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Preface

Backfill mining technology has emerged as a sustainable solution for mine waste management

and ground subsidence control in underground mining operations. Recognized for its efficiency,

environmental benefits, and potential for mine environment rehabilitation, this technology has gained

widespread adoption in modern mining practices.

Recent decades have witnessed significant advancements in backfill mining research,

encompassing mining methods, material development, and performance evaluation of backfill

systems. These developments have substantially promoted the application of backfill technology

in underground mines.

This Special Issue presents a collection of innovative studies that advance backfill technology

across multiple dimensions. The featured research covers fundamental investigations into material

properties, including mechanical behavior under dynamic loading and environmental cycles, as

well as practical applications such as novel dewatering techniques and optimized mining methods.

Several contributions focus on material enhancement through fiber reinforcement and thermal

treatment, while others address operational challenges through scheduling optimization and curing

agent development.

We extend our sincere gratitude to all authors for their valuable contributions, to the reviewers

for their constructive feedback, and to the editorial board for their dedicated efforts in preparing

this Special Issue. Their collective work has significantly enriched the field of sustainable mining

technologies.

This Special Issue demonstrates the remarkable progress in backfill technology, bridging

theoretical understanding with practical engineering solutions to address contemporary challenges

in mine waste management and sustainable resource extraction.

Yuye Tan, Xun Chen, and Yuan Li

Guest Editors
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Article

Research on the Long-Term Mechanical Behavior and
Constitutive Model of Cemented Tailings Backfill Under
Dynamic Triaxial Loading
Yuye Tan 1,2 , Jinshuo Yang 1,2,*, Yuchao Deng 1,2, Yunpeng Kou 2,3, Yiding Li 4 and Weidong Song 1,2

1 State Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education,
University of Science and Technology Beijing, Beijing 100083, China; tanyuye@ustb.edu.cn (Y.T.)

2 School of Resources and Safety Engineering, University of Science and Technology Beijing,
Beijing 100083, China

3 Filling Engineering Laboratory, Shandong Gold Group Co., Ltd., Laizhou 261441, China
4 Beijing Guoxin Anke Technology Co., Ltd., Beijing 100160, China
* Correspondence: yangjinshuo@xs.ustb.edu.cn

Abstract: Cemented tailings backfill (CTB) plays an important role in mine filling opera-
tions. In order to study the long-term stability of CTB under the dynamic disturbance of
deep wells, ultrafine cemented tailings backfill was taken as the research object, and the
true triaxial hydraulic fracturing antireflection-wetting dynamic experimental system of
coal and rock was used to carry out a static true triaxial compression test, a true triaxial
compression test under unidirectional disturbance, and a true triaxial compression test
under bidirectional disturbance. At the same time, the acoustic emission monitoring and
positioning tests of the CTB were carried out during the compression test. The evolution
law of the mechanical parameters and deformation and failure characteristics of CTB under
different confining pressures is analyzed, and the damage constitutive model of the filling
body is established using stochastic statistical theory. The results show that the compressive
strength of CTB increases with an increase in intermediate principal stress. According to the
change process of the acoustic emission ringing count over time, the triaxial compression
test can be divided into four stages: the initial active stage, initial calm stage, pre-peak
active stage, and post-peak calm stage. When the intermediate principal stress is small,
the specimen is dominated by shear failure. With an increase in the intermediate principal
stress, the specimen changes from brittle failure to plastic failure. The deformation and
failure strength of CTB are closely related to its loading and unloading methods. Under a
certain stress intensity, compared with unidirectional unloading, bidirectional unloading
produces a greater deformation of the rock mass, and the failure strength of the rock mass
is higher. This study only considers the confining pressure within the compressive limit of
the specimen. Future research can be directed at a wider range of stresses to improve the
applicability and reliability of the research results.

Keywords: ultrafine cemented tailings backfill; true triaxial; acoustic emission; failure
characteristics; constitutive model

1. Introduction
In recent years, with the gradual depletion of surface and shallow mineral resources,

deep mining has become the main trend of mining development [1–3]. The process of
underground metal mining, with increasing depth, faces a series of challenges, such as high
ground pressure, high temperature, and the poor stability of ore rock, and disasters such as

Minerals 2025, 15, 276 https://doi.org/10.3390/min15030276
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rock burst are prominent [4–6]. On 20 October 2018, a major rock burst accident occurred
in the drainage roadway and No.3 contact roadway of the 1303 working face of Shandong
Longyun Coal Industry Co., Ltd., Shandong Energy Longkuang Group, Shandong, China,
resulting in 21 deaths and 4 injuries, with a direct economic loss of 56.398 million yuan. The
buried depth of the accident area was 1027 m to 1067 m, and the high self-weight stress of
coal and rock mass was one of the main causes of the accident. The filling mining method
has been widely used in the deep metal mining process due to its advantages of high
production capacity, high recovery strength, and high safety [7–9]. As a key part or even
permanent part of the underground stope, the mechanical properties and overall stability of
the CTB are very important for controlling the pressure of the mining site during the mining
process and maintaining the long-term stability of the underground stope structure [10–12].
For example, CTB may be affected by dynamic loads (such as blasting vibration) during
mining, resulting in damage to its internal structure. The results show that after dynamic
loading, the microstructure of CTB degrades, the porosity increases, the wave velocity
decreases, and the uniaxial compressive strength and elastic modulus decrease significantly.
This damage reduces the bearing capacity of CTB and affects the long-term stability of the
mine [13]. Therefore, it is of great importance to study the mechanical properties of CTB to
ensure the safety of underground engineering.

In order to study the failure mechanism of deep CTB, scholars at home and abroad
have carried out a lot of research and achieved fruitful results. Wang et al. studied
the strength characteristics and failure characteristics of rock and CTB through triaxial
loading and unloading experiments [14–18]. Rong et al. analyzed the deformation and
failure characteristics and mechanical parameter evolution of deep rock under different
stress paths by carrying out true triaxial experiments on rock under different stress paths.
The study found that under triaxial compression conditions, rock deformation mainly
manifests as axial compression and expansion along the direction of minimum principal
stress, and that its failure mode is shear failure. Under the unloading conditions, the
rock deformation mainly manifests as strong dilatancy along the unloading direction,
and the failure mode is tensile–shear composite failure [19–22]. Miao et al. studied the
energy evolution law of rock under cyclic loading and unloading, discussed the relationship
between energy dissipation and rock strength, and proposed that according to the evolution
characteristics of the energy dissipation ratio curve and stress–strain curve, the cyclic
loading and unloading process can be divided into five stages: the initial compaction and
elastic stage, crack stable development stage, crack unstable development stage, post-peak
unstable rupture stage, and residual strength stage. The corresponding energy dissipation
ratio shows ‘spoon’-shaped evolution characteristics of slight decrease, stable development,
slow rise, and gentleness after significant rise. [23,24]. Lu et al. conducted a numerical
study on the mechanical behavior of backfill–rock composite structure (BRCS) under triaxial
compression, including deformation, failure mode, strength characteristics, and acoustic
emission evolution. The influence factors of deformation, strength characteristics, and
failure mode of BRCS under triaxial compression were obtained, and the characteristics of
each stage of the stress–strain curve of BRCS under triaxial compression were analyzed [25].
Fu et al. studied the influence of structural parameters on the creep mechanical properties
of surrounding rock and filling body composite specimens by carrying out conventional
triaxial tests and triaxial creep tests, and revealed the variation law of creep energy and
damage evolution characteristics [26]. Yang et al. studied the fracture mode and hydraulic
fracture propagation law of limestone under the combined action of multiple factors by
means of a true triaxial hydraulic fracturing test and numerical simulation [27].

2



Minerals 2025, 15, 276

In the process of loading, rock releases internal stored energy and produces new cracks,
accompanied by strong acoustic emission signals. Acoustic emission monitoring is used to
capture and characterize the micro-damage inside the CTB, which can reasonably charac-
terize the internal variation characteristics of the CTB during the loading process [28,29].
Cheng et al. conducted an acoustic emission test on the backfill-surrounding rock combina-
tion under uniaxial compression and found that the cumulative count of acoustic emission
ringing increased in an ‘S’ shape with time and constructed a coupling relationship between
the cumulative acoustic emission ringing count and the damage constitutive equation [30].
Gao et al. conducted triaxial compression and acoustic emission tests on different types
of reservoir rocks and found that the failure types and acoustic emission characteristics of
different types of reservoir rocks under triaxial stress are significantly different. [31]. Zhao
et al. studied the acoustic emission characteristics of rock burst under different unloading
rates and found that when the unloading rate is high, the rock is prone to strain-type
rock burst [32]. Some scholars have also studied the relationship between rock damage
theory and the acoustic emission parameters of rocks. Chen et al. carried out acoustic
emission monitoring tests of sandstone under true triaxial graded loading and proposed a
damage variable and damage evolution model based on the cumulative window waveform
number [33].

In this paper, the ultrafine cemented tailings backfill is taken as the research object.
Through the development of a coal–rock true triaxial hydraulic fracturing antireflection-
wetting dynamic experimental system and acoustic emission monitoring technology, the
mechanical properties of the CTB under dynamic true triaxial experimental conditions are
analyzed. The temporal and spatial evolution law of damage, ringing count, and energy in
the compression process is studied, and the fracture location is carried out. The long-term
strength evolution law of CTB under the dynamic disturbance of deep wells is summarized,
which is helpful to provide the basis for the strength design of CTB in deep mining.

2. Materials and Schemes
2.1. Experimental Materials

In this experiment, the ultrafine tailings of Jiaojia gold mine, Shandong, China, a
laboratory-made cementitious material, and tap water were selected as the experimental
materials, and the physical and chemical properties of the filling material were studied
via particle size analysis, X-ray diffraction analysis, and X-ray fluorescence spectrometer
(XRF) analysis. The particle size composition, mineral composition, and main chemical
composition of the whole tailings were obtained.

2.1.1. Ultrafine Tailing

Ultrafine tailings were selected in the experiment. The particle size composition
is shown in Figure 1, and the main chemical composition is shown in Figure 2. The
experimental results show that the average weighted particle size of all the tailings is
43.88 µm. The chemical composition of ultrafine tailings is mainly made up of SiO2 and
Al2O3, and its mineral composition is relatively simple, including quartz, feldspar, and
zeolite, so it is a good inert filling material.

3
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2.1.2. Cementitious Material

In this experiment, a laboratory’s self-developed cementitious material, ‘Filling C
Material’ was used for the research. Its mineral composition is mainly made up of slag and
gypsum. The chemical composition of filling C material is shown in Figure 3; its chemical
composition is mainly made up of CaO, SiO2, and Al2O3, and contains a small amount of
MgO, Fe2O3, and TiO2, indicating that it is an active cementitious material and suitable for
underground filling raw materials.
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2.2. True Triaxial Loading and Unloading Experimental Scheme
2.2.1. Specimen Preparation

According to the cement–sand ratio of 1:4, the appropriate amounts of cementitious
materials and ultrafine tailings were weighed, and the appropriate amount of tap wa-
ter was added for stirring. First, the mixture was manually stirred evenly, and then the
NRJ-411 A cement mortar mixer was used for strong stirring to ensure that the stirred
slurry had no obvious particles or agglomerates. The filling slurry, with a mass concen-
tration of 64%, was prepared. The shape of the specimen was a cube, and the size was
100 mm × 100 mm × 100 mm. After 48 h of preparation, the specimen was demolded and
placed in a standard curing box with a constant temperature (temperature 20 ± 1 ◦C) and
constant humidity (humidity 95 ± 1% ) for 60 days to obtain a CTB specimen under long-
term curing conditions. In each of the three experiments, three specimens were prepared for
each different intermediate principal stress condition, amounting to a total of twenty-seven
specimens. The surface of the obtained sample was carefully ground using a grinding stone
machine, and the surface roughness was controlled within 3 mm to ensure an as smooth
and flat surface as possible. At the same time, each pair of opposite surface samples should
be parallel to each other, and the angle deviation should be controlled within 0.25◦ to meet
the flatness requirements of the true triaxial test samples.

2.2.2. Experimental Scheme

In the experiment, the triaxial compression experiment of the CTB was carried out
using the true triaxial hydraulic fracturing antireflection-wetting dynamic experimental
system of coal and rock. In the compression process, the acoustic emission monitoring and
positioning test were carried out with the DS5 full information acoustic emission analyzer.
The acoustic emission sensor is fixed on the indenter to monitor the failure characteristics
of acoustic emission during the failure process of the specimen, Vaseline is applied between
the probe and the indenter to reduce the attenuation of the acoustic emission signal by
enhancing the coupling, the noise threshold of the experimental instrument is 30 mv, and
the data acquisition interval is 0.1 s. Set the initial stress, where σ1 represents the maximum
principal stress, along the Z direction. σ2 represents the intermediate principal stress along
the Y direction and σ3 represents the minimum principal stress along the X direction, as
shown in Figure 4. Figure 5 shows the process of the whole experiment.
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3. Results and Analyses
3.1. Study on Mechanical Properties of Backfill Under Static True Triaxial Compression
3.1.1. Stress–Strain Curve Analysis

Figure 6 shows the stress–strain curve of the triaxial compression test of the CTB
under different loading conditions. It was be found that, similar to the results of the true
triaxial compression experiments conducted by Rong et al. [19], the corresponding axial
stress increases gradually with an increase in confining pressure. At the initial stage, the
CTB specimen is in the compaction stage, the pores and cracks inside the specimen are
compacted, and the curve is concave. After that, the specimen is in the elastic stage, and the
stress–strain curve is approximately linear. After reaching peak strength, the slope of the
curve becomes negative, the CTB specimen is damaged from the compression state to the
expansion state, and the bearing capacity decreases rapidly. Under the same curing time,
with an increase in confining pressure, the peak strength of the CTB specimen increases
continuously, and the bearing capacity of the CTB specimen increases gradually.
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Figure 6. Stress–strain curves of CTB specimens under different loading conditions.

3.1.2. Analysis of Acoustic Emission Characteristics

The acoustic emission ringing energy is the number of oscillations of the transducer
crossing the threshold signal. It is a piece of monitoring data related to the signal amplitude
in the acoustic emission experiment. It is a basic measurement parameter that can reflect the
fracture of the CTB, and is widely used in the analysis of the internal crack evolution of the
rock mass. Figure 7 shows the relationship diagram of the time–ringing energy–cumulative
ringing energy of CTB under static true triaxial compression under different intermediate
principal stresses.
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It can be seen from Figure 7 that in the triaxial static compression test of the CTB
under different test conditions, the signal energy is mainly manifests in four stages with
the loading time. In the initial active stage, corresponding to the pore compaction stage of
the CTB, the ringing energy signal shows a concentrated and disorderly distribution. This
phenomenon is due to the joint action of the surface structure of the CTB to complete the
compaction, while the internal structure is still in the compaction process. In the initial
quiet stage, corresponding to the elastic stage of the CTB specimen, the acoustic emission
ringing energy is sporadically distributed, the signal is weak and disordered, the numerical
value is small, and only the compaction phenomenon of the initial crack appears locally. In
the pre-peak active stage, the active stage of acoustic emission of CTB specimens mostly
appears before the peak compressive strength of the specimens. Corresponding to the yield
failure stage of CTB, the structural performance of CTB begins to release, and the energy
accumulated in the initial quiet stage begins to release. In the post-peak quiet stage, after
the CTB reaches peak strength, its internal cracks expand greatly, resulting in a significant
decrease in the bearing capacity of the specimen. However, the post-peak strength of
the CTB is large, and the fragment structure still has bearing capacity. In addition, by
comparing the curves, it was found that with an increase in intermediate principal stress,
the intensity of the acoustic emission signal increases, and that the cumulative energy of
acoustic emission increases gradually at the same time.

3.1.3. Analysis of Failure Characteristics

Figure 8 shows the failure fracturing diagram under various conditions in the true
triaxial test of the CTB. It can be seen that when the intermediate principal stress is small,
the specimen is mainly shear failure. At this time, with the application of axial load and an
increase in strength, the CTB appears to penetrate cracks. When the intermediate principal
stress increases, the specimen appears as obvious tensile failure. From the microscopic point
of view inside the CTB, it is caused by the transverse tensile stress exceeding the tensile limit
of the CTB, and the main cracks appear in the form of tensile failure. With an increase in the
intermediate principal stress, the sample transforms from brittle failure to plastic failure.
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3.2. Study on Long-Term Mechanical Properties of Backfill Under Unidirectional Disturbance

The results of the unidirectional unloading test of the CTB are shown in Table 1 [34].
The strength of the CTB in this state is 4.61 MPa~5.46 MPa, which is smaller than in the
static compression results. The Poisson’s ratio is largest at a lateral pressure of 0.5 MPa,
indicating that tensile failure is most significant at this time.

Table 1. Unidirectional disturbance test results of CTB.

Unloading
Pressure (MPa)

Length
(mm)

Breadth
(mm)

Height
(mm)

Peak Strength
(MPa)

Elastic Modulus
(MPa)

Poisson’s
Ratio

0.3 99.96 100.02 99.90 4.61 802.33 0.2
0.5 99.95 99.95 99.99 5.22 722.1 0.41
0.7 99.95 99.98 99.98 5.46 336.97 0.05

3.2.1. Stress–Strain Curve Analysis

Figure 9 shows the stress–strain curves of CTB under unidirectional unloading under
different intermediate principal stresses, which are similar to those under true triaxial
compression. The deformation and failure of the CTB specimens can be divided into the
following stages: the compaction stage of micro-pores and cracks, at this time, the original
micro-pores and cracks inside the CTB gradually closed; the linear deformation stage, at this
stage, the stress and strain of the material showed an approximate linear relationship; the
yield stage, at which time the specimen began to undergo irreversible plastic deformation,
the microstructure was gradually destroyed, and the deformation rate was accelerated;
and the unloading and pressure-bearing stage, when the bearing capacity of the material
gradually decreased and the deformation tended to be stable until it completely failed.
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10



Minerals 2025, 15, 276

3.2.2. Analysis of Acoustic Emission Characteristics

Figure 10 [34] shows the acoustic emission energy curve generated via the unidi-
rectional disturbance of CTB under different intermediate principal stresses. Under the
conditions of unidirectional unloading, the acoustic emission activity law of the CTB speci-
men is similar to that under the conditions of triaxial compression. However, the intensity
of the acoustic emission signal is significantly enhanced, and the peaks of each stage are
more concentrated. This shows that under the conditions of unidirectional unloading,
the failure of the CTB specimen is more thorough and rapid, and that its compressive
performance is fully exerted and decreases rapidly with the rapid occurrence of failure.
This is also in line with the conclusion found by Zhao et al. [20] that when the unloading
reaches a certain level, the overall level of the acoustic emission b value under the triaxial
unloading path is lower than that of the conventional triaxial path, and that the damage
degree of the specimen is greater.
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Figure 10. Unidirectional acoustic emission energy curves of CTB: (a) σ2 = 0.3 MPa; (b) σ2 = 0.5 MPa; 

and (c) σ2 = 0.7 MPa. 

Figure 10. Unidirectional acoustic emission energy curves of CTB: (a) σ2 = 0.3 MPa; (b) σ2 = 0.5 MPa;
and (c) σ2 = 0.7 MPa.
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3.2.3. Analysis of Failure Characteristics

Figure 11 shows the failure characteristics of the CTB under unloading under dif-
ferent intermediate principal stresses. By comparison, it was found that the change in
intermediate principal stress can have a significant impact on the unloading failure. When
the intermediate principal stress is small, the CTB begins to break as a whole, and many
long tensile cracks appear on the surface. The main reasons for this are that the stress
redistribution caused by unloading and the deformation trend of the same micro-unit are
different, and there is large damage in the relatively weak position. When the intermediate
principal stress is large, the crushing of the specimen is aggravated; with multiple small
pieces peeling off, the size of the crack is obviously increased, and the bearing performance
of the specimen is weakened, but due to the existence of confining pressure, it still has a
certain bearing capacity. The confining pressure can make the broken small pieces form a
new bearing structure and have a new mechanical response in the process of failure.
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Figure 11. Unidirectional disturbance macroscopic failure characteristics of CTB: (a) σ2 = 0.3 MPa;
(b) σ2 = 0.5 MPa; and (c) σ2 = 0.7 MPa. (B, U, F, L and R represent the back, up, front, left and right
sides respectively. Red line: cracks on the front, upper and right sides of the specimen; green line:
cracks on other surfaces of the specimen).

3.3. Study on Long-Term Mechanical Properties of Backfill Under Bidirectional Disturbance

The results of the bidirectional unloading test of the CTB are shown in Table 2 [34].
The strength of the CTB in this state is 4.61 MPa~5.51 MPa, which is slightly higher than
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that in the unidirectional unloading state. The Poisson’s ratio is largest when the lateral
pressure is 0.7 MPa, indicating that the tensile failure is most significant.

Table 2. Bidirectional disturbance test results of CTB.

Unloading
Pressure (MPa)

Length
(mm)

Breadth
(mm)

Height
(mm)

Peak Strength
(MPa)

Elastic Modulus
(MPa)

Poisson’s
Ratio

0.3 99.94 100.01 99.99 4.61 231.49 0.02
0.5 100.02 99.91 100.00 5.17 567.50 0.08
0.7 100.00 100.05 100.00 5.51 454.65 0.48

3.3.1. Stress–Strain Curve Analysis

According to the test results, the stress–strain relationship curve of the CTB under
bidirectional disturbance is shown in Figure 12. Similarly to under the true triaxial compres-
sion conditions, the deformation and failure of the CTB have experienced the micro-pore
fracture compaction stage, the linear deformation stage, the yield stage, and the unloading
pressure stage. The greater the intermediate principal stress, the higher the peak strength.
The higher the confining pressure, the more the linear elastic deformation stage of the CTB
specimen can be extended to a higher level.
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Figure 12. Complete stress–strain curves of bidirectional disturbance test of CTB: (a) σ2 = 0.3 MPa;
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3.3.2. Analysis of Acoustic Emission Characteristics

Figure 13 shows the time–ringing energy–cumulative ringing energy relationship
diagram of the CTB under the influence of bidirectional dynamic load disturbance under
different intermediate principal stresses. According to the change process of acoustic
emission ringing count over time, there are still four stages. With an increase in the
confining pressure, due to the increase in the strength of the CTB, relatively more micro
cracks are produced during the failure process, and the friction effect between the internal
particles increases. Therefore, the ringing energy monitored via acoustic emission before
failure increases with an increase in curing age and shows an increasing trend in each stage
before failure. The acoustic emission activity of the CTB specimen increases significantly
under the conditions of bidirectional unloading, which indicates that the CTB specimen
has experienced rapid instability and failure under these conditions.
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3.3.3. Analysis of Failure Characteristics

Figure 14 shows the failure characteristics of the CTB under different confining pres-
sures during bidirectional unloading. By comparison, it was found that the change in
confining pressure under bidirectional unloading shows obvious azimuth, and that the
angle of sample failure is more comprehensive. Under a confining pressure of 0.3 MPa, the
unloading effect is not obvious, and the damage degree of the specimen is light. However,
due to the stress concentration at the end, the end of the specimen is damaged. When the
confining pressure is increased to 0.5 MPa, the specimen is severely broken during unload-
ing, the size of the crack on the specimen is significantly increased, and the phenomenon
of multiple small pieces accompanied by large pieces of spalling is presented. Under a
confining pressure of 0.7 MPa, the failure of the specimen is that large pieces of debris and

14
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some small pieces of debris appear at the same time. At this time, the CTB loses its bearing
capacity in structure and performance.
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(b) σ2 = 0.5 MPa; and (c) σ2 = 0.7 MPa.(B, U, F, L and R represent the back, up, front, left and right
sides respectively. Red line: cracks on the front, upper and right sides of the specimen; green line:
cracks on other surfaces of the specimen).

4. Construction of Constitutive Model
The CTB is transported via slurry and undergoes a complex hydration reaction. There

are a large number of micro cracks, holes, and other defects in the CTB. These defects are
randomly distributed inside the CTB, which changes the mechanical properties of the CTB
and reduces the deformation and strength parameters of the CTB. The damage and failure
of the CTB under the action of external load manifest as the generation of micro cracks,
the expansion to the intersection of each crack, and nucleation to form macro cracks. At
the initial stage of loading, the generation of such cracks is also random, which is due
to the randomness of the nature of the micro-element of the CTB. With an increase in
load, the cracks continue to expand and cross each other, and finally localize and lead to
damage. Therefore, it can be concluded that for the alternative material of CTB, its damage
is essentially random.

Based on this understanding, the damage constitutive model of the CTB is established
using the stochastic statistical theory. The following derivation is based on the following
assumptions: It is assumed that the damage to CTB is isotropic. It is assumed that the
failure of the micro-element of the CTB is controlled by its ultimate compressive strain, that
is, the failure of the micro-element is considered when its strain reaches the ultimate strain.
The stress–strain relationship of rock medium conforms to the generalized Hooke’s law.
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Assuming that the number of failed infinitesimals under a certain level of load is Nf, the
statistical damage variable Ds is defined as the ratio of the number of failed infinitesimals
to the total number of infinitesimals N.

Ds =
N f

N
(1)

In Equation (1), Ds is the damage variable of rock under external load; Nf is the
number of rock infinitesimal failures under external load; and N is the total number of rock
infinitesimals without external load.

Assuming that the strength F of each infinitesimal element satisfies a certain probability
distribution, the maximum value that the stress level S in each infinitesimal element can
reach also satisfies the probability distribution. When the stress level in an infinitesimal
element is in a certain stress level interval [S, S + dS], the probability of its failure is shown
in Equation (2).

Pf = P(S)dS (2)

In Equation (2), P is the density function of the probability distribution satisfied by
the infinitesimal strength F. The infinitesimal number dNd of failure in this interval in the
whole rock mass is obtained by multiplying the above probability by the total infinitesimal
number N:

dNd = NPf = NP(S)dS (3)

When loading to a certain stress level S, the infinitesimal whose strength is less than
the stress level has also failed. The number of failed infinitesimals Nd in the rock is the sum
of the number of failed infinitesimals in the previous intervals [35]:

Nd =
∫ S

0
NP(x)dx = NP(S) (4)

In Equation (4), P is the distribution function of the probability distribution satisfied
by the infinitesimal strength F.

The combined Equations (1) and (4) can be obtained as follows:

Ds = P(S) (5)

Equation (4) is the statistical damage evolution equation derived from the statistical
strength theory. For any distribution, with an increase in the stress level S, the distribution
function value P(S) changes from 0 to 1, which is consistent with the change rule of damage
variable Ds. From this point of view, the rationality of Equation (5) can be explained.

The randomness of the infinitesimal properties of CTB can be described using some
statistical distribution. Some studies have shown that Weibull distribution is more suitable
for describing the statistical distribution of CTB. Taking the CTB as the research object,
Sun et al. found that the failure of the backfill was caused by the damage to and failure of
the meso-element by establishing the meso-damage evolution equation and constitutive
equation in accordance with the Weibull statistical distribution law and combining it with
the numerical calculation of the meso-scale [36]. It is assumed that the ultimate strain of
the CTB infinitesimal conforms to the two-parameter Weibull distribution function f(ε):

f (ε) = ηβ(ηε)β−1e−(ηε)β

(6)

In Equation (6):
f (ε)—Distribution density function;
β—Homogeneity of ultimate strain of infinitesimal element;
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η−1—Overall average of the ultimate strain of all infinitesimals.
Since the rock damage process under unloading is not a simple superposition of pore

damage and stress damage, it is necessary to derive the total damage variable D in the
unloading process of sandstone under unloading according to the equivalence principle:

D = Ds + Dw − DsDw (7)

The following equation for calculating the comprehensive damage variable of rock
during unloading can be obtained:

D = 1 − 1 − n
1 − n0

exp
[
−
(

k
F

)m]
(8)

In this derivation, the Drucker–Prager criterion is introduced as a criterion to measure
the strength of rock micro elements:

f (σ) = k = αI1 +
√

J2 (9)

In Equation (9):
I1 is the first invariant of the stress tensor;
J2 is the second invariant of the stress deviator;
α is a parameter related to the material properties in the variable.
k = αI1 +

√
J2;

α = sin φ√
3
√

3+sin2 φ
;

I1 = σ∗
1 + σ∗

2 + σ∗
3 ;

J2 = 1
6

[(
σ∗

1 − σ∗
2
)2

+ (σ∗
2 − σ∗

3 )
2 +

(
σ∗

3 − σ∗
1
)2
]

Equation (9) can be written as follows:

D = 1 − 1 − n
1 − n0

exp

{
−
[(

αI1 +
√

J2

F

)m
]}

(10)

Considering that the rock still has a certain ability to transfer load after failure, it is
considered that the infinitesimal can still transfer part of the load after failure, and has
a certain bearing capacity [35]. Combined with the concepts of the strain equivalence
principle and effective stress principle, proposed by Lemaitre, the relationship equation
between nominal stress and effective stress with the introduction of the damage variable
correction factor is obtained.

σ∗ =
σ

1 − D
(11)

According to the generalized Hooke’s law, the following equation can be obtained:

εi =
1
E

[
σ∗

i − µ
(

σ∗
j + σ∗

k

)]
(12)

In Equation (12), i, j, k = 1,2,3; εi is the strain in the i direction; E is the elastic modulus
of rock in a certain state; σi∗, σj∗, and σk∗ are directional stresses in the directions of i, j,
and k; and µ is the Poisson’s ratio of rock.

Based on the stress conditions of the triaxial test σ2 = σ3 and Equation (12), the
deformation is obtained:

σ1 = Eε1(1 − D) + 2µσ3 (13)
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When substituting Equation (10) into Equation (13), the damage evolution equation of
the CTB sample under the actions of loading and unloading is obtained as follows:

σ1 = Eε1
1 − n
1 − n0

exp

{
−
[(

αI1 +
√

J2

F

)m
]}

+ 2µσ3 (14)





I1 = Eε1
σ1+2σ3

σ1−2µσ3√
J2 = 1√

3
Eε1

σ1−σ3
σ1−2µσ3

α = sin φ√
3
√

3+sin2 φ

(15)

Equations (14) and (15) are the damage constitutive equations of the CTB under
different porosities.

5. Conclusions
1. Under the conditions of static true triaxial compression and with an increase in the

intermediate principal stress σ2, the axial stress of the CTB increases continuously,
indicating that an increase in the confining pressure can improve the bearing capacity
of the CTB. When the intermediate principal stress is small, the specimen is mainly
shear failure. When the intermediate principal stress increases, the specimen shows
obvious tensile failure. At the same time, with the application of dynamic load
disturbance, the failure of the CTB is more severe, and the specimen changes from
brittle failure to plastic failure;

2. The deformation and failure strength of CTB are closely related to its loading and
unloading methods. Under the actions of loading and unloading, it generally experi-
ences the process of volume compression first, and then volume expansion. Unloading
must cause the phenomenon of rock mass expansion. Different unloading methods
lead to the different deformation and failure characteristics of the rock mass. Under a
certain stress intensity, bidirectional unloading produces greater deformation than
the unidirectional unloading of the rock mass, and the failure strength of the rock
mass is higher;

3. The distribution law of the acoustic emission energy signal shows that for the dataset
generated during the triaxial compression process of the CTB, it is dominant in the
early compaction stage of loading, and that the local damage is shear failure. After the
fracture begins to develop and the CTB enters the yield stage, the overall failure mode
of the specimen is replaced by tensile failure, because the CTB is a low-porosity and
no-pre-existing-crack structure material. The results show that the useful information
from the acoustic emission source characteristics can effectively provide information
on related damage in deformed rock.
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Abstract: Layered cemented filling leads to a layered composite structure of cemented tailings backfill
(CTB) composed of high-strength top and bottom layers, as well as a low-strength middle layer. To
solve the problem of the low mechanical properties of the middle layer caused by layered filling, this
study proposes the concept of an enhance layer, that is, an enhance layer is added to the middle weak
layer to improve its overall mechanical properties. To explore the characteristics of strength, failure
modes, energy dissipation, and progressive damage of stratified cemented tailings backfill (SCTB)
with varying layered structures, the uniaxial compressive tests of SCTB specimens with enhance
layers c/t of 1:15, 1:10, and 1:6, as well as height proportions of 0.1, 0.2, and 0.3, are examined. The
results show that the elastic modulus and uniaxial compressive strength (UCS) of SCTB samples
increase with the height ratio and cement-to-tailings ratio of the enhance layer. The elastic modulus
and strength of SCTB specimens is more sensitive to the height ratio of the enhance layer than the
c/t ratio. Moreover, the SCTB specimens mainly manifested as tensile failure of the upper layer and
lower layer, but they did not penetrate the entire specimen. The propagation of cracks is limited by
the addition of the enhance layer. The SCTB specimens have stronger plastic deformation ability,
and a large part of the all-strain energy is dissipated in the shape of plastic failure. In addition, a
constitutive model for damage in SCTB samples has been developed. The SCTB samples with a
reasonable structure can also achieve sufficient strength compared to directly increasing the c/t ratio
of CTB specimens while reducing the cost of cemented tailings backfill preparation. This approach
reduces the carbon footprint of the mining industry and improved the overall mechanical properties
and stability of the stratified cemented tailings backfill. This study provides a new approach for
high-stage subsequent stope backfilling. The findings will offer guidance for the design of a layered
filling mining method.

Keywords: stratified cemented tailings backfill; uniaxial compressive tests; energy dissipation; failure
modes; damage progression

1. Introduction

The mining industry boom has fueled an unprecedented economic growth for many
countries around the world, but the extraction of minerals, especially metal resources, has
brought many problems to human beings, such as solid wastes disposal and underground
goafs management [1–3]. The filling mining method is favored for its efficacy in stabilizing
ground pressure and managing mine waste [4,5]. The cemented tailings backfill is a kind
of composite medium with a certain strength, which is prepared by tailings, water, and a
binding agent in a certain proportion [6,7]. The strength of the CTB is affected by the amount
of binding agent. Blindly increasing the amount of binding agent will indeed enhance the
strength of the CTB, but it will significantly increase the material cost. Reducing the amount
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of cement will reduce the cost of filling, but it will bring instability factors. Therefore, it is
very important to determine a reasonable strength of cemented tailings backfill [8–10].

At present, in order to simultaneously take into account the cost saving and the
strength of the CTB, the layered filling mining method has been adopted by numerous
mines, namely, the top layer and bottom layer are filled with a high cement–tailings ratio
slurry, and a low cement–tailings ratio slurry is used in the middle layer [11–13], as shown
in Figure 1. However, this structure entails certain problems in practical application. Due
to the relatively weak strength of the CTB in the middle layer, it often breaks down and
falls off under the mining disturbance of the neighboring stope, which affects the safety
and stability of the stope [14–16].
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The strength and stability of SCTB are mainly affected by internal and external factors.
Xu et al. [17,18] have demonstrated that the strength development of the CTB was inhibited
by low temperature, and the strength escalated as the temperature rose. Zheng et al. [19]
revealed that the UCS of the sulfur-containing CTB will decrease to a certain extent in the
later stage of curing. Moreover, the larger the proportion of fine tailings, the lower the
strength of the CTB. Nochaiya and Xu [20,21] investigated the silica fume on the UCS of
cemented tailings backfill. The silica fume improves the mechanical property and stability
of the cemented tailings backfill. Wang et al. [22] examined the influence of the cement-
to-tailings (c/t) ratio and height of the intermediate layer on the mechanical properties of
the SCTB. The results show that the strength of the CPB increases with decreases in the
height of the intermediate layer and increases with the cement-to-tailings ratio. Zhang
et al. [23] obtained that the peak strength and elastic modulus of the SCTB increase with
the decrease of the number of layers. Cao et al. [11] reported that the UCS of the layered
cemented tailings backfill decreases with the extension of the filling interval time in different
layers. Wu et al. [24] experimentally studied the influence of interface angle on CPB–rock
deformation characteristics and shear strength. The interface angle is crucial in determining
the failure of the specimen.

In the above study, it has been confirmed that the failure mode, damage progression,
and strength of the SCTB are mainly affected by the number of layers, cement–tailings ratio,
and the proportion of intermediate layers [25,26]. However, no effective measures have
been put forward to enhance the mechanical properties of the middle layer. The middle
layer in the layered cemented tailings backfill is still the most vulnerable area [27,28].

Therefore, this study proposes the concept of a enhance layer, that is, adding a enhance
layer to the middle weak layer to improve its mechanical properties, thereby increasing
the mechanical property and stability of the entire SCTB, as shown in Figure 1. To uncover
the mechanical characteristics and deformation behavior of the middle layer containing
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the enhance layer, the effect of the c/t ratio and height ratio of the enhance layer on it
were studied using a uniaxial compression test. The height of the enhance layer (h/H)
was set as 0.1, 0.2, and 0.3; the position of the enhance layer was set as 1/2 of the middle
layer; the cement–tailings ratio of the enhance layer was set as 1:15, 1:10, and 1:6; and the
cement–tailings ratio of the middle layer was set as 1/20. The purpose was to clarify the
reinforcing effect of enhance layer on the stratified cemented tailings backfill.

2. Materials and Experimental Program
2.1. Materials

The silica tailings (ST), composed of 99.6% silica, were utilized in the fabrication of
the stratified cemented tailings backfill (SCTB) specimens. The distribution of grain size
for ST is illustrated in Figure 2. The content of fine particles was more than 30%, which
was intended to avert the segregation of fresh CTB slurry. The cement used for fresh
SCTB preparation was Ordinary Portland Cement (OPC, P.O. 42.5R). The primary chemical
constituents of Ordinary Portland Cement are detailed in Table 1. As shown in Table 1, it
is mainly composed of Calcium Oxide (64.78%), Silicon Oxide (20.34%), and Aluminium
Oxide (5.02%). Its specific gravity is 3.0–3.2. The cement and ST were mixed with tap water.

Minerals 2024, 14, x FOR PEER REVIEW 3 of 18 
 

 

increasing the mechanical property and stability of the entire SCTB, as shown in Figure 1. 
To uncover the mechanical characteristics and deformation behavior of the middle layer 
containing the enhance layer, the effect of the c/t ratio and height ratio of the enhance layer 
on it were studied using a uniaxial compression test. The height of the enhance layer (h/H) 
was set as 0.1, 0.2, and 0.3; the position of the enhance layer was set as 1/2 of the middle 
layer; the cement–tailings ratio of the enhance layer was set as 1:15, 1:10, and 1:6; and the 
cement–tailings ratio of the middle layer was set as 1/20. The purpose was to clarify the 
reinforcing effect of enhance layer on the stratified cemented tailings backfill. 

2. Materials and Experimental Program 
2.1. Materials 

The silica tailings (ST), composed of 99.6% silica, were utilized in the fabrication of 
the stratified cemented tailings backfill (SCTB) specimens. The distribution of grain size 
for ST is illustrated in Figure 2. The content of fine particles was more than 30%, which 
was intended to avert the segregation of fresh CTB slurry. The cement used for fresh SCTB 
preparation was Ordinary Portland Cement (OPC, P.O. 42.5R). The primary chemical con-
stituents of Ordinary Portland Cement are detailed in Table 1. As shown in Table 1, it is 
mainly composed of Calcium Oxide (64.78%), Silicon Oxide (20.34%), and Aluminium Ox-
ide (5.02%). Its specific gravity is 3.0–3.2. The cement and ST were mixed with tap water. 

Table 1. The chemical constituents of the cement. 

Component CaO Al2O3 Fe2O3 SiO2 MgO K2O Na2O SO3 TiO2 LOI 
Content (wt. %) 64.78 5.02 3.11 20.34 1.09 0.35 0.10 2.20 0.26 2.75 

 
Figure 2. The distribution of grain size for ST. 

2.2. Mix Proportions and Specimen Preparation 
The SCTB specimens included three layers: upper layer, enhance layer, and lower 

layer. The c/t ratio for both the lower and upper layers was designed to be 1/20. Mean-
while, the enhance layer was designed with three different height ratios and three distinct 
c/t ratios. The fresh CTB mixtures concentration of all layers was 70%. In all 11 groups of 
specimens were prepared, three samples were made for each case. The specific experi-
mental proposal and parameters of SCTB samples are offered in Figure 3 and Table 2. The 
cement, tailings, and tap water were thoroughly blended using an agitator for over 5 min. 
After homogeneously mixing, the fresh slurry was poured into the cylindrical molds 
measuring 50 mm in diameter and 100 mm in height. During the preparation of each layer, 
the fresh mixtures should be stamped with a stirring rod to eradicate the air bubbles as 
far as possible. Then, the SCTB samples were cured in a chamber with relative humidity 
controlled at 95 ± 5% and temperature controlled at 20 ± 5 °C. 

Figure 2. The distribution of grain size for ST.

Table 1. The chemical constituents of the cement.

Component CaO Al2O3 Fe2O3 SiO2 MgO K2O Na2O SO3 TiO2 LOI

Content (wt. %) 64.78 5.02 3.11 20.34 1.09 0.35 0.10 2.20 0.26 2.75

2.2. Mix Proportions and Specimen Preparation

The SCTB specimens included three layers: upper layer, enhance layer, and lower layer.
The c/t ratio for both the lower and upper layers was designed to be 1/20. Meanwhile,
the enhance layer was designed with three different height ratios and three distinct c/t
ratios. The fresh CTB mixtures concentration of all layers was 70%. In all 11 groups of
specimens were prepared, three samples were made for each case. The specific experimental
proposal and parameters of SCTB samples are offered in Figure 3 and Table 2. The cement,
tailings, and tap water were thoroughly blended using an agitator for over 5 min. After
homogeneously mixing, the fresh slurry was poured into the cylindrical molds measuring
50 mm in diameter and 100 mm in height. During the preparation of each layer, the fresh
mixtures should be stamped with a stirring rod to eradicate the air bubbles as far as possible.
Then, the SCTB samples were cured in a chamber with relative humidity controlled at
95 ± 5% and temperature controlled at 20 ± 5 ◦C.
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Table 2. The mix proportions for SCTB samples.

Sample ID Cement/Tailings (c/t)
Ratio of Middle Layer Height Ratio (h/H) Cement/Tailings (c/t)

Ratio of Enhance Layer Curing Age (d)

CTB-20 1/20 28
CTB-15 1/15 28

SC-0.1-15 1/20 0.1 1/15 28
SC-0.1-10 1/20 0.1 1/10 28
SC-0.1-6 1/20 0.1 1/6 28
SC-0.2-15 1/20 0.2 1/15 28
SC-0.2-10 1/20 0.2 1/10 28
SC-0.2-6 1/20 0.2 1/6 28
SC-0.3-15 1/20 0.3 1/15 28
SC-0.3-10 1/20 0.3 1/10 28
SC-0.3-6 1/20 0.3 1/6 28

2.3. Test Apparatus and Procedure

Unconfined compressive strength tests were conducted on CTB specimens in accor-
dance with ASTM C39 (ASTM C39/C39M-18, 2001) [29]. The uniaxial compressive strength
of CTB sample was tested by a computer-controlled press (SLB-1) with a deformation rate
of 0.5 mm/min and a loading capacity of 60 kN. The pressing apparatus had a full-scale
precision of 1%. The stress–strain curves of the samples were recorded automatically by the
computer during the test. A group of four SCTB specimens was utilized for the compressive
strength tests, and the mean value of four specimens was acquired for following examination.

3. Result and Discussion
3.1. Mechanical Characteristics of SCTB Specimens

The UCS of SCTB specimens with different height ratios and c/t ratios of the enhance
layer are shown in Figure 4. Based on Figure 4, the results shown that the UCS of the
SCTB specimens all increased with the height ratio of the enhance layer. For example, for
SCTB specimen with a c/t ratio of 1/15, the UCS of the SCTB sample with a height ratio of
0.1 was 321.3 kPa. When the height ratio was increased to 0.2 and 0.3, the UCS of the SCTB
specimens increased to 375.5 kPa and 451.1 kPa, and the UCS incremental rate came out
to 16.9% and 40.5%, respectively. Likewise, when the cement-to-tailings ratio of the SCTB
specimens increased to 1/10, the UCS values were 354.5 kPa, 393.3 kPa, and 562.6 kPa at
height ratios of 0.1, 0.2, and 0.3, which increased by 10.9% and 58.7%, respectively. Similar
to the law of height ratio, the UCSs of the SCTB specimens all increased with the c/t
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ratio of the enhance layer. For the SCTB specimen with a height ratio of 0.1, the UCSs
were 321.3 kPa, 354.5 kPa, and 432.3 kPa at cement-to-tailings ratios of 1/15, 1/10, and
1/6, which increased by 10.3% and 34.5%, respectively. In summary, the UCS values of
the SCTB specimens increased as both the height ratio and the cement-to-tailings ratio
were increased.
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The above outcomes indicate a strong correlation between the UCS values of the SCTB
specimens and the height ratio and cement-to-tailings ratio of the enhance layer. The failure
of the SCTB samples resulted from the generation and propagation of cracks. Generally,
failure of the SCTB samples initiated in the low-intensity regions and then gradually spread
to the enhance layer, culminating in comprehensive failure of the specimens [22]. The ratio
of the low-strength region decreased with the increase in the enhance layer height ratio, and
the crack was more difficult to expand, leading to the improvement of the whole strength
of the SCTB samples. The internal strength difference of the SCTB samples increased with
the cement-to-tailings ratio of the enhance layer, which made the overall tensile failure of
the specimen less likely to occur.

It is noteworthy that the UCS values of some SCTB specimens were lower than those
of complete CTB specimens. The addition of enhance layer divided the CTB specimen into
an upper layer, enhance layer, and lower layer, which damaged the overall structure of the
CTB specimen. The stratification effect caused by the addition of the enhance layer will
reduce the strength of CTB specimens. The reduction in CTB specimen strength caused by
the stratification effect was higher than the enhancement effect caused by the addition of
the enhance layer, which reduced the strength of the CTB specimens.

The UCS contour map of the SCTB specimens with different height ratios and cement-
to-tailings ratios is shown in Figure 5. The strength contours intersect more with the X axis,
indicating a significant range of strength values at different height ratio levels. By adjusting
the height ratio, the strength can be more effectively optimized at a specific cement-to
tailings ratio. This suggests that the impact of the height ratio of the enhance layer on the
UCS of the SCTB specimens is greater than that of the c/t ratio. It can be concluded that
the strength of SCTB specimens is more sensitive to the height ratio of the enhance layer.
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Figure 6 displays the conventional UCS values of CTB specimens with a c/t ratio of
1/15 and SCTB specimens containing height ratios of 0.1, 0.2, and 0.3; as well as c/t ratios of
1/15, 1/10, and 1/6, respectively. The UCS values of the specimens of SC-0.2-6, SC-0.3-10,
and SC-0.3-6 reached UCSs of 517.4 kPa, 562.6 kPa, and 643.8 kPa, while the UCS of CTB-15
reached 483.5 kPa, which is lower compared to the above SCTB samples. Based on the
preceding results, it can be deduced that SCTB samples with a reasonable structure can
also achieve sufficient strength compared to directly increasing the c/t ratio of the CTB
specimens while also reducing the cost of CTB preparation.

Minerals 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 5. The UCS contour map of SCTB specimens. 

Figure 6 displays the conventional UCS values of CTB specimens with a c/t ratio of 
1/15 and SCTB specimens containing height ratios of 0.1, 0.2, and 0.3; as well as c/t ratios 
of 1/15, 1/10, and 1/6, respectively. The UCS values of the specimens of SC-0.2-6, SC-0.3-
10, and SC-0.3-6 reached UCSs of 517.4 kPa, 562.6 kPa, and 643.8 kPa, while the UCS of 
CTB-15 reached 483.5 kPa, which is lower compared to the above SCTB samples. Based on 
the preceding results, it can be deduced that SCTB samples with a reasonable structure 
can also achieve sufficient strength compared to directly increasing the c/t ratio of the CTB 
specimens while also reducing the cost of CTB preparation. 

 
Figure 6. The UCSs of different SCTB samples. 

Figure 7 shows the elastic modulus of SCTB specimens with various enhance layer 
c/t ratios and height ratios. The elastic modulus values of the SCTB samples all increased 
with the height ratio of the enhance layer given a constant c/t ratio. For example, for the 
SCTB specimen with a cement-to-tailings ratio of 1/15, the elastic modulus of the SCTB 
sample with a height ratio of 0.1 was 12.4 MPa. As the height ratio was elevated to 0.2 and 
0.3, the elastic modulus of the SCTB specimens increased to 17 MPa and 23.7 MPa, and the 
elastic modulus incremental rate came out to 37.1% and 91.1%, respectively. Similar to the 
law of height ratio, the elastic modulus values of the SCTB specimens all increased with 
the c/t ratio of the enhance layer for a given height ratio. For the SCTB specimen with a 
height ratio of 0.1, the elastic modulus values were 12.4, 14.5, and 17.9 MPa at cement-to-
tailings ratios of 1/15, 1:10, and 1:6, which increased by 16.9% and 44.4%, respectively. This 

Figure 6. The UCSs of different SCTB samples.

Figure 7 shows the elastic modulus of SCTB specimens with various enhance layer c/t
ratios and height ratios. The elastic modulus values of the SCTB samples all increased with
the height ratio of the enhance layer given a constant c/t ratio. For example, for the SCTB
specimen with a cement-to-tailings ratio of 1/15, the elastic modulus of the SCTB sample
with a height ratio of 0.1 was 12.4 MPa. As the height ratio was elevated to 0.2 and 0.3, the
elastic modulus of the SCTB specimens increased to 17 MPa and 23.7 MPa, and the elastic
modulus incremental rate came out to 37.1% and 91.1%, respectively. Similar to the law of
height ratio, the elastic modulus values of the SCTB specimens all increased with the c/t
ratio of the enhance layer for a given height ratio. For the SCTB specimen with a height ratio
of 0.1, the elastic modulus values were 12.4, 14.5, and 17.9 MPa at cement-to-tailings ratios
of 1/15, 1:10, and 1:6, which increased by 16.9% and 44.4%, respectively. This phenomenon
can be comprehended, as the stiffness of the lower layer and upper layer of the SCTB
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sample is relatively small, and the stiffness of the enhance layer is relatively large. The
section of the high stiffness region escalates as the height ratio and cement-to-tailings ratio
of the enhance layer augment, which results in an enhancement in the overall stiffness of
the SCTB samples. In summary, the elastic modulus of SCTB specimens escalates as both
the height ratio and the cement-to-tailings ratio increase.

Minerals 2024, 14, x FOR PEER REVIEW 7 of 18 
 

 

phenomenon can be comprehended, as the stiffness of the lower layer and upper layer of 
the SCTB sample is relatively small, and the stiffness of the enhance layer is relatively 
large. The section of the high stiffness region escalates as the height ratio and cement-to-
tailings ratio of the enhance layer augment, which results in an enhancement in the overall 
stiffness of the SCTB samples. In summary, the elastic modulus of SCTB specimens esca-
lates as both the height ratio and the cement-to-tailings ratio increase. 

 
Figure 7. The elastic modulus values of SCTB samples. 

However, the elastic modulus values of the SCTB samples were inferior to those of 
the CTB sample under a certain cement-to-tailings ratio and height ratio of the enhance 
layer. It is evident that when the height ratio was 0.1, the elastic modulus of the SCTB 
sample was inferior to that of the CTB specimen regardless of the cement-to-tailings ratio. 
As the height ratio increased to 0.2, the elastic modulus of the SCTB specimen surpassed 
that of the CTB sample only as the cement-to-tailings ratio was 1:6. When the height ratio 
increased to 0.3, the elastic modulus of the SCTB sample was inferior to that of the CTB 
sample only when the cement-to-tailings ratio was 1:15. Therefore, the elastic modulus 
values of the SCTB specimens with a height ratio of 0.1 or a cement-to-tailings ratio of 1:15 
were both inferior to those of the CTB specimens. 

Figure 8 exhibits the contour map depicting the elastic modulus values of SCTB spec-
imens across various h/H ratios and c/t ratios. The elastic modulus is often used to char-
acterize the deformation resistance of a SCTB specimen under varied conditions. An ele-
vated elastic modulus indicates a reduced propensity for the specimens to undergo defor-
mation, which significantly augments the structural stability. It can be seen from Figure 8 
that the strength contours intersect more with the X axis. By adjusting the height ratio, the 
elastic modulus can be more effectively optimized at a specific cement-to tailings ratio. 
This manifested that the influence of the enhance layer height ratio on the elastic modulus 
values of the SCTB specimens was more significant than the influence of the cement-to-
tailings ratio on the elastic modulus values of the specimens. It can be concluded that the 
elastic modulus of a stratified cemented tailings backfill specimen is more sensitive to the 
height ratio of the enhance layer. 

Figure 7. The elastic modulus values of SCTB samples.

However, the elastic modulus values of the SCTB samples were inferior to those of the
CTB sample under a certain cement-to-tailings ratio and height ratio of the enhance layer.
It is evident that when the height ratio was 0.1, the elastic modulus of the SCTB sample was
inferior to that of the CTB specimen regardless of the cement-to-tailings ratio. As the height
ratio increased to 0.2, the elastic modulus of the SCTB specimen surpassed that of the CTB
sample only as the cement-to-tailings ratio was 1:6. When the height ratio increased to 0.3,
the elastic modulus of the SCTB sample was inferior to that of the CTB sample only when
the cement-to-tailings ratio was 1:15. Therefore, the elastic modulus values of the SCTB
specimens with a height ratio of 0.1 or a cement-to-tailings ratio of 1:15 were both inferior
to those of the CTB specimens.

Figure 8 exhibits the contour map depicting the elastic modulus values of SCTB
specimens across various h/H ratios and c/t ratios. The elastic modulus is often used
to characterize the deformation resistance of a SCTB specimen under varied conditions.
An elevated elastic modulus indicates a reduced propensity for the specimens to undergo
deformation, which significantly augments the structural stability. It can be seen from
Figure 8 that the strength contours intersect more with the X axis. By adjusting the height
ratio, the elastic modulus can be more effectively optimized at a specific cement-to tailings
ratio. This manifested that the influence of the enhance layer height ratio on the elastic
modulus values of the SCTB specimens was more significant than the influence of the
cement-to-tailings ratio on the elastic modulus values of the specimens. It can be concluded
that the elastic modulus of a stratified cemented tailings backfill specimen is more sensitive
to the height ratio of the enhance layer.
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3.2. Energy Evolution Characteristics

The failure and instability of SCTB specimens were examined through the perspective
of energy progression. It is assumed that in a closed system, the SCTB unit deforms under
the action of external load, which is the total input energy U caused by the work of external
force that can be calculated by the following [30–32]:

U = Ue + Ud (1)

where U represents the total energy of the SCTB specimen, and Ud and Ue are the dissipated
energy and elastic energy during the deformation of SCTB specimen, respectively.

The U and Ue can be calculated by the following:

U =
∫

σ1dε1 (2)

Ue =
σ2

1
2E

(3)

where σ1 represents the axial stress, ε1 represents the axial strain, and E represents the
elastic modulus.

Figure 9 shows the energy evolution and stress–strain curves of SCTB specimens with
different cement-to-tailings ratios and height ratios of the enhance layer. In the elastic
deformation phase, no new cracks were incubated. The energy absorbed by the work was
primarily stored as elastic energy. Meanwhile, the dissipated energy curve almost stayed
the same or even decreased. In the plastic deformation stage, the specimen produced
irreversible plastic deformation. At this phase, the internal crack of the sample began
to expand; meanwhile, the elastic strain energy increased slowly. Correspondingly, the
growth rate of the dissipated energy began to increase more quickly, and the proportion of
energy dissipated began to increase progressively. After the peak stress, the stored elastic
strain energy in the SCTB specimen started to be released, leading to a substantial increase
in the dissipated energy of the specimen rupture damage, and the specimen gradually
destabilized and destroyed.
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Figure 9. Stress–strain and energy evolution of SCTB specimens. (a) CTB-20; (b) SC-0.1-10; (c) SC-
0.2-10; (d) SC-0.3-10; (e) SC-0.2-15; (f) SC-0.2-6. 

The escalation in dissipated energy fosters crack formation and growth inside the 
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significantly as the specimens approached yield failure. The SCTB specimen with a ce-
ment/tailings ratio of 1/15 also showed the same pattern. However, the dissipative energy 
of other SCTB samples started to increase rapidly during the plastic deformation stage. 
During the compression process, the propagation of crack first occurred in the CTB with 
a low c/t ratio of the SCTB samples. However, the addition of the enhance layer restricted 
the propagation of cracks, and the overall SCTB specimens did not undergo damage, al-
lowing the specimens to continue to be compressed. Therefore, the plastic deformation 
and peak strain of the SCTB specimens were found to be larger than those of CTB 

Figure 9. Stress–strain and energy evolution of SCTB specimens. (a) CTB-20; (b) SC-0.1-10; (c) SC-0.2-
10; (d) SC-0.3-10; (e) SC-0.2-15; (f) SC-0.2-6.

The escalation in dissipated energy fosters crack formation and growth inside the SCTB
samples. The dissipative energy of SCTB specimens and CTB specimens exhibited different
evolution modes. The dissipative energy of the CTB samples began to increase significantly
as the specimens approached yield failure. The SCTB specimen with a cement/tailings
ratio of 1/15 also showed the same pattern. However, the dissipative energy of other
SCTB samples started to increase rapidly during the plastic deformation stage. During
the compression process, the propagation of crack first occurred in the CTB with a low
c/t ratio of the SCTB samples. However, the addition of the enhance layer restricted the
propagation of cracks, and the overall SCTB specimens did not undergo damage, allowing
the specimens to continue to be compressed. Therefore, the plastic deformation and peak
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strain of the SCTB specimens were found to be larger than those of CTB specimens. Since
the upper and lower layers of the SCTB sample had been partially destroyed in the plastic
deformation phase, the dissipated energy began to increase rapidly in this stage.

The energy distributions of SCTB specimens with different height ratios and c/t ratios
of the enhance layer are shown in Figure 10. Through the analysis of energy distribution,
the dissipation energy and elastic strain energy of the specimens were found to be closely
related to the enhance layer. The ability of SCTB specimens with a cement-to-tailings ratio
of 1/15 in the enhance layer and complete CTB specimens to accumulate elastic strain
energy was stronger than that of the other SCTB specimens, and the energy accumulation
rates reached 60.2 and 55.6, respectively. A significant portion of the total strain energy was
transformed into elastic strain energy, which was then stored within the sample. The failure
and instability of the samples will be aggravated as the elastic energy is released. The
energy dissipation rates of the SCTB samples were between 74.5%~79.8%, which indicates
that the SCTB specimens have stronger plastic deformation ability, and a significant portion
of the overall strain energy is dissipated through plastic failure.
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3.3. Failure Modes

Figure 11 shows the various failure modes of SCTB specimens with different height ra-
tios and cement-to-tailings ratios of the enhance layer. The CTB samples mainly manifested
as a shear failure through the whole specimen. Keeping the height ratio of the enhance
layer at 0.2, when the cement/tailings ratio was 1/15, such failure primarily appeared as
tensile failure of the upper layer, enhance layer, and lower layer. As the cement-to-tailings
ratio increased to 1/10 and 1/6, it primarily appeared as tensile failure of the upper layer.
As observed in Figure 11b, keeping the c/t ratio of the enhance layer at 1/10, regardless of
the height ratio of the enhance layer, it primarily appeared as tensile failure of the upper
layer. The difference is that as the height ratio of the enhanced layer increased, the number
of cracks gradually decreased.
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Generally, the initial signs of failure in SCTB samples appears in the low-intensity
regions, and then the extension progresses to the enhanced layer, ultimately resulting in
failure of the specimens as a whole. Due to the different volume expansion coefficients of
each layer of the SCTB specimen, there is a bonding effect between the layers. The layer
with a large coefficient will drive the layer with a small expansion coefficient to expand
outward during the stress process. At the same time, the layer with a large expansion
coefficient (upper or lower layer) will be limited by the layer with a small expansion
coefficient (enhance layer) [33]. The propagation of cracks is limited by the enhance layer,
thereby improving the mechanical properties of the SCTB specimens.

3.4. Damage Constitutive Equation

Following the Lemaitre strain equivalence principle [34,35], the damage constitutive
model for CTB can be defined as

σ = (1 − Dd)Eε (4)

where Dd and E respectively indicate the loaded damage variable and the elastic modulus
of the CTB before loading.

The progression of damage in a CTB can be analyzed by introducing failure criterion.
Assuming that the Weibull distribution governs the strength of each micro-element [36,37],
the distribution density function is

Pl =
m
ε0

(
ε

ε0

)m−1
e−( ε

ε0
)m

(5)

where ε represents the strain of the CTB, Pl indicates the failure probability of the CTB
samples, ε0 represents the holistic influence of the micro-element strength in the Weibull
distribution, and m represents the non-uniformity degree of the Weibull distribution.

When the strain of the CTB is ε, the load damage variable Dd is the proportion of the
damaged area to the non-destructive material area, which can be expressed as

Dd =
S
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It can be found from the results of the above research that the mechanical properties
of SCTB samples are directly influenced by the height ratio and the cement-tailings ratio
of the enhance layer. Therefore, Equation (14) is no longer suitable for characterizing the
constitutive relationship of a SCTB specimen. The SCTB specimen examined consisted of
high-strength structures in the middle layer and low-strength structures at both ends. Its
structural characteristics resemble those of layered cemented tailings backfill and coal–rock
assemblage [22,38,39]. Therefore, the constitutive relationship of the SCTB specimen can
be calculated by imitating the constitutive relationship of coal and rock combinations or
the SCTB. Therefore, the constitutive relationship of the SCTB specimen can be depicted as
a series of intermediate elastomer and damage body at both ends, as shown in Figure 12.
The constitutive equation for the elastomer is described by Equation (7).

σ = Eε (7)
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The SCTB specimen satisfies the following relationship:
{

σ = σ1 = σ2 = σ3
ε = ε1 + ε2 + ε3

(8)

Combination of Equations (4), (7) and (8) yield the following:

σ =
k(1 − Dd)E1E2

(1 − Dd)E1 + 2E2
ε (9)

where E1 and E2 are the elastic modulus values of the damage body and elastomer, respectively.
The obtained damage constitutive equation was used to fit the stress–strain curves of

SCTB samples with various height ratios and cement-to-tailings ratios of the enhance layer,
and the results are shown in Figure 13. When the cement-to-tailings ratio of the enhance
layer was constant, as the height ratio of the enhance layer increased from 0.1 to 0.3, the
R-square values of the fitting curve came out to 0.9406, 0.9872, and 0.975, respectively. The
R-square values of all fitting results are higher than 0.94, and the average value is 0.9676. In
addition, when the height ratio of enhance layer was immobile, as the c/t ratio of enhance
layer rose from 1/15 to 1/6, the R-square values for the fitting curve came out to 0.9673,
0.9872, and 0.9804. The R-square values of all fitting results exceed 0.96, with an average
value of 0.9783. According to the fitting results above, it can be concluded that the damage
constitutive equation established in this study effectively characterizes the stress–strain
development of SCTB specimens.
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Figure 13. The fitting results of stress-strain: (a) SC-0.1-10; (b) SC-0.2-10; (c) SC-0.3-10; (d) SC-0.2-15;
(e) SC-0.2-6.

4. Discussion

As shown in Figure 14, the total height of the SCTB specimen model was represented
by H, the height of the upper layer was Hu, the height of the enhance layer was indicated
by Hc, and the height of the lower layer was denoted by Hl. The elastic modulus of the
lower layer, the enhance layer, the upper layer, and SCTB samples are expressed as El, Ec,
Eu, and Ee, respectively. The axial deformation of the SCTB model under the action of axial
stress σ was defined as ∆H. The axial strain of the entire SCTB model and its components
can be defined as
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εu = σu/Eu
εc = σc/Ec
ε l = σl/El
εe = σe/Ee

(10)

where the axial strain of the upper layer, the enhance layer, the lower layer, and SCTB
samples are expressed as εu, εc, εl, and εe, respectively; the axial stress of the upper layer,
the enhance layer, the lower layer, and SCTB samples are expressed as σu, σc, σl, and σe.
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The axial deformation of the SCTB model can be defined as

∆H = εe H = εu Hu + εcHc + ε l Hl (11)

By combining Equations (10) and (11), the axial deformation of the SCTB can be
expressed as

σ

Ee
H =

σu

Eu
Hu +

σc

Ec
Hc +

σl
El

Hl (12)

During the loading process, the axial stresses of the three parts of the SCTB model
were equal, and the elastic model of the lower layer was the same as that of the upper layer
as follows:

σ = σu = σc = σl
Eu = El

(13)

By combining of Equations (12) and (13), the elastic modulus of the SCTB model can
be expressed as

Ee =
EuEc H

(H − Hc)Ec + HcEu
(14)

Equation (14) can also be expressed as

Ee =
Eu H

H +
(

Eu
Ec

− 1
)

Hc

(15)

The equivalent elastic modulus of the combined SCTB can be expressed by Equation (15).
Based on Equation (15), it is apparent that the elastic modulus of the SCTB sample was
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affected by the height and the elastic modulus of the enhance layer, and it escalated as both
the height and elastic modulus of the enhance layer augmented.

The SCTB composite specimen was composed of CTB with different mechanical
properties. Thus, the mechanical properties were influenced by the interface confinement
effect and the characteristics of the CTB, as shown in Figure 15. It is assumed that the
various components are tightly bonded at the interface without relative slippage, so the
thickness of the interface was ignored. In addition, the CTB of each part in the SCTB
composite model is treated as a homogeneous isotropic medium. The stress conditions at
various positions within the SCTB model were examined. The lateral strains of the upper
layer and enhance layer in the elastic stage were defined as follows:

{
ε2u = ε3u = µu

σ1u
Eu

ε2c = ε3c = µc
σ1c
Ec

(16)

where σ1u and σ1c are the axial stress of the upper layer and enhance layer; µc and µu are
the Poisson’s ratio of the enhance layer and upper layer, respectively.
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Figure 15. Stress distribution characteristics in the SCTB combination model at various position.

The elastic modulus and Poisson’s ratio of the enhance layer and upper layer in
the SCTB model meet the requirements of µc < µu and Eu < Ec, respectively. Then, the
lateral strain of the enhance layer and the upper layer under the same axial stress meet the
requirements of ε2c = ε3c < ε2u = ε3u. Thus, the lateral cohesive force would arise near the
interface for the SCTB model. It can be seen from Equation (16) that under the same stress
conditions, the upper layer exhibits greater lateral deformation compared to the enhanced
layer. Furthermore, so as to achieve the uniform deformation of the upper layer and the
enhance layer, the upper layer near the interface will be exposed to compressive stress, and
the enhance layer will be exposed to tensile stress.

Based on the conditions of the continuous deformation and static equilibrium, the
following relationship was established:

σ∗
1u = σ∗

1c = σ∗
1

σ∗
2u = σ∗

2c = σ∗
3u = σ∗

3c
ε∗2u = ε∗2c = ε∗3u = ε∗3c

(17)

where σ∗
1 is the axial stress near the interface; σ∗

1c and σ∗
1u indicate the axial stress of the

enhance layer and upper layer near the interface, respectively; σ∗
2u and σ∗

3u are the stress of
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the upper layer near the interface in two lateral principal directions, respectively; σ∗
2c and

σ∗
3c are the stress of the enhance layer near the interface in two lateral principal directions,

respectively; ε∗2u and ε∗3u indicate the lateral strain of the upper layer near the interface in
two lateral principal directions, respectively; ε∗2c and ε∗3c indicate the lateral strain of the
enhance layer near the interface in two lateral principal directions, respectively.

The lateral strain of the upper layer and the enhance layer near the interface can be
respectively represented as

ε∗2u =
−σ∗

2u + µu
(
σ∗

1u + σ∗
3u
)

Eu

ε∗2c =
σ∗

2c + µc
(
σ∗

1u − σ∗
3c
)

Ec

(18)

By combining of Equations (17) and (18), the following relationship is obtained:

σ∗
2u = σ∗

2c = σ∗
3u = σ∗

3c = kucσ∗
1

kuc =
Ecµu − Euµc

Ec(1 − µu) + Eu(1 − µc)
(19)

where kuc denotes the coefficient representing the cohesive force at the interface between
the upper and enhance layers in the SCTB model.

From Equation (19), it can be seen that the magnitude of the cohesive force between
the upper and enhance layer is related to their Poisson’s ratio and elastic modulus values.
According to the above calculation, it can be seen that the stress state in the upper layer
near the interface transitions from being under uniaxial compression to experiencing
triaxial compression; moreover, the mechanical properties of the upper layer are enhanced.
Therefore, the addition of the enhance layer can expand the mechanical properties of
the CTB.

5. Conclusions

It is very crucial to comprehend the mechanical properties of SCTB specimens contain-
ing the enhance layer, which are of great significance for the reasonable design of the CTB.
In this study, the UCS test was proceeded for SCTB specimens with different height ratios
and c/t ratios of the enhance layer. The main results were obtained as follows:

(1) The stratification effect caused by the addition of the enhance layer will reduce the
mechanical properties of CTB samples. However, the mechanical properties of the
enhance layer improve the overall strength of the SCTB specimen. The elastic modulus
and uniaxial compressive strength of SCTB samples increase with the height ratio and
cement-to-tailings ratio of the enhance layer. Moreover, the UCS and elastic modulus
of SCTB specimens are more sensitive to the height ratio of the enhance layer than the
cement-to-tailings ratio.

(2) The failure of SCTB samples first appears in the low-intensity regions and then
gradually extends to the enhance layer, leading to the overall failure of the specimens.
The SCTB specimen mainly manifested as tensile failure of the upper layer and lower
layer, but this did not penetrate the entire specimen. The addition of the enhance
layer limits the crack propagation, thereby improving the mechanical properties of
the SCTB samples.

(3) The dissipative energy of the CTB samples began to increase significantly as the
specimen approaches yield failure. However, the dissipative energy of other SCTB
samples started to increase rapidly during the plastic deformation stage. The SCTB
specimens had stronger plastic deformation ability, and a large part of the total strain
energy was dissipated in the form of plastic failure.

(4) SCTB samples with a reasonable structure can also achieve sufficient strength com-
pared to directly increasing the c/t ratio of CTB samples while reducing the cost of
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CTB preparation. Therefore, it is necessary to actively explore the application of the
enhance layer in mine filling.
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Abstract: The high-efficiency dewatering of ultra-fine tailings is one of the most prominent
challenges in tailings thickening. The two-step shear flocculation process represents a
promising practical method to achieve the dewatering of ultra-fine tailings. In this paper, a
small self-made experimental device was used to simulate the two-step shear flocculation
process of ultra-fine tailings, strengthening the effect of shear failure and shear coagulation,
and we explored the mass fraction of ultra-fine tailings, floc structure size, floc strength,
and regeneration performance of tailings slurry according to the variation in shear action
in different stages. In addition, the synergistic mechanism of shear failure and shear
coagulation in the two-step high-efficiency dewatering process of ultra-fine tailings was
proposed. The results show that the dewatering of ultra-fine tailings was significantly
improved by two-step flocculation, and the mass fraction of tailings can reach more than
71%. In the primary floc failure stage, the value of G1T1 should be higher than 100,000,
and in the secondary floc regeneration stage, the value of G2T2 should be in the range of
7000~11,000. This paper provides a reference for the regulation of the shear mode and
action range in the two-step flocculation process of ultra-fine tailings.

Keywords: two-step flocculation; ultra-fine tailings; tailings thickening; shear failure;
shear coagulation

1. Introduction
With the ever-growing demand for mineral products and the continuous innovations

in relation to beneficiation technology, the production of ultra-fine tailings is gradually
increasing [1–3]. Ultra-fine tailings dewatering has become one of the most prominent
challenges in the tailings thickening process due to difficulties such as a poor flocculation
effect, low sedimentation velocity, substandard overflow and underflow, etc., restricting the
development of green tailings disposal technology [4,5]. The two-step flocculation process
for ultra-fine tailings has emerged as one of the most promising practical approaches for
the efficient dewatering and safe disposal of tailings [6–8].

In order to clarify the mechanism of the two-step flocculation process to improve the de-
watering of ultra-fine tailings, scholars have analyzed the effects of different factors [9–11],
such as polyacrylamide charge density and molecular weight [12], vacuum filtration pa-
rameters [13], dosages of flocculants [14,15], surface chemical and electrochemical fac-
tors [16,17], magnetic flocculation [18], the catalysts used [19], salinity [20], the microbes
present [21], polymer structure type, and other factors [22–25]. For instance, Lemanowicz
et al. (2011) used two kinds of flocculants treated ultrasonically to study the influence of
the flocculant addition sequence and mixing mode on the dewatering of ultra-fine tailings.
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It was found that the floc formed by the double flocculation system was larger than that
under the action of the optimal dosage of any flocculant alone [26]. Lu et al. (2016) used two
flocculants with opposite charges to dehydrate ultra-fine oil sand tailings, which improved
the settling speed of flocculating tailings and the clarity of supernatant. They also analyzed
the action mechanism of double flocculants, but did not consider the influence of shear
action [27].

As one of the most common external mechanical actions, shear has an important impact
on the flocculation effect of tailings [28–30]. Appropriate shear action can improve the
flocculation effect of tailings by promoting particle collision and changing the floc structure.
According to the famous collision rate formula of flocculating particles, the shear velocity
gradient and shear action time are the most important influencing parameters [31,32].
Yang Y et al. (2020) studied the variation in the yield stress, the floc strength factor, and
the fractal dimensions of iron ore fine tailings with different shear rates and shear times in
a two-step flocculation process and explained the internal reasons for the stronger shear
resistance of the secondary floc network [33]. Petra Bubakova et al. (2013) studied the
influence of shear velocity gradient on floc size and structure via the image analysis method
and proposed a relationship between fractal dimensions and shear velocity gradient [34].
Guerin (2019) used high and low shear rates to promote the breakage and aggregation
of flocs, respectively. In addition, he also observed full reproducibility after one or more
cycles of experiments [35]. However, the shearing mechanism in the two-step flocculation
process for ultra-fine tailings is still not clear, which may have an adverse impact on the
development of ultra-fine tailings dewatering technology.

Therefore, in this paper, a small self-made experimental device is used to simulate
the two-step flocculation process of ultra-fine tailings by means of a “stirring blade and
pipe flocculation” to strengthen the effect of shear failure and shear coagulation promotion.
The variation laws of the ultra-fine tailings’ mass fraction, floc structure and size, and floc
strength factor and regeneration factor with shear action in different stages are explored.
The synergistic mechanism of shear failure and coagulation promotion in the two-step
flocculation process for ultra-fine tailings is proposed, which will provide a reference for
the regulation of the shear mode and action range in the high-efficiency dewatering process
of ultra-fine tailings.

2. Materials and Methods
2.1. Materials

In this study, the tailings were obtained from an iron mine. The particle size distri-
bution was measured using the Malvern Mastersizer 2000 Laser Diffraction Particle Size
Analyzer (Figure 1). The volume fraction of tailings with particle sizes less than 20 µm,
37 µm, and 74 µm was 55.66%, 76.43%, and 94.58%, respectively. Therefore, the experimen-
tal tailings were ultra-fine tailings. The non-uniformity coefficient of these tailings was
17.78 and the curvature coefficient was 1.41. The particle size distribution curve could meet
the two conditions that “the non-uniformity coefficient is greater than or equal to 5 and the
curvature coefficient is 1~3”, indicating that the grading of tailings was good. The results
of X-ray diffraction are listed in Table 1.

In order to avoid introducing other impurities that may affect the hydrolysis process
of flocculant molecules, deionized water was used in all the tests that required water. The
two kinds of commercial flocculants used in this study were from SNF in Vaughan, ON,
Canada and their basic physical and chemical properties are reported in Table 2.

40



Minerals 2025, 15, 176Minerals 2025, 15, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Particle size distribution of tailings. 

Table 1. Mineral components of the tailings [22]. 

Mineral Ideal Formula Iron Tailings (wt%) 
Anatase TiO2 0.2 
Barite BaSO4 0.2 

Goethite α-Fe3+O(OH) 0.2 
Hematite α-Fe2O3 0.1 

Iron—alpha α-Fe 0.1 
Maghemite γ-Fe2O3 0.1 
Plagioclase NaAlSi3O8—CaAl2Si2O8 0.8 

Quartz SiO2 97.1 
Rutile TiO2 1.2 

Table 2. Basic physical and chemical properties of flocculants [22]. 

Flocculant Polymer Charge Molecular 
Weight 

Charge 
Density 

Relative 
Density 

Solubility 
in Water 

923VHM Polyacrylamide Anionic 16–18 
million 

Medium 0.6~0.9 Yes 

4800 SSH Polyacrylamide Cationic 5–7 million Very high 0.6~0.9 Yes 

2.2. Experimental Device 

According to the relevant literature and previous explorations, it has been found that 
the shear failure effect provided by a mixing blade is stronger, and the shear coagulation 
effect realized by a flocculation pipeline is better. Therefore, in order to enhance the shear 
effect, the shear failure effect was provided with mixing blades, and the shear coagulation 
effect was provided by a flocculation pipeline. As shown in Figure 2, a small self-made 
experimental device was used to carry out a two-step flocculation experiment. This device 
mainly included the following three parts: 
1. The primary flocculation part (the first experimental part) was mainly composed of 

a large beaker, a variable-speed mixer, a single-layer impeller with a diameter of 75 
mm, and a small peristaltic pump, which was responsible for completing the primary 
flocculation of tailings slurry and providing shear failure for the underflow of pri-
mary flocculating slurry. 

2. The secondary flocculation part (the second experimental part) was mainly com-
posed of a PVC plastic pipe with a total length of 6 m and a diameter of 6.35 mm, five 

0.1 1 10 100 1000
0

20

40

60

80

100

Vo
lu

m
e 

ac
cu

m
ul

at
io

n/
%

Particle size/μm

 Experimental value
 Trendline

Figure 1. Particle size distribution of tailings.

Table 1. Mineral components of the tailings [22].

Mineral Ideal Formula Iron Tailings (wt%)

Anatase TiO2 0.2
Barite BaSO4 0.2

Goethite α-Fe3+O(OH) 0.2
Hematite α-Fe2O3 0.1

Iron—alpha α-Fe 0.1
Maghemite γ-Fe2O3 0.1
Plagioclase NaAlSi3O8—CaAl2Si2O8 0.8

Quartz SiO2 97.1
Rutile TiO2 1.2

Table 2. Basic physical and chemical properties of flocculants [22].

Flocculant Polymer Charge Molecular
Weight

Charge
Density

Relative
Density

Solubility
in Water

923VHM Polyacrylamide Anionic 16–18 million Medium 0.6~0.9 Yes
4800 SSH Polyacrylamide Cationic 5–7 million Very high 0.6~0.9 Yes

2.2. Experimental Device

According to the relevant literature and previous explorations, it has been found that
the shear failure effect provided by a mixing blade is stronger, and the shear coagulation
effect realized by a flocculation pipeline is better. Therefore, in order to enhance the shear
effect, the shear failure effect was provided with mixing blades, and the shear coagulation
effect was provided by a flocculation pipeline. As shown in Figure 2, a small self-made
experimental device was used to carry out a two-step flocculation experiment. This device
mainly included the following three parts:

1. The primary flocculation part (the first experimental part) was mainly composed of a
large beaker, a variable-speed mixer, a single-layer impeller with a diameter of 75 mm,
and a small peristaltic pump, which was responsible for completing the primary
flocculation of tailings slurry and providing shear failure for the underflow of primary
flocculating slurry.

2. The secondary flocculation part (the second experimental part) was mainly com-
posed of a PVC plastic pipe with a total length of 6 m and a diameter of 6.35 mm,
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five secondary flocculant addition points, a small peristaltic pump, etc. It was respon-
sible for completing the secondary flocculation of tailings slurry and providing shear
coagulation for secondary flocculation.

3. The deposition dewatering part (the third experimental part) was mainly composed
of a sieve and a tray, which was responsible for completing the deposition and
dewatering of two-step flocculating slurry.
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diagram of experimental device.

2.3. Experimental Method and Measurement

The stock solutions of two kinds of flocculants were freshly prepared at a concentration
of 0.1% solids (w/v %) in deionized water. A slurry of 13.5% solids (w/v %) was prepared
in a large beaker using 135 g of tailings and 865 mL of deionized water. The agitation speed
was set to about 600 rpm for 30 s and then decreased and maintained at 280 rpm for 10 min
to homogenize the slurry, at which point 2.7 mL of the primary flocculant, a 923 VHM stock
solution (the polymer’s optimum dosage was 20 g/t according to the pre-experiment), was
added to the slurries and then agitation was stopped immediately to avoid breaking flocs.
We allowed the slurry to stand for 5 min and then removed the supernatant. As shown
in Table 3, we changed the rotating speed and action time of the agitator to apply shear
damage to the underflow of the flocculating slurry. Then, a small peristaltic pump was
used to send the primary flocculating underflow, after shear failure, into the pipeline for
secondary flocculation.
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Table 3. The value of shear action G1T1 in the primary floc failure stage.

No. 1 2 3 4 5 6 7 8

Rotation speed/rpm 30 30 30 30 30 30 30 30
G11/s−1 29.12 29.12 29.12 29.12 29.12 29.12 29.12 29.12
Time/s 30 60 90 120 150 180 210 240

G1T1 14,611 15,485 16,358 17,232 18,106 18,979 19,853 20,727

No. 9 10 11 12 13 14 15

Rotation speed/rpm 30 30 30 50 75 100 125
G11/s−1 29.12 29.12 29.12 62.66 115.12 177.23 247.69
Time/s 270 300 180 180 180 180 180

G1T1 21,600 22,474 18,979 25,016 34,458 45,639 58,322

Three different flow velocities and five different flocculant addition points were de-
signed for pipeline flocculation. As shown in Table 4, when the slurry flowed from the
beaker into the specified addition point in the pipeline, we changed the pipeline flow
velocity to shear the slurry for secondary flocculation. Meanwhile, 2.7 mL of the secondary
flocculant, a 4800SSH stock solution, was gradually injected into the pipeline at a uniform
speed through a syringe until all the slurry in the beaker had flowed through the specified
addition point in the pipeline. Finally, a small peristaltic pump was used to discharge the
secondary flocculating slurry onto the ultra-fine screen to realize deposition, evaporation,
and dewatering. Because the underflow concentration of the primary flocculating slurry
was significantly higher than the mass concentration of the low-concentration tailings slurry,
the two-step shear flocculation process required a longer sedimentation and dehydration
time. Therefore, after 48 h, we took samples and measured the concentration of slurry.

Table 4. The value of shear action G2T2 in the secondary floc regeneration stage.

No. 1 2 3 4 5 6 7 8

Flow velocity/m/s 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4
Pipe length/m 1 2 3 4 5 1 2 3

G2/s−1 626.21 647.74 659.40 665.15 668.58 934.86 969.00 987.46
G2T2 2087 4318 6594 8869 11,143 2337 4845 7406

No. 9 10 11 12 13 14 15

Flow velocity/m/s 0.4 0.4 0.5 0.5 0.5 0.5 0.5
Pipe length/m 4 5 1 2 3 4 5

G2/s−1 996.57 1001.99 1277.98 1326.72 1353.05 1366.02 1373.74
G2T2 9966 12,525 2556 5307 8118 10,928 13,737

During the above experiment, the macro and micro variables to be sampled and
measured were as follows. The primary flocculating slurry, the shear-damaged primary
flocculating slurry, and the secondary flocculating slurry were sampled. The floc size of
different slurries was measured using a Malvin laser particle sizer. In the measurement
process, two measures were taken to ensure the accuracy of the measurement results. Firstly,
the water dilution method was used instead of ultrasound for sample dispersion to avoid
damage to the flocs caused by the ultrasonic waves from the laser particle size analyzer.
Secondly, 3 samples were used in each experiment to measure the floc size and calculate
the average value. The microstructure of flocs of different slurries was observed by means
of a scanning electron microscope.

In the two-step flocculation process, the primary flocculation and secondary floccula-
tion affect each other and jointly determine the dewatering efficiency of ultra-fine tailings.
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Therefore, in the primary floc failure stage, it was necessary to ensure that the shear coagu-
lation effect in the secondary floc regeneration stage did not change—that is, the pipeline
flow rate was set at 0.5 m/s, and the secondary flocculant addition point was kept 1 m
away from the outlet. The suitable agitator speed and mixing time values were designed to
change the G1T1 value of shear failure and explore the variation laws of the mass fraction
and micro characteristics of ultra-fine tailings with shear action in the two-step flocculation
process for ultra-fine tailings (Table 3).

Similarly, in the secondary floc regeneration stage, it was necessary to ensure that the
shear failure effect in the primary floc failure stage did not change—the rotating speed of
the agitator was set to 50 rpm and the mixing time was set to 180 s. The suitable pipeline
flow velocity value and secondary flocculant addition point were designed to change
the G2T2 value of the shear coagulation effect and explore the variation laws of the mass
fraction and micro characteristics of ultra-fine tailings with the shear effect in the two-step
flocculation process for ultra-fine tailings (Table 4).

In many flocculation studies, the GT value, a product of the shear velocity gradient G
and shear time T, is usually regarded as the key parameter determining the influence of
shear action on flocculation effect. The specific calculation method of the GT value of shear
action in the above two stages of this experiment is as follows.

1. The shearing action of the mixer.

The velocity gradient (Gm) of slurry under the shear action of a stirring blade is

Gm =

√
P

µW
(1)

where Gm is the velocity gradient of slurry under the shear action of the stirring blade, s−1;
P is the power consumed by slurry flow under the shear action of the mixing blade, W; µ is
the dynamic viscosity of the slurry, being about 1.01 × 10−3 Pa·s; and W is the volume of
slurry in the mixing vessel, m3.

The power consumed by slurry flow under the shear action of the stirring blade is

P = NpρN3Dm
5 (2)

where Np is the power number and depends on the impeller type and the impeller Reynolds
number, and Np = 1.90; ρ is the density of primary flocculating underflow, being about
1519.86 kg/m3; N is the impeller velocity, r/s; and Dm is the impeller diameter, m.

2. The shearing action of the pipeline flow.

Under the shear action of pipeline flocculation, the shear time (T) of the slurry is

T =
l
v

(3)

where T is the time that the slurry is in the pipeline flocculation equipment, s; l is the length
of the flocculation pipeline, m; and v is the average flow velocity at a cross-section of the
flocculation pipeline, m/s.

The velocity gradient of slurry under the shear action of pipeline flocculation is

Gp =

√
γh
µT

(4)

where Gp is the velocity gradient of the slurry in the flocculation pipeline, s−1; γ is the
specific weight of the primary flocculation underflow, N/m3; h is the head loss, m; µ is the
dynamic viscosity of the slurry, being about 1.01 × 10−3 Pa·s; and T is the time that the
slurry is in the flocculation equipment, s.
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Due to the presence of bent sections in the flocculation pipeline, the head loss includes
frictional head loss and local head loss. For the calculation of frictional head loss along the
full pipe flow, Darcy’s formula is used.

h f = λ
l
D

v2

2g
(5)

where D is the diameter of the flocculation pipeline, m, and λ is the frictional resistance coefficient.
Regarding the calculation of the frictional resistance coefficient, the following formula

is used. When the flow velocity is less than 1.2 m/s,

λ = 0.001824
g

D0.3

(
1 +

0.867
v

)0.3
(6)

The calculation formula for the local head loss is as follows:

hj = ζ
v2

2g
(7)

where hj is the local head loss, m, and ζ is the local resistance coefficient. The local resistance
coefficient of a right-angled elbow is 0.9.

Therefore, the calculation formula for head loss is as follows:

h = h f + hj (8)

3. The value of shear action G1T1 in the primary floc failure stage.

The shear action in the primary floc failure stage is divided into two parts. The first
part is the shear action applied by the mixing blades in the beaker, G11T11, while the second
part is the shear action during the flow of the slurry before the addition of the secondary
flocculant solution in the flocculation pipeline, G12T12.

G1T1 = G11T11 + G12T12 (9)

Therefore, the calculation of G11 is based on Equations (1) and (2), the calculation of
G12 is based on Equations (4)–(8), and the calculation of T12 is based on Formula (3).

4. The value of shear action G2T2 in the secondary floc regeneration stage

The shear action in the secondary floc regeneration stage only occurred in the pipeline.
Therefore, the calculation of G2 is based on Equations (4)–(8), and the calculation of T2 is
based on Equation (3).

3. Results
In view of the different adding positions, adding methods, and effects of the two

flocculants in the two-step flocculation process, the variation laws of the dewatering of
ultra-fine tailings and the internal flocs with shear in the primary floc failure stage and
the secondary floc regeneration stage were investigated, respectively. Through analyzing
the effects of shear action in different stages on the floc structure size, strength factor, and
regeneration factor of ultra-fine tailings slurry, the mechanism of the two-step flocculation
and efficient dewatering of ultra-fine tailings is explained.

3.1. Effect of Shear on the Concentration of Two-Step Flocculating Slurry

Two-step flocculation relies on the interaction of two flocculant molecules to increase
the binding sites on the floc surface, which is conducive to the formation of a dense floc
network structure. This is an effective way for ultra-fine tailings to dehydrate efficiently by
further releasing the internal water in the flocs structure and promoting the formation of a
dense floc network structure.
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In the primary floc failure stage, the shear action mainly releases the water in the
floc network structure and improves the mass fraction of tailings. The variation law of
the mass fraction of ultra-fine tailings with the shear action was explored to provide a
reference for obtaining a suitable shear failure range and realizing the efficient dewatering
of ultra-fine tailings.

It can be seen from Figure 3 that the mass fraction of ultra-fine tailings obtained by
means of two-step flocculation was 69%~72%, and the dewatering efficiency of ultra-fine
tailings was significantly improved compared with that produced using single flocculation
in the previous experiment (the mass fraction was 65%~67%). In the primary floc failure
stage, with the increase in shear action (G1T1), the mass concentration of ultra-fine tailings
slurry increased and then became stable. When G1T1 was in the range of 0~100,000, the
mass fraction of slurry increased from 69% to about 71%. When G1T1 was in the range
of 100,000~150,000, the growth rate of the slurry mass fraction slowed down gradually.
When G1T1 was higher than 150,000, the mass fraction of the slurry was stable close to the
highest value.
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Figure 3. Variation in the mass fraction of ultra-fine tailings with shear action (G1T1) in the primary
floc failure stage.

In the secondary floc regeneration stage, shear mainly promotes the combination
of flocculant molecules and tailings particles to form a dense floc network structure and
improve the mass fraction of tailings. The variation law of the mass fraction of ultra-fine
tailings with the shear action was explored to provide a reference for obtaining a suitable
shear coagulation range and realizing the efficient dewatering of ultra-fine tailings.

Figure 4 shows the variation in the mass fraction of ultra-fine tailings with shear action
(G2T2) in the secondary floc regeneration stage. As introduced in Section 2.3, the shear
action in the primary floc failure stage of each experiment was basically the same and the
primary floc structure was fully broken. Therefore, it can be considered that the difference
in the mass fraction of the slurry was more due to the influence of shear coagulation in the
secondary floc regeneration stage.
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floc regeneration stage.

In the secondary floc regeneration stage, with the increase in shear action (G2T2),
the mass fraction of ultra-fine tailings slurry increased, then became stable, and finally
decreased slightly. When G2T2 was in the range of 2000~11,000, the mass concentration
increased gradually, from 68% to about 72%. When G2T2 was in the range of 7000~11,000,
the mass concentration was stable close to the highest value. When G2T2 was higher than
11,000, the mass concentration began to decrease.

It is worth noting that there were pronounced dips in the curve at the points with
G2T2 values of 9000 and 11,000. At the point with a G2T2 value of 9000, the decrease in
the mass concentration was about 0.5%. This is because the G2T2 value of the previous
point was 8118, corresponding to a flow velocity of 0.5 m/s, representing the fastest group
in the experiment, resulting in better coagulation effect. The point with a G2T2 value of
9000 corresponded to a flow velocity of 0.3 m/s, representing the slowest group in the
experiment, reducing its coagulation effect and obtaining a lower mass concentration of
slurry. At the point with a G2T2 value of 11,000, the dip in the curve was due to the
excessive G2T2 value and strong shear force, which had a destructive effect on the formed
floc network structure and reduced the mass concentration of the slurry.

The variation law of the mass fraction of ultra-fine tailings with shear action in the
two-step flocculation process was analyzed. The two-step flocculation process significantly
improved the dewatering efficiency of ultra-fine tailings, and the mass fraction of slurry
can reach more than 71%. In order to achieve the efficient and ideal dewatering described
above, the shear action G1T1 in the primary floc failure stage should be higher than 100,000,
and the shear action G2T2 in the secondary floc regeneration stage should be in the range
of 7000~11,000.

3.2. Effect of Shear on Floc Structure and Size

Flocculant molecules adsorb ultra-fine tailings particles, increase floc size, and form the
floc network structure, which is the fundamental reason why flocculating ultra-fine tailings
accelerates sedimentation and helps to realize efficient dewatering. In the flocculation
process, shear can not only promote the collision between flocculant molecules and tailings
particles but also destroy the floc network structure. Therefore, the change law of floc
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structure and size under shear in different stages was analyzed to further determine
the internal mechanisms driving two-step flocculation and the efficient dewatering of
ultra-fine tailings.

In the primary floc failure stage, the variation law of the average particle size of flocs
with the shear action was explored and the failure form of the floc structure was analyzed
to obtain the suitable shear failure range in two-step flocculation.

As shown in Figure 5, in the primary floc failure stage, when the shear action G1T1

was less than 100,000, with the increase in shear action, the average particle size of broken
flocs decreased rapidly. When G1T1 increased from 50,000 to 100,000, the average floc
particle size reduced from 69 µm to 54 µm. When G1T1 was greater than 100,000 and less
than 150,000, the average particle size of broken flocs gradually decreased. When G1T1 was
higher than 150,000, the average particle size of broken flocs was basically stable at 50 µm.
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Figure 5. Variation in average particle size of broken flocs with shear failure (G1T1). 
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This may be because the original loose and fragile primary floc network structure
contained many weak connections in addition to the connections between the polymer
flocculant and particles through bridging. These weak connections were very sensitive to
external disturbances. The low shear action mainly destroyed the weak connections in the
floc structure, which promoted the large-scale structural fracture failure of the primary floc
structure. High shear action could not only destroy the weak connections in the primary
floc structure, resulting in structural fracture failure, but also destroy the connections
formed by bridging between particles and the flocculant, resulting in surface stripping
failure. This produced a large number of small-size broken flocs, quickly increasing the
number of flocs, thus reducing the average particle size of flocs. With the continuous
improvement in shear action, the above two failure forms were basically completed, and
the size of broken flocs basically remained stable.

Figure 6 shows the SEM of flocs under different shear failure values in the primary
floc failure stage. When G1T1 = 30,000, the floc structure was obviously damaged, but the
size of the broken flocs was still large. When G1T1 = 120,000, the floc network structure
was completely broken into small-size flocs, and there were basically no large-size flocs.
This is consistent with the change law of floc average particle size.
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In the secondary floc regeneration stage, shear can promote the combination of bro-
ken flocs and secondary flocculant molecules, increase floc size, and form a secondary floc 

Figure 6. SEM of flocs under different shear failure values in the primary floc failure stage. (a) Low
shear (G1T1 = 30,000); (b) high shear (G1T1 = 120,000).

In the secondary floc regeneration stage, the variation law of the average particle size
of flocs with shear action was explored and the influence of different shear action ranges
on the secondary floc regeneration was analyzed to obtain the suitable shear coagulation
range in two-step flocculation.

In the secondary floc regeneration stage (Figure 7), with the increase in G2T2, the
average particle size of secondary flocs increased and then decreased. When the G2T2

was 2000~7000, the average particle size of secondary flocs increased slowly from 84 µm
to 88 µm. When the G2T2 was 7000~9000, the average particle size of secondary flocs
significantly increased from 88 µm to 99 µm. When G2T2 was higher than 9000, the average
particle size of secondary flocs decreased rapidly, from 99 µm to 87 µm. In addition, when
G2T2 was 7000~11,000, the average particle size of secondary flocs was greater than 90 µm,
which indicates the high degree of secondary floc regeneration.
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In the secondary floc regeneration stage, shear can promote the combination of broken
flocs and secondary flocculant molecules, increase floc size, and form a secondary floc
network structure. However, excessive shear will damage the secondary flocculation. The
reason why the average particle size of secondary flocs changed with G2T2 may be that
after the addition of the secondary flocculant, the broken flocs and secondary flocculant
were flocculated mainly through the adsorption of heterogeneous charges on their binding
sites under the action of Brownian motion. The relatively weak shear action can promote
the combination of the broken flocs and the secondary flocculant, but the action time and
intensity were not sufficient, and the increase in the average particle size of the secondary
flocs was small. When G2T2 increased to 7000~11,000, shear action within an appropriate
range fully promoted the collision between broken flocs and secondary flocculants, and
the collision rate and binding efficiency were significantly improved. Combined with
the bridging effect of flocculant molecules, a dense secondary floc network structure was
formed, and the average particle size of flocs increased rapidly. However, when G2T2

continued to increase to higher than 11,000, the excessive shear action destroyed the floc
structure and the average particle size of secondary floc decreased rapidly.

Figure 8 shows the SEM of flocs under different shear coagulation levels in the sec-
ondary floc regeneration stage. When G2T2 = 3000, the secondary floc structure was
gradually formed, but was relatively loose, with a large number of free broken flocs or
tailings particles. When G2T2 = 9000, the secondary floc network structure was dense, and
there were basically no free broken flocs or tailings particles. This is consistent with the
change law of floc average particle size.
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Figure 8. SEM of flocs under different shear coagulation levels in the secondary floc regeneration
stage. (a) Low shear (G2T2 = 3000); (b) high shear (G2T2 = 9000).

The variation law of the floc structure and size of ultra-fine tailings with shear action in
the two-step flocculation process was analyzed. In the primary floc failure stage, the shear
failure action caused structural fracture and surface stripping of the floc network structure
and released water in the floc network structure, and thus the shear action G1T1 should
be higher than 100,000. In the secondary floc regeneration stage, the shear coagulation
action promoted the combination of the flocculant and flocs to form a dense floc network
structure, and thus the shear action G2T2 should be in the range of 7000~11,000.
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3.3. Effect of Shear on Floc Strength Factor and Regeneration Factor

In the primary floc failure stage, in order to quantitatively analyze the variation
law of floc structure strength with shear action, the concept of the floc strength factor
was introduced. The floc strength factor mainly reflects the strength of the floc structure
(Equation (10)). Generally, for the same kind of floc, under the same shear action, the greater
the floc strength factor, the stronger the floc structure, the denser the floc structure, the
lower the internal moisture content, and the greater the interaction force between particles
in the floc.

The floc strength factor can be calculated as follows:

F1 =
d2

d1
(10)

where d1 is the average particle size of the floc before shear failure, µm, and d2 is the
average particle size of the floc after shear failure, µm. Both were obtained in this this study
through experimental measurements.

As can be seen from Figure 9, in the primary floc failure stage, when G1T1 was less
than 100,000, the floc strength factor decreased rapidly. When G1T1 was 30,000, the floc
strength factor was about 0.82 of the original floc structure strength, indicating that the
shear action can only overcome 0.18 of the total strength of the original floc structure,
and the lower shear action can only destroy the weak connections in the original floc
structure. When G1T1 was greater than 100,000 and less than 150,000, the floc strength
factor decreased slowly. When G1T1 increased to 150,000, the floc strength factor was about
0.50 of the original floc structure strength. The shear action can thus overcome 50% of
the total strength of the original floc structure, meaning that it can not only destroy the
weak connections in the floc structure, but also overcome a small portion of the strong
connections. With the continuous increase in shear action, the two failure forms of the floc
structure were basically completed, and the floc strength factor did not change significantly.
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In the secondary floc regeneration stage, in order to quantitatively analyze the variation
law of floc regeneration characteristics with shear action, the concept of the floc regeneration

51



Minerals 2025, 15, 176

factor was introduced. The floc regeneration factor mainly reflects the recovery of floc size
in the process of floc structure failure and re-flocculation, and can reflect the secondary
flocculation effect (Equation (11)). Generally, when the sizes of the original floc and the
broken floc are the same, the larger the floc regeneration factor, the higher the floc recovery
performance and the better the secondary floc regeneration.

The floc regeneration factor can be calculated as follows:

F2 =
d3 − d2

d1 − d2
(11)

where d1 is the average particle size of the floc before shear failure, µm; d2 is the average
particle size of the floc after shear failure, µm; and d3 is the average particle size of the floc
after secondary flocculation, µm.

As can be seen from Figure 10, in the secondary floc regeneration stage, the floc
regeneration factor increased and then decreased with the increase in G2T2. When G2T2

was 2000~7000, the increase in floc regeneration factor was small, from 0.65 to 0.85. When
G2T2 was 7000~9000, the floc regeneration factor increased significantly, up to about 1.4.
When G2T2 was higher than 9000, the floc regeneration factor decreased rapidly. Overall,
when G2T2 was 7000~11,000, the floc regeneration factor was higher than 1.0, which shows
that the broken flocs displayed good regeneration and could realize the complete recovery
of their size before shear failure.
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The variation in the floc strength factor and regeneration factor with shear action in
the two-step flocculation process was analyzed. In the primary floc failure stage, with
the increase in shear action, the floc structure strength that shear overcame gradually
increased, and thus the shear action G1T1 should be higher than 100,000. In the secondary
floc regeneration stage, shear can effectively promote floc regeneration, and G2T2 should
thus be in the range of 7000~11,000.

3.4. Synergistic Mechanism of Shear Failure and Shear Coagulation in Two-Step Flocculation

Two-step flocculation is an effective way to achieve the high-efficiency dewatering of
ultra-fine tailings. It comprises the joint effect of shear failure in the primary floc failure
stage and shear coagulation in the secondary floc regeneration stage. In the primary floc
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failure stage, shear failure within an appropriate range promotes different failure forms
of the primary floc structure, resulting in the ideal unstable state of the flocculating slurry,
which provides the best conditions for the regeneration of the secondary flocs. In the
secondary floc regeneration stage, shear coagulation within an appropriate range can
promote the combination of flocculant molecules and tailings particles, form a dense floc
network structure, achieve the best secondary floc regeneration effect, and improve the
dewatering capacity of ultra-fine tailings.

Therefore, considering the effects of shear failure and shear coagulation on the slurry in
different stages of the two-step flocculation process, a hypothesis regarding the synergism
of shear failure and shear coagulation in the two-step flocculation process of ultra-fine
tailings was proposed. This was expounded from the perspective of floc structure change
and the flocculation principle to clarify the internal mechanism of the efficient dewatering
of ultra-fine tailings.

From the perspective of floc structure change, in the primary floc failure stage, shear
failure within an appropriate range causes structural fracture failure and surface stripping
failure of the floc network structure, the number of broken flocs is high, and the binding
sites in broken flocs are fully exposed. Large flocs produced by structural fracture failure
and small flocs produced by surface stripping failure make the size distribution of broken
flocs uniform. At the same time, shear failure disturbs the particle diffusion layer in the
broken floc, changes the shape of the particle diffusion layer, reduces the repulsion between
particles, and causes the flocculating slurry to be in an unstable state, providing the best
conditions for secondary floc regeneration.

In the secondary floc regeneration stage, shear coagulation promotion in an appro-
priate range improves the probability of collisions between positively charged cationic
flocculant molecules and negatively charged broken flocs. Both of these adsorb through
electric neutralization, which reduces the charge on the particle surface, weakens the
repulsion between particles, and increases the average particle size of regenerated flocs.
In addition, shear coagulation can further reduce the repulsive force between particles
through the disturbance effect on the particle diffusion layer. Based on the bridging effect
of flocculant molecules, the broken flocs finally form a compact secondary floc network
structure. This promotes the further separation of ultra-fine tailings particles from water
and then realizes rapid dewatering in the tailings deposition stage.

In conclusion, shear can cause the flocculating slurry to be in an unstable state by
changing the floc structure and size, thus improving the flocculation and dewatering
efficiency of ultra-fine tailings.

The root cause of the shear failure and shear coagulation in two-step flocculation
is double flocculation. Under the conditions of an imperfect primary flocculation effect,
secondary flocculation is a favorable supplement for improving the dewatering capacity
of tailings. Therefore, the hypothesis regarding shear failure and shear coagulation’s
synergism was further explained from the perspective of the flocculation principle.

From the perspective of the flocculation principle (Figure 11), tailings particles and
primary flocculant molecules form primary flocs through adsorption and bridging. In the
primary floc failure stage, the shear action within an appropriate range releases the binding
sites between the particles and the primary flocculant molecules. The state of the primary
flocculant molecules is more extended, the tail of the molecular chain extending into the
solution becomes longer, the bridging probability increases, meaning that the particles
and the primary flocculant molecules are in an unstable state, which provides the best
conditions for flocculation. At this time, if no secondary flocculant molecules are added,
the particles and primary flocculant molecules tend to adsorb again.
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Figure 11. Schematic diagram of the flocculation principle in the hypothesis regarding shear failure
and shear coagulation’s synergism.

In the secondary floc regeneration stage, the addition of the secondary flocculant
disturbed the unstable state of particles and primary flocculant molecules. Under shear
action within an appropriate range, the secondary flocculant molecules adsorb with tailings
particles and primary flocculant molecules at the spare binding sites, respectively. The
primary and secondary flocculant molecules form a stable extension state on the surface of
tailings particles, and the tails of their molecular chains extend to the solution at the same
time, which increases the bridging probability of particles, so as to form flocs with a larger
size and denser structure. The dense floc network structure is the internal reason for the
dewatering of tailings, which is favorable for realizing the high-efficiency dewatering of
ultra-fine tailings.

4. Conclusions
The two-step flocculation process is an effective method for the efficient dewatering of

ultra-fine tailings. In this paper, the effects of shear action in different stages on the mass
fraction of ultra-fine tailings, the floc structure and size, and the floc strength factor and
regeneration factor of tailings slurry were investigated through a small self-made two-step
flocculation experimental device. The hypothesis regarding the synergism of shear failure
and shear coagulation in the two-step flocculation process for ultra-fine tailings was put
forward. The main conclusions are as follows.

1. The dewatering efficiency of ultra-fine tailings is significantly improved by means
of two-step flocculation, and the mass fraction of tailings can reach more than 71%.
In order to achieve efficient and ideal dewatering as described above, the shear
action G1T1 in the primary floc failure stage should be higher than 100,000, while
the shear action G2T2 in the secondary floc regeneration stage should be in the range
of 7000~11,000.

2. The shear action in the primary floc failure stage can cause structural fracture failure
and surface peeling failure of the floc structure, and thus release the water in the
floc structure. The shear action in the secondary floc regeneration stage can promote
the re-combination of flocculant molecules and tailings particles to form a dense floc
network structure.

3. With the increase in shear action in the primary floc failure stage, the floc strength
factor rapidly decreased and then became stable. With the increase in shear action in
the secondary floc regeneration stage, the floc regeneration factor increased and then
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decreased. The broken flocs could realize the complete recovery of their size before
shear failure.

4. In the primary floc failure stage, shear action disrupted the distribution of counter-
ions in the diffusion layer of particles in the flocs, changed the shape of the particle
diffusion layer, and weakened the repulsion between particles in different broken
flocs. In the secondary floc regeneration stage, shear action increased the collision
probability between flocculant molecules and particles and promoted the occurrence
of flocculation.

5. Considering the effects of shear failure and shear coagulation on the slurry in different
stages of the two-step flocculation process, a hypothesis regarding the synergism
of shear failure and shear coagulation in the two-step flocculation process of ultra-
fine tailings was proposed. It was expounded from the perspective of floc structure
change and the flocculation principle to clarify the internal mechanism of the efficient
dewatering of ultra-fine tailings.
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Abstract: Cemented tailings backfill (CTB), composed of tailings, binder, and water, is
widely used for filling underground goaves in mining operations. Unmanaged tailings can
occupy extensive land and pose significant environmental risks. Microwave technology
offers a promising approach to enhance the utilization of tailings, reducing dependency
on natural resources. However, limited research on microwave heating parameters has
impeded its broader adoption. This study uses the orthogonal experimental method to
study the influence of various factors on the strength of the CTB and to determine the
impact capacity of each factor. Additionally, this study conducted a visual analysis of the
microwave heating time (MHT), microwave delay time (MDT), cement-tailings ratio, slurry
concentration and microwave power (MP) to verify the experimental results. The results
show that microwave heating can enhance or diminish the mechanical properties of CTB
samples at different curing ages, depending on the specific microwave parameter settings.
Research indicates that microwave technology can be effectively applied to mine backfill
materials to improve their early strength and the modulus of elasticity.

Keywords: cemented tailings backfill (CTB); microwave thermal treatment; uniaxial
compressive strength (UCS); orthogonal experimental design (OED)

1. Introduction
The mining industry plays an invaluable role in promoting the national economy.

However, while providing raw materials, it inevitably generates a large amount of solid
waste, with tailings accounting for 29% of industrial solid waste [1,2]. Enhancing the early
strength and elasticity modulus of CTB not only significantly improves the efficiency and
safety of mine backfilling but also promotes the resource utilization of tailings, reducing
environmental impact.

Existing studies have investigated ways to enhance the early strength of the CTB or
cemented paste backfill (CPB). These studies found that factors such as water-to-cement
ratio adjustment, curing temperature and humidity control, active binders, and the ad-
dition of fibrous materials significantly affect the uniaxial compressive strength (UCS).
For example, Hou et al. [3] used steel slag and straw fibers to prepare backfill materials
to improve the mechanical properties of the filling body. The adhesion between straw
fibers and the mortar matrix is the key factor in enhancing the integration of the backfill,
while steel slag improves the mechanical properties by enhancing the distribution of void
structures within the backfill. Their results showed that the yield stress increases with the
mass concentration, steel slag content, and straw fiber content. He et al. [4] used lithium
slag (LS) and fly ash (FA) as binders for the CTB. Their results indicated that LS and FA

Minerals 2025, 15, 115 https://doi.org/10.3390/min15020115
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significantly affect the strength of the binder. The optimal ratio of the binder is OPC (Port-
land cement)-LS-FA at 2:1:1, which yields the highest UCS. This is because fly ash has good
pozzolanic activity, which reacts with cement to form denser hydration products, thereby
enhancing the early strength. Chen et al. [5] found that under high-temperature curing
conditions, the early strength of cement mortar with sulfur-containing tailings is higher,
but the late strength gradually decreases with increasing curing temperature. This is due to
the early strength development of the mortar mainly depending on the rate of hydration
reactions, while the late strength changes are primarily influenced by the changes in the
internal pore structure of the CTB. Existing studies indicate that adding different types and
proportions of additives can improve the early strength of the CTB to a certain extent [6–8].
Although some progress has been made in the aforementioned fields, challenges remain,
such as the diversity and complexity of material selection and the varying characteristics of
tailings from different mines. These methods usually require longer curing times and have
limited effects.

In recent years, microwave heating technology has been widely applied in materials
science and engineering due to its efficiency, speed, and energy-saving characteristics.
Therefore, introducing microwave heating technology into the treatment process of the
CTB has significant research implications and application prospects [9–12]. Currently,
research on the application of microwave heat treatment in the CTB is still in its early stages,
and this just encourages the authors to commence the present study. Existing studies
have mainly focused on the effects of microwave heat treatment on the performance of
concrete and other construction materials, as well as aggregate recovery. For example, Wei
et al. [13] studied the microwave heating and aggregate recovery of dry and saturated
concrete, investigating the impact of moisture content on the heating results. Their findings
provide a new method for enhancing aggregate recovery efficiency in microwave-assisted
concrete by increasing moisture content. Tang et al. [11] studied the formation process of
porosity, physical and mechanical properties, pore characteristics, and hydration products
to clarify the mechanism of microwave pre-curing on carbide slag-fly ash autoclaved
aerated concrete (CS-FA AAC). The findings demonstrate that the innovative microwave
pre-curing technology significantly accelerates slurry foaming and thickening, thereby
reducing the pre-curing time and enhancing the stability of CS-FA AAC green bodies.
Wang et al. [14] used microwave heating technology to cure cement-fly ash (CFA) slurry.
Their results showed that microwave curing significantly increased the early strength of
CFA paste and maintained its compressive strength for up to 28 days. The pore structure of
the hardened paste after 28 days of microwave curing was superior to that of thermal curing.
Zhou et al. [15] combined microwave curing with secondary water curing for C30 concrete.
Their results indicated that while microwave curing can enhance the early hydration
degree of cement, it may reduce the later hydration degree. Secondary water curing can
enhance the later hydration degrees, and microwave curing is suitable for both ordinary
and reinforced concrete. Ding et al. [9] investigated the effects of microwave heating time
and power on the mechanical properties of CTB and explored the improvement of CTB’s
mechanical properties. However, the impact of microwave delay time on CTB has been
overlooked, even though delay time is also a critical parameter. Compared to traditional
external heating methods, microwave heating offers advantages such as rapid temperature
increase, uniform heating, and high energy efficiency. Therefore, studying the effects of
microwave heat treatment on the performance of CTB can not only shorten curing time but
also enhance early strength, providing a new method for mine tailings’ treatment [16–18].

However, CTB differs significantly from concrete in aggregate properties, mix propor-
tions, and operational conditions, making the findings from the aforementioned studies
unsuitable for direct application to CTB materials. Currently, research on utilizing mi-
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crowave technology in the curing process of CTB remains in its early stages, motivating
the author to pursue this study. This study aims to investigate the effects of various mi-
crowave parameters on the changes in the UCS and elastic modulus of CTB and explore
how microwave heat treatment can enhance the early strength of CTB, and refine appropri-
ate microwave heating parameters. The structure of this study is as follows: Firstly, the
orthogonal experimental design (OED) is presented in detail, including the materials used,
the preparation of CTB specimens, and the testing procedures. This study employs an OED
method to identify five factors influencing the mechanical performance of CTB, namely
microwave power (MP), microwave heating time (MHT), microwave delay time (MDT),
slurry concentration, and cement-tailings ratio and investigates the effects of these factors
on the mechanical properties of CTB. Second, the results are analyzed, and the impact of
microwave heating on CTB’s mechanical performance is discussed. Finally, conclusions
are drawn, and suggestions for future research are proposed. The advantage of orthogonal
experimental design (OED) lies in its ability to analyze multiple factors and their inter-
actions simultaneously [19]. By integrating OED with microwave heating processes, this
study not only offers a novel approach to enhancing the early strength of cemented tailings
backfill using microwaves but also broadens the application scope of orthogonal design in
mining engineering. The OED is widely recognized and applied due to its efficiency and
systematic approach [20]. The OED allows for the acquisition of substantial information
with fewer experimental trials through scientifically designed schemes, thus enhancing
experimental efficiency and effectiveness [21–23].

In summary, this study explores the innovative approach of accelerating slurry hy-
dration through microwave heating, offering significant practical and theoretical value
in addressing mine backfilling and tailings management issues. The innovation of this
study lies in its first systematic exploration of the application of microwave heat treatment
technology in the CTB, revealing the mechanisms by which microwave heating affects the
internal structure and performance of the CTB. Through systematic experimental research
and theoretical analysis, this study aims to provide a new approach and method for mine
tailings’ treatment, further promoting the development of the CTB technology, enhancing
the efficiency and effectiveness of mine tailings’ treatment, and advancing the green and
sustainable development of mining engineering.

2. Experimental Program
2.1. Materials

The CTB samples were prepared by mixing tailings, cement, and water. The tailings
were sourced from the Bainiuchang mine of Mengzi Mining and Metallurgy Co., Ltd.
(Mengzi, Yunnan, China), with P.C. 42.5 Portland cement used as the binder and tap water
as the mixing water. The chemical element content in the tailings and cement was analyzed
using an X-ray fluorescence spectrometer. Table 1 shows the chemical composition of tail-
ings and cement used. The particle size distribution of tailings significantly influences mine
backfilling, as it is related not only to the dewatering process but also to the cementation
performance and binder consumption of the cemented backfill. Key parameters include
the median particle diameter and the coefficient of particle uniformity. The particle size
distribution of tailings was measured using a Malvern MS3000 laser diffraction particle
size analyzer. The particle size distribution of the tailings is shown in Figure 1, and it can
be seen from Figure 1 that the tailings belong to the medium- and coarse-grained tailings.

The chemical composition of mine tailings reflects their mineralogical makeup and
potential applications. The concentration and forms of each element significantly influence
the physicochemical properties, environmental impact, and resource recovery potential
of the tailings [24]. The tailings used in the experiment contain high concentrations of Si
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(18.81%) and O (41.3%) elements, with a significant amount of Ca (11.48%) as well, which
indicates the presence of minerals such as quartz and feldspar in the tailings, determining
their physical stability. High-silicon-content tailings are suitable for the construction
industry, such as for use as concrete aggregate or in glass manufacturing. High calcium
content suggests that the tailings may possess excellent cementing properties, making them
suitable for cement or construction material production. It may also enhance the alkalinity
of tailings, aiding in the neutralization of acidic environments [25].

Table 1. Chemical composition of the materials.

Materials SiO2 Al2O3 K2O CaO Fe2O3 SO3 MgO Others

Tailings (%) 82.00 6.96 2.66 2.03 1.30 0.26 0.25 4.54

Binder (%) 19.31 4.93 2.66 63.15 3.12 2.32 3.26 1.25
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2.2. Preparation of CTB Specimens

A mining concrete pump (HBMG30/21-110S) was used to mix the components of the
CTB according to the experimental design ratios, ensuring a uniform composite material.
The prepared CTB mixture was then cast into molds (7.07 cm × 7.07 cm × 7.07 cm) to
form cubic specimens. The CTB samples were divided into two groups: one served as
the control group, while the other was subjected to microwave heating after the slurry
was poured into the molds, following the experimental design. The microwave heating
device used in this experiment, an Intelligent Microwave Rock Breaker (WLK-A9), features
adjustable output power with a maximum power of 3000 W. The heating conditions and
microwave power settings are specified in Table 2. The specimens were then cured under
controlled temperature conditions of 20 ± 1 ◦C and a humidity level of 95%. The curing
equipment used is regularly calibrated, with calibration results documented to ensure
its precision and accuracy. The samples were cured for 3 and 7 days using a standard
constant temperature and humidity curing chamber (SHBY-60B). The preparation of the
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CTB samples includes four parts: slurry mixing, mold casting, microwave heating, and
sample curing. The complete process is shown in Figure 2.

Table 2. Orthogonal experimental factor level table.

NO.
Factors

Surry Concentration/% Cement-Tailings Ratio MP/W MHT/min MDT/h

1 70 1:4 60 4 0
2 72 1:6 180 6 2
3 74 1:8 300 8 4
4 76 1:12 420 10 6

Minerals 2025, 15, x FOR PEER REVIEW 5 of 21 
 

 

equipment used is regularly calibrated, with calibration results documented to ensure its 
precision and accuracy. The samples were cured for 3 and 7 days using a standard con-
stant temperature and humidity curing chamber (SHBY-60B). The preparation of the CTB 
samples includes four parts: slurry mixing, mold casting, microwave heating, and sample 
curing. The complete process is shown in Figure 2. 

Table 2. Orthogonal experimental factor level table. 

NO. 
Factors 

Surry 
Concentration/% 

Cement-Tailings 
Ratio 

MP/W MHT/min MDT/h 

1 70 1:4 60 4 0 
2 72 1:6 180 6 2 
3 74 1:8 300 8 4 
4 76 1:12 420 10 6 

 

Figure 2. Experimental specimen preparation process. 

2.3. Orthogonal Experimental Design 

This study identified five factors influencing the UCS of the CTB: microwave power 
(MP), microwave heating time (MHT), microwave delay time (MDT), slurry concentra-
tion, and cement-tailings ratio. To investigate the influence patterns of these factors on the 
UCS of the CTB samples, each factor was designed with four levels. The levels of each 
factor are shown in Table 2. 

Using the UCS of the CTB at 3 and 7 days of curing as evaluation indicators, a 5-
factor, 4-level orthogonal experiment was conducted. A total of 16 experimental groups 
were conducted, along with a blank control group. The experimental design is shown in 
Table 3. Three samples were used for each set of tests. Using three samples per group helps 
ensure the reliability and stability of the data through repeated experiments. Individual 
experimental results may be influenced by random errors, equipment errors, and opera-
tional mistakes. Using multiple samples helps reduce the impact of random errors and 
improves the reliability of the results. Using three samples ensures that the experimental 
results are representative and minimizes the influence of individual sample variations on 
the conclusions. By calculating the average of multiple samples, the overall performance 

Figure 2. Experimental specimen preparation process.

2.3. Orthogonal Experimental Design

This study identified five factors influencing the UCS of the CTB: microwave power
(MP), microwave heating time (MHT), microwave delay time (MDT), slurry concentration,
and cement-tailings ratio. To investigate the influence patterns of these factors on the UCS
of the CTB samples, each factor was designed with four levels. The levels of each factor are
shown in Table 2.

Using the UCS of the CTB at 3 and 7 days of curing as evaluation indicators, a 5-factor,
4-level orthogonal experiment was conducted. A total of 16 experimental groups were
conducted, along with a blank control group. The experimental design is shown in Table 3.
Three samples were used for each set of tests. Using three samples per group helps ensure
the reliability and stability of the data through repeated experiments. Individual experi-
mental results may be influenced by random errors, equipment errors, and operational
mistakes. Using multiple samples helps reduce the impact of random errors and improves
the reliability of the results. Using three samples ensures that the experimental results
are representative and minimizes the influence of individual sample variations on the
conclusions. By calculating the average of multiple samples, the overall performance of the
material under the given experimental conditions can be more accurately represented.

This experiment uses the L16 OED, a common type of orthogonal table, consisting of
16 experiments (i.e., 16 experimental units), aimed at studying the combinations of multiple
factors and their levels. The L16 orthogonal table allows for a simultaneous analysis of
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the effects of multiple factors on the experimental results and explores the interaction
effects between some factors. Typically, the L16 design is used to study the interaction
between factors. Therefore, the L16 orthogonal experimental design is an efficient and
resource-saving method, suitable for studying multiple factors and their interactions [26].
By properly arranging experimental combinations, the L16 design enables the acquisition
of useful information about the effects of multiple factors with limited experiments, pro-
viding the scientific basis for parameter optimization and improving product or process
performance. The experimental design is shown in Table 3. By performing range and
variance analyses on the experimental data, the influence patterns of various factors on the
UCS were determined.

Table 3. OED of factors affecting the mechanical properties of CTB.

NO.
Factors

MP/W MHT/min MDT/h Cement-Tailings Ratio Slurry Concentration/%

1 60 4 0 4 70
2 60 6 2 6 72
3 60 8 4 8 74
4 60 10 6 12 76
5 180 4 2 8 76
6 180 6 0 12 74
7 180 8 6 4 72
8 180 10 4 6 70
9 300 4 4 12 72

10 300 6 6 8 70
11 300 8 0 6 76
12 300 10 2 4 74
13 420 4 6 6 74
14 420 6 4 4 76
15 420 8 2 12 70
16 420 10 0 8 72

2.4. Mechanical Properties Test

Due to the irreplaceable advantages of low cost and simple operation, the UCS test
is one of the most commonly used indicators to observe the mechanical properties of
CTB [27–31]. During the test, a loading rate of 100 N/s is used, which is commonly adopted
in mechanical property tests of various materials. This rate ensures that the material is not
exposed to excessively rapid loading that could lead to brittle failure while still allowing
the test to be completed within a reasonable timeframe. By selecting a loading rate of
100 N/s, the test effectively simulates the stress behavior of CTB in real-world engineering
applications until the samples fail. After the test, the corresponding stress-strain curve is
saved. From this curve, calculate the maximum stress value (i.e., maximum compressive
strength) and modulus of elasticity of the CTB.

3. Results and Discussion
3.1. Orthogonal Experimental Results

After preparing the CTB samples, microwave heating and curing were performed
according to the experimental design. After 3 and 7 days of curing, uniaxial compression
tests were conducted on the CTB samples to obtain the UCS average of the three parallel
samples, which was taken as the result under various influencing factors. The test results
are shown in Table 4.

63



Minerals 2025, 15, 115

Table 4. UCS test results.

NO.
Factors UCS/MPa

(3d)
UCS/MPa

(7d)MP/W MHT/min MDT/h Cement-Tailings Ratio Slurry Concentration/%

1 60 4 0 1:4 70 1.29 1.98
2 60 6 2 1:6 72 0.9 1.55
3 60 8 4 1:8 74 0.53 0.9
4 60 10 6 1:12 76 0.36 0.44
5 180 4 2 1:8 76 0.69 1.16
6 180 6 0 1:12 74 0.24 0.37
7 180 8 6 1:4 72 1.62 2.77
8 180 10 4 1:6 70 0.65 1.17
9 300 4 4 1:12 72 0.25 0.41

10 300 6 6 1:8 70 0.41 0.69
11 300 8 0 1:6 76 1.16 1.57
12 300 10 2 1:4 74 1.6 2.82
13 420 4 6 1:6 74 0.93 1.42
14 420 6 4 1:4 76 2.07 3.42
15 420 8 2 1:12 70 0.23 0.41
16 420 10 0 1:8 72 0.46 0.68

The early stage of cement hydration refers to the process where cement reacts with
water to form hydration products (such as calcium silicate hydrate, calcium hydroxide, etc.)
and begins to form the cement matrix. The early hydration stage typically occurs between
the initial and final setting times, generally within the first 24–72 h after mixing slurry. The
early characteristics of cement hydration have a significant impact on the final performance
of CTB, particularly on strength development, durability, and stability. Examining the
early characteristics of cement hydration, especially under the influence of microwave
heating, is crucial for understanding the performance of CTB. The specific significance is as
follows: Influence the formation of early strength, predict long-term performance, optimize
material proportions, improve construction quality and safety, and evaluate the effects of
microwave heating.

The selection of 3 and 7 days as curing times is typically aimed at focusing on the early
hydration stage, as these two time points are significant in the hydration process of CTB.
The hydration reaction of cement is most significant in the early stage (typically within the
first few days). During the first few hours to days, after cement and water are mixed, cement
particles react with water to form hydration products (such as calcium silicate hydrate and
calcium aluminate hydrate), which provide the foundation for the hardening of cement-
based materials. Studying the early hydration stage, particularly with curing times of
3 and 7 days, helps us gain a deeper understanding of the early strength development and
structural changes in tailings cemented backfill or other cement-based materials.

Day 3: This time point is typically used to capture the early stages of cement hydration.
By the third day of curing, most of the hydration reactions have occurred. Although
hydration is not fully complete, a relatively stable strength value can be obtained. For
CTB, the 3-day curing time reflects the early strength development and helps evaluate the
impact of microwave heating on the CTB’s initial performance. Day 7: This time point is
a common standard curing period, during which many cement products typically reach
a relatively stable strength value. After 7 days of curing, the cement hydration reaction
continues, but the rate of strength gain begins to slow down. Choosing 7 days as the testing
period provides a more comprehensive assessment of the CTB’s strength development and
reflects the long-term effects of microwave heating during ongoing hydration.

The critical importance of early strength: In many applications, especially in the study
of CTB, the rapid growth of early strength is crucial. Good early strength ensures the
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stability and load-bearing capacity of CTB during the construction process, especially when
rapid curing and high early load-bearing capacity are required for the fill.

3.2. Analysis of Patterns

Analyzing the results of the OED can identify influence patterns of various factors
on the UCS and rank the extent of their impact. Therefore, range analysis and variance
analysis were performed on the results of this orthogonal experiment.

3.2.1. Range Analysis

Range analysis is simple to perform and provides intuitive results, but it cannot
estimate experimental errors. By calculating the range of the experimental data, the range
analysis results of this orthogonal experiment were obtained [32,33]. The analysis results
are shown in Table 5. As seen from the range analysis in Tables 5 and 6, the influencing
factors on the UCS, in descending order, are the cement-tailings ratio of the CTB, slurry
concentration, MP, MHT, and MDT. Comparatively, internal factors of the CTB have a
greater effect on the UCS than the external factors, and the influence of the cement-tailings
ratio is greater than that of the slurry concentration.

Table 5. Range analysis in UCS of the CTB at 3 days.

Factors MP MHT MDT Cement-Tailings
Ratio

Slurry
Concentration

k1 0.770 0.790 0.787 1.645 0.645
k2 0.800 0.905 0.855 0.910 0.807
k3 0.855 0.885 0.875 0.522 0.825
k4 0.922 0.768 0.830 0.270 1.070
R 0.152 0.137 0.088 0.425 0.425

Table 6. Range analysis in UCS of the CTB at 7 days.

Factors MP MHT MDT Cement-Tailings
Ratio

Slurry
Concentration

k1 1.218 1.242 1.150 2.748 1.063
k2 1.367 1.507 1.485 1.427 1.353
k3 1.373 1.413 1.475 0.858 1.377
k4 1.482 1.277 1.330 0.407 1.647
R 0.264 0.265 0.335 2.341 0.584

In Table 6 here, kn (n = 1, 2, 3, 4) represents the mean value of each level of the
influencing factors, and R represents the range of each influencing factor. The larger the
range, the greater the impact on the UCS of CTB.

As seen from the range analysis in Tables 5 and 6, the influencing factors on the UCS,
in descending order, are the cement-tailings ratio of the CTB, slurry concentration, MP,
MHT, and MDT. Comparatively, internal factors of the CTB have a greater effect on the UCS
than the external factors, and the influence of the cement-tailings ratio is greater than that
of the slurry concentration. The impact of microwave parameters on the CTB is typically
manifested as local or short-term effects. For example, MP: the power of microwave heating
affects the heating rate. Excessive power may lead to overheating, while insufficient power
may hinder the progress of cement hydration. However, the impact of MP is generally
limited to the heating process and does not directly or persistently affect the long-term
strength of the material. MDT: MDT affects the cement hydration process. Too short a
time may prevent sufficient hydration, while too long a time may lead to over-hydration.
Overall, the impact of microwave heating is primarily concentrated in the early hydration
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stage, while the strength and performance of cement materials are more influenced by
the long-term hydration process and cement mix. Therefore, the impact of microwave
parameters is typically localized and limited; their variations may not influence the final
strength of the material in the long term and broadly, as is the case with the sand-to-cement
ratio and slurry concentration. The K-value of microwave parameters is generally small.

3.2.2. Variance Analysis

Compared to range analysis, variance analysis has the advantage of estimating ex-
perimental errors, analyzing the errors within and between groups, and avoiding the
interference of experimental errors on the data, thereby ensuring the reliability and accu-
racy of the data [34]. By performing a variance analysis on the results of this experiment,
the variance analysis results for the influencing factors on the UCS were obtained. The
variance analysis results are shown in Tables 7 and 8, where * indicates that it has the
greatest impact.

Table 7. Variance analysis in UCS of the CTB at 3 days.

Factors Sum of Squared
Deviations

Degrees of
Freedom F Ratio F Critical Value Significance

MP 0.054 3 1.000 9.280
MHT 0.056 3 1.037 9.280
MDT 0.017 3 0.315 9.280

Cement-tailings ratio 4.314 3 79.889 9.280 *
Slurry concentration 0.369 3 6.833 9.280

Error 0.05 3

Table 8. Variance analysis in UCS of the CTB at 7 days.

Factors Sum of Squared
Deviations

Degrees of
Freedom F Ratio F Critical Value Significance

MP 0.142 3 1.000 9.280
MHT 0.180 3 1.268 9.280
MDT 0.295 3 2.077 9.280

Cement-tailings ratio 12.358 3 87.028 9.280 *
Slurry concentration 0.686 3 4.831 9.280

Error 0.14 3

In analysis of variance (ANOVA), the F-ratio and the F-critical value are important
statistics used to determine whether differences between groups are significant [23]. They
have distinct meanings and roles. Meaning of F-ratio: the F-ratio in ANOVA is a ratio
used to compare two different variances, typically the variance between groups and the
variance within groups. Significance of F-ratio: a larger F-ratio indicates more pronounced
differences between groups, suggesting that the factor has a stronger influence on the
dependent variable. Conversely, a smaller F-ratio suggests smaller differences between
groups, potentially indicating no significant factor effect [22]. The F-critical value is obtained
from the F-distribution table and depends on the significance level (α) and degrees of
freedom. The F-critical value is used to compare with the calculated F-ratio to determine
whether the experimental results are significant. If the calculated F-ratio > F-critical value,
it indicates significant differences between groups. If the calculated F-ratio < F-critical
value, it indicates no significant differences between groups. This implies that the observed
difference in group means may merely be due to random variation.
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Tables 7 and 8 show that among the influencing factors, the cement-tailings ratio and
slurry concentration of CTB have a significant effect on UCS, whereas MHT, MP, and MDT
do not have a significant effect.

3.3. Effect of Microwave Heating on the UCS of CTB

As shown in Figure 3, during the three-day curing period, the UCS with a cement-
tailings ratio of 1:4 and a slurry concentration of 70% increased by 300.13%. For a con-
centration of 72%, it increased by 326.32%. The average increase was 276.17%. For a
cement-tailings ratio of 1:6, the UCS with a slurry concentration of 70% increased by
306.25%; for 72%, by 373.68. The average increase was 328.47%. For a cement-tailings ratio
of 1:8, the UCS with a slurry concentration of 76% increased by 263.16%. The average in-
crease was 196.11%. For a cement-tailings ratio of 1:12, the UCS with a slurry concentration
of 70% increased by 187.5%. The average increase was 135.84%.
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Although the orthogonal experimental analysis did not show significant effects of
MHT, MP, and MDT on the UCS, the experimental results indicate that the UCS treated with
microwave heating significantly improved under the same cement-tailings ratio, slurry
concentration, and curing time. The higher the cement content, the greater the UCS of
the CTB improvement. This is because microwave heating can significantly accelerate
the cement hydration process. During hydration, cement produces hydration products,
such as ettringite and calcium silicate hydrate, which form a solid framework within
the CTB, thus increasing its compressive strength. Microwave heating rapidly raises the
temperature of the cement paste, promoting early cement hydration and enabling the rapid
generation of hydration products, thereby enhancing the early strength of the CTB [9,12,16].
Additionally, microwave heating can reduce the amount of free water in the cement paste,
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thus lowering the porosity of the CTB and further enhancing its compressive strength.
Furthermore, microwave heating can effectively improve the microstructure of the CTB.
In traditional curing processes, the uneven distribution of moisture within the CTB can
lead to the formation of microcracks, which weaken its overall strength. Microwave
heating, with its penetrating and selective heating characteristics, ensures more uniform
moisture evaporation within the CTB, reducing the formation of microcracks and thereby
improving the overall strength of the CTB. Wu et al. [12] found that the CTB treated with
microwave heating exhibited a denser microstructure, significantly lower porosity, and
fewer microcracks, resulting in a substantial increase in UCS. Additionally, microwave
heating can effectively enhance the durability of the CTB. During the microwave heating
process, the rapid temperature rise within the CTB accelerates the migration and diffusion
of harmful substances, such as chloride ions and sulfates. Under the influence of microwave
heating, these harmful substances can quickly migrate from the interior to the surface of
the CTB and are expelled during subsequent cooling and moisture evaporation, thereby
reducing their impact on the durability of the CTB.

As shown in Figure 4, during the seven-day curing period, the UCS with a cement-
tailings ratio of 1:4 and a slurry concentration of 70% increased by 191.18%. The average
increase was 123.55%. For a cement-tailings ratio of 1:6, the UCS with a slurry concentration
of 70% increased by 129.41%. The average increase was 87.40%. For a cement-tailings ratio
of 1:8, the UCS with a slurry concentration of 76% increased by 107.14%. The average
increase was 74.08%. For a cement-tailings ratio of 1:12, the UCS with a slurry concentration
of 70% increased by 105.00%. The average increase was 72.1%.
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From the above experimental results, it can be observed that the early strength of the
CTB significantly improved after microwave heating. However, as the curing time extends,
the rate of strength growth gradually slows down or even decreases. This phenomenon
is mainly due to the following reasons. First, although microwave heating can quickly
enhance the early strength of the CTB, the rapid temperature rise may lead to incomplete
cement hydration. In traditional curing processes, cement hydration is a gradual process
that takes a long time to complete. Microwave heating accelerates the hydration process by
rapidly raising the temperature, thereby quickly increasing early strength [35]. However,
it may also cause some cement particles to lose activity due to excessive temperature,
affecting subsequent hydration. Therefore, as curing time extends, the strength growth of
the CTB slows down or even stops. Secondly, during microwave heating, the temperature
distribution inside the CTB may be uneven, leading to incomplete hydration in some areas.
Although microwave heating is characterized by uniform heating, in practice, due to the
material properties and the multifield coupling stress distribution of the microwave field,
temperature gradients may exist inside the fill material, resulting in weaker hydration
in certain regions [9,36]. These regions may show higher strength in the early stages but
experience slow or even declining strength growth during later curing due to incomplete
hydration. Thirdly, microwave heating may increase microcracks and pores inside the CTB,
affecting its long-term strength. During microwave heating, rapid temperature rise and
moisture evaporation may cause uneven stress distribution within the CTB, leading to the
formation of microcracks. These microcracks may have little impact on early strength, but,
over time, their expansion and connection can lead to strength reduction [16]. Microwave
heating can affect the microstructure of CTB, primarily manifested as changes in its pore
structure. Under microwave heating, the moisture within the CTB can evaporate more
uniformly, reducing the uneven distribution of moisture and improving the material’s
density. Microwave heating can also induce grain growth and phase transitions of minerals
within CTB to some extent, further enhancing its strength. Additionally, rapid moisture
evaporation during microwave heating may create pores within the CTB, weakening the
overall strength of the material, especially evident during long-term curing.

As shown in Figure 5, the CTB without microwave heating treatment had an average
strength growth rate of 188.08% after 3 and 7 days of curing. In contrast, Figure 3 shows
that CTB subjected to microwave heating treatment had an average strength growth rate of
234.15% after 3 days of curing, significantly enhancing the early strength of CTB, further
confirming the hypotheses and conclusions of this study.

3.4. Effect of Univariate on UCS

To visually illustrate the impact of factors other than the cement-tailings ratio and
slurry concentration on the UCS, an analysis was conducted on the effects of MHT, MDT,
and MP on the UCS.

3.4.1. Microwave Heating Time

Figure 6 illustrates the effect of MHT (4, 6, 8, and 10 min) on UCS of CTB samples
cured for different durations (3 and 7 days). Figure 6 also shows that during the early stage
(0–3 days), UCS of CTB increases with MHT from 0 to 8 min; however, from 8 to 10 min,
UCS of CTB decreases with further heating time. CTB heated for 8 min shows the highest
UCS value. These results indicate that MHT longer than 8 min can reduce the early strength
enhancement effect on CTB samples. These findings suggest that microwave treatment can
significantly enhance the mechanical properties of CTB within an appropriate MHT range.
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Figure 6 also shows that the effect of MHT on CTB cured for 7 days is different from that
cured for 3 days. From 0 to 6 min, the UCS of CTB increases with longer heating time, but
from 6 to 10 min, UCS decreases as MHT increases. In CTB cured for 7 days, the hydration of
the binder continues, but at a slower rate compared to early-stage CTB (0–3 days). MHT for
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6 min can appropriately increase the temperature for the formation of hydration products,
thereby enhancing the strength of CTB. However, when the MHT exceeds 6 min, excessive
heat is generated, causing thermal damage that disrupts the internal microstructure, leading
to adverse effects. Based on the above results, it is concluded that microwave heating can
significantly enhance UCS of early-stage CTB (0–7 days), but the MHT should not be too
long (6–8 min in this study). As previously mentioned, the high early strength growth of
CTB is crucial for mining operations. Therefore, it is expected that microwave technology
will be practically incorporated into the mining filling schedule to enhance the early strength
of CTB.

3.4.2. Microwave Delay Time

The effect of MDT on the timing of microwave heating should be another important
consideration in the application of microwave technology in mining fill operations. How-
ever, previous studies [9] did not take this factor into account. Therefore, MDTs of 0, 2,
4, and 6 h were used to reveal the impact of MDT on the development of UCS in CTB.
Figure 7 shows the effect of MDT on UCS of CTB samples at different curing ages (3 days
and 7 days). From Figure 7, it can be noted that regardless of MDT, the higher UCS gains in
CTB are associated with longer curing ages. The study also found that if the MDT is 0 h,
microwave heating (for 6 min) has a significant promoting effect on the development of
UCS in CTB. From Figure 7 it can be observed that the optimal MDT differs between the
3-day and 7-day curing periods. For the 3-day curing period, the UCS gradually increases
as the MDT increases from 0 to 4 h; beyond 4 h, UCS begins to decrease. For the 7-day
curing period, the UCS gradually increases as the MDT increases from 0 to 2 h; beyond 2 h,
the UCS begins to decrease.
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The positive impact of shorter MDT for microwave heating can be explained as follows:
microwave radiation provides thermal energy that accelerates the early hydration reactions
of the binder, producing more hydration products and thereby improving the UCS. In
contrast, the negative impact of longer MDT for microwave heating on UCS of 7-day cured
CTB may be due to the removal of water, a reactant in binder hydration, by microwave
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radiation. Consequently, fewer hydration products are formed, which reduces the later
strength of CTB. Additionally, the CTB structure has already been set and hardened before
microwave heating. The application of microwaves generates significant heat, which
inevitably causes thermal expansion, potentially leading to cracks and weakening the
structure of CTB. Therefore, the shorter the MDT, the better the mechanical properties
of CTB.

3.4.3. Microwave Power

MP, which affects the temperature during microwave heating, should be the most im-
portant consideration in the application of microwave technology in mining fill operations.
However, previous studies failed to consider this important factor, and the findings of this
study differ from those of previous research. Therefore, MPs of 60, 180, 300, and 420 W
were used to reveal the impact of MP on the development of UCS in CTB. Figure 8 shows
the effect of MP on UCS of CTB samples at different curing ages (3 days and 7 days). From
Figure 8, it can be noted that regardless of MP, UCS of CTB increases in both curing periods.
The study also found that when the MP is 420 W, microwave heating significantly promotes
the development of the UCS in the CTB. From Figure 8, it can be observed that the optimal
MP is the same for both 3-day and 7-day curing periods. For a 3-day curing period, UCS of
CTB gradually increases as the MP increases from 0 to 420 W. For the 7-day curing period,
UCS of CTB gradually increases as the MP increases from 0 to 420 W. Since the maximum
MP in this experiment is set at 420 W, and UCS of CTB samples is still increasing, optimal
MP parameters above 420 W remain to be explored.
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The beneficial effects of MP on UCS can be attributed to the following: microwave
radiation delivers thermal energy, and the level of MP determines the amount of thermal
energy provided. Increasing the MP appropriately enhances the thermal energy, producing
more hydration products and thereby improving the UCS. Conversely, excessively high
MP can have a negative impact, possibly due to the excessive thermal energy provided by
microwave radiation, which can damage the internal structure of CTB and thereby reduce its
mechanical properties. Additionally, the CTB structure has already been set and hardened
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before microwave heating. The application of microwaves generates significant heat, which
inevitably causes thermal expansion, potentially leading to cracks and weakening the
structure of CTB. Therefore, selecting the optimal MP parameters for microwave heating is
crucial for enhancing the early strength of CTB.

3.5. Effect of Univariate on the Modulus of Elasticity
3.5.1. Microwave Heating Time

The elastic modulus reflects the CTB’s resistance to deformation and is a key indicator
of its stiffness and stress-strain relationship [12,37,38]. The influence of MHT on the modu-
lus of elasticity of the CTB cured with different ages is illustrated in Figure 9. The figure
shows that, regardless of the curing time, the elastic modulus of the CTB is significantly
affected by the MHT. It is also noteworthy that, as the curing time increases, the variation
in the elastic modulus differs from that observed at the 3-day curing period. In the early
3 days, the addition of microwave heating during conventional curing significantly en-
hances the elastic modulus. This finding is consistent with the effect of heating time on the
UCS at the same age. However, for CTB cured for 7 days, excessive heating time reduces
the elastic modulus, especially when the heating time exceeds 8 min.
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During the early 3-day curing stage, the cement hydration reaction in CTB is not yet
complete, and the early strength and elastic modulus mainly rely on the formation of early
hydration products and the increase in filling density. Microwave heating rapidly and
uniformly increases the temperature around the cement particles, enhancing the reaction
rate between cement and water, thereby accelerating the formation of early hydration
products. The generated products fill the pores in the CTB, improving the structure’s
density and early rigidity, thus significantly enhancing the elastic modulus. On the other
hand, microwave heating can reduce porosity through thermal effects, causing closer
contact between particles and improving the early UCS and elastic modulus of CTB. For
CTB cured for 7 days, microwave heating, especially when the heating time is too long
(e.g., exceeding 8 min), can cause a decrease in elastic modulus. This may be due to
excessive internal temperature from prolonged heating, resulting in thermal stress and
thermal expansion effects. This uneven thermal expansion may lead to the formation and
propagation of microcracks within the material, weakening the overall elastic modulus.
The nonuniformity of microwave heating during the process may lead to the formation of
cracks or voids in certain regions of the material, which directly affects its elastic modulus.
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An increase in voids or the expansion of cracks can reduce the overall stiffness and strength
of the material, thereby affecting its elastic modulus.

3.5.2. Microwave Delay Time

Figure 10 shows the influence of delay time on the modulus of elasticity of the CTB at
the curing ages of 3 and 7 d. When the curing time reaches 3 days, microwave heating can
only increase the elastic modulus with appropriate delay times (2 and 4 h), which differs
from the previous studies [12], where the delay times were 0 and 3 h. The elastic modulus
value with a delay time of 0 h is unexpectedly lower than that at 2 h. It should be noted that
experimental errors may lead to unexpected results. When the curing time is extended to
7 days, adding microwave heating during conventional curing reduces the elastic modulus.
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The reason for this result has been discussed in Section 3.4.1. MDT of 2 and 4 h may
coincide with the efficient stage of cement hydration, promoting the densification of the
cement paste and thereby increasing the elastic modulus. If the MDT is too early (e.g.,
0 h), before the cement paste has fully begun hydration, microwave heating may cause
rapid evaporation of moisture, inhibit the hydration reaction, and increase voids, leading
to a reduction in the elastic modulus. On the other hand, during the 7-day curing process,
cement hydration has reached a more mature stage, and any rapid thermal expansion or
uneven heating may induce cracks or voids within the material, leading to a reduction in
the overall elastic modulus. Microwave heating may also affect the interfaces within the
material, such as the bonding or interaction forces between particles. When the material is
heated, the interactions between particles or molecules may change, which in turn affects
the elastic modulus.

3.5.3. Microwave Power

The effect of MP on the elastic modulus at different curing ages is shown in Figure 11.
Similarly, a previous study [12] did not consider the impact of MP, the most important
microwave parameter, on the elastic modulus of CTB. It can be observed from Figure 11
that regardless of curing time, an increase in MP positively influences the elastic modulus.
It is also noteworthy that as the curing time extends to seven days, the variation in elastic
modulus is reduced compared to that observed during the 3-day curing period. During
the early 3-day curing period, incorporating microwave heating into conventional curing
significantly enhances the elastic modulus, with the highest value observed at a power of
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420 W. For CTB cured for 7 days, microwave heating also improves the elastic modulus,
particularly when the microwave power exceeds 180 W.
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When the MP is moderate, the hydration reaction of the cement particles becomes
more uniform and rapid, thereby improving the mechanical properties of the material.
Microwave heating can transfer heat more uniformly, avoiding issues such as local over-
heating or uneven heating that may occur with traditional methods, thereby improving the
material’s uniformity and further enhancing its elastic modulus. By the seventh day, the
cement hydration is nearly complete, but appropriate MP can still accelerate the reaction of
partially unhydrated cement particles, continuing the formation of hydration products and
further strengthening the structure of CTB. Higher MP (e.g., above 300 W) can promote the
later-stage hydration reaction in a shorter period, allowing for a more complete formation
of hydration products, which enhances the strength and elastic modulus.

4. Conclusions
This experimental study explored the use of microwave radiation to boost the early

strength of CTB. The study specifically examined how microwave heating influences the
mechanical properties of the CTB. The findings lead to the following conclusions.

1. Internal factors of CTB have a greater impact on its strength than microwave heating
does. However, selecting appropriate MHT and MP, followed by conventional curing,
helps improve the early mechanical properties of the CTB. Within an appropriate
time frame, extending the MHT can accelerate the hydration rate of the cementitious
materials, producing more hydration products, which thus contribute to higher UCS
and elasticity modulus in the CTB. However, if the MHT is too long, thermal damage
can negatively affect the mechanical properties of the CTB.

2. The MDT is also crucial, hence the consideration of MDT between placing the CTB
and microwave heating. Shorter microwave delay times are associated with better
mechanical properties in the early-stage CTB. Microwave radiation significantly affects
the strength and elasticity modulus of the CTB.

3. An appropriate microwave radiational setting can be established: 420 W of MP, 6 min
of MHT, and an MDT of 4 h. The optimal MP parameters above 420 W remain to be
explored. The mechanism by which microwave radiation enhances the CTB can be
explained through studies of its microstructure.
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4. The enhancement of early strength in CTB through microwave treatment has sig-
nificant practical implications in mining applications. In terms of economic feasi-
bility, although the initial investment in microwave treatment equipment is high,
its advantages—such as improved tailings recovery, reduced operational costs, and
energy savings—can lead to significant economic benefits in the long run.
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Abstract: Addressing the resource constraints, such as manpower and equipment, faced by mine
backfilling operations, this study proposed an optimization model for backfill scheduling based on
the Resource-Constrained Project Scheduling Problem (RCPSP). The model considered backfilling’s
multi-process, multi-task, and multi-resource characteristics, aiming to minimize total delay time.
Constraints included operational limits, resource requirements, and availability. The goal was to
determine optimal resource configurations for each stope’s backfilling steps. A heuristic genetic
algorithm (GA) was employed for solution. To handle equipment unavailability, a new encod-
ing/decoding algorithm ensured resource availability and continuous operations. Case verification
using real mine data highlights the advantages of the model, showing a 20.6% decrease in completion
time, an 8 percentage point improvement in resource utilization, and a 47.4% reduction in overall
backfilling delay time compared to traditional methods. This work provides a reference for backfilling
scheduling in similar mines and promotes intelligent mining practices.

Keywords: RCPSP; mine backfilling; GA; scheduling optimization; intelligent mine

1. Introduction

Backfilling allows for substantial disposal of mine waste into stopes, contributing
significantly to safety, environmental protection, cost efficiency, and operational effective-
ness [1–4]. As a crucial method for achieving green mining, zero-tailing operations, and
sustainable resource extraction, backfill mining is progressively becoming the preferred
practice in underground mining [5–8].

The operational efficiency of backfill mining largely depends on the coordinated
management of multiple stopes, production stages, and resource allocations. Current
scheduling and management techniques are typically inflexible, leading to lower resource
utilization and production efficiency. Mines employing the backfill mining method handle
several backfill tasks in numerous stopes on monthly and weekly schedules [9–11], with
each stope requiring several sequential backfill steps involving multiple resources [12]. The
backfill scheduling problem is characterized by high flexibility, allowing each stage to select
among various parallel resources [13]. Enhancing backfill efficiency requires optimized
resource coordination across projects, stages, and constraints. However, the core resource—
the sand silo—is commonly managed in an “one operational, one standby” configuration,
which imposes a rigid and inefficient framework.

In the era of Mining 4.0 and the development of intelligent mines, significant advances
in backfill technologies have been achieved worldwide [14]. Increased investment has
led to improved automation, enabling real-time adjustments of slurry concentration and
composition as well as centralized control of material feeding, slurry mixing, and trans-
portation processes [15–17]. Nonetheless, substantial opportunities remain to enhance
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the allocation of key resources, such as manpower, equipment, and materials, to further
optimize backfill operations.

These challenges are fundamentally optimization problems. Applying advanced
scheduling optimization tools to backfill operations presents a promising research direction.
Optimized workflows enhance control over the entire production process [18,19], aligning
production with higher-level schedules and facilitating efficient resource allocation and
task management.

A substantial body of research in production scheduling optimization, particularly in
the manufacturing sector, centers on the Job Shop Scheduling Problem (JSP) [20]. The JSP, a
foundational challenge in production scheduling, was introduced by Johnson in 1954 [21].
Later, in 1990, Bruker and Schlie [22] expanded the JSP to the Flexible Job Shop Scheduling
Problem (FJSP), broadening equipment options from single to multiple machines, which
enhanced flexibility and complexity, thus extending its applicability. Gong [23] further
incorporated workforce flexibility into the FJSP framework, enabling improved human
resource allocation. Key optimization metrics in FJSP include makespan, delivery delays,
machine load, and energy consumption [24–26]. Additionally, preliminary studies have
explored the application of these scheduling principles to mine backfill operations [27,28].

In model construction, certain assumptions are typically applied, with most models
presuming continuous availability of manpower, materials, and equipment. However,
real-world production environments are dynamic, complex, and subject to uncertainty,
with frequent instances of equipment unavailability [29–32]. The Resource-Constrained
Project Scheduling Problem (RCPSP), first introduced by Johnson and Russell in 1967 [33],
addresses resource availability limitations by optimizing project planning and scheduling
under resource constraints. RCPSP is widely used to optimize scheduling in vehicle
fleets and production lines. In backfill operations, limitations stem from factors such as
manpower constraints, equipment reliability issues, and unavailability due to sand silo
loading and slurry preparation requirements, as well as equipment occupancy. Adapting
RCPSP to the backfill context enables rational scheduling of backfill tasks according to
equipment status, facilitating planned maintenance, optimizing timing for sand loading
and unloading, and reducing extended delays.

In summary, while the adoption of backfill mining continues to expand, challenges
related to rigid resource management and suboptimal utilization persist. Although au-
tomation and centralized control have advanced as part of intelligent mining development,
these improvements have yet to fully inform scheduling decision-making. To address these
issues, this study integrates resource constraints into a backfill scheduling optimization
model, accounting for task parallelism and complex workflows. By systematically schedul-
ing tasks with respect to both time and resource allocation, the model aims to fulfill target
objectives while maximizing resource utilization.

The methodology of this study includes: first, identifying resource requirements for
each backfill step and determining possible instances of resource unavailability; next, estab-
lishing model assumptions, defining input and output data, and setting model parameters,
objectives, and constraints; subsequently, developing an algorithmic solution; and finally,
validating the model and algorithm using actual mine data and analyzing scheduling
results to evaluate the model’s effectiveness.

2. Constraint Analysis

Backfill resources are categorized into three types: manpower, equipment, and materi-
als. Among these, materials include tailings and cementitious components. Metal mines
generate substantial amounts of tailings daily from mineral processing, with less than half
typically allocated for backfilling under normal conditions [34]. The supply of cementitious
materials is highly accessible, ensuring an adequate supply at any given time. Therefore,
this study does not consider constraints on material resources.
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Both manpower and equipment resources face limitations in production. The number
of stopes that a backfill team can service simultaneously is capped, requiring the model to
account for constraints on manpower occupancy.

Equipment encompasses various machinery used in backfilling operations. Equipment
reliability is a critical factor for resource availability. Maintenance needs or equipment
malfunctions can lead to unavailability and delays in tasks. Reliability degradation of
key equipment components can impact the quality, speed, or energy consumption of
backfilling. Therefore, the primary resource constraints in backfill operations include
occupancy constraints, sandloading constraints, and reliability constraints.

2.1. Equipment Reliability Constraints

Analyzing equipment reliability allows for the quantification of its capability to per-
form designated functions, enabling the development of preventive maintenance plans.
This approach also optimizes the allocation of available resources, ensuring the smooth
progression of backfill operations.

If the failure behavior of backfill equipment follows a Weibull distribution, its proba-
bility density function is given by Equation (1), where t denotes the equipment’s service age,
and β, η and r are the shape, scale, and location parameters. These parameters influence the
curve’s shape, horizontal displacement, and scale. The cumulative distribution function (unre-
liability function) and reliability function are provided in Equations (2) and (3), respectively.

f (t) =
β

η

(
t − r

η

)β−1
e−( t−r

η )
β

(1)

F(t) =
∫ t

0
f (t)dt = 1 − e

−(
t − r

η
)

β

(2)

R(t) = 1 − F(t) = e−( t−r
η )

β

(3)

When β < 1, β = 1 and β > 1, these values respectively describe the early failure
phase, random failure phase, and wear-out phase of the equipment, corresponding to the
left, bottom, and right segments of the failure probability density curve, also known as
the bathtub curve. The parameter η represents the characteristic life of the equipment,
while r > 0 indicates the time at which failures begin to occur, representing the minimum
service age.

Figure 1 illustrates the reliability variation of backfill equipment, where R represents
equipment reliability. Equipment reliability decreases with increasing service age. Prior to
each backfill task, the system evaluates whether the equipment’s reliability at the task’s
completion would fall below the critical threshold RT. If the predicted reliability is below
RT, maintenance is initiated. Complete maintenance restores the equipment to its original
condition (“as good as new”), while partial maintenance improves reliability to an initial
level, Rini.
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2.2. Characteristics of Sand Silo Feeding and Slurry Preparation

The sand silo, a core component of the backfill system, thickens low-concentration
tailings (about 20%, mass concentration) from the processing plant to a high concentration
(around 80%, mass concentration) for use in mine backfilling after activation and slurry
preparation [35].

Apart from reliability-related failures, the sand silo is also unavailable for slurry
preparation at certain times due to its operational characteristics. Before discharging slurry,
the silo must first undergo feeding and settling processes, during which it cannot support
any backfilling operations. This is the primary reason mines adopt a “one operational, one
standby” mode.

The sand silo feeding and settling process is illustrated in Figure 2. The red letter-
ing represent the process of feeding, sedimentation and filling the sand. Initially, low-
concentration tailings slurry is pumped into the empty silo. After a period of settling, the
slurry separates into two layers: a supernatant on top and high -concentration tailings at the
bottom. Subsequently, more low-concentration slurry is pumped into the silo from the bot-
tom, pushing the supernatant out of the silo. Overflow of the supernatant usually carries a
small amount of tailings. This feeding and settling cycle is repeated as needed until the silo
is nearly filled with high-concentration tailings, depending on operational requirements.
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The changes in tailings mass within the sand silo during normal operation are illus-
trated in Figure 3. Initially, the silo is filled with high-concentration tailings, with a mass of
MA. As it supports backfilling tasks, the tailings mass inside gradually decreases. When
the remaining tailings are deemed insufficient to meet backfilling needs, as stated in the red
section, the feeding process is initiated. This process consists of multiple cycles of tailings
feeding and settling, leading to intermittent increases in mass within the silo. During these
cycles, the silo is unavailable for slurry preparation or backfilling, as stated in the brown
section. Once feeding is completed, the silo can again serve backfilling tasks.
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2.3. Resource Occupancy and Delay

An essential factor in optimizing scheduling is managing resource occupancy. When
conflicts arise in equipment allocation, this study prioritizes assigning equipment to the
stope ready for filling first. Stopes are sorted by allowed start time, with resources allocated
to earlier tasks, while later tasks are scheduled at the next available time slot.

Delays in stope backfilling may result from factors such as equipment reliability issues,
sand silo refilling, or conflicting equipment usage schedules. Once backfilling starts, each
step must proceed without interruption to prevent incidents such as pipe blockages or
bursts caused by slurry solidification. If a delay is anticipated in any step, the start time
for backfilling that stope is adjusted, and resources are rescheduled to ensure all required
resources are available for each step throughout the process.

2.4. Backfilling Process and Resource Constraints

This study focuses on equipment reliability and preventive maintenance, as well as
unavailability due to sand silo feeding and resource occupancy. The resources required
for each step in the backfilling process, along with their respective constraints, are shown
in Table 1. The backfilling operation consists of four steps: preparation, water flow in-
duction, layered backfilling, and pipeline cleaning. Resources include manpower, water
storage, slurry mixing equipment, cementitious material management equipment, and
conveying equipment. The abbreviations in the table are explained below. A slash indicates
that the process does not require the corresponding resource, so resource constraints are
not considered.

Table 1. Resource Constraints for Each Step in the Backfilling Process.

Operation Step Manpower Water Storage Slurry Mixing
Equipment

Cementitious Material
Management Equipment

Conveying
Equipment

Preparation O \ \ \ \
Water Flow Induction O O, R \ \ O, R

Layered Backfilling O O, R O, R, S O, R O, R
Pipeline Cleaning O O, R \ \ O, R

Abbreviations: O: Occupancy Constraint, R: Reliability Constraint, S: Sand Silo Feeding Constraint, \: Not applicable.

3. Optimization Model Construction
3.1. Model Assumptions, Inputs, and Outputs

The mine backfill scheduling optimization problem under resource constraints can
be described as follows: suppose there are A levels in the mining area where mining and
backfilling operations are being conducted, with each level containing Ba stopes. Each
stope requires C steps. The mining area has D types of resources, with each step requiring
at least one type, and the total available resources amount to Ed. Each task has different
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resource options, leading to variations in resource occupancy and maintenance, which in
turn result in differing delay times.

The model assumptions are as follows:

1. The preceding process for backfilling is mining, and backfilling can only begin once a
stope has been mined out. Consequently, each stope has an earliest possible start time
for backfilling.

2. At time 0, all slurry mixing equipment is fully stocked with tailings.
3. At any given time, each resource can only serve one backfilling task.
4. Each step may require multiple types of resources, but each step is executed only once

and utilizes only one resource from each required type.
5. Backfilling within a stope must proceed continuously; if any resource becomes un-

available, all subsequent steps are delayed.
6. Preparation times between different tasks for the same resource are not considered.
7. The duration of a given backfill task is consistent across all resources.

3.2. Symbols and Definitions

Based on the above assumptions, the symbols used in this model are defined as follows:
Subscripts

• t, Scheduling time index, t ∈ (1, 2, . . . , T), where T is the total scheduling period?
• a, Level index, a ∈ (1, 2, . . . , A), where A is the total number of levels in the min-

ing area.
• b, Stope index, b ∈ (1, 2, . . . , Ba), where Ba is the total number of stopes to be backfilled.
• c, Step index, c ∈ (1, 2, . . . , C), where C is the maximum number of steps.
• d, Resource type index, d ∈ (1, 2, . . . , D), where D is the total number of resource types.
• e, Resource unit index, e ∈ (1, 2, . . . , Ed), where Ed is the total number of units for a

specific type of resource.

Parameters

• BFa,b, Earliest feasible backfilling time, in hours (h)
• DTa,b,c,d,e, Duration of the backfilling task, in hours (h)
• TBa,b,c, Tailings consumption for backfilling, in tonnes (t)
• MAe, Total capacity of tailings held by the slurry mixing equipment, in tonnes (t)
• Mt

e, Mass of tailings in the slurry mixing equipment at time t, in tonnes (t)
• CMe, Critical mass of tailings in the slurry mixing equipment, in tonnes (t); below this

value, additional feeding is required.
• FTe, Time required for tailings feeding, in hours (h)
• RTd,e, Reliability threshold for equipment; maintenance is required if reliability falls

below this level
• MDTd,e, Duration of equipment maintenance, in hours (h)
• Rt

d,e, Equipment reliability at time t
• SeT, Equipment service age post-maintenance, in hours (h)
• PNa, Number of pipelines leading to level a
• FS0, Number of primary units for backfilling operations
• N, A large positive integer
• DeTa,b, Backfilling delay time, in hours (h)

Decision Variables

• Xt
a,b,c,d,e, An integer variable, equal to 1 if a resource of type d and unit e is used for the

c-th step in stope b at level a at time t; otherwise, it is 0.
• Yt

d,e, An integer variable, equal to 1 if the d-th resource of type e is available at time t;
otherwise, it is 0.

• Zt
a,b,c, An integer variable, equal to 1 if the backfilling task begins at time t; otherwise,

it is 0.

Auxiliary Decision Variables
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• RAa,b,c,d, An integer variable, equal to 1 if a resource of type d can serve the c-th step
in stope b at level a; otherwise, it is 0.

• ST0
a,b,c, Expected start time for the backfilling in stope b at level a in hours (h).

• STa,b,c, Actual start time for the c-th step in stope b at level a in hours (h).
• ETa,b,c, Expected end time for the c-th step in stope b at level a in hours (h).
• ETa,b,c, Actual end time for the c-th step in stope b at level a in hours (h).
• MSt

d,e, An integer variable, equal to 1 if the backfilling equipment is under maintenance
at time t; otherwise, it is 0.

• St
e, An integer variable, equal to 1 if the slurry mixing equipment is undergoing feeding

at time t; otherwise, it is 0.
• delay, delay_m, delay_t, delay_on, represent total delay time, delay time caused by

resource maintenance, sand silo feeding, and equipment occupancy, respectively.

3.3. Optimization Objective

The goal of backfill scheduling is to organize manpower, equipment, and other re-
sources to carry out operations as soon as the backfilling conditions are met in the stope [36].
The benefits are:

1. Minimizing backfill delay time, as the backfilling time for the goaf remains unchanged,
the total completion time will be minimized, leading to higher equipment utilization.

2. In the coordinated mining and backfilling mode, timely backfilling enables earlier
commencement of the next mining stage, improving overall production efficiency.

3. Prompt backfilling can prevent long-term exposure of the goaf, reducing the risk of
roof collapse and side wall failure incidents.

Thus, the optimization goal of the model (Equation (4)) is to minimize the total delay
time in backfilling, thereby maximizing production continuity, reducing stope exposure
time, and enhancing safety in underground mining.

F(x) = min
A

∑
a=1

B

∑
b=1

(ETa,b,C − BFa,b) = min
A

∑
a=1

B

∑
b=1

(DeTa,b) (4)

3.4. Constraints

The model’s constraints are divided into two categories: backfilling operation con-
straints and resource availability constraints.

3.4.1. Backfilling Operation Constraints

The following business constraints are implemented to ensure the effective and ef-
ficient scheduling of the backfilling process. These constraints govern the logical flow,
resource allocation, and timing of various tasks involved in backfilling operations.

1. Each backfilling step c in stope b at level a is performed only once:

T

∑
t=1

Zt
a,b,c = 1, ∀a, b, c (5)

2. Only one resource of each type is selected to serve a specific backfilling task:

T

∑
t=1

E

∑
e=1

Xt
a,b,c,d,e = RAa,b,c,d,∀a, b, c, d (6)

3. Earliest feasible backfill time constraint:

STa,b,1 ≥ BFa,b, ∀a, b (7)
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4. Continuity constraint for backfilling steps, where the start time of the next step is
equal to the end time of the current step. When applying this constraint, it is necessary
to account for steps that require multiple resource types:

ETa,b,c = STa,b,c +

D
∑

d=1

E
∑

e=1

(
DTa,b,c,d,e ·

T
∑

t=1
Xt

a,b,c,d,e

)

D
∑

d=1

E
∑

e=1

T
∑

t=1
Xt

a,b,c,d,e

(8)

where:
D

∑
d=1

E

∑
e=1

T

∑
t=1

Xt
a,b,c,d,e ≥ 1STa,b,c+1 = ETa,b,c, ∀a, b, c ∈ [1, C − 1] (9)

3.4.2. Resource Availability Constraints

Equations (11) and (12) correspond to the equipment reliability constraints and main-
tenance strategies described in Section 2.1. Equations (13) and (14) pertain to the sand
silo tailings level assessment and feeding/discharging operational mode discussed in
Section 2.2. Equations (10) and (15) correspond to the equipment occupancy constraints
described in Section 2.3.

5. Pipeline Occupancy Constraint: The number of stopes being backfilled at level a and
below must not exceed the number of pipelines leading to level a.

A

∑
i=a

B

∑
b=1

C

∑
c=1

Zt
a,b,c ≤PNa, ∀t (10)

6. Equipment Reliability Constraint: Before a task begins, the equipment’s reliability at
the task’s end must meet the minimum requirement, as indicated by Equation (11).

RETa,b,c
d,e ≥ RTd,e, ∀e, d (11)

If this requirement is not met, as specified in Equation (12), maintenance is required. The
resource is marked as unavailable, the task start time is adjusted, and the equipment
reliability is updated post-maintenance.

i f R
ET0

a,b,c
d,e < RTd,e, then





MS
ST0

a,b,c
d,e , . . . , MS

ST0
a,b,c+MDTd,e

d,e = 1
STa,b,1 = ST0

a,b,1 + MDTd,e

RSTa,b,1
d,e = Rini

d,e

∀e, d (12)

7. Slurry Mixing Equipment Feeding Constraint: Before a task begins, the tailings level
in the slurry mixing equipment must meet the required amount, as specified by
Equation (13).

METa,b,c
e ≥ CMe, ∀e (13)

If this requirement is not satisfied, as indicated in Equation (14), or if the tailings level in
the slurry mixing equipment has fallen below the critical value before the task starts, then
feeding is initiated. The equipment is marked as unavailable, the backfilling task start time
is adjusted, and the tailings level in the slurry mixing equipment is updated.

M
ST0

a,b,c
e ≤ CMe

or M
ET0

a,b,c
e ≤ 0



then,





S
ST0

a,b,c
e , . . . , S

ST0
a,b,c+FTe

e = 1
STa,b,1 = ST0

a,b,1 + FTe

MSTa,b,1
e = MAe

∀e (14)
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8. Manpower Resource Constraint: The number of stopes being backfilled at any given
time must not exceed the available number of backfilling units.

D

∑
d=1

E

∑
e=1

MSt
d,e ≤ MS0, ∀t (15)

3.4.3. Parameter Constraints

9. Equations (16) and (17) establish the assignment relationships between Xt
a,b,c,d,e and

Zt
a,b,c. Both variables are binary, and when Xt

a,b,c,d,e = 1, the corresponding Zt
a,b,c is also

ensured to be 1. Equation (18) defines the assignment relationship between STa,b,c and
Zt

a,b,c, where STa,b,c is equal to the t value for which Zt
a,b,c = 1.

D

∑
d=1

E

∑
e=1

Xt
a,b,c,d,e ≤ N · Zt

a,b,c, ∀a, b, c, t (16)

D

∑
d=1

E

∑
e=1

Xt
a,b,c,d,e ≥ Zt

a,b,c, ∀a, b, c, t (17)

STa,b,c =
T

∑
t=1

t · Zt
a,b,c, ∀a, b, c (18)

10. When backfilling equipment is under maintenance or the slurry mixing equipment is
in a feeding state, the corresponding resource is unavailable:

if d = 3, St
e = 1, ∀e or MSt

d,e = 1, ∀d, eYt
d,e = 0 (19)

4. Algorithm Design

The RCPSP has been proven to be an NP-hard (Non-deterministic Polynomial-time
hard) problem [37,38]. The discrete nature of equipment reliability constraints and tailings
constraints for slurry mixing equipment further increases the complexity of the solution.
Intelligent optimization methods, such as GA, Simulated Annealing (SA), Ant Colony
Optimization (ACO), and Particle Swarm Optimization (PSO), are effective for quickly
obtaining approximate solutions to large-scale NP-hard problems, offering an advantage
in solution efficiency [39]. In this study, the model is implemented using the Python
programming language, with GA applied for solving.

4.1. Encoding and Decoding
4.1.1. Encoding Rules

The backfill scheduling problem with multi-resource availability involves assigning the
e-th resource of type d to the c backfilling step in stope b at level a, requiring consideration
of five dimensions of data. As shown in Equation (20), a chromosome is composed of
five dimensions: A, B, C, D, and E, which correspond to level index, stope index, backfilling
step index, resource type, and resource unit, respectively. Resource types D (1, 2, 3, 4,
5) represent manpower, water storage, slurry mixing equipment, cementitious material
management equipment, and conveying equipment.

I =




A
B
C
D
E



=




1, 1, 1, . . . , 2, . . . , A
1, 1, 1, . . . , 1, . . . , BA
1, 2, 2, . . . , 1, . . . , CBA
1, 1, 2, . . . , 2, . . . , DCBA
1, 1, 2, . . . , 1, . . . , EDCBA




(20)

The logic of the encoding algorithm is illustrated in Figure 4. Based on the above
rules, an initial population of individuals is generated with specified population size. The
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encoded data includes level information, stope details, backfilling steps, and backfilling
resources, forming the initial chromosomes for the algorithm.
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The algorithm’s solution process must address two key issues: first, that each backfill-
ing task requires multiple resources to operate simultaneously; and second, the timing of
when each resource begins servicing the task.

To resolve the first issue, a data dictionary was created to map each backfill task to its
required resource types, providing the basis for encoding. Unique identifiers are assigned
to differentiate resource types during this process.

For the second issue, precise scheduling times cannot be determined during encod-
ing due to potential delays in the optimization process. To manage this, delay times
are calculated and recorded during optimization. In the decoding phase, a detailed
schedule—incorporating timing—is generated using these delay times and the earliest
possible start time.

4.1.2. Decoding Algorithm

The logic of the decoding algorithm is illustrated in Figure 5.
The detailed decoding steps are as follows:

1. With known level indices, stopes, backfilling step durations, allowed start times, and
tailings consumption, stopes are sorted based on the allowed start time.

2. According to Equation (3), calculate the resource reliability R after completing the

c-th step in stope b at level a. If RETa,b,c
d,e ≥ RTd,e, the resource does not require mainte-

nance. Otherwise, maintenance is performed, rendering the resource unavailable. A
maintenance record is created, and the R is reset. The delay caused by maintenance is
equal to the maintenance duration, delay_m = MDTd,e, and the resource’s service age
is updated accordingly.

3. Check whether the tailings weight can meet the requirements for backfilling stope b

at level a. If METa,b,c
e ≥ CM, the equipment has sufficient tailings and no additional

feeding is needed. Otherwise, feeding is performed, create a feeding record, and
update the new tailings level. The delay caused by insufficient tailings is equal to the
feeding time, delay_t = FTe.

4. Calculate the occupancy times for all resources required to determine whether each
resource is within its available time. If yes, no further action is needed; otherwise,
calculate the delay caused by resource occupancy, delay_on.

5. Calculate the overall delay for backfilling using Equation (21). The actual start time is
obtained by adding this delay to the allowed start time of the stope. Determine the
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timing for each task, create the backfilling schedule for the stope, and update resource
occupancy accordingly.

DeTab = delay_on + delay_m + delay_t (21)

6. Return to Step 2 and proceed with calculations for the next stope until scheduling
plans are completed for all stopes.

7. Calculate the total delay across all stopes, using it as the fitness value for the GA.
Return the detailed schedule, fitness value, maintenance records, and feeding records.
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4.2. Execution Process of the GA

The execution process of the GA includes population initialization, evaluation and
selection, crossover and mutation, and fitness calculation. The steps for implementing the
GA in this model are as follows:

1. Define parameters such as population size, number of iterations, and mutation probability.
2. Initialize the first generation of the population according to the encoding rules. Calcu-

late fitness values through decoding, copy the best individual to replace the worst
individual to ensure elitism, and update the global best individual. Elitism ensures
that the best individual in each generation is passed to the next generation.

3. Select two parent individuals using a roulette-wheel selection method and apply
two-point crossover to generate offspring. Roulette wheel selection determines the
probability of an individual being chosen as a parent based on its fitness. Two-point
crossover selects two crossover points in two parent genes and exchanges sequences
to produce new individuals.

4. Define mutation rules, allowing mutation only within the same resource type. Mutate
resource numbers according to the mutation probability to create new offspring.
Mutation randomly alters an individual’s genes to increase diversity and prevent
premature convergence.

5. Decode the new offspring and calculate their fitness values, retaining the two best
individuals and updating the global best.

6. Repeat steps (3), (4), and (5) until the specified number of iterations is reached.
7. Return the global best individual.

In a simple GA, suppose we have individuals and fitness values as shown in Table 2:

Table 2. Example gene of GA.

Individual Gene Fitness

1 101010 20
2 110011 30
3 111000 50

Execute the following steps:

• Selection: Use the roulette wheel selection method to select two individuals, such as
individual 2 and individual 3.

• Crossover: After performing the two-point crossover, two new offspring individuals
are generated, such as the new individuals “110000” and “111011” produced by the
crossover between individual 2 and individual 3.

• Mutation: Apply mutation to the offspring “110000”, which could change to “110001”.
• Elitism: Retain the current best individual (for example, the individual with a fitness

of 50) and directly pass it to the next generation.

The individuals after executing the GA are: “110001”, “111011”, and “111000”.
The search logic of the algorithm involves assigning resources of the same type but

with different identifiers to tasks. To ensure that all generated solutions are valid, crossover
and mutation operations are applied exclusively to the E dimension of the chromosome.
Crossover is permitted only when the D values of the two chromosomes are identical,
indicating the use of the same type of equipment. Similarly, the mutation range is restricted
to the same category of resources. For instance, if the E value is 5, representing human
resources with an identifier range of (1, 6) the mutation is confined to this range.

5. Case Study, Results Analysis, and Discussion

To verify the effectiveness of the model and algorithm, an empirical analysis is con-
ducted using production data from a large underground metal mine in Shandong, China.
The mine operates at a production scale of 8000 t/d and employs an upward layered
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backfilling method. The backfill structure is divided into two layers vertically, with five
sequential backfilling steps: preliminary preparation, water flow induction, bottom filling,
top filling, and pipeline cleaning, where C is set to 5.

5.1. Case Data and Inputs

The mine establishes a monthly backfilling plan, with adjustments and optimizations
approximately every ten days. During a specific optimization instance, 27 stopes in 11 levels
were scheduled for backfilling; detailed stope information is provided in Appendix A. The
backfilling station includes six tailings silos, each equipped with corresponding mixing
facilities, collectively forming a slurry mixing system. Three backfilling teams are available,
each capable of handling two tasks simultaneously. Additionally, there are two water
storage units and two cementitious material silos, each independently able to meet the
water and material demands of all the slurry mixing systems. A total of six pipelines
connect to the underground backfill main network.

The equipment reliability data is sourced from the ledger and management system
of the backfilling center at the mine, covering equipment operation and failure data since
2020. The dataset includes various metrics such as equipment usage time, failure records,
maintenance history, and more, encompassing different types of equipment and operating
conditions. The Pareto principle was applied to analyze equipment failure modes. The
backfilling station at the case has been in service for several years, with equipment now in
the wear-out phase, corresponding to the third stage of the bathtub curve, where β > 1.
This process follows a Non-homogeneous Poisson Process (NHPP). The equipment failure
rate function adheres to a Weibull distribution, with fitted parameters for the Weibull
function shown in Table 3. The primary backfilling units remain continuously available,
with a reliability of 1. When the model is applied to other mines, it will need to be adapted
according to actual data and select different failure functions based on the specific failure
modes observed.

Table 3. Reliability Parameters for Backfilling Equipment.

Type β η r Service Age (h) D E

Manpower \ \ \ \ 1 1, 2, 3, 4, 5, 6
Water tank 2 1920 0 550, 550, 550, 420, 420, 420 2 6, 7, 8, 9, 10, 11

Pulping & mixing 2 969 0 490, 210, 430, 150, 480, 270 3 12, 13, 14, 15, 16, 17
Cementitious material 2 1983 0 460, 460, 460, 390, 390, 390 4 18, 19, 20, 21, 22, 23

Slurry conveying 2 2064 0 480, 510, 530, 550, 570, 590 5 24, 25, 26, 27, 28, 29

As shown in Table 3, when the value range of E is (1, 6), it represents human resources,
and its reliability is set to 1 by default, so no other parameters need to be assigned.

Calculating the reliability of the water tank and cementitious material management
equipment is relatively complex, as these two systems operate in parallel. The combined
reliability of the parallel configuration is determined using Equation (22). This parallel
setup is then represented as six virtual units with uniform reliability, with their service age
cumulatively tracked across tasks.

Rp(t) = 1 − [1 − R1(t)] · [1 − R2(t)] (22)

In summary, additional data required for the model are listed in Table 4, including the
values or ranges for A, B, C, D, and E; the tailings capacity and feeding time for the slurry
mixing equipment; and the equipment reliability threshold.
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Table 4. Additional Input Data for the Model.

Parameter Value Parameter Value

MA (t) 1424 A 11
FT (h) 10 B 1–3

RT 0.8 C 5
MDT (h) 12 D 5
SeT (h) 80 E 1–30

FS0 6 N 105

5.2. Optimization Results

The model is constructed using Python on the Anaconda platform, and the computa-
tions are performed on a Lenovo Thinkpad notebook equipped with an Intel Core i7-8550
processor, that was purchased in Shanghai, China. The parameters of the GA, such as
crossover rate, mutation rate, and population size, significantly affect the solving speed
and efficiency.

A higher crossover rate and mutation rate can accelerate convergence but may reduce
the diversity of solutions, potentially leading to the loss of the optimal solution. Conversely,
when the crossover rate is too low, the convergence speed decreases, and the probability of
obtaining suboptimal solutions increases. However, under the elitism strategy, the loss of
the optimal solution does not occur. To reduce computational intensity and the number
of iterations, this case study adopts relatively high crossover and mutation rates, both set
at 0.2.

A larger population size requires more computational resources and time but provides
a broader range of solutions. In this case study, multiple simulations were conducted
with the same number of iterations (50). When the population size was 20, only 2 out
of 10 simulations achieved an approximate minimum value (825 h). As the population
size increased, the number of times the optimal fitness value was achieved also increased.
When the population size reached 50, all 10 simulations achieved the optimal fitness value.

Regarding computation time and efficiency, the time per iteration varied between
6 and 9 min. However, the number of iterations required to reach the optimal fitness
value varied. Subsequently, a set of data was randomly selected to represent the iterative
process. Figure 6 shows the trend of fitness value changes during the iterations, displaying
a gradient descent and reaching the minimum value at the 27th generation.
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The model solution results are shown in Table 5, presenting the start, end, and delay
times for stope backfilling. Due to space constraints, only data for 2 out of the 5 dimensions
is displayed in the table. Using the first stope in the first level as an example, the resource
allocation for each backfilling step is detailed in Table 6.

Table 5. Model Solution Results.

Level/A Stope/B Start (h) End (h) Delay (h)

1 1 0 13 0
1 2 48 59 0
2 1 34 48 10
2 2 34 49 10
2 3 14 33 14
3 1 61 79 13
3 2 10 32 10
3 3 51 71 51
4 1 80 102 32
4 2 43 59 19
4 3 94 112 70
5 1 112 135 88
5 2 96 111 0
6 1 130 150 10
7 1 41 63 41
7 2 73 96 25
7 3 152 173 56
7 4 113 137 65
8 1 61 77 13
8 2 175 191 31
8 3 103 125 55
9 1 147 166 75
9 2 158 182 14
10 1 193 212 73
10 2 88 101 16
11 1 121 138 25
11 2 129 146 9

Table 6. Backfilling Resource Allocation (Example: First Stope (B) in the First Level).

Level/A Stope/B Step/C Type/D No./E Start (h) End (h)

1 1 1 1 5 0 8
1 1 2 1 5 8 8.5
1 1 2 2 10 8 8.5
1 1 2 5 28 8 8.5
1 1 3 1 5 8.5 11.5
1 1 3 2 10 8.5 11.5
1 1 3 3 16 8.5 11.5
1 1 3 4 19 8.5 11.5
1 1 3 5 28 8.5 11.5
1 1 4 1 5 11.5 12.5
1 1 4 2 10 11.5 12.5
1 1 4 3 16 11.5 12.5
1 1 4 4 19 11.5 12.5
1 1 4 5 28 11.5 12.5
1 1 5 1 5 12.5 13
1 1 5 2 10 12.5 13
1 1 5 5 28 12.5 13

Table 6 provides a clear view of the resource IDs (E) and types (D) used in each
backfilling step (C), along with the start and end times for resource allocation.
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Figure 7 illustrates the optimal Gantt chart for the stope backfilling schedule. The
horizontal axis denotes the scheduling time in hours, while the vertical axis displays the
level numbers and stope identification codes. Five different colors are used in the chart to
distinguish the backfilling steps, with each color representing a specific operation phase.
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Figure 7. Stope Backfilling Schedule.

Figure 8 demonstrates the utilization status of five backfilling resources, where the
horizontal axis represents time and the vertical axis indicates resource types (resource codes
are detailed in Table 2). As in the case description, each number in PM and SC represents a
resource. the data in the box represents the level No.- stope No. Seven colors are employed
in the chart: the first five colors correspond to the basic backfilling resources, while the
sixth color (yellow) indicates the sand feeding status of the slurry mixing equipment,
and the seventh color (purple) represents equipment maintenance status. During this
scheduling period, 13 sand feeding operations and 2 equipment maintenance sessions were
recorded. Notably, human resources, water tanks, and cementitious material management
equipment can simultaneously serve multiple backfilling processes; thus, their specific
service allocation to individual stops is not marked in the figure.

As shown in Figure 8, pumping equipment PM-5 exhibits the lowest utilization rate,
primarily due to its extended service age. The frequent maintenance requirements of this
equipment would increase scheduling delays and consequently raise the fitness value.
Regarding slurry transportation equipment, pipelines SC-3 and SC-4 show significantly
higher utilization rates compared to other facilities. This can be attributed to their dedicated
function in serving deeper levels, as the backfilling slurry for deep stopes can only be
transported through these two specific pipeline routes.
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5.3. Advantages over Traditional Mode

This model implements precise scheduling by comprehensively considering the op-
erational characteristics and reliability of slurry mixing equipment. Compared to the
current ‘one-operating-one-standby’ mode used in mines, where only 50% of total re-
sources are available at any given time, this model optimizes the synergistic utilization
of all system resources, thereby significantly improving operational efficiency. Table 7
presents a comparative summary of scheduling results between the traditional mode and
the optimized solution.

Table 7. Backfilling Resource Allocation (Example: First Stope in the First Level).

Traditional Optimization

Makespan (h) 267 212
Utilization 31.07% 39.13%

Total delay (h) 1568 825

Compared to the traditional model, the optimized solution offers significant advan-
tages, primarily in the following areas:

1. Completion time was reduced by 20.6%, from 267 h to 212 h.
2. Resource utilization increased by 8 percentage points, from 31.07% to 39.13%.
3. Total delay time decreased by 47.4%, from 1568 h to 825 h. This reduction significantly

minimizes goaf exposure time, allowing for more timely ground pressure management
and reducing the risk of ground pressure incidents.

5.4. Limitation and Future Research

Despite the model’s effectiveness in the current mining context, its generalizability to
diverse equipment types and complex operational scenarios requires further investigation.
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The model validation was primarily conducted under specific operational conditions,
which may limit its broader applicability.

Future research directions include:

1. Extending the model to accommodate diverse equipment types and environmental
factors, particularly non-linear failure modes.

2. Investigating the model’s real-time implementation in large-scale mining operations,
with emphasis on computational efficiency.

3. Integrating advanced technologies such as artificial intelligence and big data analytics
to enhance the model’s adaptability and robustness in dynamic mining environments.

The proposed extensions would significantly advance the practical application of
backfill scheduling optimization in modern mining operations.

6. Conclusions

This study develops a scheduling optimization model for backfilling operations un-
der resource constraints, addressing the complex requirements of coordinating multiple
resources, sequential steps, stopes, and specific process-related needs. To achieve effective
scheduling, a tailored algorithm has been designed to solve the model, and its effectiveness
has been validated through application to a case study mine, optimizing the assignment
of backfilling personnel, equipment, and tasks. Comparative analysis with conventional
scheduling approaches confirms the model’s effectiveness. The main findings are as follows:

1. Resource-Constrained Scheduling Optimization Model: This study systematically
identifies the various resource requirements in mine backfilling processes and ex-
amines operational procedures when resources are unavailable. By incorporating
constraints on resource availability and setting total backfilling delay time as the
optimization objective, the model provides a comprehensive approach to scheduling
that accounts for multiple resource limitations.

2. Heuristic Solution Algorithm for Complex Processes: Given the NP-hard nature of the
problem, a heuristic algorithm has been applied, featuring encoding methods adapted
to process constraints and decoding methods aligned with resource limitations. The
algorithm calculates delay times as fitness values and integrates specific procedures for
managing resource unavailability, ensuring a structured and efficient solution process.

3. Model Validation and Performance Analysis: Detailed data processing has been
conducted for the case study mine, producing a precise scheduling solution that
identifies start and end times for each task across various resources. Compared to
the traditional model, the optimized scheduling solution shows clear advantages,
with a 20.6% reduction in completion time, an 8-percentage point increase in resource
utilization, and a 47.4% reduction in total backfilling delay time.

In conclusion, this study presents a novel optimization model for mine backfill schedul-
ing, along with its solution methodology and validation through a real-world case study.
The model demonstrates both theoretical significance and practical value in mining opera-
tions. By implementing intelligent scheduling optimization in mine backfilling, the model
not only enhances production efficiency and underground mining safety but also advances
mining intelligentization. The model’s capability for dynamic decision-making and optimal
resource allocation provides valuable support for intelligent mining operations, particularly
in addressing complex scheduling challenges in modern mining environments.
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Appendix A. Input Data, Stopes Information

No. Level/A Goaf/B
Earliest

Time/BF (h)

Tailings/TB (t) Backfill Duration/DT (h)

Bottom Top 1 2 3 4 5

1 1 1 0 289.5 47.8 8 0.5 3 1 0.5
2 1 2 48 90.1 11 8 0.5 1 1 0.5
3 2 1 24 349.8 33 8 0.5 4 1 0.5
4 2 2 24 440.4 75.7 8 0.5 5 1 0.5
5 2 3 0 778.1 96.8 8 0.5 8 2 0.5
6 3 1 48 778.1 117 8 0.5 7 2 0.5
7 3 2 0 981.8 108.4 8 0.5 11 2 0.5
8 3 3 0 852.4 115.3 8 0.5 9 2 0.5
9 4 1 48 1018.3 121 8 0.5 11 2 0.5

10 4 2 24 550.3 65.1 8 0.5 6 1 0.5
11 4 3 24 646.6 96.8 8 0.5 7 2 0.5
12 5 1 24 1106.3 134.7 8 0.5 12 2 0.5
13 5 2 96 476.3 57.3 8 0.5 5 1 0.5
14 6 1 120 879.2 113.3 8 0.5 9 2 0.5
15 7 1 0 1093 116.6 8 0.5 11 2 0.5
16 7 2 48 1129.4 120.2 8 0.5 12 2 0.5
17 7 3 96 1087.3 112 8 0.5 10 2 0.5
18 7 4 48 1044.7 126.8 8 0.5 13 2 0.5
19 8 1 48 536.5 73.3 8 0.5 6 1 0.5
20 8 2 144 559.8 71.6 8 0.5 6 1 0.5
21 8 3 48 1051.2 129.1 8 0.5 11 2 0.5
22 9 1 72 833.5 79.5 8 0.5 9 1 0.5
23 9 2 144 1278.6 143.8 8 0.5 13 2 0.5
24 10 1 120 742.4 119.6 8 0.5 8 2 0.5
25 10 2 72 251.8 30.7 8 0.5 3 1 0.5
26 11 1 96 651.8 61.4 8 0.5 7 1 0.5
27 11 2 120 536.4 92.1 8 0.5 6 2 0.5
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Abstract: Red sandstone is widely distributed in southern China. Due to the significant
difference in mechanical properties before and after hydration and its poor water stability,
red sandstone often triggers landslide accidents. In this paper, red sandstone from an open
pit slope in Jiangxi Province was taken as the research object. Two variables, namely the
initial saturation degree (25%, 50%, 75%, and 100%) and the number of wetting–drying
cycles (0, 10, 20, 30, and 40), were set. With the help of nuclear magnetic resonance, the
Brazilian disc test, and fractal theory, the relationships among its meso-structure, macro-
scopic fracture mechanics characteristics, and deterioration mechanism were analyzed.
The research results are as follows: (1) Wetting–drying cycles have a significant impact
on the pore structure and fracture mechanics characteristics of red sandstone. Moreover,
the higher the initial saturation degree, the more obvious the deterioration effect of the
wetting–drying cycles on the rock mass. (2) After further subdividing the pores according
to their size for research, it was found that sandstone is mainly composed of mesopores,
and the deterioration laws of different types of pores after the wetting–drying cycles are
different. The porosities of total pores and macropores increase, while the proportions of
mesopores and micropores decrease. The fractal dimensions of macropores and total pores
of each group of rock samples are all within the range of 2–3, and the fractal dimension
value increases with the increase in the number of wetting–drying cycles, showing signifi-
cant and regular fractal characteristics. Micropores and some mesopores do not possess
fractal characteristics. The fractal dimension of rock samples basically satisfies the rule that
the larger the pore diameter, the larger the fractal dimension and the more complex the
pore structure. (3) Both the type I and type II fracture toughness of rock samples decrease
with the increase in the number of cycles, and the decrease is the most significant when
the initial saturation degree is 100%. After 40 cycles, the decreases in type I and type II
fracture toughness reach 23.578% and 30.642%, respectively. The fracture toughness is
closely related to the pore structure. The porosity and fractal dimension of rock samples
and their internal macropores are linearly negatively correlated with the type II fracture
toughness. The development of the macropore structure is the key factor affecting its frac-
ture mechanics performance. (4) After the wetting–drying cycles, the internal pores of red
sandstone continue to develop. The number of pores increases, the pore diameter enlarges,
and the proportion of macropores rises, resulting in internal damage to the rock mass.
When bearing loads, the expansion and connection of internal cracks intensify, ultimately
leading to the failure of the rock mass. The research results can provide important reference
for the stability analysis of sandstone slope engineering.
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1. Introduction
Red sandstone is widely distributed in the southern regions of China. Owing to its

favourable mechanical properties, durability, heat resistance, and its ease of cutting and
processing in the natural state, it has wide applications [1]. However, when it is exposed to
water, it expands, disintegrates, and softens quickly. This leads to a significant reduction
in the mechanical strength. The increase in the water content in the rock mass not only
weakens the rock strength but also changes its failure mode. The cumulative damage
caused by wetting–drying cycles on the sandstone accelerates the weathering rate of the
rock mass, promotes the development of the pore structure, and reduces the mechanical
properties [2]. Red sandstone is often exposed to complex natural environments. It is
affected by various climatic and hydrogeological conditions, such as precipitation and
water level fluctuations. These conditions have a serious impact on the safety and service
level of its engineering applications [3].

Therefore, studying the influence of different initial saturations and the number of
wetting–drying cycles on the pore structure and mechanical characteristics of red sandstone
is extremely important when conducting a stability analysis of sandstone slope engineering.

Studying the variation in the microscopic pore structure is a crucial approach to reveal-
ing the failure mechanism of red sandstone under the effect of wet–dry cycling [4]. Nuclear
magnetic resonance spectroscopy can be utilized to rapidly and non-destructively detect
the pore structure of rock masses. Ye Wanjun et al. [5,6] employed NMR testing technology
to explore the evolution law of the pore structure of soil after different wetting–drying
cycles. Due to the characteristics of water absorption and expansion as well as the water
loss and contraction of cementing minerals, the mesoscopic structure of the rock mass
deteriorates remarkably under the wet–dry cycling, which is generally manifested as an
increase in porosity, a gradual coarsening and connection of tiny pores, and an evolution
towards macropores [7–9]. When the rock mass has different saturation degrees, signif-
icant differences also exist in its internal micro-mesoscopic structure and evolution law.
Yang et al. [10,11] observed through electron microscopy (SEM) that after the wet–dry cy-
cling, the particle characteristics and pore distribution on the rock surface changed. Water
molecules infiltrated into the interior of the rock, water-soluble particles were dissolved
by water, and fine rock fragments were detached, leaving behind pore cracks. Li et al. [12]
conducted an exploration on medium-sized sandstone after wet–dry cycling tests using
NMR technology, and the results indicate that the medium-grained sandstone of the rock is
directly related to its mechanical properties. Most of the existing research on sandstones
mainly aims to use nuclear magnetic resonance (NMR) techniques to detect mesoscopic
structures. However, there are relatively few studies that introduce geometric theories to
conduct qualitative and quantitative analyses on the pore structures of sandstones by using
the mathematical features contained in the T2 spectrum.

Fractal theory can be applied to characterize the complexity and homogeneity of the
pore structure of porous materials, providing more detailed and comprehensive infor-
mation about the pore structure [13–15]. Gao Lirong et al. [16] integrated fractal theory
with the cluster analysis approach to carry out in-depth research on the characteristics
and classification methods of reservoir pore structures. Zhang et al. [17] quantified the
degree of damage to the microstructure of rocks under wet–dry cycling conditions through
fractal dimensional fitting and established the relationship between the microstructure and
mechanical parameters.
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Wet–dry cycling represents a significant factor that affects the mechanical strength
of rock masses. A multitude of scholars have conducted conventional and dynamic me-
chanical property tests in this regard. Yu Yue et al. [18,19] utilized uniaxial compression
experiments to study the impact of wet–dry cycling on compressive strength. Their findings
reveal that as the number of wetting–drying cycles escalates, the compressive strength of
the rock progressively declines. Liu Mu [20] investigated the influence of different rock
inclinations on the uniaxial compressive strength under wet–dry cycling conditions. It was
demonstrated that the larger the rock inclination, the smaller the compressive strength
of the rock. Fu Yan et al. [21,22] indirectly measured the tensile strength of rocks using
the Brazilian disc splitting test. Zhao et al. [23] conducted uniaxial compression tests and
triaxial compression tests on red sandstone under wet–dry cycling conditions to reveal the
relationship between wetting–drying cycles and mechanical properties. Wang et al. [24]
examined the influence of wetting–drying cycles on the creep characteristics of sandstone,
analyzing the macroscopic and microscopic morphologies of the rock after destruction
to disclose the deterioration mechanism. In general, wet–dry cycling exhibits a negative
correlation with the strength of soft rock, that is, as the number of wetting–drying cycles
increases, the strength of soft rock diminishes. Moreover, a higher water content corre-
sponds to a lower rock strength. Jiang Jingdong et al. [25] conducted triaxial compression
tests on mudstones with different water contents to study their mechanical properties and
energy mechanisms. Cherblanc et al. [26] discovered that the loss of mechanical strength in
rocks due to the water content is linearly related to the amount of water adsorbed by clay
minerals. Nevertheless, the mechanism underlying the effect of wetting–drying cycles on
the mechanical strength of rock masses remains elusive.

To elucidate the mechanism of wet–dry cycling, this study takes the red sandstone
of an open slope in Jiangxi as the research object, with different initial saturation degrees
and different numbers of wetting–drying cycles as variable factors. Through NMR and
Brazilian splitting experiments and the incorporation of fractal theory, the pore structure
characteristics and the variation rules of type I and type II fracture toughness characteristics
of red sandstone in different water-saturated environments after wet–dry cycling are
analyzed. The results of this analysis are expected to provide a valuable reference for slope
stabilization and maintenance.

2. Test Programme
2.1. Specimen Preparation

Red sandstone from the slope of an open pit mine in Jiangxi Province was taken as the
research object, and its mineral composition mainly consists of detrital minerals and clay
minerals. The detrital minerals mainly include quartz, feldspar, calcite, and a small amount
of hematite; the clay minerals are montmorillonite, illite, kaolinite, and chlorite. Under
natural conditions, the material is brownish red, with uniform particles and no obvious
texture on the surface.

The rock was processed into standard cylinders with diameter × height dimensions
of 50 mm × 50 mm. Specimens of the Brazilian disc with a central crack (CSTBD) [27,28]
were fabricated by mechanical cutting. The length of the central through crack was 15 mm,
and the thickness was 1 mm.

To determine the time required for the specimen to reach a predetermined saturation
level and the corresponding mass, the sandstone was saturated using a vacuum saturation
device, with the saturation pressure set at 0.1 MPa for 48 h. The specimens were taken out
and weighed at 10 min intervals for the first 2 h and then at 30 min intervals after that.
Curve fitting was performed on the obtained data to obtain the time required for the red
sandstone to reach 25%, 50%, 75%, and 100% saturation, which were 4 min and 16 s, 14 min
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and 47 s, 1 h and 8 min, and 2 days, respectively. To ensure uniform water distribution
in the specimen and sufficient water–rock reaction in the specimens, the specimens were
wrapped in cling film for 24 h after reaching the predetermined saturation time.

2.2. Tests

(1) Dry and wet cycle test

Given the alternating dry and wet environment of the test rock samples and the
operability of the test, the “wetting–drying” cycle of the sandstone samples was realized
by means of natural water absorption at room temperature and oven drying. In accordance
with the standard specification of GB/T 50266—2013 [29], the red sandstone samples were
placed in a water container to absorb water freely for 24 h and then put into an oven to be
dried for 24 h (in order to minimize the impact of temperature on the mechanical properties
of the rocks as much as possible, the oven temperature was set at 60 ◦C). This constituted
one wetting–drying cycle. In this experiment, four initial saturation levels of 25%, 50%,
75%, and 100% were designed, together with five wetting–drying cycles performed for
0, 10, 20, 30, and 40 times, and each treatment was carried out in triplicate to ensure the
reliability of the results.

(2) Nuclear magnetic resonance (NMR) test

The NMR system was used to detect the internal structure of the rock samples and ob-
tain data on the total porosity, the T2 spectral curve, pore size distribution, etc. The specific
parameters were set as follows: the sampling frequency of the Carr–Purcell–Meiboom–Gill
(CPMG) sequence was 200 kHz, the echo time (TE) was 0.15 ms, and the number of echo
counts (NECH) was 8000. The waiting time (TW) was 2000 ms, and 16 scans were carried
out. T2 spectra were analyzed for each group of specimens, and the pore size as well as the
pore distribution were calculated by relaxation time inversion.

(3) Fracture mechanical strength test

The Brazilian disc test and fracture toughness test were conducted in accordance with
the recommendations of the International Society of Rock Mechanics standards (ISRM) [30].
The tests were performed by displacement-controlled pressurization: the displacement
loading rate was 0.1 mm/min, and the angles between the fissure inclination and the
direction of cleavage loading were set to be 0◦ and 27.2◦, respectively, in order to obtain the
Type I and Type II fracture toughness of the specimens [31]. The flow chart of the test is
shown in Figure 1 below.
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2.3. NMR Aperture Conversion and Fractal Calculation
2.3.1. NMR Aperture Conversion

The relaxation time (T2) distribution curve of rock samples can be obtained using the
NMR technique, and it has been shown that the NMR transverse relaxation time T2 has
a good linear correspondence with sandstone pore properties. Therefore, the size of the
distributed pores of the rock can be approximated by the transverse relaxation time T2, and
the relationship between T2 and pore size, r, can be expressed as follows [32,33]:

r = ρ2FsT2 (1)

where r is the diameter of the pore structure, µm; ρ2 is the surface relaxation strength of the
material, µm/ms; Fs is the geometrical shape factor of the pore structure, which takes the
value of 3 for spherical pores and 2 for columnar pores; and T2 is the transverse relaxation
time in ms.

In this paper, by referring to similar studies [34,35], the following values of relaxation
strength are chosen: ρ2 = 0.01 µm/ms; Fs = 3. Therefore, Equation (1) can be expressed
as follows:

r = 0.03T2 (2)

2.3.2. NMR Fractal Dimension Calculation and Pore Structure Delineation

Red sandstone is a complex porous medium with complex and unevenly distributed
pore structures. It is difficult to comprehensively characterize its pore structure and its
evolution using traditional descriptive methods. Fractal theory, as a geometric method for
studying the structural characteristics of irregular objects with self-similarity properties,
can be used to quantitatively analyze the complexity, similarity, or heterogeneity of the
pore structure of sandstone [36,37].

The parameter used to quantitatively describe this self-similarity is called the fractal
dimension (D), which is related to the complexity of pores and the roughness of the surface.
The effective range of the fractal dimension of rock pores is from 2 to 3 [38–40]. When the
fractal dimension of a certain type of pore is less than 2, it indicates that the pore has poor
fractal properties or lacks fractal characteristics. The closer the value is to 3.0, the more
complex the pore structure is and the stronger the heterogeneity is; conversely, the simpler
the pore structure is, the weaker the heterogeneity is.

When pores have fractal characteristics, the relationship between the number of
pores and the pore diameter can be expressed by a power law function [41,42], and its
mathematical expression is shown in Equation (3):

N(r) =∝ r−D (3)

In the above formula, N(r) represents the number of pores with a pore diameter greater
than r in the rock mass, the symbol r refers to the pore diameter of the internal pore structure
of the rock mass, and D is the fractal dimension of the rock mass.

According to the relevant methods of calculating the dimension, the number of pores
with a pore diameter greater than r in the rock mass with fractal characteristics can be
further expressed by Equation (4) [43,44].

N(r) =
∫ rmax

r
g(r)dr = Ar−D (4)

where N(r) is the number of pores with a pore diameter greater than r; r is the pore radius;
rmax the maximum pore radius in the rock; A is the fractal factor; g(r) is the density function
of pore size distribution in the rock; and D is the fractal dimension of the rock. Assuming

103



Minerals 2025, 15, 158

that the pore space of the rock is composed of a series of capillary bundles, according to the
Brooks–Corey [45] model, it is known that the cumulative volume fraction, Sv, with a pore
radius less than r is expressed by Equation (5):

Sv =
( rmax

r

)D−3
=

(
T2max

T2

)D−3
(5)

The derivation of both sides of the above equation leads to Equation (6) for the NMR
fractal dimension:

lg(Sv) = (3 − D)lg(T2)− (3 − D)lg(T2max) (6)

By plotting the curve using the above equation, with lg (Sv) representing the vertical
axis, lg (T2) representing the horizontal axis, and (3-D) lg (T2max) representing the constant,
the slope (3-D) can be determined. Subsequently, the fractal dimension of sandstone pores
is calculated from this slope.

Considering the complexity of the internal pore structure of red sandstone, it is
beneficial to further classify the pores to analyze the pore structure in more detail. In this
paper, the classification of the pore size is mainly based on the study of Yan et al. [35,36].
The pore sizes of sandstones are classified into three categories: micropores (r < 0.1 µm),
mesopores (0.1–1 µm), and macropores (r ≥ 1 µm). The porosity sizes of micropores,
mesopores, and macropores in the specimens were calculated and noted as Φmi, Φme, and
Φma, respectively.

The classification basis shown in Figure 2a yielded the results of pore structure division,
and the fractal dimension of each pore was calculated as shown in Figure 2b; the fractal
dimensions of the total pore, micropore, mesopore, and macropore are characterized by
Dtotal, Dmi, Dme, and Dma.
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3. Analysis of Experimental Results
3.1. Characteristics of T2 Spectrum Distribution and Evolution Law

The NMR T2 spectrum curves adeptly reveal the information of pores of diverse sizes
within the tested rock specimens. Notably, the T2 relaxation time positively correlates with
the pore aperture size, r; specifically, a larger T2 value indicates a larger pore aperture.
Moreover, the amplitude of the T2 curve serves as a proxy for the quantity of pores within
a specific aperture range such that a greater amplitude corresponds to a larger number of

104



Minerals 2025, 15, 158

such pores. Figure 3 presents the T2 spectra of each sandstone specimen group subjected to
varied treatments.
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Figure 3. T2 spectra of pore characteristics of sandstones with different initial saturations undergoing
different numbers of wet and dry cycles. (a) Initial saturation of 25%; (b) Initial saturation of 50%;
(c) Initial saturation of 75%; (d) Initial saturation of 100%.

From Figure 3, it is observed that the pore structure development characteristics of
each group of red sandstone under dry and wet cycling exhibit relative consistency. The
T2 pore increment curves primarily exhibit three spectral peaks, namely P1, P2, and P3,
along with two spectral valleys, V1 and V2. The relaxation time of P1 spans from 0.061
to 0.977 ms. P2 is concentrated within the range of 3.181–580.523 ms, and P3 within the
range of 580.523–4055.461 ms. These three peaks correspond to three distinct pore clusters.
Notably, the P2 peak is the tallest, and its relaxation time range is the broadest, indicating
that the specimens witness the most favourable mesopore development, followed by
micropore growth. The boundary separating the macropore and mesopore spectral clusters
is somewhat indistinct. In contrast, a more conspicuous trough lies between the small and
medium pore spectral peaks, signifying that the pore throats among connected pores are
relatively narrow, and the pore connectivity is deficient [46].

Under the influence of dry and wet cycling, all three peaks experience concurrent
growth. This implies that as the cycle number increases, the porosity increment surges.
Concurrently, the relaxation time of each pore shifts rightward, denoting an augmentation
in pore size and, consequently, a rise in cumulative porosity. Moreover, the relaxation time
of the two troughs undergoes an overall reduction, demonstrating that dry and wet cycling
not only expedites pore size expansion but also bolsters inter-pore connectivity.
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3.2. Characteristics of Sandstone Pore Structure
3.2.1. Change Rule of Total Porosity of Mortar

To quantitatively analyze the pore structure characteristics of sandstone, the results of
the NMR test on sandstone porosity are presented in Table 1.

Table 1. Sandstone porosity.

Number of
Drying–Wetting

Cycles (n)

25%
Saturation

50%
Saturation

75%
Saturation

100%
Saturation

0 8.032 8.103 8.001 7.956
10 8.198 8.192 8.359 8.280
20 8.365 8.370 8.445 8.442
30 8.416 8.487 8.560 8.726
40 8.436 8.674 8.739 8.875

The porosity of the rock mass with the same initial saturation increases with the
increase in the number of wet and dry cycles. For example, for the rock sample with an
initial saturation of 50%, the average porosity after 0 wet and dry cycles was 8.103%. After
10 cycles, the porosity was 8.192%, and the growth rate was 1.108%. After 20 cycles, the
porosity was 8.370% with a growth rate of 3.305%. After 30 cycles, the porosity reached
8.487%, and the growth rate was 4.739%. After 40 cycles, the porosity was 8.674%, and the
growth rate was 7.049%.

It is observed that in the first 10 cycles, the porosity growth rate of 50% saturation rock
samples was slow. After 10 cycles, the growth rate accelerated. There are two main reasons
for this. First, in the 50% initial saturation rock samples, fewer pores formed at the start of
the cycle. Second, the micropore size led to poor porosity connectivity and permeability.
The damage and pore structure change during the wet and dry cycle is a progressive and
cumulative process. More porosity provides better conditions for later wet and dry cycles.
So, the porosity grows faster in the later stage than in the earlier stage.

Among the four groups of initial saturation samples, the rock sample with 100%
saturation had the most significant porosity growth. From 0 to 40 wet and dry cycles, the
growth rates were 4.077%, 6.111%, 9.686%, and 11.554%. There are two main reasons for
this. First, in the NMR test with 0 cycles, the 100% saturated rock samples were wet. More
water filled the pores, making the porosity seem smaller before cycling. Second, these
samples were saturated the longest. They fully reacted with water. Soluble salts in the rock
reacted with water [47]. Some ions dissolved. Clay minerals expanded and generated force.
The macropores in red sandstone released this force. The reaction of salts, clay, and water
enlarged the pore space. Also, carbonate hydrolysis and clay mineral changes made quartz
and feldspar lose adhesion. So, the rock lost cementation and had many pores.

In the later wet and dry cycle tests, water molecules enter into the sandstone via the
structural surfaces. When drying, the water in the rock evaporates, and soluble substances
move to the rock surface. When these substances dissolve, the sandstone forms new pores.
So, the pore growth rate is significant.

3.2.2. Mortar Division of Pore Structure Porosity

The results of pore structure division are presented in Figure 4, where (a)–(d) represent
the porosity distribution of micropores, mesopores, and macropores of sandstone with
initial saturation ranging from 25% to 100% after wet and dry cycles, respectively.
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As shown in Figure 4, each group of sandstone samples is mainly mesoporous prior
to wet and dry cycles. The development of different pore types changes with the increase
in cycle numbers.

The Φmi distribution of each specimen ranges from 0.033 to 0.443. The Φmi of 25%
saturated sandstone shows an overall increasing trend with more cycles, while that of the
50%, 75%, and 100% saturated rock samples decreases. It can be found that when the initial
water saturation time is shorter, the damage to the rock samples during the dry and wet
cycling process is minor. Although the micropore size shows growth and development, it
does not transform a large number of micropores into mesopores and macropores. With
the increase in the initial water saturation time, the water–rock action is intensified, which
promotes the growth of the size of the micropores and their conversion into medium pores
during dry and wet cycling.

From the perspective of mesopores, the distribution of Φme within each saturated
sandstone does not display obvious growth or reduction trends under the influence of wet
and dry cycling but rather exhibits a fluctuating state. This is attributed to two aspects.
First, the original mesopore size increases under the effect of wet and dry cycling, and
some micropores further develop into mesopores during this process. Second, a portion of
mesopores further evolve under the action of wet and dry cycling and enlarge to become
macropores. The expansion of this part of the mesopore gaps leads to the reduction in the
mesopore spectral area. Under the combined effect of these two factors, the spectral area of
the mesopores in the rock samples shows a fluctuating pattern of change.
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The Φma value of rock samples increases remarkably with wet and dry cycling accord-
ing to each initial saturation degree. Among them, the Φma value of the rock samples with
an initial saturation degree of 100% exhibits the most significant increase during wet and
dry cycling. This is because macroporosity represents the final stage of pore development.
The transformation of existing small- and medium-sized pores to macroporosity and the
development of macroporosity itself result in an increase in the spectral area of macrop-
orosity. Moreover, the damage caused to the rock body is a cumulative process. With the
deepening of wet and dry cycling, the internal structure of the sample is more susceptible
to damage due to the accumulation of damage, and thus, the growth rate of Φma shows a
trend of rapid increase.

3.3. The Characteristics of the Correlation Between the Pore Structure and Fractal Dimension
3.3.1. Fractal Characterization of Pore Structure

The fractal dimensions of the samples and each pore are presented in Table 2. The
overall fractal dimension values of the rock samples range from 2.454 to 2.521, demon-
strating a satisfactory level of self-similarity. Strictly speaking, this self-similarity is of a
statistical nature. Due to the complex composition and disordered structure of actual rocks,
the pore networks therein do not exhibit the strict self-similarity as that of the theoretical
fractals [48–50]. After 0 wet and dry cycles, the total fractal dimension (DTotal) of the rock
samples is less than 2.5. This implies that the pore geometry of the original rock is relatively
simple and homogeneous. As the number of wet and dry cycles increases, the internal
pores changes due to dissolution and expansion, which makes the rock structure more
complex and less homogeneous. Consequently, the fractal dimension of the rock samples
increases.

Table 2. Fractal dimensions of sandstone pores.

Cycles Initial Saturation
Fractal Dimension

Dtotal Dmi Dme Dma

0

25% Saturation

2.494 −0.930 2.531 2.897
10 2.501 −0.480 2.562 2.923
20 2.499 −1.071 2.554 2.931
30 2.506 −0.800 2.593 2.938
40 2.514 −0.547 2.672 2.947

0

50% Saturation

2.454 0.082 2.263 2.865
10 2.486 0.011 2.359 2.871
20 2.499 0.202 2.396 2.915
30 2.506 0.409 2.424 2.931
40 2.508 0.488 2.434 2.942

0

75% Saturation

2.454 −0.786 2.238 2.891
10 2.500 −0.749 2.305 2.913
20 2.499 0.051 2.292 2.927
30 2.509 −0.101 2.348 2.924
40 2.507 −0.606 2.402 2.935

0

100% Saturation

2.483 −0.644 1.856 2.927
10 2.521 0.113 1.898 2.913
20 2.502 0.387 1.836 2.937
30 2.513 0.376 1.807 2.944
40 2.520 0.074 1.879 2.948

The relationship among different pore sizes, namely Dmi < Dme < Dma, indicates
that macropores are more complex and possess stronger fractal characteristics. Non-
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homogeneity increases as the number of cycles and the initial saturation rise, which is most
likely due to the formation of macropores. As the saturation and the number of cycles
increase, the walls of small and medium pores start to dissolve from their weak points.
Subsequently, some of these pores connect with each other to form macropores. These
macropores retain some characteristics of small and medium pores, so they possess specific
fractal features and have high spatial complexity and strong self-similarity (Figure 5). Dmi

does not exceed 0.488 and is outside of the normal range (2–3) [38,51]. Moreover, its values
change irregularly. Therefore, it can be considered that the micropores within the rock
samples do not possess fractal characteristics, as for the fractal dimension of micropores,
this phenomenon is quite common [52,53]. This is because when the pore diameter is
smaller than a certain range, the spatial structure of the pores will change, manifested as
smaller and less connected pores [54], and they are no longer similar to the spatial structure
of the rock mass [55]. This also suggests that micropores may be nearly linear [56], mainly
originating from microfractures caused by the local expansion of clay cement. The values
of Dme range from 1.807 to 2.672, showing obvious fractal features compared to micropores.
When the initial saturation is 100%, Dme decreases significantly, and non-homogeneity
weakens. This may be because mesopores grow due to erosion when fully saturated, and
many of them turn into macropores.
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3.3.2. Correlation Between Fractal Dimension and Porosity

As the pore fractal dimension indicates the pore structure quality, it is necessary to
further explore its relationship with porosity variation. Hence, it is necessary to further
determine the relationship between the variation in the fractal dimension and porosity.
Based on the porosity and fractal dimension features of different pore structures in sand-
stone samples with various saturation and cycle numbers, a linear relationship between
the fractal dimension and porosity of the sandstone was set up and then graphically fitted.
Since the fractal dimensions of micropores are all less than 2, only the fractal dimensions
of mesopores, macropores and total pores are fitted together with porosity.The results are
shown in Figure 6.

According to the fitting results, the DTotal and ΦTotal values do not show an obvious
correlation. Only the porosity of the sample with 75% saturation has a better linear fitting
relationship with the fractal dimension. This might be due to the following reasons: Firstly,
the fractal dimension of the total porosity [47] mainly characterizes the complexity of the
overall pore structure of the rock samples. Secondly, according to the pore division, it is
known that the complexity of the total pore structure is influenced not only by the total
porosity of the sample but also by the composition and proportion of various types of pores
in the sample. These factors together lead to the fluctuation in the fractal dimension of total
porosity. Consistent with the research findings of Shi et al. [49,57], an increase in porosity
does not necessarily cause an increase in the complexity of the pore structure.
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Figure 6. Plot of fractal dimension versus porosity fit. (a) Fitting conditions of DTotal and ΦTotal for
rock samples with initial saturations of 25% and 50%; (b) Fitting conditions of DTotal and ΦTotal for
rock samples with initial saturations of 75% and 100%; (c) Fitting conditions of Dma and Φma for
rock samples with initial saturations of 25% and 50%; (d) Fitting conditions of Dma and Φma for
rock samples with initial saturations of 75% and 100%; (e) Fitting conditions of Dme and Φme for
rock samples with initial saturations of 25% and 50%; (f) Fitting conditions of Dme and Φme for rock
samples with initial saturations of 75% and 100%.
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The correlation between Dma and Φma and between Dme and Φme is good (R2:
0.719–0.893). This means the porosity of red sandstone’s macropores and mesopores
is closely tied to their pore structure complexity. Specifically, Dme and Φme are positively re-
lated. As the original macropores grow, some meso- and meso-small pores connect and turn
into macropores, making the macropore structure more complex. But Dme and Φme also
have a negative linear correlation. In dry and wet cycles, although the Φme value decreases
overall, the mesopore’s internal structure becomes more complex. This may be because
cycling makes small- and medium-sized pores develop and connect more. So, mesopores
keep turning into macropores, and porosity drops. Thus, the negative correlation between
porosity and structure complexity appears.

3.4. Characteristics of Fracture Mechanics Changes in Red Sandstone
3.4.1. Changing Law of Fracture Toughness

Figure 7 shows the changes in the type I and II fracture toughness after different initial
saturation tests and dry and wet cycling tests. As the number of cycles rises, the fracture
toughness of both type I and type II red sandstone drops notably. This is because the
growth in the pore space damages the clay cement structure between sand grains, and this
affects the shear strength. It is known that the volume, size, and shape of the pore space are
the main reasons for the fall in the rock body’s fracture performance.
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Dry and wet cycling impacts the type II fracture toughness of rock samples more than
type I. After 40 cycles, the type I fracture toughness decreases by 24.13% from its initial
value at 0 cycles, while the type II fracture toughness drops by 31.35%. This is due to
different fracture modes in the stress concentration area. Type I fracture is perpendicular to
the crack surface and mainly affected by tensile force. Type II is parallel to it and mainly
affected by shear force [58,59].

The higher the initial saturation, the larger the decrease in the rock samples’ fracture
toughness. This means the higher the water content, the more obvious the effect of cycling
on fracture toughness. From Section 3.2’s analysis (showing that more water in the rock
body leads to more water dissolution and erosion and more pores), we can guess that
during cycling, the initial saturation mainly affects the pore space and indirectly worsens
the rock body’s anti-shear ability.

The fracture toughness of rock samples without cycling also decreases as the initial sat-
uration rises. This shows that other factors work when water fills pores. Some researchers
think substances like calcite, dolomite, and gypsum in the rock mass dissolve in water or
expand after absorbing water, thus breaking the rock mass structure [60]. Another idea is
that water molecules with high polarity can form weak hydrogen bonds with oxides like
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SiO2. This makes the close bond between sand and clay cement worse, causing micro-cracks
and local loosening. This process builds up at the macroscopic level and weakens the rock’s
resistance to slippage and fracture [61]. When loaded, rock samples are more likely to have
internal slippage and fractures. The cyclic suction–drying effect makes the damage from
wet and dry cycling worse and leads to more serious internal damage. So, the fracture
strength of rock samples with high initial saturation changes more with the number of dry
and wet cycles.

3.4.2. Characteristics of Correlation Between Pore Structure and Fracture Mechanics

In order to further investigate the correlation between porosity, pore structure evo-
lution, and fracture mechanical strength of red sandstone under dry and wet cycling, the
porosity, fractal dimension, and fracture toughness were fitted, respectively. According to
the literature, there may exist linear [39,62], exponential [47,63], and power function [64] re-
lationships between the pore indexes of the rock body and its mechanical properties. These
three functions were fitted separately, and the correlation coefficients (R2) are presented in
Table 3. The linear correlation degree between the porosity, fractal dimension, and fracture
toughness (with an R2 mean value of 0.799) is the highest. This might be attributed to the
fact that the maximum porosity of the rock mass after undergoing 40 cycles of wetting
and drying is only 8.9%, indicating that it is still in the primary stage of pore development.
Moreover, the results of the study by Amiri M [65] also demonstrate that for porosity below
10%, there is a good linear relationship with fracture mechanical strength.

Table 3. Correlation coefficients for different fitted lines.

Fracture
Toughness Saturation

Related Coefficient

Porosity Fractal Dimension

Linear
Function

Exponential
Function

Power
Function

Linear
Function

Exponential
Function

Power
Function

Type I

25% 0.914 0.495 0.876 0.812 0.442 0.836
50% 0.927 0.736 0.931 0.783 0.638 0.689
75% 0.894 0.628 0.833 0.610 0.702 0.601

100% 0.923 0.764 0.918 0.331 0.340 0.382

Type II

25% 0.937 0.759 0.895 0.789 0.441 0.702
50% 0.932 0.642 0.931 0.881 0.738 0.858
75% 0.957 0.661 0.911 0.688 0.502 0.435

100% 0.942 0.834 0.839 0.456 0.490 0.268

The mean value of the coefficient of correlation R2 for the linear fit of porosity and
fractal dimension to type II fracture toughness is 0.823, which is higher than that of R²
with type I fracture toughness (0.774). This corresponds to the conclusion that the shear
resistance of the rock mass is more sensitive to porosity.

Different sizes of pores exert different degrees of influence on the fracture toughness of
the rock body. In combination with the analyses in Sections 3.2 and 3.3, micropores account
for a relatively small proportion, and under the effect of dry and wet cycling, the porosity
of micropores generally decreases, and structural changes are not obvious. The porosity of
mesopores fluctuates in its changing trend, while its structural complexity increases. The
porosity and geometric complexity of macropores increase regularly. For this reason, it is
hypothesized that macropores have the maximum effect on fracture toughness. Taking
type II fracture toughness as an example, the correlation between the porosity and fractal
dimension of macropores and type II fracture toughness was analyzed by linear fitting, with
the total pores used for comparison. The results are shown in Figures 8 and 9. The fitting
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results reveal that the porosity and fractal dimension of macropores and total pores were
negatively correlated with type II fracture toughness. Additionally, there was a general
tendency for the R2 value to decrease in the equation of type II fracture toughness versus
Φma and Dma as the saturation degree increased. This is because different initial saturations
lead to different outcomes even after undergoing the same dry and wet cycling process,
which also affects the complexity of the internal pore structure of rock samples. From a
macroscopic perspective, during the migration of water inside the rock, a large number of
soluble minerals and other components are migrated and dissolved along with the water,
resulting in the formation of more microstructures within the rock body. These micropores
continue to develop, weakening the strength of the rock and causing the regularity between
the fractal dimension and mechanical strength to no longer be strongly correlated.
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ranging from 0.876 to 0.966, which basically shows a more direct negative linear correlation.
That is, with the growth of Φma and ΦTotal in the pore structure, the macroscopic fracture
toughness of the rock mass decreases. This also indicates that the porosity of macropores
and total pores has a significant effect on the mechanical strength of rocks.

On the contrary, in Figure 9, the R2 variation interval of the fractal dimension of
macropores and type II fracture toughness is located in the range of 0.927–0.944, which is
overall much higher than that of the total porosity (R2 at 0.456–0.881). This is attributed to
the fact that the total porosity in the pore structure also contains micropores and mesopores,
and the trend of their fractal dimension is not in line with the fracture toughness, which
suggests that macropores are the main cause of the effect on the rock’s shear-resistant
performance. The development of mesopores into macropores is the main mechanism for
the deterioration of macroscopic fracture mechanical properties of the rock mass by dry
and wet cycling.

4. Discussion
In order to explore the evolution laws of the pore structure and mechanical properties

of red sandstone under the action of drying–wetting cycles, the red sandstone from an open
pit slope in Jiangxi was taken as the research object. Two variables, the initial saturation
and the number of drying–wetting cycles, were set. With the help of NMR, CSTBD tests,
and fractal theory, the changes in the microscopic pore structure and macroscopic fracture
mechanical properties of red sandstone were explored based on aspects such as its porosity,
pore proportion, the geometric complexity of different internal pores, and the type I and
type II fracture toughness. Furthermore, a fitting analysis of the correlation between the
two was carried out, which can, to a certain extent, reveal the damage mechanism of red
sandstone under the action of drying–wetting cycles. However, the degradation of the
microstructure and macro-mechanical properties of red sandstone is usually a multi-level
phenomenon resulting from the combined action of physical and chemical factors, which is
worthy of an in-depth exploration. Therefore, in this section, combined with the existing
experimental results and the relevant research theories on the water–rock interaction of red
sandstone, the degradation process of red sandstone under the action of drying–wetting
cycles is analyzed and discussed. The damage mechanism is shown in Figure 10.

(1) Red sandstone is primarily composed of detrital minerals and clay minerals, with
the clay minerals serving as the cementing agents. The structural arrangement of min-
eral particles is relatively loose, and there are numerous minute pores in the original
red sandstone, providing convenient channels for water to penetrate the interior of the
rock. Among the cementing substances, montmorillonite and calcite are readily soluble
in water [66]. The dissolution of clay minerals leads to weakening of the cementation
strength. Illite exhibits remarkable hydrophilicity and water absorption capacity and is
prone to undergoing hydration and expansion due to chemical reactions upon contact with
water [67]. When kaolinite clay particles encounter water, the bound water film on the
particle surface thickens, resulting in intergranular expansion [68]. The expansion of clay
particles contributes to increasing the distance between clay particles and between particles
and pores. After the volume expansion of mineral particles, the structure of the sample
becomes increasingly loose. Therefore, red sandstone has a relatively high degree of water
sensitivity [69].

(2) At the initial stage of water saturation, water molecules gradually penetrate into
the interior of the rock from the surface. Under the combined effects of physical softening
and chemical erosion, such as the action of pore water pressure, the expansion of mineral
particles, the hydration reactions of mineral components, and dissolution [70], the structure
tends to become loose, further expanding the water flow channels. During the wetting–
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drying cycle, in the drying stage, the water molecules in the pores evaporate, which is
similar to the “reverse reaction” during water saturation: the pore water pressure decreases,
the expanded particles contract, and some dissolved substances migrate with the water. The
water saturation test shows that the water molecule content and the degree of penetration
inside the red sandstone increase with the increase in the water saturation time. That is, an
increase in saturation implies that the pores are filled with a large amount of water, and
both the physical and chemical reactions of the internal components are more thorough.
For the sample with an initial saturation of 25%, due to the relatively short water saturation
time, water molecules have difficulty penetrating deep into the structure, and the mineral
components do not react fully. After 40 cycles, the total porosity only increases by 5.030%.
For red sandstone with a saturation in the range of 50%–100%, with the increase in soaking
time, the increase in porosity under the wetting–drying cycle continues to rise. For the
fully saturated rock sample, the increase in porosity after 40 cycles reaches 11.551%. The
increase in the fractal dimension value, which characterizes the geometric complexity
of the pores, is twice that of the rock sample with a 25% saturation after 40 cycles. The
changes in the mesoscopic structure of the sandstone increase the internal defects, leading
to damage and failure. The damage spreads to the weak structural planes, and the increase
in the complexity of the internal structure and the tendency towards heterogeneity, to
a certain extent, result in the deterioration of macroscopic mechanical properties. After
40 wetting–drying cycles, the type I fracture toughness of the 100% saturation rock sample
decreases by 23.578%, and the type II fracture toughness decreases by as much as 30.642%.

(3) Red sandstone with different initial saturations continuously undergoes water-
absorption and drying during the wetting–drying cycle. During drying, the water inside
the rock evaporates, and the hydrated reaction products dissolved during water saturation
are carried out. The dissolution of soluble substances generates new micropores and
microcracks. The development and connection of the original pore sizes accelerate, the
porosity increases, and medium-sized and small pores transform into large pores. The
porosity of large pores and the fractal dimension value continue to increase, the rock
structure becomes loose, and the cementation strength and cohesion weaken. Eventually,
the water–rock interaction causes the internal cracks in the red sandstone sample to develop
and expand fully, resulting in microstructural damage. The framework minerals are
more likely to peel off and slide under load [71]. During the Brazilian disc test, when
loaded, the internal cracks expand and penetrate, leading to the destruction of macroscopic
mechanical properties.

It is worth noting that this study has certain limitations. On the one hand, the research
was not carried out directly from the perspective of various components of red sandstone.
The exploration of the complexity of mineral compositions, such as clay minerals and
detrital minerals, as well as their specific evolution mechanisms and reaction sensitivities
under the water–rock interaction, is not deep enough. Therefore, the specific degree of
their influence on the long-term stability of red sandstone under drying–wetting cycle
conditions remains unclear. On the other hand, in the research on the correlation between
the pore structure and fracture mechanics, although a linear relationship among porosity,
fractal dimension, and fracture toughness was found, the heterogeneity of the rock was
not analyzed in depth in combination with the characteristics of different clay minerals.
This may affect the accuracy of the established models and relationships, as well as the
understanding of the sensitivity of each component to the cracking mechanism and the
reaction mechanisms. Based on the above-mentioned deficiencies, future research should
include the following aspects:

(1) Research on the migration of clay minerals at the micro level: More experimental
techniques should be introduced to directly observe the migration of clay minerals at the
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micro level. For example, in situ monitoring equipment can be used to track the movement
of clay particles during the drying–wetting cycle process. Additionally, micro-imaging
techniques can be used to analyze the morphological changes in clay minerals before and
after phenomena such as water-induced swelling, hydration, and dissolution so as to clarify
the specific role of clay migration in the degradation mechanism of red sandstone.

(2) An expanded research scope for clay minerals: The research scope should be
expanded to the fields of interlayer clay and clay roughness. With the help of material
characterization methods such as X-ray diffraction and scanning electron microscopy,
the structural characteristics of different types of clay minerals in red sandstone and
their responses to water–rock interaction should be analyzed. These factors should be
incorporated into a theoretical model to improve accuracy when predicting the degradation
process of red sandstone.

(3) An in-depth exploration of the correlation between the pore structure and frac-
ture mechanics: The influence of factors such as the pore shape and connectivity on the
correlation between the pore structure and fracture mechanics should be further explored.
Numerical simulation methods such as a finite element analysis should be used to establish
a more comprehensive mechanical model while considering the heterogeneity of the rock.
This model should be verified by a large amount of experimental data to provide a more
reliable theoretical basis for the engineering stability analysis of red sandstone.

Overall, this study lays a certain foundation for understanding the evolution of the
pore structure and mechanical properties of red sandstone under drying–wetting cycles,
but there are still many aspects that need to be improved upon and explored in depth.
Future research should follow the above-mentioned directions to continuously deepen the
understanding of the behaviour of red sandstone in complex environments.
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5. Conclusions
(1) Red sandstone’s porosity and fractal dimension increase continuously under wet–

dry cycling, especially when fully saturated. After 40 cycles, the porosity increases by
11.554% compared to 0 cycles with an accelerated rate. Concurrently, the fractal dimension
value rises from 2.483 to 2.520. These changes can be ascribed to the dissolution and
expansion of clay minerals within the rock body.

(2) The NMR T2 spectrum of red sandstone specimens shows three spectral peaks.
Based on the pore size, the pores are further categorized into Φma, Φme, and Φmi, and the
fractal dimension is computed to comprehend the distribution traits of each pore type.
During wetting and drying cycles, the porosity of micropores generally decreases. Owing to
their small size and simple shape, they lack fractal characteristics. The structural complexity
of mesopores experiences a slight increase. Although the porosity proportion of mesopores
remains the highest throughout the experiment, it does not change remarkably. This can be
attributed to the progressive development of micropores and mesopores into macropores.
The porosity and geometric complexity of macropores increase conspicuously and display
a strong correlation. Since macropores are mainly formed by the interconnection of small
and medium pores, they possess certain fractal features. As the porosity of macropores
changes, the fractal dimension also increases.

(3) The type I and type II fracture toughness of the rock samples both decrease with
the increase in the number of wetting and drying cycles. Notably, the fracture toughness
of the rock samples in a fully saturated water state exhibits the most significant reduction
under the influence of wetting and drying cycles. This indicates that wetting and drying
cycles cause tensile and compressive fracture damage to the rocks to varying extents,
and such damage is aggravated by the increase in the initial water saturation degree of
the rock body. The Φtotal and Φma are both negatively correlated with the two types of
fracture mechanical toughness of the sandstone, and the linear fitting effect is satisfactory.
The growth in the total porosity and macroporosity has a relatively direct relationship
with the attenuation of fracture toughness. Under various variable conditions, the fractal
dimension and porosity of macropores are linearly related to the two mechanical strengths
(R2: 0.876–0.996), suggesting that the porosity and structural complexity of macropores are
keys in the shift from microscopic pore damage to the macroscopic level in red sandstone.

(4) Red sandstone mainly exists in the form of cementation between clay minerals and
detrital minerals. As the initial water saturation time increases, its internal components
react fully with water. While the degree of cementation weakens, the pore space further
expands. With the increase in the number of cycles, the porosity continues to grow. Pores
keep growing, developing, and connecting with each other, eventually evolving into
the form of large pores, and the macroscopic fracture toughness also keeps decreasing.
With the increase in large pores and the pore structure becoming more complex, the rock
structure becomes increasingly loose, causing microstructural damage to the rock mass.
Eventually, after the water–rock interaction, the internal pores of the red sandstone sample
are fully developed and expanded, and the deterioration of the microstructure is aggravated,
resulting in a decline in macroscopic mechanical properties.
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Abstract: Existing coal filling mining technologies face significant challenges of controlled
surface subsidence, efficient utilization of waste rock in coal mines, and a shortage of
adequate filling materials. This study introduces an innovative cut-and-fill mining method
designed to strategically partition the goaf into cutting and filling zones. In the cutting
zone, in situ filling materials are employed to construct waste rock column supports adja-
cent to the filling zone, thereby achieving controlled surface subsidence. This approach
is integrated with long-wall mining operations and implemented using advanced, com-
prehensive equipment. FLAC3D simulations were conducted to investigate the patterns
of stress distribution, surface deformation, and plastic zone formation within the mining
field. With the implementation of the cut-and-fill mining balance, key observations include
a reduction in maximum principal stress near the center of the goaf, an increasing trend
in minimum principal stress, regular displacement distributions, and intact plastic zones
positioned vertically away from the stope and horizontally close to the center of the stope.
Compared to traditional caving methods, the cut-and-fill technique significantly reduces
maximum vertical displacement, by nearly 95%, and maximum horizontal displacement,
by approximately 90%. Additionally, it minimizes energy accumulation, lowers overall
energy release, and prolongs the release period. Importantly, this method facilitates the
resourceful utilization of approximately 800 million tons of waste rock, potentially leading
to an estimated reduction of 500 million tons in CO2 emissions. By achieving a balance of
three effects—harmonizing coal extraction and filling capacity, aligning the supply and
demand of filling materials, and optimizing the balance between filling costs and mining
benefits—this method provides a sustainable and eco-friendly solution for the coal mining
industry. The findings of this study are crucial for guiding the industry towards more
environmentally responsible practices.

Keywords: cut-and-fill mining; material self-sufficiency; mining characteristic; dual reduction;
triple effect

1. Introduction
Traditional approaches to control surface subsidence in mining include partial extrac-

tion [1,2], paste filling [3–5], strata separation grouting [6,7], and highly mechanized gangue
filling technology behind efficient fully mechanized mining faces [8–10]. These methods are
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widely applied in coal mining sites, sometimes combining two or more techniques based
on specific site conditions. With the development of green mining, several new coal mining
methods with a high integration capability, maturity, or originality have emerged, such
as the mixed mining technology of the gangue filling and caving method [11], the novel
strip-style Wongawilli coal mining method [12], short-wall block-segment green mining
technology [13], and the N00 mining method [14].

The novel strip-style Wongawilli coal mining method originates from the Wongawilli
colliery in Australia and involves the sequential extraction of coal seams in narrow strips.
By using this technique, miners can achieve higher recovery rates while minimizing surface
subsidence. Short-wall block-segment green mining technology refers to the extraction
of coal using a continuous miner on shorter faces compared to long-wall mining. The
block-segment approach divides the mine into manageable sections, allowing for more
controlled operations and reduced impact on the surrounding rock mass. The N00 mining
method represents an advanced pillarless mining technique designed to improve safety
and efficiency. It eliminates the need for permanent pillars, thereby maximizing coal
recovery. This method also reduces ground control issues and enhances worker safety
through continuous support systems.

In China, approximately 0.15 to 0.2 tons of coal gangue is generated for every ton of
raw coal produced, making coal gangue the largest accumulated and annually produced
industrial waste, occupying the most land in storage yards [15–17]. Comprehensive mecha-
nized coal gangue filling mining technology has become an effective solution for special
mining methods [15,18,19]. For example, to address the major dual technical challenges of
recovering the lower coal mining pillars and handling underground gangue, mines can
prioritize the method of using gangue to replace coal pillar extraction. Aiming to reduce
carbon emissions and use carbon dioxide, the mineralization filling method has gradu-
ally become a research hotspot, and some mining areas have been subjected to industrial
tests [20–22].

From the perspective of meeting filling material requirements and conserving coal
resources, the traditional methods for controlling surface subsidence have inherent flaws.
Partial extraction yields extraction rates of only 40% to 60%, and as coal resources decline,
the extraction of residual strip coal pillars has become an inevitable choice for extending the
service life of mines in the old mining areas of east-central China [23,24]. Filling materials
with paste filling requires a certain solidification time, resulting in high economic and
time costs. The low filling efficiency severely constrains coal mining efficiency, making
widespread adoption challenging [25–27]. Strata separation grouting can avoid interference
between mining and filling, almost without affecting coal mining efficiency. However, the
prediction of grouting zones is difficult, accurate grouting implementation is challenging,
and the subsidence reduction effect remains a matter of debate, leading to its limited current
use [28]. Gangue filling suffers from limitations in pre-determined filling and restricted
production scales [29–31].

Filling mining is a key technology for green mining because it reduces environmental
damage by stabilizing the surface, minimizing subsidence, and reducing waste disposal. It
also limits harmful gas emissions and prevents ecological damage, promoting sustainable
mining practices. However, balancing the need for filling materials, reducing filling costs,
and ensuring high-efficiency production are critical bottlenecks for coal mine filling mining
technology. In light of these challenges and based on the advantages and disadvantages
of existing mining methods, a new method called “cut-and-fill mining” in coal mining is
proposed. Cut-and-fill mining designates the goaf scientifically into the cutting area and the
filling area, utilizing the in situ roof of the cutting zone as filling material for the filling zone.
This creates a supporting structure of gangue pillars in the goaf, achieving partial filling to
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control surface subsidence. Cut-and-fill mining combines the high efficiency of long-wall
caving with the effective roof control of filling methods, providing a new approach to
address the challenges faced by filling mining.

2. Implementation Method of Cut-and-Fill Mining
2.1. Roadway Layout

Figure 1a shows the three-dimensional schematic diagram of the cut-and-fill mining
working face. The cut-and-fill mining working face includes the coal mining face before
the support and the roof cutting and filling face after the support. The back roof cutting
and filling surface is divided into the roof cutting area and filling area, and the roof cutting
area and filling area are arranged in sequence. The cutting device in the roof cutting area
fractures the immediate roof into crushed gangue, which serves as material for the adjacent
filling area. As the hydraulic supports along the boundary of the filling area advance,
metal mesh preinstalled on the hydraulic support on both sides automatically unfolds,
providing lateral confinement to contain the crushed gangue. The fractured gangue is then
automatically conveyed to the adjacent filling area in real time via a transfer mechanism on
the cutting device. Once deposited within the metal mesh, the crushed gangue is compacted
by a compaction device, completely filling the filling area. With this lateral confinement,
a load-bearing structure comprising the broken gangue pillar and the immediate roof is
established within the filling area, serving the function of partial backfilling and effectively
reducing subsidence.

As shown in Figure 1b, multiple working faces are established in a new panel area to
achieve mining without roadway excavation and coal pillar extraction. On one side of the
entire panel area, there are downhill return air passages and downhill track passages, while
on the other side, a downhill belt passage surrounds the entire panel area and connects
with the downhill return air passage after encircling the area, ultimately linking to the shaft.
An open-cut roadway is arranged on the first working face, with a section of the downhill
belt passage serving as the upper entry groove for this working face. During the extraction
process, a goaf is left near the position adjacent to the next working face, forming an upper
entry groove for the initial extraction working face. The goaf area near the next coal mining
face serves as the upper entry groove for the subsequent coal mining face. The upper entry
groove, open-cut roadway, lower entry groove, downhill belt passage, and downhill return
air passage are sequentially connected to form the ventilation system for the working face.
In the mining process of the panel area, the downhill return air passage and downhill
track passage remain unchanged throughout the entire mining process, constituting fixed
passages. However, the downhill belt passage and open-cut roadway gradually change
with the mining goafs, representing variable passages.

To facilitate roadway-free excavation and coal pillar-free mining, the cut-and-fill
mining method modifies the ventilation pathways and conditions at the working face,
necessitating careful design to prevent air leakage. Strategies such as installing hanging
curtains to obstruct airflow and applying grouting treatments to the goaf section using
gangue pillars positioned behind the support can be implemented to improve the efficiency
of the ventilation system.
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Figure 1. Layout of cut-and-fill mining [32,33].

2.2. Integrated Equipment

Figure 2 illustrates the working schematic diagram of the integrated equipment for
cut-and-fill mining. In Figure 2, Area A represents the coal mining machine working zone,
Area B is the pedestrian passage in the coal mining zone, Area C is the pedestrian passage
in the cut-and-fill zone, and Area D is the cut-and-fill zone. The main components of the
cut-and-fill integrated mining equipment include the protective support, cutting device,
and compaction device.
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Figure 2. Schematic diagram of integrated equipment for cut-and-fill mining. 1—front support;
2—rear support; 3—lateral support metal mesh; 4—compaction device; 5—cutting device.

The protective support system features a six-column configuration, adapted from the
solid backfill coal hydraulic support used in the “Mining + Separation + Filling + X” coal
mining method. It consists of the bottom walking device, front support on the front side,
rear support on the rear side, and compaction device. The rear support is appropriately
extended to provide the space required for the cutting device. A retractable rear probing
beam is set on the rear support, ensuring that the cutting and filling zone’s roof is within
the protective range of the support. The conveyor belt is suspended and fixed beneath the
rear support, with several adjustable plow-type unloaders on the filling zone conveyor belt,
controlling the discharge position of the backfilled gangue.

The front and rear supports are interconnected via an intermediate connection, while
the compaction device and walking device are connected through a telescopic mechanism.
This combination of the intermediate connection and telescopic device allows for indepen-
dent operation of mining and filling processes. The suspension of the conveyor belt is fixed
under the rear support. The conveying belt of the filling zone is equipped with multiple
position-adjustable plow unloaders to control the unloading position of the filling gangue
and facilitate the adjustment of the filling zone.

The cutting device of the cutting zone is derived from the scaling transformation of
the continuous highwall mining system. The main body of the cutting device in the cutting
zone is located within the rear support range and can travel along the inclination of the
working face. When the cutting device cuts the roof of the cutting zone, the rear probing
beam retracts, and the cutting part extends to cut the roof. The rear probing beam in the
filling zone remains extended. The cutting device is connected to the conveyor belt through
a movable belt, feeding crushed gangue onto the conveyor belt.

The lateral support metal mesh is pre-placed on the protective support on both sides
of the filling zone. As the support advances forward, it automatically unfolds continuously,
serving as the boundary on both sides of the filling zone. Mechanical automated anchor
bolts, evenly spaced and fixed to the roof and floor, provide lateral constraint to the
gangue pillars in the filling zone. Simultaneously, the compaction device applies pre-stress
compaction to ensure the stability of the gangue pillars in the filling zone.

3. Simulation of Cut-and-Fill Mining
In this study, the mining effect of the cut-and-fill mining and caving method is calcu-

lated with the help of the classical numerical simulation of FLAC3D 5.0, which can obtain
reliable result data and provide some data support for the validation and application of
this method. Although the use of FLAC3D 5.0 for stress analysis is not new and FLAC3D
5.0 primarily models plastic failure mechanisms rather than realistic fracture formation,
using indirect methods like equivalent plastic strain distributions to represent complex
geological phenomena, these simulations are crucial to demonstrate the effectiveness and
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feasibility of our method, particularly in the context of coal mining, where ground control
is a significant challenge.

3.1. Model Construction

The coal mine used in this section is in Inner Mongolia, China. The closer the rock
parameters used in numerical simulation are to the actual field conditions, the better the
simulated results. However, some simplifications are necessary in the actual process of
model construction. Regarding the results of previous rock mechanics tests and crushed-
gangue compression tests, the rock layers in the simulation model are simplified and
reasonably assigned, as shown in Table 1.

Table 1. Mechanical parameters of rock formation.

Rock Type
Bulk

Modulus
(GPa)

Shear
Modulus

(GPa)

Density
(kg/m3)

Internal
Friction

Angle (◦)

Cohesion
(MPa)

Tensile
Strength

(MPa)

Fine Sandstone 2.270 2.050 1760 28 1.10 1.100
Mudstone 1.800 1.560 2080 32 1.50 1.200

Sandy Mudstone 2.060 1.860 2000 31 1.50 1.300
Coal 1.400 0.540 1400 32 0.50 0.500

Crushed Gangue 0.006 0.004 1280 15 0.03 0.002

As illustrated in Figure 3a, the three-dimensional computational model created for
this simulation measures 300 m in length, 240 m in width, and 134 m in height. The side
boundaries of the model are constrained in horizontal displacement, the bottom boundary
is constrained in the vertical direction, and the upper boundary is free.
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Figure 3. The numerical simulation mode.

During the mining process, two monitoring lines are established: one for vertical
and horizontal displacement on the surface and another for the maximum and minimum
principal stresses within the rock layers. Monitoring Line 1 is positioned at the top of
Layer 1 (Z = 130 m), with coordinates Y = 120. Monitoring points are placed every 10 m
along the X direction to observe both the horizontal and vertical displacement of the
ground. Monitoring Line 2 is located at the top of Layer 8 (Z = 78 m), and also has
coordinates Y = 120. Monitoring points are set every 10 m along the X direction to measure
the maximum and minimum principal stresses at that location.
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As shown in Figure 3b, the mining area is divided into 20 cutting and filling strips
along the strike, with each strip having a mining width of 10 m, consisting of a 5 m cutting
width and a 5 m filling width. The cutting height is 3 m, and the filling height is 4 m (with
a mining height of 4 m), resulting in an expansion coefficient of 1.33. A 20 m boundary
is left around the perimeter of the mining area. The working face is arranged along the
coal seam’s dip, with a working face length of 200 m and an accumulated filling width of
100 m. The working face is mined along the coal seam’s strike, with a total mining length
of 260 m. The data in this paper are derived from the simulation software and edited by
Origin software.

3.2. Result Analysis
3.2.1. Analysis of Stress Distribution Patterns

Based on the numerical calculation results, stress contour maps at equilibrium were
obtained for Layer 8 at Z = 78 m and Y = 120 m, as shown in Figure 4. Additionally, the
stress monitoring data curves at Z = 78 m are presented in Figure 5.
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Figure 4. Maximum and minimum principal stress contour at Z = 78 m when at mining equilibrium.
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Figure 5. Principal stress curve of Y = 120 m × Z = 78 m when at mining equilibrium.

As shown in Figure 4, after cut-and-fill mining equilibrium, the distribution of the
maximum principal stress generally exhibits a trend of decreasing stress near the center
of the goaf. Similarly, the minimum principal stress generally shows a trend of increasing
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stress near the center of the goaf. That is, the σ1-σ3 values become smaller, indicating that
in the Z = 78 m, areas closer to the center of the goaf are less prone to instability and failure.
The rock layer’s load-bearing capacity is stronger, reflecting the load-bearing role of the
critical layer.

Figure 5 reveals that after the cut-and-fill mining equilibrium, the stress distribution
along the Y = 120 m × Z = 78 m monitoring line shows a symmetrical pattern. The
maximum principal stress for cut-and-fill mining is 1.93 MPa, located at X = 30 m and
280 m, while the maximum value of the minimum principal stress is 0.17 MPa, located at the
center of the goaf. This pattern again suggests that the maximum principal stress generally
decreases near the center of the goaf, while the minimum principal stress generally increases
near the center of the goaf. This is beneficial for the rock layer to resist failure and stabilize
the mining-induced stress after instability.

3.2.2. Analysis of Displacement Distribution Patterns

Based on the numerical calculation results, displacement contour maps at equilibrium
were obtained for Z = 130 m and Y = 120 m, as shown in Figures 6 and 7. Additionally,
displacement monitoring data at Z = 130 m × Y = 120 m are presented in Figure 8.
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Figure 8. Displacements of Z = 130 m × Y = 120 m when at mining equilibrium.

As illustrated in Figures 6 and 7, after the cut-and-fill mining equilibrium, the vertical
displacement exhibits a standard symmetric distribution, while the horizontal displacement
shows a standard anti-symmetric distribution. The vertical displacement value increases
with being near the mined coal seam, while the horizontal displacement value increases
with being near the surface or mined coal seam.

Figure 8 demonstrates that after the cut-and-fill mining equilibrium, the maximum
vertical displacement is 0.23 m, coinciding with the center of mining. The corresponding
subsidence coefficient is 0.06. The horizontal displacement has two extreme centers at
X = 50 m and X = 250 m, with an absolute maximum value of 0.05 m.

3.2.3. Analysis of Plastic Zone Distribution

Based on the numerical simulation results, plastic zone distribution maps at the
equilibrium are shown in Figure 9. Plastic zone failure is mainly characterized by shear
failure, and the distribution of plastic zones exhibits development along the edge of the
mined-out area and the coal mining boundary. The overlying strata are well-preserved
vertically away from the mining area and horizontally close to the central part of the mining
area. In the central part of the mining area, the overlying strata exhibit mainly horizontal
subsidence with small fractures. Therefore, the cut-and-fill mining method is beneficial
for reducing crack formation in the overlying strata above the mining area and preserving
their integrity.
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Figure 9. Distribution of plastic zones when at mining equilibrium.

4. Dual Reduction and Triple-Effect Balance
4.1. Dual Reduction Effect
4.1.1. Subsidence Reduction Effect

Continuing to use FLAC3D, we simulated the overlying strata failure characteristics
during the caving method, focusing on displacement and plastic zone characteristics. The
model construction is almost identical to that of the cut-and-fill mining, with the only
difference being that after mining, the model parameters are halved under cut-and-fill
mining conditions to simulate the damage caused to the overlying strata by coal seam
mining. To prevent excessive subsidence of the roof strata, the calculation is stopped before
the roof contacts the floor.

(1) Analysis of displacement distribution

According to the numerical calculation results, displacement contour maps at equi-
librium for Z = 130 m and Y = 120 m are shown in Figures 10 and 11, and displacement
monitoring data at Z = 130 m × Y = 120 m are presented in Figure 12. As illustrated in
Figures 10–12, in the caving method, vertical displacement exhibits a standard symmetrical
distribution, and horizontal displacement shows a standard anti-symmetrical distribu-
tion. As we move away from the surface, the vertical displacement values increase, but
the magnitude of increase is not substantial. The maximum vertical displacement at the
surface is 3.67 m, while in the goaf, it reaches 3.79 m. Compared to cut-and-fill mining,
the maximum vertical displacement has increased nearly 20 times, and the subsidence
coefficient is almost equal to 1. As one moves closer to the surface or the mining area,
the horizontal displacement values increase. The maximum absolute value of horizontal
displacement at the surface is 0.6 m, representing an almost 10-fold increase compared to
cut-and-fill mining.

(2) Analysis of distribution law of plastic areas

According to the numerical calculation results, Figure 13 shows the distribution of
plastic zones at the balanced state. It can be observed that the overlying strata in the mined
area are almost completely damaged. Through comprehensive comparative analysis, the
conclusion can be drawn that, compared to the caving method, the cut-and-fill mining
significantly reduces surface deformation and the distribution of plastic zones. The stress
distribution in the mined area also exhibits clear regularity, which is beneficial for better
prediction and the prevention of surface subsidence.
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Figure 12. Displacements of Z = 130 m × Y = 120 m when at mining equilibrium.

(3) Analysis of energy change during roof failure

In the process of cut-and-fill mining, the roof has been in the process of the accumu-
lation, dissipation, and mutual conversion of various energy from the open-off cut to the
roof collapse. The energy involved includes strain energy, gravitational potential energy,
kinetic energy, surface energy, and radiation energy. In the coal seam mining process, the
gravitational potential energy is the source of other energy [34,35]. As shown in Figure 14,
the change of roof energy in the stope can be divided into two parts: energy accumulation
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and energy release. Meanwhile, energy accumulation and energy release run through the
whole process of roof failure.
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Figure 13. Distribution of plastic zones when at mining equilibrium.
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When the roof is broken, the energy is mainly released by surface energy, radiation
energy, and kinetic energy. At this time, the energy conversion rate is almost completed
in an instant, and there is a risk of dynamic disasters such as energy accumulation, strain
energy release, and gravitational potential energy release. When the roof is broken, part of
the gravitational potential energy and strain energy are converted into radiation energy,
which is transmitted to the front roof and coal body in the form of a vibration wave.
If the strain energy accumulation in the front coal rock mass is in a critical state, the
disturbance of this radiation energy will cause instability and cause dynamic disasters of
strain energy release.

From the simulation analysis above, it can be observed that the maximum vertical
displacement in cut-and-fill mining is only 5% of that observed in caving mining, while
the maximum horizontal displacement is reduced to 10% of that in caving mining. This
significant reduction in vertical displacement of the roof greatly enhances safety by con-
trolling the source of energy generation that leads to dynamic disasters. Additionally, the
substantial decrease in horizontal displacement of the surrounding rock indicates that the
transfer of gravitational potential energy from the roof substantially reduces the risk of
local energy accumulation.
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Moreover, cut-and-fill mining slows down the roof movement rate, thereby reducing
the rate of energy conversion and the release rates of surface and radiation energy. This
approach aligns with the strain energy change rate, promotes energy dissipation before roof
fracture, and minimizes energy release during roof failure, thus mitigating the occurrence
of dynamic disasters associated with strain energy release.

In conclusion, the surrounding rock deformation in cut-and-fill mining is significantly
reduced, leading to a notable decrease in both the amount and rate of energy release during
roof failure. This, in turn, lowers the risks associated with dynamic disasters caused by
elastic energy accumulation and gravitational potential energy release. This paper analyzes
the energy source responsible for dynamic disaster events, particularly the roof deformation
induced by mining and the energy conversion process. The next phase of research will
focus on quantifying the amount and proportion of energy conversion during specific
processes in cut-and-fill mining.

4.1.2. Emission Reduction Effect

Coal gangue accounts about for 15% to 20% of China’s total coal production [16,36].
Due to its low calorific value and difficulties in utilization, it is often openly piled around
the mining area. As shown in Figure 15, the coal gangue production was approximately
8.13 × 108 tons in 2023. The carbon emissions caused by the traditional caving mining
method mainly come from the following aspects: coal bed methane release, the spontaneous
combustion of coal and coal mine waste, and machinery and equipment transportation,
among others. According to some studies [37–40], the unit carbon emission of collapse
coal mining is about 0.2–0.4 tons of carbon equivalent/ton of coal. Cut-and-fill mining
enables the underground selection of coal gangue, facilitating on-site filling and saving
energy consumption and surface disposal management costs. At the same time, it can
greatly reduce the carbon equivalent/ton of coal.
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Figure 15. History of the output and utilization of coal gangue in China.

With certain combustible substances in coal gangue, spontaneous combustion can
occur under certain conditions, and the toxic and harmful gasses such as nitrogen oxides,
carbon oxides, sulfur dioxide, and smoke are discharged. The carbon content of coal gangue
is about 25%~30% [16,17,41,42]. The ground accumulation of coal gangue easily causes
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slow oxidation, which generates greenhouse gasses such as CO2, and so this is estimated to
reduce the production of about 500 million tons of CO2.

4.2. Triple-Effect Balance
4.2.1. Balancing Coal Mining Capacity with Filling Capacity

Based on practical experience from filling mining at the Daizhuang Coal Mine in China,
as shown in Figure 16, the additional cost per ton of coal due to filling mining is 105 yuan.
After excluding expenses such as tunneling costs, coal gangue treatment, land restoration,
and policy support, the actual increase in the cost per ton of coal is approximately 24.3 yuan.
The primary constraint limiting the widespread adoption of filling mining methods in
China is not the increase in cost per ton of coal, but the significant mismatch between filling
capacity and coal mining capacity.
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Figure 16. Increase in filling mining cost in Daizhuang Coal Mine in China.

Traditional filling mining methods severely constrain coal mining efficiency, leading
to a substantial reduction in production capacity and, consequently, a significant decrease
in coal mine profits. In contrast, cut-and-fill mining allows for the separation of the
mining and filling processes, enabling the simultaneous operation of both. This effectively
eliminates mutual interference and the time losses associated with staggered operations.
Since cut-and-fill mining is a form of partial filling, it results in a shortened filling time.
Additionally, the integration of long-wall mining in cut-and-fill operations ensures high
coal mining efficiency.

4.2.2. Balancing Supply and Demand of Filling Materials

As shown in Figure 17, in the “Mining + Cutting + Filling” mode of cut-and-fill
mining, all filling materials are sourced from the partially cut roof in the goaf. One of the
fundamental principles of cut-and-fill mining is to maintain an equal volume of cutting
and filling, meaning the volume of crushed gangue generated from cutting the roof should
be equal to the volume of the filling material. By determining the parameters of the cutting
area, the corresponding parameters of the filling area can thus be established.
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Figure 17. Mining technology and gangue source of cut-and-fill mining.

In cases where subsidence control is a critical requirement, an alternative “Mining +
Cutting + Separation + Filling” mode may be adopted. In this mode, gangue selected from
underground serves as auxiliary filling material for the cut-and-fill mining process. This
approach enhances the filling effect without increasing the support and cutting strength
of the cut-and-fill mining operation, thus minimizing the environmental impact while
improving the overall effectiveness of the filling process.

4.2.3. Balancing Filling Costs and Mining Benefits

For coal mines, the primary motivation for filling is to avoid resettlement conflicts and
land compensation. However, once the cost of filling exceeds that of land compensation,
coal mines often choose not to backfill production under profit-driven motives, leading to
irreparable environmental losses.

As shown in Figure 18, cut-and-fill mining significantly improves filling efficiency,
reduces costs related to filling materials, and decreases the emissions of mining damage
and coal gangue. This is beneficial for achieving a balance between filling costs and mining
benefits, promoting the application of filling mining methods.
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5. Discussion
5.1. Existing Technical Foundation

The key to cut-and-fill mining lies in the stability of the cutting space and the safety of
the cutting operation. Achieving these objectives requires innovation based on the existing
coal gangue filling technology system. After nearly 20 years of development, coal gangue
filling technology has evolved through four generations, forming a new paradigm for
modern green coal mining known as ‘mining and filling + X’. The primary research and
development goal at this stage is to minimize ecological damage at the source of mining
methods. The specific process is outlined in Figure 19 [8–10].
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Throughout the development of coal gangue filling technology, numerous new tech-
nologies and processes have emerged, particularly with the continuous upgrading of coal
gangue filling hydraulic supports. This evolution has undergone four generations of inno-
vation. Currently, ‘mining and filling + X’ coal mining has achieved the parallel operation
of mining and filling, as well as the integration of mining and filling equipment. The
main challenges remain the shortage of gangue materials and the complexities of filling
and transportation.

The starting point of cut-and-fill mining is to ensure the self-reliance of filling materials
and in situ underground filling, aiming to reduce and control subsidence. This approach
provides a feasible solution to the current issues faced by ‘mining and filling + X’. However,
cut-and-fill mining requires the addition of a roof cutting device behind the support,
necessitating the transformation and upgrading of existing coal gangue filling hydraulic
supports. With its development history and the current strong manufacturing industry
as a support, it is feasible to further modify existing filling supports to meet the needs of
cut-and-fill mining.

The coal mining filling technology, and potential underground coal gangue separation
in cut-and-fill mining, are largely consistent with the current fully mechanized solid filling
method and can serve as the foundation for cut-and-fill mining. The main distinction
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between cut-and-fill mining and current ‘mining and filling + X’ coal mining is the roof
cutting process, and the roof cutting process can be realized by advanced manufacturing.

5.2. Distinct Advantages

Compared to traditional caving and filling mining methods, cut-and-fill mining
presents several distinct advantages:

(1) Efficiency: it allows for simultaneous mining and filling processes, minimizing inter-
ference and time losses, which maintains a high coal mining efficiency.

(2) Economic balance: It achieves a better balance between coal mining capacity and
filling capacity, optimizing the supply and demand of filling materials, and providing
a favorable cost–benefit ratio.

(3) Technological innovation: it incorporates advanced technology into the mining pro-
cess, such as hydraulic supports equipped with cutting devices, which not only
facilitates the roof cutting process but also represents an evolution from traditional
coal gangue filling technology.

In summary, the cut-and-fill mining method investigated in this study provides a
sustainable approach that enhances mine safety, efficiency, and ecological conservation. Its
adoption could lead to significant advancements in addressing technical challenges faced
by the coal industry, making it a promising practice for future mining operations.

5.3. Prospects for Further Research

According to industry statistics, the total number of coal mines in China is about 4000,
and about 200 coal mines adopt the filling mining process. The proportion of filling mining
in China is about 5%, and the proportion of the gangue filling process is even less. The
main reason why it is difficult to popularize is the shortage of adequate filling materials;
the cut-and-fill mining proposed in this paper can realize the partial filling and the partial
filling materials for cut-and-fill mining come from part of the cutting roof of the goaf,
which can realize self-sufficiency and in situ filling. However, there are several areas where
improvements can be made.

(1) Refining the cut-and-fill mining system: developing advanced methods and equip-
ment specifically designed for the unique requirements of cut-and-fill mining.

(2) Comparative analysis of parameters: To better understand the parameters influencing
the cut-and-fill mining method, a comparative analysis was conducted between differ-
ent coal mines and similar operations in other regions worldwide. This comparison
revealed variations in geological conditions, equipment capabilities, and operational
practices, highlighting the need for site-specific optimizations. For instance, differ-
ences in strata thickness, rock hardness, and water content can significantly impact
the effectiveness of the cut-and-fill method.

(3) Influence of key parameters on simulation results: One significant advantage of nu-
merical simulation is its ability to conveniently study the influence of key parameters
on calculation results. Variables such as the depth of cut, spacing of cuts, material
properties, and support systems were systematically varied to assess their impacts
on mining stability and productivity. The simulations allowed us to identify optimal
parameter settings that maximize efficiency while minimizing risks. For example,
increasing the depth of cut may enhance productivity but could also lead to greater
stress concentrations and potential instability. Therefore, finding a balance through
iterative simulations is crucial.

(4) Detailed analysis of energy changes during deformation: A more detailed analysis of
the change in energy during the deformation process before roof failure is essential for
predicting and preventing catastrophic failures. Numerical models provided insights
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into how energy accumulates within the rock mass as it deforms, eventually leading
to sudden release at the point of failure. By monitoring energy levels throughout the
deformation process, we can anticipate critical thresholds and implement preemptive
measures to stabilize the roof structure. Understanding these energy dynamics allows
for the development of early warning systems and the improved design of support
structures, enhancing mine safety.

6. Conclusions
This study has focused on investigating the cut-and-fill mining method, specifically

its effects on stress distribution, displacement patterns, plastic zone formation, and energy
changes during the mining process. To achieve this, numerical simulations using FLAC3D
were conducted to analyze the behavior of overlying strata and the extent of surface
deformation under different mining conditions compared to traditional caving methods.

(1) Stress distribution and displacement patterns: The simulation results demonstrate
that near the mined-out area center, the maximum principal stress decreases, while
the minimum principal stress increases, after mining with cut-and-fill methods. The
analysis of displacement shows a symmetric vertical displacement pattern and an
anti-symmetric horizontal displacement pattern. Notably, the maximum vertical
displacement at the mining center is 0.23 m, with a subsidence coefficient of 0.06,
and horizontal displacement peaks at 0.05 m. These findings indicate significantly
reduced surface deformation compared to caving mining.

(2) Plastic zone analysis: Plastic zone development primarily occurs along the edges of
the mined-out area, while the overlying strata remain largely intact in the central
region, exhibiting mainly horizontal subsidence with minimal fractures. This suggests
that cut-and-fill mining can preserve the integrity of the overlying strata and minimize
plastic zones, thereby reducing the risk of surface fractures.

(3) Energy release mitigation: Cut-and-fill mining notably reduces the amount and rate
of energy release during roof failure, lowering the risks associated with dynamic
disasters caused by elastic energy accumulation and gravitational potential energy
release. By controlling the source of energy generation and slowing down the roof
movement rate, this method minimizes energy release during roof failure.

(4) Environmental and economic benefits: One of the most significant advantages of cut-
and-fill mining is its positive impact on the environment and economy. It decreases
coal gangue emissions through on-site filling, reducing the need for surface disposal
and lowering carbon emissions, potentially cutting CO2 production by approximately
500 million tons. Moreover, it offers economic benefits by improving filling efficiency,
reducing costs related to filling materials, and achieving a favorable balance between
filling costs and mining benefits.
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Abstract: Fiber-reinforced cemented paste backfill (FR-CPB) has attracted considerable
attention in modern mining applications due to its superior mechanical properties and
adaptability. Despite its potential, understanding its rheological behavior remains limited,
largely because of the absence of quantitative methods for assessing fiber packing behavior
within CPB. This study develops a rheology-based approach to determine the maximum
packing fraction of polypropylene fibers in fresh CPB, revealing that shorter fibers (3 mm)
achieve a maximum packing fraction of 0.661, significantly higher than longer fibers (12 mm)
with 0.534. Building on these findings, a quantitative model for the static yield stress of FR-
CPB was developed, showing that under a high fiber content (0.9%) and with longer fibers
(12 mm), the yield stress reached 274.34 kPa, a 40% increase compared to shorter fibers.
Additionally, the study modeled the time-dependent evolution of yield stress, achieving a
prediction accuracy with a correlation coefficient of 0.92. These advancements enable the
optimization of FR-CPB composition, which can reduce material usage, enhance pipeline
transport efficiency, and improve backfill stability in underground voids. By minimizing
the risk of structural failure and optimizing resource allocation, this research provides a
theoretical foundation for safer and more cost-effective mining operations.

Keywords: cemented paste backfill; polypropylene fiber; maximum packing fraction; yield
stress; yield stress evolution

1. Introduction
Cemented paste backfill (CPB), composed of tailings, cementitious materials, and

water, is an environmentally friendly construction material extensively utilized in mine
backfill operations [1–5]. This material not only facilitates the resourceful utilization of
tailings but also ensures the stability of underground structures by filling voids created
during mining [6–8]. However, the CPB’s inherent brittleness under complex in situ
loading conditions can result in catastrophic failure, posing significant safety risks to
underground mines [9]. To address this limitation, fiber-reinforced CPB (FR-CPB) has
emerged as a prominent research focus, offering substantial potential to enhance toughness
and deformation resistance [10,11].

In recent years, research on FR-CPB has grown significantly. Studies have demon-
strated that incorporating fibers such as polypropylene fibers [12–14], steel fibers [15,16], or
polyacrylonitrile fibers [17,18] into CPB markedly enhances its tensile strength, toughness,
and shear resistance. Different fiber types exhibit unique reinforcement characteristics, and

Minerals 2025, 15, 81 https://doi.org/10.3390/min15010081
141



Minerals 2025, 15, 81

researchers have extensively investigated the effects of fiber type, content, and distribution
on the mechanical properties of FR-CPB [12,13,19,20]. Findings have revealed that fiber
addition effectively suppresses crack propagation and enhances deformation resistance by
forming a three-dimensional network structure [21–23]. Furthermore, fiber incorporation
significantly improves the impact resistance of material, increasing its resilience under
sudden stress [24]. In fact, impact resistance can be enhanced by up to 30%–40% depending
on the type and quantity of the fiber incorporated [25]. Beyond mechanical properties,
the rheological behavior of CPB is a critical factor influencing its engineering applications,
as it directly affects pipeline transportation efficiency [26]. However, existing research
predominantly focuses on the hardened properties of FR-CPB, with relatively few studies
examining its rheological behavior, particularly the packing behavior of fibers in backfill
materials and their significant influence on rheological performance. Understanding the
mechanisms through which fibers affect the rheological properties of backfill is crucial for
optimizing FR-CPB design and enhancing construction efficiency.

The maximum packing fraction (ϕ f m) of fibers is a key factor influencing the rhe-
ological properties of fiber-reinforced cement-based materials [27]. Martinie et al. [28]
proposed that ϕ f m is an important parameter for describing the yield stress of cementitious
materials containing steel fibers. This conclusion was also drawn by Guo et al. [29] in
their study of cement pastes incorporating flexible fibers. The packing behavior of fibers
in these materials is closely linked to their length, diameter, surface morphology and the
matrix’s water-to-cement ratio [30]. In CPB, the high water content and low cement dosage
result in more complex fiber distribution and packing behavior compared to ordinary
cement paste [31]. Consequently, existing studies [27–29] on fiber packing in cement paste
cannot be directly applied to CPB. For example, the high water content in CPB promotes
fiber aggregation, which negatively impacts slurry uniformity and, in turn, its rheological
performance [32]. Currently, effective methods for measuring the ϕ f m of fibers in CPB
are lacking, posing challenges for studying and optimizing the rheological properties of
FR-CPB. Therefore, systematic research on ϕ f m of fibers in CPB, particularly regarding
measurement methods, is essential.

Static yield stress (hereafter referred to as yield stress) is a key rheological parameter
for assessing the shear resistance of CPB, significantly influencing its stability and transport
performance [33]. Excessive yield stress can hinder material transportation, reducing
construction efficiency, while insufficient yield stress may compromise the stability of
the backfill within voids. Thus, precise control of yield stress is essential to ensure the
transportability and long-term stability of CPB. Furthermore, understanding the evolution
of yield stress is critical for predicting the material’s behavior under prolonged loading.
In practical applications, CPB must maintain long-term stability within voids, and both
the magnitude and evolution of yield stress are directly linked to the backfill’s reliability
and safety [34]. However, quantitative studies on the yield stress and its evolution in
FR-CPB are limited, constraining efforts to predict and optimize its performance in complex
underground environments.

In response to the aforementioned issues, this study prepared polypropylene (PP)
fibers of varying lengths and formulated FR-CPB with different fiber contents. Additionally,
the packing behavior of PP fibers in CPB, as well as the yield stress and its evolution in
FR-CPB, were investigated. This study addresses the aforementioned gaps by introducing
a novel rheology-based method to determine ϕ f m of PP fibers in CPB. This innovative
method is inspired by the dynamic response of particle flocs under shear, allowing the
quantitative characterization of fiber packing behavior within fresh CPB. To the best of our
knowledge, this is the first systematic attempt to apply such a methodology in the context
of FR-CPB, enabling a more precise optimization of fiber content and length for tailored
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material performance. The findings are expected to provide a robust scientific foundation
and technical guidance for the practical application of FR-CPB in engineering projects.

2. Methodology
Unlike rigid fibers, flexible fibers such as PP fibers tend to deform under shear, de-

viating from their original conformation and orientation [35]. This is similar to the flocs’
structural response when subjected to shear, i.e., deformation, deflocculation, and rear-
rangement (Figure 1a). The structural changes in flocs are accompanied by changes in the
rheological properties of the suspension. Based on this, Tregger et al. [36] obtained ϕ f m

of cement particles. Therefore, flexible fibers can be regarded as a unique form of flocs,
and the rheological response corresponding to the change in fiber morphology can serve
to obtain ϕ f m of the fibers. This is the core idea of the shear rheology-based approach
proposed to measure ϕ f m of flexible fibers.

Minerals 2025, 15, 81  4  of  14 
 

 

 

Figure 1. (a) Evolution of floc morphology with shear stress (adapted from [36]). (b) Evolution of 

𝜙௙௠௘௙௙ሺ𝜏ሻ with shear stress (adapted from [29]). 

According  to Equations  (2) and  (3),  𝜙௙௠  can be directly obtained  through experi-
ments with the following steps. First, conduct stress ramp-up tests on FR-CPB samples 

with different fiber contents to obtain the viscosity–shear stress curves (Figure 2a). Then, 

plot  1 െ ሾ𝜂ሺ𝜏ሻሿିଵ/ଶ   against  the fiber volume  fraction under different  shear  stresses,  as 

shown  in Figure 2b. When  𝜙௙   approaches  𝜙௙௠௘௙௙ሺ𝜏ሻ ,  𝜂ሺ𝜏ሻ   tends  to  infinity, and  thus 
1 െ ሾ𝜂ሺ𝜏ሻሿିଵ/ଶ  approaches one. By fitting the data, the  𝜙௙௠௘௙௙ሺ𝜏ଵሻ  of flexible fibers under 
a  specific  shear  stress  𝜏ଵ   can  be  obtained.  Repeat  the  above  steps  to  obtain  the 
𝜙௙௠௘௙௙ሺ𝜏ሻ—𝜏  curve;  𝜙௙௠  is the volume fraction corresponding to when the curve tends 

to be stable (Figure 2c). 

 

Figure 2. (a) Flow curves of FR-CPB varying in fiber dosages (𝜙௙ଵ, 𝜙௙ଶ, 𝜙௙ଷ) under stress ramp-up 

tests [29]; (b) 𝜙௙௠௘௙௙ሺ𝜏ଵሻ  corresponding to the fiber configuration under  𝜏ଵ  [29]; (c) determination 

of 𝜙௙௠  [29]. 

3. Materials and Experimental Methods 

3.1. Raw Materials and Sample Preparation 

The materials used to prepare the FR-CPB include tailings, binder, water, and fibers. 

The tailings used came from a gold mine in northeastern China, with the main compo-

nents being quartz,  calcite, and dolomite  (Figure 3a). The  content of fines  (<20 µm)  is 

20.66%, classifying it as coarse tailings. The uniformity coefficient and coefficient of cur-

vature of the tailings are 6.81 and 1.81, respectively. The detailed particle size distribution 

of the tailings is shown in Figure 3b. The specific gravity of the tailings is 2.65. Commercial 

PO 42.5R ordinary Portland cement (Hailuo brand) was used as the binder in this study 

to provide the required strength for the material [37]. The particle size distribution of the 

cement can be seen  in Figure 3b. The main chemical components of  the cement, deter-

mined  by  X-ray  fluorescence  (XRF)  analysis,  are  CaO  (62.34%),  SiO2  (21.43%),  Fe2O3 

(5.06%), and Al2O3 (4.25%), among others [38]. Laboratory tap water was utilized as the 

(a) (b)

1

(a) (b) (c)

Figure 1. (a) Evolution of floc morphology with shear stress (adapted from [36]). (b) Evolution of
ϕ f me f f (τ) with shear stress (adapted from [29]).

According to the results of Sultangaliyeva et al. [27], the viscosity of fiber-reinforced
cement-based materials with respect to the volume fraction of fibers is as follows:

η′
η′′ =

(
1 − ϕ f

ϕ f m

)−2
(1)

where η′ and η′′ represent the viscosity of the suspension and the suspending medium,
respectively, ϕ f is the fiber volume fraction, and ϕ f m is the maximum packing fraction of
the fibers.

It should be noted that, due to the different conformations and orientations of flexible
fibers under various shear conditions, ϕ f m in Equation (1) more accurately represents the
flexible fibers’ packing fraction in a specific deformation state. Considering the dynamic
nature of the packing fraction, ϕ f m in Equation (1) can be replaced by the effective maximum
packing fraction ϕ f me f f (τ). As the shearing effect increases, the flexible fibers continuously
straighten and rearrange, causing ϕ f me f f (τ) to increase until it stabilizes (Figure 1b). In
addition, to enhance the model’s flexibility, an adjusting parameter “k” is introduced,
referencing the results of Tregger et al. [36]. In summary, Equation (1) can be further
expressed as

If τ > τ′

η(τ) =
[
k
(

1 − ϕ f
ϕ f me f f (τ)

)]−2
(2)
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If τ → ∞ (τ ≫ τ′)

η =
[
k′
(

1 − ϕ f
ϕ f m

)]−2
(3)

where η(τ) represents the ratio of the suspension’s viscosity to that of the suspending
medium, with this ratio being dependent on the shear stress τ; τ′ denotes the yield stress of
the suspension. When τ ≫ τ′, η(τ) becomes independent of the shear effect, corresponding
to the adjusting parameter k′.

According to Equations (2) and (3), ϕ f m can be directly obtained through experiments
with the following steps. First, conduct stress ramp-up tests on FR-CPB samples with
different fiber contents to obtain the viscosity–shear stress curves (Figure 2a). Then, plot
1 − [η(τ)]−1/2 against the fiber volume fraction under different shear stresses, as shown in
Figure 2b. When ϕ f approaches ϕ f me f f (τ), η(τ) tends to infinity, and thus 1 − [η(τ)]−1/2

approaches one. By fitting the data, the ϕ f me f f (τ1) of flexible fibers under a specific shear
stress τ1 can be obtained. Repeat the above steps to obtain the ϕ f me f f (τ)—τ curve; ϕ f m is
the volume fraction corresponding to when the curve tends to be stable (Figure 2c).
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Figure 2. (a) Flow curves of FR-CPB varying in fiber dosages (ϕ f 1, ϕ f 2, ϕ f 3) under stress ramp-up
tests [29]; (b) ϕ f me f f (τ1) corresponding to the fiber configuration under τ1 [29]; (c) determination of
ϕ f m [29].

3. Materials and Experimental Methods
3.1. Raw Materials and Sample Preparation

The materials used to prepare the FR-CPB include tailings, binder, water, and fibers.
The tailings used came from a gold mine in northeastern China, with the main components
being quartz, calcite, and dolomite (Figure 3a). The content of fines (<20 µm) is 20.66%,
classifying it as coarse tailings. The uniformity coefficient and coefficient of curvature of
the tailings are 6.81 and 1.81, respectively. The detailed particle size distribution of the
tailings is shown in Figure 3b. The specific gravity of the tailings is 2.65. Commercial PO
42.5R ordinary Portland cement (Hailuo brand) was used as the binder in this study to
provide the required strength for the material [37]. The particle size distribution of the
cement can be seen in Figure 3b. The main chemical components of the cement, determined
by X-ray fluorescence (XRF) analysis, are CaO (62.34%), SiO2 (21.43%), Fe2O3 (5.06%), and
Al2O3 (4.25%), among others [38]. Laboratory tap water was utilized as the mixing water
for preparing the backfill samples. Four different lengths of PP fibers (3 mm, 6 mm, 9 mm,
and 12 mm) were selected for the experiments in this study. The diameter, density, tensile
strength, and Young’s modulus of the fibers are 40 µm, 0.91 g/m3, 398 MPa, and 4.2 GPa,
respectively. It should be noted that PP fibers were selected for this study due to their
superior mechanical properties (high tensile strength and elasticity modulus), excellent
chemical stability in high-alkalinity environments, and cost effectiveness compared to
other high-performance fibers [39]. Their lightweight and high toughness enable the
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formation of a three-dimensional network, enhancing the rheological and mechanical
performance of cemented paste backfill [6]. Additionally, their widespread availability and
potential applicability to other fiber types make them a practical and insightful choice for
this research.
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Figure 3. (a) XRD results of the gold tailings used. (b) Particle size distribution of the tailings and
cement used.

For the mix proportions of the FR-CPB, the solid content and binder dosage were set
to 76% and 10%, respectively. As for the fiber content, it varies in different experimental
projects. The main scenarios are divided into four categories: determination of ϕ f m of
PP fibers, yield stress measurement, model validation, and time-dependent yield stress.
The specific mix proportions are shown in Table 1. The proportions in Table 1 were
selected based on a balance between commonly used industrial practices and the specific
requirements for evaluating the rheological and mechanical behavior of FR-CPB. After
all the raw materials were prepared, the dry materials (cement, tailings, and PP fibers)
were mixed for 3 min, and then water was added and mixed for a further 5 min to obtain
fresh FR-CPB.

Table 1. Summary of the mix compositions of the prepared FR-CPB samples.

Trial Mix Solid Content (%) Binder Dosage (%) Fiber Content Fiber Length (mm)Vol.% Wt.%

ϕ f m determination

76 10

0 0

3, 6, 9, 12

0.08 0.027
0.1 0.034

Yield stress measurement

0 0
0.891 0.3
1.782 0.6
2.674 0.9

Model validation
0.891 0.3
1.782 0.6
2.674 0.9

Time-dependent yield stress

0 0
0.891 0.3
1.782 0.6
2.674 0.9
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3.2. Experimental Methods

A Brookfield rheometer (RSX-SST), equipped with a four-bladed vane rotor measuring
40 mm in length and 20 mm in diameter, was used in this experiment. Before the main
test, pre-shearing was applied at a shear rate of 100 s−1 for 60 s followed by a 30 s resting
period. This procedure was intended to eliminate the sample’s shear history and ensure a
uniform starting condition for testing [40,41].

3.2.1. Stress Ramp-Up Test

A stress ramp-up test was performed to generate the flow curves of FR-CPB and to
further determine ϕ f m of the PP fibers in CPB. During this test, the shear stress increased at
a constant rate of 1 Pa/s until reaching 100 Pa. This gradual increase allowed for precise
monitoring of the material’s response to varying stress levels, ultimately providing a
comprehensive flow curve. The choice of this rheological protocol is, on the one hand,
based on [29], and on the other hand, this shear method indeed allows for a comprehensive
capture of the configurational changes of the fibers in CPB.

3.2.2. Yield Stress Test

Yield stress tests were conducted to determine the yield stress of FR-CPB. During
the experiment, a shear rate of 0.01 s−1 was applied to the samples for 100 s, generating
shear stress–time curves. The peak stress on the curve was identified as the yield stress
(Figure 4a).

To investigate the evolution of yield stress, tests were performed at intervals of 0, 30,
60, 90, and 120 min. It should be noted that newly prepared samples were used for testing
at each time point to prevent structural disturbances or performance variations caused by
repeated testing, ensuring the reliability of the results. After all tests were completed, a
yield stress–time curve was constructed, and its slope was calculated to represent the yield
stress evolution rate (Aτ) of the FR-CPB (Figure 4b).
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Figure 4. Acquisition of rheological data for FR-CPB: (a) yield stress; (b) yield stress evolution rate.

4. Results and Discussion
4.1. Maximum Packing Fraction

Figure 5a shows the dynamic nature of the packing fraction of the PP fibers when
subjected to shear. Initially, regardless of the fiber length, the curve exhibits a plateau
region when the shear stress remains below 75 Pa. This reflects the adaptability of flexible
fibers to shear, which results in FR-CPB having a higher yield stress compared to traditional
CPB. As the shear stress further increases, the PP fibers gradually straighten and rearrange,
resulting in a continuous increase in ϕ f me f f (τ) until it reaches ϕ f m, which corresponds to
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the optimal conformation of the fibers. This dynamic characteristic of the fiber packing
fraction under shear also validates the correctness of the method proposed in this study. To
quantify this dynamic characteristic and obtain ϕ f m, the following equation was employed:

ϕ f me f f (τ) = ϕ f mi +
(

ϕ f m − ϕ f mi

){
1 − exp

[
−
(

τ
τr

)α]}
(4)

where ϕ f mi is the initial packing fraction corresponding to the fiber conformation before
the test; τr and α are the characteristic stress and characteristic coefficient, respectively.

This equation effectively describes the dynamic characteristics of the fibers (Figure 5a).
Through this equation, ϕ f m of different fibers can be obtained. The ϕ f m values for PP fibers
of 3, 6, 9, and 12 mm are 0.661, 0.630, 0.592, and 0.534, respectively. Figure 5b illustrates the
relationship between the fiber aspect ratio and ϕ f m. The figure shows a significant negative
linear correlation between the aspect ratio and ϕ f m, with a correlation coefficient of 0.98.
Thus, fibers with smaller aspect ratios exhibit a greater capacity to fill space, leading to
higher packing efficiency. This finding is consistent with the observations of Nan et al.,
who reported that the fiber aspect ratio significantly influences ϕ f m, with fibers of higher
aspect ratios tending to exhibit lower ϕ f m [42]. Additionally, Toll also indicated that an
increase in the aspect ratio alters the orientation and distribution of fibers, thereby reducing
packing efficiency [43].
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Figure 5. (a) Evolution of ϕ f me f f (τ) of different fibers with shear stress. (b) Relationship between
fiber aspect ratio and maximum packing fraction.

4.2. Yield Stress

Figure 6a presents the yield stress results of the FR-CPB under different lengths (3 mm,
6 mm, 9 mm, and 12 mm) and contents (0%, 0.3%, 0.6%, and 0.9%) of PP fibers. Overall, the
yield stress of the FR-CPB increases with the fiber length and content. Similar phenomena
were observed by Zhao et al. [6]. For short fibers (3 mm and 6 mm), the increase in yield
stress is relatively limited. This may be because short fibers are insufficiently long to
interweave and form a stable fiber skeleton structure within the slurry, resulting in weaker
constraints on particle flow. Hannant [44] also noted that fibers exhibit significant limita-
tions in forming effective skeleton structures, thus contributing relatively less to enhancing
the slurry’s mechanical properties. In contrast, longer fibers (9 mm and 12 mm) effectively
interweave to create a more stable skeleton structure in the slurry, substantially improving
shear resistance and yielding a notable increase in yield stress. Regarding fiber content,
at a low content (0.3%), the increase in yield stress is relatively slow, suggesting limited
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reinforcement; however, at medium to high contents (0.6% and 0.9%), the yield stress
increases significantly. This indicates that a higher fiber content promotes the formation
of denser fiber networks, enhancing the overall yield stress of the slurry. Notably, there
is a synergistic effect between fiber length and content. Under the combination of high
content (0.9%) and long fibers (12 mm), the yield stress reaches a maximum of 274.34 kPa,
demonstrating a significant enhancement of the slurry’s shear resistance. This finding
also suggests that the packing fraction of fibers plays a crucial role in influencing yield
stress, especially at higher fiber contents and longer lengths, where this trend becomes
more pronounced.
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Figure 6. (a) Effect of fiber length and content on the yield stress of CPB. (b) Comparison between
Sultangaliyeva model predictions and actual yield stress values. (c) Comparison of calculated yield
stress and experimental yield stress.

The Sultangaliyeva model (Equation (5)) [27] is widely employed to predict the yield
stress of fiber-reinforced cement paste, with its predictions primarily relying on the packing
fraction of fibers. Here, this model was applied for calculations, and the results were
compared with experimental measurements, as illustrated in Figure 6b. The comparison
reveals noticeable deviations between the model’s predictions and the measured values,
particularly under higher fiber content and length, where the discrepancies become more
pronounced. These deviations suggest that the Sultangaliyeva model has limitations when
applied to CPB, potentially neglecting critical mechanisms influencing yield stress. For
instance, fiber–fiber interactions and the reinforcing effects of fibers on the matrix are
inadequately accounted for, which likely explains the model’s significant underestimation
of yield stress at high fiber contents. Consequently, refining the model is essential to more
accurately capture the influence of fibers on the yield stress of CPB, thereby improving its
predictive accuracy and applicability.

τf c = τc

[(
1 − ϕ f

ϕ f m

)−2
]

(5)

where τf c and τc represent the yield stress of FR-CPB and the CPB matrix, respectively.
Guo et al. [29] demonstrated that fiber–fiber interactions and the reinforcing effects

of fibers on the matrix can be expressed as a power function of ϕ f /ϕ f m. Consequently,
Equation (5) can be modified as
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τf c = τc

[(
1 − ϕ f

ϕ f m

)−2
+ a

(
ϕ f

ϕ f m

)b
]

(6)

where a and b are coefficients related to fiber interactions, determined through experimen-
tal data.

Using Equation (6) and experimental data, the specific form of the model was obtained
through fitting, as shown in Equation (7). As illustrated in Figure 6c, while the data exhibit
some dispersion, likely due to the limited sample size, the overall trend closely follows the
dashed line (ideal fitting line), with a goodness of fit of 0.88.

τf c = τc

[(
1 − ϕ f

ϕ f m

)−2
+ 9086676.13

(
ϕ f

ϕ f m

)5.14
]

(7)

Model Validation

To validate the proposed model, FR-CPB was prepared using various fiber systems,
followed by rheological testing and result comparison. In this study, an experimental
design was implemented using equi-volume pairwise mixtures of fibers with different
lengths to construct composite fiber systems, labeled as 3–6, 3–9, 3–12, 6–9, 6–12, and 9–12,
respectively. Here, “3–6” represents a composite system consisting of 3 mm and 6 mm
fibers, with other labels following a similar pattern. These composite fibers were used to
prepare CPB under fixed experimental conditions: a solid content of 76%, a cement dosage
of 10%, and fiber contents of 0.3%, 0.6%, and 0.9%. The yield stress of each system was
subsequently measured.

Figure 7a illustrates the ϕ f m of composite fiber systems determined using the proposed
method. The results reveal that when fibers of different lengths are mixed in equal volumes,
the ϕ f m of the composite fiber system lies between the ϕ f m values of the individual fibers
that constitute the system. For example, the ϕ f m of the 3–6 combination is 0.655, slightly
lower than that of 3 mm fibers (0.661) but higher than that of 6 mm fibers (0.630). A similar
trend is observed in other combinations: the ϕ f m of the 3–9 system is 0.618, exceeding
that of 9 mm single fibers (0.592), while the 3–12 combination achieves a ϕ f m of 0.596,
surpassing the 0.534 of 12 mm single fibers. In contrast, combinations of longer fibers (e.g.,
6–9, 6–12, and 9–12) exhibit a gradual decline in the ϕ f m, with values of 0.598, 0.584, and
0.558, respectively. These findings suggest that in mixed fiber systems, shorter fibers play a
more significant role in improving overall packing performance.

The comparison between the experimental yield stress values and the model predic-
tions for the validation group is illustrated in Figure 7b. Most data align closely with the
ideal fitting line, achieving a correlation coefficient of 0.93. These results confirm that the
improved model (Equation (7)) effectively captures the yield stress characteristics of FR-
CPB, demonstrating high predictive accuracy and broad applicability. However, it should
be noted that a noticeable deviation occurs around the 100 Pa range where alignment is
reduced. This deviation can be attributed to several factors: (1) the transition zone of fiber
interaction, where intermediate fiber content and length combinations result in an underde-
veloped fiber network, leading to variability in the packing fraction and fiber distribution;
(2) material heterogeneity, as incomplete bridging and inconsistent fiber orientation at inter-
mediate stress levels increase local variations in the rheological behavior; (3) limitations of
the model, which assumes uniform fiber dispersion and interaction but may lose predictive
accuracy under these conditions; and (4) experimental uncertainty, where slight variations
in sample preparation or testing protocols might amplify discrepancies at this range. To
address these issues, future studies could incorporate additional data for intermediate
stress levels, refine the model to better account for local heterogeneities, and utilize imaging
techniques to analyze fiber distribution and orientation within the material.
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Figure 7. (a) Maximum packing fraction of combined fibers. (b) Comparison of calculated yield stress
and experimental yield stress.

4.3. Time-Dependent Yield Stress

The effects of fiber length and content on the yield stress evolution rate of the FR-CPB
(within 2 h) are presented in Figure 8a. The figure shows that the yield stress evolution rate
increases with fiber content. This phenomenon can be attributed to the three-dimensional
network structure formed by fiber-reinforced cement-based materials. Fibers bridge cement
particles to form a continuous network, which enhances the system’s overall stability
and reduces cement particle sedimentation [45]. This uniform distribution improves the
contact efficiency between cement particles and water, thereby accelerating the hydration
reaction [46]. When the fiber content reaches 0.6%, particularly for fibers with a length
of 12 mm, the yield stress evolution rate of the samples is significantly higher than that
of shorter fibers (3 mm and 6 mm). Additionally, long fibers create a more stable and
continuous three-dimensional network within the slurry, promoting the even distribution of
cement particles and reducing sedimentation, which in turn enhances the cement hydration
efficiency. Conversely, shorter fibers are less effective at bridging, with limited connections
between fibers. This reduces contact opportunities among cement particles, leading to
incomplete hydration reactions and a less pronounced reinforcement effect. Moreover,
long fibers can span larger particle gaps, providing stronger reinforcement, while short
fibers fail to achieve this. Thus, the synergistic interaction between fiber length and content
determines the variation in the yield stress evolution rate of FR-CPB.

Figure 8b compares the relative yield stress with its evolution rate. Both parameters
exhibit a similar upward trend with an increasing relative fiber volume fraction. Notably,
the relative yield stress consistently remains lower than the relative yield stress evolution
rate, with the gap between them widening as the relative volume fraction increases. This
observation suggests that, in addition to fiber–fiber interactions and the reinforcing effects
of fibers on the matrix, time-dependent factors significantly influence the yield stress
evolution rate. This finding is consistent with previous analyses, indicating that a higher
relative fiber volume fraction enhances cement hydration efficiency, thereby accelerating
the yield stress evolution rate. Therefore, Equation (7) cannot be directly applied to
describe the yield stress evolution rate of FR-CPB without fully considering the effects of
cement hydration. Recognizing the critical role of exponential parameters in determining
the function’s outcomes, the framework of Equation (7) was retained. By combining
experimental data and optimizing the exponential parameters, a yield stress evolution rate
model for FR-CPB (Equation (8)) was developed. Figure 8c compares the model predictions
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with the observed yield stress evolution rate values. Most data align closely with the ideal
fitting line, achieving a correlation coefficient of 0.92. This indicates that the model provides
an accurate prediction of the yield stress evolution rate for FR-CPB.

R f c = Rc

[(
1 − ϕ f

ϕ f m

)−2
+ 9086676.13

(
ϕ f

ϕ f m

)5
]

(8)

where Rc and R f c represent the yield stress evolution rates of CPB and FR-CPB, respectively.
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Figure 8. (a) Effect of fiber length and content on yield stress evolution rate of FR-CPB within 2 h.
(b) Variation in relative yield stress and relative yield stress evolution rate with relative fiber volume
fraction. (c) Comparison of calculated yield stress evolution rates and experimental yield stress
evolution rates.

5. Conclusions
Inspired by the response of particle flocs under shear, this study proposes a method

to determine the maximum packing fraction of PP fibers in CPB. Building on this, the
maximum packing fraction is used to analyze and model the yield stress and yield stress
evolution rate of FR-CPB. The main conclusions are as follows:

• The proposed rheology-based method effectively captures the dynamic characteristics
of PP fibers in CPB during the shearing process, enabling the accurate determination
of the maximum packing fraction. This approach provides a reliable tool for gaining
deeper insights into fiber packing behavior within CPB.

• The maximum packing fraction decreased with increasing fiber length, ranging from
0.661 for 3 mm fibers to 0.534 for 12 mm fibers, highlighting the significant influence
of fiber geometry on packing efficiency. Moreover, shorter fibers demonstrate greater
advantages in space filling and packing efficiency, while the inclusion of longer fibers
dilutes the overall packing performance.

• The improved yield stress model demonstrated high predictive accuracy, with a corre-
lation coefficient of 0.93 between the predicted and experimental values. Additionally,
the relative yield stress was always less than the relative yield stress evolution rate
due to the influence of cement hydration efficiency. By adjusting the exponential
parameters in the yield stress model, the model successfully achieves an accurate
description of the yield stress evolution rate.
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While the proposed models have demonstrated strong potential for optimizing FR-
CPB, future research should explore their applicability to other fiber types, such as steel or
natural fibers, to evaluate generalizability. Scaling up the models for large-scale industrial
use, particularly in mining operations, is essential to validate their performance under
practical field conditions. Additionally, further studies are needed to assess the models’
reliability under varying environmental conditions, such as temperature, humidity, and
chemical exposure, as well as their long-term performance considering fiber degradation.
Addressing these aspects will refine the models and expand their applicability to optimize
FR-CPB systems across diverse and complex conditions.
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Abstract: This paper reviews recent advancements in the pipeline transport performance of paste
backfill slurry in long-distance underground backfilling operations, with a primary focus on applica-
tions in metal mines. Key aspects, including flow performance, energy consumption during transport,
and operational stability, are discussed in detail. Slurry concentration and rheological properties,
including viscosity, yield stress, and flow behavior, as well as particle size distribution, are examined
for their effects on transport efficiency. The relationship between these characteristics and pipeline
resistance is also examined. Factors like pipeline orientation, configuration, diameter, length, elbow
design, and elevation gradients are explored, demonstrating that careful design can optimize flow
performance, reduce energy consumption, and minimize the risk of blockages and bursts. Addition-
ally, the roles of commonly used additives, such as water reducers, foaming agents, antifreeze agents,
and thickeners, are discussed in terms of their impact on slurry flowability, stability, and resistance
losses. Optimal slurry regulation, strategic pipeline design, and effective additive utilization improve
flow efficiency, extend service life, and reduce maintenance costs, thereby ensuring reliable backfill
operations. Future research should focus on innovative pipeline designs, such as improving material
selection and configuration to optimize flow stability and reduce energy consumption. Advanced
additives, including thickeners and water reducers, could further enhance slurry flowability, reduce
pipeline resistance, and improve system reliability.

Keywords: paste backfill slurry; pipeline transport; rheological properties; pipeline design; additives

1. Introduction

Rapid industrialization has led to a significant increase in demand for non-ferrous
metal minerals, driving the need for more efficient and sustainable transportation so-
lutions [1–3]. Pipeline transportation plays a crucial role in addressing these demands,
offering a cost-effective and environmentally friendly method for conveying materials in
mining operations [4–6].

The backfill mining method, widely adopted in the industry, significantly reduces
solid waste discharge and mitigates land subsidence, thereby enhancing ecological sus-
tainability [7–9]. Moreover, it addresses underground voids, improving stope stability
and increasing mineral recovery rates [10–13]. As a key part of this process, pipeline
transportation has evolved from hydraulic backfill systems to the current paste backfill
technologies [14–16]. These advancements ensure the safe and efficient transport of ore
waste and backfill materials, playing a critical role in the sustainable development of mining
practices [17–19], as shown in Figure 1 [20].
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However, pipeline transportation faces several technical and economic challenges.
The design and material selection for pipelines must align with the specific properties of the
transported materials to maintain system stability [21–23]. Fluid dynamics issues, such as
blockages and pipe wall erosion, require extensive research and solutions [20,24,25]. Addi-
tionally, pipeline construction and operational costs remain a significant concern, requiring
optimization to ensure cost-effectiveness under resource and economic constraints [2,4,26].

This paper reviews the key factors influencing pipeline transportation performance,
including slurry characteristics, pipeline layout, and the use of additives. By examining
these factors, we aim to advance solutions to challenges related to system stability, relia-
bility, and cost, while contributing to the efficient and sustainable operation of pipeline
transportation in mining.

2. Impact of Slurry Characteristics on Pipeline Transport Performance

The characteristics of the backfill slurry serve as the principal determinants of pipeline
transportation performance, exerting a direct influence on the flowability, stability, and
ultimate backfill efficacy during transport. Therefore, a precise understanding and control
of slurry characteristics is essential. The characteristics of backfill slurry encompass, but
are not limited to, particle size, distribution uniformity, packing density, density, and
rheological properties. Packing density, in particular, is closely related to particle size
and plays a significant role in determining the flowability and resistance of the slurry
during pipeline transport. The influence of various slurry characteristics, including packing
density, on pipeline transportation performance is both diverse and complex. This section
concentrates on synthesizing and analyzing recent research findings concerning the impact
of slurry characteristics on pipeline transportation performance.

Figure 2 depicts the influence of feed velocity on the sedimentation behavior of backfill
slurry particles within the pipeline [27]. Figure 2a demonstrates that, when particle size
and backfill slurry concentration are kept constant, the particle settling velocity diminishes
progressively with increasing feed velocity. Figure 2b clearly illustrates the variation in
backfill slurry concentration at various heights within the pipeline cross-section. As feed
velocity increases, the concentration disparity between the bottom and top of the slurry
cross-section consistently diminishes. Figure 2c,d respectively depict the impact of feed
velocity on particle sedimentation in the pipeline from two distinct directions, revealing
that higher feed velocities impede particle separation from the fluid flow. The particle
settling velocity is minimized when the feed velocity is 3 m/s.
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teristics at the nozzle in gravity flow tests for fill slurry across various concentrations, 
whereas Figure 4 illustrates the distribution of pipeline transport resistance under differ-
ing slurry concentrations. Investigations into flow characteristics under varying condi-
tions reveal that increased fill slurry concentrations lead to heightened pipeline transport 
resistance [29–31]. The concentration of fill slurry is a pivotal factor influencing slurry rhe-
ological parameters. As the concentration of fill slurry increases, both the yield stress and 
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minimize energy consumption while satisfying the backfill strength requirements, lower 
concentration fill slurry is generally preferred for pipeline transportation. 

Figure 2. Particle concentration distribution of backfilled slurry in the middle section of the outlet pipe
at different inlet velocities (example with particle size (PS) = 150 um and particle mass concentration
(PMC) = 68%). Adapted from Ref. [27]. (a) PMC distribution, (b) Changes in PMC on the middle
cutoff, (c) Particle normal velocity (x-axis direction positive), (d) Particle tangential velocity (z-axis
direction positive).

Figures 3 and 4 depict the flow characteristics of fill slurry at varying concentrations
during backfill transportation [28]. Figure 3 demonstrates the flow and dispersion character-
istics at the nozzle in gravity flow tests for fill slurry across various concentrations, whereas
Figure 4 illustrates the distribution of pipeline transport resistance under differing slurry
concentrations. Investigations into flow characteristics under varying conditions reveal that
increased fill slurry concentrations lead to heightened pipeline transport resistance [29–31].
The concentration of fill slurry is a pivotal factor influencing slurry rheological parameters.
As the concentration of fill slurry increases, both the yield stress and viscosity of the slurry
escalate significantly, as depicted in Figure 5 [32]. Consequently, to minimize energy con-
sumption while satisfying the backfill strength requirements, lower concentration fill slurry
is generally preferred for pipeline transportation.
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Figure 3. Flowing and diffusing states at the nozzle in the gravity flow test of different concentrations
of slurry: (a) 80%, (b) 78%, (c) 76%, (d) 74%, (e) 72%. Adapted from Ref. [28].
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Figure 5. The effect of slurry concentration on the rheological properties of slurry. Adapted from
Ref. [32]. (a) Relationship between shear stress and shear rate, (b) Relationship between viscosity and
shear rate.

The thixotropy of fill slurry is another critical factor influencing the transportation
process in slurry backfilling [33–36]. Thixotropy describes the property of a fluid where its
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viscosity changes under shear stress, gradually returning to its original state once the stress
is removed. Investigating the thixotropy of fill slurry offers critical insights for optimizing
long-distance pipeline transportation [37–40]. Figure 6 illustrates the thixotropic behavior
of rheological parameters. The relative slip between slurry flow layers is directly governed
by the magnitude of the slurry’s yield stress. In essence, the magnitude of the fill slurry’s
yield stress directly dictates the radius of the plug flow and the thickness of the boundary
layer. Figure 6a reveals that yield stress decreases with increasing shear time, following
a negative exponential trend. Figure 6b indicates that plastic viscosity generally declines
over time but surges sharply at the onset of shear (shear transition zone). Viscosity rapidly
increases with shear time, initially reaching a peak, then gradually decreasing before
stabilizing [41,42]. The mixing time for preparing the fill slurry should generally exceed
the duration of the shear transition zone.
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Additionally, particle size distribution significantly influences the transport perfor-
mance of fill slurry [43,44]. Figure 7 demonstrates the impact of incorporating fine particles
on the particle concentration distribution within the fill slurry [45,46]. In Figure 7, panels
A, B, and C depict the particle volume concentration distributions under conditions of low
flow rate with low concentration, low flow rate with high concentration, and high flow
rate with high concentration, respectively. The addition of 10% fine particles results in
minimal changes to the coarse particle concentration distribution; however, introducing
20% fine particles leads to a gradual alteration in the concentration distribution of coarse
particles. This suggests that a sufficient quantity of fine particles is required to modify
the flow behavior of the fill slurry. Incorporating an optimal proportion of fine particles
into the fill slurry can significantly enhance the suspension of coarse particles, reduce the
frictional resistance between coarse particles and the pipe wall, and consequently improve
the overall transport performance of the slurry. Concurrently, as the flow rate increases,
the impact of fine particles on the coarse particle concentration distribution progressively
diminishes. This may be attributed to the fact that, as the flow rate rises, the collision forces
among coarse particles intensify, overshadowing the buoyancy effect imparted by the fine
particle carrier phase.

In addition to particle size, another important characteristic influencing pipeline trans-
port performance is the packing density (or compactness) of the slurry [47–49]. The packing
density refers to how tightly the particles are arranged in the slurry, which affects the over-
all flowability and resistance to movement within the pipeline. It is influenced by several
factors, including the particle size distribution, particle shape, and slurry concentration.
The packing density of the slurry is closely related to the particle size distribution, as finer
particles tend to occupy the spaces between coarser particles, leading to a higher packing
density. This increased packing density can result in higher frictional resistance during
transport, as the slurry becomes more viscous and more difficult to flow. On the other hand,
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lower packing densities (often associated with larger particles or a more uniform particle
size distribution) may reduce flow resistance but could also affect the stability of the slurry
during transport, leading to potential sedimentation or separation issues. Research has
shown that optimizing the packing density can improve the transport performance by bal-
ancing these opposing effects [50,51]. For example, a well-balanced slurry with an optimal
packing density can minimize pipeline resistance while maintaining the stability of the
slurry and preventing excessive settling of particles. Thus, understanding the relationship
between packing density and particle size is essential for optimizing slurry formulations
for long-distance pipeline transport.
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Figure 7. Effect of particle size distribution on particle concentration distribution. Adapted from
Ref. [45]. (a) Coarse particle concentration distribution determined by simulations and experiments,
(b) After adding fine particles, concentration distribution of fine particles and mixtures, (c) Com-
parison of coarse particle concentration and single size coarse particle concentration after adding
fine particles.

Figure 8 illustrates the influence of feed velocity on the transport characteristics of
fill slurry. Figure 8a depicts the effect of feed velocity on the transport resistance loss
of fill slurry. Under constant conditions, the resistance loss within the pipeline escalates
with an increase in feed velocity. Figure 8b illustrates the effect of feed velocity on the
particle settling behavior of the fill slurry. Observations reveal that particles are uniformly
distributed at the pipeline inlet (X = 0 m); however, as the distance from the inlet increases,
the particle distribution across all slurry velocities gradually becomes uneven. The distri-
bution of the fill slurry can be categorized into three distinct vertical zones: the aggregate
volume reduction zone, the steady flow zone, and the coarse aggregate volume increase
zone. Significant variations are observed in the extent of these zones at different locations
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for varying flow rates. Within the flow rate range of 1.0–2.5 m/s, the height of both the
aggregate volume reduction zone and the increase zone progressively increases with trans-
port distance, attributed to the continuous deposition of particles. At a constant position,
as the flow rate increases, the height of the two zones progressively decreases, likely due to
the increased fluctuating kinetic energy. At a flow rate of 3.0 m/s, the aggregate volume
reduction zone demonstrates a similar variation pattern as under other conditions, with
increased transport distance and the absence of an aggregate volume increase zone in the
lower part of the pipeline, indicating the highest uniformity of the fill slurry [52].
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In practical applications, for established and operational backfill systems, the prepara-
tion and pumping equipment for the fill slurry are typically fixed. Consequently, adjusting
the characteristics of the fill slurry becomes the most cost-effective and efficient approach
for enhancing pipeline transport performance. It is crucial to emphasize that in the domain
of mining backfill, the quality and evaluation of the backfill body are of paramount im-
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portance. Enhancing the characteristics of the fill slurry must be aligned with meeting the
performance criteria of the backfill body.

3. Impact of Pipeline Layout on Pipeline Transport Performance

Pipeline layout involves multiple dimensions, including pipe orientation and configu-
ration, pipe diameter and length, elbow and bend designs, branch and connection point
arrangements, and elevation changes and gradients [53–55]. An optimal pipeline layout
is crucial for guaranteeing the efficient and stable operation of the transport system. A
well-engineered and meticulously planned layout not only optimizes transport efficiency
and minimizes energy consumption but also mitigates underfilled flow issues, reduces
the likelihood of blockages and bursts during slurry transport, and prolongs the system’s
operational lifespan. This section reviews recent research insights into how pipeline layout
influences the performance of fill slurry transport systems.

Figure 9a–c illustrate the effects of fill gradient, elbow curvature radius, and pipe
diameter on longitudinal resistance loss, as revealed by recent studies [56].
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Figure 9. The impact of pipeline parameters on resistance loss: (a) resistance loss at different backfill
gradients; (b) resistance loss at different elbow curvature radii; (c) resistance loss at different pipe
inner diameters. Adapted from Ref. [56].

Figure 9a reveals that the relationship between fill gradient and resistance loss is
neither purely linear nor inversely proportional. Within the studied parameters, resistance
loss exhibits an exponential variation with increasing fill gradient, with a notable inflection
point occurring at a fill gradient of 4. Specifically, resistance loss escalates as the fill gradient
increases from 2 to 4. However, as the fill gradient rises from 4 to 4.5, resistance loss
decreases. This phenomenon can be attributed to the pipeline resistance exceeding the
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gravitational force of the slurry when the fill gradient surpasses 4, hindering the slurry’s
ability to transport via self-flow. Consequently, a pumped fill method becomes necessary
when the fill gradient exceeds 4.

The complex underground mining environment necessitates the use of elbows to
connect fill pipelines, making their design crucial for minimizing resistance loss. Figure 9b
illustrates that, within the studied parameters, resistance loss at elbows varies exponentially
with the curvature radius. Specifically, when the curvature radius ranges from 1 m to
3 m, resistance loss increases as the curvature radius enlarges, which correlates with the
increased circumference of the elbow and consequently greater resistance along the pipeline.
However, when the curvature radius extends from 3 m to 4 m, resistance loss diminishes.
This reduction occurs because a larger curvature radius leads to a decreased slurry velocity
gradient, thereby reducing pipeline resistance.

Figure 9c indicates a negative correlation between pipe diameter and resistance loss,
revealing that as the pipe diameter increases, resistance loss decreases. This phenomenon
occurs because, for a constant flow rate, a reduction in pipe diameter elevates the velocity
of the fill slurry, leading to a proportional increase in frictional resistance along the pipeline.

Figure 10 illustrates the research findings on the application of auxiliary pipelines
to enhance resistance and mitigate pressure [57]. The figure demonstrates that auxiliary
pipelines are installed within vertical pipe sections, with their placement adjusted based on
the underground pipeline configuration and pressure distribution. The primary purpose of
these auxiliary pipelines is to augment frictional loss between the fill slurry and the pipe
wall, thereby increasing resistance and reducing pressure. In practical applications, the
auxiliary pipelines can be connected to the main pipeline using electric valves. When the
fill gradient is low, the auxiliary pipelines are activated to increase transport resistance
and decrease the velocity and pressure of the slurry reaching the pipeline’s base. Con-
versely, when the fill gradient is high, the auxiliary pipelines remain inactive to avoid
pipeline blockage.
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Figure 10. Increasing resistance and reducing pressure schematic of auxiliary pipe: (1) program-
controlled electric valve; (2) auxiliary pipe; (3) pressure change of vertical pipe of L-shaped pipe;
(4) pressure change of vertical pipe after using auxiliary pipe. Adapted from Ref. [57].

A scientifically and rationally designed pipeline layout is crucial for ensuring the
reliability and long-term stability of the backfill system. Future research should concentrate
on exploring advanced pipeline layout technologies, integrating cutting-edge engineering
innovations and technological advancements. This includes, but is not limited to, investiga-
tions into intelligent pipeline systems, advanced fluid dynamics simulations, and adaptive
pipeline designs. Through comprehensive research in these areas, professionals can gain
a deeper understanding of the mechanisms by which pipeline design influences backfill
system performance, leading to the development of more efficient engineering practices
and management strategies.
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4. Impact of Additives on Pipeline Transport Performance

An additional effective strategy for enhancing the transport performance of fill slurry
is the incorporation of additives. Additives encompass a variety of types; in mining backfill
applications, frequently utilized additives include water reducers, foaming agents, an-
tifreeze agents, and thickeners. The introduction of these additives is intended to refine
the physical and chemical properties of the fill slurry, thereby further optimizing pipeline
transport performance and ultimately enhancing production efficiency and resource uti-
lization. This section elucidates recent research findings regarding the impact of various
additives on fill slurry performance.

Figures 11 and 12 illustrate the effects of foaming agents on both the rheological prop-
erties and pipeline transport performance of fill slurry [58]. Foaming agents, functioning as
surfactants, organize their bilayer electronic structure at the liquid film surface, thereby
effectively reducing the liquid’s surface tension and facilitating the formation of bubbles
with the surrounding air. With an increasing bubble ratio, both the apparent viscosity
and shear stress of the fill slurry progressively decrease. Consequently, foaming agents
can markedly enhance the flowability of the fill slurry. Initially, the bubbles are large
and irregular upon entering the slurry. As transportation of the fill slurry commences,
the large bubbles ascend uniformly to the pipe wall surface and the surrounding space.
Under the persistent shear force exerted by the pipe wall, large bubbles fragment into
smaller bubbles, creating a new turbulent viscous layer on the pipe wall surface that
replaces the existing viscous layer of the slurry. Hence, the incorporation of foaming
agents can diminish resistance loss during the transportation process and enhance pipeline
transport efficiency.
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Figure 13 illustrates the effect of high-efficiency water reducers on the rheological prop-
erties of fill slurry [59]. Water reducers, primarily anionic surfactants, function to disperse
cement particles, minimize water usage per unit, enhance the flowability of the mixture,
and improve the transport performance of the fill slurry [60,61]. As the concentration of the
tailings slurry increases, both its yield stress and plastic viscosity rise accordingly [62,63].
The yield stress and plastic viscosity of fill slurry containing high-efficiency water reducers
are markedly lower compared to those of tailings slurry devoid of such reducers. This
effect is attributed to the molecular brush structure of high-efficiency water reducers, which
features numerous cationic and anionic functional groups along the main chain [64]. These
groups adsorb onto the tailings surface, thereby enhancing electrostatic repulsion, while
the side chains create steric hindrance to improve flowability [65,66]. It is noteworthy that
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high-efficiency water reducers should be applied judiciously based on the concentration
of the tailings slurry. At lower concentrations, they may induce stratification, whereas at
higher concentrations, they may result in a loss of flowability. Conversely, when employed
at elevated tailings slurry concentrations, they can bolster fill body strength and reduce the
consumption of cementitious materials. Consequently, the economic value of incorporating
high-efficiency water reducers is typically greater at higher concentrations of tailings slurry.
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In backfill operations, thickeners are employed to improve the water retention capacity
of the fill slurry and to mitigate issues related to segregation and blockage during pipeline
transport. Figure 14 illustrates the mechanism of action of a thickening agent [67]. The
molecules of the thickening agent possess a multi-segment structure. Upon adsorption onto
the particle surfaces, the segments of the thickening agent molecules undergo rotational
movement, resulting in the aggregation of particles into larger floccules. These floccules
form interconnections within the paste slurry, creating a network-like flocculation structure.
Figure 15 depicts the effects of the thickening agent on the flowability, rheological properties,
and compressive strength of the fill slurry. Figure 15a demonstrates that the thickening
agent effectively decreases the flowability of the fill slurry, leading to particle aggregation
and enhancing the slurry’s resistance to bleeding and segregation. Figure 15b,c illustrate
that, at a constant shear rate, a higher content of thickening agent results in an increase
in the apparent viscosity and shear stress of the fill slurry. Figure 15d reveals that the
compressive strength of hardened fill body specimens increases substantially with the
amount of thickening agent.
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Figure 16 illustrates the effect of non-chloride antifreeze on the rheological properties
of fill slurry [68]. To mitigate the risk of freezing during the transportation of fill slurry
in sub-zero environments, antifreeze agents are frequently employed. Research indicates
that chloride-containing antifreeze additives not only lower the freezing point of fill slurry
and other cement-based materials but also enhance their rheological properties in sub-zero
conditions [69,70]. However, the use of chloride-containing antifreeze additives in fill slurry
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accelerates pipeline corrosion, markedly shortening the service life of the pipelines. To
mitigate corrosion caused by chlorides in fill pipelines, non-chloride antifreeze mixtures
should be incorporated into the fill slurry whenever feasible. Figure 16a demonstrates
that as the antifreeze concentration increases, the yield stress of each sample decreases to
varying degrees. Figure 16b reveals that the plastic viscosity of the fill slurry increases
within the antifreeze concentration range of 0–15 g/L and subsequently decreases within
the concentration range of 15–35 g/L.
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By employing scientific and precise additive formulations, the rheological parameters
of fill slurry can be optimized, pipeline resistance minimized, and flowability enhanced.
This approach not only enhances delivery efficiency but also optimizes the performance of
the fill slurry to adapt to varying operational conditions, thereby ensuring the continuity
and stability of the transportation process.

Future research should focus on the development of novel additives with multifunc-
tional properties, such as simultaneously enhancing flowability, reducing resistance, and
improving the hardened strength of the backfill material. Additionally, exploring the
synergistic effects of additives with various fillers, like alternative tailings or fly ash, could
optimize formulations for specific operational conditions. These efforts could address
existing challenges and further enhance the efficiency and reliability of pipeline transport
systems in backfill operations.

As societal focus on resource sustainability intensifies, pipeline transport, a pivotal
component of the backfill process, encounters a range of challenges. At the technical level,
the design and materials of pipelines must be meticulously aligned with the specific prop-
erties of different media to ensure system stability and reliability. Furthermore, challenges
related to fluid dynamics within pipelines, such as blockages and wall wear, represent
critical technical issues that necessitate comprehensive research and solutions.

Industry experts have undertaken extensive research to address these challenges, en-
compassing not only investigations into enhancing pipeline transport performance but also
comprehensive analyses of backfill pipeline failures. Despite notable research achievements,
unresolved issues and challenges persist in this field [71–73]. These challenges may include
more intricate fluid dynamics phenomena, more precise alignment of pipelines and backfill
materials, and continued exploration of environmentally sustainable backfill technologies.

5. Summary

This paper provides a comprehensive review of key factors affecting the long-distance
pipeline transport performance of paste backfill slurry in deep mining, aiming to improve
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the efficiency and stability of backfill systems. The study explores the influence of slurry
properties, pipeline layout, and additives on transport performance, summarizes the main
challenges and solutions in existing research, and offers suggestions for future studies. The
principal findings are summarized as follows:

(1) Slurry characteristics are critical to pipeline transport performance. Increasing
the feed rate mitigates particle settling and improves concentration distribution. A lower
slurry concentration reduces transport resistance and energy consumption, while optimal
thixotropy and shear conditions further enhance transport efficiency. The addition of fine
particles improves the suspension of coarse particles and reduces frictional resistance.
Maintaining an appropriate flow rate is essential to ensure slurry homogeneity.

(2) Pipeline layout has a significant impact on the transport performance of fill slurry.
As the backfill gradient increases, resistance loss initially rises and later declines. In
scenarios with higher backfill gradients, pumping methods are generally more effective.
The curvature radius of elbows plays a major role in resistance loss, with smaller radii
increasing resistance and larger radii reducing it. Increasing the pipeline diameter lowers
resistance loss by reducing flow velocity. Auxiliary pipelines enhance resistance and
manage pressure through friction loss, depending on the backfill gradient.

(3) Additive usage enhances slurry transport performance. Foaming agents improve
flowability by reducing the slurry’s apparent viscosity and shear stress, which boosts
transport efficiency. High-efficiency water reducers lower yield stress and plastic viscos-
ity, optimizing rheological properties and reducing the need for cementitious materials,
particularly in high-concentration slurries. Thickeners increase resistance to bleeding and
segregation, thus strengthening the mechanical properties of the slurry. Chloride-free
antifreeze agents effectively reduce yield stress and plastic viscosity in low-temperature
environments while avoiding the corrosion issues associated with chloride-based agents.

Future research should focus on optimizing pipeline design to reduce transport resis-
tance and developing more adaptable additives to improve slurry flow and system stability.
These targeted efforts could significantly enhance the performance and sustainability of
pipeline transport systems in backfill mining.
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Abstract: The disposal of tailings has always been a focal point in the mining industry. Semi-dry
tailings stockpiling, specifically high-concentration tailings stockpiling, has emerged as a potential
solution. To enhance the stability of tailings stockpiling and minimize its costs, the incorporation of
a low-cost curing agent into high-concentration tailings is essential. Therefore, this study focuses
on the development of a curing agent for high-concentration unclassified tailings stockpiling. The
composition of a low-cost curing agent system is determined based on theoretical analysis, and
the curing reaction mechanisms of each composition are researched. Subsequently, an orthogonal
experiment is designed, and the strength of the modified unclassified tailings solidified samples at
different curing ages is measured. Furthermore, the rheological properties of the modified unclassified
tailings slurries are tested, and the feasibility of industrial transportation of the unclassified tailings
slurries modified with the optimized curing agent is analyzed. Lastly, the microscopic morphologies
of each material and the modified unclassified tailings solidified samples are characterized, their
chemical compositions are tested, and the action mechanism of the curing agent in the curing system
is further investigated. The results show that the optimal proportions of each material in the curing
agent are as follows: slag, 58%; quicklime, 15%; cement, 8%; gypsum, 9%; and bentonite, 10%. The
dominance of industrial waste slag exceeding 50% reflects the low-cost nature of the curing agent.
Under this condition, the modified unclassified tailings slurry with a mass concentration of 75%
exhibited a yield stress of 43.62 Pa and a viscosity coefficient of 0.67 Pa·s, which is suitable for pipeline
transportation. These findings lay a foundation for subsequent decisions regarding stockpiling
processes and equipment selection.

Keywords: unclassified tailings; stockpiling; curing agent; uniaxial compressive strength; rheological
characteristics

1. Introduction

Tailings are waste materials left over from mineral processing [1]. The disposal of
tailings has always been a focal point in the mining industry [2]. In recent years, incomplete
statistics have indicated that China annually produces over a billion tons of tailings. As min-
eral resources are being extracted from deeper levels and ore grades decrease, the amount of
tailings generated is increasing, making their disposal an increasingly challenging task [3].
Currently, there are three main methods for tailings disposal: wet tailings stockpiling, dry
tailings stockpiling, and semi-dry tailings stockpiling, also known as high-concentration
tailings stockpiling [4]. Wet tailings stockpiling involves storing tailings within a dam that
contains a significant amount of water. While water is a factor in tailings dam disasters,
it also plays a crucial role in exacerbating the risk of dam breaches [5,6], posing a serious
threat to the safety of wet tailings stockpiling and potentially leading to pollution issues in
soil, water bodies, and the atmosphere [7]. Dry tailings stockpiling requires dewatering the
tailings slurry to form tailings cakes before disposal [8,9], but this method has drawbacks,
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such as high costs, a low production capacity, complex procedures, and discontinuous op-
erations. Semi-dry tailings stockpiling involves concentrating low-concentration tailings to
high-concentration levels (65%–75%), and then adding a curing agent to the mixture before
discharging it through pipes for stockpiling [10]. This method overcomes the disadvantages
of both wet and dry tailings stockpiling and holds promising application prospects [11–13].
Currently, in this field of research, the development of low-cost curing agents is a shared
goal among scholars and industry players. Furthermore, utilizing unclassified tailings
for stockpiling can reduce the cost of tailings classification, simplify processes, and lower
overall stockpiling expenses. Therefore, this study focuses on the development of a low-cost
curing agent for high-concentration unclassified tailings from a gold mine.

Research on curing agents in the field of unclassified tailings stockpiling is limited.
A comparative analysis revealed that this study can draw insights from the research on
cementitious materials in the context of mine tailings backfilling. However, there are notable
differences between the two. In the mine tailings backfilling domain, there is a higher
demand for the curing effectiveness of cemented tailings backfill, including requirements
for high strength, rapid solidification, and good integration of the tunnel roof [14–16],
whereas in unclassified tailings stockpiling, the primary focus is on achieving low costs and
appropriate strength. Furthermore, the proportion of curing agent to tailings (referred to
as PCGT) is a crucial factor in cost control. Typically, when a certain level of solidification
strength is achieved, lower PCGTs result in reduced stockpiling costs. This study explores
a low-cost curing agent under the condition of a low PCGT of 1:20.

In the initial stages of mine tailings backfilling, traditional curing agents, such as ordi-
nary Portland cement, were commonly used. However, these agents were associated with
high costs and significant environmental pollution due to the substantial CO2 emissions
generated during cement production [17]. To reduce the cost of mine tailings backfilling,
researchers have been actively seeking inexpensive alternatives to cement. This has led to
the development of new types of cementitious materials, which essentially involve using
alkalis, salts, or composite activators to stimulate potential reactive volcanic ash materials
like slag and fly ash [18,19]. The goal is to transform these materials into water-hardening
substances. These innovative cementitious materials include red mud-based binders [20],
slag-based binders [21], and composite cementitious materials [22], among others. Analysis
reveals that slag, with its relatively low cost, is chosen more extensively among these op-
tions. Slag is considered a high-activity and high-quality industrial waste resource. Its high
reactivity and easy grindability make it an excellent supplementary material, which has
already been widely applied in cement-based construction materials and concrete engineer-
ing. In the context of backfilling materials, slag can effectively delay the heat of hydration,
increase the thickness of the water film around particles, and improve the flowability of
the backfilling material. Moreover, slag possesses inherent hydration characteristics that
can be activated using cement, sodium hydroxide, calcium hydroxide, sodium silicate,
or gypsum [23]. Telesca et al. [24] studied and obtained prefabricated building materials
composed of 40% natural or flue gas desulfurization gypsum, 35% calcium hydroxide,
and 25% fly ash. Yum et al. [25] used Ca(OH)2- and Ba(OH)2- to activate slag systems for
eco-friendly concrete brick production, and limestone fines was studied as a supplementary
material in activated slags. Li et al. [26] researched the possibility of using the residues after
iron recovery from iron ore tailings as raw materials for the preparation of cementitious
material, which was prepared by blending a mixture of 30% residues, 34% blast-furnace
slag, 30% clinker, and 6% gypsum. Yao et al. [27] found that the pozzolanic activity of iron
ore tailings is improved after mechanical activation, and the hydration products of CaO-
activated tailings are C-S-H gels, as well as ettringite crystals in the presence of anhydrite.
Barati et al. [28] investigated the stabilization of iron ore tailings with cement and bentonite.
It was found that the introduction of cement/bentonite to iron ore tailings requires higher
water content for optimum compaction and results in lower dry density. The addition
of bentonite greatly improves the strength of tailings–cement mixtures, especially after
a period of moist curing. Fall et al. [29] studied the feasibility of using bentonite–paste
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tailings as a barrier (liner, cover) material for mine waste containment facilities. Opiso
et al. [30,31] found that tailings are simultaneously stabilized and can be repurposed a
construction material via geopolymerization using coal fly ash, palm oil fuel ash, and a
powder-based alkali activator.

Based on the factors mentioned above, we developed a curing agent to be used in
high-concentration unclassified tailings stockpiling from a gold mine. The composition
of this agent includes materials such as slag, quicklime, cement, gypsum, and bentonite.
By analyzing the optimal proportions of each material, we aimed to create a solidified
system that exhibits strong uniaxial compressive strength when solidified with the tailings.
This is crucial to ensure the stability of tailings stockpiling. In addition, the rheological
properties of the high-concentration unclassified tailings slurry after modification with
the curing agent are vital parameters in the design of the pipeline transport and discharge
processes [32–34]. These properties directly influence the sedimentation characteristics
and slope of the tailings stockpiling surface [35,36], thereby affecting the safe operation
and management of the tailings dam [13]. Therefore, while researching the low-cost
aspects of the curing agent and ensuring it meets the strength requirements, it is also
important to consider the rheological characteristics of the slurry after modification with
the curing agent.

This study is based on the composition of a curing agent using the following research
steps: The curing reaction mechanisms of each material in the curing agent were analyzed
theoretically. Then, an orthogonal experiment was designed, the strength of the modified
unclassified tailings solidified samples (MUTSSs) at different curing ages was measured,
and the variation characteristics of the MUTSSs’ strength and the influence of various mate-
rials at different levels on the strength were analyzed. Next, experiments were conducted to
assess the rheological properties of the slurry, and the optimal proportions of each material
in the curing agent were determined. Concurrently, the microscopic surface morphology
of each material and MUTSSs with the optimal curing agent were characterized using
scanning electron microscopy (SEM). Finally, the chemical compositions of the MUTSSs
with the optimal curing agent were measured using an X-ray diffraction (XRD) test, and
the action mechanism of the curing agent in the curing system was further investigated.

2. Curing Reaction Mechanisms
2.1. Reaction Mechanism of Cement

The primary mineral compositions of cement include tricalcium silicate (chemical
formula 3CaO·SiO2, referred to as C3S), dicalcium silicate (chemical formula 2CaO·SiO2,
referred to as C2S), tricalcium aluminate (chemical formula 3CaO·Al2O3, referred to as
C3A), and tetracalcium aluminoferrite (chemical formula 4CaO·Al2O3·Fe2O3, referred to as
C4AF). The reactions of these four compositions with water are as follows [37,38]:

(1) Hydration of C3S

At normal temperatures, tricalcium silicate reacts with water to form hydrated calcium
silicate gel (C-S-H) and Ca(OH)2.

2(3CaO·SiO2) + 6H2O = 3CaO·2SiO2·3H2O + Ca(OH)2 (1)

(2) Hydration of C2S

The product of dicalcium silicate reacting with water at normal temperatures is the
same as that of tricalcium silicate, but the hydration rate is slower.

2(2CaO·SiO2) + 4H2O = 3CaO·2SiO2·3H2O + Ca(OH)2 (2)

(3) Hydration of C3A
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The product of tricalcium aluminate’s hydration is hydrated calcium aluminate (un-
stable), and the reaction rate is very fast.

3CaO·Al2O3 + 6H2O = 3CaO·Al2O3·6H2O (3)

(4) Hydration of C4AF

The hydration product of tetracalcium aluminoferrite includes hydrated calcium
aluminate and hydrated calcium iron oxide. The reaction rate is slower than that of
tricalcium aluminate.

4CaO·Al2O3·Fe2O3 + 7H2O = 3CaO·Al2O3·6H2O + CaO·Fe2O3·H2O (4)

Tricalcium aluminate and tetracalcium aluminoferrite hydrate early in the hydration
process. Their hydration products combine with gypsum to form ettringite (AFt) or mono-
sulfate hydrate (AFm), which mainly act as binding agents between particles, enhancing the
fluidity of the slurry and contributing to good strength after setting. Tricalcium silicate and
dicalcium silicate generally hydrate in the middle-to-later stages of the hydration process.
Their hydration products mainly consist of calcium hydroxide crystals (C-H) and C-S-H
gel. Calcium silicate gel is a primary source of cement strength and durability, while C-H
provides an alkaline environment for hydration reactions and can continue to react with
active SiO2 to generate additional calcium silicate gel, contributing to increased strength.

2.2. Reaction Mechanism of Quicklime

Quicklime primarily consists of CaO and readily undergoes chemical reactions upon
contact with water. When introduced into the fulling tailings slurry, quicklime reacts with
water to generate Ca(OH)2. Ca(OH)2 combines with the oxides of silicon, aluminum, and
small amounts of aluminum and magnesium present in the tailings and slag, forming
stable hydrated calcium silicates. These hydrated silicates possess higher gel strength
than Ca(OH)2 crystals. As a result, the modified fulling tailings slurry exhibits a denser
structure upon curing. The reaction equations for this entire process are depicted in
Equations (5)–(7) [39,40].

CaO + H2O = Ca(OH)2 (5)

2SiO2 + 3Ca(OH)2 = 3CaO·2SiO2·3H2O (C-S-H) (6)

Al2O3 + 3Ca(OH)2 + 3H2O = 3CaO·Al2O3·6H2O (C-A-H) (7)

2.3. Reaction Mechanism of Slag

The hydration process of slag begins with the volcanic ash reaction between active
SiO2, Al2O3 in the slag, and Ca(OH)2. This reaction follows the patterns outlined in
Equations (6) and (7). Continuous moisture supply in the slurry system contributes to the
formation of an alkaline film on the surface of the slag. Simultaneously, the water-hydrated
products infiltrate through gaps on the surface, causing further corrosion of the slag and the
continuation of volcanic ash reactions until complete hydration of the slag. Additionally,
gypsum present in the curing agent acts as a sulfate activator, the mechanism of which is
described in Section 2.4.

2.4. Mechanism of Gypsum Hydration

The primary chemical composition of gypsum is CaSO4, and its hydration product is
calcium sulfate dihydrate [41].

CaSO4 + 2H2O = CaSO4·2H2O (8)
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Hydrated calcium aluminate (C-A-H), formed by the reaction between active Al2O3 in
the slag and Ca(OH)2, reacts with calcium sulfate dihydrate to produce calcium sulfoalumi-
nate, commonly known as ettringite (AFt) [42].

3CaO·Al2O3·6H2O + 3(CaSO4·2H2O) + 20H2O = 3CaO·Al2O3·3CaSO4·32H2O (9)

The formation of ettringite consumes the main hydration product of hydrated calcium
aluminate from slag, thus accelerating the hydration process. Simultaneously, the newly
generated hydrated calcium sulfoaluminate increases the compactness of the structure itself.
This product contains a high water content, significantly reducing free water, resulting in a
denser structure and higher compressive strength in the solidified samples.

Moreover, the primary chemical reaction between iron phase in the slag and gypsum
is as follows [43,44]:

4CaO·Al2O3·Fe2O3 + 3CaSO4 + 36H2O = 3CaO·[xAl2O3, (1 − x) Fe2O3]·3CaSO4·32H2O +
Ca(OH)2 + 2xFe(OH)3(gel) + (2 − 2x)A1(OH)3(gel)

(10)

If the amount of gypsum is relatively low, ettringite can react with tricalcium aluminate
to convert it into monosulfate hydrate (AFm) [45,46].

3CaO·Al2O3·3CaSO4·32H2O + 2(3CaO·Al2O3) + 4H2O = 3(3CaO·Al2O3·3CaSO4·12H2O) (11)

2.5. Reaction Mechanism of Bentonite

Bentonite’s main composition is montmorillonite, accounting for about 85-90%. Mont-
morillonite crystals primarily consist of layered aluminum silicates with water molecules.
Its structure comprises two layers of silico-oxygen tetrahedra sandwiched between a layer
of aluminum–oxygen octahedra, forming a 2:1 layer structure [47,48]. In the crystal struc-
ture of montmorillonite, Al3+ in the octahedral layer can be substituted by ions like Mg2+

and Fe3+, while Si4+ in the tetrahedral layer is often partially replaced by Al3+. These lattice
substitutions lead to an imbalance of charges between the layers, resulting in a negatively
charged interlayer of montmorillonite. To maintain charge balance, large-radius cations,
such as K+, Na+, and Ca2+, are adsorbed between the structural units of montmorillonite
through electrostatic forces [49].

In the presence of water, the interlayer ions of montmorillonite undergo hydration,
causing the montmorillonite crystals to expand. When water is added to a cementitious
system, the minerals on the montmorillonite surface immediately react with water in a
process known as hydrolysis or hydration. This process gradually forms hexagonal plate-
like hydration products: Ca(OH)2, C-S-H, and AFt. This process involves a significant
ion exchange, such as Ca2+, Al3+, Fe3+, Si4+, H+, etc., further promoting the hydration
reactions in the solidification system. This exchange enhances the structural stability of the
solidification system. Moreover, the expanded bentonite supports the solidification system
after expansion, thereby improving the compressive strength of the system.

In conclusion, in addition to their inherent cementitious activity, the excitation agents
such as cement, quicklime, and gypsum in the curing agent also serve as alkaline excitation
agents for the volcanic ash reactions of slag and tailings. The synergistic effects of multiple
compositions cause the active compositions in slag and tailings to dissolve and react
continuously. On the one hand, the alkaline compositions provide conditions for the
formation of C-S-H and C-A-H, facilitating the disintegration of the slag glass network by
stimulating the release of Ca2+ with lower bond energies in the presence of OH- from the
slag glass body to the solution. The generated Ca(OH)2, along with active Al2O3 and SiO2 in
the slag glass network and tailings, reacts to form C-S-H and C-A-H, promoting the further
disintegration of the slag glass network and the dissolution of tailings. On the other hand,
gypsum reacts with active Al2O3 in slag and tailings to generate AFt or AFm. With the
continuous generation of AFt, an amount of Ca(OH)2 is consumed, leading to its reduced
concentration. Additionally, an amount of Al3+ in the solution is consumed, promoting
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the dissolution of Ca2+ in the slag glass body and providing the driving force for ongoing
chemical reactions. The mutual reinforcement of these two aspects fully stimulates the
potential activity of slag. AFt/AFm and C-S-H are generated during the hydration process
of slag cementitious materials, playing a crucial role in the later-stage strength and stability
of the hardened body. As an additive, bentonite enhances the strength of the solidified
sample through two aspects: the ion exchange among various compositions, strengthening
the interactions between them, and volume expansion, reinforcing the support of the
solidification system.

3. Experimental Materials and Equipment
3.1. Experimental Materials

(1) Unclassified tailings

In this study, the unclassified tailings from a gold mine in Yantai City, Shandong
Province, China, were selected as a case study. The basic physical properties are described
in Table 1, and the size distribution curve of the unclassified tailings particles is displayed
in Figure 1. It can be observed that the cumulative content of particles with a diameter
smaller than 10.0 µm is approximately 24%, and the cumulative content of particles with
a diameter smaller than 20.0 µm exceeds 37%. The main chemical compositions in the
unclassified tailings are shown in Figure 2. As shown, the content of SiO2 is 58.3%, which
is the main component, indicating that the tailings have good inertness and are suitable for
stockpiling. The contents of Al2O3, K2O, and CaO are 13.35%, 5.36%, and 3.1%, respectively,
which can promote the solidification of the slurry and improve the later strength of the
solidified modified tailings. The content of S is 1.12%, which is relatively low and can
enhance the strength of solidified modified tailings to a certain extent [50].

(2) Slag

S95-grade slag was selected, with a content of inorganic substances, like reactive
calcium, silicon, and aluminum exceeding 30%, and a fineness of 325 mesh.

(3) Quicklime

Quicklime powder was chosen, with a CaO content of 86.3%, and a fineness of
325 mesh.

(4) Cement

Composite silicate cement 42.5 was selected, with the following parameters: a clinker
+ gypsum ratio greater than 50% and less than 80%, a physical and chemical blast furnace +
volcanic ash + fly ash + limestone content ratio greater than 20% and less than 80%.

(5) Gypsum

The content of CaSO4·2H2O was 95%, with a fineness of 150 mesh.

(6) Bentonite

Ca-bentonite was selected, with a montmorillonite content of 85% and a fineness of
200 mesh.

Table 1. Basic physical properties of tailings.

Specific Gravity Bulk Density (t/m) Porosity (%) Angle of Repose (◦)

2.863 1.694 36.134 40.538
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3.2. Experimental Equipment

(1) Load Testing Machine

An American Humboldt HM-5030 load testing machine (Humboldt Mfg. Co., Elgin,
IL, USA, Figure 3a) was used. Its main technical specifications include a maximum test force
of 50 kN, a maximum travel of 100 mm, and a loading rate range from 0.00001 mm/min to
89.99999 mm/min.

(2) Rheometer

An American Brookfield RST-SST Rheometer (AMETEK Brookfield, Middleboro, MA,
USA, Figure 3b) was operated, with a wide torque range of 0.05–50 mNm and a variable
speed range of 0.01–1000 rpm.

(3) SEM

A German Zeiss SIGMA SEM (Zeiss, Oberkochen, Germany, Figure 3c) was used, with
a secondary electron image resolution of up to 1.3 nm (20 kV) and a magnification range of
20× to 1,000,000×.

(4) XRD

A Japanese X-ray diffractometer (Figure 3d), model Smartlab 9Kw (Rigaku Corpo-
ration, Tokyo, Japan), was employed. The X-ray tube focal spot size was ≤0.3 × 8 mm2;
an all-purpose matrix detector: effective detector area ≥300 mm2; goniometer: radius
≥300 mm; rotation range: −10◦ to 168◦.
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4. Compressive Strength Testing Experiment Scheme
4.1. Orthogonal Experimental Design

During the experiment, the concentrations of the unclassified tailings slurry were set
at 69%, 71%, 73%, and 75%. This study aimed to establish a solidification and stockpiling
system for unclassified tailings with a relatively low PCGT. Therefore, this study focuses
on the solidification effect under a PCGT of 1:20. As slag is the main composition of the
curing agent and has a relatively low unit price, it is necessary to increase the proportion of
slag in the curing agent to control costs, with the goal of keeping it above 50%. Therefore,
when designing the proportions of the various compositions of the curing agent, this
aspect should be taken into account. In addition, according to theoretical analysis, the
reaction of the solidification system is faster and more complete in alkaline environments,
so the proportion of quicklime should be higher. The ranges and equal divisions of the
proportions of each material in the curing agent designed are shown in Table 2 [51].

Table 2. Ranges and equal divisions of proportions of each material.

Upper
Limit/%

Lower
Limit/%

Equal
Division/%

B (Quicklime) 30 15 5
C (Cement) 16 4 4
D (Gypsum) 12 3 3

E (Bentonite) * 10 1 3
* The remaining composition is A (slag).

Based on this, an orthogonal experiment was designed to analyze the influence of
different materials on the compressive strength of the unclassified tailings solidified sam-
ples. The orthogonal experiment was designed with 5 factors and 4 levels; namely, L16(45),
requiring at least 16 experimental trials. The orthogonal experimental design is shown
in Table 3. The laboratory sample preparation presented in Table 3 was carried out for
the experiments.

Table 3. Orthogonal experimental design table.

No. O (Unclassified Tailings Slurry
Concentration) * B (Quicklime) C (Cement) D

(Gypsum)
E

(Bentonite) A (Slag)

1 69% 30% 16% 12% 10% 32%
2 69% 25% 12% 9% 7% 47%
3 69% 20% 8% 6% 4% 62%
4 69% 15% 4% 3% 1% 77%
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Table 3. Cont.

No. O (Unclassified Tailings Slurry
Concentration) * B (Quicklime) C (Cement) D (Gypsum) E (Bentonite) A (Slag)

5 71% 30% 12% 6% 1% 51%
6 71% 25% 16% 3% 4% 52%
7 71% 20% 4% 12% 7% 57%
8 71% 15% 8% 9% 10% 58%

9 73% 30% 8% 3% 7% 52%
10 73% 25% 4% 6% 10% 55%
11 73% 20% 16% 9% 1% 54%
12 73% 15% 12% 12% 4% 57%

13 75% 30% 4% 9% 4% 53%
14 75% 25% 8% 12% 1% 54%
15 75% 20% 12% 3% 10% 55%
16 75% 15% 16% 6% 7% 56%

* Slurry concentration = (curing agent + tailing)/(curing agent + tailing + water).

4.2. Sample Preparation

According to the number of samples and the total mass required for the experiment,
combined with the information in Table 3, the mass of each material was calculated. We
used the JS30-1 electronic balance (with a range of 3 kg and accuracy of 0.1 g), Shanghai
Puchun Measure Instrument Co., Ltd., Shanghai, China, to measure the corresponding
masses of each material. We mixed the materials in a UJZ-15 planetary mixer for 3 min
(rotation speed of 120 r/min) and then poured the mixed slurry into the three-part mold
(each part size was 7.07 cm × 7.07 cm × 7.07 cm). After a certain period, the samples were
demolded and placed in a standard curing chamber. The temperature was set at 20 ± 5 ◦C
and the relative humidity was above 95%. The samples were left to cure for 7 d, 14 d, and
28 d (including the time before demolding), and then their compressive strength was tested.
The process is illustrated in Figure 4. In this study, we produced 192 samples.
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Figure 4. Schematic diagram of sample preparation process.

4.3. Compression Strength Testing

The loading rate for the test was set at 3 mm/min. The experiment was stopped
when the sample was fractured and the compression displacement of the sample exceeded
18 mm. The uniaxial compression strength of the unclassified tailings solidified sample
was calculated using Equation (12):

Rn =
F
S

(12)
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where Rn is the compression strength of the sample after n days of curing, in MPa. F is
the maximum load, in N. S is the cross-sectional area of the sample perpendicular to the
loading direction, in m2.

When calculating the average compression strength for each group of samples, the
arithmetic mean was calculated using Equation (13):

Rn =
k

∑
i=1

Rni
k

(13)

where Rn is the average compression strength after n days of curing, in MPa. Rni is the
experimental value of the compression strength for the i-th sample after n days of curing,
in MPa. k is the number of samples in the group.

4.4. Rheological Characteristics Testing Experiment Plan

Based on the results of the uniaxial compression tests and the determined proportions
of each material in the curing agent, the rheological parameters of the slurries with curing
agents were tested to analyze the flow properties of each slurry and determine the optimal
proportions of each material in the curing agent. During the experiment, the corresponding
weights of the unclassified tailings, curing agent, and water were weighed. The modified
unclassified tailings slurries were prepared following the procedure outlined in Section 4.2.
Once the slurry was uniformly mixed, it was poured into a 500 mL beaker until the liquid
level reached the 500 mL mark. The beaker was then placed on the rheometer sample stage
and securely fixed. The height of the rotor was adjusted, and the test was initiated. As
temperature can influence the viscosity coefficient of the slurry, the experiment maintained
a controlled temperature of 20 ± 2 ◦C.

5. Results
5.1. Compression Strength Test Results

The average uniaxial compression strength values of the samples after curing periods
of 7 d, 14 d, and 28 d are summarized in Figure 5. As can be seen, at the ages of 7 d, 14 d,
and 28 d, the strength of samples from No. 1 to No. 16 shows a trend of fluctuation and
increase. The strength values of the same samples after 7 d are less than those after 14 d,
which are, in turn, less than those after 28 d. This indicates that, within 28 d, the greater the
age, the more complete the reaction of the solidified material, the better the cementation
effect, and the stronger the sample strength [26]. It was also found that the greater the
age, the greater the range of the sample’s strength and the more obvious the difference,
reflecting the different reaction degrees of the same compositions in different periods.
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In order to intuitively show the influence of various factors at different levels on the
compressive strength, the average uniaxial compressive strength values of the samples for
each factor at each level were plotted, as shown in Figure 6, where k represents the average
uniaxial compressive strength for each factor at each level. It can be seen that, with the
changes at each level of factors O and B, the strength of the samples at 7 d, 14 d, and 28 d
gradually increased, and the influence was obvious. The influence of each level of factors
C, D, and E on the strength was inconsistent and not obvious.
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Table 4 shows the range analysis results of the orthogonal experiments, which were
found according to the data in Table 3 and Figure 5 It can be observed that the influence of
various factors on the compressive strength of the samples at 7 d and 14 d follows the order
of O > B > E > D > C, and the influence of various factors on the compressive strength of
samples at 28 d follows the order of O > B > D > C > E, indicating that the compressive
strength was primarily affected by the slurry concentration and the proportion of quicklime.
Based on the test results, the optimal combination proportions of the materials in the curing
agent at different curing ages are shown in Table 5.

Table 4. Results of range analysis of orthogonal experiments.

Curing Age O B C D E

Range R
7 d 0.117 0.059 0.017 0.019 0.023
14 d 0.123 0.075 0.019 0.020 0.023
28 d 0.183 0.103 0.032 0.039 0.021

Main-Sub Sequence
7 d O > B > E > D > C
14 d O > B > E > D > C
28 d O > B > D > C > E

Optimal Level
7 d O4 B4 C1 D1 E4
14 d O4 B4 C3 D2 E1
28 d O4 B4 C4 D2 E1

Table 5. Optimal mass proportions of various materials at different curing ages.

Curing Age Slurry Mass Concentration
Mass Proportion

Slag Quicklime Cement Gypsum Bentonite

7d 75% 56% 15% 16% 12% 1%
14d 75% 58% 15% 8% 9% 10%
28d 75% 62% 15% 4% 9% 10%
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5.2. Rheological Characteristics Test Results

The rheological parameters of the modified tailings slurries were tested based on
the three curing agent proportions above. In this study, the curing agent proportions
corresponding to the best flowability were identified as the optimal proportions. The
rheological characteristics of the three modified tailings slurries are illustrated in Figure 7.
As shown, the regression curves of the flow curves for the modified tailings slurries I
(7 d), II (14 d), and III (28 d) were represented by blue, green, and orange dashed lines,
respectively. The regression equations for the flow curves of the modified tailings slurries
I (7 d), II (14 d), and III (28 d) were, respectively, τI = 26.07 + 0.89γ, τII = 43.62 + 0.67γ,
and τIII = 30.59 + 0.71γ, and all R2 values were greater than 0.90, indicating that all three
modified tailings slurries adhered to the Bingham fluid model. The yield stresses of the
slurries were 26.07 Pa, 43.62 Pa, and 30.59 Pa, and the viscosity coefficients of the slurries
were 0.89 Pa·s, 0.67 Pa·s, and 0.71 Pa·s, respectively.
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Grabinsky et al. believed that the yield stress of high-concentration tailings is generally
greater than 20 Pa but less than 100 Pa, and high-concentration tailings can be efficiently
transported using centrifugal pumps [52]. Despite being high-concentration tailings, they
still retain some paste-like characteristics. Their rheological behavior falls within the non-
Newtonian realm, yet their yield stress is noticeably lower than that of conventional pastes.
This property results in lower pipeline transportation resistance and reduced self-flowing
gradients. The outcome in this study is consistent with the findings of Grabinsky et al. The
yield stress indicates the threshold at which flow starts in response to shear stress exceeding
the yield stress. This is typical of Bingham fluids, which only begin to flow when the
applied shear stress surpasses the yield stress. The viscosity coefficient represents internal
resistance to flow, and the smaller the value, the better the slurry flow [53]. Therefore, the
optimal condition occurs when the yield stress is 43.62 Pa and the viscosity coefficient is
0.67 Pa·s. This corresponds to a tailings slurry concentration of 75%, with the curing agent
consisting of slag (58%), quicklime (15%), cement (8%), gypsum (9%), and bentonite (10%).

Gao et al. researched the fluid characteristics of the cemented backfill pipeline trans-
portation of mineral processing tailings [54]. It was concluded that the viscosity coefficient
of the slurry concentration reached 24.42607 Pa·s at 80% and 3.73863 Pa·s at 78%. When the
concentration was 76%, the viscosity coefficient decreased to 1.21629 Pa·s, and at 74% and
72%, it decreased to 0.58072 Pa·s and 0.31388 Pa·s, respectively. If the viscosity coefficient is
too large, it results in excessive resistance during the transportation of slurry when only
a high-pressure piston pump is feasible. Thus, the yield stress of 43.62 Pa and the viscos-
ity coefficient of 0.67 Pa·s obtained in this study renders the slurry suitable for pipeline
transportation [34,36], laying a foundation for subsequent decisions regarding stockpiling
processes and equipment selection.
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5.3. SEM Experimental Results

As shown in Figure 8a, slag particles primarily exhibit cubic, blocky, and irregular
shapes, with distinct edges and a dense texture. The particle sizes range from approximately
1 to 10 µm. Nanoscale particles are attached to the surface of larger particles, which appear
relatively smooth. Figure 8b reveals that the particles of quicklime are mainly clustered,
forming uniform-sized crystal branches. The size of each branch is smaller than 1 µm, and
they aggregate to form structures ranging from 1 to 10 µm, characterized by a rough surface
with occasional protrusions. The aggregated structures formed by the branches appear
loose and porous. Figure 8c illustrates that cement particles exist in various forms, including
blocks, rods, spheres, cubes, and irregular shapes, displaying substantial shape variation.
Nanoscale particles are attached to the surfaces of larger particles (size > 2 µm), leading to
rough surfaces on the larger particles. Rod-like particles have dimensions of approximately
2 µm × 10 µm, and their surface roughness lies between that of the larger and spherical
particles. In Figure 8d, gypsum is primarily present in flocculent, small-particle, large-block,
and irregular forms. Flocculent small particles exhibit multiple protrusions and a rough
surface. Figure 8e shows that most bentonite particles exhibit circular, elliptical, or similar
circular shapes, with rough surfaces and sizes ranging from a few micrometers to tens of
micrometers. Figure 8f demonstrates the varied sizes of the unclassified tailings particles,
with the largest particle in the image measuring about 200 µm × 300 µm. The majority
of particles have sizes below a few micrometers, some even in the nanometer range. In
addition, most of the tailings appear as flakes, and it can be seen that the surface of the
tailings is rough.
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Figure 9 illustrates the cross-sectional morphology of the modified tailings solidified
samples with the optimal curing agent. It can be observed that after the reaction, the various
materials were fused together as a whole, and the sharp edges of the material particles
disappeared. Additionally, the disappearance of the quicklime morphology indicates that
the quicklime underwent a full reaction. The surfaces of some tailings particles were
involved in the hydration reaction, and the rest is wrapped by the hydration products.
The tailings particles that were not fully reacted, as shown by the brown arrow, acted as
a skeleton, and supported the strength of the solidified samples. The hydration products
were mainly AFt (prismatic ettringite) and C-S-H [51,55]. The appearance of a flocculent gel
system can be observed; some gel systems exhibited clear spatial structures, as indicated
by the red dashed line. The green arrows indicate the pore structure. These characteristics
enhanced the strength of the solidified sample. Comprehensive analysis revealed that
effective reactions occurred between the curing agent and the unclassified tailings, resulting
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in gel systems and spatial structures, thereby enhancing the overall strength of the solidified
system and achieving effective solidification of the unclassified tailings.
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6. Discussion

Further experimentation revealed that the average uniaxial compression strength
values of the modified unclassified tailings solidified samples with the optimal curing
agent were 0.20 MPa, 0.25 MPa, and 0.34 MPa at 7 d, 14 d, and 28 d, respectively. We
conducted XRD tests on these MUTSSs at different curing ages to further analyze the
chemical reaction mechanism of each material in the curing agent. Figure 10 shows the
XRD patterns of the MUTSSs at 7 d, 14 d, and 28 d. The diffraction peaks corresponding
to C-S-H, AFt, Ca (OH)2, CaCO3, and SiO2 can be seen in the figure [51,55]. Figure 11
illustrates the qualitative relationships among the main hydration products. As shown,
with the extension of the hydration time, the contents of AFt and Ca (OH)2 decreased,
while the content of C-S-H increased. This phenomenon is consistent with the conclusions
reported by Jha et al. [56], Telesca et al. [24], Yum et al. [25], and Li et al. [26].

When the curing time was 7 days, the AFt content was the highest, followed by C-S-H
and Ca(OH)2. At the initial stage of hydration, more AFt crystals formed, and C-S-H
gel grew on the cement particles. Due to the growth of C-S-H and the formation of AFt
crystals, strong and weak contact points were generated. At the same time, the hydration
product particles connected to form a network, giving the solidified samples early strength.
As the number of contact points increased, the size of the network structure increased,
and consequently, the strength of the solidified samples increased. The combination of
the hydration products, tailings, and unhydrated clinker is the reason for the observed
early macroscopic strength. After 28 d of curing, the content of C-S-H was the highest,
followed by AFt and Ca(OH)2. At this time, the strength of the solidified samples was the
highest. This observation can be explained as follows: After 28d of hydration, a significant
amount of C-S-H was generated, enhancing the long-term strength and durability of the
solidified samples. Due to the abundant presence of C-S-H and the complete formation
of AFt and Ca(OH)2 crystals, hydration products filled the space previously occupied
by water. The spatial distribution of the hydration products was uniform and gradually
interwoven, ultimately forming a dense multi-layered network structure, which increased
the overall compressive strength. The above phenomena and analysis are consistent with
the research presented in Section 2, and are a supplement to the theoretical analysis in
Section 2, reflecting the phased nature of the curing reaction process.
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7. Conclusions

In this research, we conducted a theoretical analysis of chemical reactions; designed a
laboratory orthogonal experiment; carried out compressive strength testing, rheological
properties testing, SEM experiments, XRD experiments, etc.; and obtained low-cost curing
agents suitable for high-concentration tailings stockpiling. The main conclusions are
as follows:

(1) The curing agent system for tailings consolidation and stockpiling composed of
slag, quicklime, cement, gypsum, and bentonite is feasible. The reaction mechanism
involves synergistic interactions among these compositions, promoting the dissolution
of active compositions in slag and tailings. In addition to their inherent cementitious
activity, the excitation agents such as cement, quicklime, and gypsum in the curing
agent also serve as alkaline excitation agents for the volcanic ash reactions of slag and
tailings. The formation of calcium hydroxide and various C-S-H/C-A-H enhances the
disintegration of the slag glass network. The presence of gypsum aids in the formation
of AFt or AFm through reactions with active compositions. Bentonite contributes to
ion exchange and volumetric expansion, reinforcing the solidifying system;

(2) The optimal proportions of each material in the curing agent are as follows: slag,
58%; quicklime, 15%; cement, 8%; gypsum, 9%; and bentonite, 10%. The proportion
of industrial waste steel slag reached 58%, which reflects the low-cost nature of the
curing agent. Under this condition, the modified unclassified tailings slurry exhibited
a yield stress of 43.62 Pa and a viscosity coefficient of 0.67 Pa·s at a slurry concentration
of 75%, and the average uniaxial compression strength values of the MUTSSs were
0.20 MPa, 0.25 MPa, and 0.34 MPa at 7 d, 14 d, and 28 d, respectively;
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(3) The hydration products of the curing agent are mainly AFt, C-S-H and Ca (OH)2.
With the extension of the hydration time, the contents of AFt and Ca (OH)2 decreased,
while the content of C-S-H increased, forming a gel system and spatial structures.
The tailings particles that did not fully react acted as a skeleton and supported the
strength of the solidified samples. These two aspects worked together to improve the
overall strength of the solidified sample and achieved effective solidification of the
unclassified tailings.
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