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Editorial

Editorial: Advances in Mathematical Modeling for Structural
Engineering and Mechanics
Joaquim Infante Barbosa 1,2,* and José Alberto Rodrigues 3,*

1 CIMOSM, ISEL—Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais, Instituto
Superior de Engenharia de Lisboa, 1959-007 Lisboa, Portugal

2 IDMEC, IST—Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa,
1049-001 Lisboa, Portugal

3 CIMA e Departamento de Matemática—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio
Navarro, 1, 1959-007 Lisbon, Portugal

* Correspondence: joaquim.barbosa@tecnico.ulisboa.pt (J.I.B.); jose.rodrigues@isel.pt (J.A.R.)

Mathematical modeling is a cornerstone in addressing complex problems across
science and engineering, showcasing its inherently multidisciplinary nature. In structural
engineering and mechanics, the development of robust and precise numerical schemes has
been instrumental in deepening our understanding of physical phenomena and driving
innovation in computational methodologies. This Special Issue is dedicated to exploring
advanced mathematical modeling approaches that tackle the diverse challenges faced in
these fields.

1. Central Themes
A key focus of this issue is the automation and systematization of complex mechanical

problems, which are essential for reducing computational effort and achieving significant
time savings. The integration of numerical and computational techniques has further
enhanced problem-solving efficiency, enabling engineers and researchers to address in-
tricate structural issues with greater precision. Additionally, the development of hybrid
analytical–numerical methods has provided powerful tools that combine theoretical rigor
with computational adaptability, advancing the field significantly.

2. Scope of Contributions
The contributions in this Special Issue span a wide array of topics, including:

• The design of robust computational methods and simulations;
• Parameter fitting techniques;
• Inverse problem strategies in differential equations;
• Numerical simulations in structural engineering;
• Optimization of complex structural systems, and;
• Integrated computational methods that bridge mathematical theory with engineering

applications.

3. Innovative Research Highlights
The articles featured in this issue exemplify the innovative approaches researchers

are taking to address critical challenges in structural engineering and mechanics. Notable
studies include:

Mathematics 2025, 13, 936 https://doi.org/10.3390/math13060936
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1. Biomimetic optimization: a study extending the meshless natural-neighbor radial-
point interpolation method, which applies a bi-evolutionary, bone-remodeling-
inspired algorithm to optimize automotive parts, highlighting the synergy between
computational mechanics and biomimetic principles.

2. Deep learning in diagnostics: a novel fault diagnosis method for rolling bearings
that utilizes Swin Transformer and Generalized S Transform, showcasing the potential
of deep learning in engineering diagnostics.

3. Fluid–structure interactions: numerical simulations of shock waves in gas-water
interactions, offering valuable insights into fluid–structure interactions crucial for
various engineering applications.

4. Innovative material design: investigations into auxetic lattice structures for impact
absorption, emphasizing the importance of innovative material design in mechanical
engineering.

5. Computational efficiency: a p-refinement method leveraging transition elements to
enhance finite element applications, demonstrating advancements in computational
efficiency.

6. Open-source tools: the introduction of Seismo-VLAB, an open-source software with
new capabilities for soil–structure interaction analysis, underscoring the importance
of accessible computational tools in engineering research.

4. Additional Contributions
Other significant studies include:

• Advanced composite materials: free vibration analysis of stiffened functionally
graded graphene-reinforced composite multilayer cylindrical panels, providing in-
sights into advanced composite materials.

• Structural connections: experimental and numerical analyses of in-line connections
in structural elements, offering valuable data for improving connection performance.

• AI in mechanical engineering: a self-evolving neural network-based control tech-
nique for vibration suppression in carbon nanotubes, showcasing the intersection of
artificial intelligence and mechanical engineering.

• Fracture mechanics: a comprehensive review of multi-crack fracture mechanics, con-
solidating experimental, theoretical, and numerical advancements in the field.

5. Conclusions
The diverse range of topics covered in this Special Issue reflects the evolving land-

scape of mathematical modeling in structural engineering and mechanics. By integrating
computational advancements with engineering principles, these studies pave the way for
future innovations in the field. We extend our gratitude to all contributors, reviewers,
and researchers whose dedication and expertise have enriched this collection, providing
valuable resources for further exploration and development in mathematical modeling
and engineering mechanics. We also acknowledge the excellent collaboration with the
publisher, the constant assistance provided by the MDPI associate editors in bringing this
project to completion, and the great support of the Managing Editor of this Special Issue,
Ms. Helene Hu.

Conflicts of Interest: The authors declare no conflicts of interest.
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A Self-Evolving Neural Network-Based Finite-Time Control
Technique for Tracking and Vibration Suppression of a
Carbon Nanotube
Fawaz W. Alsaade 1,*, Mohammed S. Al-zahrani 2, Qijia Yao 3 and Hadi Jahanshahi 4,*

1 Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal
University, Al-Ahsa 31982, Saudi Arabia

2 Department of Computer Networks and Communications, College of Computer Sciences and Information
Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia; malzahrani@kfu.edu.sa

3 School of Automation and Electrical Engineering, University of Science and Technology Beijing,
Beijing 100083, China; qijia_yao@ustb.edu.cn

4 Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
* Correspondence: falsaade@kfu.edu.sa (F.W.A.); jahanshahi.hadi90@gmail.com (H.J.)

Abstract: The control of micro- and nanoscale systems is a vital yet challenging endeavor because of
their small size and high sensitivity, which make them susceptible to environmental factors such as
temperature and humidity. Despite promising methods proposed for these systems in literature, the
chattering in the controller, convergence time, and robustness against a wide range of disturbances
still require further attention. To tackle this issue, we present an intelligent observer, which accounts
for uncertainties and disturbances, along with a chatter-free controller. First, the dynamics of a carbon
nanotube (CNT) are examined, and its governing equations are outlined. Then, the design of the
proposed controller is described. The proposed approach incorporates a self-evolving neural network-
based methodology and the super-twisting sliding mode technique to eliminate the uncertainties’
destructive effects. Also, the proposed technique ensures finite-time convergence of the system. The
controller is then implemented on the CNT and its effectiveness in different conditions is investigated.
The numerical simulations demonstrate the proposed method’s outstanding performance in both
stabilization and tracking control, even in the presence of uncertain parameters of the system and
complicated disturbances.

Keywords: carbon nanotubes; Chebyshev Neural Network; self-evolving algorithm; vibration control;
super-twisting sliding mode

MSC: 34H05; 37N35; 93C40; 92B20

1. Introduction

CNTs have a high aspect ratio, high tensile strength, and high thermal and electrical
conductivity, which makes them ideal for use in advanced materials and devices [1,2]. They
have been used to create strong and lightweight materials, as well as in high-performance
electronics. They can also be used as a catalyst in chemical reactions and have been studied
as a potential solution for environmental problems such as air and water purification [3,4].

The control of CNTs has been an active area of research in recent years, and many
studies have been conducted on developing control strategies for CNTs in different fields
such as mechanical systems, chemical systems, and electrical systems [5,6]. One of the
main challenges is the lack of understanding of the dynamics and properties of CNTs
at the nanoscale, which can make it difficult to predict and control their behavior [7,8].
Additionally, the high aspect ratio of CNTs makes them very flexible and sensitive to
external forces, which can make them difficult to control. Furthermore, the control of CNTs
requires the ability to account for the effects of uncertainties and disturbances, which can

Mathematics 2023, 11, 1581. https://doi.org/10.3390/math11071581 https://www.mdpi.com/journal/mathematics4
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be challenging [9]. Due to these issues, research in this field is ongoing and new control
schemes are being developed to address these challenges [10].

Nowadays, machine learning approaches have revolutionized technologies in many
fields of study. With the advancement of computing power and the availability of large
datasets, machine learning algorithms can learn patterns, make predictions, and automate
decision-making processes with remarkable accuracy [11]. This has led to significant
breakthroughs in various fields [12–14]. Also, as a stepping stone in most machine learning-
based techniques, neural networks have been widely used in various control applications to
tackle complex and nonlinear systems [15,16]. For instance, Chen et al. [17] have used neural
networks in their study to identify the generalized kernel representations and to design
the intelligent fault diagnosis schemes. Neural networks are also used to approximate
the mathematical model of the system and improve the control performance [18,19]. The
ability of neural networks to learn and generalize from data makes them particularly useful
in the control of systems that are difficult to model or have a large number of uncertain
parameters [20,21]. In the control of nano/microsystems, neural networks have been used
to compensate for the effects of uncertainties and disturbances on the system’s behavior.
They can also be used to estimate the system’s dynamic, which can be used to improve
the performance of the system [22,23]. Neural networks can be used in combination
with traditional control methods such as feedback control, adaptive control, and model
predictive control to improve control performance [24]. Furthermore, neural networks can
also be used in the identification of system parameters, which can be used to improve the
accuracy of the control strategy [25].

Some of the achievements in the literature include the development of control schemes
that can effectively deal with the small size and unique properties of CNTs. For instance,
recently in [26], an adaptive sliding mode control scheme has been developed which is
able to work well under highly uncertain cases in which all parameters are uncertain
and the uncertainties cannot be separated from the control force. In that study, a double
electrostatic actuators scheme has been used and a decoupling scheme that can suppress
the vibration of CNTs in multiple directions has been designed. Also, in [27], piezoelectric
patches have been used as sensors to measure the displacement of the beam and actuators
to implement control forces for vibration control. A model-free adaptive fuzzy sliding
mode controller has been utilized to suppress the vibration of the rotating CNT-reinforced
composite beam. In addition, since the state vector cannot be measured for control purposes
and only the piezoelectric sensor’s output is available, a model-free adaptive fuzzy sliding
mode observer has been proposed here to estimate the system’s state vector. These control
schemes have been successful in achieving precise control of CNTs and have been shown
to have excellent performance in numerical simulations. Despite these advances, there are
still areas where improvements can be made. Chattering and handling various types of
uncertainties remain persistent challenges for control engineers. This is particularly true for
discontinuous disturbances, which many of the existing methods are unable to effectively
deal with. The high sensitivity of nanosystems means that even small disturbances can have
a significant impact on their performance, and the presence of chattering can significantly
detract from their performance [28]. As a result, further research is needed to develop
control methods that can effectively handle chattering and deal with a wide range of
uncertainties, including discontinuous disturbances, to ensure the optimal performance of
nano- and microscale systems.

Motivated by the aforementioned factors, in the current study we take advantage of
the universal approximation of neural networks and propose an intelligent and smooth
controller for stabilization and tracking control of CNT. We use Chebyshev Neural Network
(ChNN) which is a specific type of artificial neural network that utilizes the Chebyshev
polynomial as the activation function [29]. It has been demonstrated to have faster con-
vergence and superior approximation ability compared to traditional neural networks.
The Chebyshev polynomial activation function can approximate the complex function to
an arbitrary degree of accuracy and its simple form reduces the risk of overfitting and

5



Mathematics 2023, 11, 1581

enhances the robustness of the network. The ChNN has been successfully used in various
areas such as system identification, function approximation, and control systems, and has
shown impressive results in terms of accuracy, generalization ability, and stability [30,31].

The proposed control method for CNTs tackles the challenges posed by the small
size of these systems and their sensitivity to environmental factors like temperature and
humidity. This approach improves the performance of the controller and makes it more
robust to changes in the system’s properties. The numerical results of the implementation
of the controller on CNTs are a testament to the proposed method’s superior performance.
The finite-time control strategy guarantees the closed-loop system to converge to the
desired state in a finite time, regardless of the initial conditions, making them more robust
in unknown conditions. This feature is especially important in the case of CNTs as the
properties of CNTs can change with time due to environmental factors.

The rest of the article is structured as follows: Section 2 covers the modeling and
mathematical representation of a CNT. In Section 3, the design process of the controller and
its guaranteed stability are discussed. Then, in Section 4, the proposed controller is applied
to the system in various uncertain scenarios for stabilization and tracking control. Finally,
Section 5 concludes with summarizing remarks and prospects.

2. Modeling and Mathematical Formulation of the System

This section presents an overview of the system model of the CNT and the mathe-
matical formulation used to describe its dynamics. The governing equations of motion
for the CNT and the continuum mechanics principles applied to the CNT system are also
presented. The scheme of a clamped–clamped single-walled CNT that uses electrostatic
actuation to transport viscous fluid is illustrated in Figure 1.
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Figure 1. An illustration of a single-walled CNT.

The tubular structure being analyzed has a slender shape and undergoes planar
motions, represented by w(x, t) where x is the location and t is the time variable. The
fluid flow velocity inside the CNT is represented by U. The governing nonlinear partial
differential equation (PDE) and its appropriate boundary conditions have been derived by
utilizing Hamilton’s principle to study the CNT dynamics, taking into account the nonlocal
effects. The following equation represents this governing equation and its corresponding
boundary conditions [32]:

(
1 + c

∂

∂t

)
EI

∂4w
∂x4 +

[
MU2 − N + PA(1− 2υ) + M

∂U
∂t

(L− x)
]

∂2w
∂x2 + (M + m)

∂2w
∂t2 + 2MU

∂2w
∂x∂t

−rA
(

U
∂3w
∂x3 +

∂3w
∂x2∂t

)
− (e0a)2

[
(M + m)

∂4w
∂x2∂t2 + MU2 ∂4w

∂x4 + 2MU
∂4w

∂x3∂t

]
= qelec − (e0a)2 ∂2qelec

∂x2

(1)

{
w = w′ = 0atx = 0
w = w′ = 0atx = L

(2)

where L signifies the length of the CNT, while EI represents its flexural rigidity. The
viscoelastic nature of the CNT is denoted by c, and its Poisson ratio is shown as υ. The
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CNT’s mass per unit length is indicated by m, and the impact of the nonlocal elastic stress
field on its behavior is symbolized by e0. The static tension in the pipe is designated as N.
For the fluid being conveyed at the end of the CNT, A stands for the cross-sectional area, M
for its mass per unit length, r for its viscosity, and P for its internal pressure. The external
electrostatic force affecting the CNT is represented by qelec [33].

qelec =
πε0v2

√
(d− w)(d− w + 2R)arccosh2

(
1 +

d− w
R

) , (3)

In the equation, ε0 is the permittivity of the vacuum coefficient, with a value of
8.854× 10−12 (C2/Nm2). The applied electrostatic voltage is represented by v, and the dis-
tance between the two electrodes is represented by d. The nonlinear PDE governing the CNT
(1) was converted into a dimensionless form using the following dimensionless quantities.

η =
w
d

, ξ =
x
L

, τ =

(
EI

M + m

)1/2 t
L2 , R =

R
d

, u f =

(
M
EI

)1/2
LU, α =

(
EI

M + m

)1/2 c
L2 ,

T =
NL2

EI
− PAL2

EI
(1− 2υ), β =

rA

(EIM)1/2 , Mr =

(
M

M + m

)1/2
, en =

e0a
L

, V =
v√

d2EI
πε0L4

,
(4)

These non-dimensional parameters are used to simplify the equation of motion and
make it easier to analyze. By expressing the variables in a dimensionless form, it is possible
to compare the results from different scenarios and to understand the underlying physics
of the CNT’s behavior more clearly. This is particularly useful when studying nonlinear
systems such as the CNT, as it enables one to identify and analyze the key factors that affect
the system’s behavior. The dimensionless equation of motion is given by

α
∂5η

∂ξ4∂τ
+

∂4η

∂ξ4 +
[
u2

f − T + Mr
.
u f (1− ξ)

]∂2η

∂ξ2 +
∂2η

∂τ2 + 2Mru f
∂2η

∂ξ∂τ

−β

(
u f

∂3η

∂ξ3 + Mr
∂3η

∂ξ2∂τ

)
− e2

n

(
∂4η

∂ξ2∂τ2 + u2
f

∂4η

∂ξ4 + 2Mru f
∂4η

∂ξ3∂τ

)
=

+
V2

√
(1− η)

(
1− η + 2R

)
arccosh2

(
1 +

1− η

R

)

−e2
n

∂2η

∂ξ2




V2

√
(1− η)

(
1− η + 2R

)
arccosh2

(
1 +

1− η

R

)


,

(5)

It has been assumed that the fluid’s velocity, u f , fluctuates in a periodic manner. To
simplify the analysis, this velocity has been transformed into a dimensionless form, which
is presented as:

αu f = u0[1 + µcos(ωτ)] (6)

In the equation, the fluid’s average speed is represented by u0, and the amplitude and
frequency of its harmonic fluctuation are represented by µ andω, respectively.

By applying the Galerkin method to the nonlinear PDE of the CNT, the complex and
highly nonlinear equation is reduced to a set of simple and manageable nonlinear ordinary
differential equations (ODEs). The Galerkin method is a mathematical technique that
is used to simplify the solution of partial differential equations. This makes it possible
to analyze the system and gain insights into its behavior. The equation of motion was
discretized using the first and most significant mode shape of the CNT. This means that
only the first and most significant pattern of vibration of the CNT has been considered in

7
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the analysis. This is a common practice in the analysis of linear and nonlinear systems,
as it enables one to focus on the most important aspect of the system and simplify the
analysis. It means that the governing PDE is broken down into smaller parts that can be
more easily solved.

η(ξ, τ) = ϕ(ξ)Q(τ) (7)

where the spatial and temporal parts of the deflection of the CNT are represented by ϕ(ξ)
and Q(τ), respectively, where ϕ(ξ) satisfies the boundary conditions of the CNT.

The Taylor series has been used to express the external electrostatic force of the CNT
as follows:

1√
(1− η)

(
1− η + 2R

)
arccosh2

(
1 + 1−η

R

)= 0.1537 + 0.2374η + 0.6081η2 + 2.1650η3 + . . . . (8)

The Taylor series is a mathematical tool that allows one to represent a function as
an infinite sum of terms, where each term is a function of one or more variables raised
to a certain power. In this case, the external electrostatic force of the CNT is represented
as a sum of infinite terms, each term depending on the electrostatic voltage, v, and the
electrode’s distance, d. By expressing the external electrostatic force in this way, it becomes
possible to study its properties and behavior in detail. Additionally, it allows one to analyze
how the force changes as the applied voltage and distance between electrodes change. This
leads to the final form of the nonlinear ODE as follows:

..
Q + (Cc + Cd)

.
Q + (Kc + Kd)Q = V2

[
a1 + a2Q + a3Q2 + a4Q3

]
(9)

For more details on the parameters in Equation (9) refer to [34]. The electrostatic
actuation which includes both a direct current voltage (vDC) and an alternating current
harmonic voltage (vAC) component is given by:

v = vDC + vACcos(Ωt) = vDC + vAC(t) (10)

Supposing vAC << vDC → v2
AC ≈ 0 , results in

v2 = v2
DC + 2vDCvAC(t) (11)

Thus, Equation (9) can be reformulated as

..
Q + (Cc + Cd)

.
Q + (Kc + Kd)Q = Ṽ

2[
a1 + a2Q + a3Q2 + a4Q3]

+2 Ṽ
2

vDC
vAC(t)

[
a1 + a2Q + a3Q2 + a4Q3]

(12)

in which
Ṽ =

vDC√
d2EI

πε0L4

(13)

3. Proposed Control Methodology

In this section, a novel control method, referred to as a neural network-based finite-
time super-twisting sliding mode technique, has been proposed for the vibration control of
a CNT. This approach utilizes the electrostatic actuation as the implemented control signal
and utilizes a neural network to accurately estimate the system’s states. The stability of the
proposed controller design is also proven in this section.

The proposed technique has several advantages over traditional control methods,
including its ability to effectively handle the nonlinearity and uncertainty present in the
CNT system, as well as its robustness to external disturbances. Additionally, it utilizes
a finite-time convergence algorithm, which ensures that the system reaches the desired

8
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equilibrium state within a finite time (not exponential convergence), regardless of initial
conditions or system parameters. Furthermore, by using a self-evolving neural network,
it can improve control performance by reducing the effect of measurement noise and
system uncertainties.

The state space equation of the system by defining Q = x1,
.

Q =
.
x1 = x2 and vAC = u

has been rewritten as follows:




.
x1 = x2
.
x2 = −Ccx2 − Kcx1 + Ṽ

2[
a1 + a2x1 + a3x2

1 + a4x3
1
]
+

2 Ṽ
2

vDC

[
a1 + a2x1 + a3x2

1 + a4x3
1
]
u + d(τ)

(14)

where d(τ) = d0(τ)− Kdx1 − Cdx2 represents the compound disturbance, which includes
external disturbance and uncertainties. Without losing generality, we rewrite the general
state space of the system as follows:





.
xi = xi+1i = 1, 2, · · · , n− 1
.
xn = f (x) + g(x)u + d(t)
y = x1

(15)

3.1. ChNN

A ChNN is a type of neural network that is designed to work with signals represented
on a Chebyshev basis. In a ChNN, the input signal is first transformed into the Chebyshev
basis using Chebyshev polynomials. Chebyshev polynomials are a set of orthogonal
polynomials that are defined on a specific interval, usually [−1, 1]. They have several
useful properties, such as rapid convergence and a high degree of smoothness. Using
Chebyshev polynomials to represent the input signal allows the ChNN to take advantage
of these properties and achieve a high degree of accuracy.

The transformed signal is then processed by the neural network, which is typically
a feedforward network with one or more hidden layers. The weights and biases of the
network are trained using a suitable optimization algorithm, such as backpropagation.
ChNNs are particularly effective in nonlinear system modeling, where they can achieve
a high degree of accuracy with a relatively small number of parameters. This is because
Chebyshev polynomials are able to approximate nonlinear functions very well. Further-
more, ChNNs are able to handle signals with different scales, such as signals that contain
both low-frequency and high-frequency components. Overall, a ChNN is an effective
method for approximating nonlinear functions.

By taking the inputs of the ChNN as x1 and x2, which are the error and its time-
derivative, respectively, the calculation of Chebyshev polynomials can be done using the
commonly known recursive formula:

Φi+1(xi) = 2xiΦi(xi)−Φi−1(xi) (16)

in which the first Chebyshev polynomial is Φ0(xi) considered to be constant and equal to 1,
and the second one is considered as 2xi, 2xi + 1, or 2xi − 1, in the literature. Here we set
Φ1(xi) = 2xi. The basis function in the Chebyshev polynomial is considered as:

H = [Φ0(x1).Φ1(x1).Φ2(x1). . . . .Φn(x1). . . . Φ1(xm).Φ2(xm). . . . . Φn(xm)] (17)

The Chebyshev polynomials are ordered by n, and the neural network has m inputs
as they are illustrated in Figure 2. A non-linear function G(x) ∈ Rm is estimated by a
ChNN as

F̂(x) = W∗H(x) + ε (18)

where W∗ represents the optimal weight matrix of the ChNN and ε represents the ChNN’s
bounded approximation error.

9
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Figure 2. The configuration of the ChNN.

3.2. Super-Twisting Finite-Time SMC

The super-twisting algorithm, introduced in [35] is a widely sliding mode control
and observation technique. Here are some of the advantages of the super-twisting sliding
mode controllers:

• High accuracy in controlling dynamic systems,
• Robustness against uncertainties,
• Simplicity in implementation,
• Finite-time stability properties.

In this work, we present a reliable controller for CNTs by leveraging the universal
approximation capability of neural networks and the robustness of super-twisting sliding
mode controllers. By combining these two powerful techniques, we aim to achieve im-
proved control performance. The difference between the actual response and the desired
response of the system is represented by the tracking error as follows:

e(t) = x1(t)− xd(t) (19)

Here, xd (t) represents the desired value of the state x(t). The sliding surface is
defined as:

st(t) = τe(t) +
.
e(t), (20)

In this equation, the constant τ is a user-defined positive value. If the user-defined
parameter (τ) of the sliding surface satisfies the Routh–Hurwitz stability condition, then
the sliding surface will be considered stable. Our proposed solution for system (1) is a
self-evolving finite-time super-twisting controller which is given by:

uc = −g−1(x)
(

f (x)− .
x1d + ust1 + d̂ + τe(t)

)
,

ust1 = −k1|st|
1
2 sign(st) + ust2

.
ust2 = −k2sign(st)

(21)

The parameters k1 and k2 are both positive used-defined parameters in this equation.
Additionally, the difference between the estimated weights and the actual weights is
referred to as the error of weight estimation which is given by:

W̃ = W∗ − Ŵ (22)

10
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As it is shown in Figure 2, the neural network needs an updating law to evolve based
on the new condition. The following adaptive law describes the proposed process to evolve
the weights of the neural network:

.
Ŵ = −γ stφ (23)

where γ is a positive design parameter. It is noteworthy that the proposed control technique
eliminates the need for a training phase, which is typically required in many other control
techniques. This means that the system can start operating immediately without any prior
knowledge of the system’s dynamics or control parameters. This is achieved by using a
sophisticated updating law to adjust the network’s weights based on the current state of
the system and its desired output.

Theorem 1. The control law (21) ensures that the closed-loop system states (15) attain the desired
value within a specified time.

Proof. Equation (24) represents the time derivative of the sliding surface.

.
st =

(
τ

.
e(t) + f (x) + g(x)uc −

.
x1d

)

=
(

τ
.
e(t) + f (x) −

(
f (x)− .

x1d + ust1 + d̂ + τ
.
e(t)

)
− .

x1d

)

=
(
−ust1 + d− d̂

) (24)

In accordance with Equation (18), we know d− d̂ = d− Ŵφ = ε which results in

.
st = −ust1 + ε (25)

Hence, substituting the proposed ust1 one can reach the following equations:

.
st = −k1|st|

1
2 sign(st) + ust2 + ε

.
ust2 = −k2sign(st)

(26)

in which ε is a bounded estimation error. By introducing w1 = st and w2 = ust2 as new
variables and reformulating the equation, we obtain

.
w1 = −k1|w1|

1
2 sign(w1) + w2 + ε

.
w2 = −k2sign(w1)

(27)

Equation (27) represents a second-order super-twisting algorithm. According to
Theorem 2 in [36] we select the following Lyapunov function

V0 = ςTPς (28)

in which P is a symmetric and positive definite matrix, V0 is quadratic Lyapunov function,

and ς = [ς1, ς2]
T =

[
|w1|

1
2 sign(w1), w2

]T
in which the following equality is held for

symmetric and positive definite matrix Q

.
V0 = −|w1|

1
2 ςTQς (29)

In addition, the error trajectory will be globally ultimately bounded, and the conver-
gence time is given by t f as follows:

t f = ts∆ +
2λmax{P}

λ
1
2
min{P}λmin{Q}

V
1
2

0 (t0) (30)

11
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following the procedure outlined in [36], matrices P and Q in the Lyapunov function can
be chosen, ensuring that the variables w1 and w2 reach zero in finite time (t f ). �

Figure 3 depicts the process of implementing the proposed control scheme that in-
corporates the ChNN estimator. By leveraging the ChNN estimator and super-twisting
algorithm, the proposed scheme can achieve enhanced performance even when faced with
uncertainties in the model and external disturbance. In the following section, we will
employ this control scheme to regulate the nonlinear dynamic of the CNT.
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4. Simulation Results

The results of numerical simulations that demonstrate the proposed control method’s
outstanding performance on a CNT system are presented in this section. The system’s
parameters that have been made dimensionless are α = 0.001, β = 0.300, Mr = 0.800, T = 20,
and e2

n = 0.200. The proposed control technique’s parameters are selected using a trial-
and-error approach that is notably straightforward due to the technique’s versatility across
a broad range of parameters. This involves adjusting the control gains and evaluating
the system’s performance until the desired level of performance is attained. However,
to achieve the best possible performance with this controller, it is advisable to utilize an
evolutionary algorithm like a genetic algorithm to determine the controller’s parameters.
This approach considers the convergence time and control input value as objective functions
to optimize the controller’s performance.

4.1. Stabilization with Uncertain Parameters

In order to take to account the effects of uncertainties, the parameters Cc and Kc of
the system are treated as time-varying parameters and subject to unknown perturbations
as follows:

∆Cc = 0.5 sin
(

0.2t2
)

, ∆Kc = 50 cos(2sqrt(t)) (31)

The objective of this section is to maintain the stability of the CNT despite its con-
tinuously changing dynamic parameters. As shown in Figure 4, the states of the system
are stabilized in a very short amount of time. This figure is meant to demonstrate that
even though the parameters of the CNT system are continuously changing, the states
of the system quickly stabilize and reach a stable state within a short amount of time.
Figure 5, on the other hand, shows the control inputs that are applied to the CNT system
in order to maintain its stability. The control signal is illustrated over time, showing the
“chattering-free” behavior of the controller.
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Figure 5. The control input for the CNT with uncertain parameters.

4.2. Stabilization in the Presence of Discontinuous Disturbances

In this study, we take into account the CNT in the presence of external disturbances
that are complex and change over time, such as:

d(τ) = 2sign(sin(0.5t)) + 0.5 cos(0.2
√

t) (32)

The numerical results presented here effectively demonstrate the effectiveness of the
proposed control strategy in maintaining the stability of the CNT system. Figure 6 clearly
showcases the stabilized states of the system, even under complex disturbance conditions,
highlighting the robustness of the proposed approach. Figure 7, on the other hand, presents
the control signals obtained through the proposed control technique, which results in
chattering-free control signals. Chattering can cause unwanted oscillations and vibrations
in the system, negatively impacting its performance and reliability. The proposed control
strategy, by avoiding chattering, ensures stability without sacrificing performance.
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There is rigorous reason behind the smooth control signal of the proposed technique.
In the proposed control scheme, the sign function is not applied directly to the system.

Instead, only terms containing k1|st|
1
2 sign(st) and the integral of k2sign(st) are present,

both of which are smooth (refer to Equation (21) in the manuscript). Furthermore, since the
controller stabilizes the system in finite time, the sliding surface converges to zero within
a finite time. This means that the sign(s_t) function becomes zero after a short period,
resulting in reduced or eliminated chattering and vibration during the stabilization process.
Hence, the proposed finite-time controller offers two benefits: (a) it stabilizes the system
within a finite time, and (b) it reduces or eliminates chattering in the control input signal,
thereby reducing vibration in the system.

These results demonstrate the robustness and effectiveness of the proposed super-
twisting sliding mode algorithm in maintaining the stability of the CNT system and have
significant implications for the design of control systems in practical applications. Discon-
tinuous disturbances can cause instability in the system and lead to poor performance,
making it crucial to design a controller that can effectively handle these disturbances. It
is noteworthy that many conventional controllers struggle to handle such disturbances,
either due to stability criteria that they cannot meet or an increased convergence time.
This highlights the importance of the proposed super-twisting sliding mode algorithm,

14



Mathematics 2023, 11, 1581

which is able to handle discontinuous disturbances and maintain the stability of the CNT
system even in challenging conditions. The results presented in the figures demonstrate
the robustness and effectiveness of the proposed algorithm in these scenarios, making it a
valuable contribution to the field of control systems design.

4.3. Tracking Control

To examine the efficiency of the proposed control scheme, we set a specific desired state
trajectory for the system. This desired state trajectory acts as a benchmark for evaluating
the performance of the proposed scheme and allows us to determine how well the system
is able to track the desired path. By comparing the actual state of the system with the
desired state, we can evaluate the accuracy and reliability of the proposed control strategy
in achieving the desired state. This step is crucial in validating the proposed control scheme
and provides insight into its ability to track a desired trajectory, a key requirement for many
control systems applications.

xd = 0.3sin(3t) + 0.1cos(0.5t) (33)

Figures 8 and 9 show the system’s states and chatter-free control input. The tracking
control results demonstrate the proposed control scheme’s ability to reach the desired
performance. This is evidenced by the stable and smooth behavior of the system, as well as
the control input, which does not exhibit any “chatter” or erratic behavior. This suggests
that the proposed control method is effective in controlling the system and producing stable
and consistent results, even in the presence of disturbances or other challenging conditions.
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In summary, this new control method provides a promising solution for the control of
CNTs, which are widely used in various fields such as electronics, energy, and medicine,
and the ability to control them accurately and efficiently is of great importance.
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5. Conclusions

We studied the stabilization and control of CNTs with dynamic parameters and
unknown discontinuous uncertainties. The proposed control scheme extends the super-
twisting sliding mode control and offers chattering-free and finite-time responses by lever-
aging the universal approximation capabilities of neural networks. The self-evolving neural
network was utilized in the control algorithm to take into account the effects of disturbances
and uncertainties, which helped to provide a chattering-free and finite-time response. The
Lyapunov stability theorem was used to prove the finite-time convergence and stability
of the system. The disturbances and uncertainties were taken into consideration in the
stability analysis of the proposed control scheme. The effectiveness of the proposed scheme
was assessed through various numerical simulations in different scenarios, including stabi-
lization with time-varying parameters, stabilization in the presence of disturbances, and
tracking control. Numerical simulation results confirmed the proposed control technique’s
theoretical claims and showed its excellent performance. Given the promising results of
the proposed solution in our study, we recommend considering its application in practical
scenarios in the future. Also, future enhancements to the proposed controller can include
the integration of self-tuning algorithms, making it versatile and adaptable for use in
various systems. Also, by incorporating fractional-order elements, the proposed controller
can achieve improved performance and accuracy in capturing complex dynamic behaviors,
making it more suitable for use in a wider range of systems.
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Abstract: Depending on the connection type, especially semi-rigid connections, the analyses of
building structures offer accurate results function of the rigidity and ductility. The present paper
analyzes the in-line connection of rectangular and circular hollow sections, categorized as semi-rigid
connections, suitable for an architectural design of invisible joints. For such connection the standards
do not cover an explicit design method. Experimental bending tests were performed on rectangular
and circular hollow sections having the end plate fixed inside the profile and bolted by four and one
high-strength bolts, respectively. The joint separation represents a serviceability criterion which was
monitored using digital image correlation technique. Based on experimental results, a numerical
model was validated using the finite element method. After the validation of the numerical model
based on the experimental results, a parametric investigation was conducted to study the influence of
the access hole, the preload level, the end plate thickness, and the axial force. The results show the
small influence of the bolt preload, but the end plate thickness was of major importance. A reduction
of the assembly rigidity was also caused by the manhole. The study shows the feasibility of the
connection configuration with the end plate positioned inside the hollow profile.

Keywords: in-line connection; experimental test; finite element analyses; joint separation; paramet-
ric study

MSC: 65Z05

1. Introduction

For an attractive aspect of steel structures, rectangular or circular hollow sections are
welded leading to a continuous aspect of the structure. This solution involves specialized
manpower and requires more time for erecting. Bolted connections provide sufficient
capacity and rigidity if used for hollow sections with end plates extended outside of the
profile perimeter as presented by [1]. By positioning the bolts only within the perimeter of
the profile, the response of the connection is highly affected by lowering both the rigidity
and the capacity. Nevertheless, the bolted connection has the advantage of a reduced
erecting time compared to the welded connection.

In the case of T joints where distribution of moment is very important, the rigidity of
welded joints for hollow sections reduces, if the axial force leads to stresses close to the
yielding of material [2]. Similar studies were conducted to determine the bending capacity,
rotational stiffness and ductility for high strength steel connection which proved the need
for reduction coefficients only for few welding types [3].

When different profiles of tubular sections are connected by welding, the push–pull
local mechanism is the common failure mode for which the rotational stiffness may be of
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high importance. Design methods for T joints were suggested by Szlendak [4], but the
in-line connection failure mode, which is the current interest, is very different as the web of
the element is not an influencing factor.

For the continuity connection of tubular sections, end plates connected by bolts can
be used. The thickness effect on the prying force for bolted flange connection with the
bolts positioned outside the profile perimeter was shown by Liu et al. [5]. The study
also presented flange thicknesses, bolt edge distances, flange edge widths, and bolt hole
diameters influence, both experimentally as well as numerically.

For high levels of forces, inner and outer bolts can be used for the flange connection
of hollow sections as presented by Li et al. [6]. This connection exhibits a more direct
stress distribution.

Another improved connection was presented by Deng et al. [7], the external double-
layered flange connection, which overcomes the brittle fracture and the lamellar tearing of
traditional flange connections.

Such connections are highly used for steel antenna towers [8] either for unipole or
truss configurations, and for modular steel constructions and the joints types presented
in [9]. Among these connections, the hidden joints are of interest due to their aesthetic
aspect. Due to the small distance between the compressed area and the tensioned bolt, the
rigidity of such connections is limited, and the joint is considered a semi-rigid joint. For
structures with semi-rigid joints, the real deformation of the structure is obtained only if
the rigidity of the joints is considered. The influence of the axial and bending level on the
rigidity of the semi-rigid joints was presented in [10].

Structures with hollow sections require supplementary strength for seismic design.
An innovative dismountable joint based on container corner fitting is proposed by Lian
et al. [11] and its seismic performance is investigated based on FE analysis. The study
showed a simplified connection that substitutes the bolt modeling with multiple connectors.

The stability of square hollow sections in comparison to concrete-filled steel tubes
used in the case of modular construction was presented by Chen et al. [12] for which the
connections are also similar to the section dimensions. These connections usually use high-
strength bolts, but a 20% lighter cast–steel connector can be used without compromising
the strength needed to satisfy the design loads [13].

In a numerical study, Urbonas and Daniunas [14] showed that the inclination of the
beam, and quantity and location of bolts have a significant influence on joint rigidity.

The aesthetic aspect of the element can be maintained using an end plate with the same
perimeter as the hollow profile as presented by Both et al. [15], where the failure modes,
both welding and bolt failure, were also highlighted after an experimental testing program
on in-line connections of rectangular hollow sections. This configuration is susceptible to
lamellar tearing [16]; thus, the current studied configuration eliminated this risk.

In addition, the prying forces developing in these connections represent a risk factor,
and the force in the bolt can be calculated using the relations developed by [17]. The current
configuration eliminates the development of the prying forces as the end plates are not
in contact.

Based on the classical strain iteration algorithm for cross sections, in practice, the
assessment of the capacity can be determined using the method developed by Stephan and
Stutzki [18]. The method is suitable for computer programs but the magnitude of the joint
separation in the tensioned area is not available, although it can be a serviceability criterion
for design.

These in-line connections are mostly used for axial force transfer between the elements,
but bending can also occur. Thus, the response of these joints to flexural loading is necessary
to be studied either for the resistance or for the deformation.

The paper presents the response of an in-line bolted connection with the end plate
positioned inside a rectangular or circular hollow section at 2 mm from the profile end
plane, with access through a hand hole. Based on experimental results, a numerical model
is defined using the finite element method. After the validation of the numerical model
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based on the experimental results, a parametric investigation is conducted to study the
influence of the access hole, the preload level, the end plate thickness, and the axial force.

2. Materials and Methods (Experimental Tests)

As the results of the numerical simulation are based on experimental results, the
following relates to the testing data.

Two tests were performed on each rectangular hollow section (RHS) and circular
hollow section (CHS) specimen subjected to bending. The length of the specimen was
different resulting in the loading position and the boundary conditions presented in Figure 1.
Both supports allowed free rotation while only one allowed horizontal displacements.
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Each tested specimen implied two assemblies connected in the middle of the span.
The rectangular specimens considered the RHS250 × 150 × 8 profile, with the details of the
specimen presented in Figure 2.
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The circular specimen considered the CHS114.3 × 10 profile, with the details of the
specimen presented in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 16 
 

 

The paper presents the response of an in-line bolted connection with the end plate 
positioned inside a rectangular or circular hollow section at 2 mm from the profile end 
plane, with access through a hand hole. Based on experimental results, a numerical model 
is defined using the finite element method. After the validation of the numerical model 
based on the experimental results, a parametric investigation is conducted to study the 
influence of the access hole, the preload level, the end plate thickness, and the axial force. 

2. Materials and Methods (Experimental Tests) 
As the results of the numerical simulation are based on experimental results, the fol-

lowing relates to the testing data. 
Two tests were performed on each rectangular hollow section (RHS) and circular hol-

low section (CHS) specimen subjected to bending. The length of the specimen was differ-
ent resulting in the loading position and the boundary conditions presented in Figure 1. 
Both supports allowed free rotation while only one allowed horizontal displacements. 

  
(a) (b) 

Figure 1. Static scheme for: (a) RHS; (b) CHS. 

Each tested specimen implied two assemblies connected in the middle of the span. 
The rectangular specimens considered the RHS250 × 150 × 8 profile, with the details of the 
specimen presented in Figure 2. 

  

 

Figure 2. Details of RHS specimen. 

The circular specimen considered the CHS114.3 × 10 profile, with the details of the 
specimen presented in Figure 3. 

   

Figure 3. Details of CHS specimen. 

29
0

87
.9

11
4.

3
87

.9

25 1475

Support
Connection

M24 × 90 10.9 4
22

25
4

25

1207575150

74

R10

Figure 3. Details of CHS specimen.

Each element assembly had a cut of 150 mm long and a width of 110 mm and 74 mm
for the RHS and CHS specimens, respectively. The RHS was connected using four M20 gr.
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10.9 bolts, while the CHS was connected by one M24 gr. 10.9 bolt. The torque wrench was
set to introduce a 130 kN preload force.

It must be mentioned that the end plates had a thickness of 25 mm and were inserted
in the profiles at a distance of 2 mm from the profile end, to allow perfect contact between
the hollow sections and avoid contact between the welding of the end plates.

The entire setup of the experimental tests is presented in Figure 4. A supplementary
structure (yellow structure) was assembled to avoid out-of-plane displacements of the
actuator and the specimens.
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6. Due to the available equipment, the specimens from the bolts were manufactured as 
presented in Figure 6c and they do not respect the proportionality factor. 
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Figure 4. Test setup.

The recordings of the experimental tests consist of the vertical displacements at the
supports and midspan, and the force obtained from the actuator. The vertical displacements
were measured by linear variable displacement transducer (LVDT) while the force was
measured by the actuator load cell.

The transmission of loading forces was achieved by means of devices that allowed
the loading points to rotate freely. In the case of RHS profiles, the device contains a roller
and parts to distribute the load over the entire width of the upper flange, Figure 5a, while
for CHS profiles, a steel part was cut out to transmit the loads to the upper contour of the
profile, Figure 5b.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 16 
 

 

Each element assembly had a cut of 150 mm long and a width of 110 mm and 74 mm 
for the RHS and CHS specimens, respectively. The RHS was connected using four M20 gr. 
10.9 bolts, while the CHS was connected by one M24 gr. 10.9 bolt. The torque wrench was 
set to introduce a 130 kN preload force. 

It must be mentioned that the end plates had a thickness of 25 mm and were inserted 
in the profiles at a distance of 2 mm from the profile end, to allow perfect contact between 
the hollow sections and avoid contact between the welding of the end plates. 

The entire setup of the experimental tests is presented in Figure 4. A supplementary 
structure (yellow structure) was assembled to avoid out-of-plane displacements of the ac-
tuator and the specimens. 

 
Figure 4. Test setup. 

The recordings of the experimental tests consist of the vertical displacements at the 
supports and midspan, and the force obtained from the actuator. The vertical displace-
ments were measured by linear variable displacement transducer (LVDT) while the force 
was measured by the actuator load cell. 

The transmission of loading forces was achieved by means of devices that allowed 
the loading points to rotate freely. In the case of RHS profiles, the device contains a roller 
and parts to distribute the load over the entire width of the upper flange, Figure 5a, while 
for CHS profiles, a steel part was cut out to transmit the loads to the upper contour of the 
profile, Figure 5b. 

  
(a) (b) 

Figure 5. Loading devices for: (a) RHS; (b) CHS. 

The mechanical properties of the base material were determined according to ISO 
6892-1 [19] on two specimens extracted from the specimen profiles as presented in Figure 
6. Due to the available equipment, the specimens from the bolts were manufactured as 
presented in Figure 6c and they do not respect the proportionality factor. 

154.3

77.1577.15

20114.320

R57.15

70

154.3

Figure 5. Loading devices for: (a) RHS; (b) CHS.

The mechanical properties of the base material were determined according to ISO 6892-
1 [19] on two specimens extracted from the specimen profiles as presented in Figure 6. Due
to the available equipment, the specimens from the bolts were manufactured as presented
in Figure 6c and they do not respect the proportionality factor.
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Figure 6. Tensile tests specimen for: (a) RHS; (b) CHS; (c) bolts.

The material characteristic curves are presented in Figure 7 where a small ductility is
observed for the material of the CHS profile. Because the bolt tensile specimen is smaller
than the standard specimen, the elongation of the material cannot be considered similar to
the base material of the profiles.
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Figure 7. Base material characteristic curves for: (a) RHS; (b) CHS; (c) bolt.

A major necking was observed for the material of the RHS profile compared to the
necking of the material of the CHS profile in Figure 8, which explains the small ductility of
the CHS material in the characteristic curve.
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Figure 8. Fracture of the tensile specimens for: (a) RHS; (b) CHS; (c) bolt.

Based on the testing recordings, the following yield point and tensile strength were
determined:

• 441–553 N/mm2—RHS;
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• 496–535 N/mm2—CHS;
• 396–516 N/mm2—end plate;
• 1119–1184 N/mm2—bolt.

By transforming the characteristic curves into true stress-true strain, using the relations
provided by Eurocode 1993-1-5 [20], the final value of the tensile strength used in the
numerical model is 605, 564, 557, and 1231 N/mm2, for the RHS, CHS, end plate and bolt,
respectively.

The secondary interest of the experiments is the joint separation of the two hollow
sections. Due to bolt pretensioning, the hollow sections should not separate immediately
after loading. This parameter represents a serviceability limit state criterion. To monitor
the joint separation, the digital image correlation (DIC) technique was employed with the
system provided by isiSys GmbH. Black dots on a white background were applied on
the tensioned side of each specimen to obtain the speckle pattern, Figure 9. Two virtual
extensometers were defined by connecting two virtual gauges defined on each side of
the connection.
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Figure 9. (a) Speckle pattern for RHS; (b) speckle pattern for CHS; (c) setup for the DIC system.

The DIC allows the displacement monitoring of the virtual gauges and the distance
between them by using VIC Gauge 3D v7 software as well as the strain in the monitored
area by using VIC 3D on the images captured by the high-resolution cameras.

3. Materials and Methods (Numerical Simulations)

The finite element analysis was conducted using Abaqus 2017 [21] software. The
principle for using numerical analysis is to avoid expensive physical tests to evaluate the
effect of different parameters. Numerical analyses can be performed in various formulations
but the most effective is desired. An optimization has to be found between the precision
and the complexity of the model. The current study simulates the connection between
hollow sections which, from the experimental tests, was proven to reach the maximum
capacity at bolt failure. Because stability phenomena are not influencing the response of
the assembly, the standard static analysis is employed and, as it will be shown, will provide
accurate results. Based on the validated model which provides similar results as the data
recording during the experiment, the effect of the access hole, bolt preload, and end plate
thickness is assessed.

Three-dimensional solid elements were defined as parts of the assembly similar to
the entire experimental specimen (Figures 10 and 11 for RHS and CHS, respectively). The
static, general solver was employed for the analysis during loading.
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direct method as a constraint enforcement method which attempts to strictly enforce a 
given pressure–overclosure behavior per constraint, without approximation or use of aug-
mentation iterations. In addition, separation after contact was allowed. 

The contact was defined as surface-to-surface interactions for the following pairs: bolt 
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The material properties considered an elasticity modulus of 210,000 N/mm2 while the
strength and deformation were defined with the true stress obtained from the tensile tests
as presented in Table 1.

Table 1. Mechanical properties for the finite element model.

Material
Yield Stress Rp0.2

[N/mm2]
True Tensile Strength Rm

[N/mm2]
Percentage Plastic Extension at

Maximum Force Ag [%]

t = 8 (RHS) 441 605 8
t = 10 (CHS) 496 564 4

End plate 396 557 10
Bolt 1119 1231 5

The contact interaction was defined for normal and tangential behavior. The tangential
contact defined with a Penalty friction formulation, with isotropic directionality, and a 0.1
friction coefficient. The theoretical relation for such contact is given in Abaqus Documenta-
tion [21] with an equivalent tangential stress being less than the critical tangential stress
which is proportional to the contact pressure by the friction coefficient, see Equation (1).
The stiff elastic behavior was modeled by the stiff elastic behavior for which the condition is
not applied pointwise but weighted over a small area. This allowable maximum elastic slip
is considered the default value of 0.5% of the average length of all contact elements [21].

τeq =
√

τ2
1 + τ2

2 < µ·p = τcrit (1)

For the normal behavior, the Hard contact formulation was selected with the default
direct method as a constraint enforcement method which attempts to strictly enforce a
given pressure–overclosure behavior per constraint, without approximation or use of
augmentation iterations. In addition, separation after contact was allowed.

The contact was defined as surface-to-surface interactions for the following pairs: bolt
head and first end plate, bolt nut, and second end plate, hollow section ends in contact
(Figure 12).
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The contact interaction was defined as normal and tangential behavior, allowing sep-
aration after contact. The tangential contact was defined with a 0.1 friction coefficient. 

Each part was meshed with C3D8R (an 8-node linear brick, reduced integration, 
hourglass control) finite element type. The size of the element was approximately 5 mm, 
with smaller elements being defined for the bolts, allowing 2 elements on the thickness of 
the hollow element wall (Figure 15). In order to reduce the computation time, the length 
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A pinned and a roller support were defined at the assembly ends using a coupling
constraint controlled by a reference point (Figure 13).

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

 

(a) (b) 

Figure 12. Contact interactions: (a) RHS; (b) CHS. 

A pinned and a roller support were defined at the assembly ends using a coupling 
constraint controlled by a reference point (Figure 13). 

    
(a) (b) 

Figure 13. Support conditions: (a) RHS; (b) CHS. 

The loading areas are defined also in a kinematic coupling constraint controlled by 
reference points which have an imposed vertical displacement of 50 mm (Figure 14). 

    
(a) (b) 

Figure 14. Loading areas for: (a) RHS; (b) CHS. 

The end plate was connected to the RHS or CHS profile using the Tie constraint. Sup-
plementary, contact interactions are necessary to be defined between the bolts and the end 
plate, and between the two hollow profiles which are in contact. 

The contact interaction was defined as normal and tangential behavior, allowing sep-
aration after contact. The tangential contact was defined with a 0.1 friction coefficient. 

Each part was meshed with C3D8R (an 8-node linear brick, reduced integration, 
hourglass control) finite element type. The size of the element was approximately 5 mm, 
with smaller elements being defined for the bolts, allowing 2 elements on the thickness of 
the hollow element wall (Figure 15). In order to reduce the computation time, the length 
of the finite element in the longitudinal direction was increased. 

Figure 13. Support conditions: (a) RHS; (b) CHS.

The loading areas are defined also in a kinematic coupling constraint controlled by
reference points which have an imposed vertical displacement of 50 mm (Figure 14).
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Figure 14. Loading areas for: (a) RHS; (b) CHS.

The end plate was connected to the RHS or CHS profile using the Tie constraint.
Supplementary, contact interactions are necessary to be defined between the bolts and the
end plate, and between the two hollow profiles which are in contact.

The contact interaction was defined as normal and tangential behavior, allowing
separation after contact. The tangential contact was defined with a 0.1 friction coefficient.

Each part was meshed with C3D8R (an 8-node linear brick, reduced integration,
hourglass control) finite element type. The size of the element was approximately 5 mm,
with smaller elements being defined for the bolts, allowing 2 elements on the thickness of
the hollow element wall (Figure 15). In order to reduce the computation time, the length of
the finite element in the longitudinal direction was increased.
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Figure 15. FEM mesh for parts: (a) RHS; (b) CHS.

For the bolts, a preload of 130 kN was defined in a separate step before the applied
load, analyzed in a static step. The preload propagation was modified to “Fix at current
length” for the following analyzing steps, to allow the development of internal stress in the
bolts due to bending of the specimen.

4. Results
4.1. Experimental Results

From the recordings of the experimental tests, Force-Displacement curves were ob-
tained as presented in Figure 16. Of course, the capacity of the RHS is bigger than the
capacity of the CHS as well as the rigidity. It must be mentioned that the observed failure
mode for both sections was bolt failure but the RHS specimen showed a redundant behavior
due to the number of bolts, while the CHS specimen had a brittle failure mode, after the
shank fracture the entire assembly could not resist any force. The failure mode of the bolts
used in the RHS connection is the thread stripping while for the CHS connection is the
shank fracture, as presented in Figure 16.
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Figure 16. Force displacement curves and failure modes: (a) RHS; (b) CHS.

The DIC results are presented in Figure 17. Comparing the two graphs, it is observed
that the increased rigidity of the RHS maintains the profiles in contact for a significant
amount of force, approximately 50% of the maximum force. On the other hand, the CHS
connection starts to separate in the tensioned area from the initial stage of loading.
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Figure 17. Joint separation recorded during experiments: (a) RHS; (b) CHS.

It must be mentioned that the separation is recorded after the pretensioning of the
bolts which means that the initial compressive stress in the hollow profiles is not captured
by the DIC system. Nevertheless, the compressive deformation of the profiles due to bolt
pretension has a small value which can be determined by the numerical analysis.

4.2. Numerical Results

With the aforementioned parameters of the numerical model, the results of the finite
element analysis are presented in Figure 18. The results of the numerical analysis follow
in good accordance with the experimental results; thus, the model is considered to be
validated for further studies.
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Figure 18. Experimental vs. FEM analysis: (a) RHS; (b) CHS.

The FEM model allows the assessment of stress distribution within the connection
and furthermore, the bolts (Figure 19). Due to the flexibility of the end plate, a nonuniform
distribution of the stress is observed on the profile contact for RHS, opposite to the CHS
where the preload leads to a uniform pressure between the two profiles. Even in this stage,
the bolts of the RHS connection are subjected to bending.
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Figure 19. Stress caused by preload in the profile and in the bolts for: (a) RHS; (b) CHS.

By extracting the longitudinal displacements of the nodes close to the connection
and adding the absolute value of the displacements of the two nodes, the joint separation
was obtained (Figure 20). It must be mentioned that the preload introduced an initial
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deformation of 0.045 mm and 0.004 for the RHS and CHS, respectively. These values were
subtracted from the final joint separation as the deformations in the experiment were not
included in the recordings of the DIC system.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

deformation of 0.045 mm and 0.004 for the RHS and CHS, respectively. These values were 
subtracted from the final joint separation as the deformations in the experiment were not 
included in the recordings of the DIC system. 

For the RHS, the joint separation obtained by the FEA closely follows the recordings 
during the experiment, especially the first stage of the experiment where the two profiles 
are kept in contact. The CHS connection response obtained from the FEA is similar to the 
RHS analysis, showing an initial stage where the profiles are in contact, a phenomenon 
that was not observed in the experiment of CHS. 

  
(a) (b) 

Figure 20. Joint separation: (a) RHS; (b) CHS. 

4.3. Parametric Study 
4.3.1. Hand Hole Effect 

A continuous hollow section was defined to study the influence of the hand-hole nec-
essary for bolt assembling. This handhole is commonly covered by a plate connected by 2 
small screws to plates welded to the interior of the hollow walls. 

The results show an increased rigidity of the assembly but a similar maximum force 
for both RHS and CHS (Figure 21). 

  
(a) (b) 

Figure 21. Hand hole effect: (a) RHS; (b) CHS. 

4.3.2. Bolt Preload Effect 
Bolt preload is required to have contact between profiles and perfect alignment at the 

time of assembling the structure. The RHS connection allows several bolts to be used while 
the CHS connections, which are usually of smaller sections, allow the use of one bolt. By 
considering different levels of preload, 0.3 ×, 0.5 ×, and 0.7 × Fy, where Fy is the nominal 
grade 10.9 yield force, the effect of the bolt preload was studied. A slightly significant 
increase of rigidity was observed for the RHS connection with the bolt preloaded at 200 
kN, while for the other cases, the change of rigidity is neglectable, Figure 22. 

0
50

100
150
200
250
300
350

0 0.5 1 1.5 2 2.5 3

F 
[k

N]

Joint separation [mm]

RHS_1
FEA

0

10

20

30

40

50

60

0 2 4 6

F 
[k

N]

Joint separation [mm]

CHS_2
FEA

0
50

100
150
200
250
300
350

0 5 10 15 20 25 30 35 40

F 
[k

N
]

D [mm]

RHS

with hole

without hole

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90

F 
[k

N
]

D [mm]

CHS

With hole

Without hole

Figure 20. Joint separation: (a) RHS; (b) CHS.

For the RHS, the joint separation obtained by the FEA closely follows the recordings
during the experiment, especially the first stage of the experiment where the two profiles
are kept in contact. The CHS connection response obtained from the FEA is similar to the
RHS analysis, showing an initial stage where the profiles are in contact, a phenomenon that
was not observed in the experiment of CHS.

4.3. Parametric Study
4.3.1. Hand Hole Effect

A continuous hollow section was defined to study the influence of the hand-hole
necessary for bolt assembling. This handhole is commonly covered by a plate connected by
2 small screws to plates welded to the interior of the hollow walls.

The results show an increased rigidity of the assembly but a similar maximum force
for both RHS and CHS (Figure 21).
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Figure 21. Hand hole effect: (a) RHS; (b) CHS.

4.3.2. Bolt Preload Effect

Bolt preload is required to have contact between profiles and perfect alignment at the
time of assembling the structure. The RHS connection allows several bolts to be used while
the CHS connections, which are usually of smaller sections, allow the use of one bolt. By
considering different levels of preload, 0.3 ×, 0.5 ×, and 0.7 × Fy, where Fy is the nominal
grade 10.9 yield force, the effect of the bolt preload was studied. A slightly significant
increase of rigidity was observed for the RHS connection with the bolt preloaded at 200 kN,
while for the other cases, the change of rigidity is neglectable, Figure 22.
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Figure 22. Bolt preload effect on capacity: (a) RHS; (b) CHS.

Although the bolt preload effect on the capacity and the rigidity of the specimen is not
significant, the joint separation, which is a serviceability criterion, is improved for the CHS
connection, as depicted in Figure 23.
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Figure 23. Bolt preload effect on joint separation: (a) RHS; (b) CHS.

4.3.3. End Plate Thickness Effect

Although the two connections have different capacities, the end plate thicknesses
considered for the parametric study were in the same range due to constructional reasons.

A significant loss of capacity is observed for the RHS connection although the initial
rigidity is maintained at the same value. The CHS connection shows a 10% loss of capacity
for similar plate thicknesses but for lower thicknesses the capacity reduces drastically,
Figure 24.
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Figure 24. End plate thickness effect: (a) RHS; (b) CHS.

Similarly, the rigidity of the connection starts to decrease after 50% of the maximum
force. Due to the singular bolt of the CHS connection, the curve shows an increased
softening with the smaller thickness.
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5. Discussion

The current study intended to highlight the response, in terms of capacity and joint
separation, and the failure mode of an in-line connection for rectangular and circular hollow
sections with an end plate welded inside the tubular section. In such a configuration the
bolted connection is not visible leading to an aesthetic visual effect. Similar studies were
performed in the literature [15], with the end plate having external dimensions similar to
the hollow section, resulting in a connection prone to welding failure.

Nevertheless, with a reduced lever arm of the bolts to resist the bending deformation
of the joint, the capacity of the connection is limited. Experimental tests were conducted
on two similar specimens for an RHS of 250 × 150 × 8 with an end plate of 25 mm and
four bolts M20 gr. 10.9 and two specimens for a CHS of 114.3 × 10 with an end plate of
25 mm and one bolt M24 gr. 10.9. The two tests lead to similar results showing trustful
results. By applying two symmetrical forces with respect to the connection, pure bending
was the only internal force in the connection. The tested specimen was monitored by linear
displacement transducers to obtain the midspan deflection while the force was monitored
by the actuator loadcell. To record the joint separation, the digital image correlation
technique was employed. Tensile tests were also performed to obtain the real mechanical
properties of the base material of the RHS, CHS, and bolt.

From the experimental tests, the failure mode of the connection was observed in
Figure 16. Both typologies failed by bolt fracture but the RHS, due to the multitude of
bolts, experienced a safer collapse of the connection while the CHS profiles, connected
by one bolt, completely detached from the connection. Force displacement curves were
obtained from the acquisition system and joint separation was measured by the virtual
extensometers of the DIC system.

The results of the experimental tests represent the basis of the numerical simulations
performed by Abaqus [21]. As the failure mode of the specimens is bolt failure, static
general analyses lead to satisfactory results if the preload force in the bolt was introduced.
With the real material properties, the numerical analyses of the specimens showed good
agreement with the experimental results both in terms of rigidity and capacity (Figure 18).
By comparing the joint separation recorded by the DIC system to the FEM model, the
RHS specimens also showed a good agreement, with minor separation until 35% of the
maximum force, while, experimentally, the CHS connection started separating immediately
after load application although numerically, the preload limited the separation until 20% of
the maximum force applied.

The validated numerical models were then used for a parametric study considering:
(i) the existence of an access hole for the bolt tightening, (ii) bolt preload, and (iii) end plate
thickness.

A small increase of the capacity was observed for the specimens without the access
hole, as the weak component was the bolt resistance, but a significant decrease in the
deformation was observed especially for the CHS (Figure 21). Of course, the decreased
rigidity due to an access hole was the proportion of the missing material in the position of
maximum bending moment. For the maximum force applied, an increase of 9% resulted
for the CHS while the RHS had a similar capacity.

For the three levels of preload, 0.3, 0.5, and 0.7 of the nominal yield force of the bolts
used in the connection, M20 gr 10.9 and M24 gr 10.9, for the RHS and CHS, respectively,
the flexibility of the end plate for RHS led to a neglectable influence on both rigidity and
capacity of the connection, but the joint separation was reduced for the CHS, which has
a more rigid end plate compared to the area of the cross-section of the hollow section
(Figure 22).

The major influence on the connection response was represented by the end plate
thickness. For flexible end plate 10 mm for CHS and 15 mm for RHS, the capacity was
reduced by 34% and 32%, respectively. In the numerical simulation, although the contact
was maintained for the first 20% of the maximum force, the joint separation was almost
three times larger than for a rigid end plate (Figure 24).

31



Mathematics 2023, 11, 3416

The maximum forces obtained for different levels of preload and for the end plate thick-
ness are summarized in Figure 25. The previously mentioned observations are observed in
these graphs.
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The standards do not offer explicit design methods for these in-line connections
although their use is becoming greater for aesthetic reasons. Based on the method presented
by Stephan and Stutzki [18], the computer program GAS [22] allows the design of the
connection but it does not offer any information about the joint separation. An estimation
of the deformation in the joint can be related to the position of the neutral axis provided by
the program. In Figure 26, the neutral axis for the RHS and CHS connections are presented
considering the material properties obtained in the tensile tests and the preload of the bolts
in the experiment. The defined bending moments to reach this position of the neutral axis
were 41.5 and 5.25 kNm for the RHS and CHS, respectively. By determining the values of
the bending moment according to Figure 1, the values corresponding to the inflection point
in Figure 20 are 42.9 and 4.6 kNm. It can be seen that the values were very close; thus, the
numerical model can predict the joint separation.

Figure 26. Position of neutral axis according to [18]: (a) RHS; (b) CHS.

Although the discussions were focused on RHS and CHS, it must be mentioned that
the two typologies are related to the size of the elements. The small size of rectangular
hollow sections can also be used with only one bolt for the connection, and large circular
hollow sections can have several bolts connecting the end plate inserted in the hollow
section.

6. Conclusions

Depending on the purpose of the structure, the response of the in-line connection
of hollow sections can relate to capacity, rigidity, and/or joint separation. The current
study presents a feasible configuration of the in-line connection for which a continuous
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aspect of the connected elements can be obtained. Without a standardized design method,
it is shown that a simple numerical model can predict the response of the connection as
validated based on the experimental results and analytical formulation.

Depending on the size of the element one or several bolts can be used for the connec-
tion. The connections using one bolt are prone to catastrophic failure as the connection has
no redundant links.

The parameters affecting the capacity and the rigidity of the connection are the end
plate thickness while the access hole and the preload affect in a small amount only the
rigidity.

The parameters affecting the joint separation are the preload, if the end plate is not
flexible, and the end plate thickness. Without a great material expense, a rigid end plate
can reduce the joint separation as well as a controlled preload of the bolt.

Either rectangular or circular hollow section, the size of the element dictates the
connection configuration which in any case has a smaller capacity than a continuous
element due to the bolted connection, or a smaller rigidity due to the access holes.
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Abstract: In this paper, the free vibration response of a stiffened functionally graded graphene
nanoplatelet (GPL)-reinforced composite multilayer cylindrical shell panel is studied for the first time.
The shell is stiffened by both stringers and rings. Additionally, the effect of reinforcing the shell panel,
ring and stinger with GPLs is independently studied. Halpin–Tsai relations are employed to evaluate
the mechanical properties of the shell panel, rings and stringers. The first-order shear deformation
shell theory, accompanied by the Lekhnitsky smeared stiffener model, using the numerical finite
element method and Hamilton principle, is employed to develop the governing motion equations
of the shell panel. Four different types of GPL patterns, including FG-A, FG-X, FG-O and UD, are
assumed across the thickness of the shell panel, rings and stringers. The effects of different factors,
including various weight fractions and patterns of GPLs nanofillers, the geometry of the shell panel
and stiffeners and two displacement boundary conditions, on the natural frequencies of the shell
panel, have been studied.

Keywords: free vibration; stiffened; functionally graded; graphene-reinforced composite multilayer
cylindrical panel; FSDT; FEM

MSC: 37M05

1. Introduction

Nowadays, reinforcement plays an important role in different industries, such as
aerospace, marine and automotive industries. These reinforcements can be divided into
two major groups. In the first group, the structure is stiffened by another external shape,
such as a ring or stringer. The external stiffener can be fabricated with the same or different
material as the original structure. These stiffeners can be connected to the original structure
with glue, welding, screws or rivets. Due to the fact that these connections may cause a
stress concentration, the original structure and stiffeners can be manufactured integrally. In
the second group, the structure is reinforced with nanoparticles. These nanoparticles are
added to the metallic or polymeric matrix during the process of fabrication, and metallic
or polymeric nanocomposite structures are manufactured. These reinforcements can be
added to various shapes, including plate, beam and shell-type structures and increase
the dynamic and static efficiency of the structure. Among these structures, shell-type
structures are widely applied as a part of sophisticated shapes, such as aircraft, rockets,
submarines, etc. Due to these structures being continuously subjected to dynamic loads, it
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is essential to study the vibration response and natural frequencies of shell-type-reinforced
structures. There are a lot of investigations related to the natural frequency responses
of stiffened structures. First, the articles are reviewed that are related to the vibration
behavior of the first group. For instance, natural frequencies of ring-and-stringer-stiffened
conical shells with simply supported boundary conditions are presented numerically and
experimentally by Crenwelge and Muster [1]. Nayak, Satpathy and Tripathy [2] presented
free vibrations of stiffened plates using the numerical finite element method (FEM). The
effect of several parameters, such as the number and orientation of stiffeners, aspect ratio,
boundary conditions and stiffener depth to plate thickness ratio on the free vibration of
stiffened plates are investigated. Based on laminated composite shell theories and utilizing
FEM, Nayak and Bandyopadhyay [3] performed a comprehensive investigation of the
free vibration responses of laminated composite stiffened shallow shells. Sinha et al. [4]
employed experimental and numerical approaches to present the natural frequencies of
laminated composite stiffened plates by changing the numbers, types and orientation of
stiffeners. Nayak and Bandyopadhyay [5] developed an FE formulation for the natural
frequency characteristics of stiffened conoidal shells. The effects of various stiffened geome-
tries on the free vibration response of conoidal shells were examined. The free vibration
response of shells of revolution stiffened by stringers employing a finite strip method was
reported by Naghsh, Saadatpour and Azhari [6]. They understood that reinforcing the
shells with stringers could increase or decrease the natural frequency. Quoc, Van Tham
and Tu [7] studied the free vibration behavior of a stiffened functionally graded (FG)
porous cylindrical shell under different boundary conditions on the basis of first-order
shear deformation theory (FSDT), Lekhnitsky’s smeared stiffener assumptions and the
Galerkin method. Samanta and Mukhopadhyay [8] surveyed the natural frequencies of
stiffened shells by applying FSDT and the FE technique. Mustafa and Ali [9] applied an
energy method for the natural frequencies of stiffened circular cylindrical shells based on
FSDT. Al-Najafi and Warburton [10] presented the natural frequency characteristics of ring-
stiffened cylindrical shells by applying Flügge’s shell theory and using the Rayleigh–Ritz
approach. Zarei, Rahimi and Hemmatnezhad [11] performed a comprehensive investi-
gation, including numerical, experimental and analytical approaches, to evaluate natural
frequencies of grid-stiffened truncated composite conical shells using FSDT. Their analyt-
ical procedure was conducted in accordance with the Ritz method. Additionally, Zarei,
Rahimi and Hemmatnezhad [12] used the same methodology and solution to investigate
the free vibration response of stiffened composite joined conical–cylindrical shells. Aris
and Ahmadi [13] performed an investigation on the natural frequency results of stiffened
rotating FGM conical shells under thermal conditions in accordance with higher-order
shear deformation theory (HSDT) and applying the Galerkin method. Based on Donnell’s
thin shell theory and employing the Galerkin procedure, the free vibration behavior of grid-
stiffened composite truncated spherical shells was reported by Ansari, Hemmatnezhad and
Taherkhani [14]. Tu Tran et al. [15] employed FSDT, together with the Galerkin method and
Lekhnitsky’s smeared stiffener technique, to analyze natural frequencies of stiffened FG
circular cylindrical shells supported by a Pasternak elastic foundation for various boundary
conditions subjected to a thermal environment. The free vibration analysis of laminated
stiffened cylindrical panels based on FSDT and utilizing FEM was surveyed by Tuan, Quoc
and Tu, [16]. Nguyen and Hoang [17] analytically presented the free vibration response
of a stiffened FG cylindrical shell supported on an elastic foundation based on FSDT, the
Galerkin method and the Lekhnitsky smeared stiffener technique. Qin Li et al. [18] em-
ployed FSDT and an analytical solution based on Rayleigh–Ritz to study the free vibration
of a stiffened cylindrical shell under general boundary conditions. Bich, Van Dung and
Nam [19] investigated the vibration response of eccentrically stiffened FG cylindrical panels
based on classical shell theory by employing the analytical method. The natural frequency
response of stiffened cylindrical shells in accordance with higher-order theory determined
by applying the Carrera unified formulation (CUF) was examined by Carrera, Zappino
and Filippi [20]. Lugovoi and Prokopenko [21] studied the impact of an elastic foundation
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and reinforcement on the vibration response of shallow shells with a rectangular planform.
Shahani and Kiarasi [22] studied the influence of a ring and stringer on the stability of thin
cylindrical shells based on FSDT numerically and experimentally.

This literature review denotes that in the most of research, the connection between
the original structure and reinforcements is considered ideal without screws, rivets and
welding. Therefore, in most of them, Lekhnitsky’s smeared stiffener technique is applied
for analysis. Now, the articles are reviewed which are related to the second group of
reinforcements or to reinforcing with nanoparticles. As lots of investigations have been
developed for the dynamic and static analyses of the structures which are reinforced with
various nanoparticles, those studies are mentioned here that are related to the vibration
behavior of plate and shell-type structures which are reinforced by Graphene platelets
(GPLs). In detail, the vibration responses of polymeric composite shells reinforced by GPLs
integrated with piezoelectric patches including electroelastic nonlinearities were presented
by Rao, Schmidt and Schröder [23]. Van Do and Lee [24] employed the Bézier extraction-
based isogeometric method to predict the natural frequencies of FG-GPLs multilayered
composite cylindrical shell panels by applying FSDT. Amirabadi, Farhatnia, Eftekhari and
Hosseini-Ara [25] used third-order shear deformation theory (TSDT) and the generalized
differential quadrature method (GDQM) to obtain the free vibration responses of FG-GPL-
reinforced conical shells under a rotational velocity and various displacement boundary
conditions. Jamalabadi et al. [26] calculated the fundamental natural frequencies of FG-
GPL-reinforced composite conical panels supported by a elastic foundation using FSDT
and 2D-GDQ methods. Salehi, Gholami and Ansari [27] presented the nonlinear free
vibration response of FG porous cylindrical shells reinforced by GPLs considering initial
imperfections utilizing HSDT. Yang et al. [28] employed FSDT, the Galerkin approach
and harmonic balance method to predict the nonlinear free vibration results of FG-GPL-
reinforced composite conical shells. Van Do and Lee [29] developed HSDT to investigate
static response and the natural frequencies of multilayer spherical and cylindrical panels
reinforced by GPLs in accordance with the isogeometric procedure. Employing FSDT
and Ritz’s method, the free vibration of GPL-reinforced composite doubly curved shells
was presented by Esmaieli and Kiani [30]. Baghbadorani and Kiani [31] used the Donnell
kinematic relations, FSDT and Navier solutions for the free vibration response of FG
cylindrical shells reinforced with GPLs. Dong et al. [32] studied the influences of axial
load and rotational velocity on the nonlinear free vibration response of graded-graphene-
reinforced cylindrical shells based on the nonlinear Donnell shell theory and by employing
the Galerkin approach. Based on a similar methodology and solution, the natural frequency
responses of FG-GPL-reinforced porous nanocomposite cylindrical shells with rotational
velocity were presented by Dong et al. [33]. Song et al. [34] employed the second-order shear
deformation theory in curvilinear coordinate and analytical solution based on harmonic
response to investigate wave dispersion responses of FG-GPL curved viscoelastic panels.
Sobhani et al. [35] employed FSDT and GDQ methods to evaluate the vibration behavior of
graphene oxide powder composites joined paraboloidal–cylindrical shells with different
boundary conditions. The effect of initial imperfection on the active control of FG-GPL
cylindrical shells with piezoelectric layers due to the application of a proportional derivative
smart controller was reported by Zare et al. [36].

Rezaei Pajand, Sobhani and Masoodi [37] investigated the vibrational response of
joined conical–conical shells made of FGM based on FSDT and employing the GDQM.
In another work, based on the same theory and methodology, Sobhani and Avcar [38]
performed an investigation on the influence of various nanofiller materials (CNTs, GNPs,
and GOPs) on the natural frequencies of nanocomposite cylindrical shells. Sobhani, Ma-
soodi and Ahmad Pari [39] analyzed the free-damped vibration of GPL nanocomposite
joined conical–conical–cylindrical-shell marine-like structures in accordance with FSDT
and Donnell’s simplifications. The governing equations of the structure were obtained by
employing the Hamilton principle. Finally, GDQM was applied for solving the governing
equations of the structure. Based on the first-order shear deformation hypothesis and
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GDQM, wave frequency responses of the nanocomposite-linked hemispherical–conical-
shell underwater-like bodies with the impacts of two types of graphene-based nanofillers
were reported by Sobhani, Masoodi and Ahmad Pari [40]. Sobhani, Masoodi and Ahmad
Pari [41] employed FDST as the theory and GDQM as a solution to evaluate the circumfer-
ential vibration analysis of nano-porous-sandwich assembled spherical–cylindrical–conical
shells under elastic boundary conditions. Sobhani, Masoodi and Civalek [42] simulated the
vibrational response of a jet engine cowl shell-like structure based on FSDT by employing
GDQM as a numerical approach. Sobhani [43] used (FSDT) and the general shell hypoth-
esis (GSH) to investigate the free vibration of combined paraboloidal–conical air vehicle
segment shell-type structures. The governing equations of the structure were obtained by
employing the Hamilton principle. Finally, GDQM was applied for solving the govern-
ing equations of combined paraboloidal–conical air vehicle segment shell-type structures.
Song et al. [44] presented an analytical solution based on the perturbation technique to
investigate buckling and postbuckling of biaxially compressed functionally graded multi-
layer graphene nanoplatelet-reinforced polymer composite plates. Within the framework
of the first-order shear deformation plate theory, Song et al. [45] presented an analytical
solution based on the Navier method for the free and forced vibrations of functionally
graded polymer composite plates reinforced with graphene nanoplatelets. Wang, Ye and
Zu [46] studied the nonlinear vibration of metal foam cylindrical shells reinforced with
graphene platelets based on the improved Donnell nonlinear shell theory by applying the
Galerkin approach. Chai and Wang [47] presented an analytical solution for the traveling
wave vibration of graphene platelet-reinforced porous joined conical–cylindrical shells
in a spinning motion based on Donnell’s shell theory. Ye and Wang [48] employed the
Galerkin procedure and Donnell’s nonlinear shell theory to analyze the nonlinear forced
vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells:
internal resonances. By using the Galerkin method, the nonlinear forced vibration of
the simply supported functionally graded porous nanocomposite thin plates reinforced
with graphene platelets based on the Kirchhoff assumptions was presented by Teng and
Wang [49]. Wang et al. [50] presented an efficient method for the vibration and stability
analysis of rectangular plates axially moving in fluid based on the Kirchhoff plate theory
and utilizing the finite element method. Based on Donnell’s shell theory and using the
Rayleigh–Ritz method, a general approach for the free vibration analysis of spinning joined
conical–cylindrical shells with arbitrary boundary conditions was examined by Chai and
Wang [51]. Safarpour, Rahimi and Alibeigloo [52] studied the free vibration and static
responses of FG-GPL-truncated conical and cylindrical shells by applying 3D elasticity
theory and using GDQM as a solution method. Babaei et al. [53] presented the natural
frequency responses of a FG-GPL cylindrical shell panel based on the 3D theory of elasticity
by applying FEM according to the Rayleigh–Ritz approach. Based on the same procedure
and solution, Kiarasi et al. [54] investigated the free vibration of FG-GPL joined conical–
cylindrical shells. Zhang, Wang and Li [55] used FEM, the 3D theory of elasticity and
the Rayleigh–Ritz method to calculate the natural frequencies amounts of FG-GPL joined
hemispherical–cylindrical–hemispherical shell vessels. Zu et al. [56] analyzed the vibration
suppression performance of fiber-reinforced polymer spherical–cylindrical shells with GPL
coatings under thermal conditions by applying the FSDT and Rayleigh–Ritz technique.

The above literature review shows that reinforcing the structures with nanoparticles
and stiffening them using a ring and stringer have a great effect on the natural frequency
response of the structures, but no investigation has been presented pertaining to the effect
of both of them on the behavior of the structures yet. In this study, the free vibration of
stiffened functionally graded graphene-reinforced composite multilayer cylindrical shell
panels has been investigated for the first time. In this study, the shell panel, rings and
stingers are reinforced with GPLs independently. Reinforcing the rings and stringers in
addition to the shell panel is one of the novel points of the present study. Four various distri-
butions of GPLs across the thickness of cylindrical panel, rings and stringers are considered.
Lekhnitsky’s smeared stiffener technique is assumed for obtaining the governing equations
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of the stiffened FG-GPL cylindrical shell panel. By employing the Hamilton principle in
conjunction with FSDT, the governing motion equations of the shell are developed and
solved via FEM. The effects of several factors such as the weight fractions of GPLs, various
GPL patterns for the cylindrical panel, rings and stringers, different boundary conditions,
and the effect of the geometry of the panel and stiffeners on the natural frequencies of
stiffened FG-GPL cylindrical shell panel have been investigated. In detail, the maximum
influences of the GPL pattern and the weight fraction of GPLs on the natural frequencies of
the structure were approximately 60% and 118%, respectively. Additionally, the influence
of strengthening the shell with GPLs was much greater than that of stiffening it with ring
and stringers.

2. Deriving the Governing Equations
2.1. Definition of the Geometry and Material Properties of the Stiffened Cylindrical Shell Panel

Consider an FG-GPL multilayer cylindrical shell panel with stiffeners under compres-
sive axial force (Figure 1). The radius, length, span angle and thickness of the structure
are denoted by L, β and h, respectively. Additionally, (x, θ, z) is considered across the
axial, hoop and radial axes, respectively. The shell panel is stiffened by both stringers
(longitudinal stiffeners) and rings (circumferential stiffeners). Additionally, various GPL
patterns are shown in Figure 1.
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Figure 1. The geometry of the stiffened FG-GPL multilayer shell panel and the different distributions
of the GPLs.

The multilayer GPL nanocomposite shell panel is assumed to have excellently bonded
GPL-RC layers. In this research, it is considered that the shell panel is reinforced by GPLs.
Each layer of the shell panel consists of a combination of GPLs as a nanofiller and a matrix
made of an isotropic polymer. Due to the elimination of the stress concentration, rings and
stringers are made of the same isotropic polymeric matrix used in the shell panel. GPLs
are uniformly or non-uniformly distributed in the polymer matrix. Hence, the weight
fraction of the nano-fillers (GPLs) varies in terms of being functionally graded across the
radial direction of the shell panel. It is supposed that the shell panel is constructed of
NL layers. Four different functions of the volume fraction of FG GPL-RCs are considered:
FG-A, O, X, and a uniform pattern (UD). For UD, the GPL weight fraction is the same
for each layer. Therefore, UD represents a homogeneous isotropic GPL-RC structure. In
the FG patterns, the weight fraction of GPL has a linear variation across the thickness of
the shell panel. For FG-X, the weight fraction of GPLs at the inner and outer layers is the
maximum while this is different for the FG-O where the weight fraction for mid-layers is
the maximum. Furthermore, for A-GPLRC, the weight fraction at the inner layers is the
maximum and by distancing from it, the number of GPLs continuously decreases, and
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the outer surface of shell has the lowest number of GPLs. The equal weight fraction for
different GPL distributions may be estimated as follows [57,58].

U − GPLRC V(k)
GPL = V∗GPL

X− GPLRC V(k)
GPL = 4 V∗GPL(0.5 + |K− (NL + 1)/2 )|/(2 + NL)

O− GPLRC V(k)
GPL = 4 V∗GPL((NL + 1)/2− |K− (NL + 1)/2

A− GPLRC V(k)
GPL = 2 V∗GPLK/(NL + 1)

(1)

Here, VK
GPL represents the volume content of GPLs in each layer of the shell panel. In

Equation (1), K will change from 1 to NL. VK
GPL shows the volume fraction of nanofillers in

the shell, and may be evaluated as follows [59]:

V∗GPL =
∆GPLρm

∆GPLρm + ρGPL − ∆GPLρGPL
(2)

where in the above equation, ρGPL and ρm are the mass density of the nanofillers and
polymeric matrix, respectively, and ∆GPL is the weight fraction of the nanofillers. It is
mentioned that due to the prevention of agglomeration phenomena, the maximum amount
of ∆GPL should be lower than 1%.

Based on the Halpin–Tsai micromechanics estimation [60–63], Young’s modulus of the
shell panel is described as the following relations:

E =
3
8

(
1 + εGPL

L ηGPL
L VGPL

1− ηGPL
L VGPL

)
Em +

5
8

(
1 + εGPL

W ηGPL
W VGPL

1− ηGPL
W VGPL

)
(3)

εGPL
L =

2lGPL
tGPL

(4)

εGPL
w =

2wGPL
tGPL

(5)

ηGPL
L =

EGPL − Em

EGPL + εGPL
L Em

(6)

ηGPL
W =

EGPL − Em

EGPL + εGPL
W Em

(7)

where EGPL and Em are the Young’s modulus of elasticity of the nanofillers and matrix,
respectively. Additionally, lGPL, WGPL, tGPL and VGPL are the length, width, thickness
and the volume fraction of the nanofillers, respectively. The rule of mixture estimation is
employed to evaluate the Poisson’s ratio and the mass density of the GPL-RC [64,65]:

ρ = ρGPLVGPL + ρm(1−VGPL) (8)

v = vGPLVGPL + vm(1−VGPL) (9)

where vGPL and vm are the Poisson’s ratio of the nanofillers and matrix, respectively. The
shear modulus, G, of the shell part is expressed as below [66–70]:

G =
E

2(1 + υ)
(10)

2.2. Governing Equations (FSDT—Virtual Work Principle)

In this section, FSDT is considered to describe the displacement components. Addi-
tionally, Lekhnitsky’s smeared stiffener assumptions are employed to present the relation
between the shell panel with its rings and stringers. In this theory, the transverse normal
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values at the mid-plane of the plate remain straight and rotate such that they do not remain
perpendicular to the mid-surface after deformation. Applying the FSDT of the shells, the
displacement constituents of the shell are considered to be as follows [71]:

u(x, θ, z, t) = u0(x, θ, t) + z ϕx(x, θ, t)
ν(x, θ, z, t) = ν0(x, θ, t) + z ϕθ(x, θ, t)
w(x, θ, z, t) = w0(x, θ, t)

(11)

where u0, v0, and w0 are the displacement components of the mid-plane of the shell panel
along the axial, circumferential and radial directions, respectively. Additionally, ϕx(x, θ, t)
and ϕθ(x, θ, t) are the rotations of the mid-plane of the shell around the θ and x axes,
respectively. Additionally, according to the FSDT, the kinematic relations are as follows:

εx = ε0
x + z kx

εθ = ε0
θ + z kθ

γxθ = γ0
xθ + z kxθ

γθz = γ0
θz

γxz = γ0
xz

(12)

where
ε0

x = ∂u0
∂x ; kx = ∂ϕx

∂x ; ε0
θ = ∂v0

R∂θ +
w◦
R ;

kθ = ∂ϕθ
R∂θ ; γ0

xθ = ∂u◦
R∂θ +

∂ν◦
∂x ; kxθ = ∂ϕx

R∂θ +
∂ϕθ
∂x ;

γθz = ϕθ +
∂w◦
R∂θ −

ν◦
R ; γ0

xz = ϕx +
∂w◦
∂x ;

(13)

According to the Lekhnitsky approach, the resultant force and moments for the FG-
GPL cylindrical shell panel with stiffeners are considered as follows [72]:

Nx = (A11 +
Es As

ss
)ε0

x + A12ε0
θ + (B11 +

Es Aszs
ss

)kx + B12kθ

Nθ = A12ε0
x + (A22 +

Er Ar
sr

)ε0
θ + B12kx + (B22 +

Er Arzr
sr

)kθ

Nxθ = A66γ0
xθ + B66kxθ

Mx = (B11 +
Es Aszs

ss
)ε0

x + B12ε0
θ + (D11 +

Es Is
ss

)kx + D12kθ

Mθ = B12ε0
x + (B22 +

Er Arzr
sr

)ε0
θ + D12kx + (D22 +

Er Ir
sr

)kθ

Mxθ = B66γ0
xθ + D66kxθ{

Qθ = ks(A44 +
Gr Ar

sr
)γθz

Qx = ks(A55 +
Gs As

ss
)γxz

(14)

where

A11 = A22 =

h
2∫

− h
2

E
1−υ2 dz; B11 = B22 =

h
2∫

− h
2

E
1−υ2 zdz; D11 = D22 =

h
2∫

− h
2

E
1−υ2 z2dz;

A12 =

h
2∫

− h
2

υE
1−υ2 dz; B12 =

h
2∫

− h
2

υE
1−υ2 zdz; D12 =

h
2∫

− h
2

υE
1−υ2 z2dz;

A66 =

h
2∫

− h
2

E
2[1+υ]

dz; B66 =

h
2∫

− h
2

E
2[1+υ]

zdz; D66 =

h
2∫

− h
2

E
2[1+υ]

z2dz;

A44 = A55 =

h
2∫

− h
2

E
2[1+υ]

dz;

Is =
bsh3

s
12 + Asz2

s ; Ir =
brh3

r
12 + Arz2

r ; zs = ± hs+h
2 ; zr = ± hr+h

2

(15)
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The elasticity and the rigidity modulus of the stringers and the rings are defined as Es
and Gs, and Er and Gr, respectively. The joints between the stiffeners (ribs and stringers)
and the cylindrical shell panel are considered continuously and the cylindrical panel and
stiffeners including the rings and stringers are made of the same material. It is mentioned
that for the Lekhnitsky approach, the original structure and stiffeners can be manufactured
integrally. Additionally, for the rings and stringers, the uniaxial state of stress is considered.
ks = 5/6 is the shear correction factor. Additionally, the height and width of the rings and
stringers are considered as follows: hr and br, and hs and bs, respectively. The areas of
cross-section of the stringers and rings are denoted by As and Ar, respectively. In addition,
the distances between two adjacent stringers and each ring are denoted by Ss and Sr,
respectively; the distances between the centroid of an individual stringer and ring from
the mid-surface of the shell panel are indicated by zs and zr, respectively. The forces and
moments resultants in matrix form are as follows:





Nx
Nθ

Nxθ

Mx
Mθ

Mxθ





=




A11 A12 0 B11 B12 0
A12 A22 0 B12 B22 0
0 0 A66 0 0 B66
B11 B12 0 D11 D12 0
B12 B22 0 D12 D22 0
0 0 B66 0 0 D66








ε0
x

ε0
θ

γ0
xθ

kx
kθ

kxθ





,

{
Qθ

Qx

}
= ks

[
A44 0
0 A55

]{
γθz
γxz

}

A =




A11 A12 0
A12 A22 0
0 0 A66


,

B =




B11 B12 0
B12 B22 0
0 0 B66


,

D =




D11 D12 0
D12 D22 0

0 0 D66


, e = ks

[
A44 0
0 A55

]

(16)

A11 = A11 +
Es As

ss
; A12 = A12; A22 = A22 +

Er Ar
sr

; A66 = A66;

A44 = A44 +
Gr Ar

sr
; A55 = A55 +

Gs As
ss

;

B11 = B11 +
Es Aszs

ss
; B12 = B12;

B22 = B22 +
Er Arzr

sr
; B66 = B66

D11 = D11 +
Es Is
ss

; D12 = D12;

D22 = D22 +
Er Ir
sr

; D66 = D66

For extending the governing equations of the shell panel, the virtual work principle
is employed:

t∫

0

(δK− δU)dt = 0 (17)

K =
1
2

∫

s




h
2∫

− h
2

ρeq(
.
u +

.
v +

.
w)dz


Rdθdx,

U =
1
2

∫

s

[
Nxε0

x + Nθε0
θ + Nxθγ0

xθ + Mxkx + Mθkθ + Mxθkxθ + Qθγθz + Qxγxz

]
Rdθdx,
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ρeq = ρSh +

(
As

ssh

)
ρs +

(
Ar

srh

)
ρr

where K is the kinetic energy of the structure and U is the strain energy. Additionally,
ρSh, ρs and ρr are the mass density of the shell, rings and stringers, respectively, and can be
evaluated using Equation (8). The variation of kinetic energy is as follows:

δK =
∫

s




h
2∫

− h
2

ρeq(
..
u δu +

..
v δv +

..
w δw)dz


Rdθdx, (18)

where




δu = δu0 + zδϕx
δv = δv0 + zδϕθ

δw = δw0





..
u = ∂2u0

∂t2 + z ∂2 ϕx
∂t2

..
v = ∂2v0

∂t2 + z ∂2 ϕθ
∂t2

..
w = ∂2w0

∂t2

δK =
∫ ∫ h

2
− h

2
ρeq

((
∂2u0
∂t2 + z ∂2 ϕx

∂t2

)
(δu0 + zδϕx) +

(
∂2v0
∂t2 + z ∂2 ϕθ

∂t2

)
(δv0 + zδϕθ)

+ ∂2w0
∂t2 δw0

)
R dz dθ dx

(19)

The strain energy for the stiffened FG-GPL multilayer cylindrical shell panel is pre-
sented as

U =
x {

Nxε0
x + Nθ ε0

θ + Nxθγ0
xθ + MxKx + MθKθ+

MxθKxθ + Qxγxz + Qθγθz

}
R dx dθ (20)

Equation (20) may be presented in the following matrix form:

U =


[Nx, Nθ , NXθ ]




ε0
x

ε0
θ

γ0
xθ


+ [Mx, Mθ , MXθ ]




Kx
Kθ

Kxθ


+ [Qx Qϑ]

[
γXZ
γθZ

]
Rdxdθ (21)

Additionally, the kinematic relations (Equations (12) and (13)) may be presented in the
following matrix form:




εx
εθ

γxθ


 =




ε0
x

ε0
θ

γ0
xθ


+ Z




Kx
Kθ

Kxθ


 =




∂
∂x 0 0 Z ∂

∂x 0
0 1

R
∂
∂θ

1
R 0 Z 1

R
∂
∂θ

1
R

∂
∂θ

∂
∂x 0 Z 1

R
∂
∂θ Z ∂

∂x







U0
V0
W0
ϕx
ϕθ



= d1Q

[
γ0

xz

γ0
θz

]
=

[
0 0 ∂

∂x 1 0

0 −1
R

1
R

∂
∂θ 0 1

]



U0
V0
W0
ϕx
ϕθ



= d2Q,




ε0
x

ε0
θ

γ0
xθ


 =




∂
∂x 0 0 0 0
0 1

R
∂
∂θ

1
R 0 0

1
R

∂
∂θ

∂
∂x 0 0 0







U0
V0
W0
ϕx
ϕθ




= d3Q




Kx
Kθ

Kxθ


 =




0 0 0 ∂
∂x 0

0 0 0 0 1
R

∂
∂θ

0 0 0 1
R

∂
∂θ

∂
∂x







U0
V0
W0
ϕx
ϕθ



= d4Q Q =




U0
V0
W0
ϕx
ϕθ




(22)

Hence, by substituting Equation (22) into (21), the strain energy can be expressed
as follows:

δU =
∫ ((

(d3Q)T AT
+ (d4Q)T BT

)
(d3δQ) +

(
(d3Q)T BT

+ (d4Q)T DT
)
(d 4δQ

)

+(d2Q)TeT(d2δQ)
)

R dx dθ
(23)
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3. Finite Element Modeling

FEM as a numerical solution is employed to solve the governing equations of the
stiffened FG-GPL multilayer cylindrical shell panel. A two-dimensional four-noded element
with 20 DOfs is used to discretize the shell panel. Additionally, a local-coordinate system
(ξ, ï) across the x and θ axes is employed for the shape functions.

The global and natural coordinates are related via the following relations [73]:

ξ =
2(x− xc)

L(e)
η =

2(θ − θc)

β(e)
(24)

where −1 ≤ ξ, η ≤ 1 are along the x and θ axes, respectively. L(e) and β(e) are the length
and span angle of each element, respectively. Additionally, θc and xc are the circumferential
and axial coordinates of the center of each element. The approximation functions in terms
of the natural coordinates and the displacement components of each element are presented
as follows: 




Ψ1
Ψ2
Ψ3
Ψ4





=
1
4





(1 + ξ)(1− η)
(1 + ξ)(1 + η)
(1− ξ)(1 + η)
(1− ξ)(1− η)





(25)







Ψ1 · · · 0
...

. . .
...

0 · · · Ψ1


 . . .




Ψ4 · · · 0
...

. . .
...

0 · · · Ψ4











u01
v01
w01
ϕx1
ϕθ1

...
u04
v04
w04
ϕx4
ϕθ4





= Ψ q(e)

where Ψn, n = 1, 2, 3, 4 are the components of the shape functions, and Ψ is the matrix of
the shape functions. u0i, v0i, w0i, ϕxi and ϕθi are the nodal DOFs and are estimated as

u0 =
4
∑

i=1
ΨiU0i v0 =

4
∑

i=1
ΨiV0i w0 =

4
∑

i=1
ΨiW0i

ϕx =
4
∑

i=1
Ψiθxi ϕθ =

4
∑

i=1
Ψiθθi

(26)

Substituting Equation (26) into Equations (19) and (23), the Hamilton’s principle in
Equation (17) can be rewritten as below.

∫
Ωe

0

[(
(d3Ψ)T AT

(d3Ψ) + (d4Ψ)T BT
(d3Ψ) + (d3Ψ)T BT

(d4Ψ)

+(d4Ψ)T DT
(d 4Ψ

)
+(d2Ψ)TeTd2Ψ

)
q(e) + ΨT IΨ

..
q(e)

]
Rdxdθ = 0

I =




I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2




,





I0
I1
I2



 =

∫ h
2
− h

2





1
z
z2



ρeqdz

(27)

Additionally, by replacing d2Ψ = B2, d3Ψ = B3, d4Ψ = B4 in Equation (27), and by
sorting it, Equation (28) is derived for a cylindrical panel element:

(k1 + k2 + k3)
(e)q(e) + M(e) ..

q(e) = 0 (28)
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where
Me=

∫
Ωe

0
ΨT IΨ R dx dθ

ke
1 =

∫ [
BT

3 AT
+ BT

4 BT B3

]
R dx dθ

ke
2 =

∫ [
BT

3 BT B4 + BT
4 DT B4

]
R dx dθ.

ke
3 =

∫ [
BT

2 eT B2
]
R dx dθ

(29)

After evaluating the element matrices of each element, and via the summation of these
matrices, the finite element model of the stiffened FG-GPL multilayer cylindrical panel is
as follows

(k1 + k2 + k3)q + M
..
q = 0 (30)

Finally, for the free vibration problem, the following eigenvalue problem is considered.
(
(k1 + k2 + k3)−Mω2

)
q = 0 (31)

where in Equation (31), ω represents the circular natural frequencies of the stiffened shell
panel and q is its mode shapes.

The details of the solution procedure for the free vibration problem (Equation (31)) are
as follows:

1. Calculating the stiffness and mass matrices of each element according to Equation (29);
2. Assembling the stiffness and mass matrices of each element to obtain the final stiffness

and mass matrices of the shell;
3. Applying the Sparse command on the matrices to reduce the size of matrices and also

the computation time;
4. Applying displacement boundary conditions on the Sparse matrices according to

Equation (32);
5. Solving the eigenvalue problem (Equation (31)) to obtain the natural frequencies

and mode shapes. To solve Equation (31) in Matlab software, the command eigs
(k1 + k2 + k3, M; number of desired mode shapes, 0) is used. Briefly, 0 means that the
lowest natural frequency close to 0 is desired. In this study, number of desired mode
shapes = 6.

In this study, the following displacement boundary conditions for a cylindrical panel
are considered:

When all edges of the cylindrical shell panel are clamped (CCCC) , the following can be observed :
u0, v0, w0, ϕx, ϕθ = 0 at(x = 0, θ), (x = L, θ), (x, θ = 0), (x, θ = β)
Additionally, when all edges of the structure are simply supported (SSSS) :
u0, w0 = 0 at (x = 0, θ), (x = L, θ)
v0, w0 = 0 at (x, θ = 0), (x, θ = β)

(32)

4. Numerical Results and Discussion
4.1. Verification of Results

The vibration analysis of a stiffened cylindrical panel reinforced by a graphene platelet
has not been investigated so far. Hence, for verification purposes, numerical results are
derived for a homogenous stiffened cylindrical panel with a ring and stringer for free-
boundary conditions. For this target, the weight fraction of GPLs in the present study
should be considered zero. Additionally, the geometries and mechanical properties of the
cylindrical panel of Ref [8] are considered (E = 209 GPa, υ = 0.3, ρ = 7800 kg/m3). Then,
the natural frequencies of the cylindrical panel with rings and stringers are obtained and
compared with those obtained by Samanta and Mukhopadhyay [8]. This compression
is given in Table 1 and shows excellent agreement. In [8], a flat shell element with a
combination of a DKT (discrete Kirchhoff’s triangle) plate-bending element and Allman’s
plane stress triangle is employed to model the problem. The bending element was a
six-noded triangle with 12 degrees of freedom, while in the present study, FSDT with four-
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noded shell element is used. Hence, the difference between the present results and those of
the reference is related to the different theories that are employed in this investigation and
that of Samanta and Mukhopadhyay [8].

Table 1. A comparison of the natural frequencies of a stiffened shell between the present results and
those of the reference Samanta and Mukhopadhyay [8].

Natural Frequencies (Hz) ω1 ω2 ω3 ω4 ω5 ω6

Samanta and Mukhopadhyay [8] 144 247 374 559 593 678
(Present) 138 241 369 554 587 669

4.2. Numerical Results

In this section, the first six natural frequencies of the stiffened multilayer cylindrical
panel reinforced by GPLs are presented. The influences of various parameters including
four different patterns of the GPLs for the shell panel, rings and stringers, various weight
fractions of GPLs, two different boundary conditions and various numbers of the ring and
stringer on the free vibration response of the structure are examined. The geometries and
mechanical properties of the stiffened FG-GPL multilayer cylindrical panel are assumed to
be as follows:

Mechanical property:
Em = 3 GPa, ρm = 1200 kg/m3, υm = 0.34 for epoxy, and EGPL = 1.01 TPa,

ρGPL = 1062.5 kg/m3, υGPL = 0.186, wGPL = 1.5 µm, lGPL = 2.5 µm, tGPL = 1.5 nm
for GPLs.

(a) Geometry of the cylindrical panel: L = 2, R = 0.5, θ = 120
◦

(b) Geometry of the rings and stringers: hs = 0.02, bs = 0.04, hr = 0.02, br = 0.04

The convergence of the finite element results of the present research is investigated
through comparing the results of the successive refinement of the element size. In this
regard, results are compared for meshes with an adequate fixed number of elements along
the θ axis but with various numbers of elements in the axial direction. Table 2 demon-
strates that applying 50 × 30 elements through the (nx, nθ) direction is enough to obtain
convergent results.

Table 2. Convergence study of the fundamental natural frequency for the stiffened cylindrical panel
structure (SSSS boundary condition; Ss = 0.378, Sr = 0.5, ∆ = 1 wt. %, GPL X for the structure, and
GPL O for rings and stringers).

Number of Elements
for Structure

(nx,nθ)
30 × 30 40 × 30 50 × 30

ω1 326.82 312.24 310.32

The influences of the various GPL patterns for the cylindrical panel shell and the rings
and stringers on the natural frequencies of the structure are given in Table 3 (SSSS boundary
condition; Ss = 0.378, Sr = 0.5, Nr = Ns = 5, and ∆ = 1 wt. %). As can be seen from this table,
the pattern of GPLX for the cylindrical panel shell in conjunction with GPLX for the ring
and stringer has the highest number of natural frequencies of the structure among various
GPL patterns for the cylindrical panel, ring and stringer while the pattern of GPLUD for
the cylindrical panel shell in conjunction with GPLUD for the rings and stringer has the
lowest number of natural frequencies. These differences are approximately 60% and can
be useful for engineers in their design. On the other hand, when the concentration of the
nano-fillers on the top and bottom of the structure is more than in the middle, the structure
will be accorded more rigidity and stiffness. Additionally, for each pattern of reinforcement
of the cylindrical shell panel, the maximum and minimum natural frequencies belong to
the shells when their rings and stringers are reinforced with the GPLX distribution and
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GPLUD, respectively. Additionally, the effect of reinforcing the shell panel with GPLs on
the overall stiffness of the structure is more dominant than that in the case where the rings
and stringers are reinforced by GPLs. Furthermore, in each pattern of reinforcement for
the cylindrical shell panel except for GPL-UD, the numbers of natural frequencies of the
structure are close to each other when the reinforcement of the rings and stringers is GPL-O
and GPL-A. The effect of various weight fractions of GPLs on the natural frequencies of the
structure is depicted in Table 4. In this case, the patterns of reinforcement for the shell panel,
rings and stringers are the same. By increasing the weight fraction of nano-fillers (from
0 to 0.01) for different GPL patterns, the number of natural frequencies of the structure
significantly increases (by approximately 118% for the GPL-X pattern). The influence of
increasing the weight fraction of the nano-fillers on the number of natural frequencies
of the structure for GPL-X is greater than that of the other patterns while the impact of
increasing the weight fraction of the nano-fillers on the number of natural frequencies of the
structure for GPL-UD is smaller than that of the other patterns. Table 5 shows the impact of
various boundary conditions on the natural frequencies of the structure (Ss = 0.378, Sr = 0.5,
Nr = Ns = 5, and ∆ = 1 wt. %). It is obvious from this table that the CCCC boundary
condition has higher natural frequencies than does the SSSS boundary condition due to
the fact that the CCCC boundary condition provides more rigidity than does the SSSS
boundary condition. Table 6 indicates the influences of the number of rings and stringers
on the natural frequencies of the stiffened cylindrical shell panel for two different boundary
conditions (the GPLX pattern for the cylindrical panel; ring and stringer; ∆ = 1 wt. %). By
increasing the number of rings and stringers, the natural frequencies are changed a little. It
is interesting that the number of fundamental frequencies of the structure for the CCCC
boundary condition is increased a little by increasing the number of rings and stringers
while the number of the fundamental frequencies of the structure for the SSSS boundary
condition is decreased a little by increasing the numbers of rings and stringers. On the
other hand, stiffening the shell with a ring and stringer may decrease or increase the natural
frequencies of the structure a little depending on the boundary condition.

Table 3. The influences of various GPL patterns for the cylindrical panel shell and ring and stringer
on the natural frequencies (Hz) of the structure (SSSS boundary condition; Ss = 0.378, Sr = 0.5;
∆ = 1 wt. %).

GPL Pattern
for Cylindrical

Panel Shell

GPL
Pattern

for
Ring and
Stringer

ω1 ω2 ω3 ω4 ω5 ω6

GPL-UD

UD 225.13 374.82 435.39 452.77 465.65 592.43

X 258.75 433.25 504.36 578.56 593.13 769.27

O 242.31 420.88 499.98 524.44 560.05 673.14

A 228.54 390.43 467.24 488.34 497.22 626.46

GPL-X

UD 282.76 479.21 539.81 599.99 633.12 710.47

X 362.55 614.98 697.29 731.08 766.46 968.71

O 310.32 550.74 642.12 675.84 700.48 893.65

A 299.47 494.32 566.36 620.11 658.22 760.33

GPL-O

UD 240.88 390.15 470.46 506.42 525.84 631.26

X 281.65 480.67 553.57 595.72 616.71 744.64

O 276.18 466.74 549.34 588.07 600.39 730.12

A 265.94 441.46 526.25 567.66 580.35 700.49
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Table 3. Cont.

GPL Pattern
for Cylindrical

Panel Shell

GPL
Pattern

for
Ring and
Stringer

ω1 ω2 ω3 ω4 ω5 ω6

GPL-A

UD 226.83 362.49 432.72 450.24 478.55 600.06

X 273.56 471.82 520.18 590.88 601.56 716.77

O 233.14 420.13 500.72 541.57 550.22 680.48

A 230.13 400.78 474.30 500.94 510.74 635.33

Table 4. The impact of different weight fractions of GPLs on the natural frequencies (Hz) of the
structure (SSSS boundary condition; Ss = 0.378; Sr = 0.5).

GPL Pattern
for Cylindrical Panel,

Ring and Stringer
∆GPL % ω1 ω2 ω3 ω4 ω5 ω6

GPL-X

0 166.66 277.03 322.22 347.9 355.28 438.51

0.5 312.06 529.61 600.86 630.17 660.34 834.48

1 362.55 614.98 697.29 731.08 766.46 968.71

GPL-A

0 166.66 277.03 322.22 347.9 355.28 438.51

0.5 203.53 357.14 423.21 446.42 455.35 566.94

1 230.13 400.78 474.30 500.94 510.74 635.33

GPL-UD

0 166.66 277.03 322.22 347.9 355.28 438.51

0.5 187.55 311.66 378.26 400.12 420.18 493.33

1 225.13 374.82 435.39 452.77 465.65 592.43

GPL-O

0 166.66 277.03 322.22 347.9 355.28 438.51

0.5 230.47 391.59 473.27 498.30 500.42 634.78

1 276.18 466.74 549.34 588.07 600.39 730.12

Table 5. The impact of various boundary conditions on the natural frequencies (Hz) of the structure
(Ss = 0.378; Sr = 0.5; ∆ = 1 wt. %).

GPL Pattern
for Cylindrical Panel,

Ring and Stringer

Boundary
Condition ω1 ω2 ω3 ω4 ω5 ω6

GPL-X
cccc 696.26 912.85 1057.23 1145.3 1175.5 1289.4

ssss 362.55 614.98 697.29 731.08 766.46 968.71

GPL-UD
cccc 421.96 557.72 647.13 702.76 720.33 793.83

ssss 225.13 374.82 435.39 452.77 465.65 592.43

GPL-O
cccc 524.44 884.23 1032.75 1134.88 1140.55 1350.62

ssss 276.18 466.74 549.34 588.07 600.39 730.12

GPL-A
cccc 391.63 700.45 860.27 930.18 969.31 1235.77

ssss 230.13 400.78 474.30 500.94 510.74 635.33
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Table 6. The impact of increasing the number of rings and stringers on the natural frequencies (Hz)
of the structure (GPL-X for shell panel, ring and stringer, ∆ = 1 wt. %).

Boundary
Condition

Number of Ring and
Stringer ω1 ω2 ω3 ω4 ω5 ω6

CCCC

Nr = Ns = 5 696.26 912.85 1057.23 1145.3 1175.5 1289.4

Nr = Ns = 7 697.12 913.00 1053.84 1140.72 1176.02 1284.37

Nr = Ns = 10 698.23 913.78 1049.6 1136.8 1177.6 1280

SSSS

Nr = Ns = 5 362.55 614.98 697.29 731.08 766.46 968.71

Nr = Ns = 7 360.01 613.47 690.33 727.66 767.13 969.47

Nr = Ns = 10 359.62 613.2 685.22 719.85 770.11 971.13

5. Conclusions

The natural frequencies of stiffened cylindrical shell panels reinforced with graphene
platelets have been studied for the first time. Four GPL patterns including GPL-X, GPL-O,
GPL UD, and GPL-A were considered along with the shell thickness of the cylindrical panel,
rings and stringers. Based on first-order shear deformation theory and by employing FEM
based on the Hamilton principle and the Rayleigh–Ritz method, the governing equations of
the structure were obtained and solved. The influences of GPL patterns for the cylindrical
panel, rings and stringers, the weight fraction of nanofillers, various boundary conditions
and different numbers of stringers and rings on the natural frequencies of a stiffened
cylindrical shell panel reinforced with a graphene platelet have been studied.

Remarkable findings which can be used in practical applications are as follows:

(a) Maximum and minimum natural frequencies were related to GPL-X and GPL-UD,
respectively;

(b) The effect of reinforcing the shell panel with GPLs on the overall stiffness of the
structure was more dominant than that in the case that the rings and stringers were
reinforced by GPLs. The maximum influences of the GPL patterns and weight fraction
of GPLs on the natural frequencies of the structure were approximately 60% and
118%, respectively;

(c) By increasing the weight fraction of GPLs, the number of natural frequencies of the struc-
ture for the GPL-X pattern was increased to more than that of other GPL distributions;

(d) The CCCC boundary condition had higher natural frequencies than did the SSSS
boundary condition;

(e) Reinforcement including rings and stringers may decrease or increase the natural
frequencies of the structure depending on the boundary condition;

(f) By increasing the number of rings and stringers, the natural frequencies were changed
a little;

(g) The influences of strengthening the shell with GPLs was much greater than that of
stiffening it with rings and stringers.

(h) In each pattern of reinforcement for the cylindrical shell panel except for GPL-UD,
the numbers of natural frequencies of the structure were close to each other when the
reinforcement of rings and stringers were considered to be GPL-O and GPL-A. This
means that for these cases, they can be used interchangeably.
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Abstract: In the fields of structural and geotechnical engineering, improving the understanding
of soil–structure interaction (SSI) effects is critical for earthquake-resistant design. Engineers and
practitioners often resort to finite element (FE) software to advance this objective. Unfortunately, the
availability of software equipped with boundary representation for absorbing scattered waves and
ensuring consistent input ground motion prescriptions, which is necessary for accurately representing
SSI effects, is currently limited. To address such limitations, the authors developed Seismo-VLAB
(SVL v1.0-stable) an open-source software designed to perform SSI simulations. The methodology
considers the integration of advanced techniques, including the domain decomposition method
(DDM), perfectly matched layers (PMLs), and domain reduction method (DRM), in addition to
parallel computing capabilities to accelerate the solution of large-scale problems. In this work, the
authors provide a detailed description of the implementation for addressing SSI modeling, validate
some of the SVL’s features needed for such purpose, and demonstrate that the coupled DRM–PML
technique is a necessary condition for accurately solving SSI problems. It is expected that SVL
provides a significant contribution to the SSI research community, offering a self-contained and
versatile alternative. The software’s practical application in analyzing SSI and directionality effects
on 3D structures under seismic loading demonstrates its capability to model real-world earthquake
responses in structural engineering.

Keywords: finite element program; soil–structure interaction; perfectly matched layer; domain
reduction method; high-performance computing

MSC: 74S05; 74H15; 74G15

1. Introduction

In the fields of structural and geotechnical engineering, the finite element method
(or FEM, see [1–4], to name a few) is the preferred approach for approximating both
linear and nonlinear responses of structures [5]. The literature consistently demonstrates
that the FEM can effectively replicate the responses of physical experiments (e.g., [6–8])
as well as real-world monitored structures (e.g., [9–11]) with a high degree of accuracy.
Unsurprisingly, powerful commercial software such as MSC Nastran [12], ANSYS [13],
ABAQUS [14], or LS-DYNA [15] offers several sophisticated material and element libraries
for modeling complex structural systems. Nevertheless, in practical civil engineering
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applications, it is common to lean towards the use of commercial software such as ETABS,
Perform3D, SAP2000 [16–18], and FLAC [19] to handle this particular task. Typically, these
software enable the modeling of the structural components with limited (usually elastic)
soil materials, if they offer any. Unfortunately, these software usually fail to adequately
account for wave propagation in semi-infinite domains, a critical aspect in SSI analyses.
For example, the celebrated domain reduction method (or DRM, see [20–22]) proposed
by Bielak et al., a powerful approach for modeling semi-infinite domains under remote
excitation, is rarely available in commercial software. Similarly, the implementation of
absorbing boundary conditions, such as perfectly matched layers (or PML, see [23–25]), to
mitigate spurious wave reflections from far-field boundaries is often absent or limited.

The lack of numerical tools for appropriate modeling SSI problems has increased soft-
ware development during the last two decades. Some software examples are Mastodon [26],
Code_Aster [27], ACS-SASSI [28], Real-ESSI [29], and OpenSEES [30], to name a few. These
platforms have contributed significantly by providing some capabilities to address the
aforementioned limitations. However, it is worth noting that while these open-source
software offers important features, several present practical challenges for users. For in-
stance, certain software packages can be difficult to install, modifying their source code
can be a formidable task due to a lack of proper comments within the source files, or
implementing new features becomes cumbersome due to the source code length. Moreover,
running SSI simulations with such software can often prove to be time-consuming and
resource-intensive. Motivated by this need, the authors developed Seismo-VLAB (or SVL, as
referenced in [31,32]), an open-source software designed to perform SSI simulations. SVL is
developed with a focus on simplicity and good coding practices. It incorporates the Eigen
C++ Template library [33], which makes it easy for users to make modifications. Addition-
ally, implementations prioritize straightforward methods, avoiding complexity, excessive
parameters, local variables, and overuse of multiple inheritances, ensuring straightforward
code modifications. While SVL was initially created to solve computationally efficient wave
propagation for earth dam problems, topographic amplification, and basin effects, it has
been extended to incorporate other systems, such as building clusters and lifelines. The
most important features of the software include perfectly matched layers as absorbing
boundaries [24,25,34]; domain reduction for modeling wavefield incoherency in truncated
domains [21]; domain decomposition for optimal parallel computing [35]; material and
geometric nonlinearity [36–38]; and interfaces with message passing interface (or MPI,
see [39]) and open multi-processing (or OpenMP, see [40]) parallelization.

It is believed that SVL’s features are necessary for efficiently solving SSI problems
regarding (1) modeling of spatial variability of soil properties for uncertainty quantification
in linear and nonlinear models of engineering structures [41–46], (2) inverse problems for
parameter estimation as well as reliability-based performance analysis in nonlinear finite
element models of engineering structures [31,47–53], (3) site response analysis for the study
of amplification or deamplification of seismic waves considering topographic and basin
effects [54–62], and (4) specific topics concerning SSI models with time lag effects [63], 3D
seismic wave propagation [64], seismic fragility and demand hazard analyses for earth
slopes [65], coupled FEM techniques for SSI analyses [66], and earthquake-induced struc-
tural pounding between buildings [67]. Thus, SVL’s innovativeness lies in its open-source
nature, integration of advanced techniques, parallel computing capabilities, modeling of
wave propagation in half-spaces, user friendliness, versatility, and applicability to diverse
SSI scenarios. This combination makes SVL a valuable and pioneering tool for researchers
and engineers in the field of soil–structure interaction. In fact, a few researchers have al-
ready used SVL in some peer-reviewed journals (see [68–72] as examples) for such purpose.

This work describes the most important feature requirements implemented in SVL for
modeling half-spaces in homogeneous and heterogeneous media. A particular emphasis
is placed on (a) the domain decomposition for parallel execution in cases involving large
domains and (b) the symmetric hybrid PML formulation and its implementation using
the Newmark-beta implicit time integration scheme. This implementation is subjected to
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rigorous verification by comparing results between Seismo-VLAB truncated domains with
PML against those from enlarged domains with fixed boundaries. Lastly, the DRM imple-
mentation, a critical approach for modeling semi-infinite domains, is carefully examined. A
comprehensive verification process follows comparing DRM-generated free-field responses
with solutions from existing literature. The study concludes by utilizing the coupled DRM–
PML method and the parallel computing capabilities of Seismo-VLAB to investigate SSI
effects on site and structural responses for a 3D linear elastic building subjected to seismic
excitation at various angles of incidence. The later application showcases the software’s
capability to model real-world earthquake responses in structural engineering and how
these features can help to solve SSI problems in other research areas efficiently.

2. Implementation and Verification for Modeling Half-Space

Seismo-VLAB consists of two primary and self-contained processes: the Pre-Analysis
and the Run-Analysis, which are depicted in Figure 1.

Figure 1. Seismo-VLAB global software structure. The Pre-Analysis is an interface to provide the
files to be executed, and the Run-Analysis is the main core that performs the finite element analysis.
The Pre-Analysis main task is to transform the Script.py into JSON input files for the Run-Analysis,
which in turn converts this information into objects and executes the simulation.

The Pre-Analysis allows users to create, import, adjust, and manipulate FE models,
encouraging the development of complex geometries. However, users are required to
manually provide node, material, section, and element or utilize external tools to prepare
this information for storage in JSON files. Conversely, the Run-Analysis performs the FE
analysis, encompassing tasks such as matrix generation, assembly, linear system solution,
and stores the solution. Specifically, the Run-Analysis offers the following elements:

(a) Linearized solid and structural elements such as two- and three-node truss (i.e.,
lin2DTruss2, lin2DTruss3, lin3DTruss2, and lin3DTruss3), three- and six-node
triangular (i.e., lin2DTria3 and lin2DTria6), four- and eight-node quadrilateral (i.e.,
lin2DQuad4 and lin2DQuad8), four- and ten-node tetrahedron (i.e., lin3DTetra4 and
lin3DTetra10), eight- and twenty-node hexahedron (i.e., lin3DHexa8 and lin3D-
Hexa20), two-node frame (i.e., lin2DFrame2 and lin3DFrame2), and four-node shell
(i.e., lin3DShell4) elements are currently available.

(b) Finite kinematics solid and structural elements such as two-node truss (i.e., kin-
2DTruss2 and kin3DTruss2), four-node quadrilateral (i.e., kin2DQuad4), eight-node
hexahedron (i.e., kin3DHexa8), and two-node frame (i.e., kin2DFrame2 and kin3D-
Frame2) elements currently allow large deformation [3,73,74].

(c) The perfectly matched layer (PML) can be specified for emulating semi-infinite half-
spaces in 2D and 3D simulations. Currently, four- and eight-node quadrilateral
(PML2DQuad4 and PML2DQuad8), and eight- and twenty-node hexahedron (PML3DHexa8
and PML3DHexa20) elements are implemented.

The element’s properties are computed using numerical integration. This process al-
lows the selection of various quadrature rules, such as Gauss–Legendre and Gauss–Lobatto.
Depending on the specific element type, the number of integration points can be cho-
sen within a defined range: 1 to 7 for line elements (e.g., lin3DTruss2, lin3DTruss3,
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lin3DFrame2), 1 to 49 for area elements (e.g., lin2DTria6, lin2DQuad4, lin3DShell4,
PML2DQuad4), and 1 to 343 for volume elements (e.g., lin3DTetra10, lin3DHexa8, PML-
3DHexa8). This selection considers a uniform grid of points for integration.

Technical details regarding the SVL software’s architecture, functionalities, and scal-
ability are presented in [32]. This section presents the essential ingredients a numerical
software (or toolbox) must have to perform parallel SSI simulations. In particular, it is
demonstrated that the domain decomposition, domain reduction method, and absorbing
boundary conditions are necessary to simulate truncated half-space behavior properly.

2.1. Domain Decomposition

Domain decomposition is employed to perform a parallel execution. Here, the model
domain (i.e., group of objects such as Node, Element, Material, Section, and Load) is
divided so that the number of elements is almost uniform across processors. The aim of
performing the mesh partitioning with Metis [35] is to minimize the load imbalance [75]
by distributing roughly the same number of elements across processors. However, other
graph partitioning programs such as SCOTCH [76] or Zoltan [77] can be incorporated to
reach the same purpose.

2.1.1. Implementation

A hypergraph, denoted asH = (X , E), consists of a set of vertices, represented by X ,
and hyperedges, represented by E . In this structure [78], every hyperedge is essentially a
subset of the set of vertices X . In this regard, the k-way hypergraph partitioning problem
is defined as follows: given a hypergraph H = (X , E), partition set X into k disjoint
subsets, i.e., X1, X2, . . . , Xk, such that X =

⋃k
j=1 Xj. The reader may refer to [79] for more

details on how this is performed. The hypergraphH is constructed internally using Metis
subroutines, where the vertices X and edges E data in SVL are generated using the Mesh
element’s connectivity information. In order to minimize the processor load imbalance,
a weight is specified for each vertex proportional to the number of degrees of freedom
(Nn

dof) of each Node. Thus, the element’s load, computed as the square of the number of
nodes multiplied by the number of degrees of freedom, offers an approximate measure
of the computational complexity required to calculate a matrix. The latter gives a rough
estimation of the relative load of an element compared to others, allowing for clustering
groups of elements where the sum of individual loads is similar. This process is performed
using the k-way hypergraph partitioning in Metis, from which the information is collected
to construct the subdomains to be distributed to each processor. The OpenMPI [40,80–82]
interface allows each partition to be sent to different processor units, so that the element
mass Me ∈ RNe

dof×Ne
dof , damping Ce ∈ RNe

dof×Ne
dof , and stiffness Ke ∈ RNe

dof×Ne
dof matrices,

and force Fe ∈ RNe
dof vector (Ne

dof is the total number of degrees of freedom of the e-th
element) can be generated for each subdomain. The contribution to the global stiffness
matrix and force vector is assembled locally. However, the full assembly to the stiffness
matrix Keff ∈ RNfree×Nfree and force vector Feff ∈ RNfree (Nfree is the number of free degrees
of freedom) is handled by PETSc [83–85] and MUMPS [86,87] APIs.

2.1.2. Verification

The verification case considers a 3D SSI model. The soil domain size has, approx-
imately, a horizontal length 100 × 100 m2 and a vertical length 90 m. This domain is
discretized using 121,944 Node, 105,825 Element, 25 Material, and 26,247 Constraint
objects that allow for tying together both PML/soil and shells/soil element interfaces.
Similarly, the building model size is approximately 50× 50 m2 in plan view and 60 m in ele-
vation. The building domain is discretized using 7861 Node, 9552 Element, and 19 Section
objects in total. The 3D linearized eight-node hexahedron (i.e., lin3DHexa8) elements to
model the soil, and 3D linearized eight-node hexahedron perfectly matched layer (i.e.,
PML3DHexa8) elements to truncate the semi-infinite half-space, are employed. Moreover,
3D linearized two-node beam (i.e., lin3DFrame2) and 3D linearized four-node shell (i.e.,
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lin3DShell4) elements are employed to model the building slabs, walls, columns, and
beams. The finite element mesh partition is shown in Figure 2 for five (left) and eleven
(right) processors, respectively. This figure also shows how elements are uniformly clus-
tered, leading to similar colored volumes. The partitioning process does not enhance the
solution’s accuracy; its impact is mainly on performance in terms of execution time. Parallel
simulations generally outpace their serial counterparts, making clustering, especially in
linear analysis cases, beneficial for faster computation of element vectors and matrices as
well as solving linear systems handled by the MUMPS and PETSc APIs.

Figure 2. Domain decomposition of a 3D SSI building model using 5 (left) and 11 (right) processors.

2.2. Domain Reduction Method

The boundary element methods (BEMs) and their variants have been extensively used
to investigate the problems where incident plane waves (P, SV, SH, Rayleigh) interact with
canyons, basins, and buildings [88–92]. However, the majority of research efforts have
focused on analyzing simple topographies and homogeneous half-spaces, which provide an
oversimplified representation of the soil domain in reality. Moreover, the problem is solved
in the frequency domain, making it challenging to incorporate the nonlinear behavior of
both soil and structures. Currently, substructure and direct approaches employing the
FEM are the most commonly used techniques for studying SSI effects. In particular, the
direct approach has proven to be enormously powerful since complex foundation shapes
and nonlinear responses of soil and structure are explicitly taken into account. However,
one of the main problems in the direct approach is to specify consistent input ground
motions inside the near field [93,94]. In general, this process involves using an FE model
with enlarged domains to simulate the transition of seismic waves from far field to near
field. However, addressing the near field is challenging due to the need for an accurate FE
mesh that represents topographic characteristics and local soil variations. This leads to a
computationally demanding task to model interactions among the structure, foundation,
and soil. In this regard, the DRM developed by [21] is an effective FE methodology for
modeling earthquake ground motion in highly heterogeneous localized regions.

One of the most remarkable capabilities of SVL is its approach for modeling the
propagation of a plane wave in layered media for site amplification and 3D SSI problems in
the time domain. This approach comprises two main steps: (i) the displacement fields of
the incident waves in layered soils are initially obtained by, e.g., the stiffness matrix method
(SMM) or thin layer method (or TML, see [95]); and (ii) these signals are subsequently
fed into the domain reduction method (or DRM, as described in [21,22]), enabling the
computation of effective input nodal forces for FE models. This approach, implemented in
SVL, offers several advantages: (i) it can be applied to horizontally layered soil media and
any topographical features inside the DRM layer, such as complex 3D shapes of embedded
foundations, canyons, and basins; (ii) the analyses are performed in the time domain,
which facilitates the use of contact interfaces and nonlinear material models; and (iii) by
using DRM to map incoming waves from the far-field to the near-field domain, along
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with absorbing boundaries, the computational cost is significantly reduced. The proposed
method is presented in more detail in [69] for the case of Rayleigh waves. This section
briefly describes the framework for simulating P and SV waves in layered media using
SMM and DRM.

2.2.1. Implementation

The proposed methodology to simulate SV wave propagation in layered media using
FEM in the time domain is described below. Note that the process for P waves is identical,
except for different polarization and wave velocities.

(a) Choose a reference incoming signal f0(x0, y0, t) at a reference point (x0, y0), propagat-
ing at an angle θ with respect to vertical axis. This time series can be a predefined or a
recorded signal during a seismic event. For example, incoming signals can be obtained
from the PEER Ground Motion Database, hosted at https://ngawest2.berkeley.edu/
(accessed on 2 May 2023); see [96] for details. This task is not difficult when consider-
ing linear elastic homogeneous and inhomogeneous half-space.

(b) Transform the reference signal into the frequency domain by applying the fast Fourier
transform (FFT). Denote f̂0,j(x0, y0, ωj) as the component of the transformed signal
corresponding to discrete angular frequency ωj.

(c) Calculate horizontal displacement û(x0, y, ω) = {ûj(x0, y, ωj)} and vertical displace-
ment v̂(x0, y, ω) = {v̂j(x0, y, ωj)} using SMM, which is described later on.

(d) Compute the horizontal displacement û(x, y, ω) = ûj(x, y, ωj) and vertical displace-
ment v̂(x, y, ω) = v̂j(x, y, ωj) at the DRM nodes. These free-field displacements for
each ωj are determined as follows:

k j =
ωj sin θ

Vs
, and

[
ûj(x, y, ωj)
v̂j(x, y, ωj)

]
=

[
ûj(x0, y, ωj)
v̂j(x0, y, ωj)

]
exp

(
−i k j(x− x0)

)
, (1)

where k j is the horizontal wavenumber, i is the imaginary number, and i2 = −1. The
exponential term exp

(
−i k j(x− x0)

)
represents the phase lag due to finite horizontal

apparent velocity when the SV wave travels through a distance (x− x0).
(e) Use inverse FFT to obtain the time histories of those displacements, u(x, y, t) and

v(x, y, t).
(f) Calculate the effective input forces for the FEM model using DRM.
(g) Apply those input forces at the corresponding locations of the DRM layer and perform

the FEM analysis.

The SMM needed in (c) is now described for a layered medium with N interfaces, i.e.,
N− 1 layers over a homogeneous half-space. In Figure 3a, the displacements at interfaces
are obtained by solving the following system of equations:




K11 K12 · · · 0

K21 K22
. . .

...

0
. . . . . . KN−1,N

0 · · · KN,N−1 KNN + Khalf







u1
u2
...

uN


 =




0
...
0

Kfull u∗full


 , (2)

where Kij , Khalf , and Kfull are the 2 × 2 component stiffness matrices of a soil layer,
half-space, and imaginary full space (by joining two half-spaces), respectively; uk with
1 ≤ k ≤ N is the displacement vector at the k-th interface; and u∗full is the displacement
vector at the surface location of the half-space given free propagation of plane waves in the
imaginary full space. For each frequency ωj, u∗full is calculated as

u∗full =

[
cos θ
i sin θ

]
f̂0,j(x0, y0, ωj) exp

(
−iωj cos θ

Vs
(yN − y0)

)
, (3)
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where yN is the y-coordinate of the half-space surface. Figure 3b illustrates the assembly
of the element stiffness matrices of soil layers required to form the global stiffness matrix.
Once the motions at the interfaces are obtained, the displacements at the interior of the soil
layer are calculated by means of analytic continuation. Interested readers can refer to [95]
for further details.

(a) Layered soil media (b) Assembly of element matrices

Figure 3. Conceptual representation of the stiffness matrix method used for free-field motion.

The derived free-field motions represented in Figure 4a (i.e., displacements, velocity,
and acceleration) are subsequently used to calculate effective input forces for the FEM
simulations, as is represented in Figure 4b. The generated free-field motion files can be
provided in SVL as plain text files with columns specifying displacement, velocity, and
acceleration for each component.

(a) Free-field wave propagation (b) Effective forces applied to the near field

Figure 4. The domain reduction method schematic representation.

The effective input forces Peff vector acting within the layer of elements is

Peff =




Peff
i

Peff
b

Peff
e


 =




0
−MΩ+

be ü0
e − CΩ+

be u̇0
e −KΩ+

be u0
e

MΩ+

eb ü0
b + CΩ+

eb u̇0
b + KΩ+

eb u0
b


 , (4)

where the subscripts i, b, and e denote the regions corresponding to the interior of the
designated domain, the boundary, and the area outside the DRM layer. The matrices
MΩ+

, CΩ+
, and KΩ+

represent the portions of the mass, damping, and stiffness matrices
that are situated off the main diagonal. These matrices are constructed using the data
from the DRM layer positioned between two boundaries denoted as Γb and Γe. Lastly,
u0, u̇0, and ü0 are the free-field displacements, velocity, and acceleration of the back-
ground layered soil. These forces are computed internally at the element level using
the Element::ComputeDomainReductionForces() member function, which returns the
Peff ∈ RNe

dof force vector to be assembled.
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The propagation of plane waves (P, SV, Rayleigh) in a 3D space is readily determined
by recognizing that, at a specific moment in time, the spatial variation remains constant
across a plane that is perpendicular to the direction of propagation. As illustrated in
Figure 5, the displacement fields within any 3D coordinate system (x1, x2, x3) are derived
through a rotation matrix,

u(x1, x2, x3) =




u
v
w


 =




cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1






u1
0
u2


 , (5)

where ϕ is the azimuth angle, u(x1, x2) = (u1, u2) is the free-field motion in 2D, and
u(x1, x2, x3) = (u, v, w) is the free-field motion in 3D, respectively.

Figure 5. Displacement, velocity, and acceleration mapping from 2D to 3D coordinate systems.

2.2.2. Verification

The DRM implementation in SVL is demonstrated, and the solution is verified using
solutions presented in [55,97,98].

A 3D soil domain with a horizontal length of 120× 120 m2 and a vertical length of
80 m is considered. Within this domain, isotropic linear elastic materials, characterized by
a density of ρs = 2000 kg/m3 and Poisson’s ratio of νs = 0.25, are employed. The DRM is
used to transmit the ground motion generated by an in-plane SV wave propagating within
the near field at an angle of 15◦ degrees. The incident ground motion is defined using
a Ricker function similar to Equation (15). This numerical example considers a central
frequency of f0 = 2.0 Hz and shear wave velocity of Vs = 120 m/s. Three control points
at coordinates P1 = (−40,−40, 0), P2 = (40, 40,−60) and P3 = (40, 40, 0) are selected for
the purpose of comparing the time series with results presented in [55]. The model has
87,778 nodes, 25,635 restrains, and 100,335 elements divided into 73,728 3D linearized eight-
node hexahedron elements (i.e., lin3DHexa8) used to discretized the linear and elastic soil
domain, and 25,635 1D two-node zero-length elements (i.e., ZeroLength1D) placed along
the boundary to absorb possible scatter waves. The simulation time is set to be Tsim = 4.0 s,
with a temporal discretization of ∆t = 0.004 s, leading to a number of nt = 1001 time steps.
The simulation is performed using three processors, and an execution time of 68 min is
required to complete the simulation on a Lenovo laptop equipped with an Intel(R) Core(TM)
i7-4720HQ CPU running at 2.60 GHz and x86_64 architecture.

Figure 6 displays the velocity time series comparison at the three control points.
The results show a perfect agreement with the solution presented in [55,97,98] for each
component. In addition, Figure 7 shows the velocity amplitude field at (a) t = 2.0 s,
(b) t = 2.5 s, and (c) t = 3.0 s. Since the truncated soil domain, in this case, has no
features that can generate scattering waves, the near-field response has to match the
free-field conditions imposed at the DRM elements. This fact demonstrates the proper
implementation of DRM in 3D settings in SVL. The reader should note that the DRM
implementation is correct, since the wave field is fully contained in the DRM box. A
wrong implementation will generate scatter waves outside the DRM layer of elements
represented by the blue volume in Figure 7. In this regard, the lysmer dashpots will not be
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enough to absorb the scattered field efficiently due to the proximity of the wave field to the
boundaries.

Figure 6. Timeseries of the 3D velocity vector field components u, v, and w computed using the
DRM at the control points P1, P2, and P3 for an inclined wave at an incident angle of 15◦ degrees in a
homogeneous half-space.

(a) (b) (c)

Figure 7. Snapshots of the 3D velocity amplitude field computed at time steps (a) t = 2.0 s,
(b) t = 2.5 s, and (c) t = 3.0 s using the DRM load modeling for an inclined wave at an incident angle
of 15◦ degrees in a homogeneous half-space. The red and blue colors represent a velocity magnitude
of 1 m/s and 0 m/s, respectively.

2.3. Absorbing Boundary Conditions

Seismo-VLAB offers perfectly matched layer (PML) functionality for simulating semi-
infinite half-spaces in both 2D and 3D simulations. Currently, the software includes
implementations of various PML elements, such as 2D linearized four-node quadrilateral
(PML2DQuad4), 2D linearized eight-node quadrilateral (PML2DQuad8), 3D linearized eight-
node hexahedron (PML3DHexa8), and 3D linearized twenty-node hexahedron (PML3DHexa20).
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These implementations are based on fully mixed symmetric formulations presented in [24,25,99]
for plane-strain (2D) and 3D settings.

2.3.1. Implementation

The key idea in PML is the use of complex coordinate stretching. The complex
coordinate stretching function in direction s, which can be x, y, or z directions in the
Cartesian coordinate system, is defined as

εs(s, ω) = αs(s) +
βs(s)
iω

, (6)

where i is the imaginary number, and αs and βs are scaling and attenuation functions,
defined as

αs(s) =





1 0 ≤ s ≤ s0

1 + (m+1)b
2 Lpml

log 1
R

[
(s−s0)ns

Lpml

]m
s0 ≤ s

, (7)

βs(s) =





0 0 ≤ s ≤ s0
(m+1)Vref

2 Lpml
log 1

R

[
(s−s0)ns

Lpml

]m
s0 ≤ s

, (8)

where m is the user-defined degree of the stretching polynomial; ns is the s-th component of
the outward normal to the interface between the PML region and the regular (soil) domain
(Figure 8); Lpml is the thickness of the PML region in the s direction (Figure 8); s0 is the s-th
component of the reference point where stretching is defined; b is a characteristic length, set
to Lpml/10; Vref is a reference velocity, set to be the P wave velocity; and R is a user-defined
reflection coefficient.

(a) 2D PML domain (b) 3D PML domain
Figure 8. Illustration of PML domain attached to the soil domain. The soil domain is represented in
yellow, whereas the PML domain is represented in grey.

The weak form of the PML formulation presented in [24,99] yields a second- and a
third-order ODE, respectively, for the governing equation of motion, with a mixed free
variable U consisting of both displacement and stress fields. The second-order ODE arising
in the plane-strain PML problems can be solved seamlessly using conventional numerical
time integration methods such as the Newmark-beta method. For solving the third-order
ODE of the 3D PML problems, i.e.,

M
...
Un+1 + C Ün+1 + K U̇n+1 + G Un+1 = Ṙ(i)

n+1 . (9)

Fathi et al. [99] suggested using the extended Newmark-beta method. This requires
introducing an internal state variable U =

∫
Udt to reduce the order of the third-order
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ODE, such that M Ün+1 + C U̇n+1 + K Un+1 + G Un+1 = R(i)
n+1, and approximating the

mixed response field and their derivatives as follows:

Un+1 = Un + ∆t Un +
∆t2

2
U̇n +

(
1
6
− β

)
∆t3 Ün + β∆t3 Ün+1 , (10)

Un+1 = Un + ∆t U̇n +

(
1
2
− γ

)
∆t2 Ün + γ∆t2 Ün+1 , (11)

U̇n+1 = U̇n + (1− α)∆t Ün + α∆t Ün+1 . (12)

This time integration scheme has been implemented in SVL for (β, γ, α) = (1/12 , 1/4 , 1/2),
which results in solving Keff ∆U = Feff with

Keff = K(i−1)
n+1 +

4
∆t2 M +

2
∆t

C +
∆t
3

G , (13)

Feff = R(i)
n+1 − F(i−1)

n+1 + M
(

4
∆t

U̇n + Ün

)
+ CU̇n −G

(
Un + ∆t Un +

∆t2

6
U̇n

)
. (14)

The matrix G is the PML history matrix, R(i)
n+1 is the external force vector, F(i−1)

n+1 is the
internal force vector, and i is the nonlinear iteration step. The structures and explicit forms
of the PML matrices are omitted, but they can be found in [24,25,99].

2.3.2. Verification

The PML implementation in SVL is demonstrated, and the solution is verified using
enlarged domain solutions.

A 3D soil domain with a horizontal length of 150× 150 m2 and vertical length of
100 m is considered. Within this domain, isotropic linear elastic materials for the soil,
characterized by a density of ρs = 2000 kg/m3 and Poisson’s ratio of νs = 0.25, are
considered. In addition, a PML zone of 20 m thickness is placed next to the truncated
domain. A downward point load F(t), applied at the center of the free surface, is prescribed
as an effective force Ricker function, proportional to Equation (15):

F(t) =
(

1− 2 (π f0)
2(t− t0)

2
)

exp
(
−(π f0)

2(t− t0)
2
)

. (15)

In this numerical example, a central frequency of f0 = 2.0 Hz and a soil shear wave
velocity of Vs = 200 m/s are employed. The soil domain is now discretized using 13,500
3D linearized eight-node hexahedron (i.e., lin3DHexa8) elements, and the PML layer of
25 m is discretized using 18,500 3D linearized eight-node hexahedron perfectly matched
layer (i.e., PML3DHexa8) elements. Three control points at coordinates P1 = (0, 0,−40),
P2 = (30, 30,−40), and P3 = (30, 30, 0) are defined to compare the time series against
results of an enlarged model with fixed boundaries. The simulation is performed using
three processors, and the execution time of 16 min is reported using a Lenovo laptop using
an Intel(R) Core(TM) i7-4720HQ CPU 2.60 GHz with eight cores and x86_64 architecture.

Figure 9 shows the velocity time series comparison at the three control points P1,
P2, and P3, respectively. The results show a perfect agreement with the enlarged model
solution. In addition, in Figure 10, the velocity field amplitude for the truncated soil
domain at (a) t = 1.00 s, (b) t = 1.20 s, and (c) t = 1.75 s are displayed, convincingly
showing that there are no reflections generated from the boundary and demonstrating the
proper implementation of PML in 3D settings in SVL. The reader should note that the PML
implementation is correct since the wave field is fully absorbed in the boundaries. A wrong
implementation will generate waves that bounce back from the boundaries, noticeable after
2 s in the time series provided.
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Figure 9. Time series of the 3D velocity vector field components u, v, and w computed using the
truncated model using PML at the control points P1, P2, and P3 in a homogeneous half-space.

(a) (b) (c)

Figure 10. A snapshot of the velocity amplitude field in 3D under vertical loading at the surface
of the domain at time steps (a) t = 1.00 s, (b) t = 1.20 s, and (c) t = 1.75 s. The red and blue colors
represent a velocity magnitude of 0.05 m/s and 0 m/s, respectively.

3. Evaluation of the SSI Effects on a 3D Building Subjected to a Seismic Excitation for
Different Attack Angles

In this application case, the model’s dimension and the domain element’s distribution
are depicted in Figure 11. Because the model discretization rendered a large number of
elements, a parallel execution for which the same domain’s partition is represented in
Figure 2 on the left is considered. For simplicity, and due to the small magnitude of the
seismic excitation considered in this analysis, a linearized formulation for the elements and
material is assumed. The main goal of this application case is threefold: (a) to showcase
some of the relevant features encountered in SSI, (b) to verify that the coupled DRM–
PML technique is necessary for accurately solving SSI problems, and (c) to demonstrate
SVL’s capacity to model real-world earthquake responses in structural engineering due to
directionality effects.
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(a) Finite element model’s dimensions (m) (b) Finite element domain distribution

Figure 11. Finite element model considered for the evaluation of the SSI effects on a 3D building
subjected to a sv seismic excitation. The purple, orange, red, and green volumes represent the
PML, soil, foundation, and building domains, respectively. The green, blue, and red line interfaces
represent areas where the PML-Soil constraints, Foundation-Soil constraints, and PML restraints are
applied, respectively.

The soil domain is a square prism with horizontal lengths of 100 × 100 m2 and
vertical lengths of 90 m. Standard 3D linearized eight-node hexahedron elements (i.e.,
lin3DHexa8) are employed to discretize the domain. Linear elastic material with proper-
ties of ρs = 2000 kg/m3, νs = 0.30, and Vs = 150 m/s are considered to describe the soil
behavior. A PML zone discretized using a perfectly matched layer of eight-node hexa-
hedron elements (i.e., PML3DHexa8) of 25 m thickness is placed next to the boundaries to
emulate the half-space condition. On the other hand, the reinforced concrete main tower
(superstructure) has sixteen floors with a total height of 53.2 m. The basement (substruc-
ture) has three floors designed for parking and is buried −9.72 m below the ground level.
The substructure surface area is approximately 2100 m2, while the superstructure surface
area is approximately 750 m2. A core of walls is provided around the elevator to control
the horizontal deformations. The reinforced concrete elasticity modulus varies between
20–26 GPa depending on the element, with a density of ρc = 2500 kg/m3 and Poisson’s
ratio of νc = 0.20. Slabs in the main tower (i.e., from floors 1 through 16) are considered
to behave as a rigid diaphragm. The building model is discretized using 3D linearized
two-node beam elements (i.e., lin3DFrame2) for beams and columns, and 3D linearized
four-node shell elements (i.e., lin3DShell4) for walls and slabs. As solid elements (i.e., soil)
and structural elements (i.e., beams, columns, and shells) have different numbers of degrees
of freedom per node, it becomes necessary to establish an indirect coupling between them.
To ensure a clean and numerically stable approach, kinematic constraints following the
recommendations of [3,100,101] at the contact interface, as illustrated in the blue interface
in Figure 11b, are used. In this method, the connections are established by linking the
nodes of frame and shell elements with nodes of solid elements solely for translational
degrees of freedom (three for each node). Meanwhile, the rotational degrees of freedom
(three for each) from beam, column, and shell elements are left unconnected. This sort
of connection imposes identical displacements on the soil nodes at the soil–foundation
interface; however, some localized deformations in the surrounding soil may be induced
using this approach. Therefore, columns at the bottom, as well as the foundation elements,
are not in direct contact with the soil (see, Figure 11a interface between the red and orange
domain). The same coupling between soil and PML elements is achieved through kinematic
constraints on the displacement degree of freedom (see, Figure 11b represented by the
green interface). Finally, the rigid diaphragm behavior of the floors is imposed by adding
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an auxiliary node with three degrees of freedom (i.e., diaphragm node) and then imposing
kinematic constraints on all nodes at the floor level.

The domain reduction method (DRM, represented in Figure 11b by the white layer of
soil elements) is used in order to transmit an SV wave ground motion. The input signal is
propagated upwards at different angles with respect to the horizontal x-axis. In particular,
the angles α = 0◦, 30◦, 60◦, and 90◦ degrees are considered. The incident ground motion
velocity u̇g(t) is a Ricker pulse, expressed as

u̇g(t) = u̇P

(
1− 2γ(t− t0)

2
)

exp
(
−γ(t− t0)

2
)

, (16)

where u̇P is the characteristic value of the pulse velocity, γ = (πf0)
2, f0 is the characteristic

frequency, and t0 is the time position where the velocity attains its maximum. In all
simulations, a characteristic value of u̇P = 10 cm/s, characteristic frequency of f0 = 2.0 Hz,
and a peak velocity time of t0 = 1.0 s are considered. The characteristic frequency f0 is
selected to generate an input signal with frequency content ranging between 0–7.5 Hz,
which emulates most real earthquake signals. The simulation time is Ts = 10.0 s with a
temporal discretization of ∆t = 0.002 s, leading to a time step number of nt = 5001 for the
entire simulation. All simulations were carried out in a server with an Intel(R) Xeon(R) CPU
E5-2687W v3 3.10 GHz, x86_64 architecture, and 40 CPU cores. Overall, the simulation
took 520 min using five partitions (i.e., using only five processors), and employed 35.9 GB
in evolving 5001 time steps.

In Figure 12, the first three fixed-base mode shapes for the building are represented.
The figure displays the deformed configuration in solid colors, whereas black lines represent
the undeformed configuration. In particular, Figure 12a displays a decoupled translational
mode shape along the y-direction generated at a fundamental frequency of 0.75 s. On the
other hand, Figure 12b shows a coupled translational and rotational mode shape along the
x-direction. Note that the coupling is a result of a concrete reinforcement wall on one side,
which creates a misalignment between the center of mass and the structural stiffness. The
second fixed-base mode shape is obtained at a fundamental frequency of 0.68 s. Finally,
Figure 12c illustrates the third fixed-base mode shape, which is purely torsional, vibrating
at a frequency of 0.47 s.

In Figure 13, both the velocity field amplitude and deformed configuration at time
(a) t = 1.20 s, (b) t = 1.60 s, (c) t = 2.32 s, (d) t = 3.52 s, (e) t = 5.20 s, and (f) t = 8.00 s
for α = 30◦ degrees are displayed. Note how in Figure 13a,b, inside the DRM (near-
field) domain, the SV wave propagating upwards is successfully generated. However,
because of the building, a scattered field is generated outside the DRM (far-field) domain in
Figure 13c–e. In particular, at time t = 3.52 s, the wavefront generated by the building due
to the so-called inertial interaction is shown. Inertial interaction refers to the displacements
and rotations occurring at the foundation level of a structure as a consequence of inertial
forces that emerge during the motion. These displacements and rotations can represent a
significant source of energy dissipation within the soil–structure system. In practice, inertial
interaction induces two distinct effects: (a) it leads to a period elongation because of the
deformable soil underneath, and (b) it alters the damping characteristics of the structure,
primarily due to the contributions from the hysteresis damping of the surrounding soil
and radiation of energy in the form of stress waves transmitted from the foundation to the
soil half-space, known as radiation damping. Similarly, comparing time t = 1.20 and 1.60 s
shows how the foundation barely deforms, averaging the velocity at the interface due to
the so-called kinematic interaction. Kinematic interaction arises due to the presence of rigid
foundation elements within or on the soil, causing movements at the foundation level to
differ from those in the free field. One cause of these deviations is base-slab averaging,
which occurs because the stiffness of the foundation system leads to the averaging of
ground motion variations within the foundation’s footprint, causing deviations from the
free-field motions. Another cause of such deviation is embedment effects, which occur as a
result of a reduction in foundation-level motions due to the attenuation of ground motion
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as depth increases beneath the free surface. This demonstrates that the coupled DRM–PML
system can adequately reproduce the half-space conditions and SSI effects.

(a) T1 = 0.75 s (b) T2 = 0.68 s (c) T3 = 0.47 s

Figure 12. Fixed-base modal shape for the first three modes. The first mode exhibits pure translational
behavior, while the second and third modes display rotational behavior. The 3D visualization depicts
the deformed configuration in solid white (slabs) and grey (walls) colors, whereas black lines represent
the undeformed configuration.

(a) (b) (c)

(d) (e) (f)

Figure 13. Velocity field amplitude and deformed configuration at time (a) t = 1.20 s, (b) t = 1.60 s,
(c) t = 2.32 s, (d) t = 3.52 s, (e) t = 5.20 s, and (f) t = 8.00 s for the problem. The blue color represents
a velocity amplitude of 0.0 m/s, while the red color represents a velocity amplitude of 0.2 m/s.
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3.1. SSI Effects on Site Response

It is of interest to study the influence of the vibration of the building over the sur-
rounding areas. In order to evaluate the radiated wavefields generated by the building, the
perturbed displacement field is calculated as

up(x, t) = uSSI(x, t)− uFFM(x, t) , (17)

where up(x, t), uSSI(x, t), uFFM(x, t) : R3 × R+ → R3 are the perturbation displacement
field, the displacement field due to the presence of the building, and the displacement field
at the far field (or motion on the soil surface in absence of the building), respectively. These
fields are evaluated at coordinate x ∈ R3 on the soil surface at time t ∈ R+. The perturbed
velocity field vp(x, t) as well as the perturbed acceleration field ap(x, t) can be obtained in
a similar manner, as in Equation (17).

The SSI effects on site response are thus defined in the following manner:

(a) The peak ground displacement (PGD : R3 → R+) of the perturbed displacement field,

PGD(x) = max
t∈ [0,Ts]

∥∥up(x, t)
∥∥

2 , (18)

where Ts the simulation time, and ‖·‖2 : R→ R+ is the Euclidean or `2 vector norm.
(b) The pseudo-spectral acceleration (PSA : R3 ×R+ → R+) of the perturbed accelera-

tion field,

PSA(x, ω) = ω2 max
t∈ [0,Ts]

|usdof(x, t)| , (19)

where usdof(x, t) is the displacement response evaluated at x ∈ R3 on the soil surface
for a single-degree-of-freedom system when ap(x, t) is employed as the input, ω is
the angular frequency of a single-degree-of-freedom system, and | · | : R→ R+ is the
absolute value function.

Figure 14 shows the PGD distribution on the soil surface generated by the vibration
of the building for different angles of incidence. This figure shows traces of two important
SSI phenomena. First, an outward-propagating wavefield is qualitatively similar regardless
of incident angle. Second, significant perturbations are generated in the sharp corners
of the foundation layout. In particular, a maximum PGD of 4.5 mm is reached when
α = 30◦, while a minimum PGD of 0.8 mm is reached when α = 90◦. Overall, a minimum
displacement wavefield of magnitude 1 mm is developed by the building in the surround-
ing areas. In essence, the soil compliance allows the rocking of the building to generate
outgoing waves, as if the vibration building was a source force acting on a half-space. The
geometrical complexity of the foundation gives rise to a complex pattern of outgoing waves
that may affect other structures near the building, and that can be captured and scrutinized
using our 3D FE model.

Figure 14. The peak ground displacement (PGD) distribution on the soil surface generated by the
vibration of the building for different angles of incidence. The red solid circle and red solid square
represent the location where the maximum and minimum PSA are attained.
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In a similar fashion, Figure 15 shows the pseudo-spectral acceleration (PSA) for differ-
ent angles of incidence. This output corresponds to the maximum basal shear experienced
by an SDOF system whose fundamental mode has a certain period [102]. In this figure, the
grey lines represent the PSA for all points on the soil surface; the black line is the average
of all cases; and the red and blue lines correspond to the maximum and minimum PSA,
respectively, whose locations are displayed in Figure 14 as a red solid circle and square,
respectively. Maxima of PSA = 5.6 m/s2 when α = 0◦, PSA = 4.5 m/s2 when α = 30◦,
PSA = 6.3 m/s2 when α = 60◦, and PSA = 7.3 m/s2 when α = 90◦ are obtained. Note
that the vibration of the building triggers amplification in hypothetical SDOF between
0.20–0.40 s, which suggests that most of the frequency content of the soil deformation
induced by the scattered wavefield stays in that range. It is worth mentioning that this
range contains periods substantially shorter than that of the building (the fixed-base period
of the building was computed to be 0.75 s using modal analysis, so one would expect the
elongated period due to SSI effects to be larger). The prior numbers can be interpreted in
terms of geometrical considerations: the shape of the foundation defines the perturbance
introduced to the soil at each portion of the interface between the two, the superposition
of the different contributions at one point rendering the unique deformation time history
of each ground surface location and, by extension, a unique spectrum. Such a spectrum
describes a supplementary potential base shake to be felt by surrounding structures. Thus,
the simulation allows one to conclude that the building–soil deformation can induce vi-
brations that may affect structures with very different typologies when compared to the
building acting as a source: the level of amplification due to SSI can increase in seismic
demand on secondary structures in surrounding areas. In particular, structures such as
footbridges, low-rise structures, or social events areas could be potentially affected.

Figure 15. The pseudo-spectral acceleration (PSA) generated by the vibration of the building for
different angles of incidence. The grey lines represent the PSA for all points on the soil surface, the
black line represents its average, and the red and blue lines are the maximum and minimum PSA.

Finally, Figure 16 shows the vertical component for the perturbed velocity field vp(x, t)
considering different angles of incidence. In this figure, the maximum vertical response
magnitude is attained at t∗ = 1.20 s for the four angles. In particular, a maximum value
of vz

p(x, t∗) = −0.063 and 0.050 m/s at the southwest (square marker) and east (circle
marker) foundation sectors when α = 0◦, a maximum value of vz

p(x, t∗) = −0.075 and
0.046 m/s at the southwest and east foundation sectors when α = 30◦, a maximum value
of vz

p(x, t∗) = −0.068 and 0.046 m/s at the southwest and north foundation sectors when
α = 60◦, and a maximum value of vz

p(x, t∗) = −0.042 and 0.051 m/s at the southwest and
north foundation sectors when α = 0◦, are obtained. Note that, once again, these maximum
values are attained at these places as a consequence of the perfect bonding between the
foundation and the soil that is imposed through kinematic constraints.
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Figure 16. The vertical velocity component for the perturbed velocity field vp(x, t) generated by the
vibration of the building for different angles of incidence. The positions where the maximum positive
and negative velocity magnitudes occur are indicated with a red solid circle and square, respectively.

3.2. SSI Effects on Structural Response

Let x ∈ R3 be the coordinate of the center of the rigid diaphragm, H be the inter-storey
height, Ts be the simulation time, and | · | : R→ R+ be the absolute value function. Then,
the following structural response quantities can be defined.

(a) The maximum inter-storey drift ratio (ISD : R3 → R+) along a certain direction at
i-th storey:

ISD(x) = 1
H

max
t∈ [0,Ts]

|ui(x, t)− ui-1(x, t)|, (20)

where ui(x, t) is the displacement component along the said direction at the diaphragm
center of the i-th floor.

(b) The maximum inter-storey rotation (ISR : R3 → R+) at the i-th storey:

ISR(x) = 1
H

max
t∈ [0,Ts]

|θi(x, t)− θi-1(x, t)|, (21)

where θi(x, t) is the rotation along the z-axis of the diaphragm.
(c) The maximum relative storey acceleration (MSA : R3 → R+) at the i-th storey:

MSA(x) = max
t∈ [0,Ts]

∣∣ai(x, t)− ag(x, t)
∣∣, (22)

where ai(x, t) is the acceleration response evaluated at the center of the rigid di-
aphragm, and ag(x, t) is the acceleration evaluated at the ground level.

Figure 17 shows how the drift changes as the angle of incidence of the impinging wave
increases. See how when α = 0 degrees (the shake is aligned with the x-direction), the
maximum drift occurs along the same direction, and, likewise, a similar result happens for
α = 90 degrees and the y-direction. In these two limit scenarios, the drift is concentrated
along one of the two orthogonal directions, which in turn can also be identified with
the main axes of inertia: the x-direction corresponds to the stiffest direction, while the
y-direction corresponds to the least stiff direction. Therefore, it is logical that the maximum
drift, among all the possibilities, corresponds to the y-direction when α = 90 degrees, as it
can be acknowledged immediately by comparing the first and second panels in Figure 17.

The two intermediate cases, α = 30, 60 degrees, display drift along both orthogonal
directions simultaneously, with magnitudes bounded by those of the two limit cases. It
is also worth remarking on how the drift increases from the base to the first floor, then
decreases, and then increases again until it almost reaches the top, with a slight decrease
at the very top. This behavior belongs to the reinforcement of intermediate floors, which
prompts some intermediate floors to move together with less differential deflections among
them. The third panel in Figure 17 shows inter-storey rotation, i.e., the differential torsion
between consecutive floors, going from bottom to top. It can be observed from this output
that the maximum rotations happen in the case of α = 0 degrees, and the minimum occur
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when α = 90 degrees. The building layout explains this behavior: there is a significant
stiffness asymmetry due to a concrete reinforcement wall on one of the flanks that produces
a misalignment between the center of mass of the structure and its main axis of inertia,
which in turn leads to induced torsion as the building bends. However, such asymmetry
is not so acute when considering the orthogonal axis. Hence, the induced torsions are
much weaker and more uniform when loading along the y-direction, so the ISR remains
substantially smaller. The simulations allow us to quantify these numerically in case of
seismic events.

Figure 17. Inter-storey drifts (ISD) along each direction as a function of the angle.

Inter-storey drift and rotation, measuring the differential deformation between con-
secutive floors, are thus directly correlated with the internal forces that develop within
the columns that connect consecutive levels. To account for inertial forces at the different
floors, the maximum storey acceleration (with respect to the ground-level acceleration)
MSA is introduced. This output indicates the sudden jerk that people and equipment
will experience during the seismic event. Therefore, it is an important variable to consider
when it comes to utility design and the comfort and safety of occupants (serviceability
limit states). TheMSA results are represented in Figure 18. Unsurprisingly, the maximum
accelerations are experienced at the top floors, and are aligned again with the direction
of loading in all four cases. Conversely, it is interesting to note how the stiffening of the
intermediate floors also translates into a non-monotonic evolution of the acceleration; this
result suggests that the building deforms predominately following a modal shape that is
more complex than a simple cantilever beam simplified model.

Lastly, the reader may consider that nonlinear materials and large deformation can also
be specified for more accurate analysis in Seismo-VLAB. Introducing nonlinear soil behavior
opens the door to energy dissipation mechanisms that can reduce building vibrations.
However, this can also lead to increased deformation, potentially caused by substantial
displacements and rotations developing at the soil–foundation interface. Additionally, in-
troducing geometric nonlinearity into the structural system, primarily driven by significant
displacements, may trigger effects such as P-delta, plastic hinges within the beam and
column elements, and yield lines within slab elements. The former mechanism introduces
an extra source of dissipation within the structural system. Although incorporating a
nonlinear analysis may capture a more accurate response, the execution time increases
drastically. It is essential to underscore that while these considerations hold significant
relevance in structural engineering, their detailed exploration lies outside the scope of this
particular example. More technical details regarding this illustrative example can be found
in the performance cases H01 provided with the SVL software package.
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Figure 18. Maximum storey acceleration (MSA) along each direction as a function of the angle.

4. Discussion and Conclusions

Seismo-VLAB represents a remarkable advancement in the field of soil–structure in-
teraction (SSI) analysis. Its innovative open-source approach, combining state-of-the-art
techniques, advanced parallel computing capabilities, and user-friendly implementation,
makes it a pioneering tool for engineers and researchers. By addressing critical limitations
in existing software, such as modeling wave propagation in half-spaces and facilitating
code customization, SVL empowers users to explore complex SSI scenarios with efficiency
and precision. Its versatility and applicability to various SSI problems make it an indis-
pensable resource for the seismic engineering community. SVL not only fills a vital gap,
but also propels the field forward, contributing to the analysis for safer and more resilient
structures in the face of seismic events.

Building upon its innovative open-source approach and versatile capabilities, Seis-
mo-VLAB’s methodology employs state-of-the-art methods for appropriately emulating
truncated half-space. A detailed procedure for the validation of DRM and PML for 3D
settings is described. The PML implementation includes (1) a recent symmetric hybrid
formulation suitable for existing FE codes and (2) a compatible version of DRM for inclined
plane incident P, SV, and Rayleigh waves. The DRM and PML implementation is verified
using a set of verification cases through problems involving vertical and inclined incident
SV waves for inhomogeneous 3D soil. Additionally, a practical application for assessing the
SSI effects on the site and structural response for a real 3D building when a vertical SV wave
of small amplitude is applied. In particular, the latter application case not only showcases
SVL’s current modeling and parallel computing capabilities, but also demonstrates its
capacity to model real-world earthquake responses in structural engineering.

Furthermore, the coupled DRM–PML technique proves to be a key factor for solving
SSI problems. Therefore, the Seismo-VLAB project will be disseminated for broader use,
since the already-implemented features will allow enthusiastic developers and users to
explore other research fields. Some fields where SVL can be useful are (1) the modeling of
spatial variability of soil properties for uncertainty quantification in linear and nonlinear
models of engineering structures, (2) inverse problems for parameter estimation as well as
reliability-based performance analysis in nonlinear finite element models of engineering
structures, and (3) site response analysis for the study of amplification or deamplification
of seismic waves considering topographic and basin effects. SVL has already proved its
suitability to analyze the seismic response of structural systems. The Seismo-VLAB project
can be downloaded at https://github.com/SeismoVLAB/SVL (accessed on 2 May 2023),
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and the documentation is available at http://www.seismovlab.com/ (accessed on 2 May
2023) for more specific details.
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Abstract: Wave propagation or acoustic emission waves caused by impact load can be simulated
using the finite element (FE) method with a refined high-fidelity mesh near the impact location.
This paper presents a method to refine a 3D finite element mesh by increasing the polynomial order
near the impact location. Transition elements are required for such a refinement operation. Three
protocols are defined to implement the transition elements within the low-order FE mesh. Due to the
difficulty of formulating shape functions and verification, there are no transition elements beyond
order two in the current literature for 3D elements. This paper develops a complete set of transition
elements that facilitate the transition from first- to fourth-order Lagrangian elements, which facilitates
mesh refinement following the protocols. The shape functions are computed and verified, and the
interelement compatibility conditions are checked for each element case. The integration quadratures
and shape function derivative matrices are also computed and made readily available for FE users.
Finally, two examples are presented to illustrate the applicability of this method.

Keywords: p-refinement; 3D transition element; fourth-order transition element; Lagrangian; Gauss–
Lobatto quadrature

MSC: 74S05

1. Introduction

Interest in space activities, including satellite launches, space tourism, deep-space
exploration, and space colonization, has increased in recent years. The development of
long-term deep-space habitats is of interest to the engineering community. These structures
will be exposed to harsh environmental loading conditions, including hypervelocity impact
(HVI) caused by meteoroids or debris. The finite element method (FEM) is a widely used
numerical approach for solving partial differential equations (PDEs) in mathematics and
engineering, especially in the field of structural dynamics [1–3]. However, the solutions of
wave propagation problems cannot be effectively replicated through a standard FEM. In the
case of harmonic wave solutions, it is well known that the accuracy of numerical solutions
rapidly degrades as the wave number increases [4,5]. Novel techniques based on higher-
order discontinuous Galerkin methods exist to mitigate this issue [6,7]. In the field of FEM,
there are two methods of reducing error and improving the ability of the basis functions
to represent the variation of the unknown function over the local domain: (1) increasing
the number of the elements, or h-refinement, and (2) increasing the polynomial order, or
p-refinement. H-refinement techniques have been used widely in conjunction with low-
order vector basis functions. However, very fine meshes are necessary to find reasonable
solutions for problems with short waves—so fine that the numerical solution effort may
be prohibitive. The spectral element approach offers a great solution for resolving this
issue [8–12]. In this case, high-order Lagrangian-based finite elements are employed in
conjunction with particular nodal positions and integration algorithms. In comparison
to typical finite element methods, this method has low numerical dispersion and can be
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particularly effective in explicit time integration. While implementing a high-order element
in a lower-order mesh, p-refinement is needed [13]. However, due to the relatively recent
emergence of higher-order hierarchical vector basis functions, p-refinement approaches
have not been widely researched to date [14–16].

The advantage of p-refinement is that it eliminates the time-consuming mesh regener-
ation procedure associated with h-refinement. The process must be adaptable to benefit
fully from either type of refinement technique. Adaptive refinement uses the error estimate
from a numerical solution at a particular level of refinement to forecast which areas of the
computational domain will most require more degrees of freedom. After that, the process
remedies the issue by allocating more degrees within certain zones. Since they enable most
of the equations in the FEM system to stay constant across refinement levels, hierarchical
vector basis functions are virtually always used for adaptive refinement. Conversely, inter-
polatory vector basis functions would necessitate the replacement of all equations in the
regions that are being refined. Furthermore, unique transition elements are needed in an
interpolatory expansion in order to link regions with varying polynomial degrees [14].

In a three-dimensional finite element application, hexahedron transition elements are
extensively used for p-mesh refinement [17]. When implementing a transition element in
a multi-element mesh, the hanging node problem arises. This violates the interelement
compatibility conditions. Hence, several strategies to circumvent the hanging node prob-
lem have been developed. For two-dimensional applications, variable-node elements for
1-irregular/balanced meshes have been constructed by Gupta, while Morton et al. pub-
lished an extension for three dimensions [18]. These elements utilize piecewise linear shape
functions on their boundaries, so two smaller finite elements can be coupled conformally to
a larger transition element [1]. Gordon and co-workers developed a transfinite interpolation
or blending function method [19], where the functions are identical in certain parts but
not over the whole domain [20]. Scholz developed two- and three-dimensional transition
elements with piecewise linear and quadratic shape functions for mesh refinement pur-
poses [21], where 1-irregular meshes can be generated without introducing hanging nodes.
Developing higher-order transition elements is a challenge. Unconventional elements, such
as the xNy-element concept [14,16], are developed by utilizing linear blending functions
and projection operators to tackle this issue. However, there is still the problem of efficient
mesh generation for these transition elements, especially for three-dimensional models, as
this procedure is very cumbersome [22].

Transition elements are also employed in contact problems [23]. Buczkowski [24]
developed 22- and 21-node elements, and Smith et al. [25] developed 14-node hexahedral
isoparametric elements to analyze contact problems by modifying the reference 8- and
20-node hexahedral elements. The modification of the shape functions of the reference
element needs to be carried out by hand and is very laborious for a 3D element. In
addition to lower-order transition elements, there is also a need for higher-order transition
elements, as they offer higher accuracy when calculating Lagrangian solid dynamics. For
instance, the spectral finite element method [9] uses the interpolation function of high-order
Lagrange polynomials to capture high-frequency wave propagation that benefits fields
such as structural health monitoring [10–12,26] and seismology [8]. Employing transition
elements can reduce the degrees of freedom and computation effort for such applications.

A library of transition elements can mitigate these issues. However, creating a library
is very labor-intensive when higher-order elements are considered. The shape functions of
higher-order elements are numerous and lengthy, so it is extremely difficult to modify and
verify them to form a higher-order transition element. In summary, there is no methodology
for formulating arbitrary hexahedron elements and implementing multi-element mesh that
is programmatically available. Hence, there is no transition element beyond order 2 in
the literature.

This paper develops a method to perform p-refinement that involves three protocols.
The implementation of these protocols is based on a library of transition elements. Six 3D
transition elements of an order up to four are developed to act as a library that can facilitate
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the p-refinement procedure. The development procedure utilizes the GUI developed
in [16]. First, the reference element, the Lagrangian [27] or Serendipity [28] element that
represents a transition element closely in terms of element order, is formulated following
methods available in the literature. The formulation includes the nodal coordinates and
the monomial basis functions of the interpolation function. Next, the generated nodal
coordinates and the monomial basis functions are modified to replicate the transition
element. The nodal coordinates and interpolation function consist of the monomial basis
functions that will be used to formulate the shape functions. The modification of the
monomial basis functions is extremely simple compared to the modification of the shape
functions. However, the method for determining the shape functions is very laborious
and can be carried out by hand for one-dimensional and lower-order two-dimensional
elements [29]. For this reason, the computer algorithm was implemented to automate this
task instead [16]. Finally, the element is verified in terms of local support and interelement
compatibility conditions [29].

The remainder of this paper is organized as follows: Section 2 presents the method-
ology for p-refinement and generating element properties, while Section 3 showcases
the implementation and results for the formulated transition elements. The developed
p-refinement method is verified for an FE mesh that contains all six transition elements de-
veloped in this paper through a patch test [30]. Subsequently, this method is implemented
in two 3D FE meshes and, finally, Section 4 concludes this paper with some final remarks.

2. Materials and Methods

In this section, a procedure is developed to perform p-refinement for the given refined
element. First, the protocol to refine a single element is presented. Then the method based
on the protocol to refine all the elements in the mesh is illustrated.

2.1. p-Refinement Procedure

Assume that element ei is refined as order n, and another adjacent element, ej, needs
to be refined so that it can (1) act as a transition element from order n to order n− 1, and
(2) satisfy the interelement boundary conditions. Due to this dependency of element ej
on ei, the elements ei and ej are termed as master and slave elements, respectively. Three
protocols have been developed to refine element ej, shown as a linear eight-node brick
element, with node numbers ranging from 1 to 8 at the local coordinate [2].

Protocol 1: Only one edge has the highest order. Assume element ei shares an edge
with element ej, where the order of the edge is n, as presented in Figure 1. In this case, the
transition element will have order n only at the edge and order n− 1 everywhere else. This
paper defines the edge by nodes 7–8 in local coordinates.
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Protocol 2: Four edges have the highest order, and that forms the face of the element.
If four edges form an interelement surface, the order at the surface will be n and n− 1
everywhere else. A schematic of this case is presented in Figure 2, where the nodes 5–8
define the interelement surface.
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Figure 2. Case 2 schematic. Numbers 1–8 indicates the node number for a 8 node brick element.

Protocol 3: More than four edges have order n. For protocol 3, there will be several
master elements that form an interelement boundary with the element to be refined (ej).
If there are more than four edges, the order will be n throughout the element space. Two
cases with more than four edges at the interface are presented in Figure 3, where the dark
elements are of order n; hence, the order of the element ej will be n.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
 

Figure 3. Case 3 schematic. 

The p-refinement utilizes one transition element for each protocol that follows the 
node number presented above. The formulation of these elements is presented in the next 
subsection. The shared boundary between elements 𝑒௝ and 𝑒௝ does not necessarily match 
the node numbering sequence (7–8 for protocol 1) in local coordinates. Hence, while im-
plementing the transition elements, the node number of element 𝑒௝ needs to be renamed 
to match the transition element with no number. The refinement is followed by the refine-
ment of element 𝑒௝, carried out element by element from the lowest to the highest distance 
from the element centroids with respect to 𝑒௜. The transition of element order decreases 
by one as the refinement continues. For 8-noded elements, the distance follows 

𝑑௜௝ = ቯቆ∑ ሾ𝑥௞ 𝑦௞ 𝑧௞ሿ௞଼ୀଵ 8 ቇ௘೔ − ቆ∑ ሾ𝑥௞ 𝑦௞ 𝑧௞ሿ௞଼ୀଵ 8 ቇ௘ೕቯ (1)

where ሾ𝑥௜ 𝑦௜ 𝑧௜ሿ is the nodal coordinate of node 𝑖 and ‖. ‖ indicates the second norm. 
A 2D overview is presented for a four-element case in Figure 4, where 𝑑௜௝ ൏ 𝑑௜௟ ൏ 𝑑௜௞. 
Hence, the refinement procedure is carried out on element 𝑗 first, then element 𝑙, and 
finally 𝑘. The refinement for the whole mesh involves: 
1. Creating a set of 𝑑௜௝ following Equation (1), and sorting from lowest to the highest; 
2. For each element associated with the sorted 𝑑௜௝, 𝑒௝: 

i. determining all the adjacent elements for 𝑒௝; 
ii. For each adjacent element, obtaining the interelement boundary order; 

iii. If the order of the element boundary > the order of 𝑒௝: 
a. Renaming the node number of 𝑒௝ to match the interelement boundary; 
b. Refining the element following the protocol. 

Figure 3. Case 3 schematic.

The p-refinement utilizes one transition element for each protocol that follows the
node number presented above. The formulation of these elements is presented in the
next subsection. The shared boundary between elements ej and ej does not necessarily
match the node numbering sequence (7–8 for protocol 1) in local coordinates. Hence,
while implementing the transition elements, the node number of element ej needs to be
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renamed to match the transition element with no number. The refinement is followed by
the refinement of element ej, carried out element by element from the lowest to the highest
distance from the element centroids with respect to ei. The transition of element order
decreases by one as the refinement continues. For 8-noded elements, the distance follows

dij =

∥∥∥∥∥∥

(
∑8

k=1
[
xk yk zk

]

8

)

ei

−
(

∑8
k=1
[
xk yk zk

]

8

)

ej

∥∥∥∥∥∥
(1)

where
[
xi yi zi

]
is the nodal coordinate of node i and ‖.‖ indicates the second norm. A

2D overview is presented for a four-element case in Figure 4, where dij < dil < dik. Hence,
the refinement procedure is carried out on element j first, then element l, and finally k. The
refinement for the whole mesh involves:

1. Creating a set of dij following Equation (1), and sorting from lowest to the highest;
2. For each element associated with the sorted dij, ej:

i. determining all the adjacent elements for ej;
ii. For each adjacent element, obtaining the interelement boundary order;
iii. If the order of the element boundary > the order of ej:

a. Renaming the node number of ej to match the interelement boundary;
b. Refining the element following the protocol.
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2.2. Formulation of Transition Elements

This section illustrates the procedure to formulate and implement a transition element
within a multi-element FE mesh, as presented in Figure 5. First, the nodal coordinates and
the monomial basis function of the reference element are computed. The reference element
is the element that closely resembles the arbitrary element in terms of element order and
type (Lagrangian or Serendipity).

Next, the nodal coordinates and the monomial basis functions are updated to replicate
the arbitrary element. The shape functions for these two inputs are then determined through
computer implementation [3]. If the shape functions can be determined, verification of the
local support conditions will be carried out. Next, the element can be incorporated into
a multi-element mesh if the interelement compatibility is satisfied between the adjacent
elements of different types. If the element is compatible, the formulation is complete and
ready to be implemented for FE applications.

For this purpose, methodology and the toolbox, ShapeGen3D v.1, developed by [16]
is utilized. Here, the element is subdivided into a 3D grid, and the value of the shape
functions is determined for each point. The results are plotted, with the void where the
value of the shape function is 0. Hence, if a surface does not contain a node i, and there is a
void throughout for the value of shape function i, the element satisfies the local support
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condition for that shape function. The interelement compatibility conditions are also
checked and satisfied following the procedure described in [16]. In addition to the shape
function value, the integration points and weights for the Gauss–Lobatto [27] quadrature
was obtained.
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3. Results
3.1. Transition Elements

Six transition elements that enable the transition from the fourth- to first-order La-
grangian element were formulated. All the elements underwent an interelement compati-
bility check to make sure they could form a multi-element mesh. A second-to-first-order
transition element for case 2 is presented in detail in Figure 6. Figure 6A shows the two
elements assembled to form an interelement boundary. The red hollow diamond represents
the nodes of the second order, whereas the black dots represent the nodes of the transition
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element. The interelement boundary is presented in Figure 6B, which shows that the nodes
coincide and shape function profiles corresponding to the node of these two elements
match each other. As all the shape functions corresponding to the common nodes matched,
the ζ = 1 surface of the transition element was compatible with the second-order element.
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The parameters obtained for each of the elements are

1. Nodal coordinates;
2. Shape functions;
3. Integration quadrature.

The parameters obtained for these transition elements are lengthy and difficult to
describe in a paper. Hence, only the results for the transition element presented in Figure 6
are detailed in Appendix A. Tables A1–A3 present the nodal coordinates, shape functions,
and integration quadrature, respectively. The coordinates are presented in terms of (x, y, z),
which is equivalent to the (ξ, η, ζ) coordinate system used to define isoparametric elements.
Online data containing all the information on the elements can be found as text files (Link:
https://zenodo.org/records/10015183, accessed on 17 October 2023). This will enable
other users to read this and implement the elements to perform p-refinement following the
approach developed in this paper. The name of each dataset with respect to the element
case is presented in Table 1 in the source file name column along with the corresponding
element schematics presented in Figures 7–10.

Table 1. Element description and corresponding dataset name.

Element Description Figure Number Number of Nodes Source File Name

Fourth-order element Figure 7B 125 Fourth_order.txt
Fourth-to-third-order transition element for case 1 Figure 10A 65 Transition_4to3_Case1.txt
Fourth-to-third-order transition element for case 2 Figure 10B 73 Transition_4to3_Case2.txt
Third-order element Figure 7A 64 Third_order.txt
Third-to-second-order transition element for case 1 Figure 9A 28 Transition_3to2_Case1.txt
Third-to-second-order transition element for case 2 Figure 9B 34 Transition_3to2_Case2.txt
Second-order element Figure 6A 27 Second_order.txt
Second-to-first-order transition element for case 1 Figure 8A 9 Transition_2to1_Case1.txt
Second-to-first-order transition element for case 2 Figure 8B 13 Transition_2to1_Case2.txt
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3.2. Verification

For verification, a specimen of dimension 10 m× 10 m× 5 m along the x, y, and z
axes was modeled and discretized using 256 irregular-shaped linear elements. The element
shapes were chosen to be irregular as the patch test would be performed [31]. The material
property was chosen as concrete with a modulus of elasticity, density, and Poisson’s ratio
of 30 GPa, 3000 kg/m3 and 0.3, respectively [32]. One of the elements marked as red in
Figure 11A was refined to the fourth order, and the methodology developed in this paper
was implemented to transition from the fourth to the first order, as presented in Figure 11B,
which produces no hanging nodes. Next, the boundary conditions were applied to restrict
the rigid body motions by enforcing displacement ux = uy = uz = 0 at the x = 0, y = 0 and
z = 0 surfaces, respectively, where ux, uy and uz show this displacement along the x, y and
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z axes, respectively. The patch test was performed, wherein a unit displacement uz = 1 at
all the nodes of the z = 5 surface was applied, and the static solution was obtained in terms
of displacement. The obtained displacement along the z axis is presented in Figure 12A,
which shows a linear profile along the z axis throughout the specimen. The displacement
uz was plotted along the x = y = 0 line, as shown in Figure 13, which shows a linear
profile that confirms that the model passed the patch test. The obtained stress profile was
also observed as being constant throughout the specimen, as shown in Figure 12B, which
provides additional confidence in this method’s capability to produce an accurate solution.
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3.3. Implementation of 3D FE Meshes

Two examples are presented in this section. First, the model developed for the verifica-
tion purpose was subjected to an impact load. Impact load can be replicated through elastic
contact modeling [33]. For the sake of simplicity, instead of a contact model, a loading of
F = sin(2π10, 000t)e(−100,000t)1010 along the z axis at the central node (T; marked as red in
Figure 14) of the refined element was implemented. Such a loading profile can be observed
during the cavity expansion at a hypervelocity impact event [34] as presented in Figure 15A.
With a timestep [35] of 0.001 mili-s, following the central difference time-stepping algorithm,
the displacement profile was obtained. The displacement profiles along z at two nodes
(Nodes S and D of Figure 14) are presented in Figure 15B. The distance between nodes T
and S is 0.551 m, whereas it is 0.1585 for Node D. It is obvious that, as the distance increases,
the wave attenuates. A 3D profile for both displacement and pressure stress profiles is
presented in Figure 16, which shows the propagation of the wave in a qualitative manner.
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Next, a space habitat model with an outer radius of 2.9 m and an inner radius of
2.5 m is presented. The habitat was discretized into 64 linear elements, as presented in
Figure 17A. Scenarios such as meteorite impact cause wave propagation that requires
high-density mesh at the impact point. Such action requires re-meshing corresponding to
the impact location. Instead of increasing mesh density, higher-order elements offer an
excellent solution for simulation wave propagation [8,11,26]. Hence, one of the elements
(red in Figure 17B of the model) was enriched to order four, and the procedure developed
in this paper was implemented to refine all other elements of the model. The obtained
mesh produced no hanging node and a positive definite stiffness matrix. An impact load
similar to the previous case perpendicular to the central node of the refined element was
implemented. The material property was chosen as aluminum with a modulus of elasticity,
density, and Poisson’s ratio of 68 GPa, 2703 kg/m3 and 0.3, respectively. The results in
terms of radial displacement are presented in Figure 18 for three different distances from
the impact node, showing wave decay as distance increases. The nodes T, D, and S follow
the same definition as Figure 14, with the distance from T to D and S being 0.0668m and
0.3202, respectively. The 3D profile for displacement norm and pressure stress is also
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presented in Figure 19A,B, respectively, to provide an overview of the implementation of
this method.
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4. Conclusions

This paper developed a p-refinement method and a library of six three-dimensional
transition elements with the highest order of four, in order to perform p-refinement that
gradually decreases polynomial order, element by element, from a refined high-order
element. The shape functions and the integration quadratures were computed for each of
these elements. The local support and interelement compatibility conditions were checked
for each of these elements to verify them. The element properties have been made readily
available to FEM users. The p-refinement procedure was tested on irregular mesh, which
showed no hanging nodes and passed the patch test. Such refinement is useful in simulating
structural vibration due to impact loading, which is presented through two numerical
implementations. This development makes local p-refinement possible in 3D finite element
applications. The application of these research findings can be extended to the discontinuous
Galerkin method applied to wave propagation [6,7], and can help provide competitive
results compared to existing methods. Researchers in the field of FEA can benefit by refining
only one element to reduce the degrees of freedom. Re-meshing corresponding to the
h-refinement can also be avoided, saving computational time and resources.
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Appendix A

Table A1. Node coordinates of the 13-node transition element.

Node No. x y z

1 −1 −1 −1
2 1 −1 −1
3 1 1 −1
4 1 −1 −1
5 −1 −1 1
6 1 −1 1
7 1 1 1
8 1 −1 1
9 0 −1 1
10 1 0 1
11 0 1 1
12 −1 0 1
13 0 0 1
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Table A2. Shape functions of the 13-node transition element.

Ni Shape Functions in Terms of (x,y,z)

N1
xy
8 −

y
8 − z

8 − x
8 + xz

8 +
yz
8 −

xyz
8 + 1

8
N2

x
8 −

y
8 − z

8 −
xy
8 − xz

8 +
yz
8 +

xyz
8 + 1

8
N3

x
8 +

y
8 − z

8 +
xy
8 − xz

8 −
yz
8 −

xyz
8 + 1

8
N4

y
8 − x

8 − z
8 −

xy
8 + xz

8 −
yz
8 +

xyz
8 + 1

8
N5

xy
8 −

xy2(z+1)
8 − x2y(z+1)

8 +
xyz
8 +

x2y2(z+1)
8

N6
xy2(z+1)

8 − xy
8 −

x2y(z+1)
8 − xyz

8 +
x2y2(z+1)

8
N7

xy
8 +

xy2(z+1)
8 +

x2y(z+1)
8 +

xyz
8 +

x2y2(z+1)
8

N8
x2y(z+1)

8 − xy2(z+1)
8 − xy

8 −
xyz
8 +

x2y2(z+1)
8

N9
y2(z+1)

4 − y
4 −

yz
4 +

x2y(z+1)
4 − x2y2(z+1)

4
N10 x

4 +
x2(z+1)

4 + xz
4 −

xy2(z+1)
4 − x2y2(z+1)

4
N11

y
4 +

y2(z+1)
4 +

yz
4 −

x2y(z+1)
4 − x2y2(z+1)

4
N12

x2(z+1)
4 − x

4 − xz
4 +

xy2(z+1)
4 − x2y2(z+1)

4
N13 z

2 −
x2(z+1)

2 − y2(z+1)
2 +

x2y2(z+1)
2 + 1

2

Table A3. Integration quadrature of the 13-node transition element.

Integration Point No. x y z Weight

1 −1 −1 −1 0.11111111
2 1 −1 −1 0.11111111
3 1 1 −1 0.11111111
4 −1 1 −1 0.11111111
5 −1 −1 1 0.11111111
6 1 −1 1 0.11111111
7 1 1 1 0.11111111
8 −1 1 1 0.11111111
9 0 −1 −1 0.44444444

10 1 0 −1 0.44444444
11 0 1 −1 0.44444444
12 −1 0 −1 0.44444444
13 0 −1 1 0.44444444
14 1 0 1 0.44444444
15 0 1 1 0.44444444
16 −1 0 1 0.44444444
17 0 0 1 1.77777778
18 0 0 −1 1.77777778
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Abstract: In this paper, a new type of filled doubly re-entrant auxetic lattice structure for application
in damping and energy absorption devices is considered. The structure is modeled to give protection
for machines and mechanisms of intensive impact. The suggested structure is the modified version of
the auxetic one with silicone fillings. The unit of the structure is assumed as a re-entrant hexagon with
four quadrangular absorbers. For the assumed model of unit, the deformation properties and the
Poisson’s ratio were computed. The obtained results were experimentally tested. Specimens of filled
and unfilled structures were investigated under quasi-static compression. The measured results show
that the energy dissipation is more than two times higher for filled structure than for unfilled ones. In
the filled structure, the absorber’s rigidity has the crucial role. If the rigidity is small, the absorber,
inside the unit, continues to deform from rectangle into rhomboid. Otherwise, if the rigidity is high,
units with absorbers form a beam-like structure that buckles and shows high energy absorption effect.
The experimentally obtained results are in good agreement with the theoretical ones.

Keywords: auxetic lattice structure; doubly re-entrant auxetic unit; analytical modelling procedure;
specific energy dissipation; elimination of the impact effect

MSC: 37M10

1. Introduction

Mechanisms and machine parts that work with impact, in addition to the standard
requirements, are subject to requirements for increased strength, wear resistance and
hardness of parts, as well as for impact energy absorption, noise and vibration reduction,
etc. [1,2]. Honeycomb and lattice structures are found to be the best answer to the afore-
mentioned demands [3,4]. The artificial porous periodical structures with light weight [5],
called ‘elastic metastructures’, due to their energy absorption properties [6,7] and noise and
vibration suppression [8], are appropriate to be applied in many industries including the
automotive [9,10], aerospace [11], and military [12] ones, as well as in the sports equipment
industry [13]. The utilized structures are manly produced by 3D printing [14]. To improve
the structure, two main directions are evident: one to improve the structure material, and
the second to reconstruct the geometry of the structure.

Based on the rule for buildings materials about their dependence of properties on ma-
terial combination [15–18], the material combination method is developed for the metastruc-
ture production. Additional materials are mixed into the base material for printing [19,20].
The fiber-reinforced parts have undeniably better mechanical properties, but there remain
the problems of anisotropy, porosity, and delamination, which have a negative impact on
product use.

As an improvement, the combining metastructures are developed, inspired by the
structure of the human tooth [21]. The conventional honeycomb lattice structure is com-
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bined of two materials. The lattices are printed with a hard material along the outside and
inside of their perimeter, while the center of the perimeter is printed with a soft material.
By varying the thickness ratio of the rigid and flexible regions, the mechanical properties of
the structure (energy absorption and damping characteristics) can be tuned [22–25]. A wide
spectrum of lightweight materials is used for filling lattices and other structures, such as
polyurethane foams [26,27], syntactic foams [28], metallic foams [29,30], and agar gel [31].
Prajapati et al. [32,33] have created a 3D-printed hard outer layer specimen filled with
soft polyurethane foam, giving the material significantly improved impact and fracture
properties. Chapkin et al. [34] printed titanium alloy lattice specimens which were filled
with compressible and non-compressible elastomers. Black et al. [31] have filled simple
cubic lattices with agar gel. It was found that comparing to the unfilled control group,
the lattices filled with gel demonstrated a 50% increase in the energy absorbed and a 55%
increase in the displacement to failure. Their work perfectly illustrates that filling is relevant
even in the case of simple geometries and manufacturing technologies.

The previously presented multi-material-based structures achieved more favorable
energy-absorbing and vibration-damping capabilities than the one-material structures.
However, to successfully merge certain properties of multiple materials, proper bonding is
inevitable. Multi-material structures generally may fail at interfaces; the proper interface
bond must be as strong as the strength of the weaker material. Otherwise, the structure
is failed at lower stress, making the combination disadvantageous [35,36]. However, the
main disadvantage of the previous structures is that the vibration and noise suppression is
only for a certain frequency domain [37–40].

An improvement can be created by topologically optimal geometries of different
materials (see [41,42]). In addition, to overcome the problem, the auxetic structures are
introduced [43,44]. Namely, the energy absorption property of this structure is constant
and independent of the ratio of the frequency of the external force and the structure’s eigen-
frequency. The suggested system is also a kind of lattice structure, with the elementary
constitutive units having the negative Poisson’s coefficient. This units are hexagonal.

Recently, the units are rearranged with the aim to improve the mechanical proper-
ties [45]. A novel doubly re-entrant auxetic honeycomb structure was introduced [46].
In this paper, a rearranged doubly re-entrant auxetic structure partially filled with a soft
absorber material is considered. The aim of the research is to obtain the influence of the
coupled combination of the basic structure and filling absorbers on the specific energy
absorption. The investigation is done theoretically and experimentally. The result is that
the structure with optimal energy absorption is obtained and suggested for application in
devices for impact protection in machines and mechanisms.

The paper is divided into 4 sections. After the Introduction, in Section 2, the novel
doubly re-entrant auxetic unit cell with and without filling is theoretically investigated. The
deformation properties and conditions for auxetic behavior are considered. The absorber
displacement and its deformation in the cell due to compression is determined. In addition,
the buckling conditions in the structure are obtained. In Section 3, the fabrication of test
specimens is presented. The force-displacement and absorbed energy-displacement curves
are determined for the unfilled and filled structures with various geometric properties.
An explanation of specific absorption energy based on the experimental and theoretical
consideration is presented. The unfilled and filled specimens with various rigidity property
are compared. The structure with the best energy absorption property is suggested. The
result is proved by applying of the statistical T-method. The paper ends with Conclusions.

2. Models of Filled and Unfilled Structures

In Figure 1, the unfilled (Figure 1a) and partially filled (Figure 1b) doubly re-entrant
honeycomb structures are shown. Namely, in the quadrilateral voids formed by neighbor-
ing unit cells, the filling, which represents the absorber, is settled. The aim of the section is
to compare the deformation properties of the filled and unfilled structures. For this reason,
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independent parameters, which are related to the deformation i.e., shape and dimension
variation, have to be introduced. These parameters are of geometrical type.
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For structure analysis, the unit cell with four absorbers is separated (Figure 2). The
constant unit cell dimensions are the width L, thickness t and out-of-plane thickness b, and
for the absorber the dimensions are the length h and width w. Due to force action, the unit
cell deforms and the inner width L1 and the high H of the unit are varying.

Mathematics 2024, 12, x FOR PEER REVIEW 3 of 18 
 

 

2. Models of Filled and Unfilled Structures 
In Figure 1, the unfilled (Figure 1a) and partially filled (Figure 1b) doubly re-entrant 

honeycomb structures are shown. Namely, in the quadrilateral voids formed by neigh-
boring unit cells, the filling, which represents the absorber, is settled. The aim of the sec-
tion is to compare the deformation properties of the filled and unfilled structures. For this 
reason, independent parameters, which are related to the deformation i.e., shape and di-
mension variation, have to be introduced. These parameters are of geometrical type. 

 
Figure 1. Doubly re-entrant honeycomb structures: (a) unfilled and (b) filled. 

For structure analysis, the unit cell with four absorbers is separated (Figure 2). The 
constant unit cell dimensions are the width L, thickness t and out-of-plane thickness b, 
and for the absorber the dimensions are the length h and width w. Due to force action, the 
unit cell deforms and the inner width L1 and the high H of the unit are varying. 

 
Figure 2. (a) Scheme of the unit cell with four absorbers and (b) loading of the quarter of unit sec-
tion. 

The dimensions variation is assumed as a function of two independent values: the 
angle φ between the horizontal and upper re-entrant edges (called deg) and the distance 
between the breakpoints d (called offset). Then, it is calculated as 

Figure 2. (a) Scheme of the unit cell with four absorbers and (b) loading of the quarter of unit section.

The dimensions variation is assumed as a function of two independent values: the
angle ϕ between the horizontal and upper re-entrant edges (called deg) and the distance
between the breakpoints d (called offset). Then, it is calculated as

H = 2hsinϕ + 2
√

w2 − d2, L1 = L− 2hcosϕ + 2d. (1)

However, the geometric constraint of the unit is

L
2
− hcosϕ ≥ 0. (2)
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In this section, the deformation properties of the filled structure are modelled. Two
types of models are introduced: one with soft filling, and a second where the absorber is an
almost rigid body.

2.1. Auxetic Deformation of the Structure

For far field stress in y-direction, the unit with four absorbers (Figure 2a) is loaded
with the force Fy. Due to symmetry, let us analyze the upper quarter segment of the unit
(Figure 2b). The cross-section Ab and the Young’s modulus of elasticity of material Eb of
the basic unit are constant. The elasticity of absorber material is Ea. For simplicity, it is
assumed that the absorber is rectangular, with constant cross section Aa. In addition, it is
supposed that the absorber dimensions satisfy the relation w << h. The segment of the unit
(Figure 2b) is in equilibrium if the external moment is balanced with the moment of forces
Fy
2 . For computational reasons, in the segment, two opposite virtual forces P in x direction

are introduced. The forces Fy
2 and P cause axial and bending deformation. The total strain

energy for the unit-absorber section is the sum of bending and compression energies and is
as follows:

U = 1
2Eb Ab

∫ L/2
0 P2ds +

(
1

2Eb Ab
+ 1

2Ea Aa
)
∫ h

0 (
Fy
2 sinϕ− Pcosϕ)2ds + 1

2Eb Ab

∫ w
0 (

Fy
2 cosϕ− Psinϕ)2ds+

1
2Eb Ib

∫ L
2

0 (
Fy
2 s)

2
ds + ( 1

2Eb Ib
+ 1

2Ea Ia
)
∫ h

0

(
Fy
2

(
L
2 − scosϕ

)
− Pssinϕ)2ds+ 1

2Eb Ib

∫ h
0 (

Fy
2

(
L
2 − hcosϕ + ssinϕ

)
− P(hsinϕ+

scosϕ))2ds

(3)

where

Aa = wb, Ia =
bw3

12
, Ab = tb, Ib =

tb3

12
. (4)

According to the Castigliano theorem, the displacement u in x direction and v in y
direction are derived as

u =
(

∂U
∂(P) )P=0 = −

(
Fy
2

)((
1

Eb Ab
+ 1

Ea Aa

)
h
2 sin(2ϕ)− w

2Eb Ab
sin(2ϕ) +

(
1

Eb Ib
+ 1

Ea Ia

)
h2sinϕ

(
L
2 − 2h

3 cosϕ
)
+

1
Eb Ib

((
L
2 − hcosϕ

)
hwsinϕ + h w2

2 sin2 ϕ + w2

2

(
L
2 − hcosϕ

)
cosϕ + w3

6 sin(2ϕ)
))

,
(5)

v =

(
∂U

∂(F y/2
)

)

P=0

=
(

Fy
2

)((
1

Eb Ab
+ 1

Ea Aa

)
hsin2 ϕ + w

Eb Ab
cos2 ϕ + 1

3Eb Ib

(
L
2 )

3 +
(

1
Eb Ib

+ 1
Ea Ia

)(
L
2 h
(

L
2 − hcosϕ

)
+

h3

3 cos2 ϕ
)
+ 1

Eb Ib

(
w
(

L
2 − hcosϕ

)2
+ w2

(
L
2 − hcosϕ

)
sinϕ + w3

3 sin2 ϕ

)
.

(6)

Analyzing (5) and (6), it is obtained that for the constraint (2), the displacement (5) in
the x direction is negative, while in y direction (6) it is opposite, i.e., positive.

In the relations (1), the angle ϕ is varying in the interval ϕε[0, ϕ0], where ϕ0 is the
initial deg angle. For ϕ = ϕ0, according to (1), the initial inner width and initial height of
the segment is as follows:

L1/2 =
L
2
− hcosϕ0 + 2d0, H/2 = hsinϕ0 +

√
w2 + d2

0 (7)

where d0 is the initial offset dimension. Comparing the displacements (5) and (6) with the
initial inner width and height (7), the strains in x and y direction are as follows:

εx =
u

L
2 − hcosϕ0 + 2d0

, εy =
v

hsinϕ0 + 2
√

w2 + d2
0

. (8)

Thus, based on (5), (6), and (8), the sign of the Poisson’s ratio ν =
εy
εx

is negative. It
proves that the filled structure is auxetic.
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Analyzing relations (5) and (6), it is obvious that the value of the displacement is
higher for the filled structure than for the unfilled one. The effect of absorber depends on
the elasticity of the filling: The smaller the Young’s modulus of elasticity Ea, the higher the
terms with Ea Aa and Ea Ia.

For ϕ = 0, the displacements (5) and (6) are

u =

(
Fyw

2
w

2Eb Ib

)(
L
2
− h
)

, v =

(
Fy

2
1

Eb Ab

)
w (9)

and the corresponding inner width and high (1) are

L1 = 2
(

L
2
− h
)

, H = 2w (10)

when for the rectangular absorber, d = w sin 0◦ = 0. The segment is deformed into a
simple rectangle with width h in x-direction and height w in y-direction (Figure 3a). In
addition, the units form a beam-like structure along the y-axis (Figure 3b). The length l of
the beam depends on the number n of structure’s units, i.e., l = n (2w). The beam of units
has a periodical variable rigidity EI. For simplification, the rigidity of the absorber EaIa, is
assumed to be the dominant one.
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Deformation of the aforementioned unit and of the beam structure depend on the
axial force Fy and its corresponding moment M.

2.2. Shape Variation of the Absorber Unit and Buckling of the Beam-Like Structure

Due to action of the axial force Fy, deformation of the rectangle shape into rhomboid
one occurs (Figure 3a). Theoretically, the limit deformation is up to one line. In addition,
the moment M, which is the result of the force Fy, causes bending of the beam-like structure
(Figure 3b). The maximal deflection of the beam, caused by moment M, is

xmax =

√
3M(2nw)2

27Ea Ia,
. (11)

The higher the number of units in y-direction and the softer the absorber material Ea,
the higher the deformation.
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Finally, the buckling of the beam-line structure occurs if the force that acts has the
critical value Fcr:

Fcr = π2 Ea Ia

L2
e

(12)

where Le is the effective length of the beam, which depends on the boundary conditions
of the beam. In the suggested model, the beam is pin–pin supported and has the effective
length Le = 2nw. The critical force is

Fcr = π2 Ea Ia

(2nw)2 . (13)

The displacement due to buckling is affected by several factors, including the material
properties, cross-sectional shape, and dimensions, but also the loading conditions. These
factors determine the critical load (13) at which buckling occurs and the resulting displace-
ment. However, the structure, in buckling, becomes unstable, and to model what happens
after buckling requires a nonlinear analysis.

REMARK: The critical force (12) depends on the boundary conditions and the value of
Le. If the beam is fixed–free supported, the critical force is four times smaller than (13), as
Le = 4nw. If the beam is fixed–pin or fixed–fixed supported, the critical force is two times
and even four times higher than (13) as Le = (nw)/

√
2 and Le = (nw), respectively.

3. Experimental Research and Results

The deformation of the filled and unfilled structures was experimentally tested. The
specimens were printed on an Anycubic Photon M3 printer via masked stratigraphy,
which is a form of Masked Stereolithography Apparatus (MSLA) additive manufacturing
technology. The free spaces in the honeycomb were manually filled with silicone. The
overall dimensions of samples are shown in Figure 4. Two-unit cell parameters were varied:
deg ϕ0 and offset d0. Deg had the values of 30, 35 and 40 degrees, while offset was 0.9 mm,
1.5 mm and 2.1 mm. In total, 18 specimens (9 unfilled and 9 filled) were considered.
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The parameter combinations for specimens are shown in the Table 1.

Table 1. Parameter combinations and specimen designations.

d0 0.9 0.9 0.9 1.5 1.5 1.5 2.1 2.1 2.1

ϕ0 30 35 40 30 35 40 30 35 40

Unfilled 0930 0935 0940 1530 1535 1540 2130 2135 2140

Filled 0930SZ 0935SZ 0940SZ 1530SZ 1535SZ 1540SZ 2130SZ 2135SZ 2140SZ
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The printing material was a unique resin mixture with high flexibility and firm prop-
erties. The resin mixture contained 75% Litliq FX60 Flexible rubber-like and 25% Litliq
TH50 Tough resins. The printing parameters were as follows. The layer exposure time
for 0.05 mm layer thickness was 4 s with 2 s wait time (off-time) between layers, enabling
the high viscosity resin evenly to spread in the resin tank. Each specimen was printed
at a 14-degree angle relative to the build platform. Specimens were washed for 3 min in
99.8% purity isopropyl alcohol, and then UV cured for 15 min. Anycubic Wash & Cure
2.0 25W resin curing machine was used. Specimens were filled with Soudal Polysiloxane
based Trade sanitary silicone (silicone). We chose silicone for filling as is found to have
substantially high impact resistance, good dimensional stability, and stability of physical
and mechanical properties (does not end up losing the elasticity and has high load-bearing
properties in compression and tension). Silicone is not chemically reactive and has excellent
adhesion to smooth surfaces.

For the filling procedure, syringes with special tips were designed and manufactured
(Figure 5). The tips have holes of the same form and size as the regions to be filled in speci-
mens, allowing for homogeneous filling. The syringes were filled with silicone and then
de-aerated. Specimens were filled under pressure, ensuring complete and homogeneous
filling. Once the silicone cured, the excess was trimmed.
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Figure 5. Specimen filling device.

Tensile testing of the structure was carried out according to EN ISO 527-2 [47], using
a Zwick Z020 type tensile testing machine (Ulm, Germany) with a measuring limit of
20 kN. The measured stress–strain values are plotted in Figure 6. The stress–strain diagram
shows that the relation is linear only for a small deformation range. The mean modulus of
elasticity for the material is E = 128.3 MPa and the stress is σp = 0.03 MPa. At the other
side, the modulus of elasticity of the Trade sanitary silicone, used for filling, is much lower
(0.4 MPa [32]).
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3.1. Testing of Specimens on Compression: Force-Displacement Curves

Measuring on filled and unfilled specimens with offset d0 = 0.9 mm, d0 = 1.5 mm
and d0 = 2.1 mm, and deg angles ϕ0 = 30◦, 40◦, and 45◦ were done. During research,
each specimen was subjected to compression testing at low speed of 5 mm/min, up to
30 mm/min on a Hegewald & Peschke 40-ton capacity machine.

In Figures 7–9, the force–displacement diagrams are plotted. Analyzing the plots, it is
evident that for small deformations, the force-displacement diagrams are almost linear for
all filled and unfilled specimens. It agrees with the theoretical result (6). The diagram of
the force–displacement relation is nonlinear only for higher values of displacements.
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In Figures 7–9, the force–displacement curves for filled specimens with corresponding
unfilled ones are compared. It is obtained that the curve for filled specimen is above
the corresponding unfilled one. Thus, the diagram for 0930SZ (d0 = 0.9 mm, ϕ0 = 30◦,
filled) is higher than the diagram for 0930 (d0 = 0.9 mm, ϕ0 = 30◦, unfilled) in Figure 6.
This conclusion is valid for all filled specimens in comparison to corresponding unfilled
ones. However, the difference between filled and unfilled samples is smaller for small
displacements and lower offset values.

For specimens with an equal value of the initial offset, the increase in the force versus
displacement curve is higher for a smaller initial deg angle. Thus, for d0 = 0.9 mm, the
force–displacement diagram of 0930SZ with ϕ0 = 30◦ is above 0940SZ with ϕ0 = 40◦ and
0945SZ with ϕ0 = 45◦ (see Figure 7). The same conclusion is evident for specimens with
d0 = 1.5 mm (Figure 8) and d0 = 2.1 mm (Figure 9).

In addition, in the samples with the same deg angle, the force is higher if the offset
value is higher (see Figures 7–9). Comparing the force-displacement diagrams for different
offset values (see in Figures 7–9, offset values 0.9 mm, 1.5 mm, and 2.1 mm) and a constant
deg (for example 30 deg), it is obtained that the force increase is faster, and the maximum
compressive force is higher for higher values of offset than for smaller ones. Thus, the force
increase is the fastest for 2140SZ and the slowest for 0930SZ. For the same displacement
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and deg angle, the force in the sample is higher for offset d0 = 2.1 mm than for 1.5 mm and
0.9 mm. Finally, the best force-deflection property is evident for 2130SZ.

3.2. Absorbed Energy-Displacement Curves

Using the force–displacement expression, the absorbed energy (I) is computed. The ab-
sorbed energy corresponds to the area under the experimentally recorded force–displacement
curve and is given by:

I =

vmax∫

0

F(v)dv (14)

where F(v) is the force distribution function, v is the displacement, and vmax is the maximal
displacement. In Figures 10–12, the absorbed energy–displacement diagrams for filled and
unfilled structures with offset values d0 = 0.9 mm, d0 = 1.5 mm, and d0 = 2.1 mm and deg
angles ϕ0 = 30◦, 40◦, and 45◦ are plotted. Comparing these curves with those in Figures 7–9,
the qualitative similarity is seen. Thus, the comments regarding the force–displacement
curves apply to the absorbed energy–displacement curves, too.
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3.3. Specific Absorbed Energy

As the filled and unfilled specimens differ in weight, for comparison of the energy
absorption, the specific absorbed energy parameter [47] is introduced. Namely, dividing I

with the mass m of the specimen, the specific absorbed energy follows as

Is =
I

m
. (15)

The values of specific absorbed energy for all specimens are compared. The results of
these calculations are presented in Figure 13.
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It is obtained that the Is values for specimens 2130SZ, 2135SZ, 2140SZ, 1540SZ, 1530SZ
and 0940SZ, which are filled with silicon, are higher compared to the corresponding 2130,
2135, 2140, 1540, 1530, and 0940 unfilled ones. However, the addition of the silicon absorbers
results in a lower Is value for 0930SZ, 0935SZ, and 1535SZ than for the corresponding 0930,
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0935, and 1535 unfilled ones. Overall, it can be stated that filling the specimens increased
the absorbed energy amount.

The best results are obtained for specimens with offset values of 2.1 mm for all deg
parameter values. For the filled 2130SZ lattice, the Is is 159 mJ/g and it is evident that the
energy absorption is 2.5 times higher than in the unfilled one. In the filled sample 2135SZ,
the Is value is 137 mJ/g, and is 2.4 times higher compared to the unfilled specimen. The
unfilled lattice 1530 has Is of 60 mJ/g, which is half that of its silicon-filled pair.

Finally, it is seen that the geometric parameters such as the offset value and deg pa-
rameter have influence on the energy absorption. The deg parameter affects the specimen’s
energy absorption capability. The energy absorption capability increases with increasing
the deg value: for 30 degrees, it is 1.7; for 40 degrees, it is 1.2; and for 45 degrees, it is 1.7. In
addition, with increase of the offset value, the average absorbed energy ratio increases, too.
Thus, for offset of 0.9, the average absorbed energy ratio is 1; for 1.5 mm, it is 1.3; and for
2.1 mm, it is 2.4.

Comparing specimens with the same deg parameter but with different offset values, the
following statements can be made. The fastest increase of Is with an increase of the offset
value is for filled specimens with initial deg angle of 30◦. The same tendency of increase
of Is with an increase of offset is observed for filled specimens with deg values of 35 and
40. The increase velocity of Is is greater for the smaller initial deg parameter specimens.
These phenomena may be explained using the following theoretical consideration. Namely,
according to Figure 2b, the length of the filling l f orthogonal to compression force is
approximately

l f ≈ hcosϕ + d. (16)

For constant deg, but higher deformation, i.e., higher offset d, the value of l f is also
higher and gives the larger absorption region of the filling. On the contrary, for the fixed
offset d, the first term of the relation (16) is higher for smaller deg angle. Thus, the smaller
is deg the l f is longer, causing the absorption region and the velocity of absorption of the
filling to increase.

3.4. Explanation of Energy Absorption

Compressed specimens exhibited either buckling or continuous auxetic deformation
behavior. Due to loading, most of the unfilled specimens exhibit in-cell deformation. Defor-
mation is unrestricted and no significant increase of energy absorption until compaction
(around 20 mm deformation) is evident.

At the other side, at small deformations, the filled rectangular segments restrict in-cell
deformation, resulting in buckling. As the deformation progresses, the absorber segments
are progressively loaded and progressively increase the compressive resistance as well as
the amount of the absorbed energy. Overall, the absorber segments, at first, allow great
displacement at low compressive resistance, and then progressively become stiffer.

In Table 2. the experimentally observed deformation behaviors as the function of
geometrical parameters i.e., offset and deg values, for filled and unfilled structures, are
presented. In Table 2, it is shown that in unfilled structures 0930, 0940, 0945, and 1530,
buckling occurs under influence of compression force, while the other unfilled structures,
1540, 1545, 2130, 2140, and 2145, show continuous auxetic deformation. The filled specimens
0930SZ, 0940SZ, 0945SZ, 1530SZ, 1540SZ, 1545SZ, and 2130SZ buckle during compression,
while the 2140SZ and 2145SZ specimens exhibit continuous auxetic deformation.

To explain the effect of filling on deformation properties of the specimens, let us
consider the two of them: 1540 and 1540SZ (Figure 14). Comparing the compression
behavior of 1540 and 1540SZ, it is obvious that the unfilled sample exhibits continual
auxetic deformation while the filled one exhibits buckling.
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Table 2. The deformation behavior of specimens.

Deformation Behavior—In Function of Geometrical Parameters and Fill Status

d0 (mm) 0.9 0.9 0.9 1.5 1.5 1.5 2.1 2.1 2.1

ϕ0 (◦) 30 40 45 30 40 45 30 40 45

Unfilled Specimens

Deformation
behavior Buckling Buckling Buckling Buckling Cont. aux Cont. aux Cont. aux Cont. aux Cont. aux

Filled Specimens

Deformation
behavior Buckling Buckling Buckling Buckling Buckling Buckling Buckling Cont. aux Cont. aux
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Figure 14. Comparison of deformation process of (a) unfilled 1540 and (b) filled 1540SZ samples
(d0 = 1.5 mm; ϕ0 = 40◦).

During compression, the 1540 specimen deforms—the voids are compacted and the
edges come into contact with each other and basically eliminate the quadrangular segment
(Figure 14a). During compression, the unfilled specimen 1540 deforms in an unrestricted
manner, and no significant increase in absorbed energy for the specimen is evident.

On the other hand, in the filled sample 1540SZ (Figure 14b), the absorber segments are
progressively loaded. First, the absorber shape variation occurs: The rectangle becomes
a rhomboid. However, due to compressive resistance, the displacement of absorbers as
rigid bodies occurs. The specimen become stiffer and, consequently, the deformation in the
regions of absorbers is impossible. When the force reaches the critical value, the buckling of
the specimen occurs (see Figure 14). The same result was previously proved mathematically
in Section 2.

Namely, the compression force in the unfilled sample causes extensive deformation.
The absorbed energy is used for the deformation of the auxetic structure according to
expression (8). In the filled sample, the external energy is partly used for the motion of the
units and partly applied for the deformation of structure. The rectangle units change their
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forms into rhomboids, and for the critical value of the force, the buckling of the beam-like
structure occurs.

3.5. Statistical Indication of Significance of Deg and Offset Parameters

In this section, the main effect plots are shown for determination of the significance of
parameters of structure on the force, specific force, absorbed energy, and specific absorbed
energy. In Figure 15, the measured values as a function of the geometric parameters deg
and offset for the displacement interval up to 30 mm are plotted.
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It is obtained that there is a significantly increase of compression force and specific
compression force in filled structure when the offset parameter is increased (Figure 15a,b).
The deg parameter has no significant effect on these properties. Filling has a similar effect
on absorbed and specific absorbed energy (Figure 15c,d). Increasing the offset parameter
leads to a large increase in absorbed and specific absorbed energy, while increasing the
deg parameters lead to a decrease. In case of the unfilled specimens, geometric parameters
have considerably less effect on the measured physical properties; they only affect the
deformation behavior, i.e., the auxeticity.

Based on the aforementioned analysis, it is evident that the energy absorption capabil-
ity varies significantly with changes in geometry and rigidity, indicating a need for precise
control over these factors. The accuracy of controlling the geometry and rigidity of the
proposed design is evaluated with the adequate printing of specimen. Namely, specimen
accuracy is ensured by the applied additive manufacturing technology (MSLA) and the
3D printer itself, which has a 40-micron resolution. The mentioned print resolution gives
a high accuracy in geometry and does not allow deviation. On the other hand, the base
material is a unique resin mixture with constant rigidity. The control of rigidity of specimen
is also connected with the printing parameters and the post-process ones.
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4. Conclusions

In this paper, the novel doubly re-entrant auxetic honeycomb structure partially filled
with a soft absorbed material is considered. For experimental reasons, specimens based on
the novel doubly re-entrant auxetic unit cell were additively manufactured by 3D printing
and filled with silicon. The specimens were tested under quasi-static compression. Based
on our investigation, the following conclusions can be drawn:

1. Specimens exhibit two significantly different deformation behaviors: buckling and
continuous auxetic (preferred). Filling has a negative effect on the deformation be-
havior: During deformation, the silicone filled voids limit the in-cell deformation (for
d0 = 0.9–1.5 mm) and this results in specimen buckling. However, for higher offset
values (d0 = 2.1 mm), compaction occurs more even throughout the geometry; thus,
buckling will not occur even with filled structure.

2. Owing to the silicon filling, a new structure applicable for energy dissipation is ob-
tained. The coupled combination aims to significantly improve the energy absorption
capacity and to achieve a deformation-induced hardening characteristic. Compared to
the unfilled control group, it was found that the filled structure demonstrates an in-
crease in energy absorption. Silicone filled specimens can absorb up to 2.5 times more
energy. The energy absorption depends on the geometry and rigidity of the structure.

3. The filled structure increases the rigidity of the specimens with the increase in the
offset value. The absorbed energy ratio between filled and unfilled structures increases
with the increase in the offset value. Thus, for offset of 0.9, the average absorbed energy
ratio is 1; for 1.5 mm, it is 1.3; and for 2.1 mm, it is 2.4.

4. The deg parameter, used to characterize the geometrical modification, effects the
specimen’s energy absorption capability. The energy absorption capability decreases
with a decreasing deg value. The ratio of energy absorption of filled to unfilled
specimens varies with the angle value: for 30 degrees, it is 1.7; for 40 degrees, it is 1.2;
and for 45 degrees, it is 1.7.

5. Based on the research, it is concluded that the filled specimen 2130SZ has the best en-
ergy absorption property. The complex behavioral mechanism of the 2130SZ specimen
is very beneficial for impact protection. At the beginning of the impact process, the
structure absorbs the energy with great deformation and slows down the displacement.
After that, the impact energy is intensively absorbed. By achieving a deformation-
induced hardening characteristic, the collision energy can be sufficiently absorbed. It
makes the structure beneficially applicable for the protection against impact. However,
certain applications may require easier compressibility and smaller energy absorption.
Then, the specimens may have other properties that can be considered as optimal for
that specific application.

6. Finally, the aforementioned researched filled structure is recommended to be applied
in energy absorbing and damping devices in machines and mechanisms.
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Nomenclature

Aa, Ab [mm2] Cross section of absorber and of basic unit, respectively
b, t [mm] Thickness and width of the unit cell structure
d [mm] Offset value of the until cell
Ea, Eb [MPa] Modulus of elasticity of absorber and basic unit, respectively
F(x) [−] Force–displacement function
Fcr [N] Critical buckling force
Fy [N] Force in y direction
H, L, L1 [mm] Height, width, and inner width of the unit cell, respectively
h, w [mm] Height and width of the absorber segment, respectively
Ia, Ib [mm4] Moment of inertia of the absorber and basic unit
I [mJ] Absorbed energy
Is [mJ/g] Specific absorbed energy
l [mm] Total heigh of the beam-line series of absorbers
m [g] Mass of a specimen
M [Nm] Moment between unit cells
P [N] Virtual force
U [J] Total strain energy
u, v [mm] Displacement in x and y direction
xmax, ymax [mm] Maximal deflection in x and y direction
εx, εy [−] Average strain in x and y direction, respectively
ν [−] Effective Poisson’s ratio of the unit cell
σx, σy [MPa] Far field stress in the x and y direction
ϕ [◦] deg angle value of the unit cell
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Abstract: In a gas–water interaction problem, the nonlinear relationship between shock wave velocity
is introduced into a Hugoniot curve, and a Mie–Grüneisen Equation of state (EOS) is established
by setting the Hugoiot curve as the reference state. Unlike other simple EOS based on the thermo-
dynamics laws of gas (such as the Tait EOS), the Mie–Grüneisen EOS uses reference states to cover
an adiabatic impact relationship and considers the thermodynamics law separately. However, the
expression of the EOS becomes complex, and it is not adaptive to many methods. A multicomponent
Mie–Grüneisen mixture model is employed in this study to conquer the difficulty of the complex
form of an EOS. In this model, some coefficients in the Mie–Grüneisen EOS are regarded as variables
and solved using newly constructed equations. The performance of the Mie–Grüneisen mixture
model in the gas–water problem is tested by low-compression cases and high-compression cases.
According to these two tests, it is found that the numerical solutions of the shock wave under the
Mie–Grüneisen EOS agrees with empirical data. When compared to other simple-form EOSs, it is
seen that the Mie–Grüneisen EOS has slight advantages in the low-compression case, but it plays
an important role in the high-compression case. The comparison results show that the solution of
the simple-form EOS clearly disagrees with the empirical data. A further study shows that the gap
between the Mie–Grüneisen EOS and other simple-form EOSs becomes larger as the initial pressure
and particle velocity increase. The impact effects on the pressure, density and particle velocity are
studied. Moreover, the gas–water interaction in a spherical coordinate plane and a two-dimensional
coordinate is a significant part of our work.

Keywords: gas–water flow; shock wave; Riemann problem; Mie–Grüneisen mixture model; equation
of state (EOS)

MSC: 37M10

1. Introduction

The behavior of shock wave in gas–water flow is an interest of researchers of many
fields, such as underwater explosion [1], bubble motion [2], liquid jets, cavitation [3], etc.
As the shock wave occurs via an interaction of compressible flow [4], the process of this
interaction is always studied using an Euler system. This gas–water problem becomes a
so-called “Riemann problem” [5] due to its discontinuous solution. In calculating Riemann
problems, the accuracy of the shock wave depends on the numerical method and the
equation of state (EOS) [6]. The EOS plays an irreplaceable role in determining the property
of materials in an Euler system.

For a gas–water Riemann problem, an ideal gas EOS, which is widely used in the
modeling of various gaseous substances, is employed here. Otherwise, there are a number

Mathematics 2024, 12, 3268. https://doi.org/10.3390/math12203268 https://www.mdpi.com/journal/mathematics111



Mathematics 2024, 12, 3268

of different forms of EOSs for water. In the early stage, the EOS of water is expressed in a
simple form. Tait EOS [7] is such a typical EOS with brief expression. It has a similar form
as an ideal gas EOS and brings convenience to numerical calculation. Another popular
EOS for water is stiffened gas EOS [8], which is also written in a simple function. This
EOS can be easily coupled with many numerical methods in gas–water interaction, even in
recent works [9–13]. The simple forms of an EOS are preferred by researchers because it is
much easier to establish Riemann solvers with such an EOS. Nevertheless, some material
properties are always ignored by these simple-form EOSs. A modified EOS, named the
NASG (Noble Abel Stiffened Gas) EOS [14], is derived from a traditional stiffened gas EOS.
The NASG EOS takes temperature into account and is used to describe the thermodynamic
properties of water in a specific temperature range. The shock wave problem is based on
a set of conservative laws about shock wave parameters [6], wherein the temperature is
not a necessary parameter. These conservative laws in terms of shock wave parameters
are called the “Hugoniot relationship” [15]. But this relationship is not taken seriously
by many EOSs, such as stiffened gas EOS. In addition, the Hugoniot relationship needs
to couple with another relationship between shock wave velocity and post-shock particle
velocity, whereby the relationship between the two velocities is obtained with experiments.
Several decades ago, the LASL (Los Alamos Scientific Laboratory) [16] accumulated a
large amount of experimental data under impact and provided particular curves showing
the the relationship between shock wave velocity and post-shock particle velocity. This
relationship of shock wave and particle velocities is taken as a linear relationship by
Miller [17] and introduced into the Mie–Grüneisen EOS. The Mie–Grüneisen EOS can set
different reference states to adapt to different material properties [18], and is regarded as a
type of general-form EOS, especially for solid and liquid materials. For the Mie–Grüneisen
EOS based on the Hugoniot curves, Kerley [19] discussed the validity of the linearity. In
this discussion, it is concluded that the expression of the Mie–Grüneisen EOS can be used
in a wide variety of materials but it is not absolutely correct.

Water is a common medium, and many researchers study its behavior under impact.
Nakayama [20] carried out a shock wave experiment with the help of a gas gun. In this
experiment, a series of shock waves parameters are recorded, and the shock wave velocity
is defined as a linear function of post-shock particle velocity. However, the ultimate
pressure in this experiment is only a little more than 1 Gpa, the effectivity of this linear
function under higher pressure is still unknown. LLNL (Lawrence Livermore National
Laboratory) [21] provides another representative relationship between shock waves and
post-shock particle velocities. This relationship is based on a detonation experiment in
water, and a new EOS of water is deduced with the help of this relationship. The LLNL
relationship of shock waves and post-shock particle velocities is written in a nonlinear
form. However, when it is introduced into the Mie–Grüneisen EOS, the EOS becomes so
complex that it is replaced by the stiffened gas EOS [22], even in the latest literature [23].
On the other hand, the EOS for gas also needs to be seriously considered in terms of its
applications [24].

In the numerical calculation of the gas–water Riemann problem, it is very compli-
cated to establish a non-oscillation solver for the Mie–Grüneisen EOS due to its complex
expression of reference states. As the interface is located between the gas and water, its
discontinuity property makes it difficult for researchers to provide an analytic solution
for the gas and water [25]. Under this situation, the Mie–Grüneisen mixture model [18]
is adaptive. It is considered a whole mixture, and the relative parameters for each phase
are considered as a particular parameter of mixture. In the fluid mixture, the interface
is identified by a color function, and other parameters are converted to a weighted sum
of each fluid component [26]. Comparing with the popular five-equation model by Al-
laire [27], it is not necessary to consider both the mass fraction and volume fraction in
the calculation. Unlike Saurel and Abgrall’s multiphase model [28], the conservative laws
for each phase do not need to be considered separately. Moreover, it can be well coupled
with numerical techniques such as interface tracking [29], grid mapping [30] or some other
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limiters [31]. In the previous works, the Mie–Grüneisen mixture model is rarely applied in
the study of shock waves. Many research works about shock waves are carried out with the
help of commercial software. In this case, a supplement of numerical study becomes very
significant. Moreover, the Mie–Grüneisen mixture model can help us to further investigate
the performance of different EOSs.

This study seeks an efficient and effective way to simulate the gas-water shock wave
problem. When water suffers from outside impact, the dynamic property can be expressed
by a nonlinear relationship between the shock wave and particle velocities. Based on the
nonlinear relationship, a complex but significant Mie–Grüneisen EOS is derived and used in
the numerical calculation of the shock wave problem. The Mie–Grüneisen mixture model is
employed here to adapt to such a gas-water two-phase problem. The numerical results are
compared with other simple-form EOSs and the effect of the Mie–Grüneisen EOS is given
special attention. Afterwards, the performance differences between the Mie–Grüneisen
EOS and other EOSs are investigated further. Moreover, the Mie–Grüneisen physical model
and numerical model are extended to spherical coordinates, as well as to the 2D problem.
During this procedure, the accuracy of calculation is also seriously considered.

2. Basic Theory
2.1. Reference State in Shock Wave Problems

For shock wave problems, it is found in impact experiments that many materials share an
approximate relationship between particle velocity um and shock wave velocity D [6,8,17,19]:

D = c0 + sum (1)

where c0 is the speed of sound and s is a coefficient related to the isentropic bulk modules.
For a wide range of materials, the linear relation (1) is enough, and the high-order items
can be neglected [32]. Certainly, the linear D− um relationship is also available for water.
However, the linear relationship is not absolutely right, and sometimes, it needs more
consideration [19]. To adapt to a strong shock problem (shock pressure more than 109 Pa),
the relationship of water is described by a nonlinear D− um curve given by the Lawrence
Livermore National Laboratory (LLNL) [21]:

D− c0

um
= s1

(um

D

)
+ s2

(um

D

)2
+ s3

(um

D

)3
(2)

where s1, s2 and s3 are constant coefficients, which are deduced from experimental data.
c0 is the sound speed of static water. The values of s1, s2, s3 and c0 are given in Table 1.
And the Rankine–Hugoniot jump conditions for the conservation of mass, momentum and
energy are [17]





ρ = ρ0D
/(

D− um
)

p = p0 + ρ0Dum

e = e0 +
1
2
(p + p0)

( 1
ρ0
− 1

ρ

) (3)

where p and e are the pressure and internal energy, respectively. And p0 and e0 stand for
parameters of initial states. Sometimes, p0 and e0 are neglected in strong shock problems.
By combining (2) and (3), the Hugoniot state for pressure and energy can be obtained
as follows: 




p =
ρ0c2

0µ(1 + µ)

[1− (s1 − 1)µ− s2
µ2

µ+1 − s3
µ3

(µ+1)2 ]2
= pre f

e =
c2

0µ2/2

[1− (s1 − 1)µ− s2
µ2

µ+1 − s3
µ3

(µ+1)2 ]2
= ere f

(4)
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where µ = ρ/ρ0 − 1; pre f and ere f are the pressure and energy of the reference state,
and the compression states are defined as points along the Hugoniot curve (as shown in
Figure 1 [17]). However, for expansion states, it is hard to describe the reference state by
Hugoniot curves due to the negative um in the following deduction:

µ =
ρ

ρ0
− 1 =

D
D− um

− 1 =
um

D− um
< 0

since the shock wave travels faster than the interface, so D − um > 0. As um is also a
positive value, a conclusion µ > 0 is deduced for the expansion state and this is not real.
Therefore, the reference state as (4) is not valid in the expansion phase.

Figure 1. Hugoniot curves. Here, it is taken as the reference state for water.

For the expansion state µ < 0, a Murnaghan isentropic EOS is used here. The compres-
sion and expansion states coexist in the same material but exhibit different physical behaviors:





pre f =

(
p0 +

ρ0c2
0

4s− 1

)(
ρ

ρ0

)4s−1

− ρ0c2
0

4s− 1

ere f = e0 +
∫ V

V0

pre f dV

(5)

where V denotes volume, and V = 1/ρ [5]. The pre f in (5) is always simplified in a first
order of accuracy:

pre f =

(
p0 +

ρ0c2
0

4s− 1

)
(µ + 1)4s−1 − ρ0c2

0
4s− 1

=

(
p0 +

ρ0c2
0

4s− 1

)(
1 + (4s− 1)µ + o(µ)

)
− ρ0c2

0
4s− 1

=ρ0c2
0µ

(6)

Except for cavitation flow, the expansion effect is very weak for liquid water and the
variation in volume V can be neglected in the expansion phase, so it is approximately
V = V0 and the item

∫
pre f dV in (5) can be ignored. Thus, there are

ere f = e0 +
∫ V

V0

pre f dV = e0 (7)
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Table 1. Parameters of the EOS for water.

C0 S1 S2 S3 γ0 α ρ0

1480 m/s 2.56 −1.986 0.227 0.5 0 1000 kg/m3

2.2. Equation of State

In the shock wave problem, the fluids are taken as compressible, and the conservative
Euler equation is used to be the basic governing equation:

∂U
∂t

+
∂F
∂x

= 0 (8)

where U is a vector of conservative variables, and F represents the fluxes. They can be
written as

U =




ρ
ρu
ρE


, F =




ρu
ρu2 + p

(ρE + p)u




where E is the total energy and can be deduced by internal energy e and the kinetic energy:

E = e +
1
2

u2

To complete the equation system, an EOS is needed here. For the shock wave problem, the
EOS for water and gas must be seriously considered.

As the reference state is known, the EOS can be expressed in a general form:

p− pre f (V) = Γ(V)(ρe− ρere f (V)) (9)

where V = 1/ρ. Equation (9) is the Mie–Grüneisen EOS, and Γ is the Grüneisen parameter,
which can be simply written as

Γ = Γ0

( ρ

ρ0

)α
(10)

where Γ0 and α depend on the property of the material. The reference state plays an
important role in many physical problems. With the help of ere f , the internal energy of a
solid can be considered in two parts: one is a thermal vibrational energy, and another is a
potential energy of cold contribution [33]:

e(V, T) = eT(V, T) + ere f (V) (11)

the former part of internal energy e(V, T) is in terms of temperature, which has little
relationship with the Hugoniot curve. The latter part is defined as the reference state.
By setting pre f and ere f , the proportional relationship between thermal pressure pT and
thermal internal energy eT can be expressed more intuitively. In this case, the pressure can
be expressed as

p(V, T) = pre f (V) + pT(V, T)

pT(V, T) =
Γ(V)

V
eT(V, T)

(12)

Equations (11) and (12) are based on the thermodynamic behavior of crystals. Unlike the
Mie–Grüneisen EOS, some other EOSs are derived from the thermodynamics law of gas
and do not cover the cold contribution. The reference states provide a convenient way to
take care of physical behavior that is not affected by thermodynamics.
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Sometimes, the reference states are replaced by other conditions. For example, as an
isentropic condition is considered, the internal energy can be written as [34]

e(V, S) = ere f (V) + eS(S) (13)

where S is the specific entropy, and Equation (13) can also be used in a water-like substance.
In this situation, the pressure p and temperature T satisfy

p(V, S) =
∂e
∂V

, T(S) =
∂e(V, S)

∂S
(14)

and the derivates of S can be neglected under the constant entropy assumption. Therefore,
p can be expressed in a function of ρ:

p = B
[(ρ

ρ

)γ
− 1
]

(15)

in which the coefficients for water are as follows: γ = 7, B = 3268 atm, and ρ is a constant
whose value is 9.233 × 10−4 atm per ft/sec. Equation (15) is the Tait EOS. It can be also
regarded as a Mie–Grüneisen EOS form with a constant reference state.

Inserting the reference expressions (4), (11) and (12) into (9), the EOS for water can be
written in a piecewise function of p and ρe:





p =
ρ0c2

0

[
µ + (1− 1

2 γ0 − 1
2 aµ)µ2)

]

[1− (s1 − 1)µ− s2
µ2

µ+1 − s3
µ3

(µ+1)2 ]2
+ (γ0 + aµ)ρe µ > 0

p = ρ0c2
0µ + (γ0 + aµ)ρe µ < 0

(16)

The EOS for gas is usually derived from the characteristics of ideal gas, which can be
written as

p = (γ− 1)ρe (17)

where the parameter γ is 1.4 for common gas. For special explosive gaseous products with
high pressure and temperature, the γ is 3.0 more or less [35].

Moreover, there is another form of EOS, named “stiffened gas EOS”. It is derived from
a similar behavior of ideal gas [36]:

p = (γ− 1)ρe− γp∞ (18)

in which the parameter p∞ is calculated by the sound velocity c0:

p∞ =
ρ0c2

0
γ
− p0 (19)

For water, γ = 4.4, p∞ = 6× 108. The density ρ of (18) yields the following ratio:

ρ

ρ0
=

(γ + 1)(p + p∞) + (γ− 1)(p0 + p∞)

(γ + 1)(p0 + p∞) + (γ− 1)(p + p∞)
(20)

Although written in a simple form, the determinations of γ and p∞ are also based on Hugoniot
curves. But the relationship D− um of the stiffened gas EOS is in a different form (1):

D =

√
c2

0 +
(γ + 1

4
um

)2
+

γ + 1
4

um (21)
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2.3. Mie–Grüneisen Mixture Model

For such a gas–water problem with the Mie–Grüneisen EOS, a quasi-conservative
model, which was proposed by Shyue [18], is employed here. This model is established
with respect to the structure of the solution, which includes three characteristics: left wave,
right wave and interface.

At the interface position, the structure of the solution shows that density, energy and
other material-dependent coefficients are discontinuous across the interface. However, the
pressure and particle velocity of each component remain continuous at the interface [8,37],
as shown in Figure 2. Otherwise, entropy would be created as soon as the pressures or
velocities are different for gas and water [38]. Here, we consider the energy conservative
law of (8):

∂ρE
∂t

+
∂(ρEu + pu)

∂x
= 0 (22)

Then, the EOS (9) can be introduced into (22):

∂

∂t

( p− pre f

Γ
+ ρere f

)
+ u

∂

∂x

( p− pre f

Γ
+ ρere f

)
= 0

and we have

[ ∂

∂t

( 1
Γ

)
+ u

∂

∂x

( 1
Γ

)]
p +

[ ∂

∂t

( pre f

Γ

)
+ u

∂

∂x

( pre f

Γ

)]
−
[ ∂

∂t

(
ρere f

)
+ u

∂

∂x

(
ρere f

)]
= 0 (23)

Equation (23) is reconstructed using ∂/∂ρ:

[∂ρ

∂t
+ u

∂ρ

∂x

]
p
( 1

Γ

)′
+
[∂ρ

∂t
+ u

∂ρ

∂x

]( pre f

Γ

)′
−
[∂ρ

∂t
+ u

∂ρ

∂x

](
ρere f

)′
= 0 (24)

Equation (24) is satisfied under two conditions:

∂ρ

∂t
+ u

∂ρ

∂x
= 0 or p

( 1
Γ

)′
+
( pre f

Γ

)′
−
(

ρere f

)′
= 0

The latter equation above is difficult to satisfy for general problems. It is thus clear that

∂ρ

∂t
+ u

∂ρ

∂x
= 0 (25)

Here, Equation (25) means that the discontinuous sections move with constant speed u at
the interface. According to (25), Equation (23) can be split into three parts:





∂

∂t

( 1
Γ

)
+ u

∂

∂x

( 1
Γ

)
= 0

∂

∂t

( pre f

Γ

)
+ u

∂

∂x

( pre f

Γ

)
= 0

∂

∂t

(
ρere f

)
+ u

∂

∂x

(
ρere f

)
= 0

(26)

Note that the deduction of (25) above is available only at the interface, and the relationship
with the left or right wave still needs to be considered.
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Figure 2. Discontinuous property in Cartesian coordinates. The pressure and velocity maintain
equilibrium at the interface, while density and density-dependent parameters are discontinuous.

Meanwhile, at the left/right wave, the pressure and velocity are discontinuous, which
means that there is no (25). Note that the left/right wave is separated from the interface and
the wave is composed of a single form of fluid, as shown in Figure 3 (a total of five kinds
of solutions). In Figure 3, the rarefaction wave corresponds to a weak discontinuity [39].
Thus, the following deduction can be made for 1

/
Γ:

∂

∂t

( 1
Γ

)
+ u

∂

∂x

( 1
Γ

)
=

∂ρ

∂t
∂

∂ρ

( 1
Γ

)
+ u

∂ρ

∂x
∂

∂ρ

( 1
Γ

)

=
∂ρ

∂t

( 1
Γ

)′
+ u

∂ρ

∂x

( 1
Γ

)′

=
( 1

Γ

)′(∂ρ

∂t
+ u

∂ρ

∂x

)

=
( 1

Γ

)′(∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x
− ρ

∂u
∂x

)

=
( 1

Γ

)′(∂ρ

∂t
+

∂(ρu)
∂x

− ρ
∂u
∂x

)
= −

( 1
Γ

)′
ρ

∂u
∂x

Thus,
∂

∂t

( 1
Γ

)
+ u

∂

∂x

( 1
Γ

)
+ ρ

∂u
∂x

( 1
Γ

)′
= 0 (27)

as in (27)

∂

∂t

( pre f

Γ

)
+ u

∂

∂x

( pre f

Γ

)
+
( pre f

Γ

)′
ρ

∂u
∂x

= 0

∂

∂t

(
ρere f

)
+ u

∂

∂x

(
ρere f

)
+
(

ρere f

)′
ρ

∂u
∂x

= 0
(28)

Compared with Equation (26), Equations (27) and (28) are satisfied at the interface due to
the constant u.
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Figure 3. Discontinuous property of solutions.

To summarize (26)–(28), the equations for Γ, pre f and ere f can be written as





∂

∂t
( 1

Γ
)
+ u

∂

∂x
( 1

Γ
)
+ ρ
[ ∂

∂ρ

( 1
Γ
)]∂u

∂x
= 0

∂

∂t
( pre f

Γ
)
+ u

∂

∂x
( pre f

Γ
)
+ ρ
[ ∂

∂ρ

( pre f

Γ
)]∂u

∂x
= 0

∂

∂t
(
ρere f

)
+ u

∂

∂x
(
ρere f

)
+ ρ
[ ∂

∂ρ

(
ρere f

)]∂u
∂x

= 0

(29)

for some problems, the analytic forms of Γ, pre f and ere f are always in a complex form, the
calculation of (29) can compute parameters Γ, pre f and ere f in an effective way and simplify
the computation process.

For a single-component Mie–Grüneisen Riemann problem, the combination of the
Euler Equation (8) and auxiliary Equation (29) is enough, while for the multi-phase problem,
a transport equation is needed here. As yg and yw are used here to represent the mass
fraction of gas and water, the transport equation in terms of yg(or yw) can be expressed as:

∂ρyw

∂t
+

∂ρywu
∂x

= 0 (30)

Coupling (29) and (30) with the Euler formulation (8), a mixture model for the gas–water
interaction problem can be obtained:





∂ρ

∂t
+

∂ρu
∂x

= 0

∂ρu
∂t

+
∂(ρu2 + p)

∂x
= 0

∂ρE
∂t

+
∂(ρE + p)u

∂x
= 0

∂

∂t
(

1
Γ
) + u

∂

∂x
(

1
Γ
) + ρφ

∂u
∂x

= 0

∂

∂t
(

pre f

Γ
) + u

∂

∂x
(

pre f

Γ
) + ρϕ

∂u
∂x

= 0

∂

∂t
(ρere f ) + u

∂

∂x
(ρere f ) + ρψ

∂u
∂x

= 0

∂(ρyw)

∂t
+

∂(ρywu)
∂x

= 0

(31)
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where the symbols φ, ϕ and ψ denote the derivative functions of the split items ∂(1/Γ)/∂ρ,
∂(pre f /Γ)/∂ρ and ∂(ρere f )/∂ρ, and they are functions in terms of ρ. The derivatives φ, ϕ
and ψ are calculated as: 




φ = zg

( 1
Γ

)′
g
+ zw

( 1
Γ

)′
w

ϕ = zg

( pre f

Γ

)′
g
+ zw

( pre f

Γ

)′
w

ψ = zg

(
ρere f

)′
g
+ zw

(
ρere f

)′
w

(32)

The pressure p is calculated by

p =
( 1

Γ

)−1[
ρE− ρu2

2
+

pre f

Γ
− ρere f

]

2.4. MUSCL Scheme with Roe Solver

The basic discrete equation in terms of time and space is

Un+1
i −Un

i
4t

+
Fi+1/2 − Fi−1/2

4x
= 0 (33)

where4t and4x are the time step and grid size in x direction. Un+1
i and Un

i are vectors of
conservative variables at the (n + 1)th and nth time step, Fi+1/2 is the flux between the i
and (i + 1)th cell along the x direction. For the time step4t, it is defined as

4t = CFL
min(4x)

max(|u|i + ci)
(34)

where ci and ui represent the particle velocity and sound velocity, respectively. In (34), the
convergence conditions are satisfied when CFL 6 1. The sound velocity is defined as

c2 =
∂p
∂ρ

+
p
ρ

∂p
∂ρe

=
E + p/ρ− (u2/2) + pφ− ϕ + ψ

1/Γ
(35)

In the discrete Equation (33), the variable vector Ui is the conservative variable which are
listed as:

Ui =
[
ρi, ρiui, ρiEi,

1
Γi

,
pre f i

Γi
, ρiere f i, ρiywi

]T

the fluxes are obtained here by an MUSCL (Monotone Upwind Scheme of Conservation
Law)-TVD (Total Variation Diminishing) scheme; and for flux Fi+1/2, there is

Fi+1/2 =
1
2
[F(ULi+1/2) + F(URi+1/2)

− R̂i+1/2

∣∣∣Λ̂i+1/2

∣∣∣L̂i+1/2(URi+1/2 −ULi+1/2)]
(36)

in which ULi+1/2 and URi+1/2 denote the vector of conservative variables of left and right
states. The vectors FLi+1/2 and FRi+1/2 can be obtained by

FLi+1/2 =
[
ρLi, ρLiuLi, ρLiELi,

1
ΓLi

,
pre f Li
ΓLi

, ρLiere f Li, ρLiywLiuLi

]T

= Ui +
1
2

Ri+1/2ΦLi+1/2

FRi+1/2 =
[
ρRi, ρRiuRi, ρRiERi,

1
ΓRi

,
pre f Ri
ΓRi

, ρRiere f Ri, ρRiywRiuRi

]T

= Ui+1 −
1
2

Ri+1/2ΦRi+1/2

(37)
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where Ri+1/2 is the right eigenvector matrix of ∂F/∂U, which can be expressed as

Ri+1/2 =




1 1 1
ui − ci ui ui + ci

Hi − uici u2
i /2 Hi + uici pi −1 1

φi φi 1
ϕi ϕi 1
ψi ψi 1

yw i yw i 1




(38)

And the items ΦL and ΦR in (37) are

ΦRi+1/2 = (I − 4t
4x

Λi+1/2)Si+1/2

ΦLi+1/2,j = (I +
4t
4x

Λi+1/2)Si+1/2

(39)

where Λ is the diagonal matrix of the eigenvalue matrix and can be written as

Λi+1/2 =




ui − ci
ui

ui + ci
ui

ui
ui

ui




(40)

and Si+1/2 is defined as

Si+1/2 = minmod
[
Li+1/2DUi+1/2, Li+3/2DUi+3/2

]

where Li+1/2 is the left eigenvector of ∂F/∂U, and DUi+1/2 = Ui+1 −Ui.
The matrix Li+1/2 is

Li+1/2 =
Γi

2c2
i
�




uiciξi + u2
i
/

2 −ui − ciξi 1
−u2

i + 2ξic2
i 2ui −2

−uiciξi + u2
i
/

2 −ui + ciξi 1
−φiu2

i 2φiui −2φi
−ϕiu2

i 2ϕiui −2ϕi
−ψiu2

i 2ψiui −2ψi
−yw iu

2
i 2yw iui −2yw i

−pi 1 −1
2pi −2 2
−pi 1 −1

2φi pi + 2c2
i ξi −2φi 2φi

2ϕi pi −2ϕi + 2c2
i ξi 2ϕi

2ψi pi −2ψi 2ψi + 2c2
i ξi

2yw i pi −2yw i 2yw i 2c2
i ξi




(41)

where ξ = 1
/

Γ.
In (36), the matrixes Λ̂i+1/2, R̂i+1/2 and L̂i+1/2 are defined as the matrixes of the

average value of the left and right states. Roe average [5] is a widely used style of average,
which can be expressed as
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



û =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR
, Ĥ =

√
ρL HL +

√
ρRHR√

ρL +
√

ρR

ξ̂ =

√
ρLξL +

√
ρRξR√

ρL +
√

ρR
, φ̂ =

√
ρLφL +

√
ρRφR√

ρL +
√

ρR

ϕ̂ =

√
ρL ϕL +

√
ρR ϕR√

ρL +
√

ρR
, ψ̂ =

√
ρLψL +

√
ρRψR√

ρL +
√

ρR

p̂ =
1
ξ̂

√
ρL pLξL +

√
ρR pRξR√

ρL +
√

ρR

ĉ =

√
1
ξ̂

[
Ĥ − (û2/2) + p̂φ− ϕ + ψ

]

where the corner mark L and R represent the variables of left or right states, H = E + p/ρ.
While for derivatives φ, ϕ and ψ, they have no partial differential items, so the values of φ̂,
ϕ̂ and ψ̂ are defined by the original data of the ith grid point:

φ̂ = φi, ϕ̂ = ϕi, ψ̂ = ψi

A similar style is used to define the Roe average of mass fraction yw:

ρyw =

√
ρLywL +

√
ρRywR√

ρL +
√

ρR
(42)

However, there is one that detail needs to be emphasized: the parameters of shock
wave is affected by the path-conservative effects provided by Dal Maso [40]. There is a
slight change, however, if the scheme is different. This property also exists in two-layer
shallow water flows [41,42]. The path-conservative problem is analysized in Appendix A.
The form of transport equation is also discussed in Appendix A.

3. Numerical Examples
3.1. Weak Shock Problem of Gas–Water Interaction

A simple 1D gas–water interaction problem, which is previously studied by Liu [43],
is first considered. The initial states are constituted by gas in the left side, and water in the
right side. Their physical parameters are:

(
ρ, p, u) =

{ (
1270 kg/m3, 8000 atm, 0.0) x ≤ 0.0(
1000 kg/m3, 1.0 atm, 0.0) x > 0.0

When the time instant t = 0, the gas and water are both in a static state, and the water
suffers from a weak impact of gas. Here, the water is described by the Tait EOS, which can
provide an analytic solution for this gas–water problem.

In Liu’s work, Tait EOS is employed to model the water and is reconstructed by a
new form similar to (18): p = (γ− 1)ρe− γB. The coefficients of the Tait EOS are listed in
Table 2. Our concern is the accuracy of solution when the Tait EOS of water is replaced by
the Mie–Grüneisen EOS. On the other hand, the Mie–Grüneisen EOS is founded according
to the nonlinear D− um relationship as in (2).

Table 2. Initial states of gas and water in a weak shock problem. Both gas and water are initially static.

p ρ EOS

Gas 8000 atm 1.27 × 103 kg/m3 Ideal Gas EOS
Water 1 atm 1.0 × 103 kg/m3 Tait EOS
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Figure 4 exhibits the curves of density and pressure, as well as the shock velocity
position records. From the comparison, it is noticed that the difference between the two
kinds of EOSs is minimal. In the pressure curves shown in Figure 4b, the shock wave
pressure of the Tait EOS is slightly higher than the Mie–Grüneisen EOS. It seems that the
Tait EOS can also achieve excellent solutions even though it is in a simple form. Figure 4c
provides the trace of shock sections, which corresponds to the discontinuous sections at the
right side of Figure 4a,b. However, the analytic solutions can be easily obtained using the
Tait EOS in calculation. Still, it is hard to deduce analytic solutions for the Mie–Grüneisen
EOS. Therefore, some other referential data are needed here to check the solution of the
Mie–Grüneisen EOS.

Here, the accuracy of shock wave parameters is examined by an empirical formula,
which can be expressed as [6]





pmx = ρmxDumx

umx =
D

γ + 1

[
1 +

2γ

γ− 1

(
1− (pmx/pCJ)

γ−1
2γ

)]

umx =
√
(pmx − p0)(Vmx −V0),

Vmx = 1/ρmx

Introducing the relationship (2) into the equation system above, one can obtain the values
of pm, ρm, um and D by a simple iteration. This approach is used to deduce an approximate
solution for D, pm and um, as shown in Table 3. As a reference, the D− um relationships
cover the experimental data of Nakayama (linear) and LLNL (nonlinear).

Table 3. The contrasts of the density, pressure and shock velocity with approximate solution.

D (m/s) pm (Mpa) ρm (kg/m3)

Nakayama Linear D− um * 1959 494 1146
LLNL Nonlinear D− um * 1976 491 1146

Tait EOS 2080 534 1144
Mie–Grüneisen EOS 2084 517 1137

* Approximate iteration solution.

The results of the Mie–Grüneisen mixture model are also presented in Table 3. Ac-
cording to the contrast, it is found that our results are closer to the approximate iteration
solutions. It is hard to obtain precise values for shock velocity because the shock section in
the numerical results is not in a discontinuous shape, and so the position of the shock is
challenging to locate due to the dispersion effects. In our work, the position of the shock is
defined by the 200 Mpa pressure level. It is noticed that the density of the shock is only
about 1140 kg/m3, so the compression is not very high in this problem. In this problem,
the variation in entropy is nearly unaffected by the compression [34]. A simple-form Tait
equation is adequate here based on an isentropic condition.
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(a) Density (b) Pressure

(c) Particle velocity

Figure 4. The curves of the density, pressure and shock position in the weak shock problem. The shock
wave parameters pm and um are analytic solutions of the Tait EOS. The contrast data of Tait are Liu’s
numerical solutions. The curves include the following: (a) Density. (b) Pressure. (c) Shock velocity.

3.2. Strong Shock Problem of Gas–Water Interaction

Then, a detonation shock tube problem is used here to test the adaptability of the EOS
in a strong shock problem. At t = 0, the gaseous detonation product with a C-J (Chapman-
Jouguet) state is distributed on the left side. The physical parameters of C-J states are
defined as follows [35]:

ρC-J =
γ + 1

γ
ρ0, uC-J =

γ + 1
γ

D, pC-J =
1

γ + 1
ρ0D2

where ρ0 = 1630 kg/m3, γ = 2.727 and D = 6950 m/s [35]. According to the parameters of
C-J states, it can be noticed that the pressure exceeds 10 Gpa (Nakayama’s linear data are
limited below 1 Gpa) and the gaseous product has an astonishing initial velocity. The EOS
group in this example includes the Mie–Grüneisen EOS, Tait EOS, and another stiffened
gas EOS of Abgrall. On the other hand, the EOS of gas is also an ideal gas EOS but with a
renewed γ.

As three different forms of EOS simulate the gas–water interaction, the empirical
values in the first example are used again here. The results of three EOSs are shown
in Figure 5. The discontinuous shape of shock waves can be clearly seen in the figure.
Nevertheless, significant difference can be found from a comparison of the empirical
data. The shock wave parameter calculated by the Tait EOS does not agree well with the
empirical data, especially the density ρ. The results indicate that the high-compression
problem is complicated to model with the Tait EOS. The Tait EOS is constructed by the
property of constant entropy. This property adapts to gas behavior, but it is hard to cover
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the Hugoniot relationship under impact. Comparing with the Tait EOS, the adapbility of
the stiffened gas EOS is much better in a high-compression problem because the Hugoniot
curve is embedded into the foundation of the stiffened gas EOS. However, limited by the
simple form of the EOS, the Hugoniot curve is not taken as a reference state; thus, the
expressions (18) and (19) only provide a reference state based on initial condition. As
there is no condition to set separation as in (11) and (12), the parameters of the shock
waves are still not so reliable for the stiffened gas EOS. Both Tait EOS and stiffened gas
EOS are affected by the expression form, in which the coefficients cannot contain the
compression functions. Thanks to the coefficients pre f and ere f , the Mie–Grüneisen EOS
can set a particular ρ function according to detonation experimental curves. In this case,
the results of the Mie–Grüneisen EOS are reasonable and close to the empirical data. Due
to the complex form of the Mie–Grüneisen EOS, there are slight oscillations at the starting
point of the rarefaction waves.

(a) Density (b) Pressure

(c) Particle velocity

Figure 5. The performances of different EOSs in a strong shock problem. The empirical data are
evaluated by the coupling D-um curve with C-J parameters. The curves of relative shock parameters
are as follows: (a) Density. (b) Pressure. (c) Particle velocity.

3.3. An Investigation of EOS Affection in Gas–Water Interaction

As Tait EOS and stiffened gas EOS are both simple-form equations in which the
reference states of Hugoniot curves are not considered, a further study of their performance
is carried out here. Here the initial conditions are set to be different to test the adaptability
of the Tait EOS and stiffened gas EOS. The difference between the Tait EOS and Mie–
Grüneisen EOS and between the stiffened gas EOS and Mie–Grüneisen EOS are presented
here. As an extension of the first example, we considered the parameters exhibited in
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Figure 5, which include shock density ρm, shock pressure pm and the particle velocity of
post shock um.

Initially, our attention is paid to the pressure in the initial condition. Two initial
densities, 1200 kg/m3 and 1500 kg/m3, typical low-compression and high-compression
cases, are considered here. The influence of pressure has an effect on the shock parameters,
and the variations in ρm, pm and um are shown in Figure 6. It can be found that the
difference in pm is the lowest parameter, no matter what EOS is used. The reason is that
the EOS expression is always written as a function of pressure. Thus, the pressure is a
benchmark parameter and the fitting curves of p are always taken seriously. Conversely,
the compression state is represented by the density ρ, but it is not regarded as an essential
parameter. There is evidence that the expression of the Tait EOS and stiffened gas EOS
only take ρe as a variable and ignore the density ρ. Although the form of EOS is simplified,
the density becomes an irrelevant parameter in the expression of EOS. This mistake is
very weak when the density variation is small. However, it is amplified when the density
becomes large and leads to a depression of impact effects. The results show that the
difference among all three parameters maintains an upward trend as the pressure rises. The
depression of impact effects cause this phenomenon. As the impact effects are strengthened
by the increase in pressure, the compression state is not well described by the Tait EOS and
stiffened gas EOS. Comparing with the Tait EOS, the stiffened gas EOS results in less of a
difference because it is based on the Hugoniot curve, but the expression form is simplified.
Thus, the differences in ρm and um are both controlled.

(a) (b)

Figure 6. The influence of initial pressure. The difference between the Mie–Grüneisen EOS and Tait
EOS and the difference between the Mie–Grüneisen EOS and stiffened gas EOS are distinctly plotted.
The initial density of gas is set as follows: (a) ρ = 1200 kg/m3. (b) ρ = 1500 kg/m3.

Next, our attention is transferred to the mechanism of difference when initial velocity
ranges from 0 to 1000 m/s. The difference curves are plotted in Figure 7. It is found that
the trends of ρm, pm and um curves are similar to those in Figure 6. Among the three
parameters, the difference in ρm is the biggest, while um is a little better than ρm, pm has
the smallest difference. As um increases, the impact effects become larger, and thus the
compression of water is enhanced and produces a similar mechanism to that mentioned
above. Compared to Figure 6, a gentle slope can be seen in Figure 7. This is because the
impact effects that resulting from the variation of u0 are not strong enough for compression.
In Figure 6, the addition of pressure is up to 8000 Mpa. While in Figure 7, by considering
that p = p0 + ρ0Dum, the momentum amplification caused by u0 = 1000 m/s is much lesser
than 8000 Mpa (the value of um is slightly less than u0).
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Figure 7. The influence of initial density. The difference between the Mie–Grüneisen EOS and Tait
EOS and the difference between the Mie–Grüneisen EOS and stiffened gas EOS are distinctly plotted.

Then, the difference caused by the variation in ρ0 is considered. Figure 8 presents the
difference of ρm, pm and um. Unlike p0 and u0, the variation in ρ0 has little relationship
with the impact effects when u0 = 0 m/s. In this case, the changes in parameters ρm, pm
and um are very small, whereby even ρ0 is up to 1600 kg/m3 high in value. In addition,
the differences in pm nearly remain constant as the compression increases due to the weak
impact. The values of ρm and um decline slightly. Moreover, the former order of difference
(ρm > um > pm) is also adapted here.

Figure 8. The influence of initial particle velocity. The difference between the Mie–Grüneisen EOS and
Tait EOS and the difference between the Mie–Grüneisen EOS and stiffened gas EOS are distinctly plotted.

The results (ρm > um > pm) in Figures 6–8 are closely related to the structure of real
solution. Here, we consider a simple gas–water problem with exact solutions, as in Figure 3.
At the interface, the values of pm and um satisfy a characteristic system as follows:





pm − pL
WL(pm, pL, ρL)

+ (um − uL) = 0

pm − pR
WR(pm, pR, ρR)

− (um − uR) = 0

where the function WL and WR denote for the left and right waves, respectively. These two
functions are determined by the EOS and wave characteristics (shock wave or rarefaction
wave), and they have analytic forms when the EOS is either ideal gas EOS or stiffened gas
EOS. Such an equation system implies that the pm can be obtained by an iteration. Then, the
value of um can be obtained using either equation above. While density is discontinuous
at the interface, thus ρm can be calculated by a mass conservative law. The relationship
among ρm, um and pm indicates that ρm is affected by D and um but ρm itself causes no
effects to either pm or um. Furthermore, the um is affected by pm, but pm does not affect um.
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Therefore, the difference in pm raises the difference in um, then the difference in um raises
the difference in ρm.

3.4. Gas–Water Shock Wave in Spherical System

In this case, a bubble experiment by the LLNL is concerned here [21]. The bubble is
generated by the detonation product of 2.1 kg NM (nitromethane) spherical charge, with an
initial density of 1.128 g/cm3. As the charge explodes, a bubble of gaseous product diffuses
quickly in water. The computational domain ranges from 0 to 20 R0, with 2000 uniform
grids in it. R0 is the initial radius of the charge.

The numerical calculation is carried out under a spherical coordinate system. The
governing equation for the spherical system is reconstructed as [44]

∂Ũ
∂t

+
∂F
(
Ũ
)

∂r
= S

(
Ũ
)

Ũ = r2 ·U, F
(
Ũ
)
= r2 · F, S

(
Ũ
)
=




0

2rp

0

0

0

0

0




(43)

where r denotes the radius. In the new equation system (43), the center point is a singular
point because there is no space to construct a discrete equation as (33) and the parameter at
the singular point is difficult to evaluate. For the sake of convenience, the parameters at the
singularity are defined as the same as the grid point nearby except for the particle velocity.
In the center, it is defined as u = 0 and other parameters are not affected by any waves.

The movement of the main shock, which is represented by δS, is recorded by camera
in this experiment. The shape of the bubble is also investigated in this experiment, and
the experimental data contain a record of the radius change δR. The time evolution curves
for δS and δR are shown in Figure 9. Compared with the experimental results of δS and
δR, it is found that the calculated values become higher as time increases. The reason for
the overvalued δS and δR lies in the nonequilibrium of u and p at the interface. As the
spherical system is a diffusion system, there is a negative slope rate for real values of p and
u at the interface. The sketch of the p and u solution is shown in Figure 10. As a result, the
overall decline in u and p ultimately affects the accuracy and increases the strength of the
shock wave. Eventually, the values of δS and δR become higher than real, the overvaluation
of u and p and becomes larger and larger as distance increases.

(a) Shock wave trace (b) Interface trace

Figure 9. The motion of shock and interface in spherical gas–water interaction problem. (a) The trace
of a shock wave and (b) the trace of the interface.
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In addition, the disagreement of δR in Figure 9 is slightly larger than δS. This is
because the interface of the Mie–Grüneisen mixture model is taken as a diffused interface
with thickness, so the exact position of the interface is hard to be defined by such an
interface model. The errors of the interface location amplifies as time increases.

Figure 10. The discontinuous property in spherical coordinates.

In Figure 11, the curves of water density and pressure at instants t = 200 and 500 µs
are posted. The profiles show the states when the main shock wave travels a long distant.
In the beginning, the main shock wave spreads outside. On the other hand, a rarefaction
wave moves backwards to the center. The cumulated rarefaction wave then becomes the
second shock wave. Afterwards, yielding to the same mechanism, the third shock wave is
generated. However, the shock wave generated at the second stage is much lower than
the main shock wave, as shown in Figure 11. Regardless, compared with discontinuous
parameters such as ρ, ρe, Γ, the velocity and pressure are not constant but are still kept
continuous. So, the Mie–Grüneisen mixture model still make sense here.

(a) Density (b) Pressure

(c) Density (d) Pressure

Figure 11. The profiles of density and pressure, respectively: (a,b) 0.2 ms; (c,d) 0.5 ms.
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3.5. An Extension to the 2D Problem with Three Phases

As the Mie–Grüneisen EOS can adapt to a wide range of materials by setting the
expressions of pre f and ere f , it is applied to a 2D problem with three phases. In this example,
an underwater explosion phenomenon occurs on the sand bed [45]. So, the shock wave
from the explosion not only spreads in water but also penetrates into the sand bed. The
explosion charge is in a square shape with a size of 0.15 m. The sand bed is 0.5 m thick, with
Mie–Grüneisen coefficients as: ρ0 = 1950 kg/m3, γ = 1.28, s=1.86 and c0 = 2450 m/s [46].
The bottom of the sand bed is set as a rigid wall. Under the impact, the sand could also be
modeled by the Mie–Grüneisen EOS. Here, a linear D− um relationship (2) is applied on
the sand with coefficients.

Although the gas–water interaction and gas–sand interaction are coupled with each
other and the whole interaction becomes complex, it is effective to take the three-phase field
as a fluid mixture and use the Mie–Grüneisen mixture model to simulate the interaction
process. The pressure contours of this three-phase interaction are given in Figure 12. In
contrast, the work of Yao is used here to be a reference [45]. It can be observed that our
results are approximate to Yao’s results. The discontinuous sections of shock waves in
water and in sand are both clearly seen in the contours. The drawback of our results lie in
the interface, which is not as distinct as Yao’s. This is because the interface is automatically
captured and not modified by another procedure.

(a) 0.2 ms

(b) 0.4 ms

Figure 12. The comparison of pressure contours in a 2D problem. The contrast contours are copied
from Yao’s SPH simulation: (a) 0.2 ms; (b) 0.4 ms.
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Figure 13 shows the density distribution contours. It can be seen that the upper parts
of the shock wave above the bed spreads freely in the water. On the other hand, another
part of the shock wave moves downward and forms reflected shock waves in the sand. The
shock wave in the sand is reflected immediately by the rigid wall below the sand. In the
center, there is still some gaseous medium left.

(a) 0.2 ms

(b) 0.4 ms

Figure 13. The density distribution of shock waves in sand: (a) 0.2 ms; (b) 0.4 ms.

4. Conclusions

According to the calculation of the gas–water shock wave above, some conclusions
are summarized as follows:

1. The Mie–Grüneisen mixture model can be applied well in a gas–water interaction and
some other multi-phase Riemann problems. The Mie–Grüneisen EOS can rationally
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describe the impact effects with the help of the Hugoniot reference state, and achieve
precise results that agree well with empirical data.

2. For gas–water problems with low compression, the Mie–Grüneisen EOS does not have
any advantage than other simple-form EOSs such as Tait EOS, because the problem
can be approximately taken as under an isentropic condition, and a simple-form Tait
EOS with a constant reference state is adequate.

3. For gas–water problems with high compression, the results of the Mie–Grüneisen
EOS is much better than other simple-form EOSs. With the help of setting reference
states as a Hugoniot curve, reliable parameters of shock waves are obtained by the
Mie–Grüneisen EOS. The lack of reasonable reference states causes the Tait EOS and
stiffened gas EOS to be out of range.

4. The difference between the Mie–Grüneisen EOS and other simple-form EOSs is en-
larged by the impact effects of initial conditions. As the initial value of pressure or
particle velocity increases, the EOS which is based on a simple isentropic condition
(such as Tait EOS) encounters difficulty in describing the impact effects. Other EOSs
based on the Hugoniot curve but expressed in a simple form (such as stiffened gas
EOS) have some advantages but are still far from the empirical data.

5. Affected by the fundamental theory of an EOS, the deviations of shock wave param-
eters are different. The order is ρm > um > pm from high to low. The reason lies in
the calculation process of the three parameters: pm depends on the medium itself, as
well as the initial density and pressure; um is affected by pm according to a couple of
characteristic formulas; and lastly, there is ρm.

6. The Mie–Grüneisen mixture model can be efficiently applied in a 2D problem, as well
as a simple 3D spherical system.

The Mie–Grüneisen mixture model is used to model fluid interaction. It can be
extended to fluid–structure interaction by coupling with the finite element method. The
calculation of external load can be provided by the Mie–Grüneisen mixture model. On
the other hand, this model can be applied to the detonation or combustion phenomena by
using the Mie–Grüneisen mixture EOS to model unreacted and reacted substances.
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Appendix A

Here, we add an appendix to provide an additional numerical test for the Mie–
Grüneisen mixture model.

Initially, a mixture shock tube problem with different complex EOSs is considered
here. Gaseous explosive and solid copper are placed at the left and right of the shock
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tube, respectively. The explosive is modeled by the JWL EOS, which can be written in the
Mie–Grüneisen form as





Γ = Γ0

pre f =
A1

R1ρ0
exp

(
− R1ρ0

ρ

)
+

A2

R2ρ0
exp

(
− R2ρ0

ρ

)

ere f = A1exp
(
− R1ρ0

ρ

)
+ A2exp

(
− R2ρ0

ρ

)

ρ0 = 1840 kg/m3, Γ0 = 0.25, A1 = 845.5 Gpa, A2 = 20.5 Gpa, R1 = 4.6, R2 = 1.35

The copper is modeled by the C-C EOS:




Γ = Γ0

pre f = B1

(ρ0

ρ

)ε1 − B2

(ρ0

ρ

)ε2

ere f = −
B1

ρ0(1− ε1)

[(ρ0

ρ

)ε1−1
− 1
]
+

B2

ρ0(1− ε2)

[(ρ0

ρ

)ε2−1
− 1
]

ρ0 = 8900 kg/m3, Γ0 = 2.00, B1 = 145.67 Gpa, B2 = 147.75 Gpa, ε1 = 2.99, ε2 = 1.99

The initial state of the two materials are
{

explosive : ρ = 2485.37 kg/m3, p = 37 Gpa, u = 0, e = 8149.158 kJ/kg
copper : ρ = 8900 kg/m3, p = 1 atm, u = 0, e = 117.900 kJ/kg

Then, the problem is calculated by the Mie–Grüneisen mixture model.
Here, we use different transport equations. One is (30), another is in terms of vol-

ume fraction:
∂zg

∂t
+ u

∂zg

∂x
= 0

Taking the different transport equations into account, solutions obtained by conserva-
tive and non-conservative transport equations are presented here, as shown in Figure A1.
It can be seen that the two results are all very close to the exact solution. No matter whether
the transport equations are conservative or not, both of the two results satisfy our needs.
In this case, the Mie–Grüneisen mixture model can prevent numerical oscillations and
produce accuracy solutions and the interface can be clearly identified by both mass fraction
and volume fraction. In Figure A1, the impact of copper generates a leftward rarefaction
wave and a rightward shock wave.

In order to explain the path-conservative effects, we take the shock problem of G.M.
Ward as an example [31]. The Riemann problem is a single-component impact prob-
lem. Initially, the left side of computational zone is the aluminum with compressed state:
ρL = 4000 kg/m3, uL = 2000 m/s, pL = 7.98 Gpa. The right side is the aluminum with
reference state: ρR = 2785 kg/m3, uR = 0 m/s, pR = 0. The aluminum is modeled by a tradi-
tional Mie–Grüneisen EOS with linear relationship (1), in which ρ0 = 2785, c0 = 5328 m/s,
s = 1.338, γ0 = 2.8, p0 and e0 are all set as 0. As the Mie–Grüneisen is used here, the trans-
port equation in terms of yi can be neglected. We show the influence of the discretization
method on the solution, namely using Roe’s and Rusanov’ schemes. According to the
results, it can be found that the two results are absolutely not the same. So, it is known
that the parameters can be slightly affected by the schemes. The explanation is that the
entropy creation mechanism depends on the schemes. Considering that the approximation
effect has a close relation with the path, two different paths are used here. In this case, the
numerical solution has a path-conservative property, and different paths would generate
different outcomes. The fact is that the schemes converge to different solutions because a
discontinuity exists.
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Figure A1. The distribution of mixture density, pressure, velocity and mass fraction (or volume
fraction) for an explosive copper shock tube case.

Figure A2. Numerical solution for the aluminum impact problem, including density, pressure, velocity
and Γ.
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Abstract: In engineering fracture problems, cracks tend to interact with each other rather than
exist singly. In recent years, the phenomenon of multi-cracking has received attention from both
academia and industry. This article firstly emphasizes the importance and research trends of crack
interactions. The article then discusses the experimental observation and theoretical modeling of
the multi-crack problem and compares the different numerical methods in detail. Finally, this paper
offers a comprehensive summary and in-depth analysis of the advancements in multi-crack fracture
mechanics, aiming to provide reliable support for solving the multi-crack problem in engineering.

Keywords: multi-crack; crack interactions; fracture mechanics; crack propagation; numerical methods
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1. Introduction

Many cracks exist in high-strength and brittle materials applied in engineering, such
as rocks, concretes, alloys, composites, etc. These cracks may rapidly grow from micro-scale
to macro-scale under external loads or harsh environments, leading to structural damage
once they reach a critical size. The presence of multiple cracks complicates the assessment
compared to a single crack, as each crack is affected by the others. It is difficult to assess the
stress intensity factor (SIF) at the crack tip and the direction of crack initiation accurately
with conventional methods. The complexity of the multi-crack problem increases the
risk of structural failure and places higher demands on engineering design and materials.
Therefore, assessing the fracture behavior of cracks and their interactions quantitatively
has become an important topic that needs to be addressed in fracture mechanics.

In practical engineering, scholars are concerned with the real-time monitoring and
prediction of crack propagation in structures under external effects such as static, cyclic and
temperature loads. These multi-crack interactions are prevalent in a variety of structures,
and crack development significantly affects material strength, which directly influences the
overall structural service life. Secondly, with the wide application of functional materials in
civil engineering and geotechnical, aerospace, automotive, and other industries, the study
of multi-crack fracture behavior in composites and heterogeneous materials has become
crucial, with different properties of the materials determining different crack propagation
laws. Due to the limitations of experimental and theoretical research, computer numerical
simulations such as the extended finite element method (XFEM), the boundary element
method (BEM), and the meshfree method (MM) have become the mainstream methods and
are suitable for modeling complex interactions of cracks.

This paper serves as a review article focusing on the multi-crack problem, which is
an important topic in fracture mechanics. Currently, there are many review articles in the
field of fracture mechanics that summarize the development of multiscale analysis [1,2],
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fractures of layered materials [3], fatigue fractures [4,5], composite fractures [6–8], and
various numerical methods [9–12]. Nevertheless, the fracture problem remains a common
challenge in engineering practice, as cracks often do not exist in isolation. The interactions
of multiple cracks increase the complexity of the problem. Although multi-crack problems
are common in fracture mechanics, there is a lack of systematic review papers to discuss
this topic. In this paper, we provide a comprehensive overview and summary of the
multi-crack propagation problem, mainly from three aspects: experimental observations in
different media, theoretical studies, and numerical methods. The composition of research
on multi-crack fracture mechanics is shown as Figure 1.
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2. Experimental Observations

Multi-crack phenomena are very common in engineering, but the crack propagation
modes show significant variability due to the diversity of physical properties of the mate-
rials and external loading modes. For example, in fiber composites, cracks tend to grow
along the main direction of the fibers, showing a strong directionality, whereas in more
brittle materials such as rock and concrete, cracks tend to branch and aggregate. In addition,
when multiple cracks develop in the same material, the interactions between the cracks
often cause significant changes in the crack paths, increasing the difficulty of predicting
and controlling the cracking behavior. In recent years, many researchers have delved into
the fracture behavior of multiple cracks through experimental studies, which are the basis
for the study of fracture problems.

2.1. Rocks

The problem of multi-crack fractures in rock is widespread in industries such as
mining, civil engineering, petroleum engineering, and geohazard assessment. Significant
progress has been made in theory, experimentation, simulation, and engineering applica-
tions. Thermal cycling, freezing, thawing, magmatism, and creep of rocks in geology can
cause cracking phenomena in rocks [13–16].

In the fracture test of rocks, researchers mainly focus on a series of fracture mecha-
nisms such as crack initiation, propagation, branching, and aggregation. Unlike general
elastomers, due to non-homogeneity and internal defects, cracks in rocks are difficult
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to explain with traditional elastic fracture mechanics, but have more variable fracture
modes under different external loads, which are usually accompanied by cracks of different
genesis, such as wing (tensile) cracks and horsetail (shear) cracks [17–21], as shown in
Figure 2a. Damage and fractures of rocks are closely related to external loads [22], and
the way cracks grow and interconnect in rocks depends on internal defects such as air
cavities, microcracks, and impurities. Prefabricated cracks are a common experimental
approach to study fracture problems, and a large number of studies have been carried out
by researchers on two or more parallel cracks in different rock bodies and under different
external loading conditions [20,23–26]. Ma and Yang et al. [21,23] observed the fracture
pattern of multi-directional propagation of crack tips in rocks, as shown in Figure 2b. Shen
et al. [24] performed uniaxial compression tests using a red sandstone cube specimen with
three parallel cracks, as shown in Figure 2b. Haeri et al. [25,27] investigated the effect of
the fracture behavior between two prefabricated L-shaped cracks in the sample, as shown
in Figure 2d.

Cracks are usually observed in the laboratory using rock samples or synthetic mate-
rials that simulate rock properties with the help of techniques such as the digital image
correlation (DIC) method [28,29], X-ray computed tomography [30,31], and acoustic emis-
sion monitoring [27,32], and the related processes or instruments are shown in Figure 2e–g.
However, these techniques provide convenience while having problems, respectively, such
as difficulty in dealing with off-surface displacement, inability to observe the dynamic crack
propagation process directly, and uncertainty in the localization of cracks. Liu et al. [33]
investigated the multi-crack cracking behavior of rocks under cyclic compressive loading.
And Ghamsogar et al. [34] compared the crack propagation patterns of rocks under cyclic
loading and static loading.

2.2. Concretes

Concrete is a man-made material widely used in civil engineering and hydraulic
engineering. The development of cracks is the main reason for structural damage. By
studying the law of multi-crack propagation in concrete, the growth of cracks can be
monitored and controlled to ensure the safety and functionality of the structure.

Due to the casting process for concrete, the interior contains a large number of air holes,
and these holes are the places where cracks are generated. Zhang et al. [35] established an
intrinsic relationship for concrete coupling with air and verified it with uniaxial compres-
sion experiments, and the concrete slices were observed with a microscope, as shown in
Figure 3a. Concrete is usually functioned in engineering as a reinforced concrete composite
structure with steel reinforcement. Durand et al. [36] proposed an FEM considering the
interactions of steel reinforcement with various structures of concrete, which was compared
to the fracture experiments of reinforced concrete beams by Rabczuk et al. [37–39], as shown
in Figure 3b. In civil engineering tests, multi-cracking of concrete is very common in impact
tests [40] and three-point bending tests [41,42], which are used for assessing the strength
and fracture toughness of concrete.

Reinforcement of concrete structures with fiber-reinforced composites is a concern-
ing topic [43,44]. Pan et al. [45] found that the presence of multiple cracks on spans of
reinforced concrete beams leads to the debonding of the FRP, as shown in Figure 3c. Cho
et al. [46] observed multi-crack fractures of high-performance fiber-reinforced cementitious
composites (HPFRCs) in the plastic hinge zone of reinforced concrete columns, as shown in
Figure 3d.
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Fatigue damage is an important cause of deterioration in concrete structures, and
under fatigue loading, crack propagation becomes more complex, so investigating the
development of multiple cracks in this case is vital to understand the behavior of materials
under cyclic loading, to predict the durability and safety of the structure [47,48]. Elshazli
et al. [49] used several fiber-reinforced polymers to strengthen concrete beams under cyclic
loading, and significant multi-crack development was observed. Figure 3e depicts the crack
propagation in fatigue test of concrete columns from the experiment of Li et al. [50].

The techniques mentioned in the previous study, such as DIC, acoustic emission, and
X-ray computed tomography, can also be used for the concrete fracture problem [51–54].
However, cracks in rock and concrete have poor experimental reproducibility and are
difficult to be explained by theoretical models due to the heterogeneity and intrinsic defects
of the material, and more computerized methods are currently used for the study of
concrete structure fracture problems [55,56].
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2.3. Fiber-Reinforced Composites

Fiber-reinforced composites are widely used in various engineering fields due to their
excellent specific strength and designability; however, their fracture study is an active
and complex field because of their material inhomogeneity, orientation, and heterogeneity.
X-ray computed tomography [57–60] and DIC [61–63] methods are widely used in the
research of fiber-reinforced composites.

In fiber-reinforced composites, the fracture of the member includes the pull-off of the
fibers and the fracture of the matrix, and it is difficult to explain the fracture behavior of
composites with the traditional fracture mechanics theory. Test methods for the fracture
of fiber-reinforced composites are mainly divided into tensile and compression tests. The
earliest experimental studies related to fiber-reinforced composites date back to the 1960s,
when Rosen et al. [64] conducted a series of experiments on the destruction of fiber-
reinforced composite samples. Li et al. [57] studied the fracture failure process in laminates
by an over-height compact tension test combined with X-ray computed tomography. The
experimental procedure is shown in Figure 4a. Zobeiry et al. [61] measured the fracture
damage properties of laminated composites by combining over-height compact tension and
compact compression tests. The fiber breakage and matrix cracking are shown in Figure 4b.
Sadowski et al. [63] analyzed the propagation and interactions of parallel cracks in polymer
matrix composites. The process of the tensile experiment and DIC results are shown by
Figure 4c,d. As shown in Figure 4e, Nguyen et al. [62] used DIC to observe the tensile
damage of double cross laminates.

Fatigue tests and indentation tests are also common methods to study the multi-crack
fractures of composites. Garcea et al. [58] surveyed the fatigue damage cracking phe-
nomenon of carbon fiber-reinforced epoxy specimens by computed tomography. Sommer
et al. [65] observed microscopic damage in fatigue experiments on composite laminates
with multiple off-axis plies. In composite laminates, multi-crack fracture problems are ac-
companied by delamination [57,66–68]. The phenomenon of delamination and fractures of
laminates with different indenter displacements in the quasi-static indentation experiments
of Wagih et al. [67] is shown in Figure 4f.

141



Mathematics 2024, 12, 3881

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 41 
 

 

when Rosen et al. [64] conducted a series of experiments on the destruction of fiber-rein-
forced composite samples. Li et al. [57] studied the fracture failure process in laminates 
by an over-height compact tension test combined with X-ray computed tomography. The 
experimental procedure is shown in Figure 4a. Zobeiry et al. [61] measured the fracture 
damage properties of laminated composites by combining over-height compact tension 
and compact compression tests. The fiber breakage and matrix cracking are shown in Fig-
ure 4b. Sadowski et al. [63] analyzed the propagation and interactions of parallel cracks in 
polymer matrix composites. The process of the tensile experiment and DIC results are 
shown by Figure 4c,d. As shown in Figure 4e, Nguyen et al. [62] used DIC to observe the 
tensile damage of double cross laminates. 

Fatigue tests and indentation tests are also common methods to study the multi-crack 
fractures of composites. Garcea et al. [58] surveyed the fatigue damage cracking phenom-
enon of carbon fiber-reinforced epoxy specimens by computed tomography. Sommer et 
al. [65] observed microscopic damage in fatigue experiments on composite laminates with 
multiple off-axis plies. In composite laminates, multi-crack fracture problems are accom-
panied by delamination [57,66–68]. The phenomenon of delamination and fractures of 
laminates with different indenter displacements in the quasi-static indentation experi-
ments of Wagih et al. [67] is shown in Figure 4f. 

(a) (b)

(c)

(d)

(e)

(f)

Initial cracks

 
Figure 4. (a) Tension test combined with X-ray computed tomography [57]. (b) Fiber breakage and 
matrix cracking under tension [61]. (c) Parallel unequal crack propagation in polymer matrix com-
posites [63]. (d) Plane strain data obtained by the DIC technique [63]. (e) Fatigue fracture damage of 
carbon fiber-reinforced epoxy specimens [62]. (f) Pressure fracture of laminates [67]. 

  

Figure 4. (a) Tension test combined with X-ray computed tomography [57]. (b) Fiber breakage
and matrix cracking under tension [61]. (c) Parallel unequal crack propagation in polymer matrix
composites [63]. (d) Plane strain data obtained by the DIC technique [63]. (e) Fatigue fracture damage
of carbon fiber-reinforced epoxy specimens [62]. (f) Pressure fracture of laminates [67].

2.4. Compound Coating

A compound coating is defined here as a thin layer of a compound or a mixture that
forms a double layer with another material as a substrate, and the structure is usually
formed due to the reaction of the metal with an active gas or a spraying process in engi-
neering. In this model, the top layer will fracture before the substrate because it is more
brittle and thinner relative to the substrate. When multiple cracks are produced in the top
layer, the fracture is easily observed due to the bonding of the substrate to the top layer.

Under uniaxial tension, the fracture of the top coating on the substrate takes the
form of a parallel crack fracture. Thouless et al. [69] explored the relationship between
the spacing of brittle film cracks on an elastic substrate and the film stress, thickness,
and fracture toughness, and obtained TEM micrographs of oxides cracking in parallel on
the substrate. Beuth, Hutchinson, and Suo et al. [70–72] investigated the phenomena of
elastic fractures in laminar structures and deduced the case of multiple cracks, revealing
the law of interactions between cracks in the top coating of the substrate and laying the
foundation for subsequent studies of cracking in this problem. Chen et al. [73] developed
an elastic-plastic fracture model combined with uniaxial tensile tests to investigate the
multi-crack fractures of an alumina coating when it is fully bonded to an aluminum
substrate under large tensile deformation, as shown in Figure 5a. Cheikh et al. [74] used
a microscope to observe the multi-crack cracking pattern of a ZnO coating deposited on
an ethylene-terafluoroethlene substrate by magnetron sputtering, as shown in Figure 5b.
Shenoy et al. [75] observed a fracture pattern in a GaN top coating on a Si substrate, as
shown in Figure 5c. Andersons et al. [76] analyzed the cracking patterns of a 100 nm thick
silicon oxide coating on polyethylene terephthalate, polypropylene, and polyamide films,
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as shown in Figure 5d. Vellinga et al. [77] observed fracture, delamination, and buckling of
an amorphous carbon-hydroxide coating on an Al substrate under tensile load.
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Figure 5. (a) Cracking of GaN coatings under tensile loading [73]. (b) Cracking of ZnO coatings under
different substrate strains [74]. (c) Cracking of GaN coatings under residual stresses [75]. (d) Cracking
of polypropylene coatings under biaxial stress [76].

2.5. Other Materials

Glass, ceramics and some polymer materials are known for their excellent physical and
chemical properties. However, the brittleness of these materials makes them susceptible
to cracking, which results in fractures when subjected to stress. Therefore, the study of
multi-crack fracture behavior of such materials is not only crucial but also challenging.

Glass materials tend to fracture under external loading due to their high brittleness and
poor ductility, and the cracks will split open, leading to extensive fractures [78]. Fineberg
et al. [79] observed the phenomenon of typical microcrack branching in their study of
fractures in glass polymers. When glass materials are subjected to single-point impact
loading [80], a spider net of cracks is produced, as shown in Figure 6a,b. The fracture
pattern of glass members in four-point bending tests [81] is shown in Figure 6c. Glass
materials tend to chip on the surface or scratch during processing, which is often the cause
of cracking and damage to the structure under external loads [82,83]. A fracture of glass
with prefabricated scratches is shown in Figure 6d. Scratches [84] and fatigue [85] that
produce fractures are also present in ceramic or composite ceramic bases; the cracks near
the scratches are shown in Figure 7a, and a multi-crack fracture of the ceramic matrix in a
composite under fatigue loading is shown in Figure 7b,c. Additionally, ceramic materials
produce a large number of thermal shock cracks [86,87] during quenching experiments, as
shown in Figure 7d.
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(d) Fracture between scratches [82].
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In addition to the typically brittle materials such as glass and ceramics, it has been
observed that multi-crack fractures also occur in non-metallic materials such as polymer
fluids [88], water-soluble gels [89], polymers [90,91], and crystals [92]. The gelatin material
used by Fender et al. [89] and the PC material used by Belova et al. [90] both have good
linear elasticity and photoelasticity, which can correspond well to the theory of linear
elastic fracture. The tensile test procedure for gelatin is shown in Figure 8a–f, and the
photoelasticity phenomenon is shown in Figure 8g,h. The photoelasticity test of a PC
plane containing two cracks is shown in Figure 8i, and the stress distribution can be clearly
observed. Goehring et al. observed the cracking process of colloidal film during drying, as
shown in Figure 8j,k.
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Figure 8. (a) Tensile test of gelatin material [89]. (b–f) Crack propagation process in gelatin sheet [89].
(g,h) Photoelasticity experiment of two-crack propagation in gelatin [89]. (i) Stress distribution
of PC plane containing two cracks under different tensile forces in photoelastic experiment [90].
(j,k) Cracking process in colloidal film during drying [91].

Fractures of plastic materials, such as metals, are quite different from those of brittle
materials in that they undergo significant plastic deformation as the material absorbs a large
amount of energy during cracking and destruction. A plastic fracture usually has a large
necking region; therefore, the phenomenon of multi-crack fractures is not common in plastic
materials. Alloy materials represented by steels play an important role in engineering,
and these materials are usually subject to multiple cracking and fatigue damage due to
low-cycle fatigue and thermomechanical fatigue effects during service [93–96], as shown in
Figure 9a, which represents the multiple cracking of austenitic stainless steels under low-
cycle fatigue at 72% of its service life [97]. Figure 9b shows the path of crack propagation in
fatigue tests [94]. In addition, stress corrosion causes steel to become less plastic, and brittle
fractures occur below the yield strength [98,99]. Figure 9c–f illustrate the phenomenon
of multi-crack propagation at macroscopic and microscopic scales in steel under stress
corrosion [99].
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Figure 9. (a) Multiple cracks in austenitic stainless steels subjected to low-cycle fatigue [97]. (b) Crack
propagation paths in steel during fatigue tests. (c) Cracks on the steel surface [94]. (d–f) Microscopic
cracks corresponding to A, B, and C in (c) [99].

Compared to plastic materials, the materials of rocks, concrete, composites, and
compounds are of interest in fracture mechanics because of their brittleness. The fracture
process in these materials is sudden and lacks plastic deformation as a warning signal,
which makes their fracture behavior unpredictable, so we need to study the multi-crack
fracture problem as a challenge in engineering.

3. Theoretical Modeling

Fracture phenomena are common in brittle materials. The fundamental theory of
fracture mechanics based on linear elasticity was developed by pioneers such as Griffiths
and Owen, who introduced concepts like the stress intensity factor (SIF) and energy
release rate. The current analytical solutions of single-crack fracture problems in linear
elastic materials are usually dominated by the field functions containing SIF in polar
coordinates proposed by Williams et al. [100] and the complex variable field functions by
Sih et al. [101]. In multi-crack problems, the development of analytical methods is limited
due to uncertainty in the locations of cracks.

For the analytical study of multiple cracks, there were many early exploratory works.
In 1953, Muskhelishvili [102] proposed a complex function solution of the planar elasticity
problem by two stress functions, Φ(z) and Ω(z), which provided the conditions for the
theory of linear elastic fractures. The stress equation is

σx + σy = 2
[
Φ(z) + Φ(z)

]
(1)

σy − iτxy = Φ(z) + Ω(z) + (z − z)Φ′(z) (2)

where the coordinate z = x + iy.
Some scholars [103,104] have solved problems involving colinear or parallel multiple

cracks based on the analytical method of Muskhelishvili’s complex function. The work of
Koiter et al. [103] is the most representative, in which the stress functions Φ(z) and Ω(z)
are revised to solve the model for colinear equidistant multiple cracks under the same

146



Mathematics 2024, 12, 3881

boundary conditions, as shown in Figure 10. The strain energy increment for each crack
under far-field stresses is

∆A = −8c2

π

(
τxy

2

E
+

σy
2

E

)
log cos

π

2
b
c

(3)

where E is the modulus of elasticity of the material, the crack length is 2c, and the crack
spacing is 2b.
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Horii et al. [105,106] proposed a method of pseudotractions to solve the problems of
two arbitrary relative cracks, colinear cracks, and parallel cracks in a linear elastic solid.
The problem of two arbitrarily located cracks is decomposed as shown in Figure 11, and
the SIF is
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where the crack numbers j = 1,2, and P and Q are the coefficients of each term after Taylor
expansion of Equation (2).

For the cases of colinear and parallel cracks, as shown in Figure 12, the SIFs are

Colinear cracks:
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Parallel cracks:
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where the crack length is 2c and the spacing between crack centers is d.
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Figure 12. (a) Colinear cracks. (b) Parallel cracks.

Kachanov [107,108] proposed a simple method for stress analysis in elastic solids
containing many cracks. As shown in Figure 13, p∞ is the crack surface traction, and pk is
considered to be generated by the uniform average traction <p> acting on the kth crack. By
assuming that the traction force in each crack can be expressed as the sum of uniform and
non-uniform components, the interactions between cracks are only caused by the uniform
component, and the average stress ideology is used to solve the problem of adjacent cracks.
Respectively, the SIFs of the outer and inner crack tips are

KI(1) = K0
1

{
1 +

1
1 − Λ

1
π(1 − k)

[
2ζ − k(k + 1)χ − π

2
(1 − k)

]}
(10)

KI(k) = K0
1

{
1 +

1
1 − Λ

1
π(1 − k)

[
−2ζ + k(k + 1)χ − π

2
(1 − k)

]}
(11)
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where Λ is the traction attenuation factor, the positive and negative of k represent the crack
number to the left and right of the corresponding crack, and ζ and χ are the complete
elliptic integrals of k′ =

√
1 − k2.
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Li et al. [109] improved Kachanov’s method and applied it to parallel and tilted
cracks. Qing et al. [110] proposed a new method for solving the tight crack problem and
plastic zone assessment based on Kachanov’s method and alternating iteration technique.
Recent analytical methods based on Muskhelishvili’s complex function and superposition
principle also remain in the modeling of colinear cracks [111,112], which are too poor to
serve practical engineering.

It has been found that complex crack distributions are difficult to be solved by tradi-
tional analytical methods and that singular integral equations (SIE) can solve the problem
of complex crack interactions [113]. Chen [114] found that the multi-crack problem can
be easily transformed into a system of Fredholm integral equations to compute the SIF.
Lam et al. [115] used the SIE to explore the effect on SIF by the interactions of the cracks.
Cheung et al. [116] combined the Fredholm integral equation used for the infinite plate
crack problem with a weighted residual method to solve the multi-crack problem. Yavuz
et al. [117] analyzed the interactions of cracks in an infinite plate and determined the overall
stress field and SIF. Chen [118,119] provided a review of the integral equations for the
planar elastic cracking problem and split the plate into two edge value problems for the
integral solution. Shen et al. [24] computed the SIF of the inclined-parallel cracks with
different relative positions for a combination of the complex function method and the
integral method. Denda et al. [120] enhanced the accuracy of the traditional integration
method by incorporating a continuous distribution of dislocation dipoles. Doubly periodic
cracking is a problem in which the crack arrangement is characterized by periodicity, as
shown in Figure 14. Shi et al. [121–125] used SIE for a series of doubly periodic arrays of
cracks to explore the interaction problem in periodic cracks. Ayatollahi et al. [126–128] used
distributed dislocation in conjunction with Cauchy’s singular equation to solve the problem
of linear multi-crack interactions in bonded, functionally gradient, and electro-elastic mate-
rials. SIE is useful in solving the problems of nematic as well as magneto-electro-elastic
materials [129,130], where it plays a crucial role in solving multi-field coupling problems
with multiple cracks.

However, the implementation of singular integration techniques usually needs to be
realized with the help of numerical methods [131], such as boundary integral equations
(BIE) [132–134]. The boundary element method (BEM), which is a numerical implementation
of the BIE, allows the construction of a system of equations to solve the problem by dividing
the boundary into a finite number of elements and the boundary integral equations.
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4. Numerical Simulation

The study of multi-crack models reveals the complexity of the fracture behavior, where
the interactions between cracks and the interactions of stress fields constitute a complex
system that introduces unpredictable variables into the crack propagation path and velocity.
With the advancement of computer technology, numerical methods have become a key
tool for solving fracture problems due to their flexibility, low cost, and ease of multiscale
analysis and multi-physics field coupling.

Nowadays, several efficient and accurate simulation techniques, including the finite
element method (FEM), the meshfree method (MM) and the boundary element method
(BEM), have emerged. These techniques have enhanced our ability to understand and
predict complex crack behavior. It is worth noting that these numerical methods enlist
completely different mechanisms in solving crack propagation paths due to their own
different principles. For example, extended finite element methods (XFEM), extended
isogeometric analysis (XIGA), and boundary element methods (BEM) are based on contin-
uum mechanics and use crack propagation criteria such as the maximum tangential stress
criterion to determine the cracking, and the phase field method (PFM) is usually combined
with continuum mechanics, which does not need to track the crack surface. The above
methods usually assume that the material is homogeneous, continuous, and linear-elastic
or elasto-plastic in modeling. On the contrary, the discrete element method (DEM) and
peridynamics (PD) do not belong to continuum medium mechanics and naturally satisfy
the conditions of random crack propagation through the contact and bond connection
of discrete bodies, which gives these two methods a natural advantage in the study of
multi-crack propagation problems in non-homogeneous, discrete media.

This section will focus on the application of numerical methods to multi-crack prob-
lems, demonstrating how they can provide strong support for deepening theoretical re-
search and innovation in engineering practice.

4.1. Extended Finite Element Method

The FEM is one of the most representative numerical analysis tools due to its excellent
applicability and flexibility. However, FEM depends on mesh and is difficult to apply
to unknown crack paths and crack tip singularities. Although it has been reported in
the literature that FEM can be improved or combined with other numerical methods to
solve some multi-crack problems [135–137], difficulties limit the scope of application of
FEM in complex fracture problems. To overcome these difficulties, the extended finite
element method (XFEM), which demonstrates significant advantages with its efficiency and
accuracy in dealing with multi-crack fracture problems, has emerged. XFEM effectively
captures the singularity of the crack tip by introducing an enrichment function and tracing
crack surfaces by techniques such as the level set method, without the need to predefine
the crack path.
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XFEM is vital in the study of fracture problems, and the analysis of multi-crack models
has been developed. In 2000, Daux et al. [138] pioneered the use of XFEM to study the
phenomena of arbitrary branched and intersecting cracks. The meshing principles for XFEM
are different from those for FEM. The FEM approximation of displacement associated with
Figure 15a is

uh(x) = ∑
i∈I

uiϕi(x), I = {1, . . . , 17} (12)

where ui is the displacement at node i and ϕi is the bilinear shape function corresponding
to node i. The approximated displacement by XFEM associated with Figure 15b is

uh =
5
∑

i=1
uiϕi(x) +α8HI I(x)(ϕ6 + ϕ7)

+α12(ϕ9 + ϕ10 + ϕ11) +β12HI(x)(ϕ9 + ϕ10 + ϕ11)
+γ12 J(x)(ϕ9 + ϕ10)
+α15(ϕ13 + ϕ14) +β15HI(x)(ϕ13 + ϕ14)
+α18(ϕ16 + ϕ17) +β18HI(x)(ϕ16 + ϕ17)

(13)

where α, β, γ are the corresponding nodal vector variables, and the enrichment functions
HI(x), HII(x), and J(x) are defined as in Figure 15b. As shown in Figure 15c, the enrichment
process of the main crack (solid line) branched cracks (dashed line) is carried out by the
finite element shape function of the support point near the junction A. If we consider a
main crack, which is connected to several other cracks, the approximated displacement is

uh(x) = ∑
i∈I

uiϕi(x) +
Nc
∑

j=1
∑

i∈Lj

ai,jϕi(x)Hj(x) +
Nt
∑

j=1
∑

i∈Kj

ϕi(x)
(

4
∑

l=1
bl

i,jF
l
j (x)

)

+
Nx
∑

j=1
∑

i∈Jj

ci,jϕi(x)Jj(x)
(14)

where Nc is the total number of cracks, Nt is the number of crack tips, and Nx is the number
of nodes.
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Figure 15. (a) FEM mesh. (b) XFEM mesh and definition of the discontinuous enrichment function.
(c) Enrichment for branched cracks [138].
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Belytschko et al. [139] modeled the discontinuity of arbitrary defects in the XFEM.
Budyn et al. [140] introduced a crack-length control scheme to model arbitrary multi-
cracks. Mousavi et al. [141] proposed a treatment of intersecting and branched cracks
by harmonic enrichment functions. Richardson et al. [142] proposed a new geometric
cutting algorithm to simulate crack propagation in complex geometries. Xu et al. [143]
extended the junction enrichment in XFEM to simulate branched dynamic cracks. Sutula
et al. [144–146] developed a minimum energy method for multiple cracks propagation.
Agathos et al. [147] proposed a new algorithm in 3D structures for the multi-crack problem.
Chen et al. [148] applied the phantom node method proposed by Song et al. [149] to solve
multiple crack problems by the mesh-cutting technique. Ding et al. [150,151] developed a
variable node XFEM with local mesh refinement. As shown in Figure 16a,b, Wen and Wang
et al. [152,153] developed an improved XFEM that introduces the enrichment of crack tip
singularities, which solves the problems of combining the level sets and the disorder of the
global stiffness matrix in multi-crack problems. Its simulated crack propagation for double-
crack and multi-crack problems is shown in Figure 16c,d. In numerical methods based
on continuum mechanics, materials are usually assumed to be homogeneous and linear
elastic. Ideal elastic-plastic intrinsics, segmented linear models, or the Ramberg–Osgood
model are used for elasto-plastic modeling as an approximation of the material properties.
Gajjar et al. [154,155] simulated multi-crack problems in plastic materials with XFEM.
Fatigue problems usually accompany plastic materials; XFEM can effectively simulate multi-
crack propagation under fatigue loading [34,156–158], and the work of Singh et al. [157]
demonstrated that XFEM can effectively simulate fatigue propagation containing multiple
discontinuities (holes, micro cracks and inclusions). Zhu et al. [159] used XFEM to simulate
fatigue fractures in steel under stress corrosion. Currently, scholars have successfully
implemented XFEM in commercial finite element software such as ABAQUS [160] and
COMSOL [161], bringing this advanced technology into wider engineering applications.

4.2. Extended Isogeometric Analysis

Extended isogeometric analysis (XIGA) introduces a crack tip enrichment function to
capture the singular stress field, which provides high efficiency and accuracy when dealing
with multi-crack fracture problems. XIGA uses non-uniform rational B-splines (NURBS)
as the basis function, allowing direct conversion from CAD models to numerical analysis
without the need for remeshing. XIGA uses higher-order elements to obtain higher accuracy
and local refinement compared to traditional FEM, making it suitable for simulating more
complex geometries. In XIGA, the control node x = (x, y) corresponds to the node ξ = (ξ, η)
in parametric coordinates with an approximate displacement of [162]

uh(ξ) =

Standard isogemetric approximation︷ ︸︸ ︷
nen

∑
i=1

Ri(ξ)ui + enrichment terms (15)

where Ri is the NURBS basis function and ui is the standard DOF associated with the
control node i. In fracture problems, XIGA is usually combined with the Heaviside function
to characterize the cracks and uses the maximum tangential stress criterion to determine
the direction of crack propagation. The approximations of transverse displacement and
rotational components for cracks are [163]

ωh(ξ) =
nen

∑
i=1

χi(ξ)ωi +

nc f

∑
j=1

χj(ξ)H(ξ)aj +
nct

∑
k=1

χk(ξ)

(
4

∑
α=1

βα(ξ)bω
k

)
(16)

ψh(ξ) =
nen

∑
i=1

χi(ξ)ψi +

nc f

∑
j=1

χj(ξ)H(ξ)aψ
j +

nct

∑
k=1

χk(ξ)

(
4

∑
α=1

Fα(ξ)b
ψ
k

)
(17)
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where H(ξ) is the Heaviside function, βα and Fα are the translational and rotational enrich-
ment functions of the crack tip, a and b are the additional DOFs of the crack tip, nen is the
number of control points, and ncf and nct are the number of control nodes for the Heaviside
function and the crack tip enrichment function. Bhardwaj et al. [163] used XIGA against
XFEM to calculate the SIF, and applied it to a plate with two cracks. The discretization of
the cracking plate and sub-triangular dissections of the elements at the crack tip are shown
in Figure 17.

Singh et al. [162,164] combined XIGA with higher-order shear deformation theory
to calculate the SIF of crack tips in bilaterally cracked plates under two types of out-of-
plane loads and multi-cracks in functional gradient plates. Gu et al. [165–167] proposed
an adaptive XIGA based on LR B-splines, which can be used for curved surface cracks,
multi-cracks, and a variety of complex structures with cracks in isotropic and anisotropic
media. The adaptive XIGA element segmentation during crack propagation is shown in
Figure 18. Yu et al. [168] proposed an error-controlled adaptive XIGA method for evaluating
the multi-crack fracture behavior in Mindlin–Reissner plates. The XIGA method has been
further applied by scholars to the multi-crack fracture problem in anisotropic piezoelectric
materials [169,170]. In a recent study, Jiang et al. [171] used the B++ spline for the linear
elastic single-crack and multi-crack fracture problems in XIGA.
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4.3. Boundary Element Method

The elastic boundary element method (BEM) based on the boundary integral equation
(BIE) has been applied to solve fracture problems for many years. In BEM, the integral
terms in the boundary integral equation are approximated by numerical integration, and
then the resulting system of equations is solved to obtain the value of the unknown function
on the boundary. Assuming that the displacement at the boundary point x’ is continuous,
the boundary integral of its displacement ui is [172]

Cij(x′)uj(x′) + V.P.
∫

Γ Tij(x′, x)uj(x)dΓ =∫
Γ Uij(x′, x)tj(x)dΓ +

∫
Ω Uij(x′, X)tj(X)dΩ x ∈ Γ, X ∈ Ω

(18)

Tij and Uij denote the traction and displacement at the boundary point x, V.P. denotes the
Cauchy principal value integral, the problem domain is Ω, and the boundary is denoted as

Γ = S +
K

∑
k=1

Γk
+ +

K

∑
k=1

Γk
− (19)

where K is the total number of cracks, S is the problem domain boundary, and Γk
− and

Γk
+ are the two crack surfaces of the kth crack. The calculation of the boundary element

method for the multi-crack problem can be simplified to multiple single-crack problems by
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giving crack partitions, or it can be calculated by correcting the traction force tj for each
crack element by considering the other cracks [120]. The two-dimensional fracture problem
and the element arrangement of the crack tip are shown in Figure 19 [173].

A proprietary program is needed to calculate the integrals on the problem domain
boundaries and crack boundaries [174–176]. BEM has developed many variants in solving
the multi-crack fracture problem, and the interaction integrals are usually used in calcula-
tion of the SIF. Denda et al. [120,177,178] developed a dislocation and point force approach
to BEM for multi-cracks in isotropic and anisotropic media, which solves a series of fracture
models in Figure 20. Wang et al. [179] proposed a new BIE and BEM for planar elastomers
containing multiple cracks and holes with finite and infinite boundaries. Gray [180] et al.
proposed the modified quarter-point crack tip elements for 2D boundary integral fracture
analysis. Sutradhar et al. [173] proposed an interaction integration method for evaluating
T-stress and SIF for 2D cracking problems by a symmetric Galerkin boundary element
method. Saez et al. [181] proposed a 2D BEM based on displacement and traction BIE
to analyze multi-crack fractures of piezoelectric solids. Guo et al. [182] proposed a fast
multipole BEM for solving the 2D multi-crack problem in linear elastic fracture mechanics.
Wu et al. [183] proposed a new BEM formulation to simulate cracks at micrometer scale.
Liu et al. [184] proposed a fast multipole BEM for simulating crack propagation in 2D linear
elastic solids. Hwu et al. [185] designed a meshless element along the boundary of holes or
cracks to deal with the 2D anisotropic elastic solid problem. Cong et al. [186] proposed a
method to simulate the crack propagation paths of multi-cracks in structures by coupling
the crack tip characterization with the extended BEM.
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Figure 19. (a) Two-dimensional fracture problem. (b) Element arrangement of the crack tip [173].

4.4. Discrete Element Method

The discrete element method (DEM) is a numerical method used to simulate discon-
tinuous media, and is particularly suitable for fracture and damage problems in materials
such as particles, rocks, concrete, etc. The DEM does not require a mesh; the material is
considered to consist of discrete particles, and the interactions between the particles are
described by Newton’s second law and the contact force model. Therefore, DEM is not
dependent on mesh or the fracture criterion and is naturally suitable for simulating large
deformations and multi-crack propagation in discrete bodies with complex shapes. How-
ever, DEM suffers from large errors and high computational costs in solving continuous
problem in linear elastic and elasto-plastic media that are the specialties of methods such as
XFEM. In the DEM, the general form of particle distribution is shown in Figure 21a–d [187],
and the forms of cracks between particles are shown in Figure 21e,f [188].
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DEM is mainly used in the analysis of fracture behavior of rocks. Especially in the
last few years, the development and application of the method has shown a significant
boom trend and a focus on the multi-crack problem. Fractures of prefabricated cracks are
a common object for fracture problems. Li et al. [189] analyzed a cement mortar member
with parallel cracks under uniaxial compression based on DEM, and the crack propagations
are shown in Figure 22a–c. Wang et al. [190] conducted a series of DEM numerical uniaxial
compression tests on 3D-printed rock specimens to investigate the mechanical behavior
and fracture modes. Sun et al. [191] used DEM to study the effect of size on the strength
and cracking pattern of crystalline rocks with artificial defects. DEM can also capture
the fracture phenomena of rocks that have holes, joints and stratum [192,193]. Zhong
et al. [188] reconstructed a DEM that can reflect the rock mechanical properties and damage
modes of shale specimens. The fracturing of shale layers at different deflection angles
is shown in Figure 22d–g. DEM can accurately construct fluid solid coupling models to
simulate rock cracking under fluid pressure [194,195]. Hofmann et al. [196,197] studied the
diffusion of cracks during hydraulic fracturing in rocks. The multi-crack propagation under
fluid injection in a rock is shown in Figure 22h. Papachristos et al. [198] developed a fully
coupled DEM hydrodynamic model. Lee et al. [199] investigated the fracture interactions
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of semicircular bending members of shale under complex hydraulic loading. Liu et al. [200]
proposed an improved fluid flow model for fractured porous media based on the coupled
DEM model of bonding.
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DEM can also be combined with other numerical methods to solve the multi-crack
problem. Shao et al. [201] coupled FEM and spheropolyhedral-based DEM to predict the
propagation of multiple cracks in concrete beams. Jiao et al. [202] combined the lattice
Boltzmann method, DEM, and the theory of damage development in rocks to investigate
the thermal–hydraulic–mechanical coupling for branched crack propagation. In addition to
fractures in rocks, DEM has been applied to multi-crack fracture problems in polymers [203]
and soils [204].

4.5. Meshfree Methods

Meshfree methods (MMs) are a type of numerical method that does not require
traditional meshing. Belytschko et al. [205] applied the least squares approximation to a set
of equations from Galerkin’s weak formulas to formulate the element-free Galerkin method
(EFGM), where the problem domain consists of a set of nodes, and numerical integration
is carried out with the help of a background mesh for numerical integration. The moving
least squares interpolation function in EFGM is [206]

uh
α(x) = pT(x)aα(x) +

nc

∑
j+1

[
kj

1Qj
1α(x) + kj

2Qj
2α(x)

]
, α = 1, 2 (20)

where aα(x) is the vector of coefficients to be solved, nc is the number of cracks, kj
1 and kj

2

are the unknown coefficients of jth crack, Qj
1α and Qj

2α form the singularity of crack tips,
p(x) is the basis function, and the 2D linear basis function is

pT(x) = [1, x, y] (21)

To capture the stress singularity at the crack tips, it is effective to add enrichment terms
after the regular term of the basis function. Li et al. proposed a complex variable enrichment
basis to reduce the computational effort [207–209]. EFGM has significant advantages in
dealing with problems with complex geometries, large deformations, contact problems,
fractures, and crack propagation, while the traditional methods need to be improved in
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multi-crack problems. For example, node refinement is needed for areas with high stress
singularity, as shown in Figure 23a,b [210], or special treatment of the weight function in
regions of multiple crack tips, as shown in Figure 23c–e [211].
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Figure 23. (a) Two-crack fracture model. (b) Node refinement of crack propagation [210]. Diffraction
method spline weight function (λ = 2) corrected by the MCW method. (c) Two parallel cracks,
(d) double corner and spacer cracks, and (e) two corner connected cracks [211].

Duflot et al. [212,213] analyze the fracture problem and characterize the crack prop-
agation with triangular fragments. A meshfree analysis was carried out for 2D and 3D
double crack propagation. Muravin et al. [211] proposed a multiple crack weights method
to solve interacting crack problems by a meshfree numerical method. Singh et al. [214–216]
conducted a systematic study of MM for the multi-crack problem, and proposed simulat-
ing the interacting cracks with an intrinsic enriched EFGM, The node stiffness matrix is
weighted for the local coordinates of different crack tips as

[
Kij
]

total =
nc

∑
i=1

[
Kij
]

i × Ri (22)

where nc is the total number of crack tips and Ri is the proportion of the effect of each
crack tip on the computed node stiffness matrix, which is related to the distance between
them. Barbieri et al. [217,218] also proposed intrinsic enrichment of the weight function
for the numerical treatment of multiple arbitrary cracks. Zhu et al. [210] investigated the
simulation of complex crack propagation by the independent cover meshfree method. Ai
et al. [219,220] combined the weak MM and the cracking particle method for 2D brittle
multi-crack propagation in thermo-mechanical coupling. Memari et al. [221] investigated
the efficiency of the Petrov–Galerkin method and the linear test-function approximation
method for complex crack propagation problems. Zhao et al. [222], based on the EFGM,
developed a hydraulic crack propagation model to study multiple cracks. In addition to
simulating linear elastic materials, the meshless method can easily be adapted to simulate
large deformation problems of hyperelastic materials, as it is not restricted by the connection
between the mesh and the nodes. Nguyen et al. [223] performed a meshfree analysis of
multiple crack propagation in hyperelastic solids. Ahe member that has two cracks is
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shown in Figure 24a, and the nodal displacement contour of crack propagation is shown in
Figure 24b.
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Meshfree methods are now widely used to deal with nonlinear problems [224–227].
Except for EFGM, smooth particle hydrodynamics (SPH) is a meshfree, pure Lagrangian
particle method that describes material behavior through interactions between particles. SPH
was initially used for fluid simulations. It has simulated the fracture damage in rocks [228–230]
and the multi-crack dynamic fracture problem of brittle polymers [231] successfully.

4.6. Peridynamics

Peridynamics (PD) is a numerical method for simulating material damage and crack
propagation. It does not belong to the class of method based on continuous mechanics like
DEM and is suitable for modeling granular materials. The problem domain is discretized
into several material points, and the whole model is simulated by considering the interac-
tions between the material points. The PD equation based on the parameter position x and
time t is [232]

ρ(x)
..
u(x, t) =

∫

Hx
f
(

x′, x, u, u′, t
)
dV + b(x, t) (23)

where ρ is the mass density,
..
u(x, t) is the acceleration, Hx is the domain of integration, δ

is the radius of Hx, x′ is the interaction point of x, ξ is the initial distance between x and
x′, η is the relative displacement at deformation, f(x′, x, u, u′, t) is the peridynamic force
of non-local interaction, and b(x, t) is the body force. PD does not rely on mesh, and a
large number of material points are connected to each other by bonds. The broken bonds
form the cracks that are propagating, branching and aggregating. The scalar function that
controls bond breakage between material points is

µ =

{
1 , s < s0
0 , others

(24)

where s is the elongation and s0 is the critical elongation, the bond is intact when η = 1,
otherwise the bond is considered to be broken. The interaction between the material points
before and after deformation in the PD is shown in Figure 25 [21].
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PD does not belong to the scope of continuum mechanics and is naturally suited to
solving multi-crack fracture problems in concrete, rock and some silicate inclusions due to
its particle characteristic [233–235]. Madenci et al. [232,236] applied PD to the problem of
crack propagation in glass plate and compared it with experiments as well as other numeri-
cal methods. Bobaru et al. [237–239] investigated the dynamic branched crack propagation
in brittle materials by PD. Zhou et al. [240,241] developed an extended non-ordinary state-
based PD for simulating the process of crack initiation, propagation, and coalescence in
concrete and rock subjected to quasi-static and dynamic loading. Dai et al. [242] proposed a
dual-horizon peridynamics model to simulate multi-crack propagation in concrete. Shojaei
et al. [243] proposed a hybrid meshfree discretization to enhance the efficiency of PD in
dealing with interacting cracks. Ma et al. [21] introduced a strain energy density softening
criterion in PD to reflect the damage characteristics of rock materials. The PD simulation
results for parallel cracks in concrete under compression are shown in Figure 26a. Wang
et al. [244] developed a two-parameter extended bond-based PD model. Zhou et al. [245]
proposed a Cosserat continuum-based PD model to predict rock fracture modes.

Nowadays, scholars have studied PD in enough depth to make it applicable to all
kinds of homogeneous and non-homogeneous materials in multi-crack fractures [246,247].
Stress distributions in the tension of brittle plates containing doubly periodic rectangular
arrays of cracks and diamond-shaped arrays of cracks simulated by Zhou et al. are shown in
Figure 26b,c [241]. Bie et al. [248] proposed a fully coupled thermo-mechanical dual-horizon
peridynamic model to solve problems involving branched cracks and kinked cracks in both
homogeneous and inhomogeneous materials. The crack propagation patterns of ceramic
thin plates under thermal shock are shown in Figure 26d–i. Chu et al. [249] used PD to
simulate a variety of fracture modes in a thin-film substrate system. PD can also be coupled
with FEM to perform multiscale multi-crack fracture simulations from the microscopic to
macroscopic scale [250,251].

4.7. Phase Field Method

The phase field method (PFM) is a computational method for modeling crack propaga-
tion and phase transitions in materials. It describes the crack interface through a continuous
phase transition process and uses phase field variables to characterize the internal structure
of the material and the cracks. PFM is based on the minimization of energy, which regards
fractures as a competition between elastic and surface energy. The equation of the energy
minimization problem is [252]

E(u, Γ) =
∫

Ω/Γ
ψ(ε(u))dV

︸ ︷︷ ︸
Elastic strain energy

−
(∫

Ω
bTudV +

∫

∂Ωt
tTudA

)

︸ ︷︷ ︸
External work

+ Gc

∫

Γ
dΓ

︸ ︷︷ ︸
Fracture surface energy

(25)

where Ψ(ε(u)) is the elastic strain energy density, the external work is determined by the
body force b and the traction force t, Gc is the critical energy release rate, and Γ is the surface
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of cracks. Introducing the phase field s, regularizing the line integral in Equation (25),
and transforming the line integral into a volume fraction, the representation of the surface
cracks become diffuse, and the equation for crack propagation, branching, and aggregation
can be solved as

E(u, Γ) =
∫

Ω (1 − s)2ψ(ε(u))dV−
(∫

Ω bTudV+
∫

∂Ω tTudA
)

+
∫

Ω
Gc

4l
(
s2 + 4l2∆s

)
dV

(26)

where l is the crack width parameter s = 1 at complete damage to the structure and s = 0 at
intact structure, as shown in Figure 27 [253].
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where Ψ(ε(u)) is the elastic strain energy density, the external work is determined by the 
body force b and the traction force t , Gc is the critical energy release rate, and Γ is the 
surface of cracks. Introducing the phase field s, regularizing the line integral in Equation 
(25), and transforming the line integral into a volume fraction, the representation of the 
surface cracks become diffuse, and the equation for crack propagation, branching, and 
aggregation can be solved as 
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where l is the crack width parameter s = 1 at complete damage to the structure and s = 0 at 
intact structure, as shown in Figure 27 [253]. 

Figure 26. (a) Parallel cracks in concrete under compression [21]. Stress distributions of doubly
(b) periodic rectangular array of cracks and (c) diamond-shaped array of cracks [241], (d–i) crack
propagation modes of ceramic thin plates under thermal shock [248].
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The advantage of PFM is the ability to deal with complex and 3D crack paths without
the need for predefined crack paths, which makes it suitable for simulating the process of
crack initiation, propagation and branching. Schänzel et al. [254] overcame the shortcom-
ings of the crack propagation model by introducing a fracture phase field and modeled
the two-crack propagation of rubber under large deformations, as shown in Figure 28a.
Hou et al. [255] proposed a PFM to model crack interactions of asphalt binder. Mikelic
et al. [256,257] extended the PFM to a fluid-driven crack problem. The cracking process of
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porous elastic plate is shown in Figure 28b. Ziaei-Rad et al. [258] proposed a variational
splitting method for multiple and branched cracks to identify crack paths from PFM. Patil
et al. [259] proposed a multiscale PFM for modeling crack propagation in composites. The
cracking in the vertical fiber direction is shown in Figure 28c. Heider et al. [260] simulated
subcritical crack propagation in porous solids under liquid pressure based on a PFM. You
et al. [261] proposed a phase field damage model to capture the geotechnical materials
with branching and propagation of cracks. Zhang et al. [262] introduced a fatigue history
strain parameter in the phase field framework to capture the characteristics of cracks in
fatigue fractures.

PFM also demonstrates its advantages in modeling multi-crack problems in rocks,
which have complex crack path paths, anisotropy, multi-physical field coupling and multi-
scale effects. Zhuang et al. [263] simulated both single-crack and multi-crack phenomena
in rock deformation and damage by improved PFM. Fei and Yu et al. [264,265] proposed
a double-phase-field formulation, which employs two different phase fields to describe
cohesive tensile fractures and frictional shear fractures of rocks. Huang et al. [266] used
PFM to simulate semi-circular bend tests to investigate the effect of two parallel veins on
the fracture behavior of shale. Li et al. [267] proposed a PFM based on the unified crack
propagation criterion.

With the advancement of computer technology, PFM has been combined with other
numerical techniques for applications in multiscale simulation and fracture mechanics.
Sun et al. [253] proposed a finite element meshfree model-phase field for multi-crack
fracture problems. Zhang et al. [268] combined XFEM and PFM to simulate hydraulic
crack propagation in unconventional shale formations with frictional and cemented natural
cracks. Zhou et al. [269] proposed a smoothed particle hydrodynamics coupled PFM to
simulate crack propagation and coalescence in rocks. Xu et al. [270] proposed an improved
PFM to simulate mixed-mode cracking in rocks. Wang et al. [271] combined PFM and FEM
to solve partial differential equations. The simulated crack propagation in rock is shown in
Figure 28d.
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4.8. Other Numerical Methods

In the study of multi-crack interactions or crack propagation in materials, advanced
numerical methods are essential to provide accurate predictions and insights into complex
fracture mechanics. In addition to the mainstream numerical methods mentioned above, the
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numerical manifold method (NMM), displacement discontinuity method (DDM), hybrid
displacement discontinuity method (HDDM), etc., are also useful in dealing with multi-
crack fracture.

NMM is known for its simplified meshing and efficient ability in handling complex
crack patterns. Because of the concepts of mathematical coverage and physical coverage, it
allows cracks to grow naturally without the need for mesh reconfiguration [272,273]. NMM
unifies the analysis of continuous and discontinuous media and provides an approach
to analyze complex shapes with discontinuities, and it allows accurate simulation of
multiple cracks in gradient-functional materials [274], viscoelastic materials [275], and
rocky materials [276] under fluid pressure [277–279]. DDM simulates cracks by introducing
displacement discontinuities on the crack face, which can guarantee the singularity of the
crack tips, and is suitable for multi-crack fracture problems in rock mechanics [280–282].
HDDM combines DDM and meshfree methods to deal with complex discontinuities, and
is suitable for the analysis of multi-hole and multi-crack interaction problems in planar
elastic media [283,284].

In summary, all numerical methods have their own advantages and drawbacks in
the study of multi-crack fracture mechanics, and together, they have contributed to the
people’s understanding of complex fracture phenomena, making it possible to predict and
control the fracture behavior of materials more accurately and providing a powerful tool
for engineering and scientific research. It is necessary to choose the appropriate numerical
methods for different fracture problems.

5. Discussion

Multi-crack fracture mechanics is an important research area in the field of mate-
rial science and engineering, aiming to reveal the complex dynamics of crack initiation,
propagation and interaction. In recent years, the field has made significant progress in
experimental and theoretical research and numerical simulations. However, there are still
challenges and room for improvement. A summary of present multi-crack research is
as follows:

(1) Experimental observation

Experiments are the basis for understanding the fracture behavior of materials. In
experiments, researchers can observe the whole process of cracks, from initiation to prop-
agation until fracture. However, the propagation of multiple cracks in experiments is
affected by external loads, intrinsic material defects, and interactions of multiple cracks,
which reduces the repeatability of the experiments. Currently, there is a lack of experi-
mental standards related to multiple cracks, and most of the studies are only designed
to observe the fracture phenomena and fail to analyze the fracture parameters. In the
future, experimental studies will incorporate advanced imaging techniques and real-time
monitoring systems to capture multi-crack fracture behavior more accurately.

(2) Theoretical modeling

Theoretical modeling helps in understanding fracture phenomena. By developing
new theoretical models, researchers can predict the fracture behavior. However, theoretical
studies are often limited by mathematical capabilities and are confined to dealing with
simple problems, leaving a gap with practical applications. In addition, most theories
are based on the assumptions of homogeneity, linear elasticity, and ideal elasto-plasticity,
which are not satisfied by most materials in reality, making it difficult for theories to explain
the fracture behavior of many materials at the macro level. Future theoretical studies may
consider simulating the random distribution of cracks and the fracture problems of complex
materials that contain defects.

(3) Numerical simulation

Nowadays, numerical simulation is the main tool for the investigation of multi-crack
problems and provided analytical and predictive tools for engineering applications. How-
ever, numerical methods face challenges such as model assumptions, computational costs,
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multi-physical field coupling and numerical stability. For example, XFEM, XIGA, and
BEM are based on the theories of continuous homogeneity, linear elasticity, and ideal
elasto-plasticity in solving multi-crack fracture problems, but are not suitable for simulat-
ing granular and hyperelastic media due to the limitation in the mesh. Conversely, DEM
and PD are based on the modeling of particles and material points and are suitable for
simulating granular materials, but not for the continuous medium. Although they can
simulate the large deformation problems of hyperelastic materials, MM and PFM present
the problem of complicated pre-processing. Most explorations on numerical methods are
still based on ideal linear elasticity, and there is a lack of research on the basis of plasticity,
hyperelasticity, and other complex constitutive models in applied to the problem of multi-
crack fractures. Currently, many of the methods have not yet produced software tools that
require researchers to program. In the future, numerical simulation in multi-crack problems
will improve the computational efficiency by focusing on multi-scale modeling and multi-
physical field coupling analysis, and by expanding the simulation of fracture problems
with more complex constitutive models. Table 1 summarizes the scope of applicable objects,
advantages, and limits of the various methods in detail.

Table 1. Summary of various methods.

Method Applicable Objects Advantages Limits

Experiments
Rock and concrete, with a variety of
composites, compound facings,
glass, polymers, etc.

Great visualization
High reference value
Verification

Poor repeatability
Lack of relevant standards
High cost
Limited scalability

Theoretical modeling Ideal linear elastic or plastic
materials (isotropic/anisotropic)

Predictive
Deeper understanding
Simplified complexity
Guiding experiments and
numerical simulations

Idealization
Mathematical complexity
Difficulty of experimental verification
Application limitations

XFEM Rocks, composites, metals, ceramics,
plastics, etc.

Arbitrary crack paths
No remeshing required
Multi-physics coupling

High computational costs
Numerical stability
Complex pre-processing

XIGA Rocks, composites, functional
gradient materials, etc.

High-order accuracy
No mesh required
Multi-physics coupling
Multiscale simulation

High computational costs
Complex technical implementation
Software limitations

BEM Rock, concrete, metals, alloys,
ceramics, glass, composites, etc.

Precise boundary
condition handling
Application to infinite
domain problems
Low computational cost
Stress singularity treatment

Complex integration
Complex geometric challenges
Multi-crack interaction handling
Software limitations

DEM Granular materials such as sand,
soil, rock, composite materials, etc.

Dynamic crack propagation
No mesh required
Complex boundary adaptation
Multiscale problems

High computational cost
High parameter requirements
Dynamic loading challenges
Complex post-processing

MM Rock, concrete, metals, alloys,
composites, etc.

No mesh required
High order accuracy
Dynamic crack paths
Localized refinement capability

Technical implementation complexity
Stability considerations
Software limitations

PD Rock, concrete, composites, etc.

Non-localized
Arbitrary crack paths
No remeshing required
Dynamic fracture simulation
Internal interactions

High computational cost
Numerical stability challenges
Parameter calibration

PFM Rock, concrete, metals, alloys,
composites, etc.

Natural crack path
Complex crack processing
Multi-field coupling
Continuous description
Multiscale simulation

High computational costs
Parameter calibration
Numerical stability
Software limitations
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6. Conclusions

Cracks in engineering often do not exist singly, but rather in interactions with each
other. Multi-crack fracture mechanics focuses on understanding and predicting the effects
of the initiation, propagation, and interaction of multiple cracks in different materials. This
area of research is critical to improving the safety and reliability of engineering structures.
Experiments, theoretical models, and numerical simulations are complementary to each
other. However, the research space for the study of multi-crack fracture problems is still vast.
For practical engineering, the appropriate research method should be chosen to address
the multi-crack fracture problem, with the aim of solving it accurately and efficiently.
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256. Mikelić, A.; Wheeler, M.F.; Wick, T. A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous

medium. Multiscale Model. Simul. 2015, 13, 367–398. [CrossRef]
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Abstract: In view of the rolling bearing fault signal non-stationarity, strong noise can lead
to low fault diagnosis accuracy. A Swin Transformer and generalized S Transform fault
diagnosis method is proposed to solve the problems of difficult signal feature extraction
and low diagnostic accuracy. Generalized S transform is used to improve the resolution of
bearing fault signals, the Swin Transformer model is used to master the shallow weight
required for identifying rolling bearing faults for highly fault characteristic expression
signals, and the deep weight is obtained by backpropagation training. Finally, the extracted
features are input into the improved Softmax classifier for fault classification. The various
signal processing methods for the bearing signal processing ability are compared, and
this model’s diagnosis ability and the ability to resist noise are verified. The experimental
results show that the method has a remarkable ability and an accuracy of above 90% in the
anti-noise test and also has a good robustness.

Keywords: rolling bearing; vibration signal; fault diagnosis; Swin Transform; generalized
S transform

MSC: 37M10

1. Introduction
In recent years, in the context of the era of the continuous development and integration

of techniques like deep learning, “Internet Plus (+)”, Internet of Things (IOT), intelligent
detection, etc., the industrial field is experiencing a huge leap from Industry “3.0” to
Industry “4.0” [1]. The operational status of bearings, as the core components of modern
machinery, which has a growing tendency to be high-speed and high-precision, directly
affect the safety and efficiency of the entire production process. It is important to note
that at the moment, 30% of all problems in rotating machinery equipment, including
centrifugal fans, impellers, conveyors, etc., are caused by bearing failures in the great
majority of industrial machinery [2]. Therefore, real-time, rapid, and precise diagnostics
of rotating machinery’s bearings have significant scientific relevance as well as practical
utility. Traditional techniques include vibration signal analysis [3], sound signal analysis [4],
lubricating oil analysis [5], acoustic emission detection [6], and so forth. The most popular
of them is the vibration signal analysis approach.

Nowadays, with the rise of artificial intelligence technology, data-driven intelligent
fault diagnosis methods based on machine learning algorithms have been widely stud-
ied [7–11]. Conventional machine learning algorithms for diagnostics mainly consist of
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characteristic extraction and pattern classification processes [10,11], and the feature extrac-
tion usually uses fast Fourier transform [12], variation mode decomposition [13], statistical
features [14], spectral analysis [15], wavelet transform [16], and Hilbert–Huang trans-
form [17], as well as other advanced signal processing methods to extract time domain,
frequency domain, and time–frequency domain features from raw fault data. Zhang [18]
used a one-dimensional CNN for the fault diagnosis of rolling bearings, eliminating the
need for noise reduction preprocessing in traditional fault diagnosis, directly inputting
the original one-dimensional vibration signal into the CNN for feature extraction and
classification, and introducing a certain degree of interference to enhance the anti-noise
ability of the model. Fuan [19] proposed an adaptive one-dimensional CNN rolling bear-
ing fault diagnosis method based on particle swarm optimization for the uncertainty of
hyperparameter selection in a one-dimensional CNN, making the algorithm have a higher
diagnostic accuracy and robustness. Eren [20] proposed a compact one-dimensional CNN
fault diagnosis method, which takes the original vibration signal as the input and per-
forms one-dimensional convolution, which greatly reduces the computing cost. XiaM
et al. proposed a CNN-based fault diagnosis method for rotating machinery, which uses
the structural characteristics of the CNN network to achieve the fusion of multi-sensing
information, which has a higher diagnostic accuracy than traditional methods [21].

For environments with high noise levels and fluctuating workloads, Wei Zhang [22]
suggested a rolling bearing problem diagnostic approach based on convolutional neural
networks to eliminate the need for human feature extraction. Based on the bearing defect
diagnosis framework, Xiaoli Zhao et al. [23] presented a normalized conditional variation
auto-encoder with adaptive focal loss (NCVAE-AFL) to improve the dataset’s feature
learning capacity and achieve a better diagnostic accuracy. By combining supervised
learning with episodic metric meta-learning, Duo Wang et al. suggested a meta-learning
model based on feature space metrics and demonstrated the viability of the method via
tests [24]. Using two phases of data reconstruction and meta-learning, the novel hierarchical
recursive technique for data reconstruction suggested by Hao Su et al. is appropriate for
small-sample bearing failure detection under various operating situations [25]. Li [26] put
out a bearing failure diagnostic technique that can combine data from several sensors. This
technique employs a binary tree support vector machine (BT-SVM) for pattern identification
and defect diagnostics. The energy values of many sensors are employed as feature
vectors. It successfully cuts down on the feature extraction time while increasing diagnostic
precision. Ding Xu [27] et al. proposed a time–frequency manifold image synthesis method
to realize bearing fault diagnosis. The above study builds images based on time–frequency
methods to transform fault diagnosis problems into image classification problems.

Ville et al. [28] proposed the Wigner–Ville distribution (WVD) for secondary time–
frequency analysis, which effectively improved the focus of time–frequency analysis. Ab-
boud et al. [29] suggested an enhanced square envelope spectroscopy approach based on
the time domain filtering theory. This method had an excellent anti-interference effect
and was effective in diagnosing the vibration signal’s fault type. Time–frequency analysis
provides additional benefits over time domain and frequency domain analysis when pro-
cessing non-stationary signals. It can also define more fault features that are not accessible
in the time domain or frequency domain. However, for non-stationary signals, time domain
analysis and frequency domain analysis have several restrictions that might result in the
loss of identifying information. In this paper, we combine time–frequency analysis and
new deep learning models to use end-to-end methods for rolling bearing fault diagnosis.
In order to deal with a large amount of data, there are shortcomings of a slow processing
speed, which greatly limits the development of rolling bearing fault diagnosis technology.
The one-dimensional bearing signal is first transformed into a two-dimensional image
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signal using the generalized S transform, and then this image signal is fed into the Swin
Transformer model to identify faults. The Xichu big and small bearing dataset was used to
test the model’s efficacy, and a rolling bearing fault detection bench was constructed to test
the model’s generalization capabilities.

Recently, there are still two shortcomings that are difficult to be solved. Firstly, machine
learning-based approaches inevitably need to resort to generating discriminative features
with the help of signal processing methods, but the manual extraction of features still
requires a high level of professional knowledge. Secondly, the features obtained after
careful manual extraction and selection according to the requirements of specific tasks are
not always effective in the face of unknown working conditions or application scenarios.
As the vibration signals in real industry are becoming more and more complicated, and the
time–frequency imagery obtained from the existing time–frequency analysis methods is
still poorly focused and has serious cross-terms, and its resolution is not enough to fully
reflect the frequency and energy distribution information, it is essential to further research
the novel time–frequency analysis methods.

In this article, the GST is applied to convert 1D bearing signals into 2D image signals,
which are then introduced into a Swin Transformer model for fault identification. Using
Case Western Reserve University’s large and small bearing datasets to demonstrate the
validity of the model, a rolling bearing fault diagnostic bench was built to demonstrate the
generalizability of the model.

2. Materials and Methods
2.1. Swin Transformer

Swin Transformer is an upgraded image processing network based on the concept of
Vision Transformer with excellent image classification capability. It has four base models,
which are Swin_T, Swin_S, Swin_B, and Swin_L. Considering the complexity of the input
signals and the calculative cost, Swin_T is chosen as the basic structural model. The
architecture of the Swin Transformer (Swin_T) appears in Figure 1.
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The algorithmic process of the Swin Transformer has the following general steps:
take the three-channel RGB image signals as the input, cut the original image by module
partition (patch partition) operation, and obtain the non-overlapping image block (patch).
After expanding the block, the obtained feature is then input into the linear inlay layer to
reduce the dimensionality of the feature. Next, generate a feature block, and input this
feature block into the Swin Transformer block to perform feature extraction. After the block
splicing (patch merging) operation, the image feature size is cut to half of its original size,
and the number of channels is increased to twice their original size. The output after each
stage is the input features to the classifier for performing the image classification task.

1. Patch Merging

Patch merging is a down-sampling operation similar to pooling in convolutional
neural networks. In each stage block, it is necessary to carry out patch merging, as depicted
in the figure; input a (H ×W × C) feature, the feature points at one position apart are
labeled with the same number. After completing the labeling, the labeled feature points
are extracted and combined together in the direction of the channel. After splicing, a
new feature ((H/2) × (W/2) × 4C) is formed in the direction of the channel, after the
LayerNorm layer to normalize the pixel points, and finally, the feature is linearly processed
along the direction of the channel by the all-connected layer, and the feature is transformed
into ((H/2)× (W/2)× 2C) output. The whole patch merging process is to cut the input
feature size to half of its original size and increase the number of channels to twice their
original size. This operation can save computation and improve network computing
efficiency. Moreover, the patch merge does not lose signal and the entire patch merging
process is demonstrated in Figure 2.
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2. Swin Transformer Block

As shown in Figure 3, Swin Transformer Block consists of a Windows Multi-head Self-
Attention (W-MSA) module and a Shifted Windows Multi-Head Self-Attention (SW-MSA)
module. Windows Multi-Head Self-Attention (SW-MSA) module. And two multilayer
perceptrons (MLPs) are connected after it, and the nonlinear ability of the whole network
is enhanced by (GELU) activation function between them, which in turn improves the
fitting ability of the whole network. And there is a normalization layer (LN) before W-MSA,
SW-MSA and MLP, and a residual connection is connected after each module.
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• Multi-head self-attention mechanism

With the development in neural networks, Ashish Vaswani et al. [30] proposed a
network structure based entirely on the attention mechanism in 2017, which significantly
reduces the time required for network training. The self-attention layer can compute
the weights of local features by localizing them into global features, and then the global
features can be obtained from the sum of the local features. Nevertheless, due to the
high computational complexity of MSA, it is necessary to introduce a window module
in the Swin Transformer to reduce the computational effort of MSA. Figure 4 illustrates
the differences between MSA and window-based self-attention approaches (windowed
multiple self-attention, W-MSA).
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As Figure 4a shows, the weights for each pixel point in the feature are computed for
the ordinary multi-attention mechanism as follows in Equation (1):

Q(MSA) = 4hwC2 + 2(hw)2C (1)

Figure 4b represents the multi-attention mechanism after the addition of windows,
where the features are first divided into window spaces by windows, and then the weights
of each window space are calculated in a single degree, as follows in Equation (2):

Q(W −MSA) = 4hwC2 + 2MhwC (2)

where Q denotes the computational complexity of the multi-attention mechanism, h denotes
the height of the feature, w denotes the width of the feature, C denotes the number of
channels of the feature, and M denotes the size of the window. Since the size of the window
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is much smaller than the size of the feature, the computational complexity of using the
window is much lower than that of the non-windowed computation, which can effectively
improve the computational speed of the model.

• Offset window self-attention mechanism (SW-MSA)

Adding windows may greatly speed up the computation of weights in the feature
map, but doing so breaks the connections between windows and reduces the correlation
between local and global data. To address this problem, the Swin Transformer performs
weight adjustment with the SW-MSA module (also known as Shifted W-MSA). Figure 5
depicts the shifted feature block.
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As shown in the figure above, the features output from layer 1 circularly shift the
window to the upper left (M

2 , M
2 ) pixels to obtain the output from layer 2. When calculating

the weights, nine windows of different sizes are spliced into four feature blocks, with the
grey feature block in the middle remaining unchanged as a separate window; the feature
blocks on the four corners are spliced into a new computational window: the feature
blocks on the left, right, top, and bottom are spliced into a single window. At this time,
each window contains elements of other windows with interrelated weights, and MSA
calculations are performed fast for each feature separately, thus reducing the amount of
computation and correlating the local features with the global ones. Figure 6 shows the
schematic diagram of pixel shifting in the computation.
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2.2. Multi-Classification Algorithm

Softmax classifiers are commonly used to deal with multiple classification problems.
In this article, we improve the multi-classification algorithm based on the Softmax function.
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The mathematical expression of the Softmax function [31–36] can be expressed as illustrated
in Equation (3) below

hω(x(i)) =
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Among them, hω(x(i)) is the output value after being processed and normalized by
the Softmax classifier,

{
ω1, ω2, · · · · · · , ωp

}
is the model parameter of the Softmax classifier,

and 1
p
∑

j=1
eωmT x(i)

is to normalize the output value and reduce the output value of the model to

between 0 and 1. The ith sample in the input signal is denoted by x(i), and the probability
that this sample’s classification prediction belongs to k is ϕ

(
y(i) = 1

∣∣∣x(i) : ω
)

.
The Softmax classifier optimizes the model by using the cross-entropy loss func-

tion [25], which is computed as follows:

Loss = 1
n

m
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(
−y(i) log

(
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(
x(i)
))
−
(
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)

log
(
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(
x(i)
)))

(4)

where n is the number of input samples; m is the number of categories; y(i) is the label
corresponding to the sample; when using the Softmax classifier, the parameter is usually
expressed in a matrix, and the expression of the matrix is as follows:

ω =
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Substituting the parameters into the loss function, the loss function expression is as
follows:

Loss = − 1
m
(

n

∑
i=1

k

∑
i=1

ψ[y(i) = j] log
eωT

j x(i)

k
∑

j=1
eωjT x(i)

(6)

where ψ(·) is 1 when the predicted result is the same as the real value, and 0 when it
is different.

Due to the existence of countless vectors in the vector space, when any two of them
with an appropriately large span are given a category meaning, the sample points will be
clustered towards the corresponding category vectors, and the difference in the distance
values will be greater when the distance calculation is performed on the samples using the
standard base coordinates; thus, the category differences will be more obvious. Therefore,
the aggregation of similar features in the mapping space can be enhanced by increasing the
distance between different feature clusters, which can successfully improve the accuracy of
classification. The similarity between samples and parameters is represented by the cosine
distance, which is used together with the feature amplitude to determine the weight of the
feature vector that belongs to the final class. The modified weight formula is as follows:

Wcx =||Wc||·‖x‖ cos(ωc) (7)
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where c is the classification category, and WC is the weight index that divides features into
categories in the classifier. For a feature, the cosine distance between the value of the feature
vector and the angle between the weight vectors will determine the final classification
result.

The Softmax classification impact is the best after updating the Softmax settings
to obtain the ideal loss amount. The following formula is obtained by substituting the
modified weight parameters into the loss function.

Lossi = − log




e‖Wyi ‖·‖xi‖ cos(ωyi )

k
∑

j=1
e‖Wj‖·‖xi‖ cos(ωj)


 (8)

Among them, Wyi represents the column of the W weight matrix, xi, yi are the feature
and label of the instance, ωyi represents the angle between Wyi and xi, and Wj refers to all
weights of class j.

2.3. Troubleshooting Process

In this research, a fault classification model based on time–frequency pictures is
developed as a way to effectively raise the accuracy of fault detection. The time–frequency
characteristics of the vibration signal will be converted to a time–frequency picture, and
then the time–frequency image signals will be input into the Swin Transformer model to
carry out the automatic extraction of the features and select the Swin-T model with a smaller
specification according to the characteristics of the vibration signals. Then, the extracted
features are processed by linear full connectivity, and finally, the software classifier of
the reformer is used for the multi-classification prediction of faults. The construction of
the classification model built using the time–frequency diagram and Swin Transformer is
depicted in Figure 7. Figure 8 depicts the process for diagnosing a rolling bearing failure
using a time–frequency graph and a Swin Transformer.
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This experiment uses the bearing dataset from the experimental dataset of Case
Western Reserve University, and the bearing failure data under different working conditions
at 48 kHz are selected. The experiment includes three steps: data pretreatment, model
training, and its prediction. The following are the details regarding the experiment:

(1) The acquired vibration signal data are divided into the training set and test set in
the ratio of 8:2, the 1D vibration signal is transformed into a 2D time–frequency picture,
the size of the image output is modified, and the image is labeled with fault categories for
subsequent training and testing

(2) The model of the Swin Transformer network is constructed, its hyperparameters
(such as the number of iterations, learning rate, decay rate, batch size, etc.) are configured,
its weights and biases are initialized at random, and the training data are fed into it.
Using block splicing (patch merging), the window self-attention mechanism (W-MSA), the
offset window self-attention (W-MSA), the Shift Window Self-Attention (SW-MSA), and
multilayer perceptron (MLP) are used to extract image features, the predicted value of the
output state by forward propagation is calculated, and the parameters of the network are
updated by back propagation to make the error between the labeled value and the predicted
value smaller until the loss function reaches convergence, and then the parameters are
saved to complete the training.

(3) The test set is imported into the trained model, the classification diagnostics are
run, and the effectiveness of its classification recognition is checked.

3. Results
3.1. Experimental Data

As Figure 9 shows, this experimental bench is mainly composed of the following parts:
on the left side is a motor with a power of 1.5 KW, in the middle is a torque transducer,
and on the right side is a power tester. In the data collection experiment, a single-point
fault bearing is used, and EDM is used to manufacture faulty bearings with fault diameters
of 0.007 inches, 0.014 inches, 0.021 inches, 0.028 inches, and 0.040 inches. On the other
hand, the datasets used for model training in this article are from Case Western Reserve
University’s bearing dataset, which is commonly used to measure the performance of
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rolling bearing defect detection models. The bearings on the bearing test rig were replaced
with bearings of different failure sizes, and the vibration signal data were captured by
using accelerometers mounted on the test rig and stored at both 12 kHz and 48 kHz
sampling frequencies throughout the data acquisition experiment. Datasets under four
distinct operating situations, namely 0 hp, 1 hp, 2 hp, and 3 hp loads, of which 0.007 inch,
0.014 inch, and 0.021 inch are the same bearing type, are collected for this experiment. This
experiment selects the above three kinds of fault size of the bearing, which includes the
inner ring failure, outer ring failure, and rolling body failure; together with the normal
operation data of the bearing, the whole dataset can be divided into 10 kinds of operating
states, and according to the different loads are divided into three datasets, A, B, and C. Each
dataset is taken as 100 samples for each kind of operating state and randomly disrupted
according to 9:1. The training set and test set are divided, and dataset D is a multi-operating
condition dataset containing three kinds of loads, and the specific dataset division is
depicted in Table 1 below:
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Damage diameter 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

A
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0
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B
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C
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D
Training 2700 2700 2700 2700 2700 2700 2700 2700 400 2700

0~2
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3.2. Comparison and Analysis of Time–Frequency Analysis Approaches

In an effort to acquire models with higher diagnostic accuracy, we employed a compar-
ative validation approach utilizing the Case Western Reserve University bearing dataset to
achieve the best-performing time–frequency analysis approach. In the following, the vibra-
tion signals will be analyzed and corresponding time–frequency images will be generated
using the linear STFT, WT, and GST, and the nonlinear WVD, respectively.

(i) Short-time Fourier analysis

In short-time Fourier analysis, the choice of window length will directly affect the
resolution of the time–frequency diagram; when the window exceeds the appropriate
size, the time resolution will deteriorate, or even become a Fourier transform, which will
result in a loss of time scale information; when the window is smaller than the appropriate
size, the frequency resolution will also deteriorate, which will cause the loss of part of the
frequency information. Here, we choose 64, 128, 256, and 512 window size lengths for the
STFT, and the obtained time–frequency diagram is depicted in Figure 10 below.
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From the above four time–frequency diagrams, it has been found that the frequency
resolution of the time–frequency diagrams increases gradually when the window size
increases, and when the window size reaches 512, the frequency resolution is the best, and
the time resolution is also more obvious.

(ii) Continuous wavelet transform

In wavelet analysis, due to the choice of wavelet basis having a greater impact on
the effect of the time–frequency diagram, different wavelet bases are chosen to deal with
different signals, and so the effect is different; in order to obtain the best wavelet analysis
effect, we intercepted the Case Western Reserve University bearing failure of the subsequent
analysis of the dataset, the Grid wavelet basis, Hill’s wavelet basis, and the complex Mossy’s
wavelet basis for the signal to carry out a continuous wavelet transform, and the time–
frequency diagrams are shown in Figure 11 below.
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(iii) Generalized S transform

The generalized S transform is developed from the S transform, which is very similar
to the fundamental wavelet transform of the Morlet wavelet. However, only the Gaussian
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function part of the S transform changes the size of the window function with the frequency
and performs translational changes in the time dimension, and the chi-square harmonic
waveform part only performs telescopic changes, which makes the S transform defective
for the feature representation of non-smooth signals. So, the parameters a and b are added
to adjust the shape of the Gaussian window to optimize its resolution in the time and
frequency domains, as shown in the following equation:

GST(τ, f ) =
∫ ∞

−∞
x(t)

a| f |b√
2π

e
[−

1
2

a2 f 2b(t−τ)2]
e(−i2π f t)dt (9)

The generalized S transform combines the strengths of the STFT and the WT, effectively
avoiding the limitation of the short-time Fourier window size and the problem of selecting
the wavelet basis function, which is very advantageous in the domain of time–frequency
analysis. The time–frequency diagram obtained from the GST is illustrated in Figure 12.
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Figure 12. Generalized S transform. (a) Time domain waveform of bearing rolling element failure.
(b) Generalized S-transform time-frequency diagram.

The time–frequency analysis of the Case Western Reserve University data by the GST
gives time–frequency maps with clear time–frequency resolution, and the GST can be better
characterized by the characteristic information of vibration and its energy characteristics
are clearer.

(iv) Wigner–Ville distribution

From the time–frequency plot of the WVD in Figure 13 above, it can be noticed that the
WVD is less efficient in analyzing the bearing vibration signals, with a lower time–frequency
resolution and pseudo-distribution of superimposed interference.
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3.3. Data Preprocessing

In this experiment, firstly, the STFT, the CWT, the GST, and the WVD are compared.
Figure 14 demonstrates the acquisition capability of the time–frequency resolution.
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Figure 14. Comparison of four kinds of time–frequency diagrams.

Figure 14 compares the four time–frequency analysis approaches, from which a conclu-
sion can be drawn that the time–frequency resolution of the STFT is low, while the wavelet
analysis approach can more obviously be a time–frequency resolution, which can be seen in
the ability of the generalized S transform characteristics. Compared with the STFT and WT,
the GST has more obvious energy characteristics and more prominent signal characteristics,
while the WVD has a lower time–frequency resolution and still has pseudo-distributed
signal interference.

In the final analysis, 4096 consecutive sample points were randomly intercepted from
the original vibration data to obtain a new sample. Under the same conditions, 100 samples
were selected for each running state and the remaining 1000 samples were randomly
partitioned into a training set and test set in the ratio of 9:1. The time domain signals of
the training and test sets were converted into 2D image signals utilizing the continuous
wavelet transform approach, and the output size of the selected images was 64 × 64, as
shown in Figure 15.

3.4. Experimental Verification

The experiment is based on a Python-based PyTorch deep learning platform. The
computer operating system is Windows 10, the graphics card is NVIDIA Quadro RTX5000,
the edition of PyTorch is 1.11.0, and the running memory is 128 G. The following hyperpa-
rameter values are input to the network (Table 2).

The model has been trained and validated utilizing the above four datasets (A, B, C,
and D), and its loss functions and accuracies are depicted in Figures 16 and 17, respectively.
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Figure 15. Graph of generalized S transform results.

Table 2. Hyperparameter settings.

Image Size 64 × 64 × 3

Batch_size 8
Learning_rate 10−3

Weight_decay 10−5

Epoch 50
Optimizer SGD

The loss function curve shows that after 50 iterations in the single condition, the loss
value of the training set and the loss value of the test set are basically equal to 0, and the
loss value of the training set and the test set in the multi-condition is close to 0. From the
accuracy curve, it can be seen that the final accuracy of the dataset in the single condition
is stable at 1, and that the accuracy of the dataset in the multi-condition is close to 1. The
model achieves the accurate prediction of the fault type and performs slightly better than
the single-condition dataset.

189



Mathematics 2025, 13, 45

Mathematics 2025, 13, x FOR PEER REVIEW 15 of 23 
 

 

  
(g) Label 6 (h) Label 7 

  
(i) Label 8 (j) Label 9 

Figure 15. Graph of generalized S transform results. 

3.4. Experimental Verification 

The experiment is based on a Python-based PyTorch deep learning platform. The 
computer operating system is Windows 10, the graphics card is NVIDIA Quadro 
RTX5000, the edition of PyTorch is 1.11.0, and the running memory is 128 G. The following 
hyperparameter values are input to the network (Table 2). 

Table 2. Hyperparameter settings. 

Image Size 64 × 64 × 3 
Batch_size 8 

Learning_rate 10−3 

Weight_decay 10−5 

Epoch 50 
Optimizer SGD 

The model has been trained and validated utilizing the above four datasets (A, B, C, 
and D), and its loss functions and accuracies are depicted in Figures 16 and 17, respec-
tively. 

  
(a) Dataset A (b) Dataset B 

Mathematics 2025, 13, x FOR PEER REVIEW 16 of 23 
 

 

  
(c) Dataset C (d) Dataset D 

Figure 16. Transformation curve of loss value with the number of iterations. 

  
(a) Dataset A (b) Dataset B 

  

(c) Dataset C (d) Dataset D 

Figure 17. Accuracy variation curve with the number of iterations. 

The loss function curve shows that after 50 iterations in the single condition, the loss 
value of the training set and the loss value of the test set are basically equal to 0, and the 
loss value of the training set and the test set in the multi-condition is close to 0. From the 
accuracy curve, it can be seen that the final accuracy of the dataset in the single condition 
is stable at 1, and that the accuracy of the dataset in the multi-condition is close to 1. The 
model achieves the accurate prediction of the fault type and performs slightly better than 
the single-condition dataset. 

In order to specify the accuracy of the method proposed in this article, the perfor-
mance of the model is illustrated using Accuracy, Precision, Recall, and F1 Score, and then 
10 repetitions of the experiment are performed for each dataset and the average is taken 
and the results are shown in Table 3 below. 

  

Figure 16. Transformation curve of loss value with the number of iterations.

Mathematics 2025, 13, x FOR PEER REVIEW 16 of 23 
 

 

  
(c) Dataset C (d) Dataset D 

Figure 16. Transformation curve of loss value with the number of iterations. 

  
(a) Dataset A (b) Dataset B 

  

(c) Dataset C (d) Dataset D 

Figure 17. Accuracy variation curve with the number of iterations. 

The loss function curve shows that after 50 iterations in the single condition, the loss 
value of the training set and the loss value of the test set are basically equal to 0, and the 
loss value of the training set and the test set in the multi-condition is close to 0. From the 
accuracy curve, it can be seen that the final accuracy of the dataset in the single condition 
is stable at 1, and that the accuracy of the dataset in the multi-condition is close to 1. The 
model achieves the accurate prediction of the fault type and performs slightly better than 
the single-condition dataset. 

In order to specify the accuracy of the method proposed in this article, the perfor-
mance of the model is illustrated using Accuracy, Precision, Recall, and F1 Score, and then 
10 repetitions of the experiment are performed for each dataset and the average is taken 
and the results are shown in Table 3 below. 

  

Figure 17. Accuracy variation curve with the number of iterations.

In order to specify the accuracy of the method proposed in this article, the perfor-
mance of the model is illustrated using Accuracy, Precision, Recall, and F1 Score, and then
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10 repetitions of the experiment are performed for each dataset and the average is taken
and the results are shown in Table 3 below.

Table 3. Model performance evaluation table.

Accuracy Precision Recall Rate F1 Score

Data A 100 100 100 100

Data B 99.25 99.48 99.32 99.82

Data C 100 100 100 100

Data D 99.37 99.45 99.26 99.28

Table 3 shows that the model can successfully recognize both single-condition data
and multiple-condition data with a ten-time average accuracy of more than 99%. The
prediction process of the Swin Transformer model can be visualized and analyzed by the
T-SNE downscaling technique, which is a common downscaling method for mapping
high-dimensional data into 2D or 3D data, and then visualized and analyzed, as shown in
Figure 18, which displays the visualization result graph of dataset A.
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The initial features of the training set are shown in Figure 18a. The distribution of the
original traits is chaotic, as can be seen in the image, making it difficult to categorize them
precisely. Figure 18b displays the characteristics after 50 training iterations. It is evident that
the characteristics of different types of bearing failures are effectively differentiated. The
model can also successfully delineate distinct borders between various characteristics in the
test set. These all demonstrate that the time–frequency graph and Swin Transformer-based
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rolling bearing fault detection model has outstanding feature learning capacity and can
recognize various bearing failure kinds.

In this article, we choose to utilize the more popular machine learning techniques
and deep learning models for comparative validation and analysis to further validate
the effectiveness of the rolling bearing defect detection model based on time–frequency
diagrams and the Swin Transformer suggested in this article. The dataset used in the
follow-up approach is consistent with the dataset provided in this study. Table 4 below
presents the classification accuracy rate of the various diagnostic techniques for different
datasets. The method of this paper is denoted as S+ST, which can show the capability of
each model more intuitively. The consequences of the research are depicted in Figure 19. As
can be viewed from the figure, the approach suggested in this article outperforms several
common diagnostic approaches on all four datasets. This comparative experiment further
demonstrates that the Swin Transformer model has a powerful feature learning capability
and is able to accurately perform the task of fault classification and identification in the
domain of fault diagnosis.

Table 4. Accuracy rates of different experimental methods.

Diagnostic Methods
Accuracy

Data A Data B Data C Data D

SVM 82.56 84.58 86.93 80.29

CNN 88.27 84.35 86.95 81.26

LSTM 87.53 88.40 84.58 86.53

WT + CNN 93.65 92.14 95.58 85.27

STFT + SVM 94.47 92.33 93.08 89.23

CNN + LSTM 96.59 98.24 97.28 92.05

S + ST 100 99.25 100 99.37
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4. Analysis of the Impact of Noise on Model Performance
In practical industrial applications, the presence of noise often influences the diagnostic

accuracy rate of the model. In this research, experimental validation will be carried out by
introducing white noise into the vibration signal to test the model’s ability to resist noise.
As the capability of white noise to hide signal features varies with its intensity, therefore,
this paper will test the model’s immunity to noise by using white noise with diverse
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signal-to-noise rates to approximate the true noise intensity in various cases. Choosing
the added noise signal-to-noise ratios of 2 db, 4 db, and 8 db, respectively, and taking the
0-loaded dataset A as the original vibration signal dataset, the time domain signals have
been analyzed by time–frequency analysis after the addition of the noise, as illustrated in
Figure 20 below.
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Figure 20 shows the time–frequency pattern obtained by the continuous wavelet
transform of the original vibration signal labeled 1 in dataset A, where the signal-to-noise
ratios of the white noise interference signals are 2 dB, 4 dB, and 8 dB, respectively. Signals
from the three noise environments are input into the network model for training and
validating the trained model by using the test set, and the confusion matrix is used to
evaluate the performance of the model in the different environments, and the diagnostic
performance is evaluated using the confusion matrices of the multiple noise environments.
The test set confusion matrices are shown in Figure 21 with noise additions of 0 dB, 2 dB,
4 dB, and 8 dB. The test set with no noise addition and a noise addition of 8 dB has the
highest accuracy of 100%. The accuracy rate for the test set with 4 dB of noise added is
98.95%, and the test set with 2 dB of added noise has an accuracy of 96%. It is clear that the
ability to adapt to noise disturbances has been improved.
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The experimental results show that the rolling bearing problem detection technique
based on the time–frequency diagram and Swin Transformer suggested in this article
has good noise robustness. The accuracy is most stable under the influence of various
disturbances compared to other methods, as shown in Table 5 below. The single recognition
accuracy under various noise disturbances is higher than the other three widely used
techniques, which indicates the strong noise robustness of the method. As shown in
Figure 22, we depict the comparative results of several methods in a histogram to visualize
the noise immunity of this method.
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Table 5. Diagnostic accuracy of different models under noise interference.

CNN MLP LSTM S + ST

0 db 88.43 65.59 87.82 100

2 db 92.01 74.06 89.28 96.00

4 db 93.07 79.25 93.06 98.95

8 db 95.02 85.06 95.35 100

Average 92.1325 75.99 91.3775 98.7375

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 23 
 

 

2 db 92.01 74.06 89.28 96.00 
4 db 93.07 79.25 93.06 98.95 
8 db 95.02 85.06 95.35 100 

Average 92.1325 75.99 91.3775 98.7375 

 

Figure 22. Diagnostic accuracy of different models under noise interference. 

5. Conclusions 
Aiming at the non-smooth characteristics of bearing signals, this paper compares and 

discusses the advantages and disadvantages of several commonly used time–frequency 
analysis methods, including linear STFT, WT, GST, and nonlinear WVD. The time–fre-
quency images obtained by these four different methods are compared, analyzed, and 
validated using publicly available datasets. The experimental results show that the gen-
eralized S transform converts the 1D vibration signals into 2D image signals and retains 
the time–frequency feature information in the signals more effectively. On this basis, the 
GST is combined with the Swin Transformer algorithm in the image field, and the exper-
imental results show that, compared with the traditional methods, the method proposed 
in this paper obtains more accurate and complete time–frequency information in feature 
extraction, has a higher accuracy in fault classification and identification, and still has a 
more accurate diagnosis and better noise robustness under noisy conditions. 

Author Contributions: Conceptualization, J.Y. and D.Z.; methodology, J.Y. and D.Z.; software, D.Z.; 
validation, D.Z. and X.Z.; formal analysis, X.Z. and D.Z; investigation, X.W. and X.Z.; resources, J.Y.; 
data curation, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, D.Z.; 
visualization, J.Y.; supervision, J.Y.; funding acquisition, J.Y. All authors have read and agreed to 
the published version of the manuscript. 

Funding: The authors gratefully acknowledge the support provided for this research by the Natural 
Science Foundation of Guangdong Province (2022A1515011562) and National Natural Science 
Foundation of China (52201355), by Guangdong Provincial Special Fund for promoting high quality 
economic development (Yuerong Office Letter [2020]161, GDNRC [2021]56), and Development of 
intelligent early warning system for regional equipment failure (CY-ZJ-19-ZC-005). 

Figure 22. Diagnostic accuracy of different models under noise interference.

5. Conclusions
Aiming at the non-smooth characteristics of bearing signals, this paper compares and

discusses the advantages and disadvantages of several commonly used time–frequency
analysis methods, including linear STFT, WT, GST, and nonlinear WVD. The time–frequency
images obtained by these four different methods are compared, analyzed, and validated
using publicly available datasets. The experimental results show that the generalized S
transform converts the 1D vibration signals into 2D image signals and retains the time–
frequency feature information in the signals more effectively. On this basis, the GST is
combined with the Swin Transformer algorithm in the image field, and the experimental
results show that, compared with the traditional methods, the method proposed in this
paper obtains more accurate and complete time–frequency information in feature extraction,
has a higher accuracy in fault classification and identification, and still has a more accurate
diagnosis and better noise robustness under noisy conditions.
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Abstract: Topological structural optimization is a powerful computational tool that en-
hances the structural efficiency of mechanical components. It achieves this by reducing
mass without significantly altering stiffness. This study combines the Natural-Neighbour
Radial-Point Interpolation Method (NNRPIM) with a bio-inspired bi-evolutionary bone-
remodelling algorithm. This combination enables non-linear topological optimization
analyses and achieves solutions with optimal stiffness-to-mass ratios. The NNRPIM dis-
cretizes the problem using an unstructured nodal distribution. Background integration
points are constructed using the Delaunay triangulation concept. Nodal connectivity is
then imposed through the natural neighbour concept. To construct shape functions, ra-
dial point interpolators are employed, allowing the shape functions to possess the delta
Kronecker property. To evaluate the numerical performance of NNRPIM, its solutions
are compared with those obtained using the standard Finite Element Method (FEM). The
structural optimization process was applied to a practical example: a vehicle’s suspension
control arm. This research is divided into two phases. In the first phase, the optimization
algorithm is applied to a standard suspension control arm, and the results are closely evalu-
ated. The findings show that NNRPIM produces topologies with suitable truss connections
and a higher number of intermediate densities. Both aspects can enhance the mechanical
performance of a hypothetical additively manufactured part. In the second phase, four
models based on a solution from the optimized topology algorithm are analyzed. These
models incorporate established design principles for material removal commonly used
in vehicle suspension control arms. Additionally, the same models, along with a solid
reference model, undergo linear static analysis under identical loading conditions used in
the optimization process. The structural performance of the generated models is analyzed,
and the main differences between the solutions obtained with both numerical techniques
are identified.

Keywords: meshless methods; natural-neighbour radial-point interpolation method; struc-
tural optimization; bone remodelling algorithm; evolutionary optimization; automotive
industry
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1. Introduction
The past two decades have witnessed a technological revolution, with numerical

methods becoming a cornerstone for advancements across various engineering disciplines,
and mechanical engineering is no exception. This progress has been further accelerated
by the remarkable evolution of computational power observed since the late 20th century.
The availability of increasingly fast, efficient, versatile, and practical computational tools
has driven the widespread adoption of advanced numerical methods in engineering simu-
lations [1]. In particular, its uses have revolutionized the entire mechanical construction
industry, allowing for the design of optimized components based on the manufacturer’s
imposed constraints, allowing for a close approximated prediction of the component’s
behaviour when subjected to real-life working conditions. In the automotive industry,
the structural optimization of various parts is a preponderant factor in the vehicle’s com-
ponents’ performance and behaviour when subjected to stress throughout the driving
procedure, demonstrating promising results in weight reduction while maintaining the
necessary resistance to ensure that the component fulfils all its mechanical requirements [2].

In the field of vehicle manufacturing, weight reduction across various components
presents an avenue for manufacturers to enhance profitability. Weight reduction often
allows for the use of less material per vehicle, further decreasing production costs [3].
By implementing weight reduction strategies and regular optimization processes on the
part-design phase, manufacturers can achieve substantial financial gains through these
combined effects. In addition to the financial incentive, growing demand and legislative
requirements in the automotive industry have created the need to evolve and develop all
types of components involved in the various functional sets of a vehicle so that they are
lighter, safer, more efficient in relation to production costs, and, specifically for certain com-
ponents, more comfortable [4]. With the need to meet these requirements, the application
of structural optimization methods in the automotive field has grown exponentially over
the years, keeping with the improvement and evolution of the computational techniques.

The structural evaluation of automotive components is crucial for the development of
efficient and safe parts. One way to perform this is through experimental techniques. For ex-
ample, Liu et al. [5] developed load spectrum editing for fatigue bench testing, which avoids
the need to use the full load spectrum, which could sometimes have minimal impact and
significantly increase the testing time. Additionally, computational structural assessment
techniques provide engineers with powerful tools to analyse the behaviour of components
and systems under various load and stress conditions and complement the overall process
of optimization of the studied structure. Through computer simulation, stresses, strains,
and displacements can be predicted, allowing the identification of critical failure points to
be identified and a efficient optimization of design. For instance, Komurcu et al. [6] took
advantage of numerical techniques to tailor the design of a composite suspension control
arm to the required manufacturing considerations.

Weight reduction without compromising the structural integrity of the part can be
carried out through structural optimization approaches. The suspension control arm has
been the object of study combined with structural optimization techniques; for example,
Viqaruddin and Ramana Reddy [7] designed a suspension control arm with a 30% weight
reduction. Also regarding the same component, Llopis-Albert et al. [8] tested several
optimization algorithms to achieve a multiobjective solution for the part. Song et al. [9] had
surrogate models, namely the response surface model and the Kriging model, supporting
the stuctural optimization of a suspension control arm and achieved weight reduction
between 4.13% and 5.22%. Stiffness optimization is also important in addition to the scope
of automotive components. For example, Wang et al. [10] used a homogenous stiffness
domain index to create an optimization model to improve the stiffness of a machining
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robot. Finally, optimization approaches are not limited to the optimization of stiffness or
weight minimization, along with other aspects such as the friction in bearings [11]. The
optimization approach, in this case particle swarm optimization, could also be employed
in other applications.

The field of computational mechanics has always been dominated by the use of FEM
as the most popular discretization technique in research, development, and education [12].
However, new techniques have been developed to overcome some of the limitations of
the FEM related with its rigid mesh dependency. In areas such as fracture and impact
mechanics, areas that approach problems that require meshing due to transient domain
boundaries, meshless methods have been shown to be a more accurate alternative to FEM
due to not being affected by mesh distortion and not requiring meshing. Unlike FEM, in
meshless methods, the nodes are distributed in an arbitrary way, and the field functions
are approximated based on a domain of influence, rather than an element. In addition, the
rule established in FEM that elements cannot overlap does not apply to the domains of
influence of meshless methods: they can and should overlap [13].

The first meshless method applied in the context of computational mechanics was the
DEM (Diffuse Element Method), developed by Nayroles et al. [14], which used the approxi-
mating functions of the Moving Least Squares to construct the approximation functions, a
technique previously suggested by Lancaster and S. [15], Dinis et al. [16], Poiate et al. [17].
Later, Belytschko et al. [18] improved the DEM method and developed one of the most
popular and widely used meshless methods: the Element Free Galerkin Method (EFGM).
Over time, other methods have also been developed, such as the Petrov–Galerkin Local
Meshless Method (MLPG) [19], the Finite Point Method (FPM) [20], and the Finite Sphere
Method (FSM) [21].

Although these methods have been successfully employed for a variety of issues in
the computational mechanics domain, they all present problems and limitations, one of
the main ones being the effect of using approximation functions instead of interpolation
functions. The PIM (Point Interpolation Method), developed by Liu and Gu [22], proved to
be a highly attractive approach, as it effectively solves the challenge of imposing essential
boundary conditions by constructing shape functions with the Kronecker’s delta property.
Furthermore, PIM simplifies the process of obtaining the derivatives of shape functions.
Meanwhile, PIM has evolved with the incorporation of radial basis functions for solving
partial differential equations [13,23]. One of the first truly meshless methods to emerge was
the NEM (Natural Element Method) [24]. Later, new meshless interpolation methods were
proposed, such as PIM (Point Interpolation Method) [22], MFEM (Meshless Finite Element
Method) [25], NREM (Natural Radial Element Method) [26], and RPIM (Radial-Point
Interpolation Method) [23].

Later, Dinis et al. [16] introduced the Natural-Neighbour Radial-Point Interpolation
Method (NNRPIM), a truly meshless method that leverages the connectivity advantages
of the Natural Element Method (NEM) and the interpolation capabilities of the Radial-
Point Interpolation Method (RPIM). NNRPIM solely relies the on nodal discretization of
the problem domain. It then utilizes this spatial information to autonomously distribute
integration points and establish nodal connectivity, eliminating the need for a separate
background integration mesh as required by EFGM or RPIM [16]. This method differs
from RPIM as the connectivity between nodes is not described using domains of influence.
Instead, it uses influence cells determined by the Voronoï diagram space decomposer [27]
and complemented by the use of Delaunay triangulation [28]. The Voronoï diagram takes
on the task of creating the influence cells from a set of unstructured nodes in the domain.
The Delaunay triangulation is applied in order to create a background grid with nodal
dependence, which is then used in the integration of the interpolation functions of this
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method. Thus, when compared with a conventional meshless method, NNRPIM can be
considered a truly meshless method, since the set of integration points is totally dependent
on the nodal distribution [13].

The aim of this study is to utilize a bio-inspired bi-evolutionary optimization algorithm,
combined with a natural-neighbour meshless method, for a suspension control arm that
has undergone prior accurate modelling and replication. The design of the control arm is
based on the geometry of an established industry-standard suspension arm. In automotive
mechanical engineering, product development often relies on design philosophies informed
by empirical knowledge from engineers. By employing automated techniques to selectively
remove material from specific stressed components, it becomes possible to achieve designs
that meet manufacturer requirements while significantly reducing mass. Recent literature
also highlights a preference for meshless methods, which not only serve as an alternative to
FEM but also offer potential advantages [29,30]. Being a truly meshless method possesses
some advantages. NNRPIM is capable of discretizing the problem domain using only a
nodal distribution. All the other mathematical constructions (nodal connectivity, back-
ground integration mesh, shape functions, etc.), required to build the system of equations
governing the studied phenomenon, are obtained using only the spatial information of the
nodes. In the automotive industry, this feature is an advantage since it allows us to obtain
the discretization directly from sketches of CAD software (SOLIDWORKS Student Edition
2023 SP2.1) or the output of 3D scanning. Moreover, as the literature shows, NNRPIM
shows a high convergence rate and accuracy, which is convenient in structural optimization
algorithms depending on the stress field mapping (as the one used in this work). Accurate
predictions of the higher and lower stress levels will lead to better remodelling designs.

2. Natural-Neighbour Radial-Point Interpolation Method
Like any other node-dependent numerical discretization method, NNRPIM discretizes

the problem domain with a set of nodes, following a regular or irregular distribution. Then,
the Voronoï diagram of the nodal set is constructed, using the mathematical concept of
the natural neighbours [31]. For the sake of simplicity, the natural-neighbour procedure
will be demonstrated for a 2D Euclidean space, but it can be applied to any n-D space [13].
Considering the set of nodes N = {n1, n2, ..., nN}, discretizing the Ω ⊂ Rd domain, with
X = {x1, x2, ..., xN} ∈ Ω. The Voronoï diagram of N is the partitioning of the spatial domain
discretized by X into Vi. Each sub-region Vi is associated with a node ni so that any point
within Vi is closer to ni than to any other node nj ∈ N ∧ j 6= i. The set of Voronoï cells
V defines the Voronoï diagram, which is V = {V1, V2, ..., VN}. The Voronoï cell can be
defined by

N =
{

xI ∈ Ω ⊂ Rd : ‖xI − xi‖ <
∥∥xI − xj

∥∥, ∀ 6= j
}

(1)

Figure 1 depicts the Voronoï diagram for a general nodal discretization. The natural
neighbours of node xi are all the nodes whose Voronoï cells share a common edge with
the Voronoï cell of node xi (represented by the light gray cells surrounding the Voronoï
cell of node xi in Figure 1A). The concept of natural neighbours in NNRPIM replaces
the need for a pre-defined connectivity information. The Voronoï diagram automatically
generates influence domains (called influence cells in the NNRPIM formulation). With this
process, it is possible to define a lower-connectivity influence cell and a higher-connectivity
influence cell:

• First-degree influence cells (Figure 1A): These comprise node xi itself and its immediate
natural neighbours. The Voronoï diagram identifies these neighbours as nodes sharing
a common edge with the Voronoï cell of xi.
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• Second-degree influence cells (Figure 1B): These encompass node xi, its first-degree
neighbours (including natural neighbours of xi), and the natural neighbours of those
first-degree neighbours.

Figure 1. Nodal connectivity. (A) First-degree influence cell. (B) Second-degree influence cell.

After the nodal connectivity is established, it is time to build the grid of background
integration points. Thus, in order to integrate the integro-differential equation ruling the
physical phenomenon, it is necessary to establish the background integration cells. In
NNRPIM, the background integration cells are constructed using only the spatial informa-
tion of the nodal distribution. This is achieved by applying the Delaunay triangulation
numerical technique [13,28], which is product of the Voronoï diagram of the initial nodal
distribution [13]. Thus, consider a Voronoï cell Vi of a node xi, as in Figure 2. It is possible
to discretize Vi into smaller quadrilaterals and then apply the Gauss–Legendre quadrature
integration scheme to determine the position and weight of integration points within the
quadrilaterals. As Figure 2 shows, NNRPIM employs a two-step process to define such
integration points. First, each quadrilateral element in a Voronoï cell is transformed into a
unit isoparametric square, which allows for the distribution of the integration points within
the isoparametric square in compliance with the Gauss–Legendre integration scheme. Then,
the isoparametric coordinates are converted back to the actual Cartesian coordinates of
the integration. This process is repeated for each Voronoï cell Vi discretizing the problem
domain. As suggested in the literature, only one integration point is inserted inside each
quadrilateral [13]. Thus, the position of each quadrilateral’s integration point is the quadri-
lateral’s geometric centre, and its integration weight corresponds to the quadrilateral’s area.
A detailed description of the numerical integration procedure of NNRPIM can be found in
the literature [13].

Regarding the connectivity of each integration point, integration points located within
the Voronoï cell Vi inherit the nodal connectivity of node xi (i.e., inherit its influence
cell). In the NNRPIM, nodal connectivity arises naturally from the overlap of influence
cells associated with each integration point. These influence cells define the set of nodes
contributing to the shape function construction and stiffness matrix assembly [13].
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Figure 2. Adopted NNRPIM procedure for constructing the set of background integration points
based on the Voronoï diagram.

The next step is the construction of the shape functions. The NNRPIM uses the radial
point interpolators (RPI) technique, which allows the interpolation of the variable field at an
integration point xI . Thus, consider a function u(x), defined in the domain Ω, discretized
by a set of nodes N, and assuming that only the nodes included in the influence domain of
the point of interest xI have an effect on u(xI). The value of the function at the point xI can
be obtained from the following expression:

u(xI) =
n

∑
i=1

Ri(xI)ai(xI) +
m

∑
j=1

pj(xI)bj(xI) =
{

RT(xI), pT(xI)
}{a

b

}
(2)

in where Ri represents a radial basis function, n is the number of nodes inside the influence cell
of xI , and ai(xI) and bj(xI) are non-constant coefficients of Ri(xI) and pj(xI), respectively.

Several radial basis functions can be used, and several have been studied and devel-
oped over the years. In this work, as recommended in the literature [13], the multiquadratic
radial basis function (MQ-RBF) function will be used [32]. The MQ-RBF can be described
as follows:

R(rIi) = (r2
Ii + (ωI · c)2)p (3)

for which rIi is defined as

rIi =
√
(xI − xi)2 + (yI − yi)2 (4)

The variable ωI is the integration weight of integration point xI , and c and p are
MQ-RBF shape parameters. In the literature, it is possible to find works studying the
influence of the MQ-RBF shape parameters on the constructed shape functions [13]. It was
found that assuming c = 0.0001 and p = 0.9999 leads to shape functions with the delta
Kronecker [13]. Thus, these are the values used in this work. In order to guarantee a unique
solution [23], the following system of equations is added:

n

∑
i=1

pj(xI)ai(xI) = 0, j = 1, 2, ..., m (5)
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Assuming a linear polynomial basis p(xI) = {1, xI , yI}T , with m = 3, it is possible to
present Equation (2) as








u1

u2
...

un







0
0
0








=







R(r11) R(r12) · · · R(r1n)

R(r21) R(r22) · · · R(r2n)
...

...
...

R(rn1) R(rn2) · · · R(rnn)







1 x1 y1

1 x2 y2
...

...
...

1 xn yn







1 1 · · · 1
x1 x2 · · · xn

y1 y2 · · · yn







0 0 0
0 0 0
0 0 0














a1

a2
...

an







b1

b2

b3








(6)

solving this system of equations allows us to define the non-constant coefficients ai(xI)

and bj(xI),

{
us

0

}
= G

{
a
b

}
=⇒

{
a
b

}
= G−1

{
us

0

}
(7)

Inserting ai(xI) and bj(xI) into Equation (2), the following interpolation is obtained:

u(xI) =
{

RT(xI), pT(xI)
}

G−1

{
us

0

}
= ϕ(xI)us (8)

And, finally, the RPI shape function is defined,

ϕ(xI) =
{

RT(xI), pT(xI)
}

G−1 = {ϕ1(xI), ϕ2(xI), · · · , ϕn(xI)} (9)

In elasto-static problems, the equilibrium equations governing the partial differential
equilibrium can be summarized as: Oσ + b = 0, ∈ Ω, in which O represents the gradient
vector, σ the Cauchy stress tensor, and b the body force vector. Regarding the boundary
surface, it can be divided into two types: natural boundaries (Γu), where σn = t̄, and essen-
tial boundaries (Γt), where u = ū. The imposed displacement at the essential boundary Γu

is represented as ū, and the traction force on the natural boundary Γt is defined by t̄ (where
n is a unit vector normal to the natural boundary Γt).

The Cauchy stress tensor can be represented in Voigt notation,

σ =
{

σxx σyy σzz τxy τyz τzx

}T
, as well as the strain tensor,

ε =
{

εxx εyy εzz γxy γyz γzx

}T
. Applying Hooke’s law, it is possible to relate

the stress state with the strain state, σ = c · ε, being the strain obtained from the displace-
ment field: ε = L · u. For a generic 3D problem, the differential operator matrix L and the
material constitutive matrix c can be represented as

L =




∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂

∂x




T

(10)

c = µ1




1 v v 0 0 0
v 1 v 0 0 0
v v 1 0 0 0
0 0 0 µ2 0 0
0 0 0 0 µ2 0
0 0 0 0 0 µ2




(11)
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where µ1 = E
1−v2 and µ2 = 1−v

2 . To establish the system of equations, the virtual work
principle is assumed, and energy conservation is imposed:

Ψ =
∫

Ω
δεTσ dΩ−

∫

Ω
δuTσ bΩ−

∫

Γt
δuTt dΓ = 0 (12)

With the simplification of the above expression, the following can be obtained:

Ψ = δuT(K · u− fb − ft) = 0 (13)

which results in the simplified expression K · u = fb + ft, where K represents the global
stiffness matrix, which can be numerically calculated with:

K =
∫

Ω
BT · c · B dΩ =

nQ

∑
i=1

B(xI)
T · c · B(xI)ŵI (14)

The B matrix, known as the deformability matrix, can be defined as

B =




∂ϕ1(xI)
∂x 0 0 · · · ∂ϕn(xI)

∂x 0 0

0 ∂ϕ1(xI)
∂y 0 · · · 0 ∂ϕn(xI)

∂y 0

0 0 ∂ϕ1(xI)
∂z · · · 0 0 ∂ϕn(xI)

∂z
∂ϕ1(xI)

∂y
∂ϕ1(xI)

∂x 0 · · · ∂ϕn(xI)
∂y

∂ϕn(xI)
∂x 0

0 ∂ϕ1(xI)
∂z

∂ϕ1(xI)
∂y · · · 0 ∂ϕn(xI)

∂z
∂ϕn(xI)

∂y
∂ϕ1(xI)

∂z 0 ∂ϕ1(xI)
∂x · · · ∂ϕn(xI)

∂z 0 ∂ϕn(xI)
∂x




(15)

With Equation (12), the body force (fb) and external force vectors (ft) can also be defined:

fb =
∫

Ω
HT · b dΩ =

nQ

∑
i=1

H(xI)
T · bŵI (16)

ft =
∫

Γ
HT · t dΓ =

n∗Q

∑
i=1

H(xI)
T · f · ŵ∗I (17)

where w∗I represents the weight of the integration point on the surface where the external
force ft is being applied, n∗Q is the number of integration points defining the boundary
where the force is applied, and H is the interpolation matrix.

H =




ϕ1(xI) 0 0 · · · ϕn(xI) 0 0
0 ϕ1(xI) 0 · · · 0 ϕn(xI) 0
0 0 ϕ1(xI) · · · 0 0 ϕn(xI)


 (18)

The essential boundary conditions are imposed directly on the stiffness matrix K,
since RPI shape functions possess the Kronecker delta property. If the problem can be
analysed assuming a plane stress simplification, the problem reduces to a 2D analysis, and
all components associated with the Oz direction are removed, thus, reducing the size of
all algebraic structures previously presented. For instance, the constitutive matrix and the
stress and strain vectors become

c = µ1




1 v 0
v 1 0
0 0 µ2


 ; σ =





σxx

σyy

τxy





; ε =





εxx

εyy

γxy





(19)
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and the deformability and interpolation matrices are reduced to

B =




∂ϕ1(xI)
∂x 0 · · · ∂ϕn(xI)

∂x 0

0 ∂ϕ1(xI)
∂y · · · 0 ∂ϕn(xI)

∂x
∂ϕ1(xI)

∂y
∂ϕ1(xI)

∂x · · · ∂ϕn(xI)
∂y

∂ϕn(xI)
∂y


 (20)

H =

[
ϕ1(xI) 0 · · · ϕn(xI) 0

0 ϕ1(xI) · · · 0 ϕn(xI)

]
(21)

3. Structural Topology Optimization
In computational mechanics, topological optimization is one of the most studied types

of optimization due to its ability to generate more efficient and innovative designs. A
topological optimization involves the strategic redistribution of material in a structure,
resulting in shapes and geometries that are optimized to meet specific criteria, such as
strength, stiffness, or other mechanical performance criteria. Assuming a standard topo-
logical optimization problem for a given structure, where the aim is to achieve a layout
that is as rigid as possible while constraining the structure’s mass, the problem can be
formulated by minimizing the average compliance, with the material’s weight constrained.
The problem may be described as follows:

Minimize C =
1
2
· fT · u

s.t. : W∗ −
n

∑
i=1

Wixi = 0 (22)

xi = 0 or 1

where C represents the average compliance of the structure, W∗ the mass of the selected
structure, and Wi the mass of node i. The design variable xi indicates the presence (xi = 1)
or absence (xi = 0) of a node in the layout of the defined domain.

Evolutionary computation is a search technique inspired by biological evolution,
which uses selection, reproduction and variation to find optimized solutions to complex
problems [33]. In relation to the more conventional optimization techniques, evolution-
ary techniques are more robust, exploratory and flexible, making them ideal for complex
problems with challenging cost functions. Methods such as ESO (Evolutionary Structural
Optimization), developed by Xie and Steven [34], have been widely applied to structural
optimization problems in recent years [34]. The technique is based on the removal of
material from a specific domain through an iterative process, material that is considered in-
efficient and redundant, in order to obtain a design that is considered optimal [35]. Despite
the widespread use of the ESO method, this method presents problems and limitations that
have led to the necessity of investigating new techniques. In order to improve the viability
of the solutions obtained in the optimization, the need to create a bidirectional algorithm
appears, which would allow not only the removal of material in order to eliminate areas
that demonstrated low stress but also the addition of material to compensate for areas of
high stress. This led to the creation of the bidirectional evolutionary structural optimization
method, or BESO (Bi-Directional Evolutionary Structural Optimization), a method inspired
not only by the material removal capabilities of ESO but also by the additive material capa-
bilities of AESO [36], an additive evolutionary structural optimization method (Addition
Evolutionary Structural Optimization), which allows for a more careful search of the design
domain while also offering a superior ability to find the global minimum [37].
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An elasto-static analysis step initiates each optimization iteration, returning the dis-
placement, strain, and stress fields. As such, it is possible to calculate the equivalent von
Mises stress for each integration point, as well as the cubic average of the von Mises stress
field, which serves as a reference to help detecti sudden stress changes. With a high value
of stress, the cubic average is highly affected. Meanwhile, with low values of stress, the
average is practically unaltered.

σ(xI) =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(τ2

xy + τ2
yz + τ2

zx)

2
(23)

σcube =
3

√√√√ 1
nQ

nQ

∑
i=1

σ(xI)3 (24)

Next, a penalty system is applied in order to describe and attribute a specific param-
eter, in this specific case the density, to each integration point. In this work, the interval
values for the penalty are assumed to be ξ ∈ [10−3, 1], where 1 represents the rewarded
domains, or solid material, and 10−3 the penalized domain, or removed material. The
BESO procedure performance depends on the reward ratio, αR, and the penalization ratio,
αP. The nαR

Q = αR · nQ integration points with the highest σ(xI) and the nαP
Q = αP · nQ

integration points with the lowest σ(xI) are identified. The nαR
Q points are rewarded with

ξ(xI) = 1, while the nαP
Q points are penalized with ξ(xI) = 10−3. Each node xI is then

assigned a penalty parameter η(xi). For each integration point xI , the closest nodes update
their penalty values with η(xi)

new = 0.5(η(xi)
old + ξ(xI)). After updating all nodes, the

penalty parameters for each integration point are recalculated in order to filter and smooth
the selected penalty parameters using the interpolation function ξ(xI) = ∑n

i=1 ϕi(xI) · η(xi),
where n is the number of nodes inside the analyzed influence domain of xI , and ϕ(xI)

is the shape function vector of the integration point xI . At the end of the first iteration,
some ξ values differ from one, indicating the absence of material. The process can then
proceed to the next iteration. In iteration j, the penalty parameters ξ will be used to modify
the material constitutive matrix. Consequently, the penalized constitutive material matrix
cp(xI) = ξ(xI) · c(xI) is calculated. In the following iteration j, the stiffness matrix is
calculated, using cp(xI) instead of c(xI). The same steps follow, and a new equivalent von
Mises stress field is obtained. Through it, the new cubic average stress is calculated, and the
comparison σ

j
cubic ≥ δ · σj−1

cubic is made. If the condition is true, the integration points with
ξ(xI) > λ are rewarded with ξ(xI) = 1. The penalty parameters are recalculated, updating
the material domain for the next iteration j + 1.

The structural optimization algorithm used in the present work is a BESO - inspired
algorithm, developed for applications in the biomechanics field, namely bone-remodelling
applications. In a relation known as Wolff’s law, bone tissue directionality increases its
stiffness in response to external applied loads [38]. In order to predict this behaviour,
several researchers have developed laws based on observations and experimental tests
able to predict bone behaviour based on the different load cases considered. The created
models are the basis for computational bone analysis, and the model used affects the results
of the simulations carried out. Various models have been established, ranging from the
Pauwels’ model [39] to other models with extra considerations or different approaches to
the problem, such as the Corwin’s [40] and Carter’s [41].

Carter’s model is identical to Pauwels’ model in that it requires a mechanical stimulus
for remodelling to occur. This stimulus is calculated based on the effective stress, which
takes into account both the local stress and the bone density, as well as the number of
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load cycles to which the bone is subjected (represented by the exponent k). The higher the
magnitude of stress, the stronger the stimulus for remodelling.

Sn ∝
l

∑
i=1

mi σi
k (25)

The model assumes that the applied stress acts as a built-in optimization tool. The goal
is to achieve a balance between maximizing the structural integrity of the bone (strength)
and minimizing its mass. This can be achieved by minimizing an objective function that
mathematically represents this goal.

The model also offers the option of using stress or strain energy as the basis for
optimization. Strain energy focuses on maximizing the bone’s stiffness (resistance to
bending), while stress focuses on optimizing the material’s strength. By using strain energy,
the model relates the apparent density of the bone to the local strain energy it experiences.
This makes it possible to estimate the bone’s density at the remodelling equilibrium, a state
in which bone resorption and formation are balanced.

ρapp ∝ (
l

∑
i=1

mi Uk
i ) (26)

If the bone is under stress from several directions, the model combines the effects of
each stress pattern in a single direction. This direction is referred to as the normal vector (n)
and represents the ideal alignment for the bone’s internal support structures (trabeculae)
for optimum strength. To calculate this ideal direction, the model considers the normal
stress acting on the entire bone, which is specified in Equation (27).

σn(n) =

(
l

∑
i=1

mi

∑l
j=1

σk
ni
(n)

) 1
k

(27)

The algorithm, originally developed for this work, was incorporated in the previous
codes already programmed by the research team, which included a bone-remodelling
model adapted for meshless methods developed by Belinha et al. [42]. This new approach
assumes that a mechanical stimulus, adequately represented by stress and potentially
strain metrics, serves as the key factor influencing the bone-tissue-remodelling process. A
detailed description of the entire model can be found in the literature [13]. Through the
described bone-remodelling procedure, the remodelling itself functions as a topological
optimization algorithm. Thus, in each iteration, only the points with high/low values
of energy deformation density optimize the density based on its mechanical stimulus. A
detailed description of the procedure can be found in the literature [13]. Figure 3 presents
a scheme of how the optimization topology algorithm inspired by the bone-remodelling
flowchart would present the NNRPIM method. As the flowchart shows, the structural
optimization algorithm applied in this work is iterative. Thus, in each iteration, for a
given material distribution, the stiffness matrix is calculated and the variable fields are
obtained (displacements, strains, and stresses). Then, the NQ · αP integration points with
lower stress levels have their material density reduced, which will reduce their mechanical
properties (notice that NQ is the total number of integration points and αP is the penalization
ratio, established in the beginning of the analysis). A similar procedure occurs for the
NQ · αR integration points a with a higher stress level; their material density will increase,
which will increase their mechanical properties (where αR is the reward ratio, established
at the beginning of the analysis). Then, in the next iteration, the material distribution
changes, leading to new variable fields and a consequent new remodelling scenario. The
remodelling process ends when the average density of the model is lower than a threshold
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valued initially defined by the user. Since the FEM and NNRPIM formulations are different
(from a mathematical point of view), for the same material model, they lead to different
variable fields (very close, but different). Because the adopted optimization algorithm is
iterative, and since the solution of the next iteration is dependent on the solution of the
previous iteration, it is not straightforward that the FEM and NNRPIM analyses tend to the
same solution.
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Figure 3. Flowchart of the topology optimization algorithm combined with the NNRPIM.

4. Numerical Results
This section presents the numerical results obtained in the optimization study of a

vehicle’s control arm; a comparison of the results obtained with NNRPIM, which involves
the implementation of the numerical methodology presented previously; and FEM. For
all numerical simulations, the dimensional approach to the numerical analysis was for
plane stress, so the stress vector normal to the xy plane is equal to zero. In this work, the
following formulations were used to perform the optimization analyses:

• FEM: three-node 2D linear triangular elements with constant strain;
• NNRPIM: second-degree influence cells, MQ-RBF shape parameters c = 0.0001 and

p = 0.9999, constant polynomial basis, and 1× 1 integration points per quadrilateral
integration sub-cell.

4.1. Control Arm Optimization

In this subsection, the proposed optimization numerical technique is used to optimize
the stiffness of a standard suspension control arm using the FEM and the NNRPIM as
solvers. The BESO algorithm is inspired in a bone-remodelling model, allowing as output
nonbinary density distributions. This approach avoids chess pattern solutions.

The parameters associated with the optimization algorithm were selected based on
the literature [43,44]. The literature shows that that as the nodal mesh becomes denser,
the solution becomes more complex, with more trusses and more micro-trusses [43,44].
Additionally, the solution complexity is also related to the penalization and reward ratios.
For instance, a very dense nodal mesh assuming a large penalization ratio will lead to
simpler solutions (lower number of trusses and almost no micro-trusses); at the same time,
this solution will be very well defined (with the contours of the trusses being well defined).
It was found that, for the nodal mesh density considered in this paper, the best penalization
ratio is about 2% and 5% [43,44]. However, for denser meshes, a penalization ratio of 10%
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is also admissible. Thus, taking into consideration the nodal mesh density of the models
analyzed in this work, penalization ratios αP of 5% and 10% will be considered, and the
reward ratio will be kept at αR = 1%.

The effective von Mises stress criterion will be used exclusively. The working proce-
dure consisted of searching for a three-dimensional CAD model of a relatively functional
component, where its geometry would be simplified to a two-dimensional format in
Solidworks® Student Edition 2023 SP2.1 (Figure 4). Subsequently, the 2D sketch created
was exported to FEMAP 2021.2 MP1 (student version), where its mesh was created and
then imported into the code written by the authors.

Figure 4. Standard suspension control arm models: (A) 3D CAD and (B) 2D CAD.

Four meshes were built, corresponding to four different case studies that will be
analysed: a mesh without the arm’s characteristic perforation, a mesh with the perforation,
and the respective versions created by dividing sections of the arm to avoid reducing the
density of the material in the areas with applied boundary conditions (Figure 5).

Figure 5. Adopted nodal discretizations of the solid domain. (A) Model D1—discretization
with central perforation. (B) Model D2—discretization of the solid model without perforation.
(C) Model D3—discretization of the model with central perforation, assuming remodelling domain
constraints. (D) Model D4—discretization of the solid model (without perforation) with remodelling
domain constraints.

The purely academic material properties considered were as follows: Young’s modulus
E = 1 MPa and Poisson’s ratio ν = 0.3. Since the variable fields (displacement, strain, and
stress fields) are obtained assuming a material linear-elastic behaviour, and only small
strains are considered, the stress field does not depend on the Young’s modulus. Thus,
the solution obtained using these purely academic material properties is equal to the
solution obtained with any other positive Young’s modulus value. The essential and
natural boundary conditions presented in Figure 6 were assumed, allowing us to simulate
the displacement constrains and external loads of the control arm. At the circular surface, a
distributed load of q = 1 N/mm was applied. The described boundary conditions simulate
bending (flexion) of the analysed component, a common mechanical behaviour experienced
during its operation.
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Figure 6. Schematic representation of the natural and essential boundary conditions considered.

The obtained topologies for the different meshes and control arm arrangements con-
sidered are presented in Tables 1–4. In each one of these tables, is possible to find the FEM
and NNRPIM results, obtained at distinct iterations. Thus, in the first two lines of the tables,
the FEM and NNRPIM results obtained for a penalization ratio of αR = 5% are presented.
Notice that the mass obtained for each iteration (mi) decreases as the remodelling procedure
evolves and the iteration increases. In the last two lines of the tables, the results obtained
for both FEM and NNRPIM (considering αP = 10%) are shown. The colormap of the
figures included in the tables corresponds to the volume fraction distribution and follows
the corresponding colorbar shown in each table.

Recalling the flowchart in Figure 3, in each iteration using FEM or NNRPIM, the
displacement field is obtained; then, the strain and stress fields are calculated, and the von
Mises stress field is defined. With the von Mises stress field, it is possible to decide which
material points (integration points) will be remodelled. Thus, αP% integration points (with
lower stress levels) will reduce their volume fraction (and consequently their mechanical
properties), and αR% integration points (with higher stress levels) will increase their volume
fraction and mechanical properties. Atthe end of each iteration, based in this information,
the volume fraction of each material point is actualized, leading to a transient material map.
In Tables 1–4, it is possible to visualize the modification of the material map, where the
results of only four iterations (three intermediary interesting iterations and the last iteration
of the analysis) are presented.

The analysis of the design solutions revealed that the perforation in the control arm
corresponds to a null stress zone. Situated in the primary zone of material removal, this
perforation serves solely to reduce the component’s overall mass. Therefore, the perforation
has no impact on the mechanism’s functionality. The solutions obtained reflect that there is
the possibility of more drastic material removal in relation to the original removal. The ob-
tained topologies reveal highly binary structures (topologies) across the entire density field.
It is possible to observe that αP = 5% yielded the most successful solutions. These solutions
showcased a clear improvement and connection between generated sections, particularly
evident in the initial and final iterations of the NNRPIM method. A difference between the
FEM and NNRPIM solutions was observed in the final iteration volume fraction.
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Table 1. Material remodelling solutions obtained with the discretized model D1. For each analysis,
four iterations are represented, and the iteration number and corresponding mass mr (with respect to
the initial mass mi) are presented.

αP Method Solution

5%

FEM

8 it.
mr = 0.8606mi

15 it.
mr = 0.7700mi

24 it.
mr = 0.6373mi

33 it.
mr = 0.5189mi

NNRPIM

8 it.
mr = 0.8824mi

15 it.
mr = 0.7718mi

24 it.
mr = 0.6441mi

33 it.
mr = 0.5420mi

10%

FEM

4 it.
mr = 0.9012mi

9 it.
mr = 0.7203mi

13 it.
mr = 0.6158mi

18 it.
mr = 0.4984mi

NNRPIM

4 it.
mr = 0.9047mi

9 it.
mr = 0.7240mi

13 it.
mr = 0.6219mi

18 it.
mr = 0.5086mi
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Table 2. Material remodelling solutions obtained with the discretized model D2. For each analysis,
four iterations are represented, and the iteration number and corresponding mass mr (with respect to
the initial mass mi) are presented.

αP Method Solution

5%

FEM

8 it.
mr = 0.8776mi

15 it.
mr = 0.7712mi

24 it.
mr = 0.6550mi

33 it.
mr = 0.5593mi

NNRPIM

8 it.
mr = 0.8753mi

15 it.
mr = 0.7666mi

24 it.
mr = 0.6378mi

33 it.
mr = 0.5337mi

10%

FEM

4 it.
mr = 0.9024mi

9 it.
mr = 0.7208mi

13 it.
mr = 0.6216mi

18 it.
mr = 0.5081mi

NNRPIM

4 it.
mr = 0.9022mi

9 it.
mr = 0.7223mi

13 it.
mr = 0.6226mi

18 it.
mr = 0.5068mi
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Table 3. Material remodelling solutions obtained with the discretized model D3. For each analysis,
four iterations are represented, and the iteration number and corresponding mass mr (with respect to
the initial mass mi) are presented.

αP Method Solution

5%

FEM

8 it.
mr = 0.8811mi

15 it.
mr = 0.7853mi

24 it.
mr = 0.6557mi

30 it.
mr = 0.6049mi

NNRPIM

8 it.
mr = 0.8801mi

15 it.
mr = 0.7872mi

24 it.
mr = 0.6696mi

30 it.
mr = 0.6206mi

10%

FEM

4 it.
mr = 0.9154mi

9 it.
mr = 0.7482mi

13 it.
mr = 0.6520mi

17 it.
mr = 0.5939mi

NNRPIM

4 it.
mr = 0.9124mi

9 it.
mr = 0.7446mi

13 it.
mr = 0.6453mi

17 it.
mr = 0.5888mi
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Table 4. Material remodelling solutions obtained with the discretized model D4. For each analysis,
four iterations are represented, and the iteration number and corresponding mass mr (with respect to
the initial mass mi) are presented.

αP Method Solution

5%

FEM

8 it.
mr = 0.8776mi

15 it.
mr = 0.7712mi

24 it.
mr = 0.6550mi

30 it.
mr = 0.5593mi

NNRPIM

8 it.
mr = 0.8753mi

15 it.
mr = 0.7666mi

24 it.
mr = 0.6378mi

30 it.
mr = 0.5337mi

10%

FEM

4 it.
mr = 0.9024mi

9 it.
mr = 0.7208mi

13 it.
mr = 0.6216mi

17 it.
mr = 0.5081mi

NNRPIM

4 it.
mr = 0.9022mi

9 it.
mr = 0.7223mi

13 it.
mr = 0.6225mi

17 it.
mr = 0.5068mi

For a more practical and direct comparison, two solutions from each method (FEM
and NNRPIM) were separated from Table 4. Figure 7 shows two solutions of the previously
presented optimization of the control arm (corresponding to the model with no inside
perforation) with density reduction restriction in the boundary condition zone, for αP = 5%.
The iteration chosen to analyse the final result of the algorithm used was the very last one.

Visually, the superior truss connection and the creation of a greater number of inter-
mediate densities in the NNRPIM are noticeable. Both these aspects would be potentially
important factors in additive manufacturing production, since they are both prevalent to
the component’s structural performance.
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Figure 7. Remodelling material solutions obtained at iteration 30, with discretization D4 (assuming a
density reduction restriction in the boundary conditions sections), for αP = 5% with (A) the FEM
method and (B) the NNRPIM method.

4.2. Topology Design and Structural Analysis

Three models based on the previously obtained optimized solutions were built
Figure 8A,C,D. These three models do not resemble the designs used in the automo-
tive industry, which prefers designs with less sharp angles in the inner voids to reduce local
stress concentrations. Generally, the industrial automotive solutions include circular holes,
which are able to reduce the stress concentration phenomenon [45]. Therefore, a commonly
used design for the control arm was considered as well, as Figure 8B shows. Model 1 is
inspired ny the solutions assuming a central perforation (Table 4). Model 3 is a reinforced
version of the solutions suggested in Table 3. Model 4 is based on model 3 with a modified
boundary contour. The thickness of the boundary contour is increased by 50% (1.5 times
the nominal thickness) relatively to the baseline model, using a 6 mm offset in relation to
the outer delineation of the model.

Figure 8. Constructed models for the linear elasticity analysis. (A) Model 1, (B) Model 2, (C) Model 3
and (D) Model 4.

Then, to each model of Figure 8, the essential and natural boundary conditions de-
scribed in Figure 6 were imposed and static linear analyses were performed.

Table 5 provides the displacement and von Mises stress distributions calculated using
FEM and NNRPIM for the fully solid model. A comparison of the two methods shows
reduced differences in the displacement and von Mises effective stress fields.

It is possible to observe that model 2 demonstrated the best mechanical performance,
justified by the lower von Mises stress and higher stiffness than the other models designed
and an even higher specific stiffness than the solid arm. These results support initial
expectations, as the removal of material in a circular shape allows for a more uniform
distribution of stresses in the structure. As a result, the stress is not concentrated at specific
points, which leads to a reduction in the risk of structural failure and an increase in the
overall stiffness of the part.
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Table 5. Variable fields of interest (displacement and von Mises stress) obtained for the solid control arm.

FEM NNRPIM

σVM

‖u‖

Triangular material removal leaves behind a pattern resembling interconnected trian-
gles. This process effectively creates a truss-like structure that is more efficient in transfer-
ring loads, as well as easier to manufacture. Regarding the behaviour of models 1, 3 and 4,
based on triangular material removal, model 4 presented the higher stiffness. However,
this stiffness is due to the increased thickness of the outside struts, which has an effect
on specific thickness as it increases less than models 1 and 3. Between model 1 and 3, the
specific stiffnesses are equal. However, a distinction between both can be made regarding
the smoothness of the obtained stress fields. It can be seen in Tables 6 and 7 that the
stresses are only slightly better distributed in Model 3, which presents a lower peak von
Mises stress.

The displacement and von Mises stress fields are shown in Tables 6 and 7 for the
FEM and NNRPIM, respectively. Comparing both tables, the two methods present very
similar solutions. Recall that the objective function of the adopted optimization procedure,
Equation (3), aims to reduce the mass and at the same time maximize the stiffness of the
mechanical component (by the minimization of the structural compliance). Therefore, in
Table 8, the mass and directional stiffness of each model are calculated with the results
obtained with both methods. The directional stiffness K is calculated with

K =
1
n
·

n

∑
i=1

fi
di

, (28)

where n is the number of nodes along the natural neighbour, fi is the force applied at node
ni of the natural boundary in direction Oy, and dI is the displacement obtained at the same
node ni in the same direction Oy.

Compared to FEM analysis, the NNRPIM solutions obtained for models 2, 3, and
4 exhibited higher maximum von Mises stress values. Similarly, FEM displayed slightly
lower displacements compared to NNRPIM, suggesting a stiffer solution. The FEM for-
mulation used is the constant-strain triangular element, and the literature shows that this
formulation produces stiffer results for bending problems (such as the one analysed in this
work) [46]. Nonetheless, both these discrepancies are very small, allowing us to conclude
that both techniques produce similar results.
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Finally, both methods are quantitatively compared in Table 9, which shows the relative
difference between the interest metrics calculated through the FEM and NNRPIM. The
relative difference between methodologies is calculated by

D =
ζNNRPIM − ζFEM

ζFEM
, (29)

where ζNNRPIM is the variable value obtained with NNRPIM and ζFEM is the same variable
value obtained by FEM. Table 9 shows that the relative differences between both methods
are very reduced. Regarding the displacement, the relative difference is generally about
1.5%, being even lower in model 1 (0.33%). Concerning the maximum von Mises stress,
the relative difference shows more variation, being low for the solid model and higher for
models 2, 3 and 4. For the relative difference of the directional stiffness, it is interesting to
observe that FEM and NNRPIM produce similar results, and that the relative difference
between all the other models is very low (between 1.48% and 3.57%).

Table 6. Obtained variable fields of interest (displacements and von Mises stresses) with FEM, for
each of the four analysed models.

Model 1 Model 2 Model 3 Model 4

σVM

‖u‖

Table 7. Obtained interest variable fields (displacements and von Mises stresses) with NNRPIM, for
each of the four analysed models.

Model 1 Model 2 Model 3 Model 4

σVM

‖u‖
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Table 8. Results obtained with the model of the solid structure and with the proposed designed
models M1 to M4.

Solid
Control Arm Model 1 Model 2 Model 3 Model 4

V%
f (%) 100 70.06

(−29.94 %)
76.78

(−23.22 %)
68.50

(−31.50 %)
81.70

(−18.30 %)

‖u‖ [mm]
FEM 5.408 8.505

(+57.27%)
7.422

(+37.24%)
8.689

(+60.67%)
7.165

(+32.49%)

NNRPIM 5.495 8.477
(+54.27%)

7.537
(+37.16%)

8.821
(+60.53%)

7.389
(+34.47%)

σVM
max [MPa]

FEM 7.567 13.922
(+83.98%)

10.789
(+42.58%)

13.896
(+83.64%)

13.311
(+75.91%)

NNRPIM 7.629 13.746
(+80.18%)

12.458
(+63.30%)

15.203
(+99.28%)

14.743
(+89.71%)

K [N/mm]
FEM 0.185 0.118

(−36.22%)
0.135

(−27.03%)
0.115

(−37.84%)
0.140

(−24.32%)

NNRPIM 0.182 0.118
(−35.17%)

0.133
(−26.92%)

0.113
(−37.91%)

0.135
(−25.82%)

K/V%
f [N/mm]

FEM 0.185 0.168
(−9.19%)

0.175
(−5.41%)

0.168
(−9.19%)

0.171
(−7.57%)

NNRPIM 0.182 0.168
(−7.69%)

0.173
(−4.95%)

0.165
(−9.34%)

0.165
(−9.34%)

Table 9. Relative difference D between the critical variables calculated through FEM or NNRPIM.

Solid Model 1 Model 2 Model 3 Model 4

|u| [mm] 0.0161 −0.0033 0.0155 0.0152 0.0171
stress [MPa] 0.0082 −0.0126 0.1547 0.0941 0.1076
K [N/mm] −0.0162 0.0000 −0.0148 −0.0174 −0.0357
Kf [N/mm] −0.0162 0.0000 −0.0114 −0.0179 −0.0351

5. Conclusions
The focus of this work was the application of the NNRPIM, combined with a bi-

evolutionary topological optimization algorithm, for the analysis of a standard automotive
mechanical component. In parallel, a well-known FEM formulation was also used for com-
parison purposes. The analysed mechanical component was a standard suspension control
arm, in which the 3D CAD was converted to a simplified two-dimensional layout in order
to streamline and minimize the computational cost of the numerical simulations conducted.

When assessing the obtained solutions, it was noticeable that NNRPIM generated
topologies with better truss connection and a higher number of intermediate densities (intri-
cate bone-like trabecular distributions), features that would greatly benefit the mechanical
performance of an hypothetical part manufactured by means of additive manufacturing.
Subsequently, four designs were built based on a solution obtained from the previously
mentioned algorithm, following material-removal approaches commonly applied in the
automotive industry for the studied component: a model with a trussed design, a model
with circular material removal, a model with triangular material removal, and a model
equivalent to the previously mentioned, albeit with an increase in the boundary contour
thickness to 1.5 times the nominal thickness of the remaining model. By means of an linear
static analysis in the same conditions applied to the optimization algorithm, it was observ-
able that the design based on circular material removal demonstrated the best stiffness
and specific stiffness, proving the original hypothesis, since the circular shape allows for a
more uniform distribution of stresses in the structure. This kind of solution is recurrent
in the automotive industry, and the results presented show that this simple solution is
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efficient and practical. The trussed and triangular models exhibited similar behaviour, as
the principle for their material removal is similar. Model 4 (reinforced at the contour), as
expected, displayed a lower displacement, and consequently a higher stiffness, compared
to model 3. However, as a result, its increase in mass and total volume led to a negligible
difference in specific stiffness between models 3 and 4. There were minor discrepancies
observed in the von Mises stress fields and maximum stress values obtained with FEM and
NNRPIM. Similarly, small differences were observed in the displacement values, which
can be attributed to the higher rigidity of triangular elements.

Regarding the relative difference between both formulations, the obtained results
show that concerning the displacement, NNRPIM is able to produce results very close to
FEM. For instance, for model 1, the relative difference is 0.33%, and for all the other models,
the relative difference ranges between 1.52% and 1.71%. Regarding the maximum von
Mises stress, the results show that the relative differences obtained for the solid model and
model 1 are 0.82% and 1.26%, respectively, which are very close. However, for models 2,
3 and 4, the relative difference increases, ranging from 9.41% and 15.47%, indicating that
some stress-concentration zones produce distinct von Mises stress values. The directional
stiffness of both formulations is very close, ranging between 0% and 3.57%. These results
reinforce the idea that NNRPIM is a valid numerical alternative to the FEM.

In other applications associated with remodelling and BESO algorithms, NNR-
PIM already proved to be efficient, delivering optimal solutions for automotive parts,
such as wheels and brake pedals [44], or the development of new optimized functional
materials [47] and their cellular foam structure [48]. In this work, it was shown again that
NNRPIM is able to produce results with satisfactory similarity to FEM, indicating that
it could represent a viable alternative to FEM topological optimization analyses. Future
research directions on this topic will include the extension of the application to 3D analyses
in order to include out-of-plane forces and torsion effects; the inclusion of functionally foam
material (to fill the voids and reduce stress concentration phenomena) and its prototype
production and experimental validation using 3D printing techniques; and the inclusion of
artificial neural networks to surrogate the FEM/NNRPIM processing block, allowing for
much faster computational analysis [49].
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