowing that the stimulation of
specific brain areas can elicit visual percepts and how this stimulation spreads throughout
the brain can provide a theoretical background for many practical and clinical applications.
In conclusion, our study paves the way for further investigation in the field of visual area
stimulation but other aspects need to be investigated. For example, having a “ground
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truth” electrophysiological response could help to better analyze the TEPs and related brain
networks. Our future work will be focused on the integration of the inverse problem for
EEG source localization to study the pattern of communication between the two human
brain hemispheres for deep and superficial sources.

Author Contributions: Conceptualization, I.S., D.B., S.S., C.M. and S.F.S.; methodology, I.S. and S.F.S.;
software, I.S., D.B. and C.M.; validation, I.S.; formal analysis, I.S.; investigation, I.S., D.B., C.M. and
S.F.S.; data curation, D.B. and C.M.; writing—original draft preparation, I.S., D.B., C.M. and S.F.S.;
writing—review and editing, I.S., D.B., G.M., S.S., C.M. and S.F.S.; visualization, I.S.; supervision,
G.M., S.S., C.M. and S.F.S.; project administration, G.M., S.S., C.M. and S.F.S.; funding acquisition,
G.M., S.S. and S.F.S. All authors have read and agreed to the published version of the manuscript.

Funding: Work supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of
University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS
(PE0000006)—“A Multiscale integrated approach to the study of the nervous system in health and
disease” (DN. 1553 11.10.2022); MIUR D.M. 737/2021-AI4Health: empowering neurosciences with
eXplainable AI methods; MIUR D.M. 737/2021-Neural correlates of perceptual awareness: from
neural architecture to the preservation of conscious vision in brain tumor patients; MIUR PRIN 2017,
grant no. 2017TBA4KS_002; Fondazione Cassa di Risparmio di Verona, Vicenza, Belluno e Ancona
“Ricerca scientifica d’eccellenza 2018”, grant no. 2018.0861; I.S. was supported by REACT EU-PON
Ricerca e Innovazione 2014–2020.

Institutional Review Board Statement: The experimental protocol was approved by the Ethics
Committee of the University of Verona. The study was conducted in accordance with the Declaration
of Helsinki (as revised in 2013).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data used in this study can be found at https://gin.g-node.org/
DB_123/Phosphenes_occipital.git, accessed on 28 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

TMS transcranial magnetic stimulation
EEG electroencephalography
TEP TMS-evoked potential
M1 primary motor cortex
DLPFC dorsolateral prefrontal cortex
MEP motor-evoked potentials
SNR signal-to-noise ratio
CA conventional averaging
FC functional connectivity
EC effective connectivity
PLV phase-lag value
PLI phase-lag index
GC Granger causality
VAR vector autoregressive
DTF directed transfer function
PDC partial directed coherence
iPDC information partial directed coherence
DCM dynamic causal modeling
dFC dynamic functional connectivity
fMRI functional magnetic resonance imaging
PET positron emission tomography
STOK self-tuning optimized Kalman
PT phosphene threshold
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MOCS method of constant stimuli
MSO maximum stimulator output
ICA independent component analysis
AR autoregressive
tvMVAR time-varying multivariate autoregressive
GMFP global mean field power
BCT brain connectivity toolbox
tdPLV time-delayed phase locking value
FPE final prediction error
AIC Akaike’s information criterion
SVD singular value decomposition

Appendix A. Bayesian Framework to Estimate the TEPs

In this section, we present the state-of-the-art Bayesian approach used to obtain the
unknown TEPs [23,24]. If n is the number of samples after a certain stimulus, we define the
vectors as:

y = [y1, y2, . . . , yn]
T

u = [u1, u2, . . . , un]
T

v = [v1, v2, . . . , vn]
T

(A1)

where y is the observable EEG samples, u is the unknown TEP elicited in response to a
stimulus, and v is the noise affecting y.

Using the observation model,

y = u + v (A2)

the aim is to recover u from y in Equation (A2). Assuming that u and v are uncorrelated
zero-mean random vectors with “a priori” covariance matrices denominated by Σu and Σv,
we can obtain the linear mean square estimate of u given y as follows:

û = (Σ−1
v + Σ−1

u )−1Σ−1
v y (A3)

To solve Equation (A3), “a priori” covariance matrices Σv and Σu are required. The
primary constituent of v is the EEG, which is widely recognized for its non-stationary
nature. However, for brief intervals (e.g., 1–2 s), stationary AR models can be used for their
description. Thus, Σv can be obtained as follows:

Σv = σ2(AT A)−1 (A4)

where A is an n-dimensional Toeplitz matrix with its first column [1, a1, a2, . . . , ap, 0, . . . , 0]T ,
{ak} representing the coefficients of the AR model of order p, and σ2 is the variance of
the white noise process that drives the AR model. It is possible to numerically determine
{ak}, p, and σ2 before each stimulus using a least-square method, such as the Yule–Walker
approach. The optimal AR model order, i.e., p, is selected according to an information
criterion, for example, the FPE or Akaike’s information criterion (AIC) [74]. Considering the
“a priori” known smoothness of the unknown TEP, it is possible to describe it as a realization
of a stochastic process derived by the cascade of d integrators driven by a zero-mean white
noise process with variance λ2 [75]. This model can be described as

Σu = λ2(FT F)−1 (A5)

where = F = Δd, with Δ representing an n-dimensional lower-triangular Toeplitz matrix
with its first column [1,−1, 0, . . . , 0]T .
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By substituting Σv and Σu in Equation (A3), the equation is:

û = (AT A + γFT F)−1 AT Ay (A6)

where γ = σ2

λ2 is the unknown “smoothing parameter”. The Hall and Titterington criterion
can be used to adjust the parameter γ until Equation (A7) is satisfied:

WRSS(γ) = σ2EDF(γ) (A7)

where WRSS(γ) = (y − û)T AT A(y − û) denotes the weighted residuals sum of squares,
and EDF(γ) = n− trace[AT(AT A+ γFT F)−1 A] represents the so-called equivalent degree
of freedom. Once we have provided û and obtained the estimation error as ũ = û − u, we
obtained its covariance matrix, as a measure of the reliability of û:

cov(ũ) = σ2(AT A + γFT F)−1 (A8)

If ûi is the i-th filtered sweep and ũi is the corresponding estimation error, the estimate
of the TEP is defined as follows:

ū =
∑N

i=1 wiûi

∑N
i=1 wi

(A9)

where wi are the weights given by the inverse of trace[cov(ũ)i].

Appendix B. Self-Tuning Optimized Kalman (STOK) Filter

A tvMVAR model can be specified in the form of:

Yt =
p

∑
k=1

Ak,tYt−k + εt (A10)

where Ak,t are the AR matrices containing the time-varying model coefficients, εt is the
zero mean white noise with covariance matrix Σε, and p is the model order. In general, the
state-space model can be used to estimate the unknown variables Ak,t and Σε, given by:

xt = Φt−1xt−1 + ωt−1

zt = Htxt + vt
(A11)

where xt is the system state, Φ is the transition matrix, ωt−1 is a zero-mean white noise
of covariance Q, zt is the observed data, H is the projection measurement matrix, and
vt is a zero-mean white noise (covariance R). The widely employed Kalman filter can
effectively estimate the hidden state x and the error covariance at each time (t = t1, . . . , tT)
by alternating between the prediction and the update step.

The state and the error covariance can be expressed as:

x̂(−)
t = Φt−1 x̂(+)

t−1

P(−)
t = Φt−1P(+)

t−1 ΦT
t−1 + Qt−1

(A12)
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where x̂(−)
t and P(−)

t are the "a priori" state and error covariance at time t, based on the

previous estimated state and covariance x̂(+)
t−1 and P(+)

t−1 . A posteriori estimates of the state
and error are refined in the update step, as:

Kt = P(−)
t HT

t (HtP
(−)
t HT

t + Rt)
−1

x̂(+)
t = x̂(−)

t + Kt(zt − Htx̂
(−)
t )

P(+)
t = (I − KtHt)P(−)

t

(A13)

where I is the identity matrix and Kt is the Kalman Gain matrix.
When dealing with neurophysiological time series, the Kalman filter’s performance

may not be guaranteed due to the absence of a known transition matrix Φ and measure-
ments H. Additionally, the covariance matrices R and Q are unknown.

As a result, the STOK filter was introduced, eliminating the need for explicit assump-
tions about the covariance matrices R and Q. In Pascucci et al., the HPHT ≈ cR relationship
was considered. In particular, the error covariance matrix P, projected onto the measure-
ment space H, is a scaled version of the measurement noise covariance R, with c being a
tuning parameter. This assumption allows for a redefinition of the Kalman gain as follows:

Kt = P(−)
t HT

t (HtP
(−)
t HT

t + Rt)
−1

= H+
t cRt(cRt + Rt)

−1

= cH+
t (c + 1)−1 =

c
1 + c

H+
t

(A14)

where the apex + stands for the Moore–Penrose pseudoinverse. The state update becomes

x̂(+)
t = x̂(−)

t + Kt(zt − Htx̂
(−)
t )

= x̂(−)
t +

c
1 + c

H+
t (zt − Htx̂

(−)
t )

=
x̂(−)

t + cH+
t zt

1 + c

(A15)

where x̂(+)
t is the weighted average of past predictions and the least-squares reconstruc-

tion. To prevent overfitting and reduce the model complexity, we use a singular value
decomposition (SVD)-based method as described in [48].
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Abstract: We present a novel architecture designed to enhance the detection of Error Potential (ErrP)
signals during ErrP stimulation tasks. In the context of predicting ErrP presence, conventional
Convolutional Neural Networks (CNNs) typically accept a raw EEG signal as input, encompassing
both the information associated with the evoked potential and the background activity, which can
potentially diminish predictive accuracy. Our approach involves advanced Single-Trial (ST) ErrP
enhancement techniques for processing raw EEG signals in the initial stage, followed by CNNs for
discerning between ErrP and NonErrP segments in the second stage. We tested different combinations
of methods and CNNs. As far as ST ErrP estimation is concerned, we examined various methods
encompassing subspace regularization techniques, Continuous Wavelet Transform, and ARX models.
For the classification stage, we evaluated the performance of EEGNet, CNN, and a Siamese Neural
Network. A comparative analysis against the method of directly applying CNNs to raw EEG signals
revealed the advantages of our architecture. Leveraging subspace regularization yielded the best
improvement in classification metrics, at up to 14% in balanced accuracy and 13.4% in F1-score.

Keywords: Brain–Computer Interface; signal processing; electroencephalography; Error Potential;
Single-Trial analysis; deep learning; machine learning

1. Introduction

The development of Brain–Computer Interface (BCI) systems holds promise for a wide
range of applications, from assisting individuals with disabilities to enhancing human–
computer interaction in various domains [1].

In this, Electroencephalography (EEG) has played a pivotal role in BCI research, pro-
viding a non-invasive means of capturing neural activity with high temporal resolution [2].
In particular, the Error Potential (ErrP) has gained attention due to its ability to optimize
BCI system performance [3]. The ErrP is an Evoked Potential (EP) that represents the neural
response associated with the detection and elaboration of mistakes made by the subject
itself, by another subject, or by a machine [4]. The activity is located in the medio-frontal
areas of the brain, in particular in the anterior cingulate cortex; depending on the task,
different ErrPs types can be distinguished. Their realization follows a stereotypical shape
characterized by a negative peak occurring at 250 ms after the error, a positive peak at
320 ms, and another negative peak at 450 ms. In the frequency domain, the EEG signal
recorded after the erroneous event is particularly localized in the δ (1–3 Hz) and θ (5–8 Hz)
brain rhythms [5].

The ErrP holds significant value within BCI systems, serving as a critical resource
for rectifying the system’s erroneous outputs and enhancing overall performance [6].
Consequently, the extraction of the ErrP waveform from the EEG signal represents a
crucial step; however, achieving precise separation of the ErrP from the underlying EEG
background remains a non-trivial and complex challenge [7,8].
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1.1. ErrP Classification by NN

Recently, the problem of distinguishing between ErrP and Non-ErrP epochs has
been approached using Deep Learning algorithms, particularly Convolutional Neural
Networks (CNNs).

The study in [9] employed a CNN specifically fine-tuned for ErrP recognition. The
architecture of this CNN comprised four convolutional blocks, rendering it a deep CNN
(DNN). The network’s input consisted of EEG signals epoched in the second following the
erroneous stimulus. The signal preprocessing was standard, involving common average
re-referencing, band-pass filtering within the desired frequency range, and the exclusion
of corrupted electrodes. Furthermore, only the Cz and FCz channels were selected as the
input to the CNN, neglecting information from other channels. The results obtained from a
publicly available dataset demonstrated test accuracy performance of up to 86.1%.

Lawhern et al. [10] introduced a novel CNN called EEGNet. This CNN is versatile
and has been tested across different BCI paradigms (e.g., ErrP, P300, Motor Imagery). The
proposed architecture is simple, comprising only two convolutional blocks for frequency
and spatial filtering. The low dimension of the architecture facilitates training even with
limited data, a significant advantage when working with deep learning algorithms. ErrP
prediction results were presented in terms of accuracy following four-fold cross-validation,
with the authors claiming performance of up to 83%. In this case, the input signals under-
went minimal preprocessing restricted to band-pass filtering within the frequency band of
interest (i.e., 1–40 Hz).

In [11], the authors compared the ErrP classification results achieved by using a simple
CNN with two different inputs: signals recorded at electrodes Cz and FCz, and signals
from all 64 channels. Additionally, they compared the proposed architecture with more
traditional machine learning algorithms, i.e., Support Vector Machine, Gaussian classifiers,
and Deep Belief Networks. EEG signal preprocessing included frequency filtering, artifact
removal using Independent Component Analysis, whitening, and cropping. Their archi-
tecture outperformed other baseline methods in terms of validation accuracy, reaching
a performance of up to 84.4%. Notably, the best performance was attained when using
information from all channels as input to the CNN.

Luo et al. [12] utilized a simple and compact CNN with two convolutional blocks to
identify ErrP epochs, which were subsequently used as training data for a reinforcement
learning algorithm. The authors applied notch filtering at 50 Hz to reduce interference and
applied band-pass filtering within the range of 0.1–30 Hz. The study reported performance
in distinguishing ErrP and Non-ErrP epochs in terms of Area Under the Curve (AUC) in
the test set, achieving results of up to 88%.

Lastly, we mention the work presented in [13], where the authors proposed a Siamese
Neural Network for a four-class problem in predicting Motor Imagery (MI) events. Al-
though this study did not primarily focus on ErrP, the obtained results and adopted
architecture hold promise. The authors introduced a neural network scheme in which two
identical CNNs were trained in order to determine whether the input of one CNN matched
that of the other. The paper did not describe any specific preprocessing steps applied to the
data. The results for the multi-class problem were presented as the classifier’s performance
compared to random labeling of unseen trials, reaching a performance of up to 86.1% on
the test set.

All of these studies share the same approach in common, involving a minimal EEG
pre-processing step followed by a CNN/DNN classification stage. This methodology
entrusts all domain-specific processing to the CNN/DNN stage, making the DNN tasks
more difficult and potentially having detrimental impacts on the classification performance.

1.2. Single Trial-Estimation

Different approaches and techniques have been proposed in the literature, ranging
from traditional signal averaging to more advanced spatial filtering and time–frequency
analysis. The most trivial technique is the Grand Average [14], which consists of averaging
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the epochs of interest in order to zero out the contribution of the background EEG and
emphasize the EP content. However, the main drawback of this method is that the infor-
mation of the Single Trial (ST) is lost; thus, this approach cannot by applied for real-time
detection of the EP of interest [15]. Moreover, the SNR of the signal obtained with this
technique is highly dependent on the number of epochs used for averaging. Other methods
use more sophisticated filters in order to estimate the ST-ErrP. The first technique presented
for ST analysis is ARX modeling [16], a method which estimates the ErrP-ST as a filtered
version of the reference ErrP waveform. However, this method finds little application
in real-time procedures, as estimating a new ARX model stimulus-by-stimulus can be a
computationally demanding and time-consuming procedure.

Denoho et al. [17] proposed a method for estimating ErrP-ST based on the Wavelet
Continuous Transform (CWT) and the Mallat algorithm [18]. With these methods, it is
possible to decompose the signal at different frequency scales, thereby obtaining detailed
and approximated versions of the signal in different frequency bands. At each scale, a set of
coefficients is obtained and compared to a threshold by retaining those coefficients related
to ErrP and eliminating those related to the background EEG. However, the selection
of an appropriate threshold is highly empirical, and the method may not be robust for
all applications.

Another interesting method for EP extraction is subspace regularization [19]. Through
Bayesian estimation, it is possible to extract the ST from the EEG signal. The computation of
the ST epoch is fast, making it suitable for real-time purposes. In the literature, the technique
has been found to work well with different types of EPs. However, the main drawback of
this method is that a robust estimate of the background is required (i.e., ARX modeling for
estimating the background [20]), which can introduce additional computational time.

1.3. Aim of This Study

In this work, we hypothesize that the potential of ST techniques for domain-specific
filtering of EEG data can be beneficial in improving the classification of ErrP vs. non-
ErrP epochs as performed by CNNs. To validate this hypothesis, we have developed a
novel architecture that integrates a domain-specific block used for ErrP-ST estimation into
the conventional EEG classification framework consisting of initial EEG preprocessing
followed by CNN classification. We demonstrate that the incorporation of this new block
can significantly enhance the performance of the CNN classifier.

2. Materials and Methods

This section describes the pre-processing performed on the EEG signal to extract the
epochs of interest, the different methods used for ST-ErrP extraction, and the classification
performed by different CNNs. These steps are summarized in the pipeline shown in
Figure 1 are described in detail in the following sections.

2.1. EEG Dataset

We analyzed EEG data contained in the open access BCI dataset BNCI Horizon 2020:
Monitoring error-related potentials [21].

This dataset consists of EEG recordings obtained during an ErrP-specific experiment
performed on six subjects (mean age 27.83 ± 2.23) in two recording sessions [22].

The experimental paradigm consisted of reaching a target (i.e., a colored square)
through a moving cursor. The working area involved twenty possible horizontal positions
at which the cursor and the target square could be located. At each time step of 2 s each,
the cursor moves a step toward the target. When the target is reached, the cursor remains
in place and a new target location appears. Subjects were asked to monitor the position of
the cursor without having any control over it, knowing that the objective is to reach the
target. In order to elicit the ErrP, there is a 20% probability at each time step of the cursor
being moved in the wrong direction.
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Each recording session consisted of ten blocks of 3 min each, including approximately
fifty cursor movements per block. Subjects performed two recording sessions with a gap of
several weeks. For each session, the EEG signal was recorded (512 Hz sampling frequency)
with 64 electrodes using a BioSemi ActiveTwo system. Electrodes were placed according to
the 10–20 International System.

This data-set is largely unbalanced, being constituted by 6437 epochs, of which only
1322 include the ErrP.

EEGNet

L-CNN

EVALUATION

RAW EEG 
SIGNAL

EEG 
PRE-PROCESSING

CLASSIFICATION 
WITH NNs

SINGLE TRIAL 
EXTRACTION

• Subspace 
Regularization

• ARX

• CWTT

ce
zation

FILTERING

Siamese NNSiamese NN

LASSIFICATION

Figure 1. Pipeline of the employed methods. The novelty of our approach consists in the introduction
of a Single Trial Extraction block between the EEG preprocessing stage and the NN classification stage.

2.2. Data Preprocessing

A preprocessing pipeline was defined to extract the segments of the signal (epochs)
localized just after the presentation of the feedback in which the ErrP may be present. Raw
EEG data were spatially filtered with the Common Average Reference (CAR) approach and
then band-pass filtered using an FIR filter in the range [1 40] Hz (as suggested in [5]), as the
ErrP can be considered a relatively slow cortical potential. Data were then downsampled
at 64 Hz and divided into epochs covering the interval [−1 1]s from the instant of cursor
movement. This range was chosen in order to include the pre-stimulus window and cover
the expected latency/duration of the ErrP signal [5].

In view of the real-time application of the proposed method and in order to ensure
an easy and low-computation procedure, no removal of artifacts, eye blinking, or eye
movement was employed. While most of the methods for ErrP detection/classification [23]
have analyzed data from FCz and Cz channels only, we processed all of the channels in
order to include all the information captured by the electrodes.

2.3. Single-Trial Estimation

The epochs were then processed using different ST estimate techniques: the subspace
regularization method, ARX modeling, and Continuous Wavelet Transform, which are
described in the following subsections.

2.3.1. Subspace Regularization

This method was first introduced in [19] to separate the ErrP waveform from the
background ECG noise by incorporating second-order statistical information, specifically,
the variances of the evoked potentials. The main concept is to devise a filter that can
effectively enhance the signal of interest from among the extraneous brain activity that is
unrelated to the mechanisms generating the ErrP. Through this regularization approach,
provided that applicable density assumptions for both the signal and noise are satisfied,
the obtained solutions can be viewed as Bayesian point estimates. It has been ascertained
that the signal under observation (z) is a combination of the signal of relevance (s) and
interference (v), which is commonly referred to as spontaneous EEG. The model is

z = s + v = Hθ + v, (1)
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where H is a matrix with columns that are p basis functions ψi to be selected according to
the specific problem; moreover,

H = (ψ1, ..., ψp) (2)

where the basis functions are Gaussian-shaped components preselected for their shape and
varied in terms of their delays (τi), i.e.,

ψi = e−
1

2d2 (t−τ2
i ), (3)

where d = 0.1 is the width parameter and the number of basis functions p is set to 20. The
ErrP for the individual tests is determined using the following formula:

ŝ = (I + α2
2DT

d Dd)
−1H(HTC−1

v H + α2Ht(I − KsKT
s )H)−1HTC−1

v z (4)

where α and α2 are regularization terms obtained empirically (set to 0.01 and 10, respectively,
in our study), D is the second difference matrix, Cv is the estimate of the covariance matrix
of the noise, and Ks is the matrix of the first eight eigenvectors of the correlation matrix
of the recorded signal z. To estimate the properties of the background, we modified the
original method, which employed an ARX estimate, to simply use the EEG signal recorded
in the second before the stimulus. It is reasonable to assume that the properties of the
background EEG during the stimulus do not significantly change from the second before
the stimulus itself. This choice was motivated by the need to reduce computational burden
in the view of the online application of our method.

2.3.2. ARX Modeling

The ARX model for single-sweep estimation is presented in [16]. The recorded EEG
signal can be described by the following equation:

yi(t) =
p

∑
j=1

ajyi(t − j) +
q

∑
k=1

bku(t − k − d) + ei(t), (5)

where the ajs and bks are the model coefficients for the AR and exogenous parts, respectively,
p and q are the model orders, and d is a delay lag. The model is fed by ei(t), e.g., a white
noise process.

The AR part of Equation (5) is used to model the background EEG activity (not
related to error processing), while the exogenous input u(·) is used to model the expected
waveform of the ErrP, and is commonly obtained by synchronous averaging of the epochs
containing ErrP. The model in Equation (5) can be rewritten in the z-transform domain,
as follows:

Yi(z) =
Bi(z)
Ai(z)

U(z)︸ ︷︷ ︸
ErrP

+
1

Ai(z)
Ei(z)︸ ︷︷ ︸

Background EEG

(6)

where it emerges from the similarity with Equation (1) that the ErrP is obtained as a filtered
version of the exogenous input U(z), while the EEG is modeled as a colored version of a
Gaussian white noise process. After having estimated u(·) for each patient, the model can
be identified by estimating the coefficients aj and bk, the polynomial order p and q, and the
delay d. To identify the coefficients, a least square method approach is performed to minimize
the following figure of merit:

Fi(t) =
1
N

N

∑
j=1

(yi(t)− ŷi(t))2, (7)
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where N is the number of time samples, yi(t) is the signal itself, and ŷi(t) is the
model’s prediction.

The optimal model orders are selected as those resulting from the minimization of the
Akaike Information Criterion (AIC). The model identification is repeated at each i-th epoch
and each single evoked response is described through a different model.

2.3.3. Continuous Wavelet Transform

The CWT method was presented by Ahmadi et al. [24] and is based on the Donoho ST
estimate technique [17]. The wavelet transform is the inner product of a signal with dilated
and translated versions of a wavelet function. For a given signal x(t) and wavelet function
ψa, b(t), the Continuous Wavelet Transform (CWT) is defined as follows:

WψX(a, b) =< x, ψa,b >, (8)

ψa,b = |a|− 1
2 ψ(

t − b
a

), (9)

where a, b ∈ R are the scale and translation parameters, respectively. Through the Mallat
algorithm, the details and approximation of the signal can be obtained at different scales
with corresponding coefficients. The original work [24] identified a five-scale decomposi-
tion and a quadratic B-Spline wavelet as being the most suitable for EP analysis. The CWT
is very redundant; without incurring any loss of information, it is more practical to define
the wavelet transform only at a discrete set of scales aj = 2j and times bj,k = 2jk, thereby
obtaining the Dyadic Wavelet Transform (DWT).

The estimation of ErrP is obtained by removing the EEG activity through denoising,
which is implemented by selecting DWT coefficients based on scale-dependent thresholding.
At each scale j, the threshold is computed as

T2
j = σ2

j

√
2 loge N, (10)

where σj is the estimate of the standard deviation of the noise and N is the number of
wavelet coefficients. In order to incorporate information from the neighboring coefficients,
the thresholding criterion is as follows:

Xden(j, k) =

{
X(j, k) if X2

j,k−1 + X2
j,k + X2

j,k+1 > T2
j

0 if X2
j,k−1 + X2

j,k + X2
j,k+1 ≤ T2

j
(11)

Moreover, the original authors introduced a dependency between coefficients at
coarser scales and those at finer scales such that a coarser coefficient is removed, then its
“children” in the finer scales are removed as well. First, the coefficients are selected using
the grand average of the epochs of interest as the input signal, then the same coefficients
are selected in order to denoise the single epochs and emphasize the ErrP part.

2.4. Classification

Classification of ErrP versus non-ErrP epochs was obtained by three CNN architec-
tures: EEGNet [10], the CNN presented by Luo et al. [12], and a Siamese Neural Network.
All of these CNNs have been reported to achieve good performance for BCI purposes,
especially for the detection of ErrP epochs. The models obtained with the three architec-
tures were fitted using the Adam algorithm defined in [25] and while minimizing the binary
cross-entropy. They were trained through 300 epochs with a batch size of 16 on an NVIDIA
GeForce RTX 2060 GPU. To evaluate the classifier performances, two approaches were
followed, namely, population-wise and subject–wise. In the former, all subject data were
considered as a unique dataset, while in the latter each subject was considered singularly.

The dataset was shuffled to eliminate any bias related to the sequence of stimulus, then
partitioned, with 20% of the data used as a test set and the remaining data subdivided into
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80% in the training set and 20% in the validation set. Stratified five-fold cross-validation
was performed on the validation set. A majority vote approach was employed to obtain
the prediction label for the test set, which was chosen to ensure that it could outperform
the best classifier if the classifiers made independent errors [26].

The training set was balanced to obtain an equal amount of epochs for each class. In
particular, the ARX balancing technique introduced in [27] was used, as it has previously
been found to be robust, especially in ErrP applications.

The three CNNs we used are described in the following subsections.

2.4.1. EEGNet

EEGNet was chosen because of its proven ability to generalize across different EEG-
based BCI paradigms, including the ErrP classification, and because it presents a limited
number of trainable parameters. The main peculiarity of this network is that it includes
both depthwise and separable convolution layers, which are usually adopted in computer
vision [28] to find the optimal volume-wise filters while having a reduced number of
parameters compared to the classical convolution filter approach.

The architecture can be subdivided into three blocks; the last is a fully connected layer,
while the others include dropout and batch normalization layers to prevent overfitting
along with pooling layers to reduce the size of the data.

2.4.2. L–CNN

The L-CNN architecture has two convolutional layers, one pooling layer, and one
dense layer. The first convolutional layer is employed across the discretized samples to
extract temporal features (width = 276) and the second across the electrodes to extract
spatial features (width = 276). The temporal convolutional layer has a smaller kernel
size (25 × 1) than the spatial convolutional layer (64 × 40), allowing for a larger range of
transformations in this layer. The following mean pooling layer with a kernel size of 75 × 1
prevents overfitting. The final dense layer contains a 40 × 12 size feature map and outputs
two predicted labels (correct or incorrect) using a logarithmic activation function.

2.4.3. Siamese Neural Network

Based on the encouraging outcomes demonstrated in [13], we made the decision to
explore the influence of the Short-Time (ST) estimate when employing a Siamese Neural
Network. The architecture we constructed closely resembles the one outlined in the cited
study, with a few customizations for our specific needs. These adaptation were necessary
because the original study utilized the covariance matrix of the EEG signal as input for the
classifier, whereas we directly used the EEG signal itself.

The Siamese Neural Network that we used consisted of two identical CNNs sharing
the same parameters and hyperparameters. Each CNN is structured with two successive
convolutional layers followed by two fully connected layers. We computed the Euclidean
distance from the features extracted by these two CNNs, then employed this metric to
determine whether or not the inputs to the two CNNs belonged to the same class. Training
was carried out on all conceivable pairs of observations from the training set. To classify
a new observation, we paired it with each observation from the training set. With the
knowledge of the labels of the training data, we used a majority voting strategy to predict
the class of new observations.

It is noteworthy that we made a deliberate choice not to apply any data augmentation
techniques for this particular classifier. This decision was made in order to ensure that the
comparison between pairs of observations remained exclusive to the original data, without
the introduction of any synthetic data.
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2.4.4. Hyperparameter Optimization

To improve classification performance, a hyperparameters optimization process was
performed. The pipeline was divided into four cycles, each one optimizing a different set of
hyperparameters. Table 1 reports the different cycles and related sets of hyperparameters.

Table 1. Hyperparameter optimization: in each cycle, a different set of hyperparameters is optimized,
with each set being composed of related hyperparameters. If convergence or a high number of
iterations is reached, the cycle is considered to be optimized.

First Cycle Second Cycle Third Cycle Fourth Cycle

learning rate pooling layer dropout rate
iterative method dropout layer conv layers size momentum

batch size activation layer (F1, D, F2) learning decay

Each cycle included groups of hyperparameters related to one another; for instance,
the hyperparameters involving the number of filters of the layers were included in the same
testing cycle. The cycles were numbered to ensure that the first cycle would optimize the
most important hyperparameters (i.e., the ones with the greatest affect on performances).
The cycle was stopped when convergence was reached for a set of hyperparameters or after
a high number of repetitions. Optimization was performed through grid search for those
hyperparameters with a range known a priori; otherwise, a random search was performed.
The metric used for optimization purposes was the F1-score.

Hyperparamater optimization was performed separately for each subject and for the
population as a whole; thus, different sets of parameters were obtained for each analysis.

2.4.5. Performance Metrics

The classification performance was evaluated using three different metrics: balanced
accuracy, F1-score, and utility gain.

Balanced accuracy and F1-score were computed due to the dataset being highly unbal-
anced, which makes erroneous events much more rare than correct actions. When dealing
with an unbalanced dataset, these metrics are preferable to accuracy, which is biased in
such cases and does not represent the classifier’s real performance.

The utility gain is a metric introduced in [29] that represents the potential gain when
introducing an error correction system in a BCI system. It is computed as follows:

g(p) =
prC + (1 − p)rE + p − 1

2p − 1
, (12)

where p is the performance of the BCI system with no correction, rC is the recall of correct
events, and rE is the recall of erroneous events, with the latter two respectively computed
using the following formulas:

rC =
TN

TN + FP
(13)

rE =
TP

TP + FN
(14)

In particular, a utility gain higher than 1 indicates an improvement in BCI performance
through the correction system, while a value lower than 1 indicates that it is counterpro-
ductive compared to the original BCI system.

3. Results

3.1. Classification Performance

This section reports the performance of the proposed two-stage procedure for classify-
ing ErrP versus non-ErrP epochs. The results for the EEGNet, L-CNN, and Siamese Neural
Network are presented separately in Sections 3.1.1, 3.1.2, and 3.1.3, respectively. Our results
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are presented as a series of graph, each containing both subject-wise results (one for each
subject) and population-based results (identified by the label All Subjects).

3.1.1. EEGNet

The performance when using EEGNet to distinguish between ErrP and Non-ErrP
classes is reported in Figure 2 in terms of the F1-score and balanced accuracy computed on
the test set. The last group of bar plots, shown by the the black line on the right-hand side
of each graph, is used to indicate the results obtained in the population-wise training.

Figure 2. Performance metrics on the test set when using EEGNet as a classifier. The metrics are
reported for each processing technique and in both subject-wise and population-wise analysis. The
balanced accuracy and F1-score are reported for completeness.

In both the subject-wise and population-wise analysis, all the ST estimators led to an
increase of performance compared to using raw data as input to the CNN classifier (the
blue bar). This behaviour is observable for both the F1-score and balanced accuracy metrics.
The largest increase in the metrics can be observed for subjects 4 and 6. For these two
subjects, there are respective increases of 11% and 11.8% in terms of balanced accuracy and
of 12.5% and 12% in terms of the F1-score. Notably, these two patients were had the two
worst performances when feeding raw EEG data to the CNN. It is worth noting that the
Subspace Regularization method resulted in the highest performance for all subjects (the
orange lines in the figure).
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The performance in terms of utility gain is reported in Figure 3, showing the improve-
ment introduced by a correction system based on ErrP detection for a BCI with initial
performance p in the range of 70–100%. In each graph, the curve above the others identifies
the best-performing model. For all subjects and for the population-wise analysis (the
bottom-right plot in Figure 3), most of the curves are above the blue line, demonstrating the
utility of adding an ST-ErrP estimator stage. Among the ST methods, there was a slightly
larger improvement when using the subspace regularization method (the orange curves).
In particular, this method introduces a “productive” gain (i.e., g(p) > 1) until a baseline
performance of 90% is reached. It can be seen that this result is more prominent for subjects
4 and 6.

Figure 3. Utility Gain when using EEGNet as a classifier and applying different techniques for ST
estimation. The metric is reported for the subject-wise and population-wise analysis for only p values
over 70%, as no major differences were observed outside of this range.

3.1.2. L-CNN

Similar to the EEGNet results, we now report the results for the L-CNN classifier in
Figure 4. An improvement in all metrics can be observed when the ST-ErrP extraction
stage is performed. Similar to EEGNet, subspace regularization introduces the highest
improvements for all metrics in most of the subjects as well as in the population-wise
analysis. In particular, subjects 4 and 6 experience the highest gain in terms of performance,
at 13.5% and 13% in terms of balanced accuracy and 12.8% and 12% in terms of F1-score,
respectively. The main difference between these results and those obtained when using
EEGNet is observed for subjects 1 and 5, where the CWT method method leads to the
greatest improvements in performance.

The utility gain curves for the L-CNN classifier are shown in Figure 5; again, they show
that the introduction of a correction system with subspace regularization for ST estimate
improves the BCI performance in most cases, resulting in higher accuracy compared to the
other techniques. This is particularly apparent for subjects 4 and 6, where a g(p) > 1 is
measured until p = 84.7% and p = 83.9%, respectively. For the other performance metrics,
in terms of the utility gain, subjects 1 and 5 show more improvement when using the CWT
to estimate the ST.
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Figure 4. Performance metrics on the test set when using L-CNN as a classifier. The metrics are
reported for each processing technique and in both the subject-wise and population-wise analysis.
Balanced accuracy and F1-score are reported for completeness.

3.1.3. Siamese Neural Network

Figure 6 reports the results for the Siamese Neural Network. In agreement with
our previous results, domain-specific preprocessing improves the performances of ErrP
detection for each subject as well as in the population-wise analysis. Greater improvements
in both balanced accuracy and F1-score result when the subspace regularization method is
used. For the other two architectures, subjects 4 and 6 experience the largest improvements
in terms of performance, with 12.2% and 14% in terms of balanced accuracy and 12.6% and
13.4% in terms of F1-score, respectively.
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Figure 5. Utility gain obtained using L-CNN as a classifier and applying different ST estimation
techniques. The metric is reported for subject-wise and population-wise analysis and for p values
over 70%, as no major differences were observed below this level.

Figure 6. Performance metrics on the test set when using a Siamese Neural Network as the classifier.
The metrics are reported for each processing technique and for subject-wise and population-wise
analysis. Balanced accuracy and F1-score are reported for completeness.
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The utility gain curves for the Siamese Neural Network classifier are shown in Figure 7.
Again, it can be observed that the introduction of a correction system with subspace
regularization for ST estimation leads to improved performance of the BCI and higher
accuracy compared to the other techniques. This is particularly observable for subjects 4
and 6, where we measured a g(p) > 1 until p = 85.1% and p = 84.7%, respectively.

Figure 7. Utility gain obtained using a Siamese Neural Network as the classifier and applying
different ST estimation techniques. The metric is reported for the subject-wise and population-wise
analysis and for only those p values over 70%, as no major differences were observed below this level.

4. Discussion

Our main findings in this research can be summarized as follows: first, the introduction
of a stage dedicated to ST-ErrP estimation results in improved performance on the part of
the CNN classifier on detecting the occurrence of ErrP; second, the method which provides
the largest improvement is the one based on subspace regularization.

The first finding indicates that domain-specific processing may significantly reduce
the complexity of the classification process, leading to improved performance of CNN
classifiers when detecting epochs containing ErrP. The observation that this improvement
is consistent for all three CNN models leads us to conclude that this is not a bias induced
by the model itself, and may have general validity. While in principle the flexibility of
CNNs might be supposed to easily incorporate the estimation of ErrP within the multi-layer
perception network, our findings show that it is advantageous to relieve the CNN of this
task by moving it from a minimal preprocessing task to a domain-specific one. It is not
surprising that, when focusing on ErrP classification, the domain-specific preprocessing
task can be performed effectively by an ST-ErrP estimator.

Among the investigated single-trial estimators, the subspace regularization method
slightly outperforms the others in terms of improving the performance of CNN classifiers
on the ErrP detection task. This method’s ability to highlight those EEG components related
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to error processing suggests its effectiveness in enhancing the quality of the recorded signal.
In particular, it is worth noticing that this method is able to cut out the high-frequency
components that are usually related to the background activity [30,31]. This filtering
procedure results in epochs that closely resemble the expected ErrP waveform, which is a
critical step in improving the detection of erroneous events [32].

Our evaluation of the utility gain indicates that the subspace regularization method not
only permits allows effective classification of ErrP and non-ErrP events, it can enhance the
overall utility of a BCI system as well. This finding suggests that the proposed architecture
can provide significantly benefit in real-time BCI applications by enhancing error detection.
It is noteworthy that subjects 4 and 6 showed the most improvement when using the
subspace regularization method for extracting the ST. Indeed, these subjects initially had
poor results when using raw signals as input for classification. This highlights the potential
of the method described above to address inter-subject variability and provide improved
performance for individuals for whom the model may initially struggle with ErrP detection.

In this study, we observed that when using the L-CNN classifier, the CWT resulted
in better performance for subjects 1 and 5 than using the subspace regularization method.
These subjects already showed good results when using the raw signals, and the improve-
ment brought about by the two ST estimate methods were comparable. However, the
differences in the results for these two subjects when using different CNNs suggest that
the choice of classifier has an impact on the final signal processing performance. Further
investigation into classifier-specific sensitivities could be beneficial, and might be addressed
using Explainable Artificial Intelligence (XAI). From this same perspective, the adoption
of an ErrP enhancer stage could facilitate the work of explainability approaches aiming
to identify which parts of the signal contribute the most to classification. We hypothesize
that the salient features highlighted by the ErrP enhancer are instrumental in simplifying
the CNN classification task. Additionally, by reducing background EEG interference, this
enhancement can contribute to the interpretability of XAI results and facilitate analysis
of the relationship between relevant ErrP patterns used for classification and established
evoked potential patterns. In future work, we intend to further investigate these aspects.

5. Conclusions

In conclusion, the present study provides compelling evidence that the proposed ErrP-
enhanced architecture in which a CNN classifier is supported by a domain-specific prepro-
cessing stage is highly effective in improving the accuracy of ST ErrP estimation and detection
in EEG signals. The additional preprocessing stage offers several advantages, including the
ability to filter out components that are not error-related and to enhance the fidelity of the
ErrP waveform. These findings contribute to the ongoing advancement of EEG-based error
detection systems, and have practical implications for BCI applications in domains such as
assistive technology and neurofeedback.
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Abbreviations

The following abbreviations are used in this manuscript:

ErrP Error Potential
CNN Convolutional Neural Network
DNN Deep Convolutional Neural Network
BCI Brain–Computer Interface
EEG Electroencephalography
EP Evoked Potential
ST Single Trial
SNR Signal-to-Noise Ratio
CAR Common Average Reference
CWT Continuous Wavelet Transform
DWT Dyadic Wavelet Transform
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Abstract: Predicting pilots’ mental states is a critical challenge in aviation safety and performance,
with electroencephalogram data offering a promising avenue for detection. However, the interpretabil-
ity of machine learning and deep learning models, which are often used for such tasks, remains
a significant issue. This study aims to address these challenges by developing an interpretable
model to detect four mental states—channelised attention, diverted attention, startle/surprise, and
normal state—in pilots using EEG data. The methodology involves training a convolutional neural
network on power spectral density features of EEG data from 17 pilots. The model’s interpretability
is enhanced via the use of SHapley Additive exPlanations values, which identify the top 10 most
influential features for each mental state. The results demonstrate high performance in all metrics,
with an average accuracy of 96%, a precision of 96%, a recall of 94%, and an F1 score of 95%. An
examination of the effects of mental states on EEG frequency bands further elucidates the neural
mechanisms underlying these states. The innovative nature of this study lies in its combination
of high-performance model development, improved interpretability, and in-depth analysis of the
neural correlates of mental states. This approach not only addresses the critical need for effective
and interpretable mental state detection in aviation but also contributes to our understanding of the
neural underpinnings of these states. This study thus represents a significant advancement in the
field of EEG-based mental state detection.

Keywords: aviation safety; convolutional neural network; deep learning; EEG; electroencephalogram;
interpretability/explainability; machine learning; mental states classification; pilot deficiencies;
SHapley Additive exPlanations

1. Introduction

The human brain, an intricate network of billions of neurons, is a dynamic system that
constantly generates electrical activity. This electrical activity, which reflects the complex
interplay of neural processes, can be measured and analysed using electroencephalography
(EEG). Since the advent of EEG in the early 20th century, these signals have been exten-
sively studied for their potential to provide insights into various cognitive states, mental
conditions, and neurological disorders [1–3]. In recent years, the use of EEG in cognitive
neuroscience has surged, driven by advancements in signal processing techniques and the
development of portable and wearable EEG devices [4]. The non-invasive nature of EEG,
its relatively low cost, high temporal resolution, and the possibility of real-time monitoring
make it a particularly attractive tool for studying brain dynamics in various contexts [5,6].
One such context is the field of aviation, where understanding and monitoring the mental
states of pilots is of paramount importance. The mental state of a pilot can significantly
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influence his decision-making ability, reaction times, and overall performance, particularly
in high-stakes or stressful situations [7]. Therefore, the ability to accurately detect and clas-
sify different mental states based on EEG data could provide a valuable tool for enhancing
safety and performance in aviation.

Different mental states are associated with different patterns of brain activity, which
can be captured in the frequency domain of EEG signals as characteristics of power spectral
density (PSD) [8]. These features represent the distribution of signal power over various
frequency bands, such as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ), each of
which is associated with different cognitive processes and mental states [9]. For instance, δ
waves are typically associated with deep sleep or relaxation, θ waves with creativity and
insight, α waves with relaxed alertness, β waves with active thinking and focus, and γ
waves with higher mental activity and perception [9,10]. The analysis of these frequency
bands can provide a window into the cognitive processes underlying different mental
states, making them a valuable tool for mental state classification [8].

In recent years, the field of machine learning (ML), particularly convolutional neu-
ral networks (CNN), has made significant strides in the analysis of EEG data for mental
state classification [11]. CNN models have demonstrated their efficacy in handling high-
dimensional data, such as EEG signals, by automatically learning hierarchical representa-
tions from raw data. This ability to learn and extract salient features from raw data without
the need for manual feature extraction is a significant advantage in EEG analysis, where
the selection of appropriate features is often challenging [11–13].

However, while CNN models have shown promise in terms of performance, under-
standing the decision-making process of these models remains a challenge. To address this,
we employ SHapley Additive exPlanations (SHAP) values, a powerful tool for interpreting
machine learning models. SHAP values provide a measure of the contribution of each fea-
ture to the model’s prediction, thereby offering insights into the model’s decision-making
process [14,15].

The novelty of this study lies in the comprehensive approach to mental state detection
in pilots, extending the boundaries of EEG-based cognitive state detection in several
significant ways:

1. It employs a one-dimensional CNN (1D-CNN) architecture optimised for EEG data,
comprising five convolutional layers, thereby enhancing the model’s capability to
capture both spatial and temporal features.

2. The model is trained on PSD features extracted from EEG signals, offering a robust
and computationally efficient approach to mental state classification.

3. We introduce the use of SHAP values for result interpretability, enabling a nuanced
understanding of feature importance for each mental state class.

4. The model is validated on the Attention-related Human Performance Limiting States
(AHPLS) dataset, notable for its real-world applicability to high-stakes environments
like aviation.

The EEG data was sourced from the AHPLS dataset, a rich and diverse dataset
that has been used in several recent studies to understand and model human cognitive
states [16–21]. The AHPLS dataset is unique in its inclusion of data from pilots under
various mental states, namely channelised attention (CA), diverted attention (DA), star-
tle/surprise (SS), and normal/no event (NE) states. This provides a robust and realistic
dataset for training and testing our model. The use of such a dataset is a significant contri-
bution to the field, as it allows for the exploration of EEG-based mental state detection in a
high-stakes real-world environment, such as aviation [22].

This study aims to answer the following research questions:

1. How effectively can a 1D-CNN model trained on PSD features of EEG signals detect
four mental states in pilots?

2. What are the key features of PSD that contribute to the successful detection of these
mental states?
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3. How does the performance of the model vary across different pilots and when trained
on data from all pilots combined?

The answers to these questions will provide valuable insights into the potential of
EEG-based mental state detection in aviation and other high-stakes environments and will
guide future research in this area.

The paper is organised as follows: In Section 2, an overview of mental states and
related research studies is presented. The proposed comprehensive approach in Section 3
describes the methods used in this study. Section 4 outlines the Experimental Setup,
Section 5 presents the findings, and Section 6 presents a discussion of the results. Finally,
the conclusion of the study is stated in Section 7.

2. Related Work

The application of ML techniques, particularly deep learning (DL), to the analysis of
EEG data for the detection of mental states, has been a topic of significant interest in recent
years. This section provides an overview of the key research in this area, highlighting the
methodologies used, the results obtained, and the gaps that this study aims to address.

2.1. Previous Studies on EEG-Based Mental State Detection

Several studies have explored the use of EEG data for the detection of mental states.
For instance, Başar et al. [9] found that γ, α, δ, β, and θ oscillations govern cognitive
processes, suggesting that these frequency bands could be used to detect different mental
states. Similarly, Klimesch [8] found that EEG α and θ oscillations reflect cognitive and
memory performance, indicating their potential for mental state detection. Regarding
the application of ML and DL methods, Giudice et al. [23] developed a 1D-CNN model
to detect and discriminate between voluntary and involuntary blinking of the eye using
EEG data, demonstrating the potential of DL techniques for such tasks. Mattioli et al. [24]
proposed an approach based on a 10-layer 1D-CNN to classify four motor imagery (MI)
and baseline states, which showed promising results in terms of performance. Similarly,
Tabar et al. [25] model based on CNN and stacked autoencoders to classify EEG MI signals,
demonstrating the effectiveness of DL models compared to ML models. Furthermore,
Zorzos et al. [26] extracted time-frequency domain characteristics from the EEG signal to
train on a shallow CNN model with three convolutional layers for the detection of mental
fatigue, which showed promising results in terms of performance and interpretability.

In the context of aviation, Wu et al. [27,28] addressed the problem of obtaining the
representation of the fatigue status feature and detecting the fatigue behaviour status of
pilots via EEG signals. The authors decomposed the EEG signals of pilots into four fre-
quency bands, namely δ, θ, α, and β, and used them to train a deep contractive autoencoder
network, achieving a 91.67% performance accuracy. Furthermore, Cui et al. [29] developed
a CNN model to detect driver drowsiness using EEG data, achieving an average accuracy
of 78.35% in 11 participants. They also employed an interpretation tool to recognise the
biological features of drowsiness states. Han et al. [30] proposed a multimodal approach
to classify four mental states, namely distraction, workload, fatigue, and normal, using
EEG, electrocardiogram (ECG), respiration (R), and electrodermal activity (EDA). They
extracted PSD features from the EEG signals, which were used to train a CNN model,
and trained a long-short temporal memory (LSTM) model on the other non-brain signals,
achieving an average accuracy of 85.2%. Johnson et al. [31] used the average power of the
frequency bands as features to detect task complexity levels in flight simulator experiments.
In addition, Roza et al. [32,33] focused on detecting the pilot’s emotions, namely happy,
sad, angry, scared, surprised, and disgust, using an artificial neural network (ANN) in
simulated flights. Binias et al. [34] proposed an ML approach to discriminate between
states of brain activity related to idle but focused anticipation of visual signals and reaction
to them.
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2.2. Gaps in the Existing Literature

While these studies have made significant contributions to the field, there are several
gaps that this study aims to address. Firstly, many previous studies have focused on binary
or multiclass classification problems, such as distinguishing between rest and task states or
between different levels of cognitive load. However, less research has been conducted on
the detection of specific mental states, such as CA, DA, SS, and NE states, particularly in
the context of aviation.

Second, while DL models have shown promise in EEG analysis, understanding the
decision-making process of these models remains a challenge. Many previous studies have
focused on improving the performance of these models, but less attention has been paid
to their interpretability. This is a significant gap, as understanding the features that these
models consider important can provide valuable insights into the underlying cognitive
processes associated with different mental states.

2.3. Previous Research on Detecting CA, DA, SS, and NE States

Several studies have explored the detection of specific mental states using EEG data.
For instance, Harrivel et al. [17,18] recorded brain signals (i.e., EEG) and non-brain signals
(i.e., ECG, R, and galvanic skin response (GSR)), capturing the attention-related pilot
performance limiting states, including CA, DA, SS, and NE. The authors employed various
ML techniques to perform binary and multiclass classification tasks in two different studies.
Terwilliger et al. [16] attempted to discriminate between the normal state and an event
state, where the CA, DA, and SS states are combined and named an event state. In
previous research [20], we performed a multiclass classification task to attempt to predict
the CA, DA, SS, and NE states. The main purpose of the study was to measure the
impact of applying different preprocessing techniques on the performance of the ML model
and to investigate the feasibility of concatenating EEG datasets recorded from different
environment settings. It was found that the employment of pre-processing techniques
has an impact on classification performance. Thus, an automated preprocessing approach
was proposed to improve the signal-to-noise ratio and classification performance [19].
The proposed approach demonstrated the importance of preprocessing EEG data before
training them in ML models. The attention-related pilot performance-limiting states are
heavily class imbalanced. In a recent study [21], we evaluated the impact of employing
various data resampling techniques on classification performance. It was discovered that
the use of a combination of downsampling and oversampling techniques improves the
performance of the ML models.

However, less research has been conducted on the detection of the specific mental
states of CA, DA, SS, and NE states. These states are particularly relevant in the context of
aviation, where pilots need to rapidly switch between different mental states in response to
varying task demands. Understanding and detecting these states could have significant
implications for safety and performance in aviation and other high-stakes environments.

2.4. Positioning of the Current Work

This study builds on the existing literature in several ways. Firstly, it focuses on the
detection of specific mental states that are relevant in the context of aviation, addressing a
gap in the existing literature. Second, it uses a 1D-CNN model, which has been shown to
be effective in handling high-dimensional data such as EEG signals. This model is trained
on PSD features of EEG data, which represent the distribution of signal power over various
frequency bands and are associated with different cognitive processes and mental states.

Furthermore, this study addresses the need for model interpretability in EEG analysis
by employing SHAP values. SHAP values provide a measure of the contribution of each
feature to the model’s prediction, offering insights into the model’s decision-making process.
This approach not only leverages the power of CNN models for EEG analysis but also
addresses the critical need for model interpretability in this domain.
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The EEG data used in this study are sourced from the AHPLS dataset, a rich and
diverse dataset that has been used in several recent studies to understand and model
human cognitive states. The AHPLS dataset is unique in its inclusion of data from pilots
under various mental states, providing a robust and realistic dataset for training and
testing our model. The use of such a dataset is a significant contribution to the field, as it
allows for the exploration of EEG-based mental state detection in a real-world, high-stakes
environment such as aviation.

In summary, this study extends the existing literature by focusing on the detection of
specific mental states in pilots using a 1D-CNN model trained on PSD features of EEG data.
It also addresses the need for model interpretability by employing SHAP values to identify
the important features of each mental state. The use of the AHPLS dataset further enhances
the relevance and applicability of this research in the field of aviation.

3. The Proposed Approach

In this section, we describe the methods utilised to preprocess the EEG data, extract
meaningful features from the EEG data, and handle the data imbalance issue. In addition,
we explain the proposed 1D-CNN model and the interpretability method (i.e., SHAP) used
to identify the most important features of each mental state. Figure 1 illustrates an overview
of the proposed approach.

Figure 1. An overview of the proposed approach.

3.1. Data Preprocessing

EEG data was initially segmented into 1 s and filtered using a finite impulse response
(FIR) filter with a frequency range of 1 to 40 Hz [35]. This step was instrumental in
attenuating extraneous noise and enhancing the signal-to-noise ratio of the EEG data,
thereby improving the quality of the data for subsequent analysis. Subsequent to the
filtering process, the data were subjected to an artefact removal procedure to address
ocular-related artefacts, a common occurrence in EEG data. This was achieved by utilising
the Independent Component Analysis (ICA) algorithm, as delineated by Aapo Hyvärinen
in his seminal work [36]. The ICA algorithm, renowned for its robustness in the separation
of independent sources, was employed to isolate and subsequently remove components of
the EEG data that were indicative of ocular movements.

Upon successful removal of artefacts, spectral analysis was performed on the sensor
data. This was facilitated by the “multitaper” method, a technique that employs discrete
prolate spheroidal sequences (DPSS) tapers [37]. This method was selected due to its ability
to provide robust spectral estimates with minimised variance. The lower and upper-bound
frequencies of interest were set to 1 and 40 Hz, respectively. This frequency range was
strategically chosen to focus on the frequency bands that were pertinent to the study while
concurrently excluding frequencies that could potentially introduce noise into the analysis.
The rigorous preprocessing steps outlined above ensured the optimal preparation of the
EEG data for the ensuing stages of the study.
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Following the preprocessing of the EEG data, the dataset was partitioned into training
and testing datasets, with proportions of 80% and 20%, respectively. Then, we split the
partitioned training dataset into training and validation datasets, with proportions of 70%
and 30%, respectively. This division was carried out to facilitate the model’s learning
process and to ensure a robust evaluation of its performance. To address the issue of data
imbalance, the SMOTEENN method was used. This hybrid resampling technique, which
combines the synthetic minority oversampling technique (SMOTE) [38] and the Edited
Nearest Neighbours (ENN), is highly effective in handling imbalanced data.

The SMOTEENN method first applies SMOTE to generate synthetic samples from the
minority class, thereby balancing the class distribution. Mathematically, for each minority
class sample x, it chooses one of its k nearest neighbours x′ and generates a new sample at
a random point between x and x′, i.e., xnew = x + λ. (x

′ − x), where λ is a random number
between 0 and 1. Subsequently, the ENN method is applied to remove any instances of
the majority class that are surrounded by minority class instances and any instances of the
minority class that are misclassified by its three nearest neighbours. This cleaning process
ensures that the oversampling does not overgeneralise the minority class by creating noisy
samples. The application of SMOTEENN in this study ensured a balanced representation
of classes, thereby improving the model’s ability to generalise from the training data to
unseen data.

3.2. The One-Dimensional Convolutional Neural Network (1D_CNN)

The 1D Convolutional Neural Network (1D-CNN) model is a variant of the traditional
Convolutional Neural Network that is specifically designed for sequence data [39,40].
The model is composed of five 1D-CNN layers, followed by a MaxPooling1D layer and a
flattened layer. The mathematical operation performed by a 1D-CNN layer can be described
as follows.

Given an input sequence x = [x1, x2, . . . , xn], a filter w = [w1, w2, . . . , wk] of length k
is applied to the sequence to produce a new sequence y = [y1, y2, . . . , yn−k+1], where each
element yi is computed as

yi = b +
k

∑
j=1

wj · xi+j−1 (1)

Here, b is a bias term. This operation is applied for each filter in the layer, and the
results are typically passed through a nonlinear activation function, such as the Rectified
Linear Unit (ReLU) function.

After passing through the five 1D-CNN layers, a MaxPooling1D layer is applied. This
layer reduces the dimensionality of its input by applying a max operation over sliding
windows of a specified size. If the window size is p, then the output z = [z1, z2, . . . , zn/p]
is computed as

zi = max
j=(i−1)p+1

yi (2)

This operation helps to make the model more robust to shifts and distortions in the
input data and reduces the computational complexity of subsequent layers. After passing
through the five 1D-CNN and MaxPooling1D layers, the output is flattened into a one-
dimensional vector. This flattened output can then be passed through one or more fully
connected layers, which perform the final classification or regression task. The 1D-CNN
model’s strength lies in its ability to effectively capture local dependencies in the input
data, making it particularly well suited for tasks involving time series or sequence data. Its
architecture allows it to learn both short- and long-term patterns in the data, which can be
crucial for many prediction tasks.

3.3. SHapley Additive exPlanations (SHAP)

SHAP is a unified measure of feature importance that assigns each feature an impor-
tance value for a particular prediction. The concept of SHAP is based on Shapley values, a
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concept from cooperative game theory that assigns payouts to players depending on their
contribution to the total payout [41]. SHAP values interpret the output of the ML and DL
models using a game-theoretic approach, attributing the prediction of each instance to its
features [15].

The SHAP value for a feature is the average marginal contribution of that feature
across all possible combinations of features. Mathematically, the SHAP value ϕi for a
feature i is given by

ϕi = ∑
S⊆M \ {i}

(|S| !(|M| − |S| − 1))!
|M|! [ f (S ∪ {i})− f (S)] (3)

where M is the set of all features, S is a subset of M without feature {i}, |S| is the number
of features in S, |M| is the total number of features, and f is the prediction function. The
term (|S|!(|M|−|S|−1)! /|M|! ) is the weight representing the number of times a subset S
of size |S| appears in all possible subsets of M.

In this study, SHAP values are used to interpret the predictions of the CNN model
trained on PSD features of EEG data. For each mental state prediction, SHAP values
are computed for all features, providing a measure of the contribution of each feature to
the prediction. This allows the identification of the top 10 most influential features for
each mental state, offering insight into the neural correlates of these states. The use of
SHAP values thus enhances the interpretability of the model, contributing to a deeper
understanding of the neural mechanisms underlying the mental states of interest in aviation.

4. Experimental Setup

This section elaborates on the experimental setup employed in this study, encompass-
ing the dataset, Python libraries, PC specifications, hyperparameter tuning, and evaluation
metrics. Each component plays a crucial role in the overall research design and contributes
to the validity and reliability of the results.

4.1. Dataset

In the present study, we employed a publicly released EEG dataset extracted from the
AHPLS dataset. This dataset encompasses psychophysiological data derived from 20 EEG
channels collected from 17 pilots operating within a flight simulation environment. The
data were annotated with labels corresponding to different mental states, namely the CA,
DA, SS, and NE states.

The EEG channels are denoted as follows: FP1, F7, F8, T4, T6, T5, T3, FP2, O1, P3,
Pz, F3, Fz, F4, C4, P4, POz, C3, Cz, and O2. Each channel was sampled at a frequency of
256 Hz, ensuring a high-resolution temporal dataset.

A noteworthy characteristic of this dataset is its class imbalance. The NE class con-
stitutes the majority of the dataset, accounting for 83% of the total instances. This is
followed by the CA class, which comprises 14% of the dataset. The DA and SS classes are
significantly underrepresented, making up 2% and 1% of the dataset, respectively. This
class imbalance poses a challenge for conventional ML models, necessitating the use of
specialised techniques to ensure robust and generalisable performance.

4.2. Python Libraries and PC Specifications

The computational experiments were conducted on a PC equipped with an Intel (R)
Core (TM) i7-10700 CPU @ 2.90 GHz. The PC boasts a RAM capacity of 32.0 GB, ensuring
efficient handling of large datasets and complex computations.

Python (version 3.10), renowned for its simplicity and powerful libraries, was used
for all computational tasks. We utilised several Python libraries, each serving a distinct
purpose. NumPy (version 1.21) and Pandas (version 1.3) were used for efficient data
handling and manipulation, providing robust structures for dataset operations. MNE-
Python, version 1.2, a library dedicated to processing electrophysiological signals, was
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used to handle the specific data types present in the AHPLS dataset. Scikit-Learn (version
1.0.2) was used for various ML tasks, including data preprocessing and model evaluation.
TensorFlow, version 2.4, a powerful library for creating and training DL models, was used
to construct and train our neural network models. Lastly, the SHAP library was used to
interpret the predictions of the proposed framework.

4.3. Hyperparameter Tuning

In the process of model development, hyperparameter tuning was performed to
optimise the performance of the 1D-CNN model. We utilised the Grid Search method to
systematically explore a range of hyperparameters. The hyperparameters were fine-tuned
based on the specific requirements of the task and the characteristics of the dataset. Table 1
summarises the hyperparameters that were fine-tuned for the 1D-CNN model:

Table 1. Hyperparameters of the layers of the 1D-CNN model.

Layer Filter Kernel Size Activation Function Padding Kernel Initializer

1 64 3 Relu Same GlorotNormal
2 128 3 Relu Same GlorotNormal
3 256 3 Relu Same GlorotNormal
4 128 3 Relu Same GlorotNormal
5 64 3 Relu Same GlorotNormal

The output layer of the model was a dense layer with four neurons and a softmax
activation function, which is suitable for multiclass classification tasks.

In addition to the layer-specific parameters, several global parameters were also set
for the training process. The learning rate was set to 1 × 10−4, which determines the step
size at each iteration while moving towards a minimum of a loss function. The model
was trained for 100 to 150 epochs, where an epoch is an iteration over the entire dataset.
The batch size was set to 32, which is the number of samples processed before the model
was updated.

The GlorotNormal initialiser was used with different seed numbers for initialising
the kernel’s weights. This initialiser draws samples from a truncated normal distribution
centred on 0, with stddev = sqrt(2/( f an_in + f an_out)), where f an_in is the number of
input units in the weight tensor and f an_out is the number of output units. This initialiser
is also known as the Xavier normal initialiser.

The hyperparameters were selected to optimise the model’s performance on the
validation set, and the selected model was then evaluated on the test set to assess its
generalisation capability.

4.4. Evaluation Metrics

The performance of the model was evaluated using a variety of metrics to provide a
comprehensive assessment. Accuracy, the most intuitive performance metric, measures the
proportion of correct predictions made by the model. Precision assesses the model’s ability
to avoid false positives, measuring the proportion of true positive predictions among all
positive predictions. Recall, on the other hand, evaluates the model’s ability to avoid false
negatives, measuring the proportion of true positive predictions among all actual positives.

The F1 score provides a balance between precision and recall. It is particularly useful
when the data have imbalanced classes, as it considers both false positives and false
negatives in its calculation. A high F1 score indicates a robust model with a good balance
between precision and recall.

In addition to these metrics, a confusion matrix was used to visualise the performance
of the model. The confusion matrix provides a comprehensive view of how well the model
performed across all classes, showing the true positives, true negatives, false positives, and
false negatives. It is a powerful tool for understanding the model’s performance in greater
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detail, allowing for the identification of any classes that the model may be struggling to
predict correctly.

Accuracy: This is the proportion of the total number of predictions that were correct.
It is determined using the formula

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision: Also called the positive predictive value, this is the proportion of positive
cases that were correctly identified. It is given by the formula

Precision =
TP

TP + FP
(5)

Recall: Also known as sensitivity, hit rate, or true positive rate (TPR), this is the
proportion of actual positive cases that are correctly identified. The formula is as follows:

Recall =
TP

TP + FN
(6)

F1 score: This is the harmonic mean of precision and recall and tries to find the balance
between precision and recall. It is given by the formula

F1 − score = 2 × Precision × Recall
Precision + Recall

(7)

5. Results

The results section of this study is organised into several subsections, each addressing
a distinct aspect of the analysis. The first subsection investigates the impact of different
mental states on the power distribution across EEG frequency bands. This analysis fur-
ther elucidates the neural mechanisms underlying the mental states of interest and their
manifestation in EEG data. The second subsection presents the performance metrics of the
1D-CNN model trained on the PSD features of EEG data from 17 pilots, along with the
training accuracy, loss function curves, and the confusion matrix. These metrics include
accuracy, precision, recall, and F1 score, providing a comprehensive evaluation of the
model’s ability to detect four mental states: CA, DA, SS, and NE states. Lastly, the model
interpretation subsection delves into the feature importance analysis, using SHAP values
to identify the top 10 most important features for each mental state. This analysis provides
insights into the EEG frequency bands and channels that are most influential in the model’s
decision-making process, offering a deeper understanding of the neural correlates of the
mental states under study.

Together, these subsections provide a comprehensive evaluation of the model’s perfor-
mance, an exploration of the key features driving its predictions, and an examination of the
neural underpinnings of the mental states it is designed to detect. The results presented
in this section not only demonstrate the effectiveness of the proposed approach but also
contribute to our understanding of the neural correlates of mental states in the context
of aviation.

5.1. Examining the Effects of Mental States on EEG Frequency Bands

The PSD of the EEG signals was analysed across different mental states and frequency
bands. The average power in each frequency band (delta δ, theta θ, alpha α, beta β, and
gamma γ) was calculated for each mental state (NE, SS, CA, and DA) and visualised using
a bar plot shown in Figure 2 and a heatmap as depicted in Figure 3.
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Figure 2. The average power in each frequency band across pilots.

Figure 3. Heatmap for the average power in each frequency band for EEG channels.

In Figure 2, the bar plot shows the average power in each frequency band for each
mental state. The height of each bar represents the average power in that band for that state.
It can be observed that there are distinct differences in the power across different frequency
bands for each mental state. This suggests that the power in different frequency bands may
be a useful feature for distinguishing between different mental states. However, there is
also considerable variability within each band and state. This suggests that there may be
individual differences or other factors that are not captured by the average power alone.
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In Figure 3, the heatmap shows the average power in each frequency band for each
EEG channel. The colour of each cell represents the average power in that band for that
channel. It can be seen that there are distinct patterns of power across different channels
and frequency bands. This suggests that the spatial distribution of power in different
frequency bands may also be a useful feature for distinguishing between different mental
states. However, it is also apparent that there is considerable variability across different
channels, suggesting that the power in different frequency bands may be influenced by the
location of the electrodes and the underlying brain regions.

Together, these results suggest that the power in different frequency bands and the
spatial distribution of the power across different channels may be useful features to distin-
guish between different mental states. However, further analysis is needed to determine the
statistical significance of these differences and investigate the potential influence of other
factors, such as individual differences and electrode placement. Future research could also
investigate the temporal dynamics of power in different frequency bands, as the current
analysis only considers the average power over the entire recording period.

5.2. Classification Results

The study utilised the proposed model to identify four distinct mental states of the
pilots: CA, DA, SS, and NE states. The model was trained on PSD features derived from
five frequency bands across 20 EEG channels. This approach allowed for a comprehensive
representation of the EEG data, capturing the complex interplay of different frequency
bands across multiple channels.

The model was trained individually on each of the 17 pilots and then on the combined
data of all pilots. The performance of the model was evaluated using four key metrics:
Accuracy, precision, recall, and F1 score. These metrics provide a holistic view of the
model’s performance, capturing its ability to make correct predictions (accuracy), its ability
to correctly identify positive instances (precision), its ability to identify all positive instances
(recall), and the balance between its precision and recall (F1 score).

As presented in Table 2, the results showed a high degree of consistency across all
metrics for each pilot. The accuracy, precision, recall, and F1 scores all fell within a relatively
narrow range of 94% to 99%. The highest accuracy and precision of 99% were achieved by
Pilot 2. The lowest scores across all metrics were observed for Pilot 12, with an accuracy of
94%, precision of 91%, and an F1 score of 90%.

Table 2. Classification results of individual and combined pilots.

Pilot ID Accuracy Precision Recall F1 Score

1 97 97 95 96
2 99 99 98 98
3 97 98 95 96
4 96 94 94 94
5 97 98 96 96
6 97 96 94 95
7 97 98 96 96
8 96 95 92 93
9 97 96 97 97
10 95 96 90 92
11 95 95 89 91
12 94 91 89 90
13 96 95 93 94
14 96 97 92 93
15 97 95 96 95
16 98 98 95 96
17 98 97 96 97
All 96 96 94 95
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When the model was trained on the combined PSD features of all pilots, it achieved
an accuracy, precision of 96%, recall of 94%, and F1 score of 95%. This suggests that the
model was able to generalise well from individual pilots to a larger population.

In addition to the proposed model performance metrics, the training process was
also evaluated by examining the accuracy and loss curves for the training and validation
datasets, as depicted in Figure 4. For the training dataset, the accuracy curve demonstrated a
consistent upward trend, indicating a steady improvement in the model’s ability to correctly
predict the mental states as the training progressed. This consistent improvement suggests
that the model was effectively learning the patterns in the training data and adapting its
parameters accordingly. Simultaneously, the loss curve for the training dataset showed a
consistent downward trend, indicating that the model was successfully reducing the error
in its predictions over time. This is a positive sign of the model’s learning capability as
it shows that the model was able to progressively minimise the discrepancy between its
predictions and the actual values.

Figure 4. Training accuracy and loss curves of the proposed model.

In contrast, the accuracy and loss curves for the validation dataset showed slight
irregularities. Despite these irregularities, the overall trend of the validation accuracy curve
was positive, and the validation loss curve generally showed a decreasing trend. This
indicates that, despite the fluctuations, the model was able to apply what it learnt from the
training data to unseen data, demonstrating a good level of generalisation.

The performance of the proposed model was evaluated in a more detailed manner
using a confusion matrix. This matrix provides a comprehensive view of the model’s ability
to correctly classify each of the four mental states: NE, SS, CA, and DA. The matrix is
structured such that each row represents the instances in an actual class while each column
represents the instances in a predicted class. The confusion matrix is depicted below in
Figure 5.

The diagonal elements of the confusion matrix, which represent the percentage of
correct predictions for each mental state, show that the model achieved high accuracy rates
for each of the four mental states, with the lowest being 81.94% for the NE and the highest
being 99.91% for the DA state.

In a rigorous comparative analysis, the performance of the proposed framework was
benchmarked against various established neural network models outlined in existing lit-
erature. The models chosen for this comparative study encompassed Deep Contractive
Autoencoder Networks (DCAEN), ANN, CNN, and LSTM. The empirical evaluation re-
vealed that our model exhibited superior classification accuracy. Specifically, the proposed
model surpassed the DCAEN model by 21%, the CNN model by 12%, the LSTM model by a
substantial margin of 16%, and the ANN model by 16%. This quantitative advantage under-
scores the efficacy of the proposed framework in learning and generalising from the data,
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thereby outclassing the comparative models in terms of performance. The comparative
performance metrics are succinctly tabulated below in Table 3.

Figure 5. Confusion matrix of the proposed approach.

Table 3. Comparative performance analysis of the proposed framework with established neural
network models.

Model Authors Performance Accuracy Relative Performance Improvement

DCAEN [27] 75% 21%
CNN [30] 84% 12%
LSTM [21] 80% 16%
ANN [20] 80% 16%

Proposed Model - 96% -

5.3. Model Interpretation Using SHAP

The study employed SHAP values to identify the top 10 most important features
for each mental state class: NE, SS, CA, and DA. The SHAP values provide a measure of
the contribution of each feature to the model’s prediction for each class, allowing for an
understanding of which features are most influential in determining the mental state.

For the NE class, the top 10 features were primarily delta and beta frequency bands
from various EEG channels. The mean absolute SHAP values for these characteristics, as
shown in Figure 6, ranged between 0.15 and less than 0.25. The SS class showed a similar
pattern, with the top 10 features being predominantly delta and beta frequency bands. As
shown in Figure 7, the mean absolute SHAP values for these characteristics ranged between
a little less than 0.08 and a little bit less than 0.11. The CA class also showed a predominance
of delta and beta frequency bands in the top 10 features. Figure 8 illustrates that the mean
absolute SHAP values for these features ranged between 0.127 and approximately 0.225.
Lastly, for the DA class, the top 10 features were primarily delta and beta frequency bands.
Figure 9 shows that the mean absolute SHAP values for these features ranged between a
little bit less than 0.08 and a little bit more than 0.12.
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Figure 6. Top 10 important features for NE class.

Figure 7. Top 10 important features for SS class.
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Figure 8. Top 10 important features for CA class.

Figure 9. Top 10 important features for DA class.

6. Discussion

The results of this study demonstrate the potential of using the proposed approach
to detect mental states based on PSD features of the EEG data. The high-performance
metrics across all pilots suggest that the model is effective in distinguishing between the
four mental states: CA, DA, SS, and NE.
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The use of PSD features from five frequency bands (i.e., delta, theta, alpha, beta, and
gamma) across 20 EEG channels likely contributed to the model’s high performance. These
features provide a rich representation of the EEG signals, capturing important frequency-
specific information that is relevant for distinguishing between different mental states.
PSD features encapsulate the power distribution over various frequency bands, which is
a crucial aspect of EEG signals that are often linked to different mental states. However,
the variation in the model’s performance across different pilots indicates that individual
differences may have influenced the results. Each pilot may have unique EEG patterns
and responses to different mental states, which could affect the model’s performance. For
example, the model achieved the highest performance metrics with Pilot 2, suggesting that
the features of this pilot’s EEG data were particularly well-suited to the model. On the
other hand, the model’s performance was lowest with Pilot 12, indicating that there may be
unique aspects of this pilot’s EEG data that were not as effectively captured by the model.

The fact that the model performed well on the combined data of all pilots is promising.
It suggests that the model is capable of generalising across different individuals, which is
crucial for its potential application in real-world settings. However, the slightly lower recall
score in comparison to the other metrics indicates that there is still room for improvement
in the model’s ability to correctly identify all instances of the different mental states. Future
work could explore ways to further improve the model’s performance. This could include
refining the model’s architecture, experimenting with different methods of preprocessing
the EEG data or incorporating additional features that capture more information about the
pilots’ mental states. For instance, exploring different types of feature extraction methods
or incorporating temporal information could potentially enhance the model’s performance.
Additionally, additional validation with larger datasets and in real-world settings would
be beneficial to confirm these findings and further refine the model.

This study provides valuable insights into the potential of using the proposed frame-
work for detecting mental states based on PSD features of EEG data. The high-performance
metrics achieved by the model suggest that it could be a valuable tool in fields such as
aviation, where monitoring pilots’ mental states could contribute to safety and performance.
However, it is important to note that while the model’s performance is promising, the
interpretation and application of these results should be carried out with caution. The
model’s performance is based on the specific dataset used in this study, and its performance
may vary with different datasets. Therefore, further research and validation are necessary
to fully understand the model’s capabilities and limitations.

Analysis of the accuracy and loss curves provides valuable insights into the learning
process and its ability to generalise from the training data to unseen data. The steady
increase in the training accuracy and the consistent decrease in the training loss demonstrate
that the model was effectively learning from the PSD features extracted from the EEG data.
This suggests that the model’s architecture and the preprocessing steps taken, including
the use of PSD features, were well suited for the task of detecting the four mental states.

The slight irregularities observed in the validation accuracy and loss curves suggest
that the model’s performance varied when applied to different subsets of data. These
fluctuations could be due to a variety of factors, including inherent variability in the
EEG data, individual differences between pilots, or the specific division of the data into
training and validation sets. Despite these irregularities, the overall positive trend in
the accuracy of the validation and the general decrease in the validation loss indicates
that the model was able to generalise its learning to new data, which is a crucial aspect
of its performance. However, the presence of these irregularities also suggests potential
areas for improvement in the model. Future work could explore different strategies for
managing these irregularities, such as adjusting the model’s architecture, experimenting
with different methods of data preprocessing, or using different strategies for dividing the
data into training and validation sets. In conclusion, the accuracy and loss curves provide
additional evidence of the potential of the proposed model to detect mental states based on
PSD features extracted from the EEG data. Despite some irregularities in the validation
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curves, the overall trends suggest that the model is capable of learning effectively from
the data and generalising its learning to new data. This holds promise for the model’s
application in real-world settings, such as aviation, where accurate detection of pilots’
mental states could contribute to safety and performance.

The confusion matrix provides a deeper understanding of the model’s performance
across the four mental states. It is evident that the model performs exceptionally well in
classifying the SS and DA states, with almost perfect accuracy rates of 99.90% and 99.91%,
respectively. This high level of accuracy suggests that the model is highly effective in
distinguishing these states, likely due to the distinct PSD features associated with these
mental states in the EEG data. The CA state also saw a high accuracy rate of 95.51%,
indicating that the model is also capable of effectively identifying this state. However, the
NE state had a noticeably lower accuracy rate of 81.94%. This could be due to the inherent
complexity in distinguishing the NE state from the other mental states, as the NE state
might not exhibit as distinct PSD features as the other states. The off-diagonal elements
of the confusion matrix, which represent the instances where the model made incorrect
predictions, provide further insights into the model’s performance. For instance, the model
misclassified the NE state as the CA state in 12.67% of instances. This could suggest that
the EEG features of these two states might share some similarities, causing the model to
confuse between them.

Despite these challenges, the overall performance of the model, as demonstrated by the
confusion matrix, is highly promising. The model’s ability to achieve high accuracy rates
across the four mental states suggests that it is capable of effectively using PSD features
extracted from EEG data to detect different mental states. Future work could focus on
improving the model’s ability to distinguish the normal state, potentially by incorporating
additional features or refining the model’s architecture. Furthermore, additional validation
with larger datasets and in real-world settings would be beneficial to confirm these findings
and to further refine the model.

The results stated in Table 3 reveal a compelling narrative regarding the superior
performance of the proposed framework in comparison to other well-established neural
network architectures. The comparative analysis unveiled a marked improvement in
classification accuracy by the framework model, thereby underlining its robustness and
efficacy in deciphering intricate patterns within the data. Specifically, the substantial lead of
21% over the DCAEN model, 12% over the CNN model, and 16% over the LSTM and ANN
models underscores the adeptness of the proposed framework in handling the inherent
complexities of the classification task. The pronounced superiority in performance could
be attributed to the careful design of the proposed framework, which possibly enabled a
better understanding and representation of the underlying data distributions. Furthermore,
the results accentuate the potential of the proposed framework for broader applicability in
related domains demanding high-accuracy classification tasks. It is salient to acknowledge
that while the proposed framework outperformed the other models, the comparative
analysis also sheds light on the areas where other models could be refined and optimised
for better performance.

Upon the analytical examination of the model performance, a salient feature of our
model’s architecture merits discussion. Unlike frameworks employing recurrent layers
such as LSTM layers, our model, anchored by 1D-CNN, availed a clear pathway to discern
the contribution of individual features towards specific predictions. This clarity was further
enhanced via the employment of the SHAP method, which enabled a detailed exploration
into feature importance. The comparison of our model against those incorporating LSTM
layers underscores a pervasive challenge: the inherent intricacy of recurrent mechanisms
often veils the precise attribution of features, making the elucidation of individual feature
contributions towards predictions a challenging endeavour. However, the integration of
1D-CNN and SHAP in our model mitigated this challenge, fostering not only superior
classification accuracy but also augmented interpretability. This aspect of interpretability is
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crucial, especially in domains where deciphering the rationale behind model predictions is
imperative for garnering trust and facilitating actionable insights.

The results of the SHAP analysis, as visualised in Figures 6–9, provide valuable insight
into the most important features to predict each mental state. The predominance of delta
and beta frequency bands in the top 10 features for each class suggests that these frequency
bands may be particularly important for distinguishing between different mental states.
Delta waves are typically associated with sleep or deep relaxation, while beta waves are
associated with active thinking or focus. This aligns with the nature of the mental states
being predicted, as channelised and diverted attention would likely involve more active
thinking (beta waves), while a normal state might be more relaxed (delta waves).

However, it is interesting to note that the specific EEG channels that were most
important varied between the classes. This suggests that different mental states may be
associated with activity in different regions of the brain, which is captured by the different
EEG channels. For example, the F7 channel (frontal lobe) was important for the NE, SS,
and CA classes, while the T3 channel (temporal lobe) was important for the SS and DA
classes. This could potentially provide insights into the neural mechanisms underlying
these mental states.

The range of the mean absolute SHAP values for the top 10 features in each class
also provides information about the relative importance of these features. The NE and CA
classes had higher SHAP values compared to the SS and DA classes, suggesting that the
top features for NE and CA may have a stronger influence on the model’s predictions.

These findings highlight the complexity of predicting mental states based on EEG data
and the importance of considering both the frequency and spatial information contained
in the data. However, further research is needed to fully understand the implications of
these results and to explore how this information can be used to improve the model’s
performance. For instance, it might be beneficial to incorporate these findings into the
feature selection or preprocessing stages of the model development process.

7. Conclusions

The present study has made significant strides in demonstrating the potential of the
proposed approach for the classification of distinct mental states, specifically CA, DA, SS
and NE states, based on PSD features derived from EEG data. The model’s performance, as
assessed by accuracy, precision, recall, and F1 score metrics, was consistently high across all
pilots, indicating its robustness and generalisability. This is a promising finding, suggesting
that the model can effectively learn from individual pilots and apply this learning to a
broader population.

The use of SHAP values in this study has provided a deeper understanding of the
model’s decision-making process. By identifying the most influential features for each
mental state, we have gained insights into the importance of both frequency-specific and
spatial information in EEG data for mental state classification. The predominance of delta
and beta frequency bands in the top features for each class suggests that these frequency
bands play a crucial role in differentiating between various mental states.

However, the study also revealed the complexity of the task at hand. The variation
in the model’s performance across different pilots and the range of SHAP values across
classes underscore the influence of individual differences and the complexity of the mental
states being predicted. These findings suggest that while the model is effective, there
is still room for improvement and refinement. Future work could focus on enhancing
the model’s architecture, exploring different preprocessing methods, or incorporating
additional features that capture more nuanced aspects of the pilots’ mental states.

Furthermore, the findings need to be validated with larger datasets and in real-world
settings to confirm their applicability and further refine the model. The high-performance
metrics achieved by the model suggest its potential utility in fields such as aviation, where
monitoring pilots’ mental states could contribute to safety and performance. However,
the interpretation and application of these results should be carried out with caution,
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considering the specific dataset used in this study and the potential variability in the
model’s performance with different datasets.

In conclusion, this study contributes valuable insights into the potential of CNN
models for mental state detection based on PSD features of EEG data. It underscores the
importance of comprehensive feature representation, the influence of individual differences,
and the need for further research and validation to fully realise the potential of this approach.
The findings of this study pave the way for future research in this area, with the ultimate
goal of enhancing sty and performance in high-stakes fields such as aviation.
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Abstract: Epilepsy is a condition that affects 50 million individuals globally, significantly impacting
their quality of life. Epileptic seizures, a transient occurrence, are characterized by a spectrum of
manifestations, including alterations in motor function and consciousness. These events impose re-
strictions on the daily lives of those affected, frequently resulting in social isolation and psychological
distress. In response, numerous efforts have been directed towards the detection and prevention
of epileptic seizures through EEG signal analysis, employing machine learning and deep learning
methodologies. This study presents a methodology that reduces the number of features and channels
required by simpler classifiers, leveraging Explainable Artificial Intelligence (XAI) for the detection of
epileptic seizures. The proposed approach achieves performance metrics exceeding 95% in accuracy,
precision, recall, and F1-score by utilizing merely six features and five channels in a temporal domain
analysis, with a time window of 1 s. The model demonstrates robust generalization across the patient
cohort included in the database, suggesting that feature reduction in simpler models—without re-
sorting to deep learning—is adequate for seizure detection. The research underscores the potential
for substantial reductions in the number of attributes and channels, advocating for the training of
models with strategically selected electrodes, and thereby supporting the development of effective
mobile applications for epileptic seizure detection.

Keywords: machine learning; Explainable AI; electroencephalography; epilepsy

1. Introduction

Epilepsy is a pathology that affects approximately 50 million individuals worldwide,
with an estimated 2.4 million new cases developing annually. The prevalence of the disease
varies, influenced by numerous factors, yet it is predominantly observed in developing
countries. This trend underscores the importance of advancements in treatment and
preventive measures as pivotal in curtailing such rates [1]. Moreover, individuals diagnosed
with epilepsy often experience diminished quality of life, arising from social isolation,
limitations in performing daily tasks, societal stigma, and psychological impacts on the
patients and their families [2].

An epileptic seizure is a transient occurrence with diverse clinical manifestations that
may affect sensory, motor, and autonomic functions; consciousness; memory; and can
cause perceptual distortions [2]. Electroencephalography (EEG), a technique for measuring
brain activity by recording electrical signals from the scalp, is commonly employed in the
diagnosis of this condition. It can reveal the abnormally heightened synchrony of neuronal
activity characteristic of epileptic seizures. However, it is not uncommon for patients with
recurrent seizures to exhibit normal EEG patterns during and between seizure episodes [2],
thus complicating accurate diagnosis.
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Epileptic events known as absence seizures are particularly subtle, often marked by
minimal motor activities [3]. Clinically identifying the onset and conclusion of such seizures
poses a challenge, more so with atypical absence seizures where the indicators are less
pronounced. Consequently, EEG signal monitoring becomes essential to the confirmation
of these types of seizures [4].

The detection of epileptic seizures can be useful for recording and monitoring seizure
frequencies in patients with the disease [5], such as those who experience absence seizures [6].
Simplified models for epileptic seizure detection—using few channels and requiring low
computational costs—enable the implementation of embedded and wearable systems aimed at
identifying seizures for subsequent medical analysis, as demonstrated in the study conducted
by [6], where they achieved a sensitivity of 98.4% in the detection of typical absence seizures.

Given the significance and intricacy of seizure detection, considerable efforts have
been directed towards machine learning (ML)-based methodologies for the automated
analysis of EEG signals. Supervised ML classifiers are commonly employed in this do-
main [7–12], along with deep learning (DL) techniques [13,14]. These approaches are geared
towards developing models adept at binary classification [7–9,11,12] as well as multiclass
classification tasks [15,16].

Feature extraction is a pivotal element in enhancing the performance of ML models, par-
ticularly within the realm of EEG signal analysis. The methodologies for feature extraction
in this context span across time, frequency, time–frequency, and non-linear domains [17], uti-
lizing values from EEG signals over brief temporal windows. Time domain techniques often
employ statistical metrics such as standard deviation, kurtosis, skewness, and mean [8,15,16].
Frequency domain approaches typically involve the use of Fast Fourier Transform (FFT) or
Discrete Wavelet Transform (DWT) coefficients, either directly or through derived statistical
measures of these coefficients [7,9–12,16,18,19]. Owing to the inherent non-linearity of EEG
signals [20], certain studies also focus on extracting non-linear features, including Sample
Entropy, Wavelet Entropy [21], and the Lyapunov exponent [22].

In addition to feature extraction, feature selection is crucial for the development of ac-
curate and efficient machine learning models [23]. Several studies have proposed feature
extraction techniques aimed at reducing dimensionality, such as Principal Component Analy-
sis (PCA) [9]. Nonetheless, many of these techniques do not account for the specific channels
associated with the selected features, which can necessitate the use of numerous electrodes.
This requirement potentially complicates the deployment of compact and embedded devices.

Explainable Artificial Intelligence (XAI) has recently emerged as a promising approach
to elucidate the intricacies of model decision-making processes, offering insights into how
specific outcomes are derived. Such transparency is indispensable in healthcare applica-
tions, ensuring that model behaviors can be understood and trusted by practitioners [24].
An example of an application is the work of [25], which used XAI techniques for predicting
strokes through interpretable analysis of EEG signals.

Among the XAI approaches, the SHapley Additive exPlanations (SHAP) method, as
presented in [26], provides significance values for each feature in predicting the data, as dis-
cussed in [24]. According to [27], where the author conducted a study to identify epileptic
seizures through the analysis of EEG signals using the SHAP technique, interpreting the
model’s output allows us to understand where it needs improvement. They mentioned
three benefits of SHAP: global interpretability (contribution of each feature), local inter-
pretability (each individual sample has its SHAP value), and versatility (usable with any
tree-based model) [27].

In this study, we aimed to develop an efficient method for detecting epileptic seizures
in EEG, focusing on reducing the number of channels used for signal acquisition and data
processing. To achieve this, we applied an interpretable method—SHAP—to optimize
machine learning models that perform binary classifications of EEG segments from interictal
(period between epileptic seizures) and ictal (seizure period) states. Additionally, we also
investigated the spatial proximity of relevant channels to the focal areas of epileptic seizures
in the patients’ database.
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The remainder of this work is organized as follows: Section 2 presents the concepts
and operation of XAI and SHAP; Section 3 discusses related works; Section 4 describes the
proposed approach; Section 5 presents the materials and methods, including the utilized
dataset and experimental setup; Section 6 showcases the obtained results; Section 7 provides
a discussion; and Section 8 highlights the main conclusions and suggests future work.

2. Explainable Artificial Intelligence

Advanced ML-based predictive models, including DL neural networks, can achieve
excellent performance in mapping resources as the input to classes as the output of these
models. Nonetheless, these models are often opaque, resembling ’black-box’ systems,
which may inadvertently contribute to misinterpretations by neglecting data errors or
human biases embedded within the training data, thereby affecting the decision-making
process. Conversely, a transparent ML paradigm fosters the development of open and
accountable models that are designed to address and mitigate such issues [28].

The explainability of an ML model is the elaboration of an interface between the
human and the machine that is understandable to the human. Thus, the decision-making
actions by the ML model need to be explainable [28].

Explainability transforms a non-interpretable model into one that can be interpreted,
essentially delineating cause and effect relationships. Thus, Explainable Artificial Intelligence
is designed to generate results that are readily understandable to users [29]. Consequently,
such models bolster interpretability while preserving the precision of their predictions [30].

SHAP (SHapley Additive exPlanations) is a tool within the Python ecosystem that
quantitatively attributes importance to individual features regarding their contribution
to a model’s predictions, grounding its methodology in coalition game theory, where the
feature values of an instance are treated analogously to players in a game [26,31,32].

One of the possible representations of SHAP values is the SHAP summary plot, in
which features are ranked first by their global impact and then by points representing the
SHAP values. Points that represent each feature of each sample in the graph are created—in
blue, they represent low values of the contribution of the feature, and points colored in red
represent high values, and there may be a color graduation between the points—which
accumulate vertically, indicating the density [33]. Figure 1 shows this type of graph, in
which the influence of certain attributes on mortality is observed. Thus, high SHAP values
indicate, for a given attribute, a greater probability of death [33,34].

Figure 1. Shap summary plot [33].
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3. Related Works

The current landscape of EEG signal analysis covers various applications. There are
works focused on brain–computer interfaces for controlling orthoses/prostheses [35–37],
controlling computer systems and devices [38–40], muscular rehabilitation through neuro-
feedback [41,42], assessing psychological states and emotions [43,44], and diagnosing and
treating neurological disorders [45,46], among various applications aimed at improving the
quality of life of individuals, either in a functional or health context.

In the field of epileptic seizure identification, the landscape is extensive and diverse.
Some works perform seizure identification through EEG signals, as presented in Table 1,
while others use medical images [47–49]. Some works aim to detect only the presence or
absence of a seizure, as shown in Table 1, while others aim to differentiate between seizure
types [50–52], and some seek to predict seizures [53–55].

Table 1. Comparative studies with binary classification (interictal vs. ictal) of EEG signals.

Methodology Performance

Authors: [7] Accuracy: 0.91
Database: TUH F1-score: 0.91

Domain: time and frequency AUC: 0.95
Classifier: Random Forest

Dimensionality reduction: None
Channels: 19
Features: 19

Attributes: 19 × 19 = 361

Authors: [8] Accuracy: 0.93
Database: TUH Precision: 0.94

Domain: time and frequency Recall: 0.94
Classifier: SVM Specificity: 0.91

Dimensionality reduction: None F1-score: 0.94
Channels: 21
Features: 13

Attributes: 21 × 13 = 273

Authors: [9] Precision: 0.73
Database: TUH Recall: 0.79

Domain: frequency F1-score: 0.78
Classifier: Logistic Regression

Dimensionality reduction: PCA
Channels: 21
Features: 5

Attributes: 7

Authors: [10] F1-score: 0.84
Database: TUH

Domain: frequency
Classifier: LightGBM

Dimensionality reduction: None
Channels: 21
Features: 96

Attributes: 2016

Authors: [11] Accuracy: 0.88
Database: TUH Recall: 0.83

Domain: frequency Specificity: 0.91
Classifier: CatBoost

Dimensionality reduction: None
Channels: 21
Features: 96

Attributes: 21 × 96 = 2016
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Table 1. Cont.

Methodology Performance

Authors: [12] (Interictal; Ictal)
Database: CHB-MIT Accuracy: 0.99; 0.99

Domain: time and frequency Precision: 1; 0.98
Classifier: SVM Recall: 1; 1

Dimensionality reduction: None F1-score: 0.99; 0.99
Channels: 22
Features: 18

Attributes: 22 × 18 = 396

Authors: [18] Accuracy: 0.99
Database: CHB-MIT Recall: 0.99

Domain: time and frequency Specificity: 0.83
Classifier: Random Forest

Dimensionality reduction: None
Channels: 20
Features: 8

Attributes: 1328

Authors: [19] Precision: 0.47
Database: CHB-MIT Recall: 0.81
Domain: frequency F1-score: 0.56

Classifier: KNN
Dimensionality reduction: t-SNE

Channels: 21
Features: 1

Attributes: 2

Literature reviews present a more comprehensive and comparative scenario. For in-
stance, Ref. [17] discusses various feature extraction techniques in the time, frequency, time–
frequency, and non-linear domains. Others highlight existing gaps in the field. Ref. [56]
conducted a review on seizure prediction and reported that selecting the most significant
channels is interesting for seizure prediction areas. Meanwhile, Ref. [57] conducted a
bibliographic survey covering both seizure detection and prediction and concluded that
channel selection is favorable for reducing computational costs, especially when the goal
is to implement an online application. In their review work, Ref. [58] encourage the use
of “non-black-box” classifiers as they can be more efficient when the objective is to find
information about seizure localization. Ref. [59] reported some gaps in the research area,
including the need to invest in a type of epilepsy known as absence seizures, due to the
difficulty of visual identification [59].

In this study, a bibliographic search was conducted for publications that employed
ML techniques (excluding DL) for the classification of binary data (interictal and ictal) in
humans with epilepsy. It was chosen to use ML techniques because they are more feasible
for performing model explainability analysis and observing the importance of features [60].
DL models, being “black-box”, make it difficult to understand predictions and are therefore
less interpretable [61]. In addition, DL models are more prone to overfitting [62], have
longer training times, and require a large amount of data [63].

Table 1 offers a comparative analysis of related works, succinctly summarizing the
methodologies employed and the performance outcomes as measured by the metrics
applied in each respective study. The datasets referenced in Table 1 originate from Temple
University Hospital (TUH) [64] and the Children’s Hospital Boston–Massachusetts Institute
of Technology (CHB-MIT) [65].

It is noticeable that works achieving around 99% accuracy require a high number of
attributes, as is the case with 396 [12] and 1328 [18]. In the latter case, specificity was low
compared with recall and accuracy, indicating that despite the large number of attributes,
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there was a challenge in achieving relative precision in identifying non-seizure data as
non-seizure by the classifier.

Studies that applied methods to reduce the number of input vectors, such as Principal
Component Analysis (PCA) and non-linear dimension reduction using t-distributed stochas-
tic neighbor embedding (t-SNE), achieved precisions of 0.73 [9] and 0.47 [19], respectively.
This result highlights the importance of selecting attributes using explainable methods.

Next, we provide a brief description of the works presented in Table 1.
Ref. [7] assessed various machine learning classifiers to distinguish between EEG

records of patients with and without epileptic seizures. They utilized signal complexity
measures and spectral power in different frequency bands for this purpose. In their findings,
they indicated that the combination of complexity and spectral power achieved effective
classification performance using a TUH dataset. However, in the study, they pointed out
the need to consider gender differences as there is variation in EEG signals, which they
intend to investigate in future work.

Ref. [8] developed a method for the automatic detection of generalized seizures in the
TUH dataset by preprocessing EEG signals, extracting features in the time and frequency
domains, and using machine learning classifiers, including Logistic Regression, Decision
Tree, and SVM. SVM achieved the highest accuracy, reaching 0.93 in the binary classification
of generalized seizures.

Ref. [9] used Logistic Regression as a classifier and extracted signal features through
Fourier Analysis, with an emphasis on the energy distribution in different frequency bands.
They also employed PCA and observed improvements in some performance metrics. The
study involved 20 epilepsy patients and 20 healthy individuals. They suggested that proper
feature selection before applying PCA is crucial to achieve significant improvements.

In [10], three wavelet-based feature extraction methods were applied and compared to
classify multiple types of seizures in EEG data from the TUH database. Using the LightGBM
classifier and without performing dimensionality reduction, they achieved a performance
of approximately 0.84 in terms of weighted F1-score for the two classes analyzed.

Ref. [11] developed an automatic classification system for brain signals in multi-channel
EEG records, using Wavelet Packet Decomposition to extract statistical features from frequency
subbands such as mean absolute values, mean power, standard deviation, mean absolute
value ratio, skewness, and kurtosis. Three Gradient Boosting Decision Tree-based classifiers
were employed, with CatBoost achieving a classification accuracy of 0.88.

Ref. [12] developed an Automated Seizure Detection System using SVM and kNN
classifiers and features extracted in the time, frequency, and time–frequency domains. The
authors proposed generating metadata for the CHB-MIT database. Furthermore, they
emphasized the importance of incorporating medical knowledge with machine learn-
ing methods.

Ref. [18] developed a hybrid seizure detection algorithm that combines continuous
electroencephalography and integrated amplitude electroencephalography signals to diag-
nose epilepsy. They extracted features from multiple domains and performed classification
using Random Forest. The study demonstrated high accuracy; however, they claim that
the method is more suitable for longer seizures. They also developed a portable seizure
detection system.

Ref. [19] employed a Random Forest classifier to select the most informative channels
and a KNN classifier for the final discrimination between seizures and non-seizures. Feature
extraction was based on the frequency domain of EEG signals, with 23 patients participating
in the study. The combination of channel selection and non-linear dimensionality reduction
enabled the method to achieve a recall performance of 0.81.

4. Proposed Approach

The proposal presented here for the efficient detection the epileptic seizures using
EEG signals is composed of two phases. In the first one, the main contribution is the
XAI-based approach to feature selection. Then, the second phase uses a similar procedure
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to obtain more efficient results. In both phases, the SHAP XAI Python library was used for
feature selection.

Figure 2 shows the activity sequence of the first phase, which is described as follows:

• Raw data: In this first part, the raw data are downloaded from the site and the training
and test data indicated in the dataset are used.

• Pre-processing: The initial step in pre-processing involves segregating the data into
two distinct classes: interictal (non-seizure) and ictal (encompassing various seizure
types). For the purpose of binary classification, all seizure types are amalgamated
into a single ’ictal’ class. Subsequently, data normalization is carried out followed by
signal segmentation within a specified time window.

• Feature extraction: The features are extracted in the time domain for each of the
channels of the segmented signal.

• Model selection: Training and testing with different ML models are performed. The
ML model with the best performance in accuracy is chosen to be used in the next steps.

• Obtaining the reduced model: Based on the model selected in the previous phase,
attribute selection is performed, considering the attributes that contributed the most
to the prediction according to the SHAP value. New models with a reduced number
of attributes are then trained.

Figure 2. The first phase activity sequence of the proposed approach.

The second phase of the proposed methodology was dedicated to diminishing the
quantity of input vectors by amalgamating the most recurrently significant channels and
features. This phase encompassed two procedures: feature selection followed by obtaining
the reduced model.

• Feature selection: a combination is made with the most recurrent channels and features
(product of the number of most recurrent channels and the number of most recurrent
features) among the attributes that contributed most to the prediction according to the
SHAP value.

• Obtaining the reduced model: A model is trained with the attributes from the combi-
nation in the previous step. The SHAP value is used again to rank the attributes that
contributed most to the prediction, and then new models with a reduced number of
attributes are trained, following the order of relevance.

5. Materials and Methods

In this section, the materials and methods used are presented, including a description
of the chosen dataset and experimental setup.

5.1. Dataset

The database selection for the method implementation followed several criteria: it had
to be a public database; contain data from humans with epilepsy; use surface EEG channels;
include interictal and ictal segments; have at least the channels arranged in the international
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10-20 system; be acquired at a sampling rate between 200 and 512 Hz, as it is the ideal range
for observing epileptic data information [3]; include data from at least two patients; and
provide information about the type of seizures and the brain location of each patient.

The database employed in this research is the publicly accessible dataset from the
University of Beirut Medical Center (UBMC) [66]. This dataset comprises recordings from
six epilepsy patients. The data were captured at a sampling rate of 500 Hz, encompassing
in excess of 7 h of ictal recordings—including Complex Partial Seizure, Electrographic
Seizures, and Video-detected Seizures without observable EEG changes—and over 7 h of
interictal recordings [66]. Recordings were conducted using twenty-one surface electrodes
aligned with the international 10-20 system for electrode placement [67].

Data were selected so that analyses were performed in two classes (interictal and ictal).
In addition, of the 21 available channels, only 19 were used because there were missing
records of two channels (Cz and Pz) in some recordings [66].

The documentation also contains information about the type of seizure for each patient,
which are electrographic or Complex Partial Seizure. The focal points were also recorded,
including Fp2, F4, F8, T6, Cz, C3, C4, T3, T3-P3, T3-C3, right temporal, left hemisphere,
posterior temporal, fronto-temporal, diffuse onset, and no change over surface EEG [66].

The provided dataset is pre-labeled for training and testing across four classes and is
available in the .mat file format. It encompasses 3,505,500 data points designated for training
and 389,500 for testing, resulting from signal acquisition with a sampling rate of 500 Hz [66].

Feature extraction was performed using a window of 1 s (500 samples per second);
thus, the number of entries was reduced to 7011 samples of training data (3479 samples
of interictal data and 3532 samples of all classes of ictal data) and 779 test data samples
(416 interictal data samples and 363 samples from all types of ictal data).

Figure 3 illustrates the international 10-20 electrode positioning system [67], with annota-
tions to facilitate comparison with the patient data from the UBMC database. In the figure, the
electrodes corresponding to regions affected by epilepsy in the patients documented in [66]
are highlighted in blue. The channels that were not recorded, Cz and Pz, are indicated in red.

Fp1 Fp2

F7
F3 Fz F4

F8

A1 T3 C3 Cz C4 T4 A2

T5
P3 Pz P4

T6

O1 O2

Frontopolar

Frontal

Temporal

Central

Parietal

Occipital

Auricular

Figure 3. The international 10-20 system of electrode placement.
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5.2. Experimental Setup

In this subsection, the experimental configuration of the presented proposal is detailed,
in two phases.

5.2.1. First Phase

Initially, after acquiring the database, it was decided to use the training and test files
indicated in the database in .mat format. Data were segmented into 2 classes—ictal data
(Complex Partial, Electrographic, and Video-detected with no visual change) and interictal
data (no seizure). Subsequently, the EEG signals were pre-processed through z-score
normalization for each channel. It is important to note that, after obtaining the data from
the website, no additional data cleaning or artifact removal techniques were applied.

Subsequently, the EEG signals were segmented into 1 s time windows (each time
window containing 500 samples). In the next phase, 13 features were extracted in the time
domain for each of the 19 channels (Fp2, Fp1, F8, F4, Fz, F3, F7, A2, T4, C4, C3, T3, A1, T6,
P4, P3, T5, O2, O1): amplitude, skewness, Activity, Complexity, Zero crossing, kurtosis,
Energy, Maximum, mean, Median, Minimum, Mobility, and RMS. Thus, we generated
247 attributes (19 channels × 13 features). The mentioned features, Activity, Complexity,
and Mobility, known as Hjorth parameters [68], were used specifically to represent EEG
signals. The mathematical formulation of these features is described as follows:

Activity

std2 =
∑N

i=1(xi − x)2

N − 1
(1)
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dt ))
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Root mean square
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(13)
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∣∣∣∣ xi
|xi| −

xi+1

|xi+1|
∣∣∣∣ (14)

where xi is the value of each sample at position i. N is the vector dimension. mode is the
mode of the vector. std is the standard deviation. Q1 is quartile 1 of the vector. Q3 is quartile
3 of the vector. P90 is percentile 90 of the vector. P10 is percentile 10 of the vector. For the
calculation of the Median, it is necessary that the data array be sorted. For the calculation
of Zero crossing, observe the sign changes between xi and xi+1 in a series of K samples,
excluding cases where xi = 0 or xi+1 = 0.

Amplitude is a visual feature observed in EEG by experts. Epileptiform brain dis-
charges exhibit high-amplitude deflections, typically in the order of hundreds of micro-
volts, whereas normal amplitudes range between 10 and 100 microvolts. Furthermore,
high-amplitude rhythmic oscillations are used to define the onset and progression of
epileptic seizures [3].

The features Energy and RMS contain important information about the measurement
of amplitude. As seen from the formulas presented, Energy is the average of the sum of a
signal squared, and RMS is the square root of Energy [69].

Second, Ref. [70] argues that through skewness, it is possible to identify distinct and
clinically relevant patterns in sharp waves or spikes. Furthermore, they identified differ-
ences in the distribution of asymmetries between patients with unilateral abnormalities
and patients with bilateral abnormalities, making it a useful tool for characterizing these
types of epilepsy.

The study by [69] indicates that the Zero crossing feature is useful for EEG signal
analysis, as the number of times the signal crosses zero is an indirect measure of the signal’s
frequency. Therefore, high values of this feature indicate a higher frequency.

The study conducted by [69] highlights the utility of statistical parameters in distin-
guishing ictal and non-ictal patterns. Among these parameters, mean, Median, skewness,
and kurtosis are mentioned. Additionally, the researchers note that the baseline of the EEG
signal can be established based on the maximum and minimum values, which are also
explored in this work.

The Hjorth parameters [68] are widely used as features in epilepsy detection
studies [69]. Activity reflects signal power, indicating the spectral distribution of en-
ergy in the frequency domain. Mobility provides information about the average frequency
change and variability in spectral distribution, while Complexity assesses the similarity of
the signal to a sine wave, aiding in the identification of brain activity patterns [71].

The 247 attribute vectors were employed to train seven supervised learning classifiers:
Decision Tree, k-Nearest Neighbor (kNN), Logistic Regression, Naive Bayes, Random
Forest, eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM). The
hyperparameters for these classifiers were optimized using GridSearchCV, with a specific
focus on varying the number of estimators {5, 100, 300, 500} and the maximum depth {1, 3,
5, 10, 50}. Following the training and testing phase, the classifier demonstrating the highest
accuracy on the test set was selected for use in subsequent phases.

The model achieving the highest accuracy was subsequently analyzed using SHAP,
which facilitated the identification of attributes contributing most significantly to the
classification. This tool enables the interpretation of the model’s decision-making process
in predicting the data.
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Upon application of SHAP, the top 20 features with the highest contribution to the
model’s predictive performance were identified and visualized. Subsequently, a series of
20 models were trained and tested incrementally, each incorporating an additional SHAP-
ranked feature. Specifically, model 1 was trained with only the most influential feature,
model 2 with the first and second features, and so on, up to model 20, which included the
first through twentieth features as ranked by SHAP.

This first phase aimed to reduce the number of attributes using models with relevant
attributes incrementally.

5.2.2. Second Phase

The 4 features and the 5 most recurrent channels presented in the first 20 attributes
listed by SHAP in the previous phase were selected. This refined subset, encompassing
20 new attributes (5 channels × 4 features), was employed to train a new model. Subse-
quently, the SHAP analysis was reapplied to this model to rank the attributes according to
their contribution to the predictive accuracy.

The classifier used in this phase was the one that obtained the best accuracy perfor-
mance in the previous phase; however, once again GridSearchCV was used to define the
hyperparameters (with the same variation mentioned earlier) using these new attributes.

Analogously to the first stage, a series of 20 models were trained, each incorporating a
progressively increasing number of SHAP-ranked attributes. This was performed with the
dual purpose of minimizing the attribute count and assessing the performance efficacy of
the newly selected attribute set.

The metrics used to evaluate the performance of the classifiers were as follows: accu-
racy, precision, recall, and F1-score.

6. Results

In this section, the results obtained following the proposal presented in the
methodology—in two phases—are presented, which constitutes the method that enables
the reduction of input vectors in a humanly interpretable way.

6.1. First Phase

Table 2 presents the accuracy values obtained in training and testing using the five su-
pervised classifiers (Decision Tree, kNN, Logistic Regression, Naive Bayes, Random Forest,
XGBoost, and SVM) with the specified Hyperparameter. The result displayed in the table
indicates that XGBoost, with a 97.43% accuracy in the test phase, is the most suitable to be
used as a learning machine for the trained data, namely 247 attribute vectors (13 features
and 19 channels).

Table 2. Classification result using 247 features.

Classifier Hyperparameter Training Accuracy Mean Test Accuracy

Decision Tree
Max depth: 15
Min samples split: 2 92.34% 93.07%

kNN Num neighbors: 1 93.68% 93.58%
Logistic Regression Default 84.69% 84.21%
Naive Bayes Gaussian 79.46% 81.00%

Random Forest
Max depth: 50
Num estimators: 150 96.62% 96.28%

XGBoost
Max depth: 5
Num estimators: 300 97.83% 97.43%

SVM RBF 84.74% 87.29%

Figure 4 shows the graph of SHAP values for the first 20 attributes listed by SHAP
(out of the 247 used in training with the XGBoost learning machine). The technique allows
attributes to be listed in order of importance.
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Figure 4. SHAP value—phase 1.

Observations reveal that specific attribute vectors contribute distinctly; for instance,
elevated values in the Minimum_Fz vector (the Minimum feature calculated on the Fz
channel) yield a negative impact on the prediction. Similarly, in the case of the second most
influential attribute, Activity_C4, lower values are associated with a negative contribution.

The attributes were systematically organized for analysis: the first matrix incorporated
solely the initial SHAP-ranked attribute (Minimum_Fz); the second matrix included both
the first and second most influential attributes (Minimum_Fz and Activity_C4); and this
sequential inclusion continued up to the twentieth matrix, which comprised the top 20 con-
tributing attributes (Minimum_Fz, Activity_C4, Complexity_T5, Activity_F3, Mobility_Fp2,
Complexity_Fp2, Mobility_T5, Activity_Fz, Energy_Fz, Energy_C4, Mobility_C3, Maxi-
mum_T3, Complexity_P4, Mobility_A1, Zero_crossing_Fp2, Zero_crossing_T5, Energy_F3,
Mobility_F4, Mobility_F8, and Energy_T3). Each of these 20 matrices corresponded to one
of the 20 trained models to which they were applied.

Figure 5 presents the performance metrics—accuracy, precision, recall, and F1-score—of
21 models trained using XGBoost, comparing the results obtained with the top 20 SHAP-
ranked attributes against those using the full set of 247 attributes.
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Figure 5. Phase 1—obtained performance.

6.2. Second Phase

In this second phase, the results obtained according to the steps presented in the
second phase of the methodology are presented.

According to Figure 4, the four most common features were Activity, Complexity,
Mobility, and Energy and the five most frequent channels were Fz, C4, T5, F3, and Fp2.
In this way, the 20 new attributes are Activity_Fz, Activity_C4, Activity_T5, Activity_F3,
Activity_Fp2, Complexity_Fz, Complexity_C4, Complexity_T5, Complexity_F3, Complex-
ity_Fp2, Mobility_Fz, Mobility_C4, Mobility_T5, Mobility_F3, Mobility_Fp2, Energy_Fz,
Energy_C4, Energy_T5, Energy_F3, and Energy_Fp2.

Table 3 showcases the performance metrics of the XGBoost classifier, which was
configured with hyperparameters set to a maximum depth of 50 and 500 estimators,
utilizing the previously identified 20 new attributes.

Table 3. Performance of XGBoost with the 20 new features.

Train Acc
Mean

Test Acc Real Class
Confusion

Matrix
Precision Recall F1-Score

96.20 96.40 Interictal 399 17 97.32 95.91 96.61
Ictal 11 352 95.39 96.97 96.17

Figure 6 presents a graph with the contribution of the SHAP values of the 20 most
recurrent attributes selected.

It is possible to observe the contributions of each attribute vector. For example, low
SHAP values in the first five attributes have a negative contribution to the prediction;
similarly, the positive contribution is more present for high SHAP values.

Drawing from Figure 6, the attributes for constructing the 20 matrices were me-
thodically organized in a manner akin to the approach taken in the preceding phase.
Consequently, the initial matrix exclusively encompasses the attribute with the foremost
predictive contribution, which is Activity_Fz. This sequence continues incrementally until
the composition of the twentieth matrix, which incorporates all 20 attributes as ranked
by SHAP (Activity_Fz, Activity_C4, Activity_T5, Activity_F3, Activity_Fp2, Complex-
ity_Fz, Complexity_C4, Complexity_T5, Complexity_F3, Complexity_Fp2, Mobility_Fz,
Mobility_C4, Mobility_T5, Mobility_F3, Mobility_Fp2, Energy_Fz, Energy_C4, Energy_T5,
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Energy_F3, and Energy_Fp2). Each of these matrices was subsequently applied to its
corresponding model within the cohort of 20 trained models.

Figure 6. SHAP value—phase 2.

Figure 7 contains the performance of 20 models trained for accuracy, precision, recall,
and F1-score using XGBoost with the 20 attributes listed by SHAP.

The highest accuracy achieved in this phase occurred with 19 attributes (96.53%), and
with 6 it was already possible to obtain an accuracy greater than 95% (95.93%).

Figure 8 presents the accuracy obtained in the two distinct phases of model training.
In the first phase, employing a single attribute from the full set of 247, the model attained an
accuracy of 79.33%. Conversely, in the second phase, when using only the top SHAP-ranked
attributes from a reduced set of 20, the accuracy diminished to 60.33%. This reduction is
attributable to the fact that the initial selection was made from a larger pool of attributes,
whereas the second was constrained to a more limited subset.

Table 4 shows the comparison of the obtained results. It represents a brief description of
the methodology and the performance according to the metrics used in each experiment.
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Figure 7. Phase 2—performance.

Figure 8. Phase 1 and 2 accuracies (%).

Table 4. Comparison of the results obtained in the two phases.

Methodology Performance

Phase: 1 Accuracy: 97.43
Dimensionality reduction: No (Interictal; Ictal)
Channels: 19 Precision: 98.29; 96.48
Features: 13 Recall: 96.88; 98.07
Attributes: 19 × 13 = 247 F1-score: 97.58; 97.27
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Table 4. Cont.

Methodology Performance

Phase: 1
Dimensionality reduction: SHAP
Channels: 11 (Fz, C4, T5, F3, Fp2, Accuracy: 96.02
C3, T3, P4, A1, F4, F8) (Interictal; Ictal)
Features: 7 (Minimum, Activity, Precision: 96.39; 95.60
Complexity, Mobility, Energy, Recall: 96.15; 95.87
Maximum, Zero crossing) F1-score: 96.27; 95.74
Attributes: 20

Phase: 1
Dimensionality reduction: SHAP Accuracy: 95.64
Channels: 6 (Fz, C4, T5, F3, Fp2, C3) (Interictal; Ictal)
Features: 5 (Minimum, Activity, Precision: 95.69; 95.57
Complexity, Mobility, Energy) Recall: 96.15; 95.04
Attributes: 11 F1-score: 95.92; 95.30

Phase: 2
Dimensionality reduction: SHAP Accuracy: 96.41
Channels: 5 (Fz, C4, T5, F3, Fp2) (Interictal; Ictal)
Features: 4 (Activity, Complexity, Precision: 97.32; 95.39
Mobility, Energy) Recall: 95.91; 96.97
Attributes: 20 F1-score: 96.61; 96.17

Phase: 2 Accuracy: 95.64
Dimensionality reduction: SHAP (Interictal; Ictal)
Channels: 5 (Fz, C4, T5, F3, Fp2) Precision: 95.69; 95.57
Features: 2 (Activity, Complexity) Recall: 96.15; 95.04
Attributes: 6 F1-score: 95.92; 95.30

7. Discussion

A method for reducing channels and features using an XAI technique was introduced
in the creation of an optimized model for epileptic seizure detection. The ensuing section
delineates the outcomes of this approach.

Initially, the XGBoost algorithm emerged as the classifier of choice, demonstrating a
high accuracy rate exceeding 97%, albeit dependent on a full set of 247 features. Subsequent
application of the SHAP methodology to the trained model and corresponding test data
facilitated the generation of streamlined models, which were then organized according to
the predictive significance of their features.

The data depicted in Figure 5 reveal that the model encompassing 18 attributes attains
the highest test accuracy at 96.15%; notwithstanding, a marginal disparity persists between
the precision, recall, and F1-score metrics across both classes. These metrics attain stability
upon expanding to a model with 20 attributes, evidenced by a 96.02% accuracy rate. This
outcome is in close concordance with the results delineated in Table 2, where the XGBoost
classifier realizes a 97.43% accuracy. Such findings corroborate the feasibility of achieving
comparable model efficacy with a substantial reduction in input vectors, exceeding 91%, in
this initial phase.

It is noteworthy that the model, with a configuration of merely 11 attributes, attained
an accuracy of 95.63%, a figure that stands numerically on par with the accuracies reported
in studies employing deep learning models [12,15].

In the subsequent phase of the study, a pattern of recurrence was noted among specific
channels and features within the top 20 SHAP-identified attributes. This recurrence guided
the synthesis of a new set of models, derived from the amalgamation of these frequently
appearing channels and features.

Looking at Table 4, it can be noted that in the first phase, with 11 attributes (Mini-
mum_Fz, Activity_C4, Complexity_T5, Activity_F3, Mobility_Fp2, Complexity_Fp2, Mobil-
ity_T5, Activity_Fz, Energy_Fz, Energy_C4, Mobility_C3) and using of six channels (Fz, C4,
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T5, F3, Fp2, and C3), it was possible to achieve satisfactory performance for binary classifi-
cation. The second phase proved to be relevant by reducing the number of input vectors to
six (Activity_Fz, Activity_C4, Activity_T5, Activity_F3, Activity_Fp2, Complexity_Fz) and
the number of channels to five (Fz, C4, T5, F3, and Fp2), still achieving similar performance
as the previous phase (above 95% accuracy).

It is relevant to relate the five channels selected in phase 2 (Fz, C4, T5, F3, and Fp2) to
the regions where patients’ focal points are located in the dataset. The selected channels,
C4 and Fp2, correspond to focal points in some of the patients. Channel T5 is present in
the following focal regions: posterior temporal and left hemisphere. Channel F3 is present
in the frontotemporal focal region and left hemisphere, and channel Fz is present in the
frontotemporal focal region. Therefore, the selected channels are spatially aligned with the
focal points of patients’ clinical events observed in EEG. This indicates that the method
selects channels that are consistent with the location of clinical events in epileptic seizures.

Numerically comparing the two phases in terms of performance, as depicted in
Figure 8, it becomes apparent that the second phase of the methodology excels. Specifically,
within the range of three to nine attributes (x-axis), the accuracy attains higher values,
which is advantageous for employing the model with a minimal number of input vectors
while still achieving enhanced performance.

Observing the aspects of feature selections, in the first phase, Figure 4 highlights
the most significant feature, representing the minimum value (located in channel Fz),
as a key element in discriminating the data. This observation aligns with the concept
mentioned in [69], emphasizing the role of the minimum value in defining a reference point
for distinguishing non-ictal data from ictal signals. The chart in Figure 5 corroborates this
importance, showing that this attribute alone can achieve a remarkable performance of
approximately 80% in various binary classification metrics.

In the second phase, the most common attributes—Activity, Complexity, Mobility, and
Energy—are often used together in related works, as cited in the study in [69]. Although
13 attributes were initially selected in the first phase, with detailed justifications, it is
noteworthy that these 4 selected attributes are capable of effectively discriminating classes
for specific channels. This fact demonstrates that it is feasible to reduce the number of
features and channels, even in generalist models.

Some potential biases need to be considered in the interpretation of the results: the
UBMC database is limited as it only includes six patients and lacks data for all types of
epilepsy. Therefore, the selected channels may be specific to the patients in the database,
and consequently, the computed features may not be universally applicable, even in more
generalized models. Additionally, the selection based on SHAP may be influenced by
the specific dataset. Hence, generalizing the results requires caution and validation on
additional datasets that utilize the same data segments, such as TUH and CHB-MIT.

It is also worth noting that the SHAP value method assumes that the model features
are independent of each other [26]. This suggests that SHAP may not fully capture the
interactions between the features. This limitation is not favorable for this application since
the sensors are spatially distributed on the scalp, where epileptic discharges are measured
through the channels.

In this way, it was possible to observe that simpler classification models can be efficient
in the identification of epileptic seizures. Additionally, the explainable method of feature
and channel selection allowed for reducing computational effort while maintaining high
performance. This method, by not transforming the dataset, allowed us to verify that the
chosen channels are located in focal areas of epileptic seizures. This encourages further
study with customized models, which may further reduce the number of channels and
confirm if the focal point will always be the best location for extracting data for epileptic
seizure detection.
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8. Conclusions

In light of these observations, the proposed approach has the potential to significantly
streamline computational processes by reducing both the quantity of input vectors and the
complexity of the classification models. Moreover, it may contribute to the simplification of
signal acquisition hardware through a minimized electrode array, all the while sustaining a
high standard of accuracy in distinguishing between interictal and ictal EEG data.

Considering that the methods used in the literature have a large number of input
vectors [10,11,18] (which also requires a greater number of samples for training) and make
use of more robust machines such as DL [13,14], the proposed approach simplifies the
solution by delivering a numerically equivalent performance, employing temporal feature
extraction, using simpler classifiers (XGBoost), and reducing the dimensionality through
an explainable technique (SHAP), enabling model interpretability.

Utilizing a database with detailed focal point locations enabled confirmation that
the model’s most significant channels are spatially proximate to the patients’ focal zones.
This outcome fosters the impetus for subsequent research to investigate personalized
models, which could validate the hypothesis that optimal channels for seizure detection
predominantly reside within these focal areas. Such advancements could further curtail
the requisite number of channels and features, thereby facilitating the development of
mobile applications.

Although a satisfactory performance was achieved, it is necessary to replicate the
method for a database with a larger number of patients that contains information about
the location of the seizures. Creating a universal generalist model is a challenge, as it
depends on a representative database. However, this study encourages the application of
the method in personalized models, where it is expected to further reduce the number of
channels and features.
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Abbreviations

The following abbreviations are used in this manuscript:

CHB-MIT Children’s Hospital Boston at the Massachusetts Institute of Technology.
DL Deep Learning.
DWT Discrete Wavelet Transform.
EEG Electroencephalography.
XAI Explainable Artificial Intelligence.
XGBoost eXtreme Gradient Boosting.
FFT Fast Fourier Transform.
kNN k-Nearest Neighbor.
ML Machine Learning.
PCA Principal Component Analysis.
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SHAP SHapley Additive exPlanations.
SVM Support Vector Machine.
t-SNE t-Distributed Stochastic Neighbor Embedding.
TUH Temple University Hospital.
UBMC University of Beirut Medical Center.
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Abstract: Being motivated has positive influences on task performance. However, motivation could
result from various motives that affect different parts of the brain. Analyzing the motivation effect
from all affected areas requires a high number of EEG electrodes, resulting in high cost, inflexibility,
and burden to users. In various real-world applications, only the motivation effect is required for
performance evaluation regardless of the motive. Analyzing the relationships between the motivation-
affected brain areas associated with the task’s performance could limit the required electrodes. This
study introduced a method to identify the cognitive motivation effect with a reduced number of
EEG electrodes. The temporal association rule mining (TARM) concept was used to analyze the
relationships between attention and memorization brain areas under the effect of motivation from the
cognitive motivation task. For accuracy improvement, the artificial bee colony (ABC) algorithm was
applied with the central limit theorem (CLT) concept to optimize the TARM parameters. From the
results, our method can identify the motivation effect with only FCz and P3 electrodes, with 74.5%
classification accuracy on average with individual tests.

Keywords: cognitive motivation task; electroencephalography (EEG); motivation; temporal association
rule mining (TARM)

1. Introduction

Motivation is an essential state of mind that can enhance the attention and perfor-
mance of learners during their learning process. With the advantages of being motivated
to perform the task, many researchers have taken an interest in studying motivation. In
educational psychology, motivated individuals were found to have preferable traits that en-
hance their learning performance [1–5]. Renninger and Wozniak [1] studied the motivation
of children to the item of interest. They found that the high level of motivation the children
felt for the item contributed to increased attention, recognition, and recall performance.
Various studies [2–4] found that the motivation of the participants to demonstrate their
competence positively correlates with the actual achievement of the participants. This
type of motivation often occurs when they compare their performance to that of others. In
2022, Mussel [5] researched the curiosity of students, which is a factor leading to motiva-
tion. Their study’s results suggested that curiosity is significantly related to the student’s
academic performance.

In studies [1–5], motivation could occur from various motives, such as interest [1],
reward (grade, emotional self-rewarding) [2–4], or even curiosity [5]. Each of these motives
is a factor that can motivate us to perform the task. These motives affect different areas
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within our brain related to their activities. Various fMRI studies [6–8] have reported the
relationship of the brain areas and their activities related to these motives. Lee et al. [6]
studied the effects of intrinsic and extrinsic motivation. They found that reward (extrinsic
motivation) affects the right posterior cingulate cortex, which was hypothesized to be a
reward-based area. On the other hand, self-satisfying feelings (intrinsic motivation) were
found to affect the right insular cortex, which was hypothesized to be an emotion-based
area. Ulrich et al. [7] studied the motivation resulting from the challenge of the task. Their
research suggested various areas related to the process of motivation, including the puta-
men, related to the coding of increased outcome probability (probability to choose higher
reward outcome); the inferior frontal gyrus (IFG), related to a deeper sense of cognitive
control; the medial prefrontal cortex (MPFC), related to the decreased self-referential pro-
cessing; and the amygdala (AMY), related to the process of decrease in negative arousal.
The study of curiosity and interest by Lee and Reeve [8] found that the anterior insular
cortex (AIC) and striatum work together in an intrinsic motivation system. While AIC is
related to the subjective feelings resulting from the body, the striatum plays a crucial role in
reward processing. The striatum is also a central part of extrinsically generated motivation.
They also found a relationship between intrinsic motivation and the frontal areas of the
brain (e.g., dorsolateral prefrontal cortex, medial frontal gyrus), which is believed to be
related to higher-order cognitive processes.

The fMRI studies [6–8] help us understand various brain areas and their activities
related to different motives. However, for use in real-world situations, fMRI is inflexible as
the measurement due to the limitations of the equipment. EEG, which has advantages in the
combination of low cost and flexibility for use in the real-world environment, has become
one of the conventional equipments in motivation studies. These EEG studies [9–12] also
found similar results to fMRI studies that motivation could affect various areas depending
on the motives. The study of van der Ven et al. [9] investigated the N400 ERP component
of EEG on a reading task with the reward depending on the result. They found that C3, Cz,
C4, CP1, CP2, P3, Pz, and P4 from the central and parietal areas are electrodes influenced by
motivation. The motivation resulting from the challenging task was studied with the mean
amplitude of stimulus-preceding negativity (SPN, an ERP component) by Ma et al. [10] in
2017. They found that the challenging level of the task influenced F4, F6, F8, FC4, FC6, and
FT8 of the frontal area electrodes. Jin et al. [11] researched interesting/boring tasks with
P300 and feedback-related negativity (FRN) ERP components. They found a difference
between the interesting and boring cases in F1, Fz, F2, FC1, FCz, FC2, C1, Cz, and C2
electrodes with the FRN and C1, Cz, C2, CP1, CPz, CP2, P1, Pz, and P2 electrodes with
the P300 component. In 2018, Brydevall et al. [12] studied an information-seeking task, a
curiosity-based task, with a feedback-related negativity (FRN) ERP component. In their
study, Fpz, AFz, Fz, FCz, and Cz electrodes were found to be influenced by motivation.

Although EEG can also be used to detect various motivations relating to the learning
process [9–12], different motives leading to motivation affect electrodes in various brain
areas. In a real-world situation, such as in the classroom, we could not know the type
of motive that each learner has at a different part of the lesson. If we measure the effect
of motivation from all known motives, a high number of electrodes would be required.
However, for educational purposes, the type of motives may not be significant enough to
know; only the motivation effect on brain activities that lead to learning performance is
required. Since motivation could affect task performance, we have an idea to investigate
the motivation effect through the relationship among the brain areas associated with the
task performance affected by motivation (e.g., attention and recognition in the cognitive
motivation task). Even though the motive cannot be identified by this approach, the number
of electrodes required for measuring the effect of motivation could be reduced.

The cognitive motivation task was used as an example and was focused on in this study.
Therefore, the effect of motivation on the relationship between attention and memorization
brain areas was analyzed. Attention and memory tasks related to motivation were studied
by Robinson et al. [13]. In their study, attention was measured by response time with the
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Attentional Network Test (ANT), while the Newcastle Spatial Memory Test (NSMT) was
used to measure memory. The extrinsic motivation was known when the reward was given,
while the Intrinsic Motivation Inventory (IMI) questionnaire was used to measure intrinsic
motivation. With these measurements, they found that extrinsic and intrinsic motivation
improves the participant’s memory and attentional performance. Their results confirmed
that motivation is related to both the attention and memory performance of participants.
Additionally, the relationship between attention and memory was found in a top-down
process in the case of the successful formation of episodic memories [14,15]. Episodic
memory is related to the process of remembering the spatial and contextual features of
the visual scene stimulus. In this top-down process, the activation of the area within
the prefrontal cortex (attention-related area) leads to the activation of the area within the
parietal cortex (memory-related area).

The results of our previous study [16] on the cognitive motivation task with EEG
also confirmed the relationship of motivation with attention and memory in the study of
Robinson et al. [13]. In our previous study, the participants could freely decide whether
they wanted to remember the presented scenic stimulus. The participants were considered
as being motivated when they selected that they wanted to remember the stimulus and
not being motivated if otherwise. The recognition test was conducted afterward to confirm
the results of their motivation for each stimulus. It was found that when the participants
were motivated to remember the stimuli, there was a significant difference in attention and
memorization-related areas between the cases where they could and could not remember
the stimulus afterward. We found a longer continuous alpha desynchronization pattern in
the “being motivated and remembered” case than in the “being motivated but forgot” case. The
areas of interest are mainly around the frontal (attention-related area [17]) and left parietal
(memory encoding-related area [18]) part of the head, which will be represented by FCz
and P3 electrodes in this study. No difference was found among “not being motivated” cases
where the participants were not motivated to remember the stimulus. The results suggest
that motivation can affect both attention and memorization [13,16] and that the occurrence
of attention brain activity leads to memorization brain activity [14].

In this study, we further our investigation. We hypothesized that the temporal relation-
ship of brain activities between attention and memorization-related areas could identify
the effect of motivation on remembering the stimulus. With this hypothesis, the number
of electrodes is reduced to two, which includes the FCz and P3 electrodes. To find the
temporal relationship between two brain areas, the concept of Temporal Association Rule
Mining (TARM) [19], which is the idea of finding association rules or patterns between
two sequences while considering time constraints, could be useful. The TARM concept
has been successfully applied to various similar applications [20,21]. For example, in 2009,
Hojung et al. [20] tested a TARM-based method with the Saccharomyces cerevisiae cell
cycle time-series microarray gene expression dataset and found effective rules for the
KEGG cell-cycle pathway. In the field of intelligent transportation systems, Feng et al. [21]
proposed a hybrid temporal association rule mining method to predict traffic congestion
in a road network. Their experimental results showed high accuracy in the prediction of
traffic congestion levels.

We proposed a method based on the TARM concept to identify the motivation effect
from the temporal relationship of brain activities between attention and memorization
areas while the participants are being motivated. To determine the complex brain activity
relationship, the metaheuristic algorithms could be used to optimize the parameters of the
method. In this study, we employed an Artificial Bee Colony (ABC) [22] algorithm as an
example of the metaheuristic algorithm. The ABC algorithm is known for its performance
and simplicity; ABC requires relatively fewer algorithm parameters to adjust than other
metaheuristic algorithms while performing well on a variety of benchmark functions.
The concept of the Central Limit Theorem (CLT) [23] was applied to identify a suitable
representative of the method parameter set. The knowledge contributed by our work not
only validates the previous knowledge [13–15,17,18] but also provides a method to measure
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the effect of motivation with a reduced number of EEG electrodes. This contribution could
improve future related studies and applications to be more suitable learning services on the
individual level (personalized learning services). The knowledge from this study can be
applied to help reduce the cost of equipment and improve the flexibility of measurement
methods in the real-world environment while also lessening the burden on the users during
their learning process in future related studies as well as educational applications.

This article comprises four sections. Section 2 describes the raw data, experiment set-
ting, and cognitive motivation identification method based on the TARM concept. Section 3
provides the results, including the suggested optimized parameter set, accuracy of the
constructed model, feature analysis, and model validation. Finally, Section 4 discusses the
study’s findings, limitations, and conclusion.

2. Materials and Methods

2.1. Raw Data

To identify the effect of motivation that could lead to remembering the stimulus,
the EEG data from the motivation task are required for the analysis. The data used in
this study are identical to those used in our previous cognitive-motivation study [16].
More information on our publicly available dataset can be found in the “Data Availability
Statement” section. The participants comprised fourteen male and two female Asian
volunteers between 21 and 37 years of age. None of the participants have prior visual
perception or memory disorders. The data in this study were obtained from the cognitive-
motivational task that was separated into two parts: the cognitive experiment and the
recognition test. During the cognitive experiment, the Nihon Kohden Neurofax EEG-1100
equipment (NIHON KOHDEN CORPORATION, Tokyo, Japan) with 32 electrodes was
used to measure EEG data with a sampling frequency of 500 Hz. The experiments were
conducted in a room with no distractions. All experimental procedures and purposes were
disclosed to the participants before the experiments.

In the cognitive experiment, participants were presented with 250 random, unique
visual scenic stimuli, one by one. Each stimulus was presented for 3 s. Then, the participant
had to decide whether they wanted to remember the stimulus within 9 later seconds. With
this setup, the cognitive experiment was completed in around 50 min for each participant.
This estimation excludes the setup time and the short break requested by participants. The
participants could freely make their decision on whether they wanted to remember the
scene. The decision was used as an indication of their motivation; the trial is considered a
“being motivated” case when the participant chooses to remember the stimulus and a “not
being motivated” case if otherwise. Because motivation is the topic of the study, it depends
on the participants’ motivation towards the stimulus; hence, the number of trials between
two cases could be unequal for each participant.

In the recognition test, 500 random scenes, comprising 250 from the cognitive experi-
ment and 250 new scenes, were presented. The participants were asked to answer whether
they recognized the presented scene in the cognitive experiment. The answer from this test
indicated the motivation effect corresponding to their motivation for the stimulus in their
prior cognitive experiment. There are no time constraints in this recognition test. The brain
signals were not measured during the recognition test.

By relating the motivation of the participant to the corresponding results from the
recognition test, the data were categorized into four groups: “being motivated and remem-
bered”, “being motivated but forgot”, “not being motivated but remembered”, and lastly, “not being
motivated and forgot”. Since the purpose of this study is to analyze the effect of motivation,
“not being motivated” data were excluded. The total number of data epochs used in this
study is 1873 epochs from the “being motivated” case that resulted in 1429 remembered (RR)
and 444 forgot (RF) cases.
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2.2. Cognitive Motivation Effect Identification

To identify the effect of motivation on brain activities related to cognitive perfor-
mance, we designed the TARM-based method for EEG. Figure 1 shows the overview of
the method’s process. The processes are divided into two parts: the model construction
part, shown in Figure 1A, and the identification part, shown in Figure 1B. For the model
construction part, the EEG data are preprocessed to remove physiological noise, power
line noise, and eye-blinking artifacts. Only the epochs without saccade characteristics are
used for analysis. Because alpha desynchronization is known from the previous study [16]
to involve cognitive motivation, the preprocessed EEG epochs are transformed into ERSP
data to prepare for determining desynchronization trends. The ERSP data are moving
averaged to smoothen the spectral perturbation and to reveal the trend. Then, the trend
data are represented by discretized sequences. The details of the preprocessing steps are
described in Section 2.2.1. The discretized sequences are then analyzed to determine the
temporal relationship between two signals; the details are explained in Section 2.2.2. The
TARM concept is applied in this method to find the temporal relationship patterns. The
temporal relationship patterns are used to build classification models for classifying the
cognitive performance (whether the scene is remembered or forgotten); the details are
given in Section 2.2.3. However, EEG signals are highly complex; the method requires
some parameters along the processing pipeline to be optimized to obtain an effective clas-
sification model for identification. Section 2.2.4 describes the process for parameter and
model optimization. The output parameter set and classification model are then used in the
identification part. Figure 1B illustrates the procedure for the cognitive motivation effect
identification part.

Figure 1. The processes of the cognitive motivation effect identification method proposed in this
study: (A) the model construction part and (B) the identification part.

2.2.1. Preprocessing Steps

In this study, the EEG signals were analyzed by MATLAB R2014b (MathWorks, Natick,
MA, USA) with the open-source toolbox EEGLAB v13.4.4b [24]. MATLAB is a commercial
software that allows complex matrix manipulation and computation, which is suitable
for EEG signal processing. EEGLAB, which is the open-source toolbox working on the
MATLAB environment, provides comprehensive tools from visualization, processing, and
analysis to in-depth self-coding for specific studies. The preprocessing steps start with
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mapping the EEG signals to their corresponding electrode locations on the head model.
Then, the average referencing was conducted by subtracting the average potential of all
electrodes from each electrode at each time point. After that, both 0.5–50 Hz bandpass and
60 Hz notch filters were applied to remove physiological and power line noise, respectively.
The signals were then marked into epochs and labeled by the participants’ motivation
choices and recognition results regarding the scene stimuli. An epoch that has a signal
voltage higher than 500 microvolts (μV) or lower than −500 microvolts was considered
an abnormal value epoch and, thus, excluded from this study. The components related to
eye-blinking artifacts were analyzed using the Independent Component Analysis (ICA)
method and then selected and removed manually using the GUI tool of the EEGLAB
toolbox. After that, the epoch with the saccade characteristic was manually selected and
discarded. The epoch without response in the recognition test was also excluded. Finally,
there are 1094 RR and 332 RF case epochs in this study.

All remaining epochs were transformed into the time-frequency domain using the
Event-Related Spectral Perturbation (ERSP) method [25]. The average ERSP data across
the alpha band (8–12Hz) were used in this study. Note that the preprocessing steps up to
this point are the same as in our previous study [16]. Previously, we found that at the FCz
and P3 electrodes the continuous alpha desynchronization patterns of the RR cases are
significantly longer than those of the RF cases. Hence, the processed ERSP data from the
FCz and P3 electrodes were used as representatives for attention and memorization areas,
respectively, in this study.

To reduce the complexity of the preprocessed ERSP data, the Simple Moving Average
(SMA) method was applied. The trends were revealed. Nevertheless, a suitable SMA
parameter should be selected. This is one of the parameters to be optimized later. The data
were then discretized into sequences representing downward and upward trends. The
downward trend indicates the continuous desynchronization period, while the upward
trend relates to the synchronization period of the ERSP data. Each trend was represented by
the starting and ending time points. The data sequence is considered to have a downward
trend when all time points have continuously lower values than the preceding points.
Similarly, the data sequence with continuously higher values than the preceding points
is considered an upward trend. In this study, the downward trends of the FCz and P3
electrodes were analyzed as the potential attention and memorization sequences of interest.
The processes of preprocessing EEG data into discretized sequences for the cognitive
motivation effect identification method are shown in Figure 2. The bottom part of Figure 2
illustrates the examples of data output from each of the processes.

Figure 2. [Top] The preprocessing steps from EEG to discretized sequences with [Bottom] the
examples of data output from each step: (A) EEG segment, (B) ERSP, (C) smoothened alpha band
(8−12 Hz) ERSP, and (D) discretized trend sequences.

2.2.2. Relationship Identification

The alpha desynchronization is known to relate to the attention state [26,27]. Based on
the findings in our previous study [16], the continuous alpha desynchronization patterns
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of the RR cases are significantly longer than those of the RF cases. In this study, we
hypothesized that motivation could lead the participant to continue paying attention to
the stimulus, which, in turn, resulted in stimulus memorization. It is anticipated that,
for the remembered cases, the attention downward sequences should occur before the
memorization downward sequences. According to Allen’s 13 temporal logics [28], there are
3 possible temporal relationships between attention and memorization sequences based on
this hypothesis: before, contain, and overlap. We explored the potential of these 3 temporal
relationships for the association rules between brain areas.

For each relationship, we measured the relationship level, which indicates the likeli-
hood that the relationship is related to the motivation that leads to the stimulus memoriza-
tion. For the before relationship, the first (attention) sequence must start and end before the
second (memorization) sequence starts. The longer the interval between the two sequences,
the less likelihood that the second sequence is the result of the first sequence. We set a
threshold window indicating that the two sequences are related. If the interval between the
two sequences is within the threshold window, the two sequences are considered related.
Hence, its relationship level is the ending time of the first sequence plus the length of the
threshold window and then minus the starting time of the second sequence. An example
of the before relationship in our study between the attention sequence (FCz downward
trend) and the memorization sequence (P3 downward trend) can be presented in Figure 3.
It should be noted that the suitable threshold window length is unknown; it is another
parameter to be optimized later.

Figure 3. An example of before relationships.

For the contain relationship, the first sequence starts before the second sequence but
ends later than the ending of the second sequence. The relationship level of the contain
relationship is the length of the second sequence. Figure 4 shows an example of a contain
relationship. Lastly, in the overlap relationship, the first sequence must also start before the
second sequence. The first sequence ends after the second sequence starts but before the
second sequence ends. The relationship level of this overlap relationship is the ending time
of the first sequence minus the starting time of the second sequence. An example of the
overlap relationship is shown in Figure 5.

The discretized sequences of epoch data from the FCz and P3 electrodes are determined
for these temporal relationships. An epoch can comprise multiple temporal relationships.
Therefore, the influence of each of these relationships must be considered together. In
this study, the method based on the concept of TARM was used to analyze the cognitive
motivation effect through these relationships.
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Figure 4. An example of contain relationships.

Figure 5. An example of overlap relationships.

2.2.3. The Application of Temporal Association Rule Mining Concept

Temporal Association Rule Mining (TARM) [19] is used to identify the pattern of
relationship among items that occurred within the data while considering the temporal
constraint. Several parameters are required to consider the confidence of the identified rule.
The support threshold is used to consider whether the item has occurred frequently enough
to be considered an item of interest. The temporal support threshold is used to consider
whether the relationship between two items occurred for sufficiently long enough to be
considered as having a relationship of interest. Lastly, the confidence of the relationship is
indicated by the confidence value.

In this study, we applied the TARM concept to identify the temporal relationships
between attention and memorization as the effect of motivation resulting in stimulus mem-
orization. The attention downward sequences and memorization downward sequences are
the items to which we direct interest. The alpha desynchronization trend should continue
for a sufficient duration to be considered a pattern. The support threshold is the minimum
length of the downward sequence that is considered a pattern; the sequence shorter than the
support threshold is discarded. To our knowledge, the suitable sequence length is unknown.
Because the suitable sequence length for attention could differ from that for memorization,
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we used 2 support thresholds to determine the FCz and P3 downward sequences separately;
they are called the attention and memorization pattern length thresholds, respectively.

The temporal support threshold is the sufficient period of time that the attention down-
ward sequences relating to memorization downward sequences are considered to have a
relationship; a higher relationship level than the temporal support threshold is counted
as a relationship. There are 3 temporal support thresholds, one for each of the temporal
relationships described in Section 2.2.2. They are called the before-relationship length
threshold, contain-relationship length threshold, and overlap-relationship length threshold.

Based on the TARM concept, this method has 5 threshold values to be designed. When
including the moving average parameter and the before-relationship window size, men-
tioned in Section 2.2.1, there are 7 parameters to design in order to identify the association
relationships between attention and memorization. Table 1 includes all 7 method parame-
ters and their descriptions. Figure 6 shows the processes at which the required parameters
of this method are located.

Table 1. The method parameters of cognitive motivation effect identification based on the TARM
concept.

Method Parameter Name Related Process Description

Moving average window Moving average process To smoothen the spectral perturbation and reveal the
potential hidden trend

Attention pattern length thresholds Pattern of interest identification To identify the attention sequence that has a
sufficient alpha desynchronization trend

Memorization pattern length thresholds Pattern of interest identification To identify the memorization sequence that has a
sufficient alpha desynchronization trend

Before-relationship window size Relationship identification To identify the before relationship and calculate the
before-relationship level

Before-relationship length thresholds Relationship identification
To identify the before relationship resulting from the
effect of motivation and leading to stimulus
memorization

Contain-relationship length thresholds Relationship identification
To identify the contain relationship resulting from
the effect of motivation and leading to stimulus
memorization

Overlap-relationship length thresholds Relationship identification
To identify the overlap relationship resulting from
the effect of motivation and leading to stimulus
memorization

Figure 6. The processes to identify the cognitive motivation effect. The parameters and model
required to be optimized for each step were listed under each corresponding red label.

The method filters the discretized downward sequences from the FCz and P3 elec-
trodes to remove the sequences shorter than the attention and memorization pattern length
thresholds. The FCz downward sequence that is longer than the attention pattern length
threshold is considered an attention sequence. Likewise, the P3 downward sequence longer
than the memorization pattern length threshold is considered the memorization sequence.
Then, the temporal relationships of all attention and memorization sequences are analyzed.
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The relationship with a lower relationship level than the corresponding threshold is dis-
carded. Finally, the remaining relationships are considered temporal relationships between
attention and memorization resulting from being motivated.

Due to the complexity of the brain, it is anticipated that the combination of temporal
relationships will be involved in cognitive motivation. We introduced the use of a classifi-
cation model built from the “being motivated” epochs to evaluate how well the combination
of temporal relationships could accurately identify whether the motivation could lead to
stimulus memorization. We used 6 features as input for the classification model, includ-
ing the occurrence number and relationship level of before relationships, the occurrence
number and relationship level of contain relationships, and the occurrence number and
relationship level of overlap relationships. The relationship occurrence numbers are related
to how often that attention resulting in memorization occurred while being motivated. The
relationship level, as described in Section 2.2.2, indicates the likelihood that the relationship
is related to the motivation that leads to the stimulus memorization.

The classification model construction can be chosen from a variety of methods. In
this study, we demonstrated our method with Support Vector Machine (SVM) as an exam-
ple; the “templateSVM” MATLAB function with auto kernel scale Radial Basis Function
(RBF) kernel was used. The output classification model from the method can be used to
predict whether the EEG input data acquired while being motivated can lead to stimulus
memorization afterward.

2.2.4. Method Parameter and Model Optimization

The 7 method parameters could affect the accuracy of the identification method. To
find the suitable values of these parameters and the acceptable classification model, the
Artificial Bee Colony (ABC) algorithm was used. The ABC algorithm is a population-based
metaheuristic optimization algorithm introduced by Karaboga [22]. The method is known
for its simplicity and flexibility in implementation and combination with other algorithms.
With these advantages, ABC was used as an example of a metaheuristic algorithm for the
model construction part of our method. The ABC method was inspired by the intelligent
foraging behavior of honeybees. The employed bees search for the positions of food sources
while remembering the position for future foraging. Information on the food source is
shared with the onlooker bees waiting at the hive. The onlooker bee selects its target
according to the quality of the food source and searches for food sources in the target
direction. When the employed bees and onlooker bees cannot find a better food source,
they abandon the food source and become a scout exploring in a random direction for a
new food source. In the ABC algorithm, onlooker and employed bees perform the search
in the specific search space (exploitation), while scouts perform the wide exploration.

Figure 7 illustrates the processes to optimize the parameter set and obtain the opti-
mized classification model; the processes in Figure 7 are related to Figure 1A but show
more details of how ABC was incorporated. The search space for the bees is 7 dimen-
sions for 7 parameters. The employed bee positions are randomly initialized. Then, the
method proceeds to perform a set of ABC iterations and terminates when the number of
iterations exceeds the specified maximum iteration. For each iteration, the employed-bee,
onlooker-bee, and scout-bee phases were performed to find a good parameter set. The
TARM-based processes used the best parameter set to identify temporal relationships and
build an SVM classification model. The accuracy of the classification model was used as
the food source quality.

Anuar et al.’s study [29] performed the ABC colony size tests ranging from 4 to 200
and suggested that the colony size should be at least 24. This study used a colony size
of 28, which is 4 times the parameter numbers. The 28 bees comprised 14 employed and
14 onlooker bees. The maximum iteration number was set to 200. The range of each
parameter was set based on the knowledge of our previous study [16] as 0 to 9 for the
moving average window; 30 to 100 ms for attention and memorization pattern thresholds;
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150 to 200 ms for before window size; and 30 to 100 ms for before-, contain-, and overlap-
relationship length thresholds.

Figure 7. The detailed optimization part of the cognitive motivation effect identification method
implemented with the ABC algorithm.

In the employed-bee phase, each employed bee performs a search near its employed
food source. In the onlooker-bee phase, each onlooker bee selects an employed-bee food
source position (parameter set) as the reference position to explore nearby areas. The
selection is based on the probability function weighed on the quality (classification accuracy)
of each food source [22]. A better-quality food source probably attracts more bees to
exploit it. The employed and onlooker bees search for a nearby food source with the same
calculation as mentioned in [22] but with different ranges. This study used 1/5 and 1/3 of
the nearest neighboring food sources as the search range for employed and onlooker bees,
respectively. Cosine similarity was used to identify these nearest neighboring food sources.
If the quality of the new food source is better than the previous position, the bee position
is updated. After both the employed-bee and onlooker-bee phases are finished, the scout
phase is started. In the scout phase, the number of times each food source has been visited
was counted. If any food source is visited exceeding a specified threshold, the employed
bee will abandon its position and become a scout, randomly selecting a new position.

By applying the ABC algorithm, the optimized parameter set required for the identifi-
cation method was obtained. However, there could be a bias problem resulting from the
difference in the data of each stimulus category during the classification model-building
process. In this study, the numbers of epochs in two motivated cases (RR and RF) are
different. This situation is especially common when the experimental categories are based
on the participants’ preferences, which can be varied and cannot be controlled. Using the
unequal numbers of data from each category for training and testing of the SVM method
could lead to obtaining a biased classification model. To avoid this problem, an equal
number of data from each cognitive motivation case were randomly selected as the training
and testing set. A total of 200 training data were used in the model-building process: a
hundred from the RR epochs and another hundred from the RF epochs. Another 50 random
epochs were selected from the leftover data, 25 from each category, to be used as the test set.

Because there is no known knowledge about the temporal relationship between at-
tention and memorization, the objective value that determines the quality of an ABC food
source is the classification accuracy of the model from the test set. Nevertheless, the different
sampled training and test sets can result in different classification accuracy and food-source
quality. In turn, the resulting parameter set can be different from one repetition to another,
or the same parameter set can give different classification accuracy from one sample set to
another. This problem could lead to an inaccurate selection of the optimized parameter set.

To ensure that the optimized parameter set obtained from the method can be used ef-
fectively in real applications in the future, we applied the Central Limit Theorem (CLT) [23]
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to mitigate the problem of variant outputs due to sampling variation. The problem resulted
from the different sample sets when the sampling process was used in the optimization
search process. With CLT, the method can identify the mean of population accuracy as
the representative. CLT is a probability theory that states that “as the sampling number
increases, the mean sampling distribution will increasingly become closer to a Gaussian
distribution”. These Gaussian or normal distribution data are concentrated around the
mean. In other words, with sufficiently large unbiased sample numbers from the whole
population (with a finite level of variance), the mean of all samples from the same popula-
tion will be (approximately) equal to the mean of the whole population. In this situation,
the mean or median is suitable to be used as the representative of the overall sampling
data and can also be used in exchange. In CLT, it is not feasible to state the exact sample
size sufficient for a general approximation. However, at least 30 sample sizes are often
suggested to produce an approximately normal sampling distribution from a non-normal
parent distribution [30]. Additionally, in case the population is normally distributed, it is
believed that if sampling at least 10 times, the sampling mean is able to assume a normal
distribution [31,32]. In this study, the normal distribution cannot be assumed due to the
possibility of varying relationship numbers and their temporal periods in each epoch. For
our data, the number of relationships and their temporal period of a relationship could be
affected by the other relationships within a limited attention period of 3 s. The longer a rela-
tionship, the lesser the temporal period available for the others. From the results in [30] and
the suggestion in [31,32], the sample sizes of 10 and 50 are used as the comparison cases.

In this study, we applied the concept of CLT to identify the population median of the
classification accuracies as the representative of the food source in the ABC algorithm. The
CLT concept was applied through the implementation of the repeated sampling training and
test set within the model-building process. Each sampling has its own model and accuracy.
The median from all the repeated resulting accuracies was used as the representative quality
of the food source in the ABC search process. Any food source with a Median Absolute
Deviation (MAD) higher than 0.03 is regarded as an unstable food source and excluded
from the quality update of the search process.

3. Results

This section presents the performance of the TARM-based method to identify the
cognitive effect of motivation with only two electrodes, FCz and P3. The results of ABC
with SVM, ABC with 10 times repeated sampling SVM (ABC-10RSVM), and ABC with 50
times repeated sampling SVM (ABC-50RSVM) were compared to find the best parameter set
and cognitive motivation identification model. These parameters can be used as guidelines
to configure parameters in the preprocessing steps, preparing the data before the model
classification process. Then, the temporal relationship features were analyzed. Finally,
the generalization performance of the best model was demonstrated using the data of
individual participants. The accuracy of our result model is validated to be 74.5% on
average with individual tests.

3.1. Cognitive Motivation Effect Classification Model Results and Parameter Set Suggestion

A set of seven parameters is required to be optimized. These parameters could affect
the performance of the motivation effect identification model. These parameters include
the moving average (MA) window, attention, and memorization pattern thresholds, the
before-relationship window threshold, the before-relationship length threshold, the contain-
relationship length threshold, and the overlap-relationship length threshold. We tested
each of the three ABC-applied methods for 10 rounds to identify their average classification
accuracies. These average classification accuracies will then be used as their performance
representative. For the representative classification accuracy of the parameter set (from each
round of the optimization), the median accuracy from 1000 random train and test sets was
used. Since a large number of random samples (1000) were tested for each parameter set, the
distribution of the results for each parameter set can be assumed to be a normal distribution
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according to CLT. The median accuracy from the accuracy results of all sampling is then
suitable to be used as the representative accuracy for each of these parameter sets. These
median accuracies for 10 times ABC optimization are presented in Table 2. Additionally,
detailed information on the best model and parameter set of each method is presented in
Table 3.

Table 2. The median accuracy results of 1000 sampling test sets for each parameter set for motivation
effect identification method.

Methods
Classification Accuracy

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Average

ABC-SVM 73% 71% 66% 72% 70% 72% 71% 72% 72% 72% 70.8%
ABC-10RSVM 74% 76% 80% 78% 71% 75% 75% 73% 75% 78% 75.5%
ABC-50RSVM 74% 73% 76% 80% 75% 76% 74% 77% 77% 76% 75.8%

The bold number is the highest accuracy of the method.

Table 3. The detailed information on the best results from each parameter and optimization model.

Methods

Window Threshold (ms) Accuracy (%)

MA
(pts)

Before
(ms)

Pattern
A

Pattern
B

Relationship
Min Max SD Mean Med [Q1, Q3]

Before Contain Overlap

ABC-SVM
(Round 1)

2 200 30 90 50 100 40 58 86 4.35 72.93 73 [70, 76]

ABC-10RSVM
(Round 3)

4 190 50 30 50 30 30 66 91 3.99 79.8 80 [77, 82.5]

ABC-50RSVM
(Round 4)

4 190 50 30 50 60 30 69 91 3.96 80.39 80 [78, 83]

With the results in Table 2, the results of the ANOVA test, comparing the 10-round
median accuracies from 16-participant sampling data of ABC-SVM, ABC-10RSVM, and
ABC-50RSVM methods, suggested that the classification accuracy of the ABC-SVM method
is significantly different from both ABC-10RSVM and ABC-50RSVM, with a P-value lower
than 0.01. Additionally, the results between ABC-10RSM and ABC-50RSVM are not signifi-
cantly different (p-value = 0.7771). The standard deviation results are 5.38%, 5.30%, and
5.18% for ABC-SVM, ABC-10RSVM, and ABC-50RSVM, respectively. The ABC-50RSVM
method has the lowest variance among tested methods. All of the best model results for
each method have an accuracy variance lower than 5%, as presented in Table 3. Addition-
ally, the ANOVA test of the SD variance comparison among the methods resulted in no
significant difference. The suggested parameters from ABC-10RSVM and ABC-50RSVM
are almost the same except for the contain-relationship threshold parameter, as presented
in Table 3.

Our results suggest that applying CLT to the ABC-SVM method can help us mitigate
the problem of variant outputs due to sampling variation. This improvement can leverage
the accuracy of the motivation effect identification model from our ABC-SVM with the
TARM-based method. Additionally, with the lowest variance and highest classification
accuracy, we suggested ABC-50RSVM for the cognitive motivation effect identification
method. The best model has a confidence of 80% classification accuracy. Please also be
aware that the 50 sampling number is not the magic number, and the number could vary
depending on the data distribution. However, even with the lower mean classification
accuracy (75.5% vs. 75.8%) and higher variance (5.30% vs. 5.18%) of the ABC-10RSVM
to the ABC-50RSVM method, the difference in both cases is not statistically significant.
With these results, it can be suggested that ABC-10RSVM can be used in the case of limited
time constraints in which lowering model-building execution time is required and a slight
variance classification accuracy is acceptable. Lastly, our parameter set suggestion is based
on the results from 10 rounds of ABC for each method for the scenic stimulus, which may
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not represent the general use in real-world applications. With this problem, we suggested
applying the ABC-RSVM process to build the model and identify the suitable parameter
set before the application is used for the first time. A case of validation for the general use
of the best model will also be presented later in this study.

From Table 3, the suggested parameters from ABC-50RSVM are a moving average
window equal to 4, 50 ms for attention pattern length threshold (FCz downward), 30 ms
for memorization pattern length threshold (P3 downward), 190 ms for before window size
threshold, 50 ms for before-relationship length threshold, 60 ms for contain-relationship
length threshold, and 30 ms for overlap-relationship length threshold. From this parameter
set, we attempted to identify the potential relationship feature that is highly distinguished
by the effect of motivation. These relationships could lead to the improvement of prepro-
cessing steps and model building in the later study.

The results of our study also give evidence that motivation influences the activities
within the brain differently in “being-motivated-and-remembered” and “being-motivated-
but-forgot” cases. This influence is affecting the brain activities related to FCz and P3
electrodes, which are related to attention and memorization areas within the brain. From
the knowledge of previous studies [13–16], we assumed the relationships from the attention
sequence occurred before the memorization sequence. With this assumption, the results in
this study give evidence that the brain activities in the attention area lead to the activities
in the memorization area by a top-down process while being influenced by the effect of
cognitive motivation. Unfortunately, the specific difference between brain activities of RR
and RF cases cannot be known from the results of our method. The problem is due to our
classification model using a combination of features from the attention and memorization
sequences to identify the effect of motivation. Unlike linear SVM, which can summarize
data with a set of parameters with fixed size (the weight coefficient), the transformation of
SVM with RBF kernels is based on the pairwise distances between the training points resulting
in the number of parameters growing with the size of the support vector, which makes it a
non-parametric method. Therefore, the importance of each relationship characteristic (i.e., the
weight coefficient in SVM) cannot be directly identified. However, the study tries to explore
how motivation affects brain activities differently by identifying the importance of a specific
feature in differentiating RR and RF cases in the next section.

3.2. Potential Feature Suggestion

To identify the difference between brain activities of RR and RF cases, we performed
a statistical test comparing RR and RF cases of each suggested classification model input
feature from the previous section. Because the temporal period of one relationship could be
affected by the temporal period of other relationships within a limited 3 s temporal attention
period, for example, the longer period of an overlap relationship leads to the shorter
remaining temporal period available for other relationships. Therefore, the relationship
features were not in the normal distribution. The Wilcoxon signed-rank test was used.
The results of this test are presented in Table 4. Note that the average relationship-level
feature of each relationship is not the input feature of our classification model. The average
relationship levels represent the mean relationship level of the relationship for each epoch.
They were only used to statistically analyze the difference between RR and RF in this section.

From the observation of our SVM input data, the before relationship is the pattern
that is always found in motivated cases; from 200 epochs of each case, all 200 RR epochs
and 198 RF epochs have a before relationship. There are 143 RR epochs and 135 RF epochs
with the contain relationship. Lastly, there are 187 RR epochs and 174 RF epochs with an
overlap relationship. This study hypothesized that the effect of motivation is affected by
the combination of multiple relationships in each epoch. However, the fact that before-
relationship patterns are found in most epochs could suggest that the occurrence of the
before relationship could be highly influenced by the state of being more motivated than
other relationships. In concordance with this observation result, the results of Table 4 also
suggest that only the “average before-relationship level” is significantly different between
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RR and RF cases; the average before-relationship levels of RR cases are higher than those of
RF cases. These results suggest that the brain activities of the RR cases had a memorization
pattern that occurred following the ending of the attention pattern sooner than in the RF
cases. However, the difference is at a 0.1 significant level, with a p-value equal to 0.07,
so we suggested exploring the conditions that could affect this occurrence in more detail
before using this knowledge in future studies.

Table 4. Wilcoxon signed-rank test result between RR and RF cases of each feature.

Features Z
Asymp. Sig.

(2-Tailed)

Before-relationship occurrence number −0.906 p 0.365
Before-relationship level −0.219 p 0.827

Average before-relationship level −1.809 n 0.070
Contain-relationship occurrence number −0.668 n 0.504

Contain-relationship level −1.71 p 0.864
Average contain-relationship level −1.206 p 0.228

Overlap relationship occurrence number −0.845 n 0.398
Overlap-relationship level −1.103 n 0.270

Average overlap-relationship level −0.311 p 0.756
p: Based on positive ranks, n: based on negative ranks.

As additional information, this study presents examples of before relationships in
RR and RF cases in Figure 8. The examples are in the form of alpha frequency trend
data (upward and downward) mapped onto all electrodes of the sequential temporal
period head models. In Figure 8, the square symbol (�) represents the focused electrodes
used in this study, which are FCz and P3. The pentagram symbol (�) represents the FCz
electrode while having an attention pattern of interest, which is an attention pattern that
leads to memorization. The triangle symbol (�) represents the P3 electrode while having
a memorization pattern of interest, which is the memorization pattern resulting from
being motivated and having attention. The dotted red box during 190–310 ms for RR
or 240–380 ms for RF represents the period between the ending of the attention pattern
and the start of the memorization pattern mentioned in the previous paragraph. Since
the before-threshold window has a fixed constant value, the distance between these two
patterns is the counterpart of the before-relationship level. The higher before-relationship
level is equal to the lower distance between the patterns. Figure 8 also shows that the RR
case has a longer alpha desynchronization pattern than the RF case, as mentioned in the
results of our previous work [16].

 

Figure 8. An example of temporal ERSP trend data of an RR epoch with a before relationship. The
arrow marked the occurrence time of the corresponding head model.
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3.3. Model Validation

Lastly, we verified the generalization of the suggested model with the individual
participant data. Since the RF case usually has a low number of epochs, only participants
with RF epochs higher than 25 were tested. The model was tested with data from six
participants, each with 1000 test sets. A test set comprised 20 randomly selected epochs
from the RR and RF cases each. The results of this test are summarized and presented in
Table 5.

Table 5. The results of individual test sets with the best model from the ABC-50RSVM method.

Participant
Accuracy (%)

Median Mean SD

1 85 85.44 5.51
2 80 81.35 6.11
3 70 70.78 7.52
4 70 70.60 6.96
5 65 64.27 7.32
6 50 51.47 7.79

The results suggest that our model can use only FCz and P3 electrodes to identify
the effect of motivation with 70.65% classification accuracy on average. The model can
classify the effect of being motivated acceptably for most participants, except for participant
number 6, whose classification accuracy result is lower than the others. This may be due
to age; brain alpha frequency becomes higher with age [33]. Participant number 6 is
33 years old, while the others are in their 20s. We tested the model with the data of another
participant who is 37 years old but who has a number of RF epochs lower than 25; this
participant was excluded from the validation participants. Because the number of RF
epochs for this participant is very low, we used five RR epochs and five RF epochs for
the test set. A classification accuracy of 53.11 percent was returned. The results indicate
that the identification model can be used for users in their 20s; separate models should be
constructed for different age ranges. Considering only participants in the 20s age range, the
model resulting from the proposed method can be used to identify the effect of motivation
on the individual participants with 74.5% mean classification accuracy.

4. Discussion and Conclusions

With the random scene selection in the experiment, the motivation leading to memo-
rization could be the result of various motives. Some scenes may have objects that interest
the participant as the motive [1]. Some participants may have a motive to demonstrate their
competence to gain a higher score than others [2–4]. Other motives could be that the scenes
have a unique artistic value that piques the curiosity of the participant or looks complex and
makes the participant feel challenged to remember them [5]. Even for the same individual,
the motive could be different given the change in time and situations. These differences in
motives can affect the various brain areas [6–12], which, in turn, results in high numbers of
EEG electrodes being required to identify the effect of motivation. Table 6 concludes the
motives related to cognitive motivation and the affected electrodes resulting from existing
EEG studies in the literature. In total, 28 electrodes would be required to measure all
listed motives.

Instead of focusing on the motives, we proposed to shift the focus to the effect of
motivation; the idea could allow us to use a smaller number of electrodes to measure in
real education applications. The low number of electrodes can help lessen the burden
on users and improve flexibility when used in a real-world environment. We previously
found that motivation can affect both attention and memorization [13,16] and that attention
leads to memorization [14]. In this study, we investigated the effect of motivation through
the temporal relationship between the associated brain areas with two EEG electrodes
representing attention and memorization.
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Table 6. The affected EEG electrodes of motivation effect resulting from motives.

Motives Author/Year
Affected

Electrodes

Affected
Electrode
Number

Reward Ven et al., 2016 [9] C3, Cz, C4, CP1, CP2, P3, Pz,
and P4 8

Challenge Ma et al., 2017 [10] F4, F6, F8, FC4, FC6, and FT8 6

Interest Jin et al., 2015 [11]
F1, Fz, F2, FC1, FCz, FC2, C1,
Cz, C2, CP1, CPz, CP2, P1, Pz,

and P2
15

Curiosity Brydevall et al., 2018 [12] Fpz, AFz, Fz, FCz, and Cz 5

All listed motives -

F1, F2, F4, F6, F8, FC4, FC6,
FT8, Fz, FC1, FCz, FC2, Fpz,

AFz, C1, C2, C3, C4, Cz, CP1,
CP2, CPz, Cz, P1, P2, P3, P4,

and Pz

28

Using the proposed method, the cognitive motivation identification model can identify
the effect of motivation related to the cognitive performance of participants with 74.5%
accuracy when validated with individual participant test sets. The model can be used
for users in the 20s age range. Due to the complexity of human brains, the sampling
process for data can lead to the problem of variant output values. This study used CLT to
address this problem. The CLT-applied ABC-RSVM model from this method returned the
acceptable parameter set in Table 3 for analyzing the temporal relationship patterns among
the associated brain areas. Based on the acceptable parameter set, the results indicate that
when the participant is motivated, attention precedes memorization, with a higher average
before-relationship level in the RR cases than in the RF cases.

The findings of this study can be applied to help complement studies on the char-
acteristics of visual stimuli that lead to motivation [34–39] for later use in educational
applications. In educational applications, teaching materials are usually intended not only
to motivate the student but also to make sure that their key points can later be remembered.
By applying our model for the stimulus that was found to motivate the participants, the
predicted results of whether the stimulus will likely be remembered afterward can be
used to evaluate and help improve the teaching material in the future. Additionally, the
conventional cognitive tests (e.g., Newcastle Spatial Memory Test [13]) used in education
studies are usually performed without brain activity measurement. There could be various
effects that influence the cognitive results of the participant (e.g., information missing due
to the passage of time). However, using our method to identify the cognitive results based
on brain signals at the learning event can help in evaluating the stimulus and teaching
materials more efficiently by reducing the other influences between the event and the
testing time. By applying the knowledge from this study, the learning application can
adjust the stimulus (e.g., teaching materials) at the time of learning to be more suitable for
personalized learning services.

There are some limitations to this study. The participants are sampled from Asian
populations, which may not represent the general populations of other races. The age of
the users could also influence the performance of the application due to the difference in
alpha frequency with age [33]. The effect of age range and population race (e.g., Asian,
African, and European) are also topics of interest for future in-depth studies to address
this limitation. When more data are collected to cover different races and age ranges, we
suggest applying our method to identify the suitable parameter set and to construct the
identification model. Note that as the method in this study intended to identify the effect
of motivation with reduced EEG electrode requirements, the method cannot identify the
motive of their motivation during their learning process. The method requires data from
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motivated participants as inputs to identify their cognitive performance. Therefore, the
motivation of the user has to be identified before the process of this study. The method is
suggested to be used with the stimulus that is known to motivate the participant.
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Abbreviations

The following abbreviations are used in this study:
ABC artificial bee colony
ABC-SVM ABC with SVM
ABC-10RSVM ABC with 10 times repeated sampling SVM
ABC-50RSVM ABC with 50 times repeated sampling SVM
CLT central limit theorem
ERSP event-related spectral perturbation
ICA independent component analysis
MA moving average
MAD median absolute deviation
RBF radial basis function
RF being motivated but forgot
RR being motivated and remembered
SVM support vector machine
TARM temporal association rule mining
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Abstract: The widely adopted paradigm in brain–computer interfaces (BCIs) involves motor imagery
(MI), enabling improved communication between humans and machines. EEG signals derived from
MI present several challenges due to their inherent characteristics, which lead to a complex process of
classifying and finding the potential tasks of a specific participant. Another issue is that BCI systems
can result in noisy data and redundant channels, which in turn can lead to increased equipment and
computational costs. To address these problems, the optimal channel selection of a multiclass MI
classification based on a Fusion convolutional neural network with Attention blocks (FCNNA) is
proposed. In this study, we developed a CNN model consisting of layers of convolutional blocks
with multiple spatial and temporal filters. These filters are designed specifically to capture the
distribution and relationships of signal features across different electrode locations, as well as to
analyze the evolution of these features over time. Following these layers, a Convolutional Block
Attention Module (CBAM) is used to, further, enhance EEG signal feature extraction. In the process
of channel selection, the genetic algorithm is used to select the optimal set of channels using a new
technique to deliver fixed as well as variable channels for all participants. The proposed methodology
is validated showing 6.41% improvement in multiclass classification compared to most baseline
models. Notably, we achieved the highest results of 93.09% for binary classes involving left-hand and
right-hand movements. In addition, the cross-subject strategy for multiclass classification yielded
an impressive accuracy of 68.87%. Following channel selection, multiclass classification accuracy
was enhanced, reaching 84.53%. Overall, our experiments illustrated the efficiency of the proposed
EEG MI model in both channel selection and classification, showing superior results with either a full
channel set or a reduced number of channels.

Keywords: brain–computer interface (BCI); motor imagery (MI); electroencephalogram (EEG); deep
learning (DL); convolutional neural network (CNN); attention module; channel selection; genetic
algorithm (GA)

1. Introduction

A motor imagery-based brain–computer interface (BCI) is the most commonly used
paradigm. The use of this system facilitates the communication between humans and
machines [1,2]. In most cases, research involves recording neural activity on the scalp using
non-invasive electroencephalography (EEG), as it is a practical and inexpensive method [3].
An EEG signal derived from motor imagery (MI) is generated when a subject visualizes a
movement without actually performing it. During motor imagery, specific brain regions
are activated similar to those engaged during physical movement, primarily within the
sensorimotor cortex. EEG records this neural activity by detecting fluctuations in electrical
patterns across the scalp. These fluctuations manifest as distinct patterns in the EEG signals,
particularly in the alpha (8–13 Hz) and beta (13–30 Hz) sub-bands. Specifically, decreases
in signal amplitude, known as Event-Related Desynchronization (ERD), occur in regions
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opposite the imagined movement, while increases, termed Event-Related Synchronization
(ERS), appear in areas adjacent to the movement side. Such capabilities allow EEG to effec-
tively monitor brain activity in real-time, which is vital for applications like brain–computer
interfaces (BCIs) [4]. MI-EEG-based BCIs aid in rehabilitation activities for individuals with
disabilities and enable them to perform everyday tasks more autonomously by controlling
external devices, such as robotic prosthetics or computer interfaces.

Even with extensive research focusing on MI-EEG-based BCIs, there are still many
challenges to overcome. EEG signals have a low signal-to-noise ratio (SNR) where the data
could be corrupted by any artifact such as eye movements. Moreover, EEG signals are
subject to non-stationarity issues, which means that they may vary considerably between
trials or even within the same trial for the same subject [4]. Consequently, the variability
and complexity of individual brain signals during motor imagery tasks make it difficult to
develop a model that can be applied universally. Moreover, EEG signals contain redun-
dant channels that may impact accuracy and efficiency in MI task classification. These
channels carry information about background neural activity. However, some channels
contain redundant information and require more calculation to be, efficiently, detected and
sorted out [5]. Thus, we believe that an appropriate channel selection would contribute to
improving the accuracy and reducing the computational time and complexity. However,
achieving such an objective of channel selection has to be carefully performed due to the
drastic impact that this action has on the accuracy of MI task detection [3]. This paper
addresses this issue. It proposes a new method based on a combination of channel selection
and classification techniques for efficient MI task detection.

In terms of classification methods, traditional machine learning (ML) and deep learn-
ing (DL) are the two main approaches used. The majority of ML approaches have been
based upon common spatial patterns (CSPs) including the filter bank CSP (FBCSP) or
regularized CSP (RCSP) to extract signal features. These achieve a good performance after
being followed by a Support Vector Machine (SVM) and Linear Discriminant Analysis
(LDA) classifiers [5–10]. However, the ability of DL methods to extract features from raw
data has made DL methods increasingly popular in recent years in BCI studies. There has
been considerable attention paid to DL for its excellent performance in a variety of fields,
such as image classification, speech recognition, and text analysis [11]. As DL techniques
have been successful in other fields and can be utilized for automatic feature extraction,
there is a strong motivation to apply them to EEG data analysis and classification. Convolu-
tional neural networks (CNNs) are the most common model used for extracting temporal
and spatial features from MI EEG data [12,13]. Several CNN architectures have been
proposed as a baseline of EEG signal classification with the ability of channel and spatial
classification relying on the nature of fast training and few parameters used; such models
are ShallowNet [14], DeepConvNet [14], and EEGNet [15]. Many papers provided a lot
of attention in order to improve the performance of these lightweight CNN models by
applying them to diverse frameworks with many types of extra blocks. The structure still
needs more enhancement to have the ability to classify any type of EEG data. Despite
the advancements brought about MI-EEG data by DL techniques, it should be noted that
these methods often struggle with high variability in signal quality across different subjects,
which can severely impact classification accuracy. This highlights that current techniques
remain insufficient and require further development. The attention mechanism is another
aspect of architectural design used to draw attention to the most important features gained
from the neural network model. Utilizing attention-based feature optimization is useful to
enhance the representation power of the CNN model with minimal overhead [16,17].

Based on the channel selection process, when selecting the optimal channels, it is
possible to improve the classification results while ensuring that no significant channels are
removed [3]. Due to this, the majority of researchers [18–22] selected different channels for
each subject individually. Selecting a fixed channel for all subjects is a problem that has
not previously been addressed. Therefore, in order to select a fixed optimal channel for all
subjects while maintaining all significant channels, a novel technique must be developed.
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For the purpose of responding to these concerns mentioned above and to increase the
performance of lightweight neural networks, this paper proposes a multiclass MI classifica-
tion based on a Fusion convolutional neural network with Attention blocks (FCNNA) and
channel selection. The main contributions of this work are summarized as follows:

• Propose a CNN structure that contains two layers of convolutional blocks followed by
CBAM attention methods concatenated to better classify two classes and four classes
of preprocessed EEG raw data.

• Evaluate the classification performance on a publicly available dataset utilizing two
strategies: within-subject strategy and cross-subject strategy. According to our ex-
periments in multiclass and two-class classification, our model exhibits significant
improvements over existing state-of-the-art approaches.

• Propose a channel selection mechanism that maintains the performance of the pro-
posed model with less computation cost. In this study, a novel technique is employed
to introduce a fixed set of channels for all subjects alongside a variable set of channels.

• Illustrate the enhancement in performance that results from adding channel selection
to our model. Moreover, a comparative analysis with state-of-the-art methods is
applied which demonstrates an improvement.

The rest of the paper is organized as follows: Section 2 reviews the current DL classifi-
cation techniques employed in EEG signals and briefly describes various channel selection
algorithms. A detailed explanation of the methods and architectures proposed in this study
is provided in Section 3. In Section 4, the experimental results are presented and discussed.
The paper is concluded in Section 5.

2. Related Works

2.1. EEG Signal Deep Learning Classification

The authors in manuscript [14] proposed a ConvNet structure to design two CNN
models: ShallowNet and DeepConvNet models. Figure 1 demonstrates the structure of
ConvNet which combines two main layers in one block which is the first CNN block. These
two layers intend to handle the channels of EEG data in two ways, first by gathering the data
of one channel in a specific range of time (temporal convolutional layer), and the second
layer is merging all the data of all channels in this specific time (spatial convolutional
layer). In light of this description, the purpose of developing ConvNet is to become a
general tool for decoding brain signals. Later, Lawhern et al. [15] introduced EEGNet, a
more compact and efficient CNN architecture with few parameters and fast training nature.
EEGNet enhances the idea of the ConvNet structure provided by [14] to improve accuracy
and efficiency. EEGNet showed encouraging results on several types of EEG datasets
with significantly fewer parameters than ShallowNet and DeepConvNet. In addition,
the simple architecture of EEGNet has made it a notable candidate for EEG analysis in
different scenarios.

ShallowNet, DeepConvNet, and EEGNet have yielded many other techniques that
may be used as benchmarks for comparison and improvement [4] such as EEG-TCNet [23],
MSFBCNN [24], and TCNet Fusion [25]. In their publication [23], the authors introduced
the EEG-TCNet model, which integrates the feature extraction layers of EEGNet with
the temporal convolutional network (TCN). The TCN effectively utilizes temporal infor-
mation through the implementation of two layers of residual blocks. Consequently, the
authors presented two models; the first with a consistent set of hyperparameters for all
subjects achieved an accuracy of 77.35%, while the second, incorporating subject-specific
hyperparameters, attained a higher accuracy of 83.84%. The authors in [24] introduced
a parallel multiscale filter bank convolutional neural network, employing four temporal
convolutions with distinct kernel sizes. These convolutions are concatenated and applied
to spatial convolution, resulting in an accuracy of 75.12%. Ultimately, the researchers in [25]
executed a CNN model incorporating a TCN block with two stacked residual blocks. This
configuration extracted additional temporal features following EEGNet, resulting in an
accuracy of 83.73%.
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Figure 1. ConvNet structure. C = number of channels; T = number of time points; KE = kernel width;
F1, and F2 = number of filters.

In addition, models of multiclass MI classification published between 2022 and 2023
will be examined to compare our results with the most recent advances in the field. In [4],
a MTFB-CNN model is proposed to extract diverse information from EEG data through
the use of three parallel time–frequency blocks, each containing multiple one-dimensional
convolutions with different kernels and scales. Subsequently, a residual network is applied,
followed by the integration of a channel attention module which yields an accuracy of
84.48%. The authors in [26] developed the CMO-CNN model, which incorporates a multi-
branch one-dimensional convolutional design with a Squeeze-and-Excitation network
featuring two shortcut connections to create the residual block. The model was validated
using two strategies, within-subject and cross-subject, achieving accuracy rates of 83.92%
and 63.34%, respectively. Following the same validation strategies, the authors in [27]
introduced the EEG-ITNet model, which consists of four blocks: three layers of EEGNet,
temporal convolution, dimension reduction, and classification. As a result of the validation
process, the model achieved an accuracy of 76.74% with a within-subject strategy and 69.44%
with a cross-subject strategy. Both models exhibit high accuracy in one strategy but not in
the other, indicating that neither model is universally effective across different validation
scenarios. In a similar manner to [27], the authors in [28,29] modified EEGNet to improve its
performance and adapted it for general use. In [28], the MBSTCNN-ECA-LightGBM model
combines EEGNet layers with a channel attention module and a LightGBM classifier to
achieve up to 74% accuracy for four MI tasks of different classes. By combining EEGNet and
ConvNet with transfer learning, the Siamese Deep Domain Adaptation (SDDA) framework
in [29] achieved 82.01% accuracy over ConvNet. According to [30], researchers developed
a Subject-to-Subject Semantic Style Transfer Network (SSSTN) that utilizes Continuous
Wavelet Transform (CWT) to convert EEG data into images. In [31], the authors employed
Wavelet Packet Decomposition (WPD) followed by a multiple CSP method to extract time
and spatial features. These features were then used as inputs for an artificial neural network
(ANN) model, resulting in an accuracy of 59.13%. The authors in [6] proposed a CNN and
Riemannian Geometry Network (CRGNet) that was validated at an accuracy of 82.10%
using k-fold cross-validation.

As shown in previous related papers, EEGNet has yielded promising results in EEG
data classification. However, there is room for improvement in accuracy and further devel-
opment. The structure should be enhanced to ensure an effective model for both binary and
multiclass classification, as well as for various approaches, including within-subject and
cross-subject strategies. Therefore, our goal is to provide a model that enhances accuracy
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across these conditions. We leverage the advantages of EEGNet by integrating it with a fu-
sion technique and an attention block, enabling us to implement MI classification methods
for both two and four MI tasks and for both within-subject and cross-subject strategies.

2.2. Channel Selection

An absence of a channel selection algorithm in BCI systems can result in noisy data
and redundant channels, which in turn can lead to increased equipment and computational
costs. For that reason, finding optimal channels has the potential to enhance or stabilize
classification outcomes [3]. In order to find the optimal channels automatically, several
approaches were used in the literature, including feature selection algorithms. In the feature
selection process, the optimal subset of features is chosen after preprocessing and feature
extraction to enhance classification performance. Similarly, channel selection involves
identifying the most effective channels before feature extraction and classification to reduce
computational demands while still ensuring robust outcomes in terms of classification
accuracy [32]. Clearly, similar methodologies can be employed in both cases, where the
objective is to find the best combination of elements that will improve the results.

Different methods for selecting channels have been used with the BCI IV 2a dataset,
specifically when dealing with four-class classification. Researchers in [18–22] employ three
main classification techniques: one-vs-one, one-vs-rest, and multiclass classification. In both
one-vs-one and one-vs-rest, the means are derived from multiple binary classifications. One-
vs-one considers every possible pair of two classes, whereas one-vs-rest trains classifiers for
each class against the others. In contrast, multiclass classification trains a single classifier
to distinguish between all classes at the same time. The authors in [19] employed the
Firefly algorithm for channel selection, achieving a classification accuracy of 83.97% using
the ML classifier as a regularized SVM with a one-to-one classification method. The
application of the Firefly algorithm aimed at reducing the number of channels involved in
calculating weighted scores for each channel near a candidate solution. Using both one-vs-
one and one-vs-rest approaches, the researchers in [20] utilized various ML techniques to
compute the means of several binary classifications. They demonstrated the advantages of
incorporating feature extraction, feature selection, and MDA-SOGWO channel selection
to enhance classification accuracy, elevating it from 67.04% to 80.82%. Additionally, the
authors of [18,21] demonstrate the use of DL classification with the one-vs-rest strategy
to validate channel selection methods. In their work [18], the researchers employed CSPs
for optimal channel selection, followed by Fast Fourier Transform (FFT) transformation
before training the DL model. They employed two specific models for their experiments:
Stacked Sparse Autoencoder (SSAE) and Deep Belief Network built with stacked Restricted
Boltzmann Machines (DBN-RBM). Initially, the accuracy for the SSAE model was 71.00%,
and for the DBN-RBM model, it was 68.44%. As a result of channel selection, the accuracy
of the SSAE model increased to 71.31%, while that of the DBN-RBM model increased to
68.63%. As detailed in [21], the authors developed a channel selection approach based
on the standard deviation of wavelet coefficients across channels. They implemented
CSPs using a one-vs-rest strategy and then utilized a CNN model for data classification,
achieving an accuracy of 75.03%. In the multiclass classification strategy, as explored by
authors in [22], channels are selected based on various metrics such as Euclidean distance,
Riemannian distance, Kullback–Leibler, and Wasserstein distance divergence as criteria.
Feature extraction was carried out using the one-vs-rest strategy with CSPs, coupled with
an SVM for ML classification. This study’s findings indicate that maintaining a uniform
number of channels across the selection process yields an accuracy of 75.57%, which is
lower than the 77.82% achieved when selecting varying numbers of channels.

Genetic algorithms (GAs) are one of the approaches that have been used as a feature
selection to optimize the weight of the classification [33–35]. Further, genetic algorithms
are applied in order to select the best subset of channels that provide the highest level
of accuracy [36–39]. For further explanation, the researchers in [37] used a GA to select
10 ECoG electrodes from a set of 64. They subsequently employed multi-layer perceptions
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(MLPs) for classification on the BCI Competition III dataset, increasing accuracy from 67%
to 80% after selecting 10 electrodes. The authors in [36] utilized GAs with various EEG
classification methods. Among these methods, the SVM performed the best, with accuracy
increasing from 94.69% to 96.07% after the GA. In their study [39], the authors introduced
two ML methodologies for categorizing right-hand and right-foot motor imagery into two
distinct classes. They utilized the Rayleigh coefficient (RC) to extract features and employed
the SVM and FDA for classification purposes. The authors used the GA, sequential forward
search (SFS), and sequential backward search (SBS) to select channels, demonstrating the
GA’s effectiveness in enhancing accuracy and delivering superior results. The GA resulted
in an average accuracy of 88.2%, while without channel selection, it achieved 76.68%.

As a general observation, utilizing GAs demonstrates promising potential to improve
accuracy, which aligns with our objective. According to the channel selection strategy, most
previous works focus only on selecting different channels for each subject based on the
best accuracy results achieved, whereas my method uses fixed optimal channels uniformly
across all subjects. Moreover, when it comes to channel selection, most researchers either
use ML to perform classification or DL models based on the mean of various binary
classifications. Due to these factors, our work will utilize GAs with a variety of channels
and fixed channels as well as DL models to train a single classifier among all classes.

3. Materials and Methods

The purpose of this section is to introduce the main methods used to construct the
general framework of our study. It starts by providing an overview of the dataset used,
followed by an explanation of our framework. Further details are provided regarding
the framework components, including the DL classification approach, and the channel
selection technique.

To provide a better understanding of the methodology, we will briefly describe the
dataset used.

3.1. Description of BCI Competition IV 2a Dataset [40]

This dataset consists of EEG data collected using 22 electrodes corresponding to the
International 10–20 system from nine subjects. Four different motor imagery tasks were
performed, including the imagination of the movement of the left hand (class 1), the right
hand (class 2), both feet (class 3), and the tongue (class 4). There were two sessions recorded
for each subject on two different days. A session consists of 288 trials divided into six runs,
where one run contains 48 trials of the four possible classes. Samples were taken at 250 Hz,
and bandpass filters were applied between 0.5 Hz and 100 Hz. As shown in Figure 2, the
imagination period trial lasted for four seconds following cue onset and was terminated by
the break at the end.

Figure 2. The timing scheme of the BCI IV 2a dataset.

To explain the general structure of our work, we will explain the framework as a
baseline for the rest of this unit.
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3.2. Proposed Model Framework

Figure 3 provides an overview of the proposed framework, consisting of three primary
stages handling raw EEG data: preprocessing, channel selection, and classification. EEG
data input involves preprocessing as the first step in order to prepare the data for the pur-
pose of distinguishing between MI tasks. The selected optimal channels are then forwarded
for classification purposes. For classifying the input data, a two-level convolutional block
followed by a CBAM attention block is applied. As a result, the output should indicate the
correct MI task regardless of whether two or four classes are involved.

Figure 3. Overall framework.

In the following sections, each stage is described in detail, beginning with prepro-
cessing. We will then discuss the primary processes involved in classification. Finally, the
method for selecting and determining the optimal channel will be clarified.

3.3. Preprocessing

In the preprocessing stage, we extracted windows of 4.5 s from each trial to better
adapt to our classification needs [23,25]. As depicted in Figure 2, this included a four-
second segment during the period of imagination and an additional half-second for the
pre-cue onsets. With a sampling rate of 250 samples per second over a duration of 4.5 s, a
total of 1125 samples were obtained.

The raw data were later filtered in the range of [0.25–50] using a 3rd order Butterworth
filter as recommended in some previous research publications [41–43]. The filtering tech-
nique was selected for its effectiveness in removing frequencies that are not relevant to
our study, particularly those below 0.25 Hz, which typically include slow drifts, and those
above 50 Hz, mainly consisting of muscle noise and environmental electrical noise. The
use of a bandpass filter ensures that the essential frequency components relevant to motor
functions are retained, thereby enhancing the signal-to-noise ratio without distorting the
underlying neural signatures. In addition, as demonstrated in Section 4.3.1, this filtering
technique may enhance the quality of the EEG signal by eliminating certain frequencies
of noise.

Our approach focused on preserving the raw signal characteristics; for this reason, no
more complex preprocessing techniques were applied.

3.4. Classification

The main components of the FCNNA model will be discussed in this section, along
with a breakdown of their structure. This model contains two layers of convolutional
network blocks, followed by attention blocks. In the following paragraphs, we will take a
closer look to give more details for each block:

209



Sensors 2024, 24, 3168

3.4.1. Convolutional Blocks

The convolutional block is an enhanced version of EEGNet models using two layers
with different hypermeters. By using two layers of the convolutional block, we will be
able to obtain more accurate results, as explained later in the experiment section. Figure 4
illustrates the structure of the FCNNA model with a closer look at the convolutional block.
The EEG data are taken as raw input to each convolutional block in the two presented
layers. The output of each layer is an input of a separate attention block.

Figure 4. The structure of the FCNNA model.

Each layer consists of two blocks: the block of the ConvNet structure and a separable
convolutional block. The ConvNet block is described in Figure 1, where the frequency
filter and spatial filter are applied to the EEG data in the same block. The frequency filter
is applied on a specific time series of the raw data of each electrode separately; this time,
the range depends on the kernel size. As part of our study, we applied the model to a
250 Hz EEG dataset, using 1 × 64 and 1 × 60 kernel sizes. Here, ‘1’ refers to the kernel
height, indicating that each kernel processes one electrode channel at a time. Additionally,
‘64’ and ‘60’ represent the kernel width, corresponding to the number of consecutive
temporal samples included in each convolution. This configuration enables us to examine
and analyze EEG signals from each electrode, where the kernel widths process temporal
segments approximately a quarter of a second long, based on our 250 Hz sampling rate.
Later, a depthwise convolution is used to apply a spatial filter by learning from the features
of all the electrodes in each frequency filter. After the depthwise convolution block, all
electrodes become one as a result of frequency-specific spatial filters. The second block
of each layer is a separable convolutional block, which is a combination of a depthwise
convolution to apply a single frequency filter for each individual feature map, followed
by a pointwise convolution. In a CNN, depthwise convolution and separable convolution
provide efficient results since they reduce the number of parameters and computations [44].

Detailed information about the architecture of the convolutional block in the FCNNA
model can be found in Table 1. This table shows the sequence of the model layers, the
filter used, the kernel size of each convolutional block, and the shape of the output of each
layer. The number of filters used is specified by three variables F1, D, and F2 where F1 is
the temporal filter, D is the depth multiplier for the spatial filter, and when we multiply F1
by D, we obtain F2 which is the number of pointwise filters. It is important to note that
we used different sizes of filters, kernels, and depths for each layer in the convolutional
block. In the first layer, the kernel width of the first block is set to 60 temporal samples, and
the number of temporal filters is 96 (denoted as F1) designed to extract different features
from the input data. The layer has a depth of 2, meaning it doubles the total number
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of active filters to 192 (2 × F1) for depthwise convolution operations, enhancing feature
extraction capabilities. On the other hand, the kernel width, depth, and filter F1 of the
second layer are 64, 1, and 16, respectively. For both layers, we used the same second kernel
size which is equal to 1 × 16. Furthermore, the table clarifies that batch normalization,
activation, average pooling, and dropout are applied in sequence at the end of each block.
Batch normalization is recommended to be used in the CNN model [45]. It standardizes
the intermediate outputs of the network to zero mean and unit variance. This is meant to
facilitate the optimization by keeping the inputs of layers closer to a normal distribution
during training. Moreover, dropout randomly sets some inputs for a layer to zero in each
training update to help prevent overfitting. The result later fits in the attention block
(described in the next section) and is then merged for the classification.

Table 1. A detailed description of the convolutional block in the FCNNA model, where C = number
of channels (22), T = number of time points (1125), F1 = number of temporal filters [ F1First = 96,
F1Second = 16], D = depth multiplier (number of spatial filters) [DFirst = 2, DSecond = 1], F2 = number
of pointwise filters [F2 = F1 × D], and N = number of classes, KE = kernel width [KE1First = 60,
KE1Second = 64, KE2 = 16].

Block Layer Layer Type # of Filter Kernel Size Output Option

First Convolutional Block

1

Input Input (C, T)
Reshape (C, T, 1)

C1 Conv2D F1 (1, KE1) (C, T, F1) padding = ‘same’
BN1 BatchNorm (C, T, F1)

C2 Depthwise Conv2 F1 × D (C, 1) (1, T, F1 × D) depth_multiplier = D,
max norm = 1

BN2 BatchNorm (1, T, F1 × D)
A1 Activation (1, T, F1 × D) Function = ELU
P1 AveragePooling2D (1, 4) (1, T//4, F1 × D)
D1 Dropout p = 0.5

2

C3 Separable Conv2 F2 (1, KE2) (1, T//4, F2)
BN3 BatchNorm (1, T//4, F2)
A2 Activation (1, T//4, F2) Function = ELU
P2 AveragePooling2D (1, 8) (1, T//32, F2)
D2 Dropout (1, T//32, F2) p = 0.5
AB Attention Block (1, T//32, F2first)

Second Convolutional Block “the same Previous Step”

AB Attention Block (1, T//32, F2Second)

Con1 Concatenation (1, T//32, F2first+
F2Second)

FC1 Flatten (T//32 × (F2first+
F2Second))

Dense Dense N Softmax

3.4.2. Attention Block

Attention mechanisms are DL techniques that allow the network to focus on different
parts of its input. These mechanisms have been shown to be very effective in a variety
of tasks, including image classification, natural language processing, and speech recogni-
tion [46–48]. One of these attention models is the Convolutional Block Attention Module
(CBAM) [17]. The CBAM is often used together with other neural network models, such as
CNNs, to improve their performance. It combines spatial and channel-specific attention
mechanisms to improve the representation of features within input data. The two sub-
module channels and spatial modules of the CBAM mechanism are illustrated in Figure 5.
Starting with the channel attention module which receives the feature map F, F ∈ RH×W×C,
where in our mode, H = 1, W = 35, C = 192 for the first layer, and C = 16 for the second layer.
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This module returns Mc as defined in Equation (1), representing a 1D channel attention
map that belongs to R1×1×C.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Figure 5. CBAM.

Mc(F) is calculated by subjecting the input feature maps F to both average and
maximum pooling separately. These pooled results are then individually processed by
three-layer feedforward artificial neural networks (MLP). The outcomes obtained from
these MLPs are aggregated first and then processed through a sigmoid function (σ) to
derive Mc. The result of Mc is then multiplied by the feature map F to give F′, where F′ is
the context given by (3) and used by (4). On the other hand, spatial attention utilizes the
input F′ through a process involving average pooling and max pooling. This is followed by
a convolution operation with a kernel size of 7, as shown in Equation (2).

Ms
(

F′) = σ
(

f 7×7([AvgPool
(

F′); MaxPool
(

F′)])) (2)

The main two formulas of the general process of this module are as below:

F′ = Mc(F)
⊗

F (3)

F′′ = Ms
(

F′)⊗ F′ (4)

where
⊗

denotes elementwise multiplication. Equation (4) illustrates the ultimate result of
the CBAM. The refined feature, represented as F′′ , is obtained through the multiplication
of Ms and F′.

3.5. Channel Selection

This section will discuss the use of a genetic algorithm (GA) as a way of channel selec-
tion. In ML EEG classification, genetic algorithms are one of the most effective algorithms
for channel selection [36,39]. The GA addresses a combinatorial optimization problem,
aiming to select the optimal subset of EEG channels to maximize classification accuracy.
This process involves evaluating various combinations of channels (chromosomes) and
determining the most effective set based on a fitness function. This fitness function pri-
marily measures classification accuracy, making it a crucial component in assessing the
effectiveness of each channel combination. Genetic algorithms are particularly suited to
this task as they can efficiently explore numerous potential combinations [36]. In our case,
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we applied GAs uniformly across all subjects to choose the optimal channels and determine
the most appropriate combination that achieves the highest level of classification accuracy.

The GA is a concept derived from science, where genes are the smallest components
of a problem that eventually combine to form a chromosome. Specifically, the chromosome
represents a possible solution to the problem. In our case, the gene is an input channel, and
the chromosome is a combination of channels. In general, the algorithm consists of three
main steps: First: Initialize the population by providing the initial possible solutions of a
random set of channels. Second: Evaluate the fitness, which assesses each possible solution
and validates the results. Third: Deliver a new generation based on choosing the solutions
with the highest probability of achieving the greatest accuracy (parents) to generate a new
generation of solutions (children). The new solution is generated after applying crossover
and mutation. Figure 6 illustrates these steps and how they will be entered into our model.
Here, in the following, we will explain each of these three steps in detail.

Figure 6. Genetic algorithm applied in our model.

Step1: Initialize the population:

In this step, we will introduce a population consisting of n chromosomes, each carrying
a random number of genes in order to ensure that every potential solution is possible. The
population is denoted as {X1, X2, . . ., Xn}, where X represents a chromosome. For our study,
we specifically set n to equal 6. The chromosome comprises a random selection of channels
(genes) chosen from a list ranging from 1 to 22, representing the primary electrodes from the
BCI Competition IV 2a dataset: [Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4,
C6, CP3, CP1, CPz, CP2, CP4, P1, Pz, P2, POz].
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Step 2: Evaluate the Fitness:

Once the initial population has been prepared, each chromosome in the population
is treated as a parent. Our classification process, as explained in Section 3.4.1, is utilized
at this stage to assess each parent. Further, the dataset is divided into training and testing
trials using a cross-subject strategy, details of which can be found in Sections 4.1 and 4.4.
Accordingly, a model is trained using only the channels included in that parent. Through
this approach, the model’s performance reflects the effectiveness of the specific subset of
channels. To evaluate the chosen channel subset, we examine the model using the test
dataset and compute accuracy, denoted as f (x).

Step 3: Deliver a new generation:

If the classification results f (x) of the possible solution do not meet the threshold, a
new generation will be provided. To deliver the new generation and have new children,
these steps are followed:

• Select the Fittest Chromosome: The fitness-proportional roulette wheel approach is
used to select three parents from a population. The mathematical formula for this
approach can be found in Equation (5). In this approach, parents are selected based on
their likelihood of having higher fitness values. From these parents, a new generation
is produced.

p =
f (x)

∑n−1
j=0 f (x)

(5)

• Apply Crossover: In order to perform crossover, two fitness parents are divided into
halves, and then the genes are switched between them in the manner shown below.

Child 1 = [[Parent1[0 . . . p1]], [Parent2[p2 . . . end]]]

Child 2 = [[Parent2[0 . . . p3]], [Parent1[p4 . . . end]]]

where p1, p2, p3, p4 are the list index randomly chosen each time.
As an example, let us consider that we have these two fitness parents Parent1 =

[1, 3, 7, 15, 19, 22] and Parent2 = [2, 7, 15, 21]. Assume that p1 = 3, p2 = 2, p3 = 2, and
p4 = 4. As a result, the produced children are as follows:

Child 1 = [1, 3, 7, 15, 21] and Child 2 = [2, 7, 15, 19, 22]

• Apply Mutation

The mutation process was applied to the third parent with a probability of 0.5. This
process entails altering certain genes within this parent; specifically, randomly chosen genes
are modified to values not previously employed on this parent.

• Generate a new population

To complete the formation of the new population, we include the three newly gen-
erated offspring while eliminating three of the least fit chromosomes (parents) from the
prior generation.

As a next step, we will repeat the algorithm, starting with Step 2, and continue until
the threshold is met or the maximum generation time is reached.

4. Results and Discussion

In this section, we will examine our model’s classification performance using two
different strategies. We intend to illustrate the differences in performance between our
methodology and other state-of-the-art studies. Subsequently, we will demonstrate the
performance after implementing channel selection.
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4.1. Classification Strategy

For training and deriving the structure of our model, we used publicly available EEG
data collected from the BCI Competition IV dataset. These data relate to four motor imaging
tasks performed by a variety of subjects.

Training and Testing splitting:
To examine the BCI IV 2a dataset with our model, two techniques were applied for

handling data from multiple subjects or individuals: within-subject and cross-subject.
These strategies are used to determine how data are split, processed, and used for training
and testing, with further elaboration provided in the subsequent sections.

Within-Subject strategy:
For BCI IV 2a, where each subject has two sessions, one of the sessions is used

for training and the second session for testing. So, we have 288 trials in training and
288 trials in testing. Consequently, each subject will have a unique model that is used for
individual classification.

Cross-subject strategy:
According to the idea of the cross-subject, one of the subjects is used for testing the

model that was trained by the other subjects. In BCI IV 2a, we choose a different subject
each time to test the model and combine its two sessions to obtain a total of 576 trials.
Additionally, we included all 288 trials from both sessions of the remaining eight subjects,
amounting to 4608 trials in total, to train this model.

Using these strategies, the dataset was classified into four motor imagery classes: the
left hand, the right hand, both feet, and the tongue. Furthermore, we also classified two
tasks based on left/right hands or feet/tongue.

4.2. Performance Metrics

Performance metrics are measurements used to evaluate the effectiveness of the
proposed model. In our work, six different performance metrics are employed to assess
specific aspects of the model which are accuracy, Kappa, precision, recall, the F1-score,
and Receiver Operating Characteristic curves (ROC curves) [49]. As there are four distinct
classes, the metrics are computed for each individual class. Nevertheless, in the case of
accuracy, it is computed collectively across all classes to represent the overall classification
accuracy for this particular model. In the following, you can see the definition and the
equation of each metric [50,51].

Accuracy measures the proportion of correct predictions over the total predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision is a ratio of correct predictions for a specific class.

Precision =
TP

TP + FP
(7)

Recall measures how many of the positive classes are labeled correctly.

Recall =
TP

TP + FN
(8)

The F1-score is the harmonic mean or weighted average of precision and recall.

F1 score = 2 × Precision × Recall
Precision + Recall

(9)

In context, TP, TN, FP, and FN are defined as follows:
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TP (True Positives) are the number of correct positive predictions.
TN (True Negatives) are the number of correct negative predictions.
FP (False Positives) are the number of incorrect positive predictions.
FN (False Negatives) are the number of incorrect negative predictions.

In the meantime, positive prediction refers to the class that the model identifies or
predicts as the class of interest; on the other hand, negative prediction refers to the opposite
class/classes.

The Cohen Kappa statistic (Kappa) is a metric that compares observed accuracy
with expected accuracy (random chance). The model estimates how well it can classify
instances correctly.

Kappa =
Po − Pe

1 − Pe
(10)

Po denotes the observed agreement which represents the proportion of times the
classifiers agree on the classification of items. Moreover, Pe refers to the expected agreement
by chance which is derived based on the marginal probabilities of each classifier agreeing,
considering only random chance.

Finally, ROC curves are visual representations of the binary classifier diagnostic ability
as its discrimination threshold changes. These curves plot the true positive rate (sensitivity)
on the y-axis versus the false positive rate (1—specificity) on the x-axis. The Area Under the
ROC curve (AUC) ranges from 0.5 to 1.0, with values nearer 1.0 signifying higher authen-
ticity and better classification performance. The AUC acts as a single numerical metric that
encapsulates the ROC curve’s overall effectiveness, balancing sensitivity and specificity.

4.3. Classification Results

In our study, we built the FCNNA model using Python TensorFlow (version 2.15.0)
and deployed it to the Google Colab platform equipped with a T4 GPU and 15.0 GB of
GPU RAM. To ensure the robustness and reproducibility of our results, each model was
trained ten times, with each session consisting of 1000 epochs. The models were trained
using a batch size of 64 and a learning rate of 0.0009. A cross-entropy error function
and an Adam optimizer were used to enhance learning efficiency. During the training
phase, a callback function was used to save the model weights when the best accuracy was
achieved, highlighting an efficient use of computational resources. The best model was
then evaluated on the test set using comprehensive metrics, including accuracy, precision,
recall, and F1-score. Additionally, we utilized ROC curves to assess the trade-offs between
sensitivity and specificity and confusion matrices to provide a detailed breakdown of the
model’s performance across different classes.

The following sections demonstrate the results of applying our model according to
within-subject and cross-subject strategies.

4.3.1. Within-Subject Classification

By applying the suggested classification methodology to categorize the four tasks
within the BCI IV 2a dataset for each subject separately (within-subject), the results obtained
are presented in Table 2. Among the results obtained, a total of three subjects exceeded
the 90% threshold, with Subject 3 particularly excelling with a 95.97% result. Furthermore,
Subject 3 also demonstrated strong performance across all metric measurements. Figure 7
displays visual representations of the confusion matrix for each subject, which illustrates the
difference in performance across classes on different subjects. According to the confusion
matrix, the diagonal entries indicate how many predictions are accurate for each class. It
can be concluded that higher values along this diagonal, from the top left to the bottom
right, indicate more precise predictions for those particular classes.
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Table 2. The results of our model using the within-subject strategy of 4 classes in the BCI IV 2a dataset.

Accuracy Kappa Precision Recall F1-Score

Subject 1 90.04% 86.71% 90% 90% 90%
Subject 2 75.62% 67.51% 75% 76% 75%
Subject 3 95.97% 94.63% 96% 96% 96%
Subject 4 76.32% 68.38% 77% 76% 76%
Subject 5 78.26% 70.98% 79% 78% 78%
Subject 6 69.30% 59.05% 70% 69% 69%
Subject 7 91.70% 88.93% 92% 92% 92%
Subject 8 88.93% 85.24% 89% 89% 89%
Subject 9 87.88% 83.83% 88% 88% 88%

AVG 83.78% 78.36%

Figure 7. Confusion matrix of proposed model applied on 4 classes in BCI IV 2a using within-
subject strategy.

In light of the use of a Butterworth filter in the preprocessing step of the classification
process, Table 3 shows the results obtained with and without preprocessing. Despite the
fact that Subjects 3 and 4 performed better without preprocessing, the general result is more
accurate when preprocessing is performed. In Table 4, we illustrate the variations in accu-
racy when utilizing one, two, or three layers of the convolutional block in the classification
process. It reveals that the two-layer configuration generally delivers the best performance,
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although it should be noted that Subjects 1 and 9 performed better with the three-layer
configuration. Employing two layers offers an optimal balance by providing better accuracy
while maintaining manageable complexity and processing time. This two-layer approach
outperforms the single-layer configuration and avoids the increased computational de-
mands associated with a three-layer configuration. Due to this, in our model, we chose to
apply the preprocessing and a two-layer configuration of the convolutional block.

Table 3. A comparison of the classification accuracy between the preprocessed and unprocessed BCI
IV 2a dataset using within-subject four-class analysis. The best scores are shown in bold.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 AVG

No Preprocessing
Accuracy 87.54% 72.08% 97.07% 80.26% 77.54% 68.84% 90.97% 88.19% 87.50% 83.33%

With Preprocessing
Accuracy 90.04% 75.62% 95.97% 76.32% 78.26% 69.30% 91.70% 88.93% 87.88% 83.78%

Table 4. A comparison of the classification accuracy between one-layer, two-layer, and three-layer
convolutional blocks in the BCI IV 2a dataset using four within-subject classes. The best scores are
shown in bold.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 AVG

One-Layer 89.32% 74.20% 95.24% 69.74% 75.72% 60.47% 90.97% 85.98% 87.50% 81.02%
Two-Layer 90.04% 75.62% 95.97% 76.32% 78.26% 69.30% 91.70% 88.93% 87.88% 83.78%

Three-Layer 90.75% 74.56% 95.60% 74.56% 77.54% 68.37% 90.61% 88.56% 88.64% 83.24%

We employed two validations of two classes to assess our model, as detailed in Table 5,
demonstrating the outcomes for each combination. Specifically, we differentiated between
the right hand and left hand, as well as between both feet and the tongue. The findings
indicated that the average accuracy in classifying left and right hands yielded superior
results of 93.09%. Notably, we achieved a 100% validation rate when classifying Subject
8 in class 1 and class 2, as well as Subject 3 in class 3 and class 4. Moreover, a confusion
matrix of the model is shown in Figures A1 and A2 of Appendix A to aid in the evaluation
of the model’s performance when categorized into two classes, as well as identifying areas
in which we may need to improve. Essentially, the confusion matrix visually presents how
well the classifier performs by showcasing both correct and incorrect predictions for each
class. The purpose of this visual aid is to enable you to evaluate the model’s precision,
recall, accuracy, and overall performance.

Table 5. The within-subject classification accuracy of two classes in the BCI IV 2a dataset, classi-
fied between class 1 (left hand) and class 2 (right hand) and also between class 3 (both feet) and
class 4 (tongue).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 AVG

Class 1 and Class 2 88.65% 88.03% 98.54% 90.52% 97.78% 89.81% 91.43% 100.00% 93.08% 93.09%
Class 3 and Class 4 92.14% 90.07% 100.00% 86.61% 91.49% 82.24% 94.16% 90.51% 95.52% 91.42%

As part of the comparison, we assess how well our model classifies four MI tasks
compared with the baseline models [4] which are EEGNet [15], EEG-TCNet [23], MSF-
BCNN [24], and TCNet Fusion [25], ShallowNet [14], and DeepConvNet [14] as well as
advanced models that are illustrated in Tables 6 and 7. According to the results presented in
Table 6, our study shows a significant improvement in the measured accuracy of 6.41% over
most baseline models. In this regard, our results are comparable to those of study [25], in
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which the training phase was the same as in our study by using the callback function. Com-
paring the classification results of our model with advanced models in terms of accuracy, as
shown in Table 7, reveals that the average performance of our study exceeded those of most
other studies. As illustrated in Table 7, the highest accuracy values are noted in [4,26], and
our model showcases remarkable consistency with variances of less than 1%. It is worth
noting that studies [4,26] used 5-fold cross-validation to train their models. The authors
in [4] merged all sessions and divided them into five groups. Each group was used as a
validation set once, and the remaining four were utilized for training. Model accuracy is
determined by averaging the maximum accuracy of the five folds. Meanwhile, the authors
in [26] performed a random split, allocating 80% of each subject’s data for training and 20%
for testing. Furthermore, our model significantly outperforms the models in [27–29] that
incorporate EEGNet or ConvNet for performance enhancement. Additionally, Subject 2
and Subject 3 achieve the highest level of superiority in comparison with existing methods.
Subject 2 experienced a 5% increase, while Subject 3 saw a 2% increase across previous
advanced works.

Table 6. A comparison of our model accuracy with the baseline model on the BCI IV 2a dataset using
a within-subject approach. The best scores are shown in bold.

ShallowNet
[4]

DeepConvNet
[4]

EEGNet
[4]

MSFBCNN
[4]

EEG-TCNet
[23]

TCNet Fusion
[25]

Our Model

Accuracy 74.31% 75.64% 73.39% 75.12% 77.35% 83.73% 83.78%

Kappa 0.66 0.67 0.65 0.67 0.70 0.78 0.78

Table 7. A comparison of our model accuracy with the state-of-the-art model on the BCI IV 2a dataset
using a within-subject approach. The best scores are shown in bold.

CMO-
CNN
[26]

SSSTN
[30]

SDDA
[29]

MTFB-
CNN

[4]

CRGNet
[6]

EEG-
ITNet

[27]

Echtioui
et al.
[31]

MBSTCNN-
ECA-

LightGBM
[28]

Our
Model

Subject 1 86.95% 86.46% 90.62% 90.52% 83.80% 84.38% 70.1 7% 82% 90.04%
Subject 2 67.47% 58.33% 62.84% 68.10% 70.60% 62.85% 57.75% 61% 75.62%

Subject 3 92.69% 92.57% 93.40% 93.97% 90.80% 89.93% 83.62% 89% 95.97%

Subject 4 77.21% 75.35% 84.02% 74.14% 75.60% 69.10% 38.79% 63% 76.32%
Subject 5 82.78% 80.90% 68.05% 80.17% 80.60% 74.31% 47.41% 71% 78.26%
Subject 6 73.73% 67.01% 61.80% 72.41% 73.00% 57.64% 38.96% 64% 69.30%
Subject 7 92.52% 93.06% 97.20% 96.55% 95.80% 88.54% 74.82% 72% 91.70%
Subject 8 90.43% 85.76% 90.97% 91.38% 89.20% 83.68% 69.65% 79% 88.93%
Subject 9 91.47% 86.46% 89.23% 93.10% 79.30% 80.21% 51.03% 84% 87.88%

AVG 83.92% 80.66% 82.01% 84.48% 82.10% 76.74% 59.13% 74% 83.78%

Table 8 compares the accuracy of our model with the state-of-the-art model using
two classes of right-hand and left-hand classification. According to papers [8,52,53], ML
techniques were employed to distinguish between two classes using Multi-task Transfer
Learning (MTL), SVM, and LDA classifiers. In contrast, models based on DL were imple-
mented in [28,54,55]. In particular, [28,54] utilized CNN architecture, while [55] utilized
DBN and LSTM architecture. Based on the results, our model performed overwhelmingly
well across most subjects and on average, as well.
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Table 8. A comparison of the accuracy of two classes (left hand and right) between our model and
the current state-of-the-art models on the BCI IV 2a dataset using a within-subject approach. The best
scores are shown in bold.

HS-CNN
[54]

SW-LCR
[8]

CSP+ DBN
[55]

CSP+
LSTM

[55]

KMDA
[53]

VFB-RCSP
[52]

MBSTCNN-
ECA-

LightGBM
[28]

Our Model

Subject 1 90.07% 86.81% 48.15% 48.15% 79.01% 86.11% 88% 88.65%
Subject 2 80.28% 64.58% 51.85% 51.85% 72.52% 70.83% 78% 88.03%

Subject 3 97.08% 95.83% 48.15% 51.85% 90.25% 94.44% 87% 98.54%

Subject 4 89.66% 67.36% 50.00% 50.00% 70.25% 73.61% 76% 90.52%

Subject 5 97.04% 68.06% 50.00% 50.00% 68.55% 61.11% 93% 97.78%

Subject 6 87.04% 67.36% 52.38% 47.62% 71.02% 70.83% 77% 89.81%

Subject 7 92.14% 80.56% 50.00% 50.00% 88.29% 63.89% 87% 91.43%
Subject 8 98.51% 97.22% 50.00% 50.00% 90.71% 93.06% 94% 100.00%

Subject 9 92.31% 92.36% 52.63% 47.37% 90.66% 88.19% 78% 93.08%

AVG 91.57% 80.02% 50.35% 49.65% 80.14% 78.01% 84% 93.09%

4.3.2. Cross-Subject Classification

As previously noted, the cross-subject strategy serves as a method to evaluate the
model’s performance by assessing the data of each subject, which remain unutilized during
the training phase. Table 9 shows the accuracy results of our model, where individual
subject data are allocated for testing purposes. The results indicate that cross-subject
strategies perform less well than within-subject strategies, which is reasonable considering
that the data of the subjects in testing were not included in the training process. Despite
this, the table also illustrates how we provide competitive results when compared with
state-of-the-art works, with four subjects showing superior results. As indicated in the table,
the EEGNet model [15], as well as EEG-TCNet [23], which includes a TCN block following
EEGNet, and EEG Inception [56], which consists of two inception modules, demonstrates
that our model performs better than those of others. According to [26,27], the authors assess
their methodology based on two approaches: within-subject and cross-subject. Examining
the data presented in Tables 7 and 9 highlights the differences in performance between
our model and the mentioned papers. In spite of the fact that [26] yields slightly better
average results in a within-subject analysis, our model outperforms it when it comes to
Subjects 1, 2, and 3. In contrast, our model produces better average results in cross-subject
analysis and across all subjects, with the exception of Subject 9, where [26] performs slightly
better. Moreover, our model outperforms all results presented in [27] in terms of within-
subject accuracy. Although this study demonstrates notable outcomes in cross-subject
analysis, Subject 3 in our model consistently maintains their superior performance, in both
within-subject and cross-subject evaluations, along with Subjects 1, 6, and 8 in cross-subject
analysis. It should be noted that the authors in [27] used the same splitting strategy as we
did; however, they employed 10-fold cross-validation to divide the data into training and
validation sets. For more detailed results of our model using cross-subject classification,
refer to Table A1 of Appendix A, which includes metrics such as accuracy, Kappa, precision,
recall, and the F1-score.
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Table 9. A comparison of our model accuracy with the state-of-the-art model on the BCI IV 2a dataset
using a cross-subject approach. The best scores are shown in bold.

CMO-
CNN
[26]

EEG-
ITNet

[27]

EEG
Inception

[27]

EEGNet
8,2
[27]

EEG-
TCNet

[27]

Our
Model

Subject 1 68.75% 71.88% 66.32% 68.75% 69.10% 72.56%

Subject 2 44.44% 62.85% 48.26% 50.00% 52.08% 53.71%
Subject 3 78.47% 81.94% 73.61% 80.21% 81.94% 86.37%

Subject 4 55.90% 65.62% 56.60% 59.38% 61.81% 60.82%
Subject 5 53.12% 63.19% 65.62% 64.24% 60.42% 59.11%
Subject 6 51.56% 56.25% 56.25% 48.26% 51.39% 59.91%

Subject 7 67.70% 80.21% 73.61% 72.57% 76.39% 72.63%
Subject 8 76.38% 78.12% 70.49% 77.43% 74.31% 81.68%

Subject 9 73.78% 64.93% 61.11% 55.56% 58.68% 73.05%
AVG 63.34% 69.44% 63.54% 64.04% 65.12% 68.87%

4.4. Channel Selection Results

In our study, we utilized a GA to select identical optimal channels for all subjects.
The channels selected must maintain or increase the subjects’ performance. Consequently,
employing a cross-subject strategy to evaluate the fitness ensured that the chosen channels
were based on the most effective features identified by training and testing all subjects’
data simultaneously. Choosing channels can be a complex task since we need to apply the
classification process several times to obtain the most accurate results. According to the GA,
we applied three generations, where each generation has six populations to be evaluated.
Therefore, 300 epochs were used to train and evaluate the results in a reasonable amount of
time. Following this, we carried out three separate runs of the whole GA. After each run,
the algorithm identified the top three sets of channels based on accuracy. We then selected
the best-performing set of channels across all runs for use in our classification tasks.

Table 10 presents the selected channels which are chosen based on the best accuracy
obtained after applying cross-subject classification through the GA to test each subject
individually. Further clarification can be found in Figure 8, which illustrates the distribution
of these optimal channels, which were selected from 22 main electrodes following the
International 10–20 system.

Table 10. Chosen channels based on best accuracy results using genetic algorithm and cross-
subject classification.

Selected Channels # of Channels Accuracy

Subject 1 in Testing [2, 3, 8, 9, 12, 15, 16, 19, 21, 22] 10 76.90%
Subject 2 in Testing [2, 5, 7, 10, 14, 16, 17, 18, 21, 22] 10 52.98%
Subject 3 in Testing [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 22] 13 85.82%
Subject 4 in Testing [2, 6, 7, 10, 12, 15, 17, 18, 19, 20, 21, 22] 12 61.22%
Subject 5 in Testing [1, 2, 3, 5, 8, 9, 13, 14, 15, 16, 17, 20, 21] 13 57.81%
Subject 6 in Testing [3, 4, 5, 7, 8, 10, 12, 15, 17, 19] 10 58.06%
Subject 7 in Testing [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 19] 12 68.25%
Subject 8 in Testing [3, 7, 9, 10, 13, 15, 17, 18, 21, 22] 10 80.56%
Subject 9 in Testing [5, 9, 13, 17, 18] 5 70.66%
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Figure 8. Optimal channels were selected based on GA and cross-subject classification after testing
each subject individually. The highlighted electrodes indicate the positions of the selected channels
for each subject.

While no identical electrodes were selected, the results indicate that some electrodes
were used more frequently than others. Figure 9 shows the average number of electrodes
chosen for all subjects according to the different classification processes applied in Table 10.
The most popular choice, channel 17, was chosen by seven out of nine participants. Fol-
lowing closely are channels 5, 9, and 10, which were all used by six subjects. In contrast,
channel 1 was the least favored, chosen by only one subject, specifically Subject 5.
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Figure 9. The average number of channels (electrodes) selected for all subjects after applying the
genetic algorithm through cross-subject classification.
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Cross-subject classification is used to validate the performance of the selected subset
channels. Therefore, all subjects’ data were involved in the training or testing process. This
will assist in the establishment of fixed optimal channels for all subjects. However, our goal
is to choose one set of identical channels for all subjects. According to Table 10, testing
Subject 3 provides the highest level of accuracy. Furthermore, by comparing the results in
Table 10 (with channel selection) with Table 9 (using the entire electrodes), it is evident that
testing Subject 1 shows a significant improvement of more than 4% when certain channels
are reduced. As a result, it may appear that either the set of channels of Subject 1 or Subject
3 is the best for fixed channels. To verify this result, we evaluated the performance of each
set of channels in Table 10 in order to choose the best combinations. The performance
of the selected channels was measured based on within-subject classification using these
selected channels. As expected, the highest average accuracy values are observed in
channel sets associated with testing Subjects 1 and 3. For additional details, see Table A2
of Appendix A. Table 11 presents a detailed breakdown of the accuracy, Kappa values,
and time duration for the within-subject classification results after applying the selected
channels obtained from testing Subject 1 and Subject 3. Additionally, the results of a full
channel classification are presented so that a clear comparison can be made. The results
indicate that channel selections improve the performance reflected by the used metrics for
many subjects, including Subject 1, Subject 2, Subject 4, Subject 6, and Subject 8. Specifically,
Subject 6 exhibits increased accuracy with both combinations of channel selection. In
addition, the classification duration is reduced from one and a half hours to two hours,
resulting in more efficient results. Therefore, we will consider the set of channels “[2, 3, 8,
9, 12, 15, 16, 19, 21, 22]” that are produced by testing Subject 1 as the fixed optimal in our
proposed work since they provide the best accuracy with the shortest computation time.

Table 11. Within-subject classification based on the fixed channel selections. The best scores are
shown in bold.

Optimal Channels of Subject 1 in
Testing

[2, 3, 8, 9, 12, 15, 16, 19, 21, 22]

Optimal Channels of Subject 3 in
Testing

[2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18,
22]

All Channels Classification
[1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22]

Accuracy Kappa Accuracy Kappa Accuracy Kappa

Subject 1 87.90% 83.86% 90.75% 87.67% 90.04% 86.71%
Subject 2 77.39% 69.86% 67.84% 57.16% 75.62% 67.51%
Subject 3 95.60% 94.14% 94.51% 92.67% 95.97% 94.63%
Subject 4 75.88% 67.77% 77.19% 69.50% 76.32% 68.38%
Subject 5 73.19% 64.30% 77.90% 70.51% 78.26% 70.98%
Subject 6 73.02% 64.03% 70.23% 60.29% 69.30% 59.05%
Subject 7 88.81% 85.09% 89.53% 86.05% 91.70% 88.93%
Subject 8 87.82% 83.76% 89.67% 86.22% 88.93% 85.24%
Subject 9 87.12% 82.81% 84.85% 79.77% 87.88% 83.83%

AVG 82.97% 82.50% 83.78% 78.36%
Time Duration 2 h: 36 min 3 h: 04 min 4 h: 38 min

Selecting the optimal channels for each subject contributes to reducing noises and
increasing the accuracy. In depth, after using within-subject classification across the channel
sets listed in Table 10, we identified channel sets that improved accuracy for certain subjects.
Table 12 demonstrates variable optimal channels for each subject, presenting their corre-
sponding accuracy results. The table represents the cross-subject experiments conducted to
determine these optimal channels. Furthermore, it shows a significant increase in overall
accuracy as well as substantial improvements in individual accuracy.
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Table 12. Variable optimal channels for each subject.

Accuracy Kappa Variable Optimal Channels
Belong to Which

Cross-Subject
Time Duration

Subject 1 90.75% 87.67% [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 22] Testing Subject 3 3:04 h
Subject 2 77.39% 69.86% [2, 3, 8, 9, 12, 15, 16, 19, 21, 22] Testing Subject 1 2:36 h
Subject 3 96.34% 95.12% [2, 5, 7, 10, 14, 16, 17, 18, 21, 22] Testing Subject 2 2:34 h
Subject 4 77.19% 69.50% [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 22] Testing Subject 3 3:04 h
Subject 5 77.90% 70.51% [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 22] Testing Subject 3 3:04 h
Subject 6 73.02% 64.03% [2, 3, 8, 9, 12, 15, 16, 19, 21, 22] Testing Subject 1 2:36 h
Subject 7 89.53% 86.05% [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 22] Testing Subject 3 3:04 h
Subject 8 89.67% 86.22% [2, 6, 7, 10, 12, 15, 17, 18, 19, 20, 21, 22] Testing Subject 4 2:51 h
Subject 9 89.02% 89.02% [2, 6, 7, 10, 12, 15, 17, 18, 19, 20, 21, 22] Testing Subject 4 2:51 h

AVG 84.53% 79.78% 2:51 h

Below is a comparison of our proposed work with the existing state-of-the-art related
research contributions according to the channel selection process. As shown in Table 13,
our study provides an advantage over the previous work in terms of the identicality of
the channels and used strategy. In particular, the proposed variable channel approach
differs from previous studies in the fact that it combines two strategies, resulting in the
highest accuracy. As well as using a new strategy, our fixed channel approach also uses
the same channels for all subjects, resulting in a significant increase in accuracy. Figure 10
demonstrates how our work performs compared to the previous one by presenting the
number of channels used and the average accuracy obtained through the channel selection
process. As shown by the figure, the proposed variable channel methodology demonstrates
the highest degree of accuracy, followed by the work presented in [19], and then our
fixed channel methodology. While the study in [19] achieves notable accuracy with fewer
channels, it employs the one-vs-one strategy, which involves the use of multiple binary
classifications and averages their results. In contrast, our approach uses a single classifier
to accurately differentiate between four classes, achieving not only higher accuracy but
also a more efficient reduction in the number of channels used.
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Figure 10. A comparison of our work with the state-of-the-art research in terms of accuracy and
the number of channels used, as discussed in Hassanpour et al. (2019) [18], Tiwari et al. (2023) [19],
Mahamune et al. (2023) [21], and Chen et al. (2020) [22].
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Table 13. A comparison between our work and the state-of-the-art research on channel selection in
the BCI IV 2a dataset.

Accuracy
#of

Channels

Use the Same
Number of
Channels

Use the Same
Channels?

Strategy

(Mahamune et al. 2023) [21] 75.03% 17.22 No No Within-subject
(Tiwari et al. 2023) [19] 83.97% 6.44 No No One vs. One

(Hassanpour et al. 2019) [18]
(SSAE model) 71.31% 19.44 No No One vs. Rest

(Hassanpour et al. 2019) [18]
(DBN model) 68.63% 19.44 No No One vs. Rest

(Chen et al. 2020) [22]
algorithm1 75.72% 14 Yes No

Within-subject
in classification

One vs. Rest
in feature extraction

(Chen et al. 2020) [22]
algorithm2 77.82% 15.22 No No

Within-subject in
classification
One vs. Rest

in feature extraction

Proposed Methodology
Fixed Channels 82.97% 10 Yes Yes

Cross-subject in channel
selection

Within-subject in
classification

Proposed Methodology
Variable Channels 84.53% 11.78 No No

Cross-subject in channel
selection

Within-subject in
classification

Finally, in our experiment, we validated classification performance based on four
distinct methods: within-subject with all channels, cross-subject, within-subject with fixed
channels, and within-subject with variable channels. We found that the within-subject
method utilizing variable channels achieved the most significant results within a reasonable
duration. Conversely, the within-subject strategy with a fixed set of channels produced
the highest accuracy and Kappa values, particularly when considering the shortest com-
putation time. Standardizing the number of channels across all participants has proven
to be a particularly effective technique. This technique produces impressive results that
demonstrate the method’s effectiveness and importance in terms of accuracy, Kappa scores,
and processing time. This novel approach represents a significant advancement in the field,
potentially introducing an innovative direction in how channels could be selected. It allows
for the use of a consistent set of channels across all subjects, a method not previously ap-
plied. This approach not only challenges traditional approaches but also addresses existing
channel selection limitations, opening up new opportunities for research and application.

Based on our results, we can say that all four methods demonstrated high accuracy
in classification, overcoming the average accuracy value shown in most similar studies.
The within-subject with all channels method was assessed with two-class and four-class
classifications. The two-class classification achieved the highest accuracy among all studies,
while the four-class classification recorded the highest accuracy in most studies and ex-
ceeded all others for Subjects 2 and 3. Subjects 1, 3, 6, and 8 achieved the highest accuracy
scores using cross-subject classification, delivering competitive results on average. The
within-subject with variable channel method outperformed previous studies in accuracy
by using an average of 11.78 channels. On the other hand, the within-subject with fixed
channels method was more accurate than most other studies, except for one. By employing
a single classifier, our method distinguishes itself from this previous study, which used a
one-to-one approach.

For further evaluation, Figure 11 illustrates the ROC curve and AUC for each subject
across these four methods. The results of the AUC are generally good, with most scores
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remaining above 90. There is no doubt that the AUC for Subject 3 is impressive, scoring 100
for the within-subject method, 98 for the cross-subject method, and 100 for both the fixed
and variable channel methods. Contrary to this, the cross-subject method yields the lowest
AUC, particularly for Subject 2, where it reaches 79. Additionally, all the within-subject
methods, either with all channels or with selected channels, demonstrate similar results,
showing the various channel selection strategies consistently outperforming the others.

Figure 11. ROC curves and AUC for each subject across different methods: within-subject with
all channels (“Within-subject”), cross-subject, within-subject with fixed channel selection (“Fixed
Channels”), and within-subject with variable channel selection (“Variable Channels”). The dotted
black lines reflect the performance of a random predictor, serving as a reference for comparing the
classification performance of the four methods.

5. Conclusions

In the research area addressing MI-EEG-based BCIs, several challenges limit the
growth of classification accuracy involving the complexity and the redundancy of EEG
signal data. In this paper, we presented a Fusion convolutional neural network with
Attention blocks (FCNNA) model to perform multiclass classification with a channel
selection mechanism. Our approach began with preprocessing to eliminate noise and
prepare the EEG raw data. Afterward, the FCNNA model was used for classification,
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which consists of layers of convolutional blocks followed by a CBAM attention block.
Based on a comparison between one, two, and three layers of convolutional blocks, it was
determined that two layers provide the best performance in terms of accuracy, complexity,
and processing time. Lastly, a genetic algorithm was used for channel selection. The
novelty of this stage is the use of a new technique that combines cross-subject and within-
subject methods. Many cross-subject classifications were applied through the channel
selection process to provide various sets of optimal channels. Following this, within-subject
classifications were performed so that fixed and variable channels can be selected for
each subject.

The experimental results on BCI IV 2a showed that our method effectively addressed
the issues of existing CNN-based EEG motor imagery classification and improved the
performance. Our proposed work is evaluated through four different scenarios: within-
subject classification, cross-subject classification, a fixed set of channel selection, and a
variable set of channel selection. As a result of our within-subject strategy, multiclass
classification showed an impressive improvement of 83.78%. The accuracy of the model
was considered to be higher than the EEGNet, MSFBCNN, EEG-TCNet, ShallowNet, and
DeepConvNet models by 6.41%. Moreover, in comparison to advanced works, Subject 2
had a 5% increase in accuracy, and Subject 3 had a 2% increase. In addition, a within-subject
strategy with two classes resulted in the best performance at 93.09%. The second multiclass
classification applied using a cross-subject strategy resulted in an impressive accuracy score
of 68.87%. In both scenarios, the fixed set of channels and the variable set of channels, only
one classifier was used to distinguish between the four classes with a superior accuracy of
82.97% and 84.53%, with an average number of channels between 10 and 11.78. As a result
of analyzing the four scenarios, the within-subject method employing variable channels
achieved the highest accuracy and Kappa results. Meanwhile, the strategy with a fixed set
of channels achieved the highest accuracy in the shortest computation time.

In future work, we intend to improve performance and efficiency through the incorpo-
ration of transfer learning. Using the concepts introduced in this paper, we aim to further
develop classification methods and channel selection techniques to improve performance.
This will significantly contribute to the advancement of BCI systems. Additionally, the
insights gained from our study collectively suggest promising directions for future research
and practical applications in EEG MI classification and EEG channel selection.
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Appendix A

Table A1. Cross-subject classification results of 4 classes in the BCI IV 2a dataset.

Accuracy Kappa Precision Recall F1-Score

Subject 1 72.56% 63.42% 74% 73% 73%
Subject 2 53.71% 38.29% 55% 54% 54%
Subject 3 86.37% 81.83% 87% 86% 86%
Subject 4 60.82% 47.63% 65% 61% 61%
Subject 5 59.11% 45.62% 62% 59% 58%
Subject 6 59.91% 46.52% 61% 60% 59%
Subject 7 72.63% 63.52% 74% 73% 73%
Subject 8 81.68% 75.57% 82% 82% 82%
Subject 9 73.05% 64.06% 73% 73% 73%

AVG 68.87% 58.50%

Table A2. Within-subject classification based on the set of channels in Table 10.

Table 10 Selected Channels According to

Testing
Subject 1

Testing
Subject 2

Testing
Subject 3

Testing
Subject 4

Testing
Subject 5

Testing
Subject 6

Testing
Subject 7

Testing
Subject 8

Testing
Subject 9

Accuracy
(Avg) 82.97% 81.69% 82.5% 81.54% 79.87% 80.49% 80.05% 79.94% 69.46%

 

Figure A1. Confusion matrix of proposed model applied on 2 classes of left and right hand in BCI IV
2a using within-subject strategy.
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Figure A2. Confusion matrix of proposed model applied on 2 classes of both feet and tongue in BCI
IV 2a using within-subject strategy.
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Abstract: Epilepsy is a common neurological disorder, and its diagnosis mainly relies on the analysis
of electroencephalogram (EEG) signals. However, the raw EEG signals contain limited recognizable
features, and in order to increase the recognizable features in the input of the network, the differential
features of the signals, the amplitude spectrum and the phase spectrum in the frequency domain
are extracted to form a two-dimensional feature vector. In order to solve the problem of recogniz-
ing multimodal features, a neural network model based on a multimodal dual-stream network is
proposed, which uses a mixture of one-dimensional convolution, two-dimensional convolution and
LSTM neural networks to extract the spatial features of the EEG two-dimensional vectors and the
temporal features of the signals, respectively, and combines the advantages of the two networks,
using the hybrid neural network to extract both the temporal and spatial features of the signals at the
same time. In addition, a channel attention module was used to focus the model on features related
to seizures. Finally, multiple sets of experiments were conducted on the Bonn and New Delhi data
sets, and the highest accuracy rates of 99.69% and 97.5% were obtained on the test set, respectively,
verifying the superiority of the proposed model in the task of epileptic seizure detection.

Keywords: EEG signal; convolutional neural network; epilepsy diagnosis; feature extraction;
classification and diagnosis

1. Introduction

Epilepsy is a common neurological disorder characterized by abnormal electrical
activity in the brain. These abnormal electrical activities can trigger various forms of
seizures, which vary from person to person. Seizures may cause generalized convulsions,
which are violent, involuntary contractions and spasms of muscles throughout the body.
This type of seizure is often called a generalized seizure. However, epileptic seizures do
not always manifest as generalized convulsions. Some types of seizures, such as focal
seizures, may be limited to one part of the body and manifest as localized muscle twitching
or abnormal sensations. In addition, some seizures may include brief loss of consciousness,
abnormal behavior, or confusion without obvious convulsions. Epilepsy can manifest in
many different ways, depending on where in the brain the abnormal electrical activity
occurs and how it spreads [1]. The diagnosis and monitoring of epilepsy relies heavily
on electroencephalography (EEG), a non-invasive brain testing technique that measures
electrical signals in the brain through electrodes attached to the scalp. EEG can capture
changes in brain activity during seizures. However, EEG signals are complex, noisy, and
high-dimensional, which poses a challenge for accurate and efficient classification of EEG
signals [2].

EEG signals for the detection and diagnosis of epilepsy can be divided into the follow-
ing steps: signal preprocessing, feature extraction, feature selection and classification [3].
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Signal preprocessing is carried out to remove noise and interference from the EEG signal
and improve the signal quality. Then, useful features are extracted from the EEG signal
that reflect the time domain, frequency domain, or time–frequency domain characteristics
of the signal. However, not all of the extracted features are favorable for epilepsy diagnosis,
so feature selection is also needed to select the optimal subset from the extracted features to
reduce the feature dimensionality and computational complexity. Finally, the EEG signals
are categorized as either normal or abnormal based on the features, which also help to
further differentiate the type and degree of epilepsy. In recent years, many researchers
have proposed many intelligent epilepsy diagnostic methods, some of which are based on
traditional signal processing methods, and some of which are based on machine learning
and deep learning methods.

Conventional methods usually require an artificially designed approach to feature
extraction and selection [4–11]. Guangpeng et al. [12] extracted the time–frequency feature
maps of interval EEG signals. Then a single-channel method was used to reduce the
network parameters, and finally a convolutional neural network was used to predict
epilepsy, with a prediction accuracy of 87.9%. Cansel et al. [13] used discrete wavelet
transform to process EEG signals and thus diagnose temporal lobe epilepsy (TLE) patients
and psychogenic nonepileptic seizure (PNES) in an automated discriminative method to
quickly and accurately determine different epilepsy types. Sirin et al. [14] investigated
the interaction between sleep architecture and seizure probability, using dual-channel
subcutaneous EEG signals to account for changes in brain dynamics in each patient. Seyed
Morteza et al. [15] also used discrete wavelet transform to decompose the EEG signal;
however, it was based on the Modified Binary Salp Swarm Algorithm (MBSSA) to extract
the time domain features, thus avoiding manual and time-consuming computations. Ying
et al. [16] used a wearable EEG monitoring device to capture EEG and automated epilepsy
detection using support vector machines, providing a new approach to real-time monitoring.
Traditional methods have certain limitations and need to set up appropriate recognition
methods according to specific scenarios, which is not conducive to the rapid diagnosis of
epilepsy diseases for complex and variable epilepsy types [17–19].

Deep learning methods can automatically learn feature representations from raw
signals. Deep learning methods can also process multi-channel EEG signals, utilizing
the spatial relationships between the signals [20–24]. Zixu et al. [25] developed a unified
framework early-seizure detection and epilepsy diagnosis using mainly autoregressive
moving average-model and support-vector machine classifiers for epilepsy diagnosis,
which achieved classification accuracies of 93% and 94%, respectively. Weidon et al. [26]
used multichannel EEG signals to construct a multilayer deep convolutional neural net-
work model, thus effectively utilizing the relevant information such as time, frequency,
and channel of EEG to extract relevant features about epilepsy, which greatly improved
the diagnostic accuracy of epilepsy. Abdelhamid et al. [27] proposed a framework com-
bining deep learning and EEG signal processing without any manual feature extraction
for the detection of seizures and non-seizures, with a combination of one-dimensional
convolutional neural networks, recurrent neural networks, and attentional mechanisms,
which achieved high recognition accuracy in several publicly available datasets. Mingyang
et al. [28] proposed a neural network based on wavelet envelope analysis, which combines
discrete wavelet transform with the envelope analysis method to extract important features
from EEG signals. Aayesh et al. [23] performed time domain, frequency domain and
nonlinear analysis on the signal to extract pattern features; they performed feature selection
on the extracted features, obtained more discriminative features, and constructed a fuzzy
machine learning classifier for epileptic seizure detection.

Combining these methods, for the feature extraction of EEG signals, in this study we
used the differential features of the EEG signal, the amplitude spectrum and the phase
spectrum to jointly extract the features of the EEG signal. Differential feature extraction is a
commonly used signal processing method that captures changes in a signal by calculating
the difference between consecutive time points. In EEG signal processing, the change
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trend of the signal can be obtained by calculating the difference between adjacent time
points, thereby extracting the differential features and capturing the instantaneous or
periodic changes in the signal. Frequency domain analysis is the process of converting
signals from the time domain to the frequency domain. The amplitude spectrum represents
the amplitude of the signal at different frequencies, while the phase spectrum represents
the phase information of the signal at different frequencies. In EEG signal processing,
frequency domain analysis can help reveal the different frequency components present in
the signal, such as alpha waves, beta waves, etc., as well as the phase relationship between
them, and help identify activity patterns at specific frequencies in the signal, thereby
better understanding and analyzing the characteristics of EEG signals. Differential feature
extraction helps capture the instantaneous changes in the signal, while the amplitude
spectrum and phase spectrum in the frequency domain provide information about the
amplitude and phase of the signal at different frequencies. The combined use of these
methods can more comprehensively describe the characteristics of EEG signals. This
provides richer feature information for subsequent signal analysis and processing.

The preprocessed data uses a neural network model based on a multi-modal dual-
stream network to process temporal features and spatial features, respectively. Specifically,
it is divided into two streams, one for processing temporal features and the other for
processing spatial features. The two streams can each adopt network structures and
algorithms suitable for processing their respective characteristics, with improved processing
and representation capabilities of complex signals.

The remainder of this article is organized as follows. Section 2 introduces the EEG
dataset and methods. Section 3 describes the experimental procedure and results. Section 4
concludes the paper and suggests some future directions.

2. EEG Data Sets and Methods

2.1. Dataset
2.1.1. The University of Bonn Dataset

Bonn EEG Dataset is one of the public data sets widely used in the field of brain–
computer interface (BCI) and neuroscience research [29]. The dataset was created by
the Center for Medical Epilepsy at the University of Bonn in Germany. This data set
contains EEG data from 5 healthy people and 5 epilepsy patients. It was collected using
the international 10–20 system EEG acquisition system. It contains a total of 5 data subsets,
namely F, S, N, Z, and O. The data are described in Table 1 and visualized in Figure 1. The
Bonn data set is a single-channel data set, in which each sub-data set contains 100 data
segments: the time length of each data segment is 23.6 s, the data points are 4097, and the
sampling frequency is 173.61 Hz.

Table 1. Bonn EEG Dataset EEG Type.

Healthy Control Patients with Epilepsy

Identifier Z O N F S

State Opened eyes Closed eyes Interictal period Interictal period Ictal
period

Electrode position Scalp Scalp Intracranial
hippocampus

Intracranial lesion
area

Intracranial lesion
area

Subsets Z and O were collected from a control group of 5 healthy individuals. The clip
in Z is the EEG when the subject’s eyes are open, and the clip in O is the EEG when the
subject’s eyes are closed. Subsets N, F, and S are intracranial EEG, collected from 5 patients
who were diagnosed before surgery. Subset N comes from the intracranial hippocampal
formation area of the patient’s interictal period. Subset N comes from the intracranial
hippocampal formation area of the patient’s interictal period. Subset F comes from the
intracranial lesion area of the patient during the interictal period. Subset S comes from the
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intracranial lesion area during the patient’s ictal period. In the experiment, Z, O, N, and
F are regarded as one category and marked as Interictal period. E is marked Ictal period.
Slice the data into a 2 s time window to obtain a single training sample.

Figure 1. Bonn EEG Dataset EEG visualization.

2.1.2. New Delhi Dataset

The New Delhi dataset is a publicly available dataset created from the Center for
Neurology and Sleep, Hauz Khas, New Delhi. The dataset contains EEG recordings of
ten epilepsy patients [30]. Data were collected using a Grass Telefactor Comet AS40
amplification system at a sampling rate of 200 Hz. During the acquisition process, gold-
coated scalp EEG electrodes were placed according to the 10–20 electrode placement system.
The signal is filtered between 0.5 and 70 Hz and then divided into pre-ictal, interictal and
ictal. Each category contains MAT files of 50 EEG time-series signals. The sampling
frequency is 200 Hz, and each MAT file contains 1024 samples. Each sample represents a
set of EEG time-series data with a duration of 5.12 s. The EEG signal is shown in Figure 2.

Figure 2. New Delhi EEG Dataset EEG Visualization.

2.2. Data Set Preprocessing

The EEG signal reflects the activity process of the brain. The amplitude of the EEG
signal changes within the entire range of 2~100 μV, and the frequency range is 1~100 Hz. In
the study, the EEG was divided into five frequency sub bands. In general, delta waves often
appear in the cerebral cortex during deep sleep. Specifically, this electrical activity brain
waveform with a frequency between 0.5 and 4 Hz is consistent with the deepest stage of
non-rapid eye movement sleep, and is associated with an extremely relaxed and restorative
state of the brain and body. In contrast, theta waves, with frequencies between 4 and 8 Hz,
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usually appear in the shallow stages of sleep and during meditation, reflecting a transitional
state between wakefulness and sleep, involving memory and learning process. Alpha
waves, with a frequency between 8 and 12 Hz, are clearly present in the cerebral cortex
when a person is not stressed and calm, especially in the occipital area. This waveform is
most significant when resting with eyes closed or lightly relaxed, marking a state of being
awake but relaxed. The frequency of beta waves is between 12 and 30 Hz. It generally
appears when the frontal lobe is excited and thinking. It is related to active cognitive
activities and high concentration. It is commonly seen in problem solving, decision-making
and reasoning processes. Finally, gamma waves, with frequencies above 30 Hz, typically
occur when the brain feels anxious or in a state of emotional stress. Although this waveform
is associated with high levels of cognitive function and information processing, in states of
stress or anxiety, gamma wave activity also increases significantly [31–33].

In this study, in order to better observe the different EEG signal characteristics of
patients, a signal is first converted from the time domain to the frequency domain. Its
Fourier-transformed x1 is the representation of the signal in the frequency domain, which
contains the signal amplitude and phase information of x. The amplitude of the signal
in the frequency domain is then calculated. By taking the absolute value of the Fourier
transform result x1, we obtain the amplitude spectrum x2 of the signal. By taking the angle
of the Fourier transform result x1, the phase spectrum x3 of the signal is obtained.

Finally, calculate the first-order difference x4 and the second-order difference x5 of
the signal x. Finally, a feature matrix [x, x2, x3, x4, x5] is formed with the original signal.
On the other hand, the short-time Fourier transform is performed on the original signal
to obtain spectrum data x6, which contain the signal at different frequencies. The EEG
processing flow is shown in Figure 3.

 
Figure 3. EEG signal processing process.
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2.2.1. FFT (Fast Fourier Transform) and (Short-Time Fourier Transform) STFT

FFT functions to calculate the Discrete Fourier Transform (DFT) of the input signal
x0 [34–36]. It converts a signal from the time domain to the frequency domain and repre-
sents the signal as a collection of frequency components. The discrete form of DFT can be
expressed as Formula (1), where x[n] is the discrete sample of the input signal, X[k] is the
transformed signal, N is the number of samples of the signal, and i is the imaginary unit.

X[k] = ∑N−1
n=0 x[n]× e−2πi· kn

N (1)

STFT decomposes the signal into two dimensions: time and frequency. It segments the
signal in time and applies Fourier transform to each time segment to obtain the representa-
tion of the signal in frequency [37]. The specific principle formula is as follows: Formula (2),
where X(t, ω) is the STFT result of the time domain signal x(t) at frequency ω, w(τ − t) is
the window function, usually using the Hanning window and other window functions,
and ω is the angular frequency.

X(t, ω) =
∫ ∞

−∞
x(τ) · w(τ − t) · e−jωτdτ (2)

STFT is usually implemented through discretization, replacing continuous time and
frequency with discrete time and frequency. For discrete signals, STFT can be expressed
as Formula (3), where X[m, ω] is the STFT result of the discrete time-domain signal x[n] at
frequency ω, w[n − m] is the discrete window function, and m is the time index.

X[m, ω] = ∑∞
n=−∞ x[n] · w[n − m] · e−jωn (3)

2.2.2. First-Order Difference and Second-Order Difference

The difference operation refers to calculating the difference between each element in
the array and the adjacent element to obtain a new array. When the calculation result is the
difference between the current data point and the next data point, it is called the forward
difference. The calculation result is a positive value, which means that the function is rising
at that point; if it is a negative value, it means that the function is falling at that point. The
formula for directional difference is shown as Formula (4).

Δ2 f (x) = f (x + 1)− f (x) (4)

When the calculation result is the difference between the current data point and the
previous data point, it is called backward difference. When the calculated result is positive,
it means that the function is rising at that point. If it is negative, it means that the function
decreases at that point. The principle is shown in Formula (5).

∇2 f (x) = f (x)− f (x − 1) (5)

First difference refers to the operation of calculating the difference between each
element in a sequence and its previous element. Second-order difference refers to a new
sequence obtained by performing two difference operations on a sequence. The formula of
the forward second-order difference is shown in Formula (6).

Δ2 f (x) = f (x + 2)− 2 f (x + 1) + f (x) (6)

The formula for the backward second-order difference is shown in Formula (7).

∇2 f (x) = f (x)− 2 f (x − 1) + f (x − 2) (7)

For a sequence [a1, a2 , a3 , ..., an], its first difference can be expressed as [b1, b2 , b3 , ..., bn−1],
where bi = ai+1 − ai; then perform a difference operation on the first-order difference se-
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quence, and the result is the second-order difference sequence [c1, c2 , c3 , ..., cn−2], where
ci = bi+1 − bi.

2.3. Neural Network Module
2.3.1. One-Dimensional Convolutional Neural Network

One-dimensional convolution is often used to process time series data, using a one-
dimensional convolution kernel of a specified size to perform a one-dimensional convo-
lution operation on the input multi-channel one-dimensional input signal [38]. Assume
that the size of the input is (N, Cin, Lin), where N represents the batch size, Cin represents
the number of channels, and Lin represents the length of the signal sequence. The size of
the output is (N, Cout, Lout), where Cout represents the number of output channels and Lout
represents the length of the output signal. The operation formula is as shown in Formula (8),
and ∗ represents a valid cross-correlation operator. The principle is shown in Figure 4.

out(Ni, Coutj) = bias(Coutj) + ∑Cin−1
k=0 weight

(
Coutj , k

)
∗ input(Ni, k) (8)

 
Figure 4. One-dimensional convolution principle.

2.3.2. Two-Dimensional Convolutional Neural Network

Two-dimensional convolutional layers are used to process two-dimensional input
signals [39]. Assume that the size of the input is (N, Cin, Hin, Win), where N represents
the batch size, Cin represents the number of input channels, and Hin and Win repre-
sent the height and width of the input image, respectively. The size of the output is
(N, Cout, Hout, Wout), where Cout represents the number of output channels, and Hout and
Wout represent the height and width of the output image, respectively. Here, ∗ repre-
sents a valid two-dimensional cross-correlation operator. The formula of two-dimensional
convolutional is as shown in Formula (9). The principle is shown in Figure 5.

out(Ni, Coutj) = bias(Coutj) + ∑Cin−1
k=0 weight(Coutj , k) ∗ input(Ni, k) (9)

Figure 5. Two-dimensional convolution principle.
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2.3.3. Long Short-Term Memory (LSTM)

LSTM is a special type of RNN. In order to solve the problems of gradient disap-
pearance and gradient explosion that exist in traditional RNN, memory cells and gating
mechanisms are introduced, which can retain old feature information in feature extraction
of sequence data, thereby extracting relevant features. This achieves a better performance
in data feature extraction [40]. Figure 6 below shows the network structure of LSTM.

Figure 6. LSTM structure.

There are three types of gates in the LSTM gate: input gate i, forget gate f and output
gate o. The input gate is used to control the update information of the storage unit. The
forget gate is used to control the amount of storage unit information used at the previous
moment. The output gate is used to control the amount of information output to the next
hidden state. At time t, given the input vector tx and the hidden state ht−1 at the previous
moment, the LSTM unit calculates the hidden state ht at the current moment through
internal loops and updates, and the formula is shown in (10)–(15).

ft = σ
(

w f xxt + w f hht−1 + b f

)
(10)

it = σ(wixxt + wihht−1 + bi) (11)

∼
c t = ϕ(wcxxt + wchht−1 + bc) (12)

ct = σ
(∼

c tit + ftct−1

)
(13)

ot = σ(woxxt + wohht−1 + b0) (14)

ht = ϕ(ctot) (15)

Among them, w f x, wix, wcx, and wox represent the weight matrix between the input
layer and the corresponding gate at time t. w f h, wih, wch, and woh are the hidden-layer
weight matrices between time values t and t − 1, and b f , bi, bc, and bo represent the
corresponding deviations. ht−1 and ct−1 are the hidden state and cell state of time value
t − 1, and it, ft, and ot are the output values of the input gate, forgetting gate and output
gate respectively. ct and ht correspond to the cell state and hidden state at the current time
t, respectively, ct represents the temporary cell state, and ϕ and σ represent the tanh and
sigmoid activation functions, respectively.

3. Methods

3.1. Overall Process of Detection Method of Epileptic Seizures Using a Neural Network Model
Based on Multimodal Dual-Stream Networks

In order to utilize EEG signals to identify patients with epilepsy, a neural network
model based on a multimodal two-stream network was adopted, with a mixed use of
one-dimensional convolution, two-dimensional convolution and the LSTM neural network
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to extract the spatial characteristics of EEG and the temporal characteristics of the signal,
respectively. Combining the advantages of the two networks can more comprehensively
extract EEG features. This method includes the following steps.

A. Data preparation: obtain and prepare Bonn and New Delhi datasets for experiments;
these contain EEG signal data on epileptic seizures.

B. Feature extraction: Preprocess the original EEG signal, including filtering and noise
removal. Extract the differential characteristics of the signal, the amplitude spec-
trum and the phase spectrum in the frequency domain to form a two-dimensional
feature vector.

C. Establish a multi-modal dual-stream network model: Design and build a multi-
modal dual-stream network model, combining one-dimensional convolution, two-
dimensional convolution and the LSTM neural network. The first-class network
is used to extract the spatial features of the EEG two-dimensional vector, while
the other-stream network focuses on extracting the temporal features of the signal.
Utilizing a hybrid neural network structure, temporal and spatial features are simul-
taneously extracted from signals to enhance recognition performance. A channel
attention module is introduced to improve the model’s attention to features related
to epileptic seizures.

D. Experiment: The Bonn and New Delhi data sets are divided into training sets,
validation sets and test sets. Train, validate, and test the model to evaluate its
performance. The performance of the model on the epileptic seizure detection task
was evaluated using accuracy, recall, precision, and F1 score.

E. Result analysis: analyze the experimental results and compare the performance
differences between the proposed model and the baseline model.

3.2. Neural Network Model Based on Multimodal Dual-Stream Networks

Based on one-dimensional convolution, two-dimensional convolution and LSTM
modules, we designed a neural network model of a multi-modal two-stream network to
solve the epileptic seizure detection task. The architecture of the model is as follows.

Time-series signal processing flow:

A. Input: 5× 356 time-series signal, including original signal, first-order difference, second-
order difference, amplitude spectrum and phase spectrum in frequency domain.

B. Processed through three one-dimensional convolution modules, a 256 × 356 feature
vector y1 is output.

C. Perform batch normalization and ReLU activation function on y1, and then add
it to the feature vector y2 processed by a one-dimensional convolution module to
obtain y3.

D. Input y1 into the LSTM network to obtain a 356 × 4 output feature vector y4.

STFT matrix processing flow:

A. Input: STFT matrix of the original signal.
B. Processed through three two-dimensional convolution modules, batch normalization

and ReLU activation function, a 256 × 11 × 18 feature matrix y5 is obtained.

Feature fusion and classification:

A. Flatten y3, y4, and y5 and concatenate them into one eigenvector.
B. Output the feature vector to the fully connected layer and output the classification

probability through softmax.

Based on EEG signals, the model fuses features from time series signals and STFT
matrices, uses one-dimensional convolution, two-dimensional convolution, and LSTM
modules to extract temporal and spatial features, respectively, and performs classifica-
tion through fully connected layers to achieve automatic epileptic seizure detection. The
network structure is shown in Figure 7.
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Figure 7. The overall process involved in the detection method for epileptic seizures.

4. Experimental Results and Analysis

The hardware devices used in this article are Inter i7 13700k and Nvidia RTX4080,
Intel i7-13700K, is sourced from Intel Corporation, which is headquartered in Santa Clara,
CA, USA. Nvidia RTX 4080 is sourced from Nvidia Corporation, which is headquartered in
Santa Clara, CA, USA. These two devices have high-performance processing capabilities
and can meet complex computing needs. The ratio of training set, validation set and test set
is set to 8:1:1. The software environment used is Python 3.8. Using accuracy, recall rate, and
F1-score as the evaluation criteria of the model, these three indicators reflect the prediction
ability, coverage ability, and comprehensive ability of the model, respectively.

Precision refers to the proportion of samples that are actually positive samples among
all the samples that are predicted to be positive. The calculation formula is as shown in
Formula (16), where TP represents true examples, TN represents true counterexamples,
FP represents a false positive example, and FN represents a false negative example.

precision =
TP

TP + FP
(16)

Recall refers to the proportion of samples that are successfully predicted as positive
samples among all positive samples. The calculation formula is shown as Formula (17).

recall =
TP

TP + FN
(17)

F1-score represents the balance between precision and recall, and the calculation formula
is shown as Formula (18).

f 1−score =
2 × precision × recall

precision + recall
(18)

Use a confusion matrix to place the predicted results and true results of all categories
into the same table by category. In this table, there are the number of correct identifications
and the number of incorrect identifications for each category. Cluster analysis of data can
better observe experimental results, find out the relationship between various categories,
and make the data concise. t-SNE technology can reduce the dimensionality of high-
dimensional data in the CNN fully connected layer to two dimensions, so that we can
intuitively judge the performance of the current model [41].

241



Sensors 2024, 24, 3360

4.1. Bonn Dataset

In the EEG data from the University of Bonn, we treat Z, O, N and F as one category,
labeled as the interictal period. The E mark indicates the ictal period. Then, we use the
proposed neural network model for training. The experiment is divided into two phases:
the training phase and testing phase.

In the training phase, we trained for 30 epochs. Finally, on the validation set, we
achieved an accuracy of 99.2% with a loss function of 0.03082. Cross-validation is a method
used to observe the stability of the model. We divide the data into n parts, use one part
as the test set, one part as the validation set, and the other n − 2 parts as the training set,
and calculate multiple times. The accuracy of the model is used to evaluate the average
accuracy of the model, as shown in Equation (19).

p =
1

10∑10
i=1 pi (19)

where p refers to the accuracy obtained by each verification. After cross-validation, the
average accuracy decreased slightly, and an accuracy of 98.55% was obtained.

In addition, we also conducted ablation experiments, removing the LSTM module
and two-dimensional convolution module of the network, and removing both the LSTM
and two-dimensional convolution modules to verify the effectiveness of the network. The
results are shown in Figures 8 and 9.

Figure 8. The training accuracy and loss function of the proposed network, as well as the removal
of the LSTM module, the removal of the two-dimensional convolution module, and the accuracy
and loss functions of the ablation experiment in the Bonn data set by removing the LSTM and
two-dimensional convolution module at the same time.

Figure 9. The proposed network removes the LSTM module, removes the two-dimensional con-
volution module, and simultaneously removes the LSTM and two-dimensional convolution module.
Ablation experimental performance on the Bonn dataset: (a) highest training accuracy (b) loss function.
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The results of the training phase:

A. Remove the LSTM module: the accuracy is 98.2%, and the loss function is 0.05341.
B. Remove the two-dimensional convolution module: the accuracy is 98.1%, and the

loss function is 0.03859.
C. Remove the LSTM and two-dimensional convolution modules at the same time: the

accuracy is 98%, and the loss function is 0.04234.

The combination of multiple modules has the advantage of better extracting the
characteristics of EEG signals.

In the testing phase, the performance of the saved network model was tested using
the test set and evaluated using precision, recall, and F1 scores. Finally, on the test set, the
accuracy of our proposed network model was 0.9969, precision was 0.9944, recall was 1, and
F1-score was 0.9972. In the ablation experiment, the LSTM module and two-dimensional
convolution module of the network were removed respectively, and the accuracy, recall
rate, and F1-score results of removing the LSTM and two-dimensional convolution module
at the same time are shown in Figure 10.

Figure 10. The proposed network removes the LSTM module, removes the two-dimensional convo-
lution module, and simultaneously removes the LSTM and two-dimensional convolution modules in
the Bonn test set ablation experiment. Accuracy, precision, recall, and F1-score are shown.

A. Remove the LSTM module: accuracy 0.9775, precision 0.9909, recall 0.9699, F1-score 0.9803.
B. Remove the two-dimensional convolution module: accuracy 0.9877, precision 0.9909,

recall 0.9873, F1-score 0.9891.
C. Remove the LSTM and two-dimensional convolution modules at the same time:

accuracy 0.9724, precision 0.9761, recall 0.9743, F1-score 0.9752.

In the test set, the neural network combined with one-dimensional convolution, two-
dimensional convolution and the LSTM multi-module achieved greater performance advan-
tages in the face of test data that did not appear during the training process, which shows
that multi-modal feature extraction is more conducive to improving the generalization
ability of the model.

Finally, the confusion matrix and t-SNE are used to visualize the predicted distribution
of the test data. Figure 11 contains the confusion matrices of four different models, namely,
the proposed model, No-lstm, No-2DCONV and No-2DCONV-LSTM. Each confusion
matrix shows the classification results between two categories (interictal and ictal), includ-
ing true examples, false-positive examples, true-negative examples, and false-negative
examples. Each confusion matrix represents different classification situations with different
colors, and darker colors represent higher numbers. The model proposed in this article has
obtained the best classification effect.
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Figure 11. The proposed network, the LSTM module is removed, the two-dimensional convolution
module is removed, and the LSTM and two-dimensional convolution modules are removed at the
same time, and the confusion matrix of the Bonn test set ablation experiment is shown.

Figure 12 of t-SNE shows the clustering of data for four different models. Each
subgraph has two colors of points, representing two different types of data. The proposed
model has the least confounded classification results between the two categories (interictal
and ictal).

Figure 12. The proposed network removes the LSTM module, removes the two-dimensional convo-
lution module, removes both the LSTM and the two-dimensional convolution module, and performs
cluster analysis on the Bonn test set ablation experiment.
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4.2. New Delhi Dataset

In order to verify the effectiveness and generalization ability of the proposed network,
the public New Delhi dataset was used to verify the model performance. In the EEG data
of New Delhi, we used two categories of EEG data: interictal and ictal. The experiment
is divided into two phases: the training phase and testing phase. In the training phase,
30 epochs were trained. The accuracy and loss functions in the training phase are shown
in the figure. The final accuracy is 1 and the loss function is 6.71 × 10−8. The results are
shown in Figure 13.

Figure 13. Performance of the proposed network on the New Delhi dataset: (a) accuracy (b) loss function.

On the test set, the obtained accuracy is 0.975, precision is 0.9444, recall is 1, and F1-score
is 0.9714. The confusion matrix and cluster analysis are shown in Figure 14. It can be seen
that the proposed model still has good accuracy when training and predicting using a new
EEG data set without changing the network structure, verifying the improvement in the
effectiveness and generalization ability of the model.

Figure 14. Confusion matrix and cluster analysis of the proposed network on New Delhi dataset.

4.3. Comparison and Discussion with Related Studies

A seizure detection method based on multimodal two-stream networks is proposed
and validated using the widely recognized University of Bonn dataset, as shown in Table 2.
Compared with the existing methods, the proposed method outperforms the existing
methods in all main performance metrics [42]. Richhariya and Tanveer [15] used PCA,
ICA and DWT to achieve an accuracy of 99.0%. Li et al.’s [28] method based on wavelet
envelope analysis achieved an accuracy of 98.8%. Shen et al. [43] adopted the methods of
discrete wavelet transform and support vector machine and achieved an accuracy of 97%
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and a sensitivity of 96.67%, while Xu et al. [44] used the 1D CNN-LSTM method to improve
accuracy, precision, recall and F1-score, respectively, reaching 99.39%, 98.39%, 98.79% and
98.59%. In contrast, the multi-modal dual-stream network method we proposed achieved
an accuracy of 99.69%, a precision of 99.44%, a recall of 99.00%, and an F1-score of 99.72%.
These results show that our method not only achieves the highest value in accuracy, but
also significantly outperforms existing methods in key performance indicators such as
precision, recall, and F1-score. This further verifies the effectiveness of the multi-modal dual-
stream network in processing complex data features and identifying samples of different
categories. Future research can further optimize the model structure and try to verify its
generality and robustness on more diverse data sets.

Table 2. Comparison and discussion with related studies.

Authors Modeling Method Dataset Performance Metrics

Richhariya and Tanveer [15] PCA, ICA and DWT University of Bonn Accuracy 99.0%

Li et al. [28] Wavelet-based envelope analysis University of Bonn Accuracy 98.8%

Shen et al. [43] Discrete wavelet transform and
support vector machine University of Bonn Accuracy 97%,

sensitivity 96.67%

Xu et al. [44] 1D CNN-LSTM University of Bonn

Accuracy 99.39%,
Precision 98.39%,

Recall 98.79%,
F1-score 98.59%

Proposed method Multimodal dual-stream networks University of Bonn

Accuracy 99.69%,
Precision 99.44%,

Recall 1%,
F1-score 99.72%

5. Conclusions

This paper studies the application of hybrid neural network models in epilepsy diag-
nosis using EEG signals. First, the complexity features of the EEG signal are extracted using
various feature methods such as signal differential features, frequency domain amplitude
spectrum and phase spectrum, etc., to form a two-dimensional time-series signal and
two-dimensional spectrum features. In terms of network models, in order to extract the
characteristics of EEG signals in multiple dimensions, three network structures are used,
namely, one-dimensional convolution, two-dimensional convolution and lstm. Through
the combination of multiple network structures, the multi-dimensional characteristics of
EEG signals are trained. Finally, experiments were conducted on the public Bonn and
New Delhi datasets to evaluate the effectiveness of the proposed model using indicators
such as precision, recall, F1 score, etc. Finally, the test set results were analyzed using the
confusion matrix and t-SNE. Our research results prove that the proposed network model
achieved the best diagnostic effect in the experiment, with an accuracy of 0.9969, precision of
0.9944, recall of 1, and F1 score of 0.9972. Even after changing the data set, the hybrid mesh
wheel still has the most stable classification performance and can achieve high accuracy in
the diagnosis of epilepsy. This article provides a hybrid neural network model based on
EEG for EEG signal epilepsy diagnosis, and uses a variety of feature extraction methods to
provide a useful reference for the early detection and treatment of epilepsy.
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Abstract: Objective: The present pilot study aimed to propose an innovative scale-independent
measure based on electroencephalographic (EEG) signals for the identification and quantification of
the magnitude of chronic pain. Methods: EEG data were collected from three groups of participants
at rest: seven healthy participants with pain, 15 healthy participants submitted to thermal pain, and
66 participants living with chronic pain. Every 30 s, the pain intensity score felt by the participant
was also recorded. Electrodes positioned in the contralateral motor region were of interest. After
EEG preprocessing, a complex analytical signal was obtained using Hilbert transform, and the
upper envelope of the EEG signal was extracted. The average coefficient of variation of the upper
envelope of the signal was then calculated for the beta (13–30 Hz) band and proposed as a new
EEG-based indicator, namely Piqβ, to identify and quantify pain. Main results: The main results
are as follows: (1) A Piqβ threshold at 10%, that is, Piqβ ≥ 10%, indicates the presence of pain, and
(2) the higher the Piqβ (%), the higher the extent of pain. Conclusions: This finding indicates that
Piqβ can objectively identify and quantify pain in a population living with chronic pain. This new
EEG-based indicator can be used for objective pain assessment based on the neurophysiological body
response to pain. Significance: Objective pain assessment is a valuable decision-making aid and an
important contribution to pain management and monitoring.

Keywords: quantification of pain; EEG signal; pain identification and quantification indicator (Piq);
beta EEG frequency band; electrodes on contralateral motor regions

1. Introduction

Background: Chronic pain continues to be a global public health issue, with an esti-
mated prevalence of approximately 30% in adults worldwide [1–3]. Among other issues
related to this important global health problem, assessing chronic pain remains a chal-
lenge. Traditionally, pain assessment relies on hetero- or self-reported pain [4–6]. Although
verbal description is only one of several behaviors to express pain, these possibilities for
assessing chronic pain unfortunately lose all their robustness when it comes to people who
have difficulty expressing themselves, such as the older, those with cognitive disorders,
or those suffering from a psychological disorder [7,8]. This is why our research over the
last few years has aimed towards a proposal for pain assessment, which is not based on
the verbal or behavioral expression of pain. It is consensual that the experience of pain
is related to alterations in brain excitability [9,10]. Specifically, motor regions seem to be
largely involved, even though the underlying neurological mechanisms still need to be
clarified [11,12]. Therefore, our proposal echoes the community’s understanding of the
mechanisms involved in the production and maintenance of pain. The relationship between
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beta band activity and pain perception is supported by previous research indicating that
beta oscillations are involved in sensory and motor processing, which are crucial in the
experience of pain [13–15]. Beta band activity is often found to be altered in conditions of
pain, reflecting changes in cortical excitability. For example, Teixeira et al. [16] recently eval-
uated beta (β) oscillations as a potential objective marker for pain assessment. Twelve adult
right-handed males with chronic neuropathic pain and 10 matched controls participated in
this pilot study. Participants underwent pain assessment using a visual analog scale. The
authors then calculated the global power spectrum within the low beta frequency sub-band
(13–20 Hz) and the high beta frequency sub-band (20–30 Hz). Their results showed that
the global power spectrum was significantly lower in patients compared to controls. Addi-
tionally, the visual analog scale for pain was negatively correlated with the global power
spectrum in both the low beta (R = −0.931, p = 0.007) and high beta bands (R = −0.805;
p = 0.053). We recently (2022) published a proof-of-concept paper for pain identification,
based on brain signal activity, collected via electroencephalography (EEG) [17], with a
small homogeneous sample of participants living with moderate chronic pain (n = 4). EEG
signal collection was conducted in two parts: (1) at rest and (2) in the active state, that is,
participants executing a visuo-motor task, and three frequency bands (alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30–43 Hz)) were analyzed. The results showed that beta band
measurements at rest offered better results in the pain condition tested, that is, in moderate
pain status. Currently, our research team is interested in better generalizing these data to
different pain contexts: tonic pain induced by capsaicin cream and induced by thermal
pain and in a real chronic pain condition. This demonstration contributes to testing our
algorithm’s sensitivity to deliver meaningful results in real-life chronic pain conditions in
real patients. The literature, along with our own observations, indicates that the beta band
is the most appropriate for studying pain identification and quantification. Consequently,
the present work has been conducted with data collected in this frequency band.

Objective: The goal of this pilot study was to propose an innovative scale-independent
measure for pain identification and quantification based on an analysis of the envelope of
the EEG signal [18–20]. Specifically, the objectives achieved were: (1) developing a method-
ological approach for identifying and quantifying pain in real-world settings; (2) quantify-
ing a threshold to detect the presence of pain; (3) analyzing the relationship between the
new EEG-based indicator and self-reported pain, assessed using a verbal numerical rating
scale (VNRS); and (4) examining the effect size of medication on brain activity within this
new framework for chronic pain assessment. Based on a previous study [17], we hypothe-
sized that the pain message on the EEG signal would amplify the envelope variability of
the EEG signal and that dynamic changes in envelope variation in the presence of pain
could be proportional to the magnitude of pain experienced.

2. Materials and Methods

2.1. Participants

Pain was quantified in three groups of volunteers by convenience (see Table 1): Group
1 related to seven healthy participants (six men, one woman: 24–45 years of age) who
submitted in two main experimental conditions: “No pain” and “With tonic pain” induced
by a capsaicin cream. Group 2 included 15 healthy participants (14 men, one woman:
22–45 years of age) who experienced experimentally induced thermal pain, and Group 3
included 66 individuals (21 men, 45 women: 15–78 years of age) living with chronic pain,
such as shoulder pain, fibromyalgia, and low back pain. For this group, in addition to so-
ciodemographic data, daily medication use was also ascertained. Among the 66 participants
with real chronic pain, 36 took medications known to be centrally acting [21]. Therefore,
a sub-objective was to verify the effect size of medication on brain activity using the new
approach. The local Research Ethics Committee (CER #2023-1200 and CER # 2023-1307)
approved the study, and the participants provided written consent for their participation.
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Table 1. Participants’ characteristics.

Group 1 (n = 7) Group 2 (n = 15) Group 3 (n = 66)

Condition—Capsaicin Condition—Thermal Stimulus Condition—Chronic Pain

No Pain With Pain Thermal Pain
Centrally Acting

Medication (n = 36)
Other Treatment

(n = 30)

Average age (years) 32.40 31.70 41.17 52.10

Average of pain duration
(months) – – 55.34 105.03

Average pain scores
(Numerical scale/10) 0.00 4.00 Decrease in pain from 6.1 to 0.7 2.63 4.10

2.2. Experimental Procedures

Given that pain mechanisms evolve through brain activity, the main physiological
material used in our study was EEG signals. For EEG collection, the participants were
seated at rest, with eyes opened focused on a black dot located 1.5 m away on the wall
in front of them at eye level. An EMOTIV wireless electroencephalographic headset
was placed on the participant’s head to collect brain activity; electrodes were positioned
according to the 10–20 international system. Pain intensity was assessed using a 0–10
verbal numerical rating scale (VNRS), where 0 corresponded to no pain and 10 to the worst
imaginable pain [22].

2.2.1. Procedure for Group 1: Healthy Participants— “No Pain” and “with Pain”

In the condition “With pain”, pain was induced with a topical application of a ~1 cm
wide band of capsaicin cream (1%) (~1 mm thick) on the right upper trapezius in the same
previous group. The capsaicin cream contained 1% capsaicin, the hot ingredient in chili
peppers. This cream induced localized moderate tonic pain at the site of application. The
aim of this study was to create experimental pain similar to musculoskeletal pain. This
cream was used in accordance with previous studies [23,24]. The plateau of pain was
attained approximately 30 min after application and corresponded to the moment when
the participant consecutively showed the same pain intensity three times (pain intensity
was assessed every 2 min).

Data from this group were collected in two conditions: (1) “No pain and (2) “With
pain”. EEG signals were collected first in the “No pain” condition and second in the “With
pain” condition. Analyses were performed on the EEG signals collected during the last
60 s for each condition. Given that the pain plateau was not reached until 30 min after the
application of the capsaicin cream, we chose the last 60 s of the recordings from each of the
two conditions to obtain two comparable moments.

2.2.2. Procedure for Group 2: Healthy Participants Subjected to Thermal Experimental Pain

A thermal stimulus was applied to the non-dominant forearm using a thermode
(Figure 1) initially heated to 44 ◦C. Knowing that, on contact with the skin, the temperature
of the thermode would begin to decrease, we held the thermode on the skin for 5 min
to allow it to reach the baseline temperature at around 32 ◦C [25–27]. An initial tempera-
ture of 44 ◦C was chosen based on previous work, where it is commonly accepted that at
this temperature most subjects report a transformation of heat sensation into pain [28,29].
Three variables (pain stimulus (◦C), pain score/10, and EEG signals) were collected simul-
taneously for 5 min (Figure 2).
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Experimental pain induced by a thermal stimulus: 

1. Fill the thermos with hot water 
2. Immerse the thermode equipped with a needle 

thermometer in the thermos 
3. At a temperature of 44 °C, take the thermode out 

of the thermos 
4. Place the end of the hot thermode on the forearm 

for 5 min 
5. Note the level of the temperature (hot stimulus) 

of the thermode every 30 s (temperature de-
creases) 

6. Note the intensity of the pain every 30 s

Figure 1. The thermal stimulus kit.

Figure 2. Experimental design—Thermal stimulus, pain score, and EEG recording during 300 s or
5 min.

2.2.3. Procedure for Group 3: Participants Living with Chronic Pain

Data were collected in a clinical setting. EEG recordings lasted 5 min (300 s) and every
30 s (metronome Bip), and the score of pain intensity felt by the participant was recorded,
as well as in group 2.

2.3. EEG Data Acquisition

A wireless EEG device, an Emotiv EPOC X 16-channel headset (Emotiv Systems
Inc., San Francisco, CA, USA), including 14 active and two ground electrodes, was used.
Impedance was maintained in a 10–20 KΩ range by properly wetting the sponge electrodes
with a saline solution and controlling the electrode contact quality map, which should be
green during EEG data collection to ensure the good quality of the EEG signal. EEG data
were acquired with an internal sampling frequency of 2048 Hz. Data were then digitalized
using an embedded 16-bit analog-to-digital converter and down-sampled to 128 samples
per second before being transmitted to the acquisition computer. The digitalized EEG
signals were online-filtered by the EPOC X hardware with a 5th-order digital sinc filter
using a bandpass of 0.2–45 Hz and a notch digital filter at 60 Hz (for North America) to
eliminate power line frequency noise.

2.3.1. EEG Data Preprocessing

The preprocessing of the EEG signals was performed in three steps, as illustrated
in Figures 3 and 4, and is described in the following subsections: Step 1—EEG signal
filtering in two substeps: (a) Direct Current (DC) offset removal, also known as baseline
correction, and (b) EEG artifact removal; Step 2—EEG frequency band selection; and Step
3—Normalization of filtering EEG signals in two substeps (min–max and baseline normal-
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ization). Signals from electrodes positioned over the bilateral motor regions (FC6/T8 on
the right side and FC5/T7 on the left side) were of interest. These electrodes cover the
recommended positioning on the motor regions according to the EPOC X headset [30].
These electrodes are located over the frontal and temporal regions of the scalp, correspond-
ing to areas involved in motor function. Moreover, previous studies have reported the
involvement of motor cortex areas in the pain process [31–33]. The preprocessing was
conducted using the MATLAB software, version: 9.10.0.1602886 (R2021a) (MathWorks Inc.,
Natick, MA, USA).

 
Figure 3. Methodological approach from the filtering of the EEG signal, through the estimation of the
coefficient of variation of the upper envelope in beta (CVUEβ), to the calculation of pain identification
and quantification (Piqβ).
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Figure 4. Methodological steps showing the detail of the application of the Hilbert transform until the
extraction of the upper envelope. (a)—original real-valued signal, (b)—real and imaginary parts of
analytic signal, (c)—superposition of real and imaginary parts of analytic signal and upper envelope
of original signal.

EEG Signals Filtering

The first step of pre-processing was to remove noise from the EEG signals. The direct
current (DC) voltage offset, that is, the offset of a signal from 0, was first removed using
the simplest method consisting of subtracting the average value (approximately 4200 μV)
from the entire selected data channel. The second substep of filtering was to remove the
remaining artifacts due to eye blinks or eye movements, and the electromyography (EMG)
signal and all well-known noise, such as poor electrode contact quality, were identified
during the experiments. To this end, an outlier detection and replacement filter was used
by applying Matlab’s “filloutliers” function [34,35]. First, the outlier values defined as EEG
values that were over 1.5 interquartile ranges above the upper quartile (75%) or below the
lower quartile (25%) were detected using the quartiles find method. Second, the linear
interpolation of neighboring non-outlier values method was used to replace the detected
outlier values.

EEG Frequency Band Selection

The second step of preprocessing was the selection of the beta (13–30 Hz) EEG fre-
quency sub-band over the electrode positioned contralateral to the pain site for further
analyses [36–40]. Indeed, previous studies and our previous work have reported the rel-
evance of beta for pain identification [17]. Finally, a 5th-order IIR Butterworth bandpass
filter was used for the selected frequency band [41].
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EEG Signal Normalization

The third preprocessing step was EEG signal normalization in two substeps. The first
substep was to adjust for the inter-variability of EEG data within the selected frequency
band by scaling the EEG data using min–max normalization. This substep involves placing
artifact-free EEG signals in the interval between 0 and 1 [42,43]. Min–max normaliza-
tion performs a linear transformation of the original data values while preserving the
relationships between them. The equation to achieve this processing is as follows [44]:

EEGβ
min−max =

EEGβ
AF − min

(
EEGβ

AF

)
max

(
EEGβ

AF

)
− min

(
EEGβ

AF

) (1)

where EEGβ
AF and EEGβ

min−max correspond to the artifact-free EEG signal and min–max

normalized signal, respectively, and min
(

EEGβ
AF

)
and max

(
EEGβ

AF

)
denote the minimum

and maximum of all artifact-free EEG signals within the beta frequency band. Finally,
the second substep was baseline normalization, which re-scales the previous min–max
normalization values by the weight of each single min–max normalized EEG value. It
divides each min–max normalized EEG value using a selected reference. The resulting
equation is as follows:

EEGβ
N =

EEGβ
min−max

Refβ
(2)

where EEGβ
N represents the normalized EEG signals for the beta frequency band and Refβ

is the reference, which is defined as the mean of the min–max EEG signals in the reference
interval for the beta frequency band. In this study, Refβ was considered as the first 60 s of
EEG collection for each participant.

2.3.2. Extracting Pain-Related Feature from EEG Signals to Pain Identification and
Quantification Indicator (Piq)

As shown in Figures 3 and 4, after the EEG signals were filtered and normalized,
the complex analytical signal zβ(t), which considers non-stationarity and nonlinearity as
these are the characteristics of the EEG signal, was obtained using the Hilbert transform
(Figure 4) [19,45]. This type of analytic signal is a two-dimensional signal whose value at
some instant in time is specified by two parts: a real part (Figure 4a) and an imaginary one
(Figure 4b) [46]. The upper envelope of the EEG signal was then extracted as the absolute of
the analytical digital signal (Figure 4c) [19]. Finally, the coefficient of variation of the upper
envelope (CVUE) was calculated for the beta frequency band (13–30 Hz). The coefficient of
variation represents the ratio of the standard deviation to the mean and is a useful statistic
for comparing the degree of variation from one data series to another. The Piq indicator
was computed in beta (Piqβ) in five steps.

(1) The first step was the estimation of the analytic EEG signals for the beta frequency
band (zβ(t)) using Hilbert transform, as follows:

zβ(t) = sβ(t) + j̃sβ(t) (3)

where s̃β(t) = H(sβ(t)) represents Hilbert transform, the steps of which are illus-
trated in Figure 4.

(2) The second step was the extraction of the upper envelope (UE) of the EEG signals for
the beta frequency band (UEβ), defined as the absolute value of the analytic signal,
as follows:

UEβ(t) =
∣∣zβ(t)

∣∣ = √s2
β(t) + j̃s2

β(t) (4)

The upper envelope (UE) of a given cortical oscillation reflects the energy range over
time [45]. The UE was high when energy was high. Because of the time-variant behavior
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and nonlinear neuronal system responsible for generating the EEG signals, preprocessed
EEG signals were segmented in sliding windows (epochs) of 1 s duration, and UEβ was
then calculated within each epoch.

(3) The third step was the estimation of the coefficient of variation of the upper envelope
in the beta EEG frequency band (CVUEβ). To this end, the mean and standard
deviation (std) of UEβ were computed in each epoch to obtain CVUEβ as follows:

CVUEβ(%) =
std(UEβ(t))

mean(UEβ(t))
× 100 (5)

Low CVUE values reflect more stable sinusoidal oscillations, that is, more neuronal
synchronization or inhibition [47]. In contrast, a high CVUE corresponds to neuronal
desynchronization [18,47], that is, less inhibition (more facilitation).

(4) The fourth step consisted of smoothing CVUEβ using a 15th-order Savitzky–Golay filter.

In each sliding window, the so-called edge effects can be preserved and affect the
CVUE values [48,49]. Smoothing filters, such as a Savitzky–Golay filter, make it possible
to correct inter alia spikes present in the data [50,51]. The Savitzky–Golay filter is a
least-squares smoothing filter (digital polynomial filter). Its working principle involves
replacing each value with a new value, previously obtained from polynomial fitting, which
is performed with basic linear least-squares fitting to the 2k + 1 neighboring points, where
the value k could be equal to or greater than the order of the applied polynomial. The more
neighbors that are applied, the smoother the final signal [50]. It smooths the fluctuations
in data and increases the signal-to-noise ratio (SNR) without significantly distorting the
analyzed data [51,52]. In this study, a 15th-order Savitzky–Golay filter was used.

(5) The fifth step was the calculation of the pain identification and quantification (Piq)
indicator in the beta frequency band (Piqβ).

The mean smoothing CVUEβ was calculated and proposed as a pain identification
and quantification (Piq) indicator. The higher the Piq (%), the higher the magnitude of pain.

2.4. Statistical Analysis

Objective 1 was already completed in Section 2.3.2 (Figures 3 and 4), showing each
step of the methodological approach proposed to extract the relevant indicator for the
identification and quantification of pain. The mean and standard deviation values were
used for descriptive statistics in relation to the second objective (2), that is, to determine the
threshold quantified for the identification of the presence of pain. The correlation coefficient
was used to determine the relationship between the main variables, that is, Piqβ × pain
scores, across groups to address objective (3), that is, the relationship between the proposed
approach and self-reported pain on a verbal numerical rating scale. Finally, to achieve
the secondary objective, we utilized effect size (ES) and clinical difference (Δ) to measure
the impact of medication on brain activity, thus fulfilling this sub-objective, that is, the
magnitude of the effect of medication acting on brain activity in the new approach. ES
was calculated based on the Cohen criteria, i.e., d = 0.2 to 0.49 is small, d = 0.5 to 0.79
is medium, and d ≥ 0.8 is large [53]. A decrease in pain of less than 15% was judged
as a non-important change, of 15% or more as a minimally important change, of 30% or
more as a moderately important change, and of 50% or more as a substantially important
change [54]. The significance level of the tests was set at p < 0.05, and all statistical analyses
were conducted using SPSS version 24 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. New Approach to Identify and Quantify Pain

In this study, as illustrated in Figures 3 and 4, a method for extracting pain-related
features from EEG signals, that is, a pain identification and quantification indicator (Piq),
was proposed. This innovative methodological approach inspired by the variation in
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the morphology of EEG signals in animals [47] and humans [20], which utilizes beta (β)
brain rhythm, is proposed for pain identification and quantification. Piqβ is proposed as a
pain indicator for pain identification and quantification in the beta band frequency. As a
reminder, the higher the Piqβ (%), the higher the magnitude of pain.

3.2. Descriptive Statistics of Groups to Meet Objective (2) i.e., Determine the Threshold Quantified
for the Identification of the Presence of Pain

A visual inspection of the results showed that Piqβ ≥ 10% was indicative of the
presence of pain (Tables 2 and 3). Therefore, Piq ≤ 10% corresponded to little or no pain.

Table 2. Descriptive statistics of group 1 (n = 7).

ID
Sex:

1 = Male
2 = Female

Age (Years)
Pain Duration

(Month)

Pain Scores (/10) Piqβ (%)

No Pain
Condition

With Pain
Condition

No Pain
Condition

With Pain
Condition

1 1 35 – 0 5 7.13 12.35

2 2 45 – 0 5 8.28 11.23

3 1 33 – 0 4 7.16 13.00

4 1 30 – 0 2 8.15 12.54

5 1 28 – 0 5 8.24 13.56

6 1 24 – 0 5 7.13 14.12

7 1 26 – 0 2 9.00 10.15

Mean (SD) 31.6 (7.0) 0 (0) 4 (1.4) 7.83 (0.74) 12.42 (1.4)

Table 3. Descriptive statistics of group 3 (n = 66).

ID
Sex:

1 = Male
2 = Female

Age (Years)
Pain Duration

(Month)
Pain Score

(/10) Piqβ (%)
Medication with Central Effect:

1 = Yes
0 = Other Medications

1 1 21 30 0.00 8.81 0

2 2 40 37 4.36 15.75 1

3 1 32 18 2.36 14.05 1

4 2 59 29 1.05 10.18 0

5 2 64 120 1.09 10.76 1

6 2 63 396 6.00 19.17 1

7 2 58 5 2.73 14.29 1

8 2 63 36 0.64 8.25 1

9 1 30 4 5.27 24.99 0

10 1 68 120 4.55 15.05 1

11 1 69 24 0.09 9.33 0

12 1 78 6 1.00 12.66 0

13 1 30 5 0.36 7.84 0

14 2 17 6 4.64 13.74 0

15 2 28 84 3.00 13.65 0

16 2 21 12 1.00 11.92 0

17 2 22 6 0.55 7.92 0

18 2 26 84 4.45 18.68 0

19 2 54 4 5.77 12.34 0

20 1 42 22 3.82 11.34 0

21 1 66 72 2.00 10.19 0

22 2 59 84 0.09 6.93 1

23 1 21 4 2.27 11.12 0

24 2 19 7 2.00 12.30 0

25 1 23 1 1.27 12.98 0
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Table 3. Cont.

ID
Sex:

1 = Male
2 = Female

Age (Years)
Pain Duration

(Month)
Pain Score

(/10) Piqβ (%)
Medication with Central Effect:

1 = Yes
0 = Other Medications

26 1 22 204 2.91 12.59 0

27 2 60 2 1.77 10.74 0

28 2 57 1 2.91 11.78 1

29 2 31 8 4.23 22.41 1

30 2 52 0.75 2.27 12.48 0

31 2 33 7 6.91 15.57 0

32 2 37 12 0.86 7.59 1

33 2 22 120 2.00 11.89 0

34 2 36 2 0.00 9.39 0

35 2 59 84 2.00 13.02 1

36 2 63 6 4.00 14.82 0

37 2 64 3 0.00 5.66 1

38 2 15 6 4.00 16.59 0

39 1 32 16 10.00 18.9 1

40 1 45 96 8.00 17.7 1

41 2 44 24 2.10 14.9 1

42 2 45 240 7.50 19.1 1

43 2 46 240 4.00 15.5 0

44 2 47 48 4.00 11.4 0

45 2 32 216 0.50 12.9 0

46 2 45 24 5.70 17.5 1

47 2 71 120 10.0 29.2 1

48 1 56 4 3.50 11.15 0

49 2 27 60 1.60 16.1 1

50 1 68 120 6.80 15.1 1

51 2 73 24 3.40 13.8 0

52 2 55 240 2.10 15.1 1

53 1 45 48 5.70 20.3 0

54 2 62 60 2.10 16.2 1

55 1 66 144 3.00 17.7 0

56 1 65 3 2.20 13.3 1

57 2 49 192 1.20 10.8 0

58 2 61 360 7.20 13.9 1

59 1 60 84 5.80 12.44 1

60 1 53 5 0.00 12.68 0

61 2 44 48 7.00 16.78 1

62 2 59 120 1.10 13.94 1

63 2 59 300 2.00 17.78 0

64 2 24 96 7.00 23.67 1

65 2 61 516 5.00 32.10 1

66 2 27 24 5.00 18.23 0

Mean
(SD) 46.1 (17.3) 77.9 (105.9) 3.30 (2.50) 14.3 (4.8)

3.2.1. Group 1: Healthy Participants—“No Pain” and “with Pain”

Table 2 shows the descriptive statistics of Group 1 subjected to capsaicin application.
In the pain condition, participants had moderate pain on average (pain score ≥ 4 on

the VNRS). All participants in the “no pain” condition had a Piqβ of less than 10% and,
conversely, in the experimental pain condition.
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3.2.2. Group 2: Healthy Participants Submitted to Thermal Pain

The protocol for Group 2 was specifically designed to evaluate the effectiveness of the
proposed algorithm in tracking pain changes in very short timeframes, achieving Objective
1 (the identification and quantification of pain). A visual inspection of the graph (Figure 5)
showed that Piqβ can track the magnitude of pain. In addition, this study provides evidence
that 5 min of EEG signal collection is sufficient to address the variation in pain magnitude.

Figure 5. Normalized mean [0–1] for all participants (n = 15) of the three variables: (1) Normalized
pain score intensity (black dotted line curve), (2) normalized level of pain stimulus (grid curve), and
(3) normalized pain identification and quantification in beta frequency band (Piqβ) (black curve).

For Group 2, we performed normalization by bringing all the values of each pain
indicator between 0 and 1 while maintaining the distances between the values and allowing
for the comparison of the three variables on the same scale (Figure 5). This min–max
normalization was performed using Equation (6), as follows:

Normalized value =
Z − minimum(Z)

maximum(Z)− minimum(Z)
(6)

where z represents the value of each pain indicator (score intensity, level of pain stimulus,
and Piqβ).

This study showed a simultaneous decrease in the level of pain stimulus, pain score
intensity, and Piqβ indicator.

3.2.3. Group 3: Participants Living with Chronic Pain

This third study also confirmed that the pain threshold of the EEG-based indicator
Piqβ is 10% to identify individuals with chronic pain as well as sensitive to quantify the
extent of pain (Piqβ higher than 10%, Table 3 and Figure 6).
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Figure 6. Scatter plot—Piqβ indicator and pain score. 100% of participants living with chronic pain
show a Piqβ ≥ 10%. The two solid points represent participants who reported a pain score lower
than 1/10 but had a Piqβ indicator ≥10%. The hollow points represent participants whose pain
scores are consistent with their Piqβ indicator values.

3.3. Results for Objective (3) i.e., the Relationship between the Proposed Approach for the
Identification and Quantification of Pain (Piqβ) and Self-Reported Pain (Score/10)

For healthy participants with capsaicin pain (group 1), no correlation test was per-
formed because of the small sample size. In Group 3, for the participants living with chronic
pain, a significant and strong positive correlation (r = 0.69, p < 0.0001) was found between
Piqβ and pain scores from the VNRS, while a moderate relationship between variances
(R2 = 0.47) was observed.

Considering all three studies, our findings indicate that Piqβ (%) appears to be affected
by pain variability. This implies that varying levels of pain could potentially affect Piqβ

measurements or that Piqβ might serve as a sensitive gauge for changes in pain across
the individuals under study. Nevertheless, it is crucial to emphasize that this observation
warrants further investigation to ascertain a causal relationship.

3.4. Results for the Secondary Objective, i.e., the Effect Size of Medication Acting on Brain Activity
on the New Approach

The participants in group 3 were divided into two subgroups according to their
medication: (1) with (n = 36) and (2) without centrally acting (n = 30). The effect sizes and
clinical differences were then calculated (Table 4).

According to Cohen’s classification, the effect size of medication on the pain score
was moderate (d = 0.61). The subgroup of participants taking centrally acting medication
achieved a significant reduction in pain scores (p = 0.016), and this reduction (55.8%) was
considered to be a substantially important change [55]. In addition, in the same group, the
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effect size of the medication on Piqβ was moderate (d = 0.51). The Piqβ indicator displayed
significantly lower values (p = 0.041), with an average decrease of 18.5%, suggesting
a minimally important change. Overall, these results showed that medication had a
significant negative and moderate effect on the magnitude of pain. Consistently, we noted
that Piqβ (%) and the pain score (/10) were higher in the absence of medication acting on
brain activity.

Table 4. Comparative results. * Indicates statistical differences (p < 0.05).

Variables Sub-Groups p Value Effect Size
Clinical
Difference Δ (%)

Medication with
Centrally Acting
(n = 36)

Medication without
Centrally Acting
(n = 30)

Pain scores
(/10)

2.63 (1.87)
IC: 1.9–3.2

4.10 (2.91)
IC: 3.0–5.1 0.016 * 0.61 55.8%

Piqβ (%) 13.23 (3.66)
IC: 11.9–14.6

15.68 (5.80)
IC: 13.5–17.8 0.041 * 0.51 18.5%

4. Discussion

This pilot study aimed to propose (1) developing a methodological approach for
identifying and quantifying pain in real-world settings; (2) quantifying a threshold to
detect the presence of pain; (3) analyzing the relationship between the new EEG-based
indicator and self-reported pain, assessed using a verbal numerical rating scale (VNRS);
and (4) examining the effect size of medication on brain activity within this new framework
for chronic pain assessment.

4.1. New Methodological Approach for Pain Identification and Quantification

Our methodological approach demonstrates the promising potential for objective pain
identification and quantification based on the analysis of the envelope of EEG signals,
which is related to relevant aspects of EEG signal morphology and remains more stable
over time and conditions [17,20,47]. The main advantage of this methodology is that it
keeps the EEG signal complex, thus preserving almost all of its intrinsic properties, such as
non-stationarity and nonlinearity, offering the maximum amount of relevant information.
This new approach, which is based on the morphological stability parameters of the
EEG signal, provides great methodological robustness. In addition, EEG systems are
typically multichannel in nature, resulting in numerous features being extracted from
multichannel signals [56]. It is widely recognized that employing a large number of
channels or features in pain identification or quantification poses practical limitations in
real-life scenarios [57–59]. Such limitations include prolonged experimental setup times,
subject discomfort, and increased computational complexity associated with handling
multichannel EEG recordings [60]. Given these constraints, there is considerable value in
developing a portable pain identification and quantification method that focuses on the
optimal feature from the representative channel. Thus, the complexity and dynamic nature
of pain identification and quantification can be circumvented by optimizing the hardware
setup. This approach not only streamlines the experimental process but also reduces the
burden on the subjects and computational resources. Therefore, feature selection is vital for
EEG-based pain identification and quantification. For this purpose, we applied a simple
and easy-to-implement algorithm to an EEG signal collected for five minutes over the
motor cortex region, without altering patient comfort in the clinical setting. Although the
proposed indicator seems optimal for pain identification and quantification, it is important
to validate it using different machine learning classifiers to propose an automatic system
that produces satisfactory accuracy.
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4.2. Identification of Pain

We propose a quantitative indicator that we called “Piq” for Pain identification and
quantification. Although there is no gold standard for quantitative measures of pain, the
self-reported intensity score of pain remains one of the relevant comparative variables in
the context of our study. Our results (group 1 et 3) suggest that a Piq greater than or equal
to 10% (Piq ≥ 10%) is indicative of the presence of pain. Therefore, for Piq < 10%, there
was little to no pain. In our recent study that utilized the current method, we observed that
among healthy participants not experiencing pain, the Piq value was consistently below
10% [17].

4.3. Quantification of Pain

We propose Piq as an indicator to reflect the magnitude of pain experienced by an
individual. Our results showed a strong positive correlation between Piqβ and self-reported
pain in both experimental and real chronic pain conditions. These results suggest the ability
of Piqβ to track the presence and extent of acute, subacute, and chronic pain. In other
words, the higher the self-reported pain score, the higher the Piqβ (%), and vice versa. Of
course, this study comprised experimental acute pain, given the practical improbability of
collecting acute pain data in a real-world setting. Our results are similar to those of Nir
et al. [38], who evaluated the perception of tonic pain using a thermal contact-heat simulator,
showing that increased peak alpha frequency values derived from EEG recordings of the
resting state and noxious conditions were correlated with higher pain intensity. However,
to the best of our knowledge, no study has proposed the use of all EEG signals to detect
pain. Given that pain is a complex biopsychosocial experience, it became evident that the
appropriate method for conducting the analyses was to use EEG signals with complex
values for the selected sub-band rather than EEG signals with real values. Complex-
valued signals seemed appropriate, as they captured the complex information of the pain
process, integrating the multidimensional aspects of this phenomenon. In the chronic
pain group (n = 66), our results showed a moderate relationship between the variances of
self-reported pain scores and Piqβ (%) (R2 = 0.47; p < 0.001). Note that R2, the coefficient
of determination, measures the percentage of variation in the dependent variable that is
explained by a variation in the independent variable [61]. However, there is no rule for
interpreting the strength of R2 in terms of clinical relevance; a low R2 can still provide a
useful clinical model [62,63].

Our hypothesis about the moderate variance found in participants with chronic pain
is that Piqβ (%) reflects a combination of cerebral mechanisms implemented in the context
of a painful condition, whereas the self-reported pain score is an expression of the overall
biopsychosocial experience of pain. Several studies have shown alterations in cerebral
excitability or even a cerebral reorganization in the context of prolonged pain [64,65]. Our
results showed a positive relationship between Piqβ and the duration of pain (p < 0.05,
r = 0.36), as well as between the duration of pain and pain score (p < 0.05, r = 0.25) in the
chronic pain group (n = 66). However, these relationships are weak, reinforcing the idea
of alteration in cortical excitability rather than cerebral reorganization. In general, studies
have shown that pain is accompanied by a decrease in cortical inhibition [18,47,66–69];
therefore, we hypothesized that an increase in Piqβ is indicative of less cortical inhibition.
One possible approach to validate this hypothesis is to integrate EEG with TMS to enable
the measurement of cortical inhibition.

4.4. Effect Size of Brain-Acting Medication on Pain Measurement (Piqβ (%))

As we identified the presence and quantification of pain magnitude from brain activity,
centrally acting medication may influence the outcome. We found that the effect size
of medication was moderate on the pain score (d = 0.61) as well as on Piqβ, suggesting
that Piqβ (d = 0.51) reflects the effectiveness of pain treatments in this sample, ranging
from moderate to low [55]. Persistent pain in a sample of 66 participants was typically
treated with medications such as antidepressants, anticonvulsants, and opioids [70]. The
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clinical difference in the Piqβ indicator between both subgroups was 18.5% i.e., a minimally
important change in favor of the centrally acting medication in the subgroup.

Taken together, our results show that the Piqβ indicator can track pain variation via
brain activity, even in the presence of a centrally acting treatment, which can be advanta-
geous for monitoring pain treatment in various contexts, from outpatient to postoperative
orthopedic care.

4.5. Perspective

Several questions require additional research to fill these gaps. For example, what is
the minimum Piqβ value (%) that indicates a clinically relevant change in pain magnitude?
Alternatively, does the measurement time frame with the proposed approach change
depending on the type of treatment, or, for example, what is the optimal time for the
identification and quantification of pain after a physical, pharmacological, or surgical
intervention? For minimum clinical change, it is recommended that two or more different
methods be used to evaluate the clinical importance of improvement or worsening for
chronic pain clinical trial outcome measures [54,71]. Pain assessment is generally classified
into 11 levels on the NRS [72]: 0–1: Weak or no pain. 1–6: Mild to moderate pain, invisible.
7–10: For intense to severe pain, several physiological signs make it possible to identify that
a person is experiencing pain. This study showed that the presence of pain was set at 10%
for Piqβ. Thus, work needs to be carried out to establish Piqβ values that can be considered
as the minimally relevant clinical change in Piqβ between the two interventions. In the
forthcoming phases of this project, we intend to expand the participant sample to include
more individuals experiencing pain, and we will assess their pain as part of a protocol
aiming to test the reliability of the Piqβ indicator. This endeavor holds significance, as
enhancing clinical relevance will offer a more profound insight into its practical applicability.
Furthermore, we aimed to confirm the observed Piqβ threshold value of 10% across the
three studies through a static analysis conducted in a study with a broader sample size.

4.6. Limits

The main limitation of the present pilot study is the absence of real pain data showing
large variations in the levels of pain, as for experimental thermal pain. This would have
enabled a more robust corroboration that Piqβ tracks acute pain. Nonetheless, it is impor-
tant to bear in mind that this study serves as a pilot study aimed at testing our algorithm
designed to identify and quantify chronic pain under real-life conditions. The algorithm
outlined in our 2022 paper, incorporating a sample comprising four individuals experi-
encing fibromyalgia pain [17], is being implemented and evaluated in this context. Our
primary focus was the objective assessment of chronic pain, ranging from mild to moderate
intensity, which may be accompanied by episodes of intense pain. It is an invisible disease
that is difficult to objectively assess. In line with the 11th International Classification of
Diseases, our work aims to advance the recognition of chronic pain as a health problem on
its own [73].

5. Conclusions

In conclusion, we have successfully met the objectives of this pilot study, which in-
cluded: (a) developing a new method for identifying and quantifying pain, (b) establishing
a threshold to detect the presence of pain, (c) exploring the correlation between the new
EEG-based indicator and self-reported pain using a verbal numerical rating scale (VNRS),
and (d) assessing the impact of medication on brain activity as a secondary objective within
the new chronic pain assessment. Specifically, from a methodological perspective, here are
the key parameters from the pilot study that are essential for the algorithm’s functionality:
(1) Five (5) min for EEG collection at rest posture provides sufficient material for the pur-
pose of analysis, without necessarily affecting the sufferer’s comfort; (2) one (1) electrode
positioned above the motor regions contralateral to the site of pain is sufficient and allows
us to respect the physiological decussation of the ascending and descending pathways of
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information; (3) the frequency band of interest of EEG signal is beta (13–30 Hz), and this
frequency is the one that allows us to optimally capture useful and interesting information
in the painful state; (4) Piqβ threshold at 10%, i.e., Piqβ ≥ 10% is indicative of the presence
of pain; and (5) the higher the Piqβ (%), the higher the extent of the pain.

This finding could have strong implications for the population living with pain,
specifically persistent pain, and we are thinking here of all the workers on prolonged sick
leave for musculoskeletal pain, as well as of healthcare professionals, insurance companies,
the pharmaceutical industry, etc. An objective assessment is a valuable decision-making
aid and an important contribution to pain management and monitoring.
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Abstract: Electroencephalography (EEG)-based applications in brain–computer interfaces (BCIs),
neurological disease diagnosis, rehabilitation, etc., rely on supervised approaches such as classification
that requires given labels. However, with the ever-increasing amount of EEG data, incomplete or
incorrectly labeled or unlabeled EEG data are increasing. It likely degrades the performance of
supervised approaches. In this work, we put forward a novel unsupervised exploratory EEG analysis
solution by clustering based on low-dimensional prototypes in latent space that are associated with
the respective clusters. Having the prototype as a baseline of each cluster, a compositive similarity
is defined to act as the critic function in clustering, which incorporates similarities on three levels.
The approach is implemented with a Generative Adversarial Network (GAN), termed W-SLOGAN,
by extending the Stein Latent Optimization for GANs (SLOGAN). The Gaussian Mixture Model
(GMM) is utilized as the latent distribution to adapt to the diversity of EEG signal patterns. The
W-SLOGAN ensures that images generated from each Gaussian component belong to the associated
cluster. The adaptively learned Gaussian mixing coefficients make the model remain effective in
dealing with an imbalanced dataset. By applying the proposed approach to two public EEG or
intracranial EEG (iEEG) epilepsy datasets, our experiments demonstrate that the clustering results are
close to the classification of the data. Moreover, we present several findings that were discovered by
intra-class clustering and cross-analysis of clustering and classification. They show that the approach
is attractive in practice in the diagnosis of the epileptic subtype, multiple labelling of EEG data, etc.

Keywords: EEG; GAN; clustering; GMM

1. Introduction

Electroencephalography (EEG) is a well-established non-invasive tool to record brain
electrophysiological activity. Compared to other neuroimaging techniques that provide
information about the anatomical structure (e.g., MRI, CT, and fMRI), EEG offers ultra-high
time resolution, which is critical in understanding brain function. As the mainstream
means for examining brain electrical activities, EEG techniques have wide applications in
cognitive neuroscience, emotion recognition [1], motor imagery [2], and the diagnosis of
diseases such as autism, schizophrenia, and epilepsy [3]. However, these applications are
mostly focused on supervised tasks that require a priori knowledge such as EEG labels
that define the class they belong to. However, not all EEG labels associated with specific
patterns of brain activity can be completely or correctly obtained from subjects across
different recording sessions. This is especially so for patients with complex situations,
such as those suffering from stroke [4], Alzheimer’s disease (AD) [5], amyotrophic lateral
sclerosis (ALS) [6], or epileptic seizures [7], etc. Therefore, the increasing amount of
incomplete or incorrectly labeled or unlabeled EEG data likely degrades the efficacy of
supervised techniques, e.g., classification that is crucial to brain–computer interface (BCI)-
based applications and disease diagnosis. Moreover, in fact, the EEG signals often have
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multiple attributes, consequently needing to be annotated with multiple labels. Some EEG
data may have subclasses that deserve more attentions in clinical applications, like epileptic
subtype diagnosis. In practice, either multiple labelling or subclass labelling is almost
infeasible due to the multiple labor and time costs of the labelling.

Dai et al. suggested a semi-supervised EEG clustering method that makes good use
of limited a priori knowledge [8]. In our work, we focus on unsupervised clustering.
Clustering aims to organize the data elements of a dataset into distinct clusters according
to the resemblance of the intrinsic patterns of the data. Data elements of the same cluster
are characterized by a similarity higher than those of other clusters [9]. Clustering is
probably the most important and fundamental means of exploratory data analysis for
finding intrinsic hidden information and patterns (if any) without requirement for a priori
knowledge, such as to detect unknown kinds of abnormal states from brain imaging data.

The most widely applied clustering techniques, such as K-means, rely on distance to
assign a cluster, which determine the cluster members to centers based on their minimum
distances and find the most appropriate cluster centers by the optimization of an objective
function based on distance [10]. Distance-based algorithms are the most commonly used
benefiting from this simple principle.

To adapt to the diversity of data, distribution-based approaches such as the Gaussian
Mixture Model (GMM) have drawn more attentions. They employ predefined probability
distribution functions to reproduce data elements [11]. If the predefined distribution cannot
be adaptively adjusted, the clustering efficacy relies on the capability of the trial probability
in representing the data. Based on the Density Peaks Clustering (DPC) algorithm [12], Gao
et al. formed an adaptive density peaks clustering (ADPC) solution towards exploratory
EEG analysis [13].

Generative Adversarial Networks (GANs) have obtained remarkable success in many
unsupervised learning tasks [14]. In recent times, in order to provide a better fit to the
target data distribution when the image dataset includes many different classes, some
variants of the basic GAN model, including Gaussian Mixture GAN (GM-GAN), dynamic
GM-GAN [15], and Deli-GAN [16], have been proposed where the probability distribution
over the latent space is a mixture of Gaussians. These models tend to map latent vectors
sampled from different Gaussians in the latent space to samples of different classes in
the image data space. This phenomenon implies that it may be exploited for the task of
unsupervised clustering. However, these GANs do not provide inverse mapping from
the data space X to the latent space Z. Therefore, given a query data point, we cannot
know which latent variable it is generated from, or to say, we cannot obtain its latent space
representation.

Some GAN techniques make use of an encoder that has the potential to provide
another form of back-projection, such as InfoGAN [17], Variational Auto-Encoder GAN
(VAE-GAN) [18], and Stein Latent Optimization for GANs (SLOGAN) [19]. Usually, they
are not specifically designed for clustering.

The main contributions of this work are as follows.
A novel unsupervised approach is put forward for exploratory EEG analysis. The

basic idea is to form a kind of GAN to learn the Gaussian mixture distribution in latent
space wherefrom the prototype or center associated with each cluster can be abstracted.
Then, based on the latent prototypes, according to a well-defined similarity metric, the
query EEG data will be assigned to a cluster.

By applying the proposed approach to two public EEG or intracranial EEG (iEEG)
epilepsy datasets, our experiments demonstrate that the clustering results are close to the
classification of the data. Moreover, several findings show that the approach is attractive in
practice in the diagnosis of epileptic subtypes and multiple labelling of EEG data, etc.

2. Materials

In this work, two publicly available EEG epilepsy datasets were used in the experi-
ments, the benchmark Bonn dataset and the HUP iEEG dataset.
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2.1. Bonn Dataset

The Bonn dataset [20], collected by the University of Bonn, contains EEG and iEEG
signals from healthy volunteers and epileptics. The muscle activity and eye movement
artifacts were already removed from the collected data on the basis of visual inspection [21].
The complete database consists of by five sets denoted as A–E. Sets A and B contain scalp
EEG signals collected from healthy volunteers with their eyes open (A) and closed (B).
Set C contains iEEG recordings that were recorded from the hippocampal formation of
opposite hemispheric regions during inter-ictal periods [22]. Set D comprises the iEEG
signals collected from within the epileptic zone of the brain of patients during seizure-free
intervals. Set E contains data collected from within the epileptogenic zone of patients
during the ictal period. Detailed descriptions of the dataset are shown in Table 1. Each set
contains 100 single-channel EEG or iEEG segments with a sampling rate of 173.61 Hz and a
duration of 23.6 s.

Table 1. Description of the Bonn dataset.

Subjects
Set A Set B Set C Set D Set E

Healthy Volunteers Epileptic Patients

Patient state Eyes open Eyes closed Inter-ictal Inter-ictal Ictal
Electrode types Surface Surface Intracranial Intracranial Intracranial

Electrode
placement

International
10/20 systems

International
10/20 systems

Opposite
epileptogenic zone

Within
epileptogenic zone

Within
epileptogenic zone

No. of samples 100 100 100 100 100
Sampling points 4096 4096 4096 4096 4096

2.2. HUP IEEG Epilepsy Dataset

The HUP dataset [23], collected by the Hospital of the University of Pennsylvania,
contains intracranial EEG (iEEG) signals from 58 patients diagnosed as drug-resistant
epilepsy. Each of the 58 subjects underwent iEEG with subdural grid, strip, and depth
electrodes (electrocorticography (ECoG)) or purely stereotactically placed depth electrodes
(sEEGs). Since each patient’s epilepsy type may not be the same, a patient-specific study is
necessary [24]. We chose the ECoG signals of three de-identified patients, HUP65, HUP88,
and HUP89, to be used in the experiments. Details of the dataset are provided in Table 2.
The data for each patients include three ictal and two inter-ictal segments, stored in EDF
format. Each ictal segment includes recordings from two minutes before the seizure onsets,
which were viewed as the pre-ictal period in this study. Therefore, data of each patient
can be categorized into three periods: pre-ictal, ictal, and inter-ictal. Figure 1 illustrates the
different periods in EEG data collected from epileptics.

Table 2. Description of electrocorticography (ECoG) data of three patients in the HUP dataset.

Patients Gender Age Target Therapy Electrode

HUP65 M 36 Temporal Resection RG 11-Ref
HUP88 F 35 Temporal Resection LMST 02-Ref
HUP89 M 29 Temporal Resection AD 04-Ref

Figure 1. Different periods of electroencephalography (EEG) signals of an epileptic. a–e denote
different time points.
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3. Methods

Given a test data, the probability for each cluster can be calculated using a given critic
function, which enables us to assign a cluster for the data. We propose a critic function
based on the test data’s low-dimensional prototype in the latent space, termed latent
prototype. Each prototype is responsible for a certain attribute of the data, namely a cluster.
Having the prototype as a baseline of each cluster, we are able to define a compositive critic
metric that incorporates the similarities between the test data and the prototype of a given
cluster on three levels, which are the latent representation level, image level, and deep
feature map level.

3.1. Schematic of Latent Prototype-Based Clustering

According to the above consideration, we put forward an unsupervised EEG clustering
approach based on latent prototypes. Its schematic is briefly illustrated in Figure 2. First,
train a W-SLOGAN from the EEG dataset to learn a generator, a discriminator, an encoder
as well as the latent prototype μk that are responsible for each cluster. Given a query signal,
transform it with continuous wavelet transform to a scalogram xquery. Wavelet transform is
an effective technique to analyze the local characteristics of non-stationary signals, offering
both time domain resolution and frequency domain resolution. Then, utilizing the trained
W-SLOGAN, calculate three levels of similarities separately between (i) the latent space
representation of the query signal and the latent prototype of each cluster, (ii) scalogram
of the query signal and the baseline scalogram of each cluster, and (iii) the deep feature
map (DFM) of the query signal and the baseline deep feature map of each cluster. Obtain
the compositive similarity between the query signal and the prototype of each cluster
by incorporating the above three levels of similarities. Finally, convert the compositive
similarity to a probability with the SoftMax function, which enables us to assign a cluster
for the query signal.

Figure 2. Schematic of EEG clustering solution based on latent prototypes. CWT, continuous wavelet
transform. DFM, deep feature map. equery, latent space representation of the query signal. μk, latent
prototype of the kth cluster. xquery, scalogram of the query signal. xk, baseline scalogram of the kth
cluster. DFMquery, deep feature map of the query signal. DFMk, baseline deep feature map of the
kth cluster. α1, α2, and α3 are weights.

3.2. Gaussian Mixture Distribution in Latent Space

GANs usually uses a unimodal distribution as the prior distribution for Z, such as the
multivariate uniform distribution (i.e., U[−1, 1]dz ) and the multivariate normal distribution
(i.e., N (0, Idz×dz)) [15]. To better adapt to diversity of the real data, the W-SLOGAN adopts
the multimodal Gaussian mixture distribution as the prior to sample from latent space, as
shown in Figure 3.

The Gaussian mixture distribution is defined as follows:

q(z) = ∑ N
k=1 p(k)q(z|k) (1)
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where N is the number of Gaussian components and can be predefined by the number of
data clusters, p(k) is mixing coefficient, and q(z|k) denotes the probability distribution of
the kth Gaussian component, formulated as q(z|k ) = N (z; μk, Σk), where μk and Σk denote
the mean vector and covariance matrix of the kth Gaussian component, respectively.

Figure 3. Latent distribution defined as Gaussian mixture distribution and distribution of generated
data and that of real data. Suppose there are three clusters in the dataset. μ1, μ2, and μ3 can be
regarded as the latent prototypes of the three clusters.

3.3. W-SLOGAN

We decided to form a kind of GAN to obtain the latent prototype of each cluster that
is needed in the calculation of compositive similarity. GAN is a generative model that
learns a generator (G) capable of generating samples from the data distribution (pdata), by
converting latent vectors from a lower-dimension data space (Z) to samples in a higher-
dimension data space (X). Specifically, we need a kind of GAN such that: (i) The latent
space distribution of the GAN should be defined as a Gaussian mixture distribution to
model the diversity of the data. (ii) It should be able to learn the latent prototype that is
responsible for each cluster from the data distribution. (iii) It is able to back-project the
query image to the latent space; therefore, an encoder (E) is needed. (iv) Well-defined
objective functions are needed for training G, D, and E and the latent distribution. Based
on the above consideration, we put forward a GAN, termed W-SLOGAN, which takes
advantage of both the Wasserstein GAN with Gradient Penalty (WGAN-GP) and the Stein
Latent Optimization for GANs (SLOGAN), especially the latter. The W-SLOGAN adopts a
discriminator objective function and adversarial loss function proposed in WGAN-GP, with
which the training can be more stable, and the generated images can be of better quality.
Also, it utilizes an encoder as well as an Unsupervised Conditional Contrastive loss (U2C
loss), ensuring that the encoded vector of the generated image is similar to its assigned
low-dimensional prototype in the latent space.

In the following, the network architecture, objective functions, and optimization
algorithm of the W-SLOGAN will be described.

3.3.1. Network Architecture

Figure 4 shows the network architecture of W-SLOGAN, which consists of a generator
(G), a discriminator (D), and an encoder (E). G is responsible for mapping the latent space
(Z) defined by Gaussian mixture distribution to the real image domain (X) ( G(z) : Z → X ).
In this mapping, the mean vector μk of each Gaussian component in the latent space
can be viewed as a prototype of samples with certain salient attribute, and the average
representation of that attribute in the latent space. D receives the generated images (xg)
and real images (xr) to train its capability to discriminate between real and fake, providing
the driving force for the training of the generator. E maps the image onto a space of the
same dimension as the latent space. In order to stabilize the process of adversarial learning
and improve the learning of images, W-SLOGAN adopts the convolutional layer structure
that was introduced in Deep Convolutional GAN (DCGAN) [25]. Table 3 provides the
implementation details of the W-SLOGAN model.
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Figure 4. Network architecture of W-SLOGAN. The latent distribution is defined as Gaussian mixture
distribution. Assume the number of Gaussian components is 3. z1, z2, and z3 denote the latent vectors
sampled from latent space. e1, e2, and e3 denote the encoded vectors of the scalograms calculated by
the encoder. μ1, μ2, and μ3 denote the mean vectors of the three Gaussian components, corresponding
to the latent prototypes of the three clusters. dx denotes the output of the discriminator.

Table 3. Implementation details of the W-SLOGAN model.

Network Layer (Type) Maps Size Kernel Size Activation BN a Layer

Generator

Input_1 None 100 None None None
Dense None 8192 None None None

Reshape 512 4 × 4 None ReLU yes
ConvTranspose2D 256 8 × 8 5 × 5 ReLU yes
ConvTranspose2D 128 16 × 16 5 × 5 ReLU yes
ConvTranspose2D 64 32 × 32 5 × 5 ReLU yes
ConvTranspose2D 3 64 × 64 5 × 5 ReLU yes

Discriminator

Input_2 3 64 × 64 None None None
Conv2D 64 32 × 32 5 × 5 LeakyReLU None
Conv2D 128 16 × 16 5 × 5 LeakyReLU None
Conv2D 256 8 × 8 5 × 5 LeakyReLU None
Conv2D 512 4 × 4 5 × 5 LeakyReLU None
Flatten None 8192 None None None
Dense None 1 None None None

Encoder

Input_3 3 64 × 64 None None None
Conv2D 64 32 × 32 5 × 5 ReLU yes
Conv2D 128 16 × 16 5 × 5 ReLU yes
Conv2D 256 8 × 8 5 × 5 ReLU yes
Conv2D 512 4 × 4 5 × 5 ReLU yes
GAP b None 512 None None None
Dense None 100 None None None

a Batch Normalization. b Global Average Pooling.

3.3.2. Objective Functions

W-SLOGAN is trained to learn the parameters of the generator G, discriminator D, and
encoder E from the data, as well as the parameters (μk, Σk, and p(k)) of the Gaussian mixture
distribution of the latent space. It is necessary to define well the objective functions for the
training. We chose a discriminator objective function and an adversarial loss function that
were the same as those of WGAN-GP. The unsupervised conditional contrastive loss (U2C
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loss) proposed by Hwang et al. [19] for SLOGAN was also employed in the training. In the
training of W-SLOGAN, D and (G, E, μk, Σk, and p(k)) were updated alternately. D was
trained with the discriminator objective function, and G, E, μk, Σk, and p(k) were trained
with a total objective function that comprises the adversarial loss and the U2C loss.

Discriminator objective function. The discriminator objective function is defined as
that of WGAN-GP, which helps to stabilize the training process and provide the driving
force for the training of generator [26–28]. It is defined as

LD = −Ex∈Pdata [D(x)] + Ez∈q(z)[D(G(z))] + λ1E∼
x∈Ppenalty

[(∥∥∥∇∼
x

D
(∼

x
)∥∥∥

2
− 1
)2
]

(2)

where λ1 denotes the gradient penalty coefficient, and
∼
x is sampled from the line between

the real training data distribution and the generated data distribution. Such a design can
make the model converge faster.

Adversarial loss function. The purpose of minimizing adversarial loss is to make the
samples generated by the generator as realistic as possible, so that the discriminator cannot
accurately distinguish between the generated samples and the fake ones. The adversarial
loss function is defined as that of WGAN-GP, as formulated in (3).

ladv

(
zi
)
= −D

(
G
(

zi
)

(3)

Total objective function. W-SLOGAN learns the parameters of the generator (G),
encoder (E), and the Gaussian mixture distribution of the latent space by minimizing the
total objective function, including unsupervised conditional contrastive loss (U2C loss) and
adversarial loss. The total objective function is defined as follows:

Ltotal =
1
B∑ B

i=1

(
ladv

(
zi
)
+ λ2lU2C

(
zi
))

(4)

where λ2 denotes the weight coefficient of the U2C loss.
U2C loss. With U2C loss, the training allows each salient attribute to cluster in the

latent space, and each component of the learned latent distribution is responsible for a
certain attribute of the data. Given a batch of latent vectors

{
zi}B

i=1 ∼ q(z) (where B is
the batch size), we can find the corresponding Gaussian component Ki (the mean vector is
μi

K) to which zi is most likely belong by the use of (5).
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k
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(
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The generator receives the latent vector zi and generates the corresponding sample
xi

g = G
(
zi). Then, the generated sample xi

g is mapped by the encoder to an encoded

vector xi
g = G

(
zi). The cosine similarity between ei and μ

j
K can be calculated using

cosθij = ei·μj
K/
∥∥ei
∥∥∥∥∥μ

j
K

∥∥∥. The U2C loss is defined as

lU2C

(
zi
)
= −log

exp(cosθii)
1
B ∑B

j=1 exp
(
cosθij

) (6)

In this way, by minimizing the U2C loss, the training encourages the encoded vectors
of samples with the same prototype to be as similar as possible to the prototype. This
allows each component of the learned latent distribution to be responsible for a certain
cluster of the data.
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3.3.3. Optimization Algorithm of Latent Distribution Parameters

In order to train the parameters of Gaussian mixture distribution of latent space, it is
crucial to obtain the gradient of the parameters during the training. Gurumurthy et al. [16] and
Ben-Yosef et al. [15] adopted the “reparameterization trick” proposed by Kingma et al. [29]
in their related work to update the mean vectors μk and covariance matrices Σk of each
Gaussian component. However, the above method assumes uniform mixing coefficients p(k)
that are fixed. As a consequence, it fails to generate data in the case of imbalanced datasets.
Based on the generalized Stein lemma, Hwang et al. [19] derived gradient identities of the
parameters of Gaussian mixture distribution, which not only enables μk and Σk to be updated,
but also ensures that the mixing coefficients p(k) can be updated. It is called the Stein latent
optimization algorithm. The W-SLOGAN employs the Stein latent optimization algorithm to
enable the imbalanced attributes to be naturally clustered in a continuous latent space. Table 4
presents a comparison of these two reparameterization techniques.

Table 4. Comparison of two reparameterization methods.

Models
Reparameterization

Form
Trainable

Parameters
Characteristics of

Gradient Estimation

AEVB [29]
DeLiGAN [16]
GM-GAN [15]

Explicit μk and Σk
Unbiased; high

variance

SLOGAN [19] Implicit μk, Σk and p(k) Unbiased; low
variance

3.3.4. Training Process

Step 1. Parameter initialization. Initialize parameters of the Gaussian mixture dis-
tribution, including μk, Σk, and p(k), as well as the parameters of three networks G, D,
and E.

Step 2. Train D for bD times. Train D with the discriminator objective function as
presented in Equation (2).

Step 3. Train G, E, μk, Σk, and p(k) for one time. Train them with the total objective
function as presented in Equation (4). Go to Step 2.

The loop of step 2 and step 3 stops after it is carried out for a predefined number
of times.

3.4. Compositive Similarity Metric

In our clustering approach, the similarity metric plays the role of critic function, which
will enable us to assign a cluster for the query data. Having the prototype as a baseline
of each cluster, we put forward a compositive similarity metric that combines similarities
between the test data and the prototype of a given cluster on three levels, namely latent
representation, image, and deep feature map. Figure 5 illustrates three levels of similarity
for clustering.

Latent representation similarity. The scalogram xquery of the query signal is mapped
to the latent space by the encoder (E) to become an encoded vector, which can be viewed
as the latent representation of the query signal, denoted by equery = E

(
xquery

)
. Latent

representation similarity measures similarity between equery and the latent prototype that
is responsible for a given cluster. It is defined in (7), using cosine similarity to measure the
similarity between two vectors.

Sk
latent =

equery·μk∥∥equery
∥∥‖μk‖

(7)

where Sk
latent denotes the similarity between the query signal and the k-th cluster in la-

tent space.
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Image similarity. It measures similarity between the scalogram of the query signal
xquery and the baseline scalogram xk of a given cluster that is generated by the generator
G from the prototype μk of the given cluster, and is formulated by xk = G(μk). Image
similarity is defined as follows:

Sk
image =

1∥∥xquery − G(μk)
∥∥

1
(8)

DFM. similarity. It measures the similarity between the DFM of the query signal,
DFMquery, and the DFM of the baseline DFM of a given cluster, DFMk = DFM(xk). DFM
refers to the output of the last convolution layer of the discriminator that can be viewed
as deep feature map of a given image. This kind of deep feature is inspired by the work
of NHAN et al. [30], where the discriminator is employed as an unsupervised feature
extractor. DFM similarity is defined as

Sk
DFM =

1∥∥DFM
(
xquery

)− DFM(xk)
∥∥

1
(9)

Compositive similarity. We define a compositive similarity between the query signal
and the centroid of the kth cluster that incorporates all the three levels of similarities as

Sk
com = α1 ∗ Sk

latent + α2 ∗ Sk
image + α3 ∗ Sk

DFM (10)

α1 + α2 + α3 = 1 (11)

where α1, α2, and α3 are weight coefficients of the three similarities. As the dimensions are
different, it is necessary to normalize Sk

latent, Sk
image, and Sk

DFM separately before calculating
the compositive similarity.

Through some sensitivity tests, we found that the proposed clustering approach is
somehow sensitive to α1 and α2 values. Therefore, to seek good settings for them, we
carried out multiple experiments where α1 and α2 were set to different values. Then, based
on the resulting clustering performance evaluated with external clustering indexes, we
determined the optimal values. In real applications where the data are unlabeled, optimal
values can also be determined by use of internal clustering indexes.

Figure 5. Three levels of similarity for clustering. Assume the number of Gaussian components is 3.
DFM: deep feature map. μ1, μ2, and μ3 denote the mean vectors of the three Gaussian components,
corresponding to the latent prototypes of the three clusters. equery denotes the latent representation
of the query signal. x1, x2, and x3 denote the baseline scalograms of the three clusters. xquery denotes
the scalogram of the query signal. DFM1, DFM2, and DFM3 denote the baseline deep feature maps
of the three clusters. DFMquery denotes the deep feature map of the query signal.
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The query data can then be assigned to the cluster with the highest compositive
similarity (i.e., argmax

k
Sk

com).

With respect to computational complexity, when applied to a dataset with size n, the
complexity of both the training and clustering of the W-SLOGAN algorithm are O(n), which
is linear.

3.5. External Clustering Indexes

To evaluate the closeness between the clustering results from the proposed approach
and classification of the data, three widely used external clustering indexes were adopted,
namely Purity, Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI).

Purity. Purity is an intuitive evaluation index that indicates the degree of agreement
between the clustering results and the real data distribution. It is defined as

Purity =
1
n∑ k

i=1maxj
(
nij
)

(12)

where n denotes the total number of samples. k denotes the total number of clusters. nij
denotes the number of samples in both class uj and cluster vi. The range of the Purity value
is [0, 1], where a higher value indicates a purer clustering result.

ARI. ARI measures the degree of similarity between two data distributions [31]. It
takes into consideration the consistency between the resulted cluster labels and class labels.
The definition of ARI is

ARI =
∑ i∑j (

nij
2 )−

[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)

1
2

[
∑i (

ai
2 ) + ∑j (

bj
2 )
]
−
[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)
(13)

where nij denotes the number of samples in both class uj and cluster vi. ai denotes the
number of samples in class ui and bj denotes the number of samples in cluster vj. n is the
total number of samples. (nij

2 ) represents a combination and is equal to C2
nij

.
NMI. NMI evaluates the consistency between two distributions by measuring their

mutual information [32]. The definition of NMI is presented as follows:

NMI(C, K) =
MI(C, K)√
H(C)·H(K)

(14)

where MI(C, K) denotes the mutual information between class labels and the resulted clus-
ter labels, H(C) is the entropy of classification labels, and H(K) is the entropy of clustering
results. The range of the NMI value is [0, 1], where 1 indicates perfect consistency, which
means the clustering is exactly consistent with the classification.

3.6. Experimental Setup and Running Environment

The Bonn dataset consists of five subsets (A, B, C, D, and E), which were organized
into four groups in the experiments. Such grouping considers the complexity of signals
of each subset and the relevance of the subsets in clinical. We segmented the scalp EEG
and iEEG signals from the Bonn dataset using a sliding time window of 2.88 s with 50%
overlap. For each subset, all the 100 signals each with 23.6 s duration were segmented to
1500 samples each with 2.88 s duration. In the experiments, the cluster number was set
according to the class number in each group. Detailed descriptions of the four groups are
shown in Table 5.

The HUP dataset comprises three classes of signals: pre-ictal, ictal, and inter-ictal. The
pre-ictal one is defined as two minutes before the seizure onset. The ECoG signals were
segmented with a sliding time window of 5 s with 50% overlap. The number of clusters
was set to 3. The description of the ECoG data of three de-identified epileptics in the HUP
dataset is outlined in Table 6.
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Table 5. Description of four experimental groups of the Bonn dataset.

Group Set Description # Class # Cluster Class Ratio

CD_E Sets C and D versus Set E Inter-ictal and ictal 2 2 3000:1500
AB_CD Sets A and B versus Sets C and D Healthy and inter-ictal 2 2 3000:3000

ABCD_E Sets A, B, C, and D versus
Set E Non-seizure and seizure 2 2 6000:1500

AB_CD_E Sets A and B versus Sets C and D
versus Set E

Healthy, inter-ictal, and
ictal 3 3 3000:3000:1500

Table 6. Description of the ECoG data of three de-identified epileptics in the HUP dataset.

Case Description # Class # Cluster # Pre-Ictal # Ictal # Inter-Ictal

HUP65 pre-ictal, inter-ictal, and ictal 3 3 348 592 251
HUP88 pre-ictal, inter-ictal, and ictal 3 3 348 592 724
HUP89 pre-ictal, inter-ictal, and ictal 3 3 348 592 252

In each experimental group, all the data were used for the unsupervised training of
W-SLOGAN; then, with the trained model, all the EEG segments were clustered; at last, the
clustering results were evaluated with three external clustering indexes.

Preprocessing. Each signal was filtered by an FIR bandpass filter, preserving informa-
tion within the frequency range from 0.5 to 40 Hz. The scalp EEGs and iEEGs from the Bonn
dataset were segmented into 2.88-s segments, while the ECoG signals from the HUP dataset
were segmented into 5-s segments. The 1-d time series segments were transformed to 2-d
scalograms. The Morlet wavelet was selected as the mother wavelet in the continuous
wavelet transform. The scalogram dimension is 64 × 64 × 3 (3 is the number of RGB
channels). Before feeding these scalograms into the W-SLOGAN model for training, each
pixel value of the scalograms was scaled to ensure their range fell within (−1, 1).

Parameter settings. For simplicity, we denote the learning rate of generator as η, the
learning rate of the covariance Σk as γ, the gradient penalty coefficient as λ1, the weight
coefficient of the U2C loss as λ2, and the weights for the latent representation, image, and
DFM similarities as α1, α2, and α3, respectively. In the experiments, the learning rate of
discriminator was set to 4η, and the learning rate of encoder to η. The learning rate of
latent prototype μk was set to 10γ, and the learning rate of mixing coefficient p(k) to γ.
Specifically, the parameter values were η = 0.0001, γ = 0.004, and λ = 10. In addition,
we initialized the p(k) = 1/N, Σk = Idz×dz , and μk sampling from N (0, Idz×dz). The three
weights α1, α2, and α3 were empirically set to 1/3.

During the training, the Adam optimizer was employed to train G, D, and E, and the
stochastic gradient descent (SGD) optimizer was adopted to train Σk, μk, and p(k). The
batch size (B) was 64 and the number of training iterations was set to 18,000 to ensure
sufficient training. In the clustering experiments, we repeated each experiment several
times and reported the means and standard deviations of model performances. Table 7
shows the details of the experimental parameter settings.

Table 7. Details of the experimental parameter settings.

Parameters Initialization Optimizer Learning Rate

Generator Random Adam 0.0001
Discriminator Random Adam 0.0004

Encoder Random Adam 0.0001
μk N (0, Idz×dz

)
SGD 0.04

Σk Idz×dz SGD 0.004
p(k) 1/N SGD 0.004
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Table 7. Cont.

Parameters Initialization Optimizer Learning Rate

λ1 10 None None
λ2 1 None None

Batch size 64
Iterations 18,000

Running environment. The experimental conditions include a desktop computer
equipped with an Inter(R) Core (TM) i9-10900K CPU (Inter, Santa Clara, CA, USA) and
an NVIDIA GeForce RTX 3080 GPU (Nvidia, Santa Clara, CA, USA). Segmentation and
continuous wavelet transform of the signals were implemented with MATLAB (R2019a),
while the training and evaluation of W-SLOGAN were carried out with Python 3.7 and
TensorFlow 2.6.0.

4. Results

4.1. Clustering Results

From applying the proposed approach to the benchmark Bonn EEG datasets, the
clustering results and the classification of the data are highly consistent. Taking the group
AB_CD_E of the Bonn dataset as an example, the three subplots of Figure 6A depict the
probability density functions for signals to belong to Cluster 1, Cluster 2, and Cluster 3.
Red, green, and purple indicate samples from Class AB (healthy), Class CD (inter-ictal,
epileptic) and Class E (ictal, epileptic), respectively. Taking Cluster 1 as an example, as
shown in Figure 6A1, the probability that Class AB samples belong to this cluster is the
highest, while the probability that Class CD and Class E samples belong to that cluster is
relatively low. It indicates that Cluster 1 gathers the general samples of Class AB. In other
words, Cluster 1 corresponds to class AB. Likewise, from Figure 6A2,A3, it is obvious that
Cluster 2 and Cluster 3 correspond to Class E and Class CD, respectively. On the other
hand, there are also some samples whose resulted clustering labels are inconsistent with
their class labels. For example, a few samples of Class CD and E are clustered into Cluster 1,
although the probability that they belong to that cluster is not high. It does not necessarily
indicate clustering error, but rather reveals the intra-class diversity.

The samples whose resulted cluster label is consistent with its class label represent the
generic attributes of that class. The following analysis will focus on this part of samples.
Figure 6B shows the probability density function of Class AB samples that are clustered
into Cluster 1. These samples can be divided into two parts; one comprises 95% of samples
with higher probabilities, and the other comprises the other 5% with lower probabilities.
The red color indicates high-probability samples. Several high-probability samples with
their respective scalograms are shown in the upper row, representing the typical attributes
of Class AB. The yellow color indicate low-probability samples that are shown in the lower
row. Similarly, Figure 6C shows the probability density functions of Class CD samples
clustered into Cluster 3, several high-probability samples, and low-probability samples. As
for Class E samples, see Section 4.4 for a more detailed analysis.

It is obvious that (i) the high-probability samples of each cluster are quite similar,
reflecting the typical characteristic of that cluster or class. For example, the high-probability
samples of Cluster 1 reflect the characteristics of the EEG signals of healthy volunteers with
eyes opened or closed, i.e., the amplitude fluctuates between −180 and 100, fluctuations
with a relatively high frequency that suggest rapid changes in the brain activity. The
high-probability samples of Cluster 3 reflect the characteristics of iEEG signals during
inter-ictal periods of epileptics, i.e., the amplitude fluctuates between −70 and 70 with
a relatively low frequency. (ii) Low-probability samples exhibit significant differences in
terms of waveforms and scalograms compared to high-probability samples. They show
diverse patterns. It could reflect intra-class diversity or may be caused by noise.
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Figure 6. Clustering results and intra-class diversity. (A1–A3) show the probability density functions
for samples belonging to Cluster 1, Cluster 2, and Cluster 3, respectively. (B) shows the probability
density function of Class AB samples clustered into Cluster 1, several high-probability samples
with their scalograms (in the upper row), and several low-probability samples with their respective
scalograms (in the lower row). (C) shows the probability density functions of Class CD samples
clustered into Cluster 3, several high-probability samples with their scalograms, and several low-
probability samples with their scalograms (in the lower row).
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4.2. Clustering Results from Different Similarity Metrics

According to the class labels provided in the dataset, the closeness of the resulted
clustering to the data classification can be measured by three external clustering evaluation
indexes, namely Purity, ARI, and NMI. In order to observe the role that different similarity
plays in clustering in the four groups of EEG data of the Bonn dataset and the three epileptic
patient’s ECoG data of the HUP dataset, we applied clustering separately with three kinds
of similarity metrics (namely single latent representation similarity, latent representation
similarity + image similarity, and the compositive similarity that incorporates all the three
levels of similarities). The results are shown in Tables 8 and 9.

Table 8. The clustering results of the Bonn dataset by the use of different kinds of similarity metrics.

Group Criteria
Latent Representation

Similarity
Latent Representation +

Image Similarity
Latent Representation + Image + DFM

Similarity

CD_E
# Cluster:2
# Class:2

Purity 0.9033 ± 0.0200 0.9620 ± 0.0030 0.9633 ± 0.0015

ARI 0.6410 ± 0.0680 0.8518 ± 0.0115 0.8568 ± 0.0056

NMI 0.5704 ± 0.0472 0.7510 ± 0.0137 0.7592 ± 0.0089

AB_CD
# Cluster:2
# Class:2

Purity 0.7798 ± 0.0147 0.7778 ± 0.0161 0.7768 ± 0.0172

ARI 0.3139 ± 0.0335 0.3096 ± 0.0365 0.3076 ± 0.0389

NMI 0.2503 ± 0.0265 0.2475 ± 0.0277 0.2466 ± 0.0288

ABCD_E
# Cluster:2
# Class:2

Purity 0.9494 ± 0.0043 0.9644 ± 0.0081 0.9638 ± 0.0089

ARI 0.7694 ± 0.0199 0.8382 ± 0.0377 0.8354 ± 0.0412

NMI 0.6396 ± 0.0199 0.7199 ± 0.0408 0.7162 ± 0.0442

AB_CD_E
# Cluster:3
# Class:3

Purity 0.8925 ± 0.0048 0.8977 ± 0.0032 0.9015 ± 0.0020

ARI 0.6882 ± 0.0124 0.7003 ± 0.0088 0.7102 ± 0.0055

NMI 0.6341 ± 0.0125 0.6491 ± 0.0090 0.6613 ± 0.0031

Avg Purity
Avg Purity Rank

# Best Purity

0.8813
2.5
1

0.9005
1.75

1

0.9014
1.75

2

Avg ARI
Avg ARI Rank

# Best ARI

0.6031
2.5
1

0.6750
1.75

1

0.6775
1.75

2

Avg NMI
Avg NMI Rank

# Best NMI

0.5236
2.5
1

0.5919
1.75

1

0.5958
1.75

2

# Best Purity, # Best ARI, and # NMI, respectively, indicate the largest number of the best Purity, ARI, and NMI
across four groups of the Bonn dataset.

Table 9. The clustering results of the HUP dataset by the use of different kinds of similarity metrics.

Case Criteria
Latent Representation

Similarity
Latent Representation +

Image Similarity
Latent Representation + Image + DFM

Similarity

HUP65
# Cluster:3
# Class:3

Purity 0.7834 ± 0.0086 0.8013 ± 0.0152 0.8044 ± 0.0195

ARI 0.4774 ± 0.0067 0.5368 ± 0.0222 0.5421 ± 0.0336

NMI 0.4893 ± 0.0096 0.5356 ± 0.0064 0.5375 ± 0.0148

HUP88
# Cluster:3
# Class:3

Purity 0.9804 ± 0.0042 0.9982 ± 0.0017 0.9982 ± 0.0015

ARI 0.9471 ± 0.0144 0.9956 ± 0.0041 0.9956 ± 0.0036

NMI 0.9180 ± 0.0175 0.9904 ± 0.0078 0.9905 ± 0.0074

HUP89
# Cluster:3
# Class:3

Purity 0.8249 ± 0.0039 0.8333 ± 0.0024 0.8686 ± 0.0020

ARI 0.5483 ± 0.0076 0.5627 ± 0.0046 0.6344 ± 0.0054

NMI 0.5408 ± 0.0069 0.5460 ± 0.0036 0.6253 ± 0.0052
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Table 9. Cont.

Case Criteria
Latent Representation

Similarity
Latent Representation +

Image Similarity
Latent Representation + Image + DFM

Similarity

Avg Purity
Avg Purity Rank

# Best Purity

0.8629
3.0
0

0.8776
1.6667

1

0.8904
1.0
3

Avg ARI
Avg ARI Rank

# Best ARI

0.6576
3.0
0

0.6984
1.6667

1

0.7240
1.0
3

Avg NMI
Avg NMI Rank

# Best NMI

0.6494
3.0
0

0.6907
2.0
0

0.7178
1.0
3

# Best Purity, # Best ARI, and # NMI, respectively, indicate the largest number of the best Purity, ARI, and NMI
across three epileptic subjects of the HUP dataset.

Tables 7 and 8 show that, in either the Bonn dataset or the HUP dataset, clustering by
the use of the compositive similarity outperforms that of the other two kinds of similarities.
Specifically, clustering using the compositive similarity achieves the best average rank (1.43)
when evaluated with Purity, ARI, and NMI. Also, the compositive similarity achieved the
largest number of the best Purity, ARI, and NMI out of the seven groups of experiments
(five out of seven).

Figures 7 and 8 show the bar charts of the three external clustering indexes for clus-
tering using different kinds of similarities on the Bonn dataset and the HUP dataset,
respectively. Compared to using a single latent representation similarity, the inclusion of
image similarity significantly improved the clustering performance in most experimental
groups. In the Bonn dataset, the average Purity, ARI, and NMI increased by 2.18%, 11.92%,
and 13.04%, respectively. In the HUP dataset, those three indexes averagely increased by
1.70%, 6.20%, and 6.36%, respectively. The improvement in the performance implies that
the scalogram has the potential to capture the time-frequency characteristics of different
EEG signals. However, compared to the combination of latent representation similarity
and image similarity, the inclusion of DFM similarity has little effect on the improvement
in clustering performance. In the Bonn dataset, the three indexes increased by 0.1%, 0.37%,
and 0.66%, respectively.

Figure 7. Purity, ARI, and NMI of the results of clustering on four groups of EEG/intracranial EEG
(iEEG) data of the Bonn dataset separately using different kinds of similarities.
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Figure 8. Purity, ARI, and NMI of the results of clustering on three epileptic subjects of ECoG data of
the HUP dataset separately using different kinds of similarities.

4.3. W-SLOGAN’s Training
4.3.1. Impact of the Number of Iterations in Training W-SLOGAN

We investigated the impact of the number of iterations during the training on the
clustering performance of the W-SLOGAN model. We evaluated the clustering performance
of the proposed approach on the two datasets separately when the model was iterated 0,
3000, 6000, 9000, 12000, 15,000, and 18,000 times, respectively. The results are shown in
Figures 9 and 10. It is shown that, in most groups, a fairly good clustering performance
was achieved by 9000 iterations. Before that, the performance increases rapidly with the
increase in the iteration number, whereas after that, it changes smoothly. Nevertheless, for
part of groups such as AB_CD_E, the clustering performance continues to increase with the
increase in the iteration number.

Figure 9. Impact of the iteration number during training W-SLOGAN on the clustering performance
on four groups of EEG data of the Bonn dataset separately evaluated with Purity, ARI, and NMI.
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Figure 10. Impact of the iteration number duringtraining W-SLOGAN on the clustering performance
on three epileptic subjects of ECoG data of the HUP dataset separately evaluated with Purity, ARI
and NMI.

4.3.2. Reproducibility of the Results

The results are to some extent reproducible. It is based on our experiments to test the
reproducibility on each experimental group. Taking the group of AB_CD_E of Bonn dataset
as example, we trained three W-SLOGAN models with the same experimental setup and
parameters. The mixing coefficients p(k) of the latent mixture components obtained from
different trained models are displayed in Table 10. It can be seen that they are close. Also,
the ratios of the Gaussian mixture components are all close to 2:2:1. They fit the true class
ratio (3000:3000:1500) of that group.

Table 10. Mixing coefficients p(k) of the latent mixture components obtained from different trained
W-SLOGAN models.

Model Model_1 Model_2 Model_3

p(k = 1) 0.3869 0.3969 0.373
p(k = 2) 0.448 0.439 0.4627
p(k = 3) 0.1651 0.1641 0.1643

4.4. Exploratory EEG Analysis
4.4.1. Discovery of Different Types of Epileptiform Waves

In order to explore the diversity of ictal iEEG signals, we carried out clustering on the
ictal data of the Bonn dataset. The number of clusters was set to five. It is noteworthy that
the three resulting clusters were highly consistent with three typical kinds of epileptiform
waves in the characteristic patterns. Epileptic seizures are accompanied by some typical
discharge waveforms, which serve as significant characteristics and diagnostic criteria for
epileptic seizures. Common epileptiform waves include sharp wave, spike wave, spike
and slow wave complex, sharp and slow wave complex, highly rhythmic disorganization,
and so on. We found several clusters that correspond to rhythmic sharp wave, spike and
slow wave complex, and highly rhythmic disorganization from the iEEG recordings.

Figure 11 shows the three types of epileptiform waveforms and the corresponding
clusters that resulted from our approach. On each row are displayed the characteristic
waveform of a type of epileptiform discharge, three epileptiform waves of that type that
were clustered into a same cluster found from the iEEG recordings by our approach, as
well as the baseline scalogram of that cluster.

For reference, the definitions and characteristics of sharp wave, spike and slow wave
complex, and highly rhythmic disorganization are listed below [33].

Sharp wave. Sharp waves are the most basic form of burst EEG activity, lasting from
70 to 200 ms (5–14 Hz). The amplitudes range from 100 to 200 μV. They are usually with
the form of negative phase waves.

Spike and slow wave complex. A pattern of epileptiform waveform composed of spike
waves and slow waves. The slow wave is the predominant component of this complex,
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lasting approximately from 200 to 500 ms. The spike and slow wave complex typically has
higher amplitudes, ranging from 105 to 300 μV, and can reach even more than 500 μV.

Highly rhythmic disorganization. Usually composed of sharp waves, spikes, etc., the
frequency and amplitude are highly irregular, often seen in complex partial seizures.

Figure 11. Typical kinds of epileptiform waveforms were found by clustering the ictal iEEG data of
the Bonn dataset. In each row are displayed the characteristic waveform of a type of epileptiform
discharge, three epileptiform waves of that type that were clustered into a same cluster found from
the iEEG recordings by our approach, as well as the baseline scalogram of that cluster.

4.4.2. Multiple Labels of EEG Data

The cross-analysis of clustering and classification has the potential to discover interest-
ing knowledge, including multiple labels of data. Taking the group AB_CD_E of the Bonn
dataset as an example, Figure 12 shows the class labels and clustering results of several
samples. Samples in each row belong to a same class and those in each column are clustered
into a same cluster. Each grid displays four samples. Row 1 and column 1 both correspond
to Class AB, i.e., healthy; Row 2 and column 2 both correspond to Class CD, i.e., inter-ictal;
and Row 3 and column 3 both correspond to Class E, i.e., inter-ictal.

The class labels of waveforms on the diagonal in the Figure 12 are consistent with their
respective cluster labels. These waveforms best reflect the salient attributes of that type
of EEG signal. For example, the samples in row 1, column 1 (AB) represent scalp EEG in
healthy volunteers, showing high frequency components compared to the inter-ictal iEEG
(CD) in row 2, column 2. The four ictal iEEG signals in row 3, column 3 (E) exhibit various
morphology, including some typical epileptiform discharge waveforms such as rhythmic
sharp waves and spike and slow wave complexes.

Perhaps, it is signals whose class label and cluster label do not refer to the same
attribute that deserve more attention. Taking the waveforms in row 2 and column 3 as
an example, they belong to the inter-ictal, epileptic class; however, they are clustered as
an ictal, epileptic cluster. They exhibit characteristics of typical epileptiform waveforms,
such as spike waves and spike and slow wave complex. These findings are consistent
with the clinical experience about the existence of epileptiform discharges in inter-ictal
periods. In fact, these signals with multiple attributes should be annotated with multiple
labels so that the information within the recordings can be reflected more comprehensively
and objectively.
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Figure 12. Class labels and clustering results of several samples in group AB_CD_E of the Bonn
dataset. Samples on each row belong to a same class and those on each column are clustered into a
same cluster. Each grid displays four samples. Row 1 and column 1 both correspond to Class AB,
i.e., healthy; Row 2 and column 2 both correspond to Class CD, i.e., inter-ictal, epileptic; Row 3 and
column 3 both correspond to Class E, i.e., ictal, epileptic.

5. Discussion

Clustering plays a unique role in exploratory EEG analysis. It is unsupervised, and
consequently, has low labor and time costs. With our approach, the adaptively learned
Gaussian mixing coefficients make the model remain effective in dealing with imbalanced
datasets. By means of intra-class clustering or cross-analysis of clustering and classification,
it is possible to reveal intra-class diversity or other interesting information. As demon-
strated in this work, the proposed approach is attractive for practice in epileptic subtype
diagnosis, multiple labelling of EEG data, etc.

With the latent prototype-based clustering approach, the clustering results are close to
the classification of the data (with reference to the results in Sections 4.1 and 4.2). It is in
part due to the sound definition of the critic function, which is based on latent prototypes
and measures the similarity on three levels. In this way, the approach is able to detect
underlying unknown patterns in the data. Nevertheless, we would like to point out that,
even if the clustering result is inconsistent with the classification, it does not mean that
the performance of the clustering method is not good. This is because the objectives of
clustering and classification are different. Classification is task-oriented, while clustering
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organizes data elements according to the resemblance of the intrinsic patterns (if any) of
the data.

Different types of epileptiform waves were discovered from EEG recordings, as shown
in Figure 11, in an unsupervised way without any given type label. It has been found that
some types of epileptic waveforms are related to specific epilepsy subtypes. For example,
rhythmic sharp waves are often associated with focal seizures, while the spike and slow
wave complex is more common in absence seizures. Therefore, our approach can not
only reveal the diversity of EEG signals during seizures and provide with a representative
scalogram of each subtype, but also can point out when and what type of epileptic discharge
occurs in the brain so as to assist the doctor in epilepsy subtype diagnosis.

Multiple labels of EEG or iEEG data can be discovered by means of the cross-analysis of
clustering and classification, as shown in Figure 12. Such cross-analysis between unknown
kinds and known classes has the potential to reveal novel knowledge. Sometimes, it is the
signal whose class label and cluster label do not refer to the same attribute that deserve
more attention. They reflect intra-class diversity. On the other hand, such analysis helps to
better understand multiple attributes of the data. As revealed in Figure 12, in ictal-period
iEEG signals of an epileptic, there exist waveforms similar to that of a healthy subject, while
in the interictal period, some epileptiform discharges are found. In fact, these signals with
multiple attributes should be annotated with multiple labels so that the information within
the recordings can be reflected more comprehensively and objectively.

Discussion on DFM similarity. As shown in Figures 7 and 8, the inclusion of DFM
similarity has little effect on the improvement in clustering performance. This may be due
to the fact that the discriminator’s task is to distinguish between real and fake samples.
The features extracted by its convolutional layer are those that focus on that task. Hence,
in most cases, the DFM level similarity plays a less important role in clustering than the
other two levels of similarity. But, in a few cases, e.g., ECoG of HUP89, the use of DFM
similarity is more effective than that of image similarity. This detail problem is pending for
further study.

With respect to the W-SLOGAN model, the number of Gaussian components of the
latent distribution need to be set in advance according to a predetermined number of
clusters. The optimization of the cluster number may be a future research direction.
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Abstract: Pilot behavior is crucial for aviation safety. This study aims to investigate the EEG char-
acteristics of pilots, refine training assessment methodologies, and bolster flight safety measures.
The collected EEG signals underwent initial preprocessing. The EEG characteristic analysis was
performed during left and right turns, involving the calculation of the energy ratio of beta waves and
Shannon entropy. The psychological workload of pilots during different flight phases was quantified
as well. Based on the EEG characteristics, the pilots’ psychological workload was classified through
the use of a support vector machine (SVM). The study results showed significant changes in the
energy ratio of beta waves and Shannon entropy during left and right turns compared to the cruising
phase. Additionally, the pilots’ psychological workload was found to have increased during these
turning phases. Using support vector machines to detect the pilots’ psychological workload, the
classification accuracy for the training set was 98.92%, while for the test set, it was 93.67%. This
research holds significant importance in understanding pilots’ psychological workload.

Keywords: beta wave; EEG map; sample entropy; Shannon entropy; psychological workload; SVM

1. Introduction

The “Statistical Bulletin on the Development of the Civil Aviation Industry in 2021” high-
lights the rapid growth in aircraft utilization across multiple sectors. In 2021, the civil aviation
industry achieved notable metrics, including a total transport turnover of 59.928 billion tonne-
kilometers, a passenger turnover of 391.387 billion person-kilometers, and 6.28 million
completed flight hours for transport airlines. As the number of flights increases, ensuring
safety remains a paramount concern in the contemporary airline industry [1].

Safety is of paramount importance in the contemporary airline industry, especially with
the increasing number of flights. According to statistics from the Aviation Safety Network,
Figure 1 illustrates the likelihood of accidents at different stages of an airplane’s navigation
process. Although the cruise phase has a comparatively lower accident probability—around
30 percent compared to other phases—aviation safety hazards during this phase can
jeopardize the lives and property of passengers, leading to unpredictable consequences [2].

Among the numerous factors affecting aviation safety, pilot behavior stands out as one
of the most significant. As shown in Figure 2, pilots must maintain prolonged concentration
during flight missions [3]. Therefore, studying pilots’ behavior and identifying underlying
patterns has become an urgent priority to enhance aviation safety and reduce the occurrence
of accidents.
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Figure 1. Percentage of fatal accidents.

Figure 2. The proportion of factors causing accidents.

Enhancing pilots’ flight skills stands out as the pivotal measure to reduce the probabil-
ity of flight accidents and consequently improve flight safety [4]. Continuous monitoring
of pilots’ operational processes during flight training is imperative to ensure the timely
correction of any irregular operations. Standardizing pilots’ operations is essential to
mitigate the safety risks associated with pilot error [5].

Traditionally, flight performance assessment has relied solely on the instructor’s
subjective experience. This method’s drawback lies in its susceptibility to the instructor’s
subjective influence at any given moment, potentially leading to inconsistent assessment
standards. To address this, scholars have proposed various assessment methods based
on traditional flight training systems that utilize monitoring data to refine pilot training
techniques [6,7].

Recently, researchers began assessing pilots’ conditions during flight training using
physiological signal data. Li Jie et al. examined the impact of hypoxic training during
high-altitude flights on pilots’ electrocardiographic (ECG) activity and concluded that
ECG could effectively monitor the pilots’ training status [8]. Additionally, M. Dilli Babu
independently gauged the cognitive load of pilots based on ocular parameters in a military
aviation context, finding a significant correlation between pilots’ cognitive load and eye
parameters [9].

Electroencephalography (EEG) is a technique for recording electrical activity generated
by neurons in the brain, detected on the surface of the scalp. Compared to ECG and EOG,
EEG signals offer more direct insights into the brain’s activity changes [10]. EEG has
been extensively utilized in various studies to explore different aspects of cognitive and
psychological states. G. F. Wilson’s research revealed that while both ECG and EEG data
can indicate the pilots’ psychological workload, EEG is more reliable as it directly records
the brain’s evoked potentials, providing a clearer reflection of brain activity [11]. Bartosz
Binias et al. investigated the correlation between brainwave activity and reaction time
in short-haul pilots using EEG data [12,13]. Additionally, Peng Zhang et al. examined
brain attributes related to pilots’ error awareness during flight missions, employing EEG
in their study [14]. Zhendong Lan et al. analyzed EEG characteristics during fatigue
driving and classified fatigue states using support vector machines (SVM) [15]. These
studies collectively underscore the importance of EEG in understanding cognitive and
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psychological states, offering valuable contributions to the field of pilot performance
and safety.

This study aims to process and analyze EEG data collected from pilots during left and
right turns in simulated flight scenarios. The analysis includes examining the changes in
EEG signals, variations in EEG power, and the correlations between EEG power and turning
maneuvers. Additionally, NASA-TLX is used to assess the pilots’ psychological workload
during cruising and turning phases, and support vector machine (SVM) algorithms are
employed to classify their psychological workload. The expected outcome is that applying
neuroscience research to flight performance will provide a theoretical foundation for flight
training methods, ultimately enhancing flight safety.

2. Materials and Methods

2.1. Participants

The study involved ten professionally trained male pilots, each with at least 50 h of
flight simulation training. These participants met the following specific criteria to ensure
the consistency and reliability of the experiment:

1. No prior EEG experiment participation: participants had no history of participating
in EEG experiments, ensuring that their brain activity recordings were not influenced
by prior experience.

2. Good physical health: all pilots were in good physical health, crucial for accurate EEG
readings and experimental reliability.

3. Age: participants were aged between 20 and 24 years old, with an average age of 22
years (±2).

4. Right-handedness: right-handedness was a requirement, possibly to maintain consis-
tency in motor responses or due to established correlations between handedness and
brain activity.

5. Socio-economic status: participants were from a middle-class socio-economic background.

In order to optimize conditions and minimize external factors [16], the following
conditions were observed:

1. Timing: the experiment was scheduled for 9:00 a.m. to minimize the impact of
drowsiness, ensuring participants were alert and well-rested.

2. Weather and environmental conditions: the weather was clear, with no wind or other
natural factors that could affect the flight simulation or participants’ performance.

3. Health precautions: pilots were instructed to maintain proper eating habits, get
adequate sleep, and avoid alcohol or medication for three days before the experiment.

Before the experiment began, participants received a comprehensive briefing on the
flight process and experimental equipment, including the EEG cap and other devices.
Ethical considerations were also addressed: all participants voluntarily agreed to take part
in the experiment and signed a “Consent to Participate in the Experiment” form. At the
conclusion of the study, participants were compensated according to the terms outlined in
the consent form, ensuring transparency and fairness in their involvement.

These measures collectively aimed to create the optimal conditions for studying EEG
data during flight simulation, ensuring that the results would be reliable and applica-
ble to enhancing aviation safety through a better understanding of pilot behavior and
psychological workload.

2.2. Experimental Equipment

Flight Simulator: The study utilized a KDKJ-FX-172-6D four-seat Cessna professional
flight simul ator. The flight simulator features a six-degree-of-freedom kinetic platform,
an accurate aerodynamic model, real-time flight sound effects, a full-scale aircraft joystick,
and a variety of virtual terrains to ensure that the flight simulation process is as similar as
possible to the actual flight process (as depicted in Figure 3).
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Figure 3. Professional flight simulator.

EEG cap: In this study, the Emotiv EPOC+ EEG cap was used to record EEG data
during pilot driving scenarios. The device comprises fourteen data acquisition channels
(AF3, F3, F7, FC5, T7, P7, O1, AF4, F4, FC6, F8, T8, P8, O2), as shown in Table 1.

Table 1. The corresponding brain regions for EEG electrodes.

Electrodes Lobe

AF3, AF4, F3, F4
F7, F8, FC5, FC6 Frontal

T7, T8 Temporal
P7, P8 Parietal
O1, O2 Occipital

This EEG cap supports wireless transmission, commonly used for recording action
EEG and mitigating the impact of EEG caps on pilots (as depicted in Figure 4) [17]. The
cap’s ability to transmit data wirelessly reduces movement restrictions on pilots, making it
ideal for dynamic and realistic simulation environments.

 

Figure 4. Emotiv EPOC+ EEG cap.

Psychological Workload Questionnaire: The NASA-TLX (Task Load Index) is a cog-
nitive load assessment scale developed by NASA. It is a widely recognized subjective
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psychological workload assessment tool. The scale encompasses six dimensions: mental
demand, physical demand, temporal demand, performance, effort, and frustration.

2.3. Experimental Steps

The KDKJ-FX-172-6D flight simulator is set in natural plains scenery, where partici-
pants conduct their flight experiments using the simulated flight platform. Each participant
performs five segments: take-off, level flight, left turn, right turn, and landing (as depicted
in Figure 5). The average aircraft flight altitude is 1000 feet, and the average flight speed is
70 knots [18].

Figure 5. Flight simulation experiment.

For the left and right turns, pilots follow visual flight rules (VFR) without specific
speed or altitude requirements, ensuring they maintain at least a 10 s interval between
maneuvers to avoid interference. The detailed flight parameters are as follows:

Take-off phase: The aircraft ascends to 400 feet at a speed of 60 knots.
Climb phase: The aircraft continues to ascend to an altitude of 1000 feet.
Cruise phase: The pilot performs left and right turns.
Descent phase: The aircraft descends back to 400 feet.
Landing phase: The aircraft gradually decreases speed and altitude for a smooth landing.
Throughout the flight, the pilots’ EEG data were continuously recorded using an EEG

cap, while changes in cockpit instrumentation and flight attitude were recorded using
video equipment.

After completing the experiment, the pilots filled out the NASA-TLX subjective ques-
tionnaire based on their flight experiences during the cruising and turning phases. The
subjective questionnaire assesses six dimensions of psychological workload. For each
dimension, the pilots rated their experiences on a scale from 0 to 10. By calculating the
weighted average across different dimensions, the level of psychological workload experi-
enced by the pilots during different flight phases was determined.

2.4. Data Processing

The collected pilot EEG data were first preprocessed to ensure accurate analysis. The
various functions and operating states of the brain can be determined based on human
behavior and cognition, allowing corresponding EEG signals to be identified for analysis.
EEG signals are commonly categorized into four main frequency bands: δ wave, θ wave, α
wave, and β wave, as shown in Table 2 [19].
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Table 2. The corresponding frequency and physiological meaning of EEG rhythms.

EEG Rhythm Frequency (Hz) Amplitude (μV) Function Main Location

δ 0.5~3 20~200 Sleep, hypoxia, etc. Occipital and parietal areas.
θ 4~7 20~100 Burnout, sleep, etc. Frontal and temporal areas.
α 8~13 10~100 Closed eyes, relaxation, etc. Occipital lobe area.

β 14~30 5~20 Emotional tension,
thinking activity, etc.

Temporal lobe and
frontal lobe area.

To filter the EEG signals and eliminate the impact of high and low-frequency noise,
FIR (finite impulse response) filters were employed within the 0.1–40 Hz range. This
preprocessing step is crucial for isolating the relevant EEG signals and improving the
accuracy of subsequent analyses [20,21].

ICA is a powerful statistical technique used to decompose multichannel EEG signals
into independent components. Each component represents a distinct source of neural
activity contributing to the overall EEG signal [22]. During the ICA process, components
associated with artifacts such as EMG (muscle activity) and EOG (eye movements) can be
identified based on their characteristic patterns and frequencies. These components can
then be effectively removed or filtered out from the EEG data. By isolating and remov-
ing artifacts through ICA, the quality and reliability of the EEG signals are significantly
improved [23]. This allows more accurate analysis of brain activity patterns related to
cognitive processes or specific tasks performed during the flight simulation. Figure 6 likely
depicts the results of ICA, showing how independent components are extracted from the
EEG data and how artifacts are separated from genuine brain signals. This visualization
aids in validating the effectiveness of artifact removal and ensuring the integrity of the EEG
data for subsequent analysis.

 
Figure 6. Artifact rejection—VEOG.

3. Results

3.1. Analysis of EEG Maps in the Left Turn Phase and Right Turn Phase

The EEG (electroencephalogram) data of the pilot were collected throughout the
simulated aircraft operation process. During this simulation, the EEG signals specifically

295



Sensors 2024, 24, 5176

associated with beta waves were of particular interest during the pilot’s performance of
left and right turns. These beta wave data underwent a series of preprocessing steps and
characteristic extractions to isolate the relevant signals from the raw EEG data.

To enhance the quality of the EEG signals, particularly by reducing noise, a method
called superimposed averaging was employed. This technique improves the signal-to-
noise ratio, making the desired beta wave signals more distinguishable from background
noise. After this enhancement, an EEG map was generated. This map provides a visual
representation of the energy fluctuations in the beta wave signals across each electrode
channel, allowing for a clear and comprehensive view of the pilot’s brain activity during
the turning maneuvers [24].

During the cruise phase, the electrodes on the pilot’s EEG typically display light colors,
indicating low signal energy levels. However, during a left turn, a notable surge in energy
occurs at the T7 electrode, resulting in a darkening of its color, indicating increased neural
activity levels. This surge is prominently displayed on the left side of the EEG map, showing
heightened energy levels observed in the electrode channels. After the pilot completes
the left turn maneuver, the energy levels at electrode T7 gradually diminish, resulting in a
return to lighter coloration as the aircraft resumes level flight. Similarly, during right turns,
there is an increase in energy at electrode T8, resulting in darker coloration at this electrode
site. The right half of the EEG map shows elevated energy levels corresponding to this rise.
Once the right turn is completed, the energy levels in each electrode gradually decrease
again, indicating a return to level flight. These dynamic changes, including the shifts in
energy levels and corresponding color changes, are illustrated in Figure 7, providing a
clear visual representation of the pilot’s neural activity during different phases of the flight.
However, the map does not facilitate quantitative analysis.

 

Figure 7. EEG map before, during and after turns.

3.2. EEG Signal Correlation

During flight tasks, EEG signals exhibit variations across different electrodes. For
correlation analysis, the study selected the beta waves of EEG signals recorded during the
left and right turning phases. This study utilized Pearson correlation analysis to examine
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the EEG signals collected from the various electrodes [25,26]. The Pearson correlation
coefficient formula used in this study is as follows:

r =

n
∑

i=1
(Xi − X)(Yi − Y)√

n
∑

i=1
(Xi − X)

2
√

n
∑

i=1
(Yi − Y)2

(1)

where Xi and Yi represent the EEG signal values from two different electrodes at corre-
sponding time points, while X and Y are the mean values of these signals over the selected
time period. The resulting correlation coefficient r quantifies the linear relationship between
the EEG signals from the two electrodes during the turning maneuvers. An r value close
to 1 indicates a strong positive correlation, while an r value near −1 signifies a strong
negative correlation. A value around 0 indicates no linear relationship between the signals
of the electrodes.

In left-turn maneuvers, the highest degree of correlation was observed at electrode
T7, indicating a strong correlation between the brain regions associated with T7 during
left-turn maneuvers, as depicted in Figure 8.

Figure 8. Spherical correlation graph for left turns.

In contrast, during right-turn maneuvers, the highest degree of correlation was ob-
served at electrode T8, indicating strong correlations between the brain regions associated
with T8 during these maneuvers. This finding highlights the necessity for further inves-
tigation into the relationship between turning directions and EEG signals, as depicted
in Figure 9.

Figure 9. Spherical correlation graph for right turns.
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3.3. Extraction of EEG Energy Ratio

The study employed wavelet packet decomposition to extract four distinct rhythmic
waves from the EEG signal. Within the frequency range of 0–30 Hz, the EEG signals were
decomposed into delta waves (0–4 Hz), theta waves (4–8 Hz), alpha waves (8–12 Hz),
and beta waves (12–30 Hz). This method decomposed the EEG signals, enabling the
separation and analysis of these rhythmic waves. It yielded insights into varying states of
consciousness during flight operations [27,28].

The mother wavelet selected for decomposition was db4, with each sub-band having
a bandwidth of 2 Hz [29]. The formula is

Wj,k =
〈

x, ψj,k

〉
= ∑

n
x[n]ψj,k[n] (2)

where x represents the EEG signal. ψj,k represents the wavelet basis function. Wj,k repre-

sents the wavelet packet coefficients of the EEG signal at scale j and position k.
〈

x, ψj,k

〉
represents the inner product of the EEG signal and the wavelet basis function. Subse-
quently, the energy of the EEG signal within various frequency bands is computed utilizing
the wavelet packet decomposition coefficients. The EEG energy is computed using the
following equation:

Ej,k = ∑
j,k

∣∣∣Wj,k

∣∣∣2 (3)

where Ej,k represents the energy at the j scale and k position. Subsequently, the total energy
for each rhythm is calculated by aggregating the energies of individual wavelets within
specific frequency bands.

For each type of rhythmic wave, the ratio of EEG energy to β/(θ + α) wave energy is
computed to assess the proportion of EEG energy relative to the total energy. This method
enables further analysis of how the distribution of EEG signal energy changes before and
after task performance, providing deeper insights into variations across different task states.
Figure 10 visually represents changes in EEG signal energy distribution across task phases.

Figure 10. Energy ratios across different task phases.

In contrast to the cruising phase, during the turning phase, there is a significant
increase in energy in the beta wave rhythm, with relatively lower energy levels observed in
the delta, theta, and alpha wave rhythms, respectively.

Figure 11 illustrates the beta wave energy ratio and the β/(θ + α) wave energy of
pilots’ EEG data during different flight phases. These metrics are higher during the turning

298



Sensors 2024, 24, 5176

phases and lower during the cruising phase. This indicates that pilots experience a greater
cognitive load and increased brain activity during turns compared to cruising.

(a) (b) 

Figure 11. EEG energy characteristics. (a) Beta wave energy ratio; (b) β/(θ + α) wave energy.

This finding is consistent with the understanding that turning maneuvers necessitate
more intensive focus and decision-making, thereby increasing the psychological workload
on pilots. During turns, pilots must constantly monitor and adjust the aircraft’s orienta-
tion, speed, and trajectory, which demands heightened attention and cognitive resources.
Conversely, cruising typically involves more stable flight conditions, requiring less active
control and allowing for reduced cognitive engagement.

Increased beta wave activity during turns reflects the brain’s response to heightened
cognitive demands and stress, as beta waves are often associated with active thinking,
focus, and problem-solving. Conversely, relatively lower beta activity during cruising
suggests a more relaxed state, where the brain is engaged in routine monitoring rather than
intensive problem-solving.

3.4. Extraction of EEG Entropy

EEG entropy serves as a metric for quantifying the complexity and randomness of
EEG signals. It is commonly utilized in EEG signal analysis to assess the complexity of
brain activity. In this study, we computed both Shannon entropy and sample entropy of the
EEG signals to elucidate the variations in brain activity across different tasks [30–32].

Shannon entropy measures the average uncertainty or information content in the EEG
signals, providing an indication of the overall complexity and unpredictability of brain
activity. Higher Shannon entropy values suggest more complex and varied brain activity,
while lower values indicate more predictable and less complex activity. The calculation
formula is as follows:

H(X) = −∑
i

p(xi) log10(p(xi)) (4)

where H(X) represents the Shannon entropy of signal X, and p(xi) represents the probabil-
ity of the signal taking on value xi. We computed the Shannon entropy associated with the
pilot’s EEG signals in both cruising and turning phases, as depicted in Figure 12.
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Figure 12. EEG Shannon entropy during different task phases.

Sample entropy is a nonlinear analysis method used to evaluate the complexity and
regularity of time-series data. In EEG signal analysis, sample entropy is used to measure the
repeatability or regularity of the signal at different time scales. Specifically, sample entropy
can help identify patterns or events in EEG signals and assess the signal’s predictability
and the system’s stability. The calculation of sample entropy typically involves defining
a window size and a matching tolerance threshold to compare signal segments across
different time scales. The calculation formula is

SampEn(m, r, N) = − ln
Am(r)
Bm(r)

(5)

where m is the embedding dimension, which defines the length of the sequences that are
compared. r denotes the tolerance parameter. N is the length of the time series. Am(r) and
Bm(r) are counts of similar sequences in the time series: Am(r) is the count of sequences
of length m + 1 that are similar within tolerance r, and Bm(r) is the count of sequences of
length m that are similar within tolerance r, as depicted in Figure 13.

Figure 13. EEG sample entropy during different task phases.
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By separately computing these two types of entropy, the study aimed to obtain a
comprehensive understanding of how brain activity complexity varies across different task
phases. Compared to the cruising phase, pilots exhibit higher EEG entropy during turning
phases. This increased entropy signifies a higher level of cognitive activity and complexity
in brain function during turning maneuvers.

3.5. NASA-TLX Psychological Workload Assessment

Pilots’ psychological workload is subjectively assessed using the NASA Task Load
Index (NASA-TLX). This tool collects pilots’ ratings of their psychological workload during
different flight phases, specifically cruising and left and right turning phases. Pilots assess
their workload across multiple dimensions, rating each dimension on a scale from “0” to
“10”. A score of “0” indicates minimal workload, whereas a score of “10” indicates a high
workload. This subjective assessment helps in understanding the perceived effort and stress
experienced by pilots during different flight maneuvers and complements the objective
EEG data analysis, providing a comprehensive view of pilots’ cognitive and psychological
states [33].

Additionally, pilots must make pairwise comparisons across six dimensions, selecting
the dimension they believe is more closely related to psychological workload, as shown in
Figure 14. The formula for calculating the overall psychological workload is

F =
6

∑
i=1

Mi × Pi
15

, (6)

where F is the total score of the cognitive workload assessment. Mi is the score of the subject
in different dimensions. Pi is the number of times different dimensions were selected in the
weight testing table shown in Figure 14.

 
Figure 14. NASA-TLX weight test table.

Subsequently, reliability and validity analyses were conducted on the weight propor-
tions of different dimensions. The reliability (α = 0.715) and validity (K = 0.734) were
found to be acceptable, ensuring the robustness of the weightings used in the workload
assessment. The final psychological workload scores were 5.02 for the cruising phase and
6.13 for the turning phase. These results indicate that pilots experience a higher psychologi-

301



Sensors 2024, 24, 5176

cal workload during the turning phases than during the cruising phase, emphasizing the
increased cognitive demands associated with maneuvering the aircraft during turns.

4. Psychological Workload Detection Model

4.1. Characteristic Parameter

A total of 2700 data sets, randomly selected from a pool of 3000 samples (comprising
1500 turn samples and 1500 cruising samples), were used for training. The remaining
300 data sets were reserved for testing. This approach ensures a balanced representation of
both turning and cruising phases in the training data while reserving a separate set of data
for evaluating the model’s performance.

Considering the variability in EEG data among different pilots, it was necessary to
normalize the EEG energy ratio, Shannon entropy, and sample entropy to ensure consis-
tency and comparability across individuals [34]. Normalization was performed using the
following formula:

Xn =
X − Xmin

Xmax − Xmin
, (7)

where X indicates the original characteristic parameter. Xn is the normalized value of
X. Xmin is the minimum value of X in the dataset. Xmax is the maximum value of X in
the dataset.

Firstly, a normality test was conducted on the normalized characteristic parameters.
The energy ratio of the EEG wave, β/(θ + α) wave energy, Shannon entropy, and sample
entropy all satisfied the assumption of normal distribution (p > 0.05) [35].

Subsequently, Pearson correlation analysis was used to calculate the correlation coef-
ficients between Shannon entropy, sample entropy, and the energy ratio at various flight
stages. This statistical method quantifies the degree of linear relationship between these
variables, providing insights into how changes in entropy metrics correlate with variations
in the energy ratio across different flight phases.

Figures 15 and 16 illustrate the correlation between Shannon entropy and sample en-
tropy with the energy ratio of EEG. The beta band energy ratio and Shannon entropy exhibit
the highest correlation among EEG characteristic quantities. The correlation coefficients are
presented in Table 3.

Figure 15. Pearson correlation coefficients between Shannon entropy and energy ratio at various
flight stages.

302



Sensors 2024, 24, 5176

Figure 16. Pearson correlation coefficients between sample entropy and energy ratio at various
flight stages.

Table 3. Pearson correlation coefficients.

EEG Entropy Phases δ Wave θ Wave α Wave β Wave β/(θ + α)

Shannon entropy
Turning left 0.251 0.415 0.327 0.736 0.662

Cruising 0.319 0.571 0.482 0.682 0.541
Turning right 0.357 0.524 0.423 0.724 0.671

Sample entropy
Turning left 0.254 0.412 0.359 0.532 0.571

Cruising 0.285 0.325 0.367 0.514 0.576
Turning right 0.265 0.301 0.267 0.583 0.534

Figure 17 shows that, during the turning phases, the correlation between the beta
wave energy ratio and the Shannon entropy of EEG signals is stronger than the correlation
between the β/(θ + α) wave energy and the Shannon entropy of EEG signals. The Pearson
correlation coefficient for left turns is 0.736, and for right turns, it is 0.724. During the
cruising phase, the correlation coefficient between these two parameters is 0.682.

Figure 17. EEG characteristics and psychological workload during different flight maneuvers.

303



Sensors 2024, 24, 5176

Figure 17 clearly demonstrates that both left and right turns are associated with a
higher beta wave energy ratio, increased Shannon entropy, and greater psychological
workload compared to the cruising phase. Furthermore, the trends of these parameters
are consistent.

4.2. Detection Model

Our EEG characteristic detection model utilizes support vector machine (SVM). This
method employs a radial basis kernel function to determine the flight phase in which the
current EEG characteristics are located. This functionality guarantees high classification
accuracy [36]. The radial basis kernel function k(xi, yi) is represented by the following
function relationship:

k(xi, yi) = xT
i yi, (8)

where (xi, yi) denotes the training samples. The following system of equations elaborates on
the SVM process. The concept of a support vector machine involves finding the separating
hyperplane that correctly divides the training dataset and has the maximum geometric
margin. The separating hyperplane is

λx + c = 0, (9)

where λ and c represent two parameters in separated hyperplanes. Subsequently, secondary
optimization was conducted to determine the optimal boundary between the two variables.
The calculation formula is as follows:

minλ,c

[
1
2
‖λ‖2

]
, (10)

Subsequently, the objective function is transformed into an unconstrained Lagrangian function.

L(λ, c, ω) =
1
2
‖λ‖2 −

l

∑
i=1

ωi[yi((λ · xi) + c)− 1], (11)

where ωi represents the Lagrange multiplier. Based on the Karush–Kuhn–Tucker (KKT)
conditions, we can derive the solution for the Lagrangian function.⎧⎪⎨⎪⎩

∂L(λ,c,ω)
∂λ = 0

∂L(λ,c,ω)
∂c = 0

, (12)

The primal problem can be transformed into its dual form using Lagrange multipliers,
resulting in

maxL(ω) =
l

∑
i=1

ωi − 1
2

l

∑
i=1

l

∑
j=1

ωiωjyiyj
(
xi · xj

)
, (13)

where ωi and ωj represent the Lagrange multiplier. xi and xj are samples, and yi and yj are
the corresponding labels.

The final discriminant function is as follows:

f (x) = sgn

(
k

∑
i=1

ωiyi(xi · x) + c

)
(14)

The NASA-TLX assessment indicates that pilots’ psychological workload is signifi-
cantly higher during the turning phase compared to the cruising phase. The turning phase
is characterized by high workload, whereas the cruising phase is characterized by low work-
load. The input EEG characteristics comprise the beta wave energy ratio and EEG Shannon
entropy, which form the combination with the strongest correlation. The classification
results of the pilots’ psychological workload in the test set are depicted in Figure 18.
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Figure 18. Classification results of psychological workload.

The classification model results are depicted in Figure 18. The final classification
accuracy on the training set is 98.92%. The classification accuracy on the test set is 93.67%.

5. Discussion

The study titled “Detection of Pilot’s Psychological Workload During Turning Phases
Using EEG Characteristics” has clarified critical aspects of the cognitive workload experi-
enced by pilots across various flight phases. The incorporation of electroencephalography
(EEG) data for this purpose has created new opportunities to improve aviation safety
and training methodologies. Several key points and implications stem from this research,
warranting further discussion.

Interpretation of Results:
The observed increase in the ratio of beta wave energy and Shannon entropy during

left and right turns indicates heightened cognitive activity. This aligns with existing
literature that suggests beta waves are linked to active concentration and mental effort. The
consistency of these findings across all pilots reinforces the robustness of EEG as a tool for
assessing cognitive workload. The correlation analysis further supports these observations,
demonstrating strong relationships between changes in EEG signals and specific flight
maneuvers. This provides a quantitative basis for understanding the mental demands
placed on pilots during various flight phases.

The subjective workload assessments using the NASA-TLX questionnaire aligned well
with the EEG-based findings, thereby validating the objective measures. This dual approach
strengthens the argument for using EEG in combination with traditional assessment tools
to achieve a comprehensive understanding of pilot workload. The higher workload scores
reported by the pilots during turns are consistent with the EEG data, thereby reinforcing
the reliability of these measures in reflecting actual cognitive states.

The high classification accuracy of the SVM model in distinguishing between different
workload states demonstrates the potential of machine learning in cognitive monitoring.
The slight drop in accuracy from the training set to the test set is expected and underscores
the need for further refinement and validation of the model with larger data sets. The
SVM’s ability to classify workload states based on EEG data underscores the feasibility
of developing real-time monitoring systems. Such systems could provide immediate
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feedback to pilots and support personnel, thereby enhancing decision-making processes
during flights.

This in-depth analysis will not only enhance our understanding of the role of EEG
in monitoring cognitive states but also offer a clearer perspective on the practical appli-
cations of these insights. Exploring how these systems can provide immediate feedback
and support decision-making processes during flights may pave the way for significant
advancements in aviation safety and training methodologies. Highlighting these practical
applications may bridge the gap between theoretical research and its implementation,
ultimately contributing to more effective and responsive aviation practices.

6. Conclusions

The study employed the EPOC + EEG headset to monitor signal variations in different
brain regions of pilots during left and right turns. It analyzed EEG characteristics and the
pilots’ psychological workload states using support vector machines for classification [37].
The study’s conclusions are summarized as follows:

EEG Maps and Beta Wave Energy: the EEG maps show a significant increase in beta
wave energy at the T7 electrode during the left turn phase and at the T8 electrode during
the right turn phase. During the cruising phase, the energy levels at various electrode
points remain stable and relatively low.

Entropy and EEG Complexity: the results show that during aircraft turns, the entropy
of EEG signals is higher compared to the cruising phase, indicating that EEG activity during
the turning phase is characterized by increased complexity and irregularity.

NASA-TLX and Psychological Workload: statistical analysis using the NASA-TLX
scale shows that pilots experience a higher psychological workload during turning phases
compared to the cruising phase. This increased psychological workload may contribute to
the complexity and irregularity of EEG signals during turning maneuvers.

Support Vector Machine Classification: By classifying EEG characteristics using a
support vector machine, the psychological workload detection accuracy for the test set
was 93.67%. These results indicate that this method has high accuracy in distinguishing
the EEG characteristics associated with different levels of psychological workload, pro-
viding a reliable foundation for further application in the real-time monitoring of pilots’
psychological workload during flight operations.

Future Work

The gender and age of pilots might influence the ratio of EEG energy and Shannon
entropy. Additionally, pilots with varying levels of flying experience might experience
different levels of psychological workload during cruising and turning phases. Therefore,
further collection of EEG data from a diverse group of pilots is necessary to enhance the
SVM dataset and improve classification accuracy. This will help gain a deeper under-
standing of pilots’ flying states and provide a theoretical basis for pilot training, thereby
enhancing flight safety. Considering these additional factors will ensure a more compre-
hensive and accurate assessment of pilots’ cognitive and psychological states, leading to
better training protocols and safer flight operations.
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Abstract: This study evaluates an innovative control approach to assistive robotics by integrating
brain–computer interface (BCI) technology and eye tracking into a shared control system for a
mobile augmented reality user interface. Aimed at enhancing the autonomy of individuals with
physical disabilities, particularly those with impaired motor function due to conditions such as stroke,
the system utilizes BCI to interpret user intentions from electroencephalography signals and eye
tracking to identify the object of focus, thus refining control commands. This integration seeks to
create a more intuitive and responsive assistive robot control strategy. The real-world usability was
evaluated, demonstrating significant potential to improve autonomy for individuals with severe
motor impairments. The control system was compared with an eye-tracking-based alternative to
identify areas needing improvement. Although BCI achieved an acceptable success rate of 0.83
in the final phase, eye tracking was more effective with a perfect success rate and consistently
lower completion times (p < 0.001). The user experience responses favored eye tracking in 11 out
of 26 questions, with no significant differences in the remaining questions, and subjective fatigue
was higher with BCI use (p = 0.04). While BCI performance lagged behind eye tracking, the
user evaluation supports the validity of our control strategy, showing that it could be deployed in
real-world conditions and suggesting a pathway for further advancements.

Keywords: brain-computer interface; human-robot interaction; user evaluation; usability; assistive
robotics; augmented reality; shared control; user experience

1. Introduction

Physically assistive robots aim to enhance the autonomy of individuals with physical
disabilities by enabling interaction with their environment through the robot [1]. In the
European Union, there are 9.53 million stroke survivors, often resulting in impaired motor
function, and an additional 2.58 million stroke cases are predicted by 2047 [2]. Thus, there is
an urgent need for assistive technologies that enable motor-impaired individuals to interact
with their surroundings. An ideal assistive robot should anticipate the user’s intentions
while avoiding unintended actions. This requires an interaction modality that monitors the
user’s attention and infers their intentions from physiological behavior.

One promising interaction modality for addressing motor function impairments is the
brain–computer interface (BCI). Formally defined by [3], “A BCI is a system that measures
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central nervous system (CNS) activity and converts it into artificial output that replaces
restores, enhances, supplements, or improves natural CNS output and thereby changes the
ongoing interactions between the CNS and its external or internal environment”. In the
context of human–computer interaction, a BCI is defined as a system that allows users to
operate devices with their thoughts by measuring and decoding neural activity.

BCI control systems interpret neural activity from brain-related physiological signals,
such as the electroencephalogram (EEG), by applying machine learning (ML) techniques
trained on labeled data from individuals engaged in mental tasks [4]. In BCI control
systems, classification is used alongside high-level control software to convert decoded
mental tasks into device actions. Various modalities of the EEG signal are utilized for BCI
control [5], with one commonly used paradigm being motor imagery (MI). MI refers to the
mental process of imagining a movement without physically executing it [6], defined as
“the mental simulation of an action without the corresponding motor output” [7]. A BCI
system employing MI decodes the imagined movement from the EEG signal and executes
a command corresponding to the decoded class.

Currently, BCI technologies are primarily confined to lab settings where environmental
conditions are controlled, and distractions are minimized. Before BCI can be used in real-
world applications, several key issues need resolving [8]. Developing a BCI control system
with a good user experience requires a user-centered design approach for the control
strategy and user interface (UI) [9]. This approach has gained traction within the BCI
community [10–12], although most BCI research focuses only on technical validation [13].

A key component of a user-centered approach is evaluating the control system with
users in realistic scenarios to ensure its performance under real-world conditions. Assess-
ing the real-world readiness of a BCI control system requires appropriate performance
measures to quantify its usability [14]. A comprehensive usability assessment should en-
compass effectiveness, efficiency, and user experience through both objective and subjective
measures [15].

Objective measures should include decoding-related metrics such as accuracy, as
well as performance metrics for task completions, including completion time and success
rate [10]. Subjective measures can be collected through qualitative interviews and quantita-
tive metrics that facilitate comparisons between different control systems or versions of the
same system. Tools like visual analog scales and questionnaires can provide quantitative
user experience metrics [16]. To ensure thorough user studies, it is crucial to establish
standard guidelines and an evaluation framework that supports the user assessment of
novel BCI control systems. The recent efforts to standardize BCI usability research are
ongoing [17,18], but more work is still required to facilitate the usability evaluation of
BCI prototypes.

The user study described in this article aims to evaluate the real-world usability of
a BCI control system developed in the previous research. The central research question
is to evaluate whether our MI-based BCI control system prototype could be deployed in
real-world applications. The study involved able-bodied participants using the BCI control
system to operate a robotic arm in tasks representative of daily activities. Additionally, the
BCI control system was compared with an alternative eye-tracking-based control system to
assess the added value of BCI in everyday scenarios for a physically assistive robot. The
results are intended to provide insights into areas needing improvement and quantify the
usability of the BCI control system, also providing a framework for other BCI researchers
to evaluate their control system prototypes.

2. Related Work

Most BCI user studies primarily address the effectiveness and efficiency aspects of
usability [18–20]. An exemplary study that thoroughly evaluates all aspects of usability
was conducted by Kuhner et al. [21], who present an extensive experiment with their
prototype. Usability studies can vary in focus depending on the application and method
being investigated.
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Some studies explicitly compare different control paradigms [22,23], while others
aim to validate the technical feasibility of a new prototype before proceeding to more
comprehensive user studies or clinical trials [24–26]. User studies may involve clinical
trials with specific patient populations [27–30] or studies with able-bodied individuals
that focus on the user experience of a new approach [31,32]. Usability is also crucial when
developing new hardware [25]. The review by Ortega and Mezura-Godoy [33] offers a
recent systematic overview of BCI user evaluation literature.

3. Materials and Methods

3.1. The BCI Control System
3.1.1. Control Strategy

The BCI control system that is evaluated in this user study uses a shared control
approach, which is depicted in Figure 1.

Select object with eye
tracking

Show available actions
and associated

movement and start EEG
decoding

First class with n
predictions is considered

correct

Reject

AcceptConfrimation

Update world model

Robot performs action

BCI control strategy 

Figure 1. The control strategy of the MI BCI control system. The user selects an object with their gaze
and uses MI to select one of the possible actions. After accepting or rejecting the decoded MI class,
the robot executes the associated action or returns to the action selection stage.

The control strategy involves several stages, beginning with object selection. To interact
with an object in the environment, the user gazes at the chosen object for 2 s, prompting the
system to advance to the action selection stage. Here, possible actions appear as a menu
above the object, indicating the specific movement the user should imagine in order to
select an action. The shared control system utilizes an internal world model, updated by
sensors such as cameras, to identify the object’s type, location, and state. This allows the
system to determine which actions are available to the user.

Next, real-time EEG decoding initiates, putting the system in the decoding stage.
In this stage, the user imagines one of the movements associated with a robot action,
continuing to do so until the EEG decoding software makes n predictions for the same MI
class. The prediction threshold was set to 5 for this study. Once the decoding threshold is
met, the system transitions to the confirmation stage, where the user is presented with a
holographic modal window showing the action that was determined and asked to accept
or reject it.

If the user accepts the decoding result, the robot executes the corresponding action. If
the user rejects the result, decoding resumes, and the user imagines the intended movement
again. This method prevents the robot from performing unintended actions, avoiding the
need for the user to cancel an action during its execution. After the robot completes the
selected action, the system returns to object selection mode. The movement inferred by the
control system is referred to as a decision, as opposed to a prediction from the decoding
pipeline for a single window of EEG. We use the term decision hereafter to refer to the
expected action resulting from several MI predictions.

An eye-tracking-based variant was implemented to compare the usability of the BCI
control system with an alternative control modality. The object selection strategy mirrors
that of the BCI control system. However, in the eye-tracking variant, the menu displaying
possible actions consists of buttons that are selectable via eye tracking. The associated
robot action is executed when the user gazes at an action button for 2 s. Thus, the decoding
and confirmation stages are eliminated from the control strategy, made possible by the
near-perfect accuracy of eye tracking.

The UI software that handles the logic of the decoding strategy and the contextual
display of graphical components, such as menus and virtual evaluation environments, was
implemented using the Unity 3D [34] game engine and the mixed reality toolkit version
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2.8 [35]. Communication with the real-time EEG decoding process, which is detailed in
Section 3.1.3, is achieved with a publish/subscribe strategy. The UI process sends messages
to start and stop decoding to the EEG decoding process and the EEG decoding process
sends decoding results back to the UI.

3.1.2. Hardware

Two EEG devices were used in this user study. Initially, the OpenBCI EEG device with
a 16-electrode cap was employed for the first three participants in Phase 1. This device uses
passive gel-based Ag/AgCl electrodes, samples at 125 Hz, and transmits data wirelessly
via Bluetooth. Subsequently, the Smarting ProX (mBrainTrain, Belgrade, Serbia) was used,
featuring a 64-electrode cap with active gel-based electrodes. The sampling rate was set to
250 Hz in this study to reduce computational costs for real-time processing. The Smarting
ProX was used from Phase 2 onward to allow for more detailed analysis of the EEG data
in future research, such as investigating cognitive processes related to MI. The OpenBCI
device was initially used to demonstrate the feasibility of using consumer-grade EEG with
our control system. Both electrode layouts follow the international 10–20 system [36].

Microsoft™ HoloLens 2.0 was chosen for the head-mounted AR display. It uses
waveguide-based AR and provides off-the-shelf eye-tracking and spatial awareness func-
tionality through its built-in sensors. This device enabled the AR display of the UI overlaid
on the real world while also providing the necessary sensor information for the shared
control strategy. The Franka Research robot (Franka Robotics GmbH, Munich, Germany)
was employed as the robot arm in this experiment. This robotic arm offers 7 degrees of
freedom and is equipped with a gripper to pick up objects [37].

Real-time EEG decoding was performed by a laptop equipped with a 6-core Intel(R)
Core(TM) i7-10850H CPU running at 2.70 GHz. The laptop has 16 GB of RAM and an
NVIDIA GeForce RTX 2070 Max-Q GPU. It connects to the robot via Ethernet and commu-
nicates with the HoloLens through a USB-C cable.

3.1.3. Real-Time EEG Decoding

The real-time EEG decoding component of the control system was implemented with
the Python 3.10 programming language. The MNE library [38] was used for operations
relating to EEG data processing such as reading data files, filtering, and epoching, among
others. MNE was also used to implement the feature extraction step of our decoding
pipeline. The lab streaming layer [39] software was used with its Python client PyLSL to in-
tegrate the real-time EEG data stream with our software. The Scikit Learn (SKLearn) library
[40] was used for the implementation of ML models and decoding pipeline management.

When the decoding stage begins, the process starts by sampling chunks of EEG data
from the EEG data stream. For this study, each chunk is 4 s long, meaning that the most
recent 4 s of EEG data are sampled. Multiple windows of EEG data are then extracted from
each chunk using a sliding window approach with a stride of 0.25 s. Each input window is
2 s long, resulting in 9 overlapping windows per chunk. These windows are subsequently
sent to the decoding pipeline for classification.

The first step in the decoding pipeline involves filtering the EEG data using a finite
impulse response band-pass filter. The filter design is a windowed time-domain (firwin)
design, as recommended by Widmann et al. [41]. This filter is a one-pass, zero-phase,
non-causal band-pass filter using a Hamming window with 0.0194 passband ripple and
53 dB stopband attenuation. The lower passband edge is set at 8 Hz with a 2 Hz transition
bandwidth for a −6 dB cutoff frequency at 7 Hz. The upper passband edge is at 30 Hz with
a 7.5 Hz transition bandwidth for a −6 dB cutoff frequency at 33.75 Hz. The filter length is
automatically set to 413 samples (1.652 seconds) based on the default settings of the MNE
filter functions.

After filtering, features are extracted from the input windows using common spatial
patterns [42], with 6 components utilized in this step. These features are then used to
predict the MI class using a linear discriminant analysis model [43]. The decoding pipeline
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was trained on calibration data that were previously acquired according to the procedure
detailed in Section 3.2.3. The decoding pipeline was always trained with all the calibration
data that were acquired during the current session and never used data from other sessions.

3.2. User Study

The real-world usability of the prototype control system was assessed through a user
study where participants operated a virtual robotic arm using our control system. The study
was divided into three distinct phases to allow iterative improvements of the software,
ensuring a stable experience for the final phase. Participants completed various scenarios
representing everyday chores in a virtual AR environment. The evaluation tasks utilize
holograms to simulate the robot arm and objects within a real-world environment. In the
final session of Phase 3, a real robot is incorporated to replicate the actions performed by
the virtual robot. The procedure was consistent across phases, differing only in the number
of sessions and the tasks to be completed.

New participants were recruited for each phase to assess the experience of users
unfamiliar with BCI and to improve the control system between phases. The number of
participants was increased with each phase to ensure rapid iteration while maintaining the
validity of the results. The sample sizes were determined based on best practices in the
literature [10,13,44].

In Phase 1, a validation study was conducted using the OpenBCI EEG headset, in-
volving 3 participants (all male, aged 23–24), each attending 2 sessions. Phase 2 involved
5 participants (1 female, 4 male, aged 23–29), each attending 3 sessions. This phase allowed
for validation of the procedure and further technical validation of the system. Since the
statistical comparison of outcomes was not required at this stage, 5 participants provided
a good balance between thorough assessment and time efficiency. The performance as-
sessment used the same sorting task as in Phase 1, with the main difference being that
participants had to complete 10 repetitions of the sorting task to consider a run successful.

In the final phase, the procedure was expanded by introducing a pick-and-place task
and using a real robot in each participant’s final session. This phase involved 12 participants
(3 female, 9 male, aged 22–30), each attending 3 sessions. The sample size was determined
using established usability engineering guidelines [14,15]. The procedure for each session
is detailed in Section 3.2.3.

The participants received an explanation of the procedure upon registration and pro-
vided written informed consent at the start of the first session. The instructions were orally
given before each run of a usage scenario. This study was approved by the Medical Ethics
Committee of UZ Brussel and VUB (BUN1432023000232) and adhered to the principles of
the Declaration of Helsinki for medical research involving human participants [45].

The questionnaire results were collected using the Redcap software version 14.1.0 [46].
The result data were processed with the Python programming language using the Pandas
library for organizing the data [47] and the Seaborn library for generating figures [48].
The statistical tests presented in this study were performed using the stats package of the
SciPy library [49].

3.2.1. Evaluation Scenarios

The first evaluation scenario involves sorting a cube using the robotic arm, simulating
everyday tasks such as sorting garbage or laundry. In this scenario, the participant is seated
and equipped with EEG and AR devices. A virtual robot arm is placed on a virtual table in
front of them, with two differently colored baskets on either side. A colored cube appears
before the participant, indicating which basket to select based on the cube’s color. The user
must choose the correct side by following instructions from the action menu that appears
after looking at the cube for 2 s. Each run includes multiple repetitions of the task until the
specified end conditions, detailed in Section 3.2.3, are met.

The second task is a pick-and-place scenario where the participant, still seated and
equipped with EEG and AR devices, interacts with the virtual robot arm and four virtual
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objects on the table: an orange, a Rubik’s cube, a TV remote, and a smartphone. The objects
are placed at fixed positions and the possible actions always consist of instructing the robot
to pick up the object and either give it to the user (simulated by placing the object at a fixed
position in front of the user) or put it away at an object-dependent fixed position. When
the real robot is connected, the virtual objects are represented by cubes placed in a fixed
location on the table the robot is placed on. The participant completes a fixed sequence
of actions that was determined beforehand to complete the run. The order of objects and
actions is randomized for each run.

3.2.2. Usability Measures

To assess the control system’s objective performance, several metrics were used. The
main performance metric of this study is the success rate for task completion, calculated as

success − rate =
nc

nr
, (1)

where nc is the number of completed runs and nr is the total number of runs performed. This
metric represents the system’s effectiveness in enabling users to complete their assigned
tasks using the control system.

The efficiency of the control system is measured by the task completion time. The
completion time is calculated as the time between the start signal and placing the final
object in its intended location.

To assess the online decoding performance of our decoding pipeline, we compute the
decision accuracy based on rejected and accepted actions during the final evaluation runs
of participants. We chose balanced accuracy as our prediction performance measure, which
is computed as

balanced − accuracy =
1
2
(

TP
TP + FN

+
TN

TN + FP
) (2)

where TP is the number of true positives, FN is the number of false negatives, TN is the
number of true negatives, and FP is the number of false positives. When referring to
accuracy in the remainder of this manuscript, balanced accuracy is implied.

The often-used user experience questionnaire (UEQ; [50]) and a semi-structured inter-
view were used to assess the user experience of the system quantitatively and qualitatively,
respectively. The UEQ questionnaire asks participants to give their opinion regarding
several concepts on a scale from 1 to 7. The questions for the user interview can be found
in Appendix A.

To assess the amount of subjective fatigue that is induced by the control system, a
visual analog scale was used where users had to indicate their perceived mental (mVAS) and
physical (pVAS) fatigue levels [51]. The indicated VAS levels were subsequently discretized
to scores ranging from 0 to 100. The VAS approach was chosen for its short application time
and easy explainability to participants. Subjective fatigue was chosen as opposed to more
objective measures, such as features from the EEG signal, as we are mostly interested in
user perception. The participant’s mood state was also assessed using the profile of mood
states (POMS) questionnaire [52]. The participant’s aptitude for MI is evaluated with the
motor imagery questionnaire 3 (MIQ3; [53]).

We compared the performance outcomes of the control system variants using statistical
testing. The significance level was set to 0.05 for all tests. The data were first checked for
normality using D’Agostino and Pearson’s test [54]. For paired samples, such as UEQ
responses between BCI and eye tracking and fatigue levels before or after using the control
system, paired tests were used. If normality was ensured, a paired t-test [55] was used
to investigate if there was a statistical difference between the mean scores for BCI and
eye tracking. The Wilcoxon signed-rank test [56] was used if the normality of the data
was rejected.

When the data were independent, such as when comparing eye tracking and BCI
mVAS outcomes from the final evaluation session (since the order of the control system
variant was alternated for participants), independent sample tests were used. When the
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data were normally distributed, an independent samples t-test was used [55] and the
Mann–Whitney U test [57] was chosen if this was not the case.

3.2.3. Procedure

Each phase consisted of multiple sessions where the first sessions were intended to
support participant’s familiarization with the concept of MI BCI and the interaction design
of the control system. During these sessions, participants were encouraged to ask questions
if something was unclear while completing a task and were frequently questioned about
their experience. The first session always started with signing the informed consent after
a briefing and giving the participant time to read the document in detail. This was then
followed by the MIQ3 questionnaire, after which participants were requested to complete
the POMS, mVAS, and pVAS questionnaires. Participants were instructed to complete the
latter three questionnaires at the start of each subsequent session and to fill out the pVAS
and mVAS again at the end of every session.

Ensuing sessions focused on training the participant in using the control system with
the last session culminating in a performance assessment employing one of the evaluation
tasks. After completing the questionnaires, the acquisition of calibration data that were
used to train an MI decoding pipeline ensued. The subsequent tasks were dependent on
the study phase and session number. Figure 2 shows an overview of the procedure for
Phase 1, highlighting the differences between the sessions.
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informed consent

Questionnaires:

MIQ-3
M-VAS and P-VAS
POMS

AR + BCI
setup

Calibration data
acquisition 

Sorting
task

Removal
AR + BCI

equipment 

Debriefing and
free feedback

from participant

Calibration data
acquisition 

Sorting
task

Sorting
task

Calibration data
acquisition 

(a)

Briefing

Questionnaires:

M-VAS and P-VAS
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AR + BCI
setup Sorting task

Removal
AR + BCI
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Debriefing and
free feedback

from participant

Calibration data
acquisition 

Calibration data
acquisition 

Sorting task

(b)
Figure 2. The experimental procedure that was followed for Phase1 in (a) session 1 and (b) session 2.

In Phase 1, participants performed the sorting task with the robot. After filling in the
questionnaire and setting up the EEG and AR devices, calibration and sorting runs were
alternated. There was no fixed amount of trials or runs as this phase was merely intended
to validate the technical feasibility of using our control system with OpenBCI. The session
ended when the planned 3-h time limit was reached or the participant decided that they
were satisfied with their performance, having attempted at least two sorting runs. The
second session followed the same procedure as the first with the difference that informed
consent and MIQ3 are omitted and only 1 run is required to complete the session.

Phases 2 and 3 use the same procedure with some key differences in the evaluation
tasks that are used. The order of session events is exactly the same. Figure 3 shows the
procedure for each session with Figure 3c showing variants of session 3, labeled as A (eye
tracking first) and B (BCI first).
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Figure 3. The experimental procedure that was followed for Phase 3 in (a) session 1, (b) session 2,
and (c) session 3 with options A and B.

For the first session of Phase 2, shown in Figure 3a, participants completed two
consecutive calibration runs with a 5-min break in between. Subsequently, they were
requested to perform one sorting run with the possibility of an optional second run if
there was time and they were willing. The second session, depicted in Figure 3b, consisted
of an alternation of calibration and sorting runs with a maximum of 2 calibration runs.
Participants were encouraged to perform a third sorting run if possible. There was no time
limit for the first two sessions.

In session 3, illustrated in Figure 3c, the participant had to perform three consecutive
sorting runs that were timed using either the BCI or eye tracking control system variant.
A calibration run was performed beforehand if the BCI variant was used first (B). If
participants used eye tracking first (A), we performed the EEG setup and calibration run
after they completed the evaluation runs with eye tracking. The time limit was set to 15 min
and a run was considered failed if the participant was unable to complete the tasks within
this limit. After completing the required runs, the participant was requested to complete
the mVAS and pVAS to assess their intermediate fatigue levels.

This was followed by the UEQ questionnaire in relation to their experience with the
used control system. Afterward, following the necessary setup and eventual BCI calibration,
the participant performed 3 runs with the other control system variant. This was again
followed by the mVAS, pVAS, and UEQ questionnaires in relation to the current variant.
The order of variants used was alternated between participants to avoid possible bias
resulting from the participant’s experience with the other variant and to investigate the
change in fatigue levels compared to the baseline at the beginning of the session. Finally,
the interview was performed as a debriefing to assess if participants had suggestions.

The first session of Phase 3 was identical to Phase 2, and the second session also
started with a calibration run followed by a sorting run. After the second calibration run,
the pick-and-place task was introduced. Participants were asked to choose the order of
objects and the actions themselves. They had to announce their choice before initiating the
object selection stage of the control system. Afterward, they were encouraged to perform
an optional run where the experimenter provided the sequence of object–action pairs to
prepare them for the final session.

Finally, the last session introduced the real robot and took place at the AI Experience
Center at VUB, located in Brussels, Belgium, where the robot arm is located. This resulted

316



Sensors 2024, 24, 5253

in more noisy, although more realistic, conditions. The pick-and-place task was used for all
evaluation runs of this session.

4. Results

The success rate in completing the evaluation tasks with BCI in the final session for
each participant is shown in Figure 4a, together with the mean value over each phase.
The performance metrics were only recorded in Phases 2 and 3 and data are missing for
participants 9 and 17 due to a technical issue resulting in the loss of timings for one or more
runs of the last session. Figure 4b displays boxplots comparing the eye tracking and BCI
control system variants for both tasks.

(a) (b)

Figure 4. (a) Success rate for individual participants together with the mean for each phase and
(b) boxplots comparing the mean completion times between the eye tracking and BCI control system
variants for each task.

We can observe that during both phases, most users achieved a perfect success rate.
However, participants who did not reach a perfect success rate experienced runs where
the system repeatedly made incorrect predictions, which significantly impacted their
motivation and caused frustration. Notably, participants 11 and 13 exhibited high baseline
fatigue levels at the start of the session, with mVAS scores of 72 and 55, respectively.
Additionally, participant 12’s final session was disrupted by a fire drill, likely affecting their
ability to regain focus and maintain an appropriate mental state. The mean success rates for
phases 2 and 3 were 0.73 and 0.83, respectively. In contrast, the success rate for eye tracking
was consistently 1 for all participants.

Figure 4b illustrates that completion time is longer when using the BCI control system
compared to the eye tracking variant. The variance is also significantly higher for BCI,
indicating less consistent efficiency. Despite the mean completion time for BCI being
significantly higher (p < 0.001), some participants were able to nearly match the eye
tracking performance in the pick-and-place task during Phase 3. The lower efficiency of
BCI can be attributed to the added confirmation step and its lower accuracy. While eye
tracking achieved a perfect recognition rate, BCI’s online decoding accuracy was only 0.52.
However, this was offset by our decision strategy, resulting in the observed success rates.

The mean results for each question in the UEQ questionnaire are presented in Table 1.
The left term in the Question column represents the left side of the scale and corresponds
to a value of 1 while the right term corresponds with a value of 7.

317



Sensors 2024, 24, 5253

Table 1. Mean and standard deviation of UEQ scores for BCI and Eye tracking control types with
p-values for statistical tests.

Question BCI Eye Tracking p-Value

annoying—enjoyable 5.00(±1.78) 6.08(±0.86) 0.052
not understandable—understandable 4.92(±1.75) 6.38(±0.77) 0.019
creative—dull 2.31(±1.25) 2.54(±1.66) 0.570
easy to learn—difficult to learn 4.00(±1.96) 1.85(±1.57) 0.008
valuable—inferior 2.85(±1.28) 1.77(±0.73) 0.005
boring—exciting 4.54(±1.66) 4.85(±1.52) 0.677
not interesting—interesting 5.85(±1.28) 6.31(±0.75) 0.139
unpredictable—predictable 4.00(±1.68) 5.38(±1.94) 0.050
fast—slow 3.69(±1.55) 2.85(±1.77) 0.027
inventive—conventional 2.08(±1.12) 2.00(±0.91) 1.000
obstructive—supportive 4.23(±2.01) 5.62(±0.96) 0.015
good—bad 2.92(±1.75) 1.69(±0.75) 0.014
complicated—simple 4.15(±1.77) 5.69(±1.65) 0.048
unlikable—pleasing 5.38(±1.04) 5.46(±0.97) 0.837
usual—leading edge 4.69(±1.84) 5.00(±1.73) 0.751
unpleasant—pleasant 4.31(±1.60) 5.23(±1.24) 0.165
secure—not secure 3.54(±1.66) 2.69(±1.44) 0.020
motivating—demotivating 3.62(±1.76) 2.46(±1.13) 0.050
meets expectations—does not meet expectations 3.62(±2.02) 2.00(±1.35) 0.060
inefficient—efficient 4.31(±1.60) 5.77(±1.17) 0.014
clear—confusing 3.15(±1.68) 2.00(±1.15) 0.046
impractical—practical 4.77(±1.48) 5.54(±1.13) 0.165
organized—cluttered 2.38(±1.26) 2.23(±1.01) 0.549
attractive—unattractive 2.77(±1.09) 2.46(±1.45) 0.596
friendly—unfriendly 2.85(±1.34) 2.15(±1.07) 0.069
conservative—innovative 6.00(±0.82) 5.77(±0.93) 0.337

For most questions in the UEQ, there is no statistically significant difference in the
user’s experience. This indicates that the user experience was mostly similar regarding
these aspects of the control system. The aspects where significant differences were found
are shown in Figure 5 for a closer investigation.

We observe that all differences favor the eye tracking variant and that the questions
pertain to efficiency and perceived complexity. In most cases, except fast—slow, secure—not
secure, and motivating—demotivating, the variance is larger for BCI than for eye tracking.
This indicates that the experience of participants was more variable when using BCI, which
can be related to the variance in success rate and completion time that was observed in
the objective performance metrics. We also note that there was a large agreement that eye
tracking was efficient, as the majority of participants scored 6, with only 4 participants
giving another score.

Finally, we investigate the changes in mental fatigue entrained by the control systems.
Figure 6 shows the difference in mVAS scores between the start of the session and the end
for the first two sessions and between the beginning, the intermediate, and final fatigue
assessments, split by control system type, used for session 3.

We can observe a significant increase in fatigue between the beginning and the end of a
session (p < 0.001) when analyzing the session 1 and 2 plots. This shows that the calibration
procedure followed by using the BCI control system induces significant mental fatigue.
From the session 3 results, we notice that the intermediate result for BCI is significantly
higher (p = 0.04), while the difference is lower, and not significant anymore (p = 0.78) at
the end of the session.
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Figure 5. UEQ questions where a significant difference was found between the participant’s answers
for the eye tracking and BCI variants. A score of 1 indicates that users felt more that the top term of
the label was applicable, while 7 means that the bottom term was more applicable.

Figure 6. mVAS scores at the beginning of each session and the end for the first two sessions and for
sessions 3 before, between the first and second evaluation rounds, and at the end of the session, split
by the control system that was used.

5. Discussion

This study aimed to evaluate the real-world usability of a BCI control system designed
to operate an assistive robotic arm for physically incapacitated users. The system employs
a shared control approach, combining BCI with eye tracking in a mobile AR UI. To balance
the need for rapid software development [58] with system stability during user studies [59],
the evaluation was divided into three phases. To assess the additional value provided by
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BCI and establish a performance benchmark, the study compared the BCI control system
with a version using only eye tracking to navigate the system UI.

The first phase of the user study demonstrated the feasibility of using consumer-
grade EEG devices for BCI control with our control strategy. This finding, along with the
previous research [60], suggests the potential for using low-cost EEG devices in real-world
BCI applications. Such advancements could make BCI technology more accessible to
consumers, paving the way for commercial applications.

In Phases 2 and 3, we found that eye tracking outperformed BCI in all aspects of
usability. All participants successfully completed the evaluation tasks in the final session
using eye tracking, whereas the success rates were only 73% and 83% for Phases 2 and
3, respectively, when using BCI. The performance gap between the two methods was
even more evident when comparing task completion times. Although these issues were
previously recognized [6], our study quantifies these discrepancies and sets a performance
benchmark for BCI to be considered a viable alternative to eye tracking for navigating an
AR UI.

While most participants successfully completed all evaluation runs, some exhibited
poorer task completion performance. This underperformance is likely due to participants
arriving fatigued for the experiment, as fatigue is known to diminish the reliability of
MI performance [61]. Additionally, effective MI requires sustained focus, which can be
compromised by frustration from repeated failures or external distractions [62]. The poor
performers all exhibited high baseline fatigue levels or were distracted by external events,
such as one participant who experienced a fire drill during the experiment.

In terms of user experience, the differences were fewer and smaller, but participants
showed a significant preference for eye tracking for some aspects. Despite this, several
participants expressed during interviews at the end of the final session that they would
prefer BCI if it could be made more reliable. The aspects where eye tracking performed
significantly better were related to complexity and efficiency, which are primarily engineer-
ing issues that can be addressed with existing technologies [63,64] and a user-centered UI
design [12].

Despite the challenge of comparing our usability outcomes with the existing literature
due to the diversity of evaluation methods and control strategies, we can make high-level
comparisons with similar studies. Our decision accuracy aligns with the expected decoding
accuracy for the models used [65,66]. Additionally, our task completion performance is con-
sistent with previous studies employing a shared control strategy [21,65]. Regarding user
experience, the participant responses were comparable to those reported in the previous
research on similar concepts [23,31].

BCI was found to be more fatiguing according to the mVAS results. However, it is
important to note that the evaluation runs for BCI were preceded by a calibration run,
which could also induce fatigue. Participants indicated that the calibration procedure
was the most cognitively demanding task of the study, which is in line with the fact
that vigilance tasks with low information load are more fatiguing than higher-demand
tasks [67]. Therefore, it is unclear whether the high fatigue levels were due to the BCI
control system itself or the calibration process. Moreover, people often confuse mental
fatigue with boredom and sleepiness, which are common responses to the repetitive nature
of the calibration task [51].

The strengths of this study include its flexible procedure, which accommodates the
iterative nature of software development and can be applied to any type of BCI control
system. The comprehensive assessment of usability measures using realistic evaluation
tasks ensures the relevance of the results for real-world applications. Furthermore, the
control system’s portability is a notable strength, as all devices used are portable, making
in-field evaluation studies trivial.

A notable weakness of the user study is the small sample size. Additionally, the
limited number of sessions does not guarantee the participants’ optimal performance, and
the effect of training was not directly assessed. Another limitation is that the study was
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not conducted with the target population of stroke patients. However, the current research
suggests that BCI decoding models can be transferred from able-bodied individuals to
stroke patients [68], and our previous research on the effects of neuroplasticity on BCI
decoding performance in individuals with lower limb amputation [69] showed that there is
no significant change in decoding performance between decoding models trained on data
from able-bodied individuals and individuals with a lower limb amputation.

There are several enhancements available for the BCI control system. Increased effi-
ciency without compromising effectiveness could be achieved through software optimiza-
tions aimed at improving the decision accuracy of the system. The potential optimizations
include examining the chunk size when sampling EEG data and increasing the required
number of predictions to make a decision. The former would enhance filtering by using a
longer segment of EEG data, while the latter could prevent erroneous decisions caused by
a few consecutive incorrect predictions. Studies investigating these specific aspects would,
therefore, be worthwhile future work.

Better pre-processing beyond the currently limited filtering could improve decoding
accuracy [70]. However, such modifications could lengthen decoding times, potentially
reducing system efficiency. Using advanced decoding methods, such as deep learning,
could also enhance decoding accuracy [13]. However, these methods often require large
amounts of data and take longer to train before reaching optimal performance. Promising
methods that improve decoding while addressing the need for more training data include
transfer learning [71], continual learning [72], and novel data augmentation techniques
such as diffusion models [73]. Benchmarks on the effect of including such methods are
necessary to determine if it would be worth including these methods in a real-time EEG
decoding pipeline.

Another potential improvement is to enhance the calibration and user training pro-
cedures through gamification. Observations during the user study suggested that users
perform best when they intuitively think of the required movement as part of a familiar ac-
tion, without over-concentrating on the movement itself. Previous research has shown that
gamification boosts motivation and focus, which are essential for effective BCI use [66,74].
Making the calibration process more engaging could also reduce perceived fatigue and
ensure that the data are collected at peak focus levels of the user. Therefore, training users
through a game could help them familiarize themselves with MI and the control system
in an immersive and motivating environment. Additionally, analyzing the recorded EEG
data to identify markers of mental fatigue [75] could offer further insights into the extent to
which the calibration procedure induces fatigue.

In the long term, one of our goals would be to integrate all hardware and software
components of the BCI control system into a single, all-in-one device. This device could
resemble an AR headset like the HoloLens 2, with built-in EEG sensors and potentially other
useful sensors. Concepts already exist for such a device [76]. It would also need embedded
computing hardware to ensure it is self-contained, comfortable, and privacy-guaranteed.
Embedded EEG decoding is an active area of research [77,78].

To further validate the real-world usability of BCI control systems, the user study
procedure could be expanded to include in-field studies where participants use the control
system in their own homes. Such a study could investigate the long-term effects of the
control system and periodically assess if usability evolves over time. This would also
provide a suitable evaluation of proposed long-term machine learning methods such as
continual learning.

6. Conclusions

Our findings indicate that the shared BCI control system is effective for task completion,
demonstrating the feasibility of our shared control strategy in real-world settings. However,
the current efficiency of BCI is inadequate for practical real-world applications, and the
calibration process induces significant user fatigue.
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While the system could be deployed in real-world conditions, our study shows that
eye tracking offers superior usability for operating an assistive robotic arm. Currently, BCI
is practical only for niche applications that require the user to maintain their gaze on a fixed
point, such as in assembly tasks. Further advancements are needed to justify the increased
hardware and software complexity.

We see substantial potential for improving the system’s reliability and efficiency
through advanced AI methods like deep learning, which can enhance decoding accuracy
and reduce user training time. We are confident that this would result in our approach
surpassing the current state of the art in terms of usability. Additionally, gamifying the
calibration process could reduce fatigue and enhance user experience. With improvements
in decoding robustness and strategies to boost focus and mitigate calibration-induced
fatigue, BCI could become a practical choice for real-world applications.
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Appendix A. User Experience Interview

Did you feel like you were able to successfully complete the tasks with the BCI control

system?

Did you feel like you were in control of the robotic arm?

Do you think that BCI provides an added value to the control system, assuming that

you are not able to move or talk?

Which control system variant did you prefer? (Only when eye tracking and BCI were

compared)

Do you think a different approach would work better? If yes, what do you suggest?

Do you have any suggestions for improving the current control system?
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Abstract: Schizophrenia (SZ) is a severe mental disorder characterised by disruptions in cognition,
behaviour, and perception, significantly impacting an individual’s life. Traditional SZ diagnosis
methods are labour-intensive and prone to errors. This study presents an innovative automated
approach for detecting SZ acquired through electroencephalogram (EEG) sensor signals, aiming
to improve diagnostic efficiency and accuracy. We utilised Fast Independent Component Analysis
to remove artefacts from raw EEG sensor data. A novel Automated Log Energy-based Empirical
Wavelet Reconstruction (ALEEWR) technique was introduced to reconstruct decomposed modes
based on their variability, ensuring effective extraction of meaningful EEG signatures. Cepstral-based
features—cepstral activity, cepstral mobility, and cepstral complexity—were used to capture the
power, rate of change, and irregularity of the cepstrum of preprocessed EEG signals. ANOVA-
based feature selection was applied to refine these features before classification using the K-Nearest
Neighbour (KNN) algorithm. Our approach achieved an exceptional accuracy of 99.4%, significantly
surpassing previous methods. The proposed ALEEWR and cepstral analysis demonstrated high
precision, sensitivity, and specificity in the automated diagnosis of schizophrenia. This study intro-
duces a highly accurate and efficient method for SZ detection using EEG technology. The proposed
techniques offer significant improvements in diagnostic accuracy, with potential implications for
enhancing SZ diagnosis and patient care through automated systems.

Keywords: schizophrenia; electroencephalography (EEG); cepstral features; automated log energy-
based empirical wavelet reconstruction (ALEEWR); feature extraction; machine learning

1. Introduction

Schizophrenia is a chronic mental disorder where the human mind becomes discon-
nected from the real world. The condition is specified by relapsing episodes of psychosis,
where the symptoms include hallucination, delusion, and paranoia. The mental disorder
influences the thinking ability and general behaviour of a person, hence, his or her personal,
family, social, and professional functioning is highly affected [1,2]. Worldwide, every 1 in
300 people (0.32%) is affected by this disease. Roughly 24 million people are affected by
this disorder. The World Health Organisation (WHO) declares that schizophrenia is curable
with an early diagnosis. With early detection, the patient can be given appropriate health
care assistance [3]. Early diagnosis can help in curing or limiting the effects of schizophrenia
on a person. No specific clinical test is available for the detection of schizophrenia. Mostly,
the diagnosis is made through long interviews with a clinical psychiatrist. No definitive
biological sample analysis technique can assure the diagnosis of the disorder [4]. A sys-
tematic review is given by Davison et al. [5], where they have enlisted the possibility of
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diagnosis through metabolomics in the discovery of disease biomarkers. Researchers have
been trying to devise non-invasive techniques to diagnose the problem. These techniques
include imaging and signal processing methods such as Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT) scans. The high costs of these tests are not afford-
able for everyone. Therefore, signalling techniques are gaining popularity. The human
brain activity and functionality can be examined through electroencephalogram (EEG)
signals acquired with appropriate electrode placement. An EEG is recorded by placing
the electrodes at predefined positions on the scalp. EEG has been used in the detection of
multiple brain disorders such as insomnia, dementia, epilepsy, schizophrenia, etc. [6].

EEG signals have been actively studied for schizophrenia detection through the use of
machine learning techniques. For instance, Weikoh et al. [7] analysed 1142 EEG signals over
25 s, converting these into images using a spectrogram and extracting local configuration
pattern features. This approach achieved a high accuracy of 97.20% using a KNN classifier.
Ahmad et al. [8] segmented EEG signals into five standard frequency bands to classify
schizophrenia, utilising these segments as features in a support vector machine (SVM)
that attained an 89.21% accuracy. Sima et al. [9] transformed sensor-level EEGs to source
level, analysing phase lag via a functional connectivity network and employing logistic
regression on theta band features from brain-complex network analysis to achieve 97%
accuracy. Talha et al. [10] selected electrodes with high signal-to-noise ratios from raw
EEG signals, computed linear and non-linear features, and obtained a 93% classification
accuracy for schizophrenia. Schizophrenia detection has also been explored using graph
theory-based network connectivity analysis, with a study [11] utilising EEG data from
39 healthy and 45 schizophrenic subjects, achieving an 82.3% accuracy with a Random
Forest (RF) classifier. Zhang et al. applied machine learning classifiers to event-related
potential (ERP) features from EEG signals [12,13]. They achieved classification accuracies
up to 98.5% using RF and Artificial Neural Networks (ANNs), incorporating five temporal
and two demographic features in the model.

Empirical Mode Decomposition (EMD) is a highly effective method for analysing
non-linear and non-stationary signals such as EEG recordings [14,15]. EMD iteratively
decomposes a signal into a set of intrinsic mode functions (IMFs) that represent simple
oscillatory modes. EMD was employed to decompose the EEG signal into IMFs [14]. Their
proposed model extracted entropy features and used a Support Vector Machine classifier
to achieve a 0.98 AUC value for the detection of SZ. Siuly et al. [15] applied EMD to
decompose EEG signals into IMFs, followed by feature extraction. In the classification step,
the ensemble bagged tree offered an overall accuracy of 89.5% using IMF2. Jahmunah et al.
proposed an automated diagnosis tool based on non-linear features using a 19-channel
EEG for the screening of schizophrenia [16] and obtained an accuracy of 92.91%. However,
while EMD is effective, it can suffer from mode mixing and relies heavily on the selection
of IMFs.

Deep learning (DL) techniques have also been implemented for the study of schizophre-
nia. For example, Oh et al. proposed an eleven-layered Convolutional Neural Network
(CNN) architecture for schizophrenia recognition using EEG signals [17]; the deep learn-
ing model yielded an overall recognition accuracy of 98% for non-subject-based analysis.
Singh et al. proposed a spectral features-based CNN architecture for the accurate predic-
tion of schizophrenia using EEG signals [18]; they reported accuracies of 94% and 98.5%
classification accuracies for two EEG datasets. Chandran et al. proposed schizophrenia clas-
sification using a four-layered long short-term memory (LSTM) network, a type of artificial
recurrent neural network [19]; approximate entropy, Katz fractal dimension, and variance
features were computed from a 19-channel EEG and passed to LSTM for prediction of
disorder. Authors in [20] developed a framework by combining a CNN and logistic regres-
sion for the diagnosis of schizophrenia using only three channels of EEG; they reported
accuracies of 90% and 98% for the subject-based and non-subject-based experimentation,
respectively. In another study, Lillo et al. [4] analysed EEG data from fourteen patients
using a high-pass filter and microstate transformation, achieving 93% diagnostic accuracy
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with a CNN. Wu et al. [21] applied a recurrent auto-encoder model, achieving a classifi-
cation accuracy of 81.81%. Phang et al. [22] proposed a framework using various time
and frequency domain features with a CNN, reaching 91.69% accuracy. In another study,
Phang et al. [23] used directed connectivity and complex network measures, achieving an
overall accuracy of 95% with Deep Neural Networks.

Existing EEG-based diagnostic methods for schizophrenia face several limitations.
Time- and frequency-based methods require careful consideration and may not fully cap-
ture the complex, non-linear characteristics of EEG signals. EMD-based methods, while
adaptive, can suffer from issues such as mode mixing, where different scales of data are
mixed within a single IMF, complicating the analysis and potentially reducing diagnostic
accuracy. Deep learning approaches, despite their capability to automate feature extraction,
heavily rely on large datasets and substantial computational resources, which limits their
practicality in medical settings. These models typically utilise all available EEG channels,
increasing computational burdens and the risk of overfitting. Therefore, our proposed
computer-aided diagnosis system addresses these limitations by employing Automated
Log Energy-based Empirical Wavelet Reconstruction (ALEEWR) for automated noise re-
duction and selective signal reconstruction. This approach enhances signal processing
efficiency and accuracy by proposing cepstral domain features that demonstrate high
discriminative power. Unlike traditional methods, our system utilises only ten features
and identifies important EEG channels, significantly reducing computational complexity.
This targeted and efficient approach not only lowers computational demands, making the
system suitable for real-time applications in battery-powered devices, but also achieves
superior diagnostic performance. The key contributions of our work are listed below:

1. We propose the Automated Log Energy-based Empirical Wavelet Reconstruction
(ALEEWR) for noise reduction in EEG signals.

2. We introduce a novel feature set derived from three cepstral parameters that, when
used in our proposed computer-aided diagnosis system, outperforms state-of-the-art
methods by classifying schizophrenia and healthy patients through EEG signals using
only ten features.

3. This study also identifies crucial EEG channels (e.g., possible biomarkers) that contain
distinct information pertinent to schizophrenia. By pinpointing key features and
channels, we reduce the computational complexity and enhance the feasibility of
continuous monitoring in battery-powered embedded systems.

The structure of this article is organised as follows: Section 2 provides a detailed
description of the EEG dataset and outlines the proposed framework for diagnosing
schizophrenia, emphasising innovative signal processing and feature extraction techniques.
In Section 3, we present the experimental results of our method. Section 4 delivers an
in-depth analysis of our approach and compares it with existing studies. Finally, Section 5
summarises the key findings and concludes the article.

2. Materials and Methods

2.1. Overview

Our proposed diagnostic framework for schizophrenia utilises advanced signal pro-
cessing and machine learning techniques to enhance accuracy with EEG data. Figure 1
presents the proposed framework for computer-aided diagnosis of schizophrenia. In the
first step, EEG signals are cleaned using FastICA to remove artefacts and isolate indepen-
dent components. These signals are then processed through Automated Log Energy-based
Empirical Wavelet Reconstruction (ALEEWR) to highlight EEG signatures. Cepstral fea-
tures are extracted from the reconstructed signal, and ANOVA-based feature selection
refines these features to those most indicative of schizophrenia. The final step involves
classification using a Fine KNN algorithm, effectively distinguishing between healthy
individuals and patients with schizophrenia based on EEG data.
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Figure 1. Framework of the proposed computer-aided diagnosis system of schizophrenia.

2.2. EEG Dataset

In this study, a publicly available dataset of EEGs was employed for the evaluation
of the proposed methodology for the detection of schizophrenia (SZ) [24]. The data were
acquired at the Institute of Psychiatry and Neurology in Warsaw, Poland. The EEG data
contain 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
O2) obtained at a sampling rate of 250 Hz using standard 10-20 EEG system (Figure 2).

Figure 2. Standard placement of electrodes for EEG acquisition.

This EEG dataset includes recordings from 14 patients diagnosed with schizophrenia
(SZ), consisting of seven females (average age: 28.3 ± 4.1 years) and seven males (average
age: 27.9 ± 3.3 years). Additionally, EEG data were gathered from 14 healthy controls, split
evenly by gender with seven females (mean age: 28.7± 3.4 years) and seven males (average
age: 26.8 ± 2.9 years. Recordings were conducted over fifteen minutes while subjects rested
with their eyes closed. The signals were then segmented into 20 s intervals, with each
segment containing 5000 × 19 data points. Figure 3 displays a segment of the raw signals
from both healthy individuals and those with schizophrenia.

2.3. Preprocessing: FastICA

To address the challenges of artefact removal and the separation of EEG channels
that are independent of each other, we employed Independent Component Analysis
(ICA) [25,26]. ICA is pivotal in enhancing the quality of EEG data by isolating components
associated with noise and interference from those reflecting genuine brain activity. ICA
endeavours independence by transforming feature space linearly into a new feature space
such that each component in the new feature space is mutually independent. Nonetheless,
the mutual information between the original and transformed feature space is kept as high
as possible. Consider y is an input matrix with a dimension of [m × n] where m is the total
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number of samples and n is the number of variables. The ICA model is mathematically
given as:

z ∈ R (1)

y = Az (2)

where A is the mixing matrix and z represents the data from individual sources that
indicate the independent components. It is assumed that the data are linearly combined
(non-Gaussian data distribution) from individual sources. To reconstruct the independent
signal, an unmixing matrix W is constructed, which is an inverse of the mixing matrix A.

Therefore,
z = Wy (3)

where
W = A−1 (4)

Among the various ICA algorithms available, we opted for FastICA [27–29] due to
its computational efficiency and robust performance in dealing with biomedical signal
processing. The use of FastICA allowed us to effectively clean the EEG data (Figure 4),
preparing them for further analysis and ensuring that our feature extraction methods could
operate on the most relevant and least contaminated signals.

(a) EEG signal of healthy person. (b) EEG signal of person with schizophrenia.

Figure 3. Raw EEG signals of healthy and schizophrenic subjects.

(a) (b)

Figure 4. FastICA- based preprocessing of EEG signals. (a) FastICA based preprocessing for healthy
person. (b) FastICA-based preprocessing for person with schizophrenia.
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2.4. EEG Postprocessing: Automated Log Energy-Based Empirical Wavelet Reconstruction
(ALEEWR)

The field of EEG signal analysis has seen significant advances in preprocessing and
feature extraction techniques, with popular methods including Empirical Mode Decom-
position (EMD) [15,30], Variational Mode Decomposition (VMD) [31–33], and Wavelet
Transform (WT) [34,35]. Each of these methods, however, has its specific limitations: EMD
faces mode selection issues and mode mixing, VMD suffers from over-decomposition,
and WT, despite better energy preservation compared to EMD and VMD, is hindered by
the non-adaptive nature of the basis functions.

To address these shortcomings, the Empirical Wavelet Transform (EWT) [36–38]
emerges as an adaptive method that effectively preserves energy during decomposition.
However, EWT itself faces challenges, particularly in deciding which decomposed modes
should be selected for reconstructing a preprocessed signal. This selection is crucial as
it influences the quality and effectiveness of the subsequent signal analysis, particularly
when handling the inherently weak signals typical of human brain EEG data.

In response to these challenges, we introduce the Automated Log Energy-based
Empirical Wavelet Reconstruction (ALEEWR). This novel approach leverages the strengths
of EWT while incorporating an automated mechanism to enhance the selection of relevant
modes based on their energy content. The Log operator incorporated in the ALEEWR plays
a critical role in enhancing the detection of weak changes within EEG signals. The EEG
channels were first normalised to remove any dependencies on gain. ALEEWR utilises
a family of wavelets specifically adapted for particular signal processing applications. It
extracts several modes from the Fourier transform of the input signal by creating adaptive
wavelet filter banks. These modes are subsequently combined based on the log energy
threshold to reconstruct a preprocessed signal. The significant steps of ALEEWR are
presented in Figure 5 and are described next.

Figure 5. Steps involved in computing ALEEWR.

Step 1: Apply Fast Fourier Transform (FFT) to the input signal (s), where f (s) de-
notes its discrete version, s = {si}, i = 1, 2, 3, . . . , n. Here, n is the number of samples and
the FFT spectrum denoted by X(w) is computed. Compute the set of maxima n = {ni},
i = 1, 2, 3, . . . , m of FFT spectrum and find their concerned frequencies w = {wi},
i = 1, 2, . . . , m. The number of maxima is denoted by m.
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Step 2: The boundary detection algorithm is used to accurately separate the Fourier
spectrum of the EEG signals. To find the border of each segment, the centre of two progres-
sive local maxima is computed as defined by the following equation:

φi =
Wi + Wi+1

2
(5)

where φi defines the boundaries set φ = {φ1, φ1, . . . , φN−1} and Wi and Wi+1 denotes
two frequencies.

Step 3: In this stage, based on boundaries, an adaptive filter bank of m wavelet filter
is designed. This adaptive filter consists of one low pass filter and m − 1 bandpass filter.
The following equation defines the relationships between boundaries and frequencies with
the scaling function ρ1(w):

ρ1 =

⎧⎪⎨⎪⎩
1, |w| ≤ (1 − σ)φi

cos(π
2 α(σ, φ1))(1 − σ)φ1 ≺ |w|(1 + σ)φ1

0, else

(6)

Empirical wavelets are denoted by Ψi(w) and defined as follows:

Ψi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1(1 + σ)φi ≺ |w| ≺ (1 − σ)φi+1

cos(π
2 α(σ, φi+1))(1 − σ)φi+1 ≤ |w| ≤ (1 + σ)φi+1

sin(π
2 α(σ, φi))(1 − σ)φi ≤ |w| ≤ (1 + σ)φi

0, else

(7)

where α(γ, φi) = β
(
( 1

2γφi
)(|w| − (1 − γ)φi)

)
. The γ function makes sure that there is

no overlap between two successive transitions. The equation of γ is formed using the
following relation:

γ ≺ mini

(
φi+1 − φi
φi+1 + φi

)
(8)

β(x) is a random function defined below as follows:

β(x) =

⎧⎪⎨⎪⎩
0x ≤ 0
1x ≥ 1
β(x) + β(1 − x) = 1, x ∈ (0, 1)

(9)

Step 4: Wavelet functions are applied to extract instantaneous frequency (IF) and in-
stantaneous amplitude (IA) from each mode scaling. Approximate coefficients are the prod-
uct of the scaling function with the input signal under consideration, defined as follows:

Wf (0, s) = 〈 f , θi〉 =
∫

f (τ)θi(τ − s)dτ (10)

Similarly, detailed coefficients were obtained by multiplying input signal f by empirical
wavelet as follows:

Wf (i, s) = 〈 f , ψi〉 =
∫

f (τ)ψi(τ − s)dτ (11)

Here, Wf (i, s) represents the detailed coefficients for the ith filter bank at the sth time
instant. sub-band modes of both the healthy and schizophrenia classes are presented in
Figure 6.
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(a) Healthy. (b) Schizophrenia.

Figure 6. Multi-resolution analysis of EEG signal (1 channel) of healthy and schizophrenic subjects.

Step 5: To determine which sub-band modes contain the most information about
subtle changes in the overall EEG signal, the log energy of each sub-band mode is calculated
using the following equation:

LEW f = log

(
∑
n
|Wf |2

)
(12)

In this equation, LEW f represents the log energy of the sub-band. The modes that exhibit
a log energy of 10% (a threshold experimentally selected) or higher are then combined to
create a newly preprocessed EEG signal, effectively capturing and emphasising the subtle
changes within the EEG data. The processed EEG channels after employing ALEEWR are
shown in Figure 7. ALEEWR aims to optimise EEG signal preprocessing and feature extrac-
tion, providing a robust tool for handling weak and often noisy EEG signals. By automating
the mode selection process, ALEEWR not only simplifies the preprocessing workflow but
also enhances the reliability and accuracy of EEG signal analysis, thereby facilitating more
precise diagnostics and research outcomes in neurological studies.

(a) Healthy class (b) Schizophrenia class

Figure 7. Preprocessed EEG signals of healthy and schizophrenic subjects using proposed ALEEWR.

2.5. Feature Extraction: Novel Cepstral Features

To create reliable and relevant predictors, feature extraction is a crucial step in the
learning process. Despite having sophisticated classification algorithms, low feature quality
might result in poor performance and generalisation properties. In this study, we propose
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three powerful features for the detection of a schizophrenic EEG, i.e., cepstral activity,
cepstral mobility, and cepstral complexity. These features provide numerical variations in
the cepstrum of EEG channels, hence proving the fact that the EEG cepstrum contains rich
schizophrenic information as compared to simple time-domain EEGs.

Real cepstrum c of input x can be defined as the inverse FFT of the logarithm FFT of
EEG channels (Equation (13)).

cx =
1

2π

∫ π

−π
log|X(ejω)|ejωndω (13)

In EEG signal analysis, capturing fine variations in both time and frequency domains is
vital for accurately assessing brain activity, especially when differentiating between healthy
and pathological conditions like schizophrenia. While conventional methods typically
break down EEG signals into sub-bands such as alpha, beta, and gamma rhythms [39,40],
this study extracts features from the entire EEG channels to account for individual dif-
ferences in brain structure and function. Given the complexity of EEG signals and the
issues with aliasing and overlapping frequencies, cepstral analysis provides a more com-
prehensive solution by isolating intrinsic periodicities and harmonics [41]. By extending
beyond traditional time-domain or frequency-domain approaches, the cepstrum effectively
decomposes the EEG signal into meaningful components, making it particularly suitable
for non-stationary signals like EEG. We extracted three main features, cepstral activity,
cepstral mobility, and cepstral complexity from the cepstrum of each EEG channel, which
provide a detailed and refined characterisation of brain dynamics that traditional filters
often fail to capture.

2.5.1. Cepstral Activity

The cepstral activity (A) parameter quantifies the variance in the cepstrum of an EEG
signal. It is analogous to the power of the signal in the cepstral domain and is defined as:

A =
1
N

N

∑
i=1

(cx − μ)2 (14)

where μ is the mean of the cx, and N is the total number of cepstral coefficients.

2.5.2. Cepstral Mobility

The cepstral mobility (M) parameter measures the rate of change in the cepstrum,
analogous to the standard mobility parameter but applied to the cepstral coefficients of the
EEG signal. It indicates the smoothness of the variations in the cepstrum and is defined as:

M =

√
A(dc)

A(cx)
(15)

where dc is the derivative of the cepstral coefficients cx, and A(cx) and A(dc) are the
activities of the cepstral coefficients and their derivatives, respectively.

2.5.3. Cepstral Complexity

Cepstral complexity (C) measures the irregularity or complexity of the cepstrum of
the EEG. It evaluates how much the cepstral behaviour deviates from that of a simple
sinusoidal form. This metric is defined as follows:

C =
M(dc)

M(cx)
(16)

where M(cx) and M(dc) are the mobilities of the cepstral coefficients and their derivatives,
respectively.

334



Sensors 2024, 24, 6508

These three Cepstral features were extracted from each of the 19 EEG channels, result-
ing in a comprehensive feature vector that captures the essential characteristics of the EEG
signals across all channels. The feature vector, therefore, consists of 57 features.

2.6. Feature Reduction: ANOVA

The dimensions of the extracted EEG features were further reduced by eliminating
irrelevant information or redundancy using a one-way analysis of variance (ANOVA).
The objective of performing ANOVA is to determine whether different classes (or levels) of
a factor have significantly different means. ANOVA evaluates the impact of each feature on
the class label or response variable, identifying the features that significantly distinguish
between classes [42,43].

Variation of the class is the overall mean, i.e., v̄.j − v̄.. (variation between classes),
where v.j is the sample mean value of class j and v̄ is the overall sample mean value.
ANOVA examines the diversity in the class means by dividing the total variation in the
feature data into two parts:

1. Variation of observations in each group from their group mean estimates;
2. Variation of instances in each class from their class means estimates vij − v̄.j (variation

within a category).

ANOVA divides the total sum of squares (SST) into a sum of squares due to the
between-classes effect (SSR) and the sum of squared error (SEE).

∑
i

∑
j
(vij − v̄..)2 = ∑

j
nj(v̄.j − ȳ)2 + ∑

i
∑

j
(vij − v̄.j)2 (17)

where nj is the sample size for the jth group, j = 1, 2, . . . , k.
ANOVA was used to identify the most significant features for classification as demon-

strated in [44,45]. These features were then used to train and test the classification models.
This process ensures that the selected features significantly contribute to distinguishing
between the healthy and SZ classes.

2.7. Classification

The discrimination between the two classes of EEG signals was achieved through
the application of various well-known machine learning classification algorithms. These
models were decision trees (DTs), Support Vector Machines (SVMs), K-nearest neighbours
(KNNs), ensemble classifiers, and Artificial Neural Networks (ANNs). The DT classifier
predicts the output by following decisions in the tree structure, from the root node down to
the leaf. The EEG signals of healthy controls and SZ subjects were also classified using a
linear SVM classifier and its several non-linear kernel versions like Quadratic-SVM (QSVM)
and Cubic-SVM (CSVM) [46]. Another classification method employed to differentiate
healthy and SZ EEG signals using extracted features was KNN [47]. KNN works by finding
the closest points to the new input [48]. The new input is assigned a class label based on
the highest posterior probability of response of nearest neighbours. The ‘K’ value is the
number of neighbours for voting. KNN with the value of K set to one is Fine KNN (FKNN)
with Euclidean distance. KNN with the value of K set to 100 and squared inverse distance
metric is Weighted KNN (WKNN). In Cubic KNN (CKNN), the cubic distance metric is
used to measure the distance between current input features and dataset points.

The employment of ensemble machine learning algorithms for the classification of
biomedical signals has received due attention [15,49]. In ensemble classification algorithms,
the output is predicted using a set of learned classifiers in combination with some voting
scheme. The resultant composite model is robust and often has better performance as
compared to individual learners. Ensemble Boost Tree (EBoosTT) learns from the errors
generated by a set of weak classifiers and turns them into a strong classifier using an
iterative algorithm. AdaBoost with 30 decision tree learners was employed, and the
number of splits was set to 20. The Ensemble Bagged Tree (EBagT) classification algorithm
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is constructed by bootstrapped training of several decision tree classifiers. The results of
all predictors are averaged to produce the final output. The maximum number of splits
was set to 1540 and the number of learners was 30. Ensemble subspace KNN (ESKNN)
is assembled by combining several KNNs as base classifiers using a random subspace
strategy [50]. The selected number of learners was 30 with a subspace dimension set to 40.
Artificial Neural Networks (ANNs) are widely employed in biomedical signal processing
for classification tasks [51,52]. An ANN contains neurons connected in input, hidden,
and output layers. In this article, we analysed the classification performance using three
types of ANN. An ANN structure with only one hidden layer is a Narrow Neural Network
(NNN), with ten hidden layers (MNN), and with a hundred hidden layers is a Wide Neural
Network (WNN). All networks used ReLu activations.

3. Results

The performance of the proposed EEG-based computer-aided diagnosis system for SZ
was assessed using various well-known classification algorithms. The proposed features
were extracted from all channels of EEG and were selected using ANOVA. Performance
with KNN, DT, SVM, ANN, and Ensemble methods is presented. First, we present the
feature importance analysis, then provide the classification performance of the best model,
and finally, compare the performance of the proposed model with other classifiers. All
experiments were conducted using 10-fold cross-validation to prevent overfitting, utilising
MATLAB R2023b software on an Intel Core i7 system with 32 GB RAM. The dataset was
divided into ten equal subsets, with each subset used for training while the remaining
subsets were used for testing across ten iterations [9,53]. The experiments were repeated
20 times, and the average results were reported.

3.1. Feature Importance Determination

Table 1 provides the results of applying ANOVA on all 57 features extracted from
EEG signals. The importance of features is determined by the ANOVA weight. The higher
value of weight signifies that the attribute is influential and contains strong discriminatory
information. Figure 8 depicts the ANOVA-based weights for extracted EEG features
in descending order. In Figure 8, CPz, MPz, and APz represent the proposed cepstrum
complexity, cepstrum mobility, and cepstrum activity features extracted from the 19th EEG
channel (Pz), respectively. The classification was performed using ten features showing the
highest weights (CPz, MPz, MT4, MC4, AF4, CF4, CC4, CT3, AFp1, APz). It can be observed
that features extracted from the 19th EEG channel (CPz, MPz, APz) have high ANOVA
weights to be considered in the final feature vector. The statistical parameters in terms of
mean, standard deviation (SD), and p-value of the principal features are shown in Table 2.

Figure 9 illustrates the box plot analysis of the most significant features ranked using
ANOVA, showing that the most discriminating information for healthy vs. SZ was available
in the 19th EEG channel. These ten most significant features were used to train and test the
classification models using 10-fold cross-validation.

Figure 8. EEG feature ranking through ANOVA in a sorted manner.
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Table 1. Feature ranking results of applying ANOVA on extracted features from EEG signals.

Features
ANOVA
Weights

Features
ANOVA
Weights

Features
ANOVA
Weights

CPz 44.1411 ACz 11.7543 CF8 3.0421
MPz 43.2403 AC4 10.5856 MT6 2.7608
MT4 42.4737 CFp1 10.4968 MC3 2.6829
MC4 33.1581 CCz 10.3155 AF8 1.9436
AF4 26.4594 CO1 10.2426 MF7 1.8861
CF4 23.7429 CP4 9.4774 CT5 1.5994
CC4 23.4761 MO2 8.7708 MFp1 1.5252
CT3 23.4276 MP3 8.3576 AF7 1.3270
AFp1 19.9070 MFp2 7.5335 MT5 1.2159
APz 19.1349 AF3 6.6283 AT6 1.1489
CF3 17.1812 AO1 6.4004 AC3 0.9762
MF3 16.2406 MF4 6.1457 CFp2 0.8294
CFz 16.0346 AFp2 4.9863 CC3 0.7992
AT3 15.8375 AT4 3.9301 AP3 0.5133
MCz 15.5225 AFz 3.8874 AO2 0.5116
MO1 14.6075 CT6 3.5882 CF7 0.3653
MFz 13.7222 AP4 3.5193 CO2 0.3426
MT3 13.3062 AT5 3.0801 MP4 0.3206
CT4 12.6136 MF8 3.0692 CP3 0.1421

Table 2. Principal features selected using ANOVA.

Selected
Features

Healthy Schizophrenia
p-Value

Mean SD Mean SD

MPz 0.79137 0.05777 0.74883 0.08591 4.8 × 10−26

MT4 0.79151 0.06131 0.7446 0.09756 1 × 10−22

MC4 0.80313 0.05694 0.76543 0.08949 2 × 10−21

CPz 1.44425 0.12681 1.56597 0.26407 4.8 × 10−20

CC4 1.41478 0.1102 1.50065 0.27018 1.6 × 10−12

AF4 0.00211 0.00052 0.00183 0.00072 2.4 × 10−11

CT3 1.45274 0.12621 1.53644 0.2552 2.1 × 10−10

APz 0.00218 0.00063 0.00192 0.00077 7 × 10−10

CF4 1.47059 0.11914 1.54518 0.22191 1 × 10−9

AFp1 0.00229 0.00068 0.002 0.00086 7.5 × 10−9

Figure 9. Box plots of the extracted features demonstrating the differences between healthy (H) and
schizophrenia (SZ) classes.
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3.2. Performance of the Proposed Model

Table 3 enlists the experimental results of applying different versions of KNN for
the classification of SZ and healthy EEG observations. The FKNN model achieved 99.4%
accuracy, 99.21% sensitivity, and 99.6% specificity for distinguishing the healthy and SZ
instances using only 10 features shown in Figure 9. A slightly low performance of 98.2%
was obtained through WKNN, where the value of K is set to 100. This model attained 97.6%
and 99% sensitivity and specificity, respectively. Comparatively poor performance of 69%
accuracy was obtained using CKNN, where the cubic distance metric was employed instead
of Euclidean. The overall best performance was obtained via FKNN, where out of 504 SZ
observations, only 4 were misclassified as healthy. Similarly, only 2 out of 504 observations
from healthy controls were misclassified by the model.

Table 3. Performance of KNN classifiers using selected features for classification of normal and SZ
EEG features.

Classifier TN FP FN TP Acc Sen Sp Prediction Speed Training Time

FKNN 502 2 4 500 99.40% 99.21% 99.60% 19,000 obs/s 10.748 s
CKNN 499 5 301 203 69.60% 40.30% 99.00% 16,000 obs/s 1.039 s
WKNN 498 6 12 492 98.20% 97.60% 99.00% 20,000 obs/s 0.949 s

3.3. Performance Comparison with Other Classifiers
3.3.1. Decision Tree

Table 4 provides detailed results of testing different variants of the decision tree
classifier for distinguishing SZ and healthy EEG features. DTF is constructed using a
large number of leaves and yields 93.1% classification accuracy. DTM contains a moderate
number of branches and provides 91.3% prediction accuracy. A comparatively low accuracy
of 74.4% was obtained using DTC, which uses a fewer number of splits. We observe a trend
in reduction in accuracy as the number of branches in the decision tree goes down.

Table 4. Performance of DT using selected features for classification of normal and SZ EEG features.

Classifier TN FP FN TP Acc Sen Sp Prediction Speed Training Time

Fine Tree 462 42 28 476 93.10% 94.40% 91.70% 5000 obs/s 10.328 s
Medium Tree 472 32 56 448 91.30% 88.90% 93.70% 10,000 obs/s 5.411 s
Coarse Tree 393 111 147 357 74.40% 70.80% 78.00% 11,000 obs/s 3.178 s

3.3.2. Support Vector Machines

The experimental results of applying SVM with different kernel functions are shown in
Table 5. LSVM was able to distinguish EEG features of healthy and SZ with 70.6% accuracy.
Low performance confirms the complexity of the problem, as features of both classes were
not linearly separable. QSVM provided enhanced results with accuracy reaching up to
95.1%, 92.5% sensitivity, and 97.8% specificity. The highest results of 96.5% accuracy were
obtained through the CSVM. Non-linear kernel-based SVM classification models yielded
better prediction performance as compared to linear SVM.

Table 5. Performance of SVM using selected features for classification of normal and SZ EEG features.

Classifier TN FP FN TP Acc Sen Sp Prediction Speed Training Time

LSVM 437 67 229 275 70.60% 54.60% 86.70% 9500 obs/s 80.473 s
QSVM 493 11 38 466 95.10% 92.50% 97.80% 12,000 obs/s 7.1329 s
CSVM 474 30 5 499 96.50% 99.00% 94.00% 12,000 obs/s 4.833 s

3.3.3. Ensemble Classification Methods

Ensemble classifiers used a combination of various models with a voting strategy to
predict the response. All ensemble classifiers used in this study have shown better perfor-
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mance, illustrated in Table 6. EBoosTT yielded an accuracy of 96.3% for the detection of SZ
using extracted ten most significant cepstrum features. A slight increase in performance
(96.9%) was shown using EbagT. Among all ensemble techniques, ESKNN achieved the
highest results of 97.4% accuracy, 96.6% sensitivity, and 98% specificity.

Table 6. Performance of Ensemble classifiers using selected features for classification of normal and
SZ EEG features.

Classifier TN FP FN TP Acc Sen Sp Prediction Speed Training Time

EBoosTT 493 11 26 478 96.30% 94.80% 97.80% 5700 obs/s 9.667 s
EBagT 494 10 21 483 96.90% 95.80% 98.00% 6400 obs/s 4.677 s

ESKNN 495 9 17 487 97.40% 96.60% 98.00% 2800 obs/s 3.541 s

3.3.4. Artificial Neural Networks

Table 7 provides a performance analysis of applying different versions of ANNs for
the classification of SZ and healthy EEG signals. Almost similar accuracy performances
of 96.6% and 96.7% were observed using an NNN and WNN, respectively. These results
demonstrated that raising the number of neurons in the hidden layer from 10 to 100 in
narrow and wide networks has no substantial impact on the classification performance.
A slightly better performance (97.1%) was obtained using MNN, which used 25 neurons in
the hidden layers.

Table 7. Performance of ANNs using selected features for classification of normal and SZ EEG features.

Classifier TN FP FN TP Acc Sen Sp Prediction Speed Training Time

NNN 491 13 21 483 96.60% 95.80% 97.40% 31,000 obs/s 15.206 s
MNN 490 14 15 489 97.10% 97.00% 97.20% 44,000 obs/s 1.748 s
WNN 487 17 16 488 96.70% 96.80% 97.00% 39,000 obs/s 1.522 s

4. Discussion

This research introduces a novel approach to the EEG-based diagnosis of schizophre-
nia, employing a combination of FastICA and ALEEWR for artefact removal, signal de-
composition, and reconstruction. The proposed cepstral-based features further enhance
diagnostic accuracy by capturing critical variations in the EEG signals. Through an ANOVA-
based feature selection and classification via the FKNN algorithm, our system achieved
an accuracy of 99.6%. Figure 10 shows the graphical comparison of performance in terms
of accuracy, sensitivity, and specificity for several classifiers. The FKNN algorithm out-
performs other classifiers with an accuracy of 99.4%, alongside high sensitivity (99.21%)
and specificity (99.6%). The Fine Tree classifier shows a performance of 93%. The CSVM
provides a high sensitivity of 99% but falls short of specificity compared to the FKNN.
This indicates a slightly higher rate of false positives, which can be detrimental in clinical
diagnostics. The ESKNN and MNN also demonstrate robust performance with accuracies
above 97%, but they still do not reach the balanced performance of the FKNN in our specific
application. The choice of the FKNN classifier is based not only on its superior accuracy
but also on its ability to maintain balancing sensitivity and specificity, which is particu-
larly advantageous in a clinical setting, where the accurate diagnosis of schizophrenia has
profound implications for patient treatment and management.

Figure 11 illustrates the performance of the FKNN classifier with different numbers
of features, showing a significant increase in accuracy as the number of features is incre-
mentally increased from one to ten. Beyond ten features, the accuracy stabilises, peaking
at 99.4% and maintaining a similar performance as additional features are considered
up to forty. This trend indicates that a minimal set of ten features is sufficient for near-
optimal diagnostic performance, as additional features do not significantly improve the
classifier’s effectiveness, suggesting an optimal balance between feature complexity and
diagnostic accuracy.

339



Sensors 2024, 24, 6508

Figure 10. Comparison of the classification algorithms.

This performance significantly outperforms previous studies listed in Table 8. For
instance, Zhang et al. [13] and Nikhil et al. [19] reported high accuracies of 98.5% and
99.0%, respectively, and utilised neural networks but did not focus on reducing feature
space. Siuly et al. [15] used EMD for the classification of schizophrenia and healthy subjects
with EEG signals, achieving an accuracy of 89.5%. However, their approach had the limitation
of selecting an appropriate number of IMFs when using EMD. Jahmunah et al. [16] extracted
157 features from EEG signals and reduced them to 14 to achieve a 92.9% accuracy for the
classification of schizophrenia and control groups. Kumar et al. [54] proposed a computer-
aided approach for schizophrenia detection using EEG signals, employing local descriptors
with a correlation-based feature selection algorithm. The reduced features are classified using
AdaBoost, with temporal lobe EEG channels yielding the best performance of 99.3% accuracy.
Das et al. [39] employed Multivariate Iterative Filtering with Hjorth parameters, achieving
98.9% accuracy using SVM. However, their approach required 30 features and involved ex-
tracting features from EEG bands, specifically delta, theta, alpha, beta, and gamma rhythms,
which added significant computational overhead. The use of advanced EEG feature extrac-
tion techniques and KNN classification has proven effective. For instance, Akbari et al. [53]
obtained an accuracy of 94.8% using 36 features from 12 channels using KNN classification.
They used graphical features from the phase space dynamic of EEG signals. In another
study, Aziz et al. [55] proposed brain textures for effective classification of schizophrenia
using KNN classification and obtained 94.9% accuracy. The authors used EMD to decompose
EEG into IMFs and after manual analysis, only the first two IMFs were added together to
form a reconstructed preprocessed signal. Our method stands out by using fewer but highly
discriminative features (10 features), with automated signal preprocessing through ALEEWR,
eliminating the need for manual mode selection.

Figure 11. Accuracies of the proposed system across the ranked features.

Deep learning methods, such as those employed by Lillo et al. [4], Wu et al. [21],
and Oh et al. [17], typically require large datasets to train effectively. Lillo et al. employed
a CNN and achieved an accuracy of 93%. Wu et al. utilised a Recurrent Auto-encoder,
resulting in an accuracy of 81.8%. Oh et al. used a CNN and obtained a high accuracy
of 98.0%. Hassan et al. [20] proposed a fusion of CNN and machine learning classifiers
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for schizophrenia classification, achieving 98% accuracy. They introduced a CNN-based
channel selection mechanism, evaluating individual channels to assess their contribution
to classification accuracy. However, a limitation of this approach is the need to select
different channel subsets for each identification problem. The current algorithm lacks an
automated channel selection method, making it highly dependent on the specific dataset
used. Singh et al. [18] proposed a spectral analysis-based CNN model for identifying
schizophrenia using multichannel EEG signals. The model processes EEG signals by
filtering, segmenting, and converting them into the frequency domain, dividing them
into six spectral bands: delta, theta-1, theta-2, alpha, beta, and gamma. However, CNN
is computationally complex, and the extraction of spectral information from frequency
bands further adds to the computational overhead, making the approach resource-intensive.
The need for large datasets can be a significant challenge in medical contexts. Additionally,
data augmentation techniques, which are less viable in medical contexts due to the high
specificity required for accurate diagnosis, cannot always compensate for the lack of
extensive data. Our proposed approach not only improves classification accuracy but
also reduces computational complexity, making it feasible for continuous monitoring and
embedded systems and edge computing. Moreover, the cepstral features introduced in our
study offer a novel dimension of analysis not explored in other studies.

EEG signals are non-stationary and non-linear, with properties that change over time,
making traditional time- and frequency-domain analyses insufficient. Cepstral analysis,
transforming the signal into the quefrency domain, handles these complexities by analysing
the power and rate of change in quefrency content. Additionally, cepstral features are less
sensitive to noise and artefacts, which is crucial for reliable EEG analysis. This novel feature
set, with its high discriminatory power, allows for precise differentiation between healthy
and schizophrenic EEG signals, as evidenced by the high sensitivity (97.8%) and specificity
(98.8%) achieved. In conclusion, our study advances the field of EEG-based schizophrenia
diagnosis by introducing a method that not only improves diagnostic accuracy but also
optimises computational efficiency and application potential in real-world settings. The
introduction of ALEEWR and cepstral analysis as a methodological innovation represents
a significant step forward in the automated diagnosis of schizophrenia, setting a new
benchmark for future studies in this area.

Table 8. Summary of EEG-based studies on schizophrenia detection.

Study Method Results

[12] Event-related potential features, Random Forest 81.1%
[22] Multi-domain connectome CNN 91.7%
[23] Deep Belief Network 95.0%
[16] Non-linear features, t-test 92.9%
[17] Convolutional Neural Network 98.0%
[11] Graph Theory-based Network Connectivity Analysis 82.3%
[13] Artificial Neural Network 98.5%
[15] Empirical Mode Decomposition, Ensemble Bagged Tree 89.5%
[19] Long short-term memory 99.0%
[9] Logistic Regression 97.0%
[53] Graphical Features, KNN 94.8%
[39] Multivariate Iterative Filtering, Hjorth parameters 94.8%
[18] Spectral Features, CNN 98.5%
[4] Convolutional Neural Network 93.0%
[21] Recurrent Auto-encoder 81.8%
[55] Brain Textures, KNN 94.9%
[20] Convolutional Neural Network, Logistic Regression 98.0%
[7] Spectrogram, Local Configuration Patterns 97.2%
[54] Local descriptors, AdaBoostM1 99.3%

This work FastICA, ALEEWR, Cepstral Features, FKNN 99.4%
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5. Conclusions and Future Directions

In this study, we have presented an EEG-based framework for the early and precise di-
agnosis of SZ. The proposed framework employs Automated Log Energy-based Empirical
Wavelet Reconstruction (ALEEWR) coupled with novel cepstral features. This multifaceted
approach integrates advanced signal processing techniques with robust feature extraction
and selection methods, significantly improving diagnostic accuracy and efficiency. By util-
ising FastICA for artefact removal and ALEEWR for signal reconstruction, we effectively
enhance the EEG signal’s clarity and relevance. Subsequent extraction of cepstral features,
i.e., cepstral activity, mobility, and complexity, provides a nuanced understanding of EEG
dynamics, which is further refined through ANOVA-based feature selection. The em-
ployment of the Fine KNN classifier enables our system to achieve remarkable diagnostic
performance with an accuracy of 99.40%, sensitivity of 99.21%, and specificity of 99.60%.
These metrics not only underscore the effectiveness of our approach but also demonstrate
its superiority over traditional diagnostic methods, which are often labour-intensive and
prone to errors. Moving forward, the scalability of this framework offers promising av-
enues for broader clinical applications, ensuring robust, real-time diagnostics that can
significantly impact patient outcomes and treatment strategies in mental health care.

However, there are some limitations to this study. Firstly, we used only one dataset
to validate the algorithm. To ensure broader applicability and robustness, future studies
should incorporate multiple datasets. Secondly, the data size is relatively small, which
might limit the generalisability of our findings. Increasing the dataset size would help in bet-
ter training and validation of the models. Thirdly, the current implementation of ALEEWR
uses a static log energy threshold of 10%, which was selected experimentally. This threshold
should be made adaptive to accommodate various signal-to-noise conditions dynamically.

Looking forward, this study sets the stage for significant advancements in schizophre-
nia diagnosis using EEG signals. Incorporating deep learning models like CNNs and
LSTMs, particularly with cepstral features, promises deeper insights into EEG dynamics
and potentially higher diagnostic accuracies. Expanding our dataset will further refine and
validate our models, enhancing their generalisability and effectiveness. Additionally, inte-
grating our methods into low-power, portable embedded systems could revolutionise men-
tal health care delivery, enabling real-time, accessible diagnostics in remote settings. This
approach not only aims to improve the clinical management of schizophrenia through ear-
lier interventions but also optimises system design for energy efficiency and minimal com-
putational demands, crucial for practical deployments in resource-limited environments.
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Abstract: This study introduces a novel framework to apply the artifact subspace reconstruction (ASR)
algorithm on single-channel electroencephalogram (EEG) data. ASR is known for its ability to remove
artifacts like eye-blinks and movement but traditionally relies on multiple channels. Embedded
ASR (E-ASR) addresses this by incorporating a dynamical embedding approach. In this method, an
embedded matrix is created from single-channel EEG data using delay vectors, followed by ASR
application and reconstruction of the cleaned signal. Data from four subjects with eyes open were
collected using Fp1 and Fp2 electrodes via the CameraEEG android app. The E-ASR algorithm was
evaluated using metrics like relative root mean square error (RRMSE), correlation coefficient (CC),
and average power ratio. The number of eye-blinks with and without the E-ASR approach was
also estimated. E-ASR achieved an RRMSE of 43.87% and had a CC of 0.91 on semi-simulated data
and effectively reduced artifacts in real EEG data, with eye-blink counts validated against ground
truth video data. This framework shows potential for smartphone-based EEG applications in natural
environments with minimal electrodes.

Keywords: artifact removal; artifact subspace reconstruction; eye blink; single channel; electroencephalography;
signal processing; smartphone

1. Introduction

Electroencephalography (EEG) is a non-invasive method employed for capturing the
electrical patterns generated by cortical neurons, achieved by positioning electrodes on
the scalp [1]. EEG amplifiers, known for their portability and capacity to offer precise
temporal resolution in signal recording, establish EEG as the optimal brain imaging tool for
assessing human brain activity during motion [2]. In recent years, there has been an increas-
ing interest in conducting EEG experiments in natural environments using smartphones,
marking a significant shift in EEG experimentation [3]. Smartphone-based EEG offers
several advantages, including portability and affordability, positioning it as a promising
next-generation technique for real-time brain activity investigation [4]. Furthermore, as
technology continues to advance, these systems have evolved to feature low instrumenta-
tion and computational complexity [5,6]. Notably, portable EEG devices equipped with
a single EEG channel have gained widespread use in non-laboratory and non-clinical
applications, reflecting their practicality [7,8]. These devices have found utility in diverse
domains, ranging from BCI research to driver fatigue detection and the study of various
brain disorders [9–11].

However, EEG is susceptible to contamination by artifacts. Non-physiological artifacts
can include high impedance, faulty electrodes, or noise from surrounding electrical equip-
ment. Physiological and biological artifacts, including blinks, eye movements, muscular
activity, and heart-related signals, pose a substantial challenge in EEG signal analysis,
making their removal a primary focus when addressing EEG artifacts [12,13]. The activity

Sensors 2024, 24, 6734. https://doi.org/10.3390/s24206734 https://www.mdpi.com/journal/sensors346



Sensors 2024, 24, 6734

of the eyes including blinks and saccades produce large amplitude changes in prefrontal
(Fp1 and Fp2) electrodes. As we traverse from front to the back of the scalp, the eye-blink
amplitude decreases. Typically, these artifacts exhibit an amplitude of 500 microvolts and a
frequency below 20 Hz [12,13], characteristics that are also linked to upper-limb movements
and drivers’ cognitive states [14–16]. Electrical activity produced by muscle movements
including jaw clenching, swallowing, and changes in facial expression results in large
amplitude changes in EEG signal. Nonetheless, improper artifact filtering can impact the
signal in terms of both its temporal and frequency characteristics, potentially leading to a
loss of critical information, which could, in turn, jeopardize the effectiveness of various
natural environment EEG application.

The artifact subspace reconstruction (ASR) algorithm is an adaptive spatial filtering
method for removal of artifacts from EEG signals, developed and patented by C.A.E. Kothe
and T.P. Jung in 2016 [17]. This method performs a Principal Component Analysis (PCA)
on the EEG data using a sliding window approach. In the initial step, ASR automatically
derives reference data from the raw signal based on the distribution of signal variance.
Subsequently, it establishes thresholds for identifying artifact components by considering
the standard deviation across the principal components of the windows, which is then
multiplied by a user-defined parameter ‘k’. Then, ASR identifies and eliminates artifact
components within each time window if their principal component surpasses the rejection
threshold. Finally, the method reconstructs the cleaned signals using the remaining data [18].
According to [19], the ‘k’ parameter dictates the aggressiveness of the faulty data removal
process. A smaller ‘k’ results in a more aggressive removal procedure. An enhanced variant
called Riemannian ASR employs manifold techniques for computing covariance matrices,
a method proven to be effective for artifact removal [20]. In an investigation involving
motor imagery EEG data [21], it was observed that an ASR technique with default settings
performs better than the Independent Component Analysis (ICA) and PCA methods.
In [18], researchers illustrated the efficacy of ASR as an automated approach for removing
artifacts from EEG data collected during attention tasks in a driving simulator. Additionally,
ref. [22] highlights the application of ASR to EEG data recorded during activities such
as fast walking and maintaining a single-leg stance. Lately, ASR has been incorporated
into the Smarting Pro smartphone application, enabling the automatic removal of artifacts
from multiple channels [6]. However, existing ASR algorithms cannot be applied to single-
channel EEG recordings and their performance can be impaired when the number of
channels is small [18].

In a study [23], the feasibility of employing Singular Spectrum Analysis (SSA) to
mitigate eye-blink artifacts in single-channel EEG data was explored. The technique is
applied to extract low-frequency, oscillatory, and noisy components from singular time
series data [24]. However, traditional SSA requires a crucial step in which the relevant
signal eigenvectors must be identified. A novel set of criteria for the selection of these
eigenvectors, crucial for reconstructing the desired signal, was also introduced [24]. SSA
was subsequently integrated into the Adaptive Filter (AF) framework to enhance perfor-
mance in [25]. Furthermore, single-channel EEG recordings have been subjected to ICA
after undergoing SSA processing [26]. In a recent development, SSA was employed as
a smoothing filter to mitigate the Electrooculogram (EOG) artifacts present in EEG sig-
nals [27]. A study [28] explored the integration of SSA-ICA and wavelet thresholding
techniques to eliminate EOG artifacts in single-channel contaminated EEG signals. Refer-
ence [29] introduced a versatile approach for EEG artifact removal with limited supervision.
They presented an innovative wavelet-based technique enabling the elimination of arti-
facts from single-channel EEG through a data-driven adjustment of wavelet coefficients.
Their method demonstrates the ability to dynamically reduce artifacts of varying types.
Nevertheless, the utilization of the aforementioned SSA algorithms into Android smart-
phone applications for artifact removal from EEG signals remains an area that has not
been explored.
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The majority of the approaches for eliminating eye-blink artifacts as mentioned earlier
are primarily employed for offline artifact elimination. However, in situations like natural
environment EEG experiments and epilepsy monitoring, where real-time signal processing
is essential, it becomes imperative that artifact removal algorithms are capable of handling
real-time processing. Consequently, to accommodate the needs of real-time artifact removal,
these methods or algorithms must meet specific criteria. The foremost requirement is that
the algorithm must operate automatically, without the need for any manual intervention.
Secondly, it is crucial to use minimum number of electrodes for natural environment
applications as this can cause discomfort and inconvenience to the subject during prolonged
EEG recordings. One of the major advantages of using single-channel EEG is its simplicity
and ease of use, as it requires less setup time and minimal equipment compared to multiple-
channel EEG. Additionally, it offers cost-effective solutions for researchers, especially those
working with limited resources, while still providing valuable data. For instance, studies
have shown that single-channel EEG can be used to identify cognitive states such as driver
drowsiness detection [30], as well as brain activity associated with specific mental disorders
like depression and anxiety [31]. Lastly, for real-time implementation on a smartphone app,
the artifact removal algorithm should have minimal computational complexity to ensure
that it does not introduce unacceptable time delays [3].

The dynamical embedding concept to perform ICA using single-channel EEG was
introduced in [32] for the separation of ocular artifacts. Pseudo-multichannel data called
the embedding matrix was created using delayed vectors spanning a few seconds, from
a single-channel EEG recording. This embedding matrix was used as the input to ICA.
Embedding is also a fundamental part of SSA, allowing for the separation of underlying
artifact components from single-channel EEG [24]. ASR has been successfully implemented
on an android smartphone [6] for addressing real-time artifacts, leveraging multiple channel
inputs. However, to the best of our knowledge, no work has studied ASR for single-channel
EEG. Therefore, our primary objective was to investigate the effectiveness of embedding
as a method for implementing ASR on single-channel EEG data. We achieved this by
creating an EmbeddedMatrix from a single-channel EEG signal and then applying ASR. This
framework may be a potential solution for artifact reduction on a smartphone for natural
environment EEG experiments. As a first step, to assess the performance of our novel
E-ASR framework, we focused on metrics (calculated before and after E-ASR framework)
such as relative root mean square error, correlation coefficient, average power ratio, and
reduction in number of eye-blinks. We evaluated the performance on semi-simulated and
real EEG signals. Figure 1 illustrates the graphical abstract of the proposed framework.

Figure 1. Graphical abstract for the proposed E-ASR framework on a single electroencephalogram
channel. Each color represents a single time point.
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2. Materials and Methods

2.1. Data Acquisition and Pre-Processing

The Indian Institute of Technology Guwahati Human Ethics Committee approved
this research work. It was conducted in accordance with the principles embodied in the
Declaration of Helsinki and in accordance with local statutory requirements. We obtained
EEG data for four (two male and two female, with a mean age of 28 years and standard
deviation of 4.33) subjects with the CameraEEG android application, which synchronously
records video and EEG data [33]. The app is compatible with all Android smartphones
running Android OS Lollipop or higher. We employed the CameraEEG app alongside an
EasyCap 24-channel headcap [34] and the mBrainTrain Smarting device [5]. The subjects
were asked to keep their eyes open for 5 min. The acquired video and EEG data were
saved as mp4 and bdf files, respectively, on the smartphone’s memory. The sampling
frequency was set at 500 Hz. Figure 2 shows the photographs of the recording setup used
for this work.

 

Figure 2. (a) The data recording setup for the resting-state eyes-open task, featuring (i) a One-
Plus Nord CE 2 Lite 5G smartphone placed on a tripod in front of the subject, (ii) an Easy-
Cap 24-channel EEG cap, and (iii) an mBrainTrain Smarting device mounted on the EEG cap.
(b) The CameraEEG Android app running on the smartphone, recording synchronized EEG and
video data.

The 5 min eyes-open data from the all the subjects is considered here throughout for
the analysis. The Fp1 and Fp2 channels from the EEG data were selected and considered
as single-channel EEG signals for further use, as they would contain the most eye-blinks
and eye movement-related artifacts. We normalized the data using zero-centered normal-
ization [18]. Following this, the single-channel signal was filtered by a band-pass filter
(0.5–100 Hz) and a notch filter was used to remove 50 Hz line noise (electrical shifts) [18,35].
There was no linear trend observed in the signal through visual inspection; hence, de-
trending of the signal was not considered. This might be a potential limitation of the
current study. The MATLAB codes used were developed using MATLAB version 2022b
(MathWorks, Natick, MA, USA) on a system with an Intel® Core (TM) i7-8700 CPU @
3.19 GHz and 16 GB memory.
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2.2. Construction of Multichannel EEG Matrix Using Embedding Approach

The embedding matrix is a way of representing the temporal structure of an EEG
signal [32]. It is created by making a series of delay vectors on a single channel EEG
data. This matrix captures information about underlying EEG generators based on single-
channel data [36,37]. Let us consider a single-channel electroencephalogram signal as
x = [x(1), x(2), . . . . . . . . . , x(N)], where N is the total number of samples. Then, the
multidimensional series can be written as Equation (1):

X =

⎡⎢⎢⎢⎣
x(1) x(2) · · · x(K)
x(2) x(3) · · · x(K + 1)

...
...

. . .
...

x(M) x(M + 1) · · · x(N)

⎤⎥⎥⎥⎦ (1)

where M is the embedding dimension and K = N − M + 1. If fs is the sampling frequency
of the signal and fL is the lowest frequency of interest, then the embedding dimension
M [32] can be determined by Equation (2):

M ≥ fs

fL
(2)

In our approach, the time lag is set to 1, which is supported by empirical evidence from [32].
We shall henceforth refer to Equation (1) as EmbeddedMatrix.

The embedding dimension (M) is a crucial parameter in decomposing a time series
data. It determines the number of lagged components of the time series. Selecting an
appropriate embedding dimension M is essential because it influences the quality of the
decomposition and the ability to extract meaningful information from the time series. If
M is too small, important information may be lost, leading to incomplete decomposi-
tion. On the other hand, if M is too large, it can lead to overcomplexity and noise in the
decomposition, making it harder to extract meaningful components [32]. Choosing the
optimal M often involves a balance between capturing important patterns and minimizing
noise [32].

2.3. Artifact Subspace Reconstruction

In the first step of ASR (i.e., calibration phase), the EEG data (X) is input for the
asr_calibrate function along with the sampling frequency in Hertz (Hz) to construct the
calibration data and determine rejection thresholds from the calibration data [18]. To do so,
the covariance matrix of X is calculated. Mixing matrix (MC) is calculated as the square
root of covariance matrix as in Equation (3).

MC MT
C = Cov(X) (3)

The eigenvalue decomposition of MC results in eigenvectors (VC) and eigenvalues
(DC). The principal component space is calculated as Equation (4).

YC = X ∗ VC (4)

Component-wise root mean square (RMS) values with a non-overlapping sliding
window of 1 s [18] are calculated and transformed into z-score. ASR selects the windows
with z-score in range of −3.5 < z < 5.5 [18], defines them as clean (artifact-free) sec-
tions, and concatenates them to generate the calibration data. From the clean sections of
each principal component, the mean (μ) and standard deviation (σ) of each component
are calculated. The threshold of each component is calculated as Equation (5), where i
refers to the principal component number and k is the cut-off parameter, whose value
was 17 [18].
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Ti = μi + kσi (5)

The threshold matrix T is the matrix product of diagonal matrix of threshold values Ti
and the transpose of eigenvectors VC. The threshold matrix T and the mixing matrix MC
are the outputs of this calibration phase, which are stored in a variable ‘state’ [18].

In the second step (i.e., process phase) of ASR, eigenvalue decomposition is performed
on data within a sliding window (0.5 s) [18] to obtain the eigenvalues (DT) and eigenvectors
(VT) of the data. Then asr_process function applies thresholds determined in the calibration
phase to create XT [18]. If an eigenvalue within that sliding window exceeds the thresh-
old, its corresponding eigenvector is removed. The leftover eigenvectors (Vtrunc) are hence
truncated and the data are reconstructed within that window according to Equation (6)
from [18].

(XT)clean = MC

(
VT

T Mc)
+
trunc VT

T XT (6)

Due to the rank reduction from truncation, the Moore–Penrose pseudoinverse (+)
ensures a reliable reconstruction by finding an optimal solution that minimizes recon-
struction error. This approach allows for accurate data recovery, even when the matrix
is singular or lacks full rank. The clean windows ((XT)clean) are concatenated to form
the clean artifact-free signal XClean. More details on the ASR algorithm can be found
in [17,35].

2.4. Proposed Method: Embedded Artifact Subspace Reconstruction

The embedded matrix is created by time lagging the pre-processed single-channel
EEG data. We determined the embedding dimension (M) to be large enough to capture the
information content in the signal. For the EEG signals described in this study, we derived
M using the equation given in (2). The pre-processed 1D EEG data were transformed
into EmbeddedMatrix as explained in Section 2.2, with time lag as 1. ASR is applied on the
EmbeddedMatrix using the MATLAB codes available in EEGLAB [38] as an open-source
plug-in function clean_rawdata. The output of application of ASR on EmbeddedMatrix is the
processedMatrix of the same dimensions. Anti-diagonal averaging [37] is then applied to
processedMatrix to reconstruct the E-ASR-cleaned signal.

3. Performance Metrics

We evaluated the effectiveness of our method on a semi-simulated single-channel EEG
signal using two well-known metrics: the relative root mean square error (RRMSE) and
the correlation coefficient (CC). The RRMSE is a commonly used measure for assessing
the performance of artifact removal techniques in semi-simulated EEG data [39]. The
correlation coefficient (CC), a statistically based metric, indicates the relationship between
two signals and is employed to evaluate the effectiveness of the artifact removal process [39].
A higher CC value suggests a stronger linear relationship, implying better performance
of the artifact removal method [39]. These metrics are calculated between the ground
truth signal, which is free of eye-blink artifacts, and the artifact-cleaned signal [39,40].
Additionally, we analyzed the average power ratio across different frequency bands and
the reduction in eye-blinks [40]. This analysis involves dividing the average power of each
frequency band by the overall average power of the entire signal to gauge the relative
contribution of each frequency band to the total signal strength [40]. In addition to these
parameters, we employed blink count estimation using an amplitude threshold technique, as
detailed below.

Blink Count Estimation Using Amplitude Threshold

The eye-blinks in the signal are calculated using amplitude, which ensures that
any large-amplitude artifacts arising from the single channel in prefrontal region can
be attributed to eye-blinks or eye movements. Any signal amplitude value exceeding a
threshold would be considered as an eye-blink [41]. We experimented by varying the
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constant parameter from 1 to 10 for Fp1 and Fp2 electrodes of three subjects. The ground
truth of eye-blink count obtained from the CameraEEG [33] video data was used for
cross-examining the various counts from the amplitude threshold formula. The counted
eye-blinks were also manually cross-checked with the CameraEEG video data. We ob-
served that the constant parameter of 6 matched with the ground truth eye-blink count.
A minimum distance between values exceeding this blink amplitude threshold was used
to differentiate one eye-blink from another and to avoid multiple detections of a single
blink event [41]. The minimum peak distance and threshold values were varied until
the expected separation and occurrence of eye-blinks was reached for the EEG signals
used in this study. Therefore, the blink amplitude threshold used was determined as
given in Equation (7) and the minimum distance between subsequent peaks was set
at 250 ms [42].

Blink Amplitude Threshold = 6 × ∑n
i=1|xi|

n
(7)

where x is the amplitude of the signal at sample number i with total sample points n.
The eye-blinks are counted in this manner for the single channel EEG data before and

after application of E-ASR. The large amplitude artifacts were calculated for each subject
(Fp1 and Fp2). The percentage reduction in artifacts was calculated as given in Equation (8).

Percentage reduction =
Be f ore ASR − A f ter ASR

Be f ore ASR
× 100 (8)

4. Results

4.1. Construction of Semi-Simulated Single Channel EEG and Eye-Blink Artifact

We created a semi-simulated dataset as given in [27] for testing the proposed method.
The EEG signals were acquired using the Smarting device, sampled at 500 Hz with a
resolution of 24 bits [5]. Two clean EEG segments about ten seconds long, without eye-
blinks, are manually identified and extracted from Fp1 channel of subject 4. These two
segments are then replicated and concatenated to a form 1-minute-long ground truth
single-channel EEG signal. Further, two eye-blink artifacts are manually segmented
and extracted from the same dataset, which is about 2 s long. To achieve a consis-
tent signal length of 10 s, we extended the isolated eye-blink segments by adding ze-
ros on both ends. Each clean segment is combined with one eye-blink segment using
Equation (9):

z = s+ ∝ m (9)

where z is the semi-simulated contaminated EEG segment, s is the clean EEG segment, m is
the eye-blink segment, and ∝ is the mixing coefficient that controls the signal-to-noise ratio
(SNR) of the constructed noisy signal [39,40]. The mixing coefficient ∝ can be calculated
using Equation (10):

SNR = 10log
(

RMS(s)
RMS(∝ m)

)
(10)

The SNR values were considered within the range −7 dB to 2 dB to calculate ∝ [40].
The root mean square (RMS) is given by Equation (11):

RMS(s) =

√
1
n∑n

i=1 s2
i (11)

Four variations were created by combining these clean and eye-blink segments in dif-
ferent orders. Finally, these were combined to create a 1 min semi-simulated contaminated
EEG signal. Figure 3 shows the schematic representation of the steps involved in creating
semi-simulated signal.
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Figure 3. Framework for creating semi-simulated signal: (a) 10 s clean EEG segment from subject 4,
(b) eye-blink, and (c) superposition of both clean EEG and eye-blink to create semi-simulated signal.

4.2. Results with Semi-Simulated Single Channel EEG Signal

The superposition plots of semi-simulated contaminated EEG, E-ASR-cleaned, and
ground truth signal using the proposed method are shown in Figure 4.

Figure 4. The superposition plots of semi-simulated contaminated EEG, E-ASR-cleaned, and ground
truth signal using the proposed algorithm: (a) plot for 1 min time duration signal; (b) zoomed version
of (a) showing one eye-blink.

It can be observed from Figure 4b that the eye-blinks are visibly reduced after ap-
plying E-ASR to the contaminated signal. An RRMSE of 43.87% and a CC of 0.91 were
achieved for E-ASR when applied to the semi-simulated signal. To enable a compar-
ison with the state-of-the-art ASR algorithm, an additional semi-simulated signal was
generated, forming a two-channel dataset. ASR was then applied to this two-channel
semi-simulated dataset, and its performance was assessed by calculating the RRMSE and
CC for the first channel of the ASR-cleaned data, yielding an RRMSE of 56.82% and a
CC of 0.85. To assess how well our method performed across different EEG frequencies,
we analyzed the average power distribution within each band relative to the entire spec-
trum for eyeblink artifact removal (Table 1). We focused on the delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz) bands, encompassing
the whole 0.5–100 Hz range. We also counted the eye-blinks using Equation (7); the semi-
simulated contaminated signal contained six eye-blinks and E-ASR effectively removed
all of them.
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Table 1. Average power distribution of EEG frequency bands for semi-simulated contaminated signal,
ground truth, and E-ASR-cleaned signal.

Frequency Bands Contaminated EEG E-ASR-Cleaned EEG Ground Truth EEG

Delta (0.5–4) 0.63 0.21 0.23

Theta (4–8) 0.14 0.14 0.15

Alpha (8–13) 0.04 0.10 0.10

Beta (13–30) 0.15 0.44 0.41

Gamma (30–100) 0.04 0.12 0.10

4.3. Results with Real EEG Signals

Unlike simulated data where we have a perfect version of the signal, real EEG record-
ings lack a ground truth. Therefore, to assess our method’s performance, we manually
identified sections of the recordings (from 5 min eyes-open data) that did not contain
artifacts and concatenated them to obtain an artifact-free signal of 1 min. To evaluate the
effectiveness of our method, we calculated the RRMSE and CC between the artifact-free
signal and its E-ASR-cleaned version, as shown in Table 2. It demonstrates that the method
consistently achieves high correlation (CC values close to 0.9) while maintaining reasonable
error levels (RRMSE) across all subjects and channels. We also show the comparison of
average power ratio between these two signals for all subjects in Figure 5.

Figure 5. Comparison of average power ratio between the artifact-free signal and its E-ASR-cleaned
version for all subjects. The E-ASR algorithm successfully restored the power distribution across the
EEG spectrum for each subject (a–d).

We sought to evaluate the performance of the proposed EASR algorithm against the
original ASR algorithm. The 24-channel data we originally collected was cleaned by the
ASR algorithm. In contrast, for application of E-ASR, a single channel was used from the
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24-channel montage. The ASR-cleaned Fp1 and Fp2 channels were considered for the time
domain comparison with the proposed EASR algorithm in Figure 6. Eye-blinks exhibit a
distinctive peak that becomes evident in time-domain EEG signals. Notably, the distinct
peaks corresponding to eye-blinks in the signal are eradicated after the application of
E-ASR. Table 3 presents the number of eye-blinks recorded before and after the application
of E-ASR for each subject. All subjects demonstrated a complete elimination of eye-blinks
post-E-ASR, indicating a 100% reduction. The computational time reflects the duration
taken for processing, varying slightly among subjects. Also, the generality of the framework
is shown by considering different sampling frequency and electrode locations (Appendix A:
Tables A1 and A2).

Table 2. RRMSE and CC between the artifact-free signal and its E-ASR-cleaned version.

Subject Channel RRMSE (%) CC

1
Fp1 41.06 0.91

Fp2 38.72 0.92

2
Fp1 47.37 0.88

Fp2 52.07 0.86

3
Fp1 46.26 0.89

Fp2 45.98 0.89

4
Fp1 43.53 0.90

Fp2 40.45 0.91

Table 3. Change in number of eye-blinks before and after E-ASR on 1 min single-channel real EEG
data for all subjects. Their computational time is also reported.

Subject Channel
No. of Eye-Blinks

Before E-ASR
No. of Eye-Blinks

After E-ASR
Percentage Reduction

of Eye-Blinks (%)
Computational
Time (Seconds)

Subject 1
Fp1 9 0 100 5.2

Fp2 9 0 100 4.9

Subject 2
Fp1 8 0 100 5.3

Fp2 4 0 100 5.3

Subject 3
Fp1 14 0 100 5.6

Fp2 16 0 100 5.4

Subject 4
Fp1 7 0 100 4.7

Fp2 7 0 100 4.5

To illustrate the impact of applying E-ASR to a single channel, topographic plots
were generated at a specific time point during which the subject exhibited an eye-blink.
Figure 7A illustrates that in the absence of ASR application, distinct high-amplitude peaks
(dark red regions) were observed in the prefrontal region from eye-blinks [43]. Upon
applying single-channel E-ASR to Fp1, the resulting ASR-cleaned channel was used in the
24-channel EEG configuration for the purpose of generating topographic plots.

The associated scalp map in Figure 7B demonstrates the successful removal of the
blink artifact from Fp1. However, Fp2 continued to have blink-related activity. E-ASR was
also independently applied on both Fp1 and Fp2 electrodes, and we observed effective
elimination of the eye-blink activity, as depicted in Figure 7C. This suggests that the single-
channel E-ASR framework is reasonably effective in removing artifact content.
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Figure 6. Time-domain comparison of original (blue), ASR-cleaned (green), and E-ASR-cleaned (red)
on Fp1 and Fp2 channels across all subjects.
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Figure 7. Spatial distribution of source activities at an eye-blink time point for (A) no E-ASR, (B) E-
ASR only applied on Fp1, and (C) E-ASR applied on Fp1 and Fp2 channels of subject 1. Red indicates
the presence of an eye-blink artifact whereas blue indicates the absence. The green circle indicates the
location of Fp1 electrode and pink indicates the location of Fp2 electrode.

5. Discussion

The developed framework aims to explore the efficacy of a novel Embedded Artifact
Subspace Reconstruction (E-ASR) for addressing artifact removal for single-channel EEG
data. The concept draws inspiration from dynamical embedding, initially proposed for
single-channel ICA in the separation of ocular artifacts [36]. This idea was extended to
create an embedding matrix from single-channel EEG data for implementing an artifact
subspace reconstruction algorithm. Notably, while ASR has been successfully applied in a
multichannel setting on an android smartphone [6], this study investigates the implemen-
tation of ASR specifically for single-channel EEG data. The primary goal was to assess the
performance of the E-ASR framework by employing metrics such as RRMSE, CC, average
power ratio, and percentage reduction in eye-blinks. We used an embedding dimension of
90 and lag (L = 1) for the proposed work, as in [32,44].

The application of the E-ASR algorithm on semi-simulated EEG data demonstrated
highly promising results (Figure 4). The algorithm successfully removed 100% of the eye-blink
artifacts, as evidenced by the achieved RRMSE of 43.87% and a high correlation coefficient
(CC) of 0.91. These metrics suggest that the E-ASR method not only effectively eliminates
artifacts but also retains the essential features of the original EEG signal, which is crucial
for maintaining data integrity. To compare its performance with the state-of-the-art ASR
algorithm, a two-channel semi-simulated dataset was generated. ASR was applied to this
dataset, and its performance was evaluated by calculating the RRMSE and CC for the first
channel of the ASR-cleaned data. This resulted in a higher RRMSE of 56.82% and a lower
CC of 0.85. These findings suggest that E-ASR outperforms ASR, offering a more optimal
balance between artifact reduction and signal preservation. Eye-blink artifacts predominantly
interfere with the low-frequency EEG bands (0–12 Hz) [27,42], often leading to a shift in
power distribution towards the delta band and subsequently weakening other frequency
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bands. This effect was evident when we introduced eye-blink artifacts into the semi-simulated
data. However, the E-ASR algorithm managed to restore the power balance across the EEG
spectrum, as observed in Table 1. Specifically, the power distribution in the delta, theta, alpha,
beta, and gamma bands of the E-ASR-cleaned signal closely matched that of the ground truth,
indicating that our method effectively mitigates the distortions caused by eye-blinks without
compromising the inherent frequency characteristics of the EEG signal.

Real EEG recordings inherently lack a definitive ground truth, making the evaluation
of artifact removal methods particularly challenging. In this study, we addressed this
issue by manually constructing a 1 min artifact-free signal from clean sections of the EEG
recordings. By comparing this signal with the E-ASR-cleaned version, we calculated the
relative root mean square error (RRMSE) and correlation coefficient (CC) to quantify the
performance of our method. The obtained mean RRMSE of 44.43% and a CC of 0.89 (from
Table 2) indicate that our E-ASR algorithm performs consistently well in preserving the
underlying signal characteristics while effectively reducing artifacts.

In real EEG data, the variability and complexity of eye-blinks are more pronounced,
making artifact removal more challenging. Despite this, the E-ASR algorithm demonstrated
robustness when applied to real EEG signals (Figure 6), effectively eliminating the distinct
peaks associated with eye-blinks. This result suggests that the E-ASR method is capable
of handling the dynamic nature of eye-blink artifacts in real-world scenarios, further
emphasizing its practical applicability. The complete elimination of eye-blink artifacts, as
demonstrated by the 100% reduction in eye-blinks across all subjects (Table 3), underscores
the efficacy of the E-ASR algorithm. Eye-blinks are particularly problematic in EEG analysis,
as they can obscure the brain activity of interest. Our results not only confirm the robustness
of E-ASR in mitigating such artifacts but also highlight its potential utility in improving
the quality of EEG data for subsequent analyses, such as event-related potentials or brain
connectivity studies.

The results from applying E-ASR to 1 min segments of real EEG data (Table 3) revealed
a complete (100%) reduction in eye-blinks. Although we have not yet conducted real-time
implementation, we have provided the computational time required for our algorithm to
run on a desktop computer using MATLAB software, version 2022b. The average processing
time was measured at 5.14 s for 1 min of EEG data. While the original ASR algorithm
requires slightly less computational time for the same data with equivalent sampling
frequency, it is important to note that ASR cannot be applied to single-channel data. The
difference in processing time primarily arises from the embedding and reconstruction
steps in the E-ASR algorithm. Overall, the balance between effectiveness and processing
time underscores the practicality of the E-ASR algorithm in mitigating eye-blink artifacts
without significantly compromising information.

Additionally, the comparison of the E-ASR performance with the traditional ASR
algorithm provided valuable insights into the advantages of our method. While ASR
demonstrated some effectiveness in cleaning the EEG data, the persistence of eye-blink
activity in Figure 6 after its application highlights the limitations of conventional methods.
In contrast, the E-ASR algorithm’s ability to fully eliminate eye-blinks from both Fp1 and
Fp2 channels illustrates its superior capacity for artifact removal. The topographic plots
(in Figure 7) further illustrate the impact of E-ASR in enhancing the clarity of EEG data.
The absence of distinct high-amplitude peaks in the prefrontal region after applying E-ASR
not only validates our approach but also emphasizes its potential relevance in clinical
and research settings. The preservation of brain activity during periods of blinks could
significantly improve the interpretability of EEG results and contribute to more accurate
clinical assessments and cognitive neuroscience research.

6. Conclusions

In this paper, we present a novel approach for implementing ASR on single-channel
EEG data. We generated a multichannel dataset by time-lagging prefrontal single-channel
EEG data, known as dynamical embedding. We evaluated the effectiveness of the E-ASR
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method in removing eye-blink artifacts from this EmbeddedMatrix. Our findings reveal that
the proposed E-ASR method achieved an average reduction of 100% in detected eye-blinks
for the real dataset. This significant result underscores how eye-blink artifacts can interfere
with the analysis of neural activity, potentially leading to misleading interpretations. The
complete removal of these artifacts enhances the quality and reliability of EEG signals,
making the data more suitable for subsequent analyses, such as cognitive assessments
and clinical diagnostics. Furthermore, this achievement demonstrates the E-ASR algo-
rithm’s robustness in handling the variability inherent in real-world data, suggesting its
potential as a standard pre-processing tool in EEG studies. Importantly, the algorithm
also maintained the integrity of the underlying neural signals, as evidenced by consistent
correlation coefficients and reduced relative root mean square error. Additionally, we used
an embedding dimension value of 90 for the current dataset. Utilizing the ASR algorithm
with a cut-off parameter of 17 ensured the preservation of brain activity.

The embedding dimension (M) plays a crucial role in the E-ASR algorithm. It deter-
mines the lowest frequency that can be extracted from the spectral decomposition of the
EmbeddedMatrix. Exploring the effect of M on performance metrics is a promising avenue
for future research. Additionally, computational efficiency is also linked to the embedding
dimension. As a result, reducing M can potentially lead to faster processing times.

The framework’s minimal channel requirements facilitate straightforward implemen-
tation, providing a practical advantage. Along with its performance and minimal electrode
requirement, the novel single-channel E-ASR algorithm may be well suited for integration into
a smartphone android application. We speculate that forthcoming natural environment EEG
applications may see advantages in using this framework. To further validate these findings,
future research should encompass more extensive investigations involving larger datasets.
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Appendix A

Table A1. Eye-blinks and computational time corresponding to occipital, temporal, parietal, and
midline central electrodes for all subjects.

Subject Channel No. of Eye-Blinks Before E-ASR No. of Eye-Blinks After E-ASR Computational Time

Subject 1

O2 0 0 4.88

T8 0 0 4.82

P7 0 0 4.98

Cz 1 1 4.90

Table A1. Cont.

Subject Channel No. of Eye-Blinks Before E-ASR No. of Eye-Blinks After E-ASR Computational Time

Subject 2

O2 2 2 4.67

T8 0 0 4.65

P7 1 1 4.69

Cz 0 0 4.73

Subject 3

O2 0 0 4.80

T8 0 0 4.65

P7 0 0 4.67

Cz 0 0 4.84

Subject 4

O2 0 0 4.64

T8 0 0 4.62

P7 0 0 4.72

Cz 0 0 4.67

Table A2. E-ASR results of 250 Hz sampling frequency for all subjects.

Subject Channel No. of Eye-Blinks Before E-ASR No. of Eye-Blinks After E-ASR
Computational Time

(Seconds)

1
Fp1 6 0 1.44

Fp2 9 0 1.45

2
Fp1 8 0 1.29

Fp2 5 2 1.50

3
Fp1 15 0 1.42

Fp2 16 0 1.32

4
Fp1 7 0 1.35

Fp2 7 0 1.23
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