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Preface

This reprint brings together a collection of groundbreaking research articles that delve into the

latest advancements in mobile robotics, focusing on trajectory analysis, positioning, and control.

The contributions featured in this Special Issue showcase innovative solutions developed by leading

experts from around the globe, pushing the boundaries of what is achievable in the field. From

advancing SLAM technologies and deep reinforcement learning for autonomous navigation to

integrating augmented and virtual reality for intuitive robot teleoperation, these studies provide a

comprehensive view of how cutting-edge technologies are reshaping the role of mobile robots. By

addressing challenges in diverse environments and applications, this collection envisions a future

where mobile robotics enhances human capabilities with precision, efficiency, and inclusivity.

Juan Ernesto Solanes Galbis and Luis Gracia

Guest Editors
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Editorial

Mobile Robots: Trajectory Analysis, Positioning and Control

Juan Ernesto Solanes * and Luis Gracia

Instituto de Diseño y Fabricación, Universitat Politècnica de València, 46022 València, Spain
* Correspondence: esolanes@idf.upv.es

1. Introduction

The rapid evolution of mobile robotics over the last decade has reshaped the landscape
of technology and its applications in society [1–3]. From autonomous vehicles revolutioniz-
ing urban mobility to drones transforming delivery systems and robots performing tasks
in extreme or hazardous environments, mobile robotics have transcended experimental
boundaries to become a tangible part of our daily lives [4–7]. These advancements are
driven by an interplay of disciplines, including artificial intelligence (AI), robotics, com-
puter vision, and control theory, which continue to push the limits of what mobile robots
can achieve in terms of autonomy, efficiency, and adaptability [8–10].

One of the most significant challenges in mobile robotics lies in trajectory analysis,
positioning, and control. Accurate trajectory planning and execution are critical for robots
to navigate dynamic environments, avoid obstacles, and operate effectively alongside
humans. Simultaneous Localization and Mapping (SLAM) technologies [11,12], coupled
with robust navigation algorithms [13,14], have advanced significantly, enabling robots
to construct detailed maps of their surroundings while localizing themselves in real time.
These developments are essential for the deployment of mobile robots in unstructured and
unpredictable environments, such as urban settings or disaster-stricken areas [15].

Control systems also play a pivotal role in ensuring the reliability and stability of
mobile robots. Advances in control theory have enabled the creation of sophisticated
models that adapt to uncertainties and dynamic conditions. Techniques such as model
predictive control (MPC), adaptive control, and reinforcement learning-based controllers
are empowering robots with the capability to make intelligent decisions in complex scenar-
ios [9,16–21]. These innovations ensure precision in tasks ranging from trajectory tracking
to collaborative operations with other robots or humans.

Another layer of complexity arises from the increasing presence of mobile robots in
human-centric environments. This integration introduces the challenge of human–robot
interaction (HRI), which requires robots to not only perform tasks autonomously but also
communicate, cooperate, and adapt to human behavior [22–25]. Designing intuitive and
safe HRI systems is a critical research area, especially as robots become more involved in
healthcare, logistics, and personal assistance. Tools such as natural language processing,
gesture recognition, and emotion detection are being integrated into robotic systems to
make interactions more seamless and user-friendly [26–28].

Emerging technologies such as augmented reality (AR) and virtual reality (VR) are
opening up new frontiers in the field of mobile robotics [29–31]. These tools provide en-
hanced visualization and interaction capabilities, enabling humans to better understand
and control robotic systems. AR and VR also offer new possibilities for training robots, sim-
ulating complex environments, and improving remote operations, particularly in scenarios
where direct human presence is challenging or impossible.

Appl. Sci. 2025, 15, 355 https://doi.org/10.3390/app15010355
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The integration of these advancements in mobile robotics highlights the interdis-
ciplinary nature of this field. It requires collaboration between AI researchers, control
engineers, computer scientists, and human–machine interaction specialists to address the
multifaceted challenges and opportunities it presents [10]. This Special Issue brings together
cutting-edge research and methodologies from these domains, providing a comprehensive
overview of current trends and fostering innovation in this vibrant area.

2. The Present Issue

This Special Issue received a total of 17 submissions, each of which was meticulously
assessed by at least one Guest Editor to ensure alignment with the core themes of mobile
robotics. Submissions that matched the scope were subjected to a comprehensive review
process, which included evaluation by at least two external reviewers, while those outside
the thematic focus were declined. Following this rigorous peer review process, 10 articles
and 1 review were ultimately selected for publication. A detailed summary of the key
findings and contributions of each article is provided in the following.

The authors of Contribution 1 introduce an orthogonal wheel odometer system de-
signed for the precise positioning of mobile robots on floating surfaces such as ship decks.
This innovative system utilizes four orthogonal wheels equipped with encoders to achieve
centimeter-level accuracy in determining position and orientation in a relative coordinate
system, overcoming the limitations of traditional gyroscope-based methods.

Their experimental results demonstrate the system’s effectiveness in mitigating errors
caused by the irregular movements of floating surfaces. Their system consistently delivered
accurate results across various motion scenarios, including linear, curved, and rotational
movements. Notably, in tests conducted on a simulated floating platform, the maximum
recorded error was 2.43 cm, with a root mean square error (RMSE) of 1.51 cm. These
findings underscore the system’s potential for applications in challenging environments
where conventional positioning systems struggle.

The authors of Contribution 2 propose a systematic method for evaluating and correct-
ing odometry errors in a human-sized, three-wheeled omnidirectional mobile robot. Using
a novel flower-shaped calibration trajectory consisting of 36 individual paths, the study
iteratively adjusts the robot’s kinematic parameters to minimize discrepancies between
odometry data and ground truth trajectories obtained via a 2D LIDAR sensor.

The experimental results demonstrate significant improvements in the robot’s po-
sitional accuracy, with an average reduction of 82.14% in the error of final position and
orientation after calibration. This approach highlights the effectiveness of using both
straight and curved trajectories for comprehensive calibration, offering a robust solution for
improving odometry in omnidirectional robots designed for diverse indoor applications.

The authors of Contribution 3 present a virtual reality (VR)-based interface designed
to enhance the teleoperation of mobile robots in unknown environments. The interface
aims to provide an intuitive and immersive user experience, enabling seamless interaction
between the operator and the robot. Unlike traditional approaches, this system focuses on
simplifying the control process by including essential virtual elements, such as a real-time
3D map of the environment, the robot’s position, and any detected obstacles, rather than
prioritizing hyper-realistic visuals.

The VR interface leverages a potential field-based navigation method to assist the user
in guiding the robot while automatically avoiding obstacles. Using a Turtlebot3 Burger
robot (which is manufactured by the ROBOTIS company, located in Seoul, Korea) equipped
with a LiDAR sensor, the system demonstrated its ability to ensure collision-free navigation
in both simulated and real-world scenarios. The researchers also incorporated a gamepad
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for interaction, prioritizing user ergonomics and long-term usability over conventional
VR controllers.

User studies involving participants of various ages and backgrounds highlighted the
system’s usability and effectiveness. Feedback showed high levels of immersion and user
satisfaction, with participants finding the interface easy to learn and operate. The authors
conclude that the VR-based interface successfully combines the adaptability of human
guidance with the precision of automated navigation, making it suitable for tasks such as
search and rescue or industrial inspection.

The authors of Contribution 4 describe the implementation of an autonomous mobile
robot (AMR), specifically the MiR100, within the SmartFactory production line environment.
The study focuses on integrating the AMR for tasks such as transporting and presenting
products produced on the line. Key objectives included establishing effective communica-
tion between the robot and the production line, ensuring precise navigation in confined
spaces, and testing various positioning markers for optimal accuracy.

The results highlighted the system’s ability to achieve a high degree of accuracy, with
the L-marker proving to be the most reliable for repeated precise positioning and yielding
an error margin of ±3 mm. This precision was crucial for enabling seamless interaction with
robotic arms during product transfers. The study demonstrates the potential of AMRs in
enhancing automation in manufacturing processes, offering insights into the challenges of
integrating navigation and communication systems in constrained industrial environments.

The authors of Contribution 5 tackle the challenge of autonomous exploration for mo-
bile robots in unknown environments using a deep reinforcement learning (DRL) approach.
Specifically, they employ the Deep Deterministic Policy Gradient (DDPG) algorithm to
guide a robot equipped with a laser sensor as it navigates and maps indoor spaces. Their
custom-designed environment models the mapping process with real-time visualization,
allowing the DDPG agent to make decisions based on laser sensor input, producing linear
and angular velocities as outputs.

The study demonstrates the effectiveness of occupancy reward-driven exploration,
where the reward function incentivizes the robot to prioritize unexplored areas while
penalizing actions leading to collisions or inefficiencies. The results show that the DDPG
algorithm successfully optimizes the robot’s motion, enabling efficient mapping with
fewer collisions and smoother trajectories compared to alternative strategies. This work
underscores the potential of DRL in addressing complex navigation and mapping tasks
in robotics.

The authors of Contribution 6 perform a comparative study of linear and nonlinear
control methods for the feedback trajectory control of an X3D quadrotor. Their research
focuses on evaluating four different control strategies: two linear methods (Proportional-
Integral-Derivative (PID) and Linear Quadratic Regulator (LQR)) and two nonlinear meth-
ods (Fuzzy Logic Controller and Model Reference Adaptive PID Controller based on the
MIT Rule). Their study aims to assess the transient performance of these controllers in
terms of rise, settling, and peak times and overshoot.

Using a Simulink model of the X3D quadrotor, the authors found that the LQR con-
troller outperformed the other methods, offering robust stability and minimal overshoot.
While the PID controller showed simplicity in implementation, it lacked robustness against
disturbances. Nonlinear controllers, such as the Fuzzy Logic and Adaptive PID Controller,
demonstrated better handling of system nonlinearities but required complex parame-
ter tuning. These findings provide a comprehensive analysis of control strategies for
quadrotors, emphasizing the balance between performance and complexity for different
application scenarios.
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The authors of Contribution 7 propose an advanced real-time stereo visual odome-
try (SVO) system using an improved Kanade–Lucas–Tomasi (KLT) method. Their work
addresses the computational challenges inherent in traditional SVO approaches by intro-
ducing novel techniques, including feature inheritance, an adaptive KLT tracker, and a
simplified KLT matcher. These innovations minimize the time-consuming processes of
feature detection and stereo matching while maintaining localization accuracy.

The adaptive KLT tracker optimizes tracking by dynamically adjusting the feature win-
dow size based on average disparity, translation velocity, and yaw angle, thereby mitigating
scale distortion and affine transformations. Furthermore, a veer chain matching scheme
effectively corrects drift errors during turning maneuvers. Experimental evaluations on the
KITTI odometry dataset demonstrate that this method achieves a balance between high
computational efficiency and localization accuracy, with a real-time processing capability
of 15 Hz on a single-thread CPU. The results underscore the potential of this approach in
advancing robust and efficient visual odometry systems for mobile platforms.

The authors of Contribution 8 present an advanced visual SLAM system that addresses
the challenges of weak textures and complex geometries that are often encountered in
industrial environments. The authors introduce a novel point–line-aware heterogeneous
graph attention network (HAGNN) to improve the robustness and accuracy of feature
extraction and matching. Their system integrates a point–line geometric feature extraction
network (PL-Net) with an attention mechanism that aggregates the contextual features of
points and lines for enhanced SLAM performance.

To optimize feature matching, the study transforms the matching process into an
optimal transport problem, solved using a Greedy Inexact Proximal Point Method (GIPOT).
This approach reduces computational complexity while achieving optimal feature assign-
ments. Experiments conducted on the KITTI dataset and a custom industrial dataset
demonstrated significant improvements in pose estimation accuracy and robustness com-
pared to state-of-the-art SLAM algorithms like ORB-SLAM2. Additionally, the system’s
performance was validated in real-world scenarios, such as a virtual simulation of oil and
gas station inspections, where it achieved high consistency with ground truth trajectories.

The authors conclude that the integration of point–line features with advanced atten-
tion mechanisms significantly enhances SLAM system reliability in challenging environ-
ments. They also highlight the potential for future improvements, such as by incorporating
semantic information to handle dynamic objects.

The authors of Contribution 9 propose a novel spatial location representation method
for mobile robots inspired by mammalian spatial cognition mechanisms. This approach
addresses the challenges of low localization accuracy and large cumulative errors in long-
term navigation within unknown environments. The authors introduce a system that
integrates boundary, grid, and place cells, modeled after the navigation cells in mammalian
brains, to improve environmental perception and localization accuracy.

The method incorporates boundary information by modeling the firing characteristics
of boundary cells based on direction- and distance-aware data relative to environmental
boundaries. These boundary cell responses are input into a Location-Adaptive Hierarchical
Network (LAHN), which generates grid cells and updates their distribution to better align
with environmental boundaries. The system also utilizes competitive Hebbian learning to
produce place cells, ensuring precise location representation.

The experimental results demonstrate that the proposed method effectively reduces
localization errors by correcting cumulative drift through boundary cell activation. The
spatial representation maps generated show high accuracy in dynamic and complex envi-
ronments, highlighting the method’s potential for enhancing mobile robot navigation and
environmental cognition.
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The authors of Contribution 10 address the challenge of dual-user operation in remote
robot systems equipped with force feedback, where two users collaboratively control a
single robot to perform tasks such as object transportation. Their work focuses on clarifying
the mechanisms by which a user with lower network delay can assist another user with
higher delay, as well as proposing enhanced robot position control to improve efficiency
and reduce the force exerted on objects during operation.

The authors conducted experiments to analyze the effects of network delays on collab-
orative operations, finding that the average and maximum force applied to objects increases
as delays grow. However, they also observed that when the total network delay between
the two users remains constant, the applied force remains nearly identical, regardless of
individual delay distributions. This highlights the supportive role of the user with the
lower delay in mitigating the challenges faced by the user with the higher delay.

To address these issues, they proposed an enhanced robot position control method that
adjusts the contribution ratio of each user’s input based on their respective network delays.
The experimental results demonstrated that this approach effectively reduced the applied
force compared to conventional methods, particularly in scenarios with high network delay
disparities. The findings emphasize the importance of incorporating adaptive delay-based
control strategies to improve operability and accuracy in dual-user remote robot systems,
making the proposed method applicable in scenarios such as remote medical surgery and
deep-sea exploration.

The authors of Contribution 11 provide a comprehensive review of foot–terrain in-
teraction mechanics for heavy-duty legged robots, which are critical for navigating and
performing tasks in complex and harsh environments. The authors focus on analyzing
the mechanical behavior of foot–terrain interactions to address challenges such as the
instability caused by dynamic interactions with uneven terrains. They examine various
foot-supporting structures, including cylindrical, semi-cylindrical, and spherical configura-
tions, and evaluate their impact on the robots’ mobility and stability.

The review also discusses the development of mechanical models for foot–terrain
interactions, including pressure-sinkage and tangential force models, which are essen-
tial for predicting and optimizing robot performance on soft or slippery surfaces. The
authors highlight key technologies, such as biomimetic foot designs inspired by natural sys-
tems, and the integration of multimodal information fusion to enhance terrain recognition
and adaptability.

The study identifies unresolved issues, such as improving foot design for diverse
terrains and refining control strategies to reduce sinkage and slipping. The authors conclude
by emphasizing the importance of advancing foot–terrain interaction research to enhance
the mobility and functionality of heavy-duty legged robots in applications ranging from
planetary exploration to industrial operations.

3. Further Directions

Rapid advances in mobile robotics, while groundbreaking, highlight the need for con-
tinued exploration in several pivotal areas. As the field progresses, researchers are tasked
with addressing unresolved challenges, pushing the boundaries of robotic capabilities,
and ensuring seamless integration into complex environments that demand adaptability,
intelligence, and safety.

One of the most critical areas for future development is enhanced autonomy and
learning. Although our current robotic systems exhibit impressive capabilities, many still
depend on predefined models or significant human intervention for decision-making. To
address this, research must focus on advanced machine learning techniques, including
reinforcement learning and unsupervised approaches, which enable robots to dynamically
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adapt to novel and unpredictable scenarios. Furthermore, the implementation of lifelong
learning paradigms, in which robots continuously refine and expand their knowledge base
without the need to retrain from scratch, could significantly improve their ability to operate
autonomously over extended periods and in diverse settings.

Another promising direction lies in the evolution of SLAM and perception technolo-
gies. Despite notable advancements, robust SLAM solutions for highly dynamic, unstruc-
tured, or GPS-denied environments remain a challenge. Future research should explore
algorithms that enable more efficient large-scale and real-time mapping, with a focus on
reducing computational demands while maintaining accuracy. The integration of multi-
modal sensor inputs, such as visual data, LiDAR, and radar, along with state-of-the-art
AI-driven perception techniques, has the potential to elevate the robustness and versatility
of SLAM systems, paving the way for their use in increasingly demanding applications.

Human–robot collaboration also stands out as a pivotal area for growth. As robots
become more prevalent in human-centered environments, the dynamics of interaction
between humans and robots require significant refinement. This entails the development of
intuitive and accessible interfaces that facilitate seamless communication, such as natural
language processing systems and advanced gesture recognition. Equally important is
designing robots capable of perceiving and responding to human emotions, behaviors,
and intentions, creating interactions that are not only functional, but also empathetic and
user-friendly. These advances are essential for mobile robots to effectively support humans
in areas such as healthcare, logistics, and education.

Another frontier in mobile robotics involves the integration of AR and VR technologies.
These tools offer immense potential for improving interaction, training, and operational
capabilities. AR can provide users with enhanced visualization and control over robotic
systems, enabling more intuitive and effective management. Simultaneously, VR facilitates
the simulation of complex and hazardous environments, allowing for safer testing and the
remote operation of robots in situations where direct human involvement is impractical.
The synergy between these technologies and robotics presents exciting opportunities for
innovation across multiple sectors.

In addition to technical advancements, addressing ethical, social, and regulatory
concerns will be a vital component of future research. The deployment of mobile robots in
public and private spaces raises questions about safety, privacy, and the societal implications
of widespread automation. Developing frameworks that ensure the responsible design,
deployment, and management of robotic systems will be critical in fostering public trust
and ensuring the long-term success of this technology.

Ultimately, the future of mobile robotics lies in interdisciplinary collaboration. By
combining expertise from artificial intelligence, control systems, human–machine interac-
tions, and ethical design, researchers can create mobile robotic systems that are not only
intelligent and autonomous but also safe, adaptable, and deeply integrated into human
life. These efforts will pave the way for robots to become invaluable partners in addressing
some of the most pressing challenges of our time.
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Abstract: This paper introduces a planar positioning sensing system based on orthogonal wheels
and encoders for some surfaces that may float (such as ship decks). The positioning sensing system
can obtain the desired position and angle information on any such ground that floats. In view of the
current method of using the IMU gyroscope for positioning, the odometer data on these floating
grounds are not consistent with the real-time data in the world coordinate system. The system
takes advantage of the characteristic of the orthogonal wheel, using four vertical omnidirectional
wheels and encoders to position on the floating ground. We design a new structure and obtain the
position and angle information of a mobile robot by solving the encoder installed on four sets of
omnidirectional wheels. Each orthogonal wheel is provided with a sliding mechanism. This is a
good solution to the problem of irregular motion of the system facing the floating grounds. In the
experiment, it is found that under the condition that the parameters of the four omnidirectional
wheels are obtained by the encoder, the influence of the angle change of the robot in the world
coordinate system caused by the flotation of the ground can be ignored, and the position and pose of
the robot on the fluctuating ground can be well obtained. Regardless of straight or curved motion,
the error can reach the centimeter level. In the mobile floating platform experiment, the maximum
error of irregular movement process is 2.43 (±0.075) cm and the RMSE is 1.51 cm.

Keywords: positioning; orthogonal wheel; mobile robot; encoder; floating ground; relative coordinate system

1. Introduction

Robots have been a hot topic ever since the idea of artificial intelligence was raised.
The concept of “robot” was first mentioned in the 1920s by Czech writer Karel Capek in
his novel, Rossum’s Universal Robot [1]. Among them, the mobile robot is a kind of early
development in the field of robot research. In the early 1960s, research on mobile robots was
carried out abroad [2]. As the birthplace of robots [3], the United States first realized the
first generation of industrial robots and put them into production, for example, Google’s
earliest driverless car [4], Da Vinci’s surgical robot [5], and Atlas [6], which represents the
most advanced humanoid robot technology in the world.

With the development of robotic research, many robot-related technologies are mature.
However, for mobile robots, there are still several aspects worth studying further: First, the
mobile robot full-field positioning system. Based on a certain reference position, the mobile
robot can obtain the real-time position and attitude of the robot through the data measured
by one or more of its own sensors when considering the changes of the environment where
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the robot is located [7]. The second is the study of path planning. In the known map
environment, the mobile robot can dynamically plan a safe and reliable accurate route to
reach the feasible target point according to the requirements. Finally, the motion control of
mobile robot is studied. On the premise of feasible path planning for the robot, the control
robot can reach the target point automatically and safely [8]. All these aspects enable the
robot to complete the task. The positioning system of mobile robots is to determine the
real-time pose of robots in the environment, which is the basis for the development and
application of mobile robots [9]. For mobile robots, posture recognition is the foundation of
path planning and motion control. High-precision sensors are needed to detect the pose of
mobile robots. Therefore, how to make mobile robot pose detection in a variety of complex
environment has become a problem of concern.

At present, there are some mature methods for the study of plane localization:
the global navigation satellite system (GNSS) [10,11] and China’s BeiDou navigation satel-
lite system (BDS) [12], which play a major role in outdoor positioning; the pseudolite indoor
positioning [13,14] and the indoor positioning system using the beacon [15,16] and Blue-
tooth [17]; in order to achieve seamless indoor and outdoor positioning services, Chinese
researchers are developing a BDS/GPS indoor positioning pseudo-satellite system; precise
positioning technology using real-time kinematics (RTK) [18]; using natural or artificial
landmarks for positioning, such as two-dimensional code positioning [19]; signal guidance
and positioning based on the sensor signals of visual camera [20], RFID [21], ultrasonic [22]
and LiDAR [23]; positioning systems using Wi-Fi [24,25] such as (OS-ELM) [26]; inertial
navigation and positioning (MEMS) [27]; odometer positioning [28]; etc.

When the robot is on a floating ground (such as the deck of a ship), these positioning
methods may not be as effective in obtaining its own posture. When the robot is on the
deck, as the ship floats along with the water, the deck is in an irregular motion in both
horizontal and vertical directions. In this case, the accuracy of the robot’s positioning
is a challenge. For positioning methods such as GPS, GNSS and BDS, which are mainly
used for outdoor positioning, signals are blocked when there are obstacles around [29].
In addition to the positioning method mentioned above, the most commonly used position-
ing system at present is odometer positioning using gyroscopes and orthogonal wheels;
although orthogonal wheels are both adopted, the use of gyroscopes has its own limitations
in the face of such floating ground. In the following article, we prove the limitations based
on experiments.

To solve this problem, we propose a planar positioning sensing system. Figure 1
shows the physical picture of the positioning system. We design a kind of orthogonal
wheel structure, which uses four vertical omnidirectional wheels to position on the floating
ground. Each driven wheel is equipped with a magnetically coded sensor. Figure 2a shows
the installation of the encoder and omnidirectional wheel. The four omnidirectional wheels
placed vertically are provided with a sliding mechanism, as shown in Figure 2b, which
can move up and down. The range of up and down movement is 6 cm. Every sliding
mechanism supports the amount of ground unevenness at ±3 cm. Springs on both sides
always provide downward force to the wheels. When the chassis is mounted above the
positioning system, it provides downward load to the positioning system so that the wheels
can fully contact the ground. In this way, the influence caused by the ground fluctuation
on the angle of the robot in the world coordinate system can be ignored, and the motion
parameters of the robot in the relative coordinate system relative to the fluctuating ground
can be obtained. Finally, the parameters of the four omnidirectional wheels obtained by
the sensor can be solved to obtain the pose.

The organization of this paper is as follows. The first part mainly introduces the
structure and calculation method of the planar positioning sensor system. The second part
proves the limitations of the gyroscope through experiments and analyzes the experimental
data of our design of this positioning system. Finally, the experimental results are analyzed
and summarized.
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Figure 1. Physical picture of the positioning system.

Figure 2. (a) Physical picture of encoder and slave wheel installation. (b) Physical drawing of sliding
mechanism. The range of up and down movement is 6 cm. Every sliding mechanism supports the
amount of ground unevenness at ±3 cm.

2. Materials and Methods

The positioning system is the basic part of an intelligent mobile robot, and it is also
one of the key research directions in the field of mobile robots. The orthogonal positioning
sensor system introduced in this paper is designed based on the positioning principle
of the orthogonal wheel and magnetic encoder. Due to the sudden acceleration of the
driving wheel, such as acceleration and emergency stop, the phenomenon of the wheel
slipping increases the error of the sensor data. In order to solve the influence of this error,
the positioning system designed in this paper adopts the driven way to obtain the position
coordinates and rotation angle of the robot relative to the initial pose. The positioning
system consists of orthogonal wheels, magnetic encoders and a main frame. Figure 3 shows
a three-dimensional diagram of the system.

Figure 3. A 3D diagram of positioning sensing system.
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An orthogonal wheel adopts two identical omnidirectional wheels fixed on the same
mechanism. A single orthogonal omnidirectional wheel is shown in Figure 4. Each wheel
stand has two degrees of freedom: one is the movement of the axis of the wheel vertically,
and the other is the rotation of the axis around the wheel.

Figure 4. Main view and left view of a single orthogonal omnidirectional wheel.

The orthogonal wheels assembly includes a bracket and four omnidirectional wheels.
The four orthogonal wheels are fixed on the bracket, and the axes of the four orthogonal
wheels are perpendicular to each other. Four orthogonal wheels fixed on the bracket
can rotate at the same time to achieve any direction of movement. Each driven wheel
group includes a sliding mechanism in addition to a bracket and an orthogonal wheel.
By designing the sliding mechanism on the bracket of each orthogonal wheel, it is connected
with the driven wheel bracket and the whole frame so that the driven wheel group can
keep rolling in contact with the ground when sliding in the vertical direction perpendicular
to the orthogonal driven wheel shaft. The sliding mechanism consists of a slider, a slide
track and a spring. On the floating plane, four orthogonal wheels interact with each other
through vertical sliders and slide up and down according to the conditions of the road so
that the wheels can always contact the ground, reducing the possibility of wheel slipping
and improving the positioning accuracy of the positioning device. Figure 5 shows the
tolerance of the positioning system for floating ground.

Figure 5. (a,b) The status of the sliding mechanism of the positioning system before and after
complete pressure, respectively, which can withstand a movement of approximately 6 cm up and
down. (c) The positioning system can still maintain contact with the ground under the plane
simulating the inclined ground. From the positioning system structure, the maximum allowable
slope is approximately 15°.

2.1. The Motion Model of a Single Orthogonal Wheel

Counting in the X and Y directions of the orthogonal wheel depends on a magnetic
encoder to complete. The dividing value of magnetic encoder is 16,384, that is, one turn
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corresponds to 16,384. The radius of the orthogonal wheel is 25.4 mm. The displacement
of the robot in the X and Y directions can be obtained by integrating the short distance.
To determine the real-time accurate pose of the robot in the constructed map, the scheme
adopts the relative positioning method. The positioning sensor system is installed on the
bottom of the car, and the orthogonal wheels sense the prior position of the robot. For the
algorithm of orthogonal wheel odometer, Figure 6 shows the odometer motion model in
the X and Y directions of a single orthogonal wheel.

Figure 6. The motion model of single omnidirectional wheel in world coordinate system and self
coordinate system.

The displacement of the car in the world coordinates and the speed vxws and vyws of
the car’s own coordinate system are calculated with the counting of the orthogonal code
plate. The coordinate axis Xws-O-Yws shown in the diagram is the coordinate system of
the orthogonal wheel group and records the velocity and displacement of the orthogonal
wheel group. The angle between the two frames is θ. The distance from the center of the
trolley to the installation of the orthogonal wheels is l , and the velocity vxw and vyw of the
orthogonal wheel set in the X-O-Y coordinate system is:

vxw = vxws cos(θ)− vyωs sin(θ) (1)

vyw = vyws cos(θ)− vxωs sin(θ) (2)

The displacement sxw and syw of the orthogonal wheels in the X-O-Y coordinate system
can be calculated by (1) and (2):

sxw = ∫ vxwdt (3)

syw = ∫ vywdt (4)

Through (3) and (4), the displacement sxr and syr of the trolley in the X-O-Y coordinate
system can be calculated:

sxr = sxw + l cos(θ) (5)

syr = syw + l sin(θ) (6)

By differentiating both sides of (5) and (6), the velocity vxr and vyr of the car in the
X-O-Y coordinate system can be calculated, where ω is the angular velocity of the car:

vxr = vxw − ωl sin(θ) (7)
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vyr = vyw + ωl cos(θ) (8)

Through (7) and (8), the velocity vxrs and vyrs of the car in the coordinate system of
the car itself can be obtained:

vxrs = vxr cos(θ) + vyr sin(θ) (9)

vyrs = vyr cos(θ)− vxr sin(θ) (10)

From the above, the data received through the magnetic encoders on the orthogonal
wheels can be converted into the position and velocity information in the world coordinate
system. In other words, the velocity and the displacement of the moving chassis in the
X-O-Y coordinate system are obtained.

In a simpler sense, the use of two vertically positioned omni-wheels and encoders
results in accurate coordinate information relative to the world’s coordinate system, rather
than four. In this case, the angle information of the robot can be obtained by using a
gyroscope. However, the disadvantages of such positioning systems can be shown when
gyroscopes are exposed to floating ground. In subsequent chapters, we prove the defect
through experiment.

2.2. The Motion Model of Four Orthogonal Wheels

Based on a single wheel, the positioning system we designed uses four orthogonal
wheels to solve and obtain accurate coordinate information and angle information. Figure 7
shows the odometer motion model in the X and Y directions of four orthogonal wheels.

Figure 7. The motion model of four omnidirectional wheels in world and its own coordinates.
The horizontal plane body coordinate system XOY: the center of the body is the center point O, OX
direction is the direction of the moving robot, OY direction is the vertical direction of the moving robot.
The initial position coordinates of the mobile robot (x, y) are the origin of the world coordinate system.

Through the linear velocity acquisition module–magnetic encoder, we can obtain
the rotation angle θ1, θ2, θ3 and θ4 of each omnidirection from the driving wheel. Given
that the radius of each omnidirectional driven wheel is R, the distance l1, l2, l3, l4 of the
omnidirectional driven wheel can be calculated. The wheel in the front direction is 1,
and clockwise is 2, 3, and 4, as shown in Figure 7:

The wheel axes of the adjacent omnidirectional driven wheels are perpendicular to
each other. Through (11), the rotation angle θ of the mobile robot relative to itself can
be calculated:

ln = θnR(n = 1, 2, 3, 4) (11)

θ =
l1 + l2 − l3 − l4

4L
(12)
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By differentiating Equations (11) and (12), we can obtain the distance dl1 , dl2 , dl3
and dl4 of the omnidirectional rotation from the driving wheel under each instantaneous
moment. Then, the displacement dX and dY of the mobile robot in the direction of OX
and OY relative to the coordinate system XOY with itself as the origin is obtained at every
instantaneous moment:

dX =
dl2 − dl4

2
cos(θ)− dl1 − dl3

2
sin(θ) (13)

dY =
dl1 − dl3

2
cos(θ)− dl2 − dl4

2
sin(θ) (14)

By integrating the displacement dX and dY in the direction of OX and OY at every
instantaneous moment, the displacement ΔX and ΔY in the direction of OX and OY relative
to the origin position of the mobile robot can be obtained:

ΔX = ∫ dXdt (15)

ΔY = ∫ dYdt (16)

Thus, the data received by the magnetic encoders on the orthogonal wheels can be
converted into position and velocity information in the world coordinate system. That is,
the displacement of ΔX and ΔY relative to the origin position of the mobile robot and the
rotation angle relative to itself are obtained.

In the next chapter, the positioning module using an orthogonal wheel and gyroscope
is compared with the positioning sensor system we designed to illustrate the disadvantages
of using a gyroscope in some specific situations and the advantages of the positioning
sensor system introduced in this paper. The positioning sensor system mainly collects and
processes the encoder data on the orthogonal wheels to calculate the real-time position and
pose state of the positioning system. Through the acquisition of encoder data, the data are
transferred to the central processing unit, and then the central processing unit calculates
the pose state of the mobile robot and transmits it to the upper computer through the
serial port.

3. Experiments

Figure 8 shows the system flow chart of the positioning system we designed. The po-
sitioning system using gyroscope mainly collects and processes the data of gyroscope and
encoder, and then transfers it to the central processing unit for processing and uploading
to the upper computer. Figure 9 shows a system flow chart for a positioning system using
a gyroscope.

Figure 8. The magnetic encoders on the four omnidirectional wheels transmit the data to the CPU
respectively. After data processing by the central processor, the position information is transmitted to
the upper computer through serial port.

15



Appl. Sci. 2021, 11, 11340

Figure 9. Data from the encoders on the two orthogonal wheels and a gyroscope converted by AD
are transmitted to the CPU respectively. After data processing by the CPU, the position information
is transmitted to the upper computer through serial port.

3.1. The Experiment Equipment

This section discusses the positioning device developed on the mobile robot chassis
platform. Figure 10 shows the chassis platform of the mobile robot in this experiment.
The data collected by the chassis platform are used to analyze the positioning effect.
The experiment involves linear motion, curved motion, and rotation around the center of
the robot. The positioning system transmits the output position information to the upper
computer and draws the time displacement curve of the mobile robot.

Figure 10. (a) The mobile chassis platform used in this experiment. (b) The self-developed positioning
system is mounted under the mobile chassis.

Figure 11 shows the chassis coordinate diagram of mobile robot.
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Figure 11. The chassis coordinate diagram of mobile robot. In the figure, P is the origin of the
vehicle’s own coordinate system, and O is the origin of the world coordinate system.

3.2. The Experiment of Linear Motion

In order to simulate the floating ground, we built a floating platform with a size
of 5.4 m × 1.3 m, as shown in Figure 12. During the movement of the moving chassis,
the platform is disturbed by the irregular up and down movement, artificially. The platform
floats mainly by artificial up and down motion. The floating platform can have six degrees
of freedom because it has multiple universal wheels under it. The wheels under the
platform are locked, and the platform is only artificially pitched and rolled. In addition,
the floating degree of platform can be obtained by installing IMU on the moving chassis.
Through IMU and the position system, the six degrees of freedom of moving chassis can be
obtained, so the floating degree of the simulated platform can be reflected by the angle of
chassis coiling around the pitch and roll axis. For pitch and roll angles, we mainly limit
them to 15°.

Figure 12. Simulation floating experimental platform, size of 5.4 m × 1.3 m.
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3.2.1. The Chassis Moves in the X Direction

In the initial case, the front of the chassis is oriented in the positive direction of the X
axis. The chassis moves in the X direction from point P to point P1 with a motion distance
of 5 m. Figure 13 shows the movement track of the moving chassis. During the movement,
the floating platform is artificially disturbed by moving up and down. The actual motion
scene in the X direction is shown in the Figure 14.

Figure 13. The motion of the chassis in the X direction. The motion distance is 5 m.

The travel displacement transformation curve of the mobile robot chassis is shown
in Figure 15. In the process of motion, due to the linear motion along the X axis, the dis-
placement of the Y axis and the angle of the Z axis basically do not fluctuate. The floating
degree of the simulated platform can be reflected by the angle of chassis coiling around
pitch and roll axis, as shown in Figure 16.

Figure 14. The actual motion scene in the X direction. In the figure, 1, 2, 3 and 4 are the four stages of
the movement process respectively.
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Figure 15. (a) The change curve of displacement when the mobile robot travels once along the X
direction. (b) The displacement curve of the mobile robot when it repeats three times along the Y axis.

Figure 16. The angle of chassis coiling around pitch and roll axis.

Table 1 records the actual movement value and error of the positioning system for
each movement of 5 m along the X axis. It can be seen from Table 1 the positioning value
after each movement of 5 m. In addition, the cumulative error of the positioning system is
approximately 1.1 cm after it moves a distance of 5 m continuously for four times in the X
direction. The experiment shows that the positioning system can meet the requirements in
the short distance.

Table 1. The actual movement value and error of the positioning system for each movement of 5 m
along the X axis.

The Theoretical Movement Value (cm) The Actual Movement Value (cm) Error (cm)

500 500.5 0.5
500 500.3 0.3
500 500.8 0.8
500 501.1 1.1

3.2.2. The Chassis Moves in the Y Direction

The moving chassis uses the Mecanum wheel, which provides freedom of movement
in the Y direction. Therefore, this chassis can be used to detect the positioning error of
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our self-developed positioning system in the Y direction. The actual motion scene in the X
direction is shown in the Figure 17.

Figure 17. The actual motion scene in the Y direction. The motion distance is 5 m. In the figure, 1, 2,
3 and 4 are the four stages of the movement process respectively.

The travel displacement transformation curve of the mobile robot chassis is shown in
Figure 18. In the process of motion, due to the linear motion along the Y axis, the displace-
ment of the X axis and the angle of the Z axis basically do not fluctuate. Figure 19 shows
that the angle of chassis coiling around pitch and roll axis.

Figure 18. The displacement curve of the mobile robot when it repeats four times along the Y axis.
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Figure 19. The angle of chassis coiling around pitch and roll axis.

Table 2 records the actual movement value and error of the positioning system for
each movement of 5 m along the Y axis. It can be seen from Table 2 the positioning value
after each movement of 5 m. In addition, the cumulative error of the positioning system is
approximately 1.0 cm after it moves a distance of 5 m continuously for four times in the Y
direction. The experiment shows that the positioning system can meet the requirements in
the short distance.

Table 2. The actual movement value and error of the positioning system for each movement of 5 m
along the Y axis.

The Theoretical Movement Value (cm) The Actual Movement Value (cm) Error (cm)

500 500.1 0.1
500 500.3 0.3
500 500.7 0.7
500 501.0 1.0

3.2.3. The Experiment of Rotational Motion

In order to verify the accuracy of the angle of the orthogonal wheel positioning system,
the chassis of the mobile robot rotates around the center of the body and stops once every
180° for two consecutive turns. The actual motion scene of the chassis rotation is shown in
the Figure 20. Figure 21 shows the angle curve of the moving chassis as it rotates in situ.
During the rotation of the moving chassis, the displacement along the X and Y directions
appears very small fluctuations because the center of the chassis and the center of the
orthogonal wheels do not coincide completely. Figure 22 shows that the angle of chassis
coiling around pitch and roll axis.

Table 3 shows the actual angle value and error of the positioning system for each
rotation of 180° around the Z axis. Table 3 shows the positioning values after each rotation
of 180°. In addition, the cumulative error of the positioning system is approximately
1.15° after continuous rotation of 720° around the Z axis. The experiment shows that the
precision of rotation angle of the positioning system is satisfactory.
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Figure 20. The actual motion scene of the chassis rotation. In the figure, 1, 2, 3 and 4 are the four
stages of the movement process respectively.

Figure 21. (a) The angle change curve of the mobile robot when it rotates continuously for two turns
along the Z axis. (b) The angle change curve when the mobile robot rotates one circle counterclockwise
and one circle clockwise along the Z axis.

Figure 22. The angle of chassis coiling around pitch and roll axis.
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Table 3. The actual movement value and error of the positioning system for each movement of 180°
along the Z axis.

The Theoretical Angle Value (°) The Actual Angle Value (°) Error (°)

180.00 180.12 0.12
360.00 360.42 0.42
540.00 540.62 0.62
720.00 721.15 1.15

3.2.4. The Experiment of Moving along a Square

The mobile robot chassis moves in a square counterclockwise direction along the
simulated floating platform as shown in Figure 23.

Figure 23. Simulation floating experimental platform, size of 2.4 m × 2.4 m.

Due to the size limitation of the floating platform, we choose the side length of the
square to be 1.8 m. Figure 24 shows the movement track of the mobile chassis. The posi-
tioning effect of the positioning module is verified by the movement of the chassis along
the square. The four points of the square are set to P0, P1, P2, and P3. The actual motion
scene is shown in Figure 25.

Figure 24. The movement track of the mobile chassis. The length of the square side is 1.8 m. The four
points of the square are set to P0, P1, P2, and P3. In the horizontal plane coordinate system XOY, the
center of the chassis is center point O, OX direction is the initial motion direction of the mobile chassis,
and OY direction is the vertical direction of moving robot. The initial position coordinates of the
mobile robot (x, y) are the origin of the world coordinate system.
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Figure 25. The actual motion scene. In the figure, 1, 2, 3 and 4 are the four stages of the movement
process respectively.

The displacement transformation curve and angle change curve of the mobile robot
chassis are shown in Figure 26. In the process of movement, the actual motion curve
is basically consistent with the theoretical motion curve, with only a little fluctuation.
The floating degree of the simulated platform can be reflected by the angle of chassis
coiling around pitch and roll axis, as shown in the Figure 27.

Figure 26. (a) Comparison diagram of actual motion curve and theoretical motion curve. The actual
motion curve is basically consistent with the preset motion path. (b) The angle change curve of the
mobile robot when it moves in a counterclockwise direction along a square.
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Figure 27. The angle of chassis coiling around pitch and roll axis.

Table 4 records the actual movement value and error of the positioning system for
each point along the square. It can be seen from Table 4 the positioning value after moving
to each point along the square. In addition, after the positioning system returns to the
origin after four points, the distance cumulative error is approximately 1.6 cm, and the
angle cumulative error is approximately 1.42°. The experiment shows that the positioning
system can meet the requirements in the short distance.

Table 4. The actual movement value and error of the positioning system for each point along
the square.

Theoretical Movement Value Actual Movement Value Error
x(m) y(m) θ(°) x(m) y(m) θ(°) Δd(m) Δθ(°)

P0 0 0 0 0 0 0 0 0
P1 1.80 0 90 1.802 −0.008 90.02 0.008 0.02
P2 1.80 1.80 180 1.808 1.795 181.45 0.009 0.45
P3 0 1.80 270 0.011 1.805 270.87 0.012 0.87
P′

0 0 0 360 0.013 −0.010 361.42 0.016 1.42

3.3. The Experiment of Random Curve Motion

Before we talk about the experiment, let us first introduce the Steam VR tracking
system based on HTC VIVE used in the experiment [30]. This system has long been used
in VR motion-sensing games. It is equipped with STEAM tracking technology that allows
accurate positioning within a space area of 6 m × 6 m, with an accuracy of less than 1 mm.
It includes two HTC VIVE2.0 location base stations and a tracker. By installing the tracking
device used in the joystick in the motion sensing game on the chassis of the mobile robot,
we can obtain the most accurate actual curve in the random curve movement so as to carry
out comparative experiments with the orthogonal wheels positioning system and gyro
positioning system designed by us.

First, we introduce the experimental site of random curve motion experiment. Figure 28
shows the site layout of the laboratory. The HTC VIVE2.0 base stations are placed on both
sides. The base station is placed on the same axis with a height of one meter. The tracker as
shown in Figure 29 is mounted on the mobile chassis, which is fixed in the center of the
mobile chassis, that is, the center of the orthogonal wheels system. The mobile robot is
randomly moved, S-shaped, by the remote control.
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Figure 28. The site layout of the laboratory. HTC VIVE2.0 base stations are placed on both sides of
the site, and the base stations are placed on the same axis with a height of one meter.

Figure 29. The tracker is fixed in the center of the moving chassis, which is the center of the orthogonal
wheels system.

In this experiment, we conducted a comparative experiment on our own positioning
system, the gyroscope positioning system and the HTC VIVE positioning system. In the ex-
periment, the gyroscope positioning system can obtain the rotation angle in the movement
process by itself, and at the same time, the data of two mutually perpendicular wheels of the
four wheels in the orthogonal wheel system serve as the data of X and Y. According to the
solution method mentioned in Section 2.1, coordinate information of gyroscope positioning
can be obtained. In the process of random S-shaped motion, the upper computer can obtain
the data of orthogonal wheel positioning and gyroscope positioning at the same time for
comparison test. In combination with the data obtained by HTC VIVE, three experimental
curves can be obtained at the same time in one movement for comparison. Figure 30 shows
the gyroscope position curve, orthogonal wheels position curve, HTC VIVE position curve
and the error curve of orthogonal wheels relative to HTC VIVE, respectively.

As can be seen from the comparison curve, the positioning curve of the orthogonal
wheels positioning system is basically consistent with that of HTC VIVE in the random
S-shaped motion, and the maximum error is 1.18 (±0.075) cm in the process of moving.
As for the positioning curve of the positioning system using a gyroscope, the deviation
degree of the curve is increasing with the progress of the motion, due to the accumulated
error of gyroscope rotation during the traveling process. This is due to the orthogonal
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wheel positioning system, which does not have the same sudden or continuous rotation as
a gyroscope, resulting in a large deviation in the angle acquisition.

Figure 30. (a) Comparison diagram of the gyroscope position curve, orthogonal wheels position
curve and HTC VIVE position curve. (b) The error curve of orthogonal wheel relative to HTC VIVE.

3.4. Simulated Floating Deck Experiment

The orthogonal wheels positioning system is designed at the beginning to deal with
the common positioning methods, such as a gyroscope on the ship deck and other floating
carriers, which do not have a good positioning effect. The environment of the above
experiments is a fixed world coordinate system. In the world coordinate system, through
the above experiments, we can verify the positioning accuracy and robustness of the
orthogonal wheel positioning system in the absolute coordinate system. Next, the relative
coordinate system experiment is carried out on the simulated floating deck experimental
platform. Because the experimental scenes, such as the hull deck, are not convenient to
obtain, the platform as shown in Figure 31 is adopted as the floating platform for this
experiment. The floating hull is simulated by people lifting the plank and walking around
at random. The floating platform is fitted with universal wheels to simulate the movement
of the deck at sea.

On the floating test platform, the desired motion curve should be the actual curve
of the positioning system relative to the floating test platform, not the actual curve in the
world coordinate system. The tracker reflects the x, y, z coordinates and yaw, pitch, roll
angles of the current moment relative to the world coordinate system. So we put a tracker
on the moving chassis and a tracker on the corner of the platform. Through the tracker
on the chassis, we can obtain the coordinates (x, y) of the chassis in the world coordinate
system at every moment. Through the tracker fixed in the corner of the platform, we can
obtain the coordinates (xT , yT) of the origin of the floating platform coordinate system in
the world coordinate system and the rotation angle θ of the floating platform coordinate
system in the world coordinate system at every moment. The position of a point (x, y) in
world coordinates in relative coordinates (x′, y′) is:[

x′
y′
]
=

[
cos θ sin θ
− sin θ cos θ

][
x
y

]
+

[
xT
yT

]
The actual curve of the moving chassis relative to the floating platform can be obtained

by the above method. Then the positioning curve is compared with that of the orthogonal
wheel positioning system developed by ourselves. Figure 32 shows the actual process of
this floating platform experiment. Two students control the floating platform to move
irregularly, during which they shake the floating platform up and down to produce a
floating effect. Another student remotely controls the chassis, moving around the floating
platform in an irregular circle.
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Figure 31. Simulated floating deck experimental platform. The size of the experimental platform is
2.4 m × 2.4 m. Place a tracker in the center of the chassis and in the corner of the platform.

Figure 33a shows the motion track of the orthogonal wheel positioning system and
HTC VIVE positioning system on the mobile floating platform. Figure 33b reflects the
trajectory of the gyroscope positioning in this case.

As can be seen from the figure, the positioning curve of the orthogonal wheel position-
ing system tends to be consistent with the real curve of HTC VIVE. In the process of floating
motion, the angle read by the gyroscope is not that of the orthogonal wheels relative to
the floating platform, but that of the world coordinate system. As a result, the curve of the
gyroscope positioning is unpredictable and inconsistent with the actual motion curve.

Figure 34 shows that the floating degree of the mobile floating platform and the error
curve of the orthogonal wheel positioning system relative to HTC VIVE in the process of
movement. On the mobile floating platform used in this experiment, the maximum error is
2.43 (±0.075) cm. According to the experimental data, the RMSE of the positioning system
on the floating platform is 1.51 cm.

Figure 32. The actual process of this floating platform experiment.
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Figure 33. (a) The motion curve of the orthogonal wheels in irregular motion with the mobile floating
platform. Compared with the actual curve, the orthogonal wheel positioning system has a good
positioning effect relative to the moving path of the mobile floating platform. (b) Motion curve of
gyroscope positioning along with irregular movement of the floating experimental platform. With the
accumulation of angle errors in the process of motion, the obtained motion curve becomes more and
more yaw.

Figure 34. (a) The angle of chassis coiling around pitch and roll axis. (b) The error curve of orthogonal
wheel relative to HTC VIVE.

4. Discussion

As far as we know, previous studies have not focused much on floating surfaces,
such as decks. For the wheeled positioning of robots, a gyroscope is the current, preferred
method used for the angle measurement in terms of economy and practicality. The usual
odometer system does have the biggest problems with turns and orientation changes.
However, our positioning system is a mechanical structure design, and the calculation of
the position when turning is mainly dependent on the radius of rotation of the structure.
This is a fixed value, and as long as the radius of rotation is accurate, the error tends
to zero. There is no sensor like the gyroscope: the more turns, the greater the angle
deviation. Different from other commonly used odometers, the error of self-developed
orthogonal wheel odometers fundamentally depends on whether the rotation radius and
our orthogonal wheel radius are accurate, as well as the accuracy of the encoder to read
the orthogonal wheel mileage.

Compared with the orthogonal wheel positioning system developed by ourselves,
both LiDAR and gyroscopes have their drawbacks. The use of gyroscope is usually
limited to the fixed plane based on the world coordinate system. With the increase in the
gyroscope angle, the error also increases. In order to ignore the angle cumulative error
of the gyroscope, the influence on the positioning error is minimal only in the case of a
small number of turns. Laser positioning of LiDAR [23] is similar to the positioning mode
of HTC VIVE used in the experiment. Although it has very high positioning accuracy,
it has high requirements for the environment. In the process of LiDAR positioning, it is
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necessary to scan the surrounding environment and then match the boundary on the map
to achieve the positioning effect. However, on a wide deck, it is hard to scan the boundaries
we want, and it is even harder to locate them when there are dynamic obstacles. So LiDAR
has its drawbacks, especially in the case of wide decks with unclear boundaries or sea
fog. This new positioning technology needs to have accurate positioning accuracy and
adaptability to floating environment. In view of the floating motion environment and the
desired positioning task, the orthogonal wheels positioning sensor system designed by us
can achieve a satisfactory positioning effect in this kind of environment.

According to the experiment in the third chapter, we can understand that the position-
ing effect of the orthogonal wheels positioning system can achieve a very high positioning
accuracy during the movement of a certain distance, and the positioning error can reach
within 0.025 m. It can be seen from the random comparison curve that the positioning
curve of the orthogonal wheel positioning system is basically consistent with that of HTC
VIVE, and the maximum error is 2.43 (±0.075) cm in the process of moving. The RMSE of
the positioning system on the floating platform is 1.51 cm. However, the positioning curve
of the positioning system using gyroscope deviates more and more with the progress of the
movement. This is because the orthogonal wheels are driven by design, and the positioning
mode of the orthogonal wheel positioning system is not affected by the error caused by
rotation like the gyroscope. Additionally, the orthogonal wheel structure is equipped with
a sliding structure so that the positioning system can easily ignore the irregular movement
of the system caused by the floating ground. The experimental results show that the errors
of the orthogonal wheel positioning system are within the acceptable range (±3 cm) under
the conditions of linear motion, curvilinear motion and floating environment, and the
expected effect of the centimeter-level positioning system is achieved. The experimental
results highlight the potential application of the positioning system in a complex environ-
ment. In the case of subsequent use of other positioning calibrations, the accuracy may be
even higher.

5. Conclusions and Future Work

This paper introduces a plane positioning sensor system based on orthogonal wheels
and encoders. By using the characteristics of the orthogonal wheels of the system, we de-
signed a new structure. The position and angle information of the mobile robot is obtained
by solving the encoder installed on four sets of omnidirectional wheels. The system is
designed to be an independent, economical, and easy-to-use customized solution for a
ground that may be floating. It can obtain the desired position information that we want
on any surface where floating occurs (such as ship decks, jolting cars or trains). In view of
the current use of the IMU gyroscope positioning method, we use the experiment to prove
its limitations. Due to the vertical sliding mechanism on each orthogonal wheel, the posi-
tioning system can easily face the irregular up and down movement of the system caused
by the floating ground. In addition, it can solve the mismatch between the positioning
data of the IMU odometer and the data in the world coordinate system under the floating
ground condition. The experiment shows that the error of the positioning system is within
the allowable range under the condition of linear and curved motion, and the expected
effect is achieved.

In future work, on the basis of using the positioning system, we will continue to study
the fusion of multi-sensor positioning, such as RFID, visual tags and so on, to make the
positioning effect more obvious. In addition, we will consider using the fused localization
sensor system to realize the functions of SLAM mapping and navigation. Using the
positioning system as an odometer for map navigation in different environments should
have better results.
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Abstract: Odometry is a simple and practical method that provides a periodic real-time estimation of
the relative displacement of a mobile robot based on the measurement of the angular rotational speed
of its wheels. The main disadvantage of odometry is its unbounded accumulation of errors, a factor
that reduces the accuracy of the estimation of the absolute position and orientation of a mobile robot.
This paper proposes a general procedure to evaluate and correct the systematic odometry errors of a
human-sized three-wheeled omnidirectional mobile robot designed as a versatile personal assistant
tool. The correction procedure is based on the definition of 36 individual calibration trajectories
which together depict a flower-shaped figure, on the measurement of the odometry and ground
truth trajectory of each calibration trajectory, and on the application of several strategies to iteratively
adjust the effective value of the kinematic parameters of the mobile robot in order to match the
estimated final position from these two trajectories. The results have shown an average improvement
of 82.14% in the estimation of the final position and orientation of the mobile robot. Therefore, these
results can be used for odometry calibration during the manufacturing of human-sized three-wheeled
omnidirectional mobile robots.

Keywords: odometry; odometry calibration; omnidirectional mobile robot

1. Introduction

Mobile robots have a huge range of potential applications in industrial, office and
home environments. Autonomous mobile robots must be able to perform localization,
mapping and navigation with reasonable levels of accuracy in order to successfully develop
and complete their tasks. Localization methods consist of absolute or relative positioning
methods [1,2]. Borenstein et al. [2] reviewed the most relevant mobile robot relative
positioning methods based on internal data gathered by the mobile robot: odometry and
inertial navigation, and the most relevant absolute positioning methods based on gathering
external surrounding data.

Odometry is usually defined as a relative positioning method that uses the measures
of the velocities of the wheels to estimate the position of the robot. Compared to other
techniques, odometry is simple, affordable, and can be used in real-time, but as a relative
positioning method it cumulates errors that may lead to inaccurate results. The improve-
ment of odometry through proper calibration reduces the position errors and can contribute
to lowering the costs of mobile robots by avoiding the use of precise external sensors.

In 1996, Borenstein et al. [3] introduced a benchmark test to measure the odometric
accuracy of a mobile robot. This test, called University of Michigan Benchmark (UMBmark),
consists on a bidirectional square path experiment in which a differential drive mobile
robot performs a squared path in the clockwise and counterclockwise directions to avoid
the compensation of odometry errors that might occur in unidirectional squared path
experiments. The method first computes the contribution of errors caused by incorrect
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wheelbase (distance from the wheel to the center of the mobile robot) and by unequal
wheel diameters. These errors are evaluated separately and then superimposed. In the
case of a differential drive mobile robot, a wheelbase error causes pure rotation errors,
which can be corrected by applying a correction factor to the wheelbase distances. The
unequal wheel diameters error causes the robot to move on curved paths instead of straight
trajectories. The radius of curvature of the real path can be computed to determine the ratio
between the two-wheel diameters and compensate this systematic error. The application
of the UMBmark provides a quantitative measure and corrects the systematic odometry
errors, which allows comparison between different mobile robots. In summary, the results
presented by Borenstein et al. [3] allowed an improvement of one order of magnitude in
odometry accuracy.

An alternative to direct odometry calibration from the information gathered from the
wheels is the application of data fusion from different sensors. Gargiulo et al. [4] estimated
the mobile robot position and orientation by fusing information gathered from the wheels
and an Inertial Measurement Unit (IMU). Zwierzchowski et al. [5] used a similar approach
and included the information gathered from a vision system that measures the distance
between the robot and custom markers located in the surrounding space. Xue et al. [6]
fuses the information gathered from the wheels, an IMU and a 2D LIDAR in order to
operate in diverse outdoor environments without any prior information. In a different
approach, Palacin et al. [7] directly estimates the position and orientation of the mobile
robot using the information provided by an onboard precise 2D LIDAR processed with
simultaneous location and mapping (SLAM) [8]. In this case, the odometry was used as an
initial estimation of the relative motion in order to improve the computational efficiency of
SLAM. More recently, Xiao et al. [9] fused the information gathered from one IMU and two
low-precision 2D LIDARs placed transversally to estimate the position and orientation of a
mobile robot. However, the main disadvantage of using LIDARs is the cost of the sensor
that is proportional to its measurement accuracy.

In the specific case of omnidirectional mobile robots, the determination of the odom-
etry from the velocity gathered from the wheels has similar error sources but more com-
plexity because of having more degrees of freedom in the motion [10]. In this direction,
Maddahi et al. [11] proposed a method for the calibration of small three-wheeled omnidi-
rectional mobile robots in order to reduce positioning errors. The procedure was based on
the determination of two corrective indices for the inverse kinematic matrix used by the
odometry to estimate the position of the robot. This method consists of: (1) determining the
kinematic equations of the robot; (2) registering of the motion of the non-calibrated robot
moving along a straight line; (3) evaluating the longitudinal error (xe), lateral error (ye) and
angular error (θe) between the target and real trajectory positions; and (4) the computation
of some corrective indices. This method corrects the longitudinal (xe) and lateral (ye) errors
separately. First, a lateral corrective matrix, which compensates the lateral position error of
the robot (ye), is computed from the angular error of the robot (θe). Secondly, a longitudinal
corrective factor used to eliminate the longitudinal position error (xe) is computed from
the longitudinal (xe) and lateral errors (ye). Finally, both indices are multiplied with the
Jacobian matrix used by the odometry to estimate the velocities of the wheels. The corrected
Jacobian matrix is then used to compute the corrected angular velocities of the wheels.
This proposal was experimentally validated with different trajectories, comparing the
positioning errors before and after calibration. Results showed significant improvements:
the root mean square (RMS) of the positioning error was reduced between 68% and 91%
in double-squared, double-triangle and circular paths. In this case, the analysis of the
trajectories and positioning errors evidenced that the improvement depends on the type of
trajectory being accurate in straight trajectories and less accurate in the case of combined
straight and curved trajectories.

Similarly, Lin et al. [12] presented an odometry calibration method for medium-size
three-wheeled omnidirectional mobile robots based on the correction of its kinematic model.
The method consists on gathering discrete position and orientation data and estimating the
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kinematic parameters by a least square method. The information required by this process
is the initial and final positions of the mobile robot through N experiments (multiple data
sets). This proposal is not limited by the relationship between the parameters used in the
kinematic equations, so the obtained kinematic model may better describe the odometry
of the mobile robot. Lin et al. [12] verify their calibration method by comparing the ideal
trajectory and the trajectories before and after calibration.

In a similar direction, Li et al. [13] presented a method for the reduction of positioning
errors of four-wheel omnidirectional mobile robots using Mecanum wheels. The main
problem of four-wheel omnidirectional mobile robots is wheel slippage, so this method
analyzed the kinematic model of the mobile robot and provides a velocity compensation
matrix to reduce the errors of the robot motion caused by wheel slippage. This compensa-
tion matrix was validated using virtual simulations and experimental tests. Results showed
that the compensation matrix reduces the errors of robot motions caused by wheel slippage,
improving the motion accuracy of the system. However, Li et al. [13] concluded that this
velocity compensation matrix must be adjusted according to the velocity of the mobile
robot. Alternatively, Lu et al. [14] fused the information gathered from an IMU, a gyroscope
and encoders to estimate the odometry of a mobile robot using four Mechanum wheels to
estimate the estimated odometry on a floating ground.

More recently, Savaee et al. [15] proposed a simplification of the method presented by
Maddahi et al. [11]. The new method uses the kinematic model of a three-wheeled mobile
robot and computed a corrected Jacobian matrix to reduce the effects of systematic errors
in the odometry. This method used a genetic algorithm to find the matrix elements of a
corrected Jacobian matrix, which are called Effective Kinematic Parameters (EPKs). This
new method consists of: (1) creating a model of the virtual robot and of the systematic
errors; (2) performing simulation tests with the virtual robot; (3) performing experimental
tests with a real robot; (4) comparing both results to estimate the EPKs and redefine the
Jacobian matrix of the mobile robot. In this case, the simulation and experimental tests
consist of two robot translations along straight paths and one rotation about itself, and the
calculated EPKs are used to correct the angular velocities of the wheels. This procedure was
verified with a three-wheeled omnidirectional mobile robot performing different paths. In
general, the evaluation of tracking errors in offline analysis has the advantage of avoiding
local minimum in complex parametric nonlinear systems [16].

New Contribution

The new contribution of this paper is the proposal of a combination of 36 straight
and curved calibration trajectories for systematic odometry error evaluation and correction
in a three-wheeled omnidirectional mobile robot. This procedure has been empirically
applied and validated in a real human-sized three-wheeled omnidirectional mobile robot
of 1.760 m and 30 kg (Figure 1). These 36 calibration trajectories have been proposed
as a representative test-bench of the infinite trajectories that can be performed by an
omnidirectional mobile robot, which together depict a characteristic flower-shaped figure.
The calibration procedure implemented requires the registering of the real odometry and
ground truth trajectories generated while performing each calibration trajectory. Finally,
the odometry of each calibration trajectory is recomputed offline to iteratively adjust the
effective values of the kinematic parameters of the mobile robot in order to match the
odometry with the ground truth trajectory. This paper has evaluated different matching
strategies using different sets of calibration trajectories. The best matching between the
odometry and ground truth trajectories has been obtained using genetic algorithms and
5 repetitions of each one of the proposed 36 calibration trajectories. The fitting results of
the kinematic parameters have been validated by performing 5 additional repetitions of
the 36 calibration trajectories.
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(a) (b)

Figure 1. Mobile robot APR-02: (a) general view of the mobile robot and (b) detail of its omnidirec-
tional motion system.

This new contribution was inspired in Batlle et al. [17], who proposed the use of four
curved calibration trajectories, and in Maddahi et al. [11], who calibrated the odometry
with straight paths but concluded that the percentage of error correction depends on the
type of the path. The new contribution is the proposal of a complete set of straight and
curved calibration trajectories which together depict a characteristic flower-shaped figure.
This new contribution is also inspired in the work of Savaee et al. [15] that used genetic
algorithms to adjust the kinematic matrix of a three-wheeled mobile robot although without
comparing the results obtained with other minimization alternatives. This proposal will
apply the same methodology proposed by Lin et al. [12], based on the comparison of the
initial and final positions of the mobile robot through N experiments to directly evaluate
the odometry improvement achieved. Finally, as an alternative to Savaee et al. [15] and Lin
et al. [12], this new proposal adjusts the value of the kinematic parameters of the mobile
robot (radii of the wheels, distance from the wheel to the center of the mobile robot and
angular orientation of the wheels) instead of directly adjusting the values of the kinematic
matrix, allowing a direct physical interpretation of the fitting results obtained.

2. Materials and Methods

The material used in this paper is the omnidirectional mobile robot APR-02 (Figure 1).
The methods used in this paper are the odometry of the mobile robot and two nonlinear
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minimization procedures based on gradient search and genetic algorithm. These two
minimization methods will be applied to calibrate the odometry of the mobile robot.

2.1. Omnidirectional Mobile Robot APR-02

The omnidirectional mobile robot APR-02 is the second family prototype designed
under the project concept titled Assistant Personal Robot (APR). The goal of the APR project
is the final implementation of a versatile human-sized mobile robot that can be applied
to develop different assistance services, for example, to supporting older people with
mobility limitations [18]. The main difference of the APR concept with other comparative
mobile robot designs [19] is the use of an omnidirectional motion system based on three
omnidirectional wheels in which the free rollers are aligned with the rotation plane of the
wheels. The main advantage of this design using three wheels is the minimization of wheel
slippage regardless of the motion implemented by the mobile robot [20].

Figure 1a shows the omnidirectional mobile robot APR-02 and Figure 1b shows a detail
of its omnidirectional motion system based on the use of three omnidirectional wheels.
The main sensor of the APR-02 is a precise onboard 2D LIDAR Hokuyo UTM-30LX either
placed horizontally or tilted down [7] to directly detect small obstacles laying on the ground
or holes or stairs in front of the mobile robot, and for SLAM [8]. The APR-02 has been used
as a research tool in some recent applications. In [21] an alternative omnidirectional wheel
design was proposed to foster future outdoor applications. In [22] the motors and encoders
of the mobile robot were analyzed in order to improve the measurement of the estimated
angular velocity of the wheels.

The trajectory of the mobile robot APR-02 is established by its path-planning algorithm
that continuously updates the target motion vector (v, α, ω, tr) of the mobile robot [20]
accordingly to a task or objective. This target motion vector is converted into individual
target angular rotational velocities of the three wheels (ωMa, ωMb, ωMc) which are then
applied to the PID controllers of the DC motors driving these three wheels in order to
implement the planned motion.

2.2. Odometry Trajectory

Odometry is a simple and practical method that provides a periodic real-time estima-
tion of the relative displacement of a mobile robot based on the measurement of the angular
rotational speed of its wheels. Odometry estimation is valid in the case of non-slippage
wheel conditions in which wheel revolutions can be translated into linear displacement
relative to the floor. The advantage of an omnidirectional mobile robot using three optimal
omnidirectional wheels is that the wheels do not have motion constrains and do not require
slippage in order to implement any motion trajectory [20].

The kinematics and the odometry of the mobile robot APR-02 are described in [20].
Figure 2 presents the parametric definition of the omnidirectional motion system based
on three omnidirectional wheels (Figure 2a) and a detail of the parameters of one wheel
(Figure 2b). The main parameters are: the position of the mobile robot (x, y, θ) referred to
the fixed world frame (XW , YW), the motion command of the robot (v, α, ω), the angular
velocities of the wheels (ωa, ωb, ωc), the linear velocities of the wheels (Va, Vb, Vc), the
radii of the wheels (ra, rb, rc), the distance between the center of the robot and each wheel
(Ra, Rb, Rc) and the angular orientation of each wheel (δa, δb, δc) referred to the mobile
robot frame (XR, YR).
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(a) (b)

Figure 2. Parametric definition of the omnidirectional motion system of the mobile robot APR-02: (a)
general representation of the three omnidirectional wheels and (b) detail of the parameters of one
omnidirectional wheel. (XR, YR) represents the mobile robot frame in which XR is the front of the
mobile robot.

The odometry procedure uses the instantaneous estimate of the current angular ve-
locities of the three wheels, a, b, c, available as a vector sequence (ωa(k), ωb(k), ωc(k))
in order to estimate the instantaneous position of the mobile robot (x(k), y(k), θ(k)) in
the world frame (XW , YW). The relation between the instantaneous estimation of the an-
gular velocities of the wheels (ωa(k), ωb(k), ωc(k)) and the instantaneous robot velocity(
vx(k), vy(k), ω(k)

)
in the world frame (XW , YW) can be summarized as [20]:

⎡⎢⎣ ωa(k)
ωb(k)
ωc(k)

⎤⎥⎦ =

⎡⎢⎣ 1/ra 0 0
0 1/rb 0
0 0 1/rc

⎤⎥⎦·
⎡⎢⎣ −sin(δa) cos(δa) Ra

−sin(δb) cos(δb) Rb
−sin(δc) cos(δc) Rc

⎤⎥⎦·
⎡⎢⎣ cos(θ(k − 1)) sin(θ(k − 1)) 0

−sin(θ(k − 1)) cos(θ(k − 1)) 0
0 0 1

⎤⎥⎦·
⎡⎢⎣ vX(k)

vY(k)
ω(k)

⎤⎥⎦
World

(1)

Which includes a rotation matrix R(θ) and a compact kinematic matrix M that defines
the overall kinematics of the mobile robot:

R(θ) =

⎡⎣ cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤⎦ (2)

M =

⎡⎣ −sin(δa)/ra cos(δa)/ra Ra/ra
−sin(δb)/rb cos(δb)/rb Rb/rb
−sin(δc)/rc cos(δc)/rc Rc/rc

⎤⎦ (3)

Equation (1) can be arranged to update the current position of the mobile robot
(x(k), y(k), θ(k)) in the world frame (XW , YW) based on the new estimate of the current
angular velocities of the three wheels of the mobile robot (ωa(k), ωb(k), ωc(k)) and the time
lapse Δt between the samples k − 1 and k, which in the mobile robot APR-02 coincides
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with the sampling time T of its proportional-integral-derivative (PID) motor controllers,
Δt = T = 10 ms:⎡⎣ x(k)

y(k)
θ(k)

⎤⎦
World

=

⎡⎣ x(k − 1)
y(k − 1)
θ(k − 1)

⎤⎦
World

+ T·R(θ(k − 1))−1·M−1·
⎡⎣ ωa(k)

ωb(k)
ωc(k)

⎤⎦ (4)

where R−1(θ) is the inverse of the rotation matrix defined by the previous instantaneous
angular orientation of the mobile robot θ(k − 1):

R(θ)−1 =

⎡⎣ cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤⎦ (5)

And M−1 is the inverse of the compact kinematic matrix M:

M−1 =
1

Ra sin(δb − δc)− Rb sin(δa − δc) + Rc sin(δa − δb)
·⎡⎣ra(Rb cos(δc)− Rc cos(δb)) −rb(Ra cos(δc)− Rc cos(δa)) rc(Ra cos(δb)− Rb cos(δa))

ra(Rb sin(δc)− Rc sin(δb)) −rb(Ra sin(δc)− Rc sin(δa)) rc(Ra sin(δb)− Rb sin(δa))
ra sin(δb − δc) −rb sin(δa − δc) rc sin(δa − δb)

⎤⎦ (6)

2.3. Odometry Errors: Systematic and Non-Systematic

The main disadvantage of odometry is its unbounded accumulation of errors in the
evaluation of the trajectory of a mobile robot (see Equation (4)). The error sources that cause
inaccuracies in the determination of the odometry depend largely on the type of terrain
practiced by the mobile robot [3], and are classified as systematic and non-systematic. In
general, the concept of odometry calibration is focused on the minimization of systematic
errors because they remain constant during the displacement. In general, the errors affecting
the orientation of the mobile robot have the worst cumulative effects because once they are
incurred they grow into lateral position errors [23,24].

2.3.1. Systematic Odometry Errors

Systematic odometry errors are usually invariant because they are caused by inaccura-
cies and imperfections in the mechanical implementation of the robot, such as mismatches
between the nominal and effective parameters, or by limited sensors capabilities, resolution
and sampling rate. Borenstein et al. [3] concluded that the systematic errors that have
greater effects in the odometry are caused by unequal wheel diameters and placement
accuracy in the wheelbase, which is the distance between the point of contact of the wheel
with the floor and the center of the robot. Systematic errors accumulate constantly, so they
are usually the main contributors to positioning errors in smooth indoor terrains.

2.3.2. Non-Systematic Odometry Errors

Non-systematic odometry errors are not possible to predict, because they are origi-
nated by unpredictable features of the environment such as terrain irregularities, terrain
obstacles, structural wheel slippage during specific motions, wheel slippage originated by
the terrain conditions, or the application of external forces to the mobile robot. However,
this paper is applied to a mobile robot operating in perfect flat indoor terrains, so the
assumption is that the motion will not be affected by non-systematic odometry errors.

2.4. Systematic Odometry Error Sources in a Three-Wheeled Omnidirectional Mobile Robot

The exact theoretical value of the inverse of the compact kinematic matrix M−1 com-
puted with the nominal values of the kinematic parameters (Ra = Rb = Rc = 0.195 m,
ra = rb = rc = 0.148 m and δa = 60◦, δb = 180◦, δc = 300◦) evaluated using a standard double
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precision floating-point format (IEEE 754-1985: 4-bytes data or 64-bit data, precision 1.11 ×
10−16 [25]) is:

M−1 =

⎡⎣ −0.0854478398400646 0.0000000000000000 0.0854478398400646
0.0493333333333333 −0.0986666666666667 0.0493333333333333
0.2529914529914529 0.2529914529914529 0.2529914529914529

⎤⎦ (7)

The simple numerical representation of the exact values of the coefficients of the
inverse of the compact kinematic matrix M−1 of the mobile robot APR-02 intuitively
indicates that any inaccuracy in the values of the kinematic parameters may cause a large
impact in the generation of systematic errors during the cumulative evaluation of the
odometry (see Equation (4)).

In a real mobile robot application, the effective values of the kinematic parameters
Ra, Rb, Rc, ra, rb, rc, δa, δb, δc can differ from the nominal values due to imprecisions in the
manufacturing process and then originate systematic errors in the cumulative computation
of the odometry of a mobile robot. The following figures are proposed to graphically
illustrate the uncertainties that appear in the determination of the exact or effective value
of the kinematic parameters of a real mobile robot. Figure 3 shows two views of one omni-
directional wheel of the motion system of the mobile robot APR-02 and a representation of
its radius ra. Even in this case in which the wheel cover is thin and smooth, the accurate
determination of the radius of the wheel is very difficult and will have some uncertainty be-
cause of the difficulty in the estimation of the point of contact with the floor [26]. Similarly,
Figure 4 shows two views of the representation of the distance to the center of the mobile
robot. Figure 4a shows the effect of a vertical wheel misalignment (exaggerated in this
case) and Figure 4b the effect caused by the point of contact with the floor. Finally, Figure 5
shows two views of the effect of angular wheel misalignment that can be caused by the
application of non-uniform pressure to the screws that hold the motor to the wheelbase
through a rubber piece designed to absorb vibrations. These figures clearly reveal that
manufacturing inaccuracies and assembly imprecisions will originate crossed systematic
errors in the odometry of the omnidirectional mobile robot.

(a) (b)

Figure 3. General view (a) and detail (b) of the wheel radius and the point of contact of the wheel
with the floor: ra depicts the nominal radius (green font and lines) and r′a the real or effective radius
(red font and lines).
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(a) (b)

Figure 4. General view (a) and detail (b) of the point of contact with the floor and the distance from
the wheel to the center of the mobile robot: Ra depicts the nominal or design value (green font and
lines) and R′

a the real or effective value (representing R′
a as the average value of R′′

a and R′′′
a , red font

and lines).

(a) (b)

Figure 5. General view (a) and detail (b) of the angular orientation of the front-left wheel (wheel a)
relative to the mobile robot frame: δa depicts the nominal or design value (green font and lines) and
δ′a is the real or effective value (red font and lines).

Finally, Tables 1–3 show the analytic determination of the sensitivity of the kinematic
matrix M−1 to the kinematic parameters of the wheels, computed form Equation (6). These
tables show very high sensitivities in the array values of M−1, a matrix that is used to
cumulatively update the position and location of the mobile robot 100 times per second
(See Equation (4)). In the case of the distance from the center of the robot to each wheel, the
maximum individual sensitivity of M−1 is as high as 0.43 mm/s for each millimeter of error
in the determination of the real value of (Ra, Rb, Rc). In the case of the radii of the wheels,
the maximum individual sensitivity of M−1 is as high as 1.70 mm/s for each millimeter of
error in the determination of the real value of (ra, rb, rc). Finally, in the case of the angular
orientation of each wheel, the maximum individual sensitivity of M−1 is 0.14 mm/s for
each angular arc degree error in the determination of the real value of (δa, δb, δc).
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Table 1. Sensitivity of M−1 to the values of the nominal kinematic parameters of the wheel a.

ΔM−1

ΔRa
|

Ra=0.195 m
ΔM−1

Δra
|

ra=0.148 m
ΔM−1

Δδa
|

δa=60◦⎡⎣ 0.1461 0.1461 0.1461
−0.0843 −0.0843 −0.0843
−0.4325 −0.4325 −0.4325

⎤⎦ ⎡⎣ −0.5774 0.0000 0.0000
0.3333 0.0000 0.0000
1.7094 0.0000 0.0000

⎤⎦ ⎡⎣ 0.0000 0.0493 −0.0493
0.0000 −0.0285 0.0285
0.0000 −0.1461 0.1461

⎤⎦

Table 2. Sensitivity of M−1 to the values of the nominal kinematic parameters of the wheel b.

ΔM−1

ΔRb
|

Rb=0.195 m

ΔM−1

Δrb
|

rb=0.148 m

ΔM−1

Δδb
|

δb=180◦⎡⎣ 0.0000 0.0000 0.0000
0.1687 0.1687 0.1687

−0.4325 −0.4325 −0.4325

⎤⎦ ⎡⎣ 0.0000 0.0000 0.0000
0.0000 −0.6667 0.0000
0.0000 1.7094 0.0000

⎤⎦ ⎡⎣ 0.0000 0.0000 0.0000
−0.0570 0.0000 0.0570

0.1461 0.0000 −0.1461

⎤⎦

Table 3. Sensitivity of M−1 to the values of the nominal kinematic parameters of the wheel c.

ΔM−1

ΔRc
|

Rc=0.195 m
ΔM−1

Δrc
|

rc=0.148 m
ΔM−1

Δδc
|

δc=300◦⎡⎣ −0.1461 −0.1461 −0.1461
−0.0843 −0.0843 −0.0843
−0.4325 −0.4325 −0.4325

⎤⎦ ⎡⎣ 0.0000 0.0000 0.5774
0.0000 0.0000 0.3333
0.0000 0.0000 1.7094

⎤⎦ ⎡⎣ −0.0493 0.0493 0.0000
−0.0285 0.0285 0.0000
−0.1461 0.1461 0.0000

⎤⎦

2.5. Ground Truth Trajectory

The calibration procedure proposed in this work requires the development of several
motion experiments conducted in a controlled, clean and structured area, without obstacles
on the floor and with plain and clean surrounding walls. During these motion experiments
the odometry and the ground truth (or real) trajectory of the mobile robot are registered
for offline calibration analysis. The trajectory estimated with the odometry is based on
relative onboard information that is prone to cumulative systematic errors (see Section 2.4).
The trajectory estimated from the precise information provided by the onboard LIDAR
(providing 1.081 points per scan and a radial distance range up to 30 m) and processed
with SLAM [8] is assumed as the ground truth trajectory of the mobile robot [20] because
the absolute LIDAR information gathered in this clean conditions is not prone to systematic
errors. The trajectory estimated with the odometry is based on relative onboard information
that is prone to cumulative systematic errors (see Section 2.4) while the ground truth
trajectory estimated with the precise onboard LIDAR is based on an absolute description
of the structured environment around the mobile robot that is not prone to systematic
errors. This procedure to obtain the ground truth trajectory was used previously in [20].
In case an accurate onboard LIDAR is not available, it will be necessary to obtain the
ground truth trajectory using other means such as an external laser tracker [27,28] or
external cameras [29].

Figure 6a shows a representation of the odometry and ground truth trajectories,
which are usually different because of the existence of systematic odometry errors. The
values represented are: the starting point of the mobile robot (xi, yi, θi), the motion com-
mand applied M = (v, α, ω, tr), the true final position and orientation estimated with
SLAM

(
xgt f , ygt f , θgt f

)
, and the final position and orientation of the mobile robot es-

timated with the odometry
(

x f , y f , θ f

)
. In each motion experiment the mobile robot

also registers all intermediate information needed to replicate the offline computation
of the odometry and ground truth trajectories in order to perform the calibration of
the odometry. The information registered is (see Figure 6b): a vector containing the
sequence of instantaneous angular velocities of the three wheels and the elapsed time
E(k = 1 . . . n) = [t(k), [ωa(k), ωb(k), ωc(k)]], where n is the number of velocity samples
available; a vector containing the position of the mobile robot estimated by the odometry
O(k = 1 . . . n) = [t(k), [x(k), y(k), θ(k)]]; and a vector containing the ground truth position
GT(p = 1 . . . m) = [t(p), [xgt(p), ygt(p), θgt(p)]] estimated with SLAM. Please note that
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t(k) is the time in which a new estimation of the instantaneous angular velocities of the
wheels E(k) is provided by the encoder. This time can be computed as t(k) = k·T or
t(k) = t(k − 1) + T, where T is the sampling time of the PIDs; in the APR-02 this value is
T = 10 ms. The odometry information O(k) is computed from E(k), so it is defined by the
same time sequence t(k). Alternatively, t(p) is the time in which a new raw scan L(p) is
provided by the LIDAR. This time can be computed as t(p) = t(p − 1) + Dp, where Dp
ranges from 200 ms to 300 ms depending on the time required by the control system of
the mobile robot to apply SLAM and estimate GT(p). This variation is because the control
system waits to request a new LIDAR scan until the SLAM procedure finishes, so this time
lapse will be different depending on the time needed to apply SLAM from the raw LIDAR
scans.

(a)

(b)

Figure 6. Representation of the ground truth trajectory of the mobile robot (orange line) and the
trajectory estimated with the odometry (green line): (a) complete trajectories; (b) angle and distance
differences between the trajectory positions estimated with the odometry and the SLAM procedure.

The hypothesis of this paper is then that the odometry trajectory will be correct and
exact when this trajectory matches the ground truth (real) trajectory of the mobile robot.

Figure 7 shows the final position results obtained when the mobile robot APR-02
repeats the same calibration trajectory five times, starting each trajectory with the same
initial position and angular orientation. Figure 7 represents the zoomed information of the
planned final destination of the mobile robot (black dot and line) when the mobile robot
completes a simple straight trajectory, the ground truth trajectory (orange dotted line) and
ground truth final position and orientation of the mobile robot (orange circle and line), and
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the trajectory (green dotted line) and final mobile robot position and orientation estimated
with the odometry (green square and line). The results of Figure 7 reveal the existence of
systematic differences between the odometry and ground truth trajectories. This paper
proposes the reduction of such differences by applying an iterative calibration procedure to
the kinematic parameters used to estimate the odometry of the mobile robot APR-02.

Figure 7. Planned trajectory (back dotted line) zoomed at the planned ending position and orientation
of the mobile robot (black point and line); measured ground truth trajectories (orange dotted line)
detailing the final position and orientation of the mobile robot (orange circle and line); and measured
odometry trajectory (green dotted line) detailing the ending position and orientation of the mobile
robot (green circle and line).

2.5.1. Distance and Angular Errors during a Trajectory

The determination of the distance and angular errors between the odometry trajectory
points O(k = 1 . . . n) and the ground truth trajectory points GT(p = 1 . . . m) require the
subsampling of the original odometry trajectory in order to have an odometry trajectory
vector with the same length as the ground truth vector. The subsampled odometry trajectory
vector OSS(p = 1 . . . m) = [t(p), [x(p), y(p), θ(p)]] is then obtained by searching for the
nearest t(k) and t(p) values (see Figure 6b). The distance and angle error vectors are then
computed as:

distanceerror(p) =
√
(xgt(p)− x(p))2 + (ygt(p)− y(p))2 (8)

angleerror(p) =
√
(θgt(p)− θ(p))2 (9)

2.5.2. Maximum Error in a Trajectory

The determination of the maximum distance and angular error between the odometry
and ground truth trajectory is obtained from the distance error vector and the angle error
vector, respectively, using:

MaximumErrorDistance = max(distanceerror(p = 1 . . . m)) (10)

MaximumErrorAngle = max(angleerror(p = 1 . . . m)) (11)
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2.5.3. RMS Error in a Trajectory

The determination of the Root Mean Square error (RMSE) that summarizes the differ-
ences between the odometry and ground truth trajectory are computed using:

RMSEdistance =

√√√√∑m
p=1

(
distanceerror(p)2

)
m

(12)

RMSEangle =

√√√√∑m
p=1

(
angleerror(p)2

)
m

(13)

2.5.4. Cost Function Summarizing Trajectory Differences

The cost function used in this paper to summarize in one single value CF the overall
differences (position and angular orientation) between the odometry and ground truth
trajectories is computed from the final position of the mobile robot using:

CF =

√(
xgt f − x f

)2
+
(

ygt f − y f

)2
+
(

θgt f − θ f

)2
(14)

This cost function value CF will be used to guide the iterative odometry calibration
procedure in order to tune the effective kinematic parameters of the mobile robot. This cost
function was also used by Savaee et al. [15] to calibrate the effective kinematic parameters
of a comparable omnidirectional mobile robot. This cost function implicitly applies the
same weights to a final positioning with a distance error of 1 m or an angular arch error of
1◦. We have selected this cost function because a small angular error usually has a large
cumulative effect in the odometry of an omnidirectional mobile robot.

2.6. Iterative odometry Calibration Procedure

This paper proposes the application of an iterative calibration procedure to tune or ad-
just the effective value of the kinematic parameters of the mobile robot: Ra, Rb, Rc, ra, rb, rc,
δa, δb, δc, used to compute the M−1 matrix. These kinematic parameters have been described
in Section 2.2 and represented graphically in Figure 2. The planned result of the iterative
calibration procedure is a better match between the odometry and ground truth mobile
robot trajectories.

Figure 8 depicts the flowchart of the iterative odometry calibration procedure. The
iterative process starts with the nominal or theoretical values of the kinematic parame-
ters of the mobile robot (Ra, Rb, Rc, ra, rb, rc, δa, δb, δc), which are used to compute a first
estimation of the M−1 matrix. Then, the iterative process uses the initial position and
orientation of the mobile robot (xi, yi, θi) and the sequence of angular rotational velocities
of the wheels obtained from the encoders E(k = 1 . . . n) = [t(k), [ωa(k), ωb(k), ωc(k)]] to
compute the odometry trajectory O(k = 1 . . . n) of the mobile robot and estimate the final
position and angular orientation of the mobile robot

(
x f , y f , θ f

)
= O(k = n). Then, the

cost function is used to compare this estimate of final position and orientation of the mobile
robot

(
x f , y f , θ f

)
with its true position and orientation

(
xgt f , ygt f , θgt f

)
= GT(p = m).
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Figure 8. Flowchart of the complete calibration procedure.

The iterative minimization function evaluates the cost function and decides between
repeating the loop with new values of the kinematic parameters or stopping the iterative
minimization search. The final result of this iterative procedure is an improved or corrected
M−1 matrix ready to better estimate the odometry of the mobile robot APR-02. The
nonlinear minimization functions evaluated in this paper are based on gradient search
and genetic algorithms (GA). In both cases, the inputs and genome of the minimization
functions are the initial values of the kinematic parameters parami defined as:

parami = (0.195, 0.195, 0.195, 0.148, 0.148, 0.148, 60.000, 180.000, 300.000) (15)

And the upper (paramub) and lower (paramlb) bounds proposed to guarantee the
physical interpretation of the results:

paramub = (0.220, 0.220, 0.220, 0.158, 0.158, 0.158, 62.000, 182.000, 302.000)

paramlb = (0.170, 0.170, 0.170, 0.138, 0.138, 0.138, 58.000, 178.000, 298.000)
(16)

The specific search functions used in this paper are:
Fmin search function. The implementation of a gradient search nonlinear minimiza-

tion to calibrate the odometry is based on the Matlab function fmincon.m, which is a
nonlinear multivariable function that attempts to iteratively find the local unconstrained
minimum of an objective multivariate cost function summarized in a value CF evaluated
within specific bounds. In this calibration application, the search will use parami as the
initial population and paramlb and paramub as the lower and upper bounds of the iterative
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search. The stopping criteria of this iterative search is a change in CF less than the default
value of the parameter StepTolerance (10−10) with a maximum constraint violation less
than the default value of the parameter Constraint Tolerance (10−6) before reaching the
maximum number of iterations that is usually defined as the number of variables of parami
multiplied by 100 (900).

GA search function. The implementation of a genetic algorithms (GA) minimization
to calibrate the odometry is based on the Matlab function ga.m, which will attempt to
iteratively find the local unconstrained minimum of an objective multivariate cost function
summarized in a value CF evaluated within specific bounds. The inputs and outputs of
the iterative search are the same as in the previous function. The initial population and
bounds for the GA algorithm are defined using the Matlab function gaoptimset.m in the
parameters InitialPopulation and PopInitRange. This iterative search stops if the average
relative change in the best fitness of the cost function CF is less than or equal to the default
value of the parameter FunctionTolerance (10−6).

3. Systematic Odometry Error Evaluation and Correction

The procedure proposed in this paper to systematically evaluate and correct the
systematic odometry errors of the omnidirectional mobile robot APR-02 is based on the
definition of 36 individual calibration trajectories which together depict a flower-shaped
figure, on the measurement of the odometry and ground truth trajectory in each calibration
trajectory, and on the application of several strategies to iterative adjustment of the effective
value of the kinematic parameters to match the odometry and the ground truth trajectories
registered in these 36 calibration trajectories. The implementation of the 36 trajectories
that define the flower-shaped figure is proposed as a representative test-bench of the
infinite trajectories that can perform this omnidirectional mobile robot. In this paper, each
calibration trajectory has been repeated 10 times; with a total of 360 registered trajectories.
Five repetitions will be used to calibrate the effective value of the kinematic parameters
and Five repetitions will be used to validate the results.

3.1. Calibration Trajectories Depicting a Characteristic Flower-Shaped Figure

This paper proposes the improvement of the odometry of the omnidirectional mobile
robot APR-02 using a set of specific individual calibration trajectories that globally depict a
characteristic flower-shaped figure. Figure 9 shows the proposed trajectories and Table A1
(listed in Appendix A) presents the motion command required to implement each cali-
bration trajectory and the values of the corresponding target angular rotational velocities
of the wheels required to implement each trajectory that will be specific for each mobile
robot type.

The target angular velocities of the wheels shown in Table A1 (Appendix A) are in
revolutions per minute (rpm) because this unit is normally used by the PIDs controlling the
angular rotational velocity of the motors of the mobile robot. The calibration trajectories
comprise straight displacements (Figure 9, red line labeled with an R followed with a
number), clockwise displacements (blue line labeled with a B followed with a number),
and counterclockwise displacements (green line labeled with a G followed with a number).
These 36 combinations of angular rotational velocities of the wheels are a short repre-
sentation of the infinite set of possible motion combinations. The linear displacement
of all trajectories has been limited to 1 m in order to generate a characteristic and easy
to remember flower-shaped figure. In this paper, each trajectory has been repeated and
registered 10 times in a total of 360 trajectory experiments. Each trajectory register contains
the sequence of instantaneous angular velocities of the three wheels E(k = 1 . . . n), where
n is the number of samples available; the vector containing the position of the mobile
robot estimated by the odometry O(k = 1 . . . n); and the vector containing the ground truth
position GT(p = 1 . . . m) estimated by the SLAM procedure.
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Figure 9. Representation of the ideal flower-shaped trajectories proposed to calibrate the odometry
of the omnidirectional mobile robot APR-02.

The adequacy of the trajectories proposed in Figure 9 to the calibration of the odometry
mobile robot APR-02 will be evaluated in the following section.

3.2. Odometry Calibration Strategies and Results

The odometry calibration strategies tested in this paper are based on analysis of the
calibration trajectories proposed in Figure 9. The iterative calibration procedure used has
been previously described in Section 2.6. In summary, this iterative calibration gets the
registered calibration trajectories and iteratively adjusts the values of the effective kinematic
parameters to globally match the odometry and ground truth trajectories.

Table 4 presents the results obtained: Trajectories depicts which trajectories have been
used in the iterative search; Strategy shows the acronym of the calibration strategy applied;
Method describes the iterative function used (GA or fmin) and the number of trajectory
repetitions used in the iterative search: (1) one or (5) five repetitions; M−1 shows the
value of the kinematic matrix obtained as a result of the iterative search; CFCALIBRATION
is the value of the average cost function obtained during the iterative search or training;
CFVALIDATION is the average value of the cost function obtained with five additional calibra-
tion trajectories (the complete flower-shape); Improvement depicts the relative improvement
of CFVALIDATION relative to the uncalibrated case (None strategy).
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Table 4. Trajectories, calibration strategies and results obtained.

Trajectories Strategy Method M−1 CFCALIBRATION CFVALIDATION Improvement

All None -

⎡⎣ −0.0854 −0.0000 0.0854
0.0493 −0.0987 0.0493

0.2530 0.2530 0.2530

⎤⎦ - 0.1242 -

R1, R5, R9

STA

GA1
⎡⎣ −0.0866 0.0015 0.0891

0.0517 −0.1012 0.0536
0.2567 0.2552 0.2539

⎤⎦ 0.0214 0.1215 2.18%

Fmin1
⎡⎣ −0.0881 0.0009 0.0876

0.0497 −0.1024 0.0517
0.2594 0.2588 0.2565

⎤⎦ 0.0228 0.1386 −11.61%

GA5
⎡⎣ −0.0849 0.0043 0.0909

0.0503 −0.1014 0.0507
0.2559 0.2560 0.2561

⎤⎦ 0.0202 0.1267 −2.03%

Fmin5
⎡⎣ −0.0883 0.0007 0.0874

0.0505 −0.1015 0.0509
0.2569 0.2593 0.2598

⎤⎦ 0.0192 0.1436 −15.62%

B2, B6, B10, G12, G4,
G8

STB

GA1
⎡⎣ −0.0898 −0.0010 0.0851

0.0533 −0.1000 0.0567
0.2379 0.2340 0.2335

⎤⎦ 0.0170 0.0333 73.19%

Fmin1
⎡⎣ −0.0862 −0.0009 0.0835

0.0479 −0.0964 0.0496
0.2404 0.2352 0.2369

⎤⎦ 0.0503 0.0691 44.36%

GA5
⎡⎣ −0.0894 −0.0011 0.0860

0.0525 −0.0999 0.0539
0.2369 0.2340 0.2350

⎤⎦ 0.0166 0.0232 81.36%

Fmin5
⎡⎣ −0.0857 0.0003 0.0844

0.0477 −0.0966 0.0486
0.2393 0.2356 0.2376

⎤⎦ 0.0525 0.0677 45.52%

R1 . . . R12

STC

GA1
⎡⎣ −0.0907 −0.0030 0.0844

0.0512 −0.1014 0.0520
0.2579 0.2559 0.2567

⎤⎦ 0.0264 0.1278 −2.92%

Fmin1
⎡⎣ −0.0883 −0.0005 0.0871

0.0515 −0.1014 0.0524
0.2494 0.2472 0.2479

⎤⎦ 0.0258 0.0817 34.2%

GA5
⎡⎣ −0.0861 0.0018 0.0891

0.0511 −0.1015 0.0523
0.2585 0.2565 0.2573

⎤⎦ 0.0273 0.1308 −5.31%

Fmin5
⎡⎣ −0.0881 −0.0001 0.0873

0.0512 −0.1015 0.0524
0.2497 0.2475 0.2483

⎤⎦ 0.0264 0.0832 33.00%

B1 . . . B12, G1 . . .
G12

STD

GA1
⎡⎣ −0.0897 −0.0002 0.0864

0.0524 −0.1001 0.0530
0.2373 0.2346 0.2364

⎤⎦ 0.0199 0.0248 80.05%

Fmin1
⎡⎣ −0.0852 0.0009 0.0844

0.0490 −0.0968 0.0492
0.2398 0.2361 0.2383

⎤⎦ 0.0539 0.0660 46.89%

GA5
⎡⎣ −0.0892 −0.0004 0.0874

0.0518 −0.1027 0.0533
0.2365 0.2333 0.2358

⎤⎦ 0.0202 0.0261 78.98%

Fmin5
⎡⎣ −0.0851 0.0009 0.0845

0.0489 −0.0967 0.0490
0.2393 0.2358 0.2383

⎤⎦ 0.0554 0.0665 46.43%

All

STE

GA1
⎡⎣ −0.0895 −0.0007 0.0867

0.0528 −0.1002 0.0537
0.2367 0.2346 0.2355

⎤⎦ 0.0212 0.0226 81.83%

Fmin1
⎡⎣ −0.0859 0.0008 0.0851

0.0497 −0.0983 0.0501
0.2421 0.2397 0.2408

⎤⎦ 0.0591 0.0636 48.82%

GA5

⎡⎣ −0.0893 −0.0006 0.0867
0.0521 −0.1010 0.0533
0.2364 0.2341 0.2354

⎤⎦ 0.0221 0.0222 82.14%

Fmin5
⎡⎣ −0.0859 0.0007 0.0850

0.0495 −0.0982 0.0501
0.2418 0.2394 0.2406

⎤⎦ 0.0603 0.0634 48.97%

The calibration strategies shown in Table 4 have been generally labeled as STX-GAZ
and STX-FminZ, where X describes the group of trajectories considered (from A to E); GA
refers to the use of the ga.m iterative function and Fmin to the fmincon.m iterative function;
and Z is the number of repetitions of each calibration trajectory considered, a value that
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can be 1 or 5. The evaluation of each calibration strategy with one or five repetitions was
proposed to compare the achievements obtained relative to the additional effort required
to obtain 5 repetitions of each calibration trajectory. The calibration strategies evaluated in
Table 4 are:

None. This strategy provides a reference evaluation result of the cost function
CFVALIDATION using the uncalibrated kinematic parameters to compute the odometry
of the 5 repetitions of all calibration trajectories registered to validate the results.

STA. This strategy uses only the straight calibration trajectories corresponding to a
forward motion and two additional motions at ±120◦ (Figure 9, trajectories: R1, R5 and
R9). For example, STA-GA1 uses one repetition of the straight calibration trajectories and
genetic algorithms, whereas STA-Fmin5 uses five repetitions of the straight calibration
trajectories evaluated with the nonlinear multivariable function.

STB. This strategy uses only the curved clockwise and counterclockwise trajecto-
ries corresponding to a forward motion and two additional motions at ±120◦ (Figure 9,
trajectories: B2, B6, B10, G12, G4 and G8).

STC. This strategy uses only the straight trajectories corresponding to a forward
motion and eleven additional motions at ±30◦ (Figure 9, trajectories from R1 to R12).

STD. This strategy uses only the curved clockwise and counterclockwise trajectories
corresponding to a forward motion and eleven additional motions at ±30◦ (Figure 9,
trajectories from B1 to B12 and from G1 to G12).

STE. This strategy uses all the straight and curved paths that depict the characteristic
flower-shaped figure (Figure 9, all calibration trajectories).

3.3. Discussion of the Results Obtained with the Odometry Calibration Strategies

The results of the calibration strategies evaluated in Table 4 show that the evaluation
of straight trajectories usually generates worse validation results than curved trajectories. It
is likely that straight target trajectories (Table A1: R1 . . . R12) are less representative of the
motion because they only use three different angular rotational velocities: ±11.291, ±19.557
and ±22.583 rpm, while the curved trajectories cover six angular velocities (Table A1). In
general, the best results of the iterative search are obtained with GA, probably because GA
is less prone to local minimum converge.

The best calibration result (CFCALIBRATION = 0.0166) was obtained with the strategy
STB-GA5, using GA and five repetitions of only six curved calibration trajectories, also with
very good validation results (CFVALIDATION = 0.0232). A similar result was obtained with
the strategy STB-GA1, using only one repetition of these six curved calibration trajectories
(CFCALIBRATION = 0.0170), confirming the representativeness of the curved calibration
trajectories. The strategies STB-GA1 and STB-GA5 represent a huge improvement of 73.1%
and 81.3% in the average validation of CFVALIDATION relative to the uncalibrated case.

The best validation result (CFVALIDATION = 0.0222) was obtained with the strategy
STE-GA5, using GA and 5 repetitions of all 36 calibration trajectories (180 training ex-
periments). However, a very similar result was also obtained using GA and with only 1
repetition of all training trajectories (STE-GA1, 36 experiments, CFVALIDATION = 0.0226).
The improvements obtained in the validation of STE-GA1 and STE-GA5 were 81.8% and
82.1% respectively, so the conclusion is that both strategies are valid to calibrate the kine-
matic parameters of the mobile robot APR-02.

Table 5 compares the differences between the nominal and calibrated kinematic pa-
rameters obtained with STE-GA5. Unexpectedly, the differences between the nominal
and calibrated values of the distance from the wheels to the center of the mobile robot
(Ra, Rb, Rc) are higher than 10%, likely caused by the bending of the structure that supports
the wheels (wheelbase). The differences in the effective values of the radii of the wheels
(ra, rb, rc) are in a range from 2 to 5%, probably caused by the complex assembly of the
wheels. Finally, the values of the angular orientation of the wheels (δa, δb, δc) vary within a
very small range (0.18% and 0.52%), confirming the good alignment of the wheels and DC
motors during the assembly of the mobile robot.
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Table 5. Nominal and calibrated kinematic parameters (strategy STE-GA5) of the mobile robot.

Ra (m) Rb (m) Rc (m) ra (m) rb (m) rc (m) δa (◦) δb (◦) δc (◦)

Nominal 0.195 0.195 0.195 0.148 0.148 0.148 60.0 180.0 300.0
Calibrated 0.218643 0.215735 0.216287 0.155068 0.151534 0.152728 59.7397 179.6820 301.5735
Difference 12.13% 10.63% 10.92% 4.78% 2.39% 3.19% −0.43% −0.18% 0.52%

The exact value of the best inverse of the compact kinematic matrix M−1 computed
from the effective value of the kinematic parameters obtained with STE-GA5 is:

MSTEGA5
−1 =

⎡⎢⎣ −0.0892930568372762 −0.0005606566978203 0.0867466159313470
0.0520955668635434 −0.1010213675626970 0.0533117820461363
0.2364093797047320 0.2341358647406650 0.2353792947863630

⎤⎥⎦ (17)

Finally, Table 6 summarizes the average RMS errors and average maximum errors ob-
tained with the uncalibrated and calibrated kinematic parameters. These validation results
have been obtained with the five repetitions of the 36 calibration trajectories registered for
validation (180 validation experiments). Table 6 shows that the improvement computed
from the validation value of the cost function (82.1%) is representative of the trajectory
improvements achieved. The application of the calibrated kinematic parameters showed
an improvement of 67% in the evaluation of the RMS error distance between the odom-
etry trajectory and the ground truth trajectory, and an improvement of 71% in the RMS
error evaluation of the absolute difference between the angular orientation of the mobile
robot during these trajectories. The application of the calibrated kinematic parameters
also showed a reduction in the maximum absolute differences between the odometry and
ground truth trajectories, which have been reduced from 76 mm to 23 mm and from 5.86◦
to 1.77◦. Similar improvements have been obtained in the error in the determination of the
final location and angular orientation of the mobile robot that has been reduced from 74
mm to 16 mm and from and from 5.32◦ to 0.73◦. Figure 10 shows the application of the
calibrated odometry to the trajectories shown previously in Figure 7, which correspond to
five repetitions of the R1 calibration trajectory.

Table 6. Summary of the average trajectory errors obtained with the uncalibrated and calibrated
kinematic parameters.

RMS Error Max Error Final position error CFVALIDAT IONDistance
(m)

Abs(angle)
(◦)

Distance
(m)

Abs(angle)
(◦)

Distance
(m)

Abs(angle)
(◦)

Uncalibrated 0.040 3.00 0.076 5.86 0.074 5.32 0.1242
Calibrated (STE-GA5) 0.013 0.86 0.023 1.77 0.016 0.73 0.0222

Improvement 67.00% 71.22% 68.99% 69.82% 78.38% 86.24% 82.14%
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Figure 10. Planned trajectory (back dotted line) zoomed at the planned ending position and orienta-
tion of the mobile robot (black point and line); measured ground truth trajectories (orange dotted
line) detailing the final position and orientation of the mobile robot (orange circle and line); and
odometry trajectories measured after calibration (green dotted line) detailing the ending position and
orientation of the mobile robot (green circle and line).

4. Discussion and Conclusions

This paper proposes a general procedure to evaluate and correct the systematic odom-
etry errors of a real three-wheeled omnidirectional mobile robot (1.760 m, 30 kg) designed
as a versatile personal assistant tool. This procedure is based on the definition of 36 repre-
sentative straight and curved calibration trajectories which together depict a characteristic
flower-shaped figure.

The odometry and ground truth trajectories measured while performing each one
of these calibration trajectories are measured and registered for later offline fitting of the
kinematic parameters of the mobile robot in order to match these two trajectories. This
paper has evaluated the use of different trajectory subsets and the use of two iterative
matching strategies based on gradient search minimization and genetic algorithms. The best
matching between odometry and ground truth trajectories has been obtained using genetic
algorithms and five repetitions of all calibration trajectories. The fitting of the kinematic
parameters has shown differences higher than 10% in the distance from the wheels to the
center of the mobile robot (Ra, Rb, Rc), and between 2 and 5% in the radii of the wheels
(ra, rb, rc). This approach has the advantage of the feasible physical interpretation of the
fitting results in the omnidirectional mobile robot.

The fitting results have been validated with five new additional repetitions of all
these measured trajectories, providing an average improvement of 82% in the evaluation
of the multivariable cost function that compares the final position and orientation of the
mobile robot. The best performances of the genetic algorithm agree with the results of
Savaee et al. [15], and confirm that the mutation and combinations generated during the
search based on genetic algorithms has the best chance to detect the global minimum of the
multivariate function that summarizes the differences between the odometry and ground
truth trajectories of the mobile robot. In this case, the genetic algorithm search (strategy
STE-GA5) required 187 iterations and 37.545 function counts to meet the stopping criteria.

The final conclusion of the comparative calibration analysis performed in this work
is that the use of curved calibration trajectories is more representative to calibrate the
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kinematic parameters of an omnidirectional mobile robot. This conclusion agrees with
Batlle et al. [17], who proposed the use of four curved trajectories for general omnidirec-
tional mobile robot calibration, and with Maddahi et al. [11], who concluded that the
performance of a calibration procedure depends on the type of trajectory analyzed.

Future works will analyze the application of this procedure to different units of the same
mobile robot type in order to validate its application in a general manufacturing stage.
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Appendix A

Table A1. Description of the motion commands and the corresponding target angular velocities of
the wheels corresponding to the calibration trajectories shown in Figure 9.

Trajectory
Motion Command Target Angular Velocities (rpm)

v (m/s) α(◦) ω(rad/s) d(m) ωMa ωMb ωMc

R1 0.35 0 0 1.0 −19.557 0.000 19.557
R2 0.35 30 0 1.0 −11.291 −11.291 22.583
R3 0.35 60 0 1.0 0.000 −19.557 19.557
R4 0.35 90 0 1.0 11.291 −22.583 11.291
R5 0.35 120 0 1.0 19.557 −19.557 0.000
R6 0.35 150 0 1.0 22.583 −11.291 −11.291
R7 0.35 180 0 1.0 19.557 0.000 −19.557
R8 0.35 210 0 1.0 11.291 11.291 −22.583
R9 0.35 240 0 1.0 0.000 19.557 −19.557
R10 0.35 270 0 1.0 −11.291 22.583 −11.291
R11 0.35 300 0 1.0 −19.557 19.557 0.000
R12 0.35 330 0 1.0 −22.583 11.291 11.291
G1 0.35 0 0.35 1.0 −15.154 4.404 23.961
G2 0.35 30 0.35 1.0 −6.888 −6.888 26.986
G3 0.35 60 0.35 1.0 4.404 −15.154 23.961
G4 0.35 90 0.35 1.0 15.695 −18.179 15.695
G5 0.35 120 0.35 1.0 23.961 −15.154 4.404
G6 0.35 150 0.35 1.0 26.986 −6.888 −6.888
G7 0.35 180 0.35 1.0 23.961 4.404 −15.154
G8 0.35 210 0.35 1.0 15.695 15.695 −18.179
G9 0.35 240 0.35 1.0 4.404 23.961 −15.154
G10 0.35 270 0.35 1.0 −6.888 26.986 −6.888
G11 0.35 300 0.35 1.0 −15.154 23.961 4.404
G12 0.35 330 0.35 1.0 −18.179 15.695 15.695
B1 0.35 0 −0.35 1.0 −23.961 −4.404 15.154
B2 0.35 30 −0.35 1.0 −15.695 −15.695 18.179
B3 0.35 60 −0.35 1.0 −4.404 −23.961 15.154
B4 0.35 90 −0.35 1.0 6.888 −26.986 6.888
B5 0.35 120 −0.35 1.0 15.154 −23.961 −4.404
B6 0.35 150 −0.35 1.0 18.179 −15.695 −15.695
B7 0.35 180 −0.35 1.0 15.154 −4.404 −23.961
B8 0.35 210 −0.35 1.0 6.888 6.888 −26.986
B9 0.35 240 −0.35 1.0 −4.404 15.154 −23.961
B10 0.35 270 −0.35 1.0 −15.695 18.179 −15.695
B11 0.35 300 −0.35 1.0 −23.961 15.154 −4.404
B12 0.35 330 −0.35 1.0 −26.986 6.888 6.888
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Abstract: This work proposes a new interface for the teleoperation of mobile robots based on virtual
reality that allows a natural and intuitive interaction and cooperation between the human and
the robot, which is useful for many situations, such as inspection tasks, the mapping of complex
environments, etc. Contrary to previous works, the proposed interface does not seek the realism
of the virtual environment but provides all the minimum necessary elements that allow the user to
carry out the teleoperation task in a more natural and intuitive way. The teleoperation is carried out
in such a way that the human user and the mobile robot cooperate in a synergistic way to properly
accomplish the task: the user guides the robot through the environment in order to benefit from the
intelligence and adaptability of the human, whereas the robot is able to automatically avoid collisions
with the objects in the environment in order to benefit from its fast response. The latter is carried out
using the well-known potential field-based navigation method. The efficacy of the proposed method
is demonstrated through experimentation with the Turtlebot3 Burger mobile robot in both simulation
and real-world scenarios. In addition, usability and presence questionnaires were also conducted
with users of different ages and backgrounds to demonstrate the benefits of the proposed approach.
In particular, the results of these questionnaires show that the proposed virtual reality based interface
is intuitive, ergonomic and easy to use.

Keywords: virtual reality interface; mobile robot teleoperation; obstacle avoidance; mobile robot
navigation; motion planning

1. Introduction

1.1. Motivation

The main area of this work is mobile robots, which play an increasingly primary
role in our society. Due to rapid development of AI, powerful lithium batteries, and low-
power microchips, mobile robots are becoming cheaper, available to more people, and
introduced in various areas of life, taking more significant roles in society and removing
labor-intensive jobs in such areas as rescue operations [1–3], space exploration [4–6], military
application [7,8] industrial use [9–11], underwater exploration [12–14], and healthcare
applications [15–17], among others.

While many approaches can be found in the literature regarding the automatic con-
trol and navigation of this kind of robot, most of the mentioned applications imply the
interaction between humans and robots. This collaboration is usually done in such a way
that the human guides the robot remotely while the robot navigates in a hostile and/or
dangerous environment for the human. However, many approaches do not develop a natu-
ral and intuitive interaction for the human [18–21] and, hence, the resulting human–robot
cooperation may be dismissed.

This paper develops a new virtual reality-based interface for mobile robot navigation
in unknown scenarios, providing an intuitive and natural interaction for the user.
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1.2. Literature Review

The main object of this work is the teleoperation of robotic systems, in general, and
mobile robots, in particular. The teleoperation or remote control of robotic systems by
humans has been deeply studied in the past decades [22] and is still an ongoing tendency
in research. Robot teleoperation is carried out for many reasons: to operate in hazardous
environments (e.g., radioactive zones [23,24], aerial zones [25,26], underwater areas [27,28],
or in space [29]); to conduct accurate surgeries [30–33]; to perform rescue operations [34], etc.

Recently, advanced artificial intelligence (AI) techniques have facilitated the automa-
tion of many complex operations that previously had to be conducted using robot teleop-
eration. Nevertheless, there are still many robot applications that cannot be completely
automated due to their subjectivity or complexity. However, these partially automated
tasks can significantly benefit from human–robot cooperation by means of shared-control
architectures [35]. In this sense, many contributions have been developed focusing on the
human–robot interaction in teleoperation tasks [21,36–42], as is the case of this work.

Telepresence [22] provides the user with an interface which makes the direct control
task less dependent on his or her skills and concentration. Telepresence for direct control
teleoperation is a strong trend in recent research developments due to the introduction
of visual interfaces [30], virtual and augmented reality [39], haptic devices [43], or a
combination of them [31,40,44]. For example, the authors in [22] provided the user with
an interface which makes the direct control task less dependent on his or her skills and
concentration. The authors in [37] proposed an approach where one arm of a bimanual
robot is teleoperated to grasp a target object, while the other develops an automatic task of
visual servoing to keep the object in sight of a camera and avoid occlusions, thus making
the teleoperation easier.

The success of telepresence lies directly upon the skills of the user who performs
the teleoperation [9,45]. For this reason, many current approaches propose to incorporate
constraints to avoid the user commanding the robot in a wrong way. For instance, in [32]
virtual fixtures (i.e., virtual barriers) were included to automatically modify the reference
position provided by the user in order to confine it within the allowed area. In [24,43],
haptic devices were used to prevent the user from commanding reference positions beyond
certain limits.

However, assisted teleoperation with telepresence interfaces and virtual barriers is
still an ongoing research field due to its drawbacks, since the control is still held by the
human [36]. In this regard, this article proposes to use the well-known potential field-based
navigation method together with virtual reality devices to improve the current assisted
teleoperation of mobile robots.

Virtual Reality-Based Interfaces

Technical advances in the development of virtual environments (VE) and virtual real-
ity (VR) headsets and devices for the video games industry [46,47] or social media [48,49]
have now made it possible to develop applications related to human–robot interaction. In
particular, in mobile robot applications, some interesting works using VR can be found.
For instance, the authors in [9] proposed an VR interface for training operators, who tele-
operated the movement of a mobile robot with two arms for industrial pick-and-place
tasks, and tested it with several users to determine the improvement obtained. Authors
in [50] provided an approach to reduce the effects of time delays during the teleoperation
based on VR and optimization data techniques. Authors in [51] developed a VR simulator
that recreated a team of selective compliance assembly arms (SCARA) to include cloud
resources to help users to improve the task performance. Authors in [52] presented an
immersive SLAM-based VR system for the teleoperation of mobile manipulators in un-
known environments. In this approach, the user totally guides the mobile robot, which is
constrained into a limited area. A 3D real-time environment reconstruction map is shown
in the VE, allowing the user to “see” the real environment.
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The majority of the studies relating VR and the teleoperation of mobile robots are
focused on improving the task performance (i.e., reducing the time needed to complete
the operation, and incorporating real elements in the VE). However, to the best of the
authors’ knowledge, few of them are focused on human–robot interaction aspects: interface
ergonomics, quality of the interface, ease of interaction with virtual elements, interfer-
ence of the virtual elements with the task target, etc. Note that the improvement of all
these features, which is the main goal of this work, can be decisive for the success of the
developed interface.

1.3. Proposal

This paper proposes a new virtual reality-based interface for the teleoperation of
mobile robots in unknown scenarios. The proposed interface is designed to be natural
and immersive to the user, reducing the learning process of the interface. The proposed
interface is fully described in the article, and its efficacy is experimentally demonstrated
using the mobile robot Turtlebot3 Burger. In addition, a complete study with users of
different ages and backgrounds is detailed to determine the quality and usability of the
proposed interface.

Concretely, this work presents several contributions as highlighted below:

• Unlike the works mentioned above, this work presents an intuitive interface designed
to teleoperate mobile robots in totally unknown environments. To do this, the user is
able to guide the robot through the environment in order to benefit from the intelli-
gence and adaptability of the human, whereas the robot is able to automatically avoid
collisions with the objects in the environment in order to benefit from its fast response.

• Contrary to the aforementioned works, the proposed interface does not seek the
realism of the virtual environment but provides all the minimum necessary elements
that allow the user to carry out the teleoperation task in a more natural and intuitive
way. Hence, the proposed interface establishes different virtual elements (e.g., mobile
robot, user reference, 2D map of the environment, information related to the robot
or task, and the 3D position of the objects detected in real-time, among others) that
allow the user to quickly interact with the interface and successfully perform the robot
teleoperation task.

• In contrast to the works about virtual reality interfaces mentioned above, where virtual
reality controllers are used for interacting with the virtual environment, this work
proposes the use of gamepads to carry out this interaction. Thus, this work aims
to improve the ergonomics of the user, allowing them to teleoperate the robots in a
natural way for long periods of time.

• This work is focused on improving the interaction between human users and interfaces
for the teleoperation of mobile robots. In this sense, in addition to conventional studies,
similar to those carried out in the abovementioned works to establish the viability and
efficiency of the proposed interface, this work also carries out a study of the experience
lived by users of different ages, gender and backgrounds when using the proposed
interface in order to establish its degree of naturalness and intuition.

1.4. Content of the Article

The content of the article is as follows. Section 2 describes the VR-based interface
developed in this work. Subsequently, the interface functionalities, performance and effec-
tiveness of the proposed VR-based interface are shown in Section 3 through experimental
results. Moreover, the usability of the interface as well as other aspects are also studied in
Section 3 through several questionnaires and tests conducted with users of different ages
and backgrounds. Finally, some conclusions are outlined in Section 4.
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2. Proposed Application

2.1. Overview

The application developed in this work consists of two workspaces: the local workspace
in which the VR headset is used and the remote workspace in which the robotic system
operates, as shown in Figure 1.

LDS-Sensor

High-level
controller

Robot
controller

REMOTE WORKSPACELOCAL WORKSPACE

Commands to
the robot

Distance to the
detected objects

User

Gamepad

VR
headset

Virtual
environment

The user commands
the robot by dragging

the virtual target
with the gamepad

Robot target
in the virtual
environment

Robot position
in the real

environment

Figure 1. Remote human–robot interaction using VR with data from LDS sensor and the robot odometry.

In the local workspace, the user is able to visualize the robot and its environment by
wearing the VR headset. Without loss of generality, this work uses the Oculus Quest 2 VR
headset [53], with a LCD screen with a resolution of 1832 × 1920 pixels per eye and refresh
frequency of up to 90 Hz, 6 GB of RAM, and a Quadcomm Snapdragon XR2 processor. In
addition, this device allows standalone applications.

In this work, the Unity Real-Time Development Platform [54] is used to develop the
virtual environment. Hence, the real robot is modeled and included in the virtual world.
The location of the detected obstacles in the virtual world is updated according to that of
the corresponding real-world objects, which is obtained online from sensor measurements.
In particular, in the proposed application, the robot configuration is obtained reading the
pose (i.e., position and orientation) values from the robot controller, whereas the accurate
location of the detected objects is obtained using a 360º laser distance sensor (LDS) mounted
on top of the robot.

In addition, a gamepad device is used to allow the user to drag the reference through
the virtual workspace, thus resulting in the movement of both real and virtual robots. A
Bluetooth communication is established between the gamepad and the VR headset. In this
work, the Xbox wireless controller (gamepad) [55] is used. Note that virtual reality headsets
use a different set of controllers [53], one per hand, to allow free movement to the user
in order to achieve a better virtual reality experience. However, the ergonomics of these
controllers is not developed for applications such as the one presented in this work, which
is more related to conventional games. Hence, this paper proposed the use of gamepads,
which is more intuitive, known by users and ergonomic for robot teleoperation applications.

In the remote workspace, the high level controller of the robot receives the position
command from the VR application, which corresponds to the reference position in the
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virtual workspace that is given by the movement performed by user with the gamepad. The
controller also receives from the LDS mentioned above the distance between the detected
objects and the mobile robot boundary. Thus, according to these values, the high-level
controller computes a proper robot velocity and commands the corresponding wheel speed
values to the robot controller. In particular, the high-level controller used in this work
is based on the well-known potential field method: on the one hand, the distance to the
obstacles measured by the LDS sensor is used to compute a “repulsive” force in order to
avoid collisions with the obstacles in the environment; on the other hand, the reference
position provided by the user at every time instant is used to compute an “attractive” force.
Therefore, this type of controller is purely reactive to the user teleoperation commands and
to the obstacles surrounding the mobile robot. Thus, there is no kind of high-level planning
and, hence, there is no a priori path to be followed. More details about the mentioned
high-level controller for the robotic system are given in Section 2.3.

Without loss of generality, this work uses a commercial mobile robot, the Turtlebot3
Burger [56], which is equipped with two servos Dynamixel XL430-W250-T for the wheels,
an OpenCR (32-bit ARM Cortex-M7) embedded controller (Robot controller), a Raspberry
Pi-3 (High-level controller) and a 360º LiDAR sensor (LDS), see [56] for further details. The
electronic and mechanical behavior of this mobile robot, as well as the low-level frequency
control and time delays of the embedded controller developed by the robot manufacturer,
are sufficient to carry out the validation of the approach proposed in this work. However,
custom low-level controllers could be developed in order to improve its behavior.

2.2. Virtual Environment

The virtual environment consists of an “infinite” floor divided by a grid of 1m side
squares. The user can modify the height of this floor to accommodate it to his/her point
of view. The rest of the elements are put over this floor. In order to help the user to
have a quick idea of the distance between objects, each square of the grid is divided into
four small squares of 0.5 m of the side, depicting a mosaic of gray colors that allows to
easily distinguish one from the others. In addition, a dark theme to the sky is chosen to
facilitate the user visibility of the relevant elements present in the VE; see Figure 2. Next, a
description of each element and the functionality of the proposed VE are detailed.

Figure 2 shows the main elements of the proposed VE. As commented before, the
Turtlebot3 Burger mobile robot for the experimental sections is used in this work; see
Section 3 for further details. The 3D model, representing the robot in the virtual space,
consists of the main structure (body, in blue), the LDS sensor attached to the body, and the
wheels of the mobile robot (in gray). It is worth mentioning that, in the virtual environment,
the wheels rotate independently of each other to simulate the real movement of the robot.
Note that in the proposed approach, the user does not directly move the mobile robot; rather,
the user indicates the reference position that the robot has to track. If this reference position
can be reached by the robot, the robot will move to the indicated location. Otherwise,
the robot will hold on as close as possible to the indicated reference position, avoiding
collisions with the obstacles in its environment. As shown in Figure 2a, the reference
position provided by the user, which has to be tracked by the mobile robot, is represented
as a blue circle, whereas the detected obstacles are represented by a set of quads getting
into virtual brown “walls”; see Figure 2b,d. The transparency, color and height of these
“walls” are chosen to indicate the presence of obstacles without disturbing the visibility of
the user during the teleoperation task.

In addition, a 2D map is also developed to allow the user to have an orthogonal view
of the 3D environment; see Figure 2a,b. The 2D map can be activated and deactivated by
the user at any moment by pressing and releasing, respectively, a stick of the gamepad.
Moreover, when the 2D map is activated, the user can still command the robot and simulta-
neously modify the map view, i.e., zoom in/out or move around the map. The user can
see the following information in the 2D map: the detected objects (in yellow); the robot
position (blue circumference); the reference position (green circumference); and a 1 m side
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square grid to easily locate the different elements in the map. Once the teleoperation task is
finished, the user can save the 2D resulting map generated.

Furthermore, the user can activate a panel showing relevant task information, such
as robot speed or the remaining distance to the target. This information automatically
disappears after 3 s to reduce the number of command buttons.

(a) (b) (c)

(d) (e) (f)

Figure 2. VE overview. (a) The 2D map view and 3D view. (b) Requested information data. (c) Tele-
porting (blue arrowed circle). (d) Detected objects (elements in brown). (e) Mobile robot boundary
(full view). (f) Mobile robot boundary (local view). 2D map: robot (blue circumference in (a));
reference (green circumference in (a)); detected objects (yellow points in (a,b)). 3D environment:
reference (blue circle in (a)); system information (i.e., robot velocity and distance to the target) in (b);
teleporting (blue arrowed circle in (c)); detected objects (brown walls in all figures); mobile robot
boundary as a circle (2D) or cylinder (3D) (red–yellow elements in (e,f)).

Note that, if the proposed element for the mobile robot boundary (i.e., the circle in
2D or cylinder in 3D; see Figure 2e) was shown at any moment, the user view of the robot
and the other virtual objects would be difficult and may affect the user task performance.
In order to overcome this, a new shader was developed [57] to measure the minimum
distance between the detected obstacles and the mobile robot boundary. In this way, only
the affected part of the boundary element is displayed. In addition, as the closest obstacle
approaches to the mobile robot boundary, the corresponding part of the boundary element
is gradually displayed; see Figure 2f.
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Moreover, the user is allowed to move through the VE in two ways:

• Physically: the VR headset position and orientation is tracked at any moment and,
hence, the user is able to move through the environment as if they were in the real
workspace (In general, this movement is limited by a security region free of obstacles
established a priori. To avoid this problem, one possibility could be the use of VR
omnidirectional treadmills [58]).

• Teleporting: the user can “jump” from their current position to another position in the
environment using the gamepad. Figure 2c shows the designed teleporting element,
which consists of an animated blue arrowed circle. This element is designed according
to the standard representation of teleporting in most current VR applications. Note
that, when the teleporting option is activated, the user cannot simultaneously move
the reference position of the robot for security reasons.

Finally, two types of sounds are developed to increase the feeling of reality in the VE:

• The movement of the robot produces a characteristic sound due to the robot servos,
whose treble variation depends on the speed of the robot. To give it more realism, this
sound is recorded directly from the actual sound of the robot moving at low speeds.
The treble change of this base sound is carried out proportionally to the speed of the
wheels, producing a real sensation of movement of the robot in the VE. This sound
effect cannot be disabled by the user. In addition, this is a 3D sound that changes
depending on the distance from the user to the robot position, providing the user with
a more realistic level of immersion in the task.

• An alarm sound is also included to warn the user of collisions between the robot
boundary and the obstacles in its environment. As in the previous case, this is also
a 3D sound. However, contrary to the later, the user is allowed to deactivate this
warning sound, since the nature of the proposed assisted teleoperation approach can
lead to situations where the user, for instance, takes the robot to areas where collisions
occur, or takes the robot to very tight zones where collisions cannot be avoided. In
either case, the user’s attention would be on the robot, so the visual effect of the
boundary alone would suffice. Note also that this warning sound for long periods
could become annoying.

2.3. High Level Controller: Mobile Robot Navigation with the Potential Field-Based Method

The well-known conventional potential field-based method [59] is typically used for
mobile robot navigation with collision avoidance. In particular, this approach consists of
using virtual forces, i.e., attractive and repulsive forces, to determine the robot movement,
as detailed below.

The commonly used attractive and repulsive forces have the following form [60]:

Fatt = Katt

(
pre f − p

)
(1)

Frep =

{
Krep

(
ρ−1 − ρ−1

0

)
ρ−2∇ρ if ρ < ρ0

0 otherwise,
(2)

where vector Fatt is the attractive force to the reference; vector Frep is the repulsive force from
the obstacles; the positive constants Katt and Krep represent the gains of the attractive and
repulsive forces, respectively; vectors pre f and p are the reference position and the actual
robot position, respectively; ρ is the minimum distance from the obstacles to the mobile
robot boundary; vector ∇ρ represents the gradient of the mentioned minimum distance,
i.e., a vector pointing from the closest obstacle to the mobile robot boundary; and ρ0 is a
positive constant denoting the distance of influence of the obstacles for the repulsive force.

Thus, the sum of all “forces” determines the magnitude and direction of the robot
motion as follows:

ṗt,c = Fatt + Frep, (3)
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where vector ṗt,c represents the commanded value for the velocity of the robot tracking
point, i.e., the point of the mobile robot that tracks the reference signal.

Next, the specific mobile robot used in this work for the experimentation is taken into
account to compute the minimum distance ρ between the detected obstacles and the mobile
robot boundary, as well as the commands for the robot wheel velocities.

As mentioned before, due to the shape of the Turtlebot3 Burger, the 2D boundary for
the mobile robot is simple modeled in this work as a circle (Without loss of generality, other
2D boundaries could also be considered for other specific mobile robots, e.g., a square or
an ellipse, details omitted for brevity). Therefore, the minimum distance ρ between the
detected obstacles and the mobile robot boundary is given by

ρi = R−2
(

P2
x,i + P2

y,i − R2
)

ρ = min{ρi},
(4)

where R is the radius of the circle used to model the mobile robot boundary, Pi = [Px,i Py,i]
T

is the 2D position of the i-th detected point of the obstacles relative to the center of the
boundary circle, and ρi is the normalized distance from point Pi to the boundary circle.
Note that this normalized distance has no units.

Since the Turtlebot3 Burger is a differential-drive mobile robot [61], the tracking point
considered in this work is located on the longitudinal symmetry axis of the mobile robot
and at a distance M from the rotation axle of the fixed wheels [62]. Hence, the commanded
value for the mobile robot motion is given by [63][

vc
ωc

]
=

[
cos(θ) sin(θ)

− sin(θ)/M cos(θ)/M

]
ṗt,c (5)[

ϕ̇r,c
ϕ̇l,c

]
= r−1

[
1 L/2
1 −L/2

][
vc
ωc

]
, (6)

where θ is the orientation angle of the mobile robot relative to the X-axis; r is the radius
of the fixed wheels of the robot; L is the distance between the robot wheels; vc and ωc are
the commanded value for the forward and angular velocities, respectively, of the mobile
robot; and ϕ̇r,c and ϕ̇l,c are the commanded value for the angular velocity of the right and
left wheels, respectively.

3. Results

With respect to the remote workspace hardware, Figure 3 shows the two different
platforms that were used to demonstrate the suitability and effectiveness of the proposed ap-
proach. Figure 3a shows the simulator setup using Gazebo [64,65], whilst Figure 3b shows
the real platform. In both cases, the robot used was the Turtlebot3 Burger, a differential-
drive mobile robot equipped with two servos Dynamixel XL430-W250-T for the wheels, an
OpenCR (32-bit ARM Cortex-M7) embedded controller (Robot controller), a RaspBerry Pi-3
(High-level controller), and an LDS, see [56] for further details. Obstacles with different
shapes such as cylinders, ellipsoids (rounded corners) or boxes (sharp corners) were used
in both platforms. Remark that the correct measurement of the distance from the mobile
robot to the obstacles in the environment directly depends on the sensors used and the
typology of the obstacle to be detected. In this work, an LDS sensor is sufficient to properly
detect the obstacles used in the real experimentation. However, for objects with different
characteristics (e.g., reflective materials and irregular shapes) other appropriate sensors
(e.g., vision system, infrared sensors and ultrasonic sensors) could be required to obtain a
proper obstacle detection so that these sensors could complement or replace the one used
in this work.

With respect to the local workspace hardware, the Oculus Quest 2 VR headset [53]
and the Xbox Wireless Controller (gamepad) [55] were used.
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The communication protocol between the robot high-level controller and the VR
headset was via Wi-Fi Ethernet TCP/UDP. The LSD data were updated at 1 Hz, and the
robot pose (i.e., position and orientation) and user commands were updated at 20 Hz. The
communication protocol between the VR headset and the Xbox wireless controller was
via Bluetooth.

Robot

Obstacles

Robot

Obstacles

(a) (b)

Figure 3. Experimental setup: remote environment. (a) Simulation setup. (b) Real setup.

The parameter values used for the high level controller of the robot are as follows: po-
tential field-based method {ρ0 = 0.35, Katt = 0.75, Krep = 1}; robot kinematics {L = 0.16 m,
M = 0.052 m, r = 0.033 m}; and boundary circle with radius R = 0.18 m and center located
at the mobile robot tracking point.

3.1. Case Study 1: Virtual Application Functionalities and Behavior

A first experiment was conducted to show the proposed VE and its functionalities,
which can be played in [66]. In this case, the Turtlebot3 Burger model using the Gazebo
simulator was used, and the environment consisted of a cylinder obstacle and four rectan-
gles defining the allowed square region; see Figure 3a. In particular, Figure 4 shows several
frames of this experiment, whilst Figure 5 shows the trajectory and control performance
of the overall experiment. The user can activate the 2D map option to see an orthogonal
representation of the environment with the “discovered objects”, and the location of the
robot and the reference; see Figure 4a. The user is able to activate the task information
data, e.g., robot velocity or target distance, at any moment; see Figure 4b. Note that these
data depend on the application, and it would be easy to add the required information into
the panel. Figure 4c shows the teleporting functionality. We remark that when this option
is activated, the user cannot move the robot reference for security reasons. The obstacle
avoidance capability can be seen from Figure 4c–f. Note that even though the user guides
the reference through the cylinder obstacle, the robot successfully avoids this obstacle
and reaches the reference when possible. This behavior can be better seen in Figure 5a,b.
The repulsive force of the potential field-based navigation method becomes active around
time instant 57 s when the distance ρ between the detected obstacles and the mobile robot
boundary becomes lower than threshold ρ0, see Figure 5a and Equation (2), causing the
robot deviation from the trajectory marked by the reference (see Figure 5b). Note also
that when the mentioned repulsive force is deactivated, i.e., when the distance ρ between
the detected obstacles and the mobile robot boundary becomes larger than threshold ρ0
(see Equation (2)), the robot returns to the path of the reference. Note that a so-called
“trap situation” arises around time instant 115 s, i.e., the forward and angular velocities
of the mobile robot are approximately zero; see Figure 5a. This is due to the fact that the
robot has reached a corner; see position X = Y = 2.5 m in Figure 5b. Remark that these
trap situations are typically present in potential field-based control schemes, and could
be overcome if the user “helps” the robot in guiding the reference to an area reachable by
the robot.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Case study 1: Frames of the video showing the functionalities of the proposed VR-based
interface. See the video in [66]. (a) video: 0 min 16 s. (b) video: 0 min 21 s. (c) video: 0 min 39 s.
(d) video: 0 min 43 s. (e) video: 0 min 49 s. (f) video: 0 min 57 s. (g) video: 1 min 00 s. (h) video:
1 min 05 s.

65



Appl. Sci. 2022, 12, 6071

50 100 150
0

1

2

ρ

50 100 150
0.1

0

0.1

v c
[m

/s
]

50 100 150
Time [s]

0.1

0

0.1

ω
c
[r
a
d
/
s]

(a)

0

0.5

1

1.5

2

2.5

3

Y
 [

m
]

00.511.522.53
X [m]

(b)

Figure 5. Case study 1: robot control performance. (a) Top graph: normalized distance ρ between the
detected obstacles and the mobile robot boundary (the dashed line represents the distance threshold
ρ0 for the activation of the repulsive force). Middle and bottom graphs: linear and angular velocity
commands for the mobile robot. (b) 2D robot trajectory: starting robot position (small orange circle);
ending robot position (small green diamond); robot trajectory (red dashed line); user reference
trajectory (solid black line); and obstacles (solid-thick blue lines).

In the video recording, the 3D sound effect can also be appreciate , i.e., both servo
sounds and warning sounds are local to the robot, and the user perceives these sounds
differently depending on the distance between the robot and the user.

3.2. Case Study 2: Real Robot Behavior

A second experiment was conducted to demonstrate the feasibility and suitability
of the proposed virtual reality interface to control a real mobile robot. Figure 3b shows
the remote environment used for this case study, which includes several obstacles located
strategically to cause challenging situations, such as the avoidance of obstacles with round
and sharp corners and trap situations. The video of this experiment can be played in [67].

For this second experiment, Figure 6 shows the normalized distance ρ between the de-
tected obstacles and the mobile robot boundary together with the control velocity commands.

Moreover, Figure 7 shows several frames of this experiment related to the obsta-
cle avoidance capability of the robot and how this is depicted in the VE. In particular,
Figure 7a,c show the robot performance when avoiding an obstacle with rounded shape;
see the time interval 45–74 s in the graphs of Figure 6a. Note that the robot deviates from the
reference trajectory when the repulsive force of the potential field-based navigation method
becomes active (i.e., ρ < ρ0) (see the top graph in Figure 6a), and tries to go back to the
reference once the mentioned repulsive force is deactivated, i.e., when ρ > ρ0. In addition,
Figure 7d–f show the robot performance when avoiding an obstacle with sharp corners;
see time interval 85–97 s in the graphs of Figure 6a. As in the previous case, the activation
of the repulsive force during this time span allows the mobile robot to successfully avoid
this kind of obstacle (Figure 6b).

In addition, Figure 8 depicts several frames of this experiment to show how the robot
deals with a trap situation, which occurs around time interval 137–175 s, see Figure 6a. As
commented above, this behavior is typically present in potential field-based approaches
and, in this case, the user successfully assists the robot to escape from this trap situation by
guiding the reference trajectory to an area reachable by the robot.
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Figure 6. Case study 2: robot control performance. (a) Top graph: normalized distance ρ between the
detected obstacles and the mobile robot boundary (the dashed line represents the distance threshold
ρ0 for the activation of the repulsive force). Middle and bottom graphs: linear and angular velocity
commands for the mobile robot. (b) The 2D robot trajectory: starting robot position (small orange
circle); ending robot position (small green diamond); robot trajectory (red dashed line); user reference
trajectory (solid black line); and approximate location of the real obstacles (solid-thick blue lines).
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(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Case study 2: frames of the video showing obstacle avoidance situations. (a) video: 0 min
45 s. (b) video: 0 min 56 s. (c) video: 1 min 8 s. (d) video: 1 min 19 s. (e) video: 1 min 28 s. (f) video:
1 min 38 s.

(a) (b)

(c) (d)

Figure 8. Case study 2: frames of the video showing a trap situation. (a) video: 2 min 20 s. (b) video:
2 min 32 s. (c) video: 2 min 42 s. (d) video: 2 min 55 s.

3.3. Usability Analysis Results

Similar to [68–70], several methods, such as the usability tests of applications, which
are traditionally used to validate hardware and software, together with users’ interviews,
were conducted to show the advantages of the proposed approach.

Remark that most of the works proposing a new virtual reality interface for robot
applications show its performance for just one user. However, there are few researchers that
conduct some kind of usability test to prove its performance with several participants. For
instance, in [7], a virtual reality application for the teleoperation of military mobile robotic
systems was presented, and 15 participants were considered to prove its performance.
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In [71], 10 participants were considered to validate a human–robot collaborative control
in a virtual reality-based telepresence system. Finally, in [9], 11 participants were used to
validate the mixed reality interface developed for robot teleoperation.

Note that the mentioned works considered a similar number of participants, ranging
from 10 to 15 participants, and with an average value of 12. Therefore, 11 participants were
selected in this work for the usability and presence questionnaires.

It is important to remark that considering a specific sample size gives rise to a certain
margin of error [72]. In particular, for a sample of 11 participants and considering a
confidence level of 95% and unlimited population size, the margin error is only 29.55%,
which means that there is a 95% chance that the real value is within ±29.55% of the value
obtained with the selected sample, which is fairly reasonable.

Furthermore, in order to have a representative sample, the 11 participants selected for
the comparison experiment had different backgrounds. The main information about these
participants is the following: 54.55% of the participants were female, whilst the remaining
45.45% were male; it was pretended to cover the maximum age range such that 18.18% of
the participants were under 18 years old, 18.18% of them were between 18 and 40 years old,
18.18% of them were between 40 and 55 years old, 27.27% of them were between 55 and
70 years old, and 18.18% of the participants were older than 70 years old. With respect to
their level of studies, 72.73% of the participants indicated basics studies, 18.18% of them
indicated bachelor studies, and 9.09% of the participants indicated post-grade studies.
In addition, 81.82% of the participants indicated that they had never used virtual reality
headsets, whilst the remaining 18.18% of them indicated to have some experience with
virtual reality applications and devices. Moreover, 63.64% of the participants indicated
not having experience with video games and/or gamepad devices, whilst 36.36% of the
participants indicated being video game players.

The procedure followed to conduct the tests was as follows. Firstly, a brief description
of the virtual reality devices and robotic applications was given to each participant. Note
that the task to be performed was to guide the mobile robot to a certain location to perform
a rescue operation in the shortest possible time in an unknown environment. Hence, in
second place, training was performed by each participant to become used to the VE and the
control device (i.e., gamepad controls). In this case, the same scenario shown in Section 3.1
(see Figure 3a) with the Gazebo-based robot model was used. The training took around
15 min per participant.

After the training, the participant performed the required “rescue operation”. In this
case, a complete different scenario was used (see Figure 9) which was modeled using
Blender 2.93 [73]. A demonstrative video can be played in [74]. All participants successfully
performed the task, and the average time to complete it was 5 min 7 s, with a standard
deviation of 17 s.

(a) (b)

Figure 9. Circuit used in the usability and presence tests. (a) Blender-made circuit. (b) Gazebo environment.

69



Appl. Sci. 2022, 12, 6071

After the test, the participants were asked to complete three standard questionnaires:
the presence questionnaire (PQ) [75,76], the Igroup Presence Questionnaire (IPQ) [77–79],
and the system usability scale (SUS) [80]. The PQ and IPQ questionnaires were chosen
because they are widely used to evaluate the sense of presence in VEs, the realism, the
interface and chosen devices quality, among other factors. The SUS questionnaire was used
to test the usability of the proposed interface because it is short, concise and widely used.

The PQ was conducted in order to evaluate the user experience in the VE [75]. Twenty
four of the twenty nine total questions of the third version of the PQ questionnaire were
selected according to the nature of the proposed application; see Table 1. The PQ uses a
seven-point Likert-type scale and has four subscales: involvement, sensor fidelity, immersion
and interface quality.

Table 1. Questions of the PQ questionnaire [75,76].

PQ1 How much were you able to control events?

PQ2 How responsive was the environment to actions that you initiated (or performed)?

PQ3 How natural did your interactions with the environment seem?

PQ4 How much did the visual aspects of the environment involve you?

PQ5 How natural was the mechanism which controlled movement through the environment?

PQ6 How compelling was your sense of objects moving through space?

PQ7 How much did your experiences in the virtual environment seem consistent with your
real world experiences?

PQ8 How compelling was your sense of moving around inside the virtual environment?

PQ9 How completely were you able to actively survey or search the environment using vision?

PQ11 How well could you move or manipulate objects in the virtual environment?

PQ12 How closely were you able to examine objects?

PQ13 How well could you examine objects from multiple viewpoints?

PQ14 How much did the auditory aspects of the environment involve you?

PQ15 How well could you identify sounds?

PQ16 How well could you localize sounds?

PQ17 Were you able to anticipate what would happen next in response to the actions that
you performed?

PQ18 How quickly did you adjust to the virtual environment experience?

PQ19 How proficient in moving and interacting with the virtual environment did you feel at
the end of the experience?

PQ20 How well could you concentrate on the assigned tasks or required activities rather
than on the mechanisms used to perform those tasks or activities?

PQ21 How much delay did you experience between your actions and expected outcomes?

PQ22 How much did the visual display quality interfere or distract you from performing
assigned tasks or required activities?

PQ23 How much did the control devices interfere with the performance of assigned tasks or
with other activities

PQ24 How much did the control devices interfere with the performance of assigned tasks or
with other activities

Figure 10 shows the results of the PQ. Concretely, Figure 10a shows the mean and
standard deviation for each question of the PQ, whilst Figure 10b shows the mean, standard
deviation and total percentage for each PQ subscale. In particular, the Involvement score was
95.19% with a standard deviation of 6.61, which means that the users paid close attention to
the virtual reality environment and actively participated in all aspects present. The sensor
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fidelity score was 99.13% with a standard deviation of 2.26, which means that the users
could observe from multiple views and interact with all objects present in the VE easily and
without problems. The immersion score was 94.48% with a standard deviation of 6.05, which
means that users could adapt themselves quickly and easily to the VE, and could perform
the task without distractions. Finally, the interface quality score was 97.40% with a standard
deviation of 3.92, which means that users did not perceive failures or malfunctions in the
virtual reality interface during the tasks.

(a) (b)

Figure 10. Results of the presence questionnaire. (a) Mean and standard deviation per question.
(b) Subscale results (mean and standard deviation).

On the other hand, the IPQ was conducted in order to measure the sense of presence
experienced by users in the proposed VE [77]. The IPQ is composed of 14 questions used to
evaluate three subscales: spatial presence, i.e., the sense of being physically present in the VE;
involvement, i.e., measuring the attention devoted to the VE and the involvement experience;
and experienced realism, i.e., measuring the subjective experience of realism in the VE. In
addition to this, the IPQ has an additional general item that assesses the general “sense of
being there”, and has high loadings on all three factors, especially on spatial presence. The
IPQ questions are shown in Table 2.

Figure 11 shows the results of the IPQ. Concretely, Figure 11a shows the mean, and
standard deviation for each question of the IPQ, whilst Figure 11b shows the mean, standard
deviation and total percentage for each PQ subscale. In particular, the general presence score
was 94.81% with a standard deviation of 6.87, which indicates that users felt like they
were inside the VE. The spacial presence score was 99.74% with a standard deviation of 0.58,
which means that users felt like they were physically present in the VE. The involvement
score was 92.86% with a standard deviation of 9.51, which is very similar to that of the PQ,
corroborating that users actively participated and focused on all aspects of the VE. Finally,
the experienced realism score was 35.71% with a standard deviation of 42.86, which means
that users felt in any moment that they were in a VE, with no realistic objects present in
there. This coincides with the goal of the proposed approach, which was not to design a
“realistic” scenario but a natural and user-friendly VE to be used in most of the current
commercial VR headsets. Note that increasing realism implies more computational cost
and the use of specialized hardware, i.e., graphic cards.
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Table 2. Questions of the IPQ questionnaire [77–79].

IPQ1 In the computer generated world I had a sense of “being there”

IPQ2 Somehow I felt that the virtual world surrounded me

IPQ3 I felt like I was just perceiving pictures

IPQ4 I did not feel present in the virtual space

IPQ5 I had a sense of acting in the virtual space, rather than operating something from outside

IPQ6 I felt present in the virtual space

IPQ7 How aware were you of the real world surrounding while navigating in the virtual world?
(i.e., sounds, room temperature, and other people)?

IPQ8 I was not aware of my real environment

IPQ9 I still paid attention to the real environment

IPQ11 I was completely captivated by the virtual world

IPQ12 How real did the virtual world seem to you?

IPQ13 How much did your experience in the virtual environment seem consistent with
your real world experience?

IPQ14 The virtual world seemed more realistic than the real world

(a) (b)

Figure 11. Results of the Igroup presence questionnaire. (a) Mean and standard deviation per
question. (b) Subscales results (mean and standard deviation).

Regarding the SUS questionnaire, the overall perceived usability was 90.91 out of
100 (min 77.5; max 100; SD 7.18), which means that the proposed VR-based interface
reached a high level of usability. In addition, Figure 12 shows the results obtained for each
question of the SUS questionnaire, which are detailed in Table 3. Note that most of the
participants would use this interface frequently and found the interface easy to use. The
participants also indicated that all the interface functionalities were well integrated and
that the proposed interface was consistent. Moreover, the participants felt confident with
the interface.
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Table 3. Questions of the SUS questionnaire [80].

SUS1 I think that I would like to use this system frequently

SUS2 I found the system unnecessarily complex

SUS3 I thought the system was easy to use

SUS4 I think that I would need the support of a technical person to be able to use
this system

SUS5 I found the various functions in this system were well integrated

SUS6 I thought there was too much inconsistency in this system

SUS7 I would imagine that most people would learn to use this system very quickly

SUS8 I found the system very cumbersome to use

SUS9 I felt very confident using the system

SUS10 I needed to learn a lot of things before I could get going with this system

Figure 12. Results of the SUS questionnaire (mean and standard deviation).

4. Conclusions

A virtual reality-based interface for advanced assisted teleoperation of mobile robots
was developed in this work to assist human operators to conduct operations, such as
human rescue, bomb deactivation, etc. For this purpose, virtual reality and sensor feedback
were used to provide the user an immersive virtual experience when remotely teleoperating
the robot system in order to properly perform the task.

The main advantages of the proposal are twofold. Firstly, the proposed virtual envi-
ronment is useful to provide a more natural manner to teleoperate these kind of robots,
which improves the task performance. Secondly, the synergistic effect between the human,
who provides flexibility to adapt to complex situations, and the robot, which is able to
automatically avoid the obstacles in its environment, makes the proposed approach user
friendly and allows the robot to deal with challenging situations, e.g., to escape from
trap situations.

Furthermore, the feasibility and effectiveness of the proposed virtual reality interface
for advanced assisted teleoperation of mobile robots were shown through experimental
results, using a differential-drive mobile robot, the Turtlebot3 Burger, equipped with a 360º
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LiDAR sensor. Although in this work, only the robot odometry and LiDAR sensor were
used, the information provided from other sensors, such as vision systems, could be easily
added in order to include in the local environment (virtual world) more information from
the remote environment (real world).

In addition, several usability and presence questionnaires were carried out with users
of different ages and backgrounds. The results showed that the proposed virtual reality
based interface is intuitive, ergonomic and easy to use.

This work assumed that the robot goes through a totally unknown environment. If
there is previous knowledge of the environment, one possibility would be to improve the
teleporting option by showing the “allowed” areas in a blue circle (such as the one shown
in this work) and the “not allowed” areas with a red circle, thus constraining the user
movements within the virtual world.

Moreover, if the environment is totally or partially known, it would be interesting to
introduce a trajectory planner, which in combination with the manual teleoperation carried
out by the human, would lead to a semi-automatic teleoperation mode. In this mode, the
planner would indicate the optimal trajectory to the human operator, who would be free to
follow it or not depending on the situation.

In this work, the well-known potential field-based navigation method was used for the
high-level controller of the mobile robot. However, other controllers could be considered
to improve the performance of the mobile robot navigation in different ways, e.g., sliding
mode control approaches [81] or intelligent model-free control approaches [82] could
be used.
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Abstract: This study deals with the technology of autonomous mobile robots (AMR) and their
implementation on the SmartFactory production line at the Technical University of Ostrava. The task
of the mobile robot is to cooperate with the production line, take over the manufactured products, and
then deliver them. The content also includes a description of the individual steps that were necessary
to make the mobile robot operational, such as loading a virtual map of the space, creating a network
for communication with the mobile robot, and programming it. The main part of the experiment deals
with testing the accuracy of moving the mobile robot to each position and establishing communication
between the production line and the mobile robot. A high accuracy is a necessity in this process. The
result of the study is the configuration of the autonomous mobile robot. The repetitive precision of
the approach of the autonomous mobile robot to a position is ±3 mm.

Keywords: AMR; autonomous; cooperation; MiR robot; SmartFactory

1. Introduction

In general, robots for industry purposes were introduced in 1961 to achieve increasing
elaborate tasks. They occur in tedious and repetitive tasks such as welding, painting,
moving, or cutting with incredible precision [1–4]. These classic commercial robots suffer
from a fundamental disadvantage, a lack of mobility. In contrast, mobile robots were
introduced to be able to travel throughout the manufacturing plant to help flexibly with
manufacturing processes. Fixed robots or robotic manipulators commonly operate in
zones where humans cannot go. Rather, mobile robots share space with humans in human
environments and act like cobots. These robots are not developed for mobility reasons,
but due to their autonomy, their ability to maintain a sense of position and navigate without
human intervention is paramount [2,5].

This work is focused on the application of autonomous industrial mobile robots (AMR).
It is still a relatively new technology that is gradually finding use in industry, but also in
other sectors [2,6,7]. The biggest advantages of autonomous robots include their indepen-
dence and ability to orient themselves in space, without the need for external guidelines
or other elements in the environment. Autonomous mobile robots orient themselves with
the help of advanced sensors [8,9] and a virtual space map. They can be used in the fields
of storage, transport, and production [1,10–12]. Panigrahi and their colleague presented
in their review paper [13] the results of many research papers focused on precise robot
navigation. This problem is not solved yet and it depends on many factors. Most problems
occur due to processing time or position and direction estimation. Furthermore, research
on planning algorithms [14,15] is still in progress and many researchers have also been
testing different types of modern sensors for sensing the map and the actual position of the
robot in the space in combination with the simulation [16,17].

In this paper, we demonstrate a real cooperation between an AMR and
SmartFactory [18]. The study was carried out using a commercial AMR from Mobile
Industrial Robots (MiR), a centralized control station for MiR robots (MiR FLEET), and
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an I/O module for MiR robots (MiR WISE) to create communication between them. Virtual
maps and software (tasks) were created to enable us to experiment. The problem was
the narrow space and the need for a precise approach of the robot to the SmartFactory
premises. Several types of precise markers were used in the experiment. The result was
different accuracies of the entrances. The autonomous mobile robots were then suitably
complemented by the actual implementation of the camera surveillance system. This
allowed the operator to always have an overview of the actual conditions around the robot.

The MiR autonomous mobile robots were chosen for the application. These mobile
robotic platforms are ready for the industrial environment and are equipped with a com-
bination of laser sensors, ultrasonic sensors, and cameras. Together, they allow robots
to move safely around the environment and be able to respond to most types of obsta-
cles [19]. It was also necessary to analyze the functions and behavior of the SmartFactory
production line and then design suitable implementations of an autonomous mobile robot.
The line produced a pair of products, each of them having a different target location, and,
for this reason, a pair of mobile robot implementations, the so-called tasks, was designed.
The MiR100 mobile robot was used to operate the production line.

The main objective of this paper was to provide an analysis of the accuracy of the posi-
tion findings of autonomous mobile robots using marker labeling. This was demonstrated
through an example of an application that links an autonomous mobile robot to SmartFac-
tory. The novelty of the paper is the experiment with different types of markers to get the
most accurate position of the robot in the production line and its statistical evaluation.

Contribution

• This work presents a method of communication of the production line with an au-
tonomous mobile robot MiR100, which is performed wirelessly using an input/output card.

• The autonomous mobile robot MiR100 navigates to the final position using precise
object markers. The maximum repeated accuracy of approaching the position is
±3 mm.

• The work brings a comparison of different types of precise marker objects in relation
to the repeated accuracy of the approach of an autonomous mobile robot in position.
It turns out that not all types of marker objects show the same results.

• The work also describes basic information about industrial mobile robots, its applica-
tions and current research.

2. Autonomous Mobile Robots

This section describes the chosen autonomous mobile robot and its parameters. The se-
lected mobile robots are developed by the MiR company; specifically, a MiR100 model
was found for the demonstration tasks. This mobile robot is designed for transportation
purposes and to automate logistics. Its designation is based on the weight it can transfer
(100 kg). The model is equipped with advanced sensors, which means that the robot moves
autonomously in the environment and responds to surrounding obstacles. Table 1 provides
basic information about the model [19].

The selected model is the smallest one and, thanks to its dimensions, it is possible to
navigate this robot into the production line. The top of the robot is also supplemented by a
superstructure, on which the products from the production line are placed. Figure 1 shows
a photo of the mentioned mobile robot.
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Table 1. Specifications of the MiR100 mobile robot [20].

Property Unit Value

Model — MiR100
Length mm 890
Width mm 580
Height mm 352
Weight kg 70

Max. load capacity kg 100
Max. forward speed m/s 2

Max. backward speed m/s 1.5
Turning radius mm 520

Positioning accuracy mm ±50
Operating time hours 10

Ambient temp. range ◦C 10–40
I/O connectors — USB, Ethernet

Safety I/O connectors — —
Wi-Fi — Dual-band; ac/g/n/b

Bluetooth — 4.0 Low Energy
SICK microScan3 — 2x S300 (360◦)

3D Camera — 2x Intel RealSense™

Figure 1. Mobile robot MiR100.

All configurations and settings of the mobile robot (MiR, MiR FLEET, WISE digital
input, and output cards) are performed via a Web interface. Each web interface is different
according to the needs of a particular device but is very similar in style [10]. The navigation
system is the core of the autonomous mobile robot. Its goal is to plan the route from starting
point A to destination point B. These points are determined by the user, but the journey is
already planned completely, autonomously, and automatically. An advanced navigation
system, which consists of several parts, is responsible for determining the correct route and
navigating the robot to the destination. Figure 2 shows the principle of system operation.
For clarification, it should be noted that IMU is inertial measurement unit.
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Figure 2. Navigation principle of mobile robots [20].

2.1. Navigation System

For the navigation system to be able to find the route, it needs initialization data
according to which it will plan the route. The user enters the information about where the
robot should arrive. However, to plan a route, the mobile robot must also know the space
in which it moves and its current position. For orientation in space, a virtual map is used,
which is stored in the robot’s memory and contains data about all walls and obstacles. This
map must be created before it is possible to use the mobile robot. Once the virtual map
is created, points can be inserted into it through which the robot moves. However, it is
possible to edit the map using zones, landmarks, and special planning rules.

After obtaining all the data for the start of route planning, the route is planned by the
robot itself, which is in charge of the global planning system. This is an algorithm that
generates a route to the desired point. However, it is important that the global planning
system generates the path to the destination only once and follows only the fixed obstacles
that are recorded on the virtual space map. This means that if a new obstacle arises in the
environment of the robot that is not recorded on its virtual map, the global planning system
does not know about this obstacle and plans a journey despite this obstacle. The planned
route is shown on the map or on the dashboard using dots. If the robot cannot complete the
move, planning is terminated with an error message, and the whole mission is suspended.

The local planning system, unlike the global planning system, runs in a continuous
cycle throughout the robot’s operation. Its task is to respond to obstacles in the immediate
vicinity of the robot that are detected by sensors and not recorded on a virtual map. In the
case of detecting an obstacle on a route, the local planning task is to determine the route
through which the mobile robot can bypass the obstacle. If an obstacle is out of range or
out of the sensor’s field of view, the system does not take this obstacle into account. In a
route that is created using global planning, the robot dodges the obstacle only to embrace
the obstacle and then returns to the generated original route. The mobile robot route can be
blocked so that the system cannot find a detour route. In this case, the mobile robot has a
set count of attempts, that is, how many times the robot tries to find a new route. The route
can be blocked, for example, by a person who just walks through and then clears the way.
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If the mobile robot does not find its way in any of the set attempts, it pauses the active
mission and waits for further instructions.

2.2. Obstacle Detection

The obstacle detection system is constantly active, and its main purpose is to detect
obstacles around the robot. Information about the current location of surrounding obstacles
is also used to determine the current position of the mobile robot on the map or when
placing the mobile robot on the map. Three types of sensors are used to detect obstacles.
These are laser sensors, ultrasonic sensors, and 3D cameras.

• Laser sensors: The MiR100 mobile robot is equipped with a pair of SICK S300 laser
sensors. Each sensor has a viewing angle of 270◦ and is placed in opposite corners of
the mobile robot to cover all 360◦ around the robot (Figure 3a). However, these sensors
have several limitations. They can only detect obstacles at a height of 200 mm from
the floor and cannot detect transparent obstacles (glass). For some reflective surfaces,
the data may be inaccurate. False obstructions may be detected when the sensor is
exposed to direct light.

• Three-dimensional cameras: Another way to detect obstacles is with a pair of Intel
RealSenseTM cameras on the front; see Figure 3b. The cameras are intended for indoor
navigation only, not as obstacle detection safety sensors. An important feature is the
ability to detect the height of individual obstacles in the environment. According
to this, the mobile robot can determine whether it will fit under the obstacle or not.
The height of the mobile robot is set manually in the web interface. The pair of cameras
occupy a space from 180 to 1950 mm in front of the robot with a viewing angle of 118◦
and a height of 1800 mm. Three-dimensional cameras also have several limitations.
Unlike 360◦ laser sensors, they can only detect objects in front of a mobile robot.
They cannot detect transparent or reflective objects or steps that descend. Distance
determination may be inaccurate when detecting objects with repeating patterns. False
obstructions can be detected when exposed to direct light.

• Ultrasonic sensors: The robot is equipped with four ultrasonic sensors; see Figure 3c.
Two sensors are located in the back of the mobile robot and two are located in the
front wheels of the mobile robot. Ultrasonic sensors are used to detect obstacles that
could not be detected with a laser sensor or 3D cameras. The front sensors can detect
obstacles of 10 to 200 mm, while the rear sensors detect obstacles at distances of 10 to
350 mm.
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Figure 3. Obstacle detection system [20].

The information from all mentioned sensors has a fundamental effect on the speed of
the robot’s movement in the given space, see Figure 4, Tables 2 and 3. When a mobile robot
travels at low speed, it primarily guards the space and obstacles in its immediate vicinity.
However, if the mobile robot is traveling at a higher speed, it has much more space to be
able to brake if an obstacle occurs. The robot’s speed automatically changes according to
the conditions of the environment in which the mobile robot moves. When the robot moves
forward, it is also taking care of the situation behind him. The maximum speed of the robot
can be limited using commands during mission creation.
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In Zone 1 in Table 2, you can see a negative speed for the forward direction. It should
be noted that in this zone, the robot performs 3 consecutive actions: reversing, stopping,
and slowly moving forward. Zone 5 then shows the maximum forward speed of the robot.
Then, in Zone 1 in Table 2, you can see the positive speed for the backward direction.
It should be noted that in that zone, the robot performs 3 consecutive actions: forward,
standstill, and slowly backward. Zone 5 then shows the maximum backward speed of
the robot.

ForwardBackward

1

2 3 4 5

Figure 4. Mobile robot speed zones scheme [19].

Table 2. Robot speed zones (forward) [20].

Zone Speed (m/s) Guarded Space (mm)

1 −1.4 to 0.2 0 to 20
2 0.21 to 0.4 0 to 120
3 0.41 to 0.8 0 to 290
4 0.81 to 1.1 0 to 430
5 1.11 to 2.0 0 to 720

Table 3. Robot speed zones (backward) [20].

Zone Speed (m/s) Guarded Space (mm)

1 −0.14 to 1.8 0 to 20
2 −0.20 to −0.15 0 to 120
3 −0.40 to −0.21 0 to 290
4 −1.5 to −0.41 0 to 430

3. Analysis of the Use of Mobile Robots in SmartFactory

SmartFactory is a classroom, within a new CPIT TL3 building, specialized in Industry
4.0 technologies such as modern manufacturing processes, robotics, and automation, and a
fully automated production line is also located there. This production line contains a
digitized production process with Industry 4.0 elements such as product variability, predic-
tive maintenance, augmented reality, or digital twins. The 3D model of the SmartFactory
production line can be seen in Figure 5. Here, two types of products are manufactured
in a fully automated process. The line enables product assembly using a fully automated
process, product testing, product inspection, and product layout.

The products can be manufactured using individual components available in the
warehouse; in addition, they must be placed on a platform. The platform is used for
transfers between individual workplaces. A total of four robotic arms are installed on the
production line. The first is used to operate the warehouse (component removal, product
disassembly, product export from the line, and more). For this purpose, it is equipped
with two tools that are automatically changed as needed. The other two arms are part of
two fully automated production areas for the assembly of products. The third is used for
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automated product disassembly; the components are then stored back in the warehouse.
The last robotic arm is part of the manual workplace for cooperation with staff or students.
There are also two workplaces for fully manual staffing. There is also a test station for the
final inspection of products. Electrical and visual inspections can be performed.

Figure 5. Three-dimensional model of the SmartFactory production line.

The request to start the production of products is entered through visualization from
the control workplace. When ordering a product, it is possible to choose the type of product
and the electronics that the product will contain. In the case of a second product, you
can choose the color of the individual plastic cubes that will be placed on the product.
The product may include electronics for the function of a pedometer, thermometer, or heart
rate monitor.

3.1. Products

The first type of product consists of electronics and plastic parts printed using a 3D
printer. It is called product design. There are three types of electronic devices: a pedometer,
a thermometer, and a heart rate monitor. Each electronic piece belongs to a slightly modified
plastic case. This product cannot be dismounted, it is fully functional, and it is intended as
a customer product.

The second product consists of individual plastic parts and offers more options for
individualization by the customer. As with the first product, it is possible to choose the
type of electronics (pedometer, thermometer, heart rate monitor) and also the color of each
of the eight plastic cubes. After the cubes are mounted on the base plate, the electronics
are inserted into the resulting frame. The finished product is presented using a mobile
robot on the premises of SmartFactory and is then returned to the line, where the product is
automatically disassembled into individual components, and then stored in the warehouse.

3.2. Use of an Industrial Mobile Robot

The autonomous mobile robot in combination with an automated production line also
offers the possibility of a fully automated production process and subsequent delivery of
the product. The mobile robot is able to take the finished product from the line space and
deliver it to the required location. It takes over the product directly on the premises of the
line, where it arrives automatically. The KUKA [21] robotic arm, located in the middle of
the production line, is used to move the product from the belt of the production line to the
mobile robot. Unlike other robotic arms, it is equipped with a carriage, thanks to which it
can move around the entire space of the production line.

The robot loading position is located in relatively narrow spaces below the conveyor
belt. The mobile robot has to approach this position autonomously with high accuracy. Af-
ter receiving the product, the mobile robot moves according to the specific implementation.
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4. Experimental Setup

In this section, experimental delivery routes and the integration of a mobile robot into
the SmartFactory production line are presented. As mentioned above, the production line
produces two types of products. The production line does not contain any collection point
for the final product and is surrounded by security features that prevent the possibility
of entering the line. For this reason, the MiR100 mobile robot took care of the product’s
journey from the line to the customer. Since the production line produced two types of
products, two possible implementations were proposed.

For navigation in a selected space, the robot used a virtual map. It was necessary to
create this map before the robot started moving. The virtual map contained information on
obstacles, zones, robot positions, markers, and other elements needed to control the robot.
The virtual map could be created directly on the Web interface of the mobile robot. Since
the robot oriented itself on the map using fixed, unchanging obstacles, it was recommended
to have at least 60% of them on the map. The environment had to stay the same over time
as much as possible. If the conditions changed rapidly, a new virtual map had to be created.
Once the virtual map was created, it was possible to create missions.

4.1. Delivery and Presentation of the Product

The purpose of the first implementation of the mobile robot was to ensure the delivery
of the finished product design from the line to the customer. Figure 6 shows the route of
presentation and delivery of the product design. In the starting position, the robot was in
front of the charging station or was charging. The customer used visualization to order
a product, which the line then produced and passed the information to the mobile robot
that the product was ready. The mobile robot reached the position on the production line
where the product was handed over with the help of a robotic arm. The product was then
removed from the line area, where the customer could take it over from the mobile robot.
As soon as the customer removed the product, the mobile robot moved to a position in
front of the charging station, where it waited for the next call from the line.

The second implementation of the mobile robot ensured the presentation of the assem-
bled product produced in the SmartFactory line. The task of the implementation was to
take the finished product, drive it along the route, and then return the product back to the
line. The robot was in a starting position in front of or near the charging station, waiting
for a signal that the product was assembled. When the signal was received, the mobile
robot arrived at the charging position on the line and took the product back. It walked
around the SmartFactory window with the product, then exited the line area so that any
followers could view the product, and then returned to its position in the line. In this
position, the product was unloaded from the mobile robot and returned to the production
line where it was again disassembled. In this implementation, it was necessary for the
mobile robot to approach the position with great precision when returning the product.

4.2. Cooperation with SmartFactory

There was a local network within 192.168.0.x/24, which was used for the control
systems, robotic arms, sensors, and other devices on the line. Additionally, a Wi-Fi router
was used to connect mobile robots, laptops, or smartphones. Although the Wi-Fi router
was part of the production line network, it was powered independently, so the mobile
robot network worked even when the production line was off. See Figure 7 for more
detailed information.

Two other devices were also connected to this network, which communicated directly
with the mobile robots. The first device was the MiR FLEET, which took care of the
cooperation of several mobile robots. MiR FLEET is a web-based supervision application,
that enables centralized control of multiple AMRs. The second device was the WISE
module, which provided external communication with the mobile robot via digital inputs
and outputs. It enabled communication between an AMR and the production line or some
other device.
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Figure 6. Delivery and presentation route of the product design. The block 1 represents the product
delivery position, 2 represents the starting position, 3 represents the presentation position and in
front of the windows, and 4 represents the product pickup position.

Figure 7. SmartFactory network diagram. The highlighted gray part is the solution presented.
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4.2.1. Communication

The task of the mobile robot was to automatically take over the products from the
production line and transport them to the designated place. For this functionality, it was
necessary to ensure communication between the line and the mobile robot. Communication
was provided by the WISE-4050/LAN module. It is equipped with 4 digital inputs and
4 digital outputs. The module is connected to the line switchboard and communicates
directly with the C system, which controls the production line using inputs and outputs.
To pair a mobile robot with a WISE module, it is necessary to place them on the same
network. After pairing, instructions to read the digital input or change the digital output
can be entered into robot missions. Since 8 digital signals were used for communication
between the mobile robot and the production line, it was necessary that both the mobile
robot side and the line side, and the programmable logic controller (PLC) knew the exact
purpose of the signal. Communication was also necessary for the need of shutting down
the safety barriers and gates, as the robot would otherwise activate them and set up a
disruptive process. For this reason, individual signals were assigned a specific meaning.
All signals required for communication are listed below.

• DO0: The mobile robot sends a signal that it is ready on the line to pick up the product;
• DO1: The mobile robot sends a signal that it is ready on the product collection

line (LEGO);
• DO2: The mobile robot sends a signal that it is ready to call from the line;
• DI0: The mobile robot receives a signal to arrive at the line;
• DI1: The mobile robot receives a signal that it is loaded/unloaded;
• DI2: The mobile robot receives a signal that it has finished.

4.2.2. Implementation

The program for MiR mobile robots was created using individual commands, such
as logic functions, move functions, docking functions, and more. These functions were
then grouped into so-called “missions”. The robot’s mission was therefore a grouping of
commands that determined what the robot should do in a particular mission. Within the
mission, the individual commands were executed sequentially and if the robot had already
fulfilled all commands, the mission was terminated. Missions were launched to the robot
via a web interface, and it was possible to add more missions to the queue for the robot to
complete. If the mobile robot had no mission in the queue, nor did it perform any active
mission, it stood still and waited for the mission to be assigned.

• Movement and positioning

– Move: The mobile robot moves to a position on map;
– Docking: The mobile robot moves to a marker or charging station;
– Rel. move: The mobile robot moves to a relative position.

• Logic functions

– Charging: The mobile robot starts charging;
– If: Conditioning decision function;
– Loop: Cycle repeated execution of commands.

• WISE I/O module control

– Set output: Switch on/off the output on a WISE module;
– Read input: Read the actual value on the digital input of a WISE module;
– Wait for input: Detection of the input on a WISE module.

• Other functions

– Mission call: Perform a mission in another mission;
– Light: Sets the style and color of the robot lights;
– Sound: The ability for the mobile robot to play a sound.
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The mobile robot MiR100 had the task of communicating with the production line in
SmartFactory and taking the manufactured products. According to the proposed imple-
mentation, the mobile robot took a pair of products from the line. Each pair of products had
a different final delivery position, and the mobile robot had to recognize which product
was currently being delivered. It received this information from the line. The mobile robot
also monitored the level of the battery so that it could operate continuously and was always
ready to take the product. The entire programming code was divided into five missions,
where the first was the main mission, and the rest were submissions for specific actions; see
Figure 8.

A: Main mission
B: Waiting for product
C: Delivery A—LEGO product delivery mission
D: Delivery B—product design delivery mission
E: Charging mission

4.2.3. Precise Robot Positioning

In order to always be able to place the product in the same place on the robot super-
structure, it was necessary for the mobile robot to approach the line in the loading position
with great accuracy. If the mobile robot took the design of the product and then passed
it on to the customer, this accuracy was not very necessary. However, if the mobile robot
returned with a LEGO product and requested that the product be removed back to the
line, an accuracy of a few millimeters was required. The mobile robot product loaded and
unloaded the KUKA robotic arm, which always moved to the same position. This meant
that when LEGO loaded a product onto a mobile robot, it expected the product to be in the
same place when it was unloaded. The MiR100 mobile robot did not always move to the
exact same position, and it was possible that when returning to the line, it was shifted by
a few millimeters or even centimeters. The arm expected that the product would be in a
completely different position. From this, three options were considered to achieve this.
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Figure 8. Program functionality diagram.
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Camera

The first and at the same time the most technologically demanding possible solution
was the use of a camera. The camera would be placed on a robotic arm and recognize the
position of the product by recognizing the shapes of objects. The robotic arm would tilt
over the mobile robot and use a camera to determine the exact location of the product on
the mobile robot. The camera would pass this location to the robotic arm, who would know
exactly where the product is located and how to grasp the product. The camera solution
has one major advantage, but also disadvantages. When using the camera, the robot
could enter the line differently each time, and its accuracy would not be necessary. A big
advantage would be the ability to move the product on the platform of a mobile robot.
The camera would always detect the position of the product, even if it was moved or
rotated in a different direction from the original position. This would allow the customer
to view the product and then place it back on the mobile robot. The disadvantage of the
solution is the price and the high technical complexity. To enable image recognition, it
would be necessary to connect the camera to the line control system and create a program
that recognizes products.

Distance Sensors

Distance sensors were another possible solution to make missions and paths more
precise. In the first case, the sensors would be placed on the body of the mobile robot
and would sense the exact distance from the selected obstacles. After approaching the
line, the mobile robot would use sensors to check whether it was in the exact position
and, if necessary, adjust its position. However, this solution encounters a problem in
communication with the mobile robot. Communication with the MiR100 mobile robot
using the WISE module only allows control of digital inputs and outputs. For the purpose
of this solution, it would be necessary to transfer the analog value from the sensors to
the robot. A second variant was the placement of sensors on the production line. Instead
of detecting the position of the mobile robot, the sensors would sense the position of the
product on the robot. When using two laser sensors, one would sense the position of the
product on the X-axis, and the other would sense the sensor in the position on the Y-axis.

Markers

The last solution considered was to enter the line using markers. Markers are a direct
solution for a mobile robot to ensure that it approaches positions with a certain accuracy.
Several types of markers can be used to navigate the mobile robot. These are V, L, VL,
and bar-markers. Each marker has a specific shape and dimension that must be strictly
adhered to during production. The marker should be placed directly in front of the mobile
robot in the position where the robot will approach. This solution is the most accurate and
accuracy also depends on the marker type used.

The planning algorithm used input parameters from the configuration interface of the
robot. It meant that it was possible to configure which type of marker was currently in
use. Each time the robot was approaching the final position, it was scanning the area for a
marker specified using a configuration interface.

5. Results

Several tests were performed to verify exactly how the mobile robot could approach
positions. The tests included moving the mobile robot to a position on the map, but also to
different types of markers. The manufacturer states that each type of marker provides a
different accuracy, and of all types of markers, the VL-marker is listed as the most accurate.

During the testing, we checked three distances. Distance between the mobile robot
and the line profile on the left and right sides. The third distance checked was the distance
between the robot’s front and the rail to move the robotic arm. As part of the testing of each
type of marker, a total of 100 robot entrances were performed on the lines. At each attempt,
the mobile robot always drove out of the line area and then back to the position in the line,
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possibly using a marker. The data thus obtained were represented by a box plot and basic
statistical indicators. The results demonstrated the accuracy with which the mobile robot
approached a given location. The distance was read using three laser range finders.

5.1. Positioning without Marker

First, the accuracy of the position was tested in the absence of a marker. The mobile
robot approached the position created on the virtual map. Since the robot guarded its
surroundings and the line space was too narrow for the robot, it was necessary to place the
position slightly in front of the line space. After approaching the position, a command was
sent to the robot to use the command Relative move to move a certain distance forward
into the line space. The command partially allowed the robot to drive into narrow spaces
without the mobile robot detecting them as obstacles. The command Relative move had no
effect on the accuracy of approaching the position on the map and only moved the robot
on the given axis, always by the same distance.

From the test, it could be observed that if the robot only approached the position in
the virtual map, it achieved a considerable inaccuracy. The variance of the measured values
reached up to 25 mm in the case of the distance from the edge of the robot arm path. Thus,
for AMR navigation, it was necessary to use the right type of marker to get the best results.

5.2. Using a VL-Marker

A VL-marker was used to specify the approach of the mobile robot to the position on
the line. From the data from the manufacturer and distributor of robots, this is the most
accurate marker, owing to which the mobile robot should achieve the highest accuracy.

Ideally, the marker should be placed in front of the robot. Due to the limited space in
the line, the marker was placed slightly on the right side. During the initial creation of the
marker, the robot approached directly opposite the marker. However, the markers allowed
one to set the offset, and it was a matter of shifting or adjusting the final position of the
robot on the marker. The offset could be set for the X-axis, the Y-axis, and the rotation.

5.3. Using an L-Marker

Another type of marker tested was the L-marker. Like other markers, it had exactly
the given dimensions, which had to be observed with an accuracy of ±1 mm. For the use
of the L-marker, no degree of accuracy was given with which the mobile robot could guide
the marker.

5.4. Using a V-Marker

This marker was also used for AMR positioning. In shape, it contained the same
“V” shape cutout as the VL-marker, but no longer contained another area to the right of
the cutout, as the VL-marker did. It was therefore a smaller and lighter version of the
VL-marker, which did not achieve greater accuracy than an L-marker.

5.5. Using a Bar-Marker

The bar-marker is a very simple type of marker. The bar-marker consists of two parts,
which are built at a given distance from each other and between which the AMR moves.
With this marker, we achieved the second worst results.

From the measured results, it can be observed that the L-marker further refined the
approach of the robot to the exact position. The result of this test showed that thanks to
the L-marker, the AMR could repeatedly approach the position with greater accuracy than
with the VL-marker. The test, therefore, refuted the distributor’s claim that the VL-marker
was the most accurate. For detailed information, see Figure 9 and Table 4.
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Figure 9. Box plots that compare the accuracy of individual markers on different sides.

Table 4. Accuracy test results.

Meas.
L-Marker VL-Marker Bar-Marker V-Marker No Marker

#
Left Front Right Left Front Right Left Front Right Left Front Right Left Front Right

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

1 304 261 159 282 259 184 294 264 179 282 259 184 203 270 131
2 304 261 159 281 262 182 297 268 170 281 262 182 218 285 146
3 304 262 159 281 262 181 297 262 181 281 262 181 216 254 140
4 304 261 160 280 261 183 298 265 178 280 261 183 227 249 166
5 304 261 159 283 261 181 300 253 176 283 263 181 217 264 147
6 305 261 159 280 262 183 299 271 163 280 261 183 228 266 150
7 305 260 159 283 261 181 304 258 169 283 262 181 222 270 150
8 303 261 159 281 261 182 302 263 166 283 262 182 230 270 146
9 304 261 159 281 262 184 303 266 172 283 262 180 215 243 132
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
100 305 261 160 282 262 182 300 265 163 281 262 180 217 268 164

Mean 304.4 261.1 159.2 281.3 261.5 182.2 298.7 265.0 171.4 281.3 261.5 182.2 213.9 262.5 145.7
StD 0.599 0.408 0.545 1.266 1.168 1.156 2.841 5.716 4.052 2.038 1.966 1.0815 9.233 14.357 7.630

During testing, the mobile robot encountered an error when it could not reach the
L-marker in (b). The L-marker was placed as in (a) so that the mobile robot did not have
a problem in position. The problem occurred only during the final shooting of the robot
in parallel with the marker. Instead of turning, the robot got stuck in the shooting phase
and moved back and forth about 5◦. After checking the robot’s status through the web
interface, the robot still performed the docking process and did not show any errors. Even
after a certain time, the robot did not exit this cycle and it was necessary to end the program
that was executed. The problem was solved by moving the marker to another location
and reading the marker onto the map. After that, the problem did not manifest itself.
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Figure 10 describes the positioning of the different markers during the test according to the
manufacturer’s recommendations.

(a)

(b)

(d)

(e)

(c)

(d)

(a)

(b)

(d)

(e)

(c)

(d)

Figure 10. (a) L-marker, good position; (b) L-marker, problematic position; (c) VL-marker; (d) bar-
markers; (e) V-marker.

Another complication occurred when adding a marker to a virtual map. If the mobile
robot was chosen to detect the position of the marker in the environment, it could not
determine the position of the marker. Instead of the real L-marker, the mobile robot
detected the corner of the production line as the L-marker. This was despite the completely
inconsistent dimensions, which differed significantly from the given dimensions for the
L-marker. Therefore, when the L-marker was loaded, an obstacle was placed in this corner
so that it would no longer be detected as a marker.

6. Conclusions and Future Work

This paper described the implementation of an industrial autonomous mobile robot
MiR100 in SmartFactory. The production line produced a pair of products that were
not distributed outside the premises of the line, and therefore it was not possible to
take possession of the produced product. For this reason, the mobile robot was used
to distribute the finished products around the SmartFactory premises. The line produced
design products and customizable LEGO products. The design product was intended for
the target customer, to whom the product was delivered by the mobile robot. The LEGO
product was not intended for customers and was only used to demonstrate what the line
was capable of. The mobile robot drove the LEGO product through the SmartFactory
premises and then returned the LEGO product back to the line, which then disassembled it
into its individual components.

In the first step of the implementation, it was necessary to create a virtual map of the
SmartFactory, according to which the mobile robot had to orient itself in space. Individual
obstacles, forbidden zones, positions, and markers necessary for the implementation were
inserted into the map. The SmartFactory contained its own wireless fidelity (Wi-Fi) network,
to which all the devices needed to operate the robot and communicate with the production
line were connected. Communication with the line was provided by the WISE module,
which contained four digital inputs and four digital outputs. Each digital signal had
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a clear meaning and was sufficient for communication between the mobile robot and
the production line. The program for operating the production line was divided into
individual missions. In order to start the operation of the production line, the main mission
had to be started on the mobile robot, which was already calling the next sub-mission.
The manufactured products were transferred to the mobile robot by a robotic arm. When
loading products onto the robot, the positioning accuracy of the mobile robot was not
important. When unloading the LEGO product that the robotic arm returned to the line, a
high precision was required to position the robotic arm correctly. This accuracy was not
achieved by the mobile robot, so we came up with three suggestions to improve the accuracy.
Using a camera to determine the exact position of the product, using external sensors to
accurately position the mobile robot, and using markers to increase the positioning accuracy.
After consulting and considering the complexity of the solution, we decided to use markers.
Since the mobile robot supported multiple types of markers, we tested their accuracy.
The L-marker came out best in the tests.

The result was a fully automated process for operating the production line. The MiR100
mobile robot could respond to a call from the line, then arrive to collect the product, take
it over and make its presentation or delivery to the desired location. The operation also
included battery monitoring and automatic recharging if necessary.

We see the potential for improving the way we communicate in future developments.
The communication used by the WISE module is limited to data types and a small number
of inputs and outputs. During further development, communication via a representa-
tional state transfer API (REST API) supported by a mobile robot is planned. In addition,
the robotic arm will be retrofitted with a camera. If the robotic arm was equipped with
a camera, the capabilities of the mobile robot would be expanded. Without the camera,
the LEGO product must remain in the same position as the robotic arm. Using the camera,
the LEGO product could be removed from the mobile robot and then returned. The viewer
would then be able to view the LEGO product themselves. The camera would then identify
the position of the LEGO product and relay this information to the robotic arm.

The main contribution and the results obtained were that a statistical analysis of
the mobile robot’s run-up on different types of markers was performed to determine the
repeated run-up accuracy. Here, it was found that the most suitable marker type was the
L type, where the mobile robot had a repetitive error of ± 3mm. This output is essential
for applications where the industrial arm is transferring products to the mobile robot,
but also for the reverse, where products are removed from the mobile robot. Repeated
pick-up accuracy is therefore crucial. Despite the fact that MiR offered a ready-made
solution, it was necessary to verify the behavior of the robot in real conditions, where its
navigation was hampered, in particular by the narrow space in the production line area,
the conveyor belt which was in a position partially above the mobile robot at the moment
of the robot’s run-up, and the number of structural elements in close proximity to the robot.
All these elements can affect the accuracy of the robot’s sensors and scanners. In such a
confined space, the robot is constrained by its own safety zone settings, which eliminate
the possibility of robot movement and may limit the final positioning accuracy compared
to the accuracy declared in the manufacturing documentation.
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Abbreviations

The following abbreviations are used in this manuscript:

AMR Autonomous mobile robot
API Application programming interface
CPIT TL3 Building in VSB campus with sophisticated management system
IMU Inertial measurement unit
KUKA Robotic arm from KUKA company
MiR Mobile Industrial Robots
MiR100 Autonomous mobile robot from the MiR Company
MiR FLEET Centralized control station for MiR robots
MiR WISE I/O module for MiR robots
PLC Programmable logic controller
SICK S300 Type of laser sensor
REST API Representational state transfer API
Wi-Fi Wireless fidelity
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Abstract: This paper investigates the solution to a mobile-robot exploration problem following
autonomous driving principles. The exploration task is formulated in this study as a process of
building a map while a robot moves in an indoor environment beginning from full uncertainties. The
sequence of robot decisions of how to move defines the strategy of the exploration that this paper
aims to investigate, applying one of the Deep Reinforcement Learning methods, known as the Deep
Deterministic Policy Gradient (DDPG) algorithm. A custom environment is created representing
the mapping process with a map visualization, a robot model, and a reward function. The actor-
critic network receives and sends input and output data, respectively, to the custom environment.
The input is the data from the laser sensor, which is equipped on the robot. The output is the
continuous actions of the robot in terms of linear and angular velocities. The training results of this
study show the strengths and weaknesses of the DDPG algorithm for the robotic mapping problem.
The implementation was developed in MATLAB platform using its corresponding toolboxes. A
comparison with another exploration algorithm is also provided.

Keywords: mobile-robot system; reinforcement learning; deep neural network; mapping; exploration;
navigation

1. Introduction

In the past two decades, an enormous number of works on the mobile-robot ex-
ploration domain or the so-called mapping or map coverage have been published [1,2].
Generally, every novel exploration technique aims to solve three basic challenges. The first
is to explore fully a given space using an onboard robot-vision system. The second is to
not encounter any obstacles while driving through. The next is to optimize the driving
course in the exploration, saving time and energy costs. This represents a bigger picture of
mapping, addressing only problematics.

Delving deeper into the field, various characteristics of an exploration can be dis-
covered. For instance, for environment types, the exploration can be conducted indoors,
outdoors [3], on cluttered rough terrain [4,5], in a post-disaster extreme environment [6], in
the ocean [7], or on a planetary surface [8]. The exploration can have requirements based
on the map type (grid map [9], octomap [10], point cloud map [11], semantic map [12])
or the approach (deterministic [13,14], stochastic [15], artificial intelligence [16,17], SLAM-
(Simultaneous Localization and Mapping) type [18,19]). In addition, the exploration can
be processed by different robot systems [20]: a mobile-robot system or multi-robot system.
These various characteristics are the reasons why mapping the field is an important topic
in robotics and why it remains relevant today.

In mobile-robot exploration, a robot is launched into a space with entirely unknown
information about the indoor environment. A robot can have vision using a sensor or
camera that senses at a certain sensing distance or image resolution, respectively. During
mapping, the robot drives towards and perceives more knowledge about the environment.
It can have a task or an action command while it moves in the environment. The task can be
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a point in the environment, which is called a local point or a waypoint [21]. The computation
of the waypoints in the mapping is conducted by a computational algorithm, which many
scholars have attempted to either modify in combination with other techniques or create
new ones. In this study, the exploration does not use the waypoint concept. Instead, the
robot moves by following the action command being transmitted to the robot motors.

The final result of the robotic exploration is a finite map. The map is a data model of
the robot’s surroundings. The robot needs the map on a regular basis to have knowledge
of its position for further missions. Object recognition, object segmentation, planning
movement, and many other typical human activities in indoor space are required for an
existing known map, which is true for a robot as well.

Artificial intelligence (AI) is a significant topic in science nowadays [22]. It is believed
that AI is a general term, which describes how computers or hardware systems can think
and behave like a human. A subfield of AI is machine learning [23]. It is mainly focused on
learning from data training. Over decades, machine learning evolved into deep learning,
which could transform the data into multiple-layer representations due to feature detection
or pattern classification [24]. The considerable success of some applications, such as image
recognition, speech recognition, email spam filtering, and the winning of AlphaGo in the
board game Go, motivated developers around the world to apply machine learning or deep
learning techniques in various fields.

The process of the learning divides machine learning, deep or otherwise, into three
subfields: supervised learning, unsupervised learning, and reinforcement learning [25]. In
the first two types of learning, only neural networks are considered, which are trained with
and without labeled input data, respectively. The third type, reinforcement learning (RL),
differs from the first two such that a neural network in RL can be employed as a nonlinear
approximator function; this is why the term Deep Reinforcement Learning (deep-RL) is
used. The deep-RL can be understood with the concept of an agent, environment, action,
observation, and reward, all of which will be discussed in detail. RL is classified into two
types: model-based and model-free. The model-based RL has the model of an environment
and a planning of agent dynamics, whereas an agent of the model-free RL learns only by
values, without explicitly knowing an environment model. Most applications, like this
study, are based on model-free RL. In the model-free category, there are three approaches
of algorithms for an agent’s learning: value-based, policy-based, and actor-critic. The
value-based algorithms are when an agent uses the value function to evaluate the goodness
or badness of states. In turn, the policy-based algorithms follow a policy of an agent’s
behavior, which is a map from state to action. The actor-critic approach is a mix of value-
based and policy-based algorithms; this approach is applied in this paper. Figure 1 shows
the summary of machine learning classification from artificial intelligence to RL algorithms.

• Model-based RL

• Model-free RL

• Supervised Learning
• Unsupervised Learning
• Reinforcement Learning

 
Figure 1. The family of machine learning techniques.

In this study, the model-free actor-critic RL approach aims to solve the mobile robot
exploration problem in indoor environments. There are several algorithms that can be
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listed under the actor-critic category: Deep Deterministic Policy Gradient (DDPG), Twin
Delayed Deep Deterministic Policy Gradients (TD3), Proximal Policy Optimization (PPO),
Soft Actor Critic (SAC), and Asynchronous Advantage Actor Critic (A3C). In this study,
the off-policy DDPG algorithm is selected for the mapping problem. The DDPG algorithm
is useful for robotics applications because it allows the control of electric motors due to
continuous output data. The remaining algorithms mentioned above are able to provide
continuous actions as well. However, the DDPG learns directly from the observation data,
which corresponds to the mapping problem using a laser sensor. In addition, the DDPG
algorithm is not often applied to mobile-robot exploration problems, which is a motivation
for the authors to study it in practical application.

The contribution of this study is as follows. A custom environment was created espe-
cially for exploration using the occupancy map and the robot movement. The environment
evaluates the robot’s motion for learning the unknown space using a reward function. In
the same way, it denounces the robot for the negative occasions, such as obstacle collisions.
Another contribution is the creation of the DDPG agent and training process for the custom
environment. At the end of the paper, the positive and negative results of using the DDPG
algorithm are presented for the mapping problem. The comparison of the DDPG algorithm
and the nature-inspired exploration algorithm shows the advantages and disadvantages of
each approach.

It is important to clarify the terminology in this section, as the names for the mobile-
robotics and deep-RL fields intersect. The word “environment” is used in both topics, but
the meanings are not the same. The environment in mapping means a physical or simulated
space with walls and furniture, for example, a room- or an office-like environment. In
deep-RL, the environment is the description of the input/output data reactions, model
visualization, and reward function. In the proceeding sections, the RL environment will
be used to denote this, and the absence of RL means the terms are related to the mobile-
robot system.

This paper is structured as follows. Section 2 discusses the related works of the deep-
RL algorithms in the mobile-robot field. In Section 3, the theory of deep-RL and DDPG
algorithms are explained in detail. In Section 4, the occupancy reward-driven exploration
based on the DDPG agent is proposed. The reward parameters and training options are
discussed in Section 5. Finally, the simulation results and the comparison are presented in
Section 6, which prove the proposed concept in practice.

2. Related Works

With the development of machine learning algorithms, the robotics field obtained
novel and alternative resolutions in its domain along with existing classical methods [26].
Although AI and its concept are not a new trend in computer science [27,28], in robotics,
a significant number of applications based on machine learning and its deep learning
subdomain have been launched recently, with modern AI appearing with the combination
of “big data” and neural network architectures [24,29].

In terms of the applications of deep learning in robotic mapping, two major groups of
approaches can be highlighted. The first one is deep learning with widely used convolu-
tional neural network (CNN) architecture. It can be said that CNN was inspired by human
vision in the manner of how a human is able to perceive objects and use this knowledge for
a multitude of tasks. The major function of CNN is to extract features out of images and
then to classify them as an object. Thus, it follows that the robot motion based on CNN
can be realized in a case when a robot is equipped with a visual sensor that is a camera.
An example is the research [30] on mobile-robot exploration using a hierarchical structure
that fuses CNN layers with decision-making process. It obtains RGB-D information from
the camera as the input and generates the moving direction as the output for the Turtlebot
robot. In the same vein, CNN is applied for exploration in another study [31]. In spite of
the fact that it is trained on the basis of input images of the floor plans, the output result
returns images containing the labels of exit locations in the building. It is assumed that the
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search of exit locations in the building refers also to the robotic exploration problem and
can be called a semantic or visual exploration. More segmentation is processed in another
study [32], capturing the labels (books, ceiling, a chair, floor, a table, etc.) from RGB-D video.
CNN and dense Simultaneous Localization and Mapping (SLAM) are applied together in
order to add the semantic predictions to a map from multiple viewpoints. The human walk
trajectories were predicted by CNN in Ref. [33]. The output results help the robot use this
information for avoiding obstacles and planning further tasks. Concluding the discussion
on the CNN-related approach, it can be emphasized that there are still limitations in train-
ing. It is assumed that CNN learns offline, whereas the mobile-robot exploration usually
works online. This is why CNN-based mapping is sometimes considered an impractical
solution [34].

The second branch of the robot exploration based on deep learning pertains to deep-
RL. Neural networks are also employed in this approach with several numbers of layers,
hence, the term “deep-RL”. However, NNs are considered function approximators or the
so-called policies that can efficiently operate large numbers of actions and states during
training. Based on the field of application, a designer can select an appropriate neural
network type among built-in RL approximators and well-known approximators, like CNN
and RNN.

Table 1 presents related works on mobile-robot exploration. The authors analyzed and
sorted out the literature based on the main classifications of the RL framework: algorithm,
environment, and map representation. In the study of Kollar et al. [35], it can be seen that
the support vector machine algorithm, which is related to supervised machine learning,
was applied instead of a deep neural network. The exploration is formulated into a model
of partially observable Markov decision process (POMDP). The output result in this work
is the optimization of the trajectory in the mapping process. In their study [36], Lei Tai et al.,
proposed to build a map of the corridor environment using depth sensor information.
The CNN model extracts the features from the environment, and the value-based Deep
Q-network (DQN) executes the obstacle avoidance for the Turtlebot robot. However, its
reward strategy does not stimulate the robot to further and faster explore the uncertainties
involved. The static values of 1 and −50 can be referred to as the navigation strategy rather
than the mapping. The research of Zhelo et al. [37] investigated the reward function known
as an intrinsic reward. The robot navigation is trained using targets by the asynchronous
advantage actor-critic algorithm (A3C) with external and intrinsic rewards. Apart from the
reward, the novel term “mapless navigation” is proposed for the exploration, which is used
in other studies, but only for the navigation problem [38–40]. Mapless navigation is when
the robot drives without any knowledge of the environment (such as obstacle position
and the frontier line between explored and unknown areas) to the targets whose positions
are visible due to visible light or Wi-Fi signal localization. This kind of navigation for the
exploration problem does not have the ability to build any finite map acquisitions.

End-to-end navigation in an unknown environment based on DDPG with long short-
term memory (LSTM) is presented in the study of Z. Lu et al. [41]. Its reward function impels
the robot to avoid dynamic obstacles and to choose a smooth trajectory. Chen et al. [42]
offered the idea to explore uncertainties via exploration graphs in conjunction with graph
neural networks and RL. The deep Q-network agent predicts the robot’s optimal sens-
ing action in belief space. The graph abstraction optimizes and generalizes data for the
learning process. This combination of the approaches showed efficient mapping results
in the comparison with other policy categories of graph neural networks and RL agents.
The study of H. Li et al. [43] proposed a new decision approach based on deep-RL. The
approach is a Fully Convolution Q-network (FCQN) with an auxiliary task that receives
the grid map of the partial environment as input and returns the control policy as output.
Shurmann et al. [44] presented and demonstrated real-time exploration using the Turtlebot
robot mounted with an RGB-D camera and Hokuyo laser sensor. To conclude the discussion
on the deep-RL-related exploration group, Ref. [45], focusing on the search for uncertainties
in an occupancy map, can be presented. Refs. [43,45], which use the occupancy-driven
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reward function, are shown in Table 1. The strategy of keeping the robot moving towards
new areas during the process is a key function in mobile-robot exploration. In the same
way, the reward function is a significant component in the deep-RL framework. This is
the reason for the authors’ interest in the reward strategy applied in the related works and
their proposed contribution in this work.

Table 1. Related works on the mobile-robot exploration using deep-RL.

RL Algorithm RL Environment
Map Representation

Approximator Agent Input Output Reward

T. Kollar
et al. [35]

Support Vector
Machine Policy

Learning

Policy Search
Dynamic

Programming
Laser sensor Discrete action Squared error

reward function Occupancy map

L. Tai
et al. [36] CNN Deep

Q-network RGB-D camera
Discrete actions

of 3 moving
directions

Keep moving is
value 1,

collision or stop
are −50

Corridor
environment,

Turtlebot, Gazebo

O. Zhelo
et al. [37]

Actor-critic
network A3C agent Laser sensor Continuous

actions Intrinsic reward

Simulated
environment, 3 maps

with different
floor plans

Z. Lu
et al. [41]

Actor-critic
network with
LTSM module

DDPG agent Laser sensor,
target points

Continuous
actions: linear
and angular

velocities

Novel reward
function for

avoiding
collision

Gazebo

F. Chen
et al. [42]

Graph neural
networks

Deep
Q-network

agent
Laser sensor Sensing action Raw reward Occupancy map

H. Li
et al. [43]

FCQN with
auxiliary task

Deep
Q-network

agent
Partial map Discrete action Heuristic

reward function
Occupancy map,

ROS

H. Surmann
et al. [44]

Actor-critic
network

Fast Hybrid
CPU/GPU
version of
A3C agent

Laser sensor,
RGB-D camera

Continuous
actions: linear
and angular

velocities

Goal reached is
value 20,

collision is
value of −20

Simulated and real
environment, ROS

J. Zhang
et al. [45]

Actor-critic
network and

Neural-SLAM

A3C with
generalized
advantage
estimator

Laser sensor Discrete action

− 0.04 values
for each step,
− 0.96 for

collision, 1
3×5

for new grid

Occupancy map,
Gazebo

There are many other studies that focus on solving other problems encountered in
mobile-robot systems. In particular, deep-RL is frequently applied in navigation [46–52],
path planning [53,54], and collision avoidance [55–58].

3. Background

This section discusses the theory concept of Reinforcement Learning and its continuous
control method—deep deterministic policy gradient (DDPG) [59].

3.1. Reinforcement Learning

Reinforcement Learning (RL) is a goal-oriented approach that extracts successful
actions in an area of concern during its training. This method allows a robot to make correct
decisions for a task without human intervention. The RL consists of two main parts: an
agent and the RL environment (Figure 2).
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RL environment

Agent
action

observation

reward

Policy

Learning algorithm

Figure 2. RL system.

The process of RL starts with the environment sending its initial observation (or
so-called state) to the agent. According to its computation, the agent makes the action
in response to this observation. By this, the action changes the environment, which can
be good or bad. Then, the environment sends a new observation and a reward for the
last action to the agent. It receives and updates its knowledge and then takes the next
action based on the computational analysis. The process repeats in this manner until the
environment gives the signal of the end of an episode.

The agent can be seen as a computational controller. It contains a policy and a learning
algorithm. The policy is a function approximator (deep neural network), which selects
appropriate actions with regards to the observations from the RL environment. The learning
algorithm component is to search an optimal policy by maximizing the cumulative reward.
It continuously updates the policy parameters based on reward, actions, and observations.

In this study, we applied the actor-critic agent belonging to the class of RL algorithms.
There are several known varieties of actor-critic agents, which use either a deterministic
actor or stochastic actor, with Q-value critic or a value critic. The difference among them is
in the manner of how the data of an actor and critic are updated in the process.

3.2. Actor-Critic Deep Deterministic Policy Gradient Algorithm

The DDPG algorithm is a model-free, online, off-policy RL method. The DDPG agent
uses a deterministic actor and Q-value critic. The DDPG agent searches for an optimal
policy that maximizes the expected cumulative long-term reward. It can be applied only
for an RL environment with continuous action spaces [59].

In the DDPG algorithm, the actor-critic architecture applies four function approxima-
tions: deterministic actor network, target actor network, critic network, and target critic
network. Considering each separately, Figure 3a represents the actor architecture, in which
the actor μ(O, θμ) directly maps the observations Oi to corresponding actions ai, which
maximizes the long-term reward R. In Figure 3b, the critic Q

(
O, A, θQ) takes actions and

observations and returns the corresponding expectation Q of long-term reward. The param-
eters θμ and θQ are network weights. The general actor-critic architecture is represented in
Figure 3c, in which the RL environment passes the observation to the actor and critic. The
actor determines the action and sends it to the critic. That is, the critic estimates the value
of how much reward the agent will obtain from this situation. Combining the value with
the reward R gives the estimated value of receiving the current observation and making
the current action.

Actor

A

O  

Critic

O

Q-value

A  
(a) (b) 

Figure 3. Cont.
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Actor-Critic Agent

Actor

Critic

Environment A

Q-value

R

O

O

 
(c) 

Figure 3. Architectures: (a) actor, (b) critic, (c) actor-critic.

The actor target network μ′
(

O, θμ′)
and critic target network Q′

(
O, A, θQ′)

are
time−delayed copies of their original networks that slowly track the actor and critic
networks. The main role of the target networks is to improve the stability in the learning
by periodically saving the actor and critic parameters. The weight parameters θμ′

and θQ′

of the actor and critic target networks are updated by the equations below for τ � 1:

θQ′ ← τθQ + (1 − τ)θQ′
(1)

θμ′ ← τθμ + (1 − τ)θμ′
(2)

The critic side of the DDPG algorithm updates the critic by minimizing the loss be-
tween target y and the original Q value of the critic network through the following equation:

L =
1
M ∑

i

(
yi − Q

(
Oi, ai, θQ

))2
(3)

The target y is calculated using the Bellman equation:

yi = ri + γQ′
(

Oi+1, μ′
(

Oi+1, θμ′)
, θQ′)

(4)

where Q′ is the next Q value obtained from target networks, γ is the discount factor, and r
is the reward at time i.

The actor side of the DDPG algorithm updates the actor parameters using the sampled
policy gradient using the following equation:

∇θμ J ≈ 1
M ∑

i
∇aQ

(
Oi, A, θQ

)∣∣∣∣∣A=μ(Oi , θμ)·∇θμ μ(Oi, θμ) (5)

Here, ∇aQ
(
Oi, A, θQ) is the gradient of the critic output with respect to the action

computed by the actor network. The gradient of the actor output is ∇θμ μ(Oi, θμ) with
respect to the actor parameters [60].

In the discussion of the DDPG algorithm, which incorporates DQN [61], two trick
techniques with data, the replay buffer and the minibatch, cannot be excluded. The replay
buffer is like a data stack with ‘last in—first out’ principal operation. The experience tuples
(Oi, ai, ri, Oi+1) from the RL environment are added to the end of the buffer so that the
oldest experience is pushed out. The replay buffer can have a large size, and the large size
should be set. The large collection of experiences allows the data not to fall into convergence
and divergence issues. The minibatch is a randomly sampled experience taking from the
replay buffer. In Equations (3) and (5), the notation M is the minibatch size or the number of
sampled experiences. In each time step, the Q-value and policy of critic and actor networks
are updated by sampling a minibatch using the batch normalization technique.
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For the continuous action spaces of the DDGP algorithm, the exploration is done by
adding noise to the current policy using the following equation:

ai = μ(Ot|θμ) + Ni (6)

where Ni is stochastic noise.

4. The Proposed Occupancy-Reward-Driven Exploration

This section presents the mobile-robot exploration approach using the model-free
deep-RL technique, which is DDPG. In the beginning, the issues of the mapping process are
discussed. Then, the model of Markov Decision Process (MDP) for the robotic exploration
system is presented. The actions, states, and rewards as elements of MDP were introduced
in Section 3 in the discussion of the RL framework and DDPG algorithm. Here, we present
the MDP model specially designed for the mobile-robot mapping process while noting that
the MDP is a model that allows the description of the RL environment only.

Afterwards, the section introduces the main components of the custom RL environ-
ment, with its occupancy reward function created for the mobile-robot exploration. Then,
the agent of the actor-critic networks is demonstrated at the end of this section.

4.1. The Robotic Exploration Problem Formalization

Robotic mapping is a process where a real environment is converted into a digital
model by a robot or a group of robots. If we decompose this process into entities, we
assume that we obtain two main objects: a robot and an occupancy map. The robot object
has a sensor, a position, and velocity parameters. The occupancy map object is massive,
with a certain number of cells and their probabilistic values being modified at each time
step (Figure 4). The robot begins to run from the initial position. Operating the simulation,
this position can be any x-, y-coordinates of the free space on the map. In the real-world
experiment, the initial position has zero values on the map, no matter where the robot is
currently in a room [21].

Figure 4. The occupancy map visualization with occupancy probability values of uncertainties (0.5)
and explored values (varying from 0.0010 to 0.5). The map size is defined as 20 by 10. It is only for
representing the figure window of the simulation and is not used in the algorithm computation.

As the robot moves in the environment, the occupancy map is updated from every
robot position, expanding the terrain acquisition. Step by step, the laser sensor touches
new areas or seen areas, which return different probabilities values from the occupancy
map. The values from the occupancy map at time t are known as explored segments in
this study.

With the aim of continuous and safe driving, some others aspects should be analyzed
and planned for the correct sequential decisions. One of these is obstacle avoidance. The
decision of turning left or right can be made based on the available visibility for the robot as
detected by the laser sensor. The maximum sensing range is a known parameter, depending
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on the sensor model. Based on the maximum range value, the minimum threshold for the
reaction to an obstacle can be defined through test runs. The other parameters for contin-
uous driving are the linear and angular velocities. Their values govern and characterize
the robot’s behavior. The linear velocity is responsible for forward and backward motions.
When the robot turns, the angular velocity deals with the turning motions.

These metrics, such as the explored segments at each time step, the minimum distance
threshold for the obstacle avoidance, and the linear velocity and angular velocity, are
synchronized and adjusted in the reward function below.

4.2. MDP Model for the Robotic Exploration

In this paper, the MDP model for robot exploration is formalized as follows. At
each iteration t, the laser sensor emits and inserts the rays on the occupancy map. If the
rays return any numeric data, it means that they hit an obstacle that is located nearby.
Otherwise, data of NaN format (Not a Number) denote the absence of obstacles and the
presence of free space. Both these types of data are the observations, Ot, that are sent to
the DDPG agent from the RL environment. For the sake of clarity, the occupancy map is
a form of visualization in the RL environment. Furthermore, the function approximator
inside of the agent generates and passes actions at, which are the robot velocities. The RL
environment receives the actions, upgrades the occupancy map, and computes a scalar
reward rt according to the changes. Figure 5 illustrates the MDP model based on the robot
exploration process.

Figure 5. The MDP model of the mobile-robot exploration task.

The reward is a key parameter that motivates the system in making the appropriate
decisions. This means that the reward has a strong effect on the motion of the robot. In
this paper, the reward is computed according to the explored segments of the occupancy
map in each time step t. Since the reward is calculated on the RL environment side, the RL
environment for the mobile-robot exploration is presented first below. Then, the reward
function is introduced in detail in Section 4.4.

4.3. Reinforcement Learning Environment of the Mobile-Robot Exploration

The proposed RL environment, which is presented in Algorithm 1, has a class structure
with property values and several certain functions [62]. It is presented in Algorithm 1. The
constructor function is the main one, in which the action and observation specifications
are defined with their maximum and minimum value ranges. The reset function is called
every time the exploration is launched and when the episode is finished during training. In
our custom RL environment, in lines 8–15, the reset function sets the map visualization to
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the initial uncertainties, sets the robot’s initial position, resets the observation values, and
activates the ROS interface for the laser scan data and velocity commands.

Algorithm 1: The RL environment for the mobile-robot exploration

1: classdef ExplorationRLEnv
2: properties maxRange = 4.095
3: methods

4: function constructor
5: define observation O with lower and upper limit values
6: define action a with lower and upper limit values
7: end

8: function reset
9: initialize robotPose, observation
10: map = occupancyMap
11: enableROSInterface
12: isDone = false
13: isBumpedObs = false
14: reward = 0;
15: end

16: function [observation, reward, isDone] = step (constructor, action)
17: scanMsg = receive(scanSub)
18: scan = lidarScan(scanMsg)
19: observation = scan.Ranges
20: insertRay(map, robotPose, scan, maxRange)
21: velMsg.Linear.X = action(1)
22: velMsg.Angular.Z = action(2)
23: send (velPub, velMsg)
24: if the last 3 robotPose values are the same
25: isBumpedObs = true
26: end

27: if isMapExplored = true || isBumpedObs = true
28: isDone = true
29: resetSimulation
30: clear(‘node’)
31: else

32: isDone = false
33: end

34: if t is equal 1
35: exp = totalMapValues
36: else

37: exp = previousReward–totalMapValues
38: previousReward = totalMapValues
39: end

40: reward at time t
41: end

42: end

43: end

Another required function for the RL environment is the step function. The whole
process of an episode is carried out in the step function. The action as the input parameter
of the step function is taken from the actor-critic neural network of the DDPG agent at each
iteration and passed to the robot as the commands of the linear and angular velocities by
the ROS publisher node (lines 21–23). The observation as the output parameter receives
the sensing laser ranges from the sensor and inserts the rays into the occupancy map in
lines 17–20.

Lines 24–26 show the robot’s collision with obstacles in the mapping. The logic of
these lines is such that if the values of the robot position are not changed in the last three
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iterations, the robot has hit an obstacle and cannot avoid it. In essence, the robot does not
try to avoid the obstacle as usually occurs using classical algorithms. It only detects the
collisions as a bad event that should not be repeated in the next episodes. As the simulation
results will show in the next section, this straightforward logic satisfies and can operate
correctly for the mobile-robot motion. If the experiment runs in real-world conditions, then
a bumper sensor can be used on the robot to detect the collision with an obstacle.

In lines 27–33, the isDone as the output parameter is applied, which is a flag of the
episode states. When the flag has true value, the current episode must be finished, and the
exploration process should be aborted. This happens in two cases: a map is fully explored
or the robot hits an obstacle.

The reward function of lines 34–40 is discussed next in detail.

4.4. Occupancy-Reward-Driven Exploration

The occupancy reward is a function that encourages the robot to seek in unexplored
areas to collect knowledge about the indoor environment. The information is gathered from
the map with occupancy probability values. In this study, the reward is computed based
on the occupancy map M(n, m) of size n × m. For each time step of an episode, the sum of
all map values is summed up and stored in M variable using the following equation:

Mt =
n, m

∑
i=0, j=0

m(i, j) (7)

In order to observe the amount of explored segment discovered in each time step, the
M of the current time must be deducted from those of the previous time:

Et = Mt − Mt−1 (8)

The function approximator with the reward that is computed only by the explored
segments can satisfy the continuous robot driving. However, it was seen during the
training process that the robot trajectory is not optimal and not power-efficient. The robot
spins constantly.

In view of this undesirable motion, the reward function is proposed as follows:

rt = k × vt + q × w2
t + d × s + f × Et (9)

where vt and wt are linear and angular velocities at time t received from the actor-critic
network. The variable s denotes the range of the sensor rays. When the sensor does not
meet with the obstacle, the reward obtains the most significant value; in contrast, when the
obstacle comes near, the s decreases the reward function. k, q, f , and d are coefficients for
the normalization of the reward range.

The reward function should have a range or threshold that can vary. Thus, the actor-
critic network during the training process should distinguish between reward values for
providing appropriate actions in the RL environment. As equation 9 shows, rt consists of
four factors: linear velocity, angular velocity, sensing ranges, and quantity of the explored
segment discovered in one time step. Each has its own priority of how much this factor
affects the reward function. The order of priorities in the reward function will be presented
in the next section.

Finally, all the rewards are summed as G at the end of the episode after a predefined
competing number of time steps, as shown in Equation (10):

G = rt + rt+1 + . . . + rt+1 (10)

Speaking about the reward, it is necessary to consider the penalty as well. In lines 24–26
of Algorithm 1, the code catches the occasion of obstacle collision. When this happens, the
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current episode should stop, and the neural network should learn about the unfavorable
event. In this case, the reward is assigned a negative number as punishment.

4.5. Deep Deterministic Policy Gradient Agent for the Mobile-Robot Exploration

The RL environment has been constructed. Next, the DDPG agent is presented for
the mobile-robot exploration task in Algorithm 2. In general, it can be seen that the agent
consists of two main parts: actor-critic network and training.

In lines 1–3, the information about input and output parameters is obtained. These
parameters allow the agent to communicate with the RL environment, receiving data and
sending computed data.

Algorithm 2: The DDPG agent for the mobile-robot exploration environment

1: env = ExplorationRLEnv
2: action = env.getActionInfo
3: observation = env.getObservationInfo
4: critic = rlQValueFunction(criticNetwork, observation, action, criticOpts)
5: actor = rlContinuousDeterministicActor(actorNetwork, observation, action, actorOpts)
6: agent = rlDDPGAgent(actor, critic, agentOpts)
7: trainStats = train(agent, env, trainOpts)

In line 4, the Q-value critic is created using the MATLAB (R2021b release) built-in
function, rlQValueFunction. Inside the function, four parameters are listed. The main one
is a critic network. The remaining ones are the input and output parameters, and setting
options of the critic network. Figure 6 shows the architecture of the critic network. It can be
seen that the critic network has two paths that later merge into one. The first path starts
from the observation data formed in the feature input layer. The observation path contains
the fully connected and the relu layers. The second path begins from the action data with
2-D inputs and also contains the fully connected layer. These two paths merge into the
addition layer. The output of the critic network is a Q-value, which is a single neuron.

Figure 6. Critic network with 50-D input of observation path and 2-D input of action path. The
network ends with the single-neuron output of the Q-value.

Next, the deterministic actor is created in line 5 using the built-in function, rlContinious
DeterministicActor. The actor network is presented in Figure 7. It has one sequence of
layers, and it provides direct mapping from the observation to continuous action within
tanh scaling. It should be noted that the actor transmits the output data to the critic as
illustrated in Figure 3c in Section 3.

Furthermore, in line 6, the DDPG agent is composed, applying the critic and actor
in the rlDDPGAgent function. It is important to note here that the setting options, such
as agentOpts, affect the agent learning. They can be tuned according to the results. In
Section 5, values of the setting options are presented for the exploration simulation.
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Figure 7. Actor network with 50-D input and 2-D output.

In line 7, the training is launched using the agent and the RL environment. The results
are discussed in Section 5.

5. Reward Estimation and Training Options

In this section, the reward function is discussed. The limits and parameter priorities
are presented in values. Then, in Section 5.2, the training options of the DDPG agent are
performed with their values as well.

5.1. The Reward Estimation

In Section 4.4, we proposed the reward function rt in Equation (9) for the mobile-robot
exploration. The value limit or range for the reward function, which is important to set
when using the deep-RL technique, was also discussed. The point is that the RL agent
defines the good and bad actions according to the reward function. If the value fluctuates
in a chaotic way, then the actor-critic network cannot determine the positive and negative
decisions. This is the main reason the value limits for the reward function are defined.
When estimating the value, know the upper and lower limits for the parameters in the
reward function must be known, which are the linear velocity, the angular velocity, the
sensing range distance, and the explored segment.

In Table 2, the value limits for the reward parameters are presented. It can be seen
that the upper limit for the observation is 4.095, which is the maximum sensor range in the
simulation. The lower limit is zero. The continuous actions are linear v and angular w ve-
locities, with 0.4 as upper limits and 0 and −0.4 as lower limits, respectively. The maximum
explored segment E is 239, which the sensor of the robot can occupy in the probability occu-
pancy map at time t visiting completely new and free areas. The parameters are normalized
in the upper and lower thresholds of the reward function, −0.2 and 0.8, respectively.

Table 2. The value limits for the reward parameters.

O v w E

Upper limit [4.095 . . . 4.095]′ 0.4 0.4 239
Lower limit [0 . . . 0]′ 0 −0.4 0

To adjust the parameters, the coefficients k, q, d, f are introduced in Equation (9).
However, the priorities of the four parameters in the reward function are included in the
coefficient as well, which affects the robot motion in the exploration process. Thus, the
priorities can be described as follows: 30% for linear velocity, −20% for angular velocity,
20% for sensing ranges, and 30% for the explored segment. Converting the percentage to
numbers, the coefficients are as follows: k = 0.75, q = −1.25, d = 0.07, and f = 0.0013. In
real-world applications, the proposed coefficients can be used without changes when the
robot is Turtlebot2 and the laser sensor is Hokuyo (model no. urg-04lx-ug01). For other
cases, the values of the coefficients should be calculated individually according to robot
kinematics and sensor specifications.

Figure 8 illustrates the above discussion on parameters affecting the reward function
to a greater and lesser extent and the adjustment in their values in one common range. The
lower and upper limits are −0.2 and 0.8, respectively.

108



Appl. Sci. 2022, 12, 9249

Figure 8. The reward function normalization.

It is appropriate to clarify the reason why angular velocity (w) has a negative value
in the reward function. When the robot drives straight in an obstacle-free area, w equals
0. Driving straight is the most optimal motion according to the mapping and the power
energy cost. This is why any other values of the angular velocity, w < 0 for turning to the
right side and w > 0 to the left side, are negative for the reward function.

5.2. Training Agent

The training is the process of learning and storing the experience for the actor-
critic agent. The training options affect the DDPG agent. Consequently, it changes the
RL environment.

In Algorithm 2, the DDPG agent for the mobile-robot exploration is presented. In this
section, criticOpts, actorOpts, agentOpts, and trainOpts options are given in more detail.
Table 3 shows the training option values of the actor-critic neural network. The learning
rate option is used to specify the training time needed to reach the optimal result. The
L2 regularization factor is used to avoid the overfitting of the training. To speed up the
training, GPU can be activated by the “use device” option. We used the local GPU device
embedded in the PC, the GeForce GTX 1050 Ti model (compute capability 6.1).

Table 3. The options for the actor and critic.

Critic and Actor Options

Learn rate 103

L2 Regularization factor 104

Gradient threshold 1
Use device gpu

The agent and training options are presented in Table 4. The sample time option is
the time interval of output data returned from the simulation. During training, the DDPG
agent stores the simulation data using the experience buffer. In turn, the mini-batch selects
the data from the buffer randomly and upgrades the actor and critic. The agent noise option
is the stochastic noise model that is added at each time step to the agent.

Table 4. The options for the agent and training.

Agent Option Training Option

Sample time 0.1 Max episodes 500
Experience buffer

length 106 Max steps per
episode 150

Discount Factor 0.995 Score averaging
window length 50

Mini batch size 100 Stop training criteria average reward
Target Smooth Factor 0.001 Stop training value 100
Agent noise options 10−5 Verbose true

Plots training process

109



Appl. Sci. 2022, 12, 9249

In the training option, the simulation parameters were selected. The simulation
runs five hundred times (max episodes). The training can finish under one of these two
conditions: (1) 500 episodes have been completed or (2) the average total rewards have
reached one hundred values for the last 50 simulations.

In MATLAB, it is worth noting that the simulation results can be saved as a file, which
can be loaded again to continue the training process using save and load commands.

6. Simulation Results and Comparison

In practice, the deep-RL method is about two program files that interact with each
other. One of them is the RL environment with reward function and map visualization;
another consists of the DDPG agent with the actor-critic network and training option
settings. They communicate jointly by input data, output data, and reward.

In this section, the simulation results are presented. The comparison with other
algorithms is demonstrated at the end of the section.

6.1. Simulation Results

The training DDPG agent and the exploration are carried out online. It means that
the robot drives in one episode until time runs out, up 150 steps. Figure 9 shows the
environments in which the robot tries to build the maps for two experiments. The first
environment is a simple one without obstacles inside the room. The environment of
Figure 9b is a more sophisticated version of the first one with obstacles. During the training,
the robot drives in one of the environments of Figure 9. Step by step, as it moves during the
mapping, it upgrades the occupancy map of Figure 10. It should be noted that the location
coordinates of walls and obstacles are not used in the computation. The environments
in Figure 9 can be treated as the simulated rooms, which can be easily substituted by
real-world environments.

  
(a) (b) 

Figure 9. The environments of 20 × 15 m size for the two experiments: (a) simple environment,
(b) environment with obstacles.

Figure 10 demonstrates the exploration results of training the DDPG agent. Two results
from each experiment are presented in (a) map coverage percentage and (b) total reward
value. The results were captured during the training according to the greatest values.

Here, it is important to explain the reason for presenting two map results for one
experiment. The results of map (a) and map (b) are different because creating a reward
function based on only one goal, mapping, does not return a positive result. Several
robot behaviors were found to be inappropriate, such as collisions with obstacles, being
stuck in one place without any motion, and turning to one side episode after episode.
These occurred because the linear velocity, angular velocity, and sensing ranges should be
considered in the reward function as they are in the proposed occupancy reward function.
This is why the greatest result of the map coverage is not equal to the greatest result of the
reward function.
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Experiment 1 in the simple environment 

  
(a) (b) 

Experiment 2 in the environment with obstacles 

  
(c) (d) 

Figure 10. The mapping results of the DDPG agent in the custom environments. (a) Map coverage:
99%, Initial positions: x = 6, y = 4. (b) Total reward (G): 90, Initial positions: x = 6, y = 4. The black
line is the robot trajectory. (c) Map coverage: 86%, Initial positions: x = 13, y = 5. (d) Total reward
(G): 67, Initial positions: x = 13, y = 5. The black line is the robot trajectory.

Nonetheless, a full map coverage was obtained. This proves that the DDPG agent is
able to provide 99% of the exploration in the simple map (Figure 10a). The greatest reward
value (G = 90) returns a positive result of the exploration in Figure 10b.

In Experiment 2, the training of the DDPG agent was carried out in the environment
with obstacles (Figure 10c,d). Two results with the greatest values were taken for the map
coverage and reward function categories. It can be seen that the results are worse compared
to the results of Experiment 1. Only 86% of the map was explored. The reward function
value is 67, which is less than 90.

Based on our practice with the DDPG agent in the mobile-robot exploration, several
conclusions can be drawn:

• The agent can solve the mapping problem, especially in a simple environment.
• The reward function can be described as the single objective function. The navigation

and exploration of new areas using the reward function of DDPG agent are insufficient
for the exploration.

• The mapping performance deteriorates when the number of obstacles in the environ-
ment is increased.

• Increasing the training time did not improve the mapping results. As Figure 11 shows,
the overfitting of the neural network occurs in the training after 500 episodes.

• The mapping is a real-time procedure, and the training of the DDPG agent works
online as well. The two together used as one system can be considered a time-
consuming process.
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Figure 11. The episode reward graph during the training. The light blue line is the reward function.
The dark blue line is the average of the reward function. The orange line is the trained critic data. It
can be seen that the overfitting of the actor-critic occurred after 500 episodes.

The experimental results of the proposed occupancy reward-driven exploration using
the DDPG agent are recorded and demonstrated in video [63].

6.2. Comparison

In this subsection, the deep-RL and the nature-inspired algorithms are compared.
In the authors’ previous studies [21], the GWO algorithm for mobile-robot exploration
showed the best result compared with the other nature-inspired optimization techniques.
As a consequence, the GWO exploration algorithm is selected for the comparison analysis.

Table 5 presents the comparison between the proposed occupancy reward-driven
exploration and the nature-inspired exploration. The GWO exploration algorithm works
with waypoints. To enable the robot to move somewhere, it needs to provide the robot a
point to go to and check that the robot reaches the point in each time step. The continuous
action is a more nature-driven action for the robot.

Table 5. Comparison analysis of the GWO exploration and the DDPG agent exploration. The
advantages are highlighted in bold.

Robot Motion Development
Processing

Result
Map Coverage

GWO
exploration Waypoints

Waypoint
computation,

algorithm logic

Waiting for the
best result

91.21%, average
result of

10 simulation runs

DDPG
exploration

Continuous
actions

Two files of RL
environment
and RL agent

Long training of
the agent

99% for simple
environment, 86%

for complex
environment

Considering the development criteria, the GWO exploration algorithm requires more
work in implementation than the DDPG one. A waypoint should be calculated based on
some known parameters (frontier points, robot position) and algorithm logic, which should
be considered in the programming. In this case, the DDPG agent is the more intelligent
and straightforward developing tool. It should describe the RL environment and denote a
reward function. The training process and a neural network find appropriate decisions for
the RL environment.
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The processing result criteria is about obtaining the best performance of the algorithm.
The GWO exploration is a stochastic algorithm that returns different results every simula-
tion run. The best result is unpredictable. It can appear in the first 10 simulation runs or
100 runs. It needs to test and wait for the best result using the GWO exploration algorithm.
For the DDPG exploration, the training takes a long time, for instance, 57 h (around 3 days)
for the one-experiment result presented in Figure 10.

Considering the map coverage criteria, the DDPG exploration has the greatest percent-
age result. However, it is only for the free-obstacle environment. Thus, the two approaches
are not universal algorithms for the mapping problem. This is a disadvantage.

6.3. Developing Tools

In this study, the DDPG agent was implemented in the MATLAB platform. Several
libraries were involved in the exploration simulation: Reinforcement Learning Toolbox,
ROS Toolbox, GPU Coder Toolbox, Robotics System Toolbox, Parallel Computing Toolbox,
Navigation Toolbox, and Mapping Toolbox.

The exploration with the single robot in the binary occupancy environment and the
occupancy map was implemented using ExampleHelperRobotSimulator class.

7. Conclusions

In this paper, the Deep Deterministic Policy Gradient algorithm of deep Reinforcement
Learning was deployed in the robotic mapping domain. The custom environment with a
reward function was created considering the robot motion principles and the occupancy
map visualization. The actor-critic neural network received the sensor data and sent the
continuous actions for the robot. The actions in the custom environment were evaluated
by the proposed occupancy reward function. The training shows that the DDPG agent
can solve the mapping problem in the simple free space with wall obstacles. However,
its reward strategy does not stimulate the robot enough for it to explore faster and more
efficiently. The reward function is only able to evaluate a single parameter, which is a
single action.
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Abstract: Unmanned aerial vehicles (UAVs), particularly quadrotor, have seen steady growth in
use over the last several decades. The quadrotor is an under-actuated nonlinear system with few
actuators in comparison to the degree of freedom (DOF); hence, stabilizing its attitude and positions
is a significant challenge. Furthermore, the inclusion of nonlinear dynamic factors and uncertainties
makes controlling its maneuverability more challenging. The purpose of this research is to design,
implement, and evaluate the effectiveness of linear and nonlinear control methods for controlling an
X3D quadrotor’s intended translation position and rotation angles while hovering. The dynamics of
the X3D quadrotor model were implemented in Simulink. Two linear controllers, linear quadratic
regulator (LQR) and proportional integral derivate (PID), and two nonlinear controllers, fuzzy
controller (FC) and model reference adaptive PID Controller (MRAPC) employing the MIT rule, were
devised and implemented for the response analysis. In the MATLAB Simulink Environment, the
transient performance of nonlinear and linear controllers for an X3D quadrotor is examined in terms
of settling time, rising time, peak time, delay time, and overshoot. Simulation results suggest that the
LQR control approach is better because of its robustness and comparatively superior performance
characteristics to other controllers, particularly nonlinear controllers, listed at the same operating
point, as overshoot is 0.0% and other factors are minimal for the x3D quadrotor. In addition, the LQR
controller is intuitive and simple to implement. In this research, all control approaches were verified
to provide adequate feedback for quadrotor stability.

Keywords: X3D quadrotor; closed-loop system; PID; LQR; fuzzy control; model reference adaptive
PID

1. Introduction

Unmanned aerial vehicles (UAVs) have recently acquired a great deal of interest for
military and civil research applications when a human operator is too risky and time-
consuming. Quadrotors have attracted the interest of scientists in the fields of robotics,
automation, and aviation. A quadrotor is a rotorcraft with a simple nonlinear construction
for vertical take-off and landing (VTOL). It is a system with four actuator inputs that are
under actuated [1]. It features six degrees of freedom, with three translation positions:
longitudinal (x-axis), lateral (y-axis), and height (z-axis), as well as three rotational states
(roll φ , pitch θ and yaw ψ). The thrust of the four rotors controls these output states. The
thrust of the four rotors regulates these output states. Due to its fundamental dynamic
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nature, it offers a great maneuverability advantage. It has a good hovering ability and a
quick response for tracking [2]. It is widely used in both outdoor and indoor situations
for research and monitoring. High-performance quadrotor control in intense and maneu-
verable flight is a challenging problem due to the complex nature of the dynamic model,
severe coupling, and nonlinear characteristics. Scientists may use the control of quadrotors
for testing and evaluating novel concepts in a range of disciplines, including flight control
theory, navigation, and real-time systems.

Many researchers from all around the globe have detailed various methods for oper-
ating quadrotor UAVs, to the extent of developing an effective stabilizing and navigation
system based on the standard control input. A PID controller is extensively used in many
industrial applications because of its simplicity and ease of implementation, on the other
hand, the LQR controller provides better performance concerning certain measures of per-
formance; fuzzy controller and adaptive PID controller are also extensively implemented
for nonlinear systems. Many investigations have been performed on the application of
PID, LQR, fuzzy, state feedback, and other control methods to quadrotor UAVs as a plant,
but there has been relatively little study on the comparison of linear and nonlinear control
methods. The study in [3] proposed a method for simulating and establishing parameters
for a quadcopter to analyze and improve the performance of this system and its stability.
The system was mounted on a structure that could be freely moved along a vertical axis.
The computer received real-time data from sensors and measuring devices. The paper [4]
proposed a comparison of nonlinear and linear control methods for quadrotor systems.
In this paper [5], a comparison of PID and LQR control techniques is provided. Both
controllers provide appropriate feedback for quadrotor stability, according to this study.
For the quadrotor’s flip operation, Byung-Yoon Lee compares the performance of three
distinct types of attitude control systems [6]; PID, sliding mode and open-loop controllers
are all used in his article to develop quadrotor attitude controllers. PID control is one of
the most often used control strategies [1], [7] along with back-stepping [8,9], nonlinear H∞
control [10], Kalman filter [11], and so on. Other control methodologies, such as fuzzy
control systems, are also investigated and applied to a quadrotor, as discussed in [12,13].
In the research in [14,15], the implementation, testation, validation, authentication, and
comparison of LQR, PID, and state feedback controllers have been performed on an X3D
Quadrotor in NI LabVIEW simulation. The application of sub-super-stochastic matrices
to bipartite tracking control in sign networks is presented in [16]. The research [17] repre-
sented an innovative decentralized control strategy for the Cucker–Smale model to analyze
the leader–follower flocking behavior on networks that encompass both cooperative and
rival relationships between agents.

The research [18] addressed the PID and LQR controller implementation for the Qball
X4 trajectory tracking. Simulations and experiments were conducted to compare the
performance of the developed control strategies. A mathematical model was developed in
the research paper [18] to simulate the behavior of a quadrotor with four motors driven
by PID using a simple approach. In the study [19], feedback linearization and the LQR
controller were proposed to stabilize the quadrotor attitude in the trajectory. A gain-
scheduling fuzzy controller for quadrotor position and height control was proposed in the
research [19]. The study [20] compared and implemented three controllers into an actual
quadrotor in real-time, including PID, LQR, and backstepping. The research [21] offered
three robust procedures for controlling a quadrotor in a predetermined trajectory based on
the MIT rule and sliding-mode methods. A variety of commonly used quadrotor controllers
were described in the previous study. With their algorithms, many control techniques have
their strengths and limitations. As a result, the quadrotor’s applications and performance
determine the appropriate controller. The strengths and limitations of several controllers
for controlling quadrotor systems are presented in Table 1.
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Table 1. Strengths and Limitations of Quadrotor Control Techniques.

Controllers Strengths Limitation

PID Gain selection is simple; steady-state error can be avoided. Cannot deal with disturbance or noise, and
cannot handle multiple configurations
simultaneously.

LQR It can handle many inputs and outputs. Not able to overcome steady-state errors.

Backstepping The model must be systematic and recursive; a precise
model is not essential. It can control system nonlinearities,
overcome inadequate disturbances, and guarantee
stability.

Over-parameterization; selecting appropriate
parameters is difficult.

Fuzzy Logic It provides a viable solution to a complex and uncertain
model and does not demand a precise model.

Control rules and system analysis are difficult
to develop. It takes a long time to adjust the
parameters.

H∞ When the system is multivariable and the channels are
cross-coupled, it performs well.

A well-designed model is required.

Sliding Mode
Controller

(SMC)

The performance of high nonlinearity is excellent. Less
sensitivity to perturbations and uncertainty in the model.

The chattering problem can lead to system
instability.

Model Predictive
Control
(MPC)

Predicts future state behaviors; works with multiple input
and output simultaneously; can manage input and output
constraints; and noise and disruptions are not a challenge.

Tracking is slow.

Adaptive
Controller

When parameters are uncertain, the dynamic and
disturbance model are always changing; engineering
effectiveness is comparably acceptable.

It takes time to adapt to the new parameters.

The primary motivation of this research is to show the experimental results of well-
known and recently developed theoretical studies in the field of modern control system
design and analysis for the quadrotor system. One of the most significant properties of
control systems analysis is stability. Control systems must meet specified criteria for the
system under investigation to operate as desired in both transient and steady-state response
values that are as close to the desired value as possible. Therefore, the research presents
the development and comparison of the quadrotor control system. The quadrotor plant is
initially linearized for hover flight before the linear control approaches are implemented.
This research compares the performance of linear and nonlinear control techniques, taking
into consideration the restricted onboard computer resources. Because of the constraints
imposed by nonlinearity factors and external disturbances, the primary goal is to maintain
the translation position’s stability, attitude, and altitude of an x3D quadrotor. The key
contribution of the proposed research is to develop control systems for x3D quadrotors
that will allow them to control the translation position (x, y, z) while stabilizing its attitude
angles (roll φ , pitch θ and yaw ψ) by forcing the position (x, y, z) and yaw (ψ) to track their
respect to reference inputs while keeping the roll (φ) and pitch (θ) angles negligible [21].
The desired parameters, such as rise time, settling time, peak time, and maximum percent
overshoot, and steady-state errors are analyzed in the MATLAB Simulink environment for
the x3D quadrotor. As a result, the suggested solutions are more practical and feasible. The
significant contributions of this research are as follows:

• SIMULINK simulation of nonlinear X3D quadrotor model to validate control ap-
proaches.

• Two linear control systems are implemented: the conventional PID and the LQR
control system.

• Two nonlinear control systems are implemented: fuzzy control and model reference
adaptive PID controller (MRAPC) using MIT rules.
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• Performance comparison of all controllers for quadrotor trajectory tracking based on
transient response. The proposed controllers’ performance is anticipated to be better
in the presence of parameter uncertainty and external disturbances.

The following is the format of this paper: The mathematical model of an X3D quadrotor
is presented in Section 2. The quadrotor’s control methods are discussed in Section 3. The
study and comparison of the aforementioned control strategies for an X3D quadrotor are
presented in Section 4. The conclusion is found in Section 5.

2. Mathematical Modeling of X3d Quadrotor

Kinematics and dynamics are the two parts of the X3D model system and are described
using the Newton–Euler theorem rules as: (1) A quadrotor has a symmetrical and rigid
frame, (2) the quadrotor’s center of gravity is the same as the body’s fixed frame origin,
(3) the propellers have a rigid design, (4) the square of the propeller’s speed determines
thrust and drag. The X3D quadrotor parameter list is mentioned in Table 2. The complexity
of the re-evaluated X3D model, as illustrated in Figure 1, has been significantly decreased.
Equation (1) gives the onboard controller’s input vector.

U =
[
Uφ , Uθ , Uψ , Uthrust

]
(1)

Table 2. X3D Quadrotor parameter list.

Parameters Symbol Value

Quadrotor Mass m 0.54 kg

Gravity Acceleration g 9.807 m/s2

Arm length of Quadrotor L 0.225 m

Inertia Moment
Ixx
Iyy
Izz

0.022 kg.m2

0.022 kg.m2

0.0018 kg.m2

Figure 1. X3D Quadrotor re-evaluation model.

The angular velocity (Sω) and collective thrust (Sc) outputs of the onboard controller
are delivered from the kinematics of the reference body X3D, which results in the system’s
final output in terms of translation position (P) and orientation (Θ). The Newton–Euler
formulation provides a comprehensive mathematical account of quadrotor dynamics [14].
Position, Euler angle, linear velocity, and angular velocity are among the 12-degree-of-
freedom output states described by Equation (2).

12 − DOF =
[

x, y, z, φ, θ, ψ,
.
x,

.
y,

.
z,

.
φ,

.
θ,

.
ψ
]

(2)

The right-handed system is the inertial (Earth) frame of reference E = [Oe,Xe , Ye, Ze]
and denotes the origin, which is the center of the earth. Its purpose is to determine the
quadrotor’s location. Right-handedness is reflected in the bodily frame of reference as
B = [OB,XB , YB, ZB] and denotes the origin, which is located at the quadrotor’s center of
gravity. It is used to figure out the quadrotor’s orientation with the earth frame.

In the body frame, the torque, the force FB, angular velocity ωB, and linear velocity
vB are all computed. The body and the earth reference frames are shown in Figure 2.
The coordinates of the quadrotor (body frame) can be aligned with the earth frame in the
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following sequence: Ze on the earth, the frame is aligned to the yaw angle on the body
frame ZB (positive ψ), Ye is aligned to the pitch angle on YB (positive θ), and Xe is aligned
to the roll angle on XB (positive ϕ). Rotation matrices (xφD, yθD, zψD) about the three
axes (roll, pitch, and yaw) are described in Equation (3).

xφD = [1 0 0 0 cos cos φ sin sin φ 0 − sin sin φ cos cos φ ]yθD
= [cos cos θ 0 − sin sin θ 0 1 0 sin sin θ 0 cos cos θ ] zψD
= [cos cos ψ − sin sin ψ 0 sin sin ψ cos cos ψ 0 0 0 1 ]

(3)

Figure 2. Body and Earth Reference Frame Illustration.

By multiplying a frame with a direction cosine matrix (DCM), a reference frame may
be converted from earth to body and vice versa (DCM) [1] as in Equation (4).

DCM = EBD(Θ) = (xφD).(yθD).(zψD) (4)

Equation (5) gives an orthogonal rotation matrix from the body frame to the inertia
(earth) frame.

EBD(Θ) = [cos cos θ cos cos ψ cos θ sin sin ψ − sin sin θ sin sin φsin sin θ sin sin ψ − cos cos φ sin sin ψ
sin sin φ sin sin θ sin sin ψ + cos cos φ cos cos ψ sin sin φcos cos θ cos φ sin sin θ cos cos ψ

+sin sin φ sin sin ψ sin sin φ cos cos θ cos φ cos cos θ ]
(5)

In Equation (6), the translational velocity VE of the X3D is given about the earth frame.

VE =
.
P = BED(Θ).VB (6)

Equations (7) and (8) can be used to convert angular velocities in the body frame to
angular velocities in the earth frame.( .

Θ
)
= BEH(Θ).Bω (7)

[ .
φ

.
θ

.
ψ
]
=

[
1 θ φ θ φ 0 φ − φ 0

φ

θ

φ

θ

]
[p q r ] (8)

Equation (9) can be used to compute the angular velocity in the body frame.

Bω = Sω . Kω (9)

Equation (10) can be used to determine the angular velocity in the earth frame.

Eω =
.

Θ = BEH(Θ).Bω (10)

All external forces are added together to provide the overall force operating on the
X3D quadrotor. As seen in Equation (11).

TotBF = RotorBF + gBF (11)
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where RotorBF = 1BF + 2BF + 3BF + 4BF.
The upward forces created by the X3D rotors are 1BF to 4BF, and Fg is the force

impacting the body. The angular velocity of rotors affects the RotorBF.
The nonlinear Simulink model of the x3D quadrotor is presented in Figure 3. The

nonlinear dynamic equations of the x3D quadrotor are linearized using a first-order Taylor
approximation to implement the linear controller. The X3D near the hover position’s
aggregate linearized equations may be expressed as Equation (14):

.
x = Vx ,

.
y = Vy ,

.
z = Vz

.
φ = p,

.
θ = q ,

.
ψ = r

.
Vx = −φg

.
Vy = θg

.
Vz =

Fz+I f . VZ
m

(12)

Figure 3. X3D Quadrotor Nonlinear Simulink model.

3. X3D Quadrotor Controller Design

For an X3D quadrotor control system, two control loops are suggested, as shown in
Figure 4. The position controller in the outer control loop controls the system’s slower
dynamics (longitudinal and lateral translations), while the attitude/altitude controller in
the inner control loop controls the system’s quicker dynamics (attitude and altitude).

Figure 4. Closed-loop Control System for X3D Quadrotor.

The quadrotor’s intended rotor speed is output by the attitude/altitude controller.
The PID controller, LQR controller, fuzzy logic controller, and model reference adaptive
PID using MIT rule controller were used in this research to stabilize the translation position
and attitude/altitude of an X3D quadrotor.

3.1. PID Control System

PID controllers are the most fundamental feedback controllers that are frequently
utilized in many industrial applications [22]. A PID controller calculates an error value that
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distinguishes between the desired set point and the measured process value. By changing
the process control inputs, the controller tries to decrease the error. To use the PID controller
for achieving ideal values for a better control system, a complete mathematical model of
the plant is required to determine the three parameters (proportional gain KP, integral gain
KI , and derivative gain KD) [23]. Six PID controllers for attitude/altitude stabilization and
translation trajectories are presented in this research. The attitude angles are controlled by
three PID controllers (φ, θ and ψ). The altitude (z-axis) of the X3D quadrotor is controlled
by one PID controller, while the longitudinal and lateral positions (x-axis and y-axis) are
controlled by two PID controllers. Hence, the attitude is determined by the positions. The
Euler angles’ preliminary conditions are set to (0, 0, and 0) to begin the experiment. The
angular velocity and thrust for the X3D quadrotor are then generated by combining all PID
controllers with the combinational control. Figure 5 depicts the PID controller feedback
loops for an X3D quadrotor [24]. Equation (13) illustrates the discrete-time transfer function
for each PID controller.

PID =

(
KP + Z−1KD +

1
Z−1 KI

)
(13)

Figure 5. X3D Quadrotor PID Controllers.

In Equations (14) and (15), the equations for PID attitude control are provided.

eattitude = Θre f reance − Θmeasured . EBD(Θ) (14)

Θdesire = eattitude.PID (15)

Similar to PID for attitude control, PID for height control (z−axis) and PID for transla-
tion position control (x−axis and y−axis) are calculated. The height (z−axis) and intended
angular velocity are used as inputs in the combination control step, and following satura-
tion, thrust and the actual angular velocity are transmitted to the X3D quadrotor’s nonlinear
model, as shown in Equations (16)–(18). The classical discrete PID is implemented in all the
controller blocks, and the parametric gain values are listed in Table 3.

ωdesire = (Θdesire − Θmeasured).EBH(Θ) (16)

U[X, Y,ψ] = sat{ωdesire} (17)

UZ = sat{Zdesire} (18)

Table 3. Parametric Gain values of each PID Controllers.

Parametric Gain
Controllers

PID Altitude (Z) PID (X, Y) PID (ΦΦΦ, θ, ψ)

KP 1.5 2 1

KI 0 0 0

KD 0.5 1 0.1
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3.2. LQR Control System

The linear quadratic regulator (LQR) controller has been widely used in engineering
applications such as voltage source inverters and wheeled inverted pendulum vehicles [25].
There is comparably little research on using the LQR control technique to track and stabilize
the quadrotor. The LQR control system is designed to give optimum control while being
cost-effective [26]. Owing to the significant uncertainties and nonlinearities in quadrotor
dynamics, as well as model unreliability due to parameter fluctuations and linearity approx-
imation, implementing the LQR control system on the quadrotor is a difficult undertaking.
As a result, the quadrotor system dynamics are described by a linear state–space equation,
with a quadratic cost function as the least appropriate cost function [27]. Equations (19)
and (20) depicts the form of the continuous state–space model:

.
xs(t) = Axs(t) + Bu(t) (19)

y(t) = Cxs(t) + Du(t) (20)

To develop the continuous state–space model, the X3D’s linearized state–space Equa-
tion (21) and (22) is employed. The A matrix is shown below, with C = I9X9 and D = 09x4
as the C and D matrices, respectively.

.
xs(t) = A xs(t) (21)

[ .
x

.
y

.
z

.
φ

.
θ

.
ψ

.
Vx

.
Vy

.
Vz

]
= [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0 0

−g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I f
m

][
x y z φ θ ψ Vx Vy Vz

] (22)

Equation (23) derives the discrete case quadratic cost function.

J =
∞

∑
k=0

∣∣∣∣∣xk
TQxk + uk

T Ruk (23)

The weighted matrices of the state vector and input vector, respectively, are Q and
R. The Q and R gain matrices for simulation were determined using Bryson’s method.
Equation (24) yields the Q and R gain matrices for the X3D quadrotor.

Q

= [10 0 0 0 10 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

= [10 0 0 10 0 0 0 0 0 0 0 0 10 0 0 10 ]

(24)

The parameters k, P, and e for the LQR system may be retrieved using the MATLAB
lqr function, as indicated in Equation (25).

[k, P, e] = lqr(A, B, Q, R) (25)

3.3. Fuzzy Logic Control System

The correlation between the input data and the output action is described using
human language descriptions in fuzzy logic. It is a mathematical system that takes analog
input values and compares them to variables that need values between 0 and 1 [28]. The
proper process input is determined by a fuzzy controller’s fuzzy membership function and
inference rule. The quadrotor’s translation position must be controlled while its attitude
(roll, pitch, and yaw angle) must be stabilized [29]. In this article, an X3D quadrotor is
controlled using Mamdani’s fuzzy inference approach. The quadrotor’s attitude (desired
angles of roll, pitch, and yaw) is controlled by three fuzzy controllers, denoted as FC (φ),
FC (θ) and FC (ψ), respectively (desired angles of roll φ, pitch θ, and yaw ψ) [30]. FC (Z)
determines the altitude of the quadrotor. The quadrotor’s translation position is controlled
by two additional fuzzy controllers, FC (X) and FC (Y). The states ϕ and θ are used to
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control the X and Y positions, respectively. All six fuzzy logical controllers use the same
two identical inputs as described below.

• Error (e) denotes the difference between the desired and measured signals.
• Derivative error (de) is the error rate.

Figure 6 depicts the implementation of a fuzzy system for quadrotor control. Error
is stabilized between [−1, +1] and [−3, +3], whereas the error rate is stabilized between
[−3, +3].

Figure 6. X3D Quadrotor Control using a Fuzzy Controller.

The output with three fuzzy logic values (N, Z, and P) is used for the input variables e
and de, as indicated in Table 4; N stands for negative, Z for zero, and P for positive. Table 1
explains the rules: If the error (e) is negative and the rate of error (de) is negative, then
the output will be negative. Figure 7 depicts all of the FCs’ controller inputs as well as
membership functions.

Table 4. X3D Quadrotor’s Fuzzy Rules.

Error (e)

Rate of Error (de)

FC (X), FC(Y), FC (φ), FC(θ)

P Z N

P P P Z

Z P Z N

N Z N N

FC (Z), FC(ψ)

P Z N

P Z Z N

Z Z N P

N N P P

The surface view of all Fuzzy controllers is shown in Figures 8 and 9.
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Figure 7. Error, Rate of Error, and Output Membership Functions.

Figure 8. Surface view of FC (Z), FC (ψ).

Figure 9. Surface view of FC (X), FC(Y), FC (φ), FC (θ).

3.4. Model Reference Adaptive PID Control System Based on MIT Rule

Numerous controllers, including PI, PD, PID, and feedback, can be adapted utilizing
particular adaptation methods to improve system performance. In this research, the model
reference adaptive PID controller based on MIT rule was used to investigate the fast-
tracking and stability control of quadrotor [31]. The Massachusetts Institute of Technology
(MIT) developed the MRAC-based MIT rule in 1960 [32]. It employs the model reference
adaptation control technique to ensure that the actual plant output follows the output of
the reference model when the reference inputs are the same for any practical system with
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undetermined and unpredictable characteristics that can be adjusted by control settings [33]
as illustrated in Figure 10. This section presents the MIT-rule-based design parameter
adaption rules for a PID controller. The following are the steps to creating an MRAC
using the MIT rule. Obtain the MRAC system reference model that yields the desired
trajectory ym.

Gm(s) =
ym(s)
uc(s)

=
αs + ωn

2

s2 + 2sζωn + ωn2 (26)

Figure 10. MRAC System with MIT Rules.

Closed-loop characteristics such as settling time tS and overshoot (OS) are used to
estimate the damping ratio ζ and natural frequency ωn. Table 5 lists the specifications of
the reference model for the X3D quadrotor.

Table 5. X3D Quadrotor reference model specifications.

Parameters Values

Settling time 20s

Damping ratio 0.707

Steady-state error 0%

The transfer function of the reference model is changed as follows:

Gm(s) =
ym(s)
uc(s)

=
0.1058

s2 + 0.1496 + 0.1058
(27)

1. State the adaptive law of MRAC system for PID controller as

u(t) = KPe(t) + KI

∫ t

0
e(t)dt − KD

dyp

dt
(28)

where e(t) = uc − yp

The PID controller’s transfer function in Laplace domain is described in Equation (29)

U(s) = KPE +
KI
s

E − KDsyp (29)

2. State the tracking error e for the system as

e = r − yp (30)

where r is the system reference input.

de
dt

= −dyp

dt
(31)

126



Appl. Sci. 2022, 12, 9254

3. As stated in Equation (34), estimate the adaption error ε.

ε = yp − ym (32)

where yp denotes the plant output and ym denotes the reference model output.
4. As follows, describe the MIT rule, which is described as the temporal rate Φ of change

proportional to the cost function’s (J) negative gradient.

dΦ

dt
= −γ

∂J
∂Φ

= −γe
∂e
∂Φ

(33)

For calculating the value of PID controller parameters (
.
KP,

.
KD,

.
KI), use the MIT Rule

(gradient method). The following are the estimated adjustment parameters.

dKp
dt = −γpε

(
s

s2 + 2sζωn + ωn2

)
e

dKI
dt = −(γI)ε

(
1

s2 + 2sζωn + ωn2

)
e

dKD
dt = γDε

(
s2

s2 + 2sζωn + ωn2

)
yp

(34)

For the approximate parameters KP, KI and KD of adaptation, the law is as (35).

θ1 = Kp = −
(

γp
s

)
ε

(
s

s2 + 2sζωn + ωn2

)
e

θ2 = KI = −( γI
s
)
ε

(
1

s2 + 2sζωn + ωn2

)
e

θ3 = KD =
(

γp
s

)
ε

(
s2

s2 + 2sζωn + ωn2

)
yp

(35)

The value of the adaptation gain (γ) has a direct relationship with the convergence rate.
The simulation results show that it is correct for small values (γ) but impulsive for

high values, indicating that the right selection of (γ) is critical. The quadrotor’s attitude
(roll φ, pitch θ, and yaw ψ) is controlled by three MARC adaptive PID controllers, indicated
by MARC φ, MARC θ and MARC ψ, respectively. MARC Z oversees controlling the
quadrotor’s height, while MARC X and MARC Y are in charge of controlling the quadrotor’s
position. The architecture of the MARC adaptive PID controller with MIT rule including all
six degrees of freedom (DOF) quadrotor output is shown in Figure 11. Three PID controller
parameters (KP , KI , and Kd) can be modified using the MARC system and the MIT rule to
make the nonlinear X3D Quadrotor stable and track to the appropriate reference input.

Figure 11. MRAC Adaptive PID Controller with MIT for an X3D Quadrotor.
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4. Simulation Results

All linear and nonlinear controllers can provide system stability and optimum perfor-
mance under their nominal conditions. It is indeed challenging to obtain equivalent results
from both the simulation and the real-time experiment due to highly precise parameter
adjustment and nonlinear parameters and dynamics. Researchers generally use modelled
linear controllers because of their simplicity of design and implementation, as well as
their ability to produce high-quality experimental data. On the other hand, robustness,
noise and disturbance elimination, limitation control at the endpoints, and more precise
trajectory tracking are all advantages of nonlinear controllers [34–36]. Therefore, theoretical
studies reveal that linear controllers such as LQR and PID are good at maintaining stability
under nominal conditions but not so good at ensuring robustness. The fuzzy controller, on
the other hand, cannot guarantee nominal stability but can offer adequate and excellent
maneuvering performance. Furthermore, hybrid and adaptive controllers are created as
units in which many controllers can work together to provide the finest balance of robust-
ness, nominal stability, flexibility, optimality, simplicity, tracking ability, rapid response,
and disturbance rejection to a system, among other features. High computation, a large
amount of training data, estimation error, and the existence of uncertainty are the issues
that these controllers must confront to achieve satisfying performance, even though they
are capable of ensuring remarkable outcomes when the system is disturbed by uncertainty.
For example, LQR becomes LQG when the Kalman filter is used to generate a state observer
and eliminate signal noise. Secondly, to achieve excellent maneuvering performance, a
model reference adaptive controller is used to update the PID controller gain. Figure 12
shows the proposed control structure, which includes a control unit, an X3D Quadrotor, an
inertial measurement unit (IMU), and a Kalman filter. The reference input will be received
first by the quadrotor system. It measures the translational position and rotational position,
velocities, and accelerations of the X3D Quadrotor at a specified time. The output of the
quadrotor is then sent to the IMU sensor, which includes a three-axis accelerometer and
a gyroscope. The Kalman filter is used to rectify and filter the output of an IMU sensor
before it is fed back to the control unit. The control unit then generates an output that is
equivalent to the thrust that all motors must provide in order to maintain the well-defined
requirements of the X3D quadrotor. The proposed control structure mentioned above is
implemented in the MATLAB Simulink environment. To evaluate the performance of all
control systems for the specified reference position, unit step tests are performed in all
the three axes, x, y, and z. Desired references for step input at the xyz positions are set
to 1. The simulation period of an X3D Quadrotor system is defined as 30, 50, and 400 s,
correspondingly, for positional testing (x, y, and z) among suggested controllers.

Figure 12. Quadrotor closed-loop control system.
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Figures 13–18 illustrate the output response of the closed-loop control system for the
longitudinal position (x-axis), lateral position (y-axis), altitude (z-axis), and attitude (roll,
pitch, and yaw angle) for each of the four controllers. All controllers work well in keeping
the quadrotor in the proper reference position, as can be seen in these figures. Tables 6–8
provides the comparison of step test results in terms of rising time, settling time, peak time,
and overshoot for all three dimensions (x, y, and z). Figures 13 and 14 show the X and Y
position responses, whereas Figure 15 shows the height (z-axis) response.

Figure 13. Step response result of all control systems along the x-axis.

Figure 14. Step response result of all control systems along the y-axis

129



Appl. Sci. 2022, 12, 9254

Figure 15. Step response result of all control systems along the z-axis

Figure 16. Roll (φ) Control result depending on step input for all control systems.

The aggregate performance of the PID controller, LQR controller, fuzzy controller, and
MRAPC with MIT rule controller appears to be satisfactory, as demonstrated in Figure 13
and Table 6, where the root mean square error (RMSE) and normalized root mean square
error (NRMSE) for simulations are less than 1 m along the x-axis. Although, the LQR
controller is superior to others because it reduces overshoot, rising time, and settling time
along the x-axis. Nevertheless, the performance of PID, LQR, fuzzy, and MRAPC with MIT
rule appears to be good, as demonstrated in Figure 14 and Table 7, where the root mean
square error (RMSE) and normalized root mean square error (RMSE) for simulations are
below 1 m along the y-axis.

In terms of overshoot, rising time, and settling time along the y-axis, the LQR controller
performs better.

According to Figure 15 and Table 8, the LQR controller achieves superior results along
the z-axis than other control approaches because there is no overshoot, the rising time is
shorter, and the settling time is shorter. In Figure 16, the LQR controller stabilizes the roll
angle in 4 s, which is a much quicker period than the findings of other controllers.
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Figure 17. Pitch (θ) Control result depending on step input for all control systems.

Figure 18. Yaw (ψ) Control result depending on step input for all control systems.

Table 6. Performance comparison of all controllers for the longitudinal position (x-axis).

Controllers
Performance Index (x-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 24.3 1.2 4.2 5.1 0.16 0.11

LQR 4.18 2.55 0.0 30 0.21 0.21

Fuzzy Logic 36.48 3.15 38.64 8.8 0.23 0.17

MRAPC with MIT 17.24 7.1 119.58 22.5 0.22 0.10

The LQR controller, as shown in Figure 17, requires a shorter time to stabilize the pitch
angle than other controllers.

Figure 18 demonstrates that the system has a negligible yaw angle in the case of the
LQR controller structure.
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Table 7. Performance comparison of all controllers for the lateral position (Y-axis).

Controllers
Performance Index (y-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 19.08 1.1 43.2 4 0.17 0.12

LQR 4.18 2.5 0.0 30 0.21 0.21

Fuzzy Logic 37.54 3.35 39.162 8.8 0.24 0.18

MRAPC with MIT 170.74 104.7 8.8 213.1 0.425 0.426

Table 8. Performance comparison of control techniques for Z-position.

Controllers
Performance Index (z-axis)

Setting Time TS Rise Time Tr Overshoot (%) Peak Time Tp RMS Error NRMS Error

PID 7.06 0.6 4.7 2.2 0.08 0.08

LQR 4.16 2.25 0.0 30 0.18 0.18

Fuzzy Logic 14.21 32.75 2.67 50 0.814 0.815

MRAPC with MIT 21.86 3.3 0.77 26.85 0.056 0.056

5. Conclusions

The system proposed in this manuscript is a quadrotor. Controlling and stabilizing the
quadrotor is a substantial issue due to nonlinearity and under-actuated configurations, such
as a lower number of control inputs than degrees of freedom (DOF). A comparison of four
alternative control methods, such as the LQR controller, PID controller, fuzzy controller,
and model reference adaptive PID controller using the MIT rule, has been provided in
this article for an X3D quadrotor. These controllers demonstrate the stability, robustness,
and control of a quadrotor during maneuvers and trajectory tracking in the presence
of nonlinear dynamics. The results of simulations demonstrate that given the identical
translation position, altitude, and attitude inputs, each control system responds differently.
However, based on the features that are required for the quadrotor application, it is possible
to select the most suited system. When compared to other controllers at almost the same
operating conditions, the LQR controller yields the highest accuracy in x, y, and z-step
performance. The LQR controller has a 0.0% overshoot and a 4.1% shorter settling time than
other controllers, particularly nonlinear controllers. In terms of the highest settling time
and overshoot, the model reference adaptive PID controller using the MIT rule performs the
worst. It is worth mentioning that the linear controller methods are quite ubiquitous and
easy to implement, and they may be used for a wide range of real-world control systems.
For potential research directions, all the controllers will be deployed on the X3D quadrotor
board, and the X3D quadrotor’s real-time performance, validation, and authentication of all
control systems will be monitored; in addition, other machine learning and deep learning
algorithms will be implemented for autonomous operation.
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Abstract: Real-time stereo visual odometry (SVO) localization is a challenging problem, especially
for a mobile platform without parallel computing capability. A possible solution is to reduce the
computational complexity of SVO using a Kanade–Lucas–Tomasi (KLT) feature tracker. However,
the standard KLT is susceptible to scale distortion and affine transformation. Therefore, this work
presents a novel SVO algorithm yielding robust and real-time localization based on an improved
KLT method. First, in order to improve real-time performance, feature inheritance is applied to
avoid time-consuming feature detection and matching processes as much as possible. Furthermore,
a joint adaptive function with respect to the average disparity, translation velocity, and yaw angle
is proposed to determine a suitable window size for the adaptive KLT tracker. Then, combining
the standard KLT method with an epipolar constraint, a simplified KLT matcher is introduced to
substitute feature-based stereo matching. Additionally, an effective veer chain matching scheme is
employed to reduce the drift error. Comparative experiments on the KITTI odometry benchmark
show that the proposed method achieves significant improvement in terms of time performance than
the state-of-the-art single-thread approaches and strikes a better trade-off between efficiency and
accuracy than the parallel SVO or multi-threaded SLAM.

Keywords: stereo visual odometry; feature inheritance; adaptive KLT tracker; veer chain matching

1. Introduction

As an essential simultaneous localization and mapping (SLAM) front end, visual
odometry (VO) has been developed over the past decades [1]. The VO fundamental is
incrementally estimating the rotational and translational changes of consecutive image
frames [2]. Since monocular VO cannot determine the scale information of motion, stereo
VO (SVO) with an extra camera means that depth information is available through triangu-
lation of a well-calibrated stereo rig. Although existing methods can provide very accurate
and robust trajectory estimates with a relative position error better than 2% [3], their
practical usage is limited because of the computational burden. For instance, SOFT2 [4]
accomplished the optimal performance on the KITTI leaderboard in terms of rotational and
translational accuracy thus far, while the processing speed was only 10 Hz on a 2.5 GHz
CPU with four cores.

Currently, this challenging problem has been extensively studied in VO work. Most
SVO methods typically consist of feature detection, stereo matching, feature tracking, and
motion estimation [5]. In general, improvements in time performance can be divided
into three groups. First, since one of the main reasons for the aforementioned problem is
that the feature detector and robust motion estimator tend to take most of the SVO time,
as reported in [6], real-time SVO can be achieved by employing a more compact feature
detector or motion estimator. With a much simpler Sobel filter as the feature detector, the
work in [7] developed a real-time SVO at a minimum computational complexity using the
KITTI odometry dataset. Although their system is able to run at 0.05 s per frame on a single
CPU core @ 2.5 GHz, the simplified detector and matcher are susceptible to scale distortion
or affine transformation. Second, given prior knowledge of ego-motion from other systems,
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such as an inertial measurement unit and wheel encoder-based odometry [8–10], the range
of searching for features and matching can be greatly reduced. However, this method is
prone to a large error accumulation, especially for vehicles losing traction on large rocks
and steep slopes [9,10]. Another common solution is parallelization through multithread
programming [11], FPGA, or GPU acceleration [12,13]. The four-thread architecture of
OV2SLAM [14] can run at 200 Hz on a 3.0 GHz CPU with eight cores. A real-time SVO
that relies on heavy parallelism can limit its applications in mobile vehicles [7]. Therefore,
the main purpose of this work was to develop a single-thread SVO without any prior
knowledge of the motion to produce real-time and robust localization on a standard CPU.

According to the publicly available KITTI leaderboard, the fast and robust visual
odometry (FRVO) in [6] exceeds all other validated methods in real-time performance. In
their implementation, a pruning corner detector and an improved Kanade–Lucas–Tomasi
(KLT) tracker are able to reduce the computational complexity of SVO. The speed of FRVO
is 0.03 s per frame on a 3.5 GHz CPU, with an average translation error of 1.26% and
a rotation error of 0.0038 deg/m. However, to determine a suitable window size for
the KLT tracker, FRVO requires a dense disparity map to be provided beforehand and
the abovementioned time performance does not include the time for a dense disparity
computation, which is usually a time-consuming process. In this paper, the proposed
approach achieves better real-time performance on a lower-speed processor with similar
localization accuracy. Instead of the three improvements mentioned above, a new approach
is proposed to reduce computational complexity through both feature inheritance (FI) and
an improved KLT method. The KLT improvements include an adaptive KLT tracker (AKT)
and a simplified KLT matcher (SKM). The proposed approach is most similar to the SVO
in [15]. A KLT tracker [16] is also used in a similar way to avoid both feature detection and
matching in a new frame, but with several important distinctions that are summarized in
the following steps:

1. By analyzing the relationship between the motion experienced by the feature, the av-
erage disparity, the translation velocity, the yaw angle, and the adaptive window size
for the AKT must by necessity be jointly determined, which can significantly improve
the tracking accuracy in the presence of scale distortion and affine transformation.

2. The AKT tracks the inherited features between only the left images of two consecutive
frames, and the SKM is performed in a new stereo frame, which can avoid computa-
tionally expensive feature detection and feature-based stereo matching processes as
much as possible.

3. To limit the drift error, an effective veer chain matching (VCM) scheme is introduced.
4. A systematic evaluation using the KITTI dataset [17] was performed. The experimen-

tal results show that the proposed SVO can achieve better real-time performance in
comparison to the other state-of-the-art approaches without deteriorating the localiza-
tion accuracy.

The rest of the paper is organized as follows. Section 2 concisely outlines the proposed
SVO, which is explained in detail in Section 3. Section 4 outlines several comparative ex-
periments that were conducted to demonstrate the effectiveness of the proposed approach,
and the conclusions are made in Section 5.

2. Method Overview

Figure 1 depicts the workflow of the proposed SVO which can be outlined in the
following steps:

1. Searching for a series of SURF key points in the first stereo frame and computing their
normalized descriptors with 64 dimensions.

2. With the epipolar constraint, stereo matching is performed using the Euclidean dis-
tance between the SURF descriptors.

3. A subset of the matched features is selected by means of bucketing to ensure the
features are uniformly distributed over the image plane.
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4. The three-dimensional (3-D) coordinates of the selected features are computed us-
ing triangulation.

5. The two-dimensional (2-D) features are tracked between the left images in frames
k − 1 and k using the AKT.

6. The SKM is performed by combining the standard KLT method [16] with the epipo-
lar constraint. Then, the 3-D coordinates of the matched features are computed
through triangulation.

7. The perspective-3-point (P3P) algorithm [18] is carried out in a random sample con-
sensus (RANSAC) framework [19] to estimate the ego-motion from the 3-D-to-2-D cor-
respondences.

8. The maximum likelihood estimator (MLE) [9,10] is applied to produce a robust ego-
motion estimation.

9. The features inherited from Step 5 between the left images in frames k and k + 1
are continuously tracked. If the number of new tracked features is smaller than
a predefined threshold N, repeat from Step 1. Otherwise, the features are inher-
ited successfully and repeat from Step 6. The threshold is set to 30 to ensure both
computational accuracy and efficiency. This process is called FI.

10. After Step 8, for a turning maneuver, the drift error is reduced via a VCM scheme.
This scheme consists of a veer frame detection process and a veer frame matching
process. If this is the first time through the corner or the intersection, a veer frame
update will collect the current frame as the unique keyframe of this corner. If not,
the motion between the current veer frame and the first veer frame of this corner
is estimated and the drift error is corrected. This novel scheme will be described
in Section 3.

k  

  

k 

 

 

  

 

 

k  

 

 
 

 

 

 

 

 

 

Figure 1. Flowchart of the proposed approach.

3. Detailed Description of the Method

A detailed description of the steps required in the proposed SVO algorithm is provided
in this section.

3.1. Feature Detection and Stereo Matching

Many feature detectors have appeared in SVO research, such as Harris [20], Shi-
Tomasi [16], FAST [21], SIFT [22], and SURF [23]. These detectors have their own advantages
and disadvantages. Note that both SIFT and SURF have been proven to be invariant to
certain changes in perspective. The latter builds upon the former but uses box filters to
border on the Gaussian, contributing to a faster computation [3]. Therefore, in this work,
a SURF detector was employed to search for interest points in a first stereo frame and
compute the SURF descriptors, where the stereo frame represents the left and right images
taken at the same time.
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After feature detection, stereo matching was performed on the basis of the similarity
of the SURF descriptors, and an epipolar constraint was imposed. Specifically, with respect
to the similarity measurement, the Euclidean distance between each descriptor in the
left image and all the descriptors in the right image was calculated. Two feature points
are considered to have correspondence only if their descriptors satisfy both conditions.
First, the distance between two candidate points is less than a predefined threshold. In
this case, for the normalized SURF descriptor, the distance threshold was set to 0.35. In
addition, the distance from all other candidate points is larger than a certain threshold.
This is implemented by checking whether the ratio between the closest and the second
closest match is small enough. Typically, the ratio threshold for determining whether the
correspondence is still live is set to 0.6. In addition, the epipolar constraint means that, for
a well-calibrated stereo rig, the row coordinates of the correspondence feature points are
approximately equal to the noise tolerance of one pixel.

3.2. Bucketing and Triangulation

Some studies have found that not all detected feature points are suitable for accurate
tracking [16]. The work presented in [24] confirmed that feature selection can significantly
reduce the number of iterations in the RANSAC scheme. This means that a subset of
carefully selected features can not only prevent estimation bias, but also improve the real-
time performance of SVO. Thus, it is generally required that the feature points should be
uniformly distributed over the image plane, which can be implemented through bucketing
technique [25]. In this case, each image is split into 50 × 50 pixel-sized blocks, i.e., buckets.
In every bucket, only the strongest feature is kept, and the others are discarded.

Afterward, the 3-D coordinates of the selected features are calculated using intersecting
rays projected through the stereo observation models, i.e., triangulation, as shown in
Figure 2. In the absence of error, the rays of the same feature points in the stereo frame
(ql and qr) intersect at point P in the 3-D spatial space. However, due to image noise,
camera model uncertainty, and matching error, they do not always intersect. The shorter
the distance between the two rays is, the more accurate the results that stereo matching can
obtain. In the implementation, the feature correspondences which intersection distance is
greater than 0.1 m is eliminated.

Figure 2. Stereo observation model.

3.3. Adaptive KLT Tracker and Simplified KLT Matcher

In successive stereo frame k − 1, the AKT tracks the selected features to acquire their
pixel coordinates in frame k. First, the optical flow corresponding to the feature point is
solved in two consecutive left images IL

k−1 and IL
k . In the notation, the superscripts L and
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R index the “left” and “right” images, respectively, and the subscript k indexes the frame.
The AKT minimizes Equation (1) using the Newton–Raphson method:

d = argmin
d

�
Wk−1

[
IL
k (x + d)− IL

k−1(x)
]2

ω(x)dx (1)

where x = (u, v) is a feature point; d = (Δu, Δv) is the translation of the feature window’s
center; Wk−1 is the adaptive window; and ω(x) is a Gaussian weighting function. The
correct optical flow computation of feature correspondences in frame k − 1 generates the
tracked features in the left image in frame k.

Because the standard KLT tracker assumes that the feature patch undergoes only
translation motion, a fixed-window KLT is susceptible to scale distortion and affine trans-
formation [26]. A small feature window is sensitive to noise, whereas a large feature
window may not exhibit a clear or sharp response. In the following paragraphs, we in-
dicate that it would be better to determine an adaptive window size for the KLT using
the average disparity, the translation velocity, and the yaw angle. From the FRVO discus-
sion in [6], a larger window size should be used for features with large motion, while a
smaller window size should be used for a feature with small motion. FRVO uses disparity
information to represent the motion experienced by the features, as shown in Figure 3;
thus, an adaptive window size for the KLT is employed based on the disparity field. On
a large scale, this must be true. However, for a specific feature, a large disparity does not
mean that a large window is necessarily suitable. Especially for a feature near the road,
a large motion is often accompanied by a large affine transformation. The experimental
results demonstrate that a small window allows for a better tracking accuracy. Therefore,
the proposed method does not pursue the optimal tracking accuracy for every feature, but
for better overall performance. Instead of a dense disparity map, the average disparity is
used as an indicator for the adaptive window size, which also reduces the computational
complexity. On the other hand, disparity alone is not sufficient to characterize the motion
of features. For example, when the translation velocity of the camera is slow, the local
optical flow vector of each feature is small. Alternatively, for a turning maneuver, Figure 4
shows that the feature with a small disparity still has a larger optical flow vector. At this
point, the tracking error tends to increase rapidly if the AKT relies on disparity information.
Therefore, in addition to the average disparity in the current frame, the translation velocity
of the camera and the yaw angle in the previous frame should be used to guide the adaptive
window strategy. This makes it possible to use a small window for the AKT even when the
disparity of features is large. Based on the discussion above, a joint adaptive function (JAF)
is built as follows:

Wk = cd(dk − d0) + cv(vk−1 − v0) + cα(αk−1 − α0) + b (2)

where Wk is the adaptive window size for the AKT in frame k; dk, vk−1, and αk−1 are the
average disparity in frame k, the translation velocity of the camera, and the yaw angle
in frame k − 1, respectively; d0, v0, and α0 are the constant offsets; cd, dv, and cα are the
disparity, the velocity, and the yaw angle weighting coefficients, respectively; and b is
the base window size. The parameters (d0, v0, α0, cd, cv, cα, and b) are empirically set to
be (20 pixels, 1.0 m/frame, 0.02 rad, 1, 10, −100, and 17), respectively. Meanwhile, the
window size Bk has the lower and upper bounds of 5 and 49, respectively. Note that the
adaptive window size is determined using the first-order approximation. An interesting
future direction would be to explore a nonlinear model for the JAF and obtain the above
parameters in a learning framework.
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(a) 

 
(b) 

Figure 3. (a): Feature point tracking results in frame 0 on sequence 00 of the KITTI odometry dataset.
The yellow arrow indicates the optical flow vector of the feature point. (b): Relationship between
the disparity and the optical flow when the translation velocity is fast and the yaw angle is small;
features with a large disparity are prone to large motion and features with a small disparity are prone
to small motion. Each blue dot corresponds to a feature point in (a).

(a) 

(b) 

Figure 4. (a): Feature point tracking results in frame 99 on sequence 00 of the KITTI odometry dataset.
The yellow arrow indicates the optical flow vector of the feature point. (b): Relationship between
the disparity and the optical flow for a turning maneuver; regardless of the size of the disparity, all
features have large motion. Each blue dot corresponds to a feature point in (a).
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After the tracking step, for a rectified stereo frame, stereo matching can be conducted
strictly along the epipolar line. Combining the KLT method with the epipolar constraint,
the component of the displacement d in the row direction is approximately equal to zero.
This means that the SKM looks for feature correspondences only in the column direction.
Thus, the SKM between the left and right images IL

k and IR
k in frame k can be represented

as follows:
d = argmin

d

�
W

[
IL
k (u, v + d)− IR

k (u, v)
]2

ω(u, v)dudv (3)

where d is the disparity. The resulting set is also projected to 3-D space via triangulation.
Afterward, when estimating the camera pose in frame k + 1, the input to the new

AKT is no longer the output of the SURF detector but the output of the SKM, i.e., the FI.
This means that the new SURF feature detection will be taken into account only if the
number of new tracked features is lower than a predefined threshold. Due to the FI, the
AKT, and the SKM, the approach presented here can avoid both feature detection and
feature-based stereo matching as much as possible. Consequently, the computational time
is considerably reduced.

3.4. RANSAC-P3P and Maximum Likelihood Estimator

Almost all robust SVO methods employ the RANSAC scheme for motion estimation
when there are noise and outliers with the feature detector, matcher, and tracker. In this
paper, ego-motion is estimated through the RANSAC-P3P reported by Fischler and Bolles
in [19], where a set of closed-form hypotheses on the minimum number of data needed to
obtain a solution is solved, and the hypothesis that shows the highest consensus with the
other data is selected as an initial solution. Then, the MLE [9,10] is applied to produce a
final, corrected ego-motion estimation between the two consecutive frames.

3.5. Veer Chain Matching

As there is scale distortion and affine transformation due to rotation, the KLT tracking
error tends to increase rapidly for a turning maneuver. To limit the drift error, an easy
and effective VCM scheme is proposed, which draws inspiration from the loop closing
of the ORB-SLAM2 [11]. However, this VCM scheme employs a veer frame detector and
matcher, avoiding the time-consuming loop closure detection and achieving high accuracy,
especially for an urban environment with more corner loops.

Generally, in order to form a closed loop in a trajectory, one of the following conditions
should be met: (1) there is a large veer in the trajectory, or (2) there is a long-term cumulative
turn in the same yaw direction. Inspired by this, a vehicle would only be possible to revisit
a site through a corner or after a turning maneuver. Figure 5 shows the path reconstructed
from our SVO method compared to the ground truth data on sequence 00 of the KITTI
odometry dataset. The vehicle leaves corner A on frames 123 and 1271. The VCM scheme
can correct the drift error on the next visit.

Figure 5. VCM on sequence 00. The green line indicates the drift error correction of frame 1571 where
the vehicle revisits corner A.
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The basic idea of VCM is to detect veer frames using the yaw angle of the current
frame relative to the previous frame. As shown in Figure 6, when there is a large angle
of veer in the trajectory, there must be a large peak in the yaw angle diagram. Thus, if
the yaw angle is larger than some threshold, this demonstrates that a turning maneuver
is underway, and the corresponding stereo frame is regarded as a veer frame. Once a key
veer frame is obtained, the VCM scheme is triggered to reduce the drift error. The key to
the above approach is to determine the yaw angle threshold. A large threshold angle is
likely to lead to missing detection, while a small threshold angle reduces the time efficiency
of the VCM. It can be observed that the size of the yaw angle peak is proportional to the
velocity and the veer angle. Therefore, in this case, 50% of the yaw angle peak is taken
as the threshold when passing through a right-angle corner at a slower speed, which is
0.03 rad. If this is the first time through the corner or the intersection, the last veer frame
will be regarded as the unique keyframe of the corner. These keyframes and their locations
are collected into a set V. The reason for this is that the drift error can always be corrected
when the vehicle leaves the corner. When a key veer frame is detected, this information is
used to reduce the drift in the vehicle path. If the SVO revisits these locations, veer frame
matching is performed between the current veer frame and all the keyframes in the set V.
Here, the ZNCC method [25] is used. If the number of matched features is larger than some
threshold, the motion estimator between the corresponding veer frame pair can correct the
drift error. In the implementation, the threshold is set to 45. Otherwise, a veer frame update
will regard the current veer frame as the unique keyframe of this corner. Although the veer
frame matcher is not triggered the next time the vehicle goes straight through the corner,
due to the introduction of the veer frame detector, the match still has a very high precision
and recall rate, especially in an urban environment with more corner loops. Moreover, the
VCM scheme is obviously much faster than loop closure detection.

Figure 6. The veers A and B in the trajectory (left) correspond to the peaks a and b in the yaw angle
diagram (right), respectively.

4. Experimental Results

In this section, the proposed approach was evaluated using the publicly available
KITTI odometry dataset, which is composed of captured videos along with an accurate
ground truth. The rectified stereo images with a size of 1241×376 are recorded at a
frequency of 10 Hz. In the following experiments, for each training sequence of the KITTI
dataset except sequence 01, thirty trials were conducted, and the average translational
error et, the average rotational error er relative to the ground truth, and the runtime per
frame were employed as the performance metrics. For sequence 01, a highway scenario
with largely distant image areas driving at high speed does not apply to the KLT tracker.
Therefore, the performance of this method was evaluated on the other 10 training sequences,
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which included urban and rural scenarios. All of the experiments were performed using a
PC with an Intel Core i5 9500 3.0 GHz processor and a 16 GB RAM using a single thread.
In order to prove that the improved algorithm could greatly reduce the computational
complexity without notably compromising the localization accuracy, MATLAB was used
to conduct the simulation experiments on the prototype of the algorithm (there is no code
optimization). Even so, the system could run at 15 Hz.

Considering the trajectory, Figure 7 shows the path reconstructed from our SVO
compared to the ground truth data on several sequences of the KITTI dataset. They have
the same shapes. Table 1 shows the average translation error and rotation error on the
10 training sequences. Although sequences 01 and 05 with corner loops have 3723 m and
2204 m of traveling, respectively, the proposed SVO with the JAF and the VCM can obtain
an average translation error of 0.9496% and 0.5957%, and a rotation error of 0.0008 deg/m
and 0.0016 deg/m, respectively. Meanwhile, sequences 03 and 07 without corner loops
have a shorter path (561 m and 695 m, respectively); hence, the proposed approach also has
a high localization accuracy, with an average translation error of 1.0257% and 0.6460%, and
a rotation error of 0.0005 deg/m and 0.0055 deg/m, respectively. The results in Figure 7e,f
have been obtained without the VCM scheme for a long path, which leads to a slightly
worse error. However, there is no difference in runtime. This means that the proposed
VCM can greatly improve the localization accuracy while not sacrificing time performance.
Furthermore, the proposed method was compared to a version that determines the AKT
window size using only disparity information, as shown in Table 1. One can observe
that both the JAF and the VCM help to significantly improve the localization accuracy.
On average, the translation and rotation errors on the 10 train sequences are (1.1361%,
0.0021 deg/m) and (1.6254%, 0.0023 deg/m), respectively. Therefore, the AKT using the
JAF performs 30% better than the AKT using only disparity information, while the JAF
does not require extra runtime.

Table 1. Comparison of the proposed method to a version that determines the AKT window size
using only disparity information on the KITTI dataset. (deg/m stands for degrees per meter).

SVO + FI + AKT + SKM + VCM + JAF SVO + FI AKT + SKM + VCM + Disparity
Sequence Runtime (s) et (%) er (deg/m) Runtime (s) et (%) er (deg/m)

00 0.0729 0.9496 0.0008 0.0703 1.3844 0.0012
02 0.0734 1.2011 0.0013 0.0650 1.2042 0.0009
03 0.0358 1.0257 0.0005 0.0397 1.7008 0.0010
04 0.0546 0.5361 0.0001 0.0600 1.6663 0.0001
05 0.0597 0.5957 0.0016 0.0599 1.0291 0.0015
06 0.0978 1.1253 0.0006 0.0922 1.7430 0.0011
07 0.0585 0.6460 0.0055 0.0612 0.8742 0.0068
08 0.0635 2.1540 0.0004 0.0674 2.9020 0.0011
09 0.0670 1.3569 0.0015 0.0711 1.9772 0.0015
10 0.0744 1.7708 0.0091 0.0752 1.7731 0.0075

avg 0.0658 1.1361 0.0021 0.0662 1.6254 0.0023

To further evaluate the improvement in time performance, Table 1 shows the average
runtime per frame of the 10 training sequences. Thanks to the FI, the AKT, and the SKM, the
proposed SVO thread runs at 0.0658 s per frame with a standard deviation of 0.0161 s. This
means that the proposed SVO can run in real time at 15 Hz on the KITTI odometry dataset.
The deviation is mainly caused by the differences in the number of scenario features and
corner loops. Because the data in Table 1 are normally distributed, a Mann–Whitney
U nonparametric test was used to further analyze the differences in runtime, et and er,
between the two versions. The test was performed with the help of an SPSS v24 computer
program using a 95% confidence level. The hypotheses of this test are as follows:

• Ha
runtime, Ha

et, and Ha
er represent no significant difference in runtime, et and er, between

the two versions, respectively.
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• Hb
runtime, Hb

et, and Hb
er represent a significant difference in runtime, et and er, between

the two versions, respectively.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. Reconstructed path for (a) sequence 00; (b) sequence 03; (c) sequence 05; (d) sequence 07;
(e) sequence 08; and (f) sequence 10.

As shown in Table 2, the Mann–Whitney U test results demonstrate that Ha
runtime, Hb

et and
Ha

er are acceptable (Pruntime = 0.7624 > 0.05, Pet = 0.0059 < 0.05, and Per = 0.6224 > 0.05),
which means that the JAF can significantly improve the robustness and accuracy without
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increasing the runtime. This beneficial behavior is mainly because the translation velocity
and the yaw angle in the JAF have already been computed in the previous frame.

Table 2. Hypothesis Testing.

Test Data Runtime et er

Mann–Whitney U 46.0000 25.0000 43.5000
Wilcoxon W 101.0000 80.0000 99.5000

Z −0.3024 −1.8898 −0.4925
Asymp. Sig. (2-tailed) 0.7624 0.0059 0.6224

Moreover, on sequences 05 (with corner loops) and 07 (without corner loops), the
comparison of the average processing times at every stage between our method and
a version without the FI and VCM that performs SURF detection, feature-based stereo
matching, AKT, and SKM at each frame is shown in Table 3. It can observe that the proposed
method helps reduce runtime significantly, and the times spent on feature detection, stereo
matching, and motion estimation are reduced by approximately 3 times. In conclusion, the
total processing times are reduced by more than 40%.

Table 3. Processing time in milliseconds of each stage for sequences 05 and 07 in the KITTI dataset.

Our Method
SVO

(Without FI and VCM)
Stage Seq. 05 Seq. 07 Seq. 05 Seq. 07

Feature detection 20.4340 19.8128 61.0502 62.4008
Stereo matching 1.8556 1.8549 5.6062 6.3031

AKT 4.1532 3.6080 2.6890 2.8666
SKM 2.5029 2.5025 2.5195 2.5339
VCM 18.1453 17.9953 \ \

Motion estimation 4.1176 5.0820 22.3288 16.9736
Total 59.7044 59.4217 103.0680 100.0306

For completeness, several real-time systems were compared in the subsequent exper-
iments in order to evaluate the performance of the proposed algorithm. They included
the SOFT2 [4], the most accurate SVO; the ORB-SLAM2 [11], a complete SLAM system
that has four parallel threads; the FRVO [7], the fastest single-thread SVO on the KITTI
leaderboard until now; the SVO-FPGA [12], a multiple master-slave FPGA architecture
for a SIFT-based SVO; and the VOLDOR [13], a dense indirect VO based on GPU. Table 4
shows the runtime, the average translation error, and the average rotation error of the
proposed method compared to other methods, using always the results published by the
original authors. Although the proposed approach is slightly less accurate than SOFT2, the
ORB-SLAM2, and the FRVO, all can provide very accurate estimations. In particular, the
proposed method outperforms in terms of runtime. The proposed approach is 34% better
than the SOFT2 and is similar to the ORB-SLAM2. However, the ORB-SLAM2 splits SLAM
into four parallel threads and is more costly, while the proposed SVO is a single-thread
system. For the FRVO, the runtime of 0.03 s does not include the time for the dense disparity
map computation, which is usually a time-consuming process and requires at least an extra
0.03 s. The proposed approach jointly determines the suitable KLT window size using the
average disparity, the translation velocity, and the yaw angle; thus, no time-consuming
computation of a dense disparity map is needed. Although the accuracy of the proposed
method is slightly inferior in terms of relative translation errors, with an error of 1.14%
against the 0.98% of the FRVO, its main advantage is the real-time performance even on a
lower-speed processor. Moreover, Table 4 compares the performance of our method and
two state-of-the-art SVO methods that are implemented in parallel with the FPGA and
the GPU, namely the SVO-FPGA and the VOLDOR. It can be observed that the proposed
method can strike a good trade-off between efficiency and accuracy and can greatly improve
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the computational efficiency, while not needing to sacrifice accuracy. Furthermore, the
results confirm that the proposed algorithm can run much faster in C/C++. This distinctly
demonstrates that the three strategies, i.e., the FI, the AKT, and the SKM, in the proposed
method contribute to a significant improvement in the SVO real-time performance.

Table 4. Comparison of state-of-the-art methods on the KITTI dataset.

Method Runtime (s) et (%) er (deg/m) Environment

SOFT2 0.1 0.71 0.0024 2.5 GHz (C/C++)
ORB-SLAM2 0.06 0.73 0.0022 3.6 GHz (C/C++)

FRVO
0.03 (excluding the
time for disparity

map computation)
0.98 0.0056 3.5 GHz (C/C++)

SVO-FPGA 0.0301 2.7 \ 4.2 GHz +FPGA
VOLDOR 0.1 1.32 0.0042 GPU
Proposed 0.0658 1.14 0.0021 3.0 GHz (MATLAB)

5. Conclusions

This paper presents a novel algorithm for stereo visual odometry that avoids time-
consuming feature detection and matching processes as much as possible based on feature
inheritance, an adaptive KLT tracker, and a simplified KLT matcher, which can greatly
reduce computational complexity without notably compromising the localization accuracy.
Based on the average disparity, the translation velocity, and the yaw angle, the proposed
method can jointly determine a suitable window size for the KLT tracker, which effectively
mitigates the effect of scale distortion and affine transformation. Furthermore, an effective
veer chain matching scheme can be employed to limit the drift error. In the experiments,
the method presented here was tested on the KITTI odometry dataset and compared with
other methods. According to the experimental results, although the translation error of the
proposed SVO is slightly less accurate than some state-of-the-art methods, with an error of
1.14% against an error of 0.71% for the SOFT2, an error of 73% for the ORB-SLAM2, and
an error of 0.98% for the FRVO, the proposed method can strike a good trade-off between
efficiency and accuracy. Efficiency is achieved in that the system is able to run at 15 Hz
on a single-thread CPU @ 3.0 GHz, outperforming even the parallel or multi-threaded
approaches in the balance between high accuracy and low computational complexity.
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Abstract: Simultaneous localization and mapping (SLAM), as an important research topic in robotics,
is useful but challenging to estimate robot pose and reconstruct a 3-D map of the surrounding
environment. Despite recent success of several deep neural networks for visual SLAM, those methods
cannot achieve robust results in complex industrial scenarios for constructing accurate and real-time
maps due to the weak texture and complex geometric structure. This paper presents a novel and
efficient visual SLAM system based on point–line-aware heterogeneous graph attention network,
which combines points and line segments to solve the problem of the insufficient number of reliable
features in traditional approaches. Firstly, a simultaneous feature extraction network is constructed
based on the geometric relationships between points and points and points and lines. To further
improve the efficiency and accuracy of the geometric association features of key regions, we design the
point–line-aware attention module to guide the network to pay attention to the trivial features of both
points and lines in images. Moreover, the network model is optimized by a transfer-aware knowledge
distillation strategy to further improve the system’s real-time performance. Secondly, to improve
the accuracy of the point–line matching, we design a point–line heterogeneous graph attention
network, which combines an edge aggregation graph attention module and a cross-heterogeneous
graph iteration module to conduct learning on the intragraph and intergraph. Finally, the point–line
matching process is transformed into an optimal transport problem, and a near-iterative method
based on a greedy strategy is presented to solve the optimization problem. The experiments on the
KITTI dataset and a self-made dataset demonstrate the better effectiveness, accuracy, and adaptability
of our method than those of the state of the art in visual SLAM.

Keywords: visual SLAM; point–line aware; knowledge distillation; heterogeneous graph attention
network

1. Introduction

Simultaneous localization and map construction technology, as the key to autonomous
movement of robots, is widely used in unmanned driving, virtual reality, mobile robots,
and other fields [1–5]. Compared with laser SLAM, vision-based SLAM has a low power
consumption, low cost, miniaturization, and other advantages, and its theoretical and
application value is very prominent [6]. Visual SLAM constructs a map of the surrounding
environment by obtaining the plane image information of the real world through a cam-
era. The pose state of the camera is inferred by the extracted feature information or pixel
grayscale. Visual SLAM methods can be classified into four categories: feature-point-based
methods [6–8], feature-line-based methods [9–12], feature-plane-based methods [12,13],
and the combination of the above methods [14–20], according to the kind of features used
to estimate the trajectory. The existing empirical methods cannot deal effectively with
complex industrial scenarios due to occlusion, illumination, and deformation issues. In
recent years, research on visual SLAM based on deep learning has attracted widespread
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attention. Serra et al. [21] used deep convolution to extract a point description with the
L2 norm as a similarity measure to enhance the robust matching between key points and
their local image features. Since a single feature descriptor cannot generate an effective
key-point detection, Shend et al. [22] proposed an end-to-end trainable matching network,
RF-Net, based on a receptive field to achieve a more efficient key-point detection. In order
to solve the problem of the low localization accuracy caused by the lack of key-point shape
perception in the joint learning of feature detectors and descriptors, Luo et al. [23] applied
a deformable convolutional network with a dense spatial transformation to enhance the
dynamic receptive field and improve the ability to express local shapes. Sarlin et al. [24]
proposed a graph neural network, SuperGlue, based on attention aggregation, which used
the optimal transmission model for matching optimization and realized the pose estimation
in both indoor and outdoor environments. Combining a convolutional network with a re-
current network, Tang et al. [25,26] proposed a geometric correspondence network (GCN),
which used an end-to-end learning method to detect key points and generate descriptors
for improving the accuracy of the pose estimation. Aimed at the problem of decreased lo-
calization accuracy caused by the partial occlusion of line segments, Pautrat et al. [27] used
a self-supervised network for line detection and for extracting line-segment descriptors,
which improved the robustness of line-segment matching. The above-mentioned feature
detection algorithms based on deep learning fused multilevel features, which did not
deeply explore the association and constraint relationship between point and line features.

In industrial production scenarios, there are many complex background objects such
as various buildings, pipelines, production equipment, and safety signs that lack corner
points or contain repeated textures. The point features in the image are not specific enough,
which makes them unable to provide an accurate position estimation. In addition, the
mismatch of line features greatly increases the time complexity of the computation. In
general, although existing methods have achieved certain results in feature detection and
matching tasks, due to the uneven light, single texture, and complex scene structure in
industrial scenarios, the pose estimation is easily degraded. How to efficiently fuse point
and line information to build a more stable visual SLAM system is still a difficult problem
that needs further research. Our main contributions can be summarized as follows:

• To solve the problem of weak point–line extraction ability in complex scenes, a point–
line synchronous geometric feature extraction network, PL-Net, is proposed. We use
an optimized residual block-feature pyramid network (ORB-FPN) to extract the feature
map of the input image. In the point extraction branch, based on the point-aware
module, the multiscale context is aggregated to obtain features with rich receptive
fields. Moreover, the edge information is used for the line extraction branch to improve
the accuracy of the line-segment detection. In order to make the network lightweight,
a transfer-aware knowledge distillation method is proposed to compress the model
for generating the point–line feature in the extraction task.

• Targeting a high accuracy and efficiency, a heterogeneous attention graph neural
network (HAGNN) is presented, which uses an edge-aggregated graph attention
network (EAGAT) to iterate the vertices of the heterogeneous graph constructed
from points and lines. To enhance the performance of the point–line matching, a
cross-heterogeneous graph interaction (CHGI) is used for harmonizing heterogeneous
information between graphs.

• By transforming the point–line matching process into an optimal transport problem,
a greedy inexact proximal point method for optimal transport, GIPOT, is proposed,
which calculates the optimal feature assignment matrix to find the global optimal
solution for the point–line matching problem.

2. SLAM System Framework

The framework of the SLAM system proposed in this paper is shown in Figure 1.
Firstly, a new image is input into the PL-Net network to detect key points and line segments,
and the corresponding descriptors are obtained through the point–line-aware attention
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module to enhance the feature expressiveness for both points and lines in images. Then, the
point and line features of the two images are transferred to the point–line heterogeneous
graphs, which are constructed by using the point and line features as the vertices and
connecting a vertex to its neighbors within a fixed radius. Secondly, the attention network
HAGNN obtains the enhanced features and inputs them into the GIPOT to generate point–
line matching results and calculate the pose of the current frame. Finally, by reprojecting
the features in the local map to the current frame, the projection error is calculated for the
backend processing of SLAM to complete the map.

Figure 1. System overview. The system has four components: 1. The point–line feature extraction
network (PL-Net) extracts key points, line segment and their descriptors (Section 3.1). 2. A hetero-
geneous graph attention network (HAGNN) is added with the positional encoding, which has N
EAGAT and GBGI layers (Section 3.2). 3. A greedy near iterative matching (GIPOT) module is used to
match the transformed features, which computes the affinity matrix M̃a f f and the assignment matrix.
(Section 3.3). 4. The backend optimization includes local mapping, loop detection, and mapping.

3. Methodology

3.1. Point–Line Feature Extraction Network

The point–line feature extraction network PL-Net is shown in Figure 2. Firstly, the
ORB-FPN module was used to extract the features of each layer for the image, and the PG
module completed the key-point extraction. Then, the center point map and displacement
map were generated through the branch of the line-segment perception module. Finally,
the point–line descriptor was generated through convolution and upsampling operations.

3.1.1. ORB-FPN Module

As shown in Figure 2, an optimized residual block (ORB) is designed based on the
Nesterov acceleration gradient (NAG) algorithm to enhance the expressive ability of target
features [26]. Then, we have:

yk+1 = xk + β(xk − xk−1) (1)

xk+1 = yk+1 − α∇ f (yk+1) (2)

where xk and yk+1 denote the output and input of the first layer of the network, and α
and β represent the learning rate and momentum parameters, respectively. ∇ f (yk+1)
is the gradient of the objective function f at yk+1, and f is a smooth function satisfying
the Lipschitz property. When the momentum parameter β = 0, the NAG algorithm is
equivalent to the standard gradient descent algorithm. When β > 0, it optimizes the
combination of α and β to accelerate convergence.
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Figure 2. The framework of our proposed network PL-Net. We input two images of size 512 × 512
and then obtain key points, line segment, and their descriptors through the ORB-FPN, extraction
module, and descriptor module. The gray box in the upper-right corner shows the structure of the
ORB-FPN. The upper gray branch is responsible for extracting points and lines. The lower red branch
is used to extract the point–line descriptor

In the neural network propagation process, the transmission of the signal from the
first layer to the last layer is expressed as:

Li+1 = σ(UiLi) (3)

where Li+1 is the features of the i + 1th layer in the network, and σ represents the activation
function. Suppose U is a symmetrical positive definite matrix; let V =

√
U and μ = VL;

then, for the nonlinear activation function σ(μ), there is a function g(μ), when g′(μ) = σ(μ).
We have:

∇∑i g
(

VT
j μ
)
= Uσ

(
UT L

)
= Uσ(UL) (4)

The objective function f (μ) is defined as:

f (μ) =

∥∥μ2
∥∥

2
− ∑i g

(
VT

j μ
)

(5)
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where Vi is the ith column of V. Then,

∇ f (μi) = βi − Vσ(Vμi) (6)

Equation (2) can be expressed by:

μi+1 = μi + β(μi − μi−1) − α((1 + β)∇ f (μi)− β∇ f (μi−1)) (7)

Recovering L by L = V−1μ leads to:

Li+1 = ((1 + β)(1 − α)− αβ)Li + β(1 − α)Li−1 + α(1 + β)σ(ULi) (8)

where σ(ULi) is the ith layer feed-forward network, and the ORB module structure is
shown in Figure 2.

In order to aggregate the FPN multiscale feature information, a dual attention module
(DAM) was designed to perform the feature aggregation. As shown in Figure 3, firstly, in
order to obtain the position and channel information of the feature, the shallow feature map
x ∈ R

W×H×D1 was passed through a global pooling operation and compression to generate
the position vector xp ∈ R

W×H×1 and the channel vector xc ∈ R
1×1×D1 , respectively. Then,

the position vector xp computed the weight of each position with a sigmoid activation
function and multiplied it with the feature map xp to generate the spatial position feature
map Fp ∈ R

W×H×D1 , which was defined as:

Fp = σ(x)⊗ x (9)

where x is the shallow feature map, and σ is the sigmoid activation function. Similarly,
the convolution of the ReLU activation function, defined as f (x) = max(0, x), and the
sigmoid activation function was performed on the channel vector xc. The weight of each
channel was calculated and multiplied by the feature map x to generate the feature map
Fc ∈ R

W×H×D1 , which was defined as follows:

Fc = σ(δ(W2(W1(gp(x))))⊗ x (10)

where δ is the ReLU activation function, and W1 and W2 are convolution operations with
sizes 1 × 1 × D1/16 and 1 × 1 × D1, respectively. Finally, the final output feature map F
was obtained by fusing the feature maps Fp, Fc, and x′. Then,

F = [(x ⊕ Fp ⊕ Fc), x′] (11)

where ⊕ represents the addition of the corresponding elements of two matrices.
The input image was passed through the ORB-FPN module, which denoted the output

of the backbone as {C2, C3, C4, C5} with strides of {4, 8, 16, 32}. {F2, F3, F4} were obtained
after a 1 × 1 convolution with the same 128-dimensional channel features. Finally, the ORB
module was added to enhance the acceptance domain of the output feature by using the
backbone network on C5 to separate the important context information. After interpolation
and maximum pooling of the extracted context features and the generated three feature
maps, an elementwise summation was performed to obtain features F.
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Figure 3. The dual attention module. The attention mechanism is adopted to adaptively aggregate
different features, where the weights are normalized with the softmax function.

3.1.2. Key-point Detection Module

As shown in Figure 2, the key-point detection module consisted of three point percep-
tion modules and two 3 × 3 convolutions with a stride length of 1. A batch normalization
layer and ReLU layers were added between each convolutional layer. The output vector
was processed through a sigmoid activation function, so that the pixel values of the saliency
map were between 0 and 1. Then, through the key-point perception module and convo-
lution processing, the convolution operation was used to discriminate whether the 8 × 8
area prediction contained key points. Finally, the key points were detected by using the
nonmaximum suppression (NMS) method in the key-point generation module (PG).

The point-aware module was used to capture the relationship between key points. As
shown in Figure 4, the key-point extraction branch embedded a context enhancement mod-
ule, which improved the feature expression ability. The output feature yp∈ R

W×H×D was
obtained by fusing the convolutional features of different scales, which took yp∈ W×H×D

as input. The above process was defined as:

yp = W1[xp, BN(W1xp), BN(W2xp), BN(W3W1xp)] (12)

where xP is the input feature, W1, W2, and W3 are convolution operations with sizes of
1 × 1, 2 × 2, and 3 × 3, respectively. BN is a normalization, and [] is a splicing operation.

Figure 4. The point-aware module. BN means batch normalization.
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3.1.3. Line-Segment Detection Module

The line-segment detection module extracted the features of the plane image through
the ORB-FPN module and then input it to the line-segment extraction module to generate
a midpoint with two symmetrical endpoints as the line-segment detection result. The
extraction of the line segment’s center point [28] used the classification model to judge
whether the pixel was the center point of the line segment. Since the shape of the line
segment was narrow and long, a large receptive field was required to classify the center
of the line segment. Therefore, a hybrid convolution module was introduced by stacking
three convolutional layers, a 3 × 3 deformable convolutional layer and two 3 × 3 dilated
convolutional layers. The receptive field of the network was increased while reducing the
parameters of the network. Then, three line-segment perception modules were used to
enhance the feature representation ability. Finally, a deconvolution layer was used to restore
the size of the output map to 512 × 512, which represented the center point of the line
segment on the output feature map. The displacement regression task of the line-segment
extraction branch was designed to predict the angle and length of the end point relative
to the midpoint. It was composed of a 3 × 3 deformable convolution layer and two 3 × 3
convolutional layers with a stride of 1. The relevant displacement was indexed by the
position through the output map. Finally, the CAL [29] was used for the line-segment
generation, and the two endpoints of the line segment were defined as follows:

(xl s , yl s
) = (xl c , yl c

) +
α

2
(cos θ, sin θ) (13)

(xle, yl e
) = (xl c , yl c

)− α

2
(cos θ, sin θ) (14)

where (xl c , yl c
) is the coordinates of the root node, α is the length of the line segment, and θ

is the rotation angle.
In the line-segment detection, a line-aware module was introduced to effectively

extract line shape features. As shown in Figure 5, the line-segment-aware module adopted
the improved self-attention mechanism, which took the feature xL ∈ R

W×H×D as input
and fused the self-attention features to generate the final output feature yL ∈ R

W×H×D; the
above process was defined as follows:

yL = xL ⊕ W1(α(Wq xL × Wk xL)× Wv xL) (15)

where xL is the input feature, W1, Wq, Wk, and Wv are the learned weight matrices, which
were implemented as 1 × 1 convolutions, and ⊕ means that the corresponding elements of
the two matrices are added.

Figure 5. The line-aware module.
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3.1.4. Parallel Attention Module

To efficiently merge the two branches of point descriptors and line descriptors, we
designed a parallel attention module (PAB) based on self-attention and channel attention.
As shown in Figure 6, the output features of the key-point description branch contained
line-edge information with a strong correlation. In order to improve the accuracy of the
line descriptor, a lightweight attention mechanism was used to assign more weights for
the features of useful regions. The output feature map of the point description branch
was expressed as XE ∈ R

C×H×W . A one-dimensional convolution of XE was performed to
obtain the spatial attention map AE ∈ R

C×H×W . The edge feature map XS
E ∈ R

C×H×W was
calculated as: XS

E = a(XE  AE) + XE, where a is a learnable parameter that was initialized
to 0. The CAEU module was designed to calculate a channel attention map, which recali-
brated the weight of the channel and obtained the fused feature map XS

F ∈ R
C×H×W from

XS
F = XS

E ⊗ δ(Conv1 × 1(Conv1 × 1(GAP(XS
E))). Finally, the final output XSC

F ∈ R
2C×H×W

of PAB was obtained by concatenating XS
T and XS

F together.

Figure 6. The parallel attention block (PAB). The PAB is designed to transfer important information to
the line branch output (XSC

F ). The pink box in the lower-left corner shows the structure of the CAEU.

3.1.5. Network Output Distillation

In order to reduce the increasing computation cost caused by the introduction of the
attention mechanism and the point–line perception module, we further compressed the
point–line detection model PL-Net. A transfer-aware method is presented to transfer the
information from the teacher model to the student network. The knowledge distillation
strategy (KD) [30–32] was used to fine-tune the accuracy of the recovery model. As shown
in Figure 2, the multiples tasks were combined with the teacher network and the student
network to guide the training of the student feature extraction. In the training process, the
adaptive weighted multitask distillation was realized, and Xtea, Ytea, and Ztea represented
the key point of the teacher model, the center point of the line segment, and the output of
the line-segment regression feature layer, respectively. The student model corresponded to
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the feature layers Xstu, Ystu, and Zstu. The mean squared error (MSE) function was applied
to the multitask distillation. The loss function of the training distillation was:⎧⎪⎨⎪⎩

LS
p = ‖Xtea − Xstu‖2

LS
root = ‖Ytea − Ystu‖2

LS
dis = ‖Ytea − Ystu‖2

(16)

where LS
p, LS

root, and LS
dis denote the key point, the line segment’s center point, and the

distillation loss of the line-segment regression task, respectively. Then, the weighted
distillation loss was defined as:

Ls
MSE = ∑

l
ωl Ls

l (17)

where Ls
MSE is the multitask distillation loss, and ωl represents the weight value of the

verification loss.

3.1.6. Interlayer Knowledge Distillation

Different from the network output distillation, the student network was further en-
hanced by performing an interlayer knowledge distillation between the output of the
teacher model and the student model. The aware modules of each student layer were
associated with the relevant target-layer-aware modules for knowledge transfer. The layer’s
knowledge distillation loss was defined as:

LFMD = ∑
(sl ,tl)∈C

Dist(Transt(Ft
tl),Transs(Fs

sl)) (18)

Then, the overall loss was obtained as:

Ltotal = Ls
MSE + βLFMD (19)

where Trans( · ) means to convert the feature map of the perception module into a specific
manual representation through the attention map. C is the perception module, and Ft

tl
and Fs

sl are the feature layers of the lth layer of the student model and the teacher model,
respectively. The distance function Dist( · ) was used for computing the distillation loss of
the feature maps, and β was a hyperparameter.

3.2. Heterogeneous Graph Attention Network

As shown in Figure 7, consider two images I and I′, and the number of two feature
sets m and n belonging to them, respectively. Let d ∈ R

D be the feature descriptor, where
D is the dimension of the descriptor. We utilized an attention graph neural network to
integrate the contextual cues and enhance its feature expression ability.

Position encoders were used for the two input features, and the key points and lines
positions were embedded into a high-dimensional vector by adding position encoding to
F̂1 and F̂2; thus, we had:

fi = di + MLP(Pi) (20)

MLP(Pi) = Waσ(WbPi) (21)

where Pi is the position of the feature, di is the descriptor information, and σ(·) is the ReLU
activation function.
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Figure 7. The overall structure of HAGNN. The first stage embeds the key points and line positions I
and I′ into a high-dimensional vector, which generates Gx and Gy. Graph architecture learning is
used to construct the graph. The two graphs can generate discriminative features through EAGAT
and CBGI. The second stage computes the affinity matrix and the assignment matrix between two
sets Hi and Hj and uses the assignment matrix to find matches and filter nonmatches.

3.2.1. Edge-Clustering Graph Attention Module

We propose an edge-aggregated graph attention network (EAGAT) based on GAT [33],
which uses edge information for feature enhancement during the aggregation process. In
order to make full use of the information of edge features, these different types of links
used different attention mechanisms. For features of the same nature (points and points,
lines and lines), the self-attention mechanism was used for the aggregation. For features of
different nature (points and lines), the cascade method was used for the aggregation. Let
the feature of the vertex v′i in the graph be fi, defined as:

f ′ i = σ( ∑
j∈Ns

so f tmax(
Wa fiWβ f j√

dk
Wγaji)Wε f j

+ ∑
j∈N d

so f tmax([Wa fi||Wβ f j||Wγaji])Wε) || fi
(22)

where Wa, Wβ, Wγ, and Wε ∈ R
f ′η× fη represent the weight parameters, Ns is the feature

set of the same nature, Nd represents the feature set of different properties, and σ is the
ReLU activation function.

3.2.2. Cross-Heterogeneous Graph Iteration Module

Due to the affinity learning problem of message passing between graphs in graph
matching, a point–line heterogeneous graph message-passing method is proposed to
enhance the node features through an interactive correlation. The edge features and
node features were aggregated in two ways. For nodes of the same nature (points and
points, lines and lines), we used linear attention for the aggregation, and for nodes of
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different properties (points and lines), we used the aggregation method of the self-attention
mechanism. Then, f ′si ∈ R

f ′η is expressed as:

f ′si = LN{ ∑
j∈N di

(so f tmax[(Wv f j)(Wk fj)
T ]+Wq fsi)}

+LN{ ∑
j∈N si

(Wl((Wq fsi)(Wk fj)
T + Wk fj) + fsi}

(23)

where vl/r ∈ R
f ′η is the feature node of the two graphs, W(·) is the weight parameter, and

LN represents a layer normalization (LN).

3.3. Greedy near Iterative Matching Module

The output Hi of the last layer in the graph neural network is the feature of graph
I′. Hj is the feature of graph I′, and the point–line distance matrix G ∈ R

+N1×N2 can be
expressed as:

G = fa f f (Hi, H′
j), i ∈ v1, j ∈ v2 (24)

where fa f f is the weighted bilinear function, defined as:

fa f f (Hi, H′
j) = exp(

HT
i KHT

j

τ
) (25)

where the feature is an n-dimensional vector, namely ∀i ∈ v1, j ∈ v2 and HT
i , HT

j ∈ R
n×n,

K ∈ R
n×n is the weight matrix of the affinity function, and τ is the regularization parameter.

In the matching process, due to the inconsistency of point and line types, a direct fusion
may cause a mismatch of point and line types. For this reason, we regarded the unit block
diagonal matrix as the initial coupling matrix Γ(1) so that the relationship between point
features and line features in the iterative process minimized the matching cost. Then,
we had:

Γ(1) ←
[

11p 0
0 11L

]
(26)

where P is the number of points after completion, and L is the number of lines after
completion. Then, the point–line discrete distribution Sinkhorn distance [34,35] was defined
as:

W∈(u, v)= min
Γ∈∑ (u,v)

〈C,Γ〉+ λh(Γ) (27)

where u and v are probability vectors, W∈(u, v) is the distance between u and v, the matrix
C =

[
cij
] ∈ R

+n×n is the cost matrix, and cij is the distance between ui and vj. The
regularization term h(Γ) = ∑i,j Γij lnΓij. The proximal point iteration method [35] was used
to solve Equation (25). According to the proximal point iteration method, it is defined as
the Bregman divergence:

Dh(x, y) = ∑n
i=1 xi ln

xi
yi

− ∑n
i=1 xi − ∑n

i=1 yi (28)

After introducing the near-end point iteration, Equation (27) can be rewritten as:

Γ(t+1) = argmin
Γ∈∑ (u,v)

〈C, Γ〉+ βtDh(Γ, Γ(t)) (29)
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Substituting the Bregman divergence Equation (28) into Equation (29), it becomes

Γ(t+1)= argmin
Γ∈∑ (u,v)

〈
C′, Γ

〉
+ βth(Γ) (30)

where C′ = C−βt ln Γ(t); we used the greedy strategy to update the best row or column
and defined the distance matrix

ρ(x, y) = y − x + log
x
y

(31)

According to Equations (29) and (30), the affinity matrix was updated to find the best
matching relationship, and the specific algorithm flow is shown in Algorithm 1.

Algorithm 1: GIPOT(μ, v, G).
Input: Point–line features of graph network output Hi and Hj

Output: Γ(t+1)

initialize Γ(1) ←
[

11p 0
0 11L

]
, G ← fa f f (Hi, H′

j)

begin
for t = 1, 2, 3 . . . do

Q ← G  Γ(t)

I ← argmaxiρ(ui,ui(Q))
J ← argmaxjρ(uj,uj(Q))

Γ(1) ← diag(exp(a))Qdiag(exp(b))
if ρ(uI ,uI(Q)) > ρ(uJ ,uJ(Q)) then

aI ← aI + log uI
uI(Q)

else

aJ ← aJ + log uJ
uJ(Q)

end

Γ(1) ← diag(exp(a))Qdiag(exp(b))
end

end

3.4. Loss Function

In order to realize the matching of points and lines, the point–line extraction loss,
descriptor extraction loss, and point–line matching loss were used as the loss functions
during model training.

3.4.1. Point–Line Extraction Loss

In the training stage of the point and line extraction branch, the output included the
root node’s confidence map, key-point map, and displacement map. The losses of these
three tasks were combined into Equation (32), defined as follows:

LPLE = Lroot + Lp + Ldis (32)

The ground truth of the root-point confidence map was constructed by marking the
root-point positions on a zero map. A weighted binary cross-entropy loss Lroot was used to
supervise this task, which was defined as:

Lroot = −∑i R̃i log Ri + (1 − R̃i) log(1 − Ri) (33)
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where R̃i and Ri are the prediction and true label of the root node of the line segment,
respectively. The true value of the key point was marked with the ORB feature. Lp(X, Y)
was defined as:

Lp(X, Y) =
1

Hcwc
∑ lp

(
Tij, T̃ij

)
(34)

lp

(
Tij, T̃ij

)
= − log(

exp(Tij
k )

∑64
1 exp(Tij

k )
) (35)

The displacement part of the line segment relative to the root node was used to locate
the length and angle of the line segment, which used the L1 loss and L1 smoothing loss,
respectively defined as:

Ldis =
m

∑
i=1

{ ∣∣θi − θ̂i
∣∣+ 0.5 ∗ (ρi − ρ̂i)

2 i f
∣∣ρi − ρ̂i

∣∣ < 1∣∣θi − θ̂i
∣∣+ ∣∣ρi − ρ̂i

∣∣− 0.5 otherwise
(36)

where θi and ρi represent the actual line segment’s length and angle, and θ̂i and ρ̂i are the
predicted line segment’s length and angle, respectively.

3.4.2. Point–Line Descriptor Loss

Denote the original image as I, and apply the homography transformation for I to
form a new image I′. Since the homography transformation is known, the corresponding
relationship between key points and line segments on I and I′ can be obtained. Therefore,
the loss function can be defined as:

Ld(θ,
{

dθ
a, dθ

+, dθ−
}
) = [m +

∥∥∥dθ
a − dθ

+

∥∥∥2 − min
dθ−∈dθ−

∥∥∥dθ
a − dθ−

∥∥∥2
]+ (37)

where the parameter m was set to 0.5, dθ
a is the descriptor on I of the anchor point, dθ

+ is
the matching descriptor on I′ of the positive sample, and dθ− is the set of nonmatching
descriptors on I′ of the negative sample.

3.4.3. Matching Loss

For a matching network using the L2 loss, the loss function can be expressed as:

Lm =
1∣∣Mgt
∣∣ ∑
(i,j)∈Mgt

1
σ2(i)

∥∥M(i, j)− Mgt(i, j)
∥∥

2 (38)

where σ2(i) is the confidence variance of feature i. M(i, j) is the matching probability of
feature i and feature j, and Mgt is the real-valued matrix obtained by the homography
transformation.

3.4.4. Normalization

The total loss function was the sum of the above loss functions:

Lsum = λ1LPLE + λ2Ld + λ3Lm (39)

where λ1, λ2 and λ3 represent the coefficients of each loss function, respectively. λ1,2,3 =
{0.25, 0.25, 0.5}.

4. Experiments and Evaluation

4.1. Model Training Details

A wide range of experiments were performed on different datasets to demonstrate the
efficacy of our method. Our approach was evaluated with several evaluation criteria by
comparing to the typical SLAM methods on the KITTI dataset [36]. We used the training
set of Wireframe [37] with the ground truth to train our models and the other compared
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methods. The training process used data enhancement techniques such as random Gaussian
noise, motion blur, and brightness level changes to improve the network’s robustness
ability for changes in lighting and viewing angles. For end-to-end training of the point–line
matching network, our network was implemented in Pytorch [38] using the Adam [39]
optimizer to train the network with an initial learning rate of 1 × 10−5 and a decay of the
learning rate by 20 at each epoch. We trained our model on a GeForce GTX2080Ti GPU.

4.2. KITTI Dataset Evaluation

We tested the proposed algorithm on the KITTI dataset [36]. The quantitative evalu-
ations for the different SLAM systems were the absolute trajectory error (ATE) [40] and
the relative pose error (RPE) [41] based on translations and rotations. Table 1 shows the
performance of this system was better than ORB-SLAM2, especially in sequences with
strong lighting, motion blur, and low texture areas, such as 06 and 09. It can be seen
that the multifeature fusion not only improved the accuracy of the algorithm but also
avoided the degradation problem that may occur in the pose solution algorithm when
using a single feature.

Table 1. Comparison between ATE and RPE on different SLAM algorithms.

Seq
ORB-SLAM2 Our

ATE (m) RPEtrans (%) RPErot (deg/m) ATE (m) RPEtrans (%) RPErot (deg/m)

00 1.266 52.5 0.363 1.233 2.9 0.122
01 4.296 3.4 0.420 2.616 4.8 0.044
02 12.790 4.3 0.107 12.721 3.6 0.077
03 0.403 0.8 0.072 0.385 2.0 0.055
04 0.466 2.2 0.055 0.192 2.1 0.040
05 0.348 2.3 0.144 0.402 1.7 0.056
06 1.184 3.9 0.089 0.572 1.8 0.042
07 0.439 1.3 0.076 0.436 1.6 0.046
08 3.122 12.1 0.076 2.874 3.9 0.054
09 3.319 15.0 0.104 1.537 2.2 0.054
10 0.927 2.6 0.090 0.989 2.1 0.060

Figure 8 shows the comparison results of ORB-SLAM2 and the method in this paper
on KITTI’s partial sequences. It can be seen that the algorithm of this paper was equivalent
to ORB-SLAM2 as a whole. However, in sequences such as 00, 02, and 09, it showed that
our method had the best results. On the other hand, the ORB-SLAM2 lost track easily and
did not have a whole trajectory.

Figure 9 depicts the variation curve of the pose estimation error with the number of
training iterations. When we used more than 80 iterations, the rotation and translation
errors were relatively small while the performance improved, which showed that the
algorithm in this paper had a good convergence.

Figure 10 visualizes the statistical error property between our system and ORB-SLAM2
on sequence 09 of KITTI. It shows that our model achieved obviously a better performance
than ORB-SLAM2 in terms of the root-mean-square error (controlled within 2 m), extreme
value error, and the sum of the squared errors. Figure 10b shows the columnar statisti-
cal comparison of postural errors; our model was better than ORB-SLAM2 in the APE
distribution range of the algorithm.
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Figure 8. Comparison of trajectories estimated by our SLAM method, ORB-SLAM2, and the ground
truth on the KITTI dataset.

Figure 9. The variation curve of the pose estimation error with the number of training iterations on
sequence 09 of KITTI. Each color represents a different number of sampling points.
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Figure 10. Comparison of the statistical error property between our system and ORB-SLAM2 on
sequence 09 of KITTI. (a) Quantitative index chart of ATE. (b) Histogram of ATE.

4.3. Real Data Evaluation

As shown in Figure 11, the feasibility of the algorithm was verified on a physical and
virtual oil and gas station, where the virtual simulation platform with a quadruped robot
was built with Unity3D.

Figure 11. The experimental robot platform. (a) The physical experimental robot platform with robot
hardware including a camera, depth camera, and IMU. An additional GPS/RTK was used for the
ground-truth estimation. (b) The virtual simulation platform.

To show the effects of point and line features on the SLAM system, we intercepted
two frames of images for extracting the features by PL-Net and matching by HAGNN. As
shown in Figure 12, it can be seen that the combination of point and line could make the
SLAM algorithm obtain richer and more diverse feature information.

The virtual simulation platform used a quadruped robot to inspect the oil field equip-
ment. As shown in Figure 13, this trajectory was compared with the ground truth by
using the evaluation package to obtain the RPE and APE. It can be seen that the area with
a larger error was basically distributed at the corner of the trajectory. The RMSE was
17.5 m. Overall, the trajectory of our method was consistent with the ground truth with
a high accuracy.
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Figure 12. The effect of point–line feature tracking. (a) The line-segment extraction results. (b) The
point and line-segment extraction results. (c) The point and line matching results. We visualized the
matching results with RGB color.

Figure 13. Simulation platform experiment. (a) The simulation platform. (b) The error mapped onto
trajectory. (c) RMSE of ATE in meters after translation and scale alignment.

4.4. GIPOT Experiment

In order to illustrate the convergence of GIPOT with different β, the Wasserstein dis-
tance of two one-dimensional Gaussian distributions was measured as an evaluation index.
As shown in Figure 14a, the blue equation was 0.5N(70, 8) + 0.5(35, 10), the red equation
was 0.4N(80, 9) + 0.6N(40, 10), where N(μ, σ2) is the probability density function of the
one-dimensional Gaussian distribution, μ and σ2 are the mean and variance, respectively.
Figure 14b shows the convergence of GIPOT under different conditions. Compared with the
Sinkhorn method, the convergence of the GIPOT iteration was quicker when β was large.
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GIPOT could converge to the exact Wasserstein distance with a complexity comparable to
that of Sinkhorn.

Figure 14. The difference graph of the Wasserstein distance. (a) GIPOT under different conditions
and convergence trajectory graph. We also plotted the ones for the Sinkhorn method for comparison.
(b) The average time of GIPOT and Sinkhorn iterations under different conditions.

4.5. Ablation Study

We used two datasets to demonstrate our proposed knowledge distillation. The result
of the teacher network and the student network are shown in Figure 15. Compared with the
true value, both models could identify key points and line segments with high precision.
Although there were some small missing line segments and connection errors in the results
of the student network, the expression of the line-segment structure in the environment
was basically accurate. The quantitative comparison is shown in Table 2. Although the
performance of the student network was slightly lower than that of the teacher network,
the operation speed was increased by 73%.

Table 2. Quantitative evaluation of PL-Net point-line detection knowledge distillation method on
Wireframe dataset and YorkUrban dataset.

Method
Wireframe dataset YorkUrban dataset

FPS
FH sAP LAP FH sAP LAP

Student 77.5 58.9 59.8 64.6 25.9 32.0 12.5
Teacher 80.6 57.6 61.3 67.2 27.6 34.3 7.2

To verify the role of the multifeature fusion in the SLAM system, the root-mean-square
error (RMSE) of the ATE index under different feature combinations was calculated. The
experimental results are given in Table 3, where the point–line feature combination method
used in this paper significantly improved the accuracy of the pose estimation. To evaluate
our design decisions, we evaluated four different variants with results. This ablation study,
presented in Table 4, showed that all HAGNN blocks were useful and brought substantial
performance gains. “No EAGAT” replaced all EAGAT layers with CHGI layers, and the
matching accuracy decreased by 9.7%. “No CHGI” replaced all CHGI layers with EAGAT
layer, and the precision of the resulting matching decreased by 22.6%, “No HAGNN”
replaced the graph neural network with a single linear projection, and the precision of the
resulting matching decreased by 26.1%.
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Figure 15. Qualitative evaluation of PL-Net point–line detection knowledge distillation method on
the Wireframe dataset and the YorkUrban dataset.

Table 3. Results of ablation experiment in term of the RMSE of ATE (Unit: m).

Seq P-SLAM L-SLAM PL-SLAM
ORB-

SLAM2
LSD-

SLAM
PTAM

00 1.203 6.233 1.233 1.266 5.347 2.842
01 3.934 12.367 2.616 4.296 — 3.358
02 7.689 — 12.721 12.790 — 13.742
03 0.393 5.457 0.385 0.403 7.431 2.302
04 0.347 13.824 0.192 0.466 — 2.773
05 0.863 — 0.402 0.348 1.293 0.456
06 0.884 — 0.572 1.184 — 1.024
07 0.255 — 0.436 0.439 — 0.423
08 3.122 — 2.874 3.122 — 3.358
09 2.625 4.783 1.537 3.319 11.395 2.048
10 0.447 5.824 0.989 0.927 2.841 0.768

The proposed HAGNN was compared with two feature matching methods: the nearest
neighbor (NN) method and SuperGlue. As show in Table 5, it can be seen clearly that
HAGNN had a significantly higher pose estimation accuracy than all competitors, which
showed a higher feature expression ability.

Table 4. Ablation of HAGNN.

Known Unknown

Match Precision Matching Score Match Precision Matching Score

No EAGAT 79.6 29.5 55.3 15.6
No CHGI 66.7 25.3 48.2 18.5

No HAGNN 63.2 19.4 51.2 10.3
Full 89.3 34.2 78.3 23.8
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Table 5. Experimental results of the pose estimation. Matching PL-Net features with HAGNN
resulted in a significantly higher pose accuracy (AUC), precision (P), and matching score (MS) than
with handcrafted or other learned methods.

Feature Matcher
Pose Estimation AUC

P MS
@5◦ @10◦ @20◦

SIFT NN 7.89 10.22 35.30 43.4 1.7
SIFT SuperGlue 23.68 36.44 49.44 74.1 7.2

SuperPoint NN 9.80 18.99 30.88 22.5 4.9
SuperPoint SuperGlue 34.18 44.32 64.16 84.9 11.1
LSD + LBD NN 5.43 7.83 28.54 32.5 1.3

SOLD2 NN 18.34 13.22 23.51 63.6 6.2
SuperPoint + SOLD2 Ours 35.86 44.73 64.43 85.3 12.3

Ours Ours 36.67 44.26 64.73 86.6 12.7

5. Conclusions

In this paper, we proposed a point–line-aware heterogeneous graph attention network
for a visual SLAM system. Combining the point- and line-aware attention modules based
on an attention-driven mechanism, the geometric association features of key regions was
further extracted, and the model was simplified by a transfer-aware knowledge distillation
strategy. By improving the accuracy of image point–line matching, a point–line hetero-
geneous graph attention network was proposed, which realized the feature aggregation
by conducting learning on the intragraph and intergraph. Based on the optimal transport
theory, we proposed a greedy inexact proximal point method that could effectively solve
the point–line matching problem. Experiments on a public dataset and a self-made dataset
showed qualitatively and quantitatively that our model had stronger robustness and a
better generalization ability. One limitation of our feature matching was that it was not
easy to estimate the pose error due to the interference of dynamic objects. Thus, in a
future study, we will introduce the cross-frame semantic information in the network for
dynamic environments.
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Abstract: In response to problems concerning the low autonomous localization accuracy of mobile
robots in unknown environments and large cumulative errors due to long time running, a spatial
location representation method incorporating boundary information (SLRB) is proposed, inspired by
the mammalian spatial cognitive mechanism. In modeling the firing characteristics of boundary cells
to environmental boundary information, we construct vector relationships between the mobile robot
and environmental boundaries with direction-aware information and distance-aware information.
The self-motion information (direction and velocity) is used as the input to the lateral anti-Hebbian
network (LAHN) to generate grid cells. In addition, the boundary cell response values are used
to update the grid cell distribution law and to suppress the error response of the place cells, thus
reducing the localization error of the mobile robot. Meanwhile, when the mobile robot reaches the
boundary cell excitation zone, the activated boundary cells are used to correct the accumulated errors
that occur due to long running times, which thus improves the localization accuracy of the system.
The main contributions of this paper are as follows: 1. We propose a novel method for constructing
boundary cell models. 2. An approach is presented that maps the response values of boundary cells
to the input layer of LAHN (Location-Adaptive Hierarchical Network), where grid cells are generated
through LAHN learning rules, and the distribution pattern of grid cells is adjusted using the response
values of boundary cells. 3. We correct the cumulative error caused by long-term operation of place
cells through the activation of boundary cells, ensuring that only one place cell responds to the current
location at each individual moment, thereby improving the positioning accuracy of the system.

Keywords: boundary cells; grid cells; place cells; environmental characterization; brain-
inspired computing

1. Introduction

Environmental cognition is a fundamental skill for mammalian foraging and survival.
Physiological studies have indicated that mammals, when freely moving in unfamiliar
environments, are capable of maintaining relative spatial relationships to nests or food
through specific cognitive mechanisms. This provides them with positional information for
navigation in unfamiliar environments and enables real-time updates based on changes
in external environmental cues, thus endowing them with strong perceptual abilities
in unknown surroundings [1–4]. However, existing mobile robot technologies fail to
utilize distance information between themselves and obstacles or walls to update their
current position when facing unexpected obstacles or barriers. Therefore, investigating
and replicating the environmental cognition mechanisms observed in mammals holds
significant importance in enhancing the environmental cognition capabilities of mobile
robots and advancing our understanding of biological environmental cognition [5–7].

In 1971, O’Keefe et al. found, in the rat hippocampus, a cell with a selective firing to
spatial locations. This cell undergoes firing activity only when the rat is in a spatially specific
environmental location [8]. This cell is called a place cell and its corresponding spatial firing
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area is called the place field [9,10]. In 2005, Hafting et al. identified another type of cell in
the entorhinal cortex of rats that produces periodic firing to specific regions of space grid
cells and whose hexagonal firing fields spread throughout the spatial environment with
the movement of the rat [11]. Related studies have shown that when rats move freely in a
two-dimensional space, grid cells in the entorhinal cortex undergo repetitive firing behavior
at specific locations; furthermore, it was noted that their firing activity is highly stable
and, as rats continue to explore the environment, the generated grid cells cover the entire
environment and complete the spatial representation of the environment [12–14]. Barry et al.
proposed an oscillatory interference (OI) to model the hexagonal firing structure of the grid
cell. In the model, the self-motion information (direction and speed) of the mobile robot
was used as the input of grid cells to update and maintain the grid field [15]. However, the
verification of the model remained in the simulation stage and did not realize effective map
construction in the real environment. In [16], the rat simultaneous location and mapping
(RatSLAM) model, which was based on a rodent model, was investigated. This model
centralizes path integration information and external visual scene information into the pose
cell and is able to perform navigation and map construction tasks. However, this model
does not incorporate the physiological characteristics of the hippocampal structures in the
rat brain, which thus leads to a lack of accuracy and a low stability with respect to this
model [17]. To address the problems of the insufficient physiological characteristics of the
RatSLAM method, Oliver et al. proposed a grid cell to place cell competitive neural network
models in a Hebb learning algorithm, based on the phenomenon of lateral inhibition in the
rat hippocampus, which conforms to the physiological characteristics of the hippocampal
navigation cells and can realize the information transfer and can also map from grid cells to
place cells [18]. Yu Naigong et al. similarly used the Hebb learning algorithm in the work
of constructing environmental cognitive maps by imitating the hippocampal cognitive
mechanism in the rat brain. They also implemented the environmental cognitive map
construction through a real physical platform and obtained better experimental results [19].
O’Keefe et al. found that the size of the place cell firing field changes somewhat when the
rat moves to the environmental boundary; to explain this phenomenon in their experiments,
O’Keefe et al. predicted the existence of a cell in the rat brain that responds to boundary
information with a firing response and is able to use this response to correct for position
errors in the position of the place cell [20]. In 2008, researchers discovered a new cell
type in the rat internal olfactory cortex that fires when the animal approaches a wall
or is separated by other obstacles; this new cell type was accordingly named boundary
cells [21,22]. In order to investigate the effect of boundary cells on the distribution and
localization accuracy of grid cells, Hardcastle et al. replaced the circular environment
with a hexagonal environment that was rich in environmental boundary information.
Furthermore, the grid cell distribution was rearranged, and the localization accuracy was
improved [23].

Based on this, a spatial location representation method (SLRB) incorporating boundary
information was proposed, inspired by the mammalian spatial cognitive mechanism, which
obtains the boundary cell response values through the mutual excitation and inhibition of
direction-aware information, as well as the distance-aware information between the mobile
robot and the environment boundary. This method obtains the boundary cell response
values by mutual excitation and through the suppression of direction and distance-sensing
information between the mobile robot and the environment boundary. The method then
maps the boundary cell response values and the self-motion information of the mobile
robot to the input layer of LAHN, and then the output layer of LAHN is mapped to the grid
cell response values. The grid cell response values are used as the main input source of the
place cells and the response values of the place cells are obtained through the competitive
Hebb learning network. At the same time, when the mobile robot runs to the boundary cell
excitation zone through the activated boundary cells to correct the location information of
the place cells, the mobile robot then learns and remembers the location points in a specific
space, as well as constructs a spatial location representation map that can accurately express
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the current spatial characteristics. A block diagram of the overall system structure is shown
in Figure 1.

 

v

 

Figure 1. Block diagram of the overall system structure.

The main innovations of this paper are as follows:

(1) Inspired by the mammalian spatial cognitive mechanism, a new boundary cell model
is proposed to establish boundary cell activity states in multiple scenarios by the
mutual excitation and the inhibition of the direction-aware and distance-aware infor-
mation that is acquired by mobile robots. The boundary cell model proposed in this
paper can encode the boundary information in the environment and supplement the
lack of environmental boundary perceptual information with path integration.

(2) The physiological phenomena indicate that the environmental boundary information
can be used as the supplementary information of grid cells. The method in this
paper maps the boundary cell response values to the input layer of LAHN, generates
grid cells by LAHN learning rules, and uses the boundary cell response values to
correct the grid cell distribution pattern, such that the grid cell firing response and
distribution that is activated by the method are more consistent with the physiological
characteristics.

(3) According to the problem that the mobile robot runs for a long time in an unknown
environment, when the mobile robot reaches the boundary cell excitation zone, the
accumulated error caused by the long running time of the position cell is corrected
by the activated boundary cells, such that only one place cell responds to the current
position at each time in order to improve the location accuracy of the system.

2. Spatial Navigation Cell Model

2.1. Boundary Cell Modeling

The boundary cells, which mainly exist in the entorhinal cortex, presubiculum, and
parasubiculum tract of the rat hippocampus, are spatial navigation cells that respond to
boundary information and can reflect the relative positions of rats at different distances
and angles from the environmental boundary by encoding boundary information in the
environment; these cells can be used to complement path integration information [24–26].
In this paper, the boundary cells are modeled by the mutual excitation and inhibition of
direction-aware and distance-aware information of the mobile robot, and the construction
process is shown below.

Step 1: The mobile robot explores in an unknown environment (its exploration
schematic diagram is shown in Figure 2). The surrounding shaded part is the wall, the
circular runner is the mobile robot, and the single black arrow is its movement direction.
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The boundary response constant is set to divide the exploration area into the boundary cell
activity inhibition zone, the attenuation zone, and the growth zone. The region division
rules are as follows:

S(t) =

⎧⎨⎩
Sinh , i f R(t) > b
Sexcar , i f b/2 < R(t) ≤ b
Sexcgr , i f R(t) ≤ b/2

(1)

where S(t) denotes the region in which the mobile robot is located at the time t, b repre-
sents the boundary response constant, Sexcar and Sexcgr denotes the mobile robot is in the
boundary cell inhibition zone, the attenuation zone, and the growth zone, respectively.
Furthermore, the boundary cell activity attenuation zone and growth zone are subsets of
the boundary cell excitation zone.

 

α

θ

R

R b>

b R b< < }

rd

R b<

Figure 2. Schematic diagram of the mobile robot exploration in the environment.

Step 2: The mobile robot scenes are divided into six scenarios in the environment, as
shown in Figure 3. Scenarios A and C depict the mobile robot moving towards and away
from a wall, respectively. Scenarios B and D represent movements away from and towards
a corner, respectively. Scenarios E and F illustrate movements away from and towards a
curved wall, respectively. Where the shaded parts are walls and where the mobile robot
updates the perceptual information during its movement:

θ(t + 1) = θ(t) + θs(t)T (2)

[R(t), dr(t)] = [min(r1(t), r2(t) · · · rn(t)), min(dr(t), 50)] (3)

α = γarctan
R(t)
dr(t)

− (γ − 1)(π − arctan
R(t)
dr(t)

) (4)

where θ is the direction-aware information of the mobile robot, θs is the angular velocity-
aware information of the mobile robot, and T is the sampling period. In this paper, it is set
as 0.01 s, which represents the data collected by the mobile robot updated every 0.01 s, R is
the distance-aware information of the mobile robot to the nearest environmental boundary,
dr is the distance-aware information between the current position and the environmental
boundary directly in front of the mobile robot, r is the vertical distance between the mobile
robot and the environmental boundary, and n is the number of environmental boundaries
currently detected by the mobile robot. α is the angle information between the mobile robot
and the nearest surrounding environmental boundary, γ is the regulatory factor of the
angle information, and γ takes the value of 1 only when the robot’s direction of motion is
perpendicular to the wall—otherwise it takes the value of 0.
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(a) Scenario A (b) Scenario B (c) Scenario C 

 
(d) Scenario D (e) Scenario E (f) Scenario F 
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Figure 3. Diagram of the six scenarios of mobile robots in the environment.

When the mobile robot moves away from the wall, the boundary cells go through
two processes, the activity growth zone and the attenuation zone. When they then reach
the boundary cell inhibition zone their activity attenuates to zero. The rules for updating
the activity state of boundary cell neurons are as follows:

h(t + 1) =

⎧⎪⎨⎪⎩
h(t) + τ

b−dr(t)
b , i f S(t) = Sexcgr

0, i f S(t) = Sinh[
h(t)− τ

b−dr(t)
b

]
+

, i f S(t) = Sexcar

(5)

where h(t) is the current time boundary cell activity value, h(t + 1) is the next time bound-
ary cell activity value, and τ is the activity factor (which is used to regulate the rate of
change in boundary cell neuron activity and the value of 0.8 is taken for this factor in this
paper). [•]+ indicates that the output value is non-negative.

Step 3: When the mobile robot runs into the boundary cell excitation zone, the bound-
ary cell distance excitation value bborder(t) is updated with the distance-aware information
between the current position of the mobile robot and the environmental boundary.

bborder(t) = exp

(
− h(t)(R(t)− dr(t))

2

2σ2
rad (dr(t))

)
(6)

where σrad(•) is the boundary cell distance sensitivity function and the relationship between
the sensitivity of the boundary cell to the environmental boundary. Moreover, the vertical
distance from the mobile robot to the environmental boundary is expressed as per the
following:

σrad (dr(t)) = δ0 ∗ (dr(t)/β + 1) (7)

where δ0 is the boundary cell sensitivity enhancement constant, which is adapted to the
complexity of the environmental boundary and which is set to 1.2 in this paper. β is
the boundary cell distance perception correction factor, which avoids the boundary cell
response value being too large due to the small distance information that is detected in the
small environmental scenarios and which is taken as 0.8 in this paper.
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Subsequently, the boundary cell angular excitation value rborder(t) is updated based
on the angular-aware information between the mobile robot and environmental boundary:

rborder(t) = exp

(
− h(t)(θ(t)− α(t))2

2σ2
ang

)
(8)

where σang is the adjustment parameter for the angular excitation value of the boundary
cell, which is used to regulate the effect of angle on the excitation value of the border cell,
and is taken as 0.5 in this paper.

Step 4: The boundary cell response value is updated by the boundary cell distance
excitation value and angular excitation value, and the boundary cell fire response f (R, θ, t)
in the spatial environment is shown as per the following:

f (R, θ, t) =
bborder(t)× rborder(t)√

2πσ2
rad (dr(t))

√
2πσ2

ang

(9)

The rats explored freely in the experimental environment and the strain response
was different from the environmental scene information, which were collected at different
times. The six different boundary cell activation response maps in Figure 4 correspond
one by one to the six different experimental scenarios in Figure 3, with the pentagram
position as the starting point in Figure 4. As shown in Figure 4a, during the process of a
rat running towards a wall, it gradually transitions from the boundary cell inhibition zone
to the boundary cell activation zone, resulting in an increase in the number of activated
boundary cells. Particularly when entering the boundary cell growth zone, the number of
boundary cells rapidly rises. In the boundary cell decay zone, the number of boundary cells
decreases accordingly. When reaching the boundary cell inhibition zone, the boundary cells
will not be activated. In Figure 4b, the rat is currently moving away from the environmental
boundary and the boundary cell activation frequency thus gradually decreases (i.e., the
number of boundary cell activation increases slowly). The current movement posture of the
rat in Figure 4c corresponds to Figure 3d, thereby showing a tendency to move away from
the environmental corners and showing a gradual decrease in the boundary cell activation
frequency. The transient movement posture of the rat shown in Figure 4d is similar to that
in Figure 4c, but unlike Figure 4c, the rat is away from the corner of the environment at
this time, and the binding force of the environment unilaterally on the movement of the rat
decreases rapidly as the distance of the rat away from the boundary increases; as such, the
number of boundary cell activations temporarily enters a low-rate growth phase. Similarly,
the same is shown in Figure 4e,f, which show the boundary cell activation response maps
of the rats in different scenarios, where the response maps are acquired by movement in
a circular experimental environment, thereby corresponding to rats that are near and far
from the environmental boundary in Figure 3e,f, respectively.
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Figure 4. Activated boundary cells in different scenarios. (a) Activated boundary cells under scenario
A. (b) Activated boundary cells under scenario B. (c) Activated boundary cells under scenario
C. (d) Activated boundary cells under scenario D. (e) Activated boundary cells under scenario E.
(f) Activated boundary cells under scenario F.

2.2. Grid Cell Update Model Based on Boundary Information

LAHN is designed as an unsupervised neural network that can obtain the best features
from the input information [27]. The superiority of this network is also reflected in the fact
that when the input information is limited by the external environment, the network itself
can still update the output in real time by adjusting the lateral connections to adapt to the
environmental changes [28]. When considering the influence of environmental boundary
information on the distribution pattern of grid cells during the movement of the rat, LAHN
is introduced in this paper to model the grid cell update mechanism. The self-motion
information and boundary cell response values acquired by the encoder are mapped to the
input layer of LAHN during the exploration of the environment by the mobile robot, while
the excitation level and inhibition level of the grid cells are updated in real time with the
movement of the mobile robot. The update rules of this are as follows:

d
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(11)

where θs is the angular velocity-aware information and W is the self-organizing mapping
input weight matrix, θ represents the directional sensory information of the mobile robot.
v is the current velocity of the mobile robot, where the value of χinh

j is a negative number
indicating the inhibition level of the j-th grid cell. The value of χexc

j is a positive number
indicating the j-th grid cell excitation level and f (R, θ) is the boundary cell response value.

LAHN uses a bipolar activation function and the dependent variable of the activation
function takes values from −1 to 1, which is when the input and output of the activation
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function have the same sign and where the network connection weight is increased, other-
wise the network connection weight is instead decreased. The network output value is the
grid cell response value and the LAHN output value is shown in Equation (12):

ξi(t) =
m

∑
j=1

qij[χ
exc
j (t) + χinh

j (t)] +
n

∑
k=1

wikξk(t − 1) (12)

where qij is the forward channel weight, wik is the lateral channel weight, ξk(t − 1) is the
grid cell response value at the previous time, m is the total number of neurons in the LAHN
layer, and n is the number of grid cells.

The grid cell distribution maps and their corresponding grid cell firing rate maps
were obtained by exploring in the trilateral, pentagonal, and nine-sided environments,
respectively, as shown in Figure 5a,c. The control analysis shows that the grid cell clusters
converge with the highest firing rate in the center, decreasing layer by layer toward the
periphery. In this paper, we introduced the grid cell scoring mechanism, which is shown in
Equations (13) and (14) [29–31]. This mechanism was constructed to score the distribution
and activity of the grid cells that are obtained in the three different environments. This
mechanism also allowed us to generate a grid cell score table, which is shown in Table 1. The
trends of the grid cell scores in the three different environments showed that the grid cell
scores gradually increased and eventually stabilized as the exploration time increased. This
pattern of data change is due to the positive effect of the boundary cells that was activated
by the rats visiting the boundary of the environment, which thus updated the grid cell
distribution. The reason for the higher grid cell scores, which were obtained by exploring
the nine-sided environment rather than the pentagonal and trilateral ones, is explained by
the fact that the nine-sided environment provides richer boundary information.
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)]
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where n is the number of grid cells, HGS is the fraction of grid cells, r is the auto-correlation
plot of grid cells, and λ(x, y) is the firing rate of grid cells at position. Furthermore, τx and
τy are the spatial lag coordinates corresponding to the x and y coordinates, and rβ is the
auto-correlation plot rotated by β degrees. cor

(
r, rβ
)

is the correlation score of the auto-
correlation plot r and the correlation score of the two plots after rotating the auto-correlation
plot by β degrees.

Table 1. Grid cell scores in different geometric environments.

Time (s) 30 60 90 120 150 180 210 240 270 300 330 360

Trilateral environment 0.25 0.32 0.38 0.45 0.55 0.56 0.68 0.69 0.74 0.73 0.74 0.74
Pentagonal environment 0.24 0.35 0.41 0.51 0.62 0.68 0.72 0.75 0.78 0.78 0.78 0.78
Nine-sided environment 0.20 0.34 0.40 0.49 0.58 0.71 0.80 0.84 0.86 0.84 0.85 0.85
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Cell distribution and firing rate in different geometric environments. (a) Cell distribution
in a trigonal environment. (b) Cell distribution in a pentagonal environment. (c) Cell distribution
in a nine-sided environment. (d) Cell firing rate in a trilateral environment. (e) Cell firing rate in a
pentagonal environment. (f) Cell firing rate in a nine-sided environment.

3. Spatial Location Representation Map Construction

Based on the physiological properties of each the navigation cells mentioned above,
it is known that boundary cells can fire specifically in response to the perception of the
environmental boundary by the rat, i.e., the vectorial relationship between the rat and
the boundary. Furthermore, the closer the rat is to the environmental boundary, the
greater the value of the boundary cell firing response [32]. Grid cells are considered as a
coordinate system for characterizing the environment due to their specific spatial metric
properties, and when multiple grid cells fire aggregately the current position of the rat
can be estimated [33,34]. A process schematic diagram of constructing a spatial location
representation map, using the specific firing responses of these navigation cells and their
mapping relationships with each other, is shown in Figure 6. The specific map construction
steps are as follows:

Figure 6. Schematic diagram of the spatial location representation map construction.
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Step 1: As the mobile robot explores the environment, it collects the speed, direction,
and distance-aware information needed to construct a spatial location representation map.

Step 2: The inputs of the direction and velocity-aware information to the input layer
of LAHN are conducted. The output of the grid cell response value is obtained after the
learning performed by LAHN.

Step 3: Grid cells undergo a competitive Hebb learning network in order to generate
place cells that are capable of representing current location information [18]. The mobile
robot explores the environment by continuously activating new place cells in response to
new location scenarios and jointly constructs a spatial location cell representation map
until the robot stops running. The algorithm for the construction of the spatial location
representation map is shown in detail in Algorithm 1.

In order to avoid the undesirable situation where the number of place cell activations
for the same scene is too many due to the small place cell spacing in the operation of
the mobile robot (thus resulting in the waste of system computational resources) or the
undesirable situation where the place cell spacing is too large (thus resulting in the poor
accuracy of position estimation), this paper introduces the place cell distance threshold
rth in order to constrain the place cell activation response. Figure 7 shows the box plot
of the localization accuracy of the mobile robot when constructing the spatial location
representation map under different values of rth. The localization error in Figure 7 fluctuates
upward with the distance threshold, and the localization error is minimized when rth is
taken as 0.06 m, such that rth is taken as 0.06 m in this paper.

Algorithm 1: Spatial location representation map construction algorithm

Input: Grid cell response value, place cell distance threshold rth
Output: Spatial Location Representation Map
BEGIN:
FOR
Get grid cell response values
Updating winning place cells through competitive Hebb learning network
Calculate the Euclidean distance rb between Current place cell and nearby place cell

IF rb<rth
The previous place cell can represent the current scene, continue run forward
ELSE

The previous palace cell is not enough to represent the current scene and construct a new
place cell

END IF
IF the movement is not over

Continue forward motion and update grid cell response value information
ELSE

Output spatial location representation map
END IF
ND FOR

 

m

m

Figure 7. Comparison of the localization errors under different distance thresholds.
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Step 4: When the mobile robot runs to the boundary cell excitation zone, the distance-
aware information and angle-aware information of the mobile robot are relative to the
environment boundary. They are mutually excited and inhibited in order to activate the
boundary cells, which are used to correct the place cell response values and to eliminate the
accumulated errors that are generated due to the long time running of the mobile robot. At
the same time, the boundary cell response values are mapped to the input layer of LAHN,
and the grid cell distribution law in the current scene is updated simultaneously. The place
cell correction update rules are as follows:

pbc(t) =

⎡⎣pc(t) +

(
n

∏
i=1

fi(R, θ, t)/maxx

) 1
n
⎤⎦
+

(15)

where fi(R, θ, t) is the boundary cell firing response value, pbc(t) is the place cell response
value after the boundary cell response correction, and pc(t) is the place cell response
value before the boundary cell response correction. n represents the number of boundary
cells.[•]+ indicates that the output value is non-negative.

Figure 8a depicts the pre-correction place cell response map, revealing the presence
of an accumulated error resulting from prolonged operation of the mobile robot. This
error is evident in the place cell response map, where a single place cell fails to generate a
response to the current position. In Figure 8b, the post-correction position cell response
map is presented. The comparison with Figure 8a demonstrates that the corrected place cell
response map exhibits a solitary, distinct place cell response point, thereby enhancing the
accuracy of current position estimation by eliminating interference caused by redundant
place cell responses.

 
(a) (b) 

Figure 8. Place cell response maps. (a) Place cells corrected by boundary cells. (b) Place cells
uncorrected by boundary cells.

4. Experimental Results and Analysis

The computer configuration used to test the experiments in this paper was as follows:
i5-9400F CPU, 6-core processor, 2.9 GHz, 8 GB RAM. The method proposed in this paper
was verified by the circular experimental datasets that were published in the Microstructure
of a spatial map in the entorhinal cortex, published by Hafting et al. in Nature [11]. These
datasets record the perceptual information, such as the movement direction, as well as the
speed and distance of the rats at different times.

4.1. Boundary Cell Simulation Experiments

This paper further validates the method of this study using a larger Hafting circular
experiment environment. The diameter of the circular experiment environment is 2 m and
the rat also starts from the center of the experiment environment for the purposes of free
exploration learning. The environmental plan diagram and the trajectory formed by the rat
in completing the exploration are shown in Figure 9.
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(a)  (b)  

Figure 9. The environmental plan diagram and rat trajectory map. (a) The environmental plan
diagram. (b) The rat trajectory map.

Figure 10 shows the intercepted boundary cell discharge response plots at different
times. It can be seen that as the rat explores the environmental boundary gradually and
comprehensively, the number of activated boundary cells in response to the environmental
boundary increases. Table 2 shows the correlation data between the number of activated
boundary cells and the mean localization error at different times. It can be seen that the
number of activated boundary cells tends to increase rapidly before 1600 s, while after
1600 s, the number of activated boundary cells gradually slows down and stabilizes as
the rat explores the environment more fully. At 1800 s, the activated boundary cells
can adequately represent the environmental boundary and its number remains largely
unchanged while the localization error is stable at about 0.037 m. It can be seen that the
proposed method in this paper is also well adapted to larger circular environments.

(a) t = 200 s (b) t = 400 s (c) t = 600 s 

 
(d) t = 800 s (e) t = 1000 s (f) t = 1200 s 

 
(g) t = 1400 s (h) t = 1600 s (i) t = 1800 s 
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Figure 10. The boundary cell response maps at different times.
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Table 2. The number of activated boundary cells at different times with the mean localization error.

Time (s) 200 400 600 800 1000 1200 1400 1600 1800

Number of boundary cells (pcs) 103 195 274 318 378 421 472 503 498
Mean localization error (m) 0.67 0.71 0.83 0.86 0.74 0.61 0.50 0.39 0.37

4.2. Grid Cell Simulation Experiment

The grid cell construction method proposed in this paper was validated by the Hafting
circular experimental environment. Figure 11 shows the grid cell response maps obtained
by the OI model, the CAN model, and the SLRB method at different times. The distribution
of grid cells activated by the OI model after 30 min lacked physiological properties. In
comparison, the grid cell distribution acquired by the CAN model has been improved,
but the acquired grid cell clusters contain too many grid cells, posing a potential risk
of computational time consumption for the construction of large-scale spatial location
representation maps. Compared with the former two, the method in this paper obtained
the vector information between the rat and the environment boundary, which was obtained
by the rat in the process of exploring the environment and was performed to correct the grid
cell distribution pattern. This meant that the method in this paper successfully achieved
the goal of representing a circular experimental environment with fewer grid cells while
maintaining the physiological characteristics of grid cells. Table 3 shows the number of
activated grid cells and their corresponding grid cell fractions for the three compared
methods in characterizing the above circular experimental setting. It is more intuitive to see
from the data comparison of the three algorithms that the number of grid cells utilized by
this method is lower. This was achieved under the premise of also achieving the purpose
of characterizing the environment. Moreover, the fraction of the grid cells generated by
this method is higher as the environment is gradually explored completely, which indicates
that the grid cells activated by this method are highly active and reasonably distributed.

 
(a) (b) (c) 

 
(d) (e) (f) 
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Figure 11. Cont.
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(g) (h) (i) 

x

y y y

x x

Figure 11. The grid cell response maps obtained by the OI and CAN models, as well as those obtained
by the method used in this paper at different times. (a) 5 min for the OI model to obtain results.
(b) 5 min for the CAN model to obtain results. (c) 5 min for this paper’s method to obtain results.
(d) 15 min for the OI model to obtain results. (e) 15 min for the CAN model to obtain results.
(f) 15 min for this paper’s method to obtain results. (g) 30 min for the OI model to obtain results.
(h) 30 min for the CAN model to obtain results. (i) 30 min for this paper’s method to obtain results.

Table 3. Comparison of the grid cell properties that were activated by the three algorithms.

Exploration
Time (min)

Number of Activated
Grid Cells (pcs)

Grid Cell Fraction

OI CAN SLRB OI CAN SLRB

5 171 160 128 0.71 0.75 0.74
10 382 171 165 0.73 0.74 0.69
15 410 290 195 0.68 0.79 0.79
20 472 353 287 0.54 0.71 0.84
25 524 427 354 0.51 0.72 0.88
30 614 541 478 0.43 0.65 0.86

4.3. Spatial Location Representation Map Construction Experiment

The place cell properties obtained by the method in this paper were validated in a
Hafting circular experimental environment. Figure 12 shows the firing response maps of
the pose/place cells to the current location as acquired by RatSLAM, as well as by the
competing Hebb learning networks and the method used in this paper at different times. In
addition, the maps of their spatial location representations are generated after completing
the environmental exploration. The RatSLAM method still did not perform well in the
circular environment because the RatSLAM algorithm only integrated the rat’s self-motion
information to activate the pose cells in response to the rat’s current location, without
exhaustively considering the effect of the simple similarity boundaries on the firing pattern
of the pose cells. At the same time, along with the increase in the environmental scene, the
growth of the exploration time response leads to a gradual increase in the accumulated
error, which renders the RatSLAM method unable to generate a single pose cell by which
to respond accurately to the current location. Compared with the RatSLAM method, the
competitive Hebb learning network can adjust the response values of the place cells via
the connection weights between the place cells, which enables the system to maintain a
better localization performance at the early stage of unknown environment explorations.
However, as the exploration proceeds and the environment itself is characterized, the
number of place cells gradually increases and the burden of adjusting the connection
weights between the place cells increases, thus leading to the overlapping phenomenon of
place cell responses, which then affects the accuracy of localization. In order to overcome
the negative effects of environmental size and cumulative errors, this method introduces
environmental boundary information to correct the place cell firing responses in real time,
such that only one place cell responds to the current location at each individual time.
By removing the interference of the other place cell firing responses, the accuracy of the
location information estimation of this method is improved.
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(d) (e) (f) 
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Figure 12. The process of constructing the spatial location representation maps by the three methods.
(a) 5 min for the RatSLAM method to obtain results. (b) 5 min for the competitive Hebb learning
network to obtain results. (c) 5 min for this paper’s method to obtain results. (d) 30 min for the
RatSLAM method to obtain results. (e) 30 min for the competitive Hebb learning network to obtain
results. (f) 30 min for this paper’s method to obtain results. (g) The RatSLAM spatial location
representation map. (h) The competitive Hebb Learning network spatial location representation map.
(i) The SLRB method spatial location representation map.

Figure 13 shows a comparison of the experimental data that was generated by the
three methods for constructing spatial location representation maps. From Figure 13a, it can
be seen that the number of place cells activated by all three methods in the early stage of the
environmental information exploration grew rapidly with time, but with the completion
of the environmental learning in the rats, the growth of grid cells in this method entered
a stable interval after 20 min. Furthermore, the final number was stabilized at about 300,
which was reduced by about half when compared with the other two methods. In terms
of the absolute trajectory error shown in Figure 13b, the absolute trajectory error of the
method in this paper at the end of the run is about 0.031 m, which is about 47.2% lower
when compared to the competitive Hebb learning network and about 56.9% lower when
compared to the RatSLAM algorithm. Additionally, in terms of the whole exploring time,
the method in this paper shows a good performance in terms of the location estimation.
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(a) The number of location cells (b) The absolute trajectory error 

Figure 13. Comparison of the performance of the three methods in terms of their spatial location
representation maps.

5. Analysis and Discussion

Discussion 1: Experiments on Activated Boundary Cells in Different Scenarios
In the experiments involving activated boundary cells in different scenarios, as the rat

runs facing a wall, the number of activated boundary cells gradually increases, transitioning
from the inhibition zone of boundary cells to the region of increased activity. When the
rat moves away from the environmental boundary, the activation frequency of boundary
cells gradually decreases (with a slower growth rate in the number of activated boundary
cells). When the rat’s motion corresponds to Figure 3d, exhibiting a trend of moving
away from the environmental corner, the activation frequency of boundary cells gradually
decreases. In an instantaneous motion similar to Figure 3d but with the difference that
the rat is moving away from the environmental corner, and the restraining force from the
environment decreases rapidly as the rat moves further from the boundary, the number
of activated boundary cells temporarily enters a stage of slow growth. It can be observed
that the activated boundary cells in different scenarios exhibit similar patterns as shown in
Figure 4 (Activated Boundary Cells in Different Scenarios), aligning with the physiological
observations. Furthermore, from the boundary cell response graphs at different time points
in Figure 10, it can be observed that the proposed model can effectively model the boundary
cells based on boundary information, regardless of the square or circular environment. As
indicated by the boundary cell discharge response graphs captured at different time points
in Figure 10, with the rat’s comprehensive exploration of the environmental boundary, the
number of activated boundary cells responding to the boundary continuously increases.
Before 1600 s, the number of activated boundary cells exhibits a rapid increase, while after
1600 s, with the rat’s comprehensive exploration of the environment, the growth rate of
the number of activated boundary cells gradually slows down, approaching stability. At
1800 s, the activated boundary cells sufficiently represent the environmental boundary, and
the number of activated boundary cells remains relatively stable, while the localization error
stabilizes at around 0.37 m. This demonstrates the adaptability of the proposed method
to larger circular environments, validating the effectiveness of the algorithm presented in
this paper.

Discussion 2: Validation Experiment on the Public Hafting Dataset
The method proposed in this paper is validated using the square experiment dataset

and the circular experiment dataset published by Hafting et al. in their paper “Microstruc-
ture of a spatial map in the entorhinal cortex” in Nature. The obtained position cell
responses from the method proposed in this paper are compared with the position cell
responses obtained from the competitive Hebbian learning network and the pose cell
discharge response map obtained from RatSLAM. The RatSLAM algorithm only integrates
self-motion information from the rat to activate pose cell responses at its current location,
without fully considering the influence of simple geometric boundary cues on the discharge
patterns of pose cells. Additionally, with the increase in exploration time response and
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the growing environmental scene, cumulative errors gradually accumulate, resulting in
RatSLAM’s inability to generate a single pose cell that accurately responds to the current
location. Compared to RatSLAM, the competitive Hebbian learning network can adjust the
response values of position cells through the connection weights between them, enabling
the system to maintain good localization performance in the early stages of exploration in
unknown environments. However, as exploration progresses and due to the characteris-
tics of the overall environment, the number of position cells increases, and the burden of
adjusting connection weights between position cells increases, leading to overlap in their
response patterns and consequently affecting the accuracy of localization. The proposed
method in this paper activates boundary cells when encountering boundaries, and the
correction function of boundary cells on position cells enables real-time updating and
constraint of position cell discharge responses, reducing position estimation uncertainty,
and thereby improving the localization accuracy of the proposed method. At the end of the
operation, the absolute trajectory error of the proposed method is approximately 0.031m,
which is about 47.2% lower than that of the competitive Hebbian learning network, and
about 56.9% lower than that of the RatSLAM algorithm.

6. Conclusions

In this paper, based on the understanding of the physiological properties of various
spatial navigation cells and their role in autonomous navigation and localization, a spatial
location representation method incorporating boundary information is proposed in order
to construct a map of the unknown environment. The method improves the accuracy of
autonomous localization and the robustness of map construction by activating the learning
and memory of the spatial location of the unknown environment by navigation cells. The
method presented in this paper belongs to an exploration of the mechanism of the brain
operations that occur during the mammalian process of localization and map construction.
It lays the foundation for further research on bionic localization and navigation algorithms
for mobile robots. However, the method proposed in this paper only utilizes self-motion
information such as rat’s direction, velocity, and distance for mapping and does not consider
the influence of visual perceptual information on mapping. This limitation results in the
inability of the method to perform relocalization using familiar scenes. When fusing
visual information with self-motion information, the difference in the sampling rates of
the two signals can lead to joint initialization failure. Future work will propose a joint
initialization method for visual and self-motion information to synchronize the two signals
and overcome the challenges of joint initialization. By incorporating the obtained visual
perceptual information into the proposed method, the stability and accuracy of spatial
representation map construction will be improved.
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Abstract: We focus on dual-user operation, where two users control a single remote robot equipped
with a force sensor using haptic interface devices. We employ a cooperative work in which the two
users control the remote robot to collaborate with remote robot systems with force feedback to carry
an object. By measuring the force acting upon the object, we aim to better understand the underlying
mechanisms by which the user with lower network latency can help the other user, as observed in our
previous work. We notice that with increasing network delays, the force exerted on the object tends to
intensify, indicating that it becomes more challenging for users to operate the remote robot effectively
as network delays increase. We also measure the force applied to the object by changing the network
delays between the remote robot and the two users to clarify why the user with the lower network
delay can assist the other user. We find that when the total network delay is the same, the average
force magnitude and the average maximum force magnitude remain nearly identical. This is because,
despite the challenges faced by the user with the larger network delay, the user with the smaller
delay can operate the remote robot more easily and assist the other user. In order to reduce the force
acting upon the object, we propose an enhancement method for the robot position control, which
determines the position of the remote robot arm while accounting for network delay, and investigate
the effects by experiment. Experimental results demonstrate that our proposed method is effective
and can reduce the applied force. This is because the proposed method adjusts the ratio between
the user with the lower delay and the user with the higher delay. The user with the lower delay can
operate the remote robot more easily and respond to it more quickly. Our findings and proposed
method can be useful in improving work accuracy and operability when designing a remote robot
system with force feedback for applications.

Keywords: remote robot systems; force feedback; haptic interface device; dual-user operation; robot
position control; network delay

1. Introduction

Recently, there has been increasing interest among researchers in remote robot systems
with force feedback [1–16]. In the systems, a user can remotely control a robot by manipu-
lating a haptic interface device while perceiving the reaction force from an object touched or
moved by a robot arm equipped with a force sensor. We can expect to significantly improve
the efficiency and accuracy of remote operations, as the user is able to physically sense
the shape, weight, and softness of the object [7–13]. Consequently, remote robot systems
with force feedback can be utilized in environments that are hazardous or inaccessible to
humans, such as disaster-stricken areas, nuclear power plants, deep-sea exploration, and
outer space [11].

Nevertheless, when haptic data such as position and/or force information is transmit-
ted over a non-guaranteed Quality of Service (QoS) [17] network, like the Internet, Quality
of Experience (QoE) [18] might be greatly affected. Therefore, it is essential to clarify the
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influence of network delay, delay jitter, and packet loss on the operation and to study
efficient QoS control [11,19,20].

On the other hand, Hagiwara et al. investigated the effects of two users controlling an
avatar compared to one user controlling an avatar to move in a virtual space [21]. Their
experimental results showed that the performance with two users was superior to that of
one user. In [22], Kodama et al. proposed a “virtual co-embodiment” in which a virtual
avatar is controlled by two users (one is a teacher, and the other is a learner) for motor
skill learning. Experimental results indicated that using the proposed method enhances
the efficiency of motor skill learning. Therefore, in order to clarify if dual-user operation is
more effective than single-user operation for cooperation in a remote robot system with
force feedback, the authors in [23] compare single-user and dual-user operations, where
an object is collaboratively carried by two remote robot systems with force feedback. The
results indicates that dual-user operation outperforms single-user operation regarding the
force acting upon the object. Additionally, when two users experienced different network
delays, the user with the lower network delay can help the other user [23].

However, the reasons why the user with the lower network delay can help the other
user remain unclear, and it is necessary to clarify this mechanism. Additionally, in [23],
the authors calculate the position vector of a robot by simply averaging the two position
vectors of haptic interface devices in the robot position control, which is used to determine
the position of the remote robot arm for dual-user operation. It is crucial to evaluate how
varying the ratios of the two position vectors affects the calculation of the robot’s position
vector. Furthermore, from [23], it is observed that the force acting upon the object increases
with the escalation of network delay. When the applied force becomes large, it may be
difficult for the user to do collaborative work. Furthermore, if the force exerted is too large,
the object could be damaged. It is important to reduce the applied force as network delay
increases by considering enhancements to the QoS control employed in [23].

Therefore, in this paper, we focus on dual-user operation, which may be more efficient
than single-user operation in remote robot systems. First, we examine the effects of network
delays on dual-user operation and measure the force applied to the object by changing
the network delays between the remote robot and the two users to clarify the underlying
mechanisms. In the experiment, we use robot position control, which is a type of QoS
control employed in [23] that adjusts the robot position using the positions of the two users’
haptic interface devices. Next, we propose an enhancement method for the robot position
control by taking network delays into account to reduce the applied force.

This paper makes the following key contributions:

(1) In order to understand the mechanism, we clarify the reasons why the user who
experiences a small network delay can assist the user who experiences a large network
delay by analyzing the force applied on the operating object in dual-user operation. It
is the first time the reason is clarified, and this may help improve the work accuracy
of the remote robot system with force feedback.

(2) To decrease the force exerted on the object, we propose an enhancement method for
the robot position control as QoS control. Experimental results show the effectiveness
of our proposed method. The proposed control can be widely used in remote robot
systems with force feedback to improve operability.

(3) From the above, our findings and proposed method can be useful in improving
work accuracy and operability when designing a remote robot system with force
feedback for applications such as remote medical surgeries, remote control in deep-
sea exploration, or outer space operations.

The remainder of this paper is structured as follows: Section 2 introduces the dual-user
operation in remote robot systems with force feedback and details the robot position control
for dual-user operation. Section 3 clarifies the mechanism by analyzing the applied force
on an object in dual-user operation. In Section 4, we propose an enhancement method for
the robot position control by taking network delays into account and investigate the effects
of our proposed method. Lastly, Section 5 provides the conclusion of this- paper.
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2. Dual-User Operation of Remote Robot System with Force Feedback

This section presents both single-user and dual-user operations of the remote robot
system with force feedback. In single-user operation, one user manipulates a haptic
interface device to control the movement of a remote robot. In dual-user operation, each of
the two users uses their own haptic interface device to collaboratively control the movement
of a remote robot.

2.1. Single-User Operation (Remote Robot System with Force Feedback)

Figure 1 illustrates the setup of single-user operation (remote robot system with force
feedback). The system comprises a master terminal and a slave terminal [23]. Each terminal
consists of two PCs connected through a switching hub. At the master terminal, one PC is
linked to a haptic interface device (3D Systems Touch [24]) for haptic feedback, while the
second PC is utilized to monitor the movements of the robot arm. At the slave terminal,
one PC connects a web camera (manufactured by Microsoft Corp. (Redmond, WA, USA),
with a video resolution of 1920 × 1080 pixels) to monitor the robot arm’s movement, while
the other PC controls the industrial robot. The industrial robot comprises a robot arm, a
force sensor mounted on the arm’s flange, a robot controller, and a force interface unit. The
force interface unit is used to connect the force sensor to the robot controller.

Figure 1. Setup of single-user operation (remote robot system with force feedback).

At the master terminal, by manipulating the haptic interface device, a user can control
the robot arm remotely. As in [23], the reaction force F(m)

t exerted on the haptic interface
device at time t (t ≥ 1) is determined as follows:

F(m)
t = K(F)

scaleF(s)
t−1 (1)

where F(s)
t−1 denotes the force transmitted from the slave terminal, and K(F)

scale represents a
force mapping scale used to map forces between the haptic interface device and the force
sensor of the industrial robot arm [23]. Additionally, because the maximum force that can
be applied to the haptic interface device is 3.3 N [24], any calculated force exceeding 3.3 N
is capped at 3.3 N. At the slave terminal, we use the same method as in [23] to determine
the industrial robot’s position vector St. The St outputted at time t (t ≥ 2) is computed as
follows:

St = K(P)
scaleMt−1 + Vt−1 (2)

where K(P)
scale is a scaling factor for workspace mapping, Mt is the haptic interface device’s

position vector transmitted from the master terminal at time t, and Vt−1(= St − St−1)
represents the moving velocity of the robot arm at time t [23]. Additionally, |Vt| ≤ Vmax,
where Vmax represents the maximum allowable movement velocity (Vmax = 5 mm/ms [25]
in this paper) to ensure safe operation of the robot arm.

To avoid instability phenomena, such as vibrations, we implement stabilization control
with filters [25], originally proposed for single-user operation, for dual-user operation.
Figure 2 shows one control loop of the enhanced stabilization control, which employs both
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a wave filter and a phase control filter. The wave filter consists of a cross component and a
coefficient b, while the phase control filter includes Ws(s) and Wm(s) [26,27].

Figure 2. Block diagram of stabilization control with filter.

2.2. Dual-User Operation

The system configuration of dual-user operation is shown in Figure 3. As depicted in
Figure 3, the system comprises two master terminals (referred to as master terminals 1 and
2, herein) and one slave terminal. Both users manipulate their respective haptic interface
devices to collaboratively control the robot arm. The video captured by the web camera is
multicast to both master terminals, allowing the two users to view the same video screen.

Figure 3. System configuration of dual-user operation.

As in [23], the reaction force exerted on the two haptic interface devices, denoted as
F(m1)

t and F(m2)
t , at master terminals 1 and 2 (the haptic interface devices are also called

haptic interface devices 1 and 2, respectively) are calculated as follows:

F(m1)
t = F(m2)

t = K(F)
scaleF(s)

t−1 (3)

where F(s)
t represents the force transmitted from the slave terminal at time t, and K(F)

scale
represents the mapping scale for force between the industrial robot and the haptic interface
device. The position vector of the robot is determined by robot position control, which we
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will explain in Section 3. Please note that we use a three-dimensional coordinate system.
The origin is at the center between the two remote robots, with the x-axis representing the
left and right directions, the y-axis representing the front and back directions, and the z-axis
representing the up and down direction (see Figure 4, right side). All vectors are calculated
in this system. In addition, we implement the enhanced stabilization control for dual-user
operation as follows: the wave filter Gmm(s) and the phase control filter Wm(s) are applied
at each user’s terminal; at the remote robot terminal, after calculating the position vector
for the remote robot based on the position vectors received from two users’ terminals, the
wave filter Gss(s) and the phase control filter Ws(s) are applied. Finally, the force is sent to
both users’ terminals. We find that this approach is effective in the dual-user context as
well.

Figure 4. Appearance at master and slave terminals.

2.3. Robot Position Control

In the robot position control, the robot’s position vector is determined by using the
positions of both haptic interface devices [23]. By applying different ratios of the two
position vectors when calculating the robot’s position vector, we can obtain a different
position vector for the industrial robot. In [23], the position vector of the robot is determined
by averaging both haptic interface devices’ positions:

St =
(

M(m1)
t−1 + M(m2)

t−1

)
/2 + Vt−1 (4)

where M(mi)
t−1 represents the position vector of haptic interface device i (where i = 1 or 2)

received from the master terminal at time t, and Vt is the movement velocity of robot arm
at time t [23].

3. Analysis of Applied Force on Object in Dual-User Operation

As described previously, in dual-user operation, the reasons why the user with the
shorter delay can support the other user remain unclear, and it is necessary to clarify this
mechanism. In this section, we employ the same experiment system as in [23] to investigate
the influences of network delays on dual-user operation. We measure the force applied to
the object by changing the network delays between the remote robot and the two users to
gain a better understanding of the underlying mechanisms.
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3.1. Experiment Method for Clarifying Mechanisms

We employ a dual-user operation system to collaborate with a remote robot system
to do cooperative work (see Figure 4) involving the movement of an object (a wooden
stick) clamped by the two robot arms in the front–back direction, as in [23]. In this work,
after moving the wooden stick from the initial position to the paper block (see Figure 5)
at the front side, the wooden stick is moved backward to the paper block at the back side.
The distance between the initial position and the paper block positioned at the front is
approximately 40 mm and takes about 5 s, while the distance between the front paper
block and the back paper block is about 80 mm and takes about 10 s. Since it is difficult to
identify influencing factors if the robot arm (referred to as robot arm 1) of the remote robot
system is also controlled by a human, robot arm 1 moves automatically at a constant speed
of about 8 mm/s, ensuring consistent movement in each operation. To move robot arm 1
automatically, we calculate a new position based on the current position and movement
speed (i.e., 8 mm/s) approximately every 3.5 ms, which is the position update cycle for the
robot arm. The robot then updates its position based on the calculation result. The other
robot arm (robot arm 2) is controlled by two users to move in the same manner as robot
arm 1. The robot position control is implemented at the slave terminal of robot arm 2 to
determine the position vector for robot arm 2.

Figure 5. Plane view showing arrangement of the wooden stick, wooden blocks, and paper blocks.

In the experimental system, we use static IP addresses for each PC, and since the
processing latency of each PC is only a few milliseconds, which is much shorter than the
network delay, we ignore the processing latency in our experiment. A constant network
delay is generated for packets transmitted between master terminals 1 and 2 and the slave
terminal of robot arm 2 by a network emulator (NIST Net [28]). For one user, the constant
delay ranges from 0 ms to 250 ms in 50 ms increments, whereas for the other user, the delay
ranges from 0 ms to 600 ms in increments of either 50 ms or 100 ms.

The work was repeated 20 times for each set of network delay combinations. We
measured the force of robot arm 2 approximately every 3.5 ms. Then, we averaged the force
magnitude based on the output data and obtained the maximum force magnitude. Finally,
we calculated the average force magnitude and the average maximum force magnitude
over the course of the 20 trials.

3.2. Experiment Results for Clarifying Mechanisms

Figure 6 shows the average of average force magnitude and average of maximum force
magnitude at robot arm 2. Additionally, the figure shows the 95% confidence intervals.
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Figure 6. Average of average force magnitude and average of maximum force magnitude.

From Figure 6, we find that when the delay for one user is 0 ms and the delay for
the other user increases, both the average force magnitude and the average maximum
force magnitude tend to increase. In other words, the force exerted on the object rises as
network delays become larger. A similar trend is observed when the delay for one user
is 50 ms, 100 ms, or 200 ms. This indicates that as network delays increase, it becomes
more challenging for users to operate the remote robot effectively. Additionally, the figure
shows that when the total network delay is the same, for example, in the network delay
combinations (0, 200), (50, 150), and (100, 100), the average force magnitude and the average
maximum force magnitude are almost identical. This is because, despite the challenges
faced by the user with the larger network delay, the user with the smaller delay can operate
the remote robot more easily and assist the other user. As the smaller delay increases, it
becomes more difficult for that user to control the robot, while the larger delay decreases,
making it easier for the other user to operate the remote robot. Therefore, when the total
network delay is the same, the average force magnitude and the average maximum force
magnitude remain nearly identical.

We conducted a t-test to verify whether there are significant differences among dif-
ferent network delays. Figure 7 shows the results of the t-test between combinations of
network delays (please note that the cells in blue color represent the combinations of net-
work delays. The first value represents network delay 1, and the second represents network
delay 2). Each cell contains two values: the upper value represents the p-value for the
average of average force magnitude between network delay combinations, and the lower
value is the p-value for the maximum force magnitude. For clarity, we have highlighted
cells in which there is no significant difference (i.e., when at least one of the two p-values is
greater than 0.05) in yellow.

From Figure 7, we observe that at least one p-value is smaller than 0.05 when the
difference between the total network delay (i.e., the sum of network delay 1 and network
delay 2) becomes large. However, when the total network delay is the same, both p-values
exceed 0.05. This suggests that there is no statistically significant difference between these
pairs of network delays. In simpler terms, the force of robot arm 2 is nearly identical when
the total network delay is the same. Therefore, even though the force applied to each of the
two dual-users may vary due to different network delays, the force of robot arm 2 remains
the same. This observation can explain why the user with the shorter delay can support the
other user.
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We further confirm the above results by grouping the averages with the same total
network delay in Figure 8. It is evident that the force remains nearly identical when the
total network delay is consistent. As previously mentioned, despite the challenges faced
by the user with the larger network delay, the user with the smaller delay can operate the
remote robot more easily and assist the other user.

Figure 8. Average of average force magnitude and average of maximum force magnitude when the
sum of network delay 1 and network delay 2 is same.

Furthermore, we also carry out subjective assessment to confirm the effect of dual-user
operation by comparing single-user operation and dual-user operation for cooperative
work in remote robot systems with force feedback. The assessment results also illustrated
that dual-user operation outperforms single-user operation [29].

4. Enhancement of Robot Position Control

As outlined in the previous section, the force acting upon the object increases as the
network delay grows. Therefore, it is necessary to consider different ratios of two haptic
interface device’s position vectors when calculating the robot’s position vector and to
reduce the applied force when the network delay is large. In this section, we enhance the
robot position control by taking account of network delays to reduce the applied force.

4.1. Enhancement Method

To mitigate the applied force, we enhance the robot position control by considering
network delay. The position vector of the robot is determined as follows (called proposed
method 1 here):

St =
d(m2)

t−1 × M
(m1)

t−1 + d(m1)
t−1 × M(m2)

t−1

d(m1)
t−1 + d(m2)

t−1

+ Vt−1 (5)

where d(m1)
t and d(m2)

t represent the network delay between the robot and haptic interface

devices 1 and 2 at time t, respectively. Note that we only consider cases where d(m1)
t−1 +

d(m2)
t−1 > 0.

As will be described later, we found that it is challenging to assert that proposed
method 1 is effective. Therefore, we conduct a preliminary experiment to investigate the
effect by using fixed ratios (1:1 for the conventional method, 2:1, 3:1, 4:1, and 5:1) of d(m1)

t−1
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to d(m2)
t−1 in Equation (5), and obtain the optimal fixed ratio for each network delay. Through

regression analysis, we derive the following equations (called proposed method 2 here):

a = 0.0057 × d(m2)
t−1 + 0.5458 (6)

St=

⎧⎨⎩
(

M(m1)
t−1 + M(m2)

t−1

)
/2 + Vt−1 (i f a ≤ 1)(

a × M(m1)
t−1 + M(m2)

t−1

)
/(a + 1) + V

t−1
(otherwise)

(7)

where a is defined as the value when d(m1)
t < d(m2)

t and the ratio of d(m1)
t and d(m2)

t is a:1.

4.2. Experiment
4.2.1. Experiment Method

We performed collaborative work of moving an object (i.e., a wooden stick) held by
two robot arms along the x-axis (i.e., the front–back) direction, same as the cooperation
work described in Section 4.1. The enhanced robot position control is implemented at the
slave terminal of robot arm 2.

We generated a constant delay, known as the additional delay, for each packet trans-
mitted between the master and slave terminals using NIST Net. Following the approach
in [23], the additional delay for one user was configured to be either 0 ms or 50 ms, while
for the other user, it was set to 100 ms, 200 ms, 250 ms, 300 ms, and 600 ms to investigate
the effects of proposed method 1 (called experiment 1 here). For proposed method 2, the
additional delay for one user was configured to be either 0 ms or 50 ms, while for the other
user, it varied from 0 ms to 600 ms in 100 ms increments (called experiment 2 here).

As described in Section 3.1, we assessed the force exerted on the wooden stick and cal-
culated the average of average force magnitude and average of maximum force magnitude
during the work.

4.2.2. Experimental Results

Since the tendency of the average of maximum force magnitude is similar to that of
the average of average force magnitude, as shown in Figures 6 and 7, we only show the
average of average force magnitude here. Figure 9 illustrates the average of the average
force magnitude of the robot arm controlled by two users in experiment 1, while Figure 10
presents the results of experiment 2. Additionally, the figures include the 95% confidence
intervals.

From Figure 9, when the network delay for one user is 0 ms or 50 ms and the network
delay for the other user is larger than 200 ms, the average of average force magnitude of
proposed method 1 generally appears to be lower than those of the conventional method.
However, when the network delay for one user is 0 ms or 50 ms and the network delay
for the other user is 100 ms, the conventional method outperforms proposed method 1.
Therefore, we can say that when the network delay is large, proposed method 1 is effective,
but when the network delay is small, the conventional method is more effective. From the
above, it is challenging to assert that proposed method 1 is consistently effective.
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Figure 9. Average of average force magnitude in experiment 1.

On the other hand, from Figure 10, we can see that the averages of average force
magnitude for proposed method 2 are generally smaller than those for the conventional
method. By comparing Figure 9 with Figure 10, we also find that the averages of average
force magnitude of proposed method 2 are smaller than those of proposed method 1. Thus,
we can say that proposed method 2 is effective. This is because, in the proposed method,
we account for network delays by adjusting the ratio between the user with the lower delay
and the user with the higher delay. The user with the lower delay can operate the remote
robot more easily and respond to it more quickly. This is why the user with the lower delay
can assist the user with the higher delay. Therefore, the force exerted on the wooden stick
using the proposed method is smaller than that with the conventional method.
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Figure 10. Average of average force magnitude in experiment 2.

5. Conclusions

In this paper, we dealt with dual-user operation, in which two users control a single
remote robot equipped with a force sensor by using haptic interface devices for cooperative
work of carrying an object between remote robot systems with force feedback. We measured
the force applied to the object to clarify the underlying mechanisms explaining why the user
with the shorter delay can support the other user with large network delay, as observed
in our previous work. Consequently, we noticed that the force of the robot arm is nearly
identical when the total network delay is the same. This is because, despite the challenges
faced by the user with the larger network delay, the user with the smaller delay can operate
the remote robot more easily and assist the other user. To decrease the force exerted on the
object, we proposed an enhancement method for the robot position control by considering
network delay and investigate the effects by experiments. The results of our experiments
demonstrate that the proposed method effectively decreases the applied force. This is
because the proposed method adjusts the ratio between the user with the lower delay and
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the user with the higher delay. The user with the lower delay can operate the remote robot
more easily and respond to it more quickly. Our findings suggest that the proposed control
method is likely to enhance the efficiency of remote robot collaborative work. Therefore, our
findings and proposed method can be useful in improving work accuracy and operability
when designing a remote robot system with force feedback for applications.

In future studies, it will be important to analyze the force and position information
at both master terminals 1 and 2 to gain a deeper understanding of how the user with the
shorter delay supports the other user. Additionally, we will investigate the effect of our
proposed method by using different objects with different sizes, weights, and materials.
Furthermore, we will carry out simulations and numerical analysis to clarify the proposed
method’s effect.
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Abstract: Heavy-duty legged robots have played an important role in material transportation,
planet exploration, and other fields due to their unique advantages in complex and harsh terrain
environments. The instability phenomenon of the heavy-duty legged robots often arises during
the dynamic interactions between the supporting feet and the intricate terrains, which significantly
impact the ability of the heavy-duty legged robots to move rapidly and accomplish tasks. Therefore,
it is necessary to assess the mechanical behavior of foot–terrain interactions for the heavy-duty
legged robots. In order to achieve the above goal, a systematic literature review methodology is
employed to examine recent technical scientific publications, aiming to identify both current and
prospective research fields. The characteristics of supporting feet for different heavy-duty legged
robots are compared and analyzed. The foot–terrain mechanical models of the heavy-duty legged
robots are discussed. The problems that need further research are summarized and presented,
which is conducive to further deepening and expanding the research on the mechanical behavior of
foot–terrain interactions for heavy-duty legged robots.

Keywords: heavy-duty legged robot; terrain adaptability; supporting foot; foot–terrain interaction
mechanics; sinkage

1. Introduction

In nature, there are various uneven and irregular terrains that have complex environ-
mental surfaces, such as grassland, desert, mud pools, and mountains. The exploration
of unknown terrain is dangerous for humans. Autonomous mobile robots can be the
first to enter the detection before humans enter unfamiliar and dangerous environments,
which greatly ensures the safety of human life and improves the efficiency of exploration
work. With the continuous development of autonomous mobile robot technology, au-
tonomous mobile robots have been widely used in multiple fields to protect human safety
and improve production efficiency [1].

Considering the varying modes of contact between mobile robots and terrain, the
broad classification of mobile robots includes wheeled robots, tracked robots, snake-like
robots, spherical robots, and legged robots [2]. The currently widely researched and applied
mobile robots are mainly wheeled robots. Wheeled robots have limitations in their use due
to their high requirements for terrain environments, necessitating relatively wide, flat, or
smaller rugged terrains. Compared to the harsh requirements of wheeled robots in the
terrain environment, tracked robots have to some extent improved the high demand for
the terrain. However, the large contact area of the tracks with the terrain also brings new
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problems. The terrain adaptability of snake robots has significantly improved compared to
the tracked robots, but these types of robots lack a load-bearing capacity and have relatively
slow movement speed. They can only achieve the robot’s own motion [3]. The spherical
robots have good mobility performance. Although the spherical shape can effectively
protect the fragile and moving parts of the robots from external damage, the contact mode
between the spherical robots and the terrain is point contact, which is not conducive to
control movement. The spherical robots have not been widely used [4]. The legged robots
often use biomimetic technology to design their structures. They usually imitate humans
walking on two legs, and mammals or insects walking on multiple legs. Their structures
are more flexible and can maintain relative stability. Compared to wheeled robots and
tracked robots, legged robots require only intermittent and discrete landing points to cross
obstacles like legged animals. Therefore, walking mechanisms have stronger adaptability
to walk on complex terrain. Compared to snake robots and spherical robots, the legged
robots have a load-bearing capacity. The research on legged robots has received widespread
attention in recent years due to their excellent terrain adaptability and motion flexibility.
In fields such as interstellar exploration [5], humanitarian demining [6], logging [7], and
nuclear industry [8], the legged robots have unique advantages and have been widely used.

Based on their load-bearing abilities, legged robots can be classified into two categories:
heavy-duty legged robots and light-duty legged robots. It can be seen that heavy-duty
legged robots have three characteristics compared to light-duty legged robots: large mass,
large volume, and high payload–total mass ratio [1]. The heavy-duty legged robots may
encounter various complex terrains in actual environments, which also makes the robots
full of challenges when moving. Compared to the light-duty legged robots, the heavy-
duty legged robots are more prone to foot sinkage occurring when traveling in soft and
muddy terrains due to the lower pressure-bearing capacity of the soil. With the low
adhesion of smooth surfaces such as ice and snow, heavy-duty legged robots are also
more prone to foot slips occurring. The heavy-duty legged robots are more sensitive to
foot–terrain interactions compared to the light-duty legged robots. When a heavy-duty
legged robot interacts dynamically with complex terrain during movement, it is prone
to the phenomenon of robot instability. It has a significant impact on achieving rapid
robot movement and completing designated tasks. Studying the foot–terrain mechanical
behavior of the heavy-duty legged robots and establishing an appropriate foot–terrain
mechanical model are meaningful. The reasonable landing area of the heavy-duty legged
robots is increased. The optimization of control strategies is achieved. The parameters
selection of foot structure design is facilitated. By designing foot configurations for different
working conditions, the mobility performance of the heavy-duty legged robots is improved.
The area of some irregular feet in contact with the terrain is not equal to the overall size of
the feet. An accurate area is essential in model design.

Compared to the light-duty legged robots, the heavy-duty legged robots have a larger
leg mass. Both the supporting and the swinging legs can withstand greater torque during
the movement, and that puts forward better technical requirements for maintaining the
stability of the robots. Thus, it is particularly important to study the mechanical behavior
of foot–terrain interactions of the heavy-duty legged robots. The forces acting on the
robot’s feet are divided into normal and tangential forces. In order to make the robot’s
walking smoother, the study of gait planning for heavy-duty legged robots also relies on
the study of foot–terrain mechanics [9–11]. Bloesch and Voloshina have also pointed out
that it is necessary to study foot–terrain mechanics of the legged robots to improve terrain
adaptability [12,13]. Zhuang studied the multimodal information fusion of robots, which
has a significant effect on improving their terrain recognition ability [14].

The supporting foot structures of the heavy-duty legged robots directly affect foot–
terrain interactions. Based on the research process of the mechanical behavior of foot–terrain
interactions in heavy-duty legged robots, the supporting foot structures and mechanical
models of foot–terrain interactions are reviewed for the heavy-duty legged robots. In
Section 2, the supporting foot structures of the heavy-duty legged robots are discussed.
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The foot configurations and plantar pattern shapes of the heavy-duty legged robots’ sup-
porting feet are compared and analyzed. In Section 3, the key technologies related to
the foot–terrain characteristics of the heavy-duty legged robots are provided. The de-
velopment of foot–terrain mechanics is narrated. In Section 4, the challenging works in
the study of terrain behavior mechanics for heavy-duty legged robots are described. In
Section 5, the conclusions are presented. The future development trends are projected.
The overall framework of the article is shown in Figure 1. The purpose of this paper is to
ensure the terrain adaptability of heavy-duty legged robots by studying the foot–terrain
mechanics mechanism.

Figure 1. Overall framework of article.

2. Supporting Feet of Heavy-Duty Legged Robots

The heavy-duty legged robots are one of the basic forms of mobile robots. Unlike
the wheeled and tracked robots, they can freely change the landing points during the
actual walking. They adjust their posture at any time by changing the support between
feet and terrain, which can ensure stability during the support process. The heavy-duty
legged robots make direct contact with the terrain and need to adapt to different types
and inclinations of terrain. It increases the requirements for the feet. The feet can play a
supporting, load-bearing, and antiskid role. Also, they need to have multiple degrees of
freedom to adapt to the forward and turning movements of the heavy-duty legged robots.
The feet of the heavy-duty legged robots need to meet special requirements such as bearing
heavy loads, adapting to different terrains, and having flexible degrees of freedom. The
section briefly reviews two types of related work, namely the foot configurations and sole
pattern shapes of different heavy-duty legged robots.

2.1. Supporting Foot Configurations of Heavy-Duty Legged Robots
2.1.1. Feet with Passive Adaptive Joints

Spheres, ellipsoids, and rectangles have been found to be the most common shapes of
feet [15]. Common configurations such as cylindrical feet, semi-cylindrical feet, spherical
feet, hemispherical feet, square feet, and special feet are summarized.

Cylindrical Supporting Foot Configurations

The Tokyo Institute of Technology has developed the TITAN series of robots. In 2002,
the latest generation model machine called TITAN XI was developed, and the robot is
shown in Figure 2a. It is a hydraulically driven quadruped robot. The robot can walk
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steadily and continuously on slopes covered with reinforced concrete frames. It can achieve
intermittent crawling gait based on map information. Terrain adaptive gait makes the
robot’s motion more stable. The robot’s feet are cylindrical [16]. TITAN IX is a quadruped
robot with cylindrical foot shapes for humanitarian landmine detection missions [17].
TITAN III is a quadruped robot with cylindrical feet [18], as shown in Figure 2b.

    
(a) (b) (c) (d) 

Figure 2. Robots of TITAN series, COMET-IV, and NMIIIA: (a) TITAN XI [16]; (b) TITAN III [18]; (c)
COMET-IV [19]; and (d) NMIIIA [1].

The COMET-IV robot developed by Chiba University is a heavy-duty hexapod robot
based on hydraulic drive, as shown in Figure 2c. The weight of the robot is approximately
2120 kg. Its load-bearing capacity is approximately 424 kg. The overall size is approximately
2.8 m × 3.3 m × 2.5 m. Each leg has four degrees of freedom (DOFs). It can walk on uneven
terrain. The robot’s feet are cylindrical [19].

The Dante II robot, designed for exploring planetary surfaces, operates semi-autonomously
and is equipped with eight legs. It weighs 770 kg, has the capacity to carry a 130 kg
payload, and is capable of navigating slopes up to 30 degrees. The feet of the robot are
cylindrical [20].

The NMIIIA robot was successfully developed in 1985, as shown in Figure 2d. It is a
crewed hexapod robot developed by the former Soviet Union during the implementation
of lunar exploration activities. It is used for star surface exploration and load bearing.
The robot has a mass of 750 kg, a load-bearing capacity of 80 kg, and a moving speed of
0.7 km/h. Its feet are cylindrical [1].

The SILO4 robot developed in Spain also has cylindrical feet [21]. The passive joint of
the foot contains three rotational degrees of freedom (DOFs). The three-axis force sensors
are installed on the robot’s feet. The outdoor experiment and ankle joint are shown in
Figure 3.

  
(a) (b) 

Figure 3. SILO-4 robot [21]: (a) outdoor experiment; (b) ankle-integrated sensor system.

Zhuang developed a terrain electric-driven hexapod robot with a high load ratio,
ElSpider. Six supporting legs of the robot are uniformly distributed on the body of the
central symmetric structure. A single leg adopts a structure with three active and four
passive degrees of freedom. It has a weight of approximately 300 kg. The rated load of
ElSpider is greater than 155 kg, as shown in Figure 4a. Its overall size is approximately
1.9 m × 1.9 m × 1.0 m. It can cross obstacles with a height greater than 0.3 m, cross
trenches with a width greater than 0.3 m, walk regularly at a speed of 0.16 m/s, and climb
a maximum slope of 35◦. The robot’s feet are cylindrical [22–24]. The six dimensions
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force sensors are also installed on the feet to measure the foot–terrain forces, as shown in
Figure 4b.

  
(a) (b) 

Figure 4. ElSpider robot [25]: (a) load experiment; (b) robot foot.

A P-P structured hexapod Octopus robot was developed by Professor Gao F’s team
from the School of Mechanical and Power Engineering at Shanghai Jiao Tong University.
The robot’s body adopts a symmetrical design. It always maintains three supporting
legs to support the body during walking, with good stability and maneuverability. Its
speed is 1.2 km/h, and its load-bearing capacity is 200 kg. The Octopus robot adopts
cylindrical configurations at the feet. But unlike the other feet of heavy-duty legged robots,
the middle of the cylindrical foot is hollow. Its structure can effectively reduce the mass
of the robot’s feet. And springs are installed above the feet to provide cushioning and
shock absorption [26–28]. The indoor experiment is shown in Figure 5a. The load-bearing
progress is shown in Figure 5b.

  
(a) (b) 

Figure 5. Octopus robot: (a) indoor walking experiment [26]; (b) load-bearing progress [29].

Researchers from Jilin University have designed a heavy-duty hexapod robot [30–32].
The feet are designed as ball joint structures, and force sensors are connected in series
above the ball joints to detect whether the feet are firmly pressed against the terrain. There
are reset springs parallel to the ball joints between the upper and the lower plates of the
ball joints. They are used for feet to avoid sticking during the process of stepping on the
terrain due to the large deflection angle of the foot bottom. Thick rubber pads are installed
at the bottom of the feet to cushion the landing of the feet. The prototype of the heavy-duty
hexapod robot and its foot are, respectively, shown in Figure 6a,b.
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(a) (b) 

Figure 6. Heavy-duty hexapod robot of Jilin University: (a) prototype [30]; (b) foot [32].

On the basis of the investigation of the heavy-duty legged robot, researchers from
Huazhong University of Science and Technology present a novel foot structure for the
heavy-duty legged robot. Its highly adaptable foot system with significant adhesion can
be utilized to navigate extreme roads and complex terrains, including mountainous areas
and swamps. The foot design, inspired by mountain-dwelling creatures, has been crafted
to ensure substantial adhesion and enhanced adaptability [33,34]. The feet are installed
on the heavy-duty legged robot, as shown in Figure 7a. The robot foot and single leg are,
respectively, shown in Figure 7b,c.

 
 

(a) (b) (c) 

Figure 7. Heavy-duty six-legged robot from Huazhong University of Science and Technology:
(a) robot model [33]; (b) robot foot [34]; (c) single leg [33].

The advantage of cylindrical feet is that they have a large contact area with the terrain.
Large contact areas can provide greater adhesion to withstand heavy loads. At the same
time, the heavy-duty legged robots equipped with cylindrical flat feet are suitable for
long-distance transportation. The disadvantage is that it is necessary to design a swing
structure, otherwise it cannot walk stably. The stress distribution model of the cylindrical
foot of the heavy-duty legged robots is shown in Equation (1). Then{

FN(t) = σ(t)× A
FT(t) = τ(t)× A

(1)

where FN is the normal support force of the foot. FT is the tangential driving force of the
foot. A is the contact area between the foot and the terrain.

Semi-Cylindrical Supporting Foot Configurations

The Big Dog robot [35–37] developed by Boston Dynamics in the United States is a
quadruped robot. The main components of the robot are shown in Figure 8a. It has full
flexibility and can stand, squat, and move. The crawling speed is 0.2 m/s, the jogging speed
is 1.6 m/s, and the jumping speed can reach 3.1 m/s in laboratory testing. The weight is
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approximately 109 kg, and the size is 1.1 m × 1 m × 0.3 m. The feet of the Big Dog robot are
semi-cylindrical, as shown in Figure 8b. The Big Dog robot can pass through rock slopes
up to 60◦ and has excellent adaptability to complex terrain.

  
(a) (b) 

Figure 8. Big Dog robot: (a) main components of robot [1]; (b) foot.

Researchers at Huazhong University of Science and Technology have developed a
hydraulic-driven quadruped robot, MBBOT [38,39]. Each leg of the robot includes four
active degrees of freedom. The total mass of the robot is 140 kg. The feet of the four legs are
also equipped with three-dimensional force sensors to detect the magnitude of the force
between the legs and the external environment. The 3D model of the robot MBBOT is
shown in Figure 9a. The prototype of the robot MBBOT is shown in Figure 9b.

  
(a) (b) 

Figure 9. MBBOT robot: (a) 3D model [40]; (b) robot prototype [41].

Researchers from Shanghai Jiao Tong University have designed a disaster relief hexapod
robot, HexbotIV [42–44]. The overall dimension of the robot is about 1.10 m × 0.72 m × 1.00 m.
The robot has a total mass of 268 kg and can provide a load of 50 kg. In addition, to
reduce the impact of the robot during movement, semi-cylindrical rubber cushions are
installed at the end of the feet. The prototype of HexbotIV is shown in Figure 10a. The
three-dimensional drawing of the parallel mechanism leg with an erect posture is shown in
Figure 10b.
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(a) (b) 

Figure 10. HexbotIV robot: (a) prototype [43]; (b) parallel mechanism leg [44].

LS3 is tailored for the Marine Corps to handle cargo, as shown in Figure 11a. It can
bear a payload of approximately 182 kg, carry enough fuel to sustain for 24 h, and cover
approximately 32.2 km. Its feet are semi-cylindrical [45].

    
(a) (b) (c) (d) 

Figure 11. Robots of LS3 and SCalf series: (a) LS3 [45]; (b) SCalf-I Robot [46]; (c) SCalf-II Robot [47];
and (d) SCalf-III Robot [48].

The SCalf-I robot, SCalf-II robot, and SCalf-III robot developed by the research team
of Shandong University are all quadruped hydraulic heavy-duty robots, as shown in
Figure 11b–d, respectively. The payload–total mass ratio can reach 0.5. The feet are
designed as semi-cylindrical shapes [46–48].

Compared with cylindrical feet, the semi-cylindrical feet of heavy-duty legged robots
can effectively reduce the mass of the robot. However, the contact surface area between the
semi-cylindrical feet and the terrain is relatively small for the cylindrical feet. Then, the
stability of the heavy-duty legged robots is slightly worse than that of the cylindrical feet.

Spherical Supporting Foot Configurations

In 2010, the DFKI Robot Innovation Center at the University of Bremen designed a
highly adaptable free-climbing robot (Space Climber) for the steep slopes of lunar craters.
The robot feet are mechanisms similar to eagle claws, as shown in Figure 12a. The feet can
effectively improve the terrain adhesion ability of the detector [49]. In 2012, to overcome
the limited mobility of detectors in unstructured environments, such as obstacles, normal
steep slopes, and steep slopes of fine-grained soil, the Space Climber feet were changed to
spherical shapes [50]. The updated robot feet are shown in Figure 12b. The spherical feet
can withstand collisions with hard surfaces or obstacles and provide an increased contact
area when sinking into the soil. The spherical feet have the natural advantage of having
the same tangential performance in different directions of motion.
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Figure 12. Space Climber: (a) original robot [49]; (b) updated robot [50].

TITAN XIII is a quadruped robot, as shown in Figure 13a. Each leg has three degrees
of freedom (DOFs). The body mass is 5.65 kg, and the load is 5.0 kg. Its feet shapes are
spherical. It can move on rough and irregular terrains by selecting suitable footholds and
changing the robot’s posture [51]. Ohtsuka S invented terrain-adaptive feet for the TITAN
XIII robot. Its feet can passively adapt to rough terrain, including bumps and tilts, while
ensuring a stable foothold [52].

  
(a) (b) 

Figure 13. Robots of TITAN-XIII and SCOUT II: (a) TITAN-XIII [51]; (b) SCOUT II [53].

The SCOUT II robot [53] is a quadruped robot that can achieve a jumping gait, as
shown in Figure 13b. Each leg has two degrees of freedom: a driving hip joint and a linear
spring. The stable mobile control strategy can be achieved when it walks at a maximum
speed of 0.9 m/s to 1.2 m/s. The dynamically stable legged robots lay greater emphasis on
their terrain adaptability, making their movement more stable. The feet of the robot adopt
hemispherical shapes to achieve the point contact between the foot and the terrain, which
improves the stability of the robot in different terrains.

Based on the above statement, it can be very easy to come to a conclusion. The
advantages of the spherical foot are that the mechanical structure design is simple, the
tangential forces in all directions are equal, and it is very suitable for walking in soft soil or
deserts. Meanwhile, the disadvantage of the spherical foot is that the contact between the
foot and the terrain is point contact, with a relatively small contact area and low terrain
friction, which is not conducive to the robot’s smooth walking. When the velocity angle of
the foot tip coincides with the attitude angle, the stress distribution models of the spherical
foot can be obtained, as shown in Equations (2) and (3). Then

FN =
(

Kδm(t) + Cδn(t)
.
δ

p
(t)
)

sin η (2)
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FT =

{
μFN

−
(

Kδm(t) + Cδn(t)
.
δ

p
(t)
)

cos η ≥ μFN
(3a)

FT =

⎧⎨⎩ −
(

Kδm(t) + Cδn(t)
.
δ

p
(t)
)

cos η

−
(

Kδm(t) + Cδn(t)
.
δ

p
(t)
)

cos η < μFN
(3b)

where K is the spring coefficient, C is the damping coefficient, μ is the friction coefficient, m
and q are the parameters to be identified, and n is the model parameter.

Hemispherical Supporting Foot Configurations

The SILO6 robot [54] is a hexapod robot system used for humanitarian demining
missions. According to the static stability design, a triangular gait is adopted to achieve
the maximum speed of the robot. The foot is fixed to the hemisphere of the ankle, with a
simple structure and good performance on the hard terrain. But increasing the radius of
the ball on the loose terrain will reduce the sinking amount. At the same time, on hard
terrain, the radius of the ball is too large to make it attempt to rotate, changing the positions
of the foot’s support. The SILO-6 robot is shown in Figure 14a.

 
(a) (b) 

Figure 14. Robots of SILO-6 and SDU Hex: (a) SILO-6 [54]; (b) SDU Hex [55].

The SDU Hex electric hexapod robot [55] designed by researchers from Shandong
University in 2021 can achieve leg arm reuse and strong operation. The structure of the
entire SDU Hex robot is shown in Figure 14b. The feet adopt hemispherical structures.
And the feet are equipped with a high adhesion damping rubber pattern and air chamber,
reducing the impact force during the interaction between the foot and the terrain.

The hemispherical feet and spherical feet have the same contact methods with the
terrain, both of which are point contact. Therefore, the mechanical models of the two above
can be generalized and will not be explained in detail here.

Square Supporting Foot Configurations

The Hydraulic Landmaster robot is a large hexapod robot that works on steep forest
terrain, as shown in Figure 15. The weight of the robot is 3950 kg, with a rated load
of 1000 kg. The size is 3.6 m × 2.3 m × 2.6 m, with a maximum height of 4.5 m, and
a maximum height of 1.7 m when passing through obstacles. Electric Landmaster 3 is
the previous generation of Hydraulic Landmaster. The electric Landmaster 3 robot has a
weight of 82 kg and a rated load of 30 kg. Both robots have the same model structure with
principle, and both have significant heavy-duty capacity. Square feet are used at the feet of
robots [1].
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Figure 15. Hydraulic Landmaster robot [1].

The Petman robot [56] developed in the United States is a humanoid bipedal robot,
as shown in Figure 16a. The maximum speed can reach 7.2 km/h. The robot’s use of Big
Dog’s leg structure and electronic equipment enables faster design and testing experiments.
When pushing moderately from the side while walking, it can restore its balance. Square
feet are used at the feet. Another humanoid bipedal robot Altas [57] also adopts square
foot structures, as shown in Figure 16b.

 
(a) (b) 

Figure 16. Robots of Petman and Altas: (a) Petman [56]; (b) Altas [57].

The advantages of square configuration are that the design is relatively simple, and no
spiral structure design is required. The disadvantage is that it cannot adapt to more complex
terrain. The rectangular foot–terrain mechanics models can be obtained by multiplying the
average stress distribution with the plantar area. The rectangular foot–terrain mechanics
models can be given in Equation (4). Then{

FN(t) =
(
kc · a + kϕ · a · b

)
δn

FT(t) = a · b · c + FN(t) · tan ϕ
(4)

where a, b, and c are the dimensions of the long side, wide side, and high side of the
rectangular foot, respectively.

Special Supporting Foot Configurations

Charlie is a quadruped robot designed based on primitive humans. The feet of the
front legs adopt curved structures [58,59]. The quadruped forward movement of the robot
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can be achieved. The Charlie robot can walk upright with both feet. The quadruped and
bipedal walking postures are, respectively, shown in Figure 17a,b.

  
(a) (b) 

Figure 17. Charlie robot [58]: (a) quadruped walking posture; (b) bipedal walking posture.

In the 1960s, General Electric designed a quadruped walking truck for the US Army,
as shown in Figure 18. The shape of the foot is curved [60]. The advantages of curved feet
are that they have simpler structures and a lighter weight. Their disadvantage is that they
cannot carry a larger mass.

 
Figure 18. Walking truck [1].

Hirose proposed a passive terrain adaptive foot mechanism [61]. A sensor mechanism
installed on the ankle and three fixed claws at the bottom of the foot are included. The
effectiveness of these new mechanisms was verified through the TITAN VII robot walking
experiment. The TITAN VII robot is shown in Figure 19.

 
Figure 19. TITAN VII robot.
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Researchers are inspired by the large surface area to volume ratio of X-shaped con-
crete piles in geotechnical engineering. An X-shaped foot with holes is designed and the
relationship between sinkage and bearing capacity is analyzed. When subjected to an
identical load, the sinkage experienced by an X-shaped foot with holes is less compared to
that of other foot shapes [62,63]. It is beneficial for reducing the sinkage of the robot and
improving walking stability.

Combining sinkage with multi-body dynamics, the characteristics of the circular foot,
X-shaped foot, and improved X-shaped foot were analyzed for their sinkage and walking
stability. It can be obtained that the improved X-shaped foot has the best capability of
increasing the support length and lateral force of the robot. The horizontal cross-sectional
shapes of the three types of feet are shown in Figure 20.

   
(a) (b) (c) 

Figure 20. Horizontal section shapes [63]: (a) circle; (b) X-shaped; (c) improved X-shaped.

Chopra [64] proposed a foot design that can passively change shape and actively
change stiffness to improve the robot’s motion on the granular media. The foot is shown in
Figure 21a. It has been proven that using a foot design with wrinkles is soft before falling
and rigid during shearing. It can reduce foot acceleration at joints, traction force, and
penetration depth, and obtain a greater resistance coefficient when the foot is at a certain
displacement. The contact process between the foot and the terrain is shown in Figure 21b.

 
(a) (b) 

Figure 21. Passive and active shape-changing foot [64]: (a) foot to terrain contact; (b) contact process.

The advantages of robot feet with passive adaptive joints are their simple mechanical
structures, simple mobility control policies, and the ability to adjust relative positions and
angles according to changes in the environment. Robot feet with passive adaptive joints
can be divided into cylindrical feet, semi-cylindrical feet, spherical feet, hemispherical feet,
square feet, and special feet. The most widely used configuration for the supporting feet
of heavy-duty legged robots is cylindrical. The performance indicators of the released
heavy-duty legged robots with passive adaptive joints are shown in Table 1. The different
foot configurations with the passive adaptive joints of heavy-duty legged robots are shown
in Figure 22. Due to the reasons of technical confidentiality and copyright, the specific
weight-bearing quality of heavy-duty robots that can be consulted is limited.
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Table 1. Published performance indicators for heavy-duty legged robots with passive adaptive joints.

Robot
Length × Width ×

Height (m3)
Legs Foot Shape

Driving
Method

Mass (kg)
Payload

(kg)
References

TITAN XI 5.0 × 4.8 × 3.0 4 Cylindrical Hydraulic 6800 5200 [16]
TITAN IX 10 × 16 × 5.5 4 Cylindrical Electric 170 - [17]
TITAN III - 4 Cylindrical - 80 - [18]

COMET-IV 2.8 × 3.3 × 2.5 6 Cylindrical Hydraulic 2120 424 [19]
Dante II 3.7 × 2.3 × 3.7 8 Cylindrical Electric 770 130 [20]
NMIIIA 1.5 × 0.5 × 1 6 Cylindrical Electric 750 80 [1]
SILO 4 0.31 × 0.31 × 0.3 4 Cylindrical Electric 30 - [21]

ElSpider 1.9 × 1.9 × 1.0 6 Cylindrical Electric 300 155 [22,23]
Octopus Robot 1.5 × 1.5 × 1 6 Cylindrical Hydraulic 200 200 [24]
Hexapod Robot - 6 Cylindrical Hydraulic 3000 - [30–32]
Legged Robot - 6 Cylindrical Electric 4200 - [33,34]

Big Dog 1.1 × 0.3 × 1 4 Semi-cylindrical Hydraulic 109 50 [25,26]
MBBOT 0.85 (Height) 4 Semi-cylindrical Hydraulic 140 - [40,41]

HexbotIV 1.0 × 0.72 ×1 4 Semi-cylindrical Hydraulic 268 50 [43,44]
LS3 1.7 (Height) 4 Semi-cylindrical Hydraulic 590 182 [45]

SCalf-I 1.0 × 0.4 × 0.68 4 Semi-cylindrical Hydraulic 65 80 [46]

SCalf-II 1.1 × 0.45
(Length × Width) 4 Semi-cylindrical Hydraulic 130 140 [47]

SCalf-III 1.4 × 0.75
(Length × Width) 4 Semi-cylindrical Hydraulic 200 200 [48]

Space Climber1 8.2 × 10 × 22 6 Special Electric 185 - [49]
Space Climber2 8.5 × 10 × 22 6 Spherical Electric 23 8 [50]

TITAN XIII 2.134 × 5.584 × 3.4 4 Spherical Electric 5.65 5.0 [51,52]
SCOUT II 0.55 × 0.48 × 0.27 4 Spherical Electric 20.86 - [53]

SILO 6 0.88 × 0.45 × 0.26 6 Hemispherical Electric 44.34 - [54]

SDU Hex 0.98 × 0.4 × 0.1 to
0.6 6 Hemispherical Electric 35 - [55]

Landmaster 3.6 × 2.3 × 2.6 6 Square Hydraulic 3950 1000 [1]
Landmaster 3 1.4 × 1.3 × 1.0 6 Square Electric 82 30 [1]

Petman 1.5 (Height) 2 Square Hydraulic 80 - [56]
Altas 1.8 (Height) 2 Square Electric 150 - [57]

Charlie 8 × 4.4 × 5.4 4 Special Electric 21.5 - [58,59]
Walking Truck 4 × 3 × 3.3 4 Special Hydraulic 1300 - [60]

TITAN VII - 4 Special - - - [61]

Figure 22. Foot configurations with passive adaptive joints for different heavy-duty legged robots.
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In terms of configuration, the cylindrical shape is symmetrical in all directions, which
can make the normal and the tangential forces on the robot’s supporting feet more uniform.
The robot’s foot slip is effectively suppressed. It plays an irreplaceable role in the movement
of heavy-duty legged robots on unstructured terrain. The cylindrical foot has a larger
contact area with the terrain, which is compared to the smaller contact area of other feet.
For the heavy-duty legged robots, increasing the area between feet and terrain in the
process of operation can reduce the pressure on the foot per unit area and improve the
support effect during the load-bearing period. However, the drawbacks of the robot feet
with passive adaptive joints are also obvious. The structures cannot fully adapt to the
changing terrain environment and actively control the foot posture.

2.1.2. Feet with Active Driving Joints

The mechanisms of feet with active driving joints in heavy-duty legged robots are
generally more complex. Drive devices need to be installed to make them more difficult to
control movement and more cost-effective compared to feet with passive adaptive joints.
They have not been widely applied in current research on heavy-duty legged robots.

In 1996, Hong [65] from the South Korean University of Science and Technology was
inspired by the structure of umbrellas and designed a point contact underactuated robotic
foot. The oil in and out of the hydraulic cylinder in the middle of the foot will change the
opening and closing state of the toes. The point contact between the feet and the terrain
enhances the adaptability of the robot’s feet to the rough terrain. This type of foot is applied
by researchers to a quadruped robot, as shown in Figure 23a.

    
(a) (b) (c) (d) 

Figure 23. Some feet with active driving joints: (a) quadruped legged walking robot Centaur [65];
(b) diagram of foot mechanism with toe joints [66]; (c) robot foot with active driving unit [67];
(d) Roboclimber robot performs climbing experiments outdoors [68].

In 2007, Yamamoto, Sugihara, Nakamura, and others from the University of Tokyo in
Japan designed humanoid robot feet. The robot feet are installed on the UT-μ2 robot, as
shown in Figure 23b. The characteristic of the robot’s feet is that the toe mechanism does
not use the commonly used hinge type rotating pair, but instead uses a parallel four-link
mechanism. Through analysis, it is shown that the combined moment of force at the joints
of the parallel four-link-type toe mechanism is smaller than that of the hinge-type toe joint
during most motion periods [66].

In 2009, Borovac and Slavnic from the University of Novi Sad used motion analysis of
human feet to design a humanoid robot foot. The type of robot foot not only has passive toe
joints but also active toe joints, making humanoid robots able to walk more smoothly and
improving their walking ability [67]. The robot foot with an active driving unit is shown in
Figure 23c.

Nabulsi from the Polytechnic University of Madrid designed a mountain climbing
robot called Roboclimber, as shown in Figure 23d. It adds hydraulic cylinders above the
feet of the robot. Adjusting the foot–terrain force is carried out by changing the oil inlet
and outlet quantities of the hydraulic cylinders. The friction force between the robot’s feet
and the terrain is adjusted. The mechanical performance of the foot–terrain contact surface
is improved [68].
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In 2010, Collins and Kuo from the University of Delft in the Netherlands designed
a robotic foot that could utilize energy more effectively during walking. Because people
usually waste a lot of beneficial energy when walking, they developed a micro-driven
controlled humanoid foot [69]. Being able to more fully utilize the energy lost in human
legs and ankle joints during walking, the energy utilization rate has increased by 23%
compared to normal walking. The physical image of the robot foot is shown in Figure 24a.
The 3D structure diagram of the robot foot is shown in Figure 24b.

 
(a) (b) 

Figure 24. Foot with energy recovery [69]: (a) physical image; (b) 3D structure diagram of foot.

Compared with robot feet with passive adaptive joints, robot feet with active adaptive
joints have certain advantages. They can actively adjust the configurations of their feet
based on the shape of the terrain, thereby increasing the contact area between the feet and
the terrain. When subjected to normal force from the vertical direction and tangential force
from the horizontal direction, adjusting the feet to reach the positions where the force is
most evenly applied improves the stability of the robot. Their significant drawbacks are a
more complex structural design and high control difficulty compared to robot feet with
passive adaptive joints. At present, there is little research on robot feet with active adaptive
joints in heavy-duty legged robots.

2.2. Plantar Patterns of Supporting Foot of Legged Robots

The legged robots mainly rely on the friction force between their feet and the terrain
when walking. When the friction force is high, the sliding phenomenon of the robot’s feet
will be reduced. Designing and installing some structures on the bottom of the robot’s
feet is carried out to improve their adhesion to the terrain. In current research, it has
been found that the research on the foot patterns of heavy-duty legged robots is not yet
in-depth enough.

Song [70] from the Harbin Institute of Technology conducted an analysis of the equiva-
lent adhesion coefficient of typical foot patterns. The model of robot foot–terrain interaction
attachment has been established. The equivalent adhesion coefficient of different foot
configurations (flat foot, nail foot, single-baffle foot, and multi-baffle foot) can be calculated.
The different feet used for testing in the experiment are shown in Figure 25. The higher the
coefficient of adhesion, the better the adhesion characteristics of the robot. The conclusion
is that the multi-baffle foot has the best adhesion performance, followed by the single-baffle
foot, nail foot, and flat foot.

Zou [71] from the Dalian University of Technology designed a new plantar pattern.
The middle part adopts horizontal stripes perpendicular to the robot’s forward direction,
while the remaining parts use 45◦ diagonal stripes to enhance the anti-slip ability of the
foot. The design of the plantar pattern structure is to first establish a simulation model for
the terrain action and an evaluation method for adhesion performance. On that basis, the
plantar adhesion performance is the optimization objective, and the structural parameters
of the plantar pattern are the optimization variables. The response surface method is used
to optimize the design of the foot pattern. Simulation and experimental verification are
conducted. Compared to the reference offroad tire design, the adhesion coefficient of the
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plantar pattern is increased by 7.41%. The optimized plantar pattern is shown in Figure 26a.
The original plantar pattern is shown in Figure 26b.

   
(a) (b) (c) (d) 

Figure 25. Some different feet [70]: (a) flat foot; (b) nail foot; (c) single-baffle foot; and (d) multi-baffle foot.

 
(a) (b) 

Figure 26. Comparison of plantar pattern shapes [71]: (a) optimized plantar pattern; (b) original
plantar pattern.

Li [72] from the Dalian University of Technology designed the rubber feet of the
heavy-duty robot. The plantar patterns of the feet adopt a mixed pattern design, with a
crisscrossing pattern in the middle. The offroad patterns with wider grooves are evenly
arranged around at an angle of 15◦. The rubber feet can be designed with existing vehicle
tire patterns as the research background. Considering the combination of the plantar
patterns and the feet, it is equipped with patterned blocks, patterned grooves, and base
glue. The calculation of the adhesion and climbing angle of the plantar patterns has also
been carried out. Li [73–75] conducted in-depth research on the effects of plantar pattern
depth, groove width, and pattern direction on the friction coefficient. The results show that
on the wet terrain, the deeper the pattern, the higher the friction coefficient. Wide patterned
grooves have a higher coefficient of friction. The friction coefficients of horizontal and
45◦ patterns are relatively high. Their anti-slip performance is good. The different groove
designs of the plantar patterns are shown in Figure 27a–c.

   
(a) (b) (c) 

Figure 27. Groove designs of plantar patterns [74]: (a) groove orientation 0◦; (b) groove orientation
45◦; and (c) groove orientation 90◦.
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The heavy-duty legged robot relies on the reaction forces provided by the terrain to
move. The foot serves as the only interface for direct contact with the terrain, which is a
key component that ensures the excellent adaptability of the heavy-duty legged robots to
unstructured terrain environments.

3. Dynamics Analysis of Robot

The robot foot–terrain interaction mechanics is a branch of contact mechanics. Study-
ing the interaction process between the machinery and working terrain is of great signifi-
cance when studying the design of foot mechanisms and the kinematic simulation of robot
bodies. An accurate foot–terrain mechanics model is the basic condition for designing
anti-sinkage, high-traction, and lightweight feet. At the same time, it can also optimize the
path planning and motion control of the robots, thereby improving the terrain adaptability
of the heavy-duty legged robots.

The current research on the terrain mechanics of wheeled robots has been very exten-
sive. There is relatively little research on the terrain mechanics of legged robots [76,77].
The current research on the foot–terrain mechanical interactions of the legged robots will
draw on the existing wheel–terrain mechanical models of the wheeled robots. Zhuang [78]
believes that legged robots can flexibly walk on rough and uneven surfaces, but due to
the presence of multiple driving joints, the power consumption of their mobile systems
is often high. Therefore, studying the foot–terrain interaction mechanics of heavy-duty
legged robots can also provide a reference for low-power research on robots.

The legged robots have the characteristics of discontinuous motion, large foot impact,
and multiple degrees of control freedom. Each walk of the robot is equivalent to a collision
between feet and terrain. The foot–terrain interaction models are used to analyze the
relationship between terrain characteristic parameters and foot parameters of normal and
tangential forces. In addition to the force from the normal direction, it is also subjected to
tangential force including the horizontal direction. The normal force acting on a heavy-
duty legged robot during movement is much greater than the tangential force, Liu [79]
conducted a static analysis of the feet of an electrically driven heavy-duty hexapod robot
under a tripod gait. A trend chart of the changes in the normal force of the feet is obtained.
The walking method that can achieve the most average distribution of each foot force
is determined.

During the walking process of the legged robot, the contact between the foot and
the terrain not only exhibits normal relative motion but also tangential relative motion. It
generates tangential relative motion and tangential friction. Taking into account both nor-
mal relative motion and tangential relative motion, analyzing the foot–terrain interactions
generated by these two aspects is beneficial for further precise motion control and stable
gait planning of the legged robots.

3.1. Models of Pressure–Sinkage for Mobile Robot

Regarding the study of terrain mechanics, the study of wheel–earth interaction me-
chanics started early and has been very extensive. The use of the wheel–terrain interactions
of the wheeled robots as the basis for the study of foot–terrain mechanics of the legged
robots has been recognized. When pressure continuously acts on the soil below through
the contact surface, the part of the soil will diffuse towards the soil around the contact sur-
face. When a compacted area is fully formed, the movement of surrounding soil particles
becomes stable. The pressure–sinkage model is a representation of the pressure–sinkage
relationship. For the convenience of elaboration, it is assumed that the depth of soil sinkage
is uniform.
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3.1.1. Models for Pressure–Sinkage at Zero Slip Conditions
A Theoretical Exploration of the Wheeled Robots

In 1913, Bernstein proposed the relationship between the pressure applied to the soil
and the sinkage after conducting relevant experiments on the relationship between pressure
and sinkage [80,81]. The updated model is shown in Equation (5). Then

p = kzn (5)

where n is the model parameter, and n > 0.
In the mid-19th century, Bekker conducted specialized research on the plasticity of soil

subsidence and driving resistance [82–84] In classical soil mechanics, when considering the
Bernstein model, the sinkage modulus k is bifurcated into two distinct components. One
part represents the influence of the cohesion of the soil itself, while the other part represents
the influence of the internal shear angle. The shear angle mentioned here is actually the
friction angle. The Bekker model also considers the geometric shape of the contact surface.
The Bekker model played an irreplaceable role in evaluating the motion performance of the
wheeled robots, the tracked robots, and the legged robots [85]. The Bekker model is shown
in Equation (6). Then

p =

(
kc

b
+ kφ

)
zn (6)

where b is the smaller dimension of the contact patch. kc is a sinkage modulus influenced
by soil cohesion. kΦ is a sinkage modulus influenced by the soil friction angle.

Reece introduced two distinct pressure–sinkage models, each tailored to specific soil
conditions. The first model, as shown in Equation (7), features model parameters whose
dimensions remain constant regardless of the sinkage index, which stands in contrast to
the Bekker model. On the other hand, the second equation, as shown in Equation (8),
employs dimensionless model parameters and is primarily designed for highly compacted
soil [86]. Reece’s second model is particularly suited for very dense soil, showcasing its
versatility. Then

p = (k1 + k2b)(z/b)n (7)

Then
p =

(
ckc + γkφb

)
(z/b)n (8)

where k1 and k2 are model parameters. c is the soil stickiness, and γ is the unit weight of
the soil.

Notably, the Reece model proves highly effective for wheeled robots navigating fric-
tionless clay and firm soil with minimal sinkage. It represents a substantial enhancement
over the Bekker model. However, it is worth noting that the Reece model has not undergone
extensive testing in softer clay soils, leaving room for further evaluation and refinement in
these specific conditions.

Experimental curves showing pressure and sinkage are used to define the relationship
between pressure and sinkage in soil. A semi-empirical hyperbolic law is established by
Kacigin and Guskovt. By analyzing the compressive strength of the soil, two constants
that can be utilized are proposed; they are the bearing capacity p0 and the soil compression
coefficient k. The relationship between pressure and sinkage can be obtained, as shown in
Equation (9). Then

p = p0
1 − exp(−2kz/p0)

1 + exp(−2kz/p0)
(9)

where p0 is the bearing capacity of the soil.
Gottenland and Bonoit [87] selected three standard soils: a sand type is used for soils

with frictional properties, a silt type for soils with cohesion, and a silty sand type for soils
exhibiting both cohesive and frictional characteristics. A pressure–sinkage model N2M
was proposed for the interaction between circular contact surfaces and soil. The N2M
model is shown in Equation (10). It considers the mechanical behavior of the soil. Small
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vertical sinkage is similar to elastic behavior. For large sinkage, they are similar to plastic
behavior. The initial linear function describes the linear relationship of sinkage pressure
within the elastic and plastic areas of the sinkage pressure diagram. The subsequent
composite function delineates the shift from the elastic to the plastic region. In the N2M
model, distinct asymptotes in both the elastic and plastic sections differentiate the soil’s
elastic and plastic properties. The sinkage equipment for experimental equipment is shown
in Figure 28. Then

p =

(
Cm

Am +
sm

A1−m z
)(

1 − exp
(
− s0

Cm

z
A1−m

))
(10)

where A is the diameter of the contact surface, Cm, and s0, sm, and m are model parameters.

Figure 28. Sinkage equipment for experimental equipment [87].

The sinkage index N serves as a variable to represent the impact of terrain characteris-
tics and various other factors. Ding formulated a model capable of mirroring the impact
of normal load, the size of the plate or transmission, and slip on the relationship between
pressure and sinkage [88]. The plate sinkage experiment is shown in Figure 29a. The
pressure–sinkage relationship is shown in Figure 29b. The general form of the model that
takes into account the influencing factors is shown in Equation (11). Then

p = kSzλN (11)

where kS is the stiffness modulus of the terrain, which plays a leading role in determining
the load-bearing performance of the terrain, in Pa/m. λN is a dimensionless function that
reflects other key factors.

  
(a) (b) 
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Figure 29. Sinkage experiment and pressure–sinkage relationship [88]: (a) plate sinkage experiment;
(b) pressure–sinkage relationship.
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A Theoretical Exploration of the Wheel-Legged Composite Robots

Hunt and Crossley proposed the Hunt–Crossley model. It describes the relationship
between the equivalent stiffness and damping of the contact between the object and the
terrain. The physical characteristics and the boundary conditions are fully revealed during
the contact process [89]. The Hunt–Crossley model was applied by NASA to the study
of the lunar hexapod robot ATHELETE. The wheels are modeled as three-dimensional
springs to calculate reaction force and deformations [90]. The research results indicate that
the model can accurately predict the sinking phenomenon of the robot and has sufficient
accuracy for gait planning and execution. Future work can further improve the model to
enhance prediction accuracy and apply it to more types of robots. NASA’s ATHLETE robot
is shown in Figure 30a. The reaction force and deformation are shown in Figure 30b. The
Hunt–Crossley model is shown in Equation (12). Then

FN = kNδn1 + CN
.
δ

m
δn2

.
δ ≥ 0 (12)

where δ is the sum of foot and terrain deformations. CN is the damping coefficient. n1 and
n2 are the indicators of the stiffness terms. m is the exponent of the damping term, which
can be set to 0 (the linear spring damping model) or n1 (the simplified Hunt–Crossley
model). kN is the equivalent stiffness coefficient.

  
(a) (b) 
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Figure 30. NASA’s ATHLETE robot [90]: (a) outdoor experiment; (b) reaction force and deformation.

Then, the equivalent stiffness kN can be obtained by Equation (13). Then

kN =
kFNkTN

kFN + kTN
(13)

A Theoretical Exploration of the Legged Robots

Youssef and Ali conducted comprehensive research on sandy soil and clay by inte-
grating the bearing capacity model introduced by Terzaghi and Housel with the pressure–
sinkage models of Bekker and Reece [91]. Considering the influence of the size and shape
of the contact object, different parameters are provided for the shape of the contact surface,
such as circular, square, rectangular, and elliptical. The geometric parameters of the flat
plate are shown in Table 2. Through experimental verification, a new pressure–sinkage
model is proposed, as shown in Equation (14). Then

p = (k1 + αbk2)(β)n(z/b)n (14)

where k1 and k2 are the soil shear strength values. α and β are dimensionless geometric constants.
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Table 2. Geometric parameters of the flat plate.

Plate Shape β

Circular 4
Square 4

Rectangular 2(a + b)/a

Elliptical
{

2(a + b)/a, Max

4
√

1
2 (a2 + b2)/a, Min

Han from Jilin University designed and manufactured four typical structures of feet,
namely hemispherical feet, semi-cylindrical feet, rectangular feet, and circular feet. Research
has been conducted on how the size, shape, and density of quartz sand particles affect the
matrix’s physical characteristics and the mechanical performance of foot penetration. On
the three types of quartz sand, the intrusion resistance and pressure of the hemispherical
feet are lower than those of the other three mechanical feet. It was found that as the particle
size of quartz sand increases, the invasion resistance of the mechanical foot first increases
and then decreases. The revised model has been obtained [92]. The corrected integral
equations are shown in Table 3. The mechanical feet and intrusion testing equipment are
shown in Figure 31.

Table 3. Corrected integral equations.

Different Feet Pressure–Sinkage Model

Foot with variable cross-sectional area
{

F = K′ × Zn+b, where K′ = a × K, Z ≤ 0.035
F = K′′ × Zn, where K′′ = K × A, Z > 0.035

Foot with constant cross-sectional area F = K′′ × Zn, whereK′′ = K × A

Note: K′ (MPa·m2−b−n) and K′′ (MPa·m2−n) are both revised intrusion coefficients.

Figure 31. Mechanical feet and intrusion testing equipment [92].

Furthermore, Ding posited that in the normal direction, the interaction force typically
resembles the force exerted on a spring and damper located at the foot. The spring
damping model shows the interaction between the robot’s foot and the terrain in the
normal direction [93]. The foot–terrain interaction in the normal direction is shown in
Figure 32. The mathematical model of spring damping can be shown in Equation (15). Then

FN = FFN = FTN − mFg + mF
..
δT (15)

where FTN is the normal force exerted by the terrain on the foot. mF is the mass of the foot.
δT and δF represent the deformation of the terrain and feet, and δ is the sum of them.
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Figure 32. Foot–terrain interaction in normal direction [94].

If the damping is ignored and the spring is linear, the mathematical model of the
normal force can be shown in Equation (16). Then

FN = kFNδF = kTNδT (16)

where kFN is the normal stiffness coefficient of the foot. kTN is the normal stiffness coefficient
of the terrain.

When δ = δF + δT = FN/kFN + FN/kTN, the equivalent equation for the mechanics of
foot–terrain contact can be rewritten as follows:

FN =
δ

1/kFN + 1/kTN
(17)

When a legged robot is in motion, the normal load on the foot is not constant. During
the process of contact between the foot and the terrain, the deformation of the terrain and
the speed of the foot are also in a state of change. Gao believes that during the foot–terrain
interaction, the foot tip may shift multiple times and come into contact with the terrain
again, including before contact, contact, departure, and recontact [94]. The first contact
process can be represented by the Hunt–Crossley model, while the second contact process
can be represented by an improved model. The improved model of normal force can be
obtained and shown in Equation (18). Ding and Gao’s research lays the foundation for
improving the terrain stability of the heavy-duty hexapod robot ELSpider. The outdoor
experiment of the robot on the interaction between the robot foot and the terrain is shown
in Figure 33. Then {

FN = k′N
(
δ − δ

)n1 + C′
N

.
δ

m(
δ − δ

)n2 δ > δ

0 δ ≤ δ
(18)

 

Figure 33. Outdoor experiment on interaction between robot foot and terrain [94].

In light of the static force’s continuity, an additional limitation is presented in Equation (19).
Then

kNδmax
n1 = kN′

(
δmax − δ

)n1 (19)

225



Appl. Sci. 2024, 14, 6541

However, considering the dynamic parameters of the robot’s foot and the ultimate
bearing capacity of the terrain, Yang [95] proposed a dynamic bearing capacity model. The
model serves as a crucial indicator for determining the normal force boundary conditions
essential for the interaction between the foot and the soft terrain. The dynamic bearing
capacity model is shown in Equation (20). Then

FN =
n

∑
i=1

σ′
mi Ai cos αi (20)

where σ′
mi is the revised dynamic bearing capacity. A is the area of the foot.

The zero slip pressure–sinkage models applied to the wheeled robots, the wheel-
legged robots, and the legged robots are summarized. The zero slip pressure–sinkage
models provided in the literature are shown in Table 4.

Table 4. Zero slip pressure–sinkage models provided in the literature.

Model Name Model Parameters Equation Number References

Bernstein k, n (5) [80,81]
Bekker kc, kΦ, b, n (6) [82–84]
Reece kc, kΦ, k1, k2, b, n, c, γ (7), (8) [86]
N2M Cm, s0, sm (10) [87]
Ding kS, λN (11) [88]

Hunt–Crossley δ, n1, n2, m, kN, kFN, kTN (12), (13) [89]
Youssef–Ali k1, k2, b, n, α, β (14) [91]

Gao KN
′, CN

′, n1, n2, m (17) [93]

3.1.2. Models for Pressure–Sinkage at Non-Zero Slip Conditions

When the robot’s foot slides on the terrain, a tangential force perpendicular to the nor-
mal pressure direction is generated. The tangential force can lead to tangential deformation,
causing lateral soil loss and resulting in slip sinkage. Therefore, adding very little cohesive
moist sandy soil to hard soil can also reduce slip sinkage. Reece discovered that the sinkage
occurring when the robot is functioning on soil with non-zero slip can be described as a
combination of static sinkage and sliding sinkage. The soil deformation model is shown in
Equation (21). Then

z = zo + zj (21)

where zo represents static sinkage, and zj represents dynamic sinkage.
The model for predicting soil sliding was proposed by Reece [86]. The Reece prediction

model is shown in Equation (22). Then

z = zo + hgri/(1 − i) (22)

where hgr is the grouser height, and i is the slip ratio.
A new non-zero slip model was studied by Vasilev. This model can be used to

represent the relationship between pressure and settlement [96]. The Vasilev model is
shown in Equation (23). Then

z = zo + iHp (23)

where Hp is the propagation depth of soil deformation that can only be evaluated
through experiments.

Yeomans [97] considered the phenomenon of foot sinkage in the normal direction due
to rotation. Through experimental verification of the hemispherical foot of the planetary
exploration robot CREX, a semi-empirical formula for sinkage, rotation direction angle, and
normal stress was established. The outdoor experiment of CREX and the rotating sinkage
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experimental device are shown in Figure 34. The lateral sinkage characteristics can be well
described by Equation (24). Then

hlateral = A(1 − exp(B ∗ slip)) (24)

 
(a) (b) 

Figure 34. CREX robot [97]: (a) outdoor experiment; (b) rotating sinkage experimental device.

The rotational sinkage behavior can be described by Equation (25). Then

Sinkage = K ∗ Stress ∗ footradius2
(

1 − eBθ
)

(25)

Overall, compared to the wheels of wheeled robots, the foot of the legged robot does
not produce a significant rotation angle. Compared with zero slip, the pressure and sinkage
caused by non-zero slip are smaller. When analyzing the normal force of heavy-duty legged
robots, it is generally believed that the slip amount of foot sinkage is relatively small.

3.2. Tangential Force Models

The aim of integrating tangential interaction models is to illustrate that the shear
displacement of the foot on the terrain induces an effect on the tangential plane. In
traditional contact models, models that separately describe tangential forces often consider
normal force and tangential relative motion position as common determining factors [98].
The heavy-duty legged robots generate tangential friction when performing the tangential
relative motion.

In terms of the tangential mechanical models of the foot, the most classic tangential
friction model is the Coulomb model [99,100]. As a static friction theory, the Coulomb
model has a small computational complexity. Its mechanical parameters are easy to identify.
The Coulomb model has been widely used [101,102]. The Coulomb model is shown in
Equation (26). Then

F =

⎧⎨⎩
FC + (FS − FC)e−|v/vS |δS + Fv if v �= 0
Fe if v �= 0 and |Fe| < FS
FSsgn(Fe) otherwise

(26)

The Hunt–Crossley model also describes the action model of tangential force, as shown
in Equation (27). Then

FT(t) = − f × sign(vT)× FN(t)− Ct × vT(t) (27)

In the study of terrain mechanics, the spring damping system has been widely used
in foot–terrain interactions. Liang [103] validated that a simple spring damping system
can explain the characteristics of human walking by establishing models and conducting
experiments. Conventional 3D models segment the deformation of feet or terrain into two
perpendicular directions on a tangential plane, specifically the x and y axes. Significant
errors are generated because the coupling effect of deformation is ignored.
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In order to consider the coupling effect, Ding [93] proposed a new three-dimensional
mechanical model of the foot–terrain interaction in combination with a spring damping
system. The three-dimensional interaction mechanical model on a tangential plane is shown
in Figure 35. The three-dimensional mechanical model of the foot–terrain interaction can
be shown in Equation (28). Then ⎧⎨⎩

Fz = FN
Fx = FT cos βF
Fy = FT sin βF

(28)

F

Fy

Fx
F

z

x

y

k

k

b

b

Figure 35. Three-dimensional interaction mechanical model on tangential plane [93].

The process of tangential interaction can also be seen as a normal interaction. As the
foot slides across the terrain, the tangential force escalates in correspondence with the rising
shear displacement and velocity. The tangential force quickly stabilizes as the shear speed
decreases to a certain value. Contrary to the previous growth process, the tangential force
suddenly drops to zero when the foot moves in the opposite direction.

The force in a specific tangent direction is usually represented by the Coulomb friction
model. If the terrain is relatively hard, the tangential force model uses a modified form.
When the direction of relative motion velocity changes, the friction force remains unchanged
and does not meet the physical boundary conditions of the friction process, resulting in
singular solutions in the simulation. When introducing the hyperbolic tangent function to
establish a foot–terrain tangential force model, the value of th(δ) is infinitely close to 1 or -1
to describe the saturation of tangential friction. The foot–terrain interaction in the tangent
direction is shown in Figure 36. The hyperbolic tangent mathematical model is shown in
Equation (29). Then

th(δ) =
sh(δ)
ch(δ)

=
eδ − e−δ

eδ + e−δ
(29)

SK

K

S

S

S

S
.

S
.

Figure 36. Foot–terrain interaction in the tangent direction [94].

For deformed soil [85], a modified model based on the Janosi equation is proposed; it
can be shown in Equation (30). Then

Fr = −exp(s/K′)− exp(−s/K′)
exp(s/K′) + exp(−s/K′)

μ f FNK′ = 1.5K (30)

where s is the shearing displacement. K is the shear displacement modulus, affected by the
physical characteristics of the feet and terrain. μf is the friction coefficient between hard
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terrain and foot materials. For deformable terrain, μf is related to the characteristics of the
soil and feet.

However, when applying the new three-dimensional mechanical model to practical
simulations, there is a lack of consideration for the damping effect between the feet and
the terrain. The model is unstable when the feet interact dynamically with the terrain.
Consequently, the force of interaction along the tangent direction is altered when the foot
proceeds in a unidirectional movement. The interaction force in the tangent direction is
shown in Equation (31). Then{

Fr = − exp(s/K′)−exp(−s/K′)
exp(s/K′)+exp(−s/K′)μ f FN − cT

.
s
√|s|

0 < s < smax − κ
(31)

where μf is the friction coefficient. cT is the tangential damping coefficient.
The suggested models are developed across three distinct categories: a flexible foot

interacting with rigid terrain, a rigid foot on pliable terrain, and a flexible foot engaging
with deformable terrain. The model proposes different mechanical models based on the
geometric characteristics of different feet, which can accurately characterize the mechanical
conditions of the feet in practical applications. The foot–terrain mechanics model param-
eters are shown in Table 5. An SVM method is proposed that uses two specific tactile
movements of the heavy-duty legged robots to extract physical information features for
effective terrain classification. Through the normal compression and tangential friction
motion of legged robots, the representative interactive data is obtained to characterize
the terrain features [104], which plays an important role in improving the accuracy of the
model.

Table 5. Foot–terrain mechanics model parameters [93].

Foot Shape kTN nTN μ kTT nTT

Flat circular kcπr + kϕπr2 n πr2c/FTN + tan ϕ μFN/2K 1
Flat rectangular kca + kϕab n abc/FTN + tan ϕ μFN/2K 1

Cylindrical
√

2rkc +
√

2rbkϕ (n + 1)/2 √
2rbc/ (2n+1)

√(√
2rkc +

√
2rbkϕ

)
F2n

TN + tan ϕ μFN/2K 1

Spherical πkc + πRkϕ n + 1 πRc/ n+1
√(

πkc + πRkϕ
)

Fn
TN + tan ϕ μFN/2K 1

Yang fully considers the shape characteristics of the contact surface and slip surface
under the assumptions of some classical soil mechanics for the limit-bearing theory. The
normal and the tangential mechanical models of flat foot and sand, horizontal strip foot
and sand, circular and sand, and rectangular flat foot and sand, as well as the interaction
model of curved foot and sand, have been established [105]. It has a positive effect on
calculating the foot mechanics of robots with different shapes. The tangential force models
are shown in Table 6.

Table 6. The tangential force models provided in the literature.

Model Name Model Parameters Equation Number References

Coulomb μ (26) [99,100]
Hunt–Crossley f, Ct (27) [89]

Ding βF (28) [93]
Ding–Janosi s, K′, μf, smax, κ (30), (31) [94]

The terrain mechanics models can establish a close connection between the parameters
in soil mechanics and the foot contact mechanics of the robots. It is convenient to conduct
a mechanical analysis of the foot–terrain interaction of the heavy-duty legged robots.
However, there is still a long way to go in the research of foot–terrain mechanics for
heavy-duty legged robots.
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4. Further Research

The terrain mechanics characteristics are an effective supplement to the geometric
characteristics of terrain. Taking into account the geometric and mechanical characteristics
of the terrain comprehensively is an inevitable way to improve the adaptability of the heavy-
duty legged robots to unstructured environments. There are still some issues that need
further research regarding the mechanical behavior of terrain interaction for heavy-duty
legged robots.

4.1. Configuration Research of Biomimetic Supporting Feet
4.1.1. Application of Bionic Technology in Supporting Feet Design

The common supporting feet of heavy-duty legged robots are feet with passive adap-
tive joints. Although there are currently cylindrical, spherical, rectangular, and other
configurations, there is still a lack of feet that can be used for heavy-duty legged robots
in the vast majority of scenarios. In further research, the feet design of the heavy-duty
legged robots can adopt biomimetic technology. Biomimetic technology can help expand
the application fields of heavy-duty legged robots. The feet of large legged animals in
nature can be adopted, as shown in Figure 37. The characteristics and biomimetic design
elements of the large legged animals’ feet can be shown in Table 7.

(a) (b) (c) (d) 

Figure 37. Large legged animals and their feet: (a) running ostrich; (b) camel walking in desert; (c)
running horse; and (d) walking elephant.

Table 7. Characteristics and biomimetic design elements of large legged animals’ feet.

Feet of Large Legged
Animals

Walking Mode Characteristics Design Elements

Ostrich feet Digitigrade

The didactyl foot structure of ostriches
comprises only the 3rd and 4th toes. The 3rd
toe has a larger contact area with the terrain
than the 4th toe.

(1) A special arch is installed on the 3rd toe.
(2) During walking or jogging, the 4th toe

of an ostrich functions as an auxiliary
element for load distribution, but it does
not make contact with the terrain when
the ostrich is running at high speeds.

Camel feet Plantigrade

When camel feet walk in the sand, they come
into contact with the terrain with a thick finger
pillow (subcutaneous layer), which can play
an elastic buffering effect and have less impact
on the sand.

(1) The imitation camel walking can quickly
expand the grounding area after landing
on foot. The foot forms a concave
grounding shape.

(2) As the load increases, the boundaries
around the foot of the camel like
walking can generate circumferential
adduction, strengthening the sand
fixation effect.

Horse feet Unguligrade

A horse’s hoof usually has a curved shape,
similar to an inverted U-shaped shape. The
weight of a horse is mainly concentrated on
the hoof wall, not the bottom of the hoof. The
bottom of a horse’s hoof is usually flat or
slightly raised.

(1) The biomimetic horse hooves are usually
curved in shape to provide stability.

(2) They have anti-slip characteristics to
provide better traction.

Elephant feet Semiplantigrade

There is a thick fat foot pad beneath the root
bone and metatarsal bone of an elephant’s foot.
During the weight-bearing process, the weight
is distributed across the entire foot pad, giving
the elephant’s feet a stronger
load-bearing structure.

(1) The foot configuration is cylindrical.
(2) The bottom of the foot is equipped with

thick cushioning pads.
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4.1.2. Design and Distribution of Plantar Patterns of Supporting Feet

The plantar patterns of the heavy-duty legged robots also affect the process of foot–
terrain mechanics. Therefore, it is essential to design plantar patterns for heavy-duty legged
robots. The pattern shapes with better anti-slip performance need to be designed. Based
on the previous research, the performance of the multi-baffle foot is good. A biomimetic
foot plantar pattern with multi-directional braking stability is designed. The rubber plantar
pattern can be fixed by bolts in grooves at the same latitude as the flat and spherical robot
feet. The foot plantar pattern cannot undergo significant displacement after installation in
the above way, as shown in Figure 38.

Figure 38. Biomimetic foot plantar pattern.

The direct contact between human feet and terrain is skin tissue, which also contains a
large amount of adipose tissue on the inner side. The rubber foot plantar pattern consists
of the upper, middle, and lower layers. The middle layer adopts a multi-baffle structure of
biomimetic mesh fiber membrane. The rectangular gap in the middle of the baffle is filled
with biomimetic adipose tissue.

4.2. Study of Effective Contact Area between Irregular Foot and Dynamic Deformable Terrain

The existing classical theories of pressure–sinkage do not include actual area parame-
ters, as the area of the tested object in classical mechanical models is considered regular.
Some robots carry patterns on their feet, and for different surfaces, it is not possible to
calculate the actual contact area by substituting the total area of the foot contour into the
model. K is considered as the ratio of the actual touchdown area to the outer contour area.
In the design process of the model, determining the size of the ratio can consider the impact
of the actual contact area on the model. ζ is the terrain coefficient affected by different
mechanical properties. Its value is closest to 1 in muddy terrain, second in soft terrain,
and smallest in hard terrain. The area evaluation mathematical model can be shown in
Equation (32).

Then
K = ζ

S0

S
(32)

where K is the ratio of the actual touchdown area to the outer contour area. ζ is the terrain
coefficient affected by the different mechanical properties, and its value ranges from 0 to 1.
S0 is the actual contact area. S is the outer contour area.

The actual contact area is obtained by capturing images of the foot’s contact with the
terrain using a depth camera. The images are analyzed to measure the actual contact area
by using computer vision techniques. The two sides of the robot’s feet are equipped with
the dividing rules to estimate the depth of sinkage. A depth camera is installed underneath
the robot’s foot to capture images of the foot’s contact area with the terrain. The captured
images undergo preprocessing to remove the noise, enhance the contrast, and improve the
clarity. Image segmentation techniques are employed to separate the foot from the terrain in
the images. In the segmented images, the contact area between the foot and the terrain can
be detected and measured by counting pixels or using image processing libraries. Finally,
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the calibration is performed to relate the pixels in the images to the real-world physical
dimensions based on the camera’s parameters and the robot’s position. The measurement
of the actual contact area between the foot and the terrain is shown in Figure 39.

Figure 39. Measurement of actual contact area between foot and terrain.

4.3. Mechanical Behavior Modeling of Interaction between Supporting Feet and Extreme/
Dynamic Environments
4.3.1. Construction of Nonlinear Tangential Force Mathematical Model

The tangential force models involving the heavy-duty legged robots still lack coeffi-
cients related to the material of the foot. Considering the effects of contact area, terrain, foot
material, included angle, and displacement, a nonlinear mathematical model of tangential
force is obtained, as shown in Equation (33). Then

FT = FT(S0, N1, N2, θ, ϕ, k, j) (33)

where S0 is the actual contact area, N1 is the parameter related to the material of the foot,
N2 is the parameter related to terrain properties, θ is the angle between the foot and the
terrain, ϕ is the friction angle inside the soil, k is the soil shear modulus, and j is the soil
shear displacement.

It is necessary to include material performance parameters of the foot in the foot–
terrain mechanics models. Hardness is the ability of the material to resist scratches and
deformation, usually related to the frictional properties of the terrain. Strength is the
ability of the material to resist fracture or deformation. Robot feet need sufficient strength
to withstand the weight of the robot and external impact forces. The elastic modulus
represents the elastic deformation ability of the material after being subjected to force. For
the foot, an appropriate elastic modulus can provide the elasticity and shock absorption
performance of the foot. Wear resistance refers to the ability of the material to withstand
friction or wear conditions. The friction coefficient represents the friction performance
between the material for robot feet and other surfaces. The robot foot needs an appropriate
coefficient of friction to ensure stable terrain adhesion and movement.

4.3.2. Construction of Resultant Force Mathematical Model

The six-dimension force sensors are typically installed on the feet of the heavy-duty
legged robots. The forces and moments in three directions are measured. When a robot
travels on a slope, the proportion of normal and tangential forces acting on its foot in the
resultant force is different. The difference in proportion is significant at a certain moment.
Therefore, in model design, u is considered as the ratio of tangential force to normal force,
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as shown in Equation (34). A mathematical model for evaluating the resultant force on the
foot is derived, as shown in Equation (35). Then

u = FT/FN (34)

F∑ =

⎧⎨⎩
FN u < 0.1
FT u > 0.9

(FN + tan ϕFT)(1 − exp(−j/k)) 0.1 ≤ u ≤ 0.9
(35)

4.4. Parameterization Research of Soil Characteristics in Extreme/Dynamic Environments

The foot–terrain interaction behavior involves the configuration of feet and the dy-
namic terrain characteristics. In the future, in addition to optimizing the structural design
of the foot, the various indicators of different soils can also be studied. Clarifying the
properties of soil in an unstructured environment will be more conducive to the research
on the mechanical properties of heavy-duty legged robots. The performance parameters of
different soils on Earth are shown in Table 8.

Table 8. Performance parameters of different soils on Earth [106].

Terrain Mechanical
Parameters

Dry Sand Sandy Loam Clayey Soil Snow

n 1.1 0.7 0.5 1.6
c (kPa) 1.0 1.7 4.14 1.0

ϕ (◦) 30.0 29.0 13.0 19.7
kc (kPa/mn−1) 0.9 5.3 13.2 4.4
kΦ (kPa/mn) 1528.4 1515.0 692.15 196.7

K (m) 0.025 0.025 0.01 0.04

The composition of Martian soil includes many complex organic compounds. The
composition and performance vary from location to location [107–109]. Due to the limi-
tations of rocket launch loads, current Mars rovers do not carry dedicated equipment for
measuring the mechanical parameters of Martian soil, making it impossible to accurately
obtain the mechanical parameters of Martian soil in real time. According to the theory of
vehicle terrain mechanics and the mathematical models of the wheel–soil interaction, the
mechanical parameters of the Martian soil under the wheel and around the rover can be
identified. The Viking probe mainly includes two landers: Viking 1 and Viking 2 [110].
Viking 1 landed on the Chryse Planitia (22.48◦ N, 49.97◦ W) on 20 July 1976, and Viking 2
landed on the Utopia Planitia (47.97◦ N, 225.74◦ W) on 3 September 1976. The mechani-
cal performance evaluation of the weathered materials at Viking 1 and Viking 2 landing
sites is shown in Table 9. The captured images are shown in Figure 40. The properties
of the Martian soil are indispensable for studying foot–terrain mechanical models in the
Martian environment.

Table 9. Estimation of mechanical properties of weathered materials at Viking 1 and Viking 2 landing
sites [110].

Property
Viking 1 Viking 2

Sandy Flats Rocky Flats Bonneville and Beta

Bulk density (g/cm3)
1 to 1.6 1.8 1.5 to 1.8Particle size (surface and near surface)

10 to 100 μm (%) 60 30 30
100 to 2000 μm (%) 10 30 30

Angle of internal friction (◦) 20 to 30 40 to 45 40 to 45
Cohesion (kPa) - 0.1 to 1 1
Adhesion (kPa) - 0.001 to 0.01 -
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(a) (b) (c) (d) 

Figure 40. Martian terrains [111]: (a) morning image of Viking 1’s landing site (Chryse Planitia);
(b) image of Viking 1’s landing site (Chryse Planitia) at dusk; (c) morning image of Viking 2’s landing
site (Utopia Planitia); (d) image of Viking 2’s landing site (Utopia Planitia) at dusk.

On the surface of the moon, due to the impact of meteorites and micro-meteorites,
continuous bombardment by cosmic rays, solar wind, and changes in temperature differ-
ences between day and night, the lunar rocks undergo thermal expansion, contraction, and
fragmentation, resulting in the formation of lunar soil with an average thickness of approx-
imately 6–10 m. In addition, the lunar environment, which is completely different from
that on Earth, such as anhydrous and biotic environments, low gravity, and almost zero
atmospheric pressure, also results in significant differences in the physical and mechanical
properties of lunar soil and Earth’s soil [112].

Currently, the analysis of various physical parameters and mechanical properties
of lunar soil mainly relies on two methods: in situ return and in situ detection. In situ
detection is mainly achieved using uncrewed detection equipment. Many scholars aim
to identify the mechanical parameters of lunar soil by studying the interaction between
planetary detection wheels and sampling robotic arms with lunar soil. The mechanical
parameters of lunar soil published by Lunar Sourcebook have been widely recognized [113],
as shown in Table 10. The soil density is mainly obtained from density tests of samples
retrieved from previous Apollo missions (US lunar landing program). The density of lunar
soil is the accumulated mass of granular materials per unit volume in their natural state.
The monthly soil density ranges of Apollo 11, 12, 14, 15, and 16, and Luna 16 and 20 are
shown in Table 11. Other detailed physical and mechanical properties of lunar soil can be
found in the literature [114].

Table 10. Lunar Sourcebook published mechanical parameters of lunar soil in United States [113].

Symbol Meaning

n 1
kc (kN/mn+1) 1.4
kΦ (kN/mn+1) 820

c (kPa) 0.17
ϕ (◦) 35

K (m) 1.78

Table 11. Monthly soil density ranges of Apollo 11, 12, 14, 15, and 16, and Luna 16 and 20 [114].

Lunar Soil Lunar Soil Density ρ (g/cm3)

Apollo 11 1.36 to 1.8
Apollo 12 1.15 to 1.93
Apollo 14 0.89 to 1.55
Apollo 15 0.87 to 1.51
Apollo 16 1.1 to 1.89
Luna 16 1.115 to 1.793
Luna 20 1.040 to 1.798

The density of the lunar soil can be acquired using Equation (36). Then

ρ =
m

vs + vr
(36)
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where ρ is the bulk density, m is the total mass of lunar soil, vs is the solid volume of lunar
soil particles, and vr is the pore volume of lunar soil particles.

4.5. Cross-Application of Multimodal Information Fusion and Foot–Terrain Interaction Mechanics

When heavy-duty legged robots are not equipped with effective sensing systems,
the unstructured terrain features cannot be adequately extracted and analyzed. Then, the
fundamental information of sufficient force distribution would be lacking, which would
result in many uncertainties during the walking process of the heavy-duty legged robots.
Based on the multimodal information fusion technologies, the appropriate mechanical
models of the heavy-duty legged robots can be effectively selected through the analysis
and extraction of the terrain information, which is helpful for the robot to complete the gait
switching and reduce the danger of navigation in unknown environments. In addition,
the combination of multi-sensor fusion and machine vision technology can effectively
identify the model parameters and improve their accuracy. Thus, the cross-application of
the multimodal information fusion and foot–terrain interaction mechanics would play an
important role in the mechanical model selection. The process of choosing the appropriate
mechanical model to use the multimodal information fusion is shown in Figure 41.

 

Figure 41. Process of choosing appropriate mechanical model to use multimodal information fusion.

5. Conclusions

(1) The factors influencing the terrain adaptability of the heavy-duty legged robots are
explored. Various foot shapes, including cylindrical, semi-cylindrical, spherical, hemispher-
ical, square, and special configurations, are examined, each presenting distinct advantages
and disadvantages. When designing the mechanical structure of a robot, the selection of
foot configurations and the design of appropriate foot patterns, tailored to specific needs,
prove beneficial in enhancing the robot’s adaptability to unstructured environments and
improving its overall mobility. However, challenges persist as heavy-duty legged robots’
feet encounter difficulties adapting to certain unstructured surfaces. Common terrains such
as deserts, uneven lunar surfaces, and areas containing stones pose particular challenges for
heavy-duty legged robots. Addressing these challenges will be crucial in further refining
the design of heavy-duty legged robots for diverse terrains.

(2) The ultimate goal is to design feet for heavy-duty legged robots with enhanced
anti-sinkage capabilities, increased traction, and a lightweight structure. To augment the
terrain adaptability of heavy-duty legged robots, insights from the characteristics of large
legged animals’ feet have been distilled. Furthermore, the proposed design elements
for biomimetic feet aim to emulate nature’s solutions. The incorporation of biomimetic
foot plantar patterns onto the sole of the foot proves particularly impactful, substantially
amplifying the robot’s adhesion capabilities.

(3) The mechanics of foot–terrain interactions encompass both normal and tangential
forces occurring between the foot and the contact terrain. An accurate model detailing
the mechanics of foot–terrain interaction plays a crucial role in investigating the terrain
adaptability of robots. While research on wheel–terrain interaction models is relatively
advanced, there is a noticeable gap in the exploration of mechanical models for foot–terrain
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interactions. A comprehensive and fully established system for the mechanical model of
heavy-duty legged robots’ foot–terrain interactions is yet to be realized. The challenges
in terrain mechanics for heavy-duty legged robots necessitate support from a systematic
theoretical framework.

(4) To enhance the model’s precision, an area evaluation parameter is introduced.
Subsequently, a mathematical model incorporating the interaction between feet and terrain
is proposed to calculate the tangential force. The resultant force equation on the robot’s
foot is predicted. The mechanical properties of the soil in contact with the foot–terrain
interaction significantly influence performance. Investigating various soil parameters for
the classification of unstructured terrain holds paramount importance in understanding
the mechanics of foot–terrain interactions. Furthermore, exploring the soil on other planets
is crucial for the future success of heavy-duty legged robots in interstellar exploration
missions. This study includes mechanical performance parameters for real lunar soil,
simulated lunar soil, and Martian soil. In future research, the integration of multimodal
information fusion and foot–terrain interaction mechanics will be leveraged for cross-
application purposes.
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Nomenclature

A Contact area δ Sum of foot and terrain deformations
B Geometric parameter of plate λN Dimensionless function
b Smaller dimension of contact patch vT Tangential sliding velocity
CN Normal damping coefficient δT Terrain deformation
CT Tangential damping coefficient δF Feet deformation
Cm Model parameter μ Coefficient of friction
Cf Shape coefficient of contact surface FN Normal support force
c Soil stickiness FT Tangential driving force
α Dimensionless geometric constant Hp Propagation depth of soil deformation
β Dimensionless geometric constant hgr Grouser height
i Slip ratio N1, N2 Model parameter
j Soil shear displacement p Pressure
k Sinkage modulus p0 Bearing capacity
kN Equivalent stiffness coefficient s Shearing displacement
kFN Stiffness coefficient of foot s0 Model parameter
kTN Stiffness coefficient of terrain sm Model parameter
kc Sinkage modulus v Poisson’s ratio
kΦ Sinkage modulus vs Solid volume
kS Stiffness modulus of terrain vr Pore volume
k1 Model parameter w Dimensionless coefficient
k2 Model parameter z Sinkage
m Exponent of damping term zo Static sinkage
mF Mass of foot zj Dynamic sinkage
n Model parameter ρ Bulk density
n1, n2 Indicators of stiffness terms
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