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Preface

This Special Issue addresses the Landauer principle, which is one of the limiting physical

principles that constrain the behavior of computing systems; a digital computer is seen as a physical

device, which processes bits by switching logical units “on” and “off”—those physical changes are

the computation. The Landauer principle restricts the minimal energy necessary for the erasure of

one bit of information. This Special Issue addresses a diversity of problems, related to the meaning

and applications of the Landauer principle. The interrelation between the Landauer principle and the

Second Law of Thermodynamics is addressed.

Edward Bormashenko

Guest Editor
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Editorial

Landauer’s Principle: Past, Present and Future
Edward Bormashenko

Department of Chemical Engineering, Biotechnology and Materials, Engineering Sciences Faculty, Ariel
University, Ariel 407000, Israel; edward@ariel.ac.il; Tel.: +972-074-729-68-63

“Thermodynamics is only physical theory of universal content, which I am
convinced will never be overthrown, within the framework of applicability of its
basic concepts.”

Albert Einstein

The rapid development of computers has led to growing interest in the physical
foundations of computation. This interest arises from both applicative and fundamental
aspects of computation [1]. It has been hypothesized that the entire universe can be
regarded as a giant quantum computer [2]. Cum grano salis, even natural evolution can
be looked at as a computation that exploits the physical properties of materials [3]. In its
most general meaning, computation involves transforming inputs into outputs using a
specific set of instructions; we restrict our treatment with a physical framework: a digital
computer is seen as physical device, which processes bits by switching logical units “on”
and “off”—those physical changes are the computation [4]. A reasonable question that
follows from this is what are physical limitations of computation? In other words, what
is the minimal energy cost of computation and what is the maximal possible velocity of
computation? There are fundamental laws and principles that set the limits of physical
systems. Thus, we well expect fundamental limitations on computation to be imposed
by nature [5]. From this another question arises: is it possible to break these fundamental
limitations under specific circumstances?

Landauer’s principle, addressed in this Special Issue, is one of the limiting physical
principles which constrains the behavior of computing systems. There exist fundamental
laws and principles that set the limits of physical systems [5–7]. These principles include
the Abbe diffraction limit [8] and the Heisenberg uncertainty principle [9]. Combining the
limiting value of light propagating in a vacuum c with the Heisenberg uncertainty principle
yields Bremermann’s limit, which enforces a limit on the maximum rate of computation
that can be achieved in a self-contained system [10]. Quantum mechanics also gives rise
to the Mandelstam–Tamm and Margolus–Levitin limiting principles, which restrict the
maximum speed of the dynamical evolution of quantum systems [11–13].

Landauer’s principle, in turn, sets a limit the minimum energy necessary for the
erasure of one bit of information. Rolf Landauer believed that computation is a physical
process; thus, it must obey the laws of physics and, first and foremost, the laws of thermo-
dynamics [14–17]. This thinking led to a new limiting physical principle by establishing
a minimal energy cost for the erasure of a single bit of memory from a system operating
at the equilibrium temperature T. The minimum amount of heat/energy dissipated when
erasing one bit of information is given by

W = kBTln2 (1)

Entropy 2025, 27, 437 https://doi.org/10.3390/e27040437
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Landauer’s principle also led to the fundamentally important distinction between logic
and thermodynamic irreversibility [18]. It should be emphasized that the Landauer bound,
given in Equation (1), relates only to a single information-bearing degree of freedom within
an entire computing system. Landauer’s principle was rigorously and microscopically
derived without direct reference to the second law of thermodynamics [19]. The quantum
mechanics extension of Landauer’s principle has also been demonstrated [20,21]. Else-
where, the relativistic generalization of Landauer’s principle has been introduced [22,23].
The extension of Landauer’s principle to many-valued logic was addressed in [24].

Combining the Landauer bound with the Margolus–Levitin limiting principle yields
the minimal time that it will take for a device to make a single computing operation
(as reported in this Special Issue [7]). The minimal “Margolus–Levitin–Landauer” time
necessary for a single computation, denoted by τMLL, is given by Equation (2):

τMLL ≥ h
4ln2kBT

=
τPB
4ln2

(2)

where τPB = h
kBT is the Planck–Boltzmann thermalization time, which is thought to be the

fastest relaxation timescale for the thermalization of a given system [25].
Landauer’s principle could be interpreted within the global concept aphoristically

called “It from bit”, which was suggested by John Archibald Wheeler. “It from bit sym-
bolizes the idea that every item of the physical world has at bottom . . . an immaterial
source and explanation; that what we call reality arises in the last analysis from the posing
of yes-no questions and the registering of equipment-evoked responses; in short, that all
things physical are information-theoretic in origin and this is a participatory universe” [26].
Landauer’s principle provides the “It from Bit” idea with measurable physical content by
supplying a bridge between “information” and physically measurable values. This bridge
was built in a series of recent papers [22,23,27–29]. According to Herrera [22], changing
one bit of information leads to a decrease in the mass of the system by an amount whose
minimal value given by Equation (3):

∆M =
kBT
c2 ln2 (3)

Generalizations of Landauer’s principle have been reported for logically indeter-
ministic operations and non-equilibrium systems [30,31]. The Landauer bound has been
successfully tested in a number of experimental investigations [32–34]. Despite this, the
meaning and formulation of Landauer’s principle have been intensively criticized. It
was argued that since it is not independent of the second law of thermodynamics, it is
either a necessary nor sufficient an exorcism of Maxwell’s Demon [35]. Lairez suggested a
counterexample with a physical implementation (which uses a two-to-one relation between
logic and thermodynamic states) that allows one bit to be erased in a thermodynamic
quasi-static manner [36]. Buffoni et al. demonstrated that Landauer’s principle, in contrast
to widespread opinion, is not the second law of thermodynamics nor equivalent to it, but
in fact a stricter bound [37]. The discussion is far from exhausted. It should be emphasized
that real, artificial, and natural computers operate far from thermodynamic equilibrium;
thus, the Landauer bound arising from classical equilibrium thermodynamics may be
broken [38]. Now, let us briefly list the problems that remain:

(i) The exact place of Landauer’s principle in the structure of thermodynamics should
be clarified.

(ii) A relativistic extension of Landauer’s principle remains one of the unsolved problems.
The problem of the accurate derivation and grounding of the relativistic transforma-
tion of temperature also remains unsolved.

2
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(iii) It is important to implement the Landauer principle in the development of optimal
computational protocols, providing minimal energy dissipation, including non-Turing
computational devices [39].
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Landauer Bound and Continuous Phase Transitions
Maria Cristina Diamantini

NiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia, Via A. Pascoli,
I-06100 Perugia, Italy; cristina.diamantini@pg.infn.it

Abstract: In this review, we establish a relation between information erasure and continuous phase
transitions. The order parameter, which characterizes these transitions, measures the order of the
systems. It varies between 0, when the system is completely disordered, and 1, when the system is
completely ordered. This ordering process can be seen as information erasure by resetting a certain
number of bits to a standard value. The thermodynamic entropy in the partially ordered phase is
given by the information-theoretic expression for the generalized Landauer bound in terms of error
probability. We will demonstrate this for the Hopfield neural network model of associative memory,
where the Landauer bound sets a lower limit for the work associated with ‘remembering’ rather
than ‘forgetting’. Using the relation between the Landauer bound and continuous phase transition,
we will be able to extend the bound to analog computing systems. In the case of the erasure of
an analog variable, the entropy production per degree of freedom is given by the logarithm of the
configurational volume measured in units of its minimal quantum.

Keywords: Landauer bound; continuous phase transitions; analog computing

1. Introduction

Landauer’s principle [1–3] tells us that forgetting is costly: the erasing of one bit
of information, namely resetting it to a particular memory state, independently of its
previous memory state, has an entropic cost of, at least, kT ln(2) energy (where T is the
temperature and k the Boltzmann constant). This is the content of the famous statement that
“information is physical” as realized first by Szilard [4] and after by Landauer: information
can only be processed by physical systems, computers, and thus it is subject to the laws of
thermodynamics of physical systems. The minimum energy expenditure of kT ln(2) solves
the problem of the violation of the second law of Maxwell’s demon [5]: the second law is
not violated since one has to take into account the cost of erasing the demon’s memory. The
paradox of Maxwell’s demon has also been addressed in a related but slightly different way
by Brillouin [6,7], using the idea of negentropy, namely the reverse of entropy, describing a
system becoming “more ordered”, and its relation with information. A bit of information is
obtained by the demon at the price of some negative entropy lost in the environment, which
allows the demon to make choices which decrease the entropy in the environment. The
relation between the negentropy and the Landauer limit was analyzed in [8,9] considering
a system of magnetic skyrmions. There, it was shown that the Landauer bound can be
seen as a variation of the negentropy of the skyrmion. Landauer’s principle was recently
experimentally verified in [10–13].

Since its formulation, many discussions have been devoted to the validity and useful-
ness of Landauer’s principle [14–16], and many attempts have been devoted to possibly
beat Landauer’s limit since it sets a minimum energy expenditure in computation. More
sophisticated formulations have been proposed [17,18], which take into account the role of
the conditional entropy to relate Shannon and Gibbs entropy and that lower Landauer’s
limit. For a review on recent developments on the thermodynamics of information, see [19].
Another possibility to beat this limit is to admit errors during the erasure procedure. In
this case, the original Landauer limit and the associated minimum cost of erasure can be

Entropy 2023, 25, 984. https://doi.org/10.3390/e25070984 https://www.mdpi.com/journal/entropy5
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lowered. In [20], it was shown that, admitting errors, the Landauer bound can be lowered
and the minimum work necessary to stochastically erase one bit becomes

−∆S
k

= ln2 + p ln(p) + (1− p) ln(1− p) , (1)

where p is the error probability. This error probability, which can be interpreted as mutual
or conditional entropy [21,22], becomes relevant [20] for future nanoscale implementations
of switches which must necessarily take into account also their thermal fluctuations.

Information is physical; this statement, as shown in [23], implies that physical systems,
which contain order, can encode information bits. Continuous phase transitions represent
a paradigmatic example of these physical systems. Continuous phase transitions are
characterized by symmetry breaking. The order parameter describes the symmetry broken
phase and it is zero in the unbroken phase. These transitions, which are generally driven
by temperature in the classical case, are described by the phenomenological Landau theory
expressed in terms of the temperature and of the order parameter [24]. As we lower
the temperature below the critical temperature TC, at which the phase transition takes
place, the Landau function [24], representing the effective potential, goes from one single
minimum to a manifold of minima, e.g., it bifurcates into two minima in the case of Z2
symmetry breaking, creating a new order and a new configuration space for the system.
The work performed on the system to lower the temperature is completely used to lower
the entropy and to change the state of the system, making it “more ordered”. We call
this procedure efficient. To better understand the relation between Landauer erasure and
continuous phase transition, let us consider one classical bit of information stored in a
bistable potential, exemplified by a particle in a double potential well. The first step of the
erasure of the memory corresponds to the lowering of the barrier; note that in this step, the
phase space available doubles. This corresponds to the disordered phase with m = 0. Then,
in general, by applying a tilting force and raising again the barrier will force the particle
to be in one of the wells, depending on the tilting force, thus resetting either to zero or
to one. This is a non-equilibrium state valid for a time smaller than the relaxation time
in the well. In this last step, we have a phase space reduction; we ‘compress’ two states
in one, and this is what causes the heat dissipation. In spontaneous symmetry breaking,
something similar happens. Above the critical temperature, all possible degenerate ground
states are available, while below the critical temperature, the system ‘chooses’ one state.
In the case of symmetry breaking, an external perturbation, which is generally then set to
zero, is what makes the system choose a particular state. In Landauer erasure, this is the
role of the tilting in the double-well potential model for a single switch [10].

A particularly interesting example is given by neural networks [25], which are com-
posed of a large number of interacting stochastic bits. Neural networks are the basic
elements of associative memories. Contrary to address-oriented memories, recovery of
the information is based on the similarity between the stored memory pattern and the pre-
sented pattern. The Hopfield model [26] is the most used example of neural networks [25].
The Hopfield model undergoes a phase transition, characterized by order parameter m
that goes from zero in the disordered phase to one in the ordered phase. The transition
is driven by a fictitious temperature: below TC, the system becomes ordered. As shown
in [23] (and derived in Section 2) this phase transition is akin to an erasure with errors
for the N stochastic neurons. The entropy difference between the disordered phase and
the partially ordered phase can be exactly written as Equation (1) of [10,20,21], where, in
this case, the error probability is related to the order parameter. Note that, while in the
Landauer case, the erasure corresponds to forgetting, in the case of the neural networks, it
corresponds to remembering.

A phase transition is clearly a collective phenomenon; a single spin cannot have a
phase transition, while one can erase a single bit or flip a single spin. However, in the
example we chose of the Hopfield model, which, as we will show in the next section, can be
mapped in a long range Ising model [25], the bits which compose the associative memory
represent the information bearing degrees of freedom. The order parameter m, which

6
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characterizes the continuous phase transition, plays the role of the error in an erasure with
errors. When the parameter m is equal to one, we have the completely ordered phase
corresponding to the erasure without errors. In [23], we showed that the entropy difference
between the disordered phase and the completely ordered phase goes approximately
kT ln 2 times the number of spins of the network, which coincides with the number of the
information bearing degrees of freedom.

The Landauer principle [1] was originally formulated to compute the minimal energy
required to erase a bit of information and it applies, thus, to the system in which information
is represented by discrete units. What happens for analog computing systems? In [27], the
relation between erasure and continuous phase transition allowed us to extend Landauer’s
principle to systems where information is a continuous variable.

When we erase discrete information, assuming that the conditional entropy is zero [18],
the difference in the Shannon entropy between the final state, to which we reset the memory,
e.g., to one, and the one in which the system can be in any one of the possible states si with
probability pi, is given by

∆SS =
M

∑
i

pilnpi , (2)

where M is the finite number of possible logic states. The continuous generalization of the
Shannon entropy is defined as [28,29]

Scont
S = −

∫

x∈M
p(x)lnp(x) . (3)

where p(x) is the probability distribution of the relevant degree(s) of freedom. The
information-theoretic continuous Shannon entropy, however, requires an appropriate
regularization, which adapts the dimensional character of the relevant degrees of freedom
to the dimensionless quantity considered in the probability density p(x). This is because
the continuous extension of the Shannon entropy, contrary to the discrete entropy, which
is an absolute quantity, is not invariant under the change of coordinates [28]. To cure this
problem, Jaynes [30–32] proposed to modify Equation (3) by introducing an invariant factor
p0(M), which represents the density of the discrete distribution, which gives p(x) in the
continuum limit:

Scont
S = −

∫

x∈M
p(x)ln

p(x)
p0(M)

. (4)

The factor p0(M), introduced as a regularization, arises naturally when we consider
the continuous Landauer reset. This factor needs to be introduced to cure the problem of
classical continuous entropy, which can be negative and divergent [33,34], and is given by
the minimum quantum of configuration volume of the physical system.

In Section 2 of this review, we analyze the relation between continuous phase tran-
sitions, characterized by an order parameter, and the Landauer bound [23]. Using the
example of the Hopfield model [26], we show that the information-theoretic expression
for the entropy production during the erasure process, expressed in terms of the error
probability, has the same expressions as the thermodynamic entropy in the partially ordered
phase. For the Hopfield model, however, the completely ordered state corresponds to
perfect remembering rather than forgetting, so the Landauer bound sets a lower limit for
the cost of ‘remembering’ [35].

In Section 3, using the relation between the Landauer’s limit and continuos phase
transitions, we extend the results of Section 2 to analog computing systems [27]. In this case,
the entropy production per degree of freedom during the erasure of an analog variable
is given by the logarithm of the configurational volume measured in units of its minimal
quantum. Additionally, in this case, we have a “discretization” of the information bearing
degrees of freedom, and an infinite amount of energies will be required to perform a
computation with infinite precision.

7
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2. Thermodynamic Entropy in Continuous Phase Transitions and Landauer Bound

Neural networks, using the definition given in [25], “are algorithms for cognitive tasks,
such learning and optimization, which are in a loose sense based on concepts derived from
research into the nature of the brain”. One important task that neural networks perform is
pattern recognition: the retrieval of information, contrary to address-oriented memories,
is performed by looking at the “similarity” between a pattern, which is presented, and
the stored patterns. Associative memories have the advantage of being able to retrieve
information even in the case of incomplete or noisy inputs, which is not permitted in
traditional computers. The Hopfield model [26,36] is the paradigmatic example of a neural
network designed to perform the task of associative pattern retrieval and is largely used in
associative memory.

In associative memories, when a new pattern is presented, the network evolves from
a totally unknown state to a state which corresponds to the stored pattern. As shown
in [25], this is gauged equivalent to a state with all neurons, e.g., equal to +1. The transition
between the unknown state and the final state corresponding to the stored pattern is, by
definition, the process of remembering rather than forgetting, and the Landauer limit
corresponds to the minimum energy necessary for remembering. The noise affects the
remembering process: when it is not too large, the network provides the minimum energy
required to remember, and when errors become too important, there is a phase transition
to a state in which remembering becomes impossible.

The Hopfield model [26] is a directed graph of N binary neurons si, i = 1 . . . N, with
si = ±1 fully connected by symmetric synapses with coupling strengths wij = wji (wii = 0),
which can be excitatory (>0) or inhibitory (<0). The state si = +1 indicates the firing state
of the neuron, while si = −1 indicates the resting state. The network is characterized by an
energy function

E = − J
2 ∑

i 6=j
wij sisj , si = ±1 , i, j = 1 . . . N , (5)

where J represents the (positive) coupling constant. The dynamical evolution of the network
state is defined by the random sequential updating (in time t) of the neurons according to
the rule

si(t + 1) = sign(hi(t)) , (6)

hi(t) = J ∑
i 6=j

wijsj(t) , (7)

where hi is the local magnetization. As is standard for neural networks and, thus, for the
Hopfield model [25], the temporal evolution proceeds in finite steps, which correspond to
the updating of neurons according to the rule Equation (7) in this model. At time (t + 1),
the neurons are firing or resting depending on the activation function. This process is
intrinsically discrete in time. The synaptic coupling strengths are chosen according to the
Hebb rule [25]

wij =
1
N ∑

µ=1...p
σ

µ
i σ

µ
j , (8)

where σ
µ
i , µ = 1 . . . p are p binary patterns to be memorized. The synaptic strengths contain

all the information of the memory, which is encoded in the interaction between the spins σ
µ
i .

The dynamical evolution of the networks will allow the system, prepared in an initial
state s0

i (presented pattern), to retrieve the stored pattern σλ
i , which most closely “resembles”

the presented pattern, namely the one that minimizes the Hamming distance, i.e., the total
number of different bits in the two patterns.

Updating the Hopfield network according to the Hebb rule guarantees that the dy-
namical evolution minimizes the energy of Equation (5): the stored patterns are “attractors”
for this dynamic, namely, they are local minima of the energy functional, which is bounded
below. This implies that, when an initial pattern is presented, it will evolve until it overlaps

8
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with the closest stored pattern and then not evolve anymore. The possibility of remem-
bering depends, however, crucially upon the loading factor α = p/N, given by the ratio
between the number of stored memories and the number of available bits [25]: above a
critical value, the network has a phase transition into a spin glass [36], and remembering
becomes impossible.

In what follows, we consider the case of a single stored pattern σi. As shown in [25],
using the gauge transformation,

si → σisi , (9)

the energy functional Equation (5) becomes

E = − J
2N ∑

i 6=j
sisj , (10)

the Hopfield model thus reduces to the long-range Ising model, and the stored pattern
becomes σi = +1 for all i. Remembering for the network, in this case, is equivalent to
resetting the N-bit register to this value. Note that in the Hopfield model, since the synapses
are quadratic in the spins, there is always a symmetry between the memory and its NOT
for one stored pattern, e.g., si = 1 → si = −1 ∀i, if the stored pattern all spins up as we
chose in the present case. Both are minima for the dynamic. However, when a pattern
is presented, the system recovers the one that is closed in the Hamming distance to the
stored pattern.

The deterministic update law Equation (6) can be made probabilistic, introducing a
fictitious temperature T = 1/kβ and, thus, thermal noise:

Prob[si(t + 1) = +1] = f [hi(t)] , (11)

where the activation function f is the Fermi function

f (h) =
1

1 + exp(−2βh)
. (12)

The deterministic behavior is recovered in the limit β→ ∞. The main difference with
respect to deterministic neurons, which are always active or dormant according to the sign
of h is that stochastic neuron activities fluctuate due to thermal noise and we can define a
mean activity for a single neuron:

〈si〉 = (+1) f (hi) + (−1) f (−hi) , (13)

where 〈. . . 〉 denotes the thermal average. Now we note that, for the long-range Ising
model, the mean field approximation 〈 f (hi)〉 → f (〈hi〉) is exact [37], and we thus obtain
the deterministic equation:

〈si〉 = tanh

(
βJ
N ∑

j 6=i
〈sj〉
)

. (14)

Defining the mean magnetization as m ≡ (1/N)∑i < si >, we can rewrite
Equation (14) as

m = tanh (βJm) , (15)

where we considered the thermodynamic limit N → ∞. We can now apply the known
results for the mean field Ising model. The self-consistency Equation (15) has only one
solution for βJ < 1, which corresponds to zero magnetization, m = 0. When βJ > 1,
Equation (15) admits three solutions m = 0 and m = ±m0(β), but only the second two
solutions are stable against small fluctuations; we thus have a magnetization m 6= 0. The
condition βJ = 1 gives the critical temperature Tc = J/k: for T > Tc, the network is
disordered and remembering is not possible, while for T < Tc, the network exhibits a
partial magnetization m 6= 0, which goes m→ 1 for T → 0. Partial erasure is, thus, possible.

Remembering for stochastic neurons is equivalent to a reset operation with errors. For
T ≥ Tc, individual neurons fluctuate freely, and we are in the disordered phase. When T

9
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goes below Tc, neurons become partially frozen in the stored pattern configuration and
m(T) will tell us what is the average rate of errors in the reset process at this temperature.
In this procedure, all work performed by lowering the temperature goes into lowering the
entropy of the system. In fact, as T goes infinitesimally below TC, the Landau function [24]
bifurcates into two minima, creating a new order and a new configuration space for the
network. Note, however, that if the erasure processes is performed in a finite amount of
time, in this case, the system will dissipate a finite amount of heat [38,39].

Following the standard treatment for the mean field Ising model (which in the present
case is an exact solution), we expand the spin variables si around their mean value m as
si = m + δsi, with δsi ≡ (si −m). At the lowest order, the energy functional becomes

E =
JNm2

2
− Jm ∑

i
si , (16)

where we omitted an irrelevant constant. At this order in δsi, the partition function is

Z = ∑
conf.

e−βE = e−βJNm2/2[2cosh(βJm)]N . (17)

We thus obtain for the entropy the expression

S =
∂

∂T
(kTlnZ)

= kN[ln(2 cosh(βmJ))− βmJ tanh(βmJ)] . (18)

At T = Tc, m = 0, the system is disordered, and the entropy takes the maximum value
S = kNln2, while at T = 0, m = 1 and S = 0, the system is ordered and the remembering
is perfect. The entropy variation between the disordered state and the state with partial
remembering 0 < m(T) < 1 is

−∆S
kN

=
1

kN
(STc − ST)

= ln2− ln(2 cosh(
mTc

T
)) +

mTc

T
tanh(

mTc

T
) . (19)

Equation (19) represents the heat dissipated per bit during the simulated annealing
erasure procedure, and, thus, the Landauer bound for stochastic neurons described by the
Hopfield model at temperature T. Perfect remembering, T = 0 and m = 1, gives back the
original bound ln(2). Higher temperature corresponds to erasure with errors, in our case,
due to thermal fluctuations in the fictitious temperature and, when T reaches TC and m
becomes 0, the system has a phase transition to a disordered state, and remembering is not
possible anymore. In the Landauer erasure, this corresponds to resetting to an unknown
state, i.e., setting the probability error p = 1/2 in Equation (1).

The previous analysis tell us that the error probability p in the Landauer erasure
is represented by the stochastic updating rules for the Hopfield network Equation (11).
According to Equation (11), the probability that a neuron flips due to thermal noise is

Prob[si(t + 1) = −si(t)] =
exp [−βhi(t)si(t)]
2 cosh[βhi(t)si(t)]

, (20)

so the probability that it flips from the desired value +1, since we are resetting to a memory
register with all bits +1, to the wrong value −1 is

p = Prob[+1→ −1] ≡ 1
2
(1−m) =

exp (−βJm)

2 cosh(βJm))
. (21)

The maximum error probability p = 1/2 corresponds to m = 0, the maximally
disordered state of the network reached at T = TC, while p = 0 corresponds to the perfect
order for the network with order parameter m = 1 at T = 0. Inserting Equation (21) into
Equation (19), we obtain for the entropy difference, and thus for the dissipated heat, exactly
the information-theoretic expression Equation (1):

10
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−∆S
kN

= ln2 + p ln(p) + (1− p) ln(1− p) . (22)

When p = 0, the Landauer bound is saturated, and the entropy difference between
the increasingly disordered state of the model and its perfectly ordered T = 0 state reaches
the exact value

∆S = kNln(2) . (23)

Once we reach the value m = 0 for the order parameter, which describes the broken
symmetry phase, we reach the maximum entropy for the network and we cannot keep
disordering the system without violating the Landauer bound and, thus, the second law
of thermodynamics. The phase transition, which takes place at TC, thus corresponds to
the saturation of the Landauer limit. The generalized Landauer theorem states, thus, that
the sum of the entropy loss per bit and the one-bit error entropy cannot be lower than the
bound kln(2), and it is exactly equal to this bound when the procedure is efficient. When
this bound is saturated by the error entropy, resetting (remembering here) is no longer
possible, and a phase transition occurs.

The Hopfield model has a discrete Z2 symmetry corresponding to a spin 1/2. The gen-
eralization to higher-order spins with a classical Z(2n+1) symmetry, with n = 1/2, 1, 3/2 . . .
is, however, straightforward. In the case of a Z(2n+1) symmetry, Equation (23) becomes

− ∆S = (S(TC)− S(0)) = kN ln(2n + 1) . (24)

In the more general case of a continuous phase transition of a system of N elementary
components with D degrees of freedom each, which undergoes a continuous phase transi-
tion to a partially ordered phase below a critical temperature, we have only d degrees of
freedom, which survive in the partially ordered phase, while the others are frozen. The
phase transition is characterized by a complex vector of ordered parameters whose norm
η rises from 0 in the disordered phase to 1 at zero temperature. The ration between the
original degrees of freedom D and the one in the partially ordered phase d can be written as

D/d = qn , (25)

with n being an integer larger than one if D/d is a prime power and q a prime number. If
D/d is not a prime power, we have n = 1 and q = D/d. If we take, for example, the simple
case q = 2, the phase transition can be seen as the formal “resetting” of dN bits to their
standard value, with error probability p(T) = (1− η(T))/2. The entropy change during a
generic phase transition is, thus, again given by Equation (22) with N → dN. Otherwise,
the Landauer bound would be violated in the ordering process. For q = 3, we have trits
instead of bits, and the generalization to other values of q is straightforward.

3. Analog Computing Systems

In analog computing systems, information is encoded in a continuous variable. To
compute the entropy change during the erasure of information encoded in a continuous
variable, we will use the relation between the Landauer principle and entropy change
during continuous phase transitions [23]. We will again assume that the erasure is efficient.

We study the 3-dimensional ferromagnetic classic Heisenberg model, which undergoes
a phase transition with spontaneous symmetry breaking of O(3) → O(2) [24], which is
described by the Hamiltonian

H = − J
2 ∑

<i,j>
si · sj − H ∑

i
si , (26)

where 〈i, j〉, which denotes the sum over nearest neighbors spin, with i that goes from
1 to the number N of spins and |s|2 = 1. In this case, the spin orientation, that encodes
analog information, can take all values on a sphere of unit radius and we have, thus, a
continuum of possible values; for the Ising spins, the orientation is binary, up or down.
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Since the model is ferromagnetic, we have J > 0. H is a constant external magnetic
field in the ẑ direction. The ferromagnetic Heisenberg model undergoes a continuous
phase transition [24], characterized by an order parameter m, the mean magnetization. For
T ≥ TC, the system is disordered, while for T < TC, the phase becomes partially ordered
and m reaches the value 1 at T = 0. As in the case of discrete symmetry, lowering the
temperature is akin to an erasure process, and m plays the role of the error probability in
the reset operation [20].

Following what we did in the previous section, we identify the Shannon entropy of
the erasure process in the analog computing system with the entropy variation during the
transition from from T = TC to T = 0. The entropy variation

− ∆S
kN

=
(S(TC)− S(0))

kN
, (27)

gives, thus, the Landauer bound for an analog computing system [23].
We use again the mean field approximation; the mean field Hamiltonian for the

Heisenberg model is [24]

Hmf = −J ∑
<i,j>

si Heff +
JNm2

2
,

Heff = (Jm + H) , (28)

where m is the mean magnetization: m ≡ (1/N)∑i〈si〉. The effective magnetic field is the
sum of the average magnetic field, generated by all other spins, plus the external magnetic
field H. As usual, we will take the limit H → 0, obtaining, thus, the partition function:

Z = exp
[

β
JN3m2

2

] ∫
d3sδ(s2 − 1) exp

[
βJ

N

∑
i=1

m cos θi

]
, (29)

where θi is the angle between the spin and the ẑ direction and β = (kT)−1. From
Equation (29), we derive the free energy

F
N

=
Jm23

2
− 1

β
ln
[

4π sinh βmJ
βmJ

]
, (30)

and from the free energy, the entropy

S
kN

= ln
[

4π sinh βmJ
βmJ

]
− βmJL(βmJ) , (31)

where L(x) = coth x− 1/x is the Langevin function.
Let us now consider the limits for T = TC and T = 0 of Equation (36). When

T → TC, m→ 0, and the entropy reaches its maximal value, the logarithm of the volume of
the configuration space, namely, the area of a sphere of unitary radius:

S(TC)

kN
= ln(4π) . (32)

When T → 0 and m→ 1, which corresponds to the perfect reset, the entropy becomes
negative and divergent, contrary to the third law of thermodynamics:

S(T → 0)
kN

→ −∞ . (33)

This problem is common for various classical systems. One textbook example is the
classical harmonic oscillator [40], and, in general, the way to cure this problem is to consider
the classical system as the limit of its quantum counterpart.

In the mean field approximation, the quantum ferromagnetic Heisenberg model
describes a system of quantum, non-interacting spins si with (2s + 1) components in an
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external magnetic field Heff. The mean field Hamiltonian for the quantum Heisenberg
model is [41]:

H = −Heff

N

∑
i=1

si . (34)

It describes non-interacting (2s + 1) components spins in an external magnetic field
Heff, which, again, is the sum of the average magnetic field generated by all other spins
plus an external magnetic field H. The partition function is

Z =

[
s

∑
n=−s

exp βHeffn

]N

, (35)

while the entropy, in the limit in which the external magnetic field H → 0, is

S
kN

= ln

[
sinh(1 + 1

2s )βmJs

sinh βmJs
2s

]
− βmJsBs(βmJ) , (36)

where Bs(βmJ) is the Brillouin function defined as Bn(x) = 2n+1
2n coth

(
2n+1

2n x
)
− 1

2n coth
(

1
2n x
)

.

In the limit T → 0, the entropy Equation (36) goes to zero, S(T=0)
kN = 0, in agreement with

the third law of thermodynamics.
The classical limit of the quantum Heisenberg model [42–44] is obtained by properly

distributing the (2s+ 1) values of the quantum spin on the classical sphere of area 4πr2 with
r that is the dimension of an action and is equal to 1 in our case. If we call smax the highest
weight of the representation in the quantum case, we can define the spin density as [42]

∆(2smax + 1)→ 4π for smax → ∞ , ∆→ 0 . (37)

To ensure the existence of the infinite spin limit [42], we need, however, to rescale the
spin as s→ s/smax. The minimum state volume ∆ represents the minimum area in the uni-
tary sphere occupied by a spin. This minimum volume is given by the Heisenberg principle:

∆ =
1
2

h̄2smax ; h̄smax → sclas for smax → ∞ , h̄→ 0, (38)

with sclass, which has the dimensions of an action, and sclass = 1 in our case. Correspond-
ingly, we define the regularized entropy as

S
kN

= ln 4π
(2smax+1)

[
sinh(1+ 1

2smax )βmJ

sinh βmJ
2smax

]

−βmJBsmax(βmJ) . (39)

The classical limit corresponds to smax → ∞. When T = TC, the entropy is, as before,

S(T = TC)

kN
= ln(4π) , (40)

while at T = 0, we obtain

S(T → 0)
kN

= ln
(

4π

2smax + 1

)
= ln

1
2

h̄2smax = ln
1
2

h̄ , (41)

where we use Equations (37) and (38) (note that in the last term of Equation (41), h̄ is
divided by a constant that has the dimension of an action and that it is equal to one). This
result tells us that if we want to avoid the entropy divergence, we cannot actually send
h̄ → 0. In fact, the limit h̄ → 0 corresponds to a classical distribution concentrated in
regions smaller than the minimum area allowed by the Heisenberg principle. ∆ is the factor
p0(M) in Equation (4), and its presence is due to the fact that the continuous Shannon
entropy must be regularized in order to make it invariant upon a change of coordinates.
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Using Equations (40) and (41), we obtain for the entropy variation

−∆S
kN

=
S(TC)− S(T = 0)

kN
=

= ln(4πs2
clas)− ln

1
2

h̄2smax = ln
8πsclas

h̄
. (42)

For the Heisenberg model, we have sclass = 1, and we thus obtain

− ∆S
kN

=
S(TC)− S(T = 0)

kN
= ln

8π

h̄
, (43)

(note that the quantity inside the logarithm is dimensionless since sclass = 1 has the dimen-
sions of an action). Entropy variation Equation (43) represents the analog generalization of
the Landauer bound: the entropy change during the erasure process performed by resetting
a continuous variable, the spin s, to a standard value is given by the available configuration
volume (the area 4π in this case) measured in units of the minimum quantum of configura-
tion volume ∆. This implies that, both for digital or analog information, physical systems
can encode only a finite countable amount of information [28,45,46], and that information
can be manipulated only with finite precision: infinite precision, namely the realization of
a truly analog computing system, is forbidden by the laws of physics.

The maximum number of possible logic states that we can associate with the Heisen-
berg model is

Nl = int
(

8π

h̄

)
, (44)

(int(a) is the integer part of number a), while for a generic angular momentum L, it is

Nl = int
(

8πL
h̄

)
, (45)

to which we can associate a finite number of bits:

n = log2(Nl) . (46)

For the case of a cube of 5× 5× 5 = 125 atoms [47], with an angular momentum per
atom of the order of L ≈ h̄, for which the interactions between the momenta are such that
they behave like a single classical momentum, we have Nl = 3140. From Equation (46),
we obtain a number n ≈ 11.6 of bits that can be stored. Under the same assumption, in a
system of magnetic nano-dots with a 20 nm side, containing approximately 200 million
atoms, we can store up to n = 27.6 bits. If we want to perform with this system a perfect
Landauer reset, the amount of heat to be dissipated is readily provided by Equation (42):
Q ≥ 19.11kT, approximately 30 times what we would have for a binary system reset.

We now want to consider the more general case of the symmetry breaking pattern
O(n)→ O(n− 1). Within the mean field approximation, this generalization is straightfor-
ward. From Equation (29), substituting d3s→ dns, we have

Z = exp
[

β
JN3m2

2

] ∫
dnsδ(s2 − 1) exp

[
βJ

N

∑
i=1

m cos θi

]
, (47)

and for the entropy

S
kN

= ln

[
2

n
2 π

n
2

I n
2−1(βmJ)

(βmJ)
n
2

]
− βmJ

I n
2
(βmJ)

I n
2−1(βmJ)

, (48)

with Iν(z), the modified Bessel functions of the first kind.
The entropy difference between the perfectly ordered state at T = 0 and the completely

disordered one, at T = TC , m = 0, which gives the Landauer bound for the erasure of a
O(n) spin s is

− ∆S
kN

=
S(TC)− S(0)

kN
, (49)
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with
S(TC)

kN
= ln Sn−1 , Sn−1 =

2π
n
2

Γ
( n

2
) , (50)

where Sn−1 is the area of the (n− 1)-sphere of unit radius and Γ(x) is the Euler gamma
function. As for the Heisenberg model, the limit T → 0 is singular, and the entropy is
negative and logarithmically divergent: (S(T → 0)/kN)→ −∞.

The regularization of the entropy in this case is, however, more complicated since,
contrary to the O(3) Heisenberg model, the analytical results are not known [48] for the
O(n)-symmetric quantum Heisenberg model, not even in the mean field. Additionally, the
definition of the classical limit is not clear. Extending to this case the results obtained for
the O(3) case, given by Equation (50), we conjecture that for the O(n)-symmetric case, the
entropy change during the erasure process will be given by the available configuration
volume, the area of the n-sphere, measured in units of the minimum quantum of the
configuration volume that in this case will be ∝ h̄n−2. In the case of the SU(n)-symmetric
(restricted to symmetric representations) Heisenberg model, the possibility of having
a positive classical entropy was proposed by Lieb and Solovey [49] using a coherent
states approach.
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Abstract: The Landauer principle sets a thermodynamic bound of kBT ln 2 on the energetic cost
of erasing each bit of information. It holds for any memory device, regardless of its physical
implementation. It was recently shown that carefully built artificial devices can attain this bound. In
contrast, biological computation-like processes, e.g., DNA replication, transcription and translation
use an order of magnitude more than their Landauer minimum. Here, we show that reaching
the Landauer bound is nevertheless possible with biological devices. This is achieved using a
mechanosensitive channel of small conductance (MscS) from E. coli as a memory bit. MscS is a fast-
acting osmolyte release valve adjusting turgor pressure inside the cell. Our patch-clamp experiments
and data analysis demonstrate that under a slow switching regime, the heat dissipation in the course
of tension-driven gating transitions in MscS closely approaches its Landauer limit. We discuss the
biological implications of this physical trait.

Keywords: Landauer’s principle; heat dissipation; MscS

1. Introduction
Any computation performed on a physical system is subject to fundamental limitations

imposed by the laws of physics. For example, the uncertainty principle implies that to
perform an elementary logical operation faster than some ∆t, at least an average amount
of energy E ≥ πh̄/2∆t must be consumed [1]. This bound can be understood intuitively
as a consequence of the fact that there is a fundamental limit on the maximum number of
different states that a physical system can traverse per unit of time, as first demonstrated
by Margolus and Levitin [2]. Another important bound on computation, which is the
main focus of this work, is set by the laws of thermodynamics. According to Landauer’s
principle [3], at least kBT ln 2 of heat dissipation must accompany any one-bit erasing
process. Here, kB is Boltzmann’s constant and T is the ambient temperature. Equality
can be achieved for quasi-static (reversible) erasure protocols. The heat released into the
environment during the erasure of information assures that the total increase in the entropy
of the system and bath together is a non-negative quantity. Importantly, this bound applies
to any non-reversible erasing process of a memory, regardless of the physical system that
was used to implement it. Therefore, Landauer’s principle demonstrates the interplay
between physics and information. In recent decades, Landauer’s principle was generalized
to include: a probabilistic erasure process [4,5]; other types of thermodynamic resources [6];
entropically unbalanced bits [7]; a unified view on the cost of erasing and measuring a
bit [8,9]; N state bit [10]; optimal erasure at finite time [11,12]; and others [13].

The existence of a fundamental bound does not imply that the bound can be attained.
Indeed, current computer memory devices dissipate about 6 orders of magnitude more
energy than the minimum amount required by the bound. Similarly, estimations of the
energy dissipated in biological computations such as DNA and gene replications show that
these are performed with about an order of magnitude more dissipation than required by
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Landauer’s bound [14]. Recently, however, it was demonstrated that carefully built artificial
systems can actually operate very close to Landauer’s bound. This was achieved with
several types of systems: a single colloidal particle in an optical [15,16] or feedback [17–19]
traps, nanomagnetic bits [20–22], superconducting flux bit [23] and even quantum sys-
tems [24,25]. Based on these results, it is natural to ask whether there are any biological
memory-erasing processes that operate close to Landauer’s limit.

Out of many biological systems, the bacterial mechanosensitive ion channels of small
and large conductance, MscS and MscL, appear to be the most tractable systems con-
trolled by tension in the surrounding membrane [26–28]. MscL is essentially a two-state
(closed↔open) whereas MscS shows inactivating behavior (inactivated↔closed↔open),
but under certain tension protocols it can be treated as a two-state channel [29]. They
function as osmolyte release valves when bacteria face changing environmental osmotic
conditions, such as with drastic dilution in the rain. While the large-conductance MscL
channel opens by extreme near-lytic tensions and acts as an emergency valve, the small-
conductance MscS channel opens at moderate tensions and appears to be active throughout
the normal bacterial lifecycle [27,30–32].

In this work, we present a framework for the analysis of heat dissipation in membrane
channels gated by tension. We employ the patch-clamp technique applied to the native
E. coli membrane to record discrete single-molecule opening and closing events in MscS
under specially designed tension stimuli and extract the dissipated heat that accompanies
gating transitions. The state of the ion channel, which can be either “open” or “closed”,
encodes a single bit of information. Setting the experimental conditions such that the
channel occupies these two states with equal probability introduces the maximum degree
of randomness. Changing the biasing tension that re-distributes the channel population to
one particular state is equivalent to “erasing the memory” stored in the initially randomized
population. We extract the heat dissipated during the “restore to open” process imposed
with different rates and show that this system dissipates substantially at high transition
rates, but under slower driving protocols, MscS gating closely approaches its Landauer
limit. We discuss the physiological importance of this physical trait, which predicts the
activation of MscS with minimal dissipation under moderate osmotic shocks experienced
by bacteria.

2. Experimental and Theoretical Setup
To measure the dissipated heat during the erasure of a single bit, Landauer suggested

the use of a “restore to one” protocol [3], which results in the bit occupying a single
state—the “one” state—regardless of the initial state of the bit. He then argued that the
heat dissipated in applying this protocol, averaged over the two initial states of the bit,
must be at least kBT ln 2.

To record gating (closed↔open) transitions in MscS channels, a standard patch-clamp
technique was applied to giant E. coli spheroplasts [33–35]. Approaching the surface of
a spheroplast with a polished glass pipette with a tip diameter of ∼1.5 µm and apply-
ing gentle suction forms a contact between the glass and membrane with a Giga-Ohm
resistance (Giga-seal). This tight seal isolates the patch membrane under the pipette both
electrically and mechanically. Excision of the patch from the spheroplast provides electri-
cal access to both sides of the membrane, which now separates the “pipette” and “bath”
aqueous solutions (Figure 1 left). Under constant voltage of 30 mV across the patch and
applying stronger suction (−60–150 mm Hg), which stretches the membrane, we can see
the activation of mechanosensitive channels observed as the increase in the patch (DC)
current. Tension in the membrane (γ), the main activating stimulus, is related to the applied
pressure (p) through the radius of curvature of the patch (r) according to the law of Laplace
γ = pr/2 (see the Materials and Methods for the details of tension calibration). Pressure
ramps applied to multi-channel patches activate multiple (∼100) channels, and these “pop-
ulation currents” directly reflect the mean open probability (Popen) in the population when
normalized to the current level at saturating pressures. The analysis of channel population
responses to ramps allows us to determine the threshold, the level of saturation and the
midpoint (p0.5 or γ0.5), which is the condition of equipartitioning between the closed and
open states.
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Figure 1. (Left) Schematic description of the experimental apparatus. The Giga-ohm resistance
of the piece of E. coli’s inner membrane with naturally embedded mechanosensitive ion channels
(MscS) seals the micro-pipette, and provides electrical isolation between its inner and outer sides.
Application of suction to the glass pipette stretches the curved membrane according to Laplace’s law.
This tension can change the state of the MscS channels, generating detectable conducting pathways
between the two electrodes. (Right) The state of the channel (σ) as a function of the membrane
tension (γ). A single channel event is shown. The state of the channel can be monitored with a high
temporal resolution. The transition from the closed (0) state to the open state (1) occurs at γopen.

With a higher amplification, these molecular activation events can be monitored with
pico-ampere precision, which allows us to track the distribution of channels between the
open and closed states at a single-channel resolution [36]. To achieve this resolution and
discern transitions in individual channels, we switched to a special vector in which mscS
expression was controlled by a tight promotor. This allowed us to reduce the channel
population to 10-20 channels per patch and observe individual molecular activation events
(see, for example, Figure 2B).

In this setting, we implemented the “restore to one” protocol on MscS ion channels,
where the one-bit information is stored in the “open” and “closed” states of a single MscS
ion channel (Figure 2A). In a typical experiment, after seal formation and patch excision,
a linear ramp of negative pressure (suction) from zero to the saturating level is applied
to the patch with simultaneous current recording. This step determines the activation
pressure midpoint (p0.5) at which the population is equally distributed between the closed
and open conformations, i.e., the state of highest uncertainty. In the following “bit erasure”
protocol, the pressure is quickly ramped to p0.5, the population is allowed to equilibrate
for 3 s and then the pressure is ramped with different rates to a higher level, where all
channels uniformly assume the open conformation (state of highest certainty). The recorded
traces with easily discernable single-channel steps are analyzed with the “edge detection”
protocol (An Edge Detector program (http://cismm.web.unc.edu/resources/tutorials/
edge-detector-1d-tutorial/, accessed on 19 May 2020, see Figure 4) was employed to detect
the single channel events.) as described below.

At room temperature, the minimal dissipated heat set by Landauer’s bound, kBT ln 2,
is extremely low—about 10−21 joules. This makes any direct measurement of the heat
absorbed by the environment, e.g., by measuring its thermal expansion or temperature
raising, highly challenging. Fortunately, the recent theory of stochastic thermodynam-
ics [37] suggests a way to measure the dissipated heat by watching the behavior of the
thermal system itself, rather than measuring the environment. This method was used in
measuring the saturation of Landauer’s bound in artificial systems [15–21]. The usage of
stochastic thermodynamics was already successfully demonstrated on MscS ion channels
in a different context [38].

19



Entropy 2023, 25, 779

Figure 2. (A): Restore to open protocol. When unperturbed, the channels naturally occupy the low
energy configuration, which is the closed state. In the first part of the protocol, the tension was
quickly (∼ 0.25 s) increased to the midpoint tension γ0.5 (1.9 kBT/nm2) [39] at which the probability
of finding a channel in the open or closed state was 0.5. The tension was kept fixed at γ0.5 for 3 s to
let the channels thermalize at this specific tension value. In the final setup, the tension was increased
from γ0.5 to γτ = γmax (3 kBT/nm2) in 0.25, 1, 5 and 10 s. Regardless of the initial state of the channels,
at the end of the final step, all channels were forced to be in the open state. (B): An experimental trace
obtained from the restore to open protocol. In the final step, the tension was increased from γ0.5 to γτ

in 1 s. The inset shows the single-channel gating events at a higher magnification during the restore
to one operation.

To discuss heat dissipation in the MscS ion channel, we model it as a two-state system
(“open” and “closed”), and introduce a state variable, σ = 0 for a closed channel and σ = 1
for an open one. For a system with N such channels, we denote with σ̄ the average over the
states of the different channels. In contrast to σ, which can take only 0 and 1 as its value, σ̄
can take any value between 0 and 1 with an accuracy N−1. Let εclosed and εopen denote the
energies of the closed and open states of the ion channel itself. The total energy of the ion
channels and the membrane is a function of the tension γ and the state variable σ, and is
given by [38,40,41]:

H(σ̄, γ) = N
[
(1− σ̄)εclosed + σ̄εopen

]
− γA(σ̄), (1)

The additional term γA(σ̄) = Nγσ̄∆A represents the decrease in the energy of the
membrane that occurs when the channels open in response to the applied tension, γ.
Here, ∆A is the area difference between the closed and open state of the channel. Thus,
in the presence of external tension on the membrane, states with larger areas become
favorable [28,29]. The energy and area difference between the closed and open states of a
single MscS channel were already measured in previous publications [29,38], and are given
by: ∆ε ≡ εopen − εclosed = 22 kBT and ∆A = 12 nm2 (for more details, see Section 5.2).
In what follows, we used the standard assumption that ∆A and ∆ε are the same for all
MscS channels.

20



Entropy 2023, 25, 779

Based on the above energy in the system, the total change in energy can be expressed
as follows [42]:

dH(σ̄, γ) =

[(
∂H
∂γ

)

σ̄

dγ +

(
∂H
∂σ̄

)

γ

dσ̄

]
. (2)

The first term on the square brackets of Equation (2) is the change in energy resulting
from some external force changing the tension, which is therefore associated with work.
The second term is the variation of the energy resulting from the change in the internal
configuration of the system, namely due to redistribution between states. To conserve the
total energy, this energetic change requires an exchange of energy with the surrounding
thermal bath, and is therefore associated with heat. With these interpretations, the total
heat and work associated with a realization of the experimental protocol can be written as:

W ≡
∫ τ

0
γ̇

∂H
∂γ̄

dt = −∆AN
∫ τ

0
γ̇σ̄dt (3)

Q ≡
∫ τ

0
˙̄σ

∂H
∂σ̄

dt = N
∫ τ

0
(εopen − εclosed − γ∆A) ˙̄σdt (4)

where τ is the protocol’s duration. In our experiments, the tension γ is changed linearly
with time; therefore, we can write the work integral in the following form:

W = −N∆A
∫ γτ

0
σ̄dγ, (5)

which can be interpreted as N∆A times minus the area under the σ̄(γ) graph. The above
definitions of heat and work imply the N → ∞ limit, to make sense of ˙̄σ. The tools of
stochastic thermodynamics enable us to extend these definitions to small systems with
even a single channel, where σ can take only discrete values of 0 or 1, and changes abruptly
between them. In this case, the work in Equation (5) can be directly used. To calculate the
heat, however, we note that in this case σ(t), shown in Figure 1, can be approximated with
the Heaviside step function:

σ(t) = θ(t− topen). (6)

Exploiting the relations between the Heaviside step function and the Dirac delta
function, we can write the heat integral in a particular realization:

Qrealization =
∫ τ

0
˙̄σ

∂H
∂σ̄

dt =
∫ γτ

0

∂H
∂σ̄ ∑

Transitions
δ(γ− γtrans.)dγ

= ∑
Transitions

(∆ε− γtrans.∆A) (7)

Alternatively, the heat can be expressed as the difference between the total change in
energy and the work.

Q = ∆H −W = [εopen − εclosed − γτ∆A]− [−∆A(γτ − γtrans.)]

= [εopen − εclosed − γtrans.∆A], (8)

where we expressed ˙̄σ as a sum of delta functions located at the transition tensions γtrans.
in this specific realization, and ∆ε and ∆A represent the changes corresponding to the
specific transition, which can be both the opening or closing of a channel. As the channels
are independent, this definition also gives a heat value for each gating event. Stochastic
thermodynamics assures [37] that the average of the heat calculated by Equation (7) over
many realizations converges to the correct ensemble average of the heat dissipation. Note
that Equation (7) with a minus sign corresponds to the heat released by the system into the
environment: the difference between the intrinsic transition energy in the channel molecule
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(which is constant) and the work that is performed on the molecule by external tension
during the transition (which is proportional to applied tension) gives us the dissipated
heat. By construction, the above definitions of heat and work recover both the first and
second laws of thermodynamics [38]. With the above interpretation, heat and work can be
associated with every realization of the protocol. It is important to note, however, that they
do not have the same value at every single realization, and they may fluctuate from one
realization to the next. Therefore, averaging over many trajectories is required to obtain a
reliable estimate for the dissipated heat.

3. Results
In a typical experimental setup, the MscS channels naturally reside in the closed state

when no pressure is applied to the system. Therefore, in the first stage of the experiment, we
increased the membrane tension by applying suction pressure on the micro-pipette, to the
midpoint tension value γ0.5 at which probabilities of finding the channel in the closed or
open states are equal, POpen = PClosed = 0.5 (this ramping is performed during 0.25 s). We
then let the system thermalize at this tension value (γ0.5) by keeping the pressure fixed for
3 s. The system’s entropy at this stage can be calculated as: SInitial = −kB ∑i Pi ln Pi = kB ln 2
(see Figure 2A).

In the second stage of the experiment, we increased the membrane tension to 3 kBTnm2

at which POpen = 1. This was performed at various ramping rates. This protocol mimics
Landauer’s “restore to one” operation, which deletes a single bit of information. To see why,
note that the channels are restored to the open state from an initial configuration where the
closed and open states are equally likely to be occupied. Since the channels are forced to the
open configuration regardless of their initial status, this protocol is equivalent to the “restore
to open”. The entropy of the system after this stage is given by: SFinal = −kB ∑i Pi ln Pi = 0.
Therefore, the change in the entropy of the system is ∆S = SFinal − SInitial = −kB ln 2. This
operation corresponds to deleting a single bit of information. Formally, the system has
to get back to the same tension value. However, this does not make any difference since
we can always release the tension instantaneously without changing the work or heat.
To compensate for the system’s entropy decrease, the heat released into the environment
must be at least kBT ln 2, otherwise, the total entropy of the system and the bath decreases,
leading to a violation of the second law of thermodynamic.

We repeated the above experiments many times and gathered ∼200 single-channel
events for each erasure protocol. In each realization, we monitored the heat released into
the environment using Equation (7) and the known values of ∆ε and ∆A. These were
plotted as a function of the rate at which the tension was changed from γ0.5 to γτ in Figure 3.
As expected, the averaged dissipated heat decreases with the protocol duration. At the
slowest experimental erasure protocol achievable (see Section 4), we reach very close to the
Landauer limit of kBT ln 2, much closer than any other biological system reported so far.

To further verify our results, we simulated a Markovian model of MscS gating using
our experimental protocol (restore to open) as the input driving force in the simulation using
QUBexpress software The software is available at https://qub.mandelics.com (accessed on
19 May 2020). The parameters used in the simulation and details of the two-state Markov
model of MscS are given in Section 5. Since in the simulations the erasure protocols can
be made arbitrarily slow, we obtained the heat distribution as a function of longer erasure
protocols (Figure 2, red data points). The simulation results are in good agreement with the
experimental measurements at short protocols, and for longer protocols, they in fact attain
the kBT ln 2 bound.

22



Entropy 2023, 25, 779

Figure 3. The average dissipated heat as a function of the “restore to open” operation rate. As the
channels are restored to the open state slower and slower (the duration increases), the average heat
dissipated decreases, but it is always above Landauer’s limit of ln2. Under sustained mechanical
stimuli, the MscS channels inactivate wherein they enter a non-conductive and tension-insensitive
state. Therefore, the slowest experimentally achievable erasure duration was limited to 10 s after
which the channels display significant inactivation. A Markov model of two-state MscS has been
also simulated using QUBexpress software with different rates of the “restore to open” protocol (red
data points). The simulation results not only agree with the experimental counterpart but also attain
the same limit of ln2. The simulation parameters are provided in Section 5. The inset shows the
histograms of heat distributions from which the averages are obtained.

4. Discussion
Living systems are inherently dissipative, especially as they execute multiple steps

of chemical energy conversion, pump metabolites, produce mechanical work or maintain
constant temperature. The question that the researchers studying structural information
content and cellular computation try to address is not about the total energy balance and dis-
sipation, but rather about the energy consumption by the “cellular switchboard” itself that
turns the cellular processes on and off, replicating information and thus making decisions.
Previous analyses based on the generalized Landauer bound [14] have suggested that
protein synthesis, which is an RNA-guided non-random polymerization of amino acids,
takes about an order of magnitude more energy than the amount of information stored in
the sequence requires. Synthesis of DNA on a DNA template, according to estimations [14],
consumes about two orders of magnitude more energy than the Landauer bound predicts.
The problem with these systems is that the energy provided by the splitting of deoxyri-
bonucleotide triphosphates (dNTPs) is strictly coupled with each polymer extension step,
which makes this chemical energy component inseparable from the purely entropic change
of information content.

In this work, we studied the mechanosensitive ion channel of small conductance
(MscS) from E. coli acting as a tension-operated membrane valve requiring no chemical
energy input. MscS evolved to release excess osmolyte from cells in response to osmotic
water influx that causes the cell envelope to swell and stretch. Opening the entire MS
channel population during strong shock massively dissipates internal ions and osmolytes
that can amount to up to 15% of cellular dry weight [27,43]. This undoubtedly inflicts
substantial energy and metabolite loss on the cell that is trying to evade lysis at any cost.
However, as our results show, the operation of MscS itself in a slow (nearly equilibrium)
regime costs that minimum, exactly as the Landauer limit predicts.

Our experimental conditions allowed us to treat MscS as a two-state memory device.
By applying tension to the patch membrane, we forced the population of channels to change
its state occupancy, from which we measured the thermodynamic cost of deleting a single
bit of information. The heat dissipated during the bit-erasing transition to the singular
open state was measured as the average difference between the intrinsic transition energy
in the channel molecule and the work that is performed on the molecule by external tension.
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The dissipated heat measured with a short “restore to open” time (0.25 s) exceeded 5 kBT,
whereas at slow ramps it approached ln 2 kBT, corresponding to the Landauer bound.

The practical requirements we had to satisfy in our experiments were as follows.
(i) Because MscS channels tend to inactivate when exposed to moderate tension (γ0.5) for a
prolonged period of time, the time for the state restoration protocol cannot be arbitrarily
slow. In order to stay in the two-state regime, we used a short (0.5 s) pressure ramp to
γ0.5, a 3-s equilibration, and a variable duration “erasure ramp” that was limited to 10 s.
The non-inactivating mechanosensitive ion channel of large conductance MscL would
also be a good system for dissipation analysis, but it gates at near-lytic tensions where
membrane patches become unstable [27]. For this reason, MscL was not used. (ii) The
MscS expression level had to be carefully adjusted through the use of a tight-promoter
expression system such that the number of channels per patch (10–20) was suitable for
the edge detection analysis of individual transitions. With all these precautions, a small
degree of adaptation and inactivation were still observed (expected to be around 10% for a
3 s holding time at γ0.5), which gave rise to a non-monotonic current response shown in
Figure 2.

It is important to note that for finite-time erasure processes, the Landauer bound
takes the form ln 2 + C/τ, where τ is the erasing time and C is a system-dependent
constant [15,17,44,45]. However, depending on the intrinsic relaxation time scale of the
experimental setup, it is possible to obtain effective quasi-static erasure processes, which
may explain why the energetic cost of erasing the bit of information encoded in the ion
channel is as low as the theoretic bound. We think that from a biological point of view,
this trait seems natural. Under hyperosmotic conditions, bacteria accumulate ions and
organic osmolytes to maintain a positive turgor pressure inside the cytoplasm. Moreover,
bacteria maintain relatively high voltage across the cytoplasmic membrane (150–200 mV) as
a part of electrochemical potential driving ATP synthesis [46,47]. The thermodynamic and
kinetic stability of the closed state are therefore critical because thermally-driven random
opening events would produce deleterious leakage and uncoupling of bacterial energet-
ics. Thus, evolution has perfected the energy gap (∼22 kBT) between the end states and
the height of the separating barrier such that thermal energy does not produce spurious
openings at rest during the lifespan of bacteria. However, in the event of a sudden osmotic
down-shock such as during a rainstorm, cellular osmolytes are quickly released through
mechanosensitive ion channels in order to reduce the turgor pressure. The low-threshold
MscS and the high-threshold MscL channels are responsible for the bulk of osmolyte
exchange in E. coli, but each channel is specialized in handling different magnitudes of
osmotic shocks. The 3−nS MscL is an emergency valve that opens abruptly at near-lytic
tensions (∼3.5 kBT/nm2) and jettisons the osmolytes non-selectively. The 1−nS MscS,
on the other hand, operates at moderate tensions (∼2 kBT/nm2), and effectively coun-
teracts small osmotic shocks. These channels evolved to defend bacteria under different
osmotic conditions, e.g., emergency vs non-emergency situations, and they perform more
efficiently under certain timescales [29].

Stopped-flow experiments revealed that the characteristic time scales of bacterial
swelling in response to an abrupt dilution vary from seconds at low shocks (100–300 mOsm
downshifts) to 100 milliseconds at stronger (600–1000 mOsm) shocks [27]. Such strong
osmotic down-shock experiments yield the typical timescales at which an emergency
valve operates in nature. MscS populations residing in the cytoplasmic membrane of a
bacterium are usually able to meet the kinetic requirement, i.e., opening and helping to
reduce the internal turgor pressure by quickly releasing the excessive osmotic gradient
before water influx rips open the cell. However, MscS, not being a true emergency valve, is
somewhat inefficient when it is forced to open under timescales of 30–50 ms that correspond
to super-threshold tensions in the cytoplasmic membrane generated by fast dilution in
vivo. This dissipation at higher tensions (and rates) is a “tax” imposed by a relatively
high transition barrier providing a “safety curb” that precludes spurious openings at low
tensions. However, under moderate osmotic shock conditions, when tension buildup in
the cytoplasmic membrane occurs within a time span of a few seconds, MscS performs a
smooth action in a non-dissipative manner, which seems to be consistent with the in vivo
role of MscS in the overall osmotic fitness of E. coli.
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5. Materials and Methods
5.1. Preparation of Giant Spheroplasts and Patch Clamp

The giant spheroplasts of E. coli were prepared following the protocol described in [36].
A total of 3 mL of the colony-derived culture was transferred into 27 mL of LB containing
0.06 mg/mL cephalexin, which selectively blocks septation. After 1.5–2 h of shaking in
the presence of cephalexin, 100–250 µm long filaments formed. Toward the end of the
filamentous growth stage, induction with 0.001% L-Arabinose was conducted for 0–20 min,
which gave 1–15 channels per patch. The filaments were transferred into a hypertonic
buffer containing 1 M sucrose and subjected to digestion by lysozyme (0.2 mg/mL) in
the presence of 5 mM EDTA. As a result, filaments collapsed into spheres of 3–7 µm in
diameter in 7–10 min. The reaction was terminated by adding 20 mM Mg2+. Spheroplasts
were separated from the rest of the reaction mixture by sedimentation through a one-step
sucrose gradient. Borosilicate glass (Drummond 2-000-100) pipets 1–1.3 µm in diameter
were used to form tight seals with the inner membrane. The MS channel activities were
recorded via inside-out excised patch clamp method after expressing them in MJF641.
The pipette solution had 200 mM KCl, 50 mM MgCI2, 5 mM CaCl2, 5 mM HEPES. The bath
solution was the same as the pipette solution with 400 mM sucrose added. Both pipette and
bath solution had a pH of 7.4. Traces were recorded using Clampex 10.3 software (MDS
Analytical Technologies). Mechanical stimuli were delivered using a high-speed pressure
clamp apparatus (HSPC-1; ALA Scientific Instruments).

Tension Calibration
The pressure (p) was converted to the tension (γ) using the following relation:

γ = (p/p0.5)γ0.5 assuming the radius of curvature of the patch does not change in the
range of pressures where the channels were active p > 40 mmHg) and the constant of
proportionality between tension and pressure is γ0.5/p0.5 [26,28,39]. The midpoint ten-
sion, γ0.5 of MscS was taken to be 7.85 mN/m [39]. p0.5 represents the pressure value at
which half of the population is in the open state and was determined from the averages
of 5–10 traces obtained by using 1-s triangular ramp protocols at the beginning of each
experiment (1 kBT/nm2 = 4.114 mN/m).

5.2. Two-State Markov Model
In the context of discrete-space continuous-time Markov processes, kxy represents

the transition rate, probability per unit time, to make a transition from state y to state
x and is described by the Arrhenius-type relation: kxy = k0

xy exp(βγ∆AyB) where k0
xy is

the intrinsic rate (frequency) of the system’s attempts to overcome the barrier between
states x and y in the absence of the tension and ∆AyB is the expansion area from state y
to the barrier, γ is the applied tension and β = 1/kBT. Equivalently, it is easy to show
that koc/kco = e−β(εopen−εclosed)eγ∆A. The following parameters were used for the two-state
model of MscS: k0

co = 9897 s−1, k0
oc = 4e− 6 s−1, |∆AcB| = 7 and |∆AoB| = 5, ∆A = 12.

These parameters have been determined by an independent set of experiments. Typi-
cally, in patch-clamp experiments, kxy is measured at various tension values (γ). By plotting
the rate as a function of tension (ln(kxy) vs. γ) on a semi-logarithmic scale, the slope can
provide an estimate of ∆AyB, while the y intercept can suggest the intrinsic closing rate in
the absence of tension [29]. This is because ln(kxy) can be expressed as ln(k0

co) + βγ∆AyB.
In more recent studies, the estimation of ∆ε has been achieved through the utilization of
the Crooks fluctuation theorem and Jarzynski equality, as demonstrated in [38].
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5.3. Edge Detection
Experimental traces (current vs. time) are analyzed to detect single-channel events

through the use of an edge detector program, as illustrated in Figure 4.

Figure 4. An Edge detector program (http://cismm.web.unc.edu/resources/tutorials/edge-detector-
1d-tutorial/ (accessed on 19 May 2020)) was employed to detect the single channel events.
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Abstract: Landauer’s principle states that the logical irreversibility of an operation, such as erasing
one bit, whatever its physical implementation, necessarily implies its thermodynamical irreversibility.
In this paper, a very simple counterexample of physical implementation (that uses a two-to-one
relation between logic and thermodynamic states) is given that allows one bit to be erased in
a thermodynamical quasistatic manner (i.e., one that may tend to be reversible if slowed down
enough).

Keywords: thermodynamics; information theory; Landauer’s eraser

1. Introduction

Entropy was originally defined by Clausius [1] as the state quantity that accounts
for heat exchanges and their irreversible features. The state of a system is defined by
a set of parameters, the state quantities, such as internal energy, temperature, volume,
pressure, quantity of matter, etc., which make it possible to describe the system, i.e., to
construct a representation of the system as it appears to our senses (there is nothing else we
can access). After Shannon [2], entropy was revealed as the state quantity that quantifies
the complexity of this representation considered as a random variable, that is to say, the
quantity of information required in unit of bits to encode this representation in the memory
of a computer.

The link between information (complexity) and thermodynamics (energy) is neither a
metaphor (a figure of speech) nor an analogy (a comparison based on resemblance) nor
an interpretation (a personal way to explain something). In all these cases, it would be
questionable. However, here, it is absolutely valid and comes from mathematics. Gibbs’
entropy (that of statistical mechanics) is a special case of Shannon’s entropy (the other name
for the quantity of information) and the former is directly derived from Clausius’ entropy
(for a derivation, see [3]). Hence, the connection. The mathematical relations between the
“three entropies” leaves no space for interpretation.

The connection between energy and information makes it possible to understand the
functioning of strange machines such as that of Maxwell’s demon [4] and its variations. By
acquiring and processing information about the velocities or positions of gas particles, the
demon (in the 21st century let us say a computer) is able to establish either a temperature
or a pressure difference which, in turn, could produce work. Without a connection between
information and energy, the demon’s machinery would either violate the second law of
thermodynamics or (more likely) require an energy compensation of unknown origin.

The link between information and energy that comes from Shannon’s information
theory is purely mathematical. It has its advantages (rigor) and its disadvantages (abstrac-
tion). To overcome the latter, Landauer [5,6], followed by Bennett [7,8], tried to establish
this link by using an entirely different method to that of Shannon. Their idea is basically
the following. Information, say a set of bits, has necessarily a physical support. So that to
be stored and processed, the logical values 0 or 1 of one given bit should “necessarily” (the
quotation marks emphasize that it is this precise point which is questioned in this paper)
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be mapped by a one-to-one relation to the states that can be adopted by a thermodynamical
system with a two-minimum (bistable) potential. This one-to-one mapping, known as
Launder’s principle, automatically associates information processing with thermodynamics
laws. A first corollary is that logical (information) and Clausius entropies behave in the
same way, a second is that logical irreversibility (such as erasing one bit of information)
implies thermodynamical irreversibility.

Landauer’s principle is actually a conjecture that has been demonstrated in the par-
ticular case of a one-to-one physical implementation of a bit. Common objections to this
conjecture are mainly conceptual [8]. For example, what exactly “erasing a bit” means
has been discussed and the Landauer–Bennett conception has been questioned. The start-
ing point that one bit requires a physical medium to exist has also been questioned [9].
However, this objection is more philosophical than scientific. It deals with the meaning of
“existence”. Personally, I am a materialist who thinks that even abstractions need physical
support, at least in the form of our brain thinking them. However, this question ultimately
boils down to discussing whether or not something exists outside of our perception. As
interesting as it is, this question is not the responsibility of science, whose theories are
founded and validated by experiments [10].

The purpose of this paper is to propose a concrete (as opposed to conceptual) objection
that comes as close as possible to the requirements of what an ERASE operation should
be according to Landauer. Establishing Landauer’s conjecture as a principle presupposes
its generality that can be accepted until proven otherwise. In other words, whereas it is
not possible to definitely prove that it is true, it is possible to prove it is false by finding a
counterexample. This is the concern of this paper that presents a bistable bit linked (by a
two-to-one surjective relation) to a monostable thermodynamical potential. This two-to-one
implementation allows logical irreversibility to occur in a thermodynamical quasistatic
manner, which may, therefore, tend to be reversible if slowed down sufficiently.

2. Irreversibility
2.1. Logical Irreversibility

Logical operations take one or more bit-values as input and produce a single bit-value
as output. They are logically irreversible if the probability of a given output value differs
from that of the input. Reversible logical operations preserve the quantity of information,
whereas irreversible operations do not. In the case where the initial value of one given bit
is known, the operation RESET TO 0 [5] (equivalent to ERASE [7]) is logically irreversible
because two possible initial values (0 or 1) lead to a single result (0). Once the operation
has been performed, the information on the initial value of the bit is lost.

Note that erasing a set of bits decreases (or leaves constant) their statistical entropy,
e.g., a set of bits with random equiprobable values and maximum entropy has zero entropy
once all values are reset to 0. So that associating the corresponding logical irreversibility to
thermodynamical irreversibility is not straightforward as the latter is most easily associated
with an increase in the entropy of the system (one can think for instance of spontaneous
processes that occur at constant internal energy).

2.2. Thermodynamical Irreversibility

Consider a system that can be found in two different states, say A and B. In thermody-
namics, a process which would consist in bringing the system from A to B (A→B) is said to
be reversible (or irreversible) if there is a restore process (B→A) that allows the system to
be returned to its initial state, and such that at the end of the whole cycle (A→B→A) the
net quantity of heat Q produced by the system and dissipated into the surroundings is zero
(or strictly negative, sign with respect to the system). In most cases, heat is not the quantity
we are interested in. Rather, it would be its complement

Ecost = −Q, (1)

that is, the sum of all other forms of energy supplied to the system.
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First, note that whether a process is reversible or irreversible is not an inherent property
of states A and B, but a property of the path that is taken. In reality, no thermodynamical
process is exactly reversible, perpetual motion does not exist, and a cycle is always accom-
panied with the dissipation of energy in the form of a net quantity of heat passing from
the system to its surroundings. This is formalized by the second law of thermodynamics
which has never been faulted and will not be by this paper either.

To illustrate this point (see Figure 1), let us consider a unit amount of gas in contact
with a temperature reservoir at temperature T. A typical example of a reversible cycle is
that of the isothermal expansion/compression from volume V to 2V by the means of a
piston. If the temperature of the gas is effectively kept constant throughout the process, so
is its internal energy. Due to the conservation principle of energy, at every moment the gas
provides mechanical work dW but draws exactly the same quantity of heat dQ from the
environment. At the end of the expansion stage: Q = −W = T ln(2V)− T ln(V) = T ln 2
(where T is expressed in joules). The cycle is closed by a restore process that involves
exactly the same amount of heat and work but with opposite signs. So that Ecost = 0. This
is an ideal reversible situation that is never reached.

There are two fundamentally different categories of irreversible processes (therefore,
two categories of process altogether). Consider the above expansion with a piston. From a
general rule in physics there exists an unavoidable delay between cause (expansion) and
effect (thermalization), which here implies the inequality T ln 2 ≥ Q.

The second law of thermodynamics is twofold: (1) it identifies ln 2 (in this example)
as being the difference ∆S of a state quantity, namely, the entropy S of the system that only
depends on A and B, but not on the process; (2) it tells us that T∆S ≥ Q (in all cases), so that:

T∆S = T ln 2 ≥ Q, (2)

where the equality holds for an infinitely slow process allowing an infinitely small delay.
The second law of thermodynamics says absolutely nothing more than that.

Figure 1. Expansion of a unit amount of gas from volume V (state A) to 2V (state B) at the same
temperature T (in joules). (1) Monothermal expansion with a piston (top): the gas produces work
W and pumps heat Q. (2) Adiabatic free expansion (middle): no heat and no work are exchanged
with the surroundings. In both cases the cycle is closed using the same restoring process (bottom).
In the first case, the net energy cost Ecost = −Q of a cycle can be as small as desired (quasistatic,
Equation (3)). In the second case, it has a lower limit of T ln 2 (Equation (4)).
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Note that the equality in Equation (2) gives us the only way to measure ∆S, in par-
ticular by using an infinitely slow process (i.e., reversible) to go back to the initial state
(B→A). In our case, this corresponds to the compression of a piston from B to A that
requires mechanical work and provides heat to the surroundings (ideally both with the
same absolute value as for the expansion but with opposite sign). Using this restore process,
the energy cost at the end of the cycle (A→B→A) is:

Ecost ≥ 0 (3)

which means that there is no conceptual impossibility for this energy cost to be as small
as desired by slowing down the process, which is then said to be quasistatic. Processes
belonging to this first category can be considered as potentially reversible. This includes all
those which experience only friction and always remain under control.

Another class of thermodynamic processes are those that are inherently irreversible
because they are out of control. An example is the adiabatic free expansion (see Figure 1)
of a gas without a piston: no heat and no work are exchanged with the surroundings (it
is adiabatic and there is no piston to capture the work). However, something happens
because work has to be done (this time with a piston) to restore the system to its initial state.
This restoring process is the same as in the previous category, so that the energy balance of
such a cycle is:

Ecost ≥ T ln 2, (4)

which means that T ln 2 (the entropy difference between A and B expressed in temperature
units) is a lower limit for Ecost that can never be bypassed.

A point which deserves to be underlined in order to avoid a misinterpretation of what
follows, is that the assertion that a process belongs to one category or another is not a
violation of the second law of thermodynamics. The two categories are both consistent
with it.

Landauer’s principle claims that all physical implementations of the operation RESET
TO 0 (or ERASE) correspond to processes that belong to the second category (inherently
irreversible like the adiabatic free expansion). The aim of this paper is to provide a
counterexample that belongs to the first (potentially reversible if slowed down enough,
like the monothermal expansion).

3. Erasers
3.1. Landauer’s Eraser (One-to-One Implementation)

For some reasons (that are not challenged in this paper), Landauer [5] considers that
the two logical states of a bit, 0 and 1, cannot be physically implemented with the two states
A (volume V) and B (volume 2V) of the previous section. A correct physical implementation
must fulfill two conditions (see [5] p. 184):

(1) states 0 and 1 must be stable;
(2) the operation RESET TO 0 must correspond to the same physical process whatever

the initial state.

Next, Landauer claims (here is the very point challenged in this paper) that the only
possible way to fulfill these two conditions is to realize a one-to-one mapping between the
two bit-values and two stable thermodynamical states separated by an energy barrier, such
as a particle in a bistable potential.

Note that as is, the bistable potential seems to be not convenient to fulfill the second
condition, because there is nothing to do to RESET TO 0 in case the initial state is already at
0, while an energy barrier must be crossed otherwise. To overcome this problem, Landauer
imagines the following functional procedure that follows three stages (Figure 2):

(1) lower the energy barrier down to a value smaller than the thermal energy T, leaving
the system to a “standard” (S) state (Consider a single particle in a diathermal box in
contact with a temperature reservoir. Even if this particle is alone, its temperature is
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well defined by the multiple collisions with the wall of the box. Let us assign bit value
0 when the particle is in the left side and bit value 1 when the particle is in the right
side. The logical states are stable and well defined only when a barrier exists (higher
than thermal energy) between the two sides. The S-state corresponds to the situation
where the barrier is removed);

(2) apply a small energy bias in the desired direction in order to drive the particle into the
desired state;

(3) put up the barrier and remove the bias.

The point is that during the first stage, the probability density of the particle leaks
from its initial potential well to fill both [7]. This leakage occurs in an out-of-control and
irreversible thermodynamical manner, because putting up the barrier at the end of this
stage would not necessarily return the particle back to its initial well. Like free expansion,
stage 1 occurs without energy exchange with the surroundings, contrary to the rest of the
procedure that can be quasistatic, amounts to an isothermal compression, and dissipates at
least T ln 2 (as heat) to the surroundings. In the rest of the argument, Bennett [7] proves that
the initial logical state can be restored to the initial value (0 or 1) by a WRITE operation that
can be performed in a quasistatic manner. So that the whole cycle (ERASE then RESTORE)
costs at least T ln 2 (as in Equation (4)). It follows that this physical implementation of the
irreversible logical operation RESET TO 0 is a process of the second category, that is to say,
thermodynamically intrinsically irreversible (Equation (4)).

The direct physical implementations of a bit by using a bistable potential has been
experimentally achieved. Berut et al. [11] trapped a colloidal particle with a double-beam
optical tweezer. Hong et al. [12] directly worked on magnetic memory at the nanoscale.
This type of experience is unquestionably very difficult and the state of the art. The authors
actually measure a lower energy bound equal to T ln 2 to move the bit from one state to the
other. So that the irreversible and out-of-control “leakage” invoked by Bennet to erase one
bit seems unavoidable. However, Landauer’s principle is stronger than that. It states that it
is unavoidable whatever the physical implementation.
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probability
density

1)
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Figure 2. Landauer’s functional procedure to physically implement the RESET TO 0 (ERASE) logical
operation by the means of a thermodynamical bistable potential with a tunable barrier and a bias.
Here, the bit is initially set to 1 but the same procedure would apply if the was were set to 0.
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3.2. Counterexample (Two-to-One Implementation)

The counterexample I propose is based on the fact that the irreversible leakage from
one potential well to the other of Landauer’s eraser cannot occur if there is only one
potential well: that is to say, two logical states corresponding to one single thermodynamical
state. It remains to find a physical implementation allowing this.

Let us fill a diathermal gas container below a piston at atmospheric pressure while
the piston is at the position of maximum expansion. Then, close the container. This
thermodynamical system is monostable when the piston is up (Figure 3). Let us link the
piston to a connecting rod, a crankshaft, and a pulley of radius 1. A frequency divider
is obtained with a belt and another pulley of radius 2 equipped with a crank, so that to
the single stable position of the piston there correspond two stable positions of the crank
(up and down in Figure 3 if the belt is initially closed while the two pulley angles are
zero). The two crank positions define a bit whose thermodynamics depends on: (1) the
expansion/compression of the gas; (2) the friction of the transmission. As both can be
quasistatic, operations on this bit are too.
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gas
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connecting-rod
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Figure 3. Two-to-one implementation of a bit: quasistatic isothermal compression/expansion of a gas
is performed with a transmission of gear ratio 2 (crank–pulley/crankshaft–pulley). The two stable
positions of the crank (to which are assigned bit values 0 and 1) correspond to a single stable position
of the piston.

Before investigating bit operations, note that (1) due to conservation of energy, the
height of energy barriers for the crank (logical barrier) increases linearly with the gear ratio
crank/crankshaft, whereas that of the piston is constant (thermodynamical barrier); (2) the
gear ratio can vary continuously by using a so-called “continuously variable transmission”
mechanism, say, for instance, a conical pulley for the crank. So that there is no conceptual
impossibility for this variation to be performed as slowly as desired in a fully controlled
and quasistatic manner. It follows that, while the bit is initially at an equilibrium position
(either 0 or 1), the gear ratio can be decreased enough so that the logical barrier becomes
smaller than the thermal energy T (see Figure 4). Then, due to fluctuations of pressure
below the piston, the position of the crank can fluctuate in any position between 0 and
2π, leading to an undetermined bit value. We, thus, obtain a soft potential well (standard
bit-state S), as in the papers of Landauer and Bennett [5,7].
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Figure 4. The gear ratio r can be small enough so that thermal fluctuations of the gas below the piston
permit the crank-angle (φ) to be in any position. This soft potential well determines a third state (S
for “standard”) for a virgin bit.

The RESET TO 0 operation can be performed by the following sequence which is
copied from that of Landauer-Bennett:

(1) put the gear ratio to a small enough value so that the bit is in the S-state;
(2) set the crank to the desired position 0 (by applying in a quasistatic manner a force

similar to the bias in the Landauer–Bennett implementation);
(3) put the gear ratio back to 2.

This sequence is analogous to that of Landauer–Bennett (so that the bit is erased),
but there is a major difference due to the two-to-one implementation. In the S-state, the
crank can move without modifying the position of the piston. The bit position (logic) and
piston position (thermodynamic) are practically uncoupled. Another way to say the same
thing is that at the end of the first stage putting up the energy barrier does not necessarily
return the system to the same logical state (logical irreversibility), but necessarily leaves
the system to the same thermodynamical state (thermodynamical reversibility) because
there is only one potential well.

As the other stages of the sequence do not involve rotation, the overall operation
is performed without any change in the thermodynamical state, nor energy dissipation
(except that of the friction of the transmission, that can be as small as desired). Note
that Shenker [13] (Figure 5 in his paper) proposed another mechanism allowing the cou-
pling/uncoupling logic and thermodynamic parts. However, the discontinuous procedure
for the operation does not permit it to be quasistatic, as explained by Bennett [8].

The bit implementation proposed here avoids this issue. So, although it is logically
irreversible, the procedure with this implementation may be thermodynamically quasistatic.
This procedure fulfills the two conditions stated by Landauer (1—two stable bit-states,
2—the same procedure whatever the initial bit-state) and obeys the same sequence as that
of Landauer (1—lower the barrier; 2—apply a bias; 3—raise the barrier). So that if these
criteria are correct, this two-to-one implementation is also correct from a computational
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point of view. This implementation permits the bit to really be erased, at least as much as
that of Landauer, but this time in a quasistatic manner, allowing Ecost to be down to the
T ln 2 limit, provided the operation is performed slowly enough. Here, “slowly enough”
is in comparison with the rate of thermalization of the gas below the piston (including
the heat transfer through the container wall) and fundamentally means “allowing Ecost to
be smaller than T ln 2”. The characteristic fluctuations rate (or the relaxation rate) of the
system (here the gas) could be viewed as a practical lower-boundary limitation for the rate
of the process. However. actually it is not, for two reasons: (1) the height the energy barrier
can be (in principle) is as high as desired (it only depends on the ratio of the pressures
between the two extreme positions of the piston); (2) in the S-state the bias value can be
increased as much as desired (in principle) as the process is slowed down.

Note that the above physical implementation, here exposed for binary logic, could
be easily extended to multivalued logic [14] by increasing the maximum value of the gear
ratio r. For instance, r = 3 would allow three logical states, etc.

4. Maxwell’s Demon, Szilard’s Engine, and Ratchets

Maxwell was far ahead of his time and was the first to understand the link between
energy and information. He imagined [4] a gas in an insulating container separated in
two parts along the x-axis by a thermally insulating wall having a small door. A demon is
able to measure the velocity component vx of molecules and open the door, allowing faster
molecules to go from A to B while slower ones can only go from B to A. This results in a
decrease in the entropy of the system or equivalently in a temperature difference between
the two compartments, which can eventually be used for running a thermodynamic cycle
and producing work.

A simplified version of this device is due to Szilard [15], the system is made of a
single “gas” particle submitted to thermal motion in a box divided into two parts (say left
and right). The demon puts a wall on the middle, then measures where the particle is,
places a piston on the opposite side, and removes the wall so that the pressure can produce
work on the piston. Today, Szilard’s engine is no longer a curiosity. It is at the basis of
some experimental realizations of Feynman’s ratchet [16] at a molecular level [17–19] with
potential interesting applications.

How can these machines work in accordance with the second law of thermodynamics?
Landauer’s principle is often presented as the key point for their understanding. Let us
examine this.

4.1. Energy, Entropy, and Information

Energy is a strange physical quantity. It is a universally used concept, but there is
no definition of what exactly energy is. Actually, energy is an abstraction only defined
by a conservation principle. This is explained by Feynman in his physics lessons [20]. In
thermodynamics, this conservation principle originates from the experiments of Joule [21],
who produced heat (in calorie) by providing mechanical work (in Nm) and observed that
both quantities are proportional, so that by using the same unit (joule) one can introduce a
quantity (namely the internal energy) that is constant for an isolated system. Then, each
time this principle of conservation seems to be violated, it suffices, to conserve it, to declare
that a new form of energy has been discovered.

The introduction of the concept of entropy with the second law of thermodynamics
is quite similar. This law can be stated as: (1) there exists a form of internal energy
proportional to the temperature T and to a state-quantity S named entropy such that T∆S
is the heat exchanged for a reversible process; (2) the entropy of the state of a system cannot
decrease at no cost in energy. Each time this law seems to be violated, it suffices, to preserve
it, to declare that we have missed something in performing the energy balance.

Maxwell is also the person who wrote, well before Shannon’s theory of information,
“The idea of dissipation of energy depends on the extent of our knowledge” [22]. So, it
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is clear that in his mind the missing term in the energy balance lies in the knowledge (or
information) necessary for the demon to operate. Information is a new form of energy.

After Shannon, things become clearer. The link between entropy and probabilities was
made by Boltzmann, Planck, and Gibbs [23–25], leading to the equality: S = ∑i pi ln(1/pi),
where pi is the probability for the system to adopt the microstate i. Then, Shannon [2]
demonstrated that this quantity is also the average number of bits required to encode and
store a representation of the microstate of the system (i.e., the minimum requirement to
treat this information). The link between information and energy is made and Maxwell’s
demon machine has no more mystery. Except we do not know exactly where inside the
demon the energy dissipation is happening. If we want to be more precise, as a demon
does not exist, we must first specify what we are going to replace it with. We must enter
into the details of the physical implementation of the ratchet. However, before this, let
us first note that there is absolutely no reason for the “location” of the dissipation to be
universal. So that with regard to what a theory should be, i.e., not an explanation but rather
an economy of thought [10,26], it is not certain that we gain much by doing this.

4.2. Landauer–Bennett vs. “Shannon Only” Interpretations

Following Bennett [7], Szilard’s demon is replaced by a Turing machine and the
measure is a COPY of the particle position (left or right) to one bit (0 or 1) of the memory
buffer of the machine to the state on which the rest of the process depends. To run cyclically,
the COPY operation is actually an OVERWRITE, that can be split into ERASE (i.e., RESET
TO 0) then WRITE. Hence, the answer: the expansion of the gas produces mechanical work
equal (at best) to T ln 2, but the ERASE costs (at least) the same quantity (Equation (4)).
In Bennett’s mind, the place where dissipation occurs is then well identified (ERASE
operation). Landauer’s principle claims the generality of this. Two objections can be made
to this reasoning.

The first objection is that splitting OWERWRITE is not necessary. The overwriting can
be performed directly according to the same mechanism as in Figure 2 (i.e., independent of
the initial state) but with a final state which depends on the measurement and which is not
always equal to 0. For a cyclic process, overwriting the previous measurement by the last
one does not change the entropy of the system because both measurements have the same
probability distribution. In this case, OVERWRITE is logically and thermodynamically
(statistically) reversible, even in the framework of Landauer’s physical implementation.
Introducing an irreversible ERASE operation is artificial.

Note that this objection is different to that of Earman and Norton [27] who attempt to
replace ERASE by reversible operations. The authors introduce a conditional operation (IF)
that is equally logically irreversible, as explained by Bennett ([8] p. 505) in his refutation.

The second objection directly comes from the counterexample given in this paper: the
reasoning falls down if ERASE can be achieved in a quasistatic manner as is shown here.

Understanding of Szilard’s engine in the framework of Shannon’s information theory
is different. Because the phase space of the gas is discrete and finite, a given microstate
corresponds to a given value of an integer random variable with a finite support. The gas
is a random source of information that can be encoded by using a number of bits per word
(per microstate) equal to the Shannon’s entropy (namely, the quantity of information or
the uncertainty about the source). As Shannon’s entropy of microstates distribution is the
same as Gibbs’ entropy, that is the same as Clausius’ entropy, it follows that reducing the
uncertainty in the source by a factor of 2 (making the economy of one bit) has necessarily
an energy cost at least equal to T ln 2 (according to the second law used here, exactly as it
was also in Landauer’s eraser approach). This is exactly what is performed when Szilard’s
demon puts up the wall prior to any measurement. However, this should be seen as part of
a cycle with an arbitrary beginning and end. So that the cost has not to be paid immediately
but either by the rest of the process necessary to close the loop or its equivalent belonging
to the previous cycle. This solution à la Shannon does not enter in the detailed mechanism
of the demon’s black-box, thus leaving the space for specific implementations. It is free of
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any physical support for information because the entropy of the source (the emitter) does
not depend on the presence or absence of a receiver (the physical support). For instance,
Brillouin [28] outlines that the demon needs light to see where the particle is (measurement)
and that the energy needed for this light emission will prevent violation of the second law.

What we know from Shannon, is that T ln 2 must we paid somewhere for Szilard’s
engine to work, but that this cost can be everywhere in the demon and is not necessarily
due to an ERASE operation: (1) because ERASE is not unavoidable; (2) because ERASE can
be performed in a thermodynamical quasistatic manner.

5. Concluding Remark on Computing Power Limits

Computing requires ERASE operations. As a consequence, Launder’s eraser energy
cost (T ln 2) is often considered as an absolute quantity that limits the computing power.
The bit-implementation given in this paper shows that this idea is not correct: logical
irreversibility does not necessarily imply thermodynamical irreversibility.

The question is not whether a computer can be built by using such a mechanical im-
plementation (clearly it should not), but rather whether other two-to-one implementations
would allow the same result. This cannot be excluded, in particular in cases where the
information is not processed by computers but by biological systems. Launder’s principle
that involves a one-to-one implementation is likely very (may be the most) common, but
it is not general (the counterexample demonstrates this). Szilard’s engines need at least
T ln 2 per cycle to work in agreement with the second law whatever way the engines are
physically implemented. However, computing is not only dedicated to these engines.
Following Landauer [6], there are no unavoidable energy consumption requirements per
step in a computer provided reversible computation is performed. This article shows that
this assertion can be extended to irreversible computation.
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Abstract: We present a modified version of the Szilard engine, demonstrating that an explicit mea-
surement procedure is entirely unnecessary for its operation. By considering our modified engine, we
are able to provide a new interpretation of Landauer’s original argument for the cost of erasure. From
this view, we demonstrate that a reset operation is strictly impossible in a dynamical system with
only conservative forces. Then, we prove that approaching a reset yields an unavoidable instability
at the reset point. Finally, we present an original proof of Landauer’s principle that is completely
independent from the Second Law of thermodynamics.
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1. Introduction

Since the inception of thermodynamics, a delicate tension between physics and infor-
mation has been unfolding. On the one hand, it is generally believed that knowledge of
a system’s evolution will not, by itself, change that evolution. Simultaneously, what an
observer can do with a system (i.e., extract work or decrease entropy) does depend upon
the knowledge they possess. Since the Second Law of thermodynamics, roughly speaking,
requires that the thermodynamic entropy of a closed system can only increase, a paradox
emerges: can an intelligent being circumvent the laws of thermodynamics?

The first recognition of this paradox was by Maxwell, who described how the entropy of a
gas could be decreased by “the intelligence of a very observant and neat-fingered being” [1]. In
a thought experiment, Maxwell imagined this being opening and closing a massless shutter
between two vessels of gas at equilibrium. With knowledge of the paths and velocities of
all the molecules, the intelligent being can selectively let fast-moving molecules pass to one
side and slow-moving molecules to the other. As a temperature difference grows between
the two vessels, the entropy of the system decreases. This intelligent being became known
as Maxwell’s Demon.

Since the Second Law of thermodynamics forbids such decreases of entropy in closed
systems, there must be a way of accounting for the Demon’s information about the system.
Such was the thought of Leo Szilard, who in 1929 created an engine that permits easier
analysis of the connection between information and thermodynamics [2]. A depiction of
Szilard’s engine is presented in Figure 1.

In contrast to the Maxwell’s Demon thought experiment, Szilard’s engine contains
only one particle in a closed vessel kept at temperature Tb. A movable partition is inserted
in the centre of the vessel, creating two sub-chambers, which we take here to be equal
volumes Vl = Vr =

1
2 Vtotal . The partition also confines the particle to one side of the vessel.

Several assumptions are made in the analysis of the Szilard engine:
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1. The partition can be inserted or removed from the chamber at a fixed position with
zero energy cost.

2. When the partition is removed from the chamber, it can be slid left and right with
zero energy cost.

3. The heat bath at temperature T is infinitely large.
4. The practical difficulties (i.e., constructing a particular mechanical assembly) of ex-

tracting work from a single particle may be ignored.
5. During expansion, the partition can be moved slowly enough to be considered quasi-

static, so nonequilibrium and transitory effects may be ignored.
6. The pulleys exert no force in equilibrium other than to redirect the tension of the

string.

To justify assumptions 1 and 2, one may note that when the partition is not in con-
tact with the particle, the partition may be moved by conservative forces alone (i.e., any
kinetic energy transferred to the partition may be recovered when slowing it to a halt).
Assumptions 3–5 are, strictly speaking, idealizations. Assumption 6 is weaker than assum-
ing that the pulleys are massless and frictionless (typical for dynamics problems), and is
hardly a step from their real behavior. Szilard made assumptions 1–5 either implicitly or
explicitly, and here we add assumption 6 for our analysis [2].

Figure 1. A depiction of the classic Szilard engine.

Following Szilard, we start with the partition at the midpoint of the chamber. If the
piston is positioned correctly, then work can be extracted from this engine by a quasi-static
isothermal expansion. For a single particle, this work is given in Joules by:

W =
∫ Vf

Vi

P dV (1)

=
∫ Vf

Vi

NkT
V

dV (2)

= NkT ln
Vf

Vi
(3)

= (1)kT ln
Vtotal

1
2 Vtotal

(4)

= kT ln 2 (5)

where N is the number of particles (in this case 1), k is the Boltzmann constant, and T is
the temperature in degrees Kelvin. It may seem dubious to use thermodynamic quantities
to describe a single particle. However, this is justified if we imagine time-averaging the
particle’s behavior, as is common practice in such idealizations [3].

In order to position the piston correctly, however, a measurement must be made to
determine which side of the partition the particle occupies. Thus, Szilard argued, we must
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associate k ln 2 units of entropy with the measurement, in order to account for the work we
are able to extract as a result. Szilard writes:

If we do not wish to admit that the Second Law has been violated, we must
conclude that the intervention which establishes the coupling between y and x,
the measurement of x by y, must be accompanied by a production of entropy [2].

Since these words were put down in 1929, the story has remained much the same. The
only major change was made by Landauer, who suggested that the erasure of information
was specifically what generated heat. In particular, Landauer wrote that the energy cost
we must pay when erasing this measurement equals or surpasses kT ln 2 [4]. Thus, the
cost of erasing our measurement ultimately saves the Second Law from the Demon’s wiles.
Notably, realizations of the Szilard engine have been confirmed in experiment [5].

Surprisingly, the question of whether measurement is necessary at all to operate
Szilard’s engine seems completely absent from the literature. This consideration does not
appear to have crossed Szilard’s mind, or the minds of any subsequent authors. While we
would be delighted to find out we overlooked an analysis somewhere, our search through
the literature did not reveal any previous discussion of this question. We present our
modified engine to demonstrate one way the engine could work without us measuring.

2. Modified Szilard Engine

In Figure 2, the modified Szilard engine is shown. The only difference between the
setups in Figures 1 and 2 is the positioning of the piston and the use of a second pulley.
Importantly, the piston does not have to be moved to a different location to extract work
from the engine in Figure 2, regardless of the side the particle is on. Thus, since the side the
particle is on does not matter to the action of the engine, the measurement is superfluous.

Figure 2. Our modified Szilard engine.

2.1. Work Extraction Protocol

The most likely objection to our modified engine in Figure 2 is that work cannot
actually be extracted by it; work can only be extracted in a directed manner. Since the
modified engine does not allow for knowledge of which way the partition should move,
no sort of directed expansion is possible. Note, however, that the necessity of directing the
expansion (thus the necessity of measuring) is exactly what is under question to begin with.
We cannot assume a priori that this is impossible simply because it is unfamiliar.

To shed some more light on the analysis of work extraction, consider the following
common description of quasi-static compression and expansion. Imagine a pile of sand
placed on top of a piston against which gas is compressed. By adding a single grain of sand
to the pile, the gas compresses slightly and reaches a new equilibrium. Grain-by-grain, the
gas can be compressed to any desired amount. Likewise, grains can be removed one-by-one
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and the pile of sand will rise to find a new equilibrium. Assuming a constant temperature,
the work performed on the sand during this compression or expansion is given as:

W =
∫ x f

xi

F · dx (6)

=
∫ x f

xi

−m(x)g · dx (7)

=
∫ x f

xi

P(x)A · dx (8)

=
∫ Vf

Vi

NkT
V

dV (9)

= NkT ln
Vf

Vi
(10)

where x is the piston’s displacement, F is the force on the gas, and m(x) is the mass
of the sand pile as a function of displacement. In Equation (8), since the system is in
equilibrium, we may use P(x)A = −m(x)g. In Equation (9), we use the fact that A · dx is a
change in volume dV. Unsurprisingly, the final expression in Equation (10) is equivalent to
Equation (3). Thus, as long as we may remove grains of sand one-by-one from a piston, we
may extract work in a quasi-static manner.

Can grains of sand be placed on the piston in Figure 2 as easily as they could for
Szilard’s engine? Upon close inspection, we see nothing that would prevent this. Sure,
the gravitational force from a single grain is orders of magnitude greater than the average
pressure from a single particle, but the same challenge is faced by Szilard’s engine. For
both cases, in principle, nothing prevents the design of a piston with enough mechanical
advantage that the average force exerted by the particle will reach equilibrium with the
gravitational force of a reasonably sized pile of sand. Moreover, we made assumption 4 to
secure us against such practical challenges. Thus, we conclude that work can be extracted
by quasi-static expansion of the engine shown in Figure 2.

To be fully explicit about the cycle we imagine for Figure 2, we specify the following
four steps, beginning with the partition at the midpoint of the chamber:

1. ‘Grains of sand’ are placed on the piston.
2. The partition is inserted into the chamber (with no energy cost, per assumption 1).
3. ‘Grains of sand’ are removed yielding a quasi-static expansion.
4. The partition is removed from the chamber and brought back to the midpoint (with

no energy cost, per assumption 2).

The attentive reader should immediately be suspicious of these four steps. If carried
out exactly as written, we would have extracted a definite quantity of work while spending
no energy in a complete engine cycle. Clearly, such a situation would violate the Second
Law, and the Kelvin statement in particular. Without question, something is amiss. As
we expose what that is in the next few sections, we will discover exactly where the cost of
erasure comes from, and illuminate the precise link between energy and information.

2.2. Considering Information

At this point, it is natural to wonder what happened to the information. It seems to
have played no role thus far—and precisely characterizing its role was our motivation from
the start. Is it encoded in the engine somehow?

Upon closer inspection, we find that the position of the partition (or equivalently, the
position of the string), carries the information about the particle’s original position. Let x
represent the (horizontal) position of the partition, with the starting position being x = 0,
and the positive direction being to the right. After one expansion, if the particle started on
the left, then we will have x > 0, and if the particle started on the right, then we will have
x < 0. Thus, the sign of x, taking two possible values, can be treated as a bit of memory
that stores the measurement of the particle’s initial side.
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The reader may feel some unease with interpreting the partition’s position as a ‘mea-
surement’, for this is certainly an unfamiliar way of thinking about measurement. However,
consider Szilard’s description of measurement in his 1929 paper:

For brevity we shall talk about a “measurement”, if we succeed in coupling the value of a
parameter ys (for instance the position coordinate of a pointer of a measuring instrument)
at one moment with the simultaneous value of a fluctuating parameter xs of the system, in
such a way that, from the value ys, we can draw conclusions about the value that xs had
at the moment of the “measurement”. (The s subscripts were added to distinguish
Szilard’s notation from ours.) [2]

We contend this description accords exactly with the common intuition of what a measure-
ment is: a coupling between one variable and another, such that the one informs an observer
of the other. Thus, by letting ys = sign(x), and letting xs represent the original side of
the particle, the value of xs can be concluded from the value of ys. Thus, the description
justifies the interpretation of the partition’s location as representing a measurement.

At face value, this reinterpretation seems to offer little value, as it appears we are in
the same position as with Szilard’s original engine. Namely, our work extraction protocol
generates information, which must be accounted for in the analysis. However, we are in
fact at a great advantage since now informational concepts are on the same playing field as
the dynamics; we can analyze this information strictly using the tools of physics. In doing
so, we will find a better reason for the link between energy and information than simply
not wanting to admit that the Second Law has been violated.

3. Landauer’s Original Argument

Landauer’s principle states that the act of erasing one bit of information necessarily
carries an energy cost of kT ln 2. With our modified engine, we are now in a position to
fully explain the reason for this cost, pinpoint its source, and demonstrate its generality.
However, before turning attention to the reset operation (step 4) of our modified engine
in Figure 2, it will be most helpful to remind ourselves of Landauer’s argument for why
erasure is necessarily dissipative. He considers a single particle in a bistable potential well,
then asks whether we can reset the particle to the ONE state with a single time-varying
force. He writes:

Since the system is conservative, its whole history can be reversed in time, and we will
still have a system satisfying the laws of motion. In the time-reversed system we then have
the possibility that for a single initial condition (position in the ONE state, zero velocity)
we can end up in at least two places: the ZERO state or the ONE state. This, however,
is impossible. The laws of mechanics are completely deterministic and a trajectory is
determined by an initial position and velocity. (An initially unstable position can, in
a sense, constitute an exception. We can roll away from the unstable point in one of at
least two directions. Our initial point ONE is, however, a point of stable equilibrium.)
Reverting to the original direction of time development, we see then that it is not possible
to invent a single F(t) which causes the particle to arrive at ONE regardless of its initial
state [4].

Landauer’s first point is that for a conservative system, the history can be reversed in
time. A classical mechanical system is conservative if there exists a potential function V
such that

F(x, t) = −∇V(x) (11)

where F is the net force vector, x is position, and t is time [6]. In such a system, Newton’s
equations are time reversal invariant since the forces depend only on position and not time.
Thus, F(x, v, t) = F(x,−v,−t). Recognizing this fact is critical to the rest of the argument.
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The dynamics of such a system are described by the second order ordinary differential
equation:

ẍ = −∇V(x)
m

(12)

where m is the mass. (Equation (12) and the following arguments are written for a one-
dimensional system for the sake of simplicity, although extending them to multiple di-
mensions would be relatively straightforward. In addition, the arguments can be made
mutatis mutandis in general coordinates using Lagrangian mechanics, also neglected for
simplicity). With such dynamics in mind, Landauer then states that, in the time-reversed
system, for a single initial condition, we can end up in two places, which is impossible.
This fact can be seen as a direct consequence of the Existence and Uniqueness Theorem for
Ordinary Differential Equations, also known as the Picard–Lindelöf Theorem [7].

Theorem 1 (The Existence and Uniqueness Theorem; Picard–Lindelöf). Let R ⊆ R×Rn be
a closed rectangle with (t0, x0) ∈ R. Let f : R→ Rn be continuous in t and Lipschitz continuous
in x. Then, there exists some ε > 0 such that the initial value problem

ẋ(t) = f (t, x(t)), x(t0) = x0 (13)

has a unique solution, x(t) on the interval [t0 − ε, t0 + ε].

To apply the theorem to the dynamics in Equation (12), we set

x =

[
x
v

]
=

[
x
ẋ

]
(14)

f (t, x(t)) =
[

v(t)
−∇V(x)/m

]
(15)

then it follows that, so long as ∇V(x) is Lipschitz continuous, then a unique solution x(t)
is guaranteed to exist on some interval including t0. If we set t = t0 at the moment of reset,
then the reverse dynamics of the reset operation will yield two nonunique solutions to
the same initial value problem. Thus, if we allow reset under conservative dynamics, we
violate the Existence and Uniqueness Theorem. This is another crucial fact to recognize for
the argument.

Landauer then notes that an unstable equilibrium constitutes an exception in some
sense. This point is actually quite nuanced, and we will treat it comprehensively in the
following analysis. For now, we simply mention that it will play an instrumental role in
proving the cost-of-erasure bound, and will constitute the precise location where this cost
is paid.

Finally, again considering the possibility of a reset operation, Landauer writes “if,
however, we permit the potential well to be lossy, this becomes easy” [4]. Here, lossy may
be taken as a synonym for nonconservative. Thus, the seeds of a rigorous argument are
laid: a reset operation is not possible under conservative dynamics due to the Existence and
Uniqueness Theorem, and therefore, it must involve nonconservative dynamics resulting
in an energy cost.

What remains is to explicitly demonstrate that the cost of erasing one bit has a par-
ticular lower bound, namely kT ln 2. Landauer’s approach was to include this bit in the
thermodynamical state space and conclude that its erasure decreased the system’s entropy
by k ln 2, thus generating kT ln 2 J of heat. While satisfying to some, the validity and gen-
erality of his conclusions remain highly controversial to this day [8–13]. In Section 5, we
will prove this lower bound directly by mechanical and statistical considerations alone,
providing what we hope is a satisfying and definitive conclusion to this controversy.
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4. Reset Operations with Conservative Forces

We now shift our gaze to step 4 of our modified Szilard’s engine cycle: removing
the partition from the chamber and returning it to the midpoint. At the end of step 3, the
partition can be in one of two places: the right side of the chamber, or the left side. In
step 4, we hope to bring the partition back to the midpoint regardless of which side it was
on. Thus, if we look closely at step 4, we should expect to catch the act of erasure on full
display, ready to be subjected to our scrutiny.

4.1. Approaching Reset

In Section 3, we demonstrated that a reset operation under conservative dynamics is
strictly impossible. In this section, we are going to try anyway, to see exactly what happens
when we get close. In particular, we will take the limit as we approach a reset operation,
with the constraint that we dissipate zero energy.

If we dissipate zero energy, we may not use any dissipative forces to return the
partition to the midpoint. Instead, we may only use conservative forces, which can be
expressed as the gradient of a potential function, defined by Equation (11). The challenge is
thus: can we invent some potential function, V(x), such that when the partition is subjected
to this V(x), the forces that are induced will return the partition to the midpoint, regardless
of whether it started on the right or left? Consider the potential function in Figure 3, where
we present one attempt at such a function.

Figure 3. A potential energy function, V(x), one might use to attempt a reset procedure using
conservative forces.

The ball represents the partition. The arrows showcase how the partition would be
brought back to the midpoint if it started on the left and the right. We find that when the
partition comes to rest at x = 0, it will be at an unstable equilibrium point. We now see in
greater detail why reset in a conservative system is impossible. If the partition starts exactly
at x = 0, then it will stay at x = 0 as long as there are no disturbances. If the partition
starts anywhere else, it will never come to rest at x = 0. This can be seen as another
consequence of the time reversal invariance property and the Existence and Uniqueness
Theorem, presented in Section 3.
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The presence of an unstable equilibrium at x = 0 is no coincidence and will play
an important role. It turns out that every system approaching a reset operation with
conservative forces will result in an unstable equilibrium at the reset point. We present
proof of this fact next.

4.2. General Proof of Instability

First, we define a parameter h that measures how close we are to executing a reset. To
be precise, consider two trajectories x1(t) and x2(t), and some equilibrium point xe, which
we will treat as our reset state. We characterize these trajectories as follows:

||x1(0)− x2(0)|| > 0 (16)

||
[

x1(τ)
v1(τ)

]
−
[

xe
0

]
|| ≤ h (17)

||
[

x2(τ)
v2(τ)

]
−
[

xe
0

]
|| ≤ h (18)

∇V(xe) = 0 (19)

where τ > 0 is some elapsed time. Equation (16) says that the two trajectories start in
different places, while Equations (17) and (18) specify how close our trajectories are to being
‘merged,’ and Equation (19) is simply the equilibrium condition. We take x1(0) and x2(0)
as given, meaning the starting points do not vary with h. Our goal is to investigate what
happens as h→ 0. We will prove that, for any conservative system under these conditions,
the reset state is an unstable equilibrium. To begin, we turn to Lyapunov for a rigorous
definition of stability [14].

Definition 1 (Lyapunov Stability). Consider an autonomous dynamical system given by

ẋ = f (x(t)), x(0) = x0, (20)

where x(t) ∈ D ⊆ Rn denotes the system state vector, D is an open set containing the origin,
and f : D → Rn is a continuous vector field on D. Suppose f has an equilibrium at xe such that
f (xe) = 0.

This equilibrium is said to be Lyapunov stable, if, for every ε > 0, there exists a δ > 0 such
that, if ‖x(0)− xe‖ < δ, then for every t ≥ 0 we have ‖x(t)− xe‖ < ε.

Definition 2 (Instability). The equilibrium point xe is defined to be unstable if it is not Lyapunov
stable.

We write out our conservative system from Equation (12) as follows:

x(t) =
[

x(t)
v(t)

]
(21)

f (x(t)) =
[

v(t)
−∇V(x)/m

]
(22)

ẋ(t) =
[

ẋ(t)
v̇(t)

]
= f (x(t)) (23)

where v = ẋ is the velocity.

Theorem 2 (Instability of Conservative Reset). Let x1(t) and x2(t) be trajectories of a conser-
vative system and let xe be a point. If x1(t), x2(t), and xe satisfy Equations (16)–(19), then in the
limit as h→ 0, xe is an unstable equilibrium.

47



Entropy 2024, 26, 203

Proof. We must show that it is not the case that for every ε > 0, there exists a δ > 0 such
that, if ||x(0)− xe|| < δ, then for every t ≥ 0 we have ||x(t)− xe|| < ε. Equivalently, we
will show that there exists an ε > 0 such that for every δ > 0, there exists a t ≥ 0 and x(0)
satisfying ||x(0)− xe|| < δ such that ||x(t)− xe|| ≥ ε.

Let x1(t) =
[

x1(t)
v1(t)

]
, x2(t) =

[
x2(t)
v2(t)

]
, and xe =

[
xe
0

]
. We then set

ε = max (||x1(0)− xe||, ||x2(0)− xe||) (24)

We may have that x1(0) = xe or x2(0) = xe, but these two conditions cannot both be
true, as this would violate Equation (16). Thus, our selection for ε always yields ε > 0.
Consider the reverse dynamics.

Case 1: if ||x1(0) − xe|| > 0 then set x(0) =

[
x1(τ)
−v1(τ)

]
. Then, x(τ) = x1(0) and

limh→0 ||x(0)− xe|| ≤ limh→0 h < δ for all δ > 0. Thus, for every δ > 0 there exists a t ≥ 0
such that

||x(t)− xe|| ≥ max (||x1(0)− xe||, ||x2(0)− xe||) = ε (25)

Case 2: if ||x2(0) − xe|| > 0, then set x(0) =

[
x2(τ)
−v2(τ)

]
. Then, x(τ) = x2(0) and

limh→0 ||x(0)− xe|| ≤ limh→0 h < δ for all δ > 0. Thus, for every δ > 0 there exists a t ≥ 0
such that

||x(t)− xe|| ≥ max (||x1(0)− xe||, ||x2(0)− xe||) = ε (26)

Thus, we have demonstrated that any equilibrium point at which two trajectories
merge in a conservative classical mechanical system is necessarily unstable. (Note that, in a
nonconservative system, the preceding argument fails, for the time-reversal property plays
a necessary role in setting x(0).) This result can easily be generalized to trajectories that
merge (anywhere) away from equilibrium, simply by viewing the trajectories in the proper
inertial or noninertial frame of reference (such that the merge point is an equilibrium in that
frame). Moreover, we did not require any assumption that either x1(0) 6= xe or x2(0) 6= xe.
As a result, even though the reset state in Figure 3 is distinct, our proof covers the case of
‘reset to ONE’, which Landauer originally discussed [4]. To conclude, without any loss
of generality, we can view Figure 3 as stereotypical of any scheme to erase information
without spending energy.

5. Proof of Landauer’s Principle

In Section 4.2, we showed that performing a reset operation with only conservative
forces is not only impossible, but to even approach it we create an unavoidable instability at
the reset point. Fortunately, we can overcome both these difficulties if we are just willing to
spend a little energy. To determine how much energy we need to spend, consider Figure 4
below, which we will analyze in detail.

The system in Figure 4 is no longer conservative: we have placed a friction force,
labelled ‘Brake,’ at the x = 0 location to dissipate some small quantity of energy and ensure
the partition does not spontaneously slide away. Our intention with the brake is to ‘trap’
the partition at the reset point. The quantity of energy we dissipate is labelled by ε.

Our ultimate question is: what is the minimum value of ε such that we can reliably
perform a reset? At first glance it appears that our brake will have this desired effect for any
ε > 0. In other words, we can ‘trap’ the partition at x = 0 as long as we dissipate nonzero
energy; we imagine that once the partition falls into our trap, it simply will not have the
energy to spontaneously jump back out.
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Figure 4. An energy landscape one might implement to perform a reset with minimal energy loss.

This conclusion is compelling, and it would be true if the partition was at absolute
zero. If the partition has any significant thermal energy, however, it will constantly be
undergoing vibrations. We immediately see that if we make ε too small, the partition may
actually vibrate out of our trap. Fortunately for Landauer’s principle, these vibrations
place a lower limit on ε, meaning it cannot be arbitrarily close to zero. In our system, the
chamber is in thermal contact with a heat bath at temperature T. Thus, unless we pretend
there are other energy sources or sinks, we should find the partition at temperature T also.

When we consider the possibility of the partition vibrating out of our trap in the
context of our engine cycle for Figure 2, we face a startling and beautiful realization: the
entire engine cycle could work in reverse. In particular, consider the following alternate
steps, recalling that the partition starts at the midpoint:

1. The partition jumps away from the midpoint and comes to rest at either the right or
left of the chamber, then is inserted into the chamber.

2. ‘Grains of sand’ are placed on the piston, yielding a quasi-static compression.
3. The partition is removed from the chamber.
4. The grains of sand are removed from the piston.

Thus, we see that for a given value of ε, there will be some probability of the forward
cycle and some probability of the reverse cycle. Fundamentally, this means that the
measurement that was made may instead be unmade, and the work carried out on the sand
(by the gas) may instead be conducted on the gas (by the sand). Here, we are reminded
of the ratchet and pawl thought experiment, beautifully analyzed by Feynman [15]. The
ratchet and pawl appear more likely to proceed in one direction than another but are
ultimately found to be in equilibrium. We will prove Landauer’s principle by a similar
approach to the argument Feynman makes.

Let X denote an autonomous physical system in contact with a heat bath at tempera-
ture T. Let xL, xR, and xe be memoryless states of X , representing the ZERO, ONE, and
RESET states. Let x(t) represent the system’s trajectory through these states over time.
Additionally, let EL, ER, and Ee represent the energy of states xL, xR, and xe, respectively,
with EL = ER. Finally, define EL − Ee = ER − Ee = ε to be the energy cost of reset. We
define these terms in full generality, applying to any system, though it may be helpful to
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imagine xL corresponding to the partition at the left, xR to the partition at the right, and xe
to the partition at the midpoint.

Consider some time interval [ti, t f ]. Let

P(x(t f ) = xe | x(ti) = xL) = P(x(t f ) = xe | x(ti) = xR) = p ∈ (0, 1) (27)

P(x(t f ) = xL | x(ti) = xe) = P(x(t f ) = xR | x(ti) = xL) = q ∈ (0, 1) (28)

P(x(t f ) = xL | x(ti) = xL) = P(x(t f ) = xR | x(ti) = xR) = r ∈ (0, 1) (29)

These transition relations are represented graphically in Figure 5.

Figure 5. A graphical representation of the transition probabilities described by Equations (27)–(29).

To perform a reset, we should want the probability that the system goes into the reset
state to be greater than the probability that it leaves the reset state. Observe that if the
system is in xL or xR, the probability that it will move to xe (performing the reset) is p. On
the other hand, if the system is in xe, the probability that it will move to xL or xR (undoing
the reset) is 2q. We say X implements a reset if the former case is more probable than the
latter. Precisely, X implements a reset if

p > 2q (30)

When applied to our engine cycle, this constraint would enforce that the forward cycle
is more likely than the reverse.

Theorem 3 (Landauer’s Principle). If X implements a reset, then ε > kT ln 2.

Proof. Since xL, xR, and xe are memoryless states and X is autonomous, the transition
probabilities described by Equations (27)–(29) generate a Markov Chain. Since p ∈ (0, 1),
q ∈ (0, 1), and r ∈ (0, 1), it is easily verified that this chain is aperiodic and irreducible, and
thus has a stationary distribution. Let P(xL), P(xR), and P(xe) be the probabilities of each
state in the stationary distribution, which we can also consider as a statistical ensemble.

For the stationary distribution, we will have:

P(xe)(2q) = P(xL)(p) + P(xR)(p) (31)

P(xL)(p) + P(xL)(1− p− r) = P(xe)(q) + P(xR)(1− p− r) (32)

P(xR)(p) + P(xR)(1− p− r) = P(xe)(q) + P(xL)(1− p− r) (33)

Subtracting Equation (33) from (32), we obtain
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(P(xL)− P(xR))(1− r) = (P(xR)− P(xL))(1− p− r) (34)

(P(xL)− P(xR))(p) = 0 (35)

P(xL) = P(xR) (36)

Applying Equations (36)–(31), we obtain

P(xe)(2q) = 2P(xL)(p) (37)

P(xe)q = P(xL)p (38)

Now, recalling we must have p > 2q if X implements a reset, we obtain

P(xe)q > P(xL)(2q) (39)

P(xe) > 2P(xL) (40)

Equation (40) was the key relation we needed from the analysis of the Markov Chain.
Now, we will seek to write the stationary probability of states in terms of their energy. First,
observe that the expected energy of the statistical ensemble is given by:

〈E〉 = P(xL)EL + P(xR)ER + P(xe)Ee (41)

If the distribution over states is stationary, the energy of the statistical ensemble will
be constant. Then, there can be no net flow of thermal energy between X and the heat bath.
Thus, the stationary distribution is in thermal equilibrium with the heat bath.

Since the stationary distribution is a statistical ensemble in thermal equilibrium with a
heat bath, it is exactly the canonical ensemble [16]. The probability distribution over states
as a function of energy (measured in Joules) is thus given by:

P(xi) =
e−

1
kT Ei

∑j e−
1

kT Ej
(42)

where k is Boltzmann’s constant, and T is the temperature in Kelvin. We then continue
from Equation (40):

e−
1

kT Ee

∑j e−
1

kT Ej
> 2

e−
1

kT EL

∑j e−
1

kT Ej
(43)

e−
1

kT Ee > 2e−
1

kT EL (44)

e
1

kT (EL−Ee) > 2 (45)

e
ε

kT > 2 (46)
ε

kT
> ln 2 (47)

ε > kT ln 2 (48)

6. Discussion

The result in Equation (48) is quite general. It is not limited to particles in boxes but
applies to any autonomous system in contact with a heat bath. Naturally, it is trivial to
extend the argument for the cost of erasure to any other logically irreversible function or
‘merging of computational paths.’ Moreover, for systems of multiple bits, the bound scales
exactly as expected. For instance, imagine the engine in Figure 2 was divided into four
quadrants rather than two chambers, thus generating a ‘measurement’ of two bits rather
than one. An isothermal expansion to four times the volume, by the same calculations as
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Equations (1)–(5), gives W = kT ln 4. The two bits would occupy four states that merge
into one; thus, Equation (30) would become p > 4q. With this, it is easy to recompute the
bound as ε > kT ln 4 = 2kT ln 2. By extension, the cost to erase n bits has a lower bound of
nkT ln 2. These results dovetail nicely with considerations of many-valued logic, where the
Landauer bound remains the same [17].

Interestingly, the case of equality (ε = kT ln 2) corresponds to the reset process having
equal likelihood of working forward or backward. In the context of our engine from
Figure 2, the forward cycle will be equally as likely as the backward cycle. This result
should not be surprising since a nearly identical consideration is used to demonstrate that
the ratchet and pawl cannot produce work at equilibrium [15].

With regard to the heat generated by erasure, we may now observe exactly where
it comes from. In the reset scheme of Figure 4, for instance, we see that the mechanical
energy of the partition had to be dissipated. In general, the source of heat will depend on
the memory device used, but it will be whatever form of energy facilitated the switch to the
reset state; this energy must be spent or else the same energy could facilitate a switch back.

We may gain a deeper intuition of this idea by the following analogy with regard to
the reverse dynamics. Imagine balancing on a nearly unstable equilibrium, such as that of
Figure 4 with ε = kT ln 2. If we stay perfectly atop, our total energy will not change. In the
presence of thermal vibrations, however, eventually, a disturbance will push us along one
trajectory or another. This ‘push’ is actually a small quantity of heat that (by starting our
motion) is converted to mechanical energy, in accordance with the conservation of energy.
As a result, we can view the entire backward cycle as an isothermal compression used to
cool the partition. Each cycle the engine operates in reverse, kT ln 2 work is performed on
the particle, and kT ln 2 heat is removed from the partition. In the forward direction then,
we see in great detail why the mechanical energy must be converted to heat.

7. Conclusions

In conclusion, we offer a definitive exorcism of Maxwell’s Demon by clarifying the
necessity of measurement in Szilard’s engine and presenting a proof of Landauer’s principle.
Remarkably, our proof is entirely independent of the Second Law. Nowhere did we require
any assumption that the Second Law is true or that it holds for our engine. Instead, we
compute the energy cost of erasure directly by mechanical and statistical means alone. Our
result instills greater confidence in the Second Law, as it sheds light on independent reasons
why perpetual motion machines are impossible even for Maxwell’s Demon.

We summarize our conclusions as follows. We showed that an explicit measurement
procedure is unnecessary to operate Szilard’s engine if we instead interpret the partition’s
location as bearing information. This reinterpretation shed light on how information can be
analyzed strictly using the tools of physics—dynamical systems theory in particular. Using
these tools, it follows that a reset operation in a conservative system is strictly impossible
due to the Existence and Uniqueness Theorem for ordinary differential equations. Worse,
to even approach a reset operation produces an unavoidable instability (in the sense of
Lyapunov) at the reset point. Practically, thermal vibrations at this instability allow the reset
operation to proceed in reverse, which becomes more likely as ε decreases. We showed
that when a reset operation is more likely to proceed forward than backwards, we must
have ε > kT ln 2. Finally, to the question of whether an intelligent being can circumvent
the Second Law by gathering and exploiting information, we answer no.
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Abstract: It is argued that all physical knowledge ultimately stems from observation and that
the simplest possible observation is that an event has happened at a certain space–time location
→
X = (

→
x , t). Considering historic experiments, which have been groundbreaking in the evolution of

our modern ideas of matter on the atomic, nuclear, and elementary particle scales, it is shown that
such experiments produce as outputs streams of macroscopically observable events which accumulate
in the course of time into spatio-temporal patterns of events whose forms allow decisions to be taken
concerning conceivable alternatives of explanation. Working towards elucidating the physical and
informational characteristics of those elementary observations, we show that these represent hugely
amplified images of the initiating micro-events and that the resulting macro-images have a cognitive
value of 1 bit and a physical value of Wobs = Eobsτobs � h. In this latter equation, Eobs stands for
the energy spent in turning the initiating micro-events into macroscopically observable events, τobs

for the lifetimes during which the generated events remain macroscopically observable, and h for
Planck’s constant. The relative value Gobs = Wobs/h finally represents a measure of amplification
that was gained in the observation process.

Keywords: physical measurement; information gain; event generation; physical action; energy
dissipation; space–time expansion

1. Introduction

In this paper, we are concerned with the problem of gaining information about nature
by performing physical experiments. In order to introduce this subject, we sketch in
Section 2 three historic experiments which were ground-breaking in the evolution of
theories which form the background of our current understanding of matter on the atomic,
nuclear, and elementary particle scales. These are the Rutherford scattering experiments
of Geiger and Marsden [1], which proved the nuclear nature of atoms [2,3]; the double-
slit experiments performed with photons and all kinds of corpuscular matter, which
proved the dual nature of matter [4–7]; and the cloud, bubble, and streaming chamber
experiments [8–10] in high-energy physics, which led to the discovery of the standard
model of elementary particles [11]. In the past, these experiments were conceived and
carried out with the aim of producing macroscopically observable phenomena which allow
conceivable alternatives of explanation to be distinguished that had been discussed at their
times of invention.

Regarding these key experiments as questions posed to nature, it is interesting to note
that all questions are answered in the form of transient effects which are localized in space
and time, and which accumulate over time into spatio-temporal patterns of events which
allow decisions to be taken concerning conceivable alternatives of explanation. Turning
to those elementary observations, it is clear that the events of observation need to involve
a great deal of amplification to turn them into macroscopic images of those initiating
events between matter and experimental equipment that had occurred on the microscale.
A second relevant observation is that the events of observation are meaningless in the

Entropy 2024, 26, 255. https://doi.org/10.3390/e26030255 https://www.mdpi.com/journal/entropy54
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sense that they do not yield any information other than that that an event has happened

or not at a certain space–time location
→
X = (

→
x , t). As such elementary observations

yield binary decisions between two alternatives, the experimental answers produced by
these key experiments resemble messages sent over digital communication channels in
which complex and meaningful messages are made up from individual, but otherwise
meaningless, bits [12–14].

While the traditional interpretations of the above key experiments tacitly assumed
that particles, waves, and fields are primary entities of physical reality, and that the events
of observation are secondary effects produced by the interactions of those primary entities
with the experimental equipment, this historic mindset was more recently challenged by
the idea that all physical entities at their core are information-theoretic in origin. This latter
idea, which was raised by John Archibald Wheeler [15] and aphoristically termed “it from
bit”, has raised a vivid controversy between the traditional “bit from it” and the more
recent “it from bit” approaches [16,17].

In view of this controversy, it appeared to be relevant to re-consider the three key ex-
periments with an informational perspective in mind. In the present paper, we concentrate
on those elementary observations that, in the course of time, build up the experimental
answers produced by the three key experiments. After a brief review of these experiments
in Section 2, we discuss in Sections 3 and 4 the informational and physical characteristics of
those elementary observations that show up as macroscopically observable events. On the
whole, this discussion reveals that the elements of physical observation have a double na-
ture in that these are abstract pieces of information on the one hand, and concrete physical
entities on the other hand. As physical entities, elementary observations reveal as pieces
of physical action, produced at the expense of generating entropy. With this conclusion
in mind, elementary observations appear as another manifestation of Landauer’s original
conclusion [18–21], namely that “information is physical” at its origin. The processes of
generating and erasing elementary observations and of assigning meaning to discrete
patterns of observable events will be discussed in forthcoming papers [22,23].

2. The Three Key Experiments

After the above preliminary considerations, we turn to a more in-depth discussion
of those experiments which have been accepted as ground-breaking in the evolution of
physical sciences. For the sake of discussion, these historic experiments are sketched in
Figures 1–3 below.

Moving from top to bottom, these examples show the Rutherford scattering experi-
ments that convincingly demonstrated the nuclear nature of atoms [1–3] and rejected the
earlier “plum pudding model” of atoms proposed by J. J. Thompson [24]. In this way, the
road towards the Bohr theory of the hydrogen atom [25] and the modern quantum theories
of Heisenberg [26] and Schrödinger [27] were paved.

The double-slit experiments [4–7], on the other hand, confirmed the assumption of a
wave–particle duality underlying the Heisenberg [26] and Schrödinger [27] pictures of the
atom.

The cloud- [8], bubble- [9] and spark-chamber [10] experiments performed in the realm
of high-energy physics finally contributed to the discovery of a vast variety of elementary
particles, which led to the standard model of elementary particles [11].
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Figure 1. (a) Sketch of a Rutherford scattering experiment [1] which proved the nuclear constitution 
of atomic matter [3]. Alpha-particle scattering from a gold foil produces flashes of light on the 
fluorescent screen (green stars), whose angular distribution can be interpreted as evidence that most 
of the mass of Au atoms is concentrated in small volumes with linear dimensions on the order of 
10−12 cm [3]. (b) Angular distribution of light flashes as observed in the original work of Geiger and 
Marsden in 1913 [1]. 

 
Figure 2. (a) Matter in the form of photons, electrons, atoms, and molecules is passed through the 
double-slit arrangements in (a) in one-by-one manner [4–7].; (b) After having passed through the 
double-slit arrangement in (a), the transmitted “particles” interact with a photographic screen on 
the right, producing macroscopically observable events which accumulate in the form of diffraction 
patterns after more and more “particles” have been processed through the experimental 
arrangement in (a). Screen shots at increasingly larger times are shown in subfigures (i); (ii); (iii) 
[28].  

 

Figure 1. (a) Sketch of a Rutherford scattering experiment [1] which proved the nuclear constitution
of atomic matter [3]. Alpha-particle scattering from a gold foil produces flashes of light on the
fluorescent screen (green stars), whose angular distribution can be interpreted as evidence that most
of the mass of Au atoms is concentrated in small volumes with linear dimensions on the order of
10−12 cm [3]. (b) Angular distribution of light flashes as observed in the original work of Geiger and
Marsden in 1913 [1].
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Figure 3. (a) α-particle trajectories emerging from an α-particle source immersed inside a cloud
chamber [8,29]; (b) schematic view of a cloud chamber track of water droplets condensed on water
ions formed along the α-particle trajectories [29].
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3. Differences and Commonalities between the Three Key Experiments

Considering the above experiments, these share in common that all of them address
processes that occur at length and time scales much too small to be directly observable.
The key motivation of all these experiments, consequently, was producing macroscopically
observable images of those unobservable micro-phenomena.

Depending on the kind of physical questions asked, the experimental arrangements
take very different forms. Whereas the Rutherford experiment was intended to measure
the momentum transfers to α-particles that occur deep inside the electrostatic fields that
surround atomic nuclei, the double-slit experiments addressed interference phenomena and
the issue of wave–particle duality while the streaming chamber experiments were designed
to reveal particle trajectories with the aim of deriving kinetic energies and momenta of
nuclear reaction products.

Concurrent with the architectural differences between the key experiments, the spatio-
temporal patterns of events take very different forms. These differences, however, disappear
when matter is made to interact with the respective experimental arrangements in a one-by-
one manner and when the emerging experimental outputs are monitored as they emerge in
the course of time. Looked at as functions of time, all experiments produce phenomena
that are localized in space and time, and which are macroscopically observable, i.e., either
directly visible by unaided eyes—or at least through some kind of optical instrument such
as a microscope, as was used in the Geiger–Marsden experiments [1].

As none of these individual observations form neither an angular distribution of
scattering events, nor a diffraction pattern, nor a particle trajectory, the observation of
each of these individual events does not yield any other information other than that that
an event has happened at a certain space–time location or not. As observation or lack
of observation of a single event within an observational time interval decides a simple
yes/no alternative, each of these single events has a cognitive value of exactly one bit. This
idea of making an elementary observation and of choosing between binary alternatives
is pictorially represented in Figure 4. There, a photon is sketched that is moving from
the source towards a fluorescent screen through a narrow gap. As, on its way from the
source to the fluorescent screen, no observation can be made that would allow us to decide
whether the photon is moving along a straight-line particle trajectory or in an undulatory
manner as a wave, the observation of a single light flash on a fluorescent screen does not
allow any other conclusion to be drawn other than that that an event has happened.

Entropy 2024, 26, x FOR PEER REVIEW 4 of 12 
 

 

Figure 3. (a) α-particle trajectories emerging from an α-particle source immersed inside a cloud 
chamber [8,29]; (b) schematic view of a cloud chamber track of water droplets condensed on water 
ions formed along the α-particle trajectories [29]. 

3. Differences and Commonalities between the Three Key Experiments 
Considering the above experiments, these share in common that all of them address 

processes that occur at length and time scales much too small to be directly observable. 
The key motivation of all these experiments, consequently, was producing 
macroscopically observable images of those unobservable micro-phenomena.  

Depending on the kind of physical questions asked, the experimental arrangements 
take very different forms. Whereas the Rutherford experiment was intended to measure 
the momentum transfers to α-particles that occur deep inside the electrostatic fields that 
surround atomic nuclei, the double-slit experiments addressed interference phenomena 
and the issue of wave–particle duality while the streaming chamber experiments were  
designed to reveal particle trajectories with the aim of deriving kinetic energies and 
momenta of nuclear reaction products.  

Concurrent with the architectural differences between the key experiments, the 
spatio-temporal patterns of events take very different forms. These differences, however, 
disappear when matter is made to interact with the respective experimental arrangements 
in a one-by-one manner and when the emerging experimental outputs are monitored as 
they emerge in the course of time. Looked at as functions of time, all experiments produce 
phenomena that are localized in space and time, and which are macroscopically 
observable, i.e., either directly visible by unaided eyes—or at least through some kind of 
optical instrument such as a microscope, as was used in the Geiger–Marsden experiments 
[1]. 

As none of these individual observations form either an angular distribution of 
scattering events, nor a diffraction pattern, nor a particle trajectory, the observation of each 
of these individual events does not yield any other information other than that that an 
event has happened at a certain space–time location or not. As observation or lack of 
observation of a single event within an observational time interval decides a simple yes/no 
alternative, each of these single events has a cognitive value of exactly one bit. This idea 
of making an elementary observation and of choosing between binary alternatives is 
pictorially represented in Figure 4. There, a photon is sketched that is moving from the 
source towards a fluorescent screen through a narrow gap. As, on its way from the source 
to the fluorescent screen, no observation can be made that would allow us to decide 
whether the photon is moving along a straight-line particle trajectory or in an undulatory 
manner as a wave, the observation of a single light flash on a fluorescent screen does not 
allow any other conclusion to be drawn other than that that an event has happened.  

 
Figure 4. (a) A single photon moving from source to fluorescent screen through a narrow slit, either 
in the form of a particle or in an undulatory manner as a wave; (b) no passage of a photon during 
the observational time period. Elementary observations of this kind produce an information gain 
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Figure 4. (a) A single photon moving from source to fluorescent screen through a narrow slit, either
in the form of a particle or in an undulatory manner as a wave; (b) no passage of a photon during
the observational time period. Elementary observations of this kind produce an information gain
equivalent to one binary digit or bit.

Collecting many of such elementary observations, complex multi-bit messages are
produced. In a Rutherford scattering experiment, for instance, angular distributions of
sufficiently large numbers of scattered particles can be acquired that allow a decision to
be made between scattering in nuclear electric force fields with 1/r, 1/r2, or hard sphere
potentials [2,3,23]. Similarly, distinctions can be made between wave phenomena occurring
at different wavelengths and with different arrangements of slits and screens [4], or between
particles moving with different momenta through a given magnetic field [8–10].
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4. Emergence and Erasure of Elementary Observations

In the section above, we identified elementary observations as macroscopically ob-
servable, binary pieces of information. What has not yet been discussed is how these
elementary pieces of information come into existence, and why these occur as temporal
transients. In order to move forward into this direction, we re-consider in more detail
the processes of Rutherford scattering and of visualizing nuclear particle trajectories in
cloud chambers. The time-resolved sketches of these processes in Figures 5 and 6 show
that both processes move through a sequence of four steps, namely: initiation, growth,
observation, and erasure and reset. All observable effects (light flashes, particle trajectories)
that transiently appear on the macro-scale ultimately disappear, as all energy that had
produced these effects has finally been dissipated. Such dissipation clearly explains the
transient nature of events.
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For the sake of clarity, we now move through these four steps, considering Rutherford
scattering and the visualization of particle tracks in a cloud chamber sequentially.

4.1. Rutherford Scattering

The initial step in Rutherford scattering is the approach of an α-particle close to the
Au nucleus (Figure 5a). With an α-particle energy of Ea ∼= 5 MeV, α-particles can approach
Au nuclei up to a minimum distance of rmin

∼= 5× 10−12 cm, which is still larger than
the nuclear radius of RAu ∼= 6× 10−13 cm. The scattering process, therefore, clearly takes
place within the strong electrostatic field that surrounds each Au nucleus. During the
residence time of τint ≈ 2 rmin/vα, where vα is an α-particle velocity of around 5% the
speed of light, the physical action associated with the scattering process can be estimated
to be ∆W ∼= Eaτmin

∼= 7 h. Changes in physical action on the order of a few Planck units
are typical of quantum-mechanical interactions.

The second part of the initiation process is the absorption of the scattered α-particle
inside the ZnS fluorescent layer, as also shown in Figure 5a, and the generation of secondary
ionization events. Estimates based on the Bethe–Boch formula [30] show that roughly
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80− 90 eV of the α-particle’s kinetic energy are transferred into ionization and electronic
excitation energy within each mean-free path inside the ZnS layer. With the initial α-particle
energy of Ea ∼= 5 MeV and its initial speed of va ∼= 0.05c, each scattered α-particle is found
to slow down over a length of approximately 20 µm inside the ZnS layer and within a time
span of a few picoseconds. During this short time, the scattered α-particles generate roughly
Nint = 6× 104 secondary ionization events, which form a narrow, straight line of highly
electronically excited ZnS material. Due to the large lateral gradients in electronic excitation
energy, intense lateral flows of electrons are initiated away from this line. Assuming that, in
the ensuing diffusion- and equilibration processes, one single activated center is formed per
primary ionization event, Nint green-light luminescence photons will ultimately be emitted
from the small cylindrical volume in which the α-particle energy had been dissipated
(Figure 5b). With the bulk electron mobility in ZnS on the order of µn ∼= 100 cm2/Vs [31],
lateral diffusion lengths on the order of several micrometers can be estimated. Although the
surface diameters of light-emitting ZnS materials of this size are small, these nevertheless
amount to multiples of the wavelength of the green luminescence light of λph

∼= 0.5 µm,
which allows these light spots to be observed with the help of a microscope (Figure 5c) as
actually used in the Geiger–Marsden experiments [1].

With this situation in mind, the amount of physical action Wobs, associated with such
green-light-emitting cylindrical volumes (Figure 5c), can be estimated. Assuming that each
ionization event ultimately leads to the emission of a green-light photon with an energy of
Eph
∼= 2.5 eV [1] and a luminescence lifetime of τlum

∼= 10−8 s [32], a piece of physical action
of Wobs

∼= Nint Eph τlum is generated which amounts to a quantity of 3.5 × 1011 units of the
Planck constant. With a physical action of only 7 units of Planck constant h generated in the
initiating scattering process, a huge amount of amplification on the order of Gobs

∼= 5× 1010

is inferred to have occurred in the Geiger–Marsden experiment [1]. With this number in
place, the macroscopic observability of the initiating microscopic scattering events can
be explained. As, finally, after observation, all luminescence light is converted into low-
temperature heat (Figure 5d), all of the α-particles’ initial kinetic energy has ultimately
been dissipated in the detection process.

Taking an overall look at the Rutherford scattering experiment, it becomes apparent
that each individual scattering event had ultimately become observable by dissipating the
kinetic energy of the incoming α-particles. Dissipation in this context means that the huge
initial energy of each α-particle was broken down into increasingly smaller packages of
energy which were simultaneously spread out over increasingly larger spatial domains.
Whereas, in the final stages of dissipation, the temperature of the entire ZnS fluorescence
screen was raised by an immeasurably small amount, macroscopic observability of scatter-
ing events relies on the fact that, in the process of dissipation, a large number of visible-light
photons are intermittently generated as energy dispersion proceeds. As the emitted pho-
tons still carry energies much larger than the mean thermal energy of the ZnS lattice atoms,
their informational value stands out from the random thermal noise inside the ZnS layer,
which ensures their observability [33]. Again, as the energy of these visible light photons is
further dissipated in the detection process [34], all kinetic energy of the initiating α-particles
is finally dissipated into low-temperature heat, which completely erases all informational
value that had originally been carried by the incoming α-particles in the form of kinetic
energy [32].

4.2. Visualization of Nuclear Particle Tracks

In the cloud chamber experiment shown in Figure 6a, the initiating micro-event is the
emission of an α-particle from the source and the ensuing travel of the particle through an
atmosphere of supersaturated water vapor inside the cloud chamber. Again, with the high
kinetic energy of each emitted α-particle of around 5 MeV, a large number of secondary
ionization events is triggered along each particle’s trajectory. Due to the much lower
stopping power of α-particles in super-saturated water vapor [30], however, long tracks of
ionization events with lengths on the order of several centimeters are formed [8,29].
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After this has happened, the initial ionization is distributed over a large number
of H2O molecules, which, because of the auto-protolysis of water [35], results in a large
number of H3O+ and OH− ions. The high electrical fields around each ionized water
molecule subsequently encourage neighboring H2O dipoles to adsorb on the generated
water ions, thereby partially shielding the electrostatic field around each molecular ion.
After several layers of such dipoles had been adsorbed, the electrical shielding of the H3O+

and OH− ions has been completed, and, apparently, neutral water droplets had been
formed (Figure 6b). With diameters in the range of nanometers, these droplets are still
far too small to be visually observable. Once this size range had been reached, a second
growth process takes over that grows tiny water droplets into visually observable sizes, and
which thus enables the α-particle trajectories to become visually observable. This second
stage of droplet growth, also shown in Figure 6b, involves the phenomenon of Ostwald
ripening [36]. Ostwald ripening involves the fusion of tiny water droplets into aggregates
and the growth of the larger fusion partners at the expense of the smaller ones. In this
second phase of growth, the driving force towards larger volumes is the minimization
of surface area, and, thus, the reduction in weakly bound surface water molecules at the
expense of more tightly bound water molecules inside the bulk. In this way, water droplets
with higher condensation energy QH2O(r) are formed with increasing r:

QH2O(r) =
(

4π

3
r3
)

εb

[
1− 3

γs

εb

1
r

]
(1)

In this equation, εb = 2.26 × 109 J/m3 is the cohesion energy of water [37] and
γs = 0.073 J/m2 is the surface energy of water [38]. The existence of weakly bound water
molecules in the near-surface regions and the desire to reduce their numbers exerts a
mechanical pressure on the bulk which leads to enhanced vapor pressure in very small
droplets. Very small droplets, therefore, easily and rapidly evaporate, thus re-generating
individual H2O molecules which are free to adsorb on larger droplets with lower internal
pressures. Quantitatively, this excess pressure inside small drops is given by the Kelvin
equation [39,40]:

p(r, T) = psat(T)exp
[

2γSVm

RT r

]
(2)

in which psat(T) is the vapor pressure over a flat surface at the overall temperature T, R is
the universal gas constant, and Vm is the molar volume of water.

In Figure 7a, the condensation energy of water droplets QH2O(r) is drawn as a func-
tion of the drop radius r together with the internal pressure p(r, T) inside these drops.
In Figure 7b, the internal pressure data is redrawn, this time, however, with the vapor
pressures p(r, T) being converted into time scales τ(r, T) for the evaporation of drops:

τobs(r, T) = τevap(T, r = ∞)exp
[
−2γSVm

RT r

]
(3)

In this mathematical conversion, the assumption has been made that droplets with
visually observable sizes evaporate at a time scale of seconds. This latter effect is directly
observable in cloud chamber experiments, in which visually observable particle tracks fade
away within seconds [8,29].

With the condensation energy QH2O(r) of the droplets and their evaporative lifetimes
τ(r, T) in place, the physical action Wobs of visible droplets can once again be calculated:

Wobs(r, T) = Qobs(r) τobs(r, T)� h. (4)
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thus completing the overall dissipation of energy. Again, as in the case of Rutherford 
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Figure 7. (a) Cohesion energy (blue) and internal pressure of water droplets (red) as a function of
drop radius. The development of an inside-oriented pressure resulting from the desire to minimize
the numbers of weakly bound H2O molecules on surfaces is shown in the inset. (b) Cohesion energy
(blue), evaporative lifetime (red), and observational value (magenta) as a function of drop radius.
The colored areas denote the phases of initial growth (red) and of long-lived and macroscopically
observable drops that delineate α-particle trajectories.

In Figure 7b, Wobs(r, TRT = 300 K) is plotted as a function of the drop radius. As, in
the formation of macroscopically visible and relatively long-lived droplets [8,29], a huge
number of water molecules is collected, the magnitudes of Wobs(r, TRT) are much larger
than in the Rutherford scattering case. Once measured in units of the Planck constant of
h = 4.183× 10−15 eVs, the excessively large values of Wobs(r, TRT) in the cloud chamber
case reflect the fact that these tiny water droplets are observable with un-aided eyes as
compared to the tiny light flashes in the Rutherford scattering events, which required
additional amplification with the help of an optical microscope [1].

Summarizing the considerations about cloud chamber images, some similarity to the
case of α-particle scattering can be detected. This similarity is reflected in the formation
of primary ionization events in the supersaturated water vapor as highly energetic α-
particles are being slowed down, thereby producing drop-initiating H3O+ and OH− ions.
Up to the point of drop-initiating water ions, only the kinetic energies of the incoming
α-particles had been dissipated. With the onset of adsorption processes on the initiating
ions, energetic resources in the experimental equipment become increasingly involved.
Once relatively visible droplets start to cluster into rain drops, supersaturated water vapor
is finally converted into the more stable phase of condensed water layers, thus completing
the overall dissipation of energy. Again, as in the case of Rutherford scattering of α-particles,
the phase of macroscopic visibility occurs in a state of partial equilibration and incomplete
but ongoing entropy production.

4.3. Producing Permanent Images of Photon Impacts

So far, we have avoided the discussion of photographic images of photon impacts
on the photographic screens used in the double-slit experiments. Not considering the
complexity of the underlying photo-chemical processes, it is immediately clear that much
smaller energies in the range of single electron volts are involved in the photo-chemical
processes as compared to the huge α-particle energies in the foregoing examples. Instead
of the short lifetimes of the intermittently produced visible-light photons in the Geiger–
Marsden experiment or the short evaporative lifetimes in the cloud chamber experiments,
the photographic detection of photons in the double-slit experiments produces permanent
images of the photon impacts. On the level of observational pieces of physical action,
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Wobs = Eobsτobs, the lower energies Eobs in photography are largely over-compensated by
the huge lifetimes τobs of the photographic images.

5. Summary, Conclusions, and Outlook

In this paper, we have considered historical experiments which were groundbreaking
in the development of our modern ideas on processes taking place on the length- and
timescales of atoms, nuclei, and elementary particles. Regarding these key experiments as
questions posed to nature, it has been revealed that these questions are answered in the
form of streams of elementary observations which take the form of temporal transients,
which are sharply localized in space but still extended enough to be visually observable.
Such observable events were identified as binary pieces of information but also endowed
with a firm physical existence as pieces of physical action. Considering in some depth
the processes of α-particle scattering on atomic nuclei and the visualization of particle
trajectories in cloud chambers, the idea has evolved that these elementary observations are
pieces of physical action, produced at the expense of energetic resources either carried with
the material objects to be detected or contained in the detection equipment itself. With the
elementary observations featuring both as abstract pieces of information and as firm pieces
of physical reality, the elementary observations produced by the three key experiments
appear as another manifestation of Landauer’s initial ideas on memory and switching
devices and his conclusive statement of “information is physical” [19].

Introducing the quantity Wobs = Eobsτobs, where Eobs is the energy expended in turning
a quantum-mechanical interaction into a macroscopically observable event and τobs the
lifetime in which an event remains macroscopically observable, a preliminary measure
of macroscopic observability has been obtained. Considering the experimental evidence
from which this concept was derived, it is revealed that experimentalists have found mul-
tiple ways of turning quantum-mechanical interactions on the micro-scale into visually
observable events on the macro-scale. Although this is a fascinating proof of experimental
creativity, the complexity of the instrumentation and their functional principles are ob-
stacles with regard to accepting elementary observations as theoretically valid concepts.
Conceptual devices with simple architectures and easily overseeable physics, such as, for
instance, the cylinder–piston-type devices of Szilard engines [41], would allow progress
into this direction [22].

Another open question concerning large patterns of observable events is the process
of assigning meaning to such patterns, i.e., the process of distinguishing between conceiv-
able alternatives of physical explanation. With each elementary observation contributing
one single bit, a multi-element patterns would simply constitute a piece of information
consisting of N such bits without revealing anything other than a quantitative aspect of the
acquired information. Using the acquired information for deciding between alternatives of
physical explanation represents an important qualitative aspect of information. Acquiring
quality of information requires matching discrete patterns of events onto mental constructs
which mathematically feature in the form of continuous functions. In the past, this task has
been performed by experimentalists through least-square fitting of experimental data. A
formal connection between statistical data matching and quality of information, however,
is unknown to the present author and likely outside the realm of the presently accepted
measures of Shannon [13] and thermodynamic measures of information [42].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

63



Entropy 2024, 26, 255

References
1. Geiger, H.; Marsden, E. The Laws of Deflexion of a-Particles through Large Angles. Phil. Mag. 1913, 25, 604–623. [CrossRef]
2. Rutherford, E. The Scattering of α and β Particles by Matter and the Structure of the Atom. Phil. Mag. 1911, 21, 669–688.

[CrossRef]
3. Rutherford, E. The Structure of the Atom. Phil. Mag. 1914, 27, 488–498. [CrossRef]
4. Meschede, D. Youngs Interferenzexperiment mit Licht. In Die Top Ten der Schönsten Physikalischen Experimente; Fäßler, A., Jönsson,

C., Eds.; Rowohlt Verlag: Hamburg, Germany, 2005; pp. 94–105, ISBN 3-499-61628-9.
5. Jönsson, C. Electron Diffraction at Multiple Slits. Am. J. Phys. 1974, 42, 4–11. [CrossRef]
6. Carnal, O.; Mlynek, J. Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 1991, 66,

2689–2692. [CrossRef]
7. Nairz, O.; Arndt, M.; Zeilinger, A. Quantum interference experiments with large molecules. Am. J. Phys. 2003, 71, 319–325.

[CrossRef]
8. Wilson, C.T.R. On a Method of Making Visible the Paths of Ionising Particles through a Gas. Proc. R. Soc. Lond. A Math. Phys. Eng.

Sci. 1911, 85, 578.
9. Glaser, D.A. Some Effects of Ionizing Radiation on the Formation of Bubbles in Liquids. Phys. Rev. 1952, 87, 665. [CrossRef]
10. Griffiths, L.; Symoms, C.R.; Zacharov, B. Determination of Particle Momenta in Spark Chamber and Counter Experiments; CERN Yellow

Reports: Monographs CERN-66-17; CERN: Geneva, Switzerland, 1966.
11. Dosch, H.G. Jenseits der Nanowelt—Leptonen, Quarks und Eichbosonen; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-

540-22889-9.
12. LeSurf, J.C.G. Information and Measurement; I.O.P. Publsihing Ltd.: Bristol, UK; Philadelphia, PA, USA, 1995; ISBN 0-7503-0308-5.
13. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
14. Ben-Naim, A. Information Theory; World Scientific: Singapore, 2017.
15. Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on

Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368.
16. Knuth, K.H. Information-Based Physics and the Influence Network. In It from Bit or Bit from It? Aguirre, A., Foster, B., Merali, Z.,

Eds.; Springer: Berlin/Heidelberg, Germany, 2015.
17. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. 1961, 5, 183–191. [CrossRef]
18. Landauer, R. Information is physical. Phys. Today 1991, 44, 23–29. [CrossRef]
19. Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [CrossRef] [PubMed]
20. Knuth, K.H.; Walsh, J.L. An introduction to influence theory: Kinematics and dynamics. Ann. Phys. 2019, 531, 1800091. [CrossRef]
21. Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification?

Entropy 2019, 21, 918. [CrossRef]
22. Müller, J.G. A conceptual Device Turning Quantum-Mechanical Interactions into Macrocopically Observable Events; Munich University

of Applied Sciences: Munich, Germany, 2024; manuscript in preparation.
23. Müller, J.G. Assigning Meaning to Physical Observations; Munich University of Applied Sciences: Munich, Germany, 2024;

manuscript in preparation.
24. Thompson, J.J. On the structure of the atom. Phil. Mag. 1904, 7, 237–265.
25. Bohr, N. On the constitution of atoms and molecules. Phil. Mag. J. Sci. 1913, 26, 1–25. [CrossRef]
26. Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen—On the reformulation of

kinematic and mechanical relationships. Z. Phys. 1925, 33, 879–893. [CrossRef]
27. Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. [CrossRef]
28. Double-Slit Experiment—Wikipedia. Available online: https://en.wikipedia.org/wiki/Double-slit_experiment (accessed on 1

February 2024).
29. Particle Tracks in AWAN Expansion Cloud Chamber—Cloud Chamber—Wikipedia. Available online: https://en.wikipedia.org/

wiki/Cloud_chamber (accessed on 1 February 2024).
30. Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: New York, NY, USA, 1975; p. 629.
31. Matossi, F.; Leutwein, K.; Schmid, G. Elektronenbeweglichkeit in Zinksufid-Einkristallen. Z. Naturforschg. 1966, 21, 461–464.

[CrossRef]
32. Fluorescence—Wikipedia. Available online: https://en.wikipedia.org/wiki/Fluorescence (accessed on 1 February 2024).
33. Müller, J.G. Information contained in molecular motion. Entropy 2019, 21, 1052. [CrossRef]
34. Müller, J.G. Photon detection as a process of information gain. Entropy 2020, 22, 392. [CrossRef] [PubMed]
35. Christen, H.R. Grundlagen der Allgemeinen und Anorganischen Chemie; Otto Salle Verlag: Frankfurt, Germany, 1982; ISBN 3-7935-5394-9.
36. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper—Studies on the formation and transformation of solid

bodies. Z. Phys. Chem. 1897, 22, 289–330. [CrossRef]
37. Enthalpy of Vaporization—Wikipedia. Available online: https://en.wikipedia.org/wiki/Enthalpy_of_vaporization (accessed on

1 February 2024).
38. Surface Tension—Wikipedia. Available online: https://en.wikipedia.org/wiki/Surface_Tension (accessed on 1 February 2024).
39. Thomson, W. On the equilibrium of vapor at a curved surface of liquid. Phil. Mag. 1871, 42, 448–452. [CrossRef]

64



Entropy 2024, 26, 255

40. Von Helmholtz, R. Untersuchungen über Dämple und Nebel, besonders über solche von Lösungen (Investigations of vapors and
mists, and especially of such things from solutions). Ann. Phys. 1886, 263, 508–543. [CrossRef]

41. Szilárd, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys.
1929, 53, 840–856. (In German) [CrossRef]

42. Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific Publishing Co. Pte. Ltd.:
Singpore, 2008. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

65



entropy

Article

Landauer Bound in the Context of Minimal Physical Principles:
Meaning, Experimental Verification, Controversies
and Perspectives
Edward Bormashenko

Department of Chemical Engineering, Biotechnology and Materials, Engineering Sciences Faculty, Ariel
University, Ariel 407000, Israel; edward@ariel.ac.il; Tel.: +972-074-729-68-63

Abstract: The physical roots, interpretation, controversies, and precise meaning of the Landauer
principle are surveyed. The Landauer principle is a physical principle defining the lower theoretical
limit of energy consumption necessary for computation. It states that an irreversible change in
information stored in a computer, such as merging two computational paths, dissipates a minimum
amount of heat kBTln2 per a bit of information to its surroundings. The Landauer principle is
discussed in the context of fundamental physical limiting principles, such as the Abbe diffraction
limit, the Margolus–Levitin limit, and the Bekenstein limit. Synthesis of the Landauer bound with the
Abbe, Margolus–Levitin, and Bekenstein limits yields the minimal time of computation, which scales
as τmin ∼ h

kBT . Decreasing the temperature of a thermal bath will decrease the energy consumption
of a single computation, but in parallel, it will slow the computation. The Landauer principle
bridges John Archibald Wheeler’s “it from bit” paradigm and thermodynamics. Experimental
verifications of the Landauer principle are surveyed. The interrelation between thermodynamic
and logical irreversibility is addressed. Generalization of the Landauer principle to quantum and
non-equilibrium systems is addressed. The Landauer principle represents the powerful heuristic
principle bridging physics, information theory, and computer engineering.

Keywords: Landauer principle; entropy; Abbe limit; Margolus–Levitin limit; Bekenstein limit;
Planck–Boltzmann time; Szilárd engine

1. Introduction

The Landauer principle is one of the limiting physical principles that constrains
the behavior of physical systems. There exist fundamental laws and principles setting
the limits of physical systems. These laws do not predict or describe the behavior of
physical/engineering systems but limit or restrict their functioning. A realistic natu-
ral/engineering system can only provide limited functionalities because its performance is
physically constrained by some basic principles [1]. Some of these limits are engineering
ones. For example, a key engineering bottleneck for the development of new generations
of computers today is integrated circuit manufacturing, which confines billions of semi-
conducting units in several cm2 of silicon with extremely low defect rates [2]. Another
engineering constraint is imposed by limits on individual interconnects [2]. Despite the
doubling of the transistor density according to the Moore law, semiconductor integrated
circuits would not operate without fast/dense interconnects. Metallic wires can be either
fast or dense but not both at the same time—a smaller cross-section increases electrical
resistance, while a greater height or width increases parasitic capacitance with neighboring
wires (wire delay grows with RC) [2]. Other constraints limiting the operation of physical
(natural or engineering) systems are fundamental ones, and they emerge from the deepest
foundations of physics. Limiting physical principles appeared in physics relatively late. It
seems that the first limiting principle historically was the Abbe diffraction limit, discov-
ered in 1873, which states that in light with wavelength λ λ, traveling in a medium with
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refractive index n and converging to a spot with half-angle θ θ, θ will have a minimum
resolvable distance of d, as supplied by Equation (1):

d =
λ

2nsinθ
, (1)

where the minimum resolvable distance d is defined as the minimum separation between
two objects that results in a certain level of contrast between them [3,4]. The Abbe diffrac-
tion limit is the maximum resolution possible for a theoretically perfect, or ideal, optical
system [3,4]. Thus, it is not the engineering but the fundamental physical principle. The
Abbe diffraction limit arises from the idea that the image arises from a double diffraction
process [3,4]. Other diffraction limit formulae, known as the Rayleigh and Sparrow limits,
were suggested [3,4]. These formulae coincide with the Abbe limit within a numerical
coefficient; thus, the value of the numerical multiplier appearing in Equation (14) is not
exact [3–5].

In spite of the fact that the Abbe diffraction limit is rooted in classical physics, the
role of the limiting principles in the realm of classical physics is more than modest. The
situation has changed dramatically within modern physics. In relativity, the speed of light
in a vacuum, labeled c, is a universal physical constant of ca. 300,000 km per second, and
according to the special theory of relativity, c is the upper limit for the speed at which
conventional matter or energy (and, consequently, any signal carrying information) can
travel through space [6,7]. It is impossible for signals or energy to travel faster than c. The
speed at which light waves propagate in a vacuum is independent of both the motion
of the wave source and the inertial frame of reference of the observer, thus enabling the
Einstein synchronization procedure for clocks [6,7]. The limiting status of the speed of light
in a vacuum was intensively disputed in the last few decades, and theories assuming a
varying speed of light have been proposed as an alternative way of solving several standard
cosmological problems [8,9]. Recent observational hints that the fine structure constant may
have varied over cosmological scales have given impetus to these theories [8,9]. Theories
in which the speed of light traveling in a vacuum appeared as an emerging physical value
were suggested [9]. We adopt unequivocally the limiting status of the speed of light in a
vacuum c and demonstrate that this status generates other limiting physical principles, and
just this status gives rise to consequences emerging from the Landauer principle.

The main limiting principle of quantum mechanics is the Heisenberg uncertainty prin-
ciple. It states that there is a limit to the precision with which certain pairs of physical prop-
erties, such as position x and momentum p (or time t and energy E), can be simultaneously
measured. In other words, and more accurately speaking, when one property is measured,
the less accurately the other property can be established (see Equations (2) and (3)):

σxσp ≥
}
2

, (2)

σtσE ≥
}
2

, (3)

where σx, σp, σt, and σE are standard deviations of the position, momentum, time, and
energy, respectively, and } = h

2π is the reduced Planck constant [10,11]. The time–energy
uncertainty principle, supplied by Equation (3), needs more detailed discussion to be sup-
plied in the context of the Mandelstam–Tamm and Margolus–Levitin bounding principles.

The limiting value of the light propagating in a vacuum c combined with the Heisen-
berg uncertainty principle together yield the Bremermann limit, which supplies a limit on
the maximum rate of computation that can be achieved in a self-contained system [12]. The
Bremermann limit is derived from Einstein’s mass–energy equivalency and the Heisenberg
uncertainty principle, and is c2

h
∼= 1.35× 1050 bits per second per kilogram of the computa-

tional system [12]. Consider that the Bremermann limit is built of the fundamental physical
constants only.
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Quantum mechanics also gives rise to the Mandelstam–Tamm and Margolus–Levitin
limiting principles [13,14]. The Mandelstam–Tamm quantum speed limit states the time it
takes for an isolated quantum system to evolve between two fully distinguishable states, as
given by Equation (4):

τ > τMT =
h

4∆E
, (4)

where ∆E is the energy uncertainty. The Margolus–Levitin limiting principle supplies a
surprising result, predicting the maximum speed of dynamic evolution of the system [15].
The Margolus–Levitin limiting principle supplies the minimum time it takes for the physical
system to evolve into an orthogonal state (labeled τ⊥). It should be emphasized that this
minimum time τ⊥ depends only on the system average energy minus its ground state
(denoted E− E0, and not on the energy uncertainty ∆E, as follows from Equation (4) [15].
To simplify the formulae, we chose the zero-level energy in such a way that E0 = 0 so that
the Margolus–Levitin limiting principle yields for the minimal time bound, denoted as τML
in Equation (5):

τ⊥ > τML =
h

4E
(5)

Another important fundamental limiting principle is supplied by the Bekenstein
bound [16]. Bekenstein demonstrated that there exists a universal upper bound of the
entropy-to-energy ratio S

E for an arbitrary system confined by radius R, and this limit is
expressed by S

E = 2πR
}c [16]. In other words, the Bekenstein bound defines an upper limit

on the entropy S, which can be confined within a given finite region of space that has a
finite amount of energy E, or conversely, the maximum amount of information required
to perfectly describe a given physical system with a given, fixed energy E down to the
quantum level [16]. The bound value of entropy S is given by Equation (6):

S ≤ 2πkBRE
}c

, (6)

where R is the radius of a sphere that can enclose the given system, and E is the total
mass–energy including any rest masses [16]. We will discuss below the Margolus–Levitin
and the Bekenstein bounds in their relation to the Landauer principle.

2. Results
2.1. What Is Information? The Meaning of the Landauer Principle

What is information? The ambiguity of the notion of information hinders the physical
interpretation of this notion. Numerous definitions of information were suggested [17,18].
I am quoting from Ref. [17]: “Information can be data, in the sense of a bank statement, a
computer file, or a telephone number. Data in the narrowest sense can be just a string of
binary symbols. Information can also be meaning” [17]. Informational theory is usually
supplied in a pure abstract form that is independent of any physical embodiment. Intel-
lectual breakthrough in the mathematization of information is related to the pioneering
works by Claude Shannon, who introduced the information entropy of a random variable
understood as the average level of “information” or “uncertainty” inherent to the variable’s
possible outcomes [19,20]. Given a discrete random variable X Ψ, which takes values in
the alphabet Ψ, X and is distributed according to p : Ψ→ [0, 1] p: X→ [0, 1], the Shannon
measure of information/Shannon entropy, denoted as H(Ψ), is given by Equation (7):

H(Ψ) = −∑x∈Ψ p(x)logp(x) (7)

The Shannon measure of information is a very general mathematical concept, and regret-
tably, it is often mixed in the literature with thermodynamic entropy [21–25]. A distinction
for the Shannon measure of information is made in Refs. [21–25]. Again, the Shannon
measure of information is a very useful mathematical concept completely disconnected
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from the process of recording information, information carrier material, reading, and
erasing information.

In contrast, Rolf Landauer, in his pioneering and fundamental papers published in
1961–1996, argued that information is physical and has an energy equivalent [25–29]. It
may be stored in physical systems such as books and memory chips and is transmitted by
physical devices exploiting electrical or optical signals [26–29]. Indeed (I am quoting from
Ref. [29]), “computation, whether it is performed by electronic machinery, on an abacus
or in a biological system such as the brain, is a physical process. It is subject to the same
questions that apply to other physical processes: How much energy must be expended to
perform a particular computation? How long must it take? How large must the computing
device be? In other words, what are the physical limits of the process of computation?” If
we adopt the idea that computation is a physical process, it must obey the laws of physics,
and first and foremost the laws of thermodynamics [26–29]. This thinking leads to the new
limiting physical principle, which establishes the minimum energy cost for the erasure
of a single memory bit for the system operating at the equilibrium temperature T. This is
exactly the Landauer principle. The Landauer principle may be derived in different ways;
we start from the one-bit system depicted schematically in Figure 1. The picture depicts
the Brownian particle M confined within a double-well potential, shown in Figure 1 and
addressed in detail in Refs. [27–30]. When the barrier is much higher than the thermal
energy, the Brownian particle will remain in either well (left or right) for a long time. Thus,
the particle located in the left or right well can serve as the stable informational states “0”
and “1” of a single information bit (the informational states are denoted m = 0 and m = 1 in
Figure 1, where m is the parameter, characterizing the statistical state of the double-well
system). The average work W necessary to switch the statistical state of a memory under
the isothermal process from the state Ψ with distribution pm to Ψ′ with distribution p′m is
given by Equation (8):

W ≥ F
(
Ψ′
)
− F(Ψ), (8)

where F(Ψ) is the Helmholtz free energy of the system supplied by Equation (9):

F(Ψ) = ∑m pmFm − kBTH(Ψ) = ∑m pmFm + kBT ∑m pmlnPm, (9)

where Fm = Em − TSm is the Helmholtz free energy of the conditional states, and
H(Ψ) = −∑m pmlnpm is the Shannon entropy of the informational states, in the Shan-
non entropy of the informational states, which equals to their entropies Sm [21–25,30]. For
a symmetrical well and a random bit p0 = p1 = 1

2 , we immediately obtain the Landauer
bound, supplied by Equation (10):

W = kBTln2 (10)

The exact meaning of Equation (10) supplies the energy necessary for resetting/erasing
one random bit stored in a symmetric memory unit [30]. For asymmetric memory units,
∆Freset is not necessarily equal to −kBTH(Ψ) and the limiting Landauer principle is given
by the following inequality:

Wreset ≥ ∆Freset (11)

The exact equality is attained if the reset is thermodynamically reversible [30]. This does
not contradict the logical irreversibility of the reset, which implies that the entropy H(Ψ) of
the informational states decreases [30,31]. It is noteworthy, that the Landauer bound, given
by Equation (10), is related only to a single information-bearing degree of freedom of the
entire computing system.

The relation between logic and thermodynamic reversibility will be discussed below.
Again, the energetic cost on one random bit is supplied by the limiting physical principle,
expressed by Equation (11). A detailed discussion of Equations (10) and (11) is supplied
in Ref. [30]. An accurate and rigorous derivation of Equations (10) and (11) emerging
from microscopic reasoning is supplied in Ref. [32]. We again consider the particle in the
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twin-well potential U(x), shown in Figure 1. We assume that before the erasure we want
half of the bits to be in the “one” state and the other half to be in the “zero” state. We
also adopt the idea that the ensemble of bits is in contact with a thermal reservoir where
the temperature of the reservoir T is low enough not to change the state of the bits; in
other words, kBT < ∆U takes place [32]. The system will instead reach a “local” thermal
equilibrium in one of the half-wells. We therefore assume that the initial statistical state is
described by the following for the bits before erasure (see Figure 1):

ρin(x, p) =
1
Z

exp
{
−β

[
U(x) +

p2

2M

]}
(12)

whereas after the erasure, the distribution function is given by Equation (13):

ρ f in(x, p) =

{
2
Z exp

{
−β
[
U(x) + p2

2M

]}
, f or x > 0

0, for x < 0

}
, (13)

where x is the position, p is the momentum of the particle M, β = 1
kBT , and Z =

∫
exp−{[

U(x) + p2

2m

]
β
}

dpdx is the partition function [33,34]. After the routine transformations,
it is demonstrated that to erase one bit of information, on average, the work performed
on the system has to be equal to or greater than ln2kBT, or, equivalently, that the heat
dissipation by the system into the heat reservoir has to be greater than or equal to the
Landauer bound ln2kBT [32]. Generalization of the Landauer principle for computing
devices based on many-valued logic (N-based logic), exploiting N identical potential
wells, was reported [30,35]. The energy necessary for the erasure of one bit of information
(the Landauer limiting bound) W = kBTln2 remains untouched for computing devices
exploiting many-valued logic [30,35].
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hand side of the potential, then we say that the bit is in the “zero” state. If it is found on the right-
hand side of the well, then we define that the bit is in the “one” state. The picture is taken from the 
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Many-Valued Logic” [35]. 
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Figure 1. Particle M placed in the twin-well potential is depicted. The position of the particle in
the double-well potential will determine the state of the single bit. If the particle is found on the
left-hand side of the potential, then we say that the bit is in the “zero” state. If it is found on the
right-hand side of the well, then we define that the bit is in the “one” state. The picture is taken from
the Bormashenko Ed. “Generalization of the Landauer Principle for Computing Devices Based on
Many-Valued Logic” [35].

2.2. The Landauer Limit and the Margolus–Levitin Limiting Principle

Now we are ready to combine the Landauer bound with the Margolus–Levitin limiting
principle, given by Equation (5). Consider the computing unit, based on the physical device
for which the Landauer limiting principle is true (the device exploiting identical potential
wells confining the particle may be taken as an example) [30,32,35]. This device operates
in a thermal equilibrium with its surroundings (thermal bath), which is kept at a constant
temperature T. Let us pose the following question: What is the minimal time it will take
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for this device to make a single computing operation? Assuming in Equation (5) that
E ∼= kBT ln 2, we obtain the following very rough estimation for the minimum “Margolus–
Levitin–Landauer” time necessary for a single computation, denoted as τMLL:

τMLL ≥
h

4 ln 2kBT
=

τPB
4ln2

(14)

where τPB = h
kBT is the Planck–Boltzmann thermalization time, which is conjectured to be

the fastest relaxation timescale for thermalization of the given system [36]. We assume in
Equation (14) that that the energy cost of a single computation equals the energy necessary
for the transfer of the system into the orthogonal quantum state. Again, we choose the
zero-level energy in such a way that E0 = 0 [15]. The numerical multiplier appearing in
Equation (14) should not be taken too seriously. The values of these multipliers are not
exact when the limiting physical principles are considered, as already mentioned when the
Abbe diffraction limit (see Equation (1)) was discussed. It is noteworthy that the Margolus–
Levitin–Landauer time given by Equation (14) is independent of the geometrical dimensions
of the computing unit. Formula (14) may be called the Margolus–Levitin–Landauer bound.
The Planck–Boltzmann thermalization time should not be mixed up with the Planck time,
which is the time span at which no smaller meaningful length can be validly measured due
to the indeterminacy expressed in Werner Heisenberg’s uncertainty principle.

Let us estimate now the Landauer time for the ambient conditions. Assuming
h ∼= 6.626× 10−34 Js, kB ∼= 1.38× 10−23 J

K , T ∼= 300 K, we calculate τMLL ∼= 0.9× 10−11 ∼
10−11 s. Thus, a single computing unit may perform not more than 1011 erasures per second
in ambient conditions.

Other approaches for the bounds of the finite time computation were suggested [37–41].
For a slowly driven (quantum) two-level system weakly coupled to a thermal bath, the
finite-time Landauer bound takes the simple form supplied by Equation (15):

W ≥ kBT
(

ln2 +
π2

4Γτ

)
+ O

(
1

Γ2τ

)
, (15)

where τ is the total time of the computation process and Γ is the thermalization rate. It
should be emphasized that all of the approaches suggest the emergence of the Planckian
thermalization time scale τPB = h

kBT (we denote it as the Planck–Boltzmann time) as the
shortest timescale for information erasure, as also immediately follows from the Margolus–
Levitin–Landauer bound supplied by Equation (14) (see Ref. [41]). Finite-size corrections to
the Landauer bound are reported in Ref. [42]. Equations (14) and (15) supply the trade-off
important for development of the computing devices. Engineers want computing devices to
be as energy efficient as possible; thus, they try to diminish the energy necessary for a single
computation [43]. It should be emphasized that the Landauer limit establishing the minimal
energy cost W = kBTln2 for a single erasure operation emerges from the equilibrium
thermodynamic considerations, and it is independent of the engineering realization of the
computing unit [43]. However, this decrease in the energy cost of computation due to a
decrease in the temperature T inevitably results in an increase in a single computation time,
as follows from the Margolus–Levitin–Landauer bound supplied by Equation (14).

2.3. The Landauer Limit and the Bekenstein Bound

Now we find ourselves in the realm of relativity. We will demonstrate that the
Bekenstein bound [16] also restricts the computation time. Consider a computational unit
with a characteristic dimension of R. Cum grano salis we assume that the minimal time
of the single computation (we call it the Bekenstein time and denote it as τB) is given by
τB ∼= R

c , which is the minimal time possible for the transfer of the particle from one half
of the double-well potential to another one. Now we address Equation (6). The entropy
change necessary for erasing 1 bit of information is estimated as S = kBln2. According
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to the Landauer principle E ∼= kBTln2, substituting τB ∼= R
c , S = kBln2, and E ∼= kBTln2

yields Equation (16):

τB ≥
h

(2π)2kBT
=

τPB

(2π)2 , (16)

It is immediately recognized that the Planck–Boltzmann thermalization time appears as
a single time scale in the eventual bound, supplied by Equation (16). This time scale
is independent of the dimensions of the computing unit. Comparing Equation (16) to
Equation (14) yields τB < τMLL; however, the values of these time scales are close one
to another. It is seen that the Landauer limiting principle allows for fundamental ideas
emerging from relativity and quantum mechanics to be unified. The minimal times of
computation arising from the Margolus–Levitin and Bekenstein bounds are close to one to
another. Thus, the Landauer principle in a certain sense bridges relativity and quantum
mechanics. This idea will be discussed below. It should be emphasized the Landauer
principle holds for a variety of quantum systems [39,44–49].

2.4. The Abbe Diffraction Limit and the Landauer Principle

Now we address the Abbe diffraction limit (see Equation (1)) discussed in Section 1
and addressed in detail in the classic textbooks devoted to optics [3,4]. Consider the
twin-well computational system depicted in Figure 2 and representing particle M confined
within the twin-well potential. We use the monochromatic light ν, λ (ν is a frequency,
λ is a wavelength) for identification of the particle location. According to Equation (1),
the identification of the particle location is still possible when λ ∼= 2dnsinθ ∼= 4Rnsinθ
takes place, where n is the refractive index and angle θ is shown in Figure 2. If the same
monochromatic light beam ν, λ is used for the erasure of information, i.e., for the transfer
of the particle from one half-well to another, and the Landauer principle is adopted, we
estimate hυ = h c

λ
∼= kBTln2, where c is the light speed. Thus, we obtain λ ∼= hc

ln2kBT . The

minimum time necessary for a single computation is roughly estimated as τmin
∼= 2R

c .
Combining these estimations yields the minimum time of a computation:

τmin
∼= 1

2nsinθln2
h

kBT
(17)

The minimum computation time corresponding to n ∼= 1, θ = π
2 is estimated as follows:

τmin
∼= 1

2ln2
h

kBT
∼= τPB (18)

Again, the minimum time span of computation scales as the Planck–Boltzmann thermaliza-
tion time, independent of the geometrical parameters of the system, given by τPB = h

kBT .
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Figure 2. A twin-well system containing particle M illuminated with monochromatic light ν is
depicted. The system is in thermal equilibrium with the surrounding T.
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2.5. Breaking the Landauer Limit

It should be emphasized that derivation of the Landauer bound emerging from
the analysis of the behavior of the particle placed in the twin-well potential, shown in
Figures 1 and 2, implies the symmetrical configuration of the potential [30,32]. In the asym-
metrical twin-well potential the Landauer bound may be broken [31,50,51]. The Landauer
principle for information erasure is valid for a symmetric double-well potential but not for
an asymmetric one. Physically, the reduced work arises when the starting state is not in
equilibrium, and other degrees of freedom do work that compensates for the work required
to erase. More simply, erasing from a small well to a large well transfers a particle from a
small box to a larger one but never the reverse [51].

2.6. The Landauer Principle and Thermodynamics of Small Systems

The Landauer principle may be understood in the context of the minimal thermal
engine suggested by Leo Szilárd in 1929 [52]. Leo Szilárd is famous for his letter with
Albert Einstein’s signature that resulted in the Manhattan Project. In Leo Szilárd’s original
formulation, the engine exploits single-molecule gas confined in a box of volume V1
contacting a thermal bath at temperature T, as depicted in Figure 3. As in any other thermal
engine, the molecule/particle pushes the piston and the engine performs work (say, lifting
a load, as shown in Figure 3b,c). Thus, the Szilárd energy transforms heat collected from
the bath in the task, being the minimum thermal engine [52]. We are interested in the
informational interpretation of the Szilárd engine, which is closely related to the Landauer
principle.
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Consider the location of the particle within a box. Divide the box into two equal parts.
Actually, the information concerning which side the molecule is in after dividing the box
can be utilized to extract work, e.g., via an isothermal expansion, under T = const. Let
us explain this idea: Isothermal expansion of the single-molecule gas from volume V1 to
volume V2 followed by the motion of the piston yields the work, given by = kBTln V2

V1
. In

this particular case, the box is divided into two equal halves: V2 = 2V1 and W = kBTln2.
However, this result may be interpreted in terms of the information theory. Indeed, after
the expansion we lost the information about the precise location of the particle. Thus,
we performed erasure of one bit of information. In other words, we converted one bit of
information into the work W = kBTln2. This is exactly the Landauer bound [26–29]. Instead
of displacement of the piston, we may imagine the Maxwell demon, which introduces or
pulls out the impermeable partition that fixes/erases the location of the particle. Thus,
it turns out that the Landauer principle is closely related to the famous Maxwell demon
paradox [53].

It seems that the action of the Szilárd engine contradicts the second law of thermo-
dynamics. Indeed, let us make the Szilárd engine cyclic. To return the initial state, the
partition/piston can be removed without any work consumption, and the whole process
can be repeated in a cyclic manner. All thermodynamic processes are defined as isothermal
and reversible [53]. This engine apparently violates the Kelvin–Planck statement of the
second law (and it is well known that it is actually equivalent to the Clausius and Carnot
formulations) by converting heat directly into an equivalent amount of work through a
cyclic process [53]. Now it is generally accepted that the measurement process including
erasure or reset of the Maxwell demon memory requires a minimum energy cost of at
least W = kBTln2, associated with the entropy decrease of the engine, and that it saves
the second law. A quantum Szilárd engine was addressed [53,54]. A demonless quantum
Szilárd engine was studied [53]. It was demonstrated that the localization holds the key
along with the Landauer principle to save the second law and presents a complementary
resolution of the quantum version of Szilárd’s paradox [53]. Quantum mechanics-rooted
arguments are necessary for the justification of the third law of thermodynamics. Quantum
mechanics also saves the second law, suggesting that quantum mechanics has strong ties in
the foundations of thermodynamics and information theory [53].

Numerous questions related to the information interpretation of the Szilárd engine
remain open. However, it is clear that the Szilárd engine links the Landauer principle to the
thermodynamics of small systems, which was rapidly developed in the past decade [54–57].
For example, it will be instructive to address the minimal (single-particle) Carnot engine,
exploited for the erasure of information in heat baths [58]. It is noteworthy that the
efficiency of the minimum Carnot is given by the traditional Carnot expression when the
motion of gas particles is temporally averaged (instead of the usual spatial averaging) [58].
Only a few experimental realizations of the Szilárd engine have been reported [59–62]. A
single-electron box operated as a Szilárd engine enabled the extraction of kBTln2 heat from
the reservoir at temperature T per one bit of created information [59]. The information was
encoded in the position of an extra electron in the box [59].

2.7. The Landauer Principle and the “It from Bit” Archibald Wheeler Paradigm

In 1989, John Archibald Wheeler suggested the global concept aphoristically called “it
from bit.” “It from bit” symbolizes the idea that every item in the physical world has at the
bottom—at a very deep bottom, in most instances—an immaterial source and explanation,
that what we call reality arises in the last analysis from the posing of yes–no questions
and the registering of equipment-evoked responses—in short, that all things physical are
information-theoretic in origin and that this is a participatory universe. Three examples
may illustrate the theme of “it from bit.” First is the photon. With a polarizer over the distant
source and an analyzer of polarization over the photodetector under watch, we ask the yes
or no question, “Did the counter register a click during the specified second?” If yes, we
often say, “A photon did it.” We know perfectly well that the photon existed neither before
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the emission nor after the detection. However, we also have to recognize that any talk of
the photon “existing” during the intermediate period is only a blown-up version of the raw
fact, a count. The yes or no that is recorded constitutes an unsplittable bit of information. A
photon, Wootters and Zurek demonstrate, cannot be cloned [63]. Actually, the Landauer
principle fills the “it from bit” idea with physical content when supplying the link between
“information” and physically measurable properties of real systems. This bridge was built
in a series of recent papers [64–77]. The principle of mass–energy–information equivalence,
which proposes that a bit of information is not just physical, as already demonstrated, but
also has a finite and quantifiable mass while it stores information, was suggested [64–71,77].
According to Herrera, a change to one bit of information (provided the temperature is fixed)
leads to a decrease in the mass of the system by an amount whose minimal value is [64]:

∆M =
kBT
c2 ln2 (19)

It is noteworthy that the Landauer principle in Ref. [64] is called “Brillouin’s principle”.
Indeed, the idea that the dissipation of energy associated with a change to one bit of
information is a fundamental process independent of the technicalities associated with
information processing (regarded today as the Landauer principle) first appears in the
work by Leon Brillouin [65].

The idea that mass may be ascribed to information was developed in Refs. [66–75].
According to Vopson, an equivalent mass of excess energy is created in the process of
lowering the information entropy when a bit of information is erased, and vice versa. Once
a bit of information is created, it acquires a finite mass, denoted as mbit [66]. Using the mass–
energy equivalence principle, the mass of a bit of information is given by Equation (20)
(compare it to Equation (19)) [66]:

mbit =
ln2kBT

c2 (20)

The idea that a mass may be ascribed to a bit of information was criticized recently, as
will be mentioned below. The mass of a bit of information at room temperature calculated
with Equation (20) (T = 300 K) is 3.19× 10−38 kg, as estimated in Ref. [66]. Now consider
the particle with energy E in contact (not necessarily in thermal equilibrium) with a thermal
bath T. The energy of the particle may be used for erasing information within the thermal
bath. The maximum information (as measured in bits), denoted as Imax, which may
be erased by the particle in contact with the bath, according to the Landauer principle,
equals: [75]:

Imax =
E

kBTln2
=

mc2

kBTln2
, (21)

where m is the relativistic mass of the particle. The value Imax may be seen within the
Landauer context as the maximum informational content of a relativistic particle. If the
potential energy of the particle is negligible and v

c � 1 is adopted (v is the velocity of the
particle), Equation (21) is re-written as follows [75]:

Imax =
m0c2

kBTln2
(22)

The value Imax supplied by Equation (22) may be understood as the maximum informational
content of a particle at rest [75]. The particle may exchange information with the medium, if
at least one bit of information is erased in medium by the particle; thus, inequality Imax ≥ 1
should hold. This inequality yields:

m0 ≥
kBTln2

c2 (23)
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A particle with a rest mass smaller than m̃0 = kBTln2
c2 will not erase information in the

medium at the temperature T. Assuming T = 2.73 K (which is the temperature of the cosmic
microwave background [78]), we obtain the estimation m̃0 ∼= 1.6 × 10−4 eV

c2
∼= 2.0× 10−40 kg.

It should be emphasized that all of the elementary particles known today (including
neutrino mneutrino < 0.120 eV

c2 ) are heavier than m̃0 = 2.0× 10−40kg. Particles lighter than
m̃0 = 2.0× 10−40kg will not transform the information to the universe and are expected to
be undetectable.

The Landauer principle enables the estimation of the computational capacity of the
entire universe, which is large but finite [66,76,79,80]. We denote the total informational
capacity of the universe as Itot, which may be estimated as follows:

Itot =
mtotc2

kBT
, (24)

where mtot = 1.5× 1053 kg is the mass of the observable universe [81]. Substituting and
T = 2.73 K , we obtain Itot ∼= 3.0 × 1092 bits, which is in a satisfactory vicinity to the
estimation reported in Ref. [80], which was based on quite different considerations.

The Landauer minimum principle enables a fresh glance at the famous “dark matter”
problem [82–84]. Dark matter is the mysterious substance that dominates the mass budget
of the universe from sub-galactic to cosmological scales, which is arguably one of the
greatest challenges of modern physics and cosmology [82–84]. We still do not know how
to explain how stars orbit in galaxies or how galaxies orbit in clusters. A wide array
of candidates for particle dark matter was suggested, including thermal relics (WIMPs),
neutralinos, and sterile neutrinos [83–86]. However, numerous experiments have failed to
find evidence for the suggested dark matter particles, and it was hypothesized that gravity
theory should be modified [87]. Equation (23), emerging from the Landauer minimum
principle, enables revisiting the “dark matter” problem [66,75]. Indeed, if dark matter is
built from the particles for which m < m̃0 ∼= kBTln2

c2
∼= 2.0× 10−40 kg takes place, they could

not be registered due the fact that they do not transform information to the surrounding
media and experimental devices [66,75].

Let us continue thinking within the Wheeler “it from bit” paradigm. The Landauer
minimum principle supplies a new glance at the problem of the great unification of physics.
Equation (21) may be easily extended to fields. Consider a field (for example, an electro-
magnetic field) in a thermal contact (not necessarily in thermal equilibrium, as it takes
place in a black body radiation problem) with a surrounding/thermal bath T. The energy
of the field may be used for isothermal erasing of information in the surroundings. The
maximum information to be erased by the field (seen as the informational content of the
field) according to the Landauer principle is given by:

Imax =
E f

kBTln2
(25)

where Ef is the energy of the field. It is noteworthy that the physical nature of the field does
not matter. If the information and the temperature are taken as basic physical quantities,
Equation (25) will be universal for all kinds of physical fields. The field is capable of
isothermally erasing the information if the bounding inequality E f > kBTln2 is true. The
Landauer principle changes the status of the temperature, usually seen as the derivative
of basic physical quantities such as energy and entropy [33,34]. Contrastingly, the Lan-
dauer principle tells us that it is just the temperature that determines the possibility of
erasing/recording the information, seen as a basic physical value [88].

2.8. Experimental Verification of the Landauer Principle

Landauer bound was tested in a series of experimental investigations [46,59,87–89].
Koski et al. tested the Landauer principle with the minimum Szilárd engine (see Section 2.6
and Figure 3) [52,59]. The main element the Szilárd engine was the single-electron box
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(abbreviated SEB) [59], which consisted of two small metallic islands connected by a tunnel
junction [59]. The SEB was maintained at a dilution-refrigerator temperature in the 0.1 K
range. The authors provided an experimental demonstration of extracting nearly kBTln2 of
work for one bit of information, in accordance with the Landauer principle [59]. Use of the
trapped ultra-cold ion enabled the demonstration of a quantum version of the Landauer
principle in the experimental study by Yan et al. [46]. Ref. [89] reported experimental
testing of the Landauer bound at low values of kBT. The authors demonstrated that for the
logically reversible operations, energy dissipations much less than kBTln2 were registered,
while irreversible operations dissipated much more than kBTln2. Measurements of a
logically reversible operation on a bit with energy 30 kBT yielded an energy dissipation
of 0.01 kBT [89]. Experiments performed with a single colloidal particle trapped in a
modulated double-well potential demonstrated that the mean dissipated heat saturated
at the Landauer bound in the limit of long erasure cycles [90]. An experiment performed
with a colloidal particle in a time-dependent, virtual potential created by a feedback trap
also confirmed the Landauer limit [91].

2.9. Landauer Limit in the Context of Logical and Thermodynamic Irreversibility

Discussion around the Landauer principle leads to the extremely important distinction
between the logic and thermodynamic irreversibility. In order to understand this distinction,
we have to start from the separation of the degrees of freedom of the computing device.
Some of a computer’s degrees of freedom are used to encode the logical state of the
computation process, and these information-bearing degrees of freedom (abbreviated IBDF)
are by design sufficiently robust that, within limits, the computer’s logical state evolves
deterministically as a function of its initial value, regardless of fluctuations occurring in the
environment (i.e., temperature fluctuations) or in the computer’s other non-information-
bearing degrees of freedom (NIBDF) [92]. While a computer as an entire physical device
(including its power supply and other parts of its environment) may be considered a
closed system obeying reversible laws of motion, Landauer noticed that the logical state
may evolve irreversibly, with two or more distinct logical states following a single logical
successor. Therefore, because Hamiltonian dynamics conserve the fine-grained entropy, the
entropy decrease in the IBDF during a logically irreversible operation should necessarily
be compensated by an equal or greater entropy increase in the NIBDF and environment.
This is the Landauer principle seen in the context of the informational/non-informational
degrees of freedom of the computing device [90].

Thus, a clear distinction between thermodynamic and logic reversibility becomes
necessary. Following Sagawa, we adopt the following definitions of thermodynamic and
logical reversibility: A physical process is thermodynamically reversible if and only if
the time evolution of the probability distribution in the process can be time-reversed,
where the change in the external parameters is also time-reversed and the signs of the
amounts of work and heat are changed [31]. In turn, a computational process Ĉ is logically
reversible if and only if it is an injection. In other words, Ĉ is logically reversible if and
only if, for any output logical state, there is a unique input logical state. Otherwise, Ĉ
is logically irreversible [31]. The logically irreversible erasure can be performed in a
thermodynamically reversible manner in the quasi-static limit. This does not contradict
the conventional Landauer principle. The logical reversibility is defined only by the
reversibility of the logical states, which is related only to the logical entropy. In contrast,
the thermodynamic reversibility is related to the reversibility of the relevant total system
(i.e., the whole universe), including the heat bath, and to the total entropy production,
as discussed in Section 2. Therefore, these logical and thermodynamic reversibilities
are not equivalent in general [31,93]. If the erasure is not quasi-static but is performed
with a finite velocity (the Margolus–Levitin limit determines only the minimal time of
computation; however, in principle it may be infinite; see Section 2.2), the erasure becomes
thermodynamically irreversible. In this specific case, we recover the Landauer bound, as a
work, which is necessary for the erasure of one bit of information. For the limit of ln2kBT
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heat generation per bit to be reached, the thermodynamic process must be reversible.
In practice, logical operations are implemented by sub-optimal physical processes and
thus are thermodynamically irreversible [93]. However, this irreversibility is not caused
by the nature of the logical operation; it is by way of the operation being implemented
by a thermodynamically sub-optimal physical process [93]. This is as true for logically
irreversible operations as it is for logically reversible operations [93].

2.10. Generalization of the Landauer Principle

Generalization of the Landauer principle for logically non-deterministic operations
was reported by Maroney [94]. The non-equilibrium quantum Landauer principle was
reported [45,95]. The Landauer principle at absolute-zero temperatures was introduced
recently; a bound tighter than Landauer that remains nontrivial even in the T → 0 was
reported [96]. Herrera discussed the Landauer principle in its relation to general relativ-
ity [97]. The Landauer principle was applied to the problem of gravitational radiation [97].
The fact that gravitational radiation is an irreversible process entailing dissipation is a
straightforward consequence of the Landauer principle and the fact that gravitational
radiation conveys information were demonstrated [97]. It should be emphasized that un-
derstanding the relativistic extension of the Landauer bound remains an open problem due
to the fact that the construction of a relativistic thermodynamics theory is still controversial
after more than 110 years of its development. In particular, the problem of the relativistic
transformation for temperature remains unsolved [98–102].

2.11. Criticism and Objections to the Landauer Principle

The Landauer principle was intensively criticized by J. D. Norton, who argued that
since it is not independent of the second law of thermodynamics, it is either unnecessary
or insufficient as an exorcism of Maxwell’s demon [103–108]. Lairez suggested a coun-
terexample of physical implementation (that uses a two-to-one relation between logic
and thermodynamic states) that allows one bit to be erased in a thermodynamic quasi-
static manner (i.e., one that may tend to be reversible if slowed down enough) [109]. The
Landauer principle was defended in a series of recent papers [110–114]. Witkowski et al.
demonstrated an original proof of the Landauer principle that is completely independent
of the second law of thermodynamics [112]. Buffoni et al. demonstrated that the Landauer
principle, in contrast to widespread opinion, is not the second law of thermodynamics
nor is it equivalent to it; in fact, it is a stricter bound [115]. However, the discussion is far
from exhausted.

The mass–energy–information equivalence principle, summarized by
Equations (19) and (20), was criticized recently [116]. In particular, Lairez argued that
(i) isothermal variation in the entropy-rooted part of the free energy of a body (namely,
T∆S) is not accompanied by any variation in its mass, (ii) the Landauer–Bennet idea is
not a general principle and is only true in a particular case, and (iii) the link between
information and energy is valid only for fresh information about a dynamic system. Old
information, or information detached from its subject matter, is no longer information and
has no value [116]. Thus, the physical groundings of the link between the mass, energy,
and information remain debatable and should be clarified.

2.12. The Landauer Principle: Open Questions, Perspectives, and Challenges

In spite of the enormous theoretical and experimental effort spent on the under-
standing and experimental validation of the Landauer principle, a number of challenging
problems remain open.

(i) The exact place of the Landauer principle in the structure of thermodynamics should
be clarified. Thermodynamics, in contrast to other fields of physics, enables a com-
pletely axiomatic approach, as suggested by Carathéodory [117–119]. The second
law of thermodynamics was formulated by Carathéodory as follows: “In the neigh-
borhood of any equilibrium state of a system (of any number of thermodynamic
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coordinates), there exist states that are inaccessible by reversible adiabatic processes.”
It seems to be instructive to re-shape the axiomatic thermodynamics with the use of
the Landauer principle.

(ii) A relativistic extension of the Landauer principle remains one of the unsolved prob-
lems (the problem of the accurate derivation of the relativistic transformation of the
temperature also remains open [97–102]). This problem is closely related to general
cosmology. Calculation of the cosmological constant Λ emerging from the Landauer
principle was reported [120].

(iii) It is important to implement the Landauer principle in the development of opti-
mal computational protocols, providing minimal dissipation [37,43,121]. Limitations
imposed by the Margolus–Levitin limiting principle should be considered (see Sec-
tion 2.2). The construction of optimal computers remains an open task and is deeply
discussed in Ref. [122], in which restrictions imposed on computation by fundamental
physical laws are deeply discussed. Ref. [122] is strongly recommended for readers
interested in the physics of computation. It was also mentioned that the transfer of
entropy and not entropy itself restricts optimal computational protocols [123].

(iv) The philosophical meaning of the Landauer principle should be clarified [124].

3. Conclusions

The physical roots, justification, interpretation, controversies, and precise meaning of
the Landauer principle remain obscure, in spite of the fact that they have been exposed
to turbulent and spirited discussion in the last few decades. The Landauer principle
(or the Landauer bound), suggested by Rolf Landauer in 1961, is a physical principle
predicting the lower theoretical limit of energy consumption of computation [26–29]. It
states that an irreversible change in information stored on a computer, such as merging two
computational paths, dissipates a minimum amount of heat kBTln2 per bit of information to
its surroundings. The Landauer principle is discussed in the context of other fundamental
physical limiting principles, such as the Abbe diffraction limit, the Margolus–Levitin limit,
and the Bekenstein limit [15,16,125]. We demonstrate that the synthesis of the Landauer
bound with the Abbe, Margolus–Levitin, and Bekenstein limits quite surprisingly yields
the minimum time of computation, which scales as τmin ∼ h

kBT = τPB (where h and
kB are the Planck and Boltzmann constants, respectively), which is exactly the Planck–
Boltzmann thermalization time [36,41]. This result leads to a very important conclusion:
Decreasing the temperature of a thermal bath will decrease the energy consumption of a
single computation, but in parallel, it will slow the computation. The relation between the
Landauer bound and the Szilárd minimal engine is discussed.

The Landauer principle bridges John Archibald Wheeler’s “it from bit” paradigm and
thermodynamics [63,75,76]. This bridge yields the mass–energy–information principle,
enables calculation of the informational capacity of the universe, and provides a fresh
glance at the dark matter problem [66–71]. The Landauer principle may serve as a basis for
the unification of physical theories, enabling a united, unified approach to the informational
content of fields and particles. Generalization of the Landauer principle to quantum and
non-equilibrium systems is addressed [44,45,125]. The relativistic aspects of the Landauer
principle are discussed. Engineering applications of the Landauer principle in the de-
velopment of optimal computational protocols are considered [37,43,120]. Experimental
verifications of the Landauer principle are surveyed [46,59]. The interrelation between
thermodynamic and logical irreversibility is addressed. The non-trivial relationship be-
tween the Landauer principle and the second law of thermodynamic is considered [115].
Objections and criticism of the Landauer principle are discussed [103,104,109]. The mass–
energy–information equivalence principle was criticized recently [116]. Therefore, a lot
of questions related to the Landauer principle and its extensions remain debatable. We
conclude that the Landauer principle represents a powerful heuristic principle bridging
fundamental physics, information theory, and computer engineering. It is suggested that
the Landauer principle may serve as a cornerstone of axiomatic thermodynamics.
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Abstract: The problem of formulating thermodynamics in a relativistic scenario remains unresolved,
although many proposals exist in the literature. The challenge arises due to the intrinsic dynamic
structure of spacetime as established by the general theory of relativity. With the discovery of the
physical nature of information, which underpins Landauer’s principle, we believe that information
theory should play a role in understanding this problem. In this work, we contribute to this endeavour
by considering a relativistic communication task between two partners, Alice and Bob, in a general
Lorentzian spacetime. We then assume that the receiver, Bob, reversibly operates a local heat engine
powered by information, and seek to determine the maximum amount of work he can extract from
this device. As Bob cannot extract work for free, by applying both Landauer’s principle and the
second law of thermodynamics, we establish a bound on the energy Bob must spend to acquire the
information in the first place. This bound is a function of the spacetime metric and the properties of
the communication channel.

Keywords: Landauer principle; second law; general relativity; relativistic communication

1. Introduction

The search for a relativistic theory of thermodynamics has a long history dating back
to Einstein [1] and Planck [2], shortly after the discovery of special relativity. Despite
ongoing debates and controversies [3,4], the last century has seen numerous advancements
exploring the connections between thermodynamics and both special and general relativity
(see, e.g., Refs. [5–16]). However, achieving consensus remains elusive, particularly when
considering the implications of general relativity.

Quantum information theory, due to its profound connection with thermodynam-
ics [17], offers promising insights into this long-standing problem. Since Landauer’s
recognition that information is physical and subject to the laws of physics, information
theory has become inherently linked to all branches of physics [18]. The foundational
Landauer principle asserts that erasing information necessitates dissipating energy as
heat, a principle fundamental to both classical and quantum mechanics, and is crucial to
resolving Maxwell’s demon paradox [19,20]. Subsequent theoretical [21–33] and experi-
mental [34–37] developments have followed these seminal works.

In this study, we explore the intersection of these ideas within the context of rela-
tivistic communication. By applying Landauer’s principle alongside the second law of
thermodynamics, we establish bounds on the energy involved in communication tasks.
Specifically, we investigate the transmission of classical information between two parties
using a massless scalar quantum field in a general curved spacetime, as discussed in
Refs. [38,39]. Building upon this framework, we consider scenarios where one party, Bob,
operates a heat engine powered by the information received from the communication
channel. This setup enables Bob to locally extract work using the acquired information.

We demonstrate that because only information, not energy, is transmitted via the
channel [39], both Landauer’s principle and the second law imply that Bob can acquire
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information from the field only by expending a certain amount of energy. Our main result
establishes a lower bound on this energy expenditure.

Our analysis utilizes tools from information theory, quantum field theory in curved
spacetimes, general relativity, and thermodynamics to provide insights into relativistic
quantum thermodynamics.

The paper is structured as follows: In Section 2, we provide a detailed review of
the communication system employed in this study, focusing on classical channel capacity
and energy costs for information transmission in globally hyperbolic spacetimes [38,39].
Section 3 applies Landauer’s principle and the second law of thermodynamics to this
context, forming the core of our investigation. Finally, Section 4 presents our concluding
remarks. Throughout, we adopt the metric signature (−,+,+,+) and use natural units
where c = h̄ = 1.

2. Energy Cost for Conveying Information

In this section, our primary goal is to introduce the system of interest and establish
notation. We outline the communication process under consideration and analyse the
energies involved, which form the foundation for subsequent discussions in the paper.
Specifically, we define the communicating partners and describe the communication chan-
nel they use, including its classical capacity C. Furthermore, we discuss the energy changes
within the global system (comprising the partners and the channel) during the commu-
nication process. This section builds upon the developments presented in Refs. [38,39],
and interested readers are referred to these works for more detailed explanations. For a
deeper understanding of quantum field theories in curved spacetimes, see Ref. [40].

To start, let us consider two communicating partners, Alice and Bob, each possessing a
two-level quantum system (a qubit). The communication channel is physically represented
by a quantum scalar (massless) field φ. The entire system resides in a globally hyperbolic
(asymptotically flat) spacetime (M, g), where M denotes the four-dimensional spacetime
manifold and g is a Lorentzian metric.

The communication process unfolds as follows [38,39]: Alice wishes to transmit
information to Bob, encoded in her qubit state ρA

∞ ∈ HA, which was prepared locally at the
infinite past. To encode this information into the communication channel, the field φ, Alice
interacts her qubit with the field over a specific time interval ∆tA. This interval is measured
relative to a Cauchy hypersurface Σt, where t is a parameter. Once the information is
encoded into the field state, the dynamics of the field will mediate its transmission to Bob.

Bob, aiming to retrieve the information sent by Alice, initially prepares his qubit in
the quantum state ρB

−∞ ∈ HB and switches on its interaction with the field for a duration
∆tB, also measured with respect to a parameter t on some Cauchy hypersurface Σt. It’s
important to note that Bob’s qubit interaction cannot be excessively strong due to potential
decoherence effects.

The dynamics of the field φ is determined by the action

S = −1
2

∫

M
d4x

√
−g
(
∇µφ∇µφ

)
, (1)

where g ≡ det(gµν) stands for the determinant of the metric. From this, we obtain the
Klein–Gordon equation

∇µ∇µφ = 0. (2)

The dynamical evolution of φ can then be determined by the specification of smooth
functions φ(t, x) and π(t, x) on Σt, where x ≡ (x1, x2, x3). As we are working in a globally
hyperbolic spacetime, this is always possible.

The canonical momentum π is then defined as

π =
∂S
∂φ̇

, (3)
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and the pair (φ(t, x), π(t, x)) represents the state of the field at time t, which can be de-
scribed as a point in the phase spaceM

M≡ {φ : Σt → C, π : Σt → C | φ, π ∈ C∞
0 (Σt)}, (4)

with C∞
0 (Σt) representing the set of infinitely differentiable compact support functions

on Σt.
By following the usual quantization procedure, we promote φ and π to operators

satisfying the equal time canonical commutation relations

[φ(t, x), φ(t, x’)]Σt
= [π(t, x), π(t, x’)]Σt

= 0 (5)

and
[φ(t, x), π(t, x’)]Σt

= iδ3(x, x’). (6)

Using these operators, we define a symplectic structure Ω : SC × SC → C as

Ω([φ1, π1], [φ2, π2]) ≡
∫

Σt
(π1φ2 − π2φ1)d3x, (7)

where each one of the pairs (φ1, π1) and (φ2, π2) leads us to a unique element ψ of SC
—SC is the space of complex solutions to Equation (2).

The symplectic structure Ω(ψ1, ψ2), with ψ1, ψ2 ∈ SC, can then be used to define the
Klein–Gordon inner product as

〈ψ1|ψ2〉KG ≡ −iΩ(ψ1, ψ2), (8)

which is not positive definite on SC. Therefore, the one-particle Hilbert space,H, must be
chosen as a subspace of SC, where the inner product in Equation (8) is positive definite.
Additionally, the space of complex solutions is comprised as SC w H⊕H, withH being
the dual Hilbert space.

Defining now a test function f ∈ C∞
0 (M), we can describe the generalised solution to

Equation (2) as an operator-valued distribution. Formally, this operator is a mapping that
associates each test function with an operator. More precisely, let us define S ∈ SC as the
space of real solutions, the projection operator K : S → H and the map E : C∞

0 (M) → S ,
which acts on the test functions f , such that

E f (x) ≡ A f (x)− R f (x), (9)

where A f and R f are the advanced and retarded solutions, respectively, to the non-
homogeneous field equation, and E f is a solution to Equation (2). Therefore, the quantum
field operator is defined as an operator-valued distribution for some test function f as

φ( f ) ≡ i
[

a(KE f )− a†(KE f )
]
, (10)

and satisfies the relation
[φ( f1), φ( f2)] = −i∆( f1, f2)I, (11)

where f1, f2 ∈ C∞
0 (M), I represents the identity operator while ∆( f1, f2) is defined as [40]

∆( f1, f2) ≡
∫

M

√
−g f1(x)E f2(x). (12)

The problem with this method is that it involves arbitrarily many choices of Hilbert spaces
and, thus, also vacuum and particles representations. Fortunately, we can circumvent this
problem by using an algebraic approach, which is a formulation of the quantum field theory
that provides a powerful tool for understanding the dynamics and properties of quantum
fields (see Ref. [40] for more details). In short, while in the usual approach, we define states
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as vectors in Hilbert spaces and observables as operators acting on these spaces, in the
algebraic approach, we build operators as elements of an algebraic space over which the
states will act by means of the identification of a number to each operator [40]. Mathemat-
ically, letW(M) be the exponential version of the algebraic algebra of the fundamental
observables. The generators of the elements of this Weyl algebra are defined as

W(E f ) = eiφ( f ), (13)

and satisfies the relations W∗(E f ) = W(−E f ), W[E(∇µ∇µ−m2) f ] = I and W(E f1)W(E f2) =

ei∆( f1, f2)/2W(E f1 + E f2), with f1, f2 ∈ C∞
0 (M). Additionally, we define the algebraic quasi-

free state as a positive and normalised linear functional ω :W(M)→ C, such that

ων[W(E f )] = e−ν(E f ,E f )/2, (14)

with ν being an inner product on S satisfying the relation

ν(E f1, E f1)ν(E f2, E f2) ≥
1
4
|Ω(E f1, E f2)|2. (15)

In this way, we can describe the states of the communication channel without making any
preferred choices of Hilbert spaces [40].

We are interested in the maximum amount of information that Alice can reliably
convey to Bob. In other words, we are interested in the capacity of the communication
channel. As mentioned before, we need to determine the dynamics of our system. Let us
then employ the above formalism in order to determine the time evolution of the state of
Bob’s qubit, which is the receiver.

If ρA
−∞ and ρB

−∞ are the initial states of the Alice and Bob qubits, respectively, we
can write the system initial state as ρ−∞ ≡ ρA

−∞ ⊗ ρB
∞ ⊗ ρω, where ρω is the density

operator associated with the field algebraic state ων (see Equation (14)). Also, we define
ων[W(E f )] ≡ Tr{ρωW(E f )}.

Time evolution is governed by the total Hamiltonian of the system, which can be
written as

H(t) ≡ Hφ(t) + Hint(t), (16)

where Hφ(t) is the Hamiltonian of the field and Hint(t) is the Hamiltonian associated with
the qubits’ interaction with the field. It is mathematically more convenient to change to the
interaction picture with respect to the free Hamiltonian. In this representation, the time
evolution operator takes the form

U ≡ ~T exp
{
−i
∫ ∞

−∞
dt HI(t)

}
, (17)

where ~T is the time ordering operator while HI(t) is the interaction picture representation
of the Hamiltonian.

Under these definitions, the final state of the system is given by ρ+∞ ≡ Uρ−∞U†,
from which we determine Bob’s qubit final state by tracing out the field and Alice’s qubit
degrees of freedom

ρB = TrA,φ

{
UρA
−∞ ⊗ ρB

−∞ ⊗ ρωU†
}

, (18)

whose explicit expression, that is not important for our purposes here, can be found in
Ref. [38]. This is the state where the information transmitted by the channel is codified. So,
we can think about this state as a quantum memory.

In our investigation, we focus on examining the balance between the energy expended
in the communication process and the energy Bob can generate using the acquired infor-
mation. Therefore, our first task is to quantify the amount of information available to Bob.
In the ideal scenario we are considering, this is represented by the channel capacity C.
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By choosing the initial state for Bob’s qubit in such a way that the signalling amplitude of
the communication is maximised, and using the Holevo–Schumacher–Westmoreland [17]
theorem, the classical capacity of the quantum channel is given by [38]

C = S
(

1
2
+

νB
2
| cos[2∆( fA, fB)]|

)
− S

(
1
2
+

νB
2

)
, (19)

where S is the Shannon entropy and νB is defined as

νB ≡ ων[eiφ(2 fB)], (20)

while the indexes A and B labelling the test functions fA and fB stand for Alice and Bob,
respectively.

The channel capacity is the maximum rate at which one can reliably convey informa-
tion. Therefore, Equation (19) represents the maximum amount of classical information
Bob can obtain from Alice per use of the quantum channel. As we are interested in a lower
bound of the energy Bob must spend in order to acquire the information, we assume that
this is the case.

Some comments are in order here. First, from Equations (11) and (19), we observe
that if Alice and Bob are not causally related, i.e., when the spacetime causality makes it
impossible for Alice and Bob to have any influence over each other, ∆( fA, fB) = 0 and,
consequently, the channel capacity vanishes, as it should. If they are causally related, then
∆( fA, fB) 6= 0 and C > 0, such that it will be possible for them to communicate over this
channel [38]. In this last case, Bob’s final state will contain the amount of information given
by C.

Now that we know how much information is available to Bob, we need to understand
the energy balance related to this process. We briefly discuss this now and point the reader
to Ref. [39] for more details.

We want to study how the energy of the total system (two qubits plus the field)
changes in time when the state evolves from ρ−∞ to ρ+∞. In order to do this, we just need
to compute the total energy variation of the system, which is simply given by [39]

∆E ≡ 〈H(+∞)〉ρ+∞
− 〈H(−∞)〉ρ−∞

, (21)

with 〈·〉ρ representing the expectation value taken with respect to the state ρ.
Note that as the qubits interact with the field for a finite amount of time, the interaction

part of the Hamiltonian does not contribute, and the total energy change can be recast into
the form

∆E = Eφ + EA + EB + EAB, (22)

whose formal expressions can be found in Ref. [39]. Physically, Eφ is the contribution
coming from the effect of particle creation due to the dynamic nature of the metric. EA + EB
are the energies arising from the work that must be performed in order to turn on and
off the interaction between the field and the qubits. This term is a function of the qubit
trajectories, the coupling constants, and the metric. The last term, EAB, is the contribution
associated to the communication process itself. This depends on the metric, the relative
motion between Alice and Bob, and the initial states of the qubits. Such dependence can be
tailored to make EAB = 0, while maximising the channel capacity, by a convenient choice
of the initial state of Bob’s qubit [39]. Remember that Alice’s qubit state cannot be fixed
as it contains the information she wants to convey to Bob. Therefore, the total change in
energy takes the form

∆E = Eφ + EA + EB. (23)

This result is particularly interesting because it tells us that we can convey an arbitrary
amount of information without any extra energy cost. This is the main fact on which the
results presented in the next section are build.
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3. Information Driven Heat Engine

Let us consider the simplest scenario of inertial Alice and Bob in Minkowski spacetime,
as it is sufficient to illustrate our argument. We assume the initial state of the field is the
vacuum, thus avoiding additional noise from finite temperature. In this case, as the metric
remains unchanged, Eφ vanishes, and the only contribution to the energy change comes
from the coupling of the qubits with the field. For efficient communication, Alice needs to
strongly interact her qubit with the field. This energy is provided by a battery in Alice’s
lab and is not transmitted to Bob [39]. Therefore, as our interest lies in what happens at
Bob’s location, the only relevant energy is EB. This is our contribution: We apply both the
Landauer principle and the second law at Bob’s laboratory to show that there must be a
bound on Bob’s ability to couple his qubit with the field to prevent him from violating the
second law.

The argument proceeds as follows. Suppose Bob has a heat engine in his lab with two
finite-size reservoirs at the same temperature. The second law states that it is impossible to
extract work from this engine. Now, assume Bob has a memory (in equilibrium with the
local environments) where he stores the information received from Alice. Bob can erase this
information by allowing the memory to reversibly thermalize with one of the environments,
using an arbitrarily small amount of energy. It is important to mention here that Bob has to
invest energy in order to acquire information, thus changing the state of his qubit (memory).
After this, Bob can simply couple his qubit with his environment without any extra energy
environment. The information will be erased and there will be a flux of energy (in the
form of heat) from the qubit to the environment. So, there must be a cost of acquiring
information. This cannot be arbitrarily small, but must respect Landauer’s bound.

The heat flux generated in this way will increase the energy in the environment.
Although the effect is small, it is present. Now, Bob has a heat engine with a temperature
gradient, from which work can be extracted. We argue that, as no energy was transmitted
along with the information, there must be a lower bound on the energy Bob spends to
couple his memory (qubit in our case) with the field to acquire the information. Otherwise,
Bob would be able to extract work without investing energy, violating the second law.
The aim of this section is to compute this bound.

Bob’s qubit must interact with the field weakly and for a short duration to avoid
decoherence. This coupling can be adjusted to maximize information transfer without
incurring additional energy costs. Recall that in this scenario, information is transferred
without energy flowing through the field. Bob can then recover an arbitrary amount of
information by expending only a minimal amount of energy.

In the case of the Minkowski spacetime, it is possible to analytically compute the
change in the energy of the qubits [39]

EX =
λ2

X
τX

, (24)

where λX is the coupling constant of qubit X with the field, while τX is the time scale
associated with the process of switching on and off this interaction. This is a trade-off
relation between energy and time. From here on, we assume that τA = τB = τ is a fixed
time scale that only depends on the switching the detectors. Therefore, the only important
variable here is the coupling constant between the qubit and the field.

Now, as mentioned before, we assume that Alice has a local battery that provides
her the necessary energy to turn on and off the coupling of her qubit with the field.
In order to maximise the communication rate, we should choose λA to be as big as possible,
implying that Alice can transfer the information to the field very efficiently, while spending
a reasonable amount of energy.

The key focus is on Bob in this scenario. We are considering that Bob possesses a local
battery that he utilizes to connect his qubit to the field (to acquire information). Additionally,
Bob has a heat engine with two finite environments at the same temperature, denoted as Tc.
It is important to note that this system is contained within Bob’s laboratory, where both
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quantum mechanics and thermodynamics are applicable, thus presenting no ambiguity to
define physical quantities like temperature. The second law of thermodynamics states that
to effectively operate the heat engine, Bob must establish a temperature gradient. While he
could use his own battery to create this gradient and operate the engine to generate work,
Bob can also employ the information he obtained from Alice, converting it into useful work
using the heat engine. This is where the Landauer principle comes into play.

The Landauer principle states that in order to erasure an amount I of information, we
must dissipate energy in the form of heat Q, such that

Q ≥ β−1I ln 2, (25)

where β is the inverse temperature of the environment where the heat goes [18].
Now, by assuming that the communication process is performed in the best possible

way, Bob receives an amount of information that equals the channel capacity I = C. So,
by reversibly erasing this information, the equality in Landauer’s principle is achieved and
Bob can increase the temperature of one of his environments as

Tc → Th = Tc +
Q
cT

> Tc, (26)

where cT represents the thermal capacity of the environment. This can be achieved, for in-
stance, by weakly coupling the qubit to the environment and allowing the system to
reversibly thermalize, a process that can be achieved with an arbitrarily small energy cost.
It is important to note that this occurs in Bob’s laboratory, thus eliminating any issues
related to coupling with gravity. The specific method through which this process occurs is
not crucial. The key point is that some heat will be transferred to the environment during
the erasure process, raising its temperature and creating the necessary temperature gradient
to operate the heat engine. Given that Bob is assumed to achieve the exact channel capacity,
this represents the maximum temperature gradient he can create.

The Carnot efficiency of this engine is simply given by

η = 1− Tc

Th
> 0. (27)

Using Equation (26), which is a consequence of the Landauer principle, we obtain

η = 1−
[

1 +
C ln 2

cT

]−1
. (28)

This implies that the maximum work extracted from the heat engine is given by
W = ηQ > 0, which is a function of the relativistic channel capacity and, thus, of the metric
and the trajectories followed by Alice and Bob.

Therefore, by erasing the information he received from Alice, Bob can operate an
information-fueled heat engine, from which he can extract work W, while expending an
arbitrarily small amount of energy in the process. However, as discussed in the preceding
section, Alice can convey an arbitrary amount of information to Bob with no extra energy
cost for him than EB. We thus conclude that, in order for the second law to be obeyed, we
must have

W ≤ EB, (29)

as what happens on Alice’s side does not matter to the heat engine. This directly implies a
lower bound on the interaction strength between Bob’s qubit and the field

λ2
B ≥ τCTc

[
1− 1

1 + C ln 2/cT

]
ln 2. (30)
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Note that such a bound depends on the spacetime metric and on the Alice and Bob
trajectories, as these variables determine the channel capacity.

4. Discussion

In this contribution, we consider a relativistic communication scenario in which Alice
sends information to Bob via a massless scalar field. The information is encoded and
decoded through local interactions between the field and Bob’s and Alice’s detectors
(qubits). An energy analysis revealed that the energy cost of this protocol is concentrated
in the coupling of Alice’s and Bob’s qubits to the field, with no additional energy required
for information transmission [39]. In this context, we considered that Bob operates a
locally reversible heat engine. By applying Landauer’s principle and the second law of
thermodynamics, we derive a lower bound on the strength of the coupling between Bob’s
qubit and the field. This bound depends on the channel properties and the spacetime metric.

Some comments on our assumption of a finite-size environment are necessary here.
The work extracted from the engine is indeed slightly less than what we previously consid-
ered. However, the general arguments remain valid as we are considering the best-case
scenario. In this case, any amount of work that Bob can extract from the engine must set a
limit on the energy he must spend to couple his qubit with the field. Furthermore, we are
consider the case where the heat engine operates reversibly—zero power output—which
implies that the environments are always in equilibrium, even with temperature variations.
Note that our reference temperature in Equation (30) is the cold, initial, one.

The predicted effect is expected to be very small. The environments were considered
finite as an infinite environment would have infinite thermal capacity, resulting in no
temperature change. However, every physical system is finite, and this assumption is
crucial for ensuring locality and consistency when defining thermodynamic laws in curved
spacetimes. Landauer’s bound predicts that β−1 ln 2 of heat will be generated per bit
erasure, so even with finite environments, a strong effect is not expected. Nevertheless,
the important message is that the effect must exist for the second law of thermodynamics
to hold in Bob’s laboratory.

One consequence of this lower bound is that Bob’s qubit will experience unavoidable
decoherence. For any finite coupling strength, a finite amount of time is required for
information transfer from the field to the qubit. During this time, the qubit interacts with
the quantum field, leading to decoherence. This reduces the amount of information Bob
receives and, consequently, the extracted work.

To illustrate our argument, we considered the simplest case of two qubits in flat
spacetime. However, according to the general theory, if Alice and Bob are not causally dis-
connected, a positive channel capacity is always achievable, implying that our result holds
for general spacetimes. The general case includes energy associated with particle creation
from the vacuum due to metric changes, which tends to destroy the information flowing
through the channel and decrease the heat engine’s efficiency. Despite this, the effect is not
expected to vanish unless the channel capacity does.

This work raises several questions, including the study of general spacetimes, espe-
cially those with event horizons. Another important issue is the propagation of information
through the channel and its relation to energy balance during the dynamics. Additionally,
what happens when transmitting quantum information instead of classical information,
as considered in this work? These questions will be the subject of future research.
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Abstract: In this paper, we are concerned with the process of experimental information gain. Building
on previous work, we show that this is a discontinuous process in which the initiating quantum-
mechanical matter–instrument interactions are being turned into macroscopically observable events
(EOs). In the course of time, such EOs evolve into spatio-temporal patterns of EOs, which allow
conceivable alternatives of physical explanation to be distinguished. Focusing on the specific case
of photon detection, we show that during their lifetimes, EOs proceed through the four phases
of initiation, detection, erasure and reset. Once generated, the observational value of EOs can be
measured in units of the Planck quantum of physical action h = 4.136× 10−15eVs. Once terminated,
each unit of entropy of size kB = 8.617× 10−5eV/K, which had been created in the instrument during
the observational phase, needs to be removed from the instrument to ready it for a new round of
photon detection. This withdrawal of entropy takes place at an energetic cost of at least two units of
the Landauer minimum energy bound of ELa = ln (2)kBTD for each unit of entropy of size kB.

Keywords: physical measurement; information gain; event generation; physical action; energy
dissipation; spacetime extension; Landauer principle

1. Introduction

The idea that matter is composed of indivisible elementary building blocks has been
around since ancient times and has become widely known under the headline of “Greek
atomism [1]”. The mental concept of atomism turned into a seriously considered scien-
tific reality with the rise of modern chemistry and the discovery of the periodic table of
elements [2]. At its time of publication, the atoms in the periodic table were still considered
indivisible building blocks of matter, a point of view that was shattered in the early years
of the 20th century with the discovery of the electron [3], the proton [4], and later with the
neutron [5]. In the year of 1932, when the neutron was discovered, the idea emerged that
all matter in the universe might ultimately be composed of only three kinds of elementary
particles. This idea was later shattered by the research into cosmic rays, and even more
by experiments with high-energy accelerators [6]. The bewildering variety of “elementary
particles” that emerged from this research was later consolidated into the standard model
of elementary particles [6], which contains no less than 18 constituent particles. The in-
creasing number of “elementary particles” raised an increasing discomfort in the scientific
community, a situation that has been aggravated as new ideas of unexplained “dark matter“
and “dark energy” have come up [7,8].

Returning to the subject matter of this paper, it is suggested that ultimate simplicity
may not necessarily exist on the level of matter but rather on the level of observation. Being
inspired by the idea of John Archibald Wheeler [9] that all physical entities at their bottom
might be information-theoretic in origin, we have re-considered in a recent paper [10] three
key experiments that were groundbreaking in the evolution of our modern ideas of matter
at the atomic, nuclear and elementary particle scales, with an informational perspective in
mind. The experiments re-considered were the Rutherford scattering experiments of Geiger
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and Marsden [11,12], the double-slit experiments with photons, electrons and other pieces
of matter [13–16], and the visualization of nuclear particle trajectories in cloud, bubble and
streaming chambers [17–19]. In re-considering these key experiments, we have taken the
standpoint that these experiments can be regarded as questions posed to nature, and we
asked ourselves how these questions are being answered by nature itself. A key result was
that in spite of the different questions posed, all experimental answers are structured in
a remarkably similar way, namely, in producing streams of macroscopically observable
events (EOs) in the first place, which accumulate in the long run into spatio-temporal
patterns of EOs, which represent the expected experimental answers, and which finally
allow decisions to be taken regarding the validity of competing alternatives of physical
explanation. In this previous work [10], we also arrived at the conclusion that EOs by
themselves exhibit a double nature, being both abstract pieces of binary information, on
the one hand, and concrete physical entities, endowed with the property of physical action,
on the other hand:

Wobs = Eobsτobs � h. (1)

In this equation, Eobs stands for the energy expended in producing a macroscopically
observable EO, τobs for the lifetime during which the EO had remained macroscopically
observable and h for Planck’s constant of physical action. The inequality Wobs � h,
moreover, indicates that EOs can be regarded as macroscopic images of the initiating
micro-events and that the observational value of EOs can be measured in multiples of the
elementary quantum of h. In this paper, we concentrate on EOs that have been produced
by photon–matter interactions, and we aim to arrive at a set of figures of merit (FOMs) that
characterize the observational value and the statistical significance of the produced EOs.
Finally, we assess the energetic and entropic costs of producing such EOs.

2. Photons as Key Carriers of Physical Information

The choice of concentrating on photons and the process of photon detection is mo-
tivated by the fact that photons are the most important carriers of information, and that
photon detection is the key process through which our material world becomes visible
and accessible to physical investigation. This latter fact is demonstrated in a cartoon-like
manner in Figure 1.
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Figure 1. Situations where matter becomes visible through the interaction with photons.

The above figure demonstrates that the information-carrying potential of photons is
not at all limited to normal macroscopic dimensions, but that it extends all throughout
the entire range of atomic and nuclear dimensions up to the length scale of truly cosmic
dimensions measuring in billions of light years. We show in a mathematical appendix
(Appendix A) that this information-carrying capacity of photons derives from the fact that
in the course of electromagnetic wave propagation, quanta of physical action of size h are
continually generated and erased while being shifted in space in discrete steps of length
∆x = λ/2, where λ is the photon wavelength and x the direction of propagation. Such
propagation processes continue up to the point at which the quanta of physical action
become absorbed either inside a passive piece of matter or in some kind of photon detector.
Whereas in both cases the quanta of physical action are absorbed, a macroscopically
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observable output signal is generated when the absorption takes place inside a suitably
designed photon detector. The above figure, moreover, shows that without the possibility
of photon detection, we would not be able to observe our own macroscopic environments,
nor would the sciences of physics and astronomy exist at all, as without electromagnetic
interaction and the possibility of photon detection, all kinds of matter would disappear
into eternal darkness and unobservability.

In Figure 2, we also sketch in a cartoon-like manner an experiment in which single
photons were processed in a one-by-one manner through a double-slit arrangement, fitted
with a fluorescent detection screen behind the double slits [13]. This picture vividly
demonstrates that each single photon becomes detected in the form of a “particle impact”
and that the individual “particle impacts” converge in the long run towards a “diffraction
pattern”, which is taken as evidence that photons, on their travel from source to detection
screen, propagate in the form of waves that had become diffracted upon passage through
the double-slit arrangement.
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Figure 2. (a) Sketch of a double-slit experiment with photons, conducted for increasingly longer peri-
ods of time. Photon impacts on the detector screen feature as black dots; (b) developed photographic
plates exposed to photons for increasingly longer times. After development of the photographic
plates, individual “photon impacts” appear as small, permanently whitened spots, approximating
diffraction patterns in the long run.

Looking at this same experiment from an informational point of view, it is suggested
that the individual “particle impacts” are binary pieces of information that decide between
two simple alternatives (event has happened at the particular “impact site”/event has not
happened at this “site”). As the decision of a binary alternative provides the minimum
possible information gain of one single binary digit, the seeming “particle impacts” can
rightly be considered as “elementary observations (EOs)” and the “diffraction patterns”
that emerge in the long run as complex pieces of information, built up from individual
EOs. This latter interpretation puts well-designed physical experiments in parallel with
technical information channels in which meaningful messages, such as texts and images,
are transported from information source to information sink in the form of meaningless
binary bits [20–23].

As similar conclusions concerning EOs were also reached in our previous work [10]
with regard to the individual light flashes produced in a Rutherford scattering experiment,
or the individual liquid droplets that had formed around ionized particle tracks in a cloud
chamber, we extrapolated that experimental answers, in general, are being built up in a
discontinuous manner from elementary pieces of information, i.e., EOs. Once looked at as
wholes, such experimental answers raise informational questions on two different levels:

(a) What is the physical and informational nature of the individual EOs?
(b) What are the mental processes that allow physical meaning to be assigned to the

patterns of EOs that emerge from the accumulation of huge numbers of EOs?
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In the present paper, we concentrate on the first question and leave the discussion of
the second question to a forthcoming paper [24].

3. Photon Detection with the Help of a Conceptual Device

In the following, we present the idea of a conceptual device that turns quantum-
mechanical photon–matter interactions into macroscopically observable EOs. The principal
architecture of such a device is sketched in Figure 3. There, a photo-ionization detector
(PID) is shown, which consists of a pair of metal or semiconductor electrodes that are
positioned facing each other in the form of a parallel-plate capacitor that is housed in a fully
evacuated box with side lengths L and an entrance window through which photons can
penetrate this box. In case an externally generated photon gets trapped inside this box, and
in case the energy Eph of this photon exceeds the electron work function qφm of the metal
or semiconductor electrodes, a mobile electron is generated that in principle can flow from
one electrode to the other. Provided a bias potential, Vb, is applied across the electrode pair,
a directional electron current is initiated, which takes the form of a triangular current pulse,
and which can be observed in the external circuit. Inside this circuit, a macroscopically
observable image of the initiating micro-event of photon excitation is formed. While the
generation of the mobile electron is an intrinsically quantum-mechanical measurement
process that likely proceeds through the process of wavefunction collapse, the transport of
the liberated electron is a process that can be described in a purely classical manner, and
which thus allows those processes to be elucidated in which an intrinsically unobservable
micro-event is transformed into a macroscopically observable event, i.e., into an EO.
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Figure 3. Schematic view onto a photo-ionization detector (PID). While the thick red arrow inside the
box indicates the internal photoelectron current flow, the thin blue lines on the exterior are electrical
wires that allow for current continuity throughout the whole device; RD and CD form an integrator
circuit that converts the very short electron pulses into quasi-permanent output voltage readings.
The frequency νsource that is much lower than the inverse transit time through the electrode gap was
chosen to conform with the conditions of single-photon detection.

In the present paper we build on the results obtained in our first paper on photon
detection [25] where we have shown that the technical performance parameters [26] of
signal-to-noise ratio (SN), noise-equivalent power (NEP) and detectivity (D and D∗) can be
neatly translated into informational language by making the following assignment:

iD
(
Eph, TD

)
=

1
ln(2)

ln[SN] =
1

ln(2)
ln
[

Ns

Nn

]
(2)
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There, SN is the conventionally defined signal-to-noise ratio, Ns and Nn the numbers of sig-
nal and noise electrons that build up the output signal currents Is(t) and iD

(
Eph, TD

)
the in-

formational value that can be assigned to the current transients Is(t). Using
Equation (2) and transforming the conventional signal-to-noise ratio SN into informa-
tional language, three contributions to iD

(
Eph, TD

)
can be identified:

iD
(
Eph, TD, VD, Vb

)
= idiss

(
Eph, TD

)
− iloc

(
Eph, Vgap

)
− itime(L, Vb) (3)

As discussed in our previous paper [25], the first contribution idiss
(
Eph, TD

)
largely corre-

sponds to the potential information ipot
(
Eph, TD

)
that the travelling photon had carried

prior to its detection. This first term simply measures the potential of a photon of energy
Eph to generate entropy SD = Eph/TD inside a thermal reservoir maintained at a temper-
ature TD. In case this thermal reservoir is a detector operated at the temperature TD, the
generated information ipot

(
Eph, TD

)
can only partly be retrieved as realized observational

information iD
(
Eph, TD

)
:

iD
(
Eph, TD

)
≤ ipot

(
Eph, TD

)
=

1
ln(2)

Eph

kBTD
. (4)

The second and third contributions to iD, which reduce iD below its maximum value of ipot,
arise when detector volumes are increased beyond their minimum sizes of VD = [λ/2]3,
where λ is the photon wavelength and when electron transit times τt are increased beyond
the photon transit times τph = L/c through the detector gap. Under these latter conditions
externally captured photons are increasingly likely to coexist with internally generated
black-body photons inside the gap, which can trigger photon detection events as well and
which thereby reduce the confidence level of the produced photon-detection EOs.

In the present paper we return to our previous work on PID detectors [25], and we
focus on the special problem of single-photon detection and on those processes which
turn single quantum-mechanical photon-detector interactions into macroscopically ob-
servable events, i.e., photon-detection EOs. Key result of these latter considerations is
that the technical performance parameters of signal-to-noise ratio and/or their informa-
tional translations of iD

(
Eph, TD

)
fall short of completely specifying the observational

value of photon-detection EOs. The reason for this incomplete match is that signal-to-
noise ratios and/or their informational translations do not specify the observational value
of photon-detection EOs that had been gained by expanding the space-time volume of
the initiating photon-detector interactions into the hugely enhanced spacetime dimen-
sions of the ensuing photon-detection EOs. In order to amend this situation we derive in
Sections 4 and 5 two figures of merit (FOM), where the first FOM quantifies the level of
macroscopic observability OVEO gained in a photon detection process, and the second the
level of confidence SIEO that the observed photon-detection EO had actually been triggered
by a photon that had originated from outside the detector itself. In Section 6 we discuss the
entropy cost of observation. There, we show that EOs with optimum observability OVEO
and optimum statistical significance SIEO can be obtained at minimum entropic cost in case
photon and detector share evenly in the energetic cost of generating an EO. In Section 7
we consider the time evolution of EOs, and we show that, during their finite lifetimes,
EOs proceed through the four stages of initiation, detection, erasure and reset. In this way
a connection between PIDs and the widely discussed Szilard-type engines [27] and the
Landauer principle [28–32] is established. In Section 8 we briefly summarize our results
and present an outlook towards other types of EOs which are not photon-detection-related.
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4. Making Microscopic Interaction Events Macroscopically Observable

Returning to Figure 3, we note that the triangular current pulses that emerge from
PIDs in response to the internal absorption of a single photon can be described by [26]

Is(t, L, Vb) = 2q
t

τt(L, Vb)
2 ; (0 ≤ t ≤ τt), (5)

with

τt(L, Vb) =
L
c

√
2mec2

qVb
(6)

standing for the transit time of the photoelectron through the electrode gap. In the two
equations above, q stands for the electron charge, c for the speed of light and mec2 for the
rest energy of the photoelectron. An integration of Is(t, L, Vb) over the transit time interval
[0, τt] yields the magnitude q of the transported charge, and thus establishes the fact of
single-photon detection.

Multiplying Equation (5) by the bias potential Vb that was applied across the electrode
gap, the signal power emerges as

PS(t, L, Vb) = 2qVb
t

τt(L, Vb)
2 . (7)

A double integration of PS(t, L, Vb) over the transit time interval [0, τt] first yields the kinetic
energy Ekin(L, Vb) that the photoelectron had gained upon its impact at the anode surface,

ES(L, Vb) = qVb, (8)

and secondly the physical action that can be associated with the photoelectron transit and
the concomitant production of an EO:

WS(L, Vb) =
1
3

qVbτt(L, Vb). (9)

Considering that the function WS(L, Vb) has the dimension of physical action and that
a travelling photon, prior to its detection, carried a single quantum of physical action h
towards the detector (Appendix A), a dimensionless measure of macroscopical observability
of a detection event can be defined:

OVEO(L, Vb)= WS(L, Vb)/h. (10)

In Figure 4a, the variation of OVEO(L, Vb) with increasing bias potential Vb is shown.
This first result shows that WS(L, Vb) can grow to large multiples of the Planck quantum of
physical action h when the bias potential is increased. Photon detection EOs, therefore, can
be regarded as hugely amplified images of the tiny packages of physical action that had
been carried by the photon prior to its detection. Returning to Figure 4a, we additionally
see that such gains in observability, OVEO(L, Vb), need to be paid for in terms of entropy
as the energetic photoelectrons will impact on the anode with increasingly larger energies
as bias potentials are being increased and as this excess energy needs to be dissipated
there. We mention here without proof that this entropy—when written in information
units—amounts to

MID
(
Eph, Vb, Td

)
=

1
ln(2)

[
Eph + qVb

kBTD

]
. (11)

We will come back to a discussion of Equation (11) in Section 6.
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Figure 4. (a) Observational gain 𝑶𝑽𝑬𝑶(𝑳, 𝑽𝒃) as measured in multiples of the Planck constant 𝒉 
versus the normalized bias potential 𝒒 𝑽𝒃 𝑬𝒑𝒉⁄ . For the sake of good macroscopic observability, a 
device with a length extension of 300 𝛍𝐦 ≫ 𝝀  was chosen; (𝐛)  electron transit time through the 
electrode gap as a function of the normalized bias voltage. As shown in Section 6, the specific choices 
of 𝒒𝑽𝒃 ≈ 𝑬𝒑𝒉  represent conditions under which optimum observabilty is ensured at minimum en-
tropic cost. 
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Figure 4. (a) Observational gain OVEO(L, Vb) as measured in multiples of the Planck constant
h versus the normalized bias potential qVb/Eph. For the sake of good macroscopic observability,
a device with a length extension of 300 µm � λ was chosen ; (b) electron transit time through
the electrode gap as a function of the normalized bias voltage. As shown in Section 6, the specific
choices of qVb ≈ Eph represent conditions under which optimum observabilty is ensured at minimum
entropic cost.

We have already shown in our previous paper that the figure of merit (FOM) of
OVEO(L, Vb) cannot be increased indefinitely, as the vacuum inside the electrode gap
will break down and become permanently electrically conducing when the energy of
the photoelectrons impacting on the anode increases beyond the threshold energy of
electron–positron pair production of Eth ≥ 2mec2.

Another possible option for arriving at even larger values of OVEO is increasing the
electrode gap width L, or the detector volume VD = L3 as a whole. We will see in the
following section that this latter option fails as huge detector volumes tend to contain
large amounts of thermally generated radiation, i.e., noise photons, which deteriorate the
statistical significance of the detected EOs.

5. Statistical Significance of Detected Events

In addition to the observational value OVEO(L, Vb), which measures the level of
spacetime expansion of an observed EO beyond the initiating photon-detector interaction
event, the statistical significance SIEO

(
Eph, TD, L, Vb

)
of an observed EO can be defined as

SIEO
(
Eph, TD, L, Vb

)
= 1− 1

SN
(
Eph, TD, L, Vb

) (12)

where SN
(
Eph, TD, L, Vb

)
is the conventionally defined signal-to-noise ratio of a PID [26,33].

In this way another dimensionless FOM is obtained, which takes on the value of one when
the observed EO has been generated by an outside photon, and the value of zero when
the observed EO has been generated with equal probability by an outside or a thermally
generated inside photon. In this first case of SIEO = 1, the photon detection EO conforms
to the nature of an EO, as discussed in our previous paper [10]. There, we argued that EOs
feature a double nature, being abstract pieces of binary information, on the one hand, and
concrete physical entities endowed with the property of physical action, on the other hand.

With the signal-to-noise ratio SN standing for the ratio of the numbers of signal (Ns)
versus noise (Nn) electrons inside the electrode gap, Equation (12) takes on a particularly
simple form in the limit of single-photon detection, i.e., (Ns = 1) and Nn ≈ 0. In this latter
case, the statistical significance of an EO reduces to the particularly simple form of

SIEO
(
Eph, TD, L, Vb

)
= 1−Nn. (13)
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Considering that the signal-to-noise ratio of PIDs is given by [25]

SN
(
Eph, TD, L, Vb

)
=

1
√

π

√√√√√

[
Eph

kBTD

]
exp
[

Eph
kBTD

]

[
Vgap
Vmin

][
Vb_max

Vb

] , (14)

it is revealed that the condition Nn ≈ 0 is easily obtained by detecting high-energy photons
in a detector operated at a temperature TD fulfilling the condition Eph � kBTD. Or, in
case this first condition cannot be fulfilled, another option is reducing the detector volume
VD = L3 towards its minimum size of VD_min = (λ/2)3 with λ standing for the photon
wavelength. Alternatively, the bias voltage of the PID can be raised towards its maximum
value of qVb_max= 2mec2. Whereas reduced detector volumes are likely to run into conflict
with the requirement of large levels of macroscopic observability OVEO, the second measure
drastically increases the entropy cost that needs to be paid for obtaining high levels of SIEO
(see Figure 4b).

6. The Entropy Cost of Observation

As high levels of macroscopic observability and concomitantly high levels of statistical
significance require contradictory demands on optimum detector volumes and biasing
conditions, compromises need to be sought. A guiding principle towards optimizing both
FOMs is considering the entropy costs that are associated with obtaining the particular
values of OVEO and SIEO at the chosen level of bias potential Vb.

In order to assess the level of entropy production, consider Figure 5a,b. While Figure 5a
shows, in the form of a semiconductor-like band profile, a PID as operated under zero-bias
conditions, Figure 5b shows this same device with the applied bias potential satisfying the
condition qVb = Eph.
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Figure 5. Pathways of photoelectrons in a band profile picture of a PID: (a) unbiased condition; (b) 
bias conditions optimally chosen to convert initiating photon energy into the kinetic energy of an 
emitted photoelectron (see Figure 6). 

Turning to Figure 5a first, it can be seen that with the electron work function 𝒒𝝓𝒎 of 
the metal electrodes matching the photon energy 𝑬𝒑𝒉 to be detected, a photon entering 
the detector can be absorbed at either of the two electrodes. Upon absorption in either of 
these electrodes, an electron may be raised from the Fermi energy 𝑬𝑭 of the affected elec-
trode up to the vacuum level 𝑬𝒗𝒂𝒄 at this same electrode. In such an event, the electron 
has gained potential energy amounting to 𝑬𝒑𝒐𝒕 = 𝑬𝒗𝒂𝒄 − 𝑬𝑭 = 𝑬𝒑𝒉. After having stayed at 𝑬𝒗𝒂𝒄 for a very short time, the excited electron returns to the Fermi level and deposits its 
extra energy inside the electrode in the form of a small quantity of heat. With the electrode 
temperature having been raised above the ambient temperature 𝑻𝑫, the excess heat will 
subsequently flow away, either by means of heat conduction or by thermal radiation, thus 
re-establishing 𝑻𝑫 again. Further, as no electrical potential had been applied across the 

Figure 5. Pathways of photoelectrons in a band profile picture of a PID: (a) unbiased condition;
(b) bias conditions optimally chosen to convert initiating photon energy into the kinetic energy of an
emitted photoelectron (see Figure 6).

Turning to Figure 5a first, it can be seen that with the electron work function qφm of
the metal electrodes matching the photon energy Eph to be detected, a photon entering the
detector can be absorbed at either of the two electrodes. Upon absorption in either of these
electrodes, an electron may be raised from the Fermi energy EF of the affected electrode up
to the vacuum level Evac at this same electrode. In such an event, the electron has gained
potential energy amounting to Epot = Evac− EF = Eph. After having stayed at Evac for a very
short time, the excited electron returns to the Fermi level and deposits its extra energy inside
the electrode in the form of a small quantity of heat. With the electrode temperature having
been raised above the ambient temperature TD, the excess heat will subsequently flow away,
either by means of heat conduction or by thermal radiation, thus re-establishing TD again.
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Further, as no electrical potential had been applied across the electrode gap, no displacement
current had been induced, and no externally observable signal had been generated.
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Figure 6. (a) Observability 𝛀𝑬𝑶 as a function of the normalized bias potential 𝒒𝑽𝒃 𝑬𝒑𝒉⁄  with the 
device size 𝑳 as a parameter. The different curves in the inset show the impact of temperature on 
entropy production; (b) statistical significance 𝚺𝑬𝑶 as a function of the normalized bias potential 𝒒𝑽𝒃 𝑬𝒑𝒉⁄   and as evaluated for different device sizes 𝑳 . For clarity of presentation, the curves in 
Fig.6b had been slightly offset from each other. 
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Figure 6. (a) Observability ΩEO as a function of the normalized bias potential qVb/Eph with the
device size L as a parameter. The different curves in the inset show the impact of temperature on
entropy production; (b) statistical significance ΣEO as a function of the normalized bias potential
qVb/Eph and as evaluated for different device sizes L. For clarity of presentation, the curves in
(b) had been slightly offset from each other.

This situation drastically changes as a potential difference is applied between both
electrodes. Once an electron has been excited to the vacuum level of the cathode, the excited
electron does no longer return to the cathode Fermi energy but, rather, gets attracted by the
electric field that was built up inside the electrode gap. With this field being present, the
excited electron gets attracted to the vacuum level of the anode. Once it arrives there, the
electron has gained a kinetic energy Ekin = qVb equivalent to the bias potential difference
that had been applied across the electrode gap as shown in Figure 5b. With a current now
flowing through the electrode gap, current continuity will assure that an electron current
will not only be flowing through the electrode gap but also through the entire external
circuit. As the current in this external circuit experiences friction, the energy qVb that is
transported with this flow will finally be dissipated inside the external circuit and generate
an entropy SD1 = qVb/TD there. With the photoelectron having arrived at the vacuum
level of the anode, the electron still has potential energy equivalent to the photon energy
Eph, as by assumption the electron work function qφm of both electrodes had satisfied the
condition qφm = Eph. As in the case of Figure 5a, the collected electron will continue to
fall onto the Fermi energy of the anode, thus producing another bit of entropy equivalent
to SD2 = Eph/TD there. Adding both entropic contributions and writing their sum in
informational units [33,34], the result already reported in Equation 4 is retained. With
MID again being a dimensionless number, a logarithmic quantity ΩEO can be defined
that represents the gain in observational value relative to the entropy cost that had been
invested at the particular level of bias potential:

ΩEO
(
Eph, TD, L, Vb

)
=

1
ln(2)

ln





1
3

[
kBTD

h

]
 τt(L, Vb)(

1 +
Eph
qVb

)





. (15)

In this latter equation

τt_red(L, Vb) =


 τt(L, Vb)(

1 +
Eph
qVb

)


 (16)
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is the reduced transit time of the electron through the electrode gap, and τPB(TD) the
Planck–Boltzmann thermalization time [32,35]

τPB(TD) =
h

kBTD
. (17)

Similarly, a second logarithmic function can be defined, which measures the statistical
significance of the generated EO relative to its entropic cost:

ΣEO
(
Eph, TD, L, Vb

)
=

1
ln(2)

ln

{
SIEO

(
Eph, TD, L, Vb

)

MID
(
Eph, Vb, TD

)
}

. (18)

In Figure 6a,b, both FOMs are plotted as functions of the normalized bias potential
qVb/Eph. Both figures show that an optimum compromise between high levels of macro-
scopic observability, statistical significance and minimum entropy cost can be obtained
when the applied bias potential is chosen to match the energy of the travelling photon prior
to its detection.

7. Time Evolution of Elementary Observations

Accepting the above result of qVb = Eph, we now turn to the time evolution of an EO,
i.e., to the kind of journey an excited photoelectron takes as it is circled through a PID device.
This kind of travel is visualized in Figure 7, again in the form of a semiconductor-like band
profile and with the electron travel directions being indicated by bold, red arrows.
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In the first two steps of initiation and detection, external energy had to be introduced
into the device in the forms of photon energy and externally supplied electrical energy;
these inputs are indicated by bold, blue, inward-pointing arrows. With the excited electron
moving through the electrode gap and the entire external circuit, a macroscopically observ-
able electrical signal is generated at the sensor output during the detection phase. As this
flow carries the energy EEO(L, Vb) = qVb (Equation (8)) that the electron had gained upon
its travel through the electrode gap, a flow of potential information equivalent to

ipot
(
Eph, TD

)
=

1
ln(2)

Eph

kBTD
(19)
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can be viewed as circling through the external circuit, and that is ready to transfer a maximum
amount of information ipot to a potential observer. This flow of thermodynamic information
is indicated by a bold, green and outward-pointing arrow on the detection side. Whether
used for observational purposes or not, this potential information will ultimately end up as
an increased amount of missing microscopic information inside the infinitely large thermal
reservoir in which the detector had been embedded, and will thereby be erased:

MIenv
(
Eph, TD

)
=

1
ln(2)

Eph

kBTD
(20)

This latter effect of energy dispersion and entropy generation inside the reservoir is
indicated by a thinner, wavy arrow pointing towards the right-hand side, and denoted
by “Erasure”.

Up to this point, the photoelectron has progressed up to the vacuum level of the
anode, where it still carries excess energy amounting to Erest = Eph. Upon returning to
the anode Fermi energy, this energy will be dissipated inside the anode, thereby raising
its temperature beyond the environmental temperature TD, which will cause an outward
energy flow into the reservoir, where a second piece of missing information will be created.
In this way, the potential information of the electron, that had been sitting on the anode
vacuum level, is finally erased. As in this downward transition no displacement current
had been generated, the potential information in this latter case is directly erased, with no
intermediate step of information gain.

As an overall result, one piece of potentially useful information, ipot, had been gener-
ated during the detection phase, and two equally large pieces of missing information had
been generated inside the thermal reservoir during the erasure phase. With the Landauer
minimum amount of energy of ELa = ln(2)kBTD per bit, the total energy expense for
erasing one potentially useful bit of potential information is affected by the transfer of
two units of energy of size ELa to the thermal reservoir, thereby completely erasing the
intermittently produced and potentially useful information that had been generated in the
detection phase.

With the photoelectron having arrived at the anode Fermi energy, the photoelectron
has lost all its acquired energy. In order to end up at a fully cyclic process of EO generation,
information erasure, and reset, the photoelectron still needs to be “pumped up” by the
external voltage source to arrive back at the cathode Fermi energy. In case this upward
shift is not associated with any additional entropy production, the total energy expense in
the initiation, detection, erasure and reset cycle still remains at two units of the Landauer
minimum amount of energy, and larger amounts otherwise [31,32]:

Eerasure ≥ 2ELa =2 ln(2)kBTD. (21)

8. Summary and Conclusions

The results presented in this paper are a follow-up to our previous paper [10], in
which we discussed historic experiments performed at the scale of atoms, nuclei and
elementary particles, with an informational perspective in mind. There, it was shown that
those experiments produced complex experimental answers that were composed out of
streams of elementary observations (EOs) and which provide simple binary answers to the
question of whether a matter–instrument interaction had taken place in the micro-domain
of quantum phenomena or not.

In the present paper, we have concentrated on the specific case of single-photon
detection, and we have made use of the easily overseeable physics of PID photon detectors
to develop a more detailed picture of EOs, both as novel physical entities and as pieces of
abstract information. In brief, our key results are the following:

- EOs appear in the form of spatio-temporal transients with spatial dimensions larger
than the observability limits set by the Abbe diffraction limit [36,37] and the temporal
limits imposed by the Planck–Boltzmann equilibration time constant [32,35].
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- Within the finite lifetime of EOs, EOs proceed through the four phases of initiation,
detection, erasure and reset.

- EOs are pieces of physical action, formed at the expense of generating entropy and
endowed with the informational properties of macroscopic observability ΩEO and
statistical significance ΣEO.

- Once detected, EOs appear as macroscopic images of the initiating photon–detector
interactions that had occurred at the micro-scale of quantum phenomena. The ob-
servability gain obtained in the micro–macro conversion of detection events can be
measured in units of the Planck constant h. In the limit of ΣEO = 1, the generated EOs
represent the binary answers concerning the initiating matter–instrument interactions
that have already been discussed in our previous paper [10].

- The present investigations have further shown that EOs with optimum properties of
ΩEO and ΣEO are produced when photon and detector share evenly in the energetic
and entropic costs required for turning unobservable micro-events into macroscopi-
cally observable EOs. This picture of EO formation is in accordance with the view of a
participatory process of information gain [9].

- Once the detection phase of EOs has ended, both the energy of the initiating photon
and the energy supplied by detector-internal resources are dissipated and turned into
missing information ∆MIenv concerning the unobservable microstate of the wider
environment of the PID.

- After energy dissipation and spatial dispersion have taken place, the intermittently
generated information has been removed from the PID device and has been distributed
in the wider environment of the PID and, thus, been erased. In terms of energy
consumption, this erasure has been performed at the expense of transferring two units
of the Landauer minimum energy bound of ELa = ln(2)kBTD per bit from the PID
and towards the thermal reservoir in which the PID had been embedded. In the final
step of reset, additional energy needs to be supplied from external resources to reset
the instrument for a new round of photon detection. In cases where this final step is
associated with an additional entropy production, the total energy cost for erasure
and reset exceeds the Landauer minimum energy cost of two units of ELa.

Eerasure ≥ 2ELa =2 ln(2)kBTD. (22)

- Looking beyond the field of photon detection, we propose that the above consider-
ations regarding photon detection may be generalized in diagrams, as displayed in
Figure 8. In this figure, the cyclic process of EO initiation, detection, erasure and reset
is displayed in two diagrams, with the first one emphasizing the energy inputs and
outputs in the course of an EO cycle, and the second focusing on the timing issues in
response to the energy inputs and outputs.
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Assuming that Eini � kBT, the parameter ΩEO is the dominant figure of merit (FOM),
which characterizes the observational value of an EO. Following Equation (15), this can be
approximated as

ΩEO
(
Eph, TD, L

) ∼= 1
ln(2)

ln
[

τobs
τPB(TD)

]
. (23)

High values of ΩEO obviously rely on the efficiency of extending the observational time
span τobs of EOs beyond the Planck–Boltzmann equilibration time of τPB(TD) = h/kBT,
which is a combination of the two natural constants of h and kB.

Turning to the parameter τobs, the comparison in Table 1 shows that τobs is most likely
that EO-related parameter that exhibits the largest range of variability. This latter compari-
son shows that EOs should not be confused with the reversible thermal fluctuations of size
Eini � kBTD that can occur within a heat reservoir of temperature TD, and whose lifetimes
τH are dictated by the Heisenberg time–energy uncertainty relationship, and that, in the
case of large energies Eini, are much shorter than the Planck–Boltzmann thermalization
time of τPB(T) [32,35]:

τH =

(
h

Eini

)
∼= 10−15s� τPB(TD) =

(
h

kBTD

)
∼= 10−13s. (24)

Extremely long times of τobs, as for instance in photography, rather point to the fact that the
art of creating particularly long-lived EOs relies on the art of using the energy inputs Eini
and Eobs to drive the detection instrument into a deeply trapped observational state with
huge thermal release times. Principally, such a situation of deep trapping can be achieved
by large energy barriers of Ereset and long associated waiting times τreset, which both inhibit
a detector reset and which trap the detector in a long-lived observational state.

Table 1. Observational lifetimes and EO figures of merit in different experimental circumstances.

EO Origin Thermal Fluctuation
Time τPB(RT)

Observational
Lifetime τobs

FOMEO

Photon detection (PID)
This work 1.5× 10−13s ∼= 10−9s ∼= 12

α-particle
detection(fluorescence)

[12,13]
1.5× 10−13s ∼= 10−8s ∼= 17

Wilson cloud chamber
[18] 1.5× 10−13s ∼= 3s ∼= 44

Double-slit experiments
(photography) [14] 1.5× 10−13s ∼= 100 a ∼= 3× 109s ∼= 74

Overall, what we have achieved in the end is the introduction of a new vehicle of
experimental information gain and information erasure that goes beyond the traditional
Szilard cylinder and piston-type approaches [27], which had been borrowed from the age
of steam engines. The proposed picture of EOs is much closer to actual experiments [10]
that had been performed in unravelling processes inside the quantum domain. EOs, in
addition, involve interactions of single particles with detection instruments and, thus, more
directly conform to the requirements of minimum thermal engines.
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Appendix A. Photon Propagation

In the main text, we have arrived at the conclusion that EOs are physical entities
endowed with the property of physical action WEO(L, Vb) � h. In order to support our
interpretation that EOs can be regarded as hugely amplified images of the tiny packages
of physical action h that had been carried with the photons prior to their detection, we
show in this appendix that freely propagating electromagnetic waves can be viewed as
repeatedly generating and erasing single quanta of physical action h.

With ϕ(x, t) standing for one of the electrical or magnetic field components, plane
electromagnetic waves can be described by

ϕ(x, t)= sin
{

2π

[
x
λ
− t

τ

]}
(A1)

where λ stands for the photon wavelength and τ for the photon vibrational period. Phys-
ically, such sine wave functions arise from the fact that within each half-wave period,
time-varying electric fields generate time-varying magnetic fields, and vice-versa. As
predicted by Maxwell’s equations, such electromagnetic field disturbances move forward
along the x-axis with a phase velocity of c = νλ until the wave either becomes absorbed
in a solid piece of matter or inside a detector, where the field disturbance can trigger a
detection event.

Mathematically, sine waves, as described above, can be constructed by rotating a unit
vector around the origin of a circle with a unit radius and with its terminal point moving
along its periphery with angular speed ω = 2π/τ and spanning an arc length ranging
from 0 to 2π (Figure A1). The sine wave in Figure A1 can also be viewed in a somewhat
different manner by replacing λ and τ = 1/ν with their quantum analogs of λ = h/pph
and τ = h/Eph, where Eph and pph stand for the photon energy and the photon momentum
and h for Planck’s constant. With these substitutions, Equation (A1) takes the form

ϕ(x, t)= sin
{

2π

[pphx− Epht

h

]}
. (A2)

This latter form can be interpreted in the way that the repeated interconversion of
electric into magnetic fields and vice versa gives rise to a repeated generation and erasure
of quanta of physical action of size h, which causes these quanta to be shifted along the
x-axis in discrete steps of length ∆x = λ/2. In Figure A1, this kind of transport is indicated
in the form of colored boxes. Specifically, these boxes indicate that within the first quarter of
each full wave, a quantum of physical action is gradually generated, whereas it is gradually
erased as it moves through the second quarter-wave period. Upon entering the second
half-wave period, the package is re-generated and re-erased again, and then arrives with
zero amplitude at the onset of the second full-wave period again. In essence, this view of
wave propagation can also be viewed as an alternative form of particle motion in which
the quanta of physical action are shifted in discrete steps whenever an interconversion of
electrical into magnetic fields and vice versa occurs within the driving electromagnetic
wave that propagates into the x-direction.

As such a kind of transport cannot be ascertained by direct observation, we call these
discrete shifts of action quanta “propagational events”. In the main text, we are concerned
with the transformation of “propagational events” into macroscopically observable “photon
detection EOs” with the help of a conceptual device. These latter considerations confirm
the point of view that photon detection EOs are hugely amplified images of the initiating
quanta of physical action of size h.
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Abstract: The Landauer principle establishes a lower bound in the amount of energy that should be
dissipated in the erasure of one bit of information. The specific value of this dissipated energy is
tightly related to the definition of entropy. In this article, we present a generalization of the Landauer
principle based on the Tsallis entropy. Some consequences resulting from such a generalization
are discussed. These consequences include the modification to the mass ascribed to one bit of
information, the generalization of the Landauer principle to the case when the system is embedded
in a gravitational field, and the number of bits radiated in the emission of gravitational waves.
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1. Introduction

The Landauer principle ref. [1], which is a cornerstone in the theory of information,
states that the erasure of one bit of information stored in a system implies the dissipation
of energy, whose value cannot be smaller than

4E = kT ln 2, (1)

where k is the Boltzmann constant and T denotes the temperature of the environment. The
important point to keep in mind here is that even though the value of dissipated energy
depends on the erasure procedure, it cannot be lower that Equation (1).

At this point, some remarks are needed, as follows:

• It has been argued in the past (see for example ref. [2]) ) that the main idea stated in
the Landauer principle appears already in some Brillouin works ref. [3]. We shall skip
this controversy and shall adopt the notation used by most of researchers, and we
shall refer to it as the Landauer principle.

• In spite of some arguments put forward in the past questioning the relevance of
the Landauer principle (see ref. [4] and references therein), the important point to
retain here is that on the one hand it allows an “informational” reformulation of
thermodynamics, as stressed in ref. [4], and on the other hand brings out a link
between information theory and different branches of science refs. [5–7]. This allows
us to approach some physical problems from the point of view of information theory.

• The expression Equation (1) for the dissipated energy heavily relies on the concept
of entropy. More specifically, such an expression was found using the Gibbs entropy.
Therefore, we should expect different expressions for alternative definitions of entropy.

2. Landauer Principle and Definition of Entropy

In order to exhibit the link between the Landauer principle and the definition of
entropy, let us present a very simple proof of this principle.

Thus, let us consider a physical system which may be in two possible states, e.g., a
particle whose spin may point upward or downward. The particle is inside a black box, and
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for an observer outside the box, the particle may be in either state with the same probability.
Then, using the Gibbs definition of entropy given by

S = −k
N

∑
i=1

pi ln pi, (2)

where N denotes the total number of accessible states and pi is the probability of each state
(i.e., ∑N

i=1 pi = 1), we find that the Gibbs entropy of our system is

S = k ln 2. (3)

Let us now apply a magnetic field to our system as a consequence of which the spin
is set to point to a determined direction (upward or downward). Obviously after such
operation the entropy of the system becomes equal to zero, implying that there has been a
decreasing of entropy equal to

∆S = k ln 2, (4)

which according to the second law of thermodynamics should be accompanied by an
increasing of, at least, the same amount, producing a dissipation of energy equals to

∆E = kT ln 2, (5)

where T is the temperature of the environment.
Now, applying a magnetic field to our system, we set the direction of the spin in a

predetermined direction, thereby erasing the information about where the spin was pointed
to before switching on the magnetic field ref. [8]. Since this information is contained in
the answer to the single question, “where is the spin pointing to?”, the amount of this
information is one bit.

Thus, we have proved that erasing one bit of information implies that an amount
of energy not smaller than Equation (5) must be dissipated, which is just the statement
of the Landauer principle. The purpose of the above exercise being to bring out the
relationship between the minimal amount of dissipated energy with the definition of
entropy Equation (2).

Arriving at this point the obvious question arises: what could be the corresponding
minimal amount of dissipated energy in the process of erasure of one bit of information if
we resort to a definition of entropy different from Equation (2)?

We endeavor in this work to answer to the above question in the case when we use
the Tsallis entropy (instead of using Equation (2)).

However, it would be legitimate to ask why, in particular, we have chosen Tsallis
entropy, instead of any other definition of entropy? The answer to this question is based on
the great deal of attention received by Tsallis proposal and its applications (see for example
refs. [9–13] and references therein). Nevertheless, it goes without saying, that resorting to
any other alternative definition of entropy would also deserve to be considered.

3. Tsallis Entropy and Modified Landauer Principle

Some years ago Tsallis proposed a generalization of Gibbs definition of entropy, which
reads ref. [14]

S = k
1−∑N

i=1 pq
i

q− 1
, (6)

where q is a real number.
It is a simple matter to check that

lim
q→1

k
1−∑N

i=1 pq
i

q− 1
= −k

N

∑
i=1

pi ln pi. (7)
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Thus, deviations from the Gibbs entropy correspond to values of q different from 1.
Since its publication the Tsallis proposal has received a great deal of attention, and

therefore we find it useful to evaluate its impact in the Landauer principle.

The Lower Bound of the Dissipated Energy Ensuing the Erasure of One Bit of Information
According to the Tsallis Entropy

In order to calculate the minimal amount of energy that must be dissipated when
erasing on bit of information according to Tsallis entropy, let us retrace the steps of the
exercise proposed in the previous section, leading to Equations (4) and (5).

Thus, let us consider a system with two possible accessible states (N = 2) the probabil-
ity of each of which is 1/2. Then, it follows from Equation (6) that the Tsallis entropy of our
system is given by

S =
k

q− 1

[
1− 2(1−q)

]
. (8)

We now proceed to apply a magnetic field to our system, after which the system is in a
single state with probability 1, implying the erasure of one bit of information, and the
vanishing of the entropy. Thus, the decreasing of entropy is given by

∆S =
k

q− 1

[
1− 2(1−q)

]
, (9)

producing an amount of dissipated energy equal to

∆E ≡ T∆S =
kT

q− 1

[
1− 2(1−q)

]
. (10)

As depicted in Figure 1, the above expression decreases monotonically with q for any q > 0.
It is a simple matter to check that in the limit q → 1, expressions Equations (9) and (10)
become Equations (4) and (5), respectively.

Figure 1. ∆E/kT as function of q for the Tsallis entropy.

Thus, using the Tsallis entropy we see that the minimal energy dissipated in the
erasure of one bit of information depends on the parameter q as expressed by (10).

We shall next see how this change affects some consequences derived from the Lan-
dauer principle.

4. The Mass of a Bit of Information

As we have seen above, the Landauer principle based on the Gibbs definition of en-
tropy, asserts that a minimal amount of energy given by Equation (1), should be dissipated
when erasing one bit of information. This fact implies the association of such an amount of
energy with one bit of information. From the previous comment it follows at once, recalling
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the well-known fact that a mass E/c2 has to be ascribed to energy E, and that a mass should
be ascribed to a bit of information ref. [15] (see also refs. [4,16]), specifically

4M =
kT
c2 ln 2, (11)

where c denotes the speed of light.
Following the same reasoning leading to Equation (11), but using Equation (10) instead

of Equation (1) we obtain for the mass associated with a bit of in formation

∆M =
kT

c2(q− 1)

[
1− 2(1−q)

]
, (12)

which of course becomes Equation (11) in the limit q→ 1.
From the above it follows that for one bit of information, at room temperature, the

minimal dissipated energy is

4E ≈ 4.04
q− 1

[
1− 2(1−q)

]
× 10−14erg (13)

and the associated mass is:

4M ≈ 4.33
(q− 1)

[
1− 2(1−q)

]
× 10−35g. (14)

In the limit q → 1, the above expressions yield 2.8× 10−14erg and 3× 10−35g, respec-
tively.

Also it is worth noticing that according to the uncertainty principle, there is a minimal
time interval required to measure a given amount of energy. In our case this implies that
for the energy Equation (13) the minimal time interval is

4t ≈ h̄
4E
≈ 2.56(q− 1)

1− 21−q × 10−14s, (15)

where h̄ is the Planck constant divided by 2π, thereby imposing a limit in the speed of
information processing which in the case q ≈ 1 is ≈ 105 GHz.

We shall next consider the case, when the system is placed in a gravitational field.

5. Landauer Principle in a Gravitational Field

If the system is located in a (weak) static gravitational field, then the gravitational po-
tential affects the Landauer principle. This important result was obtained by Daffertshoffer
and Plastino ref. [17]. More specifically, these authors show that in this case (assuming for
the entropy the Gibbs definition Equation (2)) the minimal amount of energy dissipated in
the erasure of one bit of information is given by

4E = kT(1 +
φ

c2 ) ln 2. (16)

where φ denotes the (negative) gravitational potential, and T(1 + φ

c2 ) (the Tolman’s temper-
ature) is the quantity which is constant in thermodynamic equilibrium ref. [18].

Now, Equation (16) was obtained in the context of Newtonian gravity (weak field
approximation). The extension of the above result to the general relativistic case is simple
to achieve if we recall that in such a case Tolman’s temperature becomes T

√
gtt, where gtt

denotes the tt component of the metric tensor (the coefficient of dt2 in the expression for
the line element). Therefore, Equation (16) generalizes to

4E = kT
√

gtt ln 2, (17)
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producing for the mass ascribed to a bit of information

4M =
kT
c2
√

gtt ln 2. (18)

So, the question is: how does the Landauer principle change in the presence of a
gravitational field if we use the Tsallis entropy Equation (6) instead of Equation (2)?

Retracing the same steps followed in ref. [17], we obtain for the energy dissipated in
the erasure of one bit of information and for the corresponding mass

∆E =
kT

q− 1

[
1− 2(1−q)

]
(1 +

φ

c2 ), (19)

and
∆M =

kT
c2(q− 1)

[
1− 2(1−q)

]
(1 +

φ

c2 ). (20)

The generalization of the above expressions to the general relativistic case may be
easily obtained by replacing (1 + φ

c2 ) with
√

gtt.
After the formation of a black hole (gtt = 0), it follows from Equation (17) or

Equation (19) that the energy dissipated during the erasure of one bit of information
vanishes (assuming that the proper temperature is not singular), leading to a vanishing
mass for a bit of information.

Now, the change of information without dissipation implies that all bits are already in
one state only ref. [8]. This result agrees with the well-known assumption that the quantum
radiation emitted by the black hole is nearly thermal (i.e., it conveys no information)
refs. [19,20], thereby suggesting the “bleaching” of information at the horizon.

Thus, the well-known fact that after the formation of the horizon (gtt = 0), no further
information leaves the system, follows in a simple way from information theory.

If the gravitational field does not correspond to a black hole (gtt 6= 0), then we see
a decreasing of the corresponding mass of a bit of information. Such a decreasing value
depending on the parameter q occurs if we assume the Tsallis definition of entropy. At any
rate such a decreasing value is very small for a weak gravitational field ( φ

c2 ≈ 10−9 for the
case of the earth).

6. Gravitational Radiation, Radiated Information, and the Landauer Principle

Finally, we would like to consider the relationship between the energy and the infor-
mation conveyed by gravitational radiation and the definition of entropy.

As we know from field theory (at classical level and for any spin), information about
changes in the structure and/or state of motion of the source is propagated by radiation.
Once the observers have received this information, the information encrypted in the “old”
multipole structure is erased. In other words, the process of radiation implies not only
propagation of information but also erasure of information, from which it is obvious that
the Landauer principle should be implicated in the whole process.

The above comments imply that according to the Landauer principle, gravitational
radiation entails a dissipation of energy. This conclusion was proved to be true in ref. [21]
and is a consequence of the fact that gravitational radiation is an irreversible process, and
this irreversibility should show up in the equation of state of the source.

This “informational” approach to radiation is particularly manifest in the Bondi
formalism refs. [22,23].

In this approach there is a function (called “news function” by Bondi), which entails all
the information required to forecast the evolution of the system (besides the initial data) and
is identified with gravitational radiation itself. Such an identification is possible because
the news function describe all changes in the field produced by changes in the source.
Moreover, the vanishing of the news function is the necessary and sufficient condition for
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the total energy of the system to be constant. This scheme applies to Maxwell systems in
Minkowski spacetime ref. [24] as well as to Einstein–Maxwell systems ref. [25].

Once we admit that a bit of radiated information implies a bit of erased information at
the radiating system, which in turn leads to a decreasing of its total mass (energy), then
it is legitimate to ask: what part of the total radiated energy (mass) corresponds to the
radiated information?

We shall answer to this question, adopting the Tsallis definition of entropy.
In ref. [26] an answer was provided to the above question, based in the Landauer

principle expressed through the Gibbs entropy Equation (1).
Thus, one obtains for the total dissipated energy (see ref. [26] for details)

E(L)
rad =

∫ ∞

rΣ

∫ π

0

∫ 2π

0

√
|g|µ(L)

raddrdθdφ, (21)

where |g| is the absolute value of the determinant of the metric tensor, r = rΣ is the
equation of the boundary surface of the source, and µ(L) is the energy–density of the
radiation associated exclusively with the dissipative processes related to the emission of
gravitational radiation.

The above expression may be transformed further using a central result by Bondi
Ref. [22], relating the rate at which the energy is being radiated, with the news function,
which reads:

dm(u)
du

= −1
2

∫ π

0

(dc(u, θ))2

du
sin θdθ, (22)

where dc(u,θ)
du is the news function, u is the timelike coordinate in the Bondi frame, c(u, θ) is

a function entering into the power series expressions of the Bondi metric, and m(u) denotes
the energy of the system (the Bondi mass).

Therefore, the total radiated energy in the timelike interval u1 ≤ u ≤ u2 is given by

E(L)
rad =

∫ u2

u1

[
1
2

∫ π

0

(dc(u, θ))2

du
sin θdθ

]
du, (23)

(please notice a misprint in the sign of Equations (31) and (32) in ref. [26]).
On the other hand, according to the Landauer principle Equation (19), we obtain for the

total number N of bits erased (radiated) in the process of the emission of gravitational radiation

N =
E(L)

rad

kT
√
|gtt| ln 2

, (24)

Feeding back Equation (23) into Equation (24) we find an explicit relationship linking
the news function with the total number of bits radiated in the assumed time interval,

N =

∫ u2
u1

[
1
2

∫ π
0

(dc(u,θ))2

du sin θdθ
]
du.

kT
√
|gtt| ln 2

=

[∫ ∞
rΣ

∫ π
0

∫ 2π
0

√
|g|µ(L)

raddrdθdφ
]

kT
√
|gtt| ln 2

, (25)

which measure the total erased information during the radiation process.
The expressions above have been obtained by resorting to the Landauer principle

based on the Gibbs entropy; therefore, in the context of this work it is legitimate to ask
how do the expressions above change if we use the Landauer principle based in the
Tsallis entropy Equation (6). Using Equation (19) and retracing the same steps leading to
Equation (25), we obtain

N =
(q− 1)

∫ u2
u1

[
1
2

∫ π
0

(dc(u,θ))2

du sin θdθ
]
du.

kT
√
|gtt|

[
1− 2(1−q)

] =

[∫ ∞
rΣ

∫ π
0

∫ 2π
0

√
|g|µ(L)

raddrdθdφ
]
(q− 1)

kT
√
|gtt|

[
1− 2(1−q)

] , (26)
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bringing out the role played by the parameter q in the number of bits radiated in a given
burst of gravitational radiation.

It would be most desirable to relate the above expressions with the data obtained from
the LISA program (see ref. [27] and references therein). Unfortunately, at this point we do
not see how to exactly establish such a link.

7. Discussion

Motivated by the fact that the specific value of the lower bound of energy—which
according Landauer principle should be dissipated in the erasure of one bit of information—
depends on the definition of entropy, we have addressed the question about the value of
this bound for the Tsallis entropy, obtaining the expression Equation (10).

Once this value has been established, we have considered how deviations of this value,
with respect to the one obtained from the Gibbs entropy, affects different scenarios where
the Landauer principle is involved. In particular we have brought out how different values
of q modify the values of different observational variables.

The first important result resides in the expression for the lower bound of energy
dissipated after the erasure of one bit of information for the Tsallis entropy, which is now
given by Equation (10). Figure 1 shows that for any value of temperature, such dissipated
energy is a monotonically decreasing function of q, which is larger than the corresponding
value for the Gibbs entropy for any value of q in the interval [0, 1] and smaller in the
interval [1, ∞].

Next, we have considered the mass associated with a bit of information, which for the
Tsallis entropy is given by Equation (14) in contrast with expression Equation (11) obtained
from the Gibbs entropy. This result also affects the limitation on the speed of processing, as
expressed by Equation (15).

The generalization of the Landauer principle for systems embedded in a gravitational
field has been achieved following the work by Daffertshoffer and Plastino ref. [17]. The
corresponding expression for the energy dissipated in the erasure of one bit of information
is now given by Equation (19), leading to the expression Equation (20). Once again we see
how q affects the values of the two above mentioned variables.

Finally, we addressed the question about the number of bits radiated (erased) in the
emission of gravitational radiation. By using the Tsallis entropy, we found that such a
number is given by Equation (26) instead of the expression Equation (25) corresponding to
the Gibbs entropy.

In all these examples the role of the parameter q is clearly displayed. This fact brings
us back to the leitmotiv of our work.

Indeed, it is to be expected that for any physical scenario, the experimental data could
differentiate between what is the correct definition of entropy that should be adopted. In the
case of Tsallis entropy, this implies a specific value of q. Since the scenarios analyzed above
imply observed quantities, we harbor the hope that some of the expressions found here
could help in a process of verification of the appropriate definition of entropy. Moreover,
we believe that the extension of the program followed in this work to other definitions of
entropy is an issue that deserves to be considered in the future.
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Abstract: Evidence is presented for dark energy resulting directly from star formation.
A survey of stellar mass density measurements, SMD(a), as a function of universe scale
size a, was found to be described by a simple CPL w0 − wa parameterisation that was
in good agreement with the dark energy results of Planck 2018, Pantheon+ 2022, the
Dark Energy Survey 2024, and the Dark Energy Spectroscopic Instrument 2024. The
best-fit CPL values found were w0 = −0.90 and wa = −1.49 for SMD(a), and w0 = −0.94
and wa = −0.76 for SMD(a)0.5, corresponding with, respectively, good and very good
agreement with all dark energy results. The preference for SMD(a)0.5 suggests that it is
the temperature of astrophysical objects that determines the dark energy density. The
equivalent energy of the information/entropy of gas and plasma heated by star and
structure formations is proportional to temperature, and is then a possible candidate for
such a dark energy source. Information dark energy is also capable of resolving many of
the problems and tensions of ΛCDM, including the cosmological constant problem, the
cosmological coincidence problem, and the H0 and σ8 tensions, and may account for some
effects previously attributed to dark matter.

Keywords: Landauer’s principle; dark energy; dark energy experiments

1. Introduction
The ΛCDM model has been very successful despite our inability to account for either

the cosmological constant, Λ, or cold dark matter, CDM. It is well known that the natural
value of Λ is a factor of ~10120 different from the observed value. Also, there has not been a
single confirmed detection of a CDM particle of any type, including WIMP, axion, etc. In
addition, when using ΛCDM to extrapolate from early universe measurements to the late
universe, there appears to be a significant difference, or tension, with the Hubble constant,
Ho, and with the σ8 matter fluctuation parameter measured today. Therefore, despite the
success of ΛCDM, we are encouraged to also consider alternative explanations. Here, we
consider the role of information energy.

Information must play a significant physical role in the universe. Rolf Landauer [1,2]
showed that “Information is Physical”, as each bit of information in a system at temper-
ature T has an energy equivalence of kB T ln(2). Laboratory experiments have proven
the Landauer information energy equivalence [3–6]. John Wheeler [7] even considered
information to be more fundamental than matter, with all things physical being information-
theoretic in origin, a view encapsulated by his famous slogan “It from Bit”. In the same
vein, Anton Zeilinger [8] proposed a “Foundational Principle” whereby the attributes of all
particles at their most fundamental level correspond with elemental systems, each with
just one classical bit or quantum qubit of information.
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A strong similarity was found [9] between information energy and a cosmological
constant. Consider a Zeilinger elemental bit of a particle attribute in a simple universe,
without star formation. The Landauer equivalent energy of such a bit has been shown to
be defined exactly the same as, and have the same value as, the characteristic energy of a
cosmological constant [9,10].

These ideas of information have encouraged research [11–15] into the possible role
information energy may play as a source of dark energy. Such a source would be governed
by the product of the source bit number total, N [16,17], with a typical source temperature,
T. Previously, the time history of alternative dark energy contributions was compared with
the generally assumed cosmological constant Λ. By definition, Λ has a constant energy
density, or a total energy proportional to a3, where a is the scale size of the universe, given
by a =1/(1 + z); z is redshift; and a = 1 today. A time history of information energy was
obtained by combining the stellar mass density history, SMD(a), for T, with the holographic
principle [18–20] for N. During late-universe times, z < 1.35; the NT product was found to
also vary as a3 with a near-constant information energy density, emulating a cosmological
constant. During earlier times, z > 1.35; the steeper gradient would provide a means by
which the information dark energy could be differentiated from a cosmological constant
and effectively falsified [15].

However, the universe information content is well below the holographic bound
(~10124 bits) and, so far, the holographic principle has only been verified to apply to
black holes at that bound. The approach taken in the present work was to show that
information energy could account for dark energy history based solely on the measured
SMD(a), without invoking the holographic principle. Compared with the most recent
work [15], the approach here is simpler and more natural. Moreover, the predicted time
history of this information dark energy is provided in the same form as the results from
dark energy measurements, enabling a direct comparison between theory and experiments.

2. Information Dark Energy (IDE)
The equation of state parameter, w, of dark energy sets the time variation in the dark

energy density as being proportional to a−3(1+w). While baryon and dark matter energy
densities vary as a−3 and w = 0, the energy density of a cosmological constant is, by
definition, constant, unchanging as a0 and w = −1. In contrast, a dynamic form of dark
energy varies at different rates at different times. In order to take any such time variation
into account, most dark energy studies have adopted the CPL [21] parameters w0 and wa

for a variable equation of state parameter, w(a) = w0 + (1 − a) wa. This provides w(a) with a
smooth variation from the very early value of w0 + wa to the present value of w0. While
there is no reason to expect that any source of dark energy with a time varying w(a) can be
fully described by CPL parameters, it does have the advantage of being simple and, for
that reason, it is widely applied to studies of dark energy. CPL provides a common testing
ground between experiments and theory. Dark energy measurements were originally
expected to strengthen the cosmological constant hypothesis by converging on the values
of w0 = −1 and wa = 0, but recent dark energy measurements [22–24] clearly tend towards
a dynamic dark energy description, with w0 > −1 and wa < 0.

As the main source of information dark energy, IDE(a) is the information energy of hot
gases and plasma heated by star and general structure formations [15], we must consider
the stellar mass density, SMD(a), as a function of universe scale size, a. Figure 1 provides a
survey of SMD(a) measurements in units of solar masses per cubic co-moving megaparsec.
A total of 121 SMD(a) measurements from 27 published sources [25–51] (some of which
were covered in a review [52]) are plotted in Figure 1 on a logarithmic scale of stellar mass
density against the logarithm of universe scale size, a. Note that only values of a > 0.2 are
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used in the analysis below. This is because values of a < 0.2 would correspond to times
when the information energy density was so much weaker, <<1%, of the matter energy
density (varying as a−3), and thus could not affect universe expansion measurements. Dark
energy is only evident from measurements of the expansion rate history.
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As SMD(a) is a universe-wide average mass density and IDE(a) is a universe-wide
average information energy density—both effectively energy densities—we expect IDE(a)
to vary at some power, p, of proportionality as SMD(a)p. In this way, we can account
for time variations in the NT product (without recourse to employing the holographic
principle, as it was previously).

The Friedmann equation [53] describes the Hubble parameter H(a) in terms of the
Hubble constant, H0, and dimensionless density parameters, Ω, expressed as a fraction
of today’s total energy density. We can assume that the curvature term is zero and that
the radiation term has been negligible for some time. The ΛCDM model is then given
by Equation (1). The equivalent IDE model is then described by Equation (2), where the
present fractional energy density contributions are Ωtot from all matter (baryons + dark
matter); ΩΛ is the cosmological constant and ΩIDE is information dark energy (IDE).

ΛCDM: (H(a)/H0)2 = Ωtot a−3 + ΩΛ (1)

IDE: (H(a)/H0)2 = Ωtot a−3 + ΩIDE (SMD(a)/SMD(1.0))p (2)

Note that the energy density terms Ωtot and ΩIDE are energy density fractions, assum-
ing the mc2 energy equivalence of mass, and the Landauer, kB T ln(2), energy equivalence of
information. No matter needs to be destroyed, nor information erased, nor such processes
identified in order to use these energy equivalences in these equations.
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It seems most natural to assume that the heating of gases and plasmas is directly
proportional to the amount of star formation, p = +1. However, we see in Section 4 that
there are many general cases in the universe where temperatures closely follow the square
root of mass, corresponding with p = +0.5. As the Landauer information equivalent energy
is proportional to temperature, we therefore examined both cases, IDE(a) α SMD(a) and
IDE(a) α SMD(a)0.5, as shown in Figure 2.
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Figure 2. Measured stellar mass densities [25–51] plotted against universe scale size. The red curves
correspond with the CPL best-fit parameters of w0 = −0.90 and wa= −1.49 for IDE(a) α SMD(a) and
w0= −0.94 and wa= −0.76 for IDE(a) α SMD(a)0.5.

The SMD and SMD0.5 data illustrated in Figure 2 were tested against all CPL w0 and
wa combinations; w0 values in the range of +0.9 to −3.0 in steps of 0.01 were tested for each
wa value in the range of +0.9 to −3.5, also in steps of 0.01. As this was a log–log plot, any
curve corresponding with a given w0 and wa combination was fixed in the log(a) abscissa
direction, but could be moved in the ordinate direction to find the best fit. The best fits
for each w0 and wa combination were determined by the position in the ordinate direction
that gave the minimum value of the residual sum of squares (RSS). Then, that w0 and wa

combination was assigned an R2 coefficient of determination, given by R2 = 1 − (RSS/TSS),
where TSS is the total sum of squares.
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The w0 and wa combinations that provided the highest R2 (or minimum RSS), both with
maximum R2 values of 0.93, are shown in Figure 2 for the two cases of SMD and SMD0.5.

In Figure 3, each of the 121 SMD(a) measurements are plotted against the SMD(a)
values predicted by the best-fit CPL curve at the measured a value. In both cases, the
measured and predicted sets of values were related, with a Pearson correlation coefficient
value of r = 0.92.
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3. Comparison of IDE Prediction with Experimental Measurements
In this section, we compare the IDE(a) contribution with several experimental mea-

surements of dark energy. In Figures 5 and 6 we illustrate the expected information dark
energy contribution in w0 − wa space for the two cases of IDE(a) α SMD(a) and IDE(a) α
SMD(a)0.5 by re-plotting the R2 > 0.86 and R2 > 0.92 contours from Figure 4 in two shades
of red, adjusted to the scales of the various published w0 − wa experimental plots. Both
IDE(a) predictions are compared in these figures directly with the results of Planck 2018 [54],
Pantheon+ 2022 [22], the Dark Energy Survey 2024 [23], and the Dark Energy Spectroscopic
Instrument (DESI) 2024 [24].
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Figure 5. Information dark energy predicted contribution for the cases of IDE(a) α SMD(a) and IDE(a)
α SMD(a)0.5 compared in w0 − wa space with Planck 2018 and Pantheon+ 2022 results. Adapted
from Planck, Figure 30 of [54], and Pantheon+, Figure 12 of [22], under the Creative Commons BY
4.0 License.

These combined plots allowed the region of predicted IDE(a) in w0 − wa space to
be directly compared with the w0 − wa space required to explain the experimental mea-
surements of dark energy. In each measurement plot, there were several combinations
of experimental techniques and different colours were used to differentiate between the
different combinations, each with two shades per combination, corresponding with the 68%
(stronger colour) and 95% (lighter colour) likelihood contours. The combinations included
several different techniques, such as the cosmic microwave background, baryon acoustic
oscillations, weak lensing, etc. The reader is referred to the cited publications for more
information on these techniques and how data from the techniques were combined.
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The IDE predicted w0 − wa spaces for IDE(a) α SMD(a) in Figures 5 and 6 clearly
show a strong overlap with the Planck plots of likelihood space, and lie close to, but with
less direct overlap with, the more recent measurements of Pantheon+, the Dark Energy
Survey, and the Dark Energy Spectrographic Instrument. However, the predicted IDE
w0 − wa spaces for IDE(a) α SMD(a)0.5 show an even stronger overlap in all plots. The
best-fit IDE, R2 > 0.92, overlaps the deeper-colour 68% likelihood area of all experimental
data combinations in all plots.
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4. Discussion
4.1. IDE Can Account for the Observed Dark Energy

While we might well expect a direct proportionality between IDE(a) and SMD(a),
to exhibit the observed reasonable agreement in w0 − wa space, we find that SMD(a)0.5

provides an even better, fuller, agreement. In this case, two decades of SMD(a) mass density
provide only one decade of IDE(a). Information energy, N kB T ln(2), is proportional to
temperature and we note that there are many cases in the universe where the temperature
of objects scale approximately with the (object mass)0.5 relation.

This approximate proportionality is observed over a wide range of scales, from the
largest universe scales of galaxy clusters, to galaxy scales, and down to the much smaller
scales of individual stars. In galaxy clusters, most of the baryons (60–90%) are found in
the X-ray-emitting intracluster medium (ICM) at temperatures of 1–15 keV (approximately
107 − 1.5 × 108 K), with all the remaining baryons located in galaxies. Galaxy cluster
masses over the two-decade range of 1013–1015 solar masses, M�, correspond closely
with only a single decade of an ICM X-ray luminous temperature range of 1–10 keV,
corresponding with SDM0.5 (see Figure 15 of [55]). ICM accounts for most of the baryon
entropy in the universe [56], and may make a significant contribution to IDE. The halo
mass–temperature relation shows a similar temperature for α SDM0.6 over a range of over
three decades of mass for galaxy clusters, groups of galaxies, and individual galaxies (see
Figure 4 of [57]; in that publication, it is deduced as mass proportional to T1.65). At the other
extreme of universe scale (in the main sequence stars), the temperature is again α SDM0.5

because, over the two decades of star size from 0.5 M� to 60 M�, the stellar photosphere
temperature ranges over just one decade from 3800 to 44,500 K.

The two CPL w0 − wa parameter combinations that best describe SMD(a)+1.0 and
SMD(a)+0.5 show, respectively, a reasonable and a very good overlap with the w0 − wa

limits placed by dark energy measurements. This strongly supports the suggestion that
there is a dynamic, phantom dark energy that is directly related to star/structure formation
and primarily determined by temperature. Clearly, IDE can explain such a relation.

So far, we have shown that IDE(a) varies over time, with a relative variation that
is consistent with the dark energy experimental results in Figures 5 and 6. We now
need to show that the absolute energy density expected from IDE is sufficient to explain
the observed dark energy effects. In Figure 7, we provide a survey of possible sources
of information energy [16,17,56], with total information energies of these phenomena
determined by their NT product. Their information energy relevance is illustrated by a
comparison with the ~1070 joules mc2 energy equivalence of the 1053 kg universe baryons.
While there is much uncertainty in these NT values, it appears that the strongest sources of
IDE—provided by stellar heated gas and by the intracluster medium—are approaching
the baryon mc2 energy. Therefore, this work establishes that IDE can account for the dark
energy of the universe, very approximately accounting for the present energy density, but,
more clearly and importantly, providing a clear agreement with the latest experimentally
observed dark energy history in w0 − wa space [22–24].

4.2. Cause and Effect

We have established a clear similarity between the history of dark energy and the
history of star formation via the w0 − wa parameter plots. This has led us to consider IDE as
the source of dark energy. However, this similarity could also be explained by the reverse
possibility, that dark energy might be responsible for some of the SMD(a) history. Indeed,
the very recent reduction in star formation, reduction in galaxy merging, and reduction in
general structure growth rate have been attributed to the accelerating expansion caused
by dark energy [58,59]. This reduction in SMD(a) is evident in Figure 2 by the decrease
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down to z = 0 shown by the fitted CPL red curves, corresponding with a present equation
of state parameter of w0 > −1. However, we should expect that this would also happen
if IDE is the source of dark energy. Increasing the star formation provided an increase in
IDE energy density that eventually overtook the falling matter energy density to initiate
the accelerating expansion. In turn, acceleration fed back to limit the star formation rate
and IDE.

Over the late-universe history considered here, a > 0.2, there are two factors that
support the main causal direction of SMD→ IDE→ accelerating expansion. The first is the
fact that SMD(a)+0.5 provided the best fit in all the w0 − wa parameter plots, corresponding
with the temperature dependence expected for IDE rather than a mass dependence. The
second is the close similarity in earlier growth rates, or similar wa values, before dark
energy was strong enough (relative to falling mass density) to affect the general structure
growth rate.
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4.3. IDE Should Resolve Some Problems and Tensions of ΛCDM

Late-universe dark energy in the form of information dark energy was previously
shown [15] to be able to address many problems and tensions of ΛCDM. Some of the most
relevant are briefly restated here. A dark energy theory that can account for the observed
effects of dark energy as an alternative to the cosmological constant would allow Λ to take
the more likely zero value [60] and effectively solve the cosmological constant problem
by Λ→0. Also, we see in Figure 6 that the cosmological constant (w0 = −1 and wa = 0)
generally lies outside, or in some cases, only on the margins of, the w0 − wa likelihood
space of the recent experiments [22–24].

Late-universe dynamic dark energy that increases from z ~ 2 to the present energy
density has been previously shown [61] to provide a possible explanation for both the
Hubble and σ8 tensions, similar to a transitional dark energy [62] or to a dynamic cosmo-
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logical constant/running vacuum model [63]. The relatively fast increase in star formation
between z = 2 and today combined with the a−3 fall in matter energy density effectively
provides suddenly significant dark energy as it was previously insignificant at z > 2 relative
to the matter energy density. The time history of IDE described here would have a very
similar characteristic time history to a sudden turn-on of dark energy [64] and thus may
also account for both tensions.

Dark energy that increased with star formation to become the dominant energy today
naturally solves the cosmological coincidence problem. Increasing star formation also
increased the probability of intelligent beings evolving to live in the dark-energy-dominated
epoch, and to subsequently discover dark energy. Note that the observed value of Λ has
been shown [65] to be too small to be compatible with a comparable anthropic reasoning
when assuming ΛCDM.

4.4. IDE Can Also Account for Dark-Matter Attributed Effects

At the time of writing, the latest results from the most sensitive WIMP dark matter
detector to date [66] managed to further limit the possible WIMP dark matter energy
range, and still without any confirmed dark matter particle detection. Now, IDE has
similar universe-wide total energy as matter and is primarily concentrated around stars
and structures where it should have a local energy density at least as high as that from
baryons. The General Theory of Relativity shows that space–time will be distorted by
accumulations of energy in any form, not just by the mc2 of matter, as illustrated in Figure 8.
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Therefore, IDE in galaxies will have the same effect as an extra unseen dark matter
component and will thus be difficult to distinguish from dark matter. The dark matter
attributed effects in many galaxies have been shown to have their location fully specified
by the location of baryons [67,68]. This observation is difficult to reconcile with ΛCDM,
but it is clearly compatible with the effects expected from IDE and is also compatible with
modified Newtonian dynamics (MOND). In a cluster of galaxies, the brightest and highest
temperature galaxy is often found to have the strongest dark matter attributed effects [69],
again consistent with an IDE source of the effects. When galaxies collide, the dark matter
attributed effects generally pass straight through, remaining co-located with the stars and
structures, while the gas clouds slow down with collisions [70–72]. This is also consistent
with an IDE source of the effects.

New observations of early emerging massive galaxies and early clusters of galaxies
require an accelerating structure formation at those times. This has been shown [73] to be
difficult for the linear hierarchical galaxy formation of ΛCDM and more in keeping with the
non-linear effects predicted by MOND. Equally, we should also expect similar non-linear
effects with an increase in local attraction provided by IDE increasing with star formation.

The ΛCDM model assumes the acceleration continues to increase in our dark energy
dominated epoch towards an eventual universe heat death, but IDE will lead to a different
future. The stellar mass density is clearly starting to stop increasing (Figures 1 and 2). The

127



Entropy 2025, 27, 110

future maximum star formation density may be only 5% above today’s density [74]. This is
also compatible with an analysis [75] of DESI data [24], which showed that dark energy
density “reaches its maximum value it will ever achieve within the observed window”. We
can expect the IDE energy density to fall and, some time in the future, revert to a matter
dominated epoch with deceleration. Perhaps this will eventually lead to a ‘big crunch’ or
even an ‘oscillating’ or ‘bouncing’ universe.

IDE is the equivalent energy of the information carried by, or represented by, the
matter in the structures of the universe. This close association of IDE with structures is
not compatible with the normally assumed strong damping of dark energy perturbations.
However, the IDE model leads us to expect the measured H0 to vary depending on the
distribution of mass and temperature along the line of measurement, and there is some
evidence for possible directional anisotropies in H0 [76] that would be expected with IDE.
Also, distant quasars gravitationally lensed by closer galaxies yield H0 values dependent
on the lens redshift. This and other observations indicate a need to consider the possibility
of both new late-time and new local physics [77].

Overall, we expect IDE to also account for at least some of the effects previously
attributed to dark matter. Then, locally, IDE is attractive like invisible dark matter, but,
universe-wide, IDE is repulsive as dark energy. These results are summarised in a simplified
form in Table 1, where IDE is compared with other sources of dark energy and dark matter.

Table 1. Simple comparison of IDE with ΛCDM, scalar fields/quintessence, and MOND.

Required Dark Side
Property IDE ΛCDM Scalar Fields/

Quintessence MOND

Account for present
dark energy density

YES,
order of

magnitude 1070 J

NO,
not by very many

orders of magnitude

Only by much
fine tuning -----

Consistent with
w0 − wa
experiment data

YES,
very good
agreement

NO,
on margins of

likelihood region

Not specific
−1 < w < +1 ----

Resolve Cosmological
Constant problem

YES,
Λ→ 0 NO Only by much

fine tuning ----

Resolve Cosmological
Coincidence problem

YES,
naturally NO Only by much

fine tuning ----

Resolve H0 andσ8
Tensions

YES,
possibly NO NO ----

Account for size of
dark matter attributed
effects

YES,
same order of

magnitude

NO,
dark matter not

even detected yet
---- YES,

sometimes

Account for location of
dark matter attributed
effects

YES
coincident with

baryons

NO,
not coincident
with baryons

----
YES,

Coincident
with baryons

Account for early
massive galaxies
non-linear growth

YES,
expect non-linear

growth

NO,
only linear,

hierarchical growth
----

YES,
expect non-linear

growth

5. Summary
When compared in w0 − wa space, the measured stellar mass density history, SMD(a),

makes a very good fit with all measurements of dark energy history. This suggests that
dark energy is directly driven by star and structure formations. The preference of fit
for SMD(a)+0.5 over SMD(a)+1.0 further suggests that dark energy density is primarily
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determined by the temperature of structures at many levels of scale, whether galaxy clusters,
galaxies, or stars. The dark energy dependence on structure formation, in particular
with the dependence on temperature, is compatible with an information dark energy
(IDE) explanation.
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