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Preface

The transition to low-carbon energy systems stands as one of the most pressing challenges of

our time, driven by the urgent need to mitigate climate change while ensuring energy security,

affordability, and equity. This Special Issue of Processes, titled "Process Design and Modeling of

Low-Carbon Energy Systems", brings together cutting-edge research at the nexus of engineering,

economics, and policy to address the multifaceted barriers hindering global decarbonization. This

collection of 14 studies seeks to bridge the gap between theoretical innovation and real-world

implementation.

Motivated by escalating climate crises and the complexity of integrating renewable energy,

storage, grid resilience, and cross-sector coupling, this reprint emphasizes interdisciplinary solutions.

It explores AI-driven renewable forecasting models, hybrid storage systems, carbon-internalized

market mechanisms, resilient multi-energy networks, and nanomaterials for thermal applications.

By synthesizing advancements in process optimization, system integration, and policy coherence, the

issue aims to empower policymakers, industry leaders, and academic researchers with actionable

insights for scalable, equitable energy transitions.

We extend our gratitude to the reviewers, the editorial team of Processes, and institutions

supporting this work. Their expertise and dedication ensured the rigor and relevance of the

contributions. As the energy landscape evolves, we hope this reprint inspires collaborative efforts

to accelerate the global shift toward sustainable, low-carbon futures.

Chenyu Wu, Zhongkai Yi, and Chenhui Lin

Guest Editors
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Editorial

Process Design and Modeling of Low-Carbon Energy Systems
Chenyu Wu 1,*, Zhongkai Yi 2 and Chenhui Lin 3

1 College of Electrical and Power Engineering, Hohai University, Nanjing 211100, China
2 School of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China; yzk_article@163.com
3 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; linch11@yeah.net
* Correspondence: wcy@hhu.edu.cn

The need to transition toward low-carbon energy systems has never been more ur-
gent [1]. Amid escalating climate crises, the global community faces a dual challenge: to
decarbonize energy production while meeting growing demand for affordable and reliable
energy [2]. Low-carbon energy systems are inherently complex, spanning combined heat
and power generation [3], renewable generation [4], energy storage [5], telemeters [6], and
electricity–gas–thermal coupling networks [7]. However, their deployment is hindered
by multifaceted challenges. Technologically, the intermittent nature of solar and wind
energy necessitates advanced forecasting [8] and storage solutions to ensure grid stability.
Economically, the high capital costs of emerging technologies, such as hydrogen electrolyz-
ers [9] and carbon capture systems [10], need innovative financing mechanisms. Politically,
fragmented regulatory frameworks and misaligned incentives often slow the pace of adop-
tion. Moreover, the socio-environmental dimensions (such as community engagement,
land-use conflicts, and lifecycle environmental impacts) add layers of complexity to the
energy transition.

This Special Issue of Processes (ISSN: 2227-9717), titled “Process Design and Modeling
of Low-Carbon Energy Systems”, responds to these challenges by curating cutting-edge
research at the intersection of engineering, economics, and environmental science. Our
goal is to bridge the gap between theoretical advancements and real-world implementa-
tion, offering actionable insights for policymakers, industry stakeholders, and university
researchers. By focusing on process optimization, system integration, and policy coherence,
this collection highlights how interdisciplinary approaches can accelerate decarbonization
while addressing equity and scalability. This Special Issue, thus, serves as a platform to
showcase innovations that not only enhance technical performance but also align with the
United Nations Sustainable Development Goals.

The following sections synthesize the key contributions of the 14 papers published in
this collection, spanning renewable energy prediction, carbon market mechanisms, energy
storage optimization, and socio-technical analyses.

1. Renewable Energy Prediction and Optimization
Integrating renewable energy into power systems hinges on accurate prediction and

intelligent optimization [11]. This Special Issue showcases groundbreaking methodologies
that address the variability and uncertainty inherent in solar and wind while balancing
economic and operational constraints.

The IAO-LSTM model [12] represents an advancement in solar prediction accuracy.
By integrating the Improved Aquila Optimization (IAO) algorithm with Long Short-Term
Memory networks, this framework dynamically adjusts hyperparameters to minimize
prediction errors caused by cloud cover and seasonal irradiance fluctuations. A patch
time series Transformer-based non-parametric model [13] combines the non-parametric

Processes 2025, 13, 1119 https://doi.org/10.3390/pr13041119
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Huberized composite quantile regression method to predict voltage fluctuations in low-
voltage grids with distributed energy storage. Unlike conventional Gaussian assumption-
based methods, this approach quantiles uncertainty bounds without prior distribution
knowledge. In addition to directly improving the prediction method, [14] applies maximum
power point tracking techniques to further reduce the uncertainty of photovoltaic power.

The VMD-AOA-GRU hybrid model [15] tackles the non-stationarity of wind signals
through a two-stage decomposition–optimization approach. First, Variational Mode De-
composition separates raw wind speed data into intrinsic mode functions, reducing noise
interference. Then, the arithmetic optimization algorithm (AOA) is employed to optimize
the hyperparameters of the model of the gated recurrent unit (GRU), including the number
of hidden neurons, training epochs, learning rate, learning rate decay period, and training
data temporal length, thereby constructing a high-precision AOA-GRU forecasting model.

The bi-level inverse robust optimization model [16] bridges wind variability and grid
demand through pumped storage hydropower. The upper layer minimizes total generation
costs, while the lower layer enforces an Optimal Inverse Robustness Index to ensure stability
against wind forecast errors. A robust power grid dispatching technology is proposed
in [17,18] that integrates deep learning-based forecasting, reinforcement learning, and
optimization techniques. This technology is capable of forecasting future electricity demand
and solar power generation. References [19,20] make charging/discharging decisions for
energy-storage devices based on current grid conditions. Moreover, this technology is
effective in optimizing the configuration of circuit breakers and switches to improve the
reliability of power systems [21].

2. Carbon Trading and Multi-Energy System
Carbon trading and multi-energy system are currently highly researched topics in the

fields of environment and economy [22], especially against the backdrop of global climate
change and the increasing significance of renewable energy. This research direction focuses
on internalizing the cost of carbon emissions through market mechanisms and multi-energy
complementary mode [23].

A thermoeconomic modeling approach is presented in [24] to incorporate carbon
credits into the analysis of multiproduct systems. The study uses a gas turbine cogeneration
system as a case study to demonstrate how carbon market dynamics can be integrated
into thermoeconomic models. The authors develop a methodology to allocate carbon-
related costs to final products, considering both revenue and expenses associated with
carbon credits.

Reference [25] explores the resilience enhancement of electric and natural gas networks
against extreme events such as windstorms and wildfires. The study proposes a novel
integrated energy system planning strategy that combines deep learning-based forecasting,
reinforcement learning, and optimization techniques. By integrating these approaches, the
authors demonstrate a robust framework for improving the resilience of energy systems.

A centralized regional integrated market structure is developed in [26] involving
industrial users, carbon capture, utilization, storage facilities, and carbon market operators.
The authors formulate a generalized Nash equilibrium model to analyze the trading
behaviors of different entities and their impacts on system operations. This research
highlights the significance of market structures and equilibrium analysis in optimizing the
performance of integrated energy systems with carbon trading.

3. Thermal Transmission and Nanomaterials
Heat transfer is an important subject in engineering, and it involves the process of

heat transfer from one object or region to another [27]. Improving heat transfer efficiency
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is a key factor in many practical applications, such as in compression equipment and air
conditioning systems [28]. With the development of nanotechnology, nanomaterials have
shown great potential in improving heat transfer properties.

The insufficient heat dissipation capacity of the gas head cover can lead to overheating,
resulting in safety issues and increased operating costs. Ref. [29] investigates the heat
dissipation issue of the gas head cover in a diaphragm compressor. The study analyzes the
structure and heat transfer characteristics of the gas head cover, establishing a finite element
simulation model for temperature distribution. Additionally, based on the temperature
field distribution characteristics, two enhanced heat transfer gas head cover structures are
proposed, and both simulation and experimental verifications are conducted.

Nanoporous alumina sheets have been widely applied in air conditioning heat ex-
changers. Ref. [30] focuses on the ability of nanoporous alumina sheets to inhibit frost
layer growth in low-temperature environments. The researchers prepare nanoporous alu-
mina sheets with various pore diameters using the anodic oxidation method and conduct
an in-depth analysis of their anti-frosting properties. The results reveal that compared
to conventional polished aluminum sheets, the nanoporous alumina sheets exhibited
excellent anti-frosting performance. Notably, the porous alumina sheet with a 100 nm
pore diameter demonstrated strong anti-frosting properties under low-temperature and
high-humidity conditions.

4. Conclusions and Future Directions
The research presented in this Special Issue underscores the transformative potential

of process design and modeling in advancing low-carbon energy systems. Key innova-
tions, such as AI-driven prediction models, hybrid storage systems, nanomaterials, and
carbon-internalized economic frameworks, demonstrate pathways to mitigate technical
and economic barriers.

However, challenges remain. Future studies should prioritize the following:

(1) Cross-Sector Integration: Deeper coupling of electricity, hydrogen, and thermal net-
works to maximize resource synergy;

(2) Scalability: Translating laboratory-scale innovations (e.g., nanomaterials) into indus-
trial applications;

(3) Policy Alignment: Developing adaptive regulatory frameworks to incentivize low-
carbon investments and community participation.

Conflicts of Interest: The authors declare no conflict of interest.
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Research on a Photovoltaic Power Prediction Model Based on
an IAO-LSTM Optimization Algorithm
Liqun Liu * and Yang Li

College of Electronic and Information, Taiyuan University of Science & Technology, Taiyuan 030024, China;
liyang@tyust.edu.cn
* Correspondence: llqd2004@163.com; Tel.: +86-035-1699-8245

Abstract: With the rapid popularization and development of renewable energy, solar photovoltaic
power generation systems have become an important energy choice. Convolutional neural network
(CNN) models have been widely used in photovoltaic power forecasting, with research focused
on problems such as long training times, forecasting accuracy and insufficient speed, etc. Using
the advantages of swarm intelligence algorithms such as global optimization, strong adaptability
and fast convergence, the improved Aquila optimization algorithm (AO) is used to optimize the
structure of neural networks, and the optimal solution is chosen as the structure of neural networks
used for subsequent prediction. However, its performance in processing sequence data with time
characteristics is not good, so this paper introduces a Long Short-Term Memory (LSTM) neural
network which has obvious advantages in time-series analysis. The Cauchy variational strategy is
used to improve the model, and then the improved Aquila optimization algorithm (IAO) is used to
optimize the parameters of the LSTM neural network to establish a model for predicting the actual
photovoltaic power. The experimental results show that the proposed IAO-LSTM photovoltaic power
prediction model has less error, and its overall quality and performance are significantly improved
compared with the previously proposed AO-CNN model.

Keywords: Aquila optimization algorithm; PV power prediction; neural networks

1. Introduction

With global energy demand increasing and the problem of climate change worsening,
photovoltaic power generation as an environmentally friendly, renewable and reliable new
energy source, is increasingly applied on a global scale. It is well known that photovoltaic
power generation systems are greatly affected by environmental conditions, such as light
intensity, temperature, wind speed, and so on. They also have impacts and challenges for
the power system and bring greater security risks. Therefore, how to accurately predict the
power generation of photovoltaic power generation systems is the key to ensuring their
stable operation. At the same time, it can also help power system operators make real-time
dispatch decisions, reduce the security risk of power grids, improve the quality of power
supply and provide economic benefits [1–3].

By predicting the output power of photovoltaic power generation, the optimal dis-
patching of power grids can be realized, the stability level of power systems can be effec-
tively improved, and the potential safety problems in power systems can be eliminated.
It can also effectively reduce the output limit of photovoltaic power generation systems
and increase the rate of return on investment, thus increasing the economic benefits and
operation management level of photovoltaic power generation systems. At present, the
commonly used methods for PV power prediction include physical methods [3], statistical
methods [4–6], meta-heuristic learning methods [7,8] and combination methods [9], etc.

Swarm intelligence algorithms are a kind of intelligent optimization method that solve
practical problems by simulating the swarm intelligence behaviors of natural organisms.
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Neural networks are a network structure composed of many neurons, which can learn
complex nonlinear relationships adaptively, and have good performance in prediction
and classification. In recent years, more and more scholars combine swarm intelligence
algorithms with neural networks for PV power prediction. For example, Wang et al.
proposed a deterministic and probabilistic prediction of photovoltaic power based on deep
convolutional neural networks, which can improve prediction accuracy [10]. In [11], an
artificial neural network is used to reduce the complexity of a PV power prediction model
and improve its prediction accuracy. The advantage of a hybrid method is that it can make
full use of the advantages of both methods and improve prediction accuracy and efficiency.

Various artificial intelligence technologies with adaptive and self-learning abilities
have been developed and are gradually becoming more widely used in the field of electric
power. Through a comparative study of various methods, this paper adopts the method
combining LSTM and optimization methods to realize photovoltaic output power pre-
diction. Compared with regular CNN networks, an LSTM network is more suitable for
processing classification or prediction of time-series data. By introducing a gate structure,
an LSTM neural network has greater selectivity compared with traditional recursive neural
networks [12–23]. In this paper, a neural network model based on the Aquila optimization
algorithm combined with a neural network prediction model is proposed to speed up the
prediction speed of the neural network and improve the prediction accuracy and speed
of photovoltaic power systems. Then, the Aquila optimization algorithm (IAO) is used to
optimize the parameters of the LSTM neural network to establish a model for predicting
the actual photovoltaic power. The proposed IAO-LSTM photovoltaic power prediction
model reduces error and its overall quality and performance are significantly improved
compared with AO-CNN models.

2. Photovoltaic Power Data Preprocessing

Domestic and foreign research studies generally choose irradiance, temperature, wind
direction and wind speed as the main influencing factors of photovoltaic power generation.
In different distributed photovoltaic power stations, considering that the direct installation
angle and position of the photovoltaic array are not exactly the same, different effects will
gradually form. However, according to the connection between meteorological factors
and the rated output power of photovoltaic new energy, determining more reasonable
meteorological factors will help to further improve the accuracy of power prediction. For
specific analysis of relevant data, the internal relationship between different functions
can be used to judge the correlation between different functions through a curve, so as to
understand the degree of correlation of independent variables and dependent variables
according to the data. The correlation coefficient refers to the correlation between the
variable and parameters of the function. If the value is regular, it is considered as positive
correlation, and if the value is less than zero, it is considered a negative correlation. From
the correlation analysis, it can be found that for photovoltaic arrays, it is reasonable to
select the influence of irradiance, temperature, wind speed and wind direction.

The problem of missing or abnormal data caused by abnormal local function is in-
evitable, and photovoltaic power generation and various meteorological factors, such as
light intensity, ambient temperature, wind speed and other unit function relationships are
not the same. Therefore, the original data must be preprocessed to obtain data that can be
directly applied in model training and prediction. In the data preprocessing, data outliers
are corrected, missing data are completed, and the data are normalized.

(1) There is a strong correlation between PV power and meteorological data. Missing
values are replaced with the mean of values before and after the missing value. If a
large amount of data are missing during the day, the data for that day are deleted to
prevent human influence. Replacement of missing data can be performed using the
following formula:
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dataj =
dataj−5 + dataj−4 + . . . dataj−1 + dataj+1 + dataj+4 − dataj+5

10
(1)

The data between five moments before and after the missing data are selected to
calculate the mean value to supplement the missing data, and Formula (1) shows the value
between the left and right five moments of the missing data, respectively, as can be seen
from (1).

(2) If there is no significant change in radiance or other meteorological data but the data
on photovoltaic power generation have changed significantly, this value needs to be
removed. In addition, if the photoelectric energy is negative, then in the case of very
low radiation or zero, 0 is used instead of the negative value.

(3) The resolution frame rate of the database data is changed. The data interval needed to
predict actual PV power over a short period of time is between 15 min and 1 h. Given
the short time span of minute-level database data, the application of the original 1 min
resolution data is not common and even less in production practice. The data collected
are, therefore, converted into 15 min resolution.

(4) Data normalization is necessary. Because meteorological factors such as solar radiation
have different dimensions, directly introducing them into the model reduces the
accuracy of power prediction. Normalization of data can speed up model training
and improve prediction accuracy. In general, maximum and minimum principles are
used in combination for data normalization, and the formula is as follows:

datai =
datai − datamax

datamin − datamax
(2)

where datai represents the value to be normalized, datamin and datamax represent the
minimum value and the maximum value, respectively.

3. Principle of Convolutional Neural Networks

A convolutional neural network (CNN) is a relatively simple neural network used
to solve prediction and classification problems. However, this algorithm requires much
data to predict the model and its structural parameters directly affect the accuracy
and generalization ability of the model, which also makes it difficult to determine the
parameters. In order to obtain better results, the accuracy of CNN prediction models
must be further improved.

In a CNN, the neural model refers to the convolutional nucleus (also known as a filter)
in the convolutional layer. The filter is a small two-dimensional weight matrix, usually
much smaller than the input image. In a CNN, the filter performs convolutional operations
on different local regions of the input data to extract local features of the image. Each filter
has a set of learnable weight parameters that are gradually adjusted by backpropagation
and gradient-descent optimization. In forward propagation, the convolutional core sliding
window scans different positions of the input image, convolves each position and generates
a new feature map. In this process, each weight of the convolutional nucleus is equivalent to
the weight of the neuron, which is used to control the response of the different information
in the input data to the convolutional nucleus.

The neural network model is the basic structure of a deep neural network and has
wide applicability. The advantage of this method is that it can effectively extract the external
resources needed for global reinforcement training and complete the final classification
task by using the external features of the local organization of the database data. The CNN
architecture comprises a multi-layered feedforward neural network of convolutional layers,
pooled layers, and fully connected layers. After a series of convolutional operations on
the input data, the neural network extracts information from the simplest features and
gradually becomes more complex until it can uniquely define the target’s eigenvalues.

As shown in Figure 1, in the CNN model, the input layer is the point layer, which
preprocesses the input display image. Preprocessing standardizes the display image,
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maintains its balance, rotates and moves it in parallel, converts the image into a mirror
file, and converts perspective. Then, the input image data are transformed into a digital
vector, and the image range is reduced to a numerical region suitable for the activation
function. A hidden layer is a convolutional layer that includes one or more convolutional
layers and one or more fully connected layers. The convolutional layer is the CNN core
layer that performs most of the calculations. This layer convolves the input data with the
filter and passes the result to the next layer. Convolution is a linear operation, similar
to traditional neural networks. he operation is ordered, multiplying the input data one
by one with the filter, and calculating the sum of the products at each spatial location.
The convolution layer contains a set of filters, each convolving the input matrix. In
this operation, the filter slides along the vertical and horizontal directions of the input
matrix to compute the sum of the products at each spatial position. The green region is
the region corresponding to the filter selected from the input data. The yellow area is
the filter, and the blue area is the output data corresponding to the selected filter. The
convolution process is shown in Figure 2.

Figure 1. Schematic diagram of convolutional neural network model.

Figure 2. Schematic diagram of convolutional calculation.

In the training process, the weight in the filter is adjusted by back propagation and
gradient descent to minimize the model’s loss function. The convolution calculation process
is given by the formula below. The mathematical expression of neurons in the convolution
layer is as follows:

xy
m = f ( ∑

n∈X
xy−1

n ∗ ky
mn + by

m) (3)

where xy
m is the eigen graph matrix corresponding to the n-th feature graph of the (y − 1)

layer, ky
mn is the weight matrix corresponding to the mn-th feature graph of the y layer, * is

the convolution operator, by
m is the deviation value of the m feature graph of the n layer,

and f is the activation function. After convolution, the Eigen map matrix xy
m is composed

of the neurons of the m eigen map of the y layer.

xy
m = f1( ∑

n∈X
xy−1

n ∗ ky
mn + by

m) (4)
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There are two common pooling methods in the pooling layer. One is the maximum
function pool, the other is the average function pool. Maximum pooling selects the max-
imum value of an area as the output of the response, and average pooling selects the
arithmetic mean of an area as the output response. The mathematical expression for the
pool layer is:

xy
m = f1(a

y
m pool(xy−1

m ) + by
m) (5)

where pool is the pooling function, and a and b are the deviation values of each feature
graph, respectively. Excitation function convolution is performed on the linear transforma-
tion layer. Therefore, when joining several hidden layers, the input and output show linear
correlation. As a result, its performance is limited by a certain level of approximation. In
practice, convolutional neural networks are not just linear operations.

4. Aquila Optimization Algorithm

The Aquila optimization algorithm is a new intelligent optimization algorithm [20–23].
It is mainly used to solve real number optimization problems. This algorithm has many
exploration and development strategies. Compared with other meta-heuristic algorithms,
the Aquila optimization algorithm has obvious advantages. The algorithm was inspired by
four swarm behaviors of Northern Aquila birds during predation: (1) expanding the search
area by soaring vertically and hunting birds in flight; (2) flying by contours of short gliding
attacks and attacking prey in low-level air near the ground; (3) attacking prey gradually by
low-flying and slow descent; and (4) walking and catching prey on land by diving. The
initialization process is as follows: first, it randomly initializes the population position
matrix as follows:

Xij = rand× (UBj − LBj) + LBj, i = 1, 2, . . . , Dim (6)

where rand is a random vector, LBj represents the j-th lower bound for a given problem,
and UBj represents the j-th upper bound for a given problem.

(1) Expand the exploration is the first stage when the Aquila is hunting birds in the
air. The birds use vertical glide height to expand the search scope. Its mathematical
formula is:

X1(t + 1) = Xbest(t)× (1− t
T
) + (XM(t)− Xbest(t)× rand) (7)

XM(t) =
1
N

N

∑
i=1

Xi(t), ∀j = 1, 2, . . . , Dim (8)

where X(t) and X(t + 1) represent the individual position of the AO algorithm in the t
iteration and the t + 1 iteration, respectively, Xbest(t) represents the optimal individual
position obtained by the algorithm at the t iteration, XM(t) is the average position of the
population in the t iteration, and T is the maximum number of iterations.

(2) Downsizing is the second stage when the Aquila flock finds its prey from high in
the air. It chooses to spiral over the target, prepares to land, and then attacks. The
mathematical expression can be shown as:

X2(t + 1) = Xbest(t)× Levy(D) + XR(t) + (y− x)× rand (9)

where Levy (D) is the Levis strategy, s is a constant with the value 0.01, and u and v are
random numbers between 0 and 1.

Levy(D)= s× u× σ

|v |
1
p

(10)
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σ =

[
τ(1 + β)× sin e(πβ

2 )

τ( 1+β
2 )× β× 2( β−1

2 )

]
(11)

Here, τ(x) is a Gamma function and β is a constant with a fixed value of 1.5. x and y
represent the shape of a spiral flight. r is the search step, the radius of the helix. D1 is the
integer matrix from 1 to the length of the search space. θ is the helix angle, and θ1 is the
initial helix angle.

y = r× cos(θ) (12)

x = r× sin(θ) (13)

r = r1+U× D1 (14)

θ = −ω×D1 + θ1 (15)

θ1 =
3× π

2
(16)

where r1 ranges from 1 to 20, U takes the value 0.00565, and ω takes the value 0.005.

(3) To expand the development phase in the third stage, when the Aquila birds are in
the hunting area, ready for landing and attack, they generally adopt the vertical drop
method. The mathematical formula is:

X3(t + 1) = (Xbest(t)− XM(t))× α-rand + ((UB− LB)× rand + LB)× σ (17)

In the formula, α and β represent the development adjustment parameters, which are
smaller than 0.1.

(4) To reduce the development in this stage when the Aquila bird is close to its prey, there
is a certain randomness due to attack on the prey, and walking and capturing the prey.
This is expressed in the mathematical formula:

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1 (18)

where QF represents the average search strategy of the mass function, G1 represents the
various trajectories of the movement of the Aquila bird during the escape of the prey, and
G2 represents the decreasing value from 2 to 0 during the escape of the prey when the
Aquila bird follows the slope of the prey from the first position to the final position.

QF(t) = t
2× rand()− 1

(1− T)2 (19)

G1 = 2× rand()− 1 (20)

G2 = 2× (1− t
T
) (21)

The Aquila optimization algorithm is a method that can obtain the best result for a
complex multi-objective problem. First, each index is evaluated by an initial group. At this
stage, the algorithm, based on the existing best results, generates a new group, and each
individual is given a new parameter. On this basis, the algorithm continuously searches
for new optimal solutions according to the best individuals in the current population. In
the current population, it makes a series of choices based on the best individual. When the
number of optimal solutions is insufficient, the optimal strategy can be chosen by means of
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a rotary table. By solving a new group, the method updates all groups, and updates the
existing optimization scheme according to the status of the existing groups. After finding
the optimal solution, the method terminates the search and returns to the initial stage.
Finally, the algorithm sorts the best schemes and selects the best schemes from them. In
this way, we can find the optimal solutions, and then put the optimal solutions in a certain
order so as to achieve better results.

5. AO-CNN Short-Term Photovoltaic Power Prediction Model

CNN is a common method of automatically learning PV power prediction. The filter,
as an important parameter of the CNN, directly affects its accuracy and generalization
ability. Improving the filter selection to improve model performance has become the focus
of many researchers. In order to optimize the prediction performance of the CNN, the
convolutional step size is inputted into the AO algorithm to optimize the convolutional
kernel of the convolutional neural network.

In order to verify which prediction model is better, the measurement error evaluation
index system of the prediction model is used. The evaluation mechanisms used in this
paper are root mean square error (RMSE), absolute mean error (MAE) and average absolute
error rate (MAPE). The mathematical formulas for RMSE, MAE and MAPE are as follows:

RMSE =

√
1
M

M

∑
i=1

(Pj −
∧
Pj)

2

(22)

MAE =
1
M

M

∑
j=1

∣∣∣∣Pj −
∧
Pj

∣∣∣∣ (23)

MAPE =
100%

M

M

∑
j=1

∣∣∣∣∣∣
Pj −

∧
Pj

∧
Pj

∣∣∣∣∣∣
(24)

where Pj is the estimated photovoltaic output power at j-time,
∧
Pj is the actual photovoltaic

output power at j-time, and M is the length of the PV power data series.
After training and testing the deep learning model, simulation tests can predict the

actual photovoltaic power. The rated output power of PV is predicted by the AO-CNN and
its CNN comparison chart, and the prediction effect is reflected by the chart. The smaller
the error value, the better the prediction model.

Figure 3 shows the spring model of the fitting graph, which is used to show the fitting
effect of the CNN and AO-CNN models. The vertical axis on the left shows the difference
between the true and predicted values. The horizontal axis represents photovoltaic power
data in hours. The blue dotted line represents the predicted value of the AO-CNN model.
The green dotted line represents the predicted value of the original CNN model, and the
red line represents the true value. As can be seen from the figure, the two models are
less affected by spring weather and both models fit the real value well, but the predicted
value of the AO-CNN model is closer to the real value, and the difference is smaller. The
AO-CNN model has a large deviation in the prediction value from the sample time of 8–9
h, which may be caused by data abnormality or model inadequacy.

The summer model fitting diagram can be seen in Figure 4. It can be seen that the
curve fluctuates greatly, and the two models are greatly affected by the weather in summer,
which eventually leads to the green curve. The line deviates significantly from the original
data, and the CNN model cannot properly match the true value. The purple curve basically
coincides with the red curve. That is, the predicted value of the AO-CNN model proposed
in this paper has a better fitting effect than that of the CNN model. The value is smaller.
The predicted value of the AO-CNN model has a large deviation from 6–9 h in the sample
time, which may be the actual number. It is also possible that the model was in error or did
not fit, but overall, it is a better predictor of real data as there is better precision.
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Figure 4. Summer forecast fit plot for each model with traditional methods. 

   

Figure 4. Summer forecast fit plot for each model with traditional methods.

Figure 5 shows the fitting diagram of the model in the fall. It can be observed that the
weather in autumn has less effect. The two models discussed in this paper closely fit the
real values. Blue is the AO-CNN prediction curve, which is similar to the original data.
That is, the curve of the red line is fitted more comprehensively, and the predicted value of
the proposed AO-CNN model is higher than that of the CNN model, indicating that the
fitting effect is better.
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Figure 6 shows the winter fit of the model. It can be seen from the figure that the two
models are affected by the winter weather, with the result that the CNN model does not
match the real values well, but the forecast value of the AO-CNN model proposed in this
paper is closer to the real values, with smaller differences. The predicted values of the
AO-CNN model show a large deviation at the sample time from 8 to 9 h, which may be
due to data anomalies or model underfitting.
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Figure 6. Winter forecast fit plot for each model with traditional methods.

Table 1 shows the differences between CNN and AO-CNN. It can be seen that the
PV power prediction error of AO-CNN is smaller. Overall, the AO-CNN model performs
better than the CNN model, demonstrating that the accuracy requirements of computer
models can be further improved after the basic structure parameters of CNN model graphs
are cleared by the deep learning algorithm based on group intelligence. The prediction
effect of AO-CNN is better than that of the CNN model.

Table 1. Season forecast error table for each model with traditional methods.

Season Error Type CNN AO-CNN

Spring
RMSE (%) 2.14 1.83
MAE (%) 4.95 2.90
MAPE(%) 1.25 3.84

Summer
RMSE (%) 2.00 1.75
MAE (%) 3.07 2.68
MAPE(%) 5.02 5.11

Autumn
RMSE (%) 1.49 1.25
MAE (%) 2.76 2.24
MAPE(%) 6.56 6.88

Winter
RMSE (%) 1.20 0.89
MAE (%) 2.72 1.60
MAPE(%) 6.91 8.39

6. Photovoltaic Power Prediction Based on the IAO-LSTM Network
6.1. LSTM Neural Network

Although CNN is often used in actual photovoltaic power prediction, its performance
in processing sequence data with time characteristics is not advantageous, and the accuracy
of photovoltaic power prediction still needs to be further improved. Therefore, a neural
network called Long Short-Term Memory (LSTM) was introduced, which has obvious
superiority in time-series analysis. At the same time, because the Aquila optimization
algorithm appearing in the global index search process is insufficient, a new improved
Aquila optimization algorithm (IAO) is proposed. This algorithm is used to optimize the
parameters of LSTM neural networks, and finally, the photovoltaic power prediction model
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of IAO-LSTM network is constructed. It is then verified with the database-related data
mentioned above.

The LSTM LAN comprises several LSTM units, and the neurons in each layer are the
same as those in BP deep neural network. The LSTM network is similar to the training
of many neural networks in that its learning mode is also a backward propagation of
error calculation law. Since the LSTM network is a network with a repetitive structure, its
learning algorithm is also called backward propagation algorithm. Its learning process
mainly includes two aspects: forward transfer and backward transfer. In LSTM neural
network learning, the optimal solution has a great influence, and the most common one is
the gradient descent method.

6.2. Improved Aquila Optimization Algorithm

In view of the problems of the existing standard AO algorithm, such as insufficient
overall search ability and the tendency to fall into local extreme values, we attempt to
improve the standard AO algorithm with the Cauchy mutation and other methods, and
test it using four standard functions.

In the particle swarm optimization, the Cauchy variation coefficient is added. Specif-
ically, the Cauchy variation method is proposed for the first specific iteration process to
ensure that the algorithm can jump out of the optimal solution of local organization and try
to find an optimal algorithm. The complex density function of the Cauchy distribution in
standard three-dimensional space is shown as follows:

f (x) =
1
π
· 1

1 + x2 −∞ < x < ∞ (25)

Since the characteristic of the density function of the Cauchy distribution is that it does
not cross the X axis, the random numbers produced may leave the origin. The formula for
generating random numbers using the Cauchy distribution is as follows:

Cauchy(0, 1) = tan[π · (ξ − 1
2
)] (26)

where ξ is random, less than 1 and greater than 0. The formula for updating the individual
position of the Aquila by Cauchy mutation method is as follows:

→
Xq+1 =

→
Xq · (1 + Cauchy(0, 1)) (27)

where
→
Xq is the individual before the mutation, and

→
Xq+1 is the individual after the muta-

tion. Using the principle of survival of the fittest, the fittest values before and after mutation
are compared to update the individual position.

Time complexity analysis usually includes three aspects: population initialization
calculation fitness function, and updating the solution. It is assumed that the population
number is N, the computational complexity of population initialization is O(N), and the
computational complexity of solution updating process is O(T × N) + O(T × N × D),
where T is the total number of iterations and D is the dimension of the problem.

Therefore, the total time complexity of the standard AO algorithm is O(N × (T × (D + 1))).
However, only the T distribution strategy O(T × N) is added to the IAO algorithm, without
increasing the computational complexity, because the total time-interval complexity of the
IAO algorithm is O(N× (T× (D + 1) + 1)). The IAO algorithm has the same complexity as
the traditional AO algorithm and does not add any additional level of operation.

Four standard functions were selected, of which two were unimodal and two were
multimodal, and their results were used to test the IAO performance. Table 2 presents
the standard functions: F1 describes four standard functions, F1 to F2 are single mode
functions, and F3 to F4 are multi-mode functions. For a single mode function, its search
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capability can be tested because it has a unique global optimal solution. The other part of
the test composite function curve is shown in Figure 7.

Table 2. Four benchmark functional test functions.

Functions Expression Search Space Dimension Optimal
Solution

F1 F(x) = ∑D
k=1 x4

k + rand(0, 1) [−200,200] 30 0

F2 F(x) = ∑D
k=1 x2

k [−2.28,2.28] 30 0

F3 F(x) = ∑D
k=2 (106)

(k−1)(D−1) · x2
k

[−22,22] 30 0

F4 F(x) = ∑11
k=1 [ak − x1(b2

k+bk x2)

b2
k+bk x3+x4

]
2

[−40,40] 30 0

Figure 7 shows a portion of the two-dimensional plane display images of the com-
pound test function and the contraction change curves of various algorithms. Figure 7a–d
display the digital F1, F2, F3 and F4 plane display images, respectively. In addition, F1 and
F2 are single-peak composite functions, and there are only two optimal choices. F3 and F4
are complex multimodal functions with multiple optimal local fabric choices. It should be
noted that the composite function of the selected cell is semicircular, but the smaller the
final convergence, the faster the specific requirements are met.

The deep learning algorithm is used to compare the test results of each test compound
function including the weighted average, probability distribution, optimal solution value,
and difference value. The test results for the four benchmark functions are shown in Table 2.
For all the combined F1-F2 functions of a single neural network, the AO algorithm performs
better than the CPSO algorithm. The global optimal choice of the composite function for
calculating F1-F2 elements is 0, but the optimal solution and weighted average of the
AO and Marine Predators Algorithm (MPA) are not 0. The optimal solution values and
weighted average of F1 and F2 are 0. For the composite function of a single neural network
model, the test results of the F1-F2 test composite function all verify that the quality and
performance of the proposed IAO are more competitive.

For composite functions F3 and F4, the final linear distance test of the CPSO algorithm
is expected to have a large final large gap. When testing the composite function F4, IAO’s
optimal solution value is the best choice for calculating the closest test composite function
in the deep learning algorithm. In both algorithms, the final value of IAO is closer to the
expected value. Through the testing of F3 and F4, it is found that the optimization potential
of IAO is relatively better than other specific methods. In general, often according to the
above analysis, most single neural network model composite functions are still composite
functions of natural language understanding. Compared with AO and its improved MPA,
IAO is more competitive, stable and secure. Finally, it is shown that after the improvement
of the computing unit AO with the help of the Cauchy mutation and other operational
strategies, IAO has relatively effective computing and development potential, and IAO has
stronger global optimization potential.

6.3. The Short-Term Photovoltaic Power Prediction Model of the IAO-LSTM Network

The LSTM network has a good ability to predict time series. However, the structure
and modeling accuracy of LSTM networks depend on the selection of their hyperparam-
eters, which directly affect the prediction effect of LSTM networks. At present, hyperpa-
rameter selection in the LSTM network mainly relies on prediction and many experiments.
This is not only inefficient, but it is also difficult to obtain reasonable hyperparameter
values. Here, in the context of machine learning, hyperparameters are parameters whose
values are set before the learning begins, rather than parameter data obtained through
training. Under normal circumstances, hyperparameters are optimized to select a group
of optimal hyperparameters for the learning machine to improve the performance and
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effect of learning. Therefore, hyperparameters are derived from human experience and are
subject to hardware constraints. On this basis, the IAO method is proposed to optimize
the key parameters in the LSTM network and improve the accuracy of LSTM network
modeling. Hyperparameters have a great influence on the prediction ability of LSTM
networks. Improper selection leads to a decline in the prediction capacity of the LSTM
network. In LSTM, the number of hidden layer neurons and the interval of reinforcement
training batches are two indispensable related parameters which hinder the overall quality
and performance of LSTM. Increasing the number of hidden layer neurons in LSTM neural
networks can improve their fitting performance and prediction accuracy.
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As the number of neural networks increases, the need for computation also increases,
and the learning speed of neural networks is affected to some extent. Each neural network
can be used to describe the training batch and time interval of intensive training, but
further improving the training batch time interval of neural network intensive training
can effectively further improve computing power. It can also further improve the memory
utilization efficiency of the operating system and shorten the product iteration cycle. How-
ever, in specific cases where the same training batch has improved significantly, database
overflows, software program crashes, and so on can occur. If the appropriate parameters
are selected, not only can the learning speed of motion be accelerated, but also the accuracy
of 3D images can be further improved to avoid the possibility of generalization ability and
other problems being difficult to solve.

In this paper, a new and improved IAO algorithm for Aquila deep learning is
adopted. By testing the composite function, the aim was to verify the quality and
performance of the IAO cell, thereby enabling the continuous improvement of the
two new and current effective algorithm models. This testing indicates that IAO has
good optimization potential. IAO was selected to optimize LSTM local area network
(LAN) connectivity parameters, the number of hidden layer neurons, and the time
interval of connection reinforcement training batches, in order to promote IAO automatic
convergence in hyperparameters and optimize LSTM connectivity correlation. Thus,
IAO can optimize the LSTM connection parameters.

Determining the number of hidden layer neurons enables us to optimize the LSTM
LAN connection and further enhance the training batch time interval. The overall optimal
choice is to allow the target compound function to obtain the corresponding value range of
Aquila-related parameters, where the Aquila position in the vector space of the number
of neurons in the time interval between the hidden layer and the reinforcement training
batch corresponding to the LSTM neural network prediction model error is less than one.
With IAO, the LSTM connection parameters can be automatically optimized to avoid
measurement errors caused by manual selection of relevant parameters. IAO-LSTM makes
basic connections based on LSTM neural networks. The optimal number of hidden layer
neurons and the interval of intensive training batches were used as parameters for LSTM
neural network connection.

The basic steps of the IAO-LSTM network model optimization process are:
Step 1: The relevant LSTM connection parameters are initialized. Then, the basic

framework of LSTM connectivity and its related parameters are preliminarily preprocessed
and inputted into the IAO-LSTM connectivity training set.

Step 2: The optimal IAO parameters are initialized. The population number, iteration
times and other parameters are set. We then take the optimal LSTM network model as the
optimal Skyhawk individual, and take the error function in the algorithm network model
as the optimal fitness.
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Step 3: Based on the number of training batches of the LSTM network and the
number of neurons in the hidden layer, each Aquila is positioned and trained with the
initial parameters to obtain the adaptive value of the Aquila (training error of the LSTM
network), and then compared with the adaptive value of each individual to find the
optimal search subject.

Step 4: The IAO correction formula is used to correct and determine the Aquila’s
position. On this basis, genetic algorithms are used to solve the algorithm. Otherwise, the
number of optimal individuals and the size of the optimal adaptation value are maintained.

Step 5: When the maximum number of iterations is reached, the iteration is terminated
to obtain the optimal solution. Otherwise, the model returns to step 4 and continues looking
for the best individual.

Step 6: The relevant parameters in the IAO from the optimal individual scheme
location are decoded. Then the relevant parameters considered most suitable for the LSTM
connection are decoded.

Step 7: After garbage file cleaning, the LSTM neural network is intensively trained
using the deep learning model. Then the test data set is selected to predict the nominal
photovoltaic output power, and finally the prediction is recorded.

Through the construction and optimization of the IAO-LSTM network model, the
photovoltaic power prediction mechanism is further understood. However, the existing
IAO-LSTM neural network model cannot train and predict the entire system. Specifically,
the actual photovoltaic power generation has a certain seasonal variation so it needs to be
pretreated. According to the actual situation, the prediction model suitable for the data
set is established. The distributed PV active power database data and their corresponding
meteorological database data are determined. Then, the deep learning model is further
divided into four parts. The deep learning model can be divided into spring, summer,
autumn, and winter according to the physical characteristics of spring and autumn. After
the deep learning model is preprocessed, the number of selected parameters in the IAO-
LSTM sub-deep learning model is cleaned with the help of the enhanced training set,
and then the actual power output data of photovoltaic power generation is predicted by
continuing to select the test set.

6.4. Model Verification

The model evaluation indices used in this paper were the mean root square error
(RMSE) and mean absolute error (MAE). When using the same database data as the AO-
CNN prediction model above for model verification, the selected database data had to be
relatively stable. Only on this basis could the results be compared. In order to make com-
parisons and draw differences, the predictive power of the proposed PV statistical model
needs to be verified and the LSTM and AO-LSTM of the computing element compared.

The interval of intensive training for all images was set to 200 times. The image of
LAN connection uses MSE as the activation function. The value of genetic diversity of
the deep learning algorithms was set to 30, and the product iteration interval of deep
learning algorithms was 20 times. Through the deep learning models and tests, the actual
photovoltaic power could be predicted. Finally, AO-CNN and its comparison graphs were
used to predict the rated photovoltaic output power, and the different prediction effects
are shown in Figure 8a–d. The figure shows the prediction effects of the LSTM, AO-LSTM,
and IAO-LSTM models after fitting the data for four seasons. The left vertical axis shows
the difference between the true and predicted values, and the horizontal axis shows the
PV power data time in hours. The green dotted line represents the prediction result of the
LSTM model, the blue dotted line represents the prediction result of the original AO-LSTM
model, the black dotted line represents the prediction result of the IAO-LSTM model, and
the red solid line represents the true value.
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As can be seen in Figure 8, the red and black lines tend to be more similar. Compared
with the LSTM model and the AO-LSTM model, the IAO-LSTM model can better fit the
true values, and the difference is small. There is a large deviation in the predicted values of
the LSTM model in the 8–10 h of sample time range, which may be caused by abnormal
data processing. Simply comparing the calculated PV active power curve with the reference
curve cannot quantify the chart quality or visually evaluate its relative effect, so the error
values are used to assess the results. Table 3 lists the values of the LSTM model, AO-LSTM
model, and IAO-LSTM comparison model in terms of RMSE and MAE in four seasons.
Comparing the error values of the LSTM, AO-LSTM and IAO-LSTM models in Table 3, it is
clear that IAO-LSTM has higher accuracy in photovoltaic power prediction.

Table 3. Season forecast error table for each model.

Season Error Type LSTM AO-LSTM IAO-LSTM

Spring
RMSE (%) 1.87 1.48 1.38
MAE (%) 2.67 1.76 1.91

MAPE (%) 1.32 3.84 6.56

Summer
RMSE (%) 1.84 1.08 0.91
MAE (%) 2.92 1.66 1.29

MAPE (%) 4.61 6.38 6.31

Autumn
RMSE (%) 0.90 0.84 0.71
MAE (%) 1.13 1.26 0.84

MAPE (%) 7.76 6.88 7.47

Winter
RMSE (%) 1.01 0.71 0.61
MAE (%) 1.43 1.15 0.91

MAPE (%) 6.91 8.39 5.02

In conclusion, the experimental results show that the IAO-LSTM photovoltaic power
prediction model proposed in this paper has smaller errors in all four seasons, and its
overall quality and performance are better than that of LSTM and AO-LSTM. Compared
with the AO-CNN model mentioned above, the performance of the IAO-LSTM model is
also a significant improvement.

7. Conclusions

With the increase in the penetration rate of new energy, it is necessary to improve the
ability of new energy to participate in the frequency regulation and voltage regulation of
the power grid. However, the current energy storage technology is not mature in terms of
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safety, and the cost performance is low. To enable its participation in frequency regulation
and voltage regulation of the power grid, it is necessary to accurately predict the output
of the new energy field. This paper analyzes and studies the common methods of photo-
voltaic electric field output power prediction models, such as the CNN and AO algorithms,
and the AO-CNN, LSTM and AO-LSTM models, etc. After comparing and analyzing the
advantages and disadvantages of these models, we propose using IAO to optimize LSTM
neural network parameters and establish a model for predicting actual photovoltaic power.
The proposed IAO-LSTM model was applied in the field of photovoltaic power prediction.
The experimental results show that the IAO-LSTM photovoltaic power prediction model
has less error and that its overall quality and performance are better than the other above-
mentioned prediction models. In the future, if the proposed method can be combined with
load forecasting, it will be able to accurately determine the frequency modulation region
and adopt frequency modulation means to realize a supporting role in the power grid.
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Abstract: In low-voltage distribution networks, distributed energy storage systems (DESSs) are
widely used to manage load uncertainty and voltage stability. Accurate modeling and estimation of
voltage fluctuations are crucial to informed DESS dispatch decisions. However, existing parametric
probabilistic approaches have limitations in handling complex uncertainties, since they always rely on
predefined distributions and complex inference processes. To address this, we integrate the patch time
series Transformer model with the non-parametric Huberized composite quantile regression method
to reliably predict voltage fluctuation without distribution assumptions. Comparative simulations on
the IEEE 33-bus distribution network show that the proposed model reduces the DESS dispatch cost
by 6.23% compared to state-of-the-art parametric models.

Keywords: low-voltage distribution networks; distributed energy storage system; chance-constrained
programming; PatchTST; composite quantile regression; non-parametric probabilistic prediction

1. Introduction

Effective voltage management is essential to ensure the safe and stable operation of
low-voltage distribution networks [1,2]. However, the random nature of electrical loads
presents a significant challenge in maintaining the bus voltage within the nominal range [3].
These uncertainties may result in voltage fluctuations or exceedances, thereby jeopardizing
the stability and reliability of the power grid [4]. In recent decades, the distributed energy
storage system (DESS) has emerged as a vital solution to manage this challenge and
maintain voltage safety [5,6].

The accurate estimation of voltage fluctuation caused by the stochastic characteris-
tics of loads [7] enables the optimal dispatch of DESSs. Existing techniques for handling
uncertainties in distribution networks primarily include scenario-based stochastic pro-
gramming [8,9], robust optimization [10,11], chance-constrained programming [12,13], etc.
Among these, the chance-constrained programming approach is an effective approach that
directly incorporates uncertainties into the optimization model by defining constraints that
must be satisfied with a certain probability [14].

There are existing studies that investigate the formulations and solving methods for
the chance-constrained economic dispatch (CCED) problem. Ref. [15] introduces a new
probabilistic distribution model, called versatile distribution, to represent prediction errors
in wind power. This probabilistic distribution model is incorporated into the CCED prob-
lem that includes wind power, with the aim of reducing the non-linearity and complexity of
the problem. Ref. [16] also utilizes the versatile distribution to model the stochastic output
of wind turbines, thus transforming the probabilistic constraints of wind power in the
proposed decentralized CCED model into deterministic constraints. Although the fitting
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accuracy of the versatile distribution has been shown to outperform the Gussian and Bata
distributions, the parametric probabilistic forecasting method may face limitations when
dealing with complex uncertainties [14]. Therefore, some studies have begun exploring
non-parametric probabilistic forecasting methods to better capture the uncertainties of
renewable energy or electricity load. Ref. [17] combines extreme learning machines and
quantile regression to efficiently produce non-parametric probability forecasts for wind
power generation. Ref. [18] formulates a CCED model for DESS planning in active dis-
tribution networks, utilizing empirical probability density functions without parametric
assumptions and a numerical convolution method to deal with uncertainties of various
distributed energy resources (DERs). These studies validate that non-parametric probabilis-
tic forecasting methods can accurately estimate various quantiles of random variables in
the CCED problem without the need for any prior knowledge, statistical inference, or the
assumption of specific probability distributions. This enables a more accurate and efficient
conversion of the uncertain CCED problem into a linear programming problem.

Furthermore, with the applicability and extensibility of deep learning methods continu-
ously verified [19–21], their capabilities in time series forecasting have received widespread
attention [22–25]. Recently, the channel-independent patch time series Transformer (PatchTST)
model has been proven to exhibit exceptional performance in time series prediction [26]. Its
channel-independent processing, patching processing, and the Transformer architecture to-
gether enhance the model’s deep understanding of both global trends and granularity in
time-series data. Therefore, it is highly suitable to predict voltage fluctuations in distribution
networks affected by random loads.

In this paper, we integrate a non-parametric probabilistic forecasting approach, Huber-
ized Composite Quantile Regression (HuberCQR), into the Transformer-based PatchTST
model, to address the uncertainty of random loads in the DESS CCED problem. Huber-
CQR is an effective technique that combines the robustness of Huber loss [27,28] with the
flexibility of composite quantile regression (CQR) [29], enabling the model to generate
accurate probabilistic forecasts even in the presence of noisy or outlier data. By integrating
CQR into the PatchTST framework, we aim to leverage the Transformer’s ability to capture
complex temporal relationships while enhancing its prediction accuracy and efficiency
across different quantiles. This integration allows for more reliable and robust forecasting
of non-stationary voltage uncertainties, thereby facilitating more efficient and effective
decision-making in the DESS CCED problem.

Overall, the contributions of this paper can be concluded as follows: (1) This paper
leverages the non-parametric HuberCQR method to estimate composite quantiles of the
uncertain voltage fluctuation caused by random loads, which is vital for transforming the
original DESS CCED problem into linear form without complex mathematical derivations
and predefined probabilistic assumptions. (2) The Transformer-based PatchTST forecasting
framework integrated with the HuberCQR loss function is utilized to efficiently learn
the uncertainties of bus voltage fluctuations. (3) The Transformer-based non-parametric
probabilistic prediction framework demonstrates superior performance in providing accu-
rate quantification of the voltage fluctuation range, which facilitates an effective trade-off
between the DESS dispatch cost and the voltage violation risk.

The remainder of this paper is organized as follows. The problem formulation of
the DESS CCED for voltage management in the distribution network is introduced in
Section 2. Section 3 presents the Transformer-based PatchTST forecasting framework
integrated with the HuberCQR loss function for composite quantile predictions of voltage
fluctuation. In Section 4, comprehensive case studies are conducted to verify the effective
and economical dispatch of DESS based on the proposed method. Finally, Section 5
concludes the paper.

2. Problem Formulation

In this section, we formulate a day-ahead DESS CCED problem for voltage manage-
ment in a distribution network considering load uncertainty. Then we demonstrate how to
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transform chance constraints into deterministic constraints by introducing the cumulative
distribution function (CDF) of a random variable and its inverse function: quantile function.

2.1. Linear DistFlow Model

Consider a radial distribution network denoted by (N ,L), where N := {1, · · · , N}
represents the distribution network buses and L ⊂ {N ×N} represents the distribution
lines. Let Li,1 represent the branch on the direct path from bus i to the reference bus,
with i ∈ N\1 denoting the non-reference bus. Define the set of descendants of bus m
as Nm, and each branch between two buses as (n, m). Take the IEEE 33-bus distribution
network (shown in Figure 1) as an illustrative case, where bus #1 is the reference bus with a
voltage magnitude of 1 p.u. The set L25,1 includes direct branches connecting bus #25 to the
reference bus, i.e., {(1, 2), (2, 3), (3, 23), (23, 24), (24, 25)}, and N6 refers to the descendants
of bus #6, i.e., {7, 8, . . . , 18, 26, 27, . . . , 33}.

Figure 1. IEEE 33-bus radial distribution network [30].

In this paper, we adopt the Linear DistFlow model to describe the power flow in the
distribution network [31,32], and assume a common scenario where the DESS only offers
active power support [18]:

Vi,t = 1− ∑
nm∈Li,1

(2RnmPnm,t + 2XnmQnm,t), (1)

Pnm,t = ∑
j∈Nm

(Pcha
j,t − Pdis

j,t + P̃L
j,t), (2)

Qnm,t = ∑
j∈Nm

Q̃L
j,t (3)

where Vi,t represents the bus voltage squared, calculated based on the line resistance Rnm
and reactance Xnm, considering the active and reactive power flows Pnm,t and Qnm,t. The ac-
tive power flows Pnm,t and Qnm,t are determined by adding the active power consumption
of DESSs (Pcha

j,t − Pdis
j,t ) and random loads P̃L

j,t on all descendants of the bus m, while reactive

power flow Qnm,t is calculated as the sum of net reactive power consumption Q̃L
j,t. This

linear power flow model illustrates how the spatial distribution and electrical power of
DESSs and random loads influence the bus voltage.

2.2. Objective and Constraints

This section introduces the objectives and constraints of the DESS CCED problem and
presents the deterministic conversion of the chance constraints.

2.2.1. Objective

The objective of the DESS CCED problem in this paper is to minimize the total opera-
tional cost of all DESSs in the distribution network [33] as formulated in Equation (4):

min ∑
i∈NB

T

∑
t=1

λ(1 + η) · (Pcha
i,t + Pdis

i,t )∆t (4)
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whereNB is the set of all DESSs in the distribution network, T is the entire dispatch horizon,
λ is the cost per unit of charging and discharging of a DESS ($/MWh), η is the charging
and discharging efficiency (%), Pcha

i,t and Pdis
i,t are the charging and discharging power of

DESS i at time t (MW), and ∆t is the dispatch time interval.
This formulation reflects the wear cost from battery degradation due to the charg-

ing/discharging operation. Under a reasonable depth of discharge, the overall capacity
for charging/discharging of a DESS remains at a certain level. Therefore, the wear cost
can be considered to be nearly proportional to the charging/discharging energy. Moreover,
the term 1 + η considers the energy loss during the charging and discharging process due
to efficiency.

2.2.2. Constraints

The DESS CCED problem should be subject to the following constraints:

0 ≤ Pcha
i,t ≤ Icha

i,t Pcha
i,max (5)

0 ≤ Pdis
i,t ≤ Idis

i,t Pdis
i,max (6)

0 ≤ Icha
i,t + Idis

i,t ≤ 1, (7)

SOCi,t = SOCi,t−1 + (ηPcha
i,t /Eb

i −
1

ηEb
i

Pdis
i,t )∆t (8)

SOCi,min ≤ SOCi,t ≤ SOCi,max (9)

Pr{Vi,t ≤ Vi,min} ≤ ε (10)

Pr{Vi,t ≥ Vi,max} ≤ ε (11)

where Icha
i,t and Idis

i,t represent the charging and discharging states of DESS i at time t, with
a value of 1 indicating charging/discharging and 0 otherwise; Pcha

i,max and Pdis
i,max mean the

maximum allowable charging/discharging power of DESS; SOC is the state of charge of
the battery, indicating the ratio of the remaining capacity to the total capacity; SOCi,min
and SOCi,max signify the minimum/maximum allowed SOC lower limits of DESS i; Eb

i
represents the DESS capacity; Vi,t is bus voltage at time t calculated by the Equation (1);
Vi,min and Vi,max represent the lower/upper voltage thresholds of bus i; and ε symbolizes
the allowed violation probability of the voltage constraint.

Equations (5)–(9) define the operational constraints of the DESS unit. More specifi-
cally, Equations (5) and (6) give the limits of the DESS charging and discharging power.
Equation (7) indicates that DESS cannot be simultaneously in charging and discharging
states. Equations (8) and (9) describe the energy balance and depth of discharge (DOD)
limit of DESS. Equations (10) and (11) assume that the probability of bus voltage violation
remains below a certain level, which is vital for the safe operation of the power system.

2.2.3. Deterministic Conversion of Chance Constraints

To solve the formulated DESS CCED model (4)–(11), the chance constraints (10) and (11)
need to be transformed into deterministic constraints. Then, the optimal solution of
the formulated model can be obtained directly by applying professional solvers to the
resulting mixed-integer linear programming (MILP) problem. Next, the conversion of
chance constraints into deterministic linear constraints will be explained.

To begin with, we substitute Equations (1)–(3) into (10) and obtain:

Pr



1− ∑

nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− ∑
nm∈Li,1

∑
j∈Nm

(2Rnm P̃L
j,t + 2XnmQ̃L

j,t) ≤ Vi,min



 ≤ ε (12)
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Then, a new random variable Ξi,t is defined, which indicates the voltage drop caused
by random loads compared with the reference voltage (1 p.u.) at the reference bus:

Ξi,t := ∑
nm∈Li,1

∑
j∈Nm

(2Rnm P̃L
j,t + 2XnmQ̃L

j,t) (13)

Thereafter, Equation (12) can be expressed as Equation (14) by substituting Equation (13).
Equation (15) takes the complement of Equation (14). Next, Equation (16) substitutes the
CDF definition for the probability term in Equation (15), which reflects the probability
that the random variable Ξi,t is less than or equal to a certain value. Finally, Equation (17)
incorporates the inverse CDF term, F−1

Ξ (·), resulting in an equivalent expression of the
original chance constraint but now in a deterministic form:

Pr



Ξi,t ≥ 1− ∑

nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )−Vi,min



 ≤ ε (14)

⇒ Pr



Ξi,t ≤ 1− ∑

nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )−Vi,min



 ≥ 1− ε (15)

⇒ FΞ(1− ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )−Vi,min) ≥ 1− ε (16)

⇒ 1− ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )−Vi,min ≥ F−1
Ξ (1− ε) (17)

A similar transformation can be applied to Equation (11), resulting in:

1− ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )−Vi,max ≤ F−1
Ξ (ε) (18)

In Equations (17) and (18), F−1
Ξ (1− ε) and F−1

Ξ (ε) can be interpreted as the quantiles of
Ξ at level 1− ε and ε, according to the inverse relationship between CDF and the quantile
function. For simplicity of notation, we denote F−1

Ξ (1− ε) and F−1
Ξ (ε) by qi,t(1− ε) and

qi,t(ε), respectively. In other words, the voltage violation probability ε is also the probability
level that defines qi,t(ε). Thus, the key to transforming the DESS CCED model into a directly
solvable MILP problem is being able to accurately obtain quantiles of Ξi,t.

However, the probability distributions of bus voltage fluctuations are often complex
and unknown, which is due to the network topology and random loads. In addition,
analytical expressions of the quantile function may not be obtainable even though the
distribution is known. Therefore, technique is needed to accurately predict the values of
the voltage fluctuation probability distribution at composite quantiles without relying on
the assumptions of underlying probability distribution and complex numerical derivation.

In Section 3, we will introduce a learning-driven prediction model, which leverages
the strengths of the improved Transformer model for time series forecasting and the robust
CQR method for multi-quantile output. The proposed prediction model can efficiently
capture the bus voltage fluctuation patterns affected by temporal random loads.

3. Transformed-Based Non-Parametric Probabilistic Prediction Model

In this section, we introduce the PatchTST prediction model combined with the
HuberCQR method for the estimation of qi,t(·).

PatchTST is a deep learning model that excels at capturing complex temporal patterns
in time series data. In our problem, we use the PatchTST model to learn the patterns of
voltage fluctuations at each non-reference bus caused by random loads. CQR is a non-
parametric statistical method that can simultaneously estimate composite quantiles of a
variable. It extends traditional quantile regression, which estimates a single quantile at
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a time. HuberCQR is a robust improvement over the CQR method, where it introduces
Huber loss to make CQR predictions less sensitive to outliers.

Specifically, in our framework, we utilize the HuberCQR method to define a loss func-
tion, which measures the difference between real data and predicted composite quantiles.
The training process of the PatchTST model aims to minimize the average of this HuberCQR
loss function over the entire training period. Overall, the integration of the PatchTST model
and HuberCQR loss function forms a powerful framework that can capture temporal fluc-
tuations of voltages at different buses in the distribution network, and generate composite
predictions at specified probability levels.

3.1. PatchTST Prediction Model

This section introduces the framework of the PatchTST prediction model combined
with the HuberCQR loss function, and then outlines its key components.

3.1.1. PatchTST Framework

The framework of the PatchTST prediction model is given in Figure 2. The model’s
inputs are the collection of historical data of Ξi,t, namely, the voltage drop fluctuations at
each non-reference bus, calculated by Equation (13). The outputs are the predictions of Ξi,t
at different quantile levels, i.e., qi,t(·).

Figure 2. The framework of PatchTST.

Initially, PatchTST divides the input multi-bus voltage time series into separate chan-
nels. Then, the independent multi-bus voltage time series in each channel is normalized
to ensure consistency across different scales. Following normalization, each time series is
segmented into patches. After that, the projection and position embedding step projects
each patch into a higher-dimensional space and integrates position embedding, to preserve
the sequential context of the original time series. The Transformer Encoder, which is the
essence of the classic Transformer frameworks, then analyzes patches and understands
both overarching trends and fine-grained temporal dynamics in the voltage data. Further,
the Flatten and Linear Head step combines the output of the Transformer Encoder by
flattening it and using a linear transformation to produce accurate voltage predictions at
various quantiles. Once the PatchTST backbone processes the data, the predicted voltage
drops at different quantiles, and qi,t(·) are compared against actual values using the Hu-
berCQR loss function. By minimizing the HuberCQR loss, the model’s parameters are
updated, resulting in a trained PatchTST model. Finally, the well-trained PatchTST model
outputs a concatenation of composite quantiles on different buses.

3.1.2. Core Components of PatchTST Backbone

PatchTST enhances prediction capabilities, mainly benefiting from three core com-
ponents: channel independence process, patching process, and the multi-head attention
mechanism of the Transformer backbone.
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Channel Independence for Precision Analysis: Channel independence refers to the
treatment of separating multivariate time series into individual channels which share
the same embedding and Transformer weights. In the context of our problem, PatchTST
separates the voltage fluctuation time series for each bus (Ξi,t) into distinct channels. This
segregation allows for the generation of customized attention maps for each bus voltage,
ensuring the accuracy of voltage predictions. The channel-independence model has several
advantages over the channel-mixing model: (1) reducing computational complexity and
improving processing speed, as the model can process each channel in parallel and a
faster learning convergence rate can be achieved; (2) reducing risk of over-fitting, due to
the smaller number of parameters for modeling complex interactions between different
channels; and (3) increasing robustness to noise by preventing its propagation across
mixed channels.

Efficient Data Segmentation with Patching: PatchTST employs a patching technique to
effectively manage high-dimensional time series data. This technique divides a time series
x(i) ∈ R1×L into N patches of length P, denoted as x(i)p ∈ RP×N , achieving a reduction in
time and space complexity by a factor of stride: N ≈ L/S. This technique not only captures
the local information within each subsequence but also eases the computational and storage
pressure when processing the entire series, enhancing model performance and efficiency.

Comprehensive Insight with Multi-Head Attention Mechanism: The multi-head at-
tention mechanism in PatchTST is vital for analyzing complex dependencies in the input
patches on various time scales. Specifically, the multi-head attention mechanism operates
through the following steps:

1. Input Transformation: This step transforms each patch as a whole to capture different
aspects of the data. For each attention head i, the entire patches represented by
original queries (Q), keys (K), and values (V) are transformed by multiplying the
respective weight matrices WQ

i , WK
i , and WV

i . This transformation is expressed by
Equation (19):

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i (19)

Here, the transformation is applied at the patch level, treating each patch as an entity
to grasp its unique characteristics and relationships with other patches.

2. Scaled Dot-Product Attention: This step assesses the relevance of each patch in
relation to the others by calculating the similarity between queries and keys at the
patch level. For each head i, the similarity between transformed queries Qi and keys
Ki is determined by dot products and scaling. The similarity scores for each head
QiKT

i√
dk

are then converted into a probability distribution using the softmax function.

A weighted summation is performed on the transformed values Vi based on this
distribution as shown in Equation (20):

headiAttention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi (20)

This process enables the model to prioritize patches based on their significance in
predicting outcomes, emphasizing the importance of understanding interactions at
the patch level.

3. Output Merging: By integrating insights from all heads, this step provides a com-
prehensive analysis that improves prediction accuracy through various temporal
perspectives. The concatenated outputs of all heads are merged via an additional
linear transformation WO as illustrated by Equation (21):

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO, (21)
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where WO is the weight matrix designed to combine the insights from individ-
ual patches.

3.2. HuberCQR Loss Function

As illustrated in Section 3.1.1, the loss function is the key to training the PatchTST
model. In Ref. [26], where the PatchTST method was first introduced, the loss function of
mean squared error was used to measure the discrepancy between the predicted values
and actual values, but this design was only suitable for point predictions. In our case, we
aim to obtain composite probabilistic predictions. In addition, it is significant to ensure
the accuracy of the prediction throughout the distribution range for quantile predictions.
Thus, we integrate the Huber loss function to provide a more reliable error metric that is
less sensitive to extreme deviations. Next, we will provide a detailed description of the
HuberCQR loss function.

First, the classic formula for quantile regression is [34]:

min
βε

[
T

∑
t=1

ρε(yt − q̂t(ε))

]
(22)

where t is the total training epochs, ε is the quantile level of interest, yt is the true data,
q̂t(ε) is the predicted quantile value, and ρε(·) is the quantile loss function, defined as:

ρε(u) =

{
ε · u if u ≥ 0
(ε− 1) · u if u < 0

(23)

where u := yt − q̂t(ε), which is the difference between the actual value yt and the predicted
quantile value q̂t(ε). Note that the quantile loss function applies penalties to residuals
in a way that captures the asymmetry inherent in quantile estimation, giving different
importance to underestimations and overestimations relative to the target quantile level.

However, in the classic quantile regression formula, the objective is to find the model
parameters βε that minimize the overall loss. This allows the prediction model to estimate
the single quantile of interest. CQR extends this original loss function by simultaneously
estimating composite quantiles of interest. The loss function of CQR can be written as
follows, which minimizes the average quantile loss [29]:

min
βK

1
KT

K

∑
k=1

T

∑
t=1

ρεk (yt − q̂t(εk)) (24)

where ρεk (·) measures the quantile loss for the εk-th quantile q̂t(εk), and βK represents the
optimal parameters set of prediction model.

Although the CQR loss function addresses the concern of estimating composite quan-
tiles simultaneously, it may also face the challenge of obtaining skewed quantile estimates
due to outliers. Therefore, we combine the CQR loss function with the Huber loss function
to tackle this challenge. Huber loss, with its dual approach of applying squared loss for
smaller errors and linear loss for larger errors, can effectively reduce the impact of outliers.

The formula for Huber loss is as follows [28]:

Hδ(d) =

{
1
2 d2 if |d| ≤ δ

δ
(
|d| − 1

2 δ
)

otherwise.
(25)

where δ is a tuning parameter that determines the threshold between utilizing squared loss
or linear loss, which balances the trade-off between robustness to outliers and sensitivity to
small prediction losses; d is the difference between the true value and the prediction.
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Then, the HuberCQR loss is formulated as Equation (26), through replacing the
quantile loss ρεk (yt − q̂t(εk)) in Equation (24) with Huber loss Hδ(yt − q̂t(εk)) of predicted
quantiles q̂t(εk), k ∈ {1, · · · , K}:

1
KT

K

∑
k=1

T

∑
t=1

Hδ(yt − q̂t(εk)) (26)

In addition, the HuberCQR loss in each channel needs to be gathered and averaged to
obtain the overall target loss:

min
β

1
NKT

N

∑
i=1

K

∑
k=1

T

∑
t=1

Hδ(yi,t − q̂i,t(εk)) (27)

Through training the PatchTST prediction model by loss function (27) and updating the
model parameters β, we achieve an optimized fit to the historical data, enabling the model to
accurately predict bus voltage fluctuations at multiple quantiles in the distribution network.

4. Case Study

Numerical tests are conducted on the IEEE 33-bus radial distribution network. The
topology of the distribution network is illustrated in Figure 1, where the nominal voltage
and the base power are 12.66 kV and 1 MVA, respectively. The minimum and maximum
voltage thresholds for each non-reference bus Vi,min and Vi,max are set to 0.95 p.u. and
1.05 p.u., respectively. Additional parameters of this network are available in [30]. To simu-
late dynamic loads, we aggregated hourly electricity consumption data from encrypted
smart meters of users provided by the Spanish company GoiEner for each bus. This
dataset [35], which was publicly released in January 2024, includes load data for various
types of users, i.e., industrial, commercial, and residential. We extract the load data from
1 June 2021, 00:00 to 31 May 2022, 23:00, ensuring that the average load level matches the
static load in the original network model for each bus, and the ratio of reactive power to
active power is maintained.

The simulation process and the input/output data at each step are as follows. All
simulations were run on a personal laptop with an Apple M2 CPU and 8 GB RAM.

Step 1: Based on the IEEE 33-bus distribution network parameters and the dynamic
load data of each bus, we can compute the hourly bus voltage drop magnitude Ξi,t caused
by the random loads throughout the year using Equation (13).

Step 2: The calculated Ξi,t from 1 June 2021 00:00 to 25 May 2022 23:00 serves as input
for training the PatchTST model (with the last week of May 2022 as the test set). The hy-
perparameters of the PatchTST model can be found in Table 1. Additionally, the PatchTST
model utilizes two loss functions, one grounded in the Gaussian Mixture Model (GMM) and
the other based on the proposed HuberCQR model, for comparison purposes. GMM is a
powerful parametric model that can simulate arbitrary probability distributions by combining
a finite number of Gaussian components. In the simulations, the tuning parameter δ for the
HuberCQR loss function is set to 0.001, and the number of mixture components for GMM loss
function is set to 3. The parameters N, K and T of Equation (27) are 32, 2, and 24, respectively.

Table 1. Hyperparameters of PatchTST prediction model.

Forecast
Horizon

Autoregressive
Inputs Size Patch Length Stride of Patch Hidden Layer

Size
Number of
Multi-Head Learning Rate

168 24 8 8 64 64 0.005

Step 3: Based on the trained models under the two loss functions, with the probability
of voltage exceeding both upper and lower thresholds set to less than ε = 0.1, the voltage
drop values at different quantile levels, i.e., qi,t(0.1) and qi,t(0.9), can be obtained.
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Step 4: We input qi,t(0.1) and qi,t(0.9) obtained in Step 3 into the DESS CCED model
after a deterministic transformation. With the DESS parameters given in Table 2 [36], we
can finally output the optimal DESS scheduling scheme.

Table 2. Operational parameters of DESS.

Pcha
i,max/Pdis

i,max [SOCi,min, SOCi,max] η Eb λ

0.6 p.u. [0.2, 0.9] 90% 4 p.u. 4690 $/MWh

4.1. Comparison of Prediction Accuracy

Take 26 May 2022 as the test/scheduling day, and use the trained PatchTST model to
predict the hourly voltage drop range caused by random loads. The theoretical probability
range is set to 80%, formed by qi,t(0.1) and qi,t(0.9).

The coverage rate (CR) is a metric that measures how well the predicted interval
captures the true values. Specifically, we denote the proportion of true values that fall
within the predicted interval [qi,t(0.1), qi,t(0.9)] by CRactual, and the target coverage rate by
CRtheoretical, which is 80% in this case.

Figure 3 compares the Coverage Rate Deviation Ratio (CRDR) for the PatchTST model
with the HuberCQR loss function and the GMM loss function. The CRDR is defined by
Equation (28). A lower CRDR indicates that the actual coverage rate achieved by the
model is closer to the theoretical 80% target, meaning the model is making more accurate
predictions of the voltage fluctuation range:

CRDiff =
|CRactual − CRtheoretical|

CRtheoretical
(28)

The figure shows that the CRDR for the HuberCQR-based PatchTST model is con-
sistently lower across all non-reference buses compared to the GMM-based model. This
suggests that the HuberCQR-based model performs better in prediction accuracy. This is
crucial for making precise dispatch decisions for DESS, since the predicted qi,t(0.1) and
qi,t(0.9) directly influence the operational limits of DESS through Equations (17) and (18).
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Figure 3. Coverage rate comparison under the two prediction models.

4.2. Comparison of DESS Dispatch Results

After evaluating the accuracy of the coverage rates between two probabilistic pre-
diction models, we utilize the predictions to guide the economic scheduling of DESS and
compare the cost-effectiveness of the resulting schedules. Specifically, the predicted quan-
tiles qi,t(ε) and qi,t(1 − ε) are substituted into the DESS CCED model, and the chance
constraints for addressing the probabilities of bus voltage violations can be transformed
into solvable deterministic constraints.
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In the simulation, DESS integration bus is set to #18. Figure 4 shows that the more
accurate estimation of bus voltage fluctuations under the HuberCQR-based PatchTST
model leads to a lower DOD for the DESS, implying less degradation. The dispatch-related
operating costs of the DESS further corroborate this point. Specifically, the daily dispatch
cost based on the PatchTST model with the HuberCQR loss function is $1507.2 lower
(a 6.23% reduction) compared to the cost based on the PatchTST model with the GMM loss
function. The reduced operating cost highlights the practical benefits of the HuberCQR-
based PatchTST model in optimizing DESS dispatch under uncertainty.
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Figure 4. DESS SOC dispatch results at bus #18.

4.3. Comparison of Bus Voltage

After obtaining the DESS scheduling results based on the two prediction models, we
can compare the bus voltage conditions by combining the DESS scheduling results and
the actual load data to verify whether the proposed methods have handled the chance
constraints properly. Figure 5 shows the voltage conditions of bus #18 in the cases without
DESS and with DESS dispatched based on the two prediction models. It can be seen
that without DESS, the bus voltage is below the threshold most of the time. In contrast,
with dispatching DESS under the two models, the probability of bus voltage exceeding
the limits is less than setting ε = 0.1, which is actually 0.04. This result reflects that both
prediction models can well predict the risk of voltage fluctuation and fully utilize the
capability of DESS in voltage management. Combining the results from the Section 4.2,
it can be seen that the proposed scheduling scheme based on the HuberCQR prediction
results can achieve the same effectiveness of voltage management as the scheme based on
the GMM model, but with lower DESS scheduling costs.
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Figure 5. Voltage at bus #18.

Furthermore, we analyze the 3D surface plots of the voltage levels under the cases
under the HuberCQR-based and GMM-based model at different buses and time steps. It is
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observed from Figure 6 that the surface plot with the HuberCQR model shows a relatively
smooth surface with fewer peaks and valleys, indicating that the predicted voltages are
more stable across different buses and times. In contrast, the plot of the GMM model
exhibits a more rugged surface with more pronounced peaks and valleys, suggesting
that this model has a greater variance in voltage prediction. This result verifies that the
performance of the HuberCQR-based model is consistent with its theoretical design, and it
is more robust in predicting voltage fluctuations, with stronger ability to resist outlier risks.

(a) HuberCQR (b) GMM

Figure 6. Three-dimensional surface plots of the voltage levels under the two prediction models.

5. Conclusions

As the types and scales of loads continue to increase, voltage issues in distribution net-
works become more pronounced. DESS can significantly mitigate the gradually intensifying
voltage violation problems in distribution networks. Due to randomness and uncertainty
of loads, the scheduling of DESS requires accurate prediction of the potential range of
voltage fluctuations caused by random loads. Hence, this paper proposes a framework that
combines deep learning with non-parametric probabilistic prediction method. Specifically,
by utilizing a Transformer-based time series prediction model and an improved composite
quantile regression technique, the DESS CCED problem considering voltage safety can be
simplified into a feasible MILP problem, without the need for preset probability distribu-
tions of random variables and complex computations. Numerical experiments show that
under the same voltage risk management effectiveness, the dispatching cost of DESS based
on the proposed non-parametric probabilistic prediction model is lower than that based on
state-of-the-art parametric models. Overall, this paper provides an efficient and economical
solution for DESS dispatch considering load uncertainty and distribution network voltage
safety. In the future, we hope to explore how prediction accuracy of the proposed model
impacts the DESS scheduling results.
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Abstract: A maximum power point (MPP) always exists in photovoltaic (PV) cells, but a mismatch be-
tween PV system circuit parameters, weather conditions and system structure leads to the possibility
that the MPP may not be tracked successfully. In addition, the introduction of an isolation transformer
into a basic PV system allows for moderate values of the converter duty cycle and electrical isolation.
However, there is no comprehensive research on MPPT (maximum power point tracking) constraint
conditions for different isolated PV systems, which seriously hinders the application of isolated
PV systems and the development of a related linear control theory. Therefore, in this paper, the
overall mathematical models of different isolated PV systems are first established based on the PV
cell engineering model and the MPP linear model, and then, two sets of constraint conditions are
found for the successful realization of MPPT. These MPPT constraint conditions (MCCs) describe
in detail the direct mathematical relationships between PV cell parameters, weather conditions and
circuit parameters. Finally, based on the MPP linear model and MCCs, two new MPPT methods are
designed for isolated PV systems. Considering the MCCs proposed in this paper, a suitable range of
load and transformer ratios can be estimated from the measured data of irradiance and temperature
in a certain area, and the range of MPPs existing in PV systems with different structures can be
estimated, which is a good guide for circuit design, theoretical derivation and product selection for
PV systems. Meanwhile, comparative experiments confirm the rapidity and accuracy of the two
proposed MPPT methods, with the MPPT time improving from 0.23 s to 0.03 s, and they have the
advantages of a simple program, small computational volume and low hardware cost.

Keywords: isolated PV system; MPPT constraint conditions; linear cell model

1. Introduction

To carry out a theoretical analysis and practical verification of a PV system, an accurate
model of the PV cell should be established first. Nowadays, a large number of studies on
PV systems and PV cells are carried out, and they have led to a lot of breakthroughs and in-
novations in mathematical and circuit model optimization, as well as MPPT and parameter
extraction methods for PV cells. However, the model used cannot be completely compati-
ble with the required accuracy, the complexity of the calculations and the environmental
conditions [1]. There are nine commonly used circuit models and mathematical models
of PV cells categorized in Ref. [2], which can accurately reflect the output characteristics
of PV cells but are not convenient for engineering applications, so simplified engineering
models of PV cells have been widely investigated [3]. Many scholars have investigated
how to model PV cells using four important parameters (Isc, Voc, Im and Vm) provided by
manufacturers and, based on the derivation of the circuit model, to simplify the modeling
process, which is called engineering modeling. Under standard test conditions (STC; solar
irradiance S is 1000 W/m2, and PV cell temperature T is 25 ◦C), the PV cell engineering
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model is obtained using Equations (1)–(3), where I, V, Isc, Voc, Im and Vm represent the
output current, voltage of the PV cell, short-circuit current, open-circuit voltage, MPP
current and voltage of the PV cell at STC, respectively [4].

I = Isc

[
1− C1

(
e

V
C2Voc − 1

)]
(1)

C1 =

(
1− Im

Isc

)
e−

Vm
C2Voc (2)

C2 =
Vm
Voc
− 1

ln(1− Im
Isc
)

(3)

However, when there are obstacles such as tall buildings and trees, the illumination
of PV modules is no longer uniform, resulting in partial shadow problems in which the
power curve has multiple peaks. So, it is necessary to establish a PV model under partial
shadow conditions and to simulate and analyze its output characteristics [5,6]. This is a
steady-state model of PV cells, but MPPT is a dynamic optimization process, so the dynamic
characteristics of PV cells have also been studied in a number of ways [7]. All of the above
models are nonlinear models of PV cells, which require complex iterations and calculations
to extract parameters and conduct studies, so scholars have proposed some linearized
models, such as segmented linear models, which replace the nonlinear PV relationship with
multi-segmented linear equations through segmented linearization [8]. In [9], the authors
proposed a new segmented linear shunt branch model that approximates the nonlinear I-V
curve of a PV cell via an equivalent circuit. The segmented linearized model simplifies the
workload in the nonlinear PV cell model and obtains comparable accuracy under certain
conditions, but the number of segments must be increased in the segmented linear model if
higher accuracy is required, which undoubtedly increases the computational complexity.
The authors of [10] derived a linearized model that relates changes in the inputs to the
system, such as irradiance and temperature, to its outputs, such as the array current and
power. The authors of [11] derived a set of nonlinear state-space equations based on the
average switching technique, which was implemented using MATLAB2016b. The authors
of [12] linearized the voltage–current characteristics of PV cells at the MPP in order to
completely remove the obstacle of nonlinear PV cells to the overall linearization of the PV
system by proposing two equivalent linear models, the Thevenin equivalent model and
the Norton equivalent model, as shown in Figure 1. In contrast, the MPP linear model
can better overcome these problems in the segmented linear model. On this basis, it is
feasible and reasonable to linearize the PV system as a whole, and the PV system can be
conveniently studied using the traditional linear theory or law.

Figure 1. Relationship between single-diode model and MPP linear model.
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The DC/DC converters in PV systems are categorized into non-isolated and isolated
DC/DC converters. Non-isolated DC/DC converters, such as buck, boost, buck-boost and
Sepic converters, are widely used as the MPPT control circuits of PV systems. Isolated
DC/DC converters usually include forward, flyback, push–pull, half-bridge and full-bridge
converters. The introduction of an isolation transformer into a basic non-isolated DC/DC
converter can realize electrical isolation between the converter’s input power supply and
load. Meanwhile, it can improve the safety and reliability of converter operation and
electromagnetic compatibility. In addition, it can make the duty cycle of the DC/DC
converter change near a moderate value. Usually, in this case, a high boosted voltage can
be achieved by using a high-transformation-ratio transformer and a voltage multiplier [13].
The analysis shown in Reference [14] verifies that isolation not only ensures safety but
also increases the MPPT capability. Meanwhile, it shows that isolated converters have the
highest MPPT capability without considering the hardware implementation.

At present, MPPT methods can be classified into five categories: (1) classical methods,
such as perturbation observation, constant voltage and conductance increment meth-
ods [15]; (2) intelligent methods, such as artificial neural networks (ANNs), fuzzy logic
controllers (FLCs) and sliding-mode control (SMC) [16,17]; (3) optimization methods, such
as cuckoo search (CS), the particle swarm algorithm (PSO), the gray wolf algorithm (GWO),
the ant colony algorithm (ACO) and the artificial bee colony algorithm (ABC) [18,19];
(4) hybrid methods, such as fuzzy particle swarm optimization (FPSO) and the adaptive
neuro-fuzzy inference system (ANFIS) [20]; (5) other methods, such as the variable-weather
parameter (VWP) method [21]. Under specific environmental conditions and requirements,
good performance can be obtained with all five of the above-mentioned MPPT methods.
However, the nonlinear model of the PV cell is one of the fundamental reasons why the
linear control theory cannot be widely applied in the MPPT control of PV systems at present.
And since the MPP must always exist in the process of use, it is easy to cause errors if its
constraints are not analyzed. In order to solve this problem, some expressions have been
proposed in Reference [22] to ensure the existence of the MPP in PV systems with buck,
boost, buck/boost and other non-isolated DC/DC converters.

Therefore, the research objective of this paper is as follows: to find the relationship
between the circuit parameters and the control signals of an isolated PV system by directly
utilizing the weather conditions so as to find the range of circuit parameters for which it is
capable of successful MPPT control and, accordingly, to propose two new MPPT methods.

The innovations and contributions of this work are as follows:

(1) The mathematical models of isolated PV systems are established, and the mathe-
matical relationships between the output power of the PV systems and the weather
conditions are found.

(2) The MCCs of isolated PV systems are found based on the engineering model and
the MPP linear model. The relationships between MCCs and the weather conditions,
circuit parameters and system structure are obtained.

(3) The practicality of the MPPT control algorithm can be enhanced. The problem of MPPT
failure can be avoided by fully considering the MCCs in the design and improvement
of the MPPT algorithm. Therefore, two MPPT methods, which are applicable to
different PV system structures, are proposed to improve the stability, applicability
and rapidity of MPPT control.

The section arrangement of this paper is as follows: Two MPPT constraint condi-
tions and two new MPPT methods are presented in Section 2. Some simulation experi-
ments are presented in Section 3. Finally, a discussion and some conclusions are given in
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Integrative Model of Isolated PV Systems

The structure of the isolated PV system is shown in Figure 2. I and V denote the
output current and voltage of the PV cell, respectively. Io and Vo denote the output current
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and output voltage of the isolated DC/DC converter, respectively. Ri and RL denote the
equivalent resistances after the PV cell and after the isolated DC/DC converter, respectively.

Figure 2. Isolated PV system structure.

The basic circuits of isolated DC/DC converters include the forward converter, flyback
converter, half-bridge converter, full-bridge converter and push–pull converter. They are
associated with the PV cell to produce the PV-Forward system, PV-Flyback system, PV-
Half-bridge system, PV-Full-bridge system and PV-push–pull system, respectively. The
isolated DC/DC converter is generally connected to a resistor, DC bus, inverter or AC
bus (shown in Figure 3). The different system structures also lead to differences in the
mathematical model and MPPT method.

Figure 3. Four types of output. (a) Load; (b) DC bus; (c) inverter; (d) AC bus.

In order to derive a theoretical mathematical model, two assumptions need to be made
for isolated PV systems:

(1) All circuit components are ideal;
(2) The isolated DC/DC converter operates in the continuous-current mode (CCM).

Firstly, according to Figure 2, it can be obtained by the power balance relationship:

VI = Vo Io = Po (4)

Ri =
V
I

(5)

RL =
Vo

Io
(6)

Po denotes the output power of the PV system.
The input-and-output-voltage relationships of forward, flyback, half-bridge, full-

bridge and push–pull converters can be expressed by Equations (7)–(11), respectively [23].
D denotes the duty cycle of the PWM wave for the isolated DC/DC converter, and the
isolation transformer ratio n is equal to N1/N2.

Vo =
DV
n

(7)
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Vo =
DV

n(1− D)
(8)

Vo =
DV
n

(9)

Vo =
2DV

n
(10)

Vo =
DV
n

(11)

It can be seen that Equations (7), (9) and (11) are the same, which means that the
input–output-voltage relationships are the same for forward, half-bridge and push–pull
converters.

According to Figure 2, Equation (12) is satisfied.

Po =
V2

o
RL

(12)

The mathematical model of the PV-Forward system can be obtained by combining
Equations (1), (4), (7) and (12).

Po =
n2RL I2

sc
D2

[
1− C1

(
e

n
√

PoRL
C2DVoc − 1

)]2

(13)

Since the forward, half-bridge and push–pull converters have the same input–output-
voltage relationships, the mathematical models of the PV-Forward, PV-Half-bridge and
PV-Push–pull systems are also the same, all of which are expressed in Equation (13) and
will not be repeated below.

Similarly, the mathematical models of the PV-Flyback and PV-Full-bridge systems can
also be obtained.

Po =
n2RL I2

sc(1− D)2

D2

[
1− C1

(
e

n(1−D)
√

PoRL
C2DVoc − 1

)]2

(14)

Po =
n2RL I2

sc
2D2

[
1− C1

(
e

n
√

PoRL
2C2DVoc − 1

)]2

(15)

For the DC bus, Equation (16) is satisfied.

Vo = VDbus (16)

The mathematical model of the PV-Forward-Dbus system can be obtained by combin-
ing Equations (1), (4), (7) and (16).

Po =
nVDbus Isc

D

[
1− C1

(
e

nVDbus
C2DVoc − 1

)]
(17)

Similarly, the mathematical models of the PV-Flyback-Dbus and PV-Full-bridge-Dbus
systems can also be obtained.

Po =
nVDbus Isc(1− D)

D

[
1−C1

(
e

nVDbus(1−D)
C2DVoc −1

)]
(18)

Po =
nVDbus Isc

2D

[
1− C1

(
e

nVDbus
2C2DVoc−1

)]
(19)
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The mathematical models of the inverter (SPWM control) and AC load can be repre-
sented by Equations (20) and (21), respectively. M denotes the SPWM wave modulation
ratio. Vr and Ir denote the RMS values of the output AC voltage and AC current for the
inverter, respectively.

Vr =
MVo√

2
(20)

RL =
Vr

Ir
(21)

The mathematical model of the PV-Forward-INV system can be obtained by combining
Equations (1), (4), (7), (20) and (21).

Po =
2n2RL I2

sc
D2M2

[
1− C1

(
e

n
√

2PoRL
C2DMVoc − 1

)]2

(22)

Similarly, the mathematical models of the PV-Flyback-INV and PV-Full-bridge-INV
systems can also be obtained.

Po =
2n2RL I2

sc(1− D)2

D2M2

[
1− C1

(
e

n(1−D)
√

2PoRL
C2DMVoc − 1

)]2

(23)

Po =
n2RL I2

sc
2D2M2

[
1− C1

(
e

n
√

2PoRL
2C2DMVoc − 1

)]2

(24)

For the AC bus, Equation (25) is satisfied.

Vr = VAbus (25)

The mathematical model of the PV-Forward-INV-Abus system can be obtained by
combining Equations (1), (10), (13) and (25).

Po =

√
2nVAbus Isc

DM

[
1− C1

(
e

√
2nVAbus

C2DMVoc − 1

)]
(26)

Similarly, the mathematical models of the PV-Flyback-INV-Abus and PV-Full-bridge-
INV-Abus systems can also be obtained.

Po =

√
2nVAbus Isc(1− D)

DM

[
1− C1

(
e

√
2nVAbus(1−D)

C2DMVoc − 1

)]
(27)

Po =

√
2nVAbus Isc

2DM

[
1− C1

(
e

√
2nVAbus

2C2DMVoc − 1

)]
(28)

Equations (13)–(15), (17)–(19), (22)–(24) and (26)–(28) are the theoretical basis for the
MCCs of PV systems with these five isolated DC/DC converters connected to the load, DC
bus, inverter and AC bus, respectively.

It can be concluded that Pomax appears in the slope of the curve at 0. Therefore, in
order to find the MCCs of PV systems with different structures, their mathematical models
are analyzed by substituting each of them into Equation (29).

dPo

dD
= 0 (29)
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For the PV-Forward, PV-Flyback, PV-Full-bridge and PV-Forward-Dbus systems,
substituting Equations (13)–(15) and (17) into Equation (29), respectively, give Equations
(30)–(33), where the parameter C3 is represented by Equation (34).

Dmax =
n
√

PomaxRL

C3
(30)

Dmax =

√
PomaxRL

C3/n +
√

PomaxRL
= 1− C3/n

C3/n +
√

PomaxRL
(31)

Dmax =
n
√

PomaxRL

2C3
(32)

V = C3 (33)

C3 = C2Voc[lambertw(e× 1 + C1

C1
)− 1] (34)

According to Equation (34), it can be concluded that the value of C3 is only related
to the parameters of the PV cell itself (S and T). The simulation experiments revealed
that Pomax is only affected by S and T and is independent of RL and n. Therefore, only
the values of C3 and Pomax under different weather conditions are required to derive the
relationship between Dmax and RL, n. This leads to the MPPT control of isolated PV systems
to improve the efficiency. The C3-S, C3-T, Pomax-S and Pomax-T curves under different
weather conditions were plotted using MATLAB, and by applying the curve-fitting method,
Equations (35) and (36) can be obtained.

C3 = 0.0057× S− 0.086× T + 26.15 (35)

Pomax =

{ −5.5× 10−9 × S3 + 5.3× 10−5 × S2 + 0.17× S− 0.09× T − 1.45 0 ≤ T ≤ 40
−5.5× 10−9 × S3 + 5.3× 10−5 × S2 + 0.17× S− 2.7 − 20 ≤ T < 0

(36)

According to Equations (35) and (36), C3 and Pomax can be easily derived from the
weather conditions. Meanwhile, in order to find the MCCs and improve the MPPT method-
ology of isolated PV systems, Dmax can also be derived by combining the circuit parameters
RL and n.

Figure 4 shows the equivalent model of the isolated PV system at the MPP [12], where
RiMPP, VMPP and IMPP represent the values of Ri, V and I at the MPP in Figure 2, respectively.
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At the MPP, Equations (37) and (38) can be given by the circuit theorem [24].

RiMPP =
VMPP

IMPP
(37)
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Pomax = VMPP × IMPP (38)

Equations (33), (37) and (38) are combined to obtain Equation (39).

RiMPP =
C2

3
Pomax

(39)

According to the maximum power transfer theorem [24], the isolated PV system can
operate at the MPP when Equation (40) is satisfied.

RiMPP = RsM (40)

Meanwhile, according to the circuit theorem [24], Equation (41) is satisfied.

VsM = 2C3 (41)

Using Equations (35), (36), (39) and (41), Equations (42) and (43) can be obtained.

RsM(S, T) =
[C3(S, T)]2

Pomax(S, T)
(42)

VsM(S, T) = 2C3(S, T) (43)

According to Equations (42) and (43), the MPP linear model of the PV cell can be built
using MATLAB/Simulink. When the weather conditions change, RsM is involved in the
design of MPPT as the output signal of the model.

2.2. MCCs Based on the Engineering Model

The relationship between circuit parameters, weather conditions and control parame-
ters has been derived in Section 2.1 when the output of the isolated DC/DC converter is
a load resistor. This section continues to derive the MCCs for isolated PV systems with
different topologies and outputs on the basis of the engineering cell model.

The circuit topologies of forward and flyback converters determine their D to sat-
isfy Equation (44), those of half-bridge and push–pull converters determine their D to
satisfy Equation (45), and that of the full-bridge converter determines its D to satisfy
Equation (46) [23]. These three formulas are also the basis of the analysis of MCCs carried
out in a later section. Dmax represents D at the MPP.

0 < Dmax < 1 (44)

0 < Dmax < 0.5 (45)

0 < Dmax ≤ 0.5 (46)

Substituting Equation (30) into Equation (44), it can be seen that Equation (47) is
satisfied. This is the RL range in which the PV-Forward system can successfully track
the MPP.

0 < RL <
C2

3
n2Pomax

(47)

If the transformer ratio n is the object of study, Equation (47) can be replaced by
Equation (48).

0 < n <
C3√

PomaxRL
(48)
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Similarly, the MCCs in the ideal case using the different PV systems are displayed in
Table 1. These expressions are the prerequisites of successful MPPT control for isolated PV
systems in the ideal case.

Table 1. Theoretical expressions of MCCs.

PV System Range of the Output Range of n

PV-Forward 0 < RL <
C2

3
n2Pomax

0 < n < C3√
PomaxRL

PV-Flyback 0 < RL 0 < n

PV-Half-bridge 0 < RL <
C2

3
4n2Pomax

0 < n < C3
2
√

PomaxRL

PV-Full-bridge 0 < RL ≤ C2
3

n2Pomax
0 < n ≤ C3√

PomaxRL

PV-Forward-Dbus 0 < VDbus <
C3
n 0 < n < C3

VDbus

PV-Flyback-Dbus 0 < VDbus 0 < n

PV-Half-bridge-Dbus 0 < VDbus <
C3
2n 0 < n < C3

2VDbus

PV-Full-bridge-Dbus 0 < VDbus ≤ C3
n 0 < n ≤ C3

VDbus

PV-Forward-INV 0 < RL <
M2C2

3
2n2Pomax

0 < n < MC3√
2PomaxRL

PV-Flyback-INV 0 < RL 0 < n

PV-Half-bridge-INV 0 < RL <
M2C2

3
8n2Pomax

0 < n < MC3
2
√

2PomaxRL

PV-Full-bridge-INV 0 < RL ≤ M2C2
3

2n2Pomax
0 < n ≤ MC3√

2PomaxRL

PV-Forward-INV-Abus 0 < VAbus <
C3 M√

2n
0 < n < C3 M√

2VAbus

PV-Flyback-INV-Abus 0 < VAbus 0 < n

PV-Half-bridge-INV-Abus 0 < VAbus <
C3 M
2
√

2n
0 < n < C3 M

2
√

2VAbus

PV-Full-bridge-INV-Abus 0 < VAbus ≤ C3 M√
2n

0 < n ≤ C3 M√
2VAbus

From the practical application point of view, the isolated PV system is a non-ideal
circuit, and the expressions in Table 1 need to be improved. The duty cycle of the isolated
DC/DC converter cannot be too small or too large due to the losses of the switching devices
and the isolation transformer itself, the limitations on the switching device’s opening and
closing times and the through-current withstand voltage, the transmission delay of the
controller and the PWM sampling delay. Therefore, in order to find the MCCs in practical
applications, it is assumed that the minimum D of the forward and flyback converters is
DL1, while their maximum D is DU1, and the minimum D of the half-bridge, full-bridge
and push–pull converters is DL2, while their maximum D is DU2. At this point, the duty
cycle ranges of the forward and flyback converters can be expressed by Equation (49), and
the half-bridge, full-bridge and push–pull converter duty cycle ranges can be expressed by
Equation (50).

DL1 ≤ Dmax ≤ DU1 (49)

DL2 ≤ Dmax ≤ DU2 (50)

Substituting Equation (30) into Equation (49), it can be seen that Equation (51) can be
obtained. This is the RL range in which the PV-Forward system can successfully track the
MPP in practical applications.

D2
L1C2

3
n2Pomax

≤ RL ≤
D2

U1C2
3

n2Pomax
(51)

If the transformer ratio n is the object of study, Equation (51) can be replaced by
Equation (52).

DL1C3√
PomaxRL

≤ n ≤ DU1C3√
PomaxRL

(52)
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Similarly, the MCCs of various isolated PV systems can be derived when the D limita-
tion in a practical situation is considered, as shown in Table 2. These expressions are the
prerequisites of successful MPPT control for isolated PV systems in practical applications.

Table 2. Practical expressions of MCCs.

PV System Range of the Output Range of n

PV-Forward D2
L1C2

3
n2Pomax

≤ RL ≤ D2
U1C2

3
n2Pomax

DL1C3√
PomaxRL

≤ n ≤ DU1C3√
PomaxRL

PV-Flyback D2
L1C2

3

n2(1−DL1)
2Pomax

≤ RL ≤ D2
U1C2

3

n2(1−DU1)
2Pomax

DL1C3
(1−DL1)

√
PomaxRL

≤ n ≤ DU1C3
(1−DU1)

√
PomaxRL

PV-Half-bridge D2
L2C2

3
n2Pomax

≤ RL ≤ D2
U2C2

3
n2Pomax

DL2C3√
PomaxRL

≤ n ≤ DU2C3√
PomaxRL

PV-Full-bridge 4D2
L2C2

3
n2Pomax

≤ RL ≤ 4D2
U2C2

3
n2Pomax

2DL2C3√
PomaxRL

≤ n ≤ 2DU2C3√
PomaxRL

PV-Forward-Dbus C3DL1
n ≤ VDbus ≤ C3DU1

n
C3DL1
VDbus

≤ n ≤ C3DU1
VDbus

PV-Flyback-Dbus C3DL1
n(1−DL1)

< VDbus ≤ C3DU1
n(1−DU1)

C3DL1
VDbus(1−DL1)

< n ≤ C3DU1
VDbus(1−DU1)

PV-Half-bridge-Dbus C3DL2
n ≤ VDbus ≤ C3DU2

n
C3DL2
VDbus

≤ n ≤ C3DU2
VDbus

PV-Full-bridge-Dbus 2C3DL2
n ≤ VDbus ≤ 2C3DU2

n
2C3DL2
VDbus

≤ n ≤ 2C3DU2
VDbus

PV-Forward-INV M2C2
3 D2

L1
2n2Pomax

≤ RL ≤ M2C2
3 D2

U1
2n2Pomax

MDL1C3√
2PomaxRL

≤ n ≤ MDU1C3√
2PomaxRL

PV-Flyback-INV M2C2
3 D2

L1

2n2Pomax(1−DL1)
2 ≤ RL ≤ M2C2

3 D2
U1

2n2Pomax(1−DU1)
2

MDL1C3
(1−DL1)

√
2PomaxRL

≤ n ≤ MDU1C3
(1−DU1)

√
2PomaxRL

PV-Half-bridge-INV M2C2
3 D2

L2
2n2Pomax

≤ RL ≤ M2C2
3 D2

U2
2n2Pomax

MDL2C3√
2PomaxRL

≤ n ≤ MDU2C3√
2PomaxRL

PV-Full-bridge-INV 2M2C2
3 D2

L2
n2Pomax

≤ RL ≤ 2M2C2
3 D2

U2
n2Pomax

√
2MDL2C3√
PomaxRL

≤ n ≤
√

2MDU2C3√
PomaxRL

PV-Forward-INV-Abus C3 MDL1√
2n
≤ VAbus ≤ C3 MDU1√

2n
C3 MDL1√

2VAbus
≤ n ≤ C3 MDU1√

2VAbus

PV-Flyback-INV-Abus C3 MDL1√
2n(1−DL1)

≤ VAbus ≤ C3 MDU1√
2n(1−DU1)

C3 MDL1√
2VAbus(1−DL1)

≤ n ≤ C3 MDU1√
2VAbus(1−DU1)

PV-Half-bridge-INV-Abus C3 MDL2√
2n
≤ VAbus ≤ C3 MDU2√

2n
C3 MDL2√

2VAbus
≤ n ≤ C3 MDU2√

2VAbus

PV-Full-bridge-INV-Abus
√

2C3 MDL2
n ≤ VAbus ≤

√
2C3 MDU2

n

√
2C3 MDL2

VAbus
≤ n ≤

√
2C3 MDU2

VAbus

2.3. MCCs Based on the MPP Linear Model
2.3.1. Expression of MCCs

The analysis in Section 2.2 has produced the ranges of circuit parameters for twenty
isolated PV systems capable of MPPT control based on the engineering model. This section
continues with an in-depth study of these circuit parameter ranges based on the MPP
linear model. After the engineering model has been linearized by using the methodology
in Section 2.1, the isolated PV system structure can be replaced by the system shown in
Figure 5. The flyback converter is selected as an example, where VsM and RsM are quantities
that vary with the weather conditions (S and T).
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Figure 5. Isolated PV system based on MPP linear model. (* indicates the eponymous end of the
induced electromotive force of the winding).
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In order to find the MCCs in the ideal case, according to the maximum power transfer
theorem, it can be seen that Equations (53) and (54) are satisfied when the PV system is
operating at the MPP.

Ri = RsM (53)

VsM = 2V (54)

The Ri of the PV-Forward system can be expressed by Equation (55), and Ri will vary
with the different output devices and the transformations of isolated DC/DC converters.

Ri =
n2RL

D2 (55)

The Ri of the PV-Forward-INV system can be expressed by Equation (56).

Ri =
2n2RL

M2D2 (56)

Equation (56) reveals the mathematical relationship between the circuit parameters
(Ri, RL and n) and the control signals (D and M). On the basis of these expressions, the
MCCs can be found.

When the output of the PV cell is connected to a resistor, Equation (55) is substituted
into Equation (53), and then Equation (57) can be obtained.

Dmax = n

√
RL

RsM
(57)

Substituting Equation (56) into Equation (53), it can be seen that Equation (58) is
satisfied. This is the RL range in which the PV-Forward system can successfully track
the MPP.

0 < RL <
RsM

n2 (58)

If the transformer ratio n is the object of study, Equation (58) can be replaced by
Equation (59).

0 < n <

√
RsM

RL
(59)

Similarly, the MCCs of the different PV systems in the ideal case are displayed in
Table 3. These expressions are the prerequisites of successful MPPT control for isolated PV
systems in the ideal case.

Table 3 shows that under ideal conditions, an RL or n value always exists in the PV-
Flyback system to match the conditions for the use of the MPP linear model. Also, Table 3
shows that under ideal conditions, a VDbus or n value always exists in the PV-Flyback-Dbus
system to match the use of the linear model. In contrast, for other PV systems, some
constraints always exist. In addition, the use of inverters in isolated PV systems also affects
the ranges of RL and n. For the PV-Forward-INV, PV-Half-bridge-INV and PV-Full-bridge-
INV systems, the presence of inverters narrows the ranges of RL and n. Obviously, the
expressions shown in Table 3 are the theoretical expressions of the MCCs, which can be
used as the basis for designing the MPPT control process and proposing the MPPT control
strategy under ideal conditions.
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Table 3. Theoretical expressions of MCCs.

PV System Range of the Output Range of n

PV-Forward 0 < RL < RsM
n2 0 < n <

√
RsM
RL

PV-Flyback 0 < RL 0 < n

PV-Half-bridge 0 < RL < RsM
4n2 0 < n < 1

2

√
RsM
RL

PV-Full-bridge 0 < RL ≤ RsM
n2 0 < n ≤

√
RsM
RL

PV-Forward-Dbus 0 < VDbus <
VsM
2n 0 < n < VsM

2VDbus

PV-Flyback-Dbus 0 < VDbus 0 < n

PV-Half-bridge-Dbus 0 < VDbus ≤ VsM
4n 0 < n < VsM

4VDbus

PV-Full-bridge-Dbus 0 < VDbus ≤ VsM
2n 0 < n ≤ VsM

2VDbus

PV-Forward-INV 0 < RL < M2RsM
2n2 0 < n < M

√
RsM
2RL

PV-Flyback-INV 0 < RL 0 < n

PV-Half-bridge-INV 0 < RL < M2RsM
8n2 0 < n < M

2

√
RsM
2RL

PV-Full-bridge-INV 0 < RL ≤ M2RsM
2n2 0 < n ≤ M

√
RsM
2RL

From the practical application point of view, the isolated PV system is a non-ideal
circuit, and the expressions in Table 3 need to be improved. The duty cycle of the isolated
DC/DC converter cannot be too small or too large. Therefore, in order to find the range of
circuit parameters in practical applications, the duty cycle ranges of the forward, flyback,
half-bridge, full-bridge and push–pull converters are expressed by Equations (49) and (50).

Substituting Equation (57) into Equation (49), it can be seen that Equation (60) is
satisfied. This is the RL range in which MPPT control can be successfully realized in
practical applications for the PV-Forward system.

D2
L1RsM

n2 ≤ RL ≤
D2

U1RsM

n2 (60)

If the transformer ratio n is the object of study, Equation (60) can be replaced by
Equation (61).

DL1

√
RsM

RL
≤ n ≤ DU1

√
RsM

RL
(61)

Similarly, the ranges of circuit parameters in which various isolated PV systems are
capable of successfully realizing MPPT are shown in Table 4, when considering the limited
range of D in practical situations. These expressions are the prerequisites of successful
MPPT control for isolated PV systems in practical situations.

Table 4 shows significantly smaller ranges for RL and VDbus when compared with
those in Table 3. Unlike the ideal case, the PV-Flyback, PV-Flyback-Dbus and PV-Flyback-
INV systems have certain constraints in practical applications. Obviously, the expressions
in Table 4 provide a theoretical basis for isolated PV systems on the basis of the MPP linear
model in practical applications.

2.3.2. Range of MCCs

The ranges of VsM and RsM have been derived for changing weather conditions.
Therefore, the extreme values of MCCs for practical applications are shown in Table 5. It
can be seen that the maximum range of RL (or VDbus) is necessary for each PV system to
be modeled with the MPP linear cell. By contrast, the minimum range of RL (or VDbus)
is a sufficient condition for every PV system to use the MPP linear model. Similarly, the
maximum and minimum ranges of the variable ratio n can be derived analogously.
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Table 4. Practical expressions of MCCs.

PV System Range of the Output Range of n

PV-Forward D2
L1RsM
n2 ≤ RL ≤ D2

U1RsM

n2 DL1

√
RsM
RL
≤ n ≤ DU1

√
RsM
RL

PV-Flyback D2
L1RsM

n2(1−DL1)
2 ≤ RL ≤ D2

U1RsM

n2(1−DU1)
2

DL1
(1−DL1)

√
RsM
RL
≤ n ≤ DU1

(1−DU1)

√
RsM
RL

PV-Half-bridge D2
L2RsM
n2 ≤ RL ≤ D2

U2RsM
n2 DL2

√
RsM
RL
≤ n ≤ DU2

√
RsM
RL

PV-Full-bridge 4D2
L2RsM
n2 ≤ RL ≤ 4D2

U2RsM
n2 2DL2

√
RsM
RL
≤ n ≤ 2DU2

√
RsM
RL

PV-Forward-Dbus DL1VsM
2n ≤ VDbus ≤ DU1VsM

2n
DL1VsM
2VDbus

≤ n ≤ DU1VsM
2VDbus

PV-Flyback-Dbus DL1VsM
2n(1−DL1)

< VDbus ≤ DU1VsM
2n(1−DU1)

DL1VsM
2VDbus(1−DL1)

< n ≤ DU1VsM
2VDbus(1−DU1)

PV-Half-bridge-Dbus DL2VsM
2n ≤ VDbus ≤ DU2VsM

2n
DL2VsM
2VDbus

≤ n ≤ DU2VsM
2VDbus

PV-Full-bridge-Dbus DL2VsM
n ≤ VDbus ≤ DU2VsM

n
DL2VsM
VDbus

≤ n ≤ DU2VsM
VDbus

PV-Forward-INV D2
L1 M2RsM

2n2 ≤ RL ≤ D2
U1 M2RsM

2n2 MDL1

√
RsM
2RL
≤ n ≤ MDU1

√
RsM
2RL

PV-Flyback-INV D2
L1 M2RsM

2n2(1−DL1)
2 ≤ RL ≤ D2

U1 M2RsM

2n2(1−DU1)
2

MDL1
(1−DL1)

√
RsM
2RL
≤ n ≤ MDU1

(1−DU1)

√
RsM
2RL

PV-Half-bridge-INV D2
L2 M2RsM

2n2 ≤ RL ≤ D2
U2 M2RsM

2n2 MDL2

√
RsM
2RL
≤ n ≤ MDU2

√
RsM
2RL

PV-Full-bridge-INV 2D2
L2 M2RsM

n2 ≤ RL ≤ 2D2
U2 M2RsM

n2 MDL2

√
2RsM

RL
≤ n ≤ MDU2

√
2RsM

RL

Table 5. Ranges of MCCs.

PV System Maximum Range Minimum Range

PV-Forward D2
L1RsMmin

n2 ≤ RL ≤ D2
U1RsMmax

n2
D2

L1RsMmax
n2 ≤ RL ≤ D2

U1RsMmin

n2

PV-Flyback D2
L1RsMmin

n2(1−DL1)
2 ≤ RL ≤ D2

U1RsMmax

n2(1−DU1)
2

D2
L1RsMmax

n2(1−DL1)
2 ≤ RL ≤ D2

U1RsMmin

n2(1−DU1)
2

PV-Half-bridge D2
L2RsMmin

n2 ≤ RL ≤ D2
U2RsMmax

n2
D2

L2RsMmax
n2 ≤ RL ≤ D2

U2RsMmin
n2

PV-Full-bridge 4D2
L2RsMmin

n2 ≤ RL ≤ 4D2
U2RsMmax

n2
4D2

L2RsMmax
n2 ≤ RL ≤ 4D2

U2RsMmin
n2

PV-Forward-Dbus DL1VsMmin
2n ≤ VDbus ≤ DU1VsMmax

2n
DL1VsMmax

2n ≤ VDbus ≤ DU1VsMmin
2n

PV-Flyback-Dbus DL1VsMmin
2n(1−DL1)

< VDbus ≤ DU1VsMmax
2n(1−DU1)

DL1VsMmax
2n(1−DL1)

< VDbus ≤ DU1VsMmin
2n(1−DU1)

PV-Half-bridge-Dbus DL2VsMmin
2n ≤ VDbus ≤ DU2VsMmax

2n
DL2VsMmax

2n ≤ VDbus ≤ DU2VsMmin
2n

PV-Full-bridge-Dbus DL2VsMmin
n ≤ VDbus ≤ DU2VsMmax

n
DL2VsMmax

n ≤ VDbus ≤ DU2VsMmin
n

PV-Forward-INV D2
L1 M2RsMmin

2n2 ≤ RL ≤ D2
U1 M2RsMmax

2n2
D2

L1 M2RsMmax
2n2 ≤ RL ≤ D2

U1 M2RsMmin

2n2

PV-Flyback-INV D2
L1 M2RsMmin

2n2(1−DL1)
2 ≤ RL ≤ D2

U1 M2RsMmax

2n2(1−DU1)
2

D2
L1 M2RsMmax

2n2(1−DL1)
2 ≤ RL ≤ D2

U1 M2RsMmin

2n2(1−DU1)
2

PV-Half-bridge-INV D2
L2 M2RsMmin

2n2 ≤ RL ≤ D2
U2 M2RsMmax

2n2
D2

L2 M2RsMmax
2n2 ≤ RL ≤ D2

U2 M2RsMmin
2n2

PV-Full-bridge-INV 2D2
L2 M2RsMmin

n2 ≤ RL ≤ 2D2
U2 M2RsMmax

n2
2D2

L2 M2RsMmax
n2 ≤ RL ≤ 2D2

U2 M2RsMmin
n2

In practical applications, Tables 3–5 are a good guide for the circuit design, theoretical
derivation and product selection of isolated PV systems. On the one hand, it is complicated
to adjust the output under changing weather conditions. In order to realize MPPT control,
they can be used to select the types of isolated DC/DC converters and circuit components.
On the other hand, they can also be used as a basis for the study of MPPT methods.
Meanwhile, they can be used to estimate the MPPT effect based on the recorded historical
data of S and T in the application area. In addition, the results shown in Table 5 can
provide a theoretical basis when the overall linearized model of the isolated PV system
is investigated.

2.4. Two New MPPT Methods Based on MPP Linear Modeling

Two new MPPT methods based on the MPP linear model are proposed. Here, the
PV-Flyback and PV-Flyback-Dbus systems are used as examples.
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2.4.1. MPPT Method for PV Systems with Resistive Output (RMPPT)

Substituting Equations (4)–(6), (8) and (42) into (53), Equation (62) is satisfied. It relates
Dmax to the weather conditions (S and T) and the circuit parameters (RL and n) when the
PV-Flyback system operates at the MPP.

Dmax =
n
√

RL√
RsM(S, T) + n

√
RL

(62)

According to Equation (62), it can be seen that RMPPT can be used when RL and n
are measured or known. Equation (62) is the theoretical basis of RMPPT, which can be
described as follows: by measuring or knowing S and T as well as RL and n, the duty cycle
Dmax at the MPP for the isolated PV system can be calculated, and the microcontroller or
chip can realize MPPT control by controlling D = Dmax.

The structure of the isolated PV system using RMPPT is shown in Figure 6. As can be
seen in Figure 6, the Dmax value of the PV system when it is located at the MPP attachment
can be simply calculated by using a microcontroller or chip to measure or know the weather
parameters (S and T) and the circuit parameters (n, Vo and Io), calculating the load resistor
RL and then substituting these parameters into Equation (62). When the input is a PV array,
the cost of the sensor can be reduced by sharing the irradiance sensor if S is uniform in
a certain area. Also, the cost of voltage sampling and current sampling can be reduced
if RL is essentially the same for each PV system. It can be seen that the implementation
of RMPPT requires only a simple process with low computational complexity, which can
greatly reduce the hardware cost and program design of an isolated PV system.
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2.4.2. MPPT Method with Output as DC Bus (BMPPT)

Substituting Equations (8), (16), (43) into (54), Equation (63) can be obtained. It relates
Dmax to the weather conditions (S and T) and the circuit parameters (VDbus and n) when
the PV-Flyback-Dbus system operates at MPP.

Dmax =
2nVDbus

VsM(S, T) + 2nVDbus
(63)

According to Equation (63), it can be seen that when VDbus and n can be measured or
known, BMPPT can be used. Equation (63) is the theoretical basis of BMPPT, which can be
described as follows: From the measured or known S and T, as well as VDbus and n, the duty
cycle at the MPP Dmax of the isolated PV system can be calculated. Then, the microcontroller
or chip makes the duty cycle of the PWM wave equal to Dmax, thereby achieving MPPT
control. In contrast to RMPPT, BMPPT need not collect the output current. Eliminating the
current-sampling device from the hardware design reduces the design difficulty and cost
of the PV system and also reduces the current-sampling program designed for the software.
When the output is a DC bus, BMPPT has an obvious advantage.

The structure of the isolated PV system using BMPPT is shown in Figure 7. As can
be seen in Figure 7, the value of Dmax for a PV system located at the MPP attachment can
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be simply calculated by using a microcontroller or chip to measure or know the weather
conditions (S and T) and the circuit parameters (n and VDbus) and then substituting these
parameters into Equation (63). Similarly, in the case of multiple PV arrays at the input, the
cost of the sensors can be reduced by sharing irradiance sensors if S is uniform in a certain
area. At the same time, multiple PV cells simplify the design of voltage-sampling circuits
and reduce hardware and software costs by sharing a common set of DC buses.
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3. Results
3.1. Simulation Verification of MCCs Based on the Engineering Model

In Table 2, it can be seen that the MCCs for PV systems with forward, half-bridge,
full-bridge and push–pull converters are similar, as are the MCCs for PV systems with
and without inverters. In this section, only the PV-Flyback, PV-Full-bridge, PV-Flyback-
Dbus and PV-Full-bridge-Dbus systems are verified, and other PV systems with different
structures can be verified analogously. In order to verify the accuracy of Table 2, some
simulation experiments were carried out for PV systems with a flyback converter and
full-bridge converter at STC with n = 1/10 or RL = 5 Ω or VDbus = 500 V for three cases,
respectively. The experimental results are shown in Figure 8. The four factory parameter
settings of this PV cell model are the same as in the first PV cell (1Soltech 1STH-215-P) of the
PV array module in MATLAB/Simulink, which are Isc = 7.84 A, Voc = 36.3 V, Im = 7.35 A
and Vm = 29 V, respectively.
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Figure 8. Po-D curves of the different outputs and n. (a) Po-D curves of PV-Flyback system for
different RL; (b) Po-D curves of PV-Flyback system for different n; (c) Po-D curves of PV-Full-bridge
system for different RL; (d) Po-D curves of PV-Full-bridge system for different n; (e) Po-D curves
of PV-Flyback-Dbus for different VDbus; (f) Po-D curves of PV-Flyback-Dbus for different n; (g) Po-
D curves of PV-Full-bridge-Dbus for different VDbus; (h) Po-D curves of PV-Full-bridge-Dbus for
different n.
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Assume that DL1, DU1, DL2 and DU2 are taken as 0.2, 0.8, 0.1 and 0.45, respectively,
that RL = 5 Ω or VDbus = 500 V for the study of the range of n, and that n = 0.1 for the
study of the range of RL or VDbus. The calculated maximum and minimum values of
the circuit parameter range for a PV system with a forward converter and a full-bridge
converter capable of successful MPPT are shown in Table 6, where RLmax and RLmin denote
the maximum and minimum values of RL, respectively, nmax and nmin denote the maximum
and minimum values of n, respectively, and VDmax and VDmin denote the maximum and
minimum values of VDbus, respectively. These data are compared with Figure 8 to analyze
the reasonableness and accuracy of the MCCs.

Table 6. The extreme values of MCCs.

PV System RLmin or VDmin RLmax or VDmax nmin nmax

PV-Flyback 25.79 Ω 6601 Ω 0.2271 3.634
PV-Full-bridge 16.5 Ω 334.2 Ω 0.1817 0.8175

PV-Flyback-Dbus 74.25 V 1188 V 0.01485 0.2376
PV-Full-bridge-Dbus 59.4 V 267.3 V 0.0594 0.2673

According to Figure 8a,b,e,f, for the PV-Flyback and PV-Flyback-Dbus systems, when
n is certain and RL = RLmin or VDbus = VDmin is satisfied, the MPP is reached exactly at
D = DL1. When RL = RLmax or VDbus = VDmax is satisfied, the MPP is reached exactly at
D = DU1. When RL or VDbus is certain and n = nmin is satisfied, the MPP is reached exactly
at D = DL1. When n = nmax, the MPP is reached exactly at D = DU1.

In Figure 8c,d,g,h, it can be seen that, for the PV-Full-bridge and PV-Full-bridge-Dbus
systems, the MPP is reached exactly at D = DL2 when n is certain and RL = RLmin or
VDbus = VDmin is satisfied. When RL = RLmax or VDbus = VDmax is satisfied, the MPP is
reached exactly at D = DU2. When RL or VDbus is certain and n = nmin is satisfied, the MPP
is reached exactly at D = DL2. When n = nmax is satisfied, the MPP is reached exactly at
D = DU2.

In Table 6, it can be seen that the range of MCCs for the PV-Flyback and PV-Flyback-
Dbus systems is much larger than that of the PV-Full-bridge and PV-Full-bridge-Dbus
systems. However, in the small-load and low-variable-ratio segments, the range of MCCs
for the PV-Full-bridge and PV-Full-bridge-Dbus systems is slightly larger than that for the
PV-Flyback and PV-Flyback-Dbus PV systems.

In conclusion, according to Figure 8, the MCCs shown in Table 2 are accurate in
practical applications when the duty cycle constraints of isolated DC/DC converters are
considered.

Obviously, the MCCs of PV systems are influenced by the changing irradiance and
temperature. Therefore, in the research and application of PV systems, we can judge the
effect of MPPT control and estimate the range of its circuit parameters according to local
historical meteorological data.

3.2. Simulation Verification of MCCs Based on MPP Linear Model
3.2.1. Accuracy Verification of MCCs

Table 7 shows the four weather conditions of the PV system, and simulation exper-
iments were conducted for the MCCs. Meanwhile, the results in Tables 3–5 and other
weather conditions can be verified analogously.

Table 7. Simulated weather parameters of PV system.

Weather Conditions (a) (b) (c) (d)

S (W/m2) 1300 850 550 350
T (°C) 40 25 20 15
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When the output of the PV system is resistive, DL1, DU1, DL2 and DU2 are taken as 0.2,
0.8, 0.1 and 0.45, respectively, and RL is equal to 0.5 Ω. The simulation results are shown
in Figure 9. Figure 9 compares the curves of Dmax variation with n for the PV-Forward,
PV-Flyback, PV-Half-bridge and PV-Full-bridge systems under four weather conditions.
Meanwhile, the MCCs in Table 4 are calculated, and the results are shown in Table 8. They
can verify the accuracy of the simulation results in Figure 9 and Table 4.

Figure 9. Po-D curves of different PV systems. (a) Dmax-n curves of PV-Forward system; (b) Dmax-n
curves of PV-Flyback system; (c) Dmax-n curves of PV-Half-bridge system; (d) Dmax-n curves of
PV-Full-bridge system.

Table 8. Calculated values of MCCs.

Weather Conditions (a) (b) (c) (d)

PV-Forward
0.497 0.615 0.760 0.957
1.989 2.462 3.038 3.829

PV-Flyback 0.622 0.769 0.949 1.197
9.947 12.31 15.19 19.15

PV-Half-bridge 0.249 0.308 0.380 0.479
1.119 1.385 1.709 2.154

PV-Full-bridge 0.497 0.615 0.760 0.957
2.238 2.770 3.418 4.308
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In Figure 9a, it can be seen that, for the PV-Forward system, Dmax remains at 0.2
when n < DL1

√
RsM/

√
RL and 0.8 when n > DU1

√
RsM/

√
RL, which implies that the

MPP does not exist outside the range of n, and the MPP linear model cannot be used.
In Figure 9b, it can be seen that, for the PV-Flyback system, Dmax stays at 0.2 when
n < DL1

√
RsM/[

√
RL(1−DL1)], while when n > DU1

√
RsM/[

√
RL(1−DU1)], Dmax stays

at 0.8, which means that the MPP does not exist outside the range of n, and the MPP linear
model cannot be used. In Figure 9c, it can be seen that, for the PV-Half-bridge system, Dmin
stays at 0.1 when n < DL2

√
RsM/

√
RL, while Dmax stays at 0.45 when n > DU2

√
RsM/

√
RL,

which implies that the MPP does not exist outside of the range of n, and the MPP linear
model cannot be used. In Figure 9d, it can be seen that the PV-Full-bridge system maintains
Dmin at 0.1 when n < 2DL2

√
RsM/

√
RL, while Dmax remains at 0.45 under the condition of

n > 2DU2
√

RsM/
√

RL, which implies that the MPP does not exist outside the range of n,
and the MPP linear model cannot be used.

Comparing Figure 9, the Dmax of the PV system varies with n when n is within the
MCCs. In this case, the MPP always exists, and the MPP linear model can be used for
these four PV systems. The simulation results shown in Figure 9 are consistent with the
corresponding data in Table 8, whereas the Dmax-n curves of PV systems under different
weather conditions differ significantly. Therefore, it can be concluded that the practical
expressions of MCCs for various isolated PV systems in Table 4 are accurate for the PV-
Forward, PV-Flyback, PV-Half-bridge and PV-Full-bridge systems.

3.2.2. Comparison of MCCs

The fifteen PV systems studied in this section can be applied under a wide range of
practical requirements. However, the choice of the right PV system is complex. Therefore,
it is essential to compare their MCCs. Here, it is assumed that the values of DL1, DL2,
DU1, DU2, n, RL and VDbus are the same as in Section 3.2.1. In this case, Table 9 shows the
calculated values according to Table 5.

Table 9. Calculated values of MCCs.

PV System Calculated MCC Values

PV-Forward 0.28
√

RsM ≤ n ≤ 1.13
√

RsM 4RsM ≤ RL ≤ 64RsM

PV-Flyback 0.35
√

RsM ≤ n ≤ 5.66
√

RsM 6.25RsM ≤ RL ≤ 1600RsM

PV-Half-bridge 0.14
√

RsM ≤ n ≤ 0.636
√

RsM RsM ≤ RL < 20.25RsM

PV-Full-bridge 0.28
√

RsM ≤ n ≤ 1.272
√

RsM 4RsM ≤ RL < 81RsM

PV-Forward-Dbus 0.01VsM ≤ n ≤ 0.04VsM VsM ≤ VDbus ≤ 4VsM

PV-Flyback-Dbus 0.013VsM ≤ n ≤ 0.2VsM 1.25VsM ≤ VDbus ≤ 20VsM

PV-Half-bridge-Dbus 0.005VsM ≤ n ≤ 0.02VsM 0.5VsM ≤ VDbus < 2.25VsM

PV-Full-bridge-Dbus 0.01VsM ≤ n ≤ 0.045VsM VsM ≤ VDbus ≤ 4.5VsM

PV-Forward-INV 0.16
√

RsM ≤ n ≤ 0.64
√

RsM 1.28RsM ≤ RL ≤ 20.48RsM

PV-Flyback-INV 0.2
√

RsM ≤ n ≤ 3.2
√

RsM 2RsM ≤ RL ≤ 512RsM

PV-Half-bridge-INV 0.08
√

RsM ≤ n ≤ 0.36
√

RsM 0.32RsM ≤ RL < 6.48RsM

PV-Full-bridge-INV 0.16
√

RsM ≤ n ≤ 0.72
√

RsM 1.28RsM ≤ RL < 25.92RsM

Some simulations based on Table 9 were performed to further analyze the MCCs. The
simulation results are shown in Figure 10. In Figure 10, RLminFD and RLmaxHB denote the
maximum and minimum values of RL for the PV-Forward system and PV-Half-bridge
system, respectively. Other circuit parameter boundaries are also presented in Figure 10.
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Figure 10. Comparison of curves of MCCs. (a) PV-Half-bridge compared with PV-Full-bridge
system; (b) PV-Forward compared with PV-Forward-INV system; (c) PV-Full-bridge compared with
PV-Full-bridge-INV system; (d) PV-Forward-Dbus compared with PV-Half-bridge-Dbus system.

Some conclusions can be drawn from Figure 10 and Table 9. Take the load resistance
output as an example. When the weather parameters and the ratio are certain, the max-
imum value of the load resistance for the PV system using the forward converter as the
MPPT circuit is about three times that for the PV system using the half-bridge converter.
Meanwhile, the maximum value of the load resistance for the PV system using the full-
bridge converter is about four times that for the PV system using the half-bridge converter.
However, when RL < 4RsM, only the PV system using the half-bridge converter can success-
fully realize MPPT control. When the weather parameters and load resistance are certain,
the maximum value of load resistance for the PV system using the full-bridge converter is
about two times that for the PV system using the half-bridge converter. Meanwhile, only
the PV system using the half-bridge converter can successfully realize MPPT control when
n < 0.28. When an inverter is connected to the PV system, no matter what kind of converter
is used as the MPPT control circuit, the range of circuit parameters is reduced to a certain
extent. When the flyback converter is used, the load resistance, transformer ratio or bus
voltage range is much larger than that of other isolated PV systems. Since both RsM and
VsM are functions of S and T, the load, transformer ratio or bus voltage range changes with
S and T. In addition, Figure 10 not only shows the range of variation in RL, n and VDbus but
also verifies the accuracy of the boundary values given in Table 9. The MPP linear model
can be used only if the MPP is always present in the isolated PV system within this range.
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In conclusion, both the different choices of isolated DC/DC converters and changing
weather parameters may lead to changes in the MCCs.

3.3. Simulation Analysis of RMPPT

In order to verify the practicality of RMPPT and test its MPPT capability, the PV-
Flyback system model was built by using Simulink. In this case, the MPP linear model
in Section 2.1 is used. Meanwhile, n and RL are equal to 2 and 1.7 Ω, respectively. In
addition, the capacitors, inductors and transformers in the circuit are ideal components,
the switching components are MOSFETs, and the PWM wave frequency is 15 kHz.

Simulation experiments on the practicality of RMPPT were conducted, and the results
are shown in Table 10. Dmax and Dmax1 denote D values at the MPP when the RMPPT and
P&O methods are used, respectively. Pomax and Pomax1 denote the maximum output power
values of the PV cell when the RMPPT and P&O methods are used, respectively. Pomax2
denotes the maximum output power of the PV system. The parameter settings are n = 1/10
and RL = 500 Ω. The P&O method step size is set to 0.005.

Table 10. Experimental results for practicability of RMPPT.

(S,T)/(W/m2, ◦C) Dmax Dmax1 Pomax Pomax1 Pomax2

(750, 15) 0.4865 0.4821 152.19 152.13 149.63
(1000, 15) 0.5175 0.5204 214.7 214.89 212.5
(1250, 15) 0.54 0.5373 281.77 281.72 279.92
(750, 25) 0.4929 0.5007 151.29 151.22 148.79
(1000, 25) 0.524 0.5221 213.4 213.69 211.2
(1250, 25) 0.547 0.5455 280.87 280.83 277.93
(750, 35) 0.4994 0.5013 150.39 150.51 148.43
(1000, 35) 0.5308 0.5269 212.9 212.69 210.09
(1250, 35) 0.5539 0.5520 279.97 280.14 277.64

In Table 10, it can be seen that the values of Dmax and Pomax calculated by RMPPT are
basically equal to Dmax1 and Pmax1, respectively. This proves the practicality of RMPPT. In
addition, it can be seen from Pomax1 and Pomax2 that there is a difference between them due
to the loss of the circuit components, the average value of which is the circuit loss, which is
calculated to be about 2.41W.

Two sets of simulation experiments were performed for RMPPT using Simulink. And
the MPPT methods were judged on the basis of stability and speed.

(1) Simulation experiment of irradiance change

In order to simulate a sudden weather change situation, it is assumed that at 0~0.3 s,
S = 800 W/m2 and T = 25 ◦C; at 0.3~0.7 s, S = 1200 W/m2 and T = 25 ◦C; and at 0.7~1 s,
S = 400 W/m2 and T = 25 ◦C. Figure 11 shows the simulation results.

In Figure 11b, it can be seen that the tracking time and numerical stability of the MPP
are much better than in the traditional P&O method when RMPPT is used in the isolated
PV system with sudden changes in weather conditions (S). In Figure 11c, it can be seen
that the P&O method itself has a step-length limitation, which causes D to oscillate around
Dmax, which is the reason why the output power of the P&O method oscillates at the MPP,
while the RMPPT stabilizes at the MPP. It can also be seen in Figure 11 that, after the sudden
change in S, D is actively adjusted to the new Dmax, and the Pomax of the PV cell is also
stabilized to the new Pomax after a rapid adjustment, which also proves the correctness of
the conclusion in Section 2.1.
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Figure 11. Simulation experiment of irradiance change. (a) S curve variation with t; (b) compari-
son of Pomax-t curves of RMPPT and P&O methods; (c) comparison of D-t curves of RMPPT and
P&O methods.

(2) Simulation experiment of RL change

Figure 12 shows the simulation results. In Figure 12b, it can be seen that the tracking
time and numerical stability of the MPP are much better than those of the P&O method
when RMPPT is used with sudden changes in RL. It can also be seen in Figure 12 that Dmax
is actively adjusted to the new Dmax after a sudden change in RL, but Pomax remains at the
same value after a short transient adjustment.

Therefore, it can be concluded that RMPPT outperforms the conventional P&O method
in terms of MPPT rapidity and stability, regardless of changing weather conditions or
circuit parameters.

Although only the MPPT method for the PV-Flyback system based on Equation (62) is
proposed and verified in this section, the remaining MPPT methods for different isolated
PV systems can be proposed analogously, which makes it easy for researchers and users of
PV systems to select the corresponding MPPT methods.
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Figure 12. Simulation experiment of RL change. (a) RL curve variation with t; (b) comparison of Pomax-t
curves of RMPPT and P&O methods; (c) comparison of D-t curves of RMPPT and P&O methods.

3.4. Simulation Analysis of BMPPT

In order to verify the practicality of BMPPT and test its MPPT capability, the PV-
Flyback-Dbus system model shown in Figure 8 was built by using Simulink. The parameter
settings are n = 2 and VDbus = 25 V, the capacitors, inductors and transformers in the
circuit are ideal components, the switching components are MOSFETs, and the PWM wave
frequency is 15 kHz. The simulation experiment results under varying temperature and
DC bus voltage conditions are shown in Figure 13.

In Figure 13b,e, it can be seen that the tracking time and numerical stability of the
MPP are much better than in the P&O method when BMPPT is used in isolated PV systems
with sudden changes in T or VDbus. It can also be seen in Figure 13b,c that, after a sudden
change in T, Dmax is actively adjusted to the new Dmax, and Pomax is also stabilized to the
new Pomax after a rapid stepwise adjustment.
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Therefore, it can be concluded that BMPPT is far superior to the traditional P&O
method in terms of rapidity and stability under changing weather conditions or circuit pa-
rameters.

Although only the MPPT method for the PV-Flyback-Dbus system based on the theory
of Equation (63) is proposed and validated in this section, the remaining MPPT methods
for different isolated PV systems can also be proposed analogously.

In this section, two MPPT methods (RMPPT and BMPPT) are verified when a load
resistance and DC bus are selected as the output of the PV system, respectively. The
conventional P&O method is compared with two MPPT methods implemented in Mat-
lab/Simulink under varying weather conditions (irradiance and temperature) and circuit
parameters (DC bus voltage and load resistance). The experimental results verify the high
speed and accuracy of the two proposed MPPT methods and show the advantages of a
simple program, small computational volume and low cost of hardware and software.
They also verify the correctness and practicability of the MPP linear model established in
Section 2.1.

4. Discussion

Tables 1–5 show the constraint conditions that enable the successful realization of
MPPT control for isolated PV systems on the basis of the PV cell engineering model and
MPP linear model. However, in practical applications, these constraint conditions usually
play an important role in the hardware design, theoretical study and product installation of
the PV system. On the one hand, since the boundaries of these constraints always change
with the weather parameters, it is difficult to adjust the operating system in real time based
on whether the load (or bus voltage) varies within the MCC range. For hardware designers,
the MCCs can be utilized to select system configurations and circuit components. For the
theoretical researcher, the MCCs can be used as a basis for ensuring the usability of the
proposed control method. For the system installer, the MCCs can be used to estimate the
MPPT effect based on solar irradiance and temperature recordings in the installation area.
On the other hand, in practical applications, the maximum selected value of the load (or
bus voltage) can be reflected by the MCCs. In other words, for a PV system, if the selected
value of the load (or bus voltage) is not within the corresponding interval, the MPP cannot
be successfully tracked, regardless of the used MPPT method, in which case, of course, the
MPP linear model cannot be used. In addition, the MCCs can provide a theoretical basis
when the MPP linear model is used to study the overall linearized model of the PV system.

However, in practice, the MPPT control of PV systems is usually affected by some other
factors, such as the installed PV power, non-ideal DC/DC converter, non-ideal inverter
and transmission efficiency. Therefore, the conclusions of this paper will be influenced
by these factors to some extent. However, these factors are negligible. The reasons are
as follows. On the one hand, the use of ideal isolated DC/DC converters and inverters
can greatly simplify the theoretical study, just like in other studies. On the other hand,
the aim of this work is to reveal the governing relationships between PV cell parameters
and the load resistance or bus voltage when the MPP of the PV system is always present.
Obviously, obtaining these relationships is very beneficial for the study of MPPT control
methods using both PV cell models. Finally, the two constraint conditions in this paper
represent the key results on the basis of which other factors can be easily considered and
involved in practical applications.

5. Conclusions

For isolated PV systems, this paper solves the problem of when to apply the MPP
linear model of the PV cell and proposes two faster and more accurate MPPT methods on
the basis of MCCs, which are important for studying the overall linearization of isolated
PV systems. In practical applications, the MCCs are a good guide for the circuit design,
theoretical derivation and product selection of isolated PV systems. Theoretical researchers,
hardware circuit designers and PV equipment installers can select the suitable isolated PV
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system according to different load and DC bus range requirements and make a preliminary
estimation of MPPT effects. The main work in this paper is summarized as follows:

(1) The overall mathematical models of twenty isolated PV systems are established. And
the relationships between the output power of isolated PV systems, the parameters of
the PV cell and circuit parameters are found.

(2) The MCCs are found for isolated PV systems with different topologies and outputs on
the basis of the PV cell engineering model and MPP linear model, respectively. They
are a good guide for the circuit design, theoretical derivation and product selection of
PV systems.

(3) Based on the MPP linear model and MCC, two MPPT methods (RMPPT and BMPPT)
applicable to different output conditions are proposed. The experimental results
verify the speed and accuracy of the two proposed MPPT methods. The MPPT time is
improved from 0.23 s to 0.03 s. These two methods have the advantages of a simple
program, small computational volume and low hardware and software costs.

Although this thesis finds some direct mathematical relationships between weather
parameters (irradiance and temperature), circuit parameters (load resistance, transformer
ratio and bus voltage) and control signals (PWM wave duty cycle) for isolated PV systems
and proposes two MPPT methods applicable to different topologies and load types, there
is still a lot of follow-up work to be carried out.

(1) The theoretical derivation in this paper makes some idealized assumptions. However,
there may be more complicated situations in the practical circuit, and determining
how to establish the MCCs and MPPT methods for more complicated situations is an
important research direction.

(2) The two MPPT methods proposed put forward higher requirements on the speed,
accuracy and economy of the irradiance and temperature sensors. If irradiance
and temperature sensors with lower costs, higher accuracy and faster speed can be
developed, the MPPT control method proposed in this paper can be more widely used.

(3) The MCCs proposed in this paper are based on the premise that the irradiance of
all PV cells is uniform, but due to the environmental changes that may occur in the
case of the partial shading of PV cells, it is also an important direction to consider the
MCCs and the MPPT method in the case of non-uniform irradiance.
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Abbreviations

MPP Maximum power point STC Standard test conditions
PV Photovoltaic PWM Pulse-width modulation
MCC MPPT constraint conditions DC Direct current
MPPT Maximum power point tracking AC Alternating current
VWP Variable-weather parameter

Nomenclature

I Output current of PV cell (A) n Transformer ratio of isolated DC/DC converter
V Output voltage of PV cell (V) M SPWM wave modulation ratio
S Solar irradiance (W/m2) Vr Output voltage of inverter (V)
T Cell temperature (◦C) Ir Output current of inverter (A)
Io Output current of isolated DC/DC converter (A) RsM Internal resistance of linear cell model (Ω)
Vo Output voltage of isolated DC/DC converter (V) VsM Open-circuit voltage of MPP linear model (V)
D Duty cycle of the PWM signal of converter Dmax D at the MPP
Isc Short-circuit current of PV cell under STC (A) Pomax Output power at MPP (W)
Voc Open-circuit voltage of PV cell under STC (V) RiMPP Value of Ri at MPP (Ω)
Im MPP current of PV cell under STC (A) VMPP Value of V at MPP (Ω)
Vm MPP voltage of PV cell under STC (V) IMPP Value of I at MPP (Ω)
Ri Input resistance of isolated DC/DC converter (Ω) VDbus Voltage of DC bus (V)
RL Load or equivalent load resistance of PV system (Ω) VAbus Voltage of AC bus (V)
DL1 Minimum D for forward and flyback converters DL2 Minimum D for half-bridge, full-bridge, push–pull converter
DU1 Maximum D for forward and flyback converters DU2 Maximum D for half-bridge, full-bridge, push–pull converter
Po Output power of PV system (W)
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Abstract: Accurate forecasting of ultra-short-term time series wind speeds (UTSWS) is important
for improving the efficiency and safe and stable operation of wind turbines. To address this is-
sue, this study proposes a VMD-AOA-GRU based method for UTSWS forecasting. The proposed
method utilizes variational mode decomposition (VMD) to decompose the wind speed data into
temporal mode components with different frequencies and effectively extract high-frequency wind
speed features. The arithmetic optimization algorithm (AOA) is then employed to optimize the
hyperparameters of the model of the gated recurrent unit (GRU), including the number of hidden
neurons, training epochs, learning rate, learning rate decay period, and training data temporal length,
thereby constructing a high-precision AOA-GRU forecasting model. The AOA-GRU forecasting
model is trained and tested using different frequency temporal mode components obtained from
the VMD, which achieves multi-step accurate forecasting of the UTSWS. The forecasting results of
the GRU, VMD-GRU, VMD-AOA-GRU, LSTM, VMD-LSTM, PSO-ELM, VMD-PSO-ELM, PSO-BP,
VMD-PSO-BP, PSO-LSSVM, VMD-PSO-LSSVM, ARIMA, and VMD-ARIMA are compared and ana-
lyzed. The calculation results show that the VMD algorithm can accurately mine the high-frequency
components of the time series wind speed, which can effectively improve the forecasting accuracy
of the forecasting model. In addition, optimizing the hyperparameters of the GRU model using the
AOA can further improve the forecasting accuracy of the GRU model.

Keywords: variational mode decomposition; arithmetic optimization algorithm; gated recurrent unit;
ultra-short-term forecasting; time series wind speed

1. Introduction

With the gradual depletion of fossil fuels and the continuous increase in energy
demand arising from human societal development, wind power has been extensively
developed and utilized as a renewable energy source in recent years [1]. According to the
“Global Wind Report 2023” released by the Global Wind Energy Council (GWEC), global
wind power added 78 GW of installed capacity in 2022, reaching a total installed capacity
of 906 GW [2]. Wind speed is the primary factor affecting the operational characteristics of
wind turbines, and its randomness, intermittency, and volatility pose a significant challenge
for the optimal operation of wind turbines [3,4]. Accurate forecasting of the distribution
characteristics of short-term wind speeds is an effective means of improving the safety and
economic efficiency of wind turbine operations.

Based on the different timescales of wind speed forecasting, time series wind speed
forecasting can be divided into three categories: ultra-short-term forecasting, short-term
forecasting, and medium-to-long-term forecasting [5]. Time series wind speed forecasting
methods can be classified into statistical forecasting methods, artificial intelligence fore-
casting methods, and hybrid forecasting methods based on the forecasting mechanism
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employed [6,7]. Statistical forecasting methods use statistical models to extract the histor-
ical features of time series wind speeds and forecast future wind speeds based on these
features. Commonly used statistical forecasting models include the AR model [8,9], ARMA
model [10–12], and ARIMA [13–15]. Statistical forecasting models exhibit good forecasting
performance when the historical data are sufficient and relatively stable. However, their
forecasting capability tends to degrade when dealing with incomplete historical data or
non-stationary data. Especially with time series data with random distribution character-
istics, the predictive performance of statistical prediction models is difficult to meet the
prediction needs.

With the rapid development of artificial intelligence technology, its application to time
series wind speed forecasting has received considerable attention in terms of research and
applications [16,17]. Machine learning, with its strong capability for nonlinear mapping,
has demonstrated excellent performance in wind speed forecasting [18–20]. In a previous
study [21], a novel hybrid model was developed for short-term wind speed forecasting,
and the calculation results illustrated that the proposed hybrid model outperformed single
and recently developed forecasting models. A complete ensemble empirical mode de-
composition with adaptive noise-least absolute shrinkage and selection operator-quantile
regression neural network (CEEMDAN-LASSO-QRNN) model was developed for mul-
tistep wind speed probabilistic forecasting [22], and the experimental results indicated a
higher accuracy and robustness of the proposed model in multistep wind speed proba-
bilistic forecasting. Yang et al. [23] developed an innovative ensemble system based on
mixed-frequency modeling to perform wind speed point and interval forecasting, and a
multi-objective optimizer-based ensemble forecaster was proposed to provide deterministic
and uncertain information regarding future wind speeds. The calculation results demon-
strated that the system outperformed the benchmark techniques and could be employed
for data monitoring and analysis on wind farms. Dong et al. [24] proposed an ensemble
system of decomposition, adaptive selection, and forecasting to simulate the actual wind
speed data of a wind farm. The calculation results indicated that the proposed forecasting
model had outstanding forecasting accuracy for time series wind speeds. Machine learning
methods can explore the nonlinear relationships of data, but they cannot explore the spa-
tiotemporal distribution characteristics between data, resulting in low accuracy of machine
learning methods in predicting time series data.

Deep learning exhibits exceptional capabilities in nonlinear mapping and time series
data analysis, leading to superior performance in time series wind speed forecasting [25,26].
For instance, Lv et al. [27] applied a deep learning model to forecast time series wind speeds
after removing data noise. The computational results demonstrated that the proposed
method could accurately forecast time series wind speed sequences. A dynamic adaptive
spatiotemporal graph neural network (DASTGN) was proposed for forecasting wind speed,
and extensive experiments on real wind speed datasets in the Chinese seas showed that
DASTGN improved the performance of the optimal baseline model by 3.05% and 3.69%
in terms of MAE and RMSE, respectively [28]. A wind speed forecasting model based on
hybrid variational mode decomposition (VMD), improved complete ensemble empirical
mode decomposition with additive noise (ICEEMDAN), and a long short-term memory
(LSTM) neural network has also been proposed [29]. By comparing and analyzing seven
other forecasting models, the proposed model was found to have the best forecasting
accuracy. Other studies [26,30–33] have presented a novel transformer-based deep neural
network architecture integrated with a wavelet transform for forecasting wind speed
and wind energy (power) generation for 6 h in the future, and the calculation results
demonstrated that the integration of the transformer model with wavelet decomposition
improved the forecasting accuracy. A single deep learning model can only explore the
distribution characteristics (spatial or temporal distribution characteristics) of a certain
aspect of data, and cannot simultaneously explore the spatiotemporal distribution and
coupling characteristics of data. Therefore, a hybrid forecasting model with spatial and
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temporal feature mining capabilities is an effective method to improve the accuracy of
ultra-short-term wind speed forecasting.

Integrating the advantages of different deep learning models to construct hybrid
forecasting models can effectively overcome the limitations of individual deep learning
forecasting models and further improve wind speed forecasting accuracy [34,35]. A hybrid
forecasting model was developed by combining the strengths of a convolutional neural
network (CNN) model and a bidirectional long short-term memory (BiLSTM) model, and
was then applied to short-term wind speed forecasting [36,37]. The computational results
demonstrated that the hybrid CNN-BiLSTM forecasting model could accurately capture
the spatiotemporal distribution characteristics of wind speed information, leading to a
higher forecasting accuracy than that of individual deep learning models. Assigning
different weights to multiple deep learning models for ensemble construction in short-
term wind speed forecasting allows each model’s strengths to be fully utilized, thereby
enhancing the overall forecasting accuracy of the ensemble model and expanding its
practical applicability [38].

Based on an existing study on wind speed forecasting, this study presents a forecasting
model based on VMD-AOA-GRU for ultra-short-term time series wind speed (UTSWS). In
the proposed model, historical wind speed data from wind turbines were first decomposed
into different frequency sub-sequences using variational mode decomposition (VMD). Then,
the arithmetic optimization algorithm (AOA) was utilized to optimize the temporal length
of the training data for each sub-sequence and the hyperparameters of the forecasting
model of the gated recurrent unit (GRU), such as the number of hidden neurons, training
epochs, learning rate, and learning rate decay period, to improve the convergence speed
and forecasting accuracy of the GRU model. Finally, the forecasting accuracies of various
hybrid forecasting models were compared to demonstrate the superiority of the proposed
algorithm.

Compared with existing wind speed forecasting models, our proposed model has the
following advantages:

(1) A UTSWS forecasting model based on VMD-AOA-GRU is proposed.
(2) VMD is employed to extract high-frequency wind speed features from time series

wind speeds.
(3) The hyperparameters of the GRU model are optimized using the AOA to construct a

hybrid AOA-GRU model.
(4) The proposed model outperforms other models for the four wind speed datasets.

The remainder of this paper is organized as follows: In Section 2, the principles of
time series wind speed forecasting are introduced. The computational principles and
decomposition process of VMD are presented in Section 3. The computational principles
and process of the AOA are described in Section 4, including the calculation process for
the accelerated function of the math optimizer, the global exploration phase, and the local
exploitation phase. Section 5 describes the construction process for the AOA-GRU hybrid
model, including the principles of GRU and the construction of the AOA-GRU model.
The construction and validation processes for the VMD-AOA-GRU model are outlined in
Section 6. In Section 7, the multi-step forecasting results of various models are compared,
including GRU, VMD-GRU, VMD-AOA-GRU, LSTM, VMD-LSTM, PSO-ELM, VMD-PSO-
ELM, PSO-BP, VMD-PSO-BP, PSO-LSSVM, VMD-PSO-LSSVM, ARIMA, and VMD-ARIMA.
The results of this study are summarized in Section 8.

2. Principles of Time Series Wind Speed Forecasting

Wind speed sequences are essentially time series data, and for a specific wind farm,
the wind speed time series can vary significantly under different climatic conditions. We
assume that a set of real wind speed time series is denoted as Ak = {a1, a2, a3, . . ., ak}, where
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ak represents the wind speed at the kth time step. Then, the wind speed, ak+1, at the (k + 1)th

time step can be calculated using Equation (1).

ak+1 = f (Ak) = f (a1, a2, · · · , ak−1, ak), (1)

where f (·) represents the forecasting model, and k represents the length of the sliding
time window.

Equation (1) expresses single-step wind speed forecasting. The principle of multi-step
forecasting of time series wind speeds is similar to that of single-step forecasting. Taking
two-step forecasting as an example, the wind speed, ak+2, at time k + 2 can be calculated
using Equation (2).

ak+2 = f (a2, a3, · · · , ak, ak+1) (2)

In Equation (2), the wind speed sequence {a1, a2, a3, . . ., ak} is shifted one step to the
left, and the forecasting value ak+1 at time k + 1 is then added to the wind speed sequence
as an input to the forecasting model. Similarly, the predicted value ak+n at time k + n can be
calculated using Equation (3).

ak+n = f
(

an, an+1, · · · , ak+(n−2), ak+(n−1)

)
(3)

As indicated by the above equations, in time series wind speed forecasting, as the
forecasting step increases, the forecasting error will accumulate with each step in the
forecasting model, f (·), leading to a decrease in forecasting accuracy.

The principle of time series wind speed forecasting is illustrated in Figure 1.
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Figure 1. Principle of time series wind speed forecasting.

3. Variational Mode Decomposition

VMD is a non-stationary signal decomposition method introduced by Dragomiretskiy
et al. in 2014 [39]. VMD achieves signal decomposition by introducing variational con-
straints, thus effectively overcoming the mode mixing and endpoint effects issues present
in traditional empirical mode decomposition (EMD) methods.

VMD assumes that any signal f (t) can be represented by a series of sub-signals uk with
specific center frequencies and finite bandwidths, and the sum of the bandwidths of all
of the sub-signals is equal to the original signal. Then, the variational constraint equation
shown in Equation (4) can be obtained.





min
{uk},{ωk}

{
∑
k

∣∣∣∣∂t[(δ(t) + j/π · t)⊗ uk(t)]e−iωkt
∣∣∣∣2

2

}

s.t.
K
∑

k=1
uk = f (t)

(4)

In Equation (4), K represents the number of variational modes, {uk, ωk} represents the
kth decomposed mode component with its corresponding center frequency, ∂t is the partial
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derivative with respect to time t, δ(t) represents the Dirac function, and ⊗ represents the
convolution operator.

To transform a constrained variational problem into a non-constrained variational
problem, VMD introduces quadratic penalty factors, α, and Lagrange multipliers, λ(t),
to construct the augmented Lagrangian function L({uk}, {ωk}, λ), thereby converting the
constrained problem into an unconstrained one. The constructed Lagrangian function is
expressed in Equation (5).

L({uk}, {ωk}, λ) = α
K
∑

k=1

∣∣∣∣∂t[(δ(t) + j/π · t)⊗ uk(t)]e−iωkt
∣∣∣∣2

2

+

∣∣∣∣
∣∣∣∣ f (t)−

K
∑

k=1
uk(t)

∣∣∣∣
∣∣∣∣
2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (5)

The augmented Lagrangian function L({uk}, {ωk}, λ) is solved using the alternative
direction method of multipliers (ADMM); the specific steps are as follows:

Step 1: Initialize {u1
k}, {ω1

k }, λ1 and the iteration number n = 0.
Step 2: Execute the iteration n = n + 1.
Step 3: Update {un

k }, {ωn
k }, and λn based on Equations (6)–(8), respectively.

un
k (ω) =

f (ω)−
k−1
∑

i=1
un

i (ω)−
K
∑

i=k+1
un−1

i (ω) + λn−1(ω)
2

1 + 2α(ω−ωn−1
k )

2 (6)

ωn
k =

∫ ∞
0 ω

∣∣un
k (ω)

∣∣2dω
∫ ∞

0

∣∣un
k (ω)

∣∣2dω
(7)

λn(ω) = λn−1(ω) + τ[ f (ω)−
K

∑
k=1

un
k (ω)] (8)

In the above equations, f (ω) represents the Fourier transform of signal f (t), and τ is
the noise tolerance parameter.

Step 4: If the convergence condition is satisfied, the iteration stops; otherwise, return
to Step 2 for further refinement.

K

∑
k=1

∣∣∣
∣∣∣un

k − un−1
k

∣∣∣
∣∣∣
2

2

/∣∣∣
∣∣∣un−1

k

∣∣∣
∣∣∣
2

2
< e (9)

In Equation (9), e is the convergence condition for stopping the iteration.
The above calculation process demonstrates that VMD transforms the signal from the

time domain to the frequency domain for decomposition. For non-stationary time series
signals, this approach effectively preserves the non-stationary information while ensuring
the robustness of the decomposition process.

4. Arithmetic Optimization Algorithm (AOA)

The arithmetic optimization algorithm (AOA) is a metaheuristic optimization algo-
rithm based on the concept of mixed arithmetic operations; it was proposed by Abualigah
et al. in 2021 [40]. The AOA is characterized by its fast convergence speed and high preci-
sion. The AOA consists of three parts: the mathematical optimizer acceleration function,
global exploration stage, and local exploitation stage. A mathematical optimizer acceler-
ation function is employed to select the optimization strategy. In the global exploration
stage, multiplication and division strategies are utilized for global search, enhancing the
dispersion of solutions and improving the global optimization ability of the AOA. In the lo-
cal exploitation stage, addition and subtraction strategies are used to reduce the dispersion
and strengthen the local optimization ability of the AOA.
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(1) Mathematical Optimizer Acceleration Function

At the beginning of each iteration loop, the global exploration and local exploitation
stages are selected using a mathematical optimizer acceleration function. Suppose that there
are N candidate solutions for the problem to be solved in the solution space, Z, and the posi-
tion of the ith candidate solution in the Z-dimensional solution space is Xi(xi1, xi2, . . ., xiZ),
where i = 1, 2, . . ., N. The solution set can then be represented by Equation (10).

X =




x1, 1 · · · · · · x1, j x1, Z−1 x1, Z
x2, 1 · · · · · · x2, j · · · x2, Z
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1, 1 · · · · · · xN−1, j · · · xN−1, Z
xN, 1 · · · · · · xN, j xN, Z−1 xN, Z




(10)

The AOA selects the search stage using the mathematical optimizer acceleration
function. When r1 ≥ MOA, the AOA performs the global exploration stage, and when
r1 < MOA, the AOA performs the local exploitation stage. Here, r1 is a random number in
the range [0, 1]. The MOA is calculated using Equation (11).

MOA(t) = Min + t ·
(

Max−Min
T

)
(11)

Min and Max represent the minimum and maximum values of the mathematical
optimizer acceleration function, which are typically set to 0.2 and 1, respectively; t is the
current number of iterations, and T is the overall number of iterations.

(2) Global Exploration Stage

In the global exploration stage, the AOA employs two search strategies: multiplication
and division. When r2 ≥ 0.5, the multiplication search strategy is executed, and when
r2 < 0.5, the division search strategy is executed. The formulas for the multiplication and
division search strategies are given in Equation (12).

x(t + 1) =
{

x(t) ·MOP · ((UB− LB) · µ + LB), r2 ≥ 0.5
x(t)/(MOP + ε) · ((UB− LB) · µ + LB), r2 < 0.5

(12)

In Equation (12), UB and LB represent the upper and lower bounds of the solution
space, respectively, r2 is a random number between [0, 1], and µ is the control parameter
for adjusting the search process, with a typical value of 0.499. MOP is the mathematical
optimizer probability, which is calculated as shown in Equation (13).

MOP(t) = 1− t
1
α

T
1
α

, (13)

where α represents the sensitive parameter, which defines the local exploitation accuracy
during the iteration process; it typically has a value of 5.

(3) Local Exploitation Stage

In the local exploitation stage, addition and subtraction operations are employed by
the AOA to fine-tune the solutions obtained during the global exploration stage. The
formulae for the addition and subtraction operations are expressed in Equation (14).

X(t + 1) =
{

xb(t)−MOP · ((UB− LB) · µ + LB), r3 < 0.5
xb(t) + MOP · ((UB− LB) · µ + LB), r3 ≥ 0.5

(14)
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In Equation (14), r3 is a random variable with a value in the range of [0, 1]. When
r3 < 0.5, the subtraction operation is performed; when r3 ≥ 0.5, the addition operation is
executed.

5. AOA-GRU Hybrid Model
5.1. GRU Algorithm Principles

The gated recurrent unit (GRU) is a variant of the long short-term memory (LSTM)
neural network proposed by Cho et al. in 2014 [41,42]. The GRU not only effectively
solves the problems of gradient vanishing and gradient explosion in recurrent neural
networks (RNNs), but also avoids the problems of a large number of parameters, low
training efficiency, and slow convergence speed in LSTM models. Since its inception, the
GRU model has been widely used in the study of time series problems.

The internal structure of the GRU model is illustrated in Figure 2. Figure 2 shows
that the GRU model has two gate control units, namely, the update and reset gates. The
update gate determines how much information from the previous and current time steps
is continuously transmitted to the future, whereas the reset gate determines how much
information from the past should be forgotten.
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(1) Reset Gate

The calculation formula for the reset gate is given by Equation (15).

rt = sigmoid
(

WT
r xt + UT

r St−1 + Br

)
(15)

In Equation (15), xt represents the input vector at time step t, St−1 represents the
hidden state at time step t−1, Wt and Ut are the weight matrices of the reset gate, Br is the
bias matrix of the reset gate, and rt is the output of the reset gate at time step t.

The output range of the sigmoid activation function is [0, 1], and its mathematical
expression is as follows:

sigmoid(x) =
1

1 + e−x . (16)

(2) Update Gate

The calculation formula for the update gate is given by Equation (17).

zt = sigmoid
(

WT
z Xt + UT

z St−1 + Bz

)
(17)

In Equation (17), Wz and Uz are the weight matrices of the update gate, Bz is the bias
matrix of the update gate, and zt is the output of the update gate at time step t.
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(3) Candidate Hidden State of the GRU Model

The candidate hidden state of the GRU model is calculated using Equation (18).

S′t = tanh
(

WT
h′t

Xt + UT
h′t
(rt ∗ St−1) + Bh′t

)
, (18)

where WT
h′t

and UT
h′t

are the weight matrices of the candidate hidden state in the GRU model,

Bh′t
is the bias matrix of the candidate hidden state, S′t represents the candidate hidden

state of the GRU model, and the tanh function is the hyperbolic tangent activation function,
which has an output range of [−1, 1].

(4) Hidden State of the GRU Model

The hidden state of the GRU model is calculated using Equation (19).

St = (1− z t)� St−1+zt � S′t, (19)

where St represents the hidden state of the GRU model.

(5) GRU Model Output

The output of the GRU model can be calculated using Equation (20).

yt = sigmoid
(

WT
y St + By

)
, (20)

where yt represents the output vector of the GRU model, WT
y is the weight matrix, and By

is the bias matrix.

5.2. Hyperparameters Affecting the Forecasting Performance of GRU Models

When the hyperparameters of the GRU model are reasonably set, the model exhibits
good forecasting accuracy. The hyperparameters affecting the forecasting performance of
the GRU model include the number of hidden layers, number of hidden layer neurons,
training epochs, initial learning rate, and learning rate decay period. To elucidate the rela-
tionship between model hyperparameters and forecasting accuracy, the hyperparameters
of the GRU model are adjusted using the grid search method, and the impact of changes
in model hyperparameters on the forecasting accuracy of the wind speed series Dataset1
are observed (relevant information on the wind speed series Dataset1 can be found in
Section 6.1). The variation ranges of each parameter adjusted using the grid search method
are listed in Table 1.

Table 1. Grid search method for tuning GRU model hyperparameters.

Hyperparameter Search Scope Optimal
Parameter Value

Number of Hidden Layers [1, 2, 3, 4] 2
Number of Hidden Layer Neurons [10, 20, 30, 40, 50, 60] 20

Number of Training Epochs [30, 40, 50, 60, 70, 80] 70
Initial Learning Rate [0.02, 0.04, 0.06, 0.08, 0.1] 0.06

Learning Rate Decay Period [10, 20, 30, 40, 50, 60] 30

(1) Impact of the number of hidden layers on the model forecasting performance

In theory, the greater the number of hidden layers the GRU model has, the higher the
GRU model forecasting accuracy will be. However, the training time and computational
memory requirements of the GRU model increase rapidly with the number of hidden layers.
Additionally, a higher number of hidden layers may lead to issues such as overfitting and
gradient vanishing. Therefore, selecting the appropriate number of hidden layers is critical
for setting the hyperparameters of the GRU model.
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Figure 3 shows the relationship between the model forecasting error (RMSE), model
training time, and number of hidden layers (1, 2, 3, or 4) for the time series wind speed
sequence in Dataset1. The solid blue line with squares represents the model forecasting
error for different numbers of hidden layers, and the solid red line with dots represents
the model training time. It can be observed that when the number of hidden layers is set
to one, the GRU model has a relatively large forecasting error but requires less training
time. As the number of hidden layers increases, the model forecasting accuracy improves;
however, the training time also increases. When the number of hidden layers is two, the
GRU model achieves the best balance between forecasting accuracy and training time.
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Figure 3. Relationships among the number of hidden layers, forecasting error, and training time.

(2) Influence of the number of hidden layer neurons on the model forecasting performance

The number of hidden layer neurons also has a significant impact on the forecasting
performance of the GRU model. When the number of hidden layer neurons is small, the
GRU model is prone to underfitting; when there are too many neurons, the GRU model is
prone to overfitting. Therefore, selecting a reasonable number of hidden layer neurons is
also an important aspect of the hyperparameter settings in the GRU model. Figure 4 shows
the correlations between the number of hidden layer neurons, model forecasting error, and
training time. As shown in Figure 4, when the number of hidden layer neurons is 20, the
forecasting accuracy and training time of the GRU model reach an optimal balance.
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Figure 4. Relationship among the number of hidden layer neurons, forecasting error, and train-
ing time.

(3) Impact of training epochs on the model forecasting performance

One training epoch represents a complete operation on the data in a neural network.
The weight matrix in the GRU network must be updated every time the data are fully
trained. Too few training epochs cannot accurately extract temporal features from the
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training data, resulting in underfitting of the GRU model. Excessive training epochs
increase the training time of the GRU model. Therefore, determining a reasonable number
of training epochs and accurately extracting temporal features from the data are important
aspects to be considered in the hyperparameter setting of the GRU model.

As shown in Figure 5, when the number of training epochs for the GRU model is set
to 70, the model achieves the lowest forecasting error, and the increase in training time is
relatively minimal.
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Figure 5. Relationship among the number of training epochs, forecasting error, and training time.

(4) Impact of the learning rate and learning rate decay period on the model forecast-
ing performance

The learning rate is a crucial hyperparameter that controls the learning progress of the
GRU model. Setting a learning rate that is too high or too low can affect both the model
training time and forecasting accuracy. Typically, a higher learning rate is used in the initial
stages of model training to enhance the initial learning speed. After a certain number
of training iterations, it is necessary to decrease the learning rate to improve the model
forecasting accuracy.

Figure 6a illustrates the impact of the learning rate on the model forecasting accuracy
and training time. As shown in Figure 6a, the GRU model achieves the best forecasting
performance when the initial learning rate is set to 0.06.

Figure 6b shows the influence of the learning rate decay period on the model forecast-
ing accuracy and training time. As shown in Figure 6b, the GRU model performs optimally
when the learning rate decay period is set to 30.

Based on the information in Figures 3–6, it is evident that setting the number of hidden
layers, number of neurons in the hidden layer, number of training epochs, learning rate, and
learning rate decay period appropriately can effectively improve the forecasting accuracy
of the GRU model.

5.3. AOA Optimized Hyperparameters of the GRU Model

Based on the discussion in Section 5.2, it is clear that setting appropriate hyperpa-
rameters for the GRU model can improve the forecasting accuracy while reducing the
model training time. However, in practical engineering applications, the training dataset is
continually changing, and the GRU model hyperparameters must be adjusted accordingly.
When the grid search method is used to adjust the GRU model, the hyperparameters are
inefficient and may not meet the demands of real-world applications. Therefore, in this
study, the AOA is utilized to optimize the GRU model hyperparameters, including the
training data sequence length, number of hidden layer neurons, training epochs, initial
learning rate, and learning rate decay period. The number of hidden layers in the GRU
model is determined using a grid search method and remains constant throughout the
optimization process. The construction process for the AOA-GRU model is illustrated
in Figure 7.
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Figure 6. Relationship among the learning rate, learning rate decay period, forecasting error, and
training time. (a) Impact of the learning rate on the model forecasting performance. (b) Impact of the
learning rate decay period on the model forecasting performance.

The specific AOA optimization process for the hyperparameters of the GRU model is
as follows.

Step 1: Construct an AOA candidate solution structure, Xi(xi1, xi2, xi3, xi4, xi5), includ-
ing the training data time series length, xi1, number of hidden layer neurons, xi2, training
iterations, xi3, initial learning rate, xi4, and learning rate decay period, xi5. Determine the
range and number of candidate solutions.

Step 2: Based on the position coordinates Xi(xi1, xi2, xi3, xi4, xi5) of each candidate
solution, construct their respective GRU forecasting models and forecast the wind speed
sequence.

Step 3: Calculate the forecasting error of each GRU model based on its forecasting
results and use the forecasting error as the fitness value for each candidate solution of
the AOA.

Step 4: Save the coordinates of the candidate solution with the best fitness value as
X*(x1, x2, x3, x4, x5), representing the optimal model hyperparameters.

Step 5: Utilize the AOA to update the coordinates of each candidate solution
Xi(xi1, xi2, xi3, xi4, xi5) and rebuild each GRU model based on the updated coordinates to
forecast the wind speed.

Step 6: Based on the forecasting results of the GRU model, recalculate the forecasting
errors of each GRU model and determine the position coordinates X*(x1, x2, x3, x4, x5) of
the candidate solution with the best fitness value, i.e., the optimal training data length and
model hyperparameters.
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Step 7: Check whether the termination condition is satisfied. If not, return to Step 5
and continue the process. If the termination condition is satisfied, proceed to Step 8.

Step 8: Build the final GRU forecasting model based on the coordinates of the global
optimal candidate solution, X*(x1, x2, x3, x4, x5), to forecast the wind speed.
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6. Construction and Verification of the VMD-AOA-GRU Model
6.1. Data Sources and Sample Set Partition

(1) Data Sources

The wind speed data used in this study were derived from the Supervisory Control
and Data Acquisition (SCADA) system of a wind farm located in the northwestern region
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of China that includes 134 wind turbines. The distribution of the wind turbines is shown in
Figure 8. The relative coordinates of each turbine are shown in the figure, with the x- and
y-axis units expressed in meters. The collection period for the wind speed data is 180 d,
and the data time resolution is 10 min. Among them, the 58th and 123rd wind turbines
(with red borders) are the research objects of this paper.
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The ultra-short-term forecasting of wind speed mainly refers to the forecasting of one
or several time steps in the future. In order to verify the high forecasting accuracy of the
model proposed in this paper at different forecasting time scales, the ultra-short-term wind
speeds of one time step, two time steps, and three time steps were forecasted, with each
time step being 10 min.

(2) Sample Set Partitioning

To validate the effectiveness of the proposed algorithm, the wind speed data from
the 58th and 123rd wind turbines, located far apart, were selected for calculation and
analysis. Additionally, to verify the forecasting performance of the proposed algorithm
under different climatic conditions, four datasets from the 10th to the 19th day and from
the 153rd to the 162nd day were chosen for model training and testing (two datasets per
turbine). The datasets belonging to the 58th wind turbine were denoted as Dataset1 (from
the 10th to the 19th day) and Dataset2 (from the 153rd to the 162nd day), while the datasets
from the 123rd wind turbine were denoted as Dataset3 (from the 10th to the 19th day) and
Dataset4 (from the 153rdto the 162nd day). Each dataset contained 1440 data points, with
the first 1320 data points designated as the training dataset and the last 120 data points
designated as the testing dataset.

6.2. VMD-AOA-GRU Model Construction

When forecasting the UTSWS, VMD was first used to decompose the time series
wind speed data into different frequency time series data, thus effectively extracting the
high-frequency data features from the wind speed data while removing noise and thereby
enhancing the forecasting accuracy of the model. Subsequently, the constructed AOA-GRU
model was used to train and test the temporal wind speed data at different frequencies.
The implementation process for the entire VMD-AOA-GRU model is illustrated in Figure 9.
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Figure 9. Implementation process for the VMD-AOA-GRU model.

The specific implementation steps are as follows:

(1) Utilize VMD to decompose the training and testing datasets and obtain K modal
components of different frequencies.

(2) Input each modal component derived from the decomposed training dataset into the
AOA-GRU model separately and train the AOA-GRU model.

(3) Input each modal component derived from the decomposed testing dataset into the
trained AOA-GRU model to achieve ultra-short-term forecasting for each modal
component.

(4) Reconstruct the UTSWS based on the ultra-short-term forecasting results of each
modal component of the testing dataset.

6.3. Verification of the VMD-AOA-GRU Model
6.3.1. Determination of the Number of VMD Modal Components

When the number of modal components in VMD is small, some important information
in the original time series wind speed will be filtered out, reducing the forecasting accuracy
of the VMD-AOA-GRU model. When the number of modal components is large, modal
overlap can easily occur or additional noise may be generated. Therefore, the selection of
an appropriate number of VMD modal components has become a key concern in VMD
research and application. To determine the optimal number of temporal wind speed modal
components, the number of temporal wind speed decomposed modal components was
gradually increased in this study, and the Pearson correlation coefficient method was
used to calculate the correlation coefficients between the decomposed modal components.
The optimal number of VMD modal components can be determined by calculating their
correlation coefficients.
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Table 2 presents the center frequency distribution of the time series wind speed for
Dataset1 after decomposition under different numbers of modal components. Table 2
demonstrates that as the number of modal components increases, the spacing between the
center frequencies of each mode gradually decreases.

Table 2. Central frequency distribution of the decomposed time series wind speed.

Number of
Modes (K) Central Frequency

2 0.1491 Hz 0.0004 Hz
3 0.3401 Hz 0.0776 Hz 0.0003 Hz
4 0.4367 Hz 0.1792 Hz 0.0551 Hz 0.0003 Hz
5 0.4494 Hz 0.2573 Hz 0.1002 Hz 0.0156 Hz 0.0002 Hz
6 0.3768 Hz 0.2106 Hz 0.1094 Hz 0.0529 Hz 0.0098 Hz 0.0001 Hz
7 0.3875 Hz 0.2525 Hz 0.1540 Hz 0.1007 Hz 0.0511 Hz 0.0092 Hz 0.0001 Hz
8 0.4255 Hz 0.3154 Hz 0.2231 Hz 0.1543 Hz 0.1033 Hz 0.0514 Hz 0.0088 Hz 0.0001 Hz

Table 3 presents the Pearson correlation coefficients between the various modal compo-
nents of the original time series wind speed after decomposition under different numbers
of modal components. The results reveal that when the number of modal components is
two or three, the Pearson correlation coefficient between each modal component is low.
However, because of the small number of modal components, important temporal wind
speed information is easily lost. When the number of modal components is five, six, or
greater, the Pearson correlation coefficient between some modal components is higher
(bold font in Table 3), indicating the existence of overlap between these modal components.
When the number of modal components is four, the Pearson correlation coefficient between
each modal component is low, and the number of modal components is relatively small.
Thus, it can be concluded that the most reasonable choice for the VMD calculation of the
time series wind speed is four modal components. In the subsequent VMD calculation of
the time series wind speed in this study, four modal components were used.

Table 3. Pearson correlation coefficients between adjacent modal components.

Number of Modal
Components (K) C12 C23 C34 C45 C56 C67 C78

2 0.015163
3 0.025336 0.04361
4 0.022502 0.061709 0.053189
5 0.035944 0.048752 0.069011 0.157038
6 0.040904 0.064714 0.109889 0.079833 0.144653
7 0.061023 0.072363 0.117903 0.132261 0.074168 0.14186
8 0.068861 0.085539 0.118399 0.116491 0.113842 0.066931 0.144964

6.3.2. Training of VMD-AOA-GRU Model

It is necessary to train the VMD-AOA-GRU model to achieve ultra-short-term fore-
casting. When training the VMD-AOA-GRU model in this study, the training datasets
used were the four training datasets introduced in Section 6.1 (Training Dataset 1, Training
Dataset 2, Training Dataset 3, and Training Dataset 4). As described in Sections 6.2 and 6.3.1,
during the training of the VMD-AOA-GRU model using the training datasets, each group of
training data needed to be decomposed into four modal components (resulting in 16 modal
components from four datasets). Subsequently, the four VMD-AOA-GRU models were
trained using the four decomposed modal components of each training dataset. In order
to solve the problem of overfitting and bias during the model training process, the model
was continuously trained 10 times, and the average hyperparameter value obtained from
10 times training was taken as the hyperparameter of the proposed model. The training
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process was executed on a laptop equipped with an Intel i7-6500U CPU running at a main
frequency of 2.29 GHz and memory of 16 GB. The calculation software was MATLAB 2021a.

Table 4 presents a detailed list of the hyperparameter values of the VMD-AOA-GRU
model optimized by AOA during the one-step forecasting process. Table 4 reveals that
(1) the hyperparameter values of the GRU model trained by different modal components
obtained using the same training dataset are different, and (2) the hyperparameter values
of the GRU model trained by different modal components obtained from different training
datasets are different.

Table 4. Hyperparameter values of the GRU model optimized by AOA.

Sequence Training Dataset 1 Training Dataset 2

Modal Components 1 2 3 4 1 2 3 4
Temporal Length of Training Data 21 17 9 47 14 11 10 20

Number of Neurons in Hidden Layers 28 50 21 50 50 30 50 44
Number of Training Epochs 91 81 75 100 100 34 71 89

Learning Rate 0.0478 0.0355 0.079 0.0572 0.0766 0.0581 0.0269 0.0574
Learning Rate Decay Period 15 30 9 16 10 25 29 30

MAE 3.46% 4.7% 4.32% 3.96% 7.54% 4.4% 3.23% 2.74%
RMSE 4.98% 6.59% 5.36% 4.82% 9.71% 5.81% 3.93% 3.35%
MAPE 0.53% 0.71% 0.85% 0.01% 0.62% 0.30% 0.21% 0.01%

Training Time 187.4 s 190.1 s 153.9 s 232.4 s 233.9 s 88.6 s 172.1 s 201.9 s

Sequence Training Dataset 3 Training Dataset 4

Modal Components 1 2 3 4 1 2 3 4
Temporal Length of Training Data 9 10 9 56 9 16 11 20

Number of Neurons in Hidden Layers 39 44 16 24 30 33 34 48
Number of Training Epochs 67 83 62 96 58 96 35 80

Learning Rate 0.1 0.0391 0.1 0.0589 0.087 0.0544 0.0409 0.0564
Learning Rate Decay Period 30 30 30 30 26 25 30 17

MAE 4.51% 4.08% 2.12% 2.58% 3.66% 3.4% 3.14% 2.74%
RMSE 6.52% 5.53% 2.92% 3.13% 4.59% 4.41% 4.13% 3.47%
MAPE 1.60% 0.32% 0.12% 0.01% 2.51% 0.32% 0.15% 0.01%

Training Time 157.2 s 189.7 s 127.3 s 187.2 s 133 s 201.1 s 92.1 s 186.6 s

There are three reasons for this outcome.

(a) The wind speed data features contained in the four modal components decomposed
from the same training dataset differ. Therefore, after using the four modal compo-
nents to train the AOA-GRU model, the hyperparameter values of the GRU model
optimized by AOA are different.

(b) Owing to the large distance between the 58th and 123rd wind turbines, there are
certain differences in the time series wind speed data for these two turbines during
the same time period, and the decomposed modal components also differ. After using
these modal components to train the AOA-GRU model, the hyperparameter values of
the GRU model optimized by AOA are different.

(c) The time series wind speed data from the same wind turbine differ significantly
during different time periods, and the decomposed modal components also exhibit
significant differences. After training the AOA-GRU model using modal components,
the hyperparameter values of the GRU model optimized by AOA are different.

From the above analysis, it can be observed that the hyperparameter values of the
GRU model change with changes in the training dataset. Therefore, in the process of
real-time forecasting of ultra-short-term wind speeds, it is necessary to use the AOA
to optimize the hyperparameters of the GRU model in real time to obtain the optimal
forecasting performance.
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6.3.3. Forecasting Analysis of the VMD-AOA-GRU Model

To validate the performance of the proposed VMD-AOA-GRU model for ultra-short-
term wind speed forecasting, the forecasting results of the GRU, VMD-GRU, AOA-GRU,
and VMD-AOA-GRU models were compared at different forecasting time steps. The hy-
perparameter values of GRU and VMD-GRU were adjusted using the grid search method,
which ensured that these models were under fair comparison conditions during the com-
parison process. The training dataset of these models was derived from the training data
described in Section 6.1, and the forecasting results of the four testing datasets (Testing
Dataset1, Testing Dataset2, Testing Dataset3, and Testing Dataset4) are shown in Figure 10.

Processes 2023, 11, x FOR PEER REVIEW  17  of  25 
 

 

Number of Neurons in Hidden 

Layers 
39  44  16  24  30  33  34  48 

Number of Training Epochs  67  83  62  96  58  96  35  80 

Learning Rate  0.1  0.0391  0.1  0.0589  0.087  0.0544  0.0409  0.0564 

Learning Rate Decay Period  30  30  30  30  26  25  30  17 

MAE  4.51%  4.08%  2.12%  2.58%  3.66%  3.4%  3.14%  2.74% 

RMSE  6.52%  5.53%  2.92%  3.13%  4.59%  4.41%  4.13%  3.47% 

MAPE  1.60%  0.32%  0.12%  0.01%  2.51%  0.32%  0.15%  0.01% 

Training Time  157.2 s  189.7 s  127.3 s  187.2 s  133 s  201.1 s  92.1 s  186.6 s 

There are three reasons for this outcome. 

(a) The wind speed data features contained in the four modal components decomposed 

from the same training dataset differ. Therefore, after using the four modal compo-

nents to train the AOA-GRU model, the hyperparameter values of the GRU model 

optimized by AOA are different. 

(b) Owing to the large distance between the 58th and 123rd wind turbines, there are cer-

tain differences in the time series wind speed data for these two turbines during the 

same time period, and the decomposed modal components also differ. After using 

these modal components to train the AOA-GRU model, the hyperparameter values 

of the GRU model optimized by AOA are different. 

(c) The time series wind speed data from the same wind turbine differ significantly dur-

ing different time periods, and the decomposed modal components also exhibit sig-

nificant differences. After training the AOA-GRU model using modal components, 

the hyperparameter values of the GRU model optimized by AOA are different. 

From the above analysis, it can be observed that the hyperparameter values of the 

GRU model change with changes in the training dataset. Therefore, in the process of real-

time forecasting of ultra-short-term wind speeds, it is necessary to use the AOA to opti-

mize the hyperparameters of the GRU model in real time to obtain the optimal forecasting 

performance. 

6.3.3. Forecasting Analysis of the VMD-AOA-GRU Model 

To validate the performance of the proposed VMD-AOA-GRU model for ultra-short-

term wind speed forecasting, the forecasting results of the GRU, VMD-GRU, AOA-GRU, 

and VMD-AOA-GRU models were compared at different forecasting time steps. The hy-

perparameter values of GRU and VMD-GRU were adjusted using the grid search method, 

which ensured that these models were under fair comparison conditions during the com-

parison process. The training dataset of these models was derived from the training data 

described in Section 6.1, and the forecasting results of the four testing datasets (Testing 

Dataset1, Testing Dataset2, Testing Dataset3, and Testing Dataset4) are shown in Figure 

10. 

     
0 20 40 60 80 100 120

Dataset1 (Step1)

0

2

4

6

8

10

12

Observed Wind Speed
GRU
VMD-GRU
AOA-GRU
VMD-AOA-GRU

W
in

d 
S

pe
ed

 (
m

/s
)

W
in

d
 S

pe
e

d
 (

m
/s

)

Processes 2023, 11, x FOR PEER REVIEW  18  of  25 
 

 

     

     

     

Figure 10. Multi-step forecasting results for the GRU model and its improved model. 
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Figure 10. Multi-step forecasting results for the GRU model and its improved model.

In Figure 10, the black solid line represents the actual observed wind speed, the blue
solid line represents the forecasting of the GRU model, the yellow solid line represents
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the forecasting of the VMD-GRU model, the green solid line represents the forecasting of
the AOA-GRU model, and the red solid line represents the forecasting of the VMD-AOA-
GRU model.

Based on the forecasting results in Figure 10, the following conclusions can be drawn.

(1) Under different forecasting time steps, all four forecasting models can accurately
reflect the trend of actual wind speed changes, confirming that the GRU model and
its hybrid model perform well in time series wind speed forecasting.

(2) The wind speed inflection point in Figure 10 reveals that the forecasting results of the
GRU and AOA-GRU models lag behind those of the VMD-GRU and VMD-AOA-GRU
models. This is because the VMD algorithm can effectively extract high-frequency
component features (corresponding to the rapidly changing part of the wind speed)
from the wind speed sequence, and these high-frequency component features are used
as a component of the input data of the forecasting model, enabling the VMD-GRU
and VMD-AOA-GRU models to accurately forecast the sudden changes in the actual
wind speed.

Table 5 presents the forecasting error values for the GRU, VMD-GRU, AOA-GRU, and
VMD-AOA-GRU models at different forecasting time steps. The following conclusions are
drawn based on the results in Table 5:

(1) The VMD-GRU model outperforms the GRU model in terms of forecasting accuracy,
and the VMD-AOA-GRU model exhibits a higher forecasting accuracy than the
AOA-GRU model. This demonstrates that the VMD algorithm effectively captures the
high-frequency components of the wind speed data, thereby enhancing the forecasting
accuracy of the forecasting models.

(2) The AOA-GRU model outperforms the GRU model in terms of forecasting accu-
racy, and the VMD-AOA-GRU model outperforms the VMD-GRU model in terms of
forecasting accuracy. This indicates that utilizing the AOA to optimize the hyperpa-
rameters of the GRU model can effectively improve its forecasting accuracy.

(3) For the different forecasting models, as the forecasting time step increases, the fore-
casting error also increases.

Table 5. Forecasting error values at different forecasting time steps.

Time Steps 1 2 3

Error Type MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Testing
Dataset 1

GRU 0.5499 0.7527 0.0734 0.7272 0.9096 0.0964 0.7524 0.9413 0.0994
VMD-GRU 0.4159 0.5091 0.0576 0.5143 0.6375 0.0710 0.6018 0.7176 0.0846
AOA-GRU 0.5178 0.7378 0.0696 0.6743 0.8652 0.0912 0.7420 0.9236 0.1007

VMD-AOA-GRU 0.2280 0.2990 0.0292 0.2536 0.3382 0.0323 0.2704 0.3585 0.0349

Testing
Dataset 2

GRU 0.7005 0.9290 0.1615 0.8503 1.0866 0.2025 0.9865 1.2427 0.2413
VMD-GRU 0.3967 0.5232 0.0927 0.5400 0.6781 0.1274 0.5542 0.6989 0.1354
AOA-GRU 0.5259 0.7174 0.1227 0.7793 1.0050 0.1807 0.9585 1.2020 0.2235

VMD-AOA-GRU 0.2463 0.3001 0.0615 0.2727 0.3286 0.0641 0.3411 0.4422 0.0843

Testing
Dataset 3

GRU 0.5426 0.7111 0.0728 0.7227 0.8794 0.0982 0.7178 0.8949 0.0977
VMD-GRU 0.3390 0.4373 0.0483 0.3697 0.4769 0.0508 0.4685 0.6097 0.0660
AOA-GRU 0.4937 0.6592 0.0659 0.6291 0.8042 0.0838 0.6862 0.8508 0.0918

VMD-AOA-GRU 0.1988 0.2576 0.0263 0.2027 0.2729 0.0269 0.2363 0.2923 0.0301

Testing
Dataset 4

GRU 0.6143 0.7849 0.2029 0.6785 0.8854 0.2218 0.8397 1.0956 0.2713
VMD-GRU 0.3970 0.4965 0.1346 0.4283 0.5355 0.1489 0.5287 0.6590 0.1756
AOA-GRU 0.4425 0.5597 0.1387 0.6373 0.8183 0.2145 0.7011 0.9456 0.2094

VMD-AOA-GRU 0.2170 0.2779 0.0701 0.2608 0.3351 0.0855 0.3102 0.3908 0.1054
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7. Comparison of Different Forecasting Models

To further demonstrate the superiority of the proposed VMD-AOA-GRU forecasting
model, a comparative analysis was conducted for the multiple-step forecasting of various
models. The compared models included the LSTM, GRU, PSO-BP, PSO-ELM, PSO-LSSVM,
VMD-GRU, VMD-LSTM, VMD-PSO-BP, VMD-PSO-ELM, VMD-PSO-LSSVM, and VMD-
AOA-GRU models. In order to ensure that these models were under fair comparison
conditions during the comparison process, except for the VMD-AOA-GRU model, the
hyperparameters of all other models were optimized using the grid search method. The
forecasting results for these models are shown in Figure 11. The training and testing datasets
used for the comparative analysis were consistent with those presented in Section 6.1.

Processes 2023, 11, x FOR PEER REVIEW  20  of  25 
 

 

     

     

     

     

Figure 11. Wind speed forecasting accuracy of different forecasting models. 

In Figure 11, the black solid line represents the observed wind speed, the blue dashed 

line represents the forecasting of the LSTM model, the purple dashed line represents the 

forecasting of the GRU model, the orange dashed  line represents the forecasting of the 

PSO-BP model, the green dashed line represents the forecasting of the PSO-ELM model, 

the cyan dashed  line represents  the  forecasting of  the PSO-LSSVM model, and  the red 

solid line represents the forecasting of the VMD-AOA-GRU model. Based on the observa-

tions and analysis shown in Figure 11, the following conclusions can be drawn.   

(1) All of the machine learning models accurately capture the trends of the actual wind 

speed, demonstrating that the use of machine learning models for ultra-short-term 

wind speed forecasting is feasible.   

(2) At the wind speed inflection points, the VMD-AOA-GRU, VMD-LSTM, VMD-GRU, 

VMD-PSO-BP, VMD-PSO-ELM, and VMD-PSO-LSSVM models accurately forecast 

the positions of the inflection points (the highest accuracy in single-step forecasting). 

W
in

d
 S

p
e

e
d

 (
m

/s
)

W
in

d
 S

p
ee

d
 (

m
/s

)

0 20 40 60 80 100 120
Dataset3(Step3)

0

2

4

6

8

10

12
Observed Wind Speed
LSTM
GRU
PSO-BP
PSO-ELM
PSO-LSSVM

VMD-LSTM
VMD-GRU
VMD-PSO-BP
VMD-PSO-ELM
VMD-PSO-LSSVM
VMD-AOA-GRU

Figure 11. Wind speed forecasting accuracy of different forecasting models.

In Figure 11, the black solid line represents the observed wind speed, the blue dashed
line represents the forecasting of the LSTM model, the purple dashed line represents the
forecasting of the GRU model, the orange dashed line represents the forecasting of the
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PSO-BP model, the green dashed line represents the forecasting of the PSO-ELM model,
the cyan dashed line represents the forecasting of the PSO-LSSVM model, and the red solid
line represents the forecasting of the VMD-AOA-GRU model. Based on the observations
and analysis shown in Figure 11, the following conclusions can be drawn.

(1) All of the machine learning models accurately capture the trends of the actual wind
speed, demonstrating that the use of machine learning models for ultra-short-term
wind speed forecasting is feasible.

(2) At the wind speed inflection points, the VMD-AOA-GRU, VMD-LSTM, VMD-GRU,
VMD-PSO-BP, VMD-PSO-ELM, and VMD-PSO-LSSVM models accurately forecast
the positions of the inflection points (the highest accuracy in single-step forecasting).
In contrast, the other models exhibit a lag in forecasting the positions of the inflection
points compared with the actual wind speed. This further validates that the VMD
algorithm can accurately extract the high-frequency components of the time series
wind speed, thereby enhancing the accuracy of wind-speed forecasting.

(3) Among the forecasting models, the VMD-AOA-GRU model shows the closest sim-
ilarity to the distribution characteristics of the actual time series wind speed. This
demonstrates that the forecasting performance of the VMD-AOA-GRU model is
superior to that of the other models.

Table 6 lists the forecasting errors of each forecasting model under the four testing
wind speed sequences at one, two, and three steps. The following conclusions are drawn
based on the results in Table 6:

(1) The forecasting accuracy of the hybrid VMD models is higher than that of the non-
hybrid VMD models, indicating that deep mining of high-frequency features in the
time series wind speed through VMD can effectively improve the forecasting accuracy
of the forecasting model.

(2) The forecasting accuracy of the LSTM and GRU models is lower than that of some
machine learning models, indicating that although the LSTM and GRU models have
the theoretical potential to achieve high forecasting accuracy by mining temporal
correlations in the data, their forecasting accuracy is affected by improper hyperpa-
rameter settings.

(3) The forecasting accuracy of the VMD-AOA-GRU model is higher than that of all
other models, demonstrating that optimizing the hyperparameters of the GRU model
through AOA effectively enhances the forecasting accuracy of the GRU model.

(4) As the forecasting time step increases, the forecasting accuracy of all models gradually
decreases, which aligns with the inherent characteristics of forecasting models.

Table 6. Wind speed forecasting errors of different models.

Time Step 1 2 3
Error Type MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Testing
Dataset 1

LSTM 0.7122 0.8927 0.0948 0.7605 0.9483 0.1004 0.8092 1.0211 0.1049
GRU 0.5499 0.7527 0.0734 0.7272 0.9096 0.0964 0.7524 0.9413 0.0994

PSO-BP 0.5722 0.8016 0.0760 0.7276 0.9305 0.0971 0.7565 1.0682 0.1002
PSO-ELM 0.2937 0.3873 0.0399 0.4859 0.6034 0.0654 0.5159 0.6478 0.0698

PSO-LSSVM 0.5241 0.7260 0.0716 0.6662 0.8312 0.0919 0.7286 0.8855 0.0995
VMD-LSTM 0.4140 0.5131 0.0593 0.4148 0.5472 0.0545 0.4637 0.6218 0.0596
VMD-GRU 0.4159 0.5091 0.0576 0.5143 0.6375 0.0710 0.6018 0.7176 0.0846

VMD-PSO-BP 0.2306 0.2987 0.0292 0.2896 0.3994 0.0367 0.3467 0.4775 0.0444
VMD-PSO-ELM 0.2371 0.3172 0.0302 0.4253 0.5602 0.0560 0.4832 0.6103 0.0638

VMD-PSO-
LSSVM 0.2295 0.3045 0.0293 0.2888 0.3955 0.0367 0.3162 0.4365 0.0406

VMD-AOA-GRU 0.2280 0.2990 0.0292 0.2536 0.3382 0.0323 0.2704 0.3585 0.0349
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Table 6. Cont.

Time Step 1 2 3
Error Type MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Testing
Dataset 2

LSTM 0.7528 1.0541 0.1643 0.8739 1.1703 0.1995 1.0092 1.3030 0.2428
GRU 0.7005 0.9290 0.1615 0.8503 1.0866 0.2025 0.9865 1.2427 0.2413

PSO-BP 0.5447 0.7329 0.1265 0.7984 1.0600 0.1791 0.9295 1.2103 0.2099
PSO-ELM 0.4124 0.5301 0.1029 0.5670 0.7277 0.1419 0.6451 0.8573 0.1566

PSO-LSSVM 0.6130 0.8520 0.1380 0.7448 0.9983 0.1696 0.9032 1.2067 0.2007
VMD-LSTM 0.4073 0.5381 0.0953 0.4659 0.6060 0.1026 0.5551 0.7177 0.1266
VMD-GRU 0.3967 0.5232 0.0927 0.5400 0.6781 0.1274 0.5542 0.6989 0.1354

VMD-PSO-BP 0.2496 0.3046 0.0632 0.3523 0.3535 0.0649 0.4273 0.5705 0.1002
VMD-PSO-ELM 0.2564 0.3070 0.0643 0.2618 0.4604 0.0820 0.4124 0.5346 0.0971

VMD-PSO-
LSSVM 0.2474 0.3066 0.0622 0.2848 0.3730 0.0677 0.4589 0.6011 0.1071

VMD-AOA-GRU 0.2463 0.3001 0.0615 0.2727 0.3286 0.0641 0.3411 0.4422 0.0843

Testing
Dataset 3

LSTM 0.6011 0.7619 0.0798 0.7163 0.8916 0.0954 0.8098 0.9865 0.1089
GRU 0.5426 0.7111 0.0728 0.7227 0.8794 0.0982 0.7178 0.8949 0.0977

PSO-BP 0.4963 0.6558 0.0648 0.6969 0.8854 0.0921 0.7414 0.9364 0.0981
PSO-ELM 0.3469 0.4394 0.0462 0.4447 0.5677 0.0597 0.5260 0.6446 0.0713

PSO-LSSVM 0.6398 0.7872 0.0854 0.7180 0.8766 0.0957 0.7375 0.8947 0.0981
VMD-LSTM 0.2927 0.3846 0.0399 0.4904 0.5983 0.0691 0.4918 0.6181 0.0696
VMD-GRU 0.3390 0.4373 0.0483 0.3697 0.4769 0.0508 0.4685 0.6097 0.0660

VMD-PSO-BP 0.2078 0.2755 0.0277 0.2502 0.2790 0.0337 0.2645 0.3690 0.0350
VMD-PSO-ELM 0.2006 0.2716 0.0265 0.2085 0.3570 0.0277 0.2253 0.3981 0.0405

VMD-PSO-
LSSVM 0.2031 0.2690 0.0269 0.2040 0.2835 0.0270 0.2978 0.3371 0.0311

VMD-AOA-GRU 0.1988 0.2576 0.0263 0.2027 0.2729 0.0269 0.2363 0.2923 0.0301

Testing
Dataset 4

LSTM 0.7196 0.9250 0.2394 0.8377 1.0775 0.2821 0.8782 1.1983 0.2640
GRU 0.6143 0.7849 0.2029 0.6785 0.8854 0.2218 0.8397 1.0956 0.2713

PSO-BP 0.4324 0.5544 0.1331 0.6957 0.9454 0.2054 0.7131 0.9583 0.2135
PSO-ELM 0.3143 0.4076 0.1008 0.4435 0.5777 0.1375 0.5032 0.6291 0.1586

PSO-LSSVM 0.4349 0.5586 0.1345 0.6184 0.8034 0.1848 0.7263 0.9627 0.2155
VMD-LSTM 0.4238 0.5176 0.1448 0.4586 0.5561 0.1585 0.5844 0.7049 0.2096
VMD-GRU 0.3970 0.4965 0.1346 0.4283 0.5355 0.1489 0.5287 0.6590 0.1756

VMD-PSO-BP 0.2177 0.2902 0.0730 0.3526 0.3358 0.1138 0.3906 0.5082 0.1267
VMD-PSO-ELM 0.2239 0.2860 0.0728 0.2620 0.4415 0.0872 0.4021 0.5043 0.1239

VMD-PSO-
LSSVM 0.2250 0.2785 0.0704 0.2778 0.3551 0.0904 0.3554 0.4476 0.1145

VMD-AOA-GRU 0.2170 0.2779 0.0701 0.2608 0.3351 0.0855 0.3102 0.3908 0.1054

8. Conclusions

This study proposes an ultrashort-term forecasting model for time series wind speeds
based on VMD-AOA-GRU. The model first uses VMD to decompose the time series
wind speed data into different frequency modal components, effectively extracting high-
frequency wind speed features. Then, the AOA is employed to optimize the hyperpa-
rameters of the GRU model to construct a high-accuracy AOA-GRU forecasting model.
The time series modal components decomposed by VMD are then employed to train
and test the AOA-GRU model, achieving multi-step forecasting of ultra-short-term time
series wind speeds. The forecasting results for the GRU, VMD-GRU, VMD-AOA-GRU,
LSTM, PSO-BP, PSO-ELM, PSO-LSSVM, VMD-LSTM, VMD-PSO-BP, VMD-PSO-ELM, and
VMD-PSO-LSSVM models were compared, and the results are as follows:

(1) The forecasting accuracies of the hybrid VMD models (VMD-AOA-GRU, VMD-LSTM,
VMD-PSO-BP, VMD-PSO-ELM, and VMD-PSO-LSSVM) are higher than those of
the non-hybrid VMD models (GRU, LSTM, PSO-BP, PSO-ELM, and PSO-LSSVM),
indicating that the VMD can deeply explore high-frequency components in time series
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wind speed, particularly the high-frequency features at inflection points, effectively
improving the accuracy of the forecasted time series wind speed.

(2) Although the LSTM and GRU deep learning models can capture the temporal cor-
relations in time series wind speeds, their forecasting accuracy may be lower than
that of some commonly used machine learning models (PSO-BP, PSO-ELM, and
PSO-LSSVM) when their hyperparameter settings are improper. This indicates that a
reasonable setting of hyperparameters for deep learning models significantly affects
the forecasting accuracy.

(3) The forecasting accuracy of the GRU model can be effectively improved by using the
AOA to optimize the hyperparameters of the GRU model. The calculation results
show that the forecasting accuracy of the VMD-AOA-GRU model constructed in this
study is higher than that of the other models.

(4) As the forecasting time step increases, the forecasting accuracy of the model gradu-
ally decreases.

The study results in this paper can be widely used for the optimization control of
wind turbines, thereby improving the operational efficiency of wind turbines and reducing
their fatigue losses. However, during the research process, this paper did not consider
the accuracy of wind direction forecasting, a topic that will need to be a focus of subse-
quent research.
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Nomenclature

AOA arithmetic optimization algorithm
AR autoregressive model
ARIMA autoregressive integrated moving average model
ARMA auto-regressive moving average model
BiLSTM bidirectional long short-term memory
BP back propagation neural network
CNN convolutional neural network
CNN-BiLSTM CNN and BiLSTM hybrid model
DASTGN dynamic adaptive spatiotemporal graph neural network
ELM extreme learning machine
GRU gated recurrent unit

ICEEMDAN
improved complete ensemble empirical mode decomposition with
additive noise

LSSVM least squares support vector machines
LSTM long short-term memory networks
PSO particle swarm optimization
PSO-BP PSO and BP hybrid model
PSO-ELM PSO and ELM hybrid model
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PSO-LSSVM PSO and LSSVM hybrid model
UTSWS ultra-short-term time series wind speeds
VMD variational mode decomposition
VMD-AOA-GRU VMD, AOA and GRU hybrid model
VMD-GRU VMD and GRU hybrid model
VMD-LSTM VMD and LSTM hybrid model
VMD-PSO-BP VMD, PSO and BP hybrid model
VMD-PSO-ELM VMD, PSO and ELM hybrid model
VMD-PSO-LSSVM VMD, PSO and LSSVM hybrid model
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Abstract: This paper presents a bi-level inverse robust economic dispatch optimization model
consisting of wind turbines and pumped storage hydropower (PSH). The inner level model aims to
minimize the total generation cost, while the outer level introduces the optimal inverse robust index
(OIRI) for wind power output based on the ideal perturbation constraints of the objective function.
The OIRI represents the maximum distance by which decision variables in the non-dominated frontier
can be perturbed. Compared to traditional methods for quantifying the worst-case sensitivity region
using polygons and ellipses, the OIRI can more accurately quantify parameter uncertainty. We
integrate the grid multi-objective bacterial colony chemotaxis algorithm and the bisection method to
solve the proposed model. The former is adopted to solve the inner level problem, while the latter is
used to calculate the OIRI. The proposed approach establishes the relationship between the maximum
forecast deviation and the minimum generation cost associated with each non-dominated solution in
the optimal load allocation. To demonstrate its economic viability and effectiveness, we simulate the
proposed approach using real power system operation data and conduct a comparative analysis.

Keywords: wind power; pumped storage hydropower; economic dispatch

1. Introduction

The global power industry has placed significant emphasis on net zero emission,
proposed during the 21st UN Climate Change Conference. The future is poised for a
substantial surge in the utilization of renewable energy for power generation. Nevertheless,
the inherent unpredictability of renewable resources poses a challenge, leading to potential
imbalances between supply and demand. To mitigate the impact of renewable energy
generators on the power system, the paramount focus is on advancing energy storage
systems. Pumped storage hydropower (PSH) has gained widespread popularity due to
its substantial capacity and cost-effectiveness [1]. Javed et al. [2] discussed the economic,
environmental, and technical aspects of solar–wind–PHS systems, affirming the positive
role of PHS in integrating renewable energy into the power systems. The integration of
PSH has increased the flexibility and efficiency of renewable power generation.

With the large-scale integration of wind power into the grids, the impact of wind
power’s uncertainty on the scheduling and control operations of the power system has
become increasingly pronounced [3]. Therefore, it is crucial to address the uncertainties as-
sociated with wind power when studying the coordinated scheduling of wind power–PSH
systems. Many researchers have explored the relationship between uncertainty and wind
power distribution using probabilistic models, including interval prediction [4], quantile
regression prediction [5], the scenario generation method [6], two-stage stochastic pro-
gramming [7], chance-constrained programming [8], and interval forecasting [9]. Interval
prediction, quantile regression prediction, and the scenario generation method primarily fo-
cus on characterizing uncertain variables. However, these methods face challenges, such as
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high computational complexity and the inability to guarantee computational accuracy and
security, limiting their further development. The last three methods rely on deterministic
probability distribution models and require significant sampling computations. However,
due to the impact of wind power uncertainty [10], these optimal dispatch models are com-
plex, high-dimensional, non-convex, and non-differentiable multi-objective optimization
problems. As a result, traditional methods often yield inaccurate density functions for wind
power output, limiting their practical application.

Robust optimization methods are widely used because they do not require spe-
cific probability distributions to deal with wind power uncertainty. Since the 1970s,
Soyster et al. [11] pioneered the use of linear robust optimization methods for solving
uncertain linear programming problems. To overcome the limitations of this approach,
a constraint protecting the nominal parameter level was introduced in the literature [12].
A maximum perturbation is added to the left side of the constraint equation, and an op-
timization dualization technique is used to integrate the equations, resulting in a linear
robust model. Jin et al. [13] provide a more comprehensive definition of robustness in
optimization problems. Robustness refers to the ability of the non-dominated solution set
to maintain certain performance characteristics when decision variables are perturbed. It is
often used to characterize the sensitivity of parameters to disturbances.

References [14,15] tackle supply and demand uncertainties by constructing a stochastic
robust optimization model. The Benders’ decomposition method is then employed to solve
this model. However, the solutions obtained through this method may fall outside of the
specified range during parameter perturbations. References [16,17] introduce a bi-level
interval robust scheduling optimization model that accounts for the unpredictable nature of
wind power. This model is utilized to formulate wind power scheduling plans for the next
few hours. By applying strong duality theory, the model is transformed into a quadratic
programming problem for the solution. However, interval robust optimization methods
tend to search for overly conservative solutions that meet the fluctuation constraints in the
objective functions. Ji et al. [18] improve upon conventional fuzzy scheduling optimization
problems by incorporating fuzzy numbers to account for the inherent uncertainty in wind
power ramping time. The methodology generates an uncertain set that encompasses
worst-case scenarios, presenting a scheduling model based on fuzzy robust optimization
methods. This multi-objective robust design based on fuzzy theory commonly employs
the weighted analysis method for formulating objective functions, introducing a notably
subjective element into the methodology. Gunawan et al. [19] propose a multi-objective
robust optimization method by introducing the concept of the worst-case sensitivity region
(WCSR). The WCSR’s radius acts as a robust indicator and is included in the constraints,
transforming the problem into a constrained multi-objective optimization. However, this
method has some limitations, such as the subjective construction of uncertainty and the lack
of capability to search for a globally optimal solution. To overcome these issues, we propose
a bi-level inverse robust optimization dispatch model for wind power–PSH complementary
systems. The main contributions of this paper are summarized as follows.

Firstly, this paper presents a novel approach for improving the integration of wind
power into the electricity grid while achieving economic efficiency. The proposed approach
is based on the characteristics of pumped storage hydropower stations and develops a bi-
level inverse robust economic dispatch optimization model that considers the uncertainties
of wind power and the participation of pumped storage hydropower stations in scheduling.
Secondly, the proposed model incorporates ideal disturbance constraints on the objective
function, which are based on decision makers’ preferences. We use hypersphere contraction
and expansion to explore decision variable points with the best robustness in the non-
dominated solution set. The OIRI is introduced to represent the maximum distance at which
decision variables in the non-dominated frontiers can be perturbed. It provides the worst-
case perturbation for each point in each dimension of the high-dimensional space, which
enhances the generating units’ robustness against disturbances and establishes the optimal
relationship between wind power integration and the objective function. Thirdly, we
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propose a novel approach combining the grid multi-objective bacterial colony chemotaxis
algorithm with the bisection method. The inner level problem is addressed by the grid
multi-objective bacterial colony chemotaxis algorithm, and the OIRI is calculated using
the bisection method. The effectiveness of the proposed model and algorithm is validated
through simulations using actual grid-connected data. This approach can be useful for
dispatchers in optimizing the schedule of wind power–PSH complementary systems.

2. Inverse Robust Optimization Preliminaries

This subsection briefly introduces the general bi-level inverse robust optimization
model. Inner level optimization aims to obtain superior decision vectors and feasible
solutions within the feasible domain. The outer level seeks to derive the maximum range of
robustness among the results obtained from the inner layer by imposing ideal disturbance
constraints. According to the conventional robust optimization model and the worst-case
sensitivity region, we have the following bi-level inverse robust model.

Outer level problem:

f ind{OIRI(x) = max‖x− x0‖2, f} (1)

s.t. f(x0) ∈ U(f(x), d) ∩Φ (2)

d = f(x)− f(x0), u(f) = {d|d ∈ U(0, ε)}, d ∈ u(f) (3)

Inner level problem:
Minimize f = [ f1, f2, · · · , fm]

T (4)

gj(x), max
d∈u(f)

gj(x0) ≤ 0, j = 1, 2, . . . , J (5)

hk(x), max
d∈u(f)

hk(x0) = 0, k = 1, 2, . . . , K (6)

where x = [x1, x2, . . . , xn]
T is the n-dimensional decision vector and x0 is the decision vector

satisfying all constraints in the inner and outer levels. The optimal inverse robust indicator
OIRI will be defined in Definition 1. f is the m-dimensional objective function vector;
d denotes the ideal disturbance vector; ε = [ε1, ε2, . . . , εm]

T is the m-dimensional vector
consisting of ideal disturbance coefficients; and all elements are positive. U(0, ε) represents
the neighborhood of the zero point composed of all points with a distance less than ε from
the circle; U(·) is the closure of the neighborhood of U(·); Φ denotes the inner decision
vector space; gj(x)/hk(x) represent inequality/equality constraints, respectively; J and K
are the number of inequality constraints and equality constraints, respectively; and m and
n are the number of objective functions and decision variables, respectively.

The Pareto front of this model (1)–(6) is referred to as the inverse robust Pareto frontier.
The following definitions are given:

Definition 1. Assuming Ω is the feasible region of the inner level problem, for any x ∈ Ω and any
given ideal disturbance coefficients ε > 0, there exists a convex neighborhood of ∆max ⊂ Ω so that
for any x0 ∈ ∆max, y = f(x0) satisfies the inner and outer constraints. ∆max is referred to as the
optimal inverse robust indicator (OIRI) if and only if the following two conditions are met:

(1) The mapping function f satisfies f : ∆max 7−→ U(f(x), ε)
⋂

Φ .

(2) There is no region Λ that satisfies both Λ ⊂ Ω and ∆max ⊆ Λ, so that f : Λ 7−→ U(f(x), ε)
⋂

Φ .

Equation (2) indicates that when solving the outer level problem, it is necessary to
ensure that the objective function values of boundary points fall within the feasible domain
and the range of ideal disturbance constraints. The optimal inverse robust indicator
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represents the maximum distance by which a decision vector x, satisfying Equations (2)–(4)
in the non-dominated frontier, can be perturbed outward.

3. Bi-Level Inverse Robust Model for Wind Power–PSH Complementary Systems

The scheduling model developed in this section is a bi-level inverse robust optimiza-
tion model that takes into account thermal power plants, pumped storage hydropower
stations, and wind power. The model is structured as Equations (1)–(6) and considers
the decision makers’ expected deviation range from the total generation cost and forecast
results as ideal disturbance constraints. Additionally, the model defines the OIRI as the
maximum wind power fluctuation that the optimization results can tolerate. The inner
level of the model minimizes the total generation cost, while the outer level solves for the
OIRI and the corresponding total generation cost f, thus determining the Pareto frontier.

The objective function of the outer level problem is defined as

OIRI = max
T

∑
t=1

∥∥Pw
t − Pw0

t
∥∥

2 (7)

where Pw
t =

[
Pw

j,t

]
Nw×1

is the non-dominated decision vector of wind power obtained

from the inner level problem and Pw0
t =

[
Pw0

j,t

]
Nw×1

is the decision vector within U(Pw
t , ε).

A larger OIRI indicates greater robustness in the inner level optimization results for Pw
t ,

implying a stronger ability of the wind power generation plan to withstand fluctuations.
The total generation cost f is defined as

f =
T

∑
t=1

(
Nc

∑
i=1

Ci,t(Pi,t) +
Nw

∑
j=1

ϕj

((
Pw

j,t or Pw0
j,t

)
− Pprw

j,t

)2
+

Np

∑
k=1

[
SCk,t(hk,t) + φk

(
Pps

k,t − Pprps
k,t

)2
])

(8)

where T is the number of dispatch time intervals. Nc/Nw/Np represent the number of ther-
mal units, wind farms, and PSHs, respectively. Pw

j,t/Pprw
j,t denote the output power/forecasted

output power of wind farm j in the inner level at period t, respectively; Pw0
j,t represents the

output power of wind farm j in the outer level at period t; Pps
j,t /Pprps

j,t denote the output
power/forecasted output power of PSH j in the inner level at period t, respectively; and
the fuel cost Ci,t(Pi,t) of the thermal unit i can be expressed as a quadratic function in

relation to its output power Pi,t. ϕj

((
Pw

j,t or Pw0
j,t

)
, Pprw

j,t

)
denotes the penalty cost of wind

farm j deviating from the planned output at period t. ϕj/φk are the penalty coefficients.

SCk,t

(
Pps

j,t

)
is the sum of start-up and shut-down costs. It can be expressed as

SCk,t(hk,t) = hk,t(1− hk,t−1)S
ps
k + hk,t−1(1− hk,t)Dps

k (9)

where hk,t denotes the PSH’s working state, taking 1 for start and taking 0 for stop and
Sps

k,t/Dps
k,t are the start-up cost and shut-down cost of the PSH k.

As shown in (5) and (6), the constraints of the inner level are listed as follows.

(1) Power balance constraints:

Nc

∑
i=1

Pi,t +
Nw

∑
j=1

Pw
j,t +

Np

∑
k=1

Pps
k,t = Dt (10)

where Dt is the total power load.

(2) Generation limit constraints:
Pi ≤ Pi ≤ Pi (11)
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Pw
j ≤ Pw

j ≤ Pw
j (12)

where Pi/Pi are the lower/upper limits of thermal unit i, respectively. Pw
j /Pw

j are the
lower/upper output limits of wind farm j, respectively.

(3) Climbing constraints for thermal units:

−rpd
i,t · ∆T ≤ Pi,t − Pi,t−1 ≤ rpu

i,t · ∆T (13)

where rpd
i,t/rpu

i,t are the maximum upward/downward ramping rates, respectively.
∆T is the dispatch time interval.

(4) Spinning reserve constraints:





Nc
∑

i=1
hi,t

(
Pspin

i,t − Pi,t

)
+

Nk
∑

k=1
Pps

k,t ≥ SPup
t

Pspin
i,t = hi,t−1 ·min

(
hi,t−1Pi,t, Pi,t−1 + rpu

i,t · ∆T
)

SPup
t = βc

Nc
∑

i=1
Pi,t + βw

Nw
∑

j=1
Pw

j,t

(14)





Nc
∑

i=1
hi,t

(
Pi,t − Pspin

i,t

)
+

Nk
∑

k=1
Pps

k,t ≥ SPdn
t

Pspin
i,t = hi,t−1 ·max

(
hi,t−1Pi,t, Pi,t−1 − rpd

i,t · ∆T
)

SPdn
t = βw

Nw
∑

j=1
Pw

j,t

(15)

where hi,t is the binary variable and denotes the working state of thermal unit i at

period t; Pspin
i,t /Pspin

i,t are the minimum/maximum feasible outputs of thermal unit i at
period t; and SPup

t /SPdn
t are the upward/downward requirements of power systems

at period t. βc/βw are the spinning reserve rates of the thermal unit and the wind farm.

(5) Transmission constraints:

TPl ≤
Nc

∑
i=1

TFl,iPi,t +
Nw

∑
j=1

TFl,jPw
j,t +

Np

∑
k=1

TFl,kPps
k,t ≤ TPl (16)

where TPl/TPl are the lower/upper power flow limits of line l and TFl,i denotes the
power transfer distribution factors from unit i to line l.

(6) Minimum on and off time constraints:




(
Ton

i,t−1 − Zon
i

)
(hi,t−1 − hi,t) ≥ 0(

To f f
i,t−1 − Zo f f

i

)
(hi,t − hi,t−1) ≥ 0

(17)

where Ton
i,t−1/Toff

i,t−1 are the start-up/shut-down times of thermal unit i at period t − 1,

respectively and Mon
i /Moff

i represent the minimum start-up/shut-down times of the
thermal power unit i.

(7) PSH’s capacity constraints:

In actual operation, PSHs are required to satisfy constraints regarding reservoir water
balance. We adopt a daily energy balance mode wherein the electricity consumed during
pumping and the electricity generated during generation are equal throughout the day,
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thus ensuring that the reservoir water level remains relatively unchanged at the beginning
and end of the day.

−ηk

T

∑
t=1

Np

∑
k=1

Pps
k,t =

T

∑
t=1

Np

∑
k=1

Pps
k,t (18)

where ηk is the energy conversion efficiency of PSH k.

(8) Start–stop frequency constraints:

T

∑
t=1

∣∣hk,t − hk,t−1
∣∣ ≤ THk (19)

where THk is the maximum daily start–stop times of PSH k. Frequent starts and stops
can accelerate the deterioration of the generator, leading to increased maintenance
requirements, higher repair costs, and a potentially shorter operational lifespan.
Equation (19) refers to limitations imposed on how frequently the PSH can be start
up or shut down within a given period. When the PSH k starts up or shuts down,∣∣hk,t − hk,t−1

∣∣ is equal to 1. Summing up
∣∣hk,t − hk,t−1

∣∣ over an operating cycle T yields
the total number of start-ups and shut-downs of PSH k.

(9) Ideal perturbation constraint:
∥∥f(Pw

t )− f
(
Pw0

t
)∥∥

2 ≤ ε (20)

Equation (20) ensures that the outer level optimization satisfies the ideal disturbance
constraints. In this section, we present a dispatch model that utilizes bi-level inverse robust
optimization theory. This model provides the optimal load allocations for conventional
thermal power units, wind farms, and PSHs. Additionally, it will identify the maximum
insensitivity regions relative to each optimal allocation point when there are uncertain
parameters in the system undergoing perturbations.

4. Solution Procedure

The model developed in this paper has an inherent coupling between the inner and
outer layers. Therefore, a singular intelligent optimization algorithm is not enough for
obtaining effective solutions. To address the inner level optimization problem, the grid
multi-objective bacterial colony chemotaxis algorithm is employed.

4.1. Brief Introduction of the Multi-Objective Bacterial Colony Chemotaxis Algorithm

The role of the multi-objective bacterial colony chemotaxis algorithm [20,21] is to
solve the inner level optimization problem. The trajectory of a bacterium comprises
consecutive linear paths interspersed with instantaneous changes in direction, with each
path defined by its speed, direction, and duration. All paths are characterized by a uniform,
constant speed. Upon changing direction, a bacterium selects a new trajectory based
on a probability distribution that exhibits azimuthal symmetry relative to the preceding
direction. The angle between consecutive trajectories follows a probability distribution,
while the duration of each trajectory is determined by an exponentially declining probability
distribution. Notably, both the angle and duration probability distributions are unaffected
by the parameters of the preceding trajectory.

Here, x is used to represent decision variables Pi,t and Pps
j,t . Before applying the multi-

objective bacterial colony chemotaxis algorithm, all constraints are added as penalty terms
to the objective function. Figure 1 shows the flow chart of the multi-objective bacterial
colony chemotaxis algorithm, which can be briefly explained as follows.
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Figure 1. Flow chart of the multi-objective bacterial colony chemotaxis algorithm.

Step 1: Initialize bacterial positions. Generate Nba bacteria randomly in this model.
The velocity v is assumed to be a scalar constant value.

Step 2: Compute the random duration τ that follows an exponential probability
density function:

P(X = τ) =
1
γ

e−τ/γ (21)

γ =

{
γ0 if xpre � xcur

γ0

(
1 + b ∗min

∣∣∣ fmpr
lpr

∣∣∣
)

if xpre ≺ xcur
(22)

γ0 = ξ0.03 · 10−1.73 b = γ0 ·
(

γ−1.54
0 · 100.6

)
(23)

where γ0 and b are the minimal mean time and dimensionless parameter, respectively. They
can be calculated through (23) according to reference [21]. ξ is the calculation precision.
fipr, i = 1, 2, . . . , m is the difference between the actual and the previous function values.
lpr is the vector connecting the previous and the actual positions in the parameter space.
xpre and xcur are the previous and current locations of bacteria.

The position and motion of bacteria is defined by a radius r0 and n − 1 angles
θ = {θ1, θ2, . . . , θn−1}.

x1 = r0∏n−1
s=1 cos(θs) , xi = r0 sin(θi−1)∏n−1

s=1 cos(θs), i = 2, 3, . . . , n (24)

Step 3: Calculate the new direction. The angle θi between the previous and new
directions follows a Gaussian distribution, governing both left and right turns, respectively.

P(Xi = θi, vi = µi) =
1

σi
√

2π
exp

[
− (θi − vi)

2σ2
i

]2

(25)

P(Xi = θi, vi = −µi) =
1

σi
√

2π
exp

[
− (θi − vi)

2σ2
i

]2

(26)

where θi ∈ [0, 180◦]. The expectation value µi, variance σi, and correlation time τC are
determined by the formulation:

µi = 62◦
(
1− exp

(
−τCτpr

))
σi = 26◦

(
1− exp

(
−τCτpr

))
(27)
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where τpr is the duration of the previous step.
Step 4: Calculate the new locations xnew1 and xnew2. The new locations are calculated

through the following equations:

xnew1 = xpre + v · τ (28)

xnew2 = xpre − 2×U(0, 1)×
(
xpre − xcen

)
(29)

xcen =
1

Nba

Nba

∑
i=1

xi (30)

where U(0, 1) is a random number governed by the uniform distribution.
Step 5: Determine the new location xnew. By comparing xnew1 with xnew2, all bacteria

choose the better one as their new locations. Terminate iteration when the change in the
objective function value is less than the target precision ξ; otherwise, proceed to Step 2.

4.2. Solution Method for the Bi-Level Inverse Robust Model

To calculate the OIRI for the outer level optimization problem, the hypersphere can
be used to quantify maximum uncertainty. This involves partitioning the hyperspherical
surface to facilitate the outward expansion of each small arc face. This results in a more
accurate irregular super-enclosed surface characterized by the radial distance r and polar
angle θ = [θ1, θ2, . . . , θn−1]. Its maximum radius corresponds to the OIRI. Applying the
boundary principle, we replace the discussion of changes across the entire domain with an
examination of variations in domain boundary points.

Let x be equivalent to Pw
t . Assume x is a non-dominated solution obtained from

the inner level problem. Consider a spherical neighborhood, denoted as O(x), around
x = [x1, x2, . . . , xn], with a radius denoted as r0. Every point on the boundary of O(x),
denoted as ∂O(x), can be expressed using parametric equations. Let x0 = [x01, x02, . . . , x0n]
and x0 ∈ ∂O(x), so we have





x01 = x1 + r0 cos θ1
x02 = x2 + r0 sin θ1 cos θ2
· · ·
x0n = xn + r0 sin θ1 sin θ2 · · · cos θn−1

(31)

where θ1, θ2, . . . , θn−2 ∈ [0, π], θn−1 ∈ [0, 2π]. We adopt a uniform sampling method
to sample points on the boundary ∂O(x). The boundary ∂O(x) is divided into
M parts, where M =λ1·λ2, . . . , λn−1 (λi ∈ N+, i = 1, 2, . . . , n− 1). Define a set B ={

x0 = xq1q2 ...qn−1

∣∣1 ≤ qi ≤ λi, qi ∈ N+, i = 1,2, ..,n− 1
}

, so we have

xq1q2 ...qn−1 =




x1 + r0 cos
(

π
λn−1

η1

)
,

x2 + r0 sin
(

π
λn−1

η1

)
cos
(

π
λn−2

η2

)
, . . . ,

xn + r0 sin
(

π
λn−1

η1

)
. . . cos

(
π
λ2

ηn−2

)
cos
(

2π
λ1

ηn−1

)




T

(32)

After defining

D(x) = [‖ f1(x)− f1(x0)‖2, ‖ f2(x)− f2(x0)‖2, . . . , ‖ fm(x)− fm(x0)‖2]
T (33)

the bisection method can be applied to approximate a larger hyperregion, ensuring that
when decision variables are perturbed within this region, the function values are con-
strained within a certain range. In other words, adjusting each point x0 ∈ B ensures that
x0 satisfies ‖D(x0)‖∞ ∈ [ε− δε, ε + δε], and δε is a predefined convergence accuracy. The
specific steps of the bisection method are as follows.
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Step 1: Initializing set B.
(1) If there is a point x0 ∈ B that satisfies ‖D(x0)‖∞ ∈ [ε− δε, ε + δε], then the values

of f(x0) and 〈r0, θ〉 are stored, and the process proceeds to Step 2.
(2) If there are two points x1, x2 ∈ B and x1 6= x2 that satisfy ‖D(x1)‖∞ < ε− δε and

‖D(x2)‖∞ > ε + δε, the process proceeds to Step 2. Otherwise, adjust the radial radius
through the bisection method.

(3) If for any x0 ∈ B that satisfies ‖D(x1)‖∞ > ε − δε, then r1 = 2r0 and r2 = r0 +
0.5(r1 − r0). If for any x0 ∈ B that satisfies ‖D(x2)‖∞ < ε + δε, then r1 = 0.5r0 and
r2 = r0 + 0.5(r1 − r0). Calculate the size of ‖D(x0)‖∞ in the set B based on radial radius r1
and r2.

Step 2: Update the points in set B.
Define B1 = {x0|‖D(x0)‖∞ < ε− δε or ‖D(x0)‖∞ > ε + δε}. As in the procedure in

Step 1, scale the radial radius of all x0 ∈ B1 until ‖D(x0)‖∞ ∈ [ε− δε, ε + δε] is satisfied.
Record the angular and radial information of x0.

Step 3: Calculate OIRI = maxx0∈Br0 and all angles and radial directions 〈r0, θ〉.
In traditional multi-objective optimization models, points within the decision space

often exhibit better robustness, whereas feasible solutions near the boundaries of the
decision space tend to have poorer robustness. When non-dominated solutions are located
on or near the boundary, the perturbation of objective function values cannot extend beyond
the super-neighborhood, and the corresponding perturbation of decision space vectors
cannot expand outward. Here, an adaptive reduction of perturbation space is employed,
limiting the range of perturbations of decision vectors within the feasible domain. This
approach avoids redundant evaluations and reduces computational burden.

We integrate the grid multi-objective bacterial colony chemotaxis algorithm and the
bisection method to solve the proposed model. Figure 2 illustrates the calculation process.
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Figure 2. Flow chart of solution procedure.

Step 1: System parameter initialization. It involves setting parameters, such as calcula-
tion precision, bacteria migration rate, initial positions of the bacterial colony, ideal error
constraints, error precision, and the number of boundary samples, among others.
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Step 2: Update the speed and location of bacteria. According to the conventional bac-
terial colony chemotaxis algorithm [20,21], a bacterium will make a decision by comparing
xnew1 with xnew2 and choose the better one as its new location xnew.

Step 3: Update the external Pareto set and perform grid processing. Guide the mutation
of bacteria using non-dominance-based variation. Select non-dominated solutions from the
new generation population and incorporate them into the Pareto set while simultaneously
removing inferior solutions from the Pareto set.

Step 4: If the OIRI has been updated, proceed to Step 5. Otherwise, go to Step 6.
Step 5: Terminate the program if the convergence accuracy or the maximum number

of iterations is reached. Otherwise, go back to Step 2.
Step 6: Save the Pareto frontier and update the radius of the bacteria’s neighborhood.
Step 7: Divide neighborhood boundaries and record point set B.
Step 8: If all points in set B have converged, go to Step 9. Otherwise, go to Step 6.
Step 9: Update the OIRI and identify points in B as new bacteria. Define the crowd

distance of xnew1/xnew2 as CD1/CD2.
The OIRI and f have been defined by (7) and (8). The new location can be calculated

as follows:
(1) If two out of the three conditions f(xnew1) ≺ f(xnew2), OIRI(xnew1) > OIRI(xnew2),

and CD1 > CD2 are satisfied, then let xnew = xnew1;
(2) If two out of the three conditions f(xnew1) � f(xnew2), OIRI(xnew1) < OIRI(xnew2),

and CD1 < CD2 are satisfied, then let xnew = xnew2;
(3) Otherwise, maintain the original position unchanged, xnew = x.
Go to Step 2.

5. Case Study
5.1. Modified 42-Bus Power System

In the modified 42-bus power system, the participating generating units include eight
thermal power plants consisting of twenty-two units with capacities of 540 MW (four units),
315 MW (five units), 300 MW (five units), 270 MW (three units), and 180 MW (five units),
with a total installed capacity of 6945 MW. There are two wind farms with a total capacity
of 1080 MW, and the system wind power penetration rate ranges from approximately 12%
to 20%. There are also two pumped storage power stations, each with a capacity of 270 MW.
The maximum and minimum reservoir capacities are 2.0015 × 106 m3 and 4.8388 × 105 m3,
respectively. The network topology is illustrated in Figure 3. The numbers in the Figure 3
represent the bus numbers.
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The ramping rates for thermal power units are 5% of their rated capacity. The start-up
and shut-down cost for each PSH is USD 585. The penalty factor for deviation from the
planned output for PSHs is 0.5. The fuel cost Ci,t(Pi,t) of the thermal unit i can be expressed
as a quadratic function, and its cost coefficients for thermal power units are provided in
Table 1.

Table 1. Cost coefficient of thermal power units.

Rated Power/MW Pmax/MW Pmin/MW ai bi ci

540 540 270 0.00037 18.315 807.11
315 315 157.5 0.00051 17.435 843.80
297 297 148.5 0.00053 19.241 710.68
270 270 135 0.00063 22.789 521.00
180 180 90 0.00066 22.181 634.71

In Table 1, the units for ai, bi, and ci are USD/MW2h, USD/MWh, and USD/h,
respectively. Based on the pre-scheduled plan, one PSH will pump water at its rated
power during the low-load period, which is from 00:00 to 06:30. Additionally, during the
high-demand periods from 09:00 to 11:45 and 16:15 to 18:30, one PSH produces electricity
at rated power. The operational time horizon is 24 h, and it is divided into 96 periods, with
each period lasting 15 min.

5.2. Inverse Robust Optimization Results Analysis

The daily power load and wind power output are depicted in Figures 4 and 5, respec-
tively. It is observed that the predicted wind power exceeds the actual wind power, leading
to wind curtailment during practical operation. The primary reason for wind curtailment
is that during certain periods, such as from 00:00 to 06:30, the load demand is relatively
low, and the power systems’ capacity to accommodate wind power is insufficient.
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Due to the requirement for PSHs to operate at rated power during pumping mode,
only one or two PSHs can be in operation from 00:00 to 06:30. In light of these constraints,
two scenarios are considered, and the inverse robust optimization approach is employed to
find optimal solutions for them.

Scenario 1: Schedule one PSH to operate at full capacity during the specified time
period (00:00 to 06:30). During other time intervals, the PSH can transition to power
generation mode based on the specific optimization conditions.

Scenario 2: Flexibly schedule one or two PSHs to operate at full capacity based on the
actual optimization conditions during the specified time period (00:00 to 06:30). During
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other time intervals, the PSHs can transition to power generation mode based on the
specific optimization conditions.
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Figure 5. The predicted wind power and actual wind power.

As shown in Figures 6 and 7, a comparison is provided between Scenario 1 and
Scenario 2 in terms of the total generation cost and the OIRI with the ideal disturbance
coefficients ε = 0.05 and ε = 0.10, respectively. Each set includes 50 Pareto optimal
solutions. When the ideal disturbance coefficient is set to 0.05, the non-dominated front
obtained by Scenario 2 outperforms that of Scenario 1. It indicates that when the ideal
disturbance coefficient is set to 0.10, its relatively loose constraints on the objective function
enhance the solution set’s robustness, thereby validating the rationality of the inverse
robust optimization model proposed in this paper. The following analysis focuses solely on
cases where the ideal disturbance coefficient is restricted to 0.10.
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In Table 2, the maximum wind power fluctuation that the system can withstand is
OIRI (max), and the minimum total power generation cost is f (min). The results show the
constraint relationships between the wind power accommodation and the total generation
cost. In Scenario 1, when the ideal disturbance coefficient is 0.1, the wind power can

100



Processes 2024, 12, 729

be completely consumed as long as the error of wind power prediction is lower than
17.48%. The total generation cost under the maximum wind power forecasting deviation is
USD 247.82 × 104. In Scenario 2, wind power can be fully consumed when its prediction
deviation is within 20.01%. Additionally, at the maximum wind power prediction deviation,
the total generation cost is USD 232.59 × 104.

Processes 2024, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 6. The results of OIRI and total generation cost (ideal disturbance constraint for 0.05). 

 
Figure 7. The results of OIRI and total generation cost (ideal disturbance constraint for 0.1). 

In Table 2, the maximum wind power fluctuation that the system can withstand is 
OIRI (max), and the minimum total power generation cost is f (min). The results show the 
constraint relationships between the wind power accommodation and the total generation 
cost. In Scenario 1, when the ideal disturbance coefficient is 0.1, the wind power can be 
completely consumed as long as the error of wind power prediction is lower than 17.48%. 
The total generation cost under the maximum wind power forecasting deviation is USD 
247.82 × 104. In Scenario 2, wind power can be fully consumed when its prediction devia-
tion is within 20.01%. Additionally, at the maximum wind power prediction deviation, 
the total generation cost is USD 232.59 × 104.  

Table 2. Comparison of optimum of OIRI and cost. 

 OIRI (max) f/104 USD OIRI f(min)/104 USD 
Scenario 1 17.48% 247.82 0.018% 164.09 
Scenario 2 20.01% 232.59 0.027% 147.20 

The results of the optimization indicate that the maximum wind power prediction 
error that the system can tolerate can be determined based on the OIRI value, when 

Figure 7. The results of OIRI and total generation cost (ideal disturbance constraint for 0.1).

Table 2. Comparison of optimum of OIRI and cost.

OIRI (max) f /104 USD OIRI f (min)/104 USD

Scenario 1 17.48% 247.82 0.018% 164.09
Scenario 2 20.01% 232.59 0.027% 147.20

The results of the optimization indicate that the maximum wind power prediction error
that the system can tolerate can be determined based on the OIRI value, when operators
have specific requirements for the total operating cost. If the wind power prediction error
is large and the requirement for the total cost is low, the system may not be able to fully
integrate wind power. For instance, when the wind prediction error is 0.15, both Scenario
1 and Scenario 2 require operating costs of around USD 225 × 104 to achieve complete
wind power absorption. On the other hand, lower operating costs can be achieved when
the wind power prediction deviation is smaller. If the wind power prediction deviation
is 0.05, the minimum operating cost is USD 180 × 104. It is clear that if the grid follows
Scenario 2 in scheduling, it will achieve complete integration of wind power with lower
overall generation costs.

Figure 8 illustrates the daily working state curves of the PSHs under both scenarios. It
is evident that the proposed inverse robust scheduling optimization strategy ensures the
complete consumption of wind power. Additionally, Scenario 2 is more cost-effective than
Scenario 1. The primary reason is that in Scenario 2, the PSHs absorb more wind power
during the pumping stage, providing more flexibility in selecting output plans during the
power generation periods.
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5.3. Indictor Comparison Analysis

The WCSR is often used to represent the maximum hypersphere radius that ensures
the robustness of the non-dominated solution set. The comparison between WCSR and
OIRI is employed below to illustrate that compared to conventional interval quantification
methods for robustness, OIRI can achieve better economy when addressing optimization
scheduling problems affected by wind power uncertainties. WCSR can be calculated as
follows:

WCSR = min
T

∑
t=1

∥∥Pw
t − Pw0

t
∥∥

2 (34)

Based on the data presented in Table 3, the OIRI method achieves full integration of
wind power regardless of whether Scheme 1 or Scheme 2 is adopted. When the WCSR
method is employed under Scheme 1, full integration of wind power cannot be achieved,
and the total generation costs are higher. Under Scheme 2, although the WCSR method can
fully integrate wind power, its total generation costs are higher compared to the results
obtained using the OIRI method. Traditional scheduling methods do not take into account
uncertainty and usually need less computation time compared to the algorithm considered
in OIRI. However, the proposed algorithm has the ability to identify schedules that are
lower in cost and can integrate more wind power. Moreover, its computation time is less
than 5 min, which is within an acceptable range.

Table 3. Comparison between OIRI and WCSR methods.

Classification Conventional
Method

Scenario 1 Scenario 2
OIRI WCSR OIRI WCSR

the total cost/104 USD 276.41 225.60 229.04 192.11 203.91
coal consumption cost/104 USD 233.15 193.74 220.62 185.94 197.45

wind power penalty cost/104 USD 31.94 0 5.04 0 0
pumped storage start–stop cost/104 USD 11.32 2.9 2.9 5.76 5.76

pumped storage penalty cost/104 USD 0 0.29 0.48 0.41 0.69
wind curtailment/MWh 4487.16 0 708.45 0 0

CPU time (s) 153.1 219.9 253.9 228.4 261.7

5.4. Large-Scale System Testing

The proposed method was compared with some commonly used heuristic methods,
such as the non-dominated sorting genetic algorithm (NSGA) [22], multi-objective particle
swarm optimization (MOPSO) [23], niched Pareto genetic algorithm (NPGA) [24], and
strength Pareto evolutionary algorithm (SPEA) [25]. These methods have been successfully
applied to optimize economic dispatch. Their performances were evaluated by testing
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a modified IEEE 118-bus system whose detailed parameters are available online at http:
//motor.ece.iit.edu/data (accessed on 1 January 2023). The system consists of 118 buses,
33 generators, and 186 transmission lines. Based on the original IEEE 118-bus system,
two wind farms and two pumped storage power stations were added at bus 12 and 61,
respectively. Each pumped storage power station has a capacity of 270 MW. The forecasted
wind power can be found in reference [14].

The results of the simulation are summarized in Table 4. To ensure a fair comparison
between the different approaches, ten optimization runs were conducted, and the average
values are shown. It was found that the proposed method has the lowest total cost and
the shortest computation time. All of the methods tested were able to fully integrate wind
power using PSHs and the OIRI index. Compared to the previous 42-bus test system, the
number of thermal units in the modified IEEE 118-bus system increased from 22 to 33,
and finding the optimal economic dispatch plan is a critical factor in reducing costs. The
proposed algorithms were able to find better scheduling schemes for both thermal units
and PSHs when wind power was fully integrated. This resulted in reduced coal generation
costs of thermal units and start–stop costs of PSHs.

Table 4. Comparison between different heuristic methods and OIRI index.

Proposed Method NSGA MOPSO NPGA SPEA

the total cost/104 USD 309.21 352.62 316.19 316.42 315.81
coal consumption cost/104 USD 299.28 319.24 306.03 306.21 306.61

wind power penalty cost/104 USD 0 0 0 0 0
pumped storage start–stop cost/104 USD 9.27 31.92 8.97 8.95 8.97

pumped storage penalty cost/104 USD 0.66 1.46 1.19 1.26 0.23
wind curtailment/MWh 0 0 0 0 0

CPU time (s) 542.4 549.8 590.7 560.1 571.3

6. Conclusions

To integrate wind power efficiently and minimize electricity generation costs, we
propose a bi-level inverse robust wind power–PSHs optimization scheduling model. The
model is solved using a combination of the grid multi-objective bacterial colony chemotaxis
algorithm and the bisection method. This paper introduces an inverse robust indicator,
which not only addresses the limitations of pumped storage in mitigating wind power
fluctuations but also establishes the relationship between the maximum forecast deviation
and the minimum generation cost associated with each non-dominated solution in the
optimal load allocation. Case studies on operational data from a specific regional power grid
validate the proposed method. Two optimization scenarios are developed and compared
with the actual operation data. The case studies indicate that optimizing the pumping and
generation operation of PSHs addresses the limitations of accommodating wind power.
The proposed method enhances both economic efficiency and wind power consumption. It
provides a clear relationship between the objective function and decision vectors, offering
valuable insights for developing robust scheduling plans.
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Nomenclature

J Number of inequality constraints
K Number of equality constraints
T Number of dispatch time intervals
∆T Dispatch time interval
ε m-dimensional vector consisting of ideal disturbance coefficients
Nc Number of thermal units
Nw Number of wind farms
Np Number of pumped storage hydropower
Pw

j,t Output power of wind farm j in the inner level at period t
Pprw

j,t Forecasted power of wind farm j in the inner level at period t
Pw0

j,t Output power of wind farm j in the outer level at period t
Pps

j,t Output power of PSH j in the inner level at period t
Pprps

j,t Forecasted power of PSH j in the inner level at period t
ϕj/φk Penalty coefficients
hi,t Binary variable; it equals 1/0 if equipment i is ON/OFF at period t
Sps

k,t/Dps
k,t Start-up/shut-down cost of the PSH k

Pi/Pi Lower/upper limits of thermal unit i
Pw

j /Pw
j Lower/upper output limits of wind farm j

rpd
i,t/rpu

i,t Maximum upward/downward ramping rates of thermal unit i

Pspin
i,t /Pspin

i,t Minimum/maximum feasible outputs of thermal unit i at period t
SPup

t /SPdn
t Upward/downward requirement of power systems at period t

βc/βw Spinning reserve rates of thermal unit and wind farm
TPl/TPl Lower/upper power flow limits of line l
TFl,i Power transfer distribution factors from unit i to line l
Ton

i,t−1/Toff
i,t−1 Start-up/shut-down time of thermal unit i at period t−1

Mon
i /Moff

i Minimum start-up/shut-down time of the thermal power unit i
ηk Energy conversion efficiency of PSH k
THk Maximum daily start–stop times of PSH k
δε Predefined convergence accuracy
Ci,t
(

Pi,t
)

Cost function of thermal unit i at period t
SCk,t

(
hi,t
)

Sum of start-up and shut-down costs
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Abstract: The emission of greenhouse gases is a major contributor to global warming. Carbon
emissions from the electricity industry account for over 40% of the total carbon emissions. Researchers
in the field of electric power are making efforts to mitigate this situation. Operating and maintaining
the power grid in an economic, low-carbon, and stable environment is challenging. To address
the issue, we propose a grid dispatching technique that combines deep learning-based forecasting
technology, reinforcement learning, and optimization technology. Deep learning-based forecasting
can forecast future power demand and solar power generation, while reinforcement learning and
optimization technology can make charging and discharging decisions for energy storage devices
based on current and future grid conditions. In the optimization method, we simplify the complex
electricity environment to speed up the solution. The combination of proposed deep learning-
based forecasting and stochastic optimization with online data augmentation is used to address
the uncertainty of the dispatch system. A multi-agent reinforcement learning method is proposed
to utilize team reward among energy storage devices. At last, we achieved the best results by
combining reinforcement and optimization strategies. Comprehensive experiments demonstrate the
effectiveness of our proposed framework.

Keywords: forecasting; reinforcement learning; power grid; planning and scheduling; uncertainty in
artificial intelligence; agent-based systems; deep learning; stochastic optimization

1. Introduction

Nowadays, with the rapid development of artificial intelligence (AI), household
appliances and equipment intelligence are gradually becoming popularized. More and
more families are installing home solar power generation equipment and small-scale energy
storage equipment, not only to meet their own electricity needs but also to sell excess power
through the sharing network. If we can make home electricity use more efficient, then the
community power grid will be more economical and low-carbon. Furthermore, the efficient
and stable of community power grid can provide a guarantee for the stability of the national
power grid.

Electricity research generally includes Large-scale Transmission Grids (LTG for short)
and Small-scale Micro-Grids (SMG for short). LTG focuses on high-voltage and long-
distance power transmission, while SMG focuses on electricity consumption in small areas
such as schools, factories, or residential areas. We focus on smart scheduling techniques
in SMG. For example, Figure 1 shows a case of SMG. Households can generate electricity
from solar energy, store the excess power, and share with neighbors on the grid network
(green arrows). When neither self-generated power nor a shared network can provide
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enough electricity, power is supplied by the national grid (orange lines). The national
grid generates electricity through wind power, hydroelectric, and thermal. The cost of
electricity and carbon emissions vary over time. In this paper, we use an AI-based approach
to enable efficient scheduling of household storages. The AI-based scheduling method
leads to economical and decarbonized electricity use.

Figure 1. The micro-grid network framework. Green arrows denote solar power sharing among
the micro-grid buildings and orange lines indicate how the micro-grid obtains power from the
national grid.

In the power generation process, increasing the proportion of new energy sources is
one of the most important methods to reduce carbon emissions. The use of new energy
sources, such as wind power and solar power, reduces carbon emissions for the grid
network but adds more uncertainty to the entire power network. For example, solar
power generation is affected by the weather, and if future weather changes cannot be
accurately predicted, then this will affect the scheduling program of other power generation
methods in the power network. Uncertainty in new energy generation poses a great
challenge to traditional dispatch systems. We categorize the uncertainty as data drift: the
relation between input data and the target variables’ changes over time [1]. For example,
the sequential transition in a time series of renewable energy generation can be fluctuating
(e.g., wind power and solar power).

The field of AI-based forecasting is continuously evolving. AI-based forecasting meth-
ods have been applied to predict the spread of contagious diseases such as COVID-19 [2],
demonstrating their potential in public health applications. Deep learning techniques, in-
cluding recurrent neural network (RNN) and long short-term memory (LSTM) networks [3],
have been extensively studied for time series forecasting, showing promising results. Neu-
ral network architectures, such as feed-forward neural networks and convolutional neural
network (CNN) [4], have been explored for time series forecasting, contributing to the ad-
vancement of AI-based forecasting models [5]. These studies provide insights into the use
of advanced AI-based forecasting techniques and their applications in different domains,
especially in the time series forecasting domain. Therefore, in the electricity power domain,
we involve a deep learning-based method to predict future user demand and renewable
generation (the task can be regarded as a sub-domain of time series forecasting domain).

For the problem of uncertainty, classical model predictive control (MPC)-based meth-
ods use rolling control to correct the parameters by realizing the feedback of rolling [6,7].
However, the effect is not up to expectations in practical applications. Taking industrial
application as an example, the sequential MPC framework can usually be decomposed
into point prediction of target variables (e.g., solar power generation), followed by de-
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terministic optimization, which is unable to capture the uncertainty of probabilistic data
distribution [8,9]. To solve the above problems, stochastic-based methods have been pro-
posed, and they are able to eliminate the effects caused by some uncertainties.

Taking into account the uncertainty in forecasting, it is possible to improve energy
efficiency by 13% to 30% [10,11]. Stochastic-based methods mainly include two types:
one that requires prior knowledge of system uncertainty [12,13], and another is based on
scenarios, generating values for multiple random variables [14,15]. Additionally, adaptive
methods are also applied in the presence of uncertainty [16–18]. In this paper, enhanced
generalization capability is achieved by combining stochastic optimization with online
adaptive rolling updates.

Despite some recent progress, it is difficult for the existing system to meet the demand
of real-time scheduling due to the huge number of SMGs and high model complexity.
Under the requirement of real-time scheduling, the attempt of reinforcement learning in
power grids is gradually emphasized.

Reinforcement learning has been proven to give real-time decisions in several domains
and has the potential to be effectively applied in the power grid scenarios. In Large-
scale Transmission Grids (LTG), reinforcement learning has not yet been successfully
applied due to security concerns. In Small-scale Micro-Grids (SMG), where economy is
more important (security can be guaranteed by the up-level grid network), reinforcement
learning is gradually starting to be tried. In reinforcement learning, the model learns by trial
and error through constant interaction with the environment [19] and ultimately obtains the
best cumulative reward. Training for reinforcement learning usually relies on a simulation
environment, which is assumed to be provided in this paper. Unlike the existing single
agent approach, in this paper, we propose a multi-agent reinforcement learning method
to adapt a grid scheduling task. Reinforcement learning in electricity power scheduling
offers the potential to enhance the efficiency, reliability, and sustainability of power systems,
leading to cost savings, reduced environmental impact, and improved overall performance.
The main contributions of this paper are:

• To adapt to uncertainty, we propose two modules to achieve robust scheduling. One
module combines deep learning-based prediction techniques with stochastic opti-
mization methods, while the other module is an online data augmentation strategy,
including stages of model pre-training and fine-tuning.

• In order to realize sharing rewards among buildings, we propose to use multi-agent
PPO to simulate each building. Additionally, we provide the ensemble method
between reinforcement learning and optimization methods.

• We conducted extensive experiments on a real-world scenario and the results demon-
strate the effectiveness of our proposed framework.

2. Problem Statement

Generally, SMG contains various types of equipment, including solar generation
machines (denoted as G), storage devices (denoted as S), and other user devices (denoted
as U ). M denotes the markets, such as carbon and electricity. The total decision steps is set
to T. We define the load demand of the user as: Lu,t, where step t ∈ T = {1, . . . , T} and
u ∈ U . pt is the market price as time t per unit or the average price amongM.

The variables in SMG include the electricity need from the national grid (denoted as
Pgrid,t), the power generation of device g ∈ G (denoted as Pg,t), the charging or discharging
of storage (denoted as P+

s,t or P−s,t), and the state of charge of device s ∈ S (denoted as
Es,t). We define the decision variables as: X = {Pgrid,t, Pg,t, P+

s,t, P−s,t, Es,t}, where t ∈ T ,
s ∈ S , g ∈ G, and then the objective is to minimize the total cost of all markets, which
is defined [20]:

minimize
X

T

∑
t=1

pt · Pgrid,t (1)
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s.t.:

Pgrid,t ≥ 0 t ∈ T (2)

Pmin
g,t ≤ Pg,t ≤ Pmax

g,t g ∈ G, t ∈ T (3)

0 ≤ P+
s,t ≤ P+

s,t
max

0 ≤ P−s,t ≤ P−s,t
max

P+
s,t · P−s,t = 0





s ∈ S , t ∈ T (4)

Emin
s,t ≤ Es,t ≤ Emax

s,t s ∈ S , t ∈ T
Es,t = Es,t−1 + P+

s,t − P−s,t s ∈ S , t ∈ T \ {1} (5)

Pgrid,t + ∑
g∈G

Pg,t + ∑
s∈S

P−s,t = ∑
s∈S

P+
s,t + ∑

u∈U
Lu,t t ∈ T (6)

To facilitate the understanding of the above constraints, we explain each formula
with details:

(2) Electricity need bounds from national grid: larger than zero and without
upper bounds.

(3) (Pmin
g,t ) denotes the lower bound of each electricity generation device, such as solar

generation, while (Pmax
g,t ) denotes the upper bound.

(4) (P+
s,t

max) represents the upper limit for battery/storage charging at timestamp t, while
(P−s,t

max) represents the upper limit for discharging.
(5) Emin

s,t represents the lower value of soc (state of charge), while Emax
s,t denotes the upper

value, and the second equation denotes the updating of the soc.
(6) This equation makes sure the power grid is stable (the sum of power generation is

equal to the sum of power consumption).

In practical application scenarios, it is not possible to obtain exact data on market prices,
new energy generation, and user loads in advance when conducting power scheduling.
Therefore, it is necessary to predict these values before making decisions. In the following,
we will provide a detailed introduction to our solution.

3. Framework
3.1. Feature Engineering

Feature engineering provides input for the subsequent modules, including the fore-
casting module, reinforcement learning module, and optimization method module. We
extract features for each building (the detailed building information will be introduced in
the subsequent dataset section). Due to the different scales of features, we normalize all
features X as follows:

xnew =
xold

max(X)−min(X) + ε
(7)

where xnew is the normalized output, max(X) denotes the max value of each domain, while
min(X) represents the minimum, and ε is a value that prevents the denominator from
being zero.

Moreover, to eliminate the influence of some outliers, we also performed data denois-
ing processes as:

xnew =





(1 + α) ∗ avg(X), if xold ≥ (1 + α) ∗ avg(X)

(1− α) ∗ avg(X), if xold ≤ (1− α) ∗ avg(X)

xold, else

(8)
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where α is a pre-set adjustable parameter, and avg(X) represents the average value of the
feature. We truncate the outliers that exceed a certain percentage of the average value.

We show the key feature components of continuous modules. For the forecasting module:

• The user loads of past months;
• The electricity generation of past months;
• The radiance of solar direct or diffuse;
• Detailed time including the hour of the day, the day of the week, and the day of

the month;
• The forecasting weather information including the values of humidity, temperature,

and so on;

For the reinforcement learning module and optimization method module:

• The key components detailed before;
• The predictions of user load and electricity generation;
• The number of solar generation units in each building;
• The efficiency and capacity of the storage in each building;
• Market prices including the values for electricity and carbon;

3.2. Deep Learning-Based Forecasting Model

The deep learning-based forecasting module generates the corresponding input data
for the next modules, including the optimization method module (or reinforcement learning
module). The target variables include user load (denoted as Lu,t), market prices (denoted as
pt), and capacity of solar generation (denoted as Pmax

g,t ). The input features of the forecasting
models are listed in the Feature Engineering part before.

In sequence prediction tasks, deep neural network methods have gradually become
state-of-the-art (SOTA). Gated Recurrent Unit (GRU for short) is one of the most commonly
applied types of recurrent neural network with a gating mechanism [21]. We employ recur-
rent neural network (RNN) with a GRU in our approach. Additionally, our framework can
easily adapt to any other neural networks, including CNNs and transformers. Compared to
other variants of recurrent networks, RNN shows good performance in small datasets with
a gated mechanism [22]. Thus, when given the input sequence x = (x1, . . . , xT), the RNN
we used is described as [23]:

ht = φ1(ht−1, xt) , yt = φ2(ht) , t ∈ T ,

where ht denotes the hidden state of RNN at time t, yt denotes the corresponding output,
and φ1 and φ2 represent the non-linear functions (active function or the combination with
affine transformation). Fitting maximum likelihood on the training data, the model is able
to predict fLu , fp, and fPg , corresponding to user load, market prices, and capacity of solar
generation, respectively. Moreover, since each of our modules is decoupled, it is easy to
incorporate the predictions of any other forecasting methods into the framework.

3.3. Reinforcement Learning

In most scenarios, reinforcement learning can provide real-time decision-making,
but the safety of these decisions cannot be guaranteed. Therefore, reinforcement learning
has not been practically applied in LTG. However, SMG serves as a good testing ground
for reinforcement learning. Due to the fact that SMG does not require the calculation of
power flow in the network, in the training process, the interaction between the agent and
the simulation environment can be conducted within a limited time. Since its proposal,
Proximal Policy Optimization (PPO) [19] has been validated to achieve good results in
various fields. Therefore, here, we model and adapt the power grid environment based on
the PPO method.

The reinforcement learning framework we principally used for SGM, as shown in
Figure 2, includes several parts: simulation environment module, external data input
module, data preprocessor module, model module, and result postprocessor module.
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The simulation environment simulates and models the microgrid, mainly using past years’
real data for practice simulations. External input data includes real-time climate information
obtained from websites. The data preprocessor filters and normalizes the observed data.
The model module consists of multi-agent PPO (MAPPO), which includes multiple neural
network modules and loss function design. The final result postprocessor module handles
the boundaries of the model’s output, such as checking whether the output of the generator
exceeds the physical limits.

Figure 2. Reinforcement learning framework.

Most existing applications of reinforcement learning focus on single-agent methods,
including centralized PPO (CPPO) and individual PPO (IPPO) [24]. As shown in Figure 3,
CPPO learns the model by consolidating all inputs and interacting with the SMG. On the
other hand, IPPO involves independent inputs for multiple learning instances. In the case
of an SMG, each input represents a generation or consumption unit, such as a building.

Figure 3. CPPO and IPPO framework.

In practical scenarios, there are various types of SMG, including factories, residential
communities, schools, hospitals, etc. Therefore, the framework should be able to adapt to
different types of SMG. The CPPO method mentioned above concatenates all inputs as
one input each time, which cannot be applied to SMG with different inputs. For example,
a model trained on a school SMG with 10 teaching buildings cannot be quickly adapted
and applied to one with 20 teaching buildings. To address this issue, the IPPO method
is introduced, which allows all teaching buildings to be inputted into the same agent in
batches. However, in actual SMG, information sharing among teaching buildings is crucial.
For example, the optimal power scheduling plan needs to be achieved through sharing
solar energy between teaching buildings in the east and west. Since IPPO only has one
agent, it cannot model the information sharing. Based on this, we propose a multi-agent
PPO (MAPPO) model to address the information sharing problem in SMG.

As shown in the Figure 4, in the MAPPO framework, taking a school microgrid as an
example, each agent represents a building, and each building has its own independent input.
Additionally, the main model parameters are shared among all the buildings. If πi(ai|τi) is
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an agent model, the joint model is: π(a|s) := ∏n
i=1 πi(ai|τi), where n denotes the number

of teaching buildings. The expected discounted accumulated reward is defined as [24]:

J(π) = Eπ [σ
∞
t=0γtR(st, at, st+1)] (9)

where γ represents the discount ratio, R is the reward, and st = [o(t)1, . . . , on
t , at, r̂t] is the

current state of the whole system.

Figure 4. MAPPO framework.

3.4. Optimization
3.4.1. Stochastic Optimization

In the deep learning forecasting module, we have trained models that can predict user
load (L̂u,t), market prices (p̂t), and the capacity of solar generation (P̂max

g,t ). In the validation
dataset, we obtain the deviations of the models for these predictions, and their variances are
denoted as Σ̂Lu, Σ̂p, and Σ̂Pg , respectively. These values represent the level of uncertainty.
To mitigate the impact of uncertainty, we propose a stochastic optimization method as
shown in Figure 5b. We use the predicted values as means and uncertainty as variances,
for example, (P̂g, tmax, Σ̂Pg), (L̂u, t, Σ̂Lu), and (p̂t, Σ̂p), to perform Gaussian sampling.
Through Gaussian sampling, we can obtain multiple scenarios, which are considered as a
multi-scenario optimization problem. Assuming we have N scenarios, the n-th scenario
can be represented as (n ∈ SN ) [25]:

(P̃max
g )n =

[
(P̃max

g,1 )n, (P̃max
g,2 )n, . . . , (P̃max

g,T )n
]

,

(L̃u)
n =

[
(L̃u,1)

n, (L̃u,2)
n, . . . , (L̃u,T)

n] ,

( p̃)n = [( p̃1)
n, ( p̃2)

n, . . . , ( p̃T)
n] .

Then, the objective function in our proposed stochastic optimization can be redefined as:

minimize
X

T

∑
t=1

En∈SN ( p̃t)
n · Pgrid,t . (10)

Constraint (3) is refined as:

Pmin
g,t ≤ Pg,t ≤ (P̃max

g,t )n n ∈ SN , g ∈ G, t ∈ T .

Constraint (6) is refined as:

Pgrid,t + ∑
g∈G

Pg,t + ∑
s∈S

P−s,t = ∑
s∈S

P+
s,t + ∑

u∈U
(L̃u,t)

n n ∈ SN , t ∈ T .

Through solving the stochastic optimization problem (10), we obtain the scheduling
plan: Ẋ = {Ṗgrid,t, Ṗg,t, Ṗ+

s,t, Ṗ−s,t, Ės,t} .
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Figure 5. The whole optimization method framework. The subplot (a) represents the flowchart of
prediction based on deep learning. The output of the prediction module serves as the input for
the stochastic optimization module, as shown in (b). During the scheduling process, real-time data
accumulates over time, and we update the predictions based on the real data, as demonstrated in (d),
named the online data augmentation module. This framework enhances the robustness of scheduling
under uncertain conditions.

3.4.2. Online Data Augmentation

In order to address the data drift problem, we propose the data augmentation method
as shown in Figure 5c. The module contains two parts: pre-training/fine-tuning scheme
and rolling-horizon feedback correction.

Pre-Training and Fine-Tuning

In practice, the real-time energy dispatch process is a periodic task (e.g., daily dispatch).
Considering that the prediction models are trained based on historical data and future
data and may not necessarily follow the same distribution as the past, we perform online
data augmentation. Online data augmentation consists of two parts: pre-training and
fine-tuning. Firstly, we pre-train the neural network model using historical data to obtain
a model capable of predicting fLu , fp, and fPg . Secondly, we fine-tune the neural network
using the accumulated online data. Specifically, in the fine-tuning process, we employ
partial parameter fine-tuning to obtain the refined network f̃Lu , f̃p, and f̃Pg .

Rolling-Horizon Feedback Correction

In addition to updating the prediction models online, we also employ the rolling-
horizon control technique. In the optimization process, we solve the optimization problem
every horizon H (to incorporate the latest prediction models and trade-off computational
time). This operation is repeated throughout the scheduling period.

4. Experiments
4.1. Experiment Setup
4.1.1. Dataset

We conducted experiments on building energy management using a real-world dataset
from Fontana, California. The dataset includes one year of electricity scheduling for
17 buildings, including their electricity demand, solar power generation, and weather
conditions. This dataset was also used for the NIPS 2022 Challenge. With our proposed
framework, we achieved the global championship in the competition [20].
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4.1.2. Metric

We follow the evaluation setup of the competition. The 17 buildings are divided
into visible (5 buildings) and invisible data (12 buildings). The visible data are used as
the training set, while the invisible data include the validation set and the testing set.
Visible data contain all labels including user load demand and solar generation in a year.
The labels of the invisible data can only be evaluated through limited interactions with the
competition organizers’ open API. The final leaderboard ranking is based on the overall
performance of the model on all data sets. The evaluation metrics include carbon emissions,
electricity cost, and grid stability. Specifically, the electricity consumption of each building i
is calculated as Ei,t = Li,t− Pi,t + Xi,t, where Li,t represents the load demand at timestamp t,
Pi,t represents the solar power generation of the building, and Xi,t represents the electricity
dispatch value provided by the model. The electricity consumption of the entire district is
denoted as Edist

t = ∑I
i=1 Ei,t.

Using the above notations, three metrics are defined as:

CEmission =
T

∑
t=1

(
I

∑
i=1

max
(
Ei,t, 0

)
)
· ct , CPrice =

T

∑
t=1

max
(

Edist
t , 0

)
· pt ,

CGrid =
1
2
(
CRamping + CLoad Factor

)

=
1
2

(
T−1

∑
t=1

∣∣∣Edist
t+1 − Edist

t

∣∣∣+
#months

∑
m=1

avgt∈[month m]E
dist
t

maxt∈[month m]Edist
t

)
.

4.1.3. Baseline

To evaluate the proposed MAPPO, Optimization, and their Ensemble method, we
compare them with the following baseline methods:

• RBC: Rule-Based Control method. We tested several strategies and selected the best
one: charging the battery by 10% of its capacity between 10 a.m. to 2 p.m., followed
by discharging it by the same amount between 4 p.m. to 8 p.m.

• MPC [26]: A classical Model-Predictive-Control method. A GBDT-based model [27] is
used to predict future features, and a deterministic optimization is used for
daily scheduling.

Moreover, after the competition, we also compared the proposals of several
top-ranked contestants:

• AMPC [26]: An adaptive Model-Predictive-Control method.
• SAC [28]: A Soft Actor-Critic method that uses all agents with decentralization.
• ES [29]: Evolution-Strategy method with adaptive covariance matrix.

4.1.4. Implementations

The environment simulator that employs reinforcement learning and an evaluation
process is provided by the competition organizers [30]. The learning of deep learning
networks is implemented using PyTorch. The optimization problem-solving utilizes our
self-developed MindOpt [31]. All experiments are conducted on an Nvidia Tesla V100 GPU
with eight cards.

4.2. Results

If only one metric is considered, any of the three metrics can perform very well.
Therefore, the final effect needs to be seen in terms of the average value of the three
metrics. In particular, as shown in Table 1, ‘Emission‘, ‘Price‘, and ‘Grid‘ denote the metric
CEmimssion, CPrice, and CGrid, respectively. Since the performance is compared with no use
of storage, a lower value indicates a better performance. Our proposed MAPPO method
and Optimization method both achieve better results than other competitors.

As shown in Table 1, the individual model has limited performance. By combining
reinforcement learning and optimization, we can achieve the best results. Through observ-
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ing the validation dataset, we found that reinforcement learning and optimization perform
alternately in different months. By leveraging their advantages, we fuse their results based
on the month to create a yearly schedule (named Ensemble), ultimately obtaining the best
outcome. Besides, all calculations of the models above are completed within 30 min to
generate the scheduling for the next year.

Table 1. Comparison of the performances of all methods in the entire building. All values are
normalized against the simple baseline without strategy, i.e., not using the storage. Therefore, a lower
value indicates a better performance.

Methods
Overall Performance

Average Cost Emission Price Grid

RBC 0.921 0.964 0.817 0.982
MPC 0.861 0.921 0.746 0.916

AMPC 0.827 0.859 0.750 0.872
ES 0.812 0.863 0.748 0.827

SAC 0.834 0.859 0.737 0.905
MAPPO 0.810 0.877 0.726 0.826

Optimization 0.804 0.871 0.719 0.822

Ensemble 0.801 0.864 0.718 0.821

4.3. Ablation Studies

We conducted ablation studies on some modules to understand their contributions to
the overall performance.

4.3.1. Analysis of Online Data Augmentation

We compare the performances of different online updating methods, as shown in
Figure 6: No-Ft: no fine-tuning on online data; Self-Adapt: adaptive linear correction
by minimizing the mean squared error between historical value and predicted value;
Scratch: re-learning from scratch; Small-LR: continuous learning with a smaller learning
rate; Freeze: continuous learning with online data but freezing the weights of the first
few layers and only updating the last layer. To compare the efficiency of the models, we
evaluate the average execution time of real-time scheduling within 24 h.

No-Ft Self-Adapt Scratch Small-LR Freeze
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Figure 6. Analysis of online data augmentation, the evaluation about performance and execution
time with various settings.

Results show that fine-tuning with a smaller learning rate has advantages in terms of
efficiency and effectiveness.

4.3.2. Analysis of Forecasting Models

As shown in Table 2, we evaluated different forecasting models. The evaluation metrics
include overall scheduling performance, execution time, and forecasting performance
measured by the weighted mean absolute percentage error (WMAPE). The experimental
results indicate that the RNN model with online fine-tuning achieves the best performance.
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Table 2. Analysis of different forecasting models, including scheduling performance, forecasting
performance, execution time, and updating methods.

Forecast
Model

Online
Update

Dispatch Forecast (WMAPE)

Average Time Load Solar

Linear

%

0.878 8 s 42.1% 27.3%
GBDT 0.875 8 s 44.7% 10.7%
RNN 0.876 9 s 46.0% 10.7%

Transformer 0.879 11 s 45.3% 10.6%

Linear
!

Self-Adaptive
Linear Correction

0.871 8 s 39.4% 21.2%
GBDT 0.868 9 s 39.5% 9.4%
RNN 0.866 10 s 39.3% 9.3%

Transformer 0.869 11 s 39.9% 9.1%

RNN !
Online Fine-tuning

0.862 11 s 39.0% 9.0%
Transformer 0.864 12 s 39.3% 9.1%

4.3.3. Analysis of Stochastic Optimization

In stochastic optimization, the number of scenarios is a very important parameter.
As shown in Figure 7, as the number of scenarios increases, the effectiveness of the model
also gradually increases. This is in line with common sense, as a model that can cover more
scenarios tends to have better performance.

1 25 50 75 150 300 450

0.86

0.88

0.9

0.92

Scenario Number

Average Score in Testing Set

Figure 7. Effect of different number of scenarios N. The curve denotes the expected value, while the
area is the standard deviation of the stochastic sample.

5. Conclusions

The challenge of power grid scheduling lies in the complexity of long-term decision-
making. Through our research, we have learned that achieving end-to-end learning with
a single strategy is difficult for such complex problems. We have identified that future
load and solar energy generation are key information for decision-making. Our results
show that using pre-trained auxiliary tasks to learn representation and prediction ahead of
optimization and reinforcement learning outperforms directly feeding all the data into the
decision model. By employing optimization and multi-agent reinforcement learning algo-
rithms for decision-making, we have found that the optimization algorithm achieves better
generalization on an unknown dataset through target approximation, data augmentation,
and rolling-horizon correction. On the other hand, multi-agent reinforcement learning
better models the problem and finds better solutions on a known dataset. The issue of data
augmentation to improve generalization in energy management tasks warrants further
research. We have also observed that the policies learned by the optimization algorithm
and reinforcement learning perform differently in different months, which has motivated
us to explore ensemble learning approaches. We left the ensemble of forecasting models as
future work.
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Abstract: The cross-regional and large-scale transmission of new energy power is an inevitable
requirement to address the counter-distributed characteristics of wind and solar resources and load
centers, as well as to achieve carbon neutrality. However, the inherent stochastic, intermittent, and
fluctuating nature of wind and solar power poses challenges for the stable bundled dispatch of new
energy. Leveraging the regulation flexibility of energy storage offers a potential solution to mitigate
new energy fluctuations, enhance the flexibility of the hybrid energy systems, and promote bundled
dispatch of new energy for external transmission. This paper takes energy storage as an example
and proposes a capacity configuration optimization method for a hybrid energy system. The system
is composed of wind power, solar power, and energy storage, denoted by the wind–solar–energy
storage hybrid energy systems. The objective is to quantify the support provided by energy storage to
bundled dispatch of new energy, namely determining the new energy transmission capacity that can
be sustained per unit of energy storage. The results demonstrate that the proposed method effectively
improves the bundled dispatch capacity of new energy. Moreover, the obtained configuration results
can be tailored based on different wind–solar ratios, allowable fluctuation rates, and transmission
channel capacities, rendering the approach highly valuable for engineering practicality.

Keywords: energy storage system; cold scenario; machine learning

1. Introduction

In the past two years, countries around the world have outlined blueprints for achiev-
ing carbon neutrality by 2050 or 2060 [1,2]. To effectively promote the low-carbon transfor-
mation of the energy system, there is a need to vigorously develop new energy sources to
gradually replace traditional fossil-based generators [3,4]. It is anticipated that by 2050, re-
newable energy, especially solar and wind power, will take up the largest part of the energy
supply both in China and worldwide. However, as the scale and penetration rate of new
energy continue to increase, more upcoming issues such as power system fluctuations
and instability become more prominent, posing significant challenges to the secure oper-
ation of the grid and the integration of new energy [5]. Compared to the conventional
controllable fossil-based generators, the power outputs of renewables mainly rely on the
corresponding weather conditions, with solar radiation for solar power and wind speed
for wind power, which feature high uncertainty and variability. And the output may not
satisfy the demand side. The supply–demand mode will change from the conventional
“generation follow load” to a new pattern “load follow generation” or “generation follow
load with storage”. The new pattern relies on energy storage as the enabler to achieve
the balance between energy supply and demand, which is the one of the keys for a future
sustainable-energy society.

So, energy storage, due to its advantages of flexibility, rapid response, and clean and
non-polluting nature, is expected to play a crucial role in the future energy system [6].
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Moreover, its dual identity as both a power source and energy storage makes it an im-
portant approach to address the stochastic, intermittent, and fluctuating characteristics
of renewable energy, facilitating the concentrated integration of new energy sources [5],
reducing the difficulty of peak shaving in the system, increasing the utilization of cross-
regional transmission channels [7–9], and enhancing the security and reliability of the
power grid operation.

Most scholars have historically utilized historical annual wind and solar power outputs
as input for forecasting models, which increases the complexity of the models. However,
in actual grid planning, the uncertainty of new energy outputs significantly impacts ca-
pacity configuration decisions [10–12], making it a critical issue to effectively characterize
uncertainty in the optimization of hybrid energy systems. Currently, common methods for
dealing with uncertainty in optimization models include stochastic optimization and robust
optimization [13–16]. Stochastic optimization uses scenario sets to represent the uncertainty
of new energy outputs, aiming to simulate various operational scenarios based on typical
scenarios derived from historical data. On the other hand, robust optimization employs
parameter intervals to characterize the uncertainty of new energy outputs, encompassing
all possible operational scenarios within the interval, ensuring that the optimization results
satisfy operational constraints, even in the worst-case scenario [17,18].

Based on the above, considering the counter-distributed characteristics of domestic
wind and solar resources and power load centers, large-scale cross-regional transmission of
renewable energy is necessary [19]. However, the direct transmission of bundled renewable
energy will lead to pressure on the receiving side and transmission line capacity enhance-
ment, due to its variability and uncertainty. We study a hybrid energy system, composed of
wind power, solar power, and energy storage, denoted by the wind–solar–energy storage
hybrid energy systems. To address the above problems, it is essential to study wind–solar—
storage resource configuration strategies that consider constraints on the renewable energy
external transmission and match them with storage.

Using energy storage as an example, this study first conducts clustering analysis based
on the actual wind and solar outputs and load data of a certain region in the northeast
over one year to obtain typical scenarios of solar, wind, and load curve for the northeast
region. The typical scenario can help analyze the complementary features of solar and wind
power output. Then, based on the typical scenario, a wind–solar–storage ratio planning
strategy that considers the value of storage support for new energy external transmission
capacity is proposed, and the impacts of different photovoltaic ratios, allowable fluctuation
rates, and transmission channel capacities on the optimization results are analyzed. To
summarize, the key innovation of this paper lies in two aspects: (1) the total planning
strategy with the clustering analysis and optimization analysis; (2) the comprehensive
analysis of the value of energy storage under various scenarios.

The rest of this paper is organized as follows. Section 2 leverages the KMEANS++
clustering algorithm to conduct the scenario analysis on the solar–wind–load for obtaining
the typical scenarios for later planning analysis. Section 3 proposes the wind–solar–storage
ratio planning strategy that considers the value of storage support for the renewable energy
external transmission capacity. Section 4 conducts comprehensive analysis to verify the
effectiveness of the proposed models from the perspectives of clustering analysis, reduction
analysis, sensitivity analysis, and numerical analysis. Section 5 concludes the paper and
provides several advices for the system operation.

2. Scenario Analysis

In this study, the first step involves investigating the regional resource endowment to
model photovoltaic power plants and wind farms, generating one year of wind and solar
output data. These data are then combined with regional load data for joint analysis. Next,
the KMEANS++ algorithm [20] is employed to conduct clustering analysis on the wind–
solar–load data, extracting typical scenarios of wind–solar–load for subsequent planning
research on the optimal configuration. Intuitively, the output of solar and wind power
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features the complementary feature. This feature means that solar power generates more in
the daytime and less in the night, and, in comparison, the wind power usually generates
more in the night and less in the daytime. The clustering analysis can help us to investigate
this feature. During the clustering analysis, the effectiveness of clustering parameters is
validated using both the average distance to cluster centers and dimensionality reduction
visualization techniques.

2.1. Clustering Algorithm

In this study, the first step involves normalizing the wind–solar–load data for the
entire year of 8760 time periods using the maximum value normalization method. And the
multiple sources of data with different units are unified into the scale of 0–1, which can
be seen as the p.u. values. After that, the KMEANS++ algorithm is applied with different
numbers of clusters to perform clustering analysis. However, the number of clusters will
have great impacts on the system. More clusters lead to complex computational power,
and fewer clusters lead to less representative features. The effectiveness of clustering
is evaluated by computing the average distance to the cluster centers and selecting the
appropriate number of clusters. Additionally, dimensionality reduction visualization
techniques are used to analyze the clustering results. If the clustering results do not meet
the required criteria, the number of clusters is adjusted accordingly. Finally, the typical
operational scenarios obtained after clustering are output and used for subsequent planning
and analysis.

To enhance the computational efficiency, typical daily wind–solar–load data are ex-
tracted using clustering, as analyzing the full-year data of 8760 time periods directly
would be computationally intensive. Currently, mainstream clustering algorithms include
prototype-based clustering (KMEANS), hierarchical clustering, density-based clustering
(DBSCAN), and graph-based clustering (AP). This study primarily adopts the KMEANS++
algorithm, a variant of the prototype-based KMEANS algorithm, due to its fast conver-
gence and robustness, making it suitable for clustering large-scale high-dimensional real-
world data.

The first step of the study involves normalizing the wind–solar–load output data for
the entire year to the range of 0–1 based on their respective maximum output values. Sub-
sequently, the KMEANS++ algorithm is applied to the normalized wind–solar–load data to
extract typical operational scenarios. The core idea behind the KMEANS++ algorithm is to
maximize the distance between initial cluster centers through iterative steps. The specific
implementation steps are detailed in Algorithm 1:

Algorithm 1 The KEAMS++ algorithm for the solar–wind–load typical scenario extraction.
1: Input: The number of clusters N; the processed dataset of wind–solar–load data under

the 0-1 normalization;
2: Step 1: Randomly select one wind–solar–load scenario as the initial cluster center C0.
3: Step 2: Assign the remaining N = C− 1 cluster centers using a distance-based approach.

For each of the N cluster centers, the algorithm calculates the distance between the
wind–solar–load scenario and the existing cluster centers, including C0.

4: Step 3: Continue the process of selecting N − 1 cluster centers by repeating step 2 until
all N cluster centers have been chosen.

5: Step 4: Perform the KMEANS++ clustering algorithm using the N cluster centers
obtained above to cluster the wind–solar–load data into C clusters.

6: Output: Typical wind–solar–load data pair scenarios with different corresponding
clustering number.

2.2. Number of Clusters Analysis

Considering the diverse operational characteristics of regional wind and solar data, it
is challenging to manually determine the number of cluster centers (C) for the KMEANS++
algorithm based on experience. Instead, this study selects the number of cluster centers
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using the sum of the squared error (SSE) of the clustering centroids for the wind–solar–
load scenarios throughout the entire year. To determine the optimal number of clusters,
the KMEANS++ algorithm is applied iteratively with different values of C. For each value
of C, the clustering is performed, and the SSE is computed, representing the sum of the
squared distances between data points and their respective cluster centroids. The value of
C that results in the lowest SSE is selected as the optimal number of cluster centers, as it
indicates a more compact and well-separated clustering, capturing the distinctive patterns
of wind–solar–load scenarios effectively, which is calculated in Equation (1) .

SSE =
1
C

C

∑
i=1

(
1
|Φi| ∑

mj∈Φi

∣∣∣∣mj − ci
∣∣∣∣) (1)

By using the SSE as a criterion for selecting the number of cluster centers, this approach
avoids relying on subjective judgment and ensures a data-driven determination, better
reflecting the inherent structure and characteristics of the normalized wind–solar–load data
for subsequent planning and analysis.

2.3. Dimension Reduction Analysis

Given that the typical daily wind–solar–load data are of high dimensionality (96 di-
mensions) with weak correlations, understanding the specific distribution of the typical
days can be challenging. To address this, the study employs dimensionality reduction
visualization techniques to extract the main features of the wind–solar–load data and
project it onto a two-dimensional space, facilitating the visualization of the typical days.

The t-SNE (t-Distributed Stochastic Neighbor Embedding) algorithm is utilized in
this study for dimensionality reduction visualization of the clustering results. The core
idea behind t-SNE is to transform the high-dimensional distances in the original space into
probability distributions using Gaussian distributions and then map similar probability
distributions to distances in a lower-dimensional space. The t-SNE core principle is to
perform dimensionality reduction on high-dimensional vectors by minimizing the Kullback–
Leibler (KL) divergence between the probability distributions of the data points in the
high-dimensional space and the low-dimensional space, as shown in Equation (2).

DKL = ∑
m 6=n

Pmn
Pmn

Smn
(2)

By applying t-SNE, the typical daily wind–solar–load data are represented in a two-
dimensional space, allowing for a more intuitive and interpretable visualization of the
distinctive patterns and structures among the typical days. This visualization technique
aids in better understanding the characteristics and relationships among the typical days,
providing valuable insights for subsequent planning and operations analysis.

3. Ratio Planning Model

Based on the typical scenario analysis model and typical scenario, this section proposes
the wind–solar–storage ratio planning strategy. It considers the value of storage to support
the renewable energy transmission. Then, multiple parametric analysis is leveraged for
various scenarios’ analysis. Based on multiple parametric analysis, we can obtain the
relationship among the needed capacity of the energy storage, different combinations of
solar and wind power, and the different limits of transmission capacity.

3.1. Ratio Planning Framework

To achieve the goals of “carbon peaking” and “carbon neutrality,” in the coming
decades, the installed capacity of wind and solar power, represented by wind turbines
and photovoltaics (PV) generation, will continue to increase in the power system. Regions
abundant in wind and solar resources often experience wind and solar actual outputs that
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exceed their local demand. Therefore, it becomes essential to bundle and transmit the
surplus energy to regions with higher demand.

However, due to the strong variability, intermittency, and uncertainty of wind and
solar power outputs, directly bundling wind and solar energy for external transmission
often results in combined output characteristics that do not align with the load patterns of
the external grid, thus affecting the optimization operation of the external grid. Therefore,
this study utilizes the regulation capabilities of energy storage to smooth the fluctuations
in wind and solar power outputs, enabling the bundling of wind, solar, and storage
energy. The bundled energy is then transmitted to the external grid via ultra-high-voltage
transmission lines, ensuring efficient and optimized operation of the external grid.

3.2. Energy Storage System Formulation

Energy storage systems (ESS) usually work at the charging state when the electricity
price is low and at the discharging state when the electricity price is high. The feasible
region ΦESS of decision variable PESS is subject to the following constraints:

PESS = Pdis − Pch (3)

Equation (3) illustrates that the operating power PESS of ESS is composed of charging
and discharging parts; Pch denotes the charging of ESS from the grid, and Pdis denotes the
discharging of ESS to the grid.

Et = Et−1 + ηchPch,t∆t −
Pdis,t

ηdis
∆t t = 2, .., T

E1 = Einit + ηchPch,1∆t −
Pdis,1

ηdis
∆t

Emin ≤ Et ≤ Emax t = 1, .., T

(4)

where Et (kWh) refers to the stored energy in the ESS. Equation (4) ensures that Et in the
ESS at time t lies in an allowable range, and Emin, Emax refer to the minimum and maximum
capacity of the battery system.

0 ≤ Pdis,t ≤ min{Pmax
dis , ηdis

Et−1 − Emin
∆t

} t = 1, ..., T

0 ≤ Pch,t ≤ min{Pmax
ch ,

Emax − Et−1

ηch∆t
} t = 1, ..., T

0 ≤ Pdis,t ≤ Mµdis,t t = 1, ..., T

0 ≤ Pch,t ≤ Mµch,t t = 1, ..., T

µdis,t + µch,t ≤ 1 t = 1, ..., T

(5)

where M is a large positive number. µdis and µch are binary indicators of discharging
and charging state, where 1 means in the state and 0 means the opposite. Pmax

dis and Pmax
ch

are the maximum values of charging and discharging power. Equation (5) prevents the
simultaneous charging and discharging of ESS by utilizing the big-M relaxation method.

3.3. The Final Wind–Solar–Storage Ratio Planning Model

Based on the extracted typical scenarios, the ratio framework, and energy storage
model, we formulate the wind–solar–storage ratio planning with the stochastic optimization
to consider the uncertainty of the renewable power output. We note that most scenarios are
similar, so we propose to leverage the KMEANS++ algorithm with SSE analysis to extract
the typical scenarios for planning analysis with high efficiency. We leverage the above
model to show the value of energy storage in facilitating renewables in the following (6):

min
Emax

C(Emax) (6a)

s.t.Psw = rpvPPV + (1− rpv)PWP (6b)
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∑
g∈Gn

Pg,t + ∑
w∈Wn ,pv∈PVn

PWP + PES + Ptrans

+ ∑
m:(n,m)

Bnm(δnt − δmt) = PD
n,t − Pcur

n,t ∀n, t (6c)

|Bnm(δnt − δmt)| ≤ Fmax
nm ∀(n, m) ∈ L, ∀t (6d)

Ptrans ≤ Ctrans (6e)

Constraints (3)–(5) (6f)

where C(Emax) is the cost of energy storage; rpv is the ratio of PV to total renewables,
which is composed of solar power PPV and wind power PWP; Ptrans is the bundled trans-
mission power of renewables; Ctrans is the transmission capacity. Equation (6e) limits the
transmission capacity of solar–wind–storage.

4. Case Study

In this study, the proposed algorithm includes two main components: the typical
day clustering method based on KMEANS++ using photovoltaic wind turbine output,
and load data from the simulation platform of the China Electric Power Research Institute
in Northeast Province. The proportional planning scheme for energy storage considers
stable external power transmission capacity. Building on the clustering analysis and the
planning model for external output, the focus of this study is on the installation capacity of
energy storage required per unit of wind power, i.e., the planning ratio between energy
storage and wind-solar energy. The research investigates the enhancing role of energy
storage for new energy, analyzing the effects of different wind–solar ratios, wind–solar
operational volatility, and the allowed capacity of transmission channels on the system.
For the proposed planning model, the power capacity is standardized by using 1 MW
as the reference value. This approach allows for a comprehensive investigation into the
optimal configuration of energy storage in relation to wind and solar energy, enabling a
better understanding of the impacts of various factors on the system’s performance.

All the clustering and optimization models are coded by python 3.6. The KMEANS++
algorithm and reduction analysis are based on the SKlearn package. The optimization
models are based on the CVXPY package with the commercial solvers of GUROBI for
effective solution analysis.

4.1. Clustering Analysis

According to the clustering analysis strategy for wind–solar–load data mentioned in
the first section, this study starts by normalizing the wind–solar–load data for 365 days
in a certain region of northeast province based on their respective maximum values. The
wind power and solar power data are collected from the open-source website in [21],
which can generate the proper renewables and load profiles given the proper location. The
normalized data are then input into the KMEANS++ clustering model, and the change
in SSE for different numbers of clusters is analyzed to determine the optimal number of
clusters for the system. After identifying the optimal number of clusters, the clustering
results are visualized and analyzed to assess the effectiveness of the clustering algorithm.
Finally, the clustering results are output for further analysis and interpretation.

4.1.1. SSE Analysis

Figure 1 shows the change trend of SSE with the increase in the clustering number.
The value of SSE decreases shapely at first and flattens latter, which means the typical
scenarios can represent the features of the total scenarios. More clusters mean less SSE but
a high computational requirement.
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Figure 1. SSE change with the cluster.

4.1.2. tSNE Analysis

After determining the number of cluster centers as 9, this study employs the t-SNE
algorithm to reduce the 96-dimensional wind–solar–load data of a typical day to a two-
dimensional space for visualization. The scatter plot of the reduced data is shown in
Figure 2. Different colors refer to different clusters, and different scenarios with the same
color belong to the same cluster.

From the scatter plot, it is observed that the different operational scenarios are well-
separated and effectively distinguished by the proposed clustering algorithm, demonstrat-
ing the effectiveness of the selection of clustering numbers. This demonstrates that the
clustering algorithm can successfully identify and extract typical operational scenarios,
allowing for a clear visualization of the distribution of different scenarios.
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Figure 2. tSNE results analysis.

4.1.3. Clustered Results Analysis

The clustering results of typical solar–wind–load are shown in Figure 3, demonstrating
that the ESS should adapt to different scenarios of solar–wind–load. Figure 3 shows
the typical scenarios, where energy storage will have different impacts. For the row 1
and column 1 part of Figure 3, the solar and wind power show complementary feature,
and energy storage will absorb the excess power when load is low. For the row 2 and
column 1 part of Figure 3, the solar and wind power show similar features, and the energy
storage will release the stored power when the load is high. The key analysis is based on
the different change trends of solar, wind, and load profiles, where energy storage can
bridge the gap.
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Figure 3. Typical normalized power scenarios of solar (blue), wind (green), and load (orange).

The above typical scenarios imply the different operation mismatching of solar, wind,
and load. Energy storage takes the role of enabler to achieve the balance between sustain-
able energy supply and demand.

4.2. Optimization Results Analysis
4.2.1. Deterministic Optimization

Based on the typical scenarios obtained from the clustering analysis of wind–solar–
load data, this study investigates the impact of different wind–solar ratios, allowable
wind–solar operational volatility, and transmission channel capacities on the installation
capacity of energy storage. Specifically, the study analyzes how varying the proportion of
wind and solar energy in the mix affects the required capacity of energy storage. Addition-
ally, different levels of wind and solar operational volatility are considered to assess their
influence on the energy storage capacity requirements. Moreover, the study examines the
effect of different transmission channel capacities on the installation capacity of energy stor-
age. By exploring these different factors, the research aims to optimize the configuration of
energy storage in relation to wind and solar energy, taking into account various operational
conditions and transmission constraints, which will ultimately contribute to enhancing the
integration and utilization of renewable energy in the power system in Figure 4.

As shown in the above Figure 4, with the increase in the transmission capacity, the ESS
requirement reduces correspondingly. Because the transmission capacity can bear more
renewables’ variability. The cost of the transmission capacity expansion and energy storage
installation should be a trade-off for the stakeholders and the policy makers.

Table 1 further presents the different ESS ratios under different transmission and
PV ratios for numerical analysis, where ESS ratio refers to the ratio of ESS capacity to
renewable capacity. Under the same transmission capacity, with the increase in PV ratio
from 0.1 to 0.9, the requirement of ESS reduces from 0.186343 to 0.180739 and then increases
from 0.1807390 to 0.232541, where a lower ESS ratio implies more solar–wind–demand
coordination. It demonstrates the requirement of ESS relies on the PV ratio. And with the
increase in transmission capacity from 0.9 to 1.1, the ESS ratio reduces from 0.280739 to
0.160909, implying the benefits of transmission capacity expansion. It means that more
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installation of the energy storage will not need a high transmission capacity to reduce the
corresponding construction cost.
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Figure 4. ESS storage capacity analysis under different transmission and PV ratios.

Table 1. ESS storage ratio under different transmission and PV ratio.

Transmission Capacity PV Ratio ESS Ratio

1.0 0.1 0.186343

1.0 0.3 0.180739

1.0 0.5 0.186674

1.0 0.7 0.198972

1.0 0.9 0.232541

0.9 0.3 0.280739

1.1 0.3 0.160909

When fixing the transmission capacity as 1.0, the change of ESS ratio with the PV ratio
is shown in Figure 5, demonstrating the complementary impact of solar and wind on the
energy storage.

0.0 0.2 0.4 0.6 0.8
PV ratio

0.48

0.49

0.50

0.51

0.52

ES
S 

R
at

io

Figure 5. ESS storage capacity analysis under PV ratios.

The key intuition behind the above analysis is as follows. Due to the fluctuation in
solar and wind power, the bundled power output of solar and wind could be high at
some times and low at other times, but the transmission capacity will limit the high value.
Without the energy storage, the excess power is wasted. Energy can absorb the excess
power when high to satisfy the transmission capacity and release the stored power when
low to flatten the bundled power out, which is the key value of energy storage.
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4.2.2. Stochastic Optimization

Based on the above, we further consider the uncertainty of solar–wind–load by the
stochastic optimization in Figure 6.

As shown in Figure 6, with the increase in uncertainty, the corresponding ESS require-
ment increases correspondingly.
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Figure 6. ESS storage capacity analysis under different uncertainty and PV ratios.

Table 2 shows the different ESS ratios under different uncertainty and PV ratios under
the stochastic optimization approach. Intuitively, more uncertainty renewables will lead to
more ESS requirements, which are evaluated numerically in the following Table 2. With the
increase in uncertainty from 0 to 20%, the corresponding ESS requirement increases from
0.311330 to 0.324882 under the same PV ratio.

Table 2. ESS storage ratio under different transmission and PV ratios.

Uncertainty PV Ratio ESS Ratio

0 0.3 0.311330

2% 0.3 0.315273

4% 0.3 0.318878

10% 0.3 0.323113

20% 0.3 0.324882

4% 0.2 0.290579

4% 0.5 0.402065

4% 0.6 0.443731

So, the requirement of ESS for facilitating renewables mainly relies on PV ratio, trans-
mission capacity, and renewable uncertainty, and its numerical requirements are analyzed
based on the above experiments.

In summary, this section provides comprehensive analysis to verify the effectiveness of
the proposed models from the perspectives of clustering analysis, reduction analysis, sensi-
tivity analysis, and numerical analysis. These results can be leveraged by the corresponding
stakeholders and policy makers to support the low-carbon energy society transformation
of the northeast area by leveraging the enabler of the energy storage values.

5. Conclusions

As wind and solar power gradually take on a higher proportion in the power supply
system, their strong intermittency poses challenges in directly bundling and supplying
stable electricity to the external grid. Therefore, this study focuses on investigating the
optimal configuration strategy of using energy storage to support the bundled output

128



Processes 2023, 11, 3449

of wind and solar energy, aiming to achieve stable external supply. By leveraging the
regulation capabilities of energy storage, the study aims to achieve a stable bundled
output of wind, solar, and storage energy to the external grid. The study first employs the
KMEANS++ algorithm to extract typical days from the wind–solar–load data. The optimal
number of clusters is determined based on the SSE and t-SNE algorithms. Using the
extracted typical days, the study formulates a planning model for the external output of
wind, solar, and storage energy, with a focus on the energy storage capacity required per
unit of wind and solar power. The research analyzes the impact of different photovoltaic
ratios, allowable operational volatility, and transmission channel capacities on the required
energy storage capacity. Through experimentation, the study plans the energy storage
capacity for different scenarios.

The findings highlight that energy storage is a crucial means to achieve stable bundled
output of wind and solar energy to the external grid, making it a vital pathway to achieving
“carbon neutrality” and “carbon peaking”. By optimizing the configuration of energy
storage in relation to wind and solar energy, the study aims to contribute to the effective
integration and utilization of renewable energy, supporting the broader goals of carbon
reduction and sustainable energy development.
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Abstract: Shared energy storage is an energy storage business application model that integrates
traditional energy storage technology with the sharing economy model. Under the moderate scale of
investment in energy storage, every effort should be made to maximize the benefits of each main
body. In this regard, this paper proposes a distributed shared energy storage double-layer optimal
allocation method oriented to source-grid cooperative optimization. First, considering the regulation
needs of the power side and the grid side, a distributed shared energy storage operation model is
proposed. Second, a distributed shared energy storage double-layer planning model is constructed,
with the lowest cost of the distributed shared energy storage system as the upper-layer objective, and
the lowest daily integrated operation cost of the distribution grid-distributed new energy stations as
the lower-layer objective. Third, a double-layer iterative particle swarm algorithm combined with
tide calculation is used to solve the distributed shared energy storage configuration and distribution
grid-distributed new energy stations’ economic operation problem. Finally, a comparative analysis
of four scenarios verifies that configuring distributed shared energy storage can increase the new
energy consumption rate to 100% and reduce the net load peak-valley difference by 61%. Meanwhile,
distributed shared energy storage operators have realized positive returns.

Keywords: distributed shared energy storage; double-layer optimal; new energy consumption;
net load peak-to-valley difference; particle swarm algorithm

1. Introduction

In order to cope with the environmental problems caused by global warming, new
energy power generation is attracting great attention from all over the world [1]. However,
with the increasing scale of new energy access, the problem of imbalance between the
intermittent power output and the spatial and temporal matching of the load has become
more and more prominent, resulting in the phenomenon of wind and light curtailment
and peak-to-valley differences increasing year by year [2,3]. As a flexible power regulation
resource, energy storage can achieve energy leveling at the spatial and temporal levels,
promote local consumption of new energy, and reduce peak-to-valley differences [4,5].

Reasonable selection of the location and capacity of energy storage is important to
improve the safety and economy of power system operation [6,7]. There has been a lot of
research on the optimal configuration of distributed energy storage. Ding et al. [8] estab-
lished a double-layer coordinated siting and capacity optimization model for distributed
PV and energy storage, where the upper layer optimizes the capacity and power of energy
storage to minimize the annual integrated system cost, and the lower layer optimizes the
grid connection location of energy storage with the objective of minimizing the system
network loss. Gong et al. [9] used the dynamic planning method to solve for the distributed
energy storage capacity and location to meet the operational needs of the active distribution
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network, with the whole life cycle cost of energy storage as the optimization objective.
Li et al. [10] proposed a two-stage robust optimization model for the capacity configura-
tion of integrated biogas–solar–wind energy systems applicable to rural areas, solving the
configuration problem of energy storage in the first stage and the optimal operation of the
system in the second stage. Guo et al. [11] first constructed a multi-attribute integrated
index assessment model to determine the location of energy storage, and then a two-layer
planning model to determine the storage capacity.

However, the current distributed energy storage investment costs are high [12,13], and
the utilization efficiency is low [14]. To address this issue, some scholars have conducted re-
search on shared energy storage models. Shuai et al. [15] constructed an optimal allocation
model for shared energy storage under multi-regional integrated energy system intercon-
nection. Xie et al. [16] constructed a multi-micro grid shared energy storage two-layer
planning model that takes into account the economic consumption of new energy sources.
Yang et al. [17] selected three types of industrial users with different peak types as research
objects and established a shared energy storage optimal allocation model to maximize
the overall net benefit of multiple users. Liu et al. [18] proposed a producer–consumer
energy-sharing mechanism and verified that the new energy consumption rate can be
improved by sharing energy storage.

In summary, research on shared energy storage configurations is still in its infancy.
Existing research mainly focuses on centralized shared energy storage, a single type of
shared energy storage user, with less analysis on the cost settlement between shared
energy storage users and shared energy storage. Based on the above problems, this paper
proposes a distributed shared energy storage double-layer optimal allocation method for
source-grid co-optimization. First, a distributed shared energy storage operation model for
source-grid co-optimization is proposed. Secondly, a distributed shared energy storage two-
layer planning model is constructed, and a two-layer iterative particle swarm algorithm
combined with tide calculation is used to solve the distributed shared energy storage
configuration and distribution grid-distributed new energy stations’ economic operation
problem. Finally, the effectiveness and economy of the proposed configuration method are
verified by simulation analysis of arithmetic cases.

In this paper, the main innovations of this paper are as follows:

1. There are limitations on storage power ratings, line transmission capacity, etc., so
centralized shared storage no longer meets demand in actual use. Therefore, this
paper investigates the optimal allocation of distributed shared energy storage;

2. This paper proposes a distributed shared energy storage operation model oriented
to source-network co-optimization, and analyzes the operation mode of each subject
and the profit mechanism of the shared energy storage operator;

3. Most of the existing literature considers energy storage sharing in the context of
multiple single subjects, e.g., multi-industrial users, multi-microgrids, etc. In this
paper, we consider the energy storage contribution of distributed new energy stations
and distribution grids. In addition, this paper constructs a double-layer planning
model for distributed shared energy storage, which comprehensively considers the
operating costs of distributed shared energy storage operator and distribution grid-
distributed new energy stations and realizes the maximization of the interests of
each subject.

2. Distributed Shared Energy Storage Operation Model for Source-Grid
Co-Optimization

Shared energy storage is an energy storage business application model that integrates
traditional energy storage technology with the sharing economy model, which is an energy
storage power plant invested by a third party to provide charging and discharging services
for multiple subjects. The distributed shared energy storage studied in this paper takes into
account the regulation needs of both the power side and the grid side, and the schematic
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diagram of the distributed shared energy storage operation model for source-grid co-
optimization is shown in Figure 1.
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Figure 1. The schematic diagram of the distributed shared energy storage operation model for
source-grid co-optimization.

Distributed shared energy storage operators are responsible for the operation and
management of multiple energy storage plants. Each energy storage is connected to
the distribution grid. A distributed new energy station is responsible for the operation
and management of multiple new energy power stations. Each new energy station is
connected to the distribution grid. The operational objectives of each of the distributed
shared energy storage operators, distributed new energy stations, and distribution grid are
described below:

Shared energy storage operators aim to provide charging and discharging services
for distributed new energy sites and distribution grids to achieve the lowest capacity
allocation and operating costs for distributed shared energy storage systems. At the optimal
allocation level, energy storage operators will aggregate the charging and discharging needs
of distributed new energy sites and active distribution grids to centralize and optimize the
allocation of distributed shared energy storage system capacity. At the optimized operation
level, shared energy storage operators provide charging and discharging services, and
charge service fees while trading power through “low storage and high discharge” to
achieve price arbitrage.

Distributed new energy stations aim to maximize the utilization of distributed new
energy power generation and reduce the rate of wind and light curtailment by utilizing
the charging and discharging services of distributed shared energy storage plants. The
distributed new energy stations will give priority to the distribution grid to support its
load, and if the new energy output exceeds the demand of the distribution grid, the excess
new energy output will be charged to the distributed shared energy storage system in the
form of electricity sales.

The distribution grid aims to reduce the net load peak-to-valley differential by utilizing
the charging and discharging services of distributed shared energy storage plants. In the
distribution grid, priority will be given to the consumption of new energy output to meet
the load demand, and the power imbalance will be the net load of the distribution grid.
During peak load periods, the distribution grid will shave peaks by discharging power
from distributed shared energy storage systems or purchasing power from the main grid.
During low load periods, the distribution grid will be filled by charging from a distributed
shared energy storage system to further reduce the net load peak-to-valley difference.

3. Double-Layer Planning Model for Optimal Allocation of Distributed Shared
Energy Storage

Double-layer planning divides the problem into two layers: upper-layer optimization
and lower-layer optimization [19]. The upper- and lower-layer optimization models have
their own optimization objectives, constraints, and decision variables. A schematic diagram
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of the distributed shared energy storage double-layer planning model in this paper is
shown in Figure 2. From the figure, it can be seen that the upper and lower optimization
problems are coupled with each other through the parameter transfer between layers. The
upper-layer model passes the decision variables, i.e., the rated capacity and rated power
of the distributed shared energy storage, to the lower-layer model as the constraints of
the lower-layer model. The lower-layer model seeks the optimization of the charging
and discharging power and position of each energy storage on this basis and feeds the
optimization results of the power exchange between each body to the upper layer. The
optimal values of the upper and lower layers are obtained through continuous iteration.
Double-layer planning is used to find the lower layer optimum under the condition of the
upper layer optimum, thus maximizing the interests of each subject.
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Figure 2. The schematic diagram of the distributed shared energy storage double-layer
optimization model.

3.1. Upper-Layer Model

The upper-layer model is used to solve the distributed shared energy storage plant-
rated capacity problem. The lowest cost of the distributed shared energy storage system is
used as the objective function to plan the rated capacity and rated power of distributed
shared energy storage.

3.1.1. Objective Function

The upper-layer optimization objective is the lowest cost of a distributed shared energy
storage system, which can be expressed as

minC1 = Csto − Cser + Cadn − Cnew (1)

where C1 is the cost of a distributed shared energy storage system; Csto is the average daily
investment and maintenance cost of distributed shared energy storage; Cnew is the cost of
trading electricity between distributed shared energy storage and distributed new energy
stations; Cadn is the electricity transaction cost between distributed shared energy storage
and the distribution grid; and Cser is the distributed shared energy storage capacity lease
service fee.

The average daily investment and maintenance cost of distributed shared energy
storage is expressed as

Csto =
n

∑
i=1

[
r(1 + r)y

365[(1 + r)y − 1]
(δpPsto,i + δeEsto,i) + δmPsto,i

]
(2)

where n is the number of energy storage units; r is the discount rate; y is the life cycle of
energy storage equipment; δp and δe are the investment cost per unit power and capacity
of energy storage, respectively; Psto,i and Esto,i are the rated power and capacity of energy
storage, respectively; and δm is the maintenance cost per unit power.
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The cost of trading electricity between distributed shared energy storage and dis-
tributed new energy stations is expressed as

Cnew =
T

∑
t=1

N

∑
j=1

δt
newPt

sto,new,j (3)

where T is 24; N is the number of distributed new energy stations; δt
new is the selling

electricity price per unit electricity of distributed new energy stations at time t; and Pt
sto,new,j

is the power selling from new energy station j to distributed shared energy storage system
at time t.

The electricity transaction cost between distributed shared energy storage and the
distribution grid is expressed as

Cadn =
T

∑
t=1

(δt
stoPt

sto,adn,d − δt
adnPt

sto,adn,c) (4)

where δt
sto is the selling electricity price per unit electricity of distributed shared energy

storage at time t; δt
adn is the selling electricity price per unit electricity of the distribution

grid at time t; Pt
sto,adn,d is the electricity sold by the distributed shared energy storage system

to the distribution grid at time t; and Pt
sto,adn,c is the electricity sold by the distribution grid

to the distributed shared energy storage system at time t.
The distributed shared energy storage capacity lease service fee is expressed as

Cser = δs

T

∑
t=1

(Pt
sto,adn,c + Pt

sto,adn,d) + δs

T

∑
t=1

N

∑
j=1

Pt
sto,new,j (5)

where δs is a unit power service fee paid by the distribution grid and distributed new
energy stations to the distributed shared energy storage system.

3.1.2. Constraint Condition

The energy multiplier constraint can be expressed as

Esto,i = βPsto,i (6)

where β is the energy storage battery rate, which refers to the energy ratio constraint
between the capacity of the energy storage battery and the rated power.

The distributed shared energy storage power constraint can be expressed as

Psto,i,min ≤ Psto,i ≤ Psto,i,max (7)

where Psto,i,min and Psto,i,max are the minimum and maximum power of distributed shared
energy storage installed at each node, respectively.

The distributed shared energy storage charging and discharging power constraint can
be expressed as

n
∑

i=1
(Pt

sto,i,d − Pt
sto,i,c) = Pt

sto,sdn,d − Pt
sto,sdn,c −

N
∑

j=1
Pt

sto,new,j

0 ≤ Pt
sto,i,c ≤ At

sto,i,cPsto,i

0 ≤ Pt
sto,i,d ≤ At

sto,i,dPsto,i

At
sto,c,i A

t
sto,d,i = 0

(8)
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where Pt
sto,i,c and Pt

sto,i,d are the charging and discharging power of energy storage i at time
t, respectively, and At

sto,i,c and At
sto,i,d are the charge and discharge flags of energy storage i

at time t, respectively.
The distributed shared energy storage charge constraint can be expressed as

Et
sto,i = Et−1

sto,i + (ηsto,cPt
sto,c,i − Pt

sto,d,i

/
ηsto,d )∆t

0.1Esto,i ≤ Et
sto,i ≤ 0.9Esto,i

E0
sto,i = ET

sto,i = 0.2Esto,i

(9)

where Et
sto,i is the charge of energy storage i at time t and ηsto,c and ηsto,d are the charging

and discharging efficiency of energy storage, respectively.

3.2. Lower Layer Model

The lower-layer model is used for solving distributed shared energy storage siting
and distribution grid-distributed new energy stations′ economic operation problems. The
objective is to optimize each energy storage’s location and charging and discharging
power, achieving the lowest comprehensive daily operating cost of the distribution of
grid-distributed new energy stations.

3.2.1. Objective Function

The lower-layer optimization objective is to achieve the lowest integrated daily operating
cost of the distribution grid-distributed new energy stations, which can be expressed as

minC2 = Cgrid + Cser + Cadn − Cnew + Cpeak−valley (10)

where Cgrid is the cost of electricity purchased from the main grid by the distribution grid
and Cpeak−valley is the penalty cost of the net load peak-to-valley difference.

The cost of electricity purchased from the main grid by the distribution grid is ex-
pressed as

Cgrid =
T

∑
t=1

δt
pPt

grid (11)

where δt
p is the price of electricity sold by the main grid at time t and Pt

grid is the power sold
by the main grid to the distribution grid at time t.

The penalty cost of the net load peak-to-valley difference is expressed as

Cpeak−valley = δpeak−valley
(

Lmax
load − Lmin

load
)

Lt
load =

M
∑

k=1
Pt

load,k + Pt
sto,adn,c − Pt

sto,adn,d−
N
∑

j=1
Pt

adn,new,j
(12)

where δpeak−valley is the net load peak–valley difference unit power penalty cost of
0.65 Yuan/kW [20]; Lmax

load and Lmin
load are the net load maximum and minimum values,

respectively; Lt
load is the net distribution grid load at time t; Pt

load,k is the load at the node
k at time t; and Pt

adn,new,j is the power sold by the new energy station j to the distribution
grid at time t.

3.2.2. Constraint Condition

The capacity constraint of a distributed new energy site can be expressed as

0 ≤ Pt
new,j ≤ Pt

new_0,j (13)

where Pt
new,j is the actual output of the new energy station j at time t and Pt

new_0,j is the ideal
output of the new energy station j.
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The distributed new energy stations and distributed shared energy storage purchase
and sale constraint can be expressed as

0 ≤ Pt
sto,new,j ≤ Pmax

sto,new (14)

where Pmax
sto,new is the maximum interactive power between the new energy station and the

distributed shared energy storage.
The power balance constraint of distributed new energy stations can be expressed as

N
∑

j=1
Pt

new,j =
N
∑

j=1
(Pt

adn,new,j + Pt
sto,new,j)

N
∑

j=1
Pt

adn,new,j = min(
M
∑

k=1
Pt

load,k,
N
∑

j=1
Pt

new_0,j)

(15)

The distribution grid and distributed shared energy storage purchase and sale con-
straint can be expressed as

0 ≤ Pt
sto,adn,d ≤ Bt

sto,adn,dPmax
sto,adn

0 ≤ Pt
sto,adn,c ≤ Bt

sto,adn,cPmax
sto,adn

(16)

where Bt
sto,adn,d and Bt

sto,adn,c are the flag bits of the power interaction between the distribu-
tion grid and distributed shared energy storage and Pmax

sto,adn is the maximum interaction
power between the distribution grid and distributed shared energy storage.

The distribution grid power balance constraint can be expressed as

Pt
grid +

N

∑
j=1

Pt
adn,new,j + Pt

sto,adn,d = Pt
sto,adn,c +

M

∑
k=1

Pt
load,k + Ploss,t (17)

where Ploss,t is the net loss of the distribution network at time t.
The node power balance constraint can be expressed as

Pt
i = Ut

i ∑
j∈i

Ut
j (Gij cos θij + Bij sin θij)

Qt
i = Ut

i ∑
j∈i

Ut
j (Gij sin θij − Bij cos θij)

(18)

where Pt
i and Qt

i are the active and reactive power injected at node i at time t, respectively;
Ut

i and Ut
j are the voltage amplitudes at node i at time t, respectively; Gij and Bij are the

conductance and susceptance between nodes i and j, respectively; and θij is the phase angle
difference between nodes i and j.

The node voltage constraint can be expressed as

Ui,min ≤ Ut
i ≤ Ui,max (19)

where Ui,min and Ui,max are the minimum and maximum values of the voltage amplitude
of node i, respectively.

The branch circuit capacity constraint can be expressed as

St
ij ≤ Sij,max (20)

where St
ij is the transmitted power between nodes i and j at time t, and Sij,max is the

maximum value of the transmittable power between nodes i and j.
There is a nomenclature table in the Nomenclature section to navigate each symbol

used in the paper.
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3.3. Double-Layer Planning Model Solving

In the process of siting and setting the capacity of distributed shared energy storage, it
is necessary to first consider the optimal economy of the distributed shared energy storage
system, and then on this basis, consider the lowest operating costs of the distribution grid
and distributed new energy station. The double-layer planning model based on the siting
and capacity determination of distributed shared energy storage is a mutually coupled
nonlinear multi-objective problem and contains multiple variables of different types. There-
fore, this paper uses a double-layer iterative particle swarm algorithm combined with tidal
wave calculation for the solution, as shown in Figure 3.
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The upper model is solved by a particle swarm algorithm, where each particle consists
of two parts: the rated power of each energy storage (Psto,i) and the rated capacity of
each energy storage (Esto,i). The lower model is solved using a particle swarm algorithm
combined with a tide calculation, where each particle also includes two parts: the location
of each energy storage (xi) and the charging and discharging power of each energy storage
(Pt

sto,i,c and Pt
sto,i,d, respectively). The upper model passes upper-level particles to the lower

model as constraints for the lower model. The lower-layer model seeks the optimization
of the charging and discharging power and position of each energy storage on this basis,
and feeds the optimization results of the power exchange between the subjects to the
upper layer. The optimal values of the upper and lower layers are obtained through
continuous iteration.

4. Example Analysis
4.1. Case Setup

The algorithm uses a modified IEEE-33 node as the object of study. Among them,
the IEEE-33 node is used as a distribution grid system [21]; 1000 kW PV is connected
at node 9, and 1000 kW wind power is connected at node 20 as distributed new energy
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stations. For the distributed shared energy storage system, the allowed access nodes
are 2–33, with a maximum of 6 energy storage accesses; the minimum rated power of
energy storage access is 100 kW, the maximum rated power is 1000 kW, the discount rate
of energy storage is 0.05 [20], the service life is 15 years [8], the unit power investment
cost is 1173 Yuan/kW [20], the unit capacity investment cost is 1650 Yuan/(kW·h) [8], the
unit power maintenance cost is 97 Yuan/(year·kW) [20], the energy storage unit power
service fee is 0.05 Yuan/(kW·h) [20], the energy storage charging efficiency is 0.95 [20],
and the energy storage discharging efficiency is 0.9 [8]. The modified IEEE-33 node is
shown in Figure 4. The electricity sales tariffs between subjects [22] are shown in Table 1.
The load power and the output of each new energy station for a typical day are shown
in Appendix A.
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Table 1. The electricity sales price between each subject.

Period

Electricity Price/(Yuan 1/(kW·h))

Main Grid Electricity
Sales Price

Electricity
Distribution Grid

Sales Price

Distributed Shared
Energy Storage

Electricity Sales Price

Distributed New
Energy Stations

Electricity Sale Price

peak 8:00–12:00
17:00–21:00 1.36 1.10 1.38 1.05

flat 12:00–17:00
21:00–24:00 0.82 0.8 0.82 0.65

valley 0:00–08:00 0.37 0.35 0.40 0.30
1 1 Yuan ≈ 0.1388 USD.

To analyze the rationality of distributed shared energy storage configuration, four
scenarios are set up in this paper for comparative analysis.

Scenario 1: no energy storage is configured, the excess power from distributed new
energy stations is directly curtailed, and the power imbalance of the distribution grid is
directly purchased from the main grid.

Scenario 2: the distribution grid, new energy station 1 (node 20 access wind power
station), and new energy station 2 (node 9 access PV station) invest in the construction of
energy storage on their own to achieve peak shaving and fill the valley and improve the
consumption rate of new energy. Parameters such as the energy storage discount rate are
the same as for distributed shared energy storage.

Scenario 3: configuration of different numbers of shared energy storage. Discusses the
economic impact of configuring shared energy storage on the system under the constraint
of the number of shared energy storage.

Scenario 4: distributed shared energy storage is configured according to the method
proposed in this paper, using distributed shared energy storage to cut peaks and fill valleys
and improve the consumption rate of new energy.
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4.2. Analysis of the Impact of Distributed Shared Energy Storage Systems on Peak Shaving and
New Energy Consumption

The power balance of the distribution network for scenario 1 and scenario 4 is shown
in Figure 5. In Figure 5, the positive power represents the power supplied to the distribution
grid from outside, the negative power represents the network loss within the distribution
grid and the power consumed by all electrical loads, and the difference between the
maximum and minimum values of the net load curve is the peak-to-valley difference.
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Figure 5. The distribution network power balance diagram. (a) Scenario 1; (b) scenario 4.

Analyzing the power balance diagram of the distribution network in scenario 1, we
can see that the distribution grid gives priority to the power provided by the distributed
new energy stations, and when the power provided by the distributed new energy stations
is insufficient, the distribution grid purchases power directly from the main grid to meet
the power demand of the load. The load has peak and valley characteristics, but the new
energy output has anti-peak characteristics. From Figure 5a, we can see that in 1–5 h and
14–16 h, the load is less but the new energy output is larger, resulting in a net load curve
close to 0. However, in 9–12 h and 18–21 h, the peak load increases but the new energy
output decreases, and the distribution grid can only purchase a large amount of power
from the main grid. Based on the net load curve, it can be seen that the peak-to-valley
difference for scenario 1 is 3040 kW.

Analyzing the power balance diagram of the distribution grid in scenario 4, we can see
that the distribution grid gives priority to consuming the power provided by distributed
energy stations; during the low-load period of 1–8 h, the distribution grid fills the valley
by selling power to distributed shared energy storage; during the peak load periods
of 9–12 h and 18–21 h, the distribution grid cuts the peak by purchasing power from
distributed shared energy storage, thus reducing the net load peak-to-valley difference of
the distribution grid. Based on the net load curve, it can be seen that the peak-to-valley
difference for scenario 4 is 1120 kW, which is 63% lower than that of scenario 1.

The power balance of distributed new energy sites for scenario 1 and scenario 4 is
shown in Figure 6. In Figure 6, the positive power represents the power output of each
new energy station, and the negative power represents the power sold by each new energy
station to the distribution grid and the distributed shared energy storage system. The
ideal power output of distributed new energy stations represents the sum of the maximum
power available from all new energy stations in that period.

Analyzing the power balance diagram of distributed new energy stations in scenario
1, we can see that the distribution grid cannot consume all the new energy output at
2–6 h and 15 h, at which time there is power curtailment in distributed new energy
stations, and the power curtailed by wind and light is 1455 kW. Scenario 4 is equipped with
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distributed shared energy storage. When the distribution grid cannot consume all the new
energy output, the distributed new energy stations sell the excess power to distributed
shared energy storage to improve the new energy consumption rate, and the new energy
consumption rate of scenario 4 is 100%.
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The economic benefits of scenario 1 and scenario 4 are shown in Table 2. Scenario 1
does not configure energy storage, so the total cost of the distributed shared energy storage
system is 0. The daily integrated operating cost of the distribution grid-distributed new
energy stations is 35,873 Yuan, the net load peak-to-valley difference is 3040 kW, and the
phenomenon of wind and light curtailment exists. Scenario 4 is configured with distributed
shared energy storage; the cost of the distributed shared energy storage system is−84 Yuan,
the energy storage is profitable, and the distribution grid-distributed new energy stations’
daily integrated operation cost is reduced by 1786 Yuan compared to scenario 1; the net
load peak-to-valley difference is reduced by 1920 kW compared to scenario 1, and the new
energy consumption rate is 100%. The comparative analysis of scenario 1 and scenario 4
verifies that the configuration of distributed shared energy storage can effectively reduce
the peak-to-valley difference and improve the consumption rate of new energy.

Table 2. Economic benefits of scenario 1 and scenario 4.

Scenario
Distributed Shared

Energy Storage
System Cost/Yuan 1

Distribution Grid-Distributed New
Energy Stations Comprehensive Daily

Operating Cost/Yuan

Net Load
Peak-to-Valley
Difference/kW

New Energy
Consumption Rate/%

1 - 35,873 3040 93

4 −84 34,087 1120 100
1 1 Yuan ≈ 0.1388 USD.

4.3. Analysis of Distributed Shared Energy Storage Optimal Allocation Results and Charging and
Discharging Behavior

The results of scenario 2 and scenario 4 energy storage optimization configurations are
shown in Table 3, where the distribution grid energy storage in scenario 2 is configured with
the peak-to-valley difference derived from scenario 4 as the constraint. It can be seen that
the total configured capacity in scenario 2 is 9580 kW·h and the total configured capacity of
distributed shared energy storage in scenario 4 is 6870 kW·h, which is 28% less than the
total configured capacity in scenario 2. It can be seen that by reasonably sharing distributed
energy storage, realizing the time, sharing multiplexing of energy storage, and improving
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the utilization rate of energy storage resources, the configuration of smaller power and
capacity of energy storage can meet the demand for energy storage in distributed new
energy stations and distribution grid.

Table 3. The energy storage optimization configuration results of scenario 2 and scenario 4.

Scenario Category Access Node Power Rating/kW Rated Capacity/(kW·h)

2

Energy storage for new energy station 1 20 432 2160

Energy storage for new energy station 2 9 175 875

Energy storage for distribution grid
6 1000 5000

3 309 1545

4
Distributed shared energy storage 1 6 987 4935

Distributed shared energy storage 2 13 381 1935

To see the utilization of energy storage resources more intuitively, this paper will
analyze the results of scenario 4 energy storage charging and discharging behavior and
charge state optimization, as shown in Figure 7. Positive power represents energy storage
charging and negative power represents energy storage discharging.
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Figure 7. The distributed shared energy storage charge–discharge and charge state optimization
results. (a) Distributed shared energy storage 1; (b) distributed shared energy storage 2.

From Figure 7, it can be seen that both distributed shared energy storage 1 and 2 reach
the maximum charging power in the low valley period and the maximum discharging
power in the peak load period, i.e., both distributed shared energy storage 1 and 2 have
full charging and full discharging behaviors. In addition, the distributed shared energy
storage 1 reaches a maximum charge state of 0.9 at 6 h and a minimum charge state of 0.16
at 21 h. Distributed shared energy storage 2 reaches a maximum charge state of 0.9 at 6 h
and a minimum charge state of 0.1 at 21 h, indicating that all distributed shared energy
storage power reaches the upper or lower capacity limit. Distributed shared energy storage
makes full use of energy storage capacity resources by aggregating the energy demand of
distribution grids and distributed new energy sites and reasonably allocating each energy
storage charge and discharge.

The economic benefits of scenario 2 and scenario 4 are shown in Table 4. It can be seen
that the distributed shared energy storage system in scenario 4 is profitable, with a total
cost of −84 Yuan and a combined daily operating cost of 2409 Yuan less for scenario 4’s
distribution grid-distributed new energy field station compared to scenario 2. Through
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the comparative analysis of scenario 2 and scenario 4, it is verified that the configuration
of distributed shared energy storage can reduce the operating cost of distribution grid-
distributed new energy stations while taking into account the economics of shared energy
storage investors to achieve a win–win situation for all parties.

Table 4. Economic benefits of scenario 2 and scenario 4.

Scenario
Distributed Shared

Energy Storage
System Cost/Yuan 1

Distribution Grid-Distributed New
Energy Stations Comprehensive

Daily Operating Cost/Yuan

Net Load
Peak-to-Valley
Difference/kW

New Energy
Consumption Rate/%

2 - 36,496 1120 100

4 −84 34,087 1120 100
1 1 Yuan ≈ 0.1388 USD.

4.4. Analysis of the Impact of Different Numbers of Energy Storage on the Economics of
Distributed Shared System

To analyze the economic impact of configuring different numbers of energy storage on
the distributed shared system, computational analysis was performed for scenario 3, and
the cost of the distributed shared energy storage system with different numbers of energy
storage as the constraint was obtained, as shown in Figure 8.
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As can be seen from Figure 8, the cost of distributed shared energy storage tends to
decrease and then increase as the number of energy storage increases. Due to the constraints
of energy storage rated power, line transmission capacity, etc., as the number and scale
of energy storage increases, the ability of distributed shared energy storage systems to
consume new energy and peak shaving is increasing (i.e., the revenue of distributed
shared energy storage is increasing), so the cost of distributed shared energy storage is
on a downward trend. However, as the number and scale of energy storage continue
to increase, the effect of new energy consumption and peak shaving tends to saturate,
but the investment cost of energy storage is increasing, so the cost of distributed shared
energy storage is on the rise. In this calculation example, the cost of distributed shared
energy storage is at least −84 Yuan when the number of energy storage sites is 2, and the
distributed shared energy storage operator achieves profitability.

5. Conclusions

This paper proposes a distributed shared energy storage optimal allocation method
that takes into account both power-side and grid-side regulation requirements, integrates
the optimization problems at both planning and operation levels, constructs a double-
layer model for distributed shared energy storage optimal allocation, and solves it using a
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double-layer iterative particle swarm algorithm combined with tide calculation, and draws
the following main conclusions:

By deploying distributed shared energy storage, distribution grid and new energy
stations receive energy storage charging and discharging services at a lower cost, increasing
the new energy consumption rate to 100% and reducing the peak-to-valley difference
by 61%.

Through the reasonable sharing of distributed energy storage, realize the time-sharing
reuse of energy storage and improve the utilization rate of energy storage resources so
that the configuration of smaller capacity energy storage can meet the demand for energy
storage in distributed new energy stations and distribution grids. Distributed shared energy
storage can reduce the allocated capacity by 28% compared to the standalone distribution
storage scenario.

Through distributed shared energy storage system services and a reasonable number
of energy storage configurations, distribution grids and distributed new energy stations
can reduce their operating costs. At the same time, distributed shared energy storage
operators realize positive returns, and there is potential for profitable investment in building
distributed shared energy storage plants.
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Nomenclature

C1
the cost of a distributed shared energy
storage system

Csto
the average daily investment and maintenance cost
of distributed shared energy storage

Cnew

the cost of trading electricity between distributed
shared energy storage and distributed new
energy stations

Cadn
the electricity transaction cost between distributed
shared energy storage and the distribution grid

Cser
the distributed shared energy storage capacity lease
service fee

δp
the investment cost per unit of power of
energy storage

δe
the investment cost per unit capacity of
energy storage

Psto,i the rated power of energy storage

Esto,i the rated capacity of energy storage δm the maintenance cost per unit of power

δt
new

the selling electricity price per unit of electricity of
distributed new energy stations at time t

Pt
sto,new,j the power sold from new energy station

δt
sto

the selling electricity price per unit of electricity of
distributed shared energy storage at time t

δt
adn

the selling electricity price per unit of electricity of
distribution grid at time t

Pt
sto,adn,d

the electricity sold by the distributed shared energy
storage system to the distribution grid at time t

Pt
sto,adn,c

the electricity sold by the distribution grid to the
distributed shared energy storage system at time t

δs

a unit power service fee paid by the distribution
grid and distributed new energy stations to dis-
tributed shared energy storage system

β the energy storage battery rate
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Psto,i,min
the minimum power of distributed shared energy
storage installed at each node

Psto,i,max
the maximum power of distributed shared energy
storage installed at each node

Pt
sto,i,c the charging power of energy storage i at time t Pt

sto,i,d the discharging power of energy storage i at time t
At

sto,i,c the charge flags of energy storage i at time t At
sto,i,d the discharge flags of energy storage i at time t

Et
sto,i the charge of energy storage i at time t ηsto,c the charging efficiency of energy storage

ηsto,d the discharging efficiency of energy storage Cgrid
the cost of electricity purchased from the main grid
by the distribution grid

Cpeak−valley
the penalty cost of the net load peak-to-
valley difference

δt
p

the price of electricity sold by the main grid at
time t

Pt
grid

the power sold by the main grid to the distribution
grid at time t

δpeak−valley
the net load peak–valley difference unit power
penalty cost

Lmax
load the net load maximum values Lmin

load the net load minimum values
Lt

load the net distribution grid load at time t Pt
load,k the load at the node k at time t

Pt
adn,new,j

the power sold by the new energy station j to the
distribution grid at time t

Pt
new,j

the actual output of the new energy station j at
time t

Pt
new_0,j the ideal output of the new energy station j Pmax

sto,new

the maximum interactive power between the
new energy station and the distributed shared
energy storage

Bt
sto,adn,d

the discharge flag bits of the power interaction be-
tween the distribution grid and distributed shared
energy storage

Bt
sto,adn,c

the charge flag bits of the power interaction be-
tween the distribution grid and distributed shared
energy storage

Pmax
sto,adn

the maximum interaction power between distribu-
tion grid and distributed shared energy storage

Ploss,t the net loss of the distribution network at time t

Pt
i the active power injected at node i at time t Qt

i the reactive power injected at node i at time t
Ut

i the voltage amplitudes at node i at time t Ut
j the voltage amplitudes at node j at time t

Gij the conductance between nodes i and j Bij the susceptance between nodes i and j

θij the phase angle difference between nodes i and j Ui,min
the minimum values of the voltage amplitude of
node i

Ui,max
the maximum values of the voltage amplitude of
node i

St
ij

the transmitted power between nodes i and j at
time t

Sij,max
the maximum value of the transmittable power
between nodes i and j
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Abstract: Reliability is a fundamental concept for power systems, and the optimal placement of
switchable devices is a valuable tool for improvements in this area. The goal of this paper is to pro-
pose an optimal allocation method for circuit breakers and switches that can break the cost–reliability
dilemma and simultaneously achieve reliability and economic improvement in terms of the distribu-
tion network. Moreover, in view of the fact that variations in the load level can affect the reliability of
the distribution network, the variations of different load level scenarios are considered in this paper,
where a mixed integer linear programming (MILP) model based on fictitious fault flows is established
to derive the optimal allocation scheme that can adapt to the changes of multiple scenarios regarding
the load. Meanwhile, due to the constraints of reliability indices, the post-fault reconfiguration
scheme of a distribution network under different load level scenarios can also be obtained to enhance
its overall reliability. Finally, the applicability and effectiveness of the proposed method are verified
by numerical tests on a 54-node test system.

Keywords: distribution network; load level variation; circuit breakers; switches; allocation; reliability
enhancement

1. Introduction

According to the definition of reliability, a power system must be capable of consis-
tently providing end users with both the quantity and quality of electricity they require [1].
About 70% of total electric service interruptions are caused by contingencies in the distribu-
tion system [2]. In recent years, the stability of the distribution network has declined due to
the large proportion of distributed generation (DG) usage with the continuous development
of renewable energy power generation technology [3]. Attaining high reliability for a distri-
bution system is not only important but is also crucial to ensure the uninterrupted supply of
electricity to consumers. Reliable distribution systems minimize power interruptions and
enhance customer satisfaction. This can be achieved by implementing robust infrastructure,
such as redundant lines, automated switching devices, and protective measures against
external disturbances.

At present, the main strategies to improve power supply reliability are reducing the
equipment failure rate, shortening power restoration time, and improving fault isolation
accuracy [4,5]. Among the various methods that could improve the reliability of distribution
networks, the optimal placement of circuit breakers and switches has a significant impact
on enhancing the reliability of the utility grids. It has been demonstrated in earlier studies
that remote-controlled switches (RCSs) increase the distribution network reliability indices,
such as the system average interruption duration index (SAIDI) and the expected energy
not supplied (EENS), by reducing the duration that it takes to restore the power supply as
well as speeding up the process of isolating the faulted area from the rest of the distribution
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network [6]. Given the fact that installing switchable devices is expensive, it is essential to
select the location sites properly to balance benefits and costs [7]. Due to the relatively high
investment costs of switchable devices and the budget limitations of utilities to improve the
quality of customer services, it is necessary to study the optimal allocation of switchable
devices in the distribution network to achieve the maximum improvement to the level
of reliability with the lowest investment cost so that the cost–reliability dilemma could
be broken.

Moreover, variations in the load level may lead to operating conditions beyond the
design limits of the distribution network, which may cause voltage instability, transformer
overloads, and other equipment failures leading to outages. Moreover, it can also signifi-
cantly affect the planning and operation of the distribution network, making it difficult to
optimize network utilization and ensure adequate reserve capacity. Overall, the impact
of load level variation on the reliability of distribution networks cannot be ignored, and
addressing it requires effective planning and operation strategies that take into account
the complexity and variability of load levels. Hence, it is worthwhile to study the optimal
allocation of circuit breakers and switches that can adapt to load level variations in order
to weaken the impact of this on the reliability of the distribution network and maximize
the effects of reliability improvements in the distribution network with lower economic
investment costs.

The allocation problem of switchable devices has an underlying service restoration
problem, consisting of choices about which switchable device must be opened or closed to
minimize the unattended area after the isolation of a failure, which is categorized as a com-
plex, combinatorial, and constrained optimization problem [8]. Plenty of pieces of literature
have studied the optimal placement of these switchable devices in the distribution network.

The optimal allocation issue in the distribution network is classified as a combinatorial
optimization problem that, especially for large cases, can be challenging to solve when
optimally utilizing mathematical programming methods. Due to the complexity of the
problem, heuristic algorithms are mainly used to solve this [9–11]. The reliability index of
EENS was used in [12] to perform the optimal placement of remote-controlled switches,
employing the differential search metaheuristic algorithm. In [13], the immune algorithm
was used to determine the optimal location of switches by utilizing an objective function
that minimizes the expense of investments in line switches and the cost of customer service
outages while taking into account the failure rates of the load points concerned. The ant
colony optimization algorithm is adopted in [14] to solve the fuzzy multi-objective problem
of optimizing the location of sectionalizing switches, with the objectives of reliability
improvements and the minimization of the cost of sectionalizing switches. Fuzzy logic and
genetic algorithms were employed in a hybrid algorithm in [15] to improve the SAIDI index,
which requires many network parameters for its application. A global combination criterion
was proposed to simultaneously evaluate the combination performance of multiple switch
positions in [16], which avoids the tedious traditional problem of adjusting only one
switch position at a time and directly determining the optimal solution. However, some
mathematical methods have also been proposed to solve the problem in recent years. In [17],
the remote-controlled switch configuration problem is modeled as a mixed-integer linear
programming model that divides loads into two categories according to the restoration
time, and the configuration scheme is developed with the objective of minimizing the
total cost and expected outage losses. A mixed-integer linear programming model for
simultaneous switch and tie line placement in distribution systems with complex topologies
is presented in the study in [18]. The studies on the allocation of switchable devices usually
aim at improving the reliability and economy of the distribution network and mainly focus
on the placement of switches with little consideration given to the deployment of circuit
breakers. Meanwhile, the influence of load level variation fluctuations on the reliability of
the distribution network is usually ignored.

In light of the progress in the above studies, this paper carries the analysis further.
In order to break the cost–reliability dilemma and achieve a higher reliability level with a
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relatively low investment cost, this paper establishes an optimal allocation model for circuit
breakers and switches in distribution networks with the objective function of summing the
minimum outage loss and investment cost of circuit breakers and switches while taking
the reliability index as the constraint. By considering the fact that changes in load level
can have an impact on reliability, variations in load level were considered to enhance the
adaptability of the derived optimal configuration scheme to different load level scenarios
while improving the practicality of the method proposed in this paper.

The concept of fictitious fault flows is used to realize the linearized calculation of
reliability indices and, at the same time, the reconfiguration scheme after the occurrence of
faults in different scenarios, which can be solved according to the load level in different
scenarios in a targeted manner to realize the effective improvement of distribution network
reliability. The proposed model for the optimal allocation of circuit breakers and switches
(considering load level variation) is a mixed-integer linear programming model that can
achieve efficient solutions for the optimal allocation of switchable devices in distribution
networks based on the goal of reliability enhancements and the result can be guaranteed to
be the global optimal solution, with good practicality and engineering value.

2. Mathematical Model of Optimal Allocation of Circuit Breakers and Switches

The distribution network optimization allocation model for circuit breakers and
switches in this study is based on the reliability assessment model put forward in [19],
which utilizes the concept of fictitious fault flows to linearize the calculation of the reli-
ability indices of the distribution system. Variations in load level are considered in this
paper, and based on different load level scenarios, the optimal circuit breaker and switch
allocation scheme and its initial operating state that can adapt to the corresponding load
level variations are explored with the goal of improving the reliability and economy of the
distribution network, and the reconfiguration scheme of the distribution network after a
fault occurs under different load scenarios can be obtained at the same time.

2.1. Objective Function

In order to ensure the economic requirements of distribution network planning and
operation, this paper minimizes the sum of the outage loss and investment cost of circuit
breakers and switches in a distribution network as the objective function, as is shown in
(1). For the calculation of outage loss, this is represented by the product of the unit price of
outage loss per unit of power and EENS in the distribution network. The improvement of
the reliability of the distribution network can be achieved simultaneously by taking the
EENS in the system as one of the optimization objectives.

f = minimize (FCB∑
ij
(xi,CB

ij + xj,CB
ij )+FSW∑

ij
(xi,SW

ij + xj,SW
ij ) + αEENS) =

= minimize (Cost + αEENS)
(1)

where FCB and FSW are the unit prices of the circuit breaker and switch, respectively. xi,CB
ij ,

xj,CB
ij and xi,SW

ij , xj,SW
ij are the binary variables indicating the installation of circuit breakers

and switches on side i and side j of the branch ij, respectively. If the value of the variable
is 1, it means that a circuit breaker or switch is installed on that side; if the value of the
variable is 0, there are no circuit breakers or switches installed on that side. α is the unit
price of power outage loss per unit of electricity. The EENS is the expected amount of
power not supplied in the distribution network after an outage has occurred.

2.2. Logical Constraints on the Installation of Circuit Breakers and Switches and the
Corresponding Status

Since the operation status can only be switched between closed and open when a
circuit breaker or switch is installed on the branch, it is essential to make constraints to
ensure the reasonable operation of circuit breakers and switches. For normal operation
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scenarios, the logical restrictions between the installation status and the operating status of
the circuit breakers (or switches) are depicted as (2), (3) (or (4), (5)).

bi,NO
ij ≥ 1− xi,CB

ij , ∀ij ∈ Y (2)

bj,NO
ij ≥ 1− xj,CB

ij , ∀ij ∈ Y (3)

si,NO
ij ≥ 1− xi,SW

ij , ∀ij ∈ Y (4)

sj,NO
ij ≥ 1− xj,SW

ij , ∀ij ∈ Y (5)

where bi,NO
ij and bj,NO

ij represent the original operation status of circuit breakers placed at
end i and j of branch ij. If the variable equals 1, the circuit breaker or switch in this circuit is
closed; if both variables equal 0, the circuit is open. Similarly, si,NO

ij and sj,NO
ij represent the

original operation status of switches at ends i and j of branch ij.
Under outage scenarios, taking into account the variation in load levels, the above

logical constraints on the installation of the circuit breakers and switches and their corre-
sponding changeable operating status are rewritten as (6)–(9).

bi,xy,SC
ij ≥ 1− xi,CB

ij , ∀ij ∈ Y (6)

bj,xy,SC
ij ≥ 1− xj,CB

ij , ∀ij ∈ Y (7)

si,xy,SC
ij ≥ 1− xi,SW

ij , ∀ij ∈ Y (8)

sj,xy,SC
ij ≥ 1− xj,SW

ij , ∀ij ∈ Y (9)

where xy represents the branch where the fault occurs, and SC represents different load
level scenarios.

2.3. Constraints on Power Flow and the Capacity of Branches

Each normal operating scenario’s load demand condition is constrained by (10) and
(11). The load demand of a node under normal operating conditions is all the load power
connected to that node under the corresponding load level scenario. Constraints (12)–(15)
are derived from the linearized power flow equations in [20]. Equation (14) uses a method
that combines binary variables with the large M method to constrain the power and voltage
in the network to facilitate the linearization of the optimal allocation model. Nodal voltage
constraints under normal scenarios are expressed as (16). Constraints (17)–(20) illustrate
how the status of switches in the circuit restricts the power flow of branch ij; that is, the
existence of power flow is possible when and only when the branch is connected.

PSC,NO
i = PSC

i , ∀i ∈ ΨLN (10)

QSC,NO
i = QSC

i , ∀i ∈ ΨLN (11)

PSC,NO
ki = ∑

j∈Ψi

PSC,NO
ij + PSC,NO

i , ∀ki ∈ Y (12)

QSC,NO
ki = ∑

j∈Ψi

QSC,NO
ij + QSC,NO

i , ∀ki ∈ Y (13)
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−
(

2− si,NO
ij − sj,NO

ij

)
M + 2

(
rijP

SC,NO
ij + xijQ

SC,NO
ij

)
≤ USC,NO

i −USC,NO
j ≤

≤
(

2− si,NO
ij − sj,NO

ij

)
M + 2

(
rijP

SC,NO
ij + xijQ

SC,NO
ij

)
, ∀ij ∈ Y

(14)

USC,NO
i =

(
VS
)2

, ∀i ∈ ΨSS (15)

U ≤ USC,NO
i ≤ U, ∀i ∈ ΨLN (16)

−Msi,NO
ij ≤ PSC,NO

ij ≤ Msi,NO
ij , ∀ij ∈ Y (17)

−Msi,NO
ij ≤ QSC,NO

ij ≤ Msi,NO
ij , ∀ij ∈ Y (18)

−Msj,NO
ij ≤ PSC,NO

ij ≤ Msj,NO
ij , ∀ij ∈ Y (19)

−Msj,NO
ij ≤ QSC,NO

ij ≤ Msj,NO
ij , ∀ij ∈ Y (20)

where PSC,NO
i and QSC,NO

i describe the active and reactive demand under different load
level scenarios at the node under normal operating conditions. The active and reactive
power flows through branch ij under different load level scenarios are denoted by PSC,NO

ij

and QSC,NO
ij , respectively. USC,NO

i is the square voltage under different load levels at the

node, while VS is the source voltage at a feeder’s head end.
In constraints (21)–(23), the branch capacity limitations that are linearized and rely on

piecewise relations are offered by [21], which presents a quadratic circular constraint to
facilitate dualization in the solving process. Constraints (24) and (25) denote the power of
the feeder f provided by the transformer trf that connects to it, whereas constraints (26)–(28)
indicate the capacity restrictions of the transformers.

−SC
ij ≤ PSC,NO

ij ≤ SC
ij , ∀ij ∈ Y (21)

−SC
ij ≤ QSC,NO

ij ≤ SC
ij , ∀ij ∈ Y (22)

−
√

2SC
ij ≤ PSC,NO

ij ±QSC,NO
ij ≤

√
2SC

ij , ∀ij ∈ Y (23)

PSC,NO
f = PSC,NO

tr f , ∀ f ∈ ΨF, tr f ∈ Y (24)

QSC,NO
f = QSC,NO

tr f , ∀ f ∈ ΨF, tr f ∈ Y (25)

PSC,NO
f ≤ SC

f , ∀ f ∈ ΨF (26)

QSC,NO
f ≤ SC

f , ∀ f ∈ ΨF (27)

±QSC,NO
f + PSC,NO

f ≤
√

2SC
f , ∀ f ∈ ΨF (28)

where SC
ij is the peak transmission capacity of branch ij, while SC

f represents the trans-
former’s capability in connection to feeder f.
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2.4. Radial Constraints on Distribution Network Topology

Nowadays, a mesh-constructed distribution network architecture is popular in urban
areas to improve the reliability of the power supply [22–24]; However, it operates radially.
Reconfiguring a distribution network requires changing the topology in order to boost
performance while preserving network radiality. The operating status of a switch on either
side of the branch, as indicated in (29) for normal operation circumstances, is used to
determine the connection status of branch ij. Constraint (30) ensures that the distribution
network operates in a radial structure.

si,NO
ij + sj,NO

ij − 1 ≤ lNO
ij ≤

(
si,NO

ij + sj,NO
ij

)
/2, ∀ij ∈ Y (29)

nLN = ∑
ij∈Y

lNO
ij (30)

where lNO
ij equals 1 when branch ij is connected under normal operation conditions, and

this shows whether branch ij is linked under a specified assignment of switchable devices.
The number of load nodes if represented by nLN .

2.5. Constraints Related to Reliability Assessment

This paper classifies the fictitious fault flows in the network into “RA” and “PF”
during the fault recovery after an outage occurs. Just after the outage, a fictitious fault
flow identified as “RA” appears and can only be stopped by circuit breakers. Fictitious
fault flow, denoted by the symbol “PF,” takes place after the fault branch has been isolated
and can only be eliminated via switches. The reliability of load points and the power
system can be assessed and optimized while the network reconfiguration is being carried
out via systematic reliability indices and nodal reliability indices, which are calculated
in the distribution network based on the distribution of the two fictitious fault flows in
each branch.

The first block of constraints is given in (31)–(38). Constraint (31) sets the location of
the branch xy where the fault occurred. As shown in Equations (32) and (33), the spread of
the fictitious fault flow “RA” between branches is influenced by the initial switch operating
state in the network and can be prevented by tripping the circuit breakers. Constraint
(34) guarantees that only one circuit breaker can trip to stop the spread of fault currents
under every outage scenario. Constraints (35) and (36) specify the upper and lower limits
for representing the fictitious fault flow “RA” variable. Constraint (37) makes sure that
the outage does not occur on substation nodes. Equation (38) uses the variable pxy,SC

i to
represent the state of the power supply after a fault at each node, which is based on the
value of the fictitious fault flow “RA” variable at each node.

f xy,SC,RA
xy = 0 (31)

−
(

2− bi,xy,SC
ij − si,NO

ij

)
M + f xy,SC,RA

i ≤ f xy,SC,RA
ij ≤

(
2− bi,xy,SC

ij − si,NO
ij

)
M + f xy,SC,RA

i , ∀ij ∈ Y (32)

−
(

2− bj,xy,SC
ij − sj,NO

ij

)
M + f xy,SC,RA

j ≤ f xy,SC,RA
ij ≤

(
2− bj,xy,SC

ij − sj,NO
ij

)
M + f xy,SC,RA

j , ∀ij ∈ Y (33)

∑
ij∈YB

I

bi,NO
ij + ∑

ij∈YB
J

bj,NO
ij − 1 = ∑

ij∈YB
I

bi,xy,SC
ij + ∑

ij∈YB
J

bj,xy,SC
ij (34)

0 ≤ f xy,SC,RA
i ≤ 1, ∀i ∈ ΨLN (35)

0 ≤ f xy,SC,RA
ij ≤ 1, ∀ij ∈ Y (36)
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f xy,SC,RA
i = 1, ∀i ∈ ΨSS (37)

pxy,SC
i = 1− f xy,SC,RA

i , ∀i ∈ ΨLN (38)

The second part of the constraints is given by (39)–(67). Constraint (39) sets the outage
branch where ‘PF’ stems from. Constraints (40) and (41) show that the spread of ‘PF’ is
restricted by the operating status of the switches. Constraints (42) and (43) restrict the
variation in the fictitious fault flow of each node and branch. Constraint (44) makes sure
that the outage does not occur on substation nodes. If and only if the load at node i is
supplied after post-fault reconfiguration (including unscathed nodes and restored nodes),
this condition is designated as qxy,SC

i = 1, which is explained in (45); thus, the demand of
load nodes can be given by (46) and (47).

f xy,SC,PF
xy = 0 (39)

−
(

1− si,xy,SC
ij

)
M + f xy,SC,PF

i ≤ f xy,SC,PF
ij ≤

(
1− si,xy,SC

ij

)
M + f xy,SC,PF

i , ∀ij ∈ Y (40)

−
(

1− sj,xy,SC
ij

)
M + f xy,SC,PF

j ≤ f xy,SC,PF
ij ≤

(
1− sj,xy,SC

ij

)
M + f xy,SC,PF

j , ∀ij ∈ Y (41)

0 ≤ f xy,SC,PF
i ≤ 1, ∀i ∈ ΨLN (42)

0 ≤ f xy,SC,PF
ij ≤ 1, ∀ij ∈ Y (43)

f xy,SC,PF
i = 1, ∀i ∈ ΨSS (44)

qxy,SC
i = f xy,SC,PF

i , ∀i ∈ ΨLN (45)

Pxy,SC
i = Piq

xy,SC
i , ∀i ∈ ΨLN (46)

Qxy,SC
i = Qiq

xy,SC
i , ∀i ∈ ΨLN (47)

The demands of the nodes that were not impacted by the outage could not be altered
following the post-fault network reconfiguration, as this is assured by constraint (48). The
radial structure of the network under outage scenarios is ensured by (49) and (50).

1− pxy,SC
i ≤ qxy,SC

i , ∀i ∈ ΨLN (48)

si,xy,SC
ij + sj,xy,SC

ij − 1 ≤ lxy,SC
ij ≤

(
si,xy,SC

ij + sj,xy,SC
ij

)
/2, ∀ij ∈ Y (49)

∑
i∈ΨLN

qxy,SC
i = ∑

ij∈Y
lxy,SC
ij (50)

Linearized power flow equations under outage scenarios are shown in (51)–(55). The
principles of them are the same as that of (12)–(16) and will not be further elaborated here.

Pxy,SC
ki = ∑

j∈Ψi

Pxy,SC
ij + Pxy,SC

i , ∀ki ∈ Y (51)
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Qxy,SC
ki = ∑

j∈Ψi

Qxy,SC
ij + Qxy,SC

i , ∀ki ∈ Y (52)

−
(

2− si,xy,SC
ij − sj,xy,SC

ij

)
M + 2

(
rijP

xy,SC
ij + xijQ

xy,SC
ij

)
≤ Uxy,SC

i −Uxy,SC
j ≤

≤
(

2− si,xy,SC
ij − sj,xy,SC

ij

)
M + 2

(
rijP

xy,SC
ij + xijQ

xy,SC
ij

)
, ∀ij ∈ Y

(53)

Uxy,SC
i =

(
VS
)2

, ∀i ∈ ΨSS (54)

U ≤ Uxy,SC
i ≤ U, ∀i ∈ ΨLN (55)

The status of the switches limits the amount of power that can flow through branch ij,
as shown in constraints (56)–(59). Similar to the constraints placed on branch power flow
by the circuit breakers and switches under normal operation scenarios, the power flow of
the branch ij exists under outage scenarios only when the branch is connected.

−Msi,xy,SC
ij ≤ Pxy,SC

ij ≤ Msi,xy,SC
ij , ∀ij ∈ Y (56)

−Msi,xy,SC
ij ≤ Qxy,SC

ij ≤ Msi,xy,SC
ij , ∀ij ∈ Y (57)

−Msj,xy,SC
ij ≤ Pxy,SC

ij ≤ Msj,xy,SC
ij , ∀ij ∈ Y (58)

−Msj,xy,SC
ij ≤ Qxy,SC

ij ≤ Msj,xy,SC
ij , ∀ij ∈ Y (59)

The linearized capacity restrictions of the branches, feeders, and transformers are
provided by (60)–(67). The principles are the same as that of (21)–(28) and will not be
further elaborated here.

−SC
ij ≤ Pxy,SC

ij ≤ SC
ij , ∀ij ∈ Y (60)

−SC
ij ≤ Qxy,SC

ij ≤ SC
ij , ∀ij ∈ Y (61)

−
√

2SC
ij ≤ Pxy,SC

ij ±Qxy,SC
ij ≤

√
2SC

ij , ∀ij ∈ Y (62)

Pxy,SC
f = Pxy,SC

tr f , ∀ f ∈ ΨF, tr f ∈ Y (63)

Qxy,SC
f = Qxy,SC

tr f , ∀ f ∈ ΨF, tr f ∈ Y (64)

Pxy,SC
f ≤ SC

f , ∀ f ∈ ΨF (65)

Qxy,SC
f ≤ SC

f , ∀ f ∈ ΨF (66)

±Qxy,SC
f + Pxy,SC

f ≤
√

2SC
f , ∀ f ∈ ΨF (67)
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2.6. Constraints on the Allocation of Circuit Breakers and Switches

In order to reduce the impact of switchable equipment errors on distribution network
reliability and power supply continuity, the circuit breakers are generally placed in parallel
with the switches in the distribution network, as is shown in (68) and (69).

xi,SW
ij ≥ 1− xi,CB

ij (68)

xj,SW
ij ≥ 1− xj,CB

ij (69)

2.7. Calculation of Reliability Indices

The indexes pxy,SC
i and qxy,SC

i concerning whether the load points receive power
during different stages of the fault (obtained with the previous constraints) make it possible
to linearize the representation of each of the reliability indices of the distribution network
under different load level scenarios, as shown in (70)–(75). Among them, the calculation of
the outage time index CIDSC

i of the load nodes in different scenarios consists of two parts
in (70): one is the switching interruption fault time experienced by load points that do not
get restored after the action of circuit breakers, and the other part is the time taken for the
manual repair of the faults experienced by the load nodes that still cannot receive power
after switch action for post-fault reconfigurations. However, Equations (71)–(75) are all
common expressions of reliability indices.

CIDSC
i = ∑

xy∈Y
λxyτSW

xy pxy,SC
i + ∑

xy∈Y
λxy

(
τRP

xy − τSW
xy

)(
1− qxy,SC

i

)
, ∀i ∈ ΨLN (70)

CIFSC
i = ∑

xy∈Y
λxy pxy,SC

i , ∀i ∈ ΨLN (71)

SAIDISC =
∑i∈ΨLN NCiCIDSC

i

∑i∈ΨLN NCi
(72)

SAIFISC =
∑i∈ΨLN NCiCIFSC

i

∑i∈ΨLN NCi
(73)

ASAISC = 1− SAIDISC
8760

(74)

EENSSC = ∑
h∈H

4h
8760 ∑

i∈ΨLN

CIDSC
i µhLSC

i (75)

where λxy is the failure rate of branch xy, τSW
xy and τSW

xy represent the switching-only
interruption duration and the repair and switch interruption duration of each branch,
respectively.NCi denotes the number of customers at each load node. 4h is the duration of
load level h. µh represents the load factor of load level h. LSC

i is the peak demand at node i
under different load level scenarios.

After obtaining the reliability of the distribution network under each load level sce-
nario, the final annual reliability indices of the distribution network need to be calculated
based on the probability of occurrence of different scenarios, as is shown in (76)–(79).

SAIDI = ∑
SC∈Scene

gSCSAIDISC (76)

SAIFI = ∑
SC∈Scene

gSCSAIFISC (77)
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ASAI = ∑
SC∈Scene

gSC ASAISC (78)

EENS = ∑
SC∈Scene

gSCEENSSC (79)

where gSC is the probability of various load level scenarios.

2.8. Constraints of Reliability Indices

The constraints on the reliability indices are necessary to balance the demand for relia-
bility and economy regarding the distribution network and to ensure that the distribution
network has a relatively high reliability level while improving the cost-effectiveness of
planning. The reliability indices of the distribution network include SAIDI, SAIFI, ASAI,
and EENS. Any constraint on any index can ensure the corresponding reliability, so in
practice, any constraint from constraints (80)–(83) can be selected.

SAIDI ≤ εSAIDI (80)

SAIFI ≤ εSAIFI (81)

ASAI ≤ εASAI (82)

EENS ≤ εEENS (83)

where εSAIDI , εSAIFI , εASAI , and εEENS are the preset requirements for the reliability indices,
respectively.

The entire optimal allocation model of circuit breakers and switches in distribution net-
works can be described as follows after specifying the objective functions and constraints:





f = minimize (FCB∑
ij
(xi,CB

ij + xj,CB
ij )+FSW∑

ij
(xi,SW

ij + xj,SW
ij ) + αEENS) =

= minimize (Cost + αEENS)
subject to: (2)–(83)

(84)

3. Numerical Test

The proposed model is validated on a 54-node distribution test system. This test system
is a 1 MVA, 13.5 kV radial network with four substations, 50 load nodes, eight feeders,
and 61 branches, for which the corresponding specific data can be obtained from [25]. The
switching-only interruption duration for each branch is 0.5 h, and the repair-and-switching
interruption duration is 3 h. The three load levels, with loading factors equal to 70%
(2000 h/year), 83% (5760 h/year), and 100% (1000 h/year), of the associated peak demand
are used to depict the loading condition [26]. The topological structure of the 54-node test
system utilized in this paper, as well as the selection of circuit breaker and switch candidate
locations, is shown in Figure 1.
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Figure 1. Topological structure of the 54-node distribution test system.

In order to validate the effectiveness of the proposed model in improving the reliability
and economy of the distribution network by optimizing the allocation of circuit breakers
and switches in the distribution network, this paper selects some of the branches of the
system as the candidate locations for circuit breakers or switches and also sets a small
number of already-equipped circuit breakers and switches in the system. In this paper, the
reliability index SAIDI is constrained by the reliability requirement εSAIDI , set as 1.2 h/year.
The outage loss per unit of power is set to RMB 30 yuan/MWh. The investment unit prices
of the circuit breakers and switches are set at RMB 42,000 and RMB 15,000, respectively.
The sum of outage loss and investment cost is to be minimized as the objective function,
and the reliability of the distribution network under the corresponding allocation scheme
is evaluated as well.

In a distribution network, the daily load level exhibits peak and off-peak variations,
representing the fluctuations in electricity demand throughout the day. The peak and
off-peak variations in load level have important implications for the management and
operation of the power distribution network. Utilities are needed to ensure that they
have enough capacity to meet the peak demand during the day while efficiently utilizing
resources during the off-peak period. Therefore, four different load level scenarios, as
shown in Figure 2, are set up to reflect the impact of peak and off-peak variations in load
level, which are 0.5 times the load level, 1 times the load level, 2 times the load level, and
2.5 times the load level. Therefore, the adaptability of the optimal allocation of circuit
breakers and switches to scenario changes, as well as the effectiveness of comprehensive
optimization on the reliability and economy of the distribution system, could be optimized.
The proposed method is modeled in MATLAB and was solved using the CPLEX solver
regarding the optimal allocation scheme of circuit breakers and switches, which takes about
2 min to solve for the 54-node test system used in this paper.
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Figure 2. Demand of load nodes in 54-node test systems.

Figure 3 shows the results of the optimal allocation of circuit breakers and switches
obtained by solving the model in this paper. Figure 4 illustrates the post-fault reconfigura-
tion strategy of the distribution network under different load level scenarios when a fault
occurs at branches 1–9. The reliability indices of each load node in the distribution network
under different load level scenarios are shown in Table 1. Table 2 shows the reliability
indices of the system under each load level scenario, as well as the overall reliability indices,
the investment costs of circuit breakers and switches, and the overall outage losses of the
system under the comprehensive consideration of load level variation.
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(a) Post-fault network reconfiguration strategy under Scene 1 (b) Post-fault network reconfiguration strategy under Scene 2

(c) Post-fault network reconfiguration strategy under Scene 3 (d) Post-fault network reconfiguration strategy under Scene 4  
Figure 4. Post-fault reconfiguration strategies for distribution network when a fault occurred at 
branches 1-9 under different load level scenarios. 

Table 1. Nodal CID and CIF for the 54-node test system. 

Node

CID (h/Year) CIF (Interruption/Year) 

Scene 
1 

Scene 2 Scene 3 Scene 4 
Inte-

grated 
Index 

Scene 1 Scene 2 Scene 3 Scene 4 
Inte-

grated 
Index 

1 0.077  0.348  0.302  0.206  0.933  0.077  0.342  0.291  0.203  0.913  
2 0.077  0.348  0.302  0.206  0.933  0.077  0.342  0.291  0.203  0.913  
3 0.111  0.468  0.376  0.284  1.238  0.082  0.344  0.283  0.208  0.916  
4 0.111  0.468  0.376  0.284  1.238  0.082  0.344  0.283  0.208  0.916  
5 0.158  0.668  0.561  0.402  1.789  0.082  0.344  0.283  0.208  0.916  
6 0.158  0.668  0.561  0.402  1.789  0.082  0.344  0.283  0.208  0.916  
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10 0.080  0.360  0.309  0.214  0.962  0.077  0.342  0.291  0.203  0.913  
11 0.058  0.264  0.214  0.155  0.691  0.051  0.228  0.190  0.133  0.602  
12 0.090  0.391  0.327  0.227  1.035  0.051  0.228  0.190  0.133  0.602  
13 0.090  0.391  0.327  0.227  1.035  0.051  0.228  0.190  0.133  0.602  
14 0.123  0.540  0.420  0.318  1.402  0.087  0.376  0.300  0.223  0.986  
15 0.107  0.460  0.383  0.275  1.224  0.087  0.376  0.300  0.223  0.986  

Figure 4. Post-fault reconfiguration strategies for distribution network when a fault occurred at
branches 1-9 under different load level scenarios.

Table 1. Nodal CID and CIF for the 54-node test system.

Node

CID (h/Year) CIF (Interruption/Year)

Scene 1 Scene 2 Scene 3 Scene 4 Integrated
Index Scene 1 Scene 2 Scene 3 Scene 4 Integrated

Index

1 0.077 0.348 0.302 0.206 0.933 0.077 0.342 0.291 0.203 0.913

2 0.077 0.348 0.302 0.206 0.933 0.077 0.342 0.291 0.203 0.913

3 0.111 0.468 0.376 0.284 1.238 0.082 0.344 0.283 0.208 0.916

4 0.111 0.468 0.376 0.284 1.238 0.082 0.344 0.283 0.208 0.916

5 0.158 0.668 0.561 0.402 1.789 0.082 0.344 0.283 0.208 0.916

6 0.158 0.668 0.561 0.402 1.789 0.082 0.344 0.283 0.208 0.916

7 0.068 0.290 0.231 0.170 0.759 0.087 0.380 0.306 0.225 0.998

8 0.119 0.518 0.417 0.307 1.361 0.087 0.380 0.306 0.225 0.998

9 0.132 0.578 0.486 0.342 1.537 0.077 0.342 0.291 0.203 0.913

10 0.080 0.360 0.309 0.214 0.962 0.077 0.342 0.291 0.203 0.913

11 0.058 0.264 0.214 0.155 0.691 0.051 0.228 0.190 0.133 0.602

12 0.090 0.391 0.327 0.227 1.035 0.051 0.228 0.190 0.133 0.602
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Table 1. Cont.

Node

CID (h/Year) CIF (Interruption/Year)

Scene 1 Scene 2 Scene 3 Scene 4 Integrated
Index Scene 1 Scene 2 Scene 3 Scene 4 Integrated

Index

13 0.090 0.391 0.327 0.227 1.035 0.051 0.228 0.190 0.133 0.602

14 0.123 0.540 0.420 0.318 1.402 0.087 0.376 0.300 0.223 0.986

15 0.107 0.460 0.383 0.275 1.224 0.087 0.376 0.300 0.223 0.986

16 0.107 0.460 0.383 0.275 1.224 0.087 0.376 0.300 0.223 0.986

17 0.145 0.641 0.544 0.382 1.712 0.061 0.266 0.226 0.158 0.711

18 0.145 0.641 0.544 0.382 1.712 0.061 0.266 0.226 0.158 0.711

19 0.145 0.641 0.544 0.382 1.712 0.061 0.266 0.226 0.158 0.711

20 0.145 0.641 0.544 0.382 1.712 0.061 0.266 0.226 0.158 0.711

21 0.045 0.191 0.164 0.114 0.513 0.061 0.266 0.226 0.158 0.711

22 0.132 0.578 0.486 0.342 1.537 0.077 0.342 0.291 0.203 0.913

23 0.132 0.578 0.486 0.342 1.537 0.077 0.342 0.291 0.203 0.913

24 0.039 0.171 0.146 0.101 0.457 0.077 0.342 0.291 0.203 0.913

25 0.119 0.518 0.417 0.307 1.361 0.087 0.380 0.306 0.225 0.998

26 0.058 0.240 0.194 0.146 0.638 0.082 0.344 0.283 0.208 0.916

27 0.058 0.240 0.194 0.146 0.638 0.082 0.344 0.283 0.208 0.916

28 0.158 0.668 0.561 0.402 1.789 0.082 0.344 0.283 0.208 0.916

29 0.108 0.468 0.391 0.284 1.251 0.047 0.205 0.170 0.124 0.546

30 0.108 0.468 0.391 0.284 1.251 0.047 0.205 0.170 0.124 0.546

31 0.033 0.147 0.124 0.089 0.393 0.047 0.205 0.170 0.124 0.546

32 0.060 0.271 0.221 0.158 0.711 0.057 0.251 0.204 0.148 0.660

33 0.122 0.539 0.443 0.320 1.424 0.087 0.380 0.306 0.225 0.998

34 0.122 0.539 0.443 0.320 1.424 0.087 0.380 0.306 0.225 0.998

35 0.122 0.539 0.443 0.320 1.424 0.087 0.380 0.306 0.225 0.998

36 0.072 0.318 0.251 0.189 0.830 0.087 0.380 0.306 0.225 0.998

37 0.033 0.147 0.124 0.089 0.393 0.047 0.205 0.170 0.124 0.546

38 0.057 0.244 0.195 0.145 0.641 0.057 0.251 0.204 0.148 0.660

39 0.060 0.271 0.221 0.158 0.711 0.057 0.251 0.204 0.148 0.660

40 0.070 0.304 0.243 0.186 0.803 0.077 0.329 0.274 0.201 0.881

41 0.199 0.849 0.716 0.517 2.280 0.077 0.329 0.274 0.201 0.881

42 0.199 0.849 0.716 0.517 2.280 0.077 0.329 0.274 0.201 0.881

43 0.108 0.468 0.391 0.284 1.251 0.047 0.205 0.170 0.124 0.546

44 0.112 0.487 0.400 0.289 1.288 0.057 0.251 0.204 0.148 0.660

45 0.112 0.487 0.400 0.289 1.288 0.057 0.251 0.204 0.148 0.660

46 0.123 0.540 0.420 0.318 1.402 0.087 0.376 0.300 0.223 0.986

47 0.199 0.849 0.716 0.517 2.280 0.077 0.329 0.274 0.201 0.881

48 0.038 0.165 0.137 0.100 0.440 0.077 0.329 0.274 0.201 0.881

49 0.118 0.505 0.397 0.297 1.317 0.087 0.376 0.300 0.223 0.986

50 0.118 0.505 0.397 0.297 1.317 0.087 0.376 0.300 0.223 0.986
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Table 2. Reliability indices and economic indices of the 54-node test system.

SAIFI
(1/Year)

SAIDI
(h/Year)

EENS
(MWh/Year)

ASAI
(%)

Investment
(Yuan)

Cost
(Yuan)

Scene 1 0.0714 0.1040 0.7640 - - -
Scene 2 0.3103 0.4527 6.3444 - - -
Scene 3 0.2553 0.3730 9.9622 - - -
Scene 4 0.1850 0.2697 9.8624 - - -

Integrated
Indices 0.8219 1.1994 26.9330 99.9863% 1,113,000 1,113,807.989

Under different load level scenarios, the optimal allocation model proposed in this
paper can optimize the post-fault distribution network reconfiguration strategy according
to the requirements of the required reliability level, as can be seen in Figure 4. The recon-
figuration strategy under different load levels is optimized to minimize the outage loss
in order to maximize the reliability of the distribution system. For fault scenarios under
different load levels, the proposed model can form an optimal post-fault reconfiguration
scheme for that load level scenario, which has strong adaptability and practicality and can
effectively ensure the level of reliability of the distribution network.

As can be seen from Table 1, different load levels affect the nodal reliability index.
From Figure 2, it can be seen that the load levels of scenes 1–4 are distributed from low
to high. The higher the load level, the higher the frequency; the longer the duration of
the outages at the load nodes, the worse the reliability of the indices of the nodes in the
distribution network is. When the load level is low, i.e., the demand for power supply is
low, the balance of supply and demand in the distribution network is easier to maintain,
and the possibility of outage is relatively low. When the load level is high, i.e., when the
customer’s demand for electricity is relatively high, the time of electricity consumption is
greater, or the load is unstable, then the reliability indices CID and CIF of the distribution
network are usually affected to a certain extent. This is because, at this time, the distribution
network faces a power load that may exceed the capacity of the design, leading to problems
such as overload, excessive current, and aging equipment, which, in turn, can lead to
breakdowns and may also lead to problems such as insufficient power supply.

As can be seen from Table 2, the proposed method can effectively maximize the eco-
nomic benefits while ensuring that the distribution network reliability level meets the
requirements. The optimal allocation model of circuit breakers and switches established
in this paper takes into account both the economic indices represented by the equipment
investment costs and outage losses, and the reliability index represented by EENS of the
distribution network. The proposed model can effectively ensure the required reliability
level while optimizing the allocation of circuit breakers and switches in the distribution
network at the lowest investment cost, effectively reducing the outage losses in the distribu-
tion network by optimizing the post-fault reconfiguration scheme under various load levels
and successfully achieving a balance between the optimization of reliability and economy.

In summary, the method proposed in this paper can better solve the optimal placement
of circuit breakers and switches in the actual distribution network. The model uses faster
calculation speed and better calculation quality to obtain an optimal allocation scheme of
circuit breakers and switches that ensures the reliability of the distribution network to meet
demand at the lowest investment cost, which achieves a balance between the optimization
of reliability and economy under the objective function. Furthermore, since changes in load
are considered in the model, the model developed in this paper can adapt to the uncertain
changes in loads in the distribution network in practical applications, meaning the obtained
allocation scheme has stronger adaptability and practicality.

4. Conclusions

The number and location of circuit breakers and switches in a distribution network
may have a significant impact on the reliability of the distribution network. When the
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investment budget is low, the number of switchable devices equipped in the network is
usually small, which cannot guarantee satisfactory reliability levels in the distribution
network. However, in practice, increasing the investment cost means the utility faces
more financial risks, which, to some extent, limits the enhancement of the reliability of
the distribution network. Simultaneously, the peak and valley fluctuations in the load
levels can also have an impact on the level of reliability of the distribution network. Hence,
it is essential to study optimal allocation methods for the placement of circuit breakers
and switches in distribution networks and consider the relevant economic and reliability
requirements by exploring the establishment of a solution to the cost–reliability dilemma
and searching for the best allocation solution that can adapt to load level variations in the
distribution network. This will reduce the negative impact of load level variations on the
reliability of the distribution system.

This paper presents a linear programming model for the optimal allocation of circuit
breakers and switches based on reliability and economic improvements to distribution
networks with consideration given to load level variation. In this context, the sum of outage
losses and the investment costs of switchable equipment is minimized as the objective func-
tion, and the reliability index of the distribution network is taken as the constraint to ensure
that the distribution network meets reliability demands while minimizing the investment
cost of equipment so as to achieve a balance between the optimization of reliability and the
economic indices. In addition, the proposed model takes into account the impact of load
level variation on the reliability of the distribution network and considers various load
level scenarios to obtain the optimal allocation scheme of switchable equipment that can
also adapt to different load fluctuation scenarios as well as target post-fault reconfiguration
schemes under different scenarios. By using numerical examples, we verified that the opti-
mal allocation scheme obtained by the proposed model could reduce investment costs and
outage loss while ensuring the reliability index of the system meets the requirements. The
method provides a practical reference for distribution network planners to carry out distri-
bution network optimization design, and it has strong engineering research significance
for optimizing distribution network structures. Last but not least, the linearization of the
optimal allocation model was achieved through the concept of fictitious fault flow, which
ensured the global optimality of the derived results and also enhanced the computational
efficiency and speed of the model in this paper, improving the practicality and scalability
of the model.
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Abstract: In the context of emissions, carbon dioxide constitutes a predominant portion of greenhouse
gases (GHGs), leading to the use of the term “carbon” interchangeably with these gases in climate-
related discussions. The carbon market has emerged as a pivotal mechanism for emission regulation,
allowing industries that struggle to meet emission reduction targets to acquire credits from those who
have successfully curbed their emissions below stipulated levels. Thermoeconomics serves as a tool
for analyzing multiproduct systems prevalent in diverse sectors, including sugarcane and alcohol
mills, paper and pulp industries, steel mills, and cogeneration plants. These systems necessitate
frameworks for equitable cost/emission allocation. This study is motivated by the need to expand
the scope of thermoeconomic modeling to encompass expenses or revenues linked with the carbon
market. By utilizing a cogeneration system as a representative case, this research aims to demonstrate
how such modeling can facilitate the allocation of carbon market costs to final products. Moreover, it
underscores the adaptability of this approach for internalizing other pertinent costs, encompassing
expenses associated with environmental control devices, licenses, and permits. Although certain
exergy disaggregation models depict an environmental component within diagrams, which is integral
for addressing environmental burdens, even models without explicit environmental devices can
effectively internalize carbon credits and allocate them to final products. The integration of carbon
credits within thermoeconomic modeling introduces the capability to assess both the financial and
environmental implications of emissions. This integration further incentivizes the reduction in GHGs
and supports optimization endeavors concerning system design and operation. In summary, this
study delves into the incorporation of carbon market dynamics into thermoeconomic modeling. It
demonstrates the potential to allocate carbon-related costs, facilitates comprehensive cost analysis,
encourages emission reduction, and provides a platform for enhancing system efficiency across
industrial sectors.

Keywords: thermoeconomic modeling; carbon credit; carbon market; environmental cost; cost
allocation; multiproduct system

1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) [1], greenhouse
gas emissions (GHG) have shown an increase since 1990 worldwide. The largest contrib-
utors to these emissions in 2018 were the combination of electricity and heat generation
(cogeneration) and transportation, accounting for over two-thirds of the total [2]. Given
that CO2 constitutes the predominant portion of GHGs and is linked to global warming,
the term “carbon” has been adopted in climate discussions to encompass these gases.

To regulate emissions, the carbon market offers industries and sectors that are unable
to meet emission reduction targets the opportunity to purchase credits from those who have
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successfully reduced their emissions below the required levels. Conventionally, one carbon
credit is equivalent to one ton of carbon dioxide. Consequently, it can be considered a
valuable asset, both financially and environmentally, representing the reduction or removal
of one ton of CO2 equivalent. These credits are recognized and issued within the carbon
market, irrespective of whether they are obtained voluntarily or through regulation [3].

This market is subject to regulation in certain jurisdictions, such as the European
Union, where well-defined credit values have been established [4]. However, in many other
countries, such as Brazil, the market remains voluntary. According to the World Bank’s
report in 2022 [5] and the IPCC in 2023 [6], the carbon market, which is associated with
environmental preservation measures, is experiencing global expansion. Nonetheless, it
has yet to reach the necessary levels to effectively address environmental challenges and
meet the objectives set forth in the Paris Agreement to combat climate change.

Thermoeconomics is an interdisciplinary field that combines principles from thermo-
dynamics and economics to provide insights not available through conventional energetic
and economic analyses. The information derived from thermoeconomics is essential for the
design and operation of thermal systems [7]. Initially, the primary objective of thermoeco-
nomics was to mathematically integrate the Second Law of Thermodynamics with economic
principles. However, contemporary analyses must also incorporate environmental con-
siderations [8]. In this context, exergy emerges as the most appropriate thermodynamic
property to utilize, as it accounts for the quality of energy and allows for the identification
and quantification of irreversibilities in processes [7]. Furthermore, exergy serves as a
crucial link between the Second Law and the assessment of environmental impact, as it
measures a system’s deviation from its equilibrium state with the environment [9].

Illustrative cases, including sugarcane and alcohol mills [10], paper and pulp indus-
tries [11], steel mills [12], and cogeneration plants, exemplify instances of multiproduct
systems that require established guidelines for the allocation of costs and emissions from
the fuel source to the final products. In the case of cogeneration, which generates useful
heat and power simultaneously from a single combustible source, rational criteria for
allocating the cost/emission of the fuel among the various final products are required. In
such scenarios, thermoeconomics enables a rational allocation (based on physical criteria)
of monetary, exergetic, and environmental costs for these final products. Consequently,
a comparison becomes feasible between the exergetic/monetary/environmental costs of
each product and the production cost of each individual product in separate systems, as
shown in papers assessing the exergetic unit cost (in a regenerative gas turbine cogeneration
system [13]; in a cogeneration system with gas turbine, intercooler, and supplementary
firing [14]; and in a combined cycle [15]), monetary unit cost (in a gas turbine cogeneration
system [16] and in a power generation system of a steel mill plant [17]), and emissions
pollutant allocation (in gas and steam cogeneration systems [18], in a gas cogeneration
system with supplementary firing [19], in a combined cycle [20], and in a dual product heat
pump [21]). Despite the practical relevance of this aspect, in the literature review, no studies
were found that dealt with the incorporation and internalization of the monetary unit cost
linked to the carbon market in the thermoeconomic evaluations of multi-product plants.

Thermoeconomic methodologies have been previously applied to incorporate environ-
mental factors, such as specific CO2 emissions. In this paper, thermoeconomic methods are
applied to internalize and allocate monetary costs associated with environmental concerns,
such as carbon credits. Thus, the novelty introduced in this study is to demonstrate how
this internalization can be accomplished using thermoeconomic principles.

Moreover, thermoeconomics plays a fundamental role in the analysis of energy con-
version systems. This study aims to elucidate the application of thermoeconomic modeling
as a valuable tool for incorporating expenses or revenues related to the carbon market into
thermal systems analyses and allocating them to the system’s internal and final products.
The conventional models employed to compute the monetary costs of internal flows and
final products can be suitably adapted to account for these environmental costs. To achieve
this, the adaptation is explicated using matrix notation and demonstrated through a case
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study of a gas turbine cogeneration system. The study also illustrates how this inclusion
of environmental costs can impact the monetary evaluation of the system’s final products.
Furthermore, it highlights the potential of this modeling approach to internalize other
costs, such as those associated with environmental control devices, environmental licenses,
and permits.

It is crucial to underscore that a methodology utilized here to exemplify and expound
the internalization of environmental costs, particularly carbon credits, introduces a def-
inition of the environmental device in thermoeconomic diagrams, precisely allocating
environmental costs to this environmental representation. The H&S Model is adopted
as the methodological framework for this purpose; nonetheless, any other exergy-based
thermoeconomic methodology that consistently defines such an environmental device can
be employed to conduct similar analyses. Even models that do not explicitly designate this
device to represent the environment can internalize carbon credits (as is the case with the E
Model utilized in this paper). However, in this instance, environmental burdens are not
internalized in the environmental device. In other words, this study aims to demonstrate
how to adapt any thermoeconomic model to incorporate carbon credits and allocate them
to the final products.

Certainly, an aspect that could be incorporated into this study to facilitate the develop-
ment and execution of future research is the inclusion of real-world data from industries,
which will permit greater accuracy in the simulations. However, according to a group of
recognized experts in this field [22], the beauty of a theory is usually shown in the simplicity
of its forms and the generality of its message, but its power resides in its capacity to solve
practical cases. Thus, a simple gas turbine cogeneration plant was used for the illustration
of the method application.

Future investigations should encompass various cogeneration systems. The range of
industry types, each with its own operational complexities, provides a diverse array of
insights into the adaptability and effectiveness of the modeling here proposed. Exploring
different types of cogeneration systems can enhance the understanding of the pros and cons
of incorporating carbon market factors into thermoeconomic analyses. These advancements
hold the potential to enrich scholarly inquiry while driving practical industrial progress.

2. Thermoeconomic Modeling

Furthermore, apart from employing traditional modeling techniques to ascertain
the monetary and exergetic unit costs of the system’s internal flows and final products,
this section demonstrates the general adaptations made to the modeling process for the
allocation of specific pollutant emissions. Additionally, it elaborates on the integration of
carbon credits in thermoeconomic modeling.

2.1. Conventional Modeling

The purpose of thermoeconomic modeling is to derive a system of cost equations that
mathematically represents the cost formation process, i.e., the process of allocating external
resources until the final cost of products is established.

Costs can be deemed satisfactory if they belong to a viable region of solutions for
a given problem, and the procedure for cost validation must be founded on the plant’s
behavior and thermodynamics, as this irreversibility constitutes the cost-generating magni-
tude [7].

Equations (1) and (2) are utilized to ascertain the monetary (c) and exergetic (k∗) unit
costs, respectively, of the internal flows and the final products within the systems. The
allocation of specific pollutant emissions, such as CO2, NOx, and SOx, can be performed
using Equation (3). In these equations, the subscripts “out” and “in” denote the outputs
and inputs of flows, respectively. The variable Y represents a general thermodynamic
magnitude that can be assessed by power, heat, exergy flows, or its components. EF
denotes the exergy of the external fuel, while cF and k∗F represent its monetary and exergetic
unit costs, respectively. Furthermore, λF signifies the amount of emission generated due
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to the combustion of one unit of exergy from the external fuel. It is customary for Z to
represent the external hourly cost of the subsystem, accounting for capital and equipment
operation and maintenance.

∑(cout·Yout)−∑(cin·Yin) = Z + cF·EF (1)

∑(k∗out·Yout)−∑(k∗in·Yin) = k∗F·EF (2)

∑(λout·Yout)−∑(λin·Yin) = λF·EF (3)

Equation (2) is derived from Equation (1), where the Z term has to be zero. The exergy
unit cost of the external fuel (k∗F) is typically assumed to be equal to its exergy value,
resulting in an exergy unit cost of 1 kW/kW [7]. Both the monetary and exergetic unit
costs serve as measures of economic and thermodynamic efficiency, respectively, for a flow
production process [7]. Conversely, the balance depicted by Equation (3) can be interpreted
as a measure of environmental efficiency for this flow production process [19].

In all cases involving Equations (1)–(3), auxiliary equations are generally required to
complete the modeling equation system. The formulation of these auxiliary equations is
based on the chosen thermoeconomic diagram. In the context of productive diagrams, the
equality criterion [23] is applied. According to this criterion, all products of a subsystem
share the same unit cost as they are generated within the same productive process with
identical irreversibilities.

2.2. Inclusion of Monetary Costs of Environmental Charges

The utilization of Equation (3) in the allocation of specific emissions to internal flows
and thermal systems’ final products represents an analysis that incorporates environmental
considerations within thermoeconomic modeling. However, this approach lacks the inclu-
sion of monetary expenses related to environmental factors, such as carbon credits and the
cost of equipment for environmental treatment/control.

To address this limitation, variable Z (as defined in Equation (1)) plays a crucial role in
allocating environmental costs. In a conventional monetary cost evaluation, Z denotes the
subsystem’s external hourly rate concerning capital, operation, and maintenance expenses.
Nonetheless, it can also serve as a means to distribute environmental costs by introducing
an environmental device into the thermoeconomic diagrams. An energy conversion system
encompasses a collection of interconnected components that interact with each other and
with the environment through flows of matter, work, or heat [24]. Consequently, the
environment is considered an integral part of the system, and certain models propose its
representation through an environmental device in thermoeconomic diagrams.

Equation (4) exemplifies how a conventional thermoeconomic model based on the
monetary unit cost (Equation (1)) can be adapted to decompose the term Z into hourly
costs associated with environmental charges (Zenv) and capital, operation, and maintenance
expenses (O&M).

Z = Zcap + ZO&M + Zenv (4)

The environmental device presents no upfront acquisition cost; however, in some ther-
moeconomic methodologies, it serves as a mechanism for internalizing and redistributing
environmental charges to other equipment and final products. For example, when waste
control devices such as an electrostatic precipitator for ash disposal in flue gas or a bag
filter for air pollution control (or any other equipment designed to mitigate environmental
impacts by reducing GHG emissions into the atmosphere) are installed in a plant, its costs
related to their capital and operation and maintenance (O&M) can be attributed to either
the environmental device itself.

The same principle applies to devices used in carbon capture and storage, expenses
related to environmental permits and licensing, fines incurred for emitting pollutants, and
any other abatement costs (e.g., resources employed in waste treatment or disposal). Thus,
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it becomes possible to precisely allocate environmental charges to the device represented in
the diagram as the environment, given that term Z is consistently associated with specific
equipment. Consequently, a viable option is to link the environmental cost directly to the
device symbolizing the environment in the diagrams.

Inclusion of Carbon Credits

In addition to the financial costs discussed in the preceding section, this paper proposes
that the environmental aspect can be incorporated into the analysis by considering carbon
pricing and internalizing the associated expenses or revenues from carbon credits. In this
context, variable Zenv may exhibit positive or negative values. A negative value indicates a
revenue stream generated by emission reduction or removal, resulting in the availability
of credits for sale. Conversely, a positive value suggests an additional cost incurred by a
facility that failed to achieve emission reduction targets, leading to the need to purchase
carbon credits from those entities that have successfully reduced their emissions below
the prescribed levels. An industry may also elect to procure carbon credits on account of
environmental conscientiousness and as an investment strategy to align with sustainability
concerns, with the aim of contributing to planetary decarbonization efforts.

A comprehensive exposition of thermoeconomic modeling, incorporating the dynam-
ics of the carbon market, is presented in Section 3.

3. Case Study—Gas Turbine Cogeneration System

The cogeneration system with a simple gas turbine (Figure 1) is selected as an example
to demonstrate how thermoeconomic modeling can effectively incorporate carbon credits.
This system comprises four main components: an air compressor (AC), a combustion
chamber (CC), a gas turbine (GT), and a recovery boiler (RB). The turbine generates power,
part of which is utilized to drive the air compressor (WAC). The system produces two
final products: net power (WN) and useful heat (QU). The fuel consumption is represented
by (QF).
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The main flow parameters of the physical structure, obtained through the Engineering
Equation Solver—EES software [25], are presented in Table 1. Additionally, Table 2 provides
the quantities of the primary productive flows. The reference conditions are specified as
T0 = 25 ◦C and P0 = 1.0132 bar. Under these conditions, the mass flow of CO2 from the
exhaust gases is

.
mCO2 = 2228 kg/h, considering natural gas as the fuel. Further details

regarding this system can be found in [26]. The monetary unit cost of natural gas fuel is
USD 24.04/MWh, which is based on the average value for the year 2022 in the international
market [27].
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Table 1. Main physical flow parameters of the system.

Physical Flow .
m (kg/s) T (◦C) P (bar)

No. Description

1 Air 14.72 25.00 1.0132
2 Air 14.72 230.20 5.1040
3 Gases 14.94 850.00 4.8480
4 Gases 14.94 537.30 1.0207
5 Gases 14.94 151.10 1.0132
6 Water 2.487 60.00 20.400
7 Steam 2.487 212.4 20.000

Table 2. Productive flows (exergetic basis).

Equipment Flow Quantity (kW)

Air compressor (AC) WAC 3113.03

Combustion chamber (CC) QF 11,630.96

Gas turbine (GT)
WGT 5546.50
WN 2433.47

Recovery boiler (RB) QU 2246.32

In Table 3, the external monetary flows resulting from the cycle’s equipment are pre-
sented. These values were sourced from [26] and updated using the Chemical Engineering
Cost Index (CEPCI) up until the year 2022 [28]. The cost of the carbon credit utilized in the
analysis amounts to USD 85/ton, representing the average for the year 2022 as reported
in [4].

Table 3. Equipment external monetary cost.

Equipment Z (USD/h)

Air compressor (AC) 25.33
Combustion chamber (CC) 9.04
Gas turbine (GT) 34.37
Recovery boiler (RB) 21.71

Thermoeconomic modeling employs various types of diagrams: physical, productive,
and comprehensive. While the physical diagram alone may not suffice to identify the
waste cost formation process [26], the productive diagram is commonly utilized in most
methodologies. One distinguishing aspect of functional methodologies like Thermoeco-
nomic Functional Analysis (TFA) [23] and Engineering Functional Analysis (EFA) [8] is
their ability to describe the cost formation process of thermal systems based on productive
flows. This original feature has been adopted not only by TFA and EFA but also by other
thermoeconomic methodologies, including the H&S Model [26] used in this paper.

3.1. Thermoeconomic Models

Thermoeconomic modeling employs the widely recognized E Model, which utilizes
the total exergy flows to represent the physical and/or productive flows in diagrams.
However, there are scenarios where it becomes necessary to decompose the exergy into its
components. This is particularly important to isolate dissipative equipment and allocate
waste costs accurately in thermal systems. An exergy disaggregation model known as the
H&S Model [26] is available for this purpose in some cases. The H&S Model analyzes the
behavior of thermodynamic cycles on the h–s plane, considering the variations in enthalpy
and entropy of the working fluid, as proposed by [29]. This model allows for the separation
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of physical exergy into its enthalpic component (EH) and its entropic component (ES), as
described in Equation (5).

The total exergy (E) can be mathematically defined by Equation (6) as the sum of the
physical (EPH) and chemical (ECH) components. Notably, this definition excludes nuclear,
magnetic, electrical, surface tension, kinetic, and potential effects [30].

EPH = EH − ES (5)

E = EH − ES + ECH (6)

The H&S Model introduces the concept of the environmental device (ENV) within
the framework of the productive diagram, facilitating its interaction with other plant sub-
systems. This device assumes a critical role, in this methodology, in analyzing thermal
systems, particularly in the context of waste cost allocation and internalization of envi-
ronmental costs. Within ENV, both the physical component and the chemical component
of the waste are dissipated with the device receiving air from the compressor inlet. The
chemical component originates in the CC as a result of the combustion reaction, wherein
the air and fuel mixture is transformed into combustion gases. It should be noted that the
E Model does not include an explicit representation of the environment in the diagram.
Nevertheless, this study also presents an approach for the integration and allocation of
carbon credits into this methodology, in order to establish a comparison with the one that
defines the environmental device with the same purpose and to demonstrate that it is also
possible to adapt any thermoeconomic model for this objective.

Moreover, the environmental device (as employed in the H&S Model) assumes the
responsibility of closing the cycle (Figure 2), thereby redistributing the costs associated with
waste management across other plant components and, subsequently, to the final products.
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Figure 2 illustrates the cogeneration cycle on the h–s diagram, with the various pro-
cesses denoted by numerical labels representing the respective components involved:

• Process 1–2 corresponds to the compressor, with 1–2 s indicating isentropic compression.
• Process 2–3 represents the combustion chamber.
• Process 3–4 corresponds to the gas turbine, with 3–4 s denoting isentropic expansion.
• Process 4–5 corresponds to the recovery boiler.

Upon reaching the exit of the recovery boiler (at point 5), the exhaust gases possess
exergy, rendering them waste products. Despite the slight reduction in entropy of the
working fluid caused by the recovery boiler (RB), the cycle remains incomplete. In contrast,
a Rankine cycle is capable of achieving full closure through the condenser, wherein the
entropy of the turbine’s output steam is reduced to that of saturated liquid at the pump inlet.

To complete the cycle in Figure 2, an environmental device (ENV) intervenes and
facilitates process 5–1, effectively closing the loop. Within this device, flow 5 represents the
exhaust gases, while flow 1 symbolizes the air drawn in by the compressor.
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3.1.1. Productive Diagram

Figures 3 and 4 illustrate the productive diagrams of the gas turbine cogeneration
system as per the E and H&S Models, respectively. In the E Model, the depicted flows
represent the changes in exergy between two physical states, denoted as i and j, following
the expression given in Equation (7). Conversely, in the H&S Model, the productive
flows on the diagrams represent the alterations in the enthalpic, entropic, and chemical
components of exergy between states i and j, according to Equations (8)–(10), respectively.

Ei:j = Ei − Ej (7)

EH
i:j = EH

i − EH
j (8)

ES
i:j = ES

i − ES
j (9)

ECH
i:j = ECH

i − ECH
j (10)

Figure 3. Productive diagram—E Model.

Processes 2024, 12, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Productive diagram—H&S Model. 

In Figures 3 and 4, the system components are depicted as real units or subsystems 
in the form of rectangles, while fictitious units called junctions (J) and bifurcations (B), 
represented by rhombuses and circles, respectively, are utilized to establish interconnec-
tions between these subsystems. 

The characterization of fuel and product follows the SPECO approach [31] and is as 
follows: if the variation of specific exergy (or its components with a positive contribution 
to the exergy definition) exhibits a positive trend throughout the process; this variation, 
along with the exergy of energy flows generated within the component, determines the 
product. Conversely, if the variation of specific exergy (or its components with a positive 
contribution to the exergy) shows a negative trend throughout the process, this variation 
is combined with the exergy of energy flows supplied to the component in the input def-
inition. The approach is reversed for components with a negative contribution to the ex-
ergy definition, such as the entropic component in the H&S Model. In this particular case, 
the H&S Model designates the entropic (𝐸ହ:ଵு ) and chemical (𝐸ଷ:ଶு) components as inputs 
from the environment, while the entropic (𝐸ହ:ଵௌ ) component is identified as the product, as 
shown in Figure 4. On the other hand, E Model E (Figure 3) allocates the residue implicitly 
to the final products (WL and QU), proportionally to the exergetic inputs of the equipment 
generating the respective final products GT and RB. 

3.1.2. Monetary Cost Balance  
Figure 5 presents the monetary cost balance for the H&S Model, represented in an 

expanded matrix format. This matrix is derived by applying the cost balance equation 
(Equation (1)) to each of the five subsystems (AC, CC, GT, RB, and ENV) as well as to the 
enthalpic (JH-BH) and entropic (JS-BS) junction–bifurcations within the productive diagram 
(Figure 4). 

Figure 4. Productive diagram—H&S Model.

In Figures 3 and 4, the system components are depicted as real units or subsystems
in the form of rectangles, while fictitious units called junctions (J) and bifurcations (B),
represented by rhombuses and circles, respectively, are utilized to establish interconnections
between these subsystems.
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The characterization of fuel and product follows the SPECO approach [31] and is as
follows: if the variation of specific exergy (or its components with a positive contribution
to the exergy definition) exhibits a positive trend throughout the process; this variation,
along with the exergy of energy flows generated within the component, determines the
product. Conversely, if the variation of specific exergy (or its components with a positive
contribution to the exergy) shows a negative trend throughout the process, this variation
is combined with the exergy of energy flows supplied to the component in the input
definition. The approach is reversed for components with a negative contribution to the
exergy definition, such as the entropic component in the H&S Model. In this particular case,
the H&S Model designates the entropic (EH

5:1) and chemical (ECH
3:2 ) components as inputs

from the environment, while the entropic (ES
5:1) component is identified as the product, as

shown in Figure 4. On the other hand, E Model E (Figure 3) allocates the residue implicitly
to the final products (WL and QU), proportionally to the exergetic inputs of the equipment
generating the respective final products GT and RB.

3.1.2. Monetary Cost Balance

Figure 5 presents the monetary cost balance for the H&S Model, represented in an
expanded matrix format. This matrix is derived by applying the cost balance equation
(Equation (1)) to each of the five subsystems (AC, CC, GT, RB, and ENV) as well as to the
enthalpic (JH-BH) and entropic (JS-BS) junction–bifurcations within the productive diagram
(Figure 4).
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The internal valuation matrix comprises flows of exergy components, power, and
useful heat, representing the entire process from the distribution of external resources
to the determination of the final product costs. The cost matrix (or vector) constitutes
the unknown factor in the modeling, incorporating the monetary unit cost of the flows
generated within each subsystem. For instance, cAC denotes the monetary unit cost of the
compressor (AC) product, which corresponds to the flow EH

2:1.
Due to the application of the equality criterion, certain flows possess identical unit

costs. Notable examples include EH
3:2 and ECH

3:2 ; ES
4:5 and QU ; and WAC and WN . Moreover,

all entropic component flows departing from JH-BH share the same unit cost, as do all
entropic component flows leaving JS-BS.

The external valuation matrix encompasses the exergy of the fuel along with its
corresponding unit cost, in addition to the external hourly cost of each subsystem resulting
from capital and equipment operation and maintenance (Z). The junction–bifurcation
components are considered dummy elements and, therefore, have a Z-cost of zero, as
illustrated in the external valuation matrix depicted in Figure 5.

The Z term and the environmental representation device depicted in the diagrams play
a crucial role in incorporating environmental costs within the field of thermoeconomics.
Figure 6 provides a comprehensive overview of this device, illustrating its input and output
flows, which contribute to the overall monetary cost equilibrium. The environmental device
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itself does not entail any costs associated with its acquisition, operation, or maintenance, as
it serves as a symbolic representation of the atmospheric environment.
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However, when an environmental treatment component (such as a filter, electrostatic
precipitator, etc.) is introduced into the thermal system, which is not typically represented
in the physical diagram, its cost can be internalized in the environmental device through
the initial two terms on the right-hand side of Equation (4). Consequently, this cost is
distributed across the entire system.

Furthermore, expenses related to fines, environmental licenses, permits, and carbon
pricing values should also be internalized within the Zenv factor. The exact treatment of
carbon pricing values depends on whether they are considered revenue or expenses within
the carbon market.

In the context of revenue generation, which can arise from a reduction in emissions
below the specified level, resulting in the creation of tradable credits, a variable denoted as
Zenv assumes a negative value on the balance sheet. The environmental device responsible
for closing the loop reallocates the associated costs to other equipment and final products
within the plant. Consequently, this credit serves to diminish the overall monetary expenses
and can exert an influence on the plant’s production decisions.

Conversely, expenses incurred in relation to carbon credits, such as the necessity to
purchase credits due to the company’s failure to meet the stipulated emission reduction
targets (or simply due to environmental consciousness and concerns regarding climate
change), lead to a positive value for the Zenv variable. This, in turn, results in an increase in
the costs of other internal processes and final products within the plant.

To summarize, the equation depicted in Figure 6, referred to as Equation (11) in the
text, plays a crucial role in understanding the aforementioned dynamics. An in-depth
analysis of this equation can be conducted as follows:

• The environmental device (ENV) does not have any hourly costs related to capital and
operations and maintenance (O&M). However, if environmental treatment equipment,
which is not typically part of the physical structure of the system, is used, these costs
can be considered within ZENV ;

• The expenses for licenses and permits associated with the environment are accounted
for in the Zenv term;

• Similarly, the costs related to the carbon market are also accounted for through the
Zenv term. When there is revenue, this term is represented as negative, and when there
are expenditures, it is represented as positive.

In all three cases, since the ENV device closes the loop (Figure 2), the costs are system-
atically distributed to the other subsystems and, consequently, to the final products of the
plant, as shown in the case of the H&S Model (Figure 4).

ZENV = Zcap + ZO&M + Zenv (11)

In the case of thermoeconomic models that do not define the environment as an explicit
device in the diagram, as is the case with Model E (Figure 3) in this paper, the internalization
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of carbon credits must be performed through the equipment generating emissions, the
CC in such case. Conversely, when considering the cost of acquiring environmental
control/treatment equipment, this model would need to depict such equipment in the
physical and productive diagrams to facilitate appropriate cost allocation. However, these
devices are dissipative, and several studies [32–34] have already demonstrated that Model
E is not adequate for isolating them within the productive structure and thus analyzing
them in a separate and appropriate manner.

3.1.3. Results

Figure 7 illustrates a generic cogeneration system, also known as a combined heat
and power (CHP) system. This system generates two products, WN and QU, from a single
fuel source, QF, similar to the gas turbine system depicted in Figure 1. By employing
the cost balance equation (Equation (1)) to this generic cogeneration system, one obtains
Equation (12), wherein cWN and cQU represent the respective monetary unit costs of the
final products, WN and QU. It is important to note that Equation (12) takes the form of a
linear equation, y = A·x + B, and can be expressed in accordance with Equation (13).

cWN = −QU
WN

cQU +
cF·QF + Z

WN
(12)

cWN = −A·cQU + B (13)

Figure 7. Accounting flows in cogeneration.

Irrespective of the applied thermoeconomic methodology, the solution to Equation (12)
will consist of an ordered pair representing the monetary unit costs of the net power (cWN )
and the useful heat (cQU ). Several studies [16,35–37] have previously compared various
methodologies for such problems and verified that these ordered pairs yield identical
straight-line solutions when the system’s operational conditions are defined, including the
net power-to-useful heat ratio and the global exergetic efficiency.

Figure 8 illustrates generic possibilities for this straight-line solution. In all cases, there
is an inverse relationship between the unit cost of power and the unit cost of heat; that is,
when the unit cost of power increases, the unit cost of heat decreases, and vice versa.

The central straight line, represented by the continuous line, denotes the specific
condition for a cogeneration system. Changes in the thermodynamic model cause the
straight line to shift to new positions parallel to the initial one [35,38], as depicted by the
dashed lines in Figure 8.

Figure 9 illustrates the unit cost of the final products (represented as ordered pairs) in
the cogeneration system under various scenarios. The cost values were determined using
Equation (1) and applied to the diagrams in Figures 3 and 4 for the E and H&S Models,
respectively. In the case of the H&S Model, the cost balance is presented in matrix form in
Figure 5, with a specific focus on ZENV .
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Figure 8. Unit cost solution line.

Figure 9. Monetary unit cost variation due to emissions.

The data points situated along the central line in Figure 9 correspond to the base case,
as mentioned in the figure’s caption. In this base case, carbon credit values are not taken
into account or internalized.

It is noteworthy that an increase in emissions signifies a reduction in process efficiency,
leading to higher production costs. Consequently, the solution line moves away from the
origin, and the costs of the final products rise. Conversely, a reduction in emissions brings
the solution line closer to the origin, indicating an improvement in process efficiency and a
consequent decrease in the costs of the final products.

In order to conduct an analysis of the expenses and revenues within the carbon market,
certain hypotheses were formulated and implemented. The initial scenario, referred to as
the base case, considers that an increase in CO2 emissions leads to the system emitting
beyond the established limit, necessitating the purchase of carbon credits and resulting in
an expense for the plant. Another plausible real scenario that could lead to an escalation
in costs involves a rise in the unit price of carbon credits owing to stricter emissions
control regulations.

Conversely, in situations where emissions are reduced or removed, the system gener-
ates carbon credits that can be sold, thereby generating revenue. It is worth highlighting
practical real scenarios capable of reducing and/or removing emissions in the industry.
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The utilization of mitigation equipment, such as carbon capture and storage systems (CCS),
enables emission removal. In this case, the investment value (external cost per hour due to
capital cost, operation, and maintenance of this equipment, Z) must be taken into account
to assess and compare the cost of the investment with the potential revenue generated from
carbon credits due to avoided emissions. Another feasible scenario for emission reduction
involves substituting a more environmentally friendly fuel (e.g., natural gas with biogas
or biomethane).

The H&S Model involves the internalization of the carbon credit value within the
environmental device, represented as (Zenv > 0) for expenses and (Zenv < 0) for revenue.
On the other hand, the E Model utilizes the internalization process through a combustion
chamber (CC), with (Zcarbon credit > 0) for expenses and (Zcarbon credit < 0) for revenue.

To simulate the impact of these hypotheses, scenarios involving various percentages of
emission increase (ranging from 10% to 50%) and reduction (ranging from −10% to −50%)
concerning the base case were considered. The resulting Table 4 presents the unit costs
of final products cQU and cWN for each of these situations, along with the corresponding
amount of carbon credits that would be generated and the associated costs (revenue
and expense).

Table 4. Monetary unit cost [USD/MWh] and carbon credit for the simulated situations.

Emissions
E Model H&S Model

Carbon Credit/Day USD/Day
(cQU

) (cWN ) (cQU
) (cWN )

+50% 120.33 87.66 102.57 96.32 26.7 −2273
+40% 115.64 84.21 98.41 92.37 21.4 −1818
+30% 110.95 80.76 94.26 88.42 16.0 −1364
+20% 106.26 77.31 90.10 84.47 10.7 −909
+10% 101.57 73.86 85.95 80.52 5.3 −455

Base case 96.88 70.41 81.79 76.57 0 0
−10% 92.19 66.96 77.64 72.62 5.3 455
−20% 87.51 63.51 73.48 68.67 10.7 909
−30% 82.82 60.06 69.33 64.72 16.0 1364
−40% 78.14 56.6 65.17 60.77 21.4 1818
−50% 73.45 53.15 61.02 56.82 26.7 2273

When conducting an analysis of cQU and cWN , it has been observed that within the
E Model, the costs of final products exhibit an approximate variation of 5% and 25%
when there is a 10% and 50% increase or reduction in emissions, respectively, compared
to the base case. Similarly, in the case of the H&S Model, these same scenarios lead to
cost variations of approximately 5% and 26% for the final products. The observed cost
fluctuations are attributed to the distinct criteria employed by each model, including the
internalization of carbon credits in the CC and the environmental device.

Upon examining the carbon credits for the simulated scenarios, it has been noted
that a 10% change in emissions results in the generation of 5.3 credits per day, equivalent
to an expense or revenue of USD 455 per day. In the most extreme emission variation
scenario (50%), the corresponding expenditure or revenue can reach USD 2273 per day. The
utilization of the value derived from the purchase or sale of carbon credits can serve as a
valuable indicator for companies in making decisions pertaining to the implementation of
environmental equipment or the acquisition of carbon credits.

In all results, the ordered pair belongs to the straight solution, specific to the operating
conditions of the plant. In addition, the models are consistent from a thermodynamic point
of view according to the efficiencies and irreversibilities obtained.

Note that the primary objective of this study is to illustrate the application of the
thermoeconomic methodology for integrating carbon pricing into cogeneration systems
analysis. It is important to note that the study does not focus on analyzing the system’s
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behavior in terms of its capacity to increase or decrease emissions, nor does it involve
defining the specific emission parameters that would govern the carbon market.

Examining the incorporation of environmental costs, such as carbon pricing, reveals
an intriguing phenomenon denoted by Equation (12). This equation demonstrates that
the Z term, and consequently Zenv, influence the B coefficient of the linear equation (Equa-
tion (13)). Consequently, this adjustment leads to a parallel displacement of the initial
straight line (base case) in comparison to the original condition. Specifically, when revenue
is generated (Zenv < 0) through the sale of carbon credits, the straight line approaches
the origin, resulting in a reduction in product costs. Conversely, for expenses (Zenv > 0)
incurred in the purchase of carbon credits, the straight line shifts away from the origin,
leading to an increase in production costs. It is essential to emphasize that the straight line
transitions to distinct yet parallel positions. However, the slope remains unaltered due to
the unchanged coefficient A.

Moreover, as the system conditions are defined and environmental costs are integrated,
various thermoeconomic methodologies that account for the environmental aspect establish
ordered pairs of power and heat costs lying on the same straight-line solution.

4. Conclusions

This research presents a comprehensive thermoeconomic approach to incorporate mon-
etary environmental costs into multiproduct system assessments, demonstrated through a
case study involving a gas turbine cogeneration system. The primary cost aspect addressed
in this paper pertains to the valuation of carbon emissions. Nevertheless, the methodology
also encompasses the internalization of other environmental expenses, including licensing,
permits, and the procurement of environmental treatment and control equipment. Further-
more, the proposed methodology is adaptable for the allocation of both cost and emissions
stemming from fuel utilization to final products across various categories of multiproduct
systems, exemplified by industries such as sugarcane and alcohol, pulp and paper, and
steel production.

In this study, two models, namely Models E and H&S, were employed for analysis.
However, the primary focus is on H&S, as it offers a methodology that defines a crucial
device responsible for representing the environment in the diagrams. This particular
device plays a significant role in both the dissipation of cycle waste and the internalization
of environmental costs, thereby enabling a systematic redistribution of costs across the
system’s remaining components and final products. It is worth noting that any other
thermoeconomic methodology, based on exergy and coherently defining this environmental
device, could also be adopted by following similar methods. Moreover, models that do
not explicitly define the ENV device in the diagram can internalize carbon credits within
the equipment generating emissions. However, in the case of costs associated with the
acquisition of environmental treatment/control equipment, these models might be limited
in their analyses due to their inability to isolate this type of equipment (dissipative) within
the productive structure.

The study presents the H&S Model as a viable instrument to achieve the objective by
elucidating the inclusion of the carbon market and the internalization of carbon pricing
and other environmental expenses in the analysis. In addition to explaining the calculation
methodology, the study also examines the variations in monetary costs of cogeneration
systems’ final products.

In conclusion, this research establishes that the proposed adapted methodology is
consistent with the theoretical principles of thermodynamics and thermoeconomics. As
a result, it can effectively facilitate the allocation of carbon credits to both the internal
processes and final products of multiproduct systems.

By incorporating carbon credits into thermoeconomic modeling, it becomes possible:
to evaluate the financial implications of carbon emissions and incentivize the reduction of
greenhouse gases; to help in understanding the environmental impact of the thermal sys-
tem; and to optimize the thermal system’s design and operation to maximize the economic
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benefits while minimizing emissions. It also can help in designing and implementing effec-
tive carbon pricing mechanisms and environmental policies to achieve emission reduction
targets. Thus, companies and policymakers can gain a better understanding of the true
costs and benefits of different thermal system configurations and make informed decisions
that prioritize both economic and environmental sustainability.
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Abbreviations

AC Air compressor
c Monetary unit cost (USD/MWh)
CC Combustion chamber
CCS Carbon capture and storage
CEPCI Chemical Engineering Cost Index
CHP Combined heat and power
E Exergy Flow (kW)
ENV Environmental device
GHG Greenhouse gas
GT Gas turbine
IPCC Intergovernmental Panel on Climate Change
JB Junction–bifurcation
k∗ Exergetic unit cost (kW/kW)
Q Heat (exergy) (kW)
RB Recovery boiler
W Power (kW)
Y Generic thermodynamic magnitude (kW)
Z Hourly equipment cost (USD/h)
Greek symbols
λ Specific CO2 emission (g/MWh)
Subscripts and superscripts
0 Reference conditions
CH Chemical exergy (kW)
Env Environmental
F Fuel
H Enthalpic flow (kW)
i; j Indexes for productive components
in Inlet
N Net
out Outlet
PH Physical exergy (kW)
S Entropic flow (kW)
U Useful heat
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Abstract: This study explores enhancing the resilience of electric and natural gas networks against
extreme events like windstorms and wildfires by integrating parts of the electric power transmissions
into the natural gas pipeline network, which is less vulnerable. We propose a novel integrated energy
system planning strategy that can enhance the systems’ ability to respond to such events. Our strategy
unfolds in two stages. Initially, we devise expansion strategies for the interdependent networks
through a detailed tri-level planning model, including transmission, generation, and market dynamics
within a deregulated electricity market setting, formulated as a mixed-integer linear programming
(MILP) problem. Subsequently, we assess the impact of extreme events through worst-case scenarios,
applying previously determined network configurations. Finally, the integrated expansion planning
strategies are evaluated using real-world test systems.

Keywords: expansion planning; resilience networks; electric power grid; natural gas network

1. Introduction

The resilience of energy infrastructure against extreme events like windstorms and
wildfires has gained increasing attention recently [1], and this is particularly highlighted by
the 2021 Texas blackouts. Enhancing energy infrastructure resilience against extreme events,
such as windstorms and wildfires, to mitigate their impacts on interdependent energy
systems, including electric and natural gas infrastructures, is a critical yet challenging
task [2].

Traditional energy resource planning is reliability oriented, typically employing a
probabilistic model focused on high-chance and low-impact events [3]. The introduction of
the “defender–attacker–defender” framework, incorporating N − k criteria, marks a shift
toward improving system resilience against more severe scenarios [4]. In the expansion
planning problem, conventional models with an N− k static set are effective but often fail to
account for the interactions among energy systems and the low-chance high-impact events.
Meanwhile, extreme events usually come with unlikely high-impact consequences. Thus,
there is a growing need for resilience-focused operational and planning methodologies.

Some researchers have delved into the concept of interdependent planning. Ref-
erence [5] proposed a co-optimization planning model that targets the long-term inter-
dependency of electricity and natural gas systems with both economic and security con-
straints. Reference [6] offered an optimal planning model with reliability constraints for
an integrated energy hub with multiple types of energy systems. Reference [7] devel-
oped a stochastic day-ahead hourly scheduling algorithm to dispatch both supply- and
demand-side resources, and it can utilize ramping flexibility to deal with the variability
of renewable energy resources over time. Reference [8] presented a flexible stochastic
security-constrained unit commitment (SCUC) model to accommodate the high integration
of wind energy in the midterm allocations of natural gas and hydrosystems optimally.
Reference [9] presented a co-optimization algorithm to schedule the coordinated operation
of the two types of energy systems in a robust way. Reference [10] focused on the optimal
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operation of the integrated electric and gas network with bidirectional energy conversion.
However, these studies often overlooked the synergistic potential and complementary
nature of combining electric and natural gas systems, especially in mitigating impacts from
extreme events.

Moreover, the dynamics of the wholesale energy market are essential for effective in-
terdependent planning [11,12]. This market, overseen by an Independent System Operator
(ISO), includes transmission limitations and the process for energy market clearing, signifi-
cantly affecting decisions in resource planning [13]. For example, a Generation Company
(GENCO) might postpone investment if faced with severe transmission congestion [14],
which can lead to a decrease in generation capacity. Alternatively, excessively expand-
ing the transmission capacity could negatively impact generation investment since the
potential for high profits often directs investments toward achieving favorable settlement
prices. Therefore, optimal planning decisions require integrating transmission planning
with generation planning in a market-based framework [15,16].

Therefore, this paper proposes a two-stage, robust optimization framework aimed at
coordinated expansion planning to enhance resilience against extreme events. The first
stage combines transmission and generation planning with market clearing to devise an
optimal expansion strategy for electricity and natural gas systems. The second stage applies
resilience constraints to these systems in anticipation of extreme events, utilizing robust
modeling to address potential impacts. Through case studies, we demonstrate the efficacy
of our integrated planning approach in enhancing energy system resilience.

The contributions of this paper are as follows:

(1) A novel framework of centralized transmission planning with decentralized gen-
eration planning is proposed. It is formulated as an integrated resource tri-level
optimization model in a deregulated market environment.

(2) Detailed profiles, constraints, and market dynamics are considered in the interdepen-
dent expansion planning of energy systems to enhance its resilience.

(3) To identify promising expansion plans, a Complementary Problem (CP) reformulation
is employed to address the original tri-level programming expansion challenge, while
a decomposition method is applied to manage the two-stage resilience problem.

The remainder of the paper is organized as follows. In Section 2, a thorough problem
description is presented to illustrate the background and framework. In Section 3, the opti-
mal expansion model considering resilience constraints for each level is proposed, covering
transmission planning, generation planning, and the market clearing process. Section 4
presents a case study of an IEEE standard test system. Finally, Section 5 summarizes the
main conclusions of the paper.

2. Problem Description

The vulnerability of energy infrastructures to extreme weather events, such as wind-
storms and wildfires, has led to a re-evaluation of traditional energy system designs.
Notably, the 2021 winter storm in Texas highlighted the comparative resilience of un-
derground infrastructures over their overhead counterparts [17,18]. Conventionally, gas
transportation networks are constructed underground, offering inherent protection against
such events. Similarly, underground cable installations represent a strategic defense against
the vulnerabilities faced by overhead energy facilities. While these underground solu-
tions entail higher initial costs, their potential to significantly enhance system resilience,
particularly in regions prone to extreme events, is substantial.

Thus, by considering the partial integration of power transmission infrastructure
with underground gas transportation systems, this study aimed to create a more robust
response mechanism to extreme events that threaten utility services. Figure 1 illustrates
a system where natural gas units serve as conduits between electric power and natural
gas systems, demonstrating the potential for natural gas pipelines to supplement power
transmission capacities. This not only meets increased heat demands but also supports
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electric power delivery, presenting a comprehensive strategy for decision making in energy
system planning.

Figure 1. Interconnection of natural gas and electricity systems.

Operating a natural gas system involves complex considerations around safety, relia-
bility, and the physical properties of gas flow. While the compressibility of natural gas offers
certain operational flexibilities, such as line packing and storage, the detailed modeling of
these aspects falls outside the scope of this study, which is focused on broader planning
strategies rather than time-domain transient modeling or stability analysis. Moreover, it is
supposed that the non-convex steady-state equations for the gas flow are excluded as well in
order to reduce computational burdens in real-world integrated planning [19]. Accordingly,
this work set forth specific assumptions to streamline the integrated planning process:

• The initial planning stage conceptualizes a typical hour of operation, setting the
groundwork for further detailed scenario analysis in subsequent stages. This approach
allows for the possibility of expanding the model to encompass various time frames
and stochastic scenarios, including renewable energy outputs and demand variability.

• This work focuses on expanding the capacity of existing lines rather than construct-
ing new ones, assuming constant impedance for any such expansions to simplify
the analysis.

• Cost functions for both transmission and generation expansion are assumed as linear
to minimize the computational complexity.

• Within the competitive electricity market, Generation Companies (GENCOs) are
modeled to make strategic and reasonable decisions. Although each GENCO is
initially represented by a single unit for simplicity, the model allows for extension to
more complex configurations involving multiple units per GENCO.

• The model presumes a perfectly competitive electricity market, with the capability for
all buses to support both load and generation.

• The market equilibrium is simultaneously solved through ISO’s market clearing
process, and the GENCOs can bid in the market.

• For Case 7 in the analysis, the installed capacities of the candidate transmission lines
are set 20% lower than in Case 1.

• The scope of this study is confined to considering expansions in the natural gas
transportation system’s pipeline infrastructure.

3. Model Formulation

The structured two-stage optimization framework, as illustrated in Figure 2, is formu-
lated for interdependent planning. In Stage-1 , the optimal expansion planning strategies are
explored using a tri-level planning model, including a transmission level, generation level,
and market level in a deregulated electricity market environment. Subsequently, Stage-2

184



Processes 2024, 12, 775

subjects these identified expansion strategies to rigorous analysis under extreme conditions,
employing worst-case scenario assessments to evaluate their robustness and effectiveness.

Figure 2. Configuration of two-stage problem.

3.1. Stage-1: Planning Strategy Development

The hierarchical structure of our proposed optimization framework for Stage-1 is de-
picted in Figure 3. This structure combines the complexities of generation and transmission
planning with market clearing processes into a unified optimization model. In this frame-
work, individual GENCOs would simulate the future power prices settled by an energy
market and then obtain its investment options and corresponding operational dispatches
with the new resource. These strategic decisions are related with transmission planning,
as the availability of an adequate transmission capacity is crucial for GENCOs to secure
additional revenue by supplying energy from new sources to consumers.

Figure 3. Hierarchical structure of the tri-level model.

Despite being in a deregulated environment, transmission system planning still re-
mains centralized to assure the reliability of the bulk electric power grid since the ownership
of transmission facilities lies with Transmission Companies (TRANSCOs). Consequently,
the model assigns the responsibility of centralized transmission planning and the reliability
management of the electricity market to an Independent System Operator (ISO). The gener-
ation and transmission planning issue is structured as a mixed-integer programming (MIP)
problem within a tri-level framework, where centralized transmission planning decisions
form the first level, followed by GENCOs’ expansion strategies at the second level, and an
energy market equilibrium problem at the third level.
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To streamline this complex tri-level model into a more manageable form, we apply
the Karush–Kuhn–Tucker (KKT) conditions to transform it into a single-level convex
formulation [20]. Thus, this problem can be solved using commercially available solvers,
such as CPLEX [21], directly.

3.1.1. Level-1: Transmission Expansion Planning

At Level-1, we consider enhancing the original system by introducing potential trans-
mission lines and natural gas pipelines. These candidate lines are expected to augment
the capacity of existing infrastructure. The objective function of this level, Equation (1),
encompasses the operational costs of generation, capital expenditure for the addition of
transmission lines and pipelines, and the investment costs from Level-2:

min
f P
l , f Q

j

∑
i
(ai − bi P̄GC

i )(PGC
i + PGE

i )

+ ∑
e

aePGE
e + ∑

i
Ki P̄GC

i

+ ∑
l

Kl( f P
l − f P,0

l ) + ∑
j

Kj( f Q
j − f Q,0

j )

(1)

subject to

f P,0
l ≤ f P

l ≤ f P,max
l (2)

f Q,0
j ≤ f Q

j ≤ f Q,max
j (3)

Level-2 solution (4)

Note that the decision variables l ∈ LP,inv and j ∈ LQ,inv are the transmission and
pipe line capacity limits after the decisions at Level-1 are obtained. They are constants for
Level-2 and Level-3. f P

l and f Q
j are defined as continuous ones with limits [ f P,0

l , f P,max
l ]

and [ f Q,0
j , f Q,max

j ], respectively.

3.1.2. Level-2: Generation Expansion Equilibrium

Here, each GENCO determines its investment strategy to maximize revenue as de-
picted in (5). The capacity expansion of GENCO G is given by the following profit maxi-
mization expression:

max
P̄GC

i

U =

∑
i∈Ninv

πi(PGC
i + PGE

i )− [ai − bi P̄GC
i ](PGC

i + PGE
i )

+ ∑
e∈N f ix

πkPGE
e − aePGE

e − ∑
i∈Ninv

Ki P̄GC
i

(5)

subject to

Equilibrium Constraints (6)

The optimization goal is to balance the revenue from energy sales against the costs
of capacity expansion, as the first term is the revenues obtained from the market, and
the second term is the investment cost for capacity expansion. This formulation is a
Mathematical Program with Equilibrium Constraints (MPEC) model, where (6) represents
the equilibrium constraints that are obtained from Level-3.
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More specifically, each GENCO can decide whether to expand its capacity. However,
since these expansion decisions will consider other GENCOs’ expansion decisions, we
plan to employ the Nash equilibrium to determine the decisions on the equilibrium of the
entire power grid in the deregulated wholesale market environment. In this regard, the
Nash equilibrium includes all GENCO expansion equilibrium strategies P̄GC,EQ

i , where
each equilibrium strategy renders more revenues than any other methodology, P̄GC

i . It
is supposed that the other GENCOs are constants in their equilibrium strategies P̄GC,EQ

−i .
The equilibrium problem at Level-2 is subject to equilibrium constraints obtained through
a perfectly competitive equilibrium; i.e., all GENCOs solve their max profit problems at the
same time. Constraint (7) presents the Nash equilibrium condition.

UE
G(P̄GC,E

i , ∀i ∈ Ninv)

≥ max
P̄GC

i

UG(P̄GC
i , P̄GC,EQ

−i , ∀i ∈ Ninv
G , ∀ − i ∈ Ninv

−G)
(7)

3.1.3. Level-3: Market Clearing Process

Level-3 clears the market with the resources determined previously. The model takes
into account transmission constraints with a lossless DC approximation while considering
competitive generators, locational marginal prices (LMPs), and inelastic demands.

The market model is divided into two components: (1) candidate generating units
eligible for resource capacity expansion and (2) resources that cannot have their capacities
increased through investment. In this formulation, dual variables are denoted on the right
side of the equations. The problem facing the ISO in the wholesale market aims to minimize
total costs, as specified in Equation (8), while adhering to constraints related to resources
and the system. Specifically, Equations (9) and (10) detail the output capacities for both
candidate and established units. Equation (11) accounts for the total power imported to or
exported from each bus, while Equation (12) outlines the constraints on power flow. LMPs
are computed based on the dual variables associated with the power balance constraints at
each bus, as shown in Equation (13):

min
PGE

e ,PGC
i ,Pinj

n

∑
i
(ai − bi P̄GC

i )(PGC
i + PGE

e ) + ∑
e

aePGE
e (8)

subject to

0 ≤ PGC
i ≤ P̄GC

i : ξ−i , ξ+i (9)

0 ≤ PGE
e ≤ P̄GE

e : γ−e , γ+
e (10)

∑
n

Pinj
n = 0 : α (11)

− f P
l ≤ ∑

n∈Nn,l

ϕl,nPinj
n ≤ f P

l : λ−l , λ+
l (12)

∑
i∈Ni,n

PGC
i + ∑

i∈Ne,n

PGE
e + Pinj

n = PD
n : πn (13)

Sm −QD
m − cePGE

e − ciPGC
i

= ∑
n∈Nm,j

QL
j : µm

(14)

0 ≤ Sm ≤ Smax
m : σ−m , σ+

m (15)

− f Q
j ≤ QL

j ≤ f Q
j : δ−j , δ+j (16)

∑
j

QL
j = 0 : β (17)
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Constraints (14)–(17) incorporate operational protocols of the natural gas network.
Specifically, Constraint (14) addresses the balance of natural gas loads at nodes and the
consumption of gas by generation units following capacity expansion. Constraint (15)
sets limits on the amount of fuel that can be sourced from individual natural gas nodes.
Following expansion, Constraint (16) applies flow restrictions to the natural gas pipelines,
assuming that these pipelines operate according to a linear transport model, rather than
a nonlinear one, to simplify the planning process without sacrificing significant accuracy.
Constraint (17) details the total gas imported to or exported from each node. This setup
posits that gas-fired units maintain a consistent ratio of fuel usage to electricity generation,
simplifying fuel usage into a piecewise linear function of power generation with minimal
impact on computational complexity.

The market clearing model employed for both the market operator and participants
is framed linearly, with the Karush–Kuhn–Tucker (KKT) conditions providing a sufficient
framework to identify the globally optimal solution. Thus, the original multi-level problem
is converted into a single-level model, streamlining the solution process. Further insights
into this methodology can be found in [22]. It should be noted that the perfectly competitive
environment for maximizing the revenues of generators as a whole is consistent with the
economic dispatch model that is used by the market operator, and thus, it is an accurate,
equivalent form of the original problems.

Accordingly, Equations (18)–(46) are an equivalent KKT formulation of the original
problems set out in Equations (8)–(17). The Fortuny-Amat and McCarl linearization [23]
is employed to convert the slackness conditions into linear constraints, which enhances
the tractability of the optimization problem and ensures its alignment with the practical
demands of energy system planning.

ai − bi P̄GC
i − πn − ξ−i + ξ+i + ciµm = 0 (18)

ae − πn + ceµm − γ−e + γ+
e = 0 (19)

α− πn + ∑
l∈L

(λ+
l − λ−l )ϕl,i = 0 (20)

− µm − σ−m + σ+
m = 0 (21)

µm + β− δ−j + δ+j = 0 (22)

0 ≤ ξ−i ≤ Mξ−i (ηξ−
i ) (23)

0 ≤ PGC
i ≤ Mξ−i (1− η

ξ−
i ) (24)

0 ≤ ξ+i ≤ Mξ+i (ηξ+

i ) (25)

0 ≤ gi − PGC
i ≤ Mξ+i (1− η

ξ+

i ) (26)

0 ≤ γ−e ≤ Mγ−e (ηγ−
e ) (27)

0 ≤ PGE
e ≤ Mγ−e (1− η

γ−
e ) (28)

0 ≤ γ+
e ≤ Mγ+

e (ηγ+

e ) (29)

0 ≤ g0
e − PGE

i ≤ Mγ+
e (1− η

γ+

e ) (30)

0 ≤ λ−l ≤ Mλl (ηλ−
l ) (31)

0 ≤ f P
l + ∑

n∈N
ϕl,nPinj

n ≤ M f P
l (1− ηλ−

l ) (32)

0 ≤ λ+
l ≤ Mλl (ηλ+

l ) (33)

0 ≤ f P
l − ∑

n∈N
ϕl,nPinj

n ≤ M f P
l (1− ηλ+

l ) (34)

0 ≤ σ−m ≤ Mσ−m (ησ−
m ) (35)

0 ≤ Sm ≤ Mσ−m (1− ησ−
m ) (36)
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0 ≤ σ+
m ≤ Mσ+

m (ησ+

m ) (37)

0 ≤ Smax
m − Sm ≤ Mσ+

m (1− ησ+

m ) (38)

0 ≤ δ−j ≤ Mδj(ηδ−
j ) (39)

0 ≤ f Q
j + QL

j ≤ M f Q
j (1− ηδ−

j ) (40)

0 ≤ δ+j ≤ Mδj(ηδ+

j ) (41)

0 ≤ f Q
j −QL

j ≤ M f Q
j (1− ηδ+

j ) (42)

∑
n

Pinj
n = 0 (43)

∑
i∈Ni,n

PGC
i + ∑

i∈Ne,n

PGE
e + Pinj

n = PD
n (44)

Sm −QD
m − cePGE

e − ciPGC
i = ∑

n∈Nm,j

QL
j (45)

∑
j

QL
j = 0 (46)

With binary expansion [24] and Fortuny-Amat linearization [20], variable PGC
i can be

discretized, and the nonlinear product ξi P̄GC
i can be transferred to a linear expression (48)

with constraints (49) and (50) as follows:

P̄GC
i = ∆gi

Λi

∑
k=0

2kyki (47)

ξi P̄GC
i = ∆gi

Λi

∑
k=0

2k ŷki (48)

0 ≤ ξi − ŷki ≤ Mξi (1− yki) (49)

0 ≤ ŷki ≤ Mξi yki (50)

Hence, the complex tri-level framework is rebuilt into a compact MILP model (A1–A56),
which enables the accommodation of complex, large-scale systems with numerous deci-
sion variables.

3.2. Stage-2: Resilience Optimisation

In this stage, the planning options derived from Stage-1 are subjected to analysis under
scenarios of low-probability but high-impact extreme events. This evaluation employs a
deterministic approach, utilizing a resilience metric (RM) that quantifies the minimum load
curtailment during the most severe scenarios as follows:

RM = max
z∈Z

min
(P,Q)

∑
n

Fn(PLC
n ) ≤ RMmax (51)

Load curtailment alters the energy flow across gas pipelines and power lines. To stream-
line our analysis, we omit the impact on gas pipelines due to their resilience against extreme
events compared to overhead power lines. The effects on power lines are encapsulated
by the constraints below, which take into account the possibility of line outages during
extreme events:

− f P
l ∗ (1− zl) ≤ ∑

n∈N
ϕl,nPinj

n ≤ f P
l ∗ (1− zl) (52)

∑
i∈Ni,n

PGC
i + ∑

i∈Ne,n

PGE
e + Pinj

n = PD
n − PLC

n (53)
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In addition, the number of out-of-service power lines due to extreme events is used to
measure the impact of extreme events [6], and those failed lines are modeled within the
following uncertainty set.

The significance of extreme events is gauged using the number of power lines that
go out of service, modeled within the uncertainty set Z, where the confidence level k
represents the duration, destructive path, and other characteristics and indicates the severity
of extreme events.

Z = {ZLC|∑
LC

zLC ≤ k} (54)

3.3. Problem Formulation and Solution

The two-stage optimization model is expressed mathematically as follows, with linear
formulations accommodating generation costs and load curtailments. The model antici-
pates uncertain extreme events in Stage-1, then selects the worst-case scenarios based on the
initial network configuration, and proposes responses to mitigate load curtailment Stage-2.

min
P0,Q0, f j , fl

F0(P0, Q0)

s.t. A0P0 + B0Q0 ≤ C0u + D0 fl

max
z

min
P,Q

F(P) ≤ RMmax

AP + BQ ≤ Cu + Dz

(55)

In the formulation, RMmax offers a mechanism for adjusting the resilience against
critical loads proportionately to the total load, enhancing the model’s robustness.

This can be solved with the column-and-constraint generation (CCG) method, which
has been widely utilized to deal with robust optimization problems [25].

This two-stage max–min optimal problem (55) is tackled using the column-and-
constraint generation (CCG) method, effectively addressing robust optimization [25].
The problem is bifurcated into a master problem and a sub-problem, as depicted in
(56) and (57). The master problem provides a relaxed version of the original problem,
while the sub-problem, focused on resilience metrics, integrates new worst-case scenarios
into the model iteratively:

min
P0,Q0, f j , fl

F0(P0, Q0)

s.t. A0P0 + B0Q0 ≤ C0 f j + D0 fl

F(Ps) ≤ RMmax

APs + BQs ≤ Cu + Dẑs

(56)

max
z

min
P,Q

F(P)

AP + BQ ≤ Cûs + Dz
(57)

The iterative process, detailed in Algorithm 1, continues until the sub-problem’s
objective function falls below RMmax, ensuring that all resilience constraints are met.

Hence, the sub-problem can be transformed into a bilinear problem through the
dualization of the inner minimization problem and then further reformulated as an MILP
problem using the Big-M method. The master problem is an MILP problem as well.
In this regard, these problems can both be solved with available commercial solvers like
CPLEX [21].
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Algorithm 1 Two-stage resilient planning.

1: Initialisation: Set the resilience metric RM ← ∞, iteration index s = 0, and extreme
event scenario ẑ0 ← 0.

2: while not converged do
3: Solve the primary problem and determine the optimal expansion decisions.
4: Solve the secondary problem and calculate the optimal solution ẑ and update the

related resilience metric RM.
5: Build dispatch variables Ps and Qs, as well as the associated operation constraints,

on the basis of ẑ, and then substitute those variables and constraints into the pri-
mary problem.

6: Update index s← s + 1.
7: end while
8: return planning decisions

4. Case Studies
4.1. System Settings

In this section, we undertake a comprehensive analysis of the ISO New England power
grid, modeled across eight zones, interconnected with a six-node natural gas system, includ-
ing Maine (ME), Vermont (VT), New Hampshire (NH), NE Mass & Boston (NEMAB), WC
Mass (WCMA), SE Mass (SEMA), Rhode Island (RI), and Connecticut (CT) [26]. The map
of the system is shown in Figure 4. All eight zones contain electric demands, and all zones
except for NEMAB are eligible with existing or candidate generation capacities.

Figure 4. ISO New England system.

The case studies evaluate the interconnected system’s response to various scenarios,
including cost adjustments, capacity changes, and extreme event simulations, thereby
highlighting the robustness and adaptability of our proposed planning approach.

The parameters of existing and candidate generic resources are adopted from [27].
It is assumed that each candidate’s resource capacity can be expanded up to 1.5 GW.
In addition, we assume that existing and candidate transmission capacities can be expanded
up to 1.5 GW. An installation cost of USD 45 millionis imposed for the candidate lines.
The network contains two natural gas sources, a large gas source connected to node 1 and a
relatively small gas source linked to node 6. The existing capacity of the gas pipelines is
adopted from [27]. Moreover, the gas pipeline can be expanded to a maximum capacity
of 100,000 MBTU/h at an installation cost of USD 100,000 per MBTU/h. The investment
cost is set according to [27]. The electric and non-generation-associated gas heat loads
are adopted from [28,29] and are scaled on the basis of the assumed resource and natural
gas pipeline capacities. A fixed natural gas price of USD 3 per MBTU is imposed for the
whole system.
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4.2. General Analysis

To analyze the impact of various costs on the planning results, we evaluate the follow-
ing cases. Table 1 and Figures 5–8 show the results for all eight cases. For cost analysis,
this indicates that lower investment costs are produced by lower-priced power system
equipment. The natural gas pipeline investment cost has a significant impact on the total
investment. Various equipment investment costs have no impact on the operation costs.
For capacity analysis, lower candidate component capacities generally result in higher in-
vestment costs. However, in Case 7, with a different generation expansion strategy, a lower
investment cost is achieved. The transmission line candidate capacities have no impact on
the operating costs, whereas the natural gas pipeline candidate capacities and generation
unit candidate capacities both have positive effects on the operating costs. In addition,
lower costs are obtained using the proposed method, even with a higher contingency level.
The eight cases are as follows:

• Case 1 (Benchmark): the data summarized in Section 4.1 were used to form the
benchmark case.

• Case 2: the investment costs of a natural gas pipeline capacity expansion are set 50%
lower than in Case 1.

• Case 3: the investment costs of a resource capacity expansion are set 50% higher than
in Case 1.

• Case 4: the investment costs of a transmission line capacity expansion are set 50%
higher than in Case 1.

• Case 5: the installed capacities of the candidate natural gas pipelines are set 10% lower
than in Case 1.

• Case 6: the installed capacities of the candidate generation units are set 20% higher
than in Case 1.

• Case 7: the installed capacities of the candidate transmission lines are set 20% lower
than in Case 1.

• Case 8: in Stage-1, the simulated loss of transmission lines is reduced by 66%.

Figure 6 lists the generation unit investment decisions. In the cost analysis, there is
no difference between Cases 2, 3, and 4. For the capacity analysis, only Cases 5 and 6
have different investment capacities, both of which are higher than in the other cases, i.e.,
4000 MW. The higher cost is caused by lower natural gas pipeline candidate capacities or
higher generation unit candidate capacities.

Figure 7 summarizes the investment in the transmission system. For the cost analysis,
various equipment prices have no impact on the expansion of the transmission network.
For the capacity analysis, the various natural gas pipeline candidate capacities and genera-
tion unit candidate capacities lead to different expansion strategies.

Figure 8 depicts the investment in natural gas pipeline capacity expansions. A lower
candidate capacity results in a lower installed capacity, whereas lower-priced pipelines lead
to the installation of more gas pipelines. Moreover, using the proposed method, the load
curtailment is reduced from 8688 MW to 7587 MW for the same level of extreme event.

Table 1. Optimal costs for all cases.

Objective Function
Value [USD Billion]

Investment Cost
[USD Billion]

Operating Cost
[USD Million]

Case 1 30.167 30.166 1.343
Case 2 17.189 17.188 1.343
Case 3 32.217 32.216 1.343
Case 4 30.222 30.22 1.343
Case 5 30.276 30.275 1.283
Case 6 28.352 28.351 1.383
Case 7 29.367 29.366 1.343
Case 8 30.305 30.304 1.303
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Figure 5. Optimal objective function values for all cases.

Figure 6. Unit investment decisions in ISO New England system.

Figure 7. Investments in transmission line capacity expansions.

Figure 8. Investment decisions in natural gas pipelines.
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4.3. Cost Sensitivity Analysis

Our findings reveal that adjustments in investment costs directly influence the overall
planning outcomes. Notably, a reduction in natural gas pipeline expansion costs (Case 2)
significantly decreases the total investment required, underscoring the substantial financial
impact of pipeline infrastructure on regional energy systems. Conversely, increases in the
costs associated with resource and transmission line expansions (Cases 3 and 4) slightly
elevate the total project costs.

4.4. Capacity Sensitivity Analysis

Adjusting the capacities of candidate components yields insightful trends; notably,
reducing natural gas pipeline capacities (Case 5) leads to marginally higher investment
costs, reflecting the critical role of gas infrastructure in ensuring system resilience. On the
other hand, enhancing generation unit capacities (Case 6) or reducing transmission line ca-
pacities (Case 7) influences both investment and operational costs, highlighting the intricate
balance between generation, transmission, and demand in maintaining system efficiency.

4.5. Load Curtailment Sensitivity

The reduction in simulated transmission line losses (Case 8) further validates the
resilience of our planning approach. By effectively managing infrastructure vulnerabilities,
our model demonstrates a capacity to mitigate the impacts of severe disruptions, ensuring
reliable energy delivery even under stringent conditions.

4.6. Operational Implications and Strategic Insights

The diverse investment decisions across generation units, transmission systems,
and gas pipeline expansions, as visualized in Figures 6–8, encapsulate the strategic nuances
inherent in our planning model. Specifically, the model’s adaptability to various pricing and
capacity scenarios illustrates its potential to guide strategic investment decisions, ensuring
that infrastructure development aligns with regional energy needs and resilience objectives.

Moreover, the resilience optimization stage plays a pivotal role in enhancing system ro-
bustness against extreme events. By quantifying the minimum load curtailment achievable
under severe conditions, our model not only informs infrastructure investment decisions
but also contributes to the strategic planning necessary to withstand unforeseen disruptions.

5. Conclusions

In conclusion, this paper emphasizes the vital importance of integrating pipeline plan-
ning within the broader strategy for enhancing utility resilience. Underground pipelines,
which are less affected by extreme weather events compared to overhead power lines,
provide a sturdy solution for maintaining electricity supply during adverse conditions.

We developed a two-stage model to strengthen the combined resilience of electric-
ity and natural gas systems. This approach, practical through the use of mixed-integer
programming, was designed to meet current planning needs while being adaptable for
future changes. The insights from our case studies on cost, capacity, and load curtailment
illustrate the model’s ability to navigate the intricacies of modern energy systems effectively,
offering valuable strategies for utilities to ensure economic efficiency alongside resilience
to extreme events.

Future work will focus on incorporating renewable energy and adjusting to evolving
market dynamics, enhancing our model’s readiness for a renewable-powered future.
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Nomenclature

Indices
e Index of existing generation units.
i Index of candidate generation units.
j Index of natural gas pipelines.
l Index of transmission lines.
m Index of natural gas system nodes.
n Index of power system buses.
G Index of generation companies.
Sets
Ninv Set of candidate generation units.
N f ix Set of fixed generation units.
LP,inv Set of candidate transmission lines.
LQ,inv Set of candidate gas pipelines.
Constants
ai, bi Parameters of the candidate generation operational cost function of unit i.
g0

i Generation capacity of unit i available before Level-2.

Ki
Annual unit cost of investment in capacity expansion for candidate
generation unit i.

Kj Annual unit cost of investment in capacity expansion for gas pipeline j.
Kl Annual unit cost of investment in capacity expansion for transmission line l.
f P,0
l , f P,max

l Initial/maximum capacity of transmission line l.
f Q,0
j , f Q,max

j Initial/maximum capacity of gas pipeline j.
M Large constant.

ϕl,n
Power transfer distribution factor associated with line l with respect to unit
injection/withdrawal at bus n.

∆gi Size of the step used to discretize generation capacity i.
PD

n Inelastic demand at bus n.

Λi

Parameter used to the discretize generation capacity gi expansion associated
with the number of binary variables. The total number of binary variables is
Λi + 1.

Variables

f P
l

Thermal capacity limit of transmission line after decisions have been made
at Level-1. This remains constant for Level-2 and Level-3.

f Q
j

Capacity limit of gas pipeline after decisions have been made at Level-1. This
remains constant for Level-2 and Level-3.

gi Generation capacity available at node after decisions have been made at Level-2.
PGE

e Power generated by existing generation units.
PGC

i Power generated by candidate generation units.
Pinj

n Import/export power from/to bus i.
Sm Natural gas extracted from node m.
QL

j Natural gas flow through pipeline j.

P̄GC,EQ
i Expansion equilibrium strategies for all GENCOs.

P̄GC
i Each equilibrium strategy renders more revenue than any other one.

P̄GC,EQ
−i Other GENCOs are considered constants in their equilibrium strategies.

Dual Variables
α Dual variable related to constraint Pinj

n .
β Dual variable related to the nodal natural gas flow balance constraint.
λ−l , λ+

l Dual variable of the thermal capacity bounds of transmission line l.
δ−j , δ+j Dual variable of the capacity bounds of gas pipeline j.
γ−e , γ+

e Dual variable of the operating range for existing unit e.
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µm Dual variable of the gas balance equation at node m.

πn
Locational marginal price reflecting the dual variable of the electricity
balance equation at bus n.

σ−m , σ+
m Dual variable of the production capacity for gas source m.

ξ−i , ξ+i Dual variable of the production operating range for candidate resource i.
Ancillary Variables
η Binary variables from the Fortuny-Amat linearization at Level-3.

yki
Binary variable that is equal to 1 if the kth step of the discretization of gi is
considered and is equal to 0 otherwise.

ŷki Product of ξ+ by yki.
ỹki Product of PGC

i by yki.

Appendix A

We present the complete model of the transmission planning formulated as an MILP
problem subject to the EPEC-MILP and market equilibrium constraints:

min
f P
l , f Q

j

∑
i∈Ninv

[
ai(PGE,E

i + PGC,E
i )− bi(∆gi

Λi

∑
k=0

2k ỹE
ki)
]

+ ∑
i∈N f ix

aiP
GE,E
i + ∑

i∈Ninv

Ki(∆gi

Λi

∑
k=0

2kyE
ki)

+ ∑
l∈Linv

Kl( f P
l − f P,0

l ) + ∑
j∈Jinv

Kj( f Q
j − f Q,0

j )

(A1)

subject to

f P,0
l ≤ f P

l ≤ f P,max
l (A2)

f Q,0
j ≤ f Q

j ≤ f Q,max
j (A3)

0 ≤ PGC,E
i − ỹE

ki ≤ Mgi (1− yE
ki) (A4)

0 ≤ ỹE
ki ≤ Mgi yE

ki (A5)

Equilibrium and Profit Definition

UE
G ≥ US

G (A6)

UE
G = ∑

e
PGE,max

e γ+,E
e + ∑

i∈Ninv
G

{
(PGC,max

i ξ+,E
i +

∆gi

Λi

∑
k=0

2k ŷE
ki)− Ki(∆gi

Λi

∑
k=0

2kyE
ki)

} (A7)

US
G = ∑

e
PGE,max

e γ+,S
e + ∑

i∈Ninv
G

{
(PGC,max

i ξ+,S
i +

∆gi

Λi

∑
k=0

2k ŷS
ki)− Ki(∆gi

Λi

∑
k=0

2kyS
ki)

} (A8)

Left-Hand-Side Constraints

ae − πE
n − γ−,E

e + γ+,E
e + ceµE

e = 0 (A9)

ai − bi(∆gi

Λi

∑
k=0

2kyE
ki)− πE

n

− ξ−,E
i + ξ+,E

i + ciµ
E
i = 0

(A10)
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αE − πE
n + ∑

l∈L
(λ+,E

l − λ−,E
l )ϕl,n = 0 (A11)

− µE
m − σ−,E

m + σ+,E
m = 0 (A12)

µE
m + βE − δ−,E

j + δ+,E
j = 0 (A13)

0 ≤ ξ−,E
i ≤ Mξ−,E

i (ηξ−,E

i ) (A14)

0 ≤ PGC,E
i ≤ Mξ−,E

i (1− η
ξ−,E

i ) (A15)

0 ≤ ξ+,E
i ≤ Mξ+,E

i (ηξ+,E

i ) (A16)

0 ≤ ∆gi

Λi

∑
k=0

2kyE
ki − PGC,E

i ≤ Mξ+,E
i (1− η

ξ+,E

i ) (A17)

0 ≤ γ−,E
e ≤ Mγ−,E

e (ηγ−,E

e ) (A18)

0 ≤ PGE,E
e ≤ Mγ−,E

e (1− η
γ−,E

e ) (A19)

0 ≤ γ+,E
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e (ηγ+,E

e ) (A20)

0 ≤ PGE,max
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e (1− η
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e ) (A21)
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ϕl,nPinj,E

n ≤ M f P
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m (ησ−,E
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m (1− ησ−,E

m ) (A27)

0 ≤ σ+,E
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m (ησ+,E

m ) (A28)
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0 ≤ δ−,E
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j ) (A30)
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j ≤ M f Q
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j ) (A32)
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j (1− ηδ+,E
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0 ≤ ξ+,E
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0 ≤ ŷE
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ki (A35)

∑
n
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n = 0 (A36)
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i + ∑
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n (A37)

SE
m −QD
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GC,E
i = ∑
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QL,E
j (A38)

∑
j

QL,E
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Right -Hand-Side Constraints

ae − πS
n − γ−,S

e + γ+,S
e + ceµS

e = 0 (A40)

ai − bi(P̄GC.S
i )− πS
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∑
i∈Ni,n
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and Dominic C. Y. Foo

Received: 17 August 2024

Revised: 14 September 2024

Accepted: 9 October 2024

Published: 14 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Regional Operation of Electricity-Hythane Integrated Energy
System Considering Coupled Energy and Carbon Trading
Dong Yang, Shufan Wang *, Wendi Wang, Weiya Zhang, Pengfei Yu and Wei Kong

Nanjing Suyi Industrial Co., Ltd., Nanjing 210009, China
* Correspondence: suyi_wangsf@163.com

Abstract: The deepening implementation of the energy and carbon market imposes trading require-
ments on multiple regional integrated energy system participants, including power generation plants,
industrial users, and carbon capture, utilization, and storage (CCUS) facilities. Their diverse roles in
different markets strengthen the interconnections among these subsystems. On the other hand, the
operation of CCUS, containing carbon capture (CS), power-to-hydrogen (P2H), and power-to-gas
(P2G), results in the coupling of regional carbon reduction costs with the operation of electricity and
hythane networks. In this paper, we propose a regional economic dispatching model of an integrated
energy system. The markets are organized in a centralized form, and their clearing conditions are
considered. CCUS is designed to inject hydrogen or natural gas into hythane networks, operating
more flexibly. A generalized Nash game is applied to analyze the multiple trading equilibria of differ-
ent entities. Simulations are carried out to derive a different market equilibrium regarding network
scales, seasonal load shifts, and the ownership of CCUS. Simulation results in a 39-bus/20-node
coupled network indicate that the regional average carbon prices fluctuate from ¥1078.82 to ¥1519.03,
and the organization of independent CCUS is more preferred under the proposed market structure.

Keywords: regional integrated energy system; economic dispatching; generalized Nash equilibrium;
energy and carbon trading; carbon capture, utilization, and storage (CCUS)

1. Introduction

Intensifying global warming has aroused widespread concern regarding greenhouse
gas emissions [1], particularly carbon dioxide emissions from productive activities [2]. To
price the negative externality of carbon emissions, many countries or regions opt to initiate
carbon emission markets, aiming to fully harness the market mechanism in emission control
and low-carbon transition [3–5]. From the perspective of current carbon market practices,
both fossil fuel-based electricity generation and certain carbon-intensive industrial sectors
have been incorporated as primary trading entities within carbon market mechanisms. For
example, in Europe, participation in the Europe Emissions Trading System (EU ETS) is
mandatory for electricity generation and industrial sectors including steel, paper, glass,
and so on [6]. China is also preparing to incorporate industries, such as petrochemicals,
chemicals, building materials, etc., into carbon control mechanisms [7].

Meanwhile, these carbon market participants are also the major trading entities in the
regional integrated energy system [8–11]. Their operations are extensively coupled with
trading behaviors. For instance, natural gas power plants not only need to purchase fuels
from the gas networks for their production needs but also sell electricity to users or as
reserves in the electricity system [12], and emissions from such production drive the need
for additional carbon allowance. The industrial sectors also face similar circumstances. This
creates interconnections not only within the operation level but also within the trading level.
Furthermore, with the participation of carbon capture, utilization and storage (CCUS), the
coupling relationship is expected to deepen and complicate. CCUS generally captures
carbon dioxide from emissions of fossil fuel combustion. The produced carbon dioxide
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will either be sequestrated or utilized as the raw material for synthesizing natural gas,
and this process requires additional hydrogen. In its operation, it can choose to sell either
natural gas or hydrogen according to current gas prices, especially in an electricity-hythane
integrated energy system.

In general, three types of carbon markets are considered in the existing research asso-
ciated with coupled energy and carbon operation and trading. The first type assumes the
emission cost is levied in the form of static carbon taxes. The emission changes brought by
generator states (start-up or shutdown) and flexible loads and incorporates carbon inten-
sives into real-time electricity balancing market are considered in [13]. Similar modeling has
also been adopted in [14], which also takes the clearing of the gas market into consideration.
The second type adopts ladder carbon prices. Its basic idea is that the marginal carbon
emission price will increase as the total carbon emissions increase, thereby encouraging
participants in the carbon market to control the total emissions at a lower level from the
integrated energy system [15]. In [16], a demand side carbon trade scheme is proposed
based on the ladder type carbon price to enhance the low-carbon demand response for
integrated electricity–gas systems, enabling the carbon trades among different participants.
In [17], a carbon emission and energy management framework is proposed for trades
among industrial clusters. The third type considers the cap-and-trade mechanism and
the carbon price signal is often generated by the duality variables of the market clearing
condition. In [18], a two-layer policy optimization and evaluation model is developed for
emission cap-and-trade in the electricity network. Ref. [19] proposes a complementary
clearing condition for the emission market based on the Nash equilibrium. When all emis-
sions of market participants reach the setting cap, the price of emission allowance will be
positive; otherwise, the price will be zero. This clearing condition is also applied in [20].
It establishes a conjectural-variation equilibrium model to analyze the interconnections
among electricity, gas, and carbon emission markets. It assumes only fossil-fuel units
are required to trade carbon allowance. Constrained by the modeling concept, only one
carbon price will be formed within the carbon commitment period. In [21], dynamic carbon
emission intensity is utilized to analyze GENCO’s behaviors in the joint electricity and
carbon market. In [22], a novel role of a regional carbon market operator responsible for
the centralized trading of carbon allowance is proposed in a regional carbon market to find
the operational equilibrium of the electricity, gas, and carbon market. Ref. [23] estimates
the Nash Equilibrium in the joint peer-to-peer electricity and carbon market considering
the load and price uncertainties.

Some gaps exist between the carbon market assumptions in current research and
real practice. On the consumption side of carbon allowance, in the electrical grids, users
are drivers of carbon emissions [16], but not direct sources. From the perspective of the
energy system operator, these emissions have already been accounted for through the
carbon allowance allocated to the generators, thus it is not advisable to subject users to
further commitment. On the other hand, direct emissions from fossil fuels consumption by
end-users may compete with generators in the carbon market, which is not fully considered
in the current research. On the supply side of carbon allowance, the direct source of carbon
allowance is managed by the relevant administration overseeing carbon emissions. It
formulates the annual allowance based on the government’s long-term emission control
plan and socio-economic development needs. The allocation of carbon allowance, either
through free allocation or auctioning, is determined according to market liquidity and
demand. Furthermore, in the near future, entities with carbon capture capabilities, such as
carbon capture, utilization, and storage (CCUS) facilities, are also capable of generating
carbon allowance, which isolates the emissions from the atmosphere. Therefore, the
generated price signals in the carbon market not only serve to facilitate the allocation of
carbon emission rights among diverse emitters but also need to reflect the marginal cost
of the system’s decarbonization. Considering the aforementioned gaps, in this paper, we
propose a regional dispatching model of the electricity-hythane integrated energy system
considering coupled energy and carbon trading. The contributions can be summarized as:
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1. A centralized regional integrated market structure of electricity, hythane, and carbon
allowance is established. The carbon market operator is designed to be responsible
for assigning carbon allowance following the annual overall control principle of
carbon emissions, constituting the supply side of the regional carbon market together
with CCUS.

2. The benefits of multiple system participants are considered. Their trading behaviors
are formulated by the generalized Nash game model and the complementary form is
induced based on the Karush–Kuhn–Tucker (KKT) optimal condition.

3. Comprehensive simulations are conducted to test the proposed market equilibrium.
The impact of seasonal load shift and CCUS ownership is analyzed.

The remainder of this paper is organized as follows: Section 2 provides the details
of the structure, participants, and assumptions of the integrated market. Section 3 gives
the optimization model formulation of the market participants and operators. Section 4
establishes the generalized Nash equilibrium of the integrated market based on the com-
plementary model. Section 5 presents the simulation results. Section 6 concludes the paper.

2. System Structures, Participants, and Assumptions

Figure 1 illustrates the structure of the regionally integrated market. It is formulated
by three local markets: the electricity market, the gas market, and the carbon allowance
market.

Figure 1. The structure of the regional integrated market of electricity, gas, and carbon allowance.

2.1. Participants Assumptions

Six types of system participants are considered. The roles of different system partici-
pants are summarized in Table 1.

Table 1. The Roles of Participants in Different Subsystems.

System Participant Electricity Hythane Carbon

residential user consumer — — *
industrial user consumer consumer consumer

gas turbine generator producer consumer consumer
coal-fired generator producer — consumer

gas supplier — producer —
CCUS consumer producer producer

* Not involved.

The users are divided into two types, residential users and industrial users. We
assume that the residential users only consume electricity. None of them produce direct
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carbon emissions from the combustion of fossil fuels, and they are not regulated by carbon
allowance. Industrial users, however, require both electricity and hythane in production.
They also need to purchase carbon allowance equal to the emissions from the combustion of
hythane gas. It should be noted that although the emissions from the industrial production
process should also be regulated in current carbon market practices, they are not considered
which is beyond the scope of this study. Therefore, we simplify the carbon emissions of
industrial users by only taking the emissions generated from consuming gas into account.

The generators also include two types, gas turbine generators and coal-fired generators.
The main difference between them is the used fuels. The gas turbine generators purchase
hythane in the gas market to produce electrical power for sale in the electricity market.
The coal-fired generators, however, utilize coal to produce electrical power, so they do not
participate in the gas market. They are both regulated by carbon allowance.

Gas suppliers here can be viewed as the upstream gas station. They are the main
sources to provide natural gas in the gas market.

CCUS consists of three parts: carbon capture system (CC), power-to-hydrogen(P2H),
and power-to-gas system (P2G). Generally, there are three types of CCs: pre-combustion
capture, post-combustion capture, and oxy-fuel capture. We assume CC is post-combustion
capture in this study, so it captures the carbon emissions from the combustion of genera-
tors [24]. The collected carbon emissions are stored for sequestration when P2H is operating
only. This will happen when electricity prices are higher for further producing natural gas
instead of merely storing carbon dioxide. Or they will be utilized as the raw materials to
produce natural gas [25].

2.2. Market Assumptions

Three independent market operators are considered in the regional integrated energy
system. They are the electrical market operator (EMO), the gas market operator (GMO),
and the carbon market operator (CMO). We adopt locational marginal prices (LMPs) for the
settlement in the electricity and gas market. These prices are obtained by solving the DC
power flow model and the natural gas flow model [26–28]. Thus, the losses that happened
in energy distribution are ignored.

As for the carbon price, we require that all carbon emitters purchase the amount
of allowance equal to their emissions at each hour to avoid punishment for excessive
emissions during the end of commitment periods. Furthermore, we note that the total
amount of the available carbon allowance distributed by the corresponding administration
is typically fixed during an annual carbon accounting period in current practices. This is
mainly because carbon emissions are generally regulated by overall quantity control [29].
Thus, we assume that the CMO provides a certain amount of carbon allowance which is
limited by the emission control goals and gains revenue from the settlement of the carbon
market. In this way, CMO and CCUS together provide carbon allowance and affect carbon
prices in the market. To focus on the coupling of the three markets, we do not consider the
allowance distributed freely to emitters, which is a common practice in the cap-and-trade
mechanism, and assume that all allowance needs to be purchased at the settlement prices.

3. Model Formulation

This section introduces the behavior model of the aforementioned system participants
and market operators.

3.1. The Model of Market Participants
3.1.1. Residential Users

The behavior model of residential user k, k ∈ Ωres, is formulated as

max ∑
t∈T

(
ares,e

k,t

(
qres,e

i(k),t

)2
+ bres,e

k,t qres,e
i(k),t

)
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− ∑
t∈T

πe
i(k),tq

res,e
i(k),t (1a)

s.t. qres,e
k,t
≤ qres,e

k,t ≤ qres,e
k,t ,

[
µres,1

k,t
, µres,1

k,t

]
. (1b)

The objective (1a) is the quadratic monetary utility of consuming electricity minus the cost
of purchasing electricity [30]. (1b) imposes the minimum and maximum constraints on
the electrical demands. The associated dual variables of each constraint are denoted in
square brackets.

3.1.2. Industrial Users

The behavior model of industrial user k, k ∈ Ωind, is formulated as

max ∑
t∈T

(
aind,e

k,t

(
qind,e

i(k),t

)2
+ bind,e

k,t qind,e
i(k),t

)

+ ∑
t∈T

(
aind,g

k,t

(
qind,g

j(k),t

)2
+ bind,g

k,t qind,g
j(k),t

)

− ∑
t∈T

(
πe

i(k),tq
ind,e
i(k),t + π

g
j(k),tq

ind,g
j(k),t + πc

t qind,c
k,t

)
(2a)

s.t. qind,e
k,t
≤ qind,e

k,t ≤ qind,e
k,t ,

[
µind,1

k,t
, µind,1

k,t

]
, t ∈ T , (2b)

qind,g
k,t ≤ qind,g

k,t ≤ qind,g
k,t ,

[
µind,2

k,t
, µind,2

k,t

]
, t ∈ T , (2c)

qind,c
k,t = δgasqind,g

k,t ,
[
λind,3

k,t

]
, t ∈ T . (2d)

The first and the second term in the objective (2a) is the utility of consuming electricity and
natural gas, respectively. The third term is the cost of purchasing electricity, natural gas,
and carbon allowance. Industrial users emit carbon dioxide when combusting hythane
gas, so they need to purchase a carbon allowance equal to the amount of the emissions.
(2b) and (2c) limits the minimum and maximum values of electrical and gas demands,
respectively. (2d) converts the quantity of natural gas to carbon dioxide emissions. The
conversion coefficient δgas is calculated by

δgas =
(
1− ΓH2

)mCO2

mC
Cgas

ar OFgas. (3)

mCO2 and mC is the relative molecular mass, which takes 44 and 12, respectively. Cgas
ar is the

carbon content as the received basis of natural gas. OFgas is the carbon oxidation rate. ΓH2

is the proportion of enriched hydrogen.

3.1.3. Gas Turbine Generators

The behavior model of a gas turbine generator (GT) k, k ∈ Ωgt, is formulated as

max ∑
t∈T

(
πe

i(k),tq
gt,e
i(k),t − π

g
j(k),tq

gt,g
j(k),t − πc

t qgt,c
k,t

)
(4a)

s.t. qgt,g
j(k),t = bgt

k qgt,e
i(k),t + cgt

k ,
[
λ

gt,1
k,t

]
, t ∈ T , (4b)

qgt,e
k ≤ qgt,e

i(k),t ≤ qgt,e
k ,

[
µ

gt,2
k,t , µ

gt,2
k,t

]
, t ∈ T , (4c)

qgt,c
k,t = δgasqgt,g

j(k),t,
[
λ

gt,3
k,t

]
, t ∈ T , (4d)

− qgt,r
k ≤ qgt,e

i(k),t − qgt,e
i(k),t−1 ≤ qgt,r

k ,
[
µ

gt,4
k,t , µ

gt,4
k,t

]
, 2 ≤ t ≤ T. (4e)
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The objective (4a) maximizes the profit of k-th GT. The three terms represent the revenue
of selling electrical power, the cost of purchasing natural gas, and the cost of purchasing
carbon allowance, respectively. Constraint (4b) describes the fuel consumption of GT. (4c)
limits the minimum and maximum output of GT. (4d) has the same meaning as (2d). (4e)
limits the ramp power of the generator.

3.1.4. Coal-Fired Generators

The behavior model of coal-fired generators (GC) is similar to the model of GTs. The
only difference is that coal-fired generators purchase coal as their fuel rather than natural
gas. The model of coal-fired generator k, k ∈ Ωgc, is formulated as

max ∑
t∈T

(
πe

i(k),tq
gc,e
i(k),t − κcoalqgc,f

k,t − πc
t qgc,c

k,t

)
(5a)

s.t. qgc,f
j(k),t = bgc

k qgc,e
i(k),t + cgc

k ,
[
λ

gc,1
k,t

]
, t ∈ T (5b)

qgc,e
k ≤ qgc,e

i(k),t ≤ qgc,e
k ,

[
µ

gc,2
k,t , µ

gc,2
k,t

]
, t ∈ T (5c)

qgc,c
k,t = δcoalqgc,f

j(k),t,
[
λind,3

k,t

]
, t ∈ T (5d)

− qgc,r
k ≤ qgc,e

i(k),t − qgc,e
i(k),t−1 ≤ qgc,r

k ,
[
µ

gc,4
k,t , µ

gc,4
k,t

]
, 2 ≤ t ≤ T. (5e)

3.1.5. Gas Suppliers

The behavior model of the gas supplier k, k ∈ Ωgs is formulated as

max ∑
t∈T

(
π

g
j(k),tq

gs,g
j(k),t − κ

gas
k qgs,g

k,t

)
(6a)

s.t. qgs,g
k ≤ qgs,g

k,t ≤ qgs,g
k ,

[
µ

gs,g
k,t , µ

gs,g
k,t

]
, t ∈ T . (6b)

The objective (6a) is the revenue of selling natural gas minus the cost of supplying natural
gas. (6b) limits the minimum and maximum output of the gas supplier.

3.1.6. CCUS

As mentioned before, the CCUS contains three parts, the carbon capture system
(CC), power-to-hydrogen (P2H) and the power-to-gas (P2G) system. The carbon emis-
sions from combustion are captured by CC, and then utilized to produce methane (CH4)
by CO2 + 4H2 → CH4 + 2H2O or sequestrated as carbon storage (CS). Thus, the CCUS
purchases electrical power and sells produced hydrogen or natural gas and carbon al-
lowance during the carbon capture process. The behavior model of CCUS k, k ∈ Ωccus, is
formulated as

max ∑
t∈T

(
−πe

i(k),tq
ccus,e
i(k),t + π

g
j(k),tq

ccus,g
j(k),t

)

+ ∑
t∈T

(
πc

t qccus,c
k,t − κCO2 qccus,CO2

k,t − κcsqcs,c
k,t

)
(7a)

s.t. qccus,e
k,t = qcc,e

k,t + qp2h,e
k,t + qp2g,e

k,t ,
[
λccus,1

k,t

]
, t ∈ T , (7b)

qccus,g
j(k),t = qp2g,g

k,t + γqp2h,g2
k,t ,

[
λccus,2

k,t

]
, t ∈ T , (7c)

qcc,e
k
≤ qcc,e

k,t ≤ qcc,e
k ,

[
µccus,3

k,t
, µccus,3

k,t

]
, t ∈ T , (7d)

qp2g,e
k ≤ qp2g,e

k,t ≤ qp2g,e
k ,

[
µccus,4

k,t
, µccus,4

k,t

]
, t ∈ T , (7e)
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qp2h,e
k ≤ qp2h,e

k,t ≤ qp2h,e
k ,

[
µccus,5

k,t
, µccus,5

k,t

]
, t ∈ T , (7f)

qcc,e
k,t = ηcc,e

k qcc,c
k,t ,

[
λccus,6

k,t

]
, t ∈ T , (7g)

qp2h,g
k,t = η

p2h,g
k qp2h,e

k,t ,
[
λccus,7

k,t

]
, t ∈ T , (7h)

qp2g,g
k,t = η

p2g,g
k qp2g,e

k,t ,
[
λccus,8

k,t

]
, t ∈ T , (7i)

qp2h,g1
k,t =

4mH2

mCO2

qp2g,c
k,t ,

[
λccus,9

k,t

]
, t ∈ T , (7j)

qp2h,g
k,t = qp2h,g1

k,t + qp2h,g2
k,t ,

[
λccus,10

k,t

]
, t ∈ T , (7k)

qp2g,g
k,t =

mCH4

mCO2

qp2g,c
k,t ,

[
λccus,11

k,t

]
, t ∈ T , (7l)

qp2g,c
k,t ≥ 0,

[
µccus,12

k,t

]
, t ∈ T , (7m)

qp2g,c
k,t = qcu,c

k,t + qccus,CO2
k,t ,

[
λccus,13

k,t

]
, t ∈ T , (7n)

qccus,c
k,t ≥ 0,

[
µccus,14

k,t

]
, t ∈ T , (7o)

qcc,c
k,t = qcu,c

k,t + qcs,c
k,t ,

[
λccus,15

k,t

]
, t ∈ T , (7p)

qcu,c
k,t ≥ 0,

[
µccus,16

k,t

]
, t ∈ T , (7q)

qcs,c
k,t ≥ 0,

[
µccus,17

k,t

]
, t ∈ T , (7r)

qccus,c
k,t = qcc,c

k,t ,
[
λccus,18

k,t

]
, t ∈ T , (7s)

qccus,CO2
k,t ≥ 0,

[
µccus,19

k,t

]
, t ∈ T , (7t)

∑
k∈Ωccus

qcc,c
k,t ≤ ∑

k∈Ωgc

qgc,c
k,t + ∑

k∈Ωgt

qgt,c
k,t ,

[
µccus,20

t

]
, t ∈ T . (7u)

qp2h,g1
k,t ≥ 0,

[
µccus,21

k,t

]
, t ∈ T , (7v)

qp2h,g2
k,t ≥ 0,

[
µccus,22

k,t

]
, t ∈ T , (7w)

(7x)

The objective (7a) maximizes the profit of CCUS in the three markets. The five terms are the
cost of purchasing electrical power, the revenue of selling natural gas, the revenue of selling
carbon allowance, the cost of purchasing additional CO2 for producing natural gas, and the
cost of carbon storage, respectively. κCO2 is the marginal cost for external CO2. κcs is the
marginal cost for carbon storage. (7b), (7c) and (7s) states the connection between the trade
amounts of CCUS and its internal operating variables. Especially, (7c) specifies the trading
gas of CCUS contains the produced natural gas and hydrogen with equal calorific value.
(7d)–(7f) constrains the upper and lower electrical power of CC, P2H, and P2G. (7g)–(7i)
describes the energy conversion of CC, P2H, and P2G. According to the conservation of
mass, (7j), (7l) states the mass conversion between natural gas production and CO2 demand.
(7k) indicates the produced hydrogen from P2H either be used as the raw material for
P2G or be sold. (7n) states that the CO2 source of P2G comprises the external procurement
and the captured emissions for utilization. (7p) divides the total amount of the captured
emissions into two parts: utilization and storage. (7m), (7o), (7q), (7r), (7t), (7v), and (7w)
are the non-negative constraints. Under the assumption of post-combustion capture, (7q)
limits the maximum amount of captured emissions no larger than the total amount of
emitted CO2 from all generators.
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3.2. The Model of Market Operators
3.2.1. Electrical Market Operator

The behavior of EMO is formulated as

max ∑
t∈T

∑
m∈Ve

πe
m,tq

e
m,t (8a)

s.t. ∑
(mn)∈Ee

Bmn(θm,t − θn,t) + qe
m,t = 0,

[
λe,1

m,t

]
, ∀m ∈ Ve, t ∈ T , (8b)

∑
i(k)=m

(
qres,e

i(k),t + qind,e
i(k),t + qccus,e

i(k),t

)

− ∑
i(k)=m

(
qgc,e

i(k),t + qgt,e
i(k),t

)
− qe

m,t = 0,

[
λe,2

m,t

]
, ∀m ∈ Ve, t ∈ T , (8c)

− Pe
mn ≤ Bmn(θm,t − θn,t) ≤ Pe

mn,
[
µe,3

mn,t
, µe,3

mn,t

]
, (mn) ∈ Ee, t ∈ T . (8d)

The objective (8a) maximizes the social welfare in the electrical power market. (8b) keeps
the power balance at node m. (8c) defines the net electrical demand at node m. (8d) limits
the lower/upper limits of line transmission capacity.

3.2.2. Gas Market Operator

The behavior of GMOs is formulated as

max ∑
t∈T

∑
m∈Vg

π
g
m,tq

g
m,t (9a)

s.t. ∑
n∈Vg

to(m)

fmn,t − ∑
n∈Vg

from(m)

fmn,t

− ∑
m∈Vcom

from(c)
f com
c,t + ∑

m∈Vcom
to (c)

(1 + δcom
c ) f com

c,t

+ qg
m,t = 0,

[
λ

g,1
m,t

]
, ∀m ∈ Vg, t ∈ T , (9b)

∑
j(k)=m

(
qind,g

j(k),t + qgc,g
j(k),t

)

− ∑
j(k)=m

(
qgas,g

j(k),t + qccus,g
j(k),t

)
− qg

m,t = 0

[
λ

g,2
m,t

]
, ∀m ∈ Vg, t ∈ T , (9c)

∣∣∣∣
∣∣∣∣

2 fmn,t/Smn
Πm,t −Πn,t − 1

∣∣∣∣
∣∣∣∣
2
≤ Πm,t −Πn,t + 1,

[
Λg,1

mn,t, Λg,2
mn,t, Λg,3

mn,t

]
, ∀(mn) ∈ Eg, t ∈ T , (9d)

fmn,t ≥ 0,
[
µ

g,4
mn,t

]
, ∀(mn) ∈ Eg, t ∈ T , (9e)

Πm ≤ Πm,t ≤ Πm,
[
µg,5

m,t
, µ

g,5
m,t

]
, ∀m ∈ Vg, t ∈ T , (9f)

ρcom
c

Πcom,to
c,t ≤ Πcom,from

c,t ≤ ρcom
c Πcom,to

c,t ,
[
µg,6

c,t
, µ

g,6
c,t

]
, ∀c ∈ Ωcom, t ∈ T , (9g)

208



Processes 2024, 12, 2245

0 ≤ f com
c,t ≤ f

com
c ,

[
µg,7

c,t
, µ

g,7
c,t

]
, ∀c ∈ Ωcom, t ∈ T . (9h)

The objective (9a) maximizes the social welfare in the regional gas market. (9b) keeps the
gas balance at node m. (9c) calculates the net demand at node m. (9c) is the second-order
cone relaxation of the Weymouth equation ( fmn,t/Smn)

2 = Πm,t −Πn,t, which defines the
relationship between pipeline flows and nodal pressure. At the same time, we assume the
gas flow directions are known to avoid the introduction of binary variables. (9d) is the
non-negative constraint of gas flows. We assume that GMO knows the direction of gas
flows in advance to avoid introducing the binary variables. (9e) limits the nodal pressure.
(9f) poses constraints on the input/output pressure of the compressors. (9h) limits the gas
flow through the compressor.

3.2.3. Carbon Market Operator

The behavior of the CMO is formulated as

max ∑
t∈T

πc
t qcmo,c

t (10a)

s.t. qcmo,c ≤ ∑
t∈T

qcmo,c
t ≤ qcmo,c,

[
µc,1

t
, µc,1

t

]
, t ∈ T , (10b)

qcmo,c
t ≥ 0,

[
µc,2

t

]
, t ∈ T , (10c)

∑
k∈Ωind

qind,c
k,t + ∑

k∈Ωgc

qgc,c
k,t + ∑

k∈Ωgt

qgt,c
k,t

= ∑
k∈Ωccus

qccus,c
k,t + qcmo,c

k,t ,
[
λc,2

t

]
, t ∈ T , (10d)

The objective (10a) maximizes the revenue of allocating carbon allowance to the market.
(10b) limits the total amount of available carbon allowance from the carbon market admin-
istration, the upper limit of which is also the periodic emission control target. (10c) is the
non-negative constraint. We assume that there is no buy-back of carbon allowance. (10d)
clears the carbon market. The carbon emitters are required to purchase a carbon allowance
equal to their emissions to avoid excessiveness or insufficiency.

Additionally, a set of price inequality constraints is added to avoid unreasonable
energy and carbon prices.

πe
m,t ≥ πe, t ∈ T , m ∈ Ve, (11a)

π
g
m,t ≥ πg, t ∈ T , m ∈ Vg, (11b)

πc
t ≥ πc, t ∈ T . (11c)

4. Generalized Nash Equilibrium and Solution Methodology

The multiple mutually dependent constraints can be observed in the previous par-
ticipant and market models, such as (7q), (8c), (9c), and (10d). These constraints involve
variables from different market participants. Thus, the available strategy sets of market
participants not only depend on their own operational characteristics but also the strate-
gies the other take [31]. Based on that, we formulate the market equilibrium problem as a
generalized Nash equilibrium problem (GNEP). To find out the market equilibrium, the con-
vex optimization problem of behavior models (1)–(10) are converted into complementary
models based on Karush–Kuhn–Tucker (KTT) conditions [32].

For simplicity, the condition t ∈ T is omitted in the following analysis.
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The KKT conditions of (1) are as follows:

πe
i(k),t − 2ares,e

k,t qres,e
i(k),t − bres,e

k,t − µres,1
k,t

+ µres,1
k,t = 0, (12a)

0 ≤ µres,1
k,t
⊥ qres,e

k,t
− qres,e

k,t ≤ 0, (12b)

0 ≤ µres,1
k,t ⊥ qres,e

k,t − qres,e
k,t ≤ 0. (12c)

The KKT conditions of (2) are as follows:

πe
i(k),t − 2aind,e

k,t qind,e
i(k),t − bind,e

k,t − µind,1
k,t

+ µind,1
k,t = 0, (13a)

π
g
j(k),t − 2aind,g

k,t qind,g
j(k),t − bind,g

k,t

− µind,2
k,t

+ µind,2
k,t + δgasλind,3

k,t = 0, (13b)

πc
t − λind,3

k,t = 0, (13c)

0 ≤ µind,1
k,t
⊥ qind,e

k,t
− qind,e

k,t ≤ 0, (13d)

0 ≤ µind,1
k,t ⊥ qind,e

k,t − qind,g
k,t ≤ 0, (13e)

0 ≤ µind,2
k,t
⊥ qind,g

k,t − qind,e
k,t ≤ 0, (13f)

0 ≤ µind,2
k,t ⊥ qind,g

k,t − qind,g
k,t ≤ 0. (13g)

The KKT conditions of (4) are as follows:

− πe
i(k),t − bgt,e

k,t λ
gt,1
k,t − µ

gt,2
k,t

+ µ
gt,2
k,t − µ

gt,4
k,t + µ

gt,4
k,t = 0, t = T, (14a)

− πe
i(k),t − bgt,e

k,t λ
gt,1
k,t − µ

gt,2
k,t + µ

gt,2
k,t

− µ
gt,4
k,t + µ

gt,4
k,t + µ

gt,4
k,t+1 − µ

gt,4
k,t+1 = 0, t ≤ T − 1, (14b)

π
g
j(k),t + λ

gt,1
k,t + δgasλ

gt,3
k,t = 0, (14c)

πc
t − λ

gt,3
k,t = 0, (14d)

0 ≤ µ
gt,2
k,t ⊥ qgt,e

k − qgt,e
i(k),t ≤ 0, (14e)

0 ≤ µ
gt,2
k,t ⊥ qgt,e

i(k),t − qgt,e
k ≤ 0, (14f)

0 ≤ µ
gt,4
k,t ⊥ −qgt,r

k − qgt,e
i(k),t + qgt,e

i(k),t−1 ≤ 0, (14g)

0 ≤ µ
gt,4
k,t ⊥ qgt,e

i(k),t − qgt,e
i(k),t−1 − qgt,r

k ≤ 0, (14h)

The KKT conditions of (5) are as follows:

− πe
i(k),t − bgc,e

k,t λ
gc,1
k,t − µ

gc,2
k,t

+ µ
gc,2
k,t − µ

gc,4
k,t + µ

gc,4
k,t = 0, t = T, (15a)

− πe
i(k),t − bgc,e

k,t λ
gc,1
k,t − µ

gc,2
k,t + µ

gc,2
k,t

− µ
gc,4
k,t + µ

gc,4
k,t + µ

gc,4
k,t+1 − µ

gc,4
k,t+1 = 0, t ≤ T − 1, (15b)

κcoal + λ
gc,1
k,t + δcoalλ

gc,3
k,t = 0, (15c)

πc
t − λ

gc,3
k,t = 0, (15d)

0 ≤ µ
gt,2
k,t ⊥ qgc,e

k − qgc,e
i(k),t ≤ 0, (15e)

0 ≤ µ
gt,2
k,t ⊥ qgc,e

i(k),t − qgt,e
k ≤ 0, (15f)
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0 ≤ µ
gc,4
k,t ⊥ −qgc,r

k − qgc,e
i(k),t + qgc,e

i(k),t−1 ≤ 0, (15g)

0 ≤ µ
gc,4
k,t ⊥ qgc,e

i(k),t − qgc,e
i(k),t−1 − qgc,r

k ≤ 0, (15h)

The KKT conditions of (6) are as follows:

− π
g
j(k),t + κ

g
k − µ

gas,1
k,t + µ

gas,1
k,t = 0, (16a)

0 ≤ µ
gas,1
k,t ⊥ qgas,g

k − qgas,g
j(k),t ≤ 0, (16b)

0 ≤ µ
gas,1
k,t ⊥ qgas,g

j(k),t − qgas,g
k ≤ 0, (16c)

0 ≤ µ
gas,1
k,t ⊥ qgas,g

j(k),t − qgas,g
k ≤ 0, (16d)

The KKT conditions of (7) are as follows:

− πe
i(k),t + λccus,1

k,t = 0, (17a)

π
g
j(k),t + λccus,2

k,t = 0, (17b)

πc
k,t − µccus,14

k,t + λccus,18
k,t = 0, (17c)

− κCO2 − λccus,13
k,t − µccus,19

k,t = 0, (17d)

− κcs − λccus,15
k,t + µccus,17

k,t = 0, (17e)

− λccus,1
k,t − µccus,3

k,t
+ µccus,3

k,t + λccus,6
k,t = 0, (17f)

− λccus,1
k,t − µccus,5

k,t
+ µccus,5

k,t − η
p2h,g
k λccus,7

k,t = 0, (17g)

− λccus,1
k,t − µccus,4

k,t
+ µccus,4

k,t − η
p2h,g
k λccus,8

k,t = 0, (17h)

− λccus,2
k,t + λccus,8

k,t + λccus,11
k,t = 0, (17i)

− γλccus,2
k,t − λccus,10

k,t − µccus,22
k,t = 0, (17j)

0 ≤ µccus,3
k,t

⊥ qcc,e
k
− qcc,e

k,t ≤ 0,

0 ≤ µccus,3
k,t ⊥ qcc,e

k,t − qcc,e
k ≤ 0, (17k)

0 ≤ µccus,4
k,t

⊥ qp2g,e
k − qp2g,e

k,t ≤ 0,

0 ≤ µccus,4
k,t ⊥ qp2g,e

k,t − qp2g,e
k ≤ 0, (17l)

0 ≤ µccus,5
k,t

⊥ qp2h,e
k − qp2h,e

k,t ≤ 0,

0 ≤ µccus,5
k,t ⊥ qp2h,e

k,t − qp2h,e
k ≤ 0, (17m)

− ηcc,ek λccus,6
k,t + λccus,15

k,t − λccus,18
k,t + µccus,20

k,t = 0, (17n)

λccus,7
k,t + λccus,10

k,t = 0, (17o)

λccus,9
k,t − λccus,10

k,t − µccus,21
k,t = 0, (17p)

− 4mH2

CO2
λccus,9

k,t − mCH4

CO2
λccus,11

k,t − µccus,12
k,t + λccus,13

k,t = 0, (17q)

− λccus,13
k,t − λccus,15

k,t − µccus,16
k,t = 0, (17r)

− λccus,15
k,t − µccus,17

k,t = 0, (17s)

0 ≤ µccus,16
k,t ⊥ −qcu,c

k,t ≤ 0, (17t)

0 ≤ µccus,17
k,t ⊥ −qcs,c

k,t ≤ 0, (17u)

0 ≤ µccus,19
k,t ⊥ −qccus,CO2

k,t ≤ 0, (17v)
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0 ≤ µccus,20
k,t ⊥ ∑

k∈Ωccus

qcc,c
k,t − ∑

k∈Ωgc

qgc,c
k,t − ∑

k∈Ωgt

qgt,c
k,t ≤ 0, (17w)

0 ≤ µccus,21
k,t ⊥ −qp2h,g1

k,t ≤ 0, (17x)

0 ≤ µccus,22
k,t ⊥ −qp2h,g2

k,t ≤ 0, (17y)

∀m ∈ Ve, the KKT conditions of (8) are as follows:

− πe
m,t + λe,1

m,t − λe,2
m,t = 0, (18a)

∑
(mn)∈Ee

Bmn

(
λe,1

m,t − λe,1
n,t − µe,3

mn,t
+ µe,3

mn,t

)
= 0, (18b)

0 ≤ µe,3
mn,t
⊥ −Pe

mn − Bmn(θm,t − θn,t) ≤ 0, (18c)

0 ≤ µe,3
mn,t ⊥ Bmn(θm,t − θn,t)− Pe

mn ≤ 0. (18d)

∀m ∈ Vg, the KKT conditions of (9) are as follows:

− π
g
m,t + λ

g,1
m,t − λ

g,2
m,t = 0, (19a)

λ
g,2
m,t − λ

g,2
n,t − 2Λg,1

mn,t/Smn − µg,4
m,t

= 0, (19b)

− λ
g,2
m,t

∣∣∣
m∈Vcom

from(c)
+ (1 + δcom

c )λ
g,2
m,t

∣∣∣
m∈Vcom

to (c)

− µg,7
c,t

+ µ
g,7
c,t = 0, ∀c ∈ Ωcom, (19c)

− ∑
(mn)∈Eg

(
Λg,2

mn,t −Λg,2
nm,t + Λg,3

mn,t −Λg,3
nm,t

)

− µg,5 + µg,5 + ∑
m∈Vcom

from(c)

(
µ

g,6
c,t − µg,6

c,t

)

+ ∑
m∈Vcom

to (c)

(
ρcom

c
µg,6

c,t
− ρcom

c µ
g,6
c,t

)
= 0, (19d)

2 fmn,tλ
g,1
mn,t/Smn = 0, ∀(mn) ∈ Eg, (19e)

(Πm,t −Πn,t − 1)Λg,2
mn,t = 0, ∀(mn) ∈ Eg, (19f)

(Πm,t −Πn,t + 1)Λg,3
mn,t = 0, ∀(mn) ∈ Eg, (19g)

∣∣∣∣∣

∣∣∣∣∣
Λg,1

mn,t

Λg,2
mn,t

∣∣∣∣∣

∣∣∣∣∣
2

≤ Λg,3
mn,t, ∀(mn) ∈ Eg, (19h)

0 ≤ µ
g,4
mn,t ⊥ − fmn,t ≤ 0, ∀(mn) ∈ Eg, (19i)

0 ≤ µg,5
m,t
⊥ Πm −Πm,t ≤ 0, (19j)

0 ≤ µ
g,5
m,t ⊥ Πm,t −Πm ≤ 0, (19k)

0 ≤ µg,6
m,t
⊥ ρcom

c
Πcom,to

c,t −Πcom,from
c,t ≤ 0, ∀c ∈ Ωcom, (19l)

0 ≤ µ
g,6
m,t ⊥ Πcom,from

c,t − ρcom
c Πcom,to

c,t ≤ 0, ∀c ∈ Ωcom, (19m)

0 ≤ µg,7
m,t
⊥ − f com

c,t ≤ 0, ∀c ∈ Ωcom, (19n)

0 ≤ µ
g,7
m,t ⊥ f com

c,t − f
com
c ≤ 0, ∀c ∈ Ωcom. (19o)

The KKT conditions of (10) are as follows:

− πc
t − µc,1

1
+ µc,1

1 − µc,2
t − λc,3

t = 0, (20a)

0 ≤ µc,1
1
⊥ qcmo,c − ∑

t∈T
qcmo,c

t ≤ 0, (20b)
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0 ≤ µc,1
1 ⊥ ∑

t∈T
qcmo,c

t − qcmo,c ≤ 0, (20c)

0 ≤ µc,2
1 ⊥ −qcmo,c

t ≤ 0, (20d)

Together, the market equilibrium problem can be formulated as

min 1

s.t. (2d), (4b), (4d), (5b), (5d), (7b)–(7c),

(7f)–(7h), (7j), (7l), (7o), (8b)–(8c), (9b)–(9d),

(9b)–(9d), (10d), (11), (12)–(20).

(21)

5. Simulation Results

This section demonstrates the simulation results of the proposed market equilibrium
model on two test systems. First, a small-scale test system consisting of a three-bus electrical
system and a three-node gas system is an illustrative example. Second, on the IEEE 39-bus
system and the modified 20-node gas system. As for the common parameters, we set the
value of δgas to 2.16 tCO2/t and the value of δcoal to 3.31 tCO2/t according the default
parameters in [33]. κCO2 is set to 240 ¥/tCO2, κcs 350 ¥/tCO2, and κcoal 600 ¥/t. πe, πg,
and πc is set to 100, 100, and 0, respectively. Γ is set to 0.05 and γ is 0.3. The other related
parameters can be found in [12].

5.1. Test Case 1: On a Three-Bus Electrical System and a Three-Node Gas System

The structure of the three-bus electrical system and the three-node gas system is
illustrated in Figure 2. It contains one residential user and two industrial users. The
electricity is supplied by a GT and a GC. The gas is supplied by a GS and a CCUS together.
The six test settings are considered:

(1) No upper limit for available carbon allowance from CMO;
(2) The upper limit for available carbon allowance is set to 90% of the allowance quantity

in (1);
(3) The upper limit for available carbon allowance is set to 80% of the allowance quantity

in (1);
(4) The upper limit for available carbon allowance is set to 70% of the allowance quantity

in (1);
(5) The upper limit for available carbon allowance is set to 60% of the allowance quantity

in (1);
(6) The upper limit for available carbon allowance is set to 50% of the allowance quantity

in (1).

Figure 2. The three-bus electrical system and the three-node gas system.
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The summation of available carbon allowance in (1) is considered as the maximum
carbon allowance that should be distributed to emitters by CMO, which is 319.78 tCO2 in
this case. In order to maintain consistency in modeling, the upper limit of available carbon
allowance in (1) is set to a very large number, such as 1e6.

Figure 3 illustrates the price changes for three commodities. In general, the reduction
in available carbon allowance leads to an increase in electricity prices and carbon allowance
prices. The price of natural gas remains unaffected due to the presence of a sole natural
gas supplier in the system. These changes cause two main shifts: (1) The increasing carbon
prices are reducing the competitiveness of the coal-fired generator, while the proportion
of electricity generated by the gas turbine generator is steadily increasing, as depicted in
Figure 4. When only considering fuel costs, coal-fired generators exhibit lower marginal
generation costs. However, their unit carbon emissions are also comparatively higher than
gas turbine generators. (2) The share of allowance provided by CCUS increases, in general,
as depicted in Figure 5. It can be observed that when there is no restriction on the available
carbon allowance, the allowance in the carbon market is predominantly derived from the
CMO. With the upper limit decreasing, CCUS begins capturing emissions from GT and
GC to provide an additional allowance in the carbon market. The provided allowance first
drops when the limit is 80% max and climbs again with the constraint tightens. Two reasons
contribute to this phenomenon. First, the elevation of carbon prices results in a reduction
in the overall emissions within the system. Second, the increase in electricity prices leads to
a rise in carbon capture costs, while the revenue generated from the elevated carbon prices
is insufficient to offset the increased electricity costs. Compared with previous work [20],
the calculated carbon prices here are on average higher than them. This is mainly because
the prices, fluctuating around $20 in previous work, only reflect the scarcity of carbon
allowance. The allowance reproduction role played by CCUS has not been introduced
and its cost is not reflected in the carbon prices. Thus, the price level in previous work
can hardly cover the carbon allowance production cost of CCUS. However, the carbon
prices calculated in our work can help CCUS cover their basic marginal costs, illustrated in
Table 2, and encourage the further deployment of such key decarbonization equipment.

Table 2 summarizes the benefits gained by market participants under different carbon
market settings. It can be observed that the surplus of users, both residential and industrial,
decreases with the reduction in the available allowance from the CMO such as in the aspect
of social welfare in two energy markets. For the electricity market, this is primarily due to
the rise in electricity prices. Meanwhile, for the natural gas market, although gas prices
remain stable, the increase in carbon prices indirectly leads to a rise in the cost of gas
consumption, which also hampers the demand for natural gas from users. Another point
worth noting is that, in the test case, the profitability of the generators has consistently
remained negative, whether it is GT or GC. We annotate the profits earned by GT and GC
in the energy market only in parentheses, which exclude the carbon allowance costs. It can
be observed that with no carbon allowance costs, GC keeps its profit positive for lower
unit production costs. GT also turns a positive profit with the gradual increase in electricity
prices. This difference in net profits is caused by the absence of a free carbon allowance.
In practice, CMO can adjust the profitability or loss levels of fossil fuel generators by
determining the quantity of free carbon allowances allocated to the generators based on
this value and the carbon price level. As for CCUS, it can hardly make a profit in the carbon
market when there is still ample available allowance. However, when the available carbon
allowances in the market decrease to a certain level, the profitability of CCUS experiences a
sharp increase. The marginal costs associated with carbon capture and storage are not only
comparatively high but also linked to the level of electricity prices. Electricity prices, in
turn, rise due to the increase in carbon prices. Thus, it is only when the scarcity of carbon
allowances reaches a relatively high degree that the rise in carbon prices can drive further
profitability for CCUS.
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Figure 3. The price result of test case 1.

Figure 4. The electricity balance of test case 1 (negative values for electricity consumption).
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Figure 5. The carbon balance of test case 1 (negative values for carbon allowance).

Table 2. The surplus/profits of different market participant. (Unit: Thousand Chinese Yuan).

Available Allowance
from CMO

Surplus Profit Social Welfare Revenue
Res Ind GT GC GS CCUS Electricity Gas CMO

Max 129.80 2102.65
−4.20 *

(−0.83) **
−15.19
(12.96) 0.00 0.12 2216.18 80.54 51.40

90% Max 129.43 2102.28
−3.95

(−1.13)
−21.08
(16.69) 0.00 0.00 2216.17 82.78 41.34

80% Max 129.43 2098.12
−8.14

(−1.19)
−17.57
(10.56) 0.00 0.00 2216.17 65.71 46.39

70% Max 128.04 2086.61
−6.85
(2.42)

−13.89
(12.98) 0.00 0.00 2215.92 60.57 43.64

60% Max 125.19 2071.75
−0.29
(11.42)

−12.89
(17.41) 0.00 0.60 2215.31 57.21 44.46

50% Max 125.94 2054.85
−15.96
(9.99)

−42.99
(12.64) 0.00 41.44 2215.41 40.45 48.17

* Profit including carbon allowance costs. ** Profit excluding carbon allowance costs.

5.2. Test Case 2: On a 39-Bus Electrical System and a 20-Node Gas System

Test case 2 consists of the IEEE 39-bus electrical system and the modified Belgian
20-node gas system, as illustrated in Figure 6. It has 19 residential users and 20 industrial
users. The electrical demand is supplied by five GCs and five GTs together. Four GSs
provide natural gas for GTs and industrial users, playing the role of upstream gas stations.
Two CCUSs are responsible for capturing carbon emissions and producing natural gas. The
test settings are similar to test case 1, while the ratios are set to 80%, 60%, 50%, 40%, and
30% for the broader feasible range of available allowance from CMO. For simplicity, we
select four different typical days to simulate the load characteristics in spring, summer,
autumn, and winter, respectively. It should be mentioned that the ramp constraints are
only effective intraday due to the discontinuity between typical days.

Figure 7 demonstrates the shift in demand curves and carbon prices under different
settings. When no upper limit is posed on an available allowance from the CMO, the
summation of available carbon allowance from the CMO is 10,000 and carbon prices keep
0. It can be observed the electrical and gas demand are both suppressed by the climbing
carbon prices. Table 3 shows the average carbon price of different typical days. Generally
speaking, carbon prices tend to be higher during the summer and autumn typical days.
Table 4 further summarizes the benefits gained by market participants on different typical
days when posed with an 80% allowance limitation. For GCs and GTs, while they did not
incur negative profits as observed in test case 1, they still maintained a relatively lower level
of profitability. The average carbon price during the winter typical day is relatively low, yet
the revenues of CCUS and CMO are higher. This is because the energy consumption levels
for both electricity and gas of the winter typical day remain relatively high in all four days,
leading to a significant demand for allowances in the carbon market. However, during
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the summer and autumn typical day, the overall demand for gas load is lower, making
it challenging to achieve higher revenues even with higher carbon price levels. This also
hints at a seasonal demand shift of carbon allowance.

Figure 6. The structure of test case 2.

Table 3. Average carbon price of different days in case 2. (Unit: Chinese Yuan).

Typical Day 80% Max 60% Max 50% Max 40% Max 30% Max

Spring 1126.42 871.70 774.54 1651.34 1340.48
Summer 1315.68 1201.63 1229.40 1499.96 1528.42
Autumn 1126.42 1192.84 1469.95 1143.43 1737.92
Winter 1065.15 1049.10 1038.46 1384.76 1469.31
Total 1158.42 1078.82 1128.09 1419.87 1519.03

217



Processes 2024, 12, 2245

Figure 7. The total demand curves and carbon price results of test case 2.

Table 4. The surplus/profits of different market participants in case 2. (80% Max, Unit: Million
Chinese Yuan).

Typical Day Surplus Profit Social Welfare Revenue
Res Ind GT GC GS CCUS Electricity Gas CMO

Spring 144.99 197.67 1.33 0.74 11.91 17.74 348.55 3.02 1.37
Summer 497.87 359.75 2.50 0.62 2.311 6.32 871.32 2.90 0.56
Autumn 421.92 208.97 2.66 1.03 6.45 8.53 652.98 0.31 1.05
Winter 1648.79 282.60 1.28 0.60 24.50 31.89 1936.61 16.31 2.13
Total 2713.35 1048.99 7.77 3.00 45.18 64.49 3799.45 22.59 5.09

5.3. Comparison: Independent CCUS or Combination with Fossil Fuel Units

In this part, we analyze the impact of CCUS ownership on the market equilibrium. In
the analysis before, CCUS is operating as an independent market participant. Nevertheless,
occasions may happen that CCUS is built as an emission-reduction facility attached to fossil
fuel power plants. Based on test case 2, two CCUSs are allocated separately to GTs and GCs.
Modifications are made to the relevant models to accommodate the ownership structure,
described as follows. qgt,red

k,t is used to describe the quantity of emission reduction CCUS
provides for each generator. Since CCUS is integrated into the units, the emission reduction
can be directly allocated to the generators without the need for carbon allowance trading.
Thus, (4d) is modified as

qgt,c
k,t = δgasqgt,g

j(k),t − qgt,red
k,t ,

[
λ

gt,3
k,t

]
, t ∈ T , (22a)

qgt,red
k,t ≥ 0,

[
µ

gt,5
k,t

]
, t ∈ T . (22b)

The relative KKT condition is added:

− λ
gt,3
k,t − µ

gt,5
k,t = 0, (23a)

0 ≤ µ
gt,5
k,t ⊥ qgt,red

k,t ≥ 0. (23b)
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The same modification has also been made to the GC model. As for CCUS, we assume that
CCUS 1 is combined with GTs, and CCUS 2 is combined with GCs. Thus, the summation of
emission reduction for GTs cannot exceed the captured carbon emissions of CCUS 1. Also,
the captured carbon emissions of CCUS 1 should not be larger than the emissions from GTs.
Relative constraints, (7o) and (7q), are modified as follows:

qccus,c
k,t + ∑

k∈Ωgt

qgt,red
k,t = qcc,c

k,t ,
[
λccus,14

k,t

]
, t ∈ T , (24a)

qcc,c
k,t ≤ ∑

k∈Ωgt

qgt,c
k,t ,

[
µccus,16

k,t

]
, k = 1, t ∈ T . (24b)

KKT condition (17r) is changed to the following:

0 ≤ µccus,16
k,t ⊥ qcc,c

k,t − ∑
k∈Ωgt

qgt,c
k,t ≤ 0, k = 1. (25)

Similar modifications have also been applied to GCs and CCUS 2.
Table 5 compares the profits of fossil fuel units and CCUSs under different ownership

settings. It can be observed that the combination of fossil fuel units and CCUS makes it hard
to gain profitability under the current market mechanism. This is because when combined
with fossil fuel units, CMO playing as the primary supplier of carbon allowance in the
market, the effective formation of carbon price signals which can reflect marginal carbon
capturing costs becomes hard. The combination tends to prioritize allocating emissions
allowances generated from emission reduction to fossil fuel units, rather than clearing them
in the market for additional profits. After all, their profitability from allowance in the carbon
market implies the combination will incur additional carbon allowance costs. Consequently,
the operational costs of CCUSs would further diminish the profitability of the combination.
Additionally, such reconfiguration also reduces the flexibility of operations, increasing
the regional demand for carbon allowance. Therefore, from the perspective of CCUS, it is
advantageous to participate in the carbon market as an independent entity, as this facilitates
the formation of accurate carbon price signals.

Table 5. The Comparison of profits of fossil fuel units and CCUSs under different ownership. (Unit:
Million Chinese Yuan).

Available
Allowance
from CMO

Independent CCUS Combination
GTs GCs CCUSs GTs with

CCUS 1
GCs with
CCUS 2

80% 7.77 3.00 64.49 −3.07 −0.08
60% 3.86 0.49 70.89 −2.20 −0.76
50% 6.57 0.68 90.75 −6.18 −0.98
40% 5.84 3.31 88.68 — * —

* Infeasible problem.

6. Conclusions

In this paper, we propose an economic dispatching model of the regionally integrated
energy system of electricity and hythane based on the generalized Nash game. To be more
aligned with energy and carbon market practice, multiple participants, including industrial
users, CCUS, and the carbon market operator, are considered in the regionally integrated
energy system. The complementary model of the generalized Nash market equilibrium is
induced via the KKT optimal condition. The generated carbon allowance price signals can
reflect not only the scarcity of available carbon allowance caused by the carbon emission
control target but also the marginal costs of regional carbon reduction, which are highly
coupled with the fluctuations in the LMP of electricity and gas. A comprehensive case study
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is conducted to demonstrate the market equilibrium of different system scales, seasonal
loads, and CCUS ownership.

Simulation results indicate that the carbon price shows a trend of rising first and then
falling with the tightening of maximum available allowances decreasing. A shift in seasonal
changes can also be observed. In some extreme cases, the seasonal highest average price
can be about 1.89 times higher than the lowest price. As for the CCUS ownership, the
results suggest the organization of independent CCUSs is more beneficial compared with
the combination of fossil fuel generators, in the aspect of CCUS profits. The corresponding
result can provide insight into carbon allowance allocation, future regional energy and
carbon market organization, and coupled evolution of prices.

However, some points are not considered in this paper. For example, the effect on
carbon prices caused by transmission losses is not given consideration. Additionally, the
role of renewable energy plays in the system is also ignored. These will be discussed in our
future research.
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Nomenclature

Abbreviations
ccus Carbon capture, utlization, and storage.
cc Carbon capture.
cmo Carbon market operator.
com Compressor.
cs Carbon storage.
cu Carbon utilization.
c For carbon.
emo Electricity market operator.
e For electricity.
gc Coal-fired generators.
gmo Gas market operator.
gs Gas suppliers.
gt Gas turbine generators.
g For gas.
ind Industrial users.
p2g Power to gas.
res Residential users.
r Ramp power.
Indices
c The index of compressor in the gas network.
i(k) The corresponding bus in the electrical network of participant/equipment k.
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j(k) The corresponding node in the gas network of participant/equipment k.
k The index of market participants/equipment.
m, n The bus/node indices in the electrical/gas network.
t The index of time.
Parameters
δcom The compression coefficient of the compressor in the gas network.
δgas, δcoal The carbon emission factor of the fossil fuel, tCO2/km3 for gas, tCO2/t for coal.
γ The calorific conversion coefficient from hydrogen to natural gas.
f

com
The gas flow capacity of the compressor, km3.

P The capacity of the transmission lines in the electrical network, MW.
Π, Π The lower/upper limit of the nodal pressures in the gas network.
π The lower limit of the prices.
q, q The lower/upper limit of the trading quantity.

a
The coefficient of the quadratic term in the utility function, ¥/(MWh)2 for
electricity, ¥/(km3)2 for gas.

B The susceptance of transmission lines in the electrical network, p.u.

bgt, bgc
The coefficient of the linear term in the fuel cost function, t/MWh for gc,
km3/MWh for gt.

bres, bind The coefficient of the linear term in the utility function, ¥/MWh for electricity,
¥/km3 for gas.

c The coefficient of the constant term in the fuel cost function, t for gc, km3 for gt.
S The conveyance coefficient in the Weymouth equation, km3/bar.
Sets
E The set of edges in the network.
T The set of time.
Ω The set of market participants/equipment.
Variables
Λ The dual variable related to conic constraints.
λ The dual variable related to equality constraints.
µ, µ, µ The dual variables related to inequality constraints.
Π The nodal pressure in the gas network, bar.

π
The locational marginal price, ¥/MWh for electricity,
¥/km3 for gas, ¥/tCO2 for carbon allowance.

Πcom,from The pressure of the node from which gas flow to the compressor, bar.
Πcom,to The pressure of the node to which gas flow from the compressor, bar.
θ Phase angle of the bus in the electrical network, rad.
f The flow of pipeline/compressor in the gas network, km3.
q The trading quantity, kWh for electricity, km3 for gas, tCO2 for carbon allowance.
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Abstract: The inadequate ability to dissipate heat of the gas head cover of the diaphragm compressor
will result in its excessive temperature, which will put the operation of the hydrogen filling station at
risk for safety issues and raise operating costs. This paper analyzed the structure and the heat transfer
characteristics of the gas head cover, along with the relevant heat transfer boundaries, based on which
a finite element simulation model of the temperature distribution was established. A test rig for the
temperature test of a 22 MPa diaphragm compressor was built to validate this simulation model.
The results indicated that the simulated temperatures agree well with the measured values, and the
deviation is within 9.1%. Further, this paper proposed two head cover structures for enhancing the
heat transfer according to the temperature field distribution characteristics, and the simulation and
experimental verification were carried out, respectively. The findings demonstrate that the method of
enhancing heat transfer around the centre area is more effective, reducing the highest temperature by
14.1 ◦C, because it greatly lowers thermal conduction resistance, which is the principal impediment
to the heat dissipation of the gas head cover.

Keywords: diaphragm compressor; temperature distribution; simulation model; heat transfer
enhancement

1. Introduction

Fossil energy consumption, including coal, oil, and natural gas, is the basis for sup-
porting the progress of modern civilization, which leads to excessive global carbon dioxide
emissions [1,2]. Hydrogen can be converted into electricity via hydrogen fuel cells, with
only water as a by-product, making it an attractive green alternative to fossil energy, es-
pecially in transportation field [3–7]. Hydrogen is a never-ending renewable source of
energy and thus can be the ideal solution to environmental and energy issues. However,
hydrogen’s extremely low molecular weight makes it the lowest volumetric energy density
of any commonly used fuel [8], which prevents the use of hydrogen as an efficient energy
source. The most commonly used method is to pressurize hydrogen to 35 MPa or 70 MPa
and store it in a storage tank to increase the energy density and enable the car to have
a higher cruising range [9,10]. This makes the hydrogen refueling station an important
infrastructure to promote the development of the hydrogen energy industry [11]. The
hydrogen compressor is the core equipment in the hydrogen refueling station and domi-
nates the cost [12,13]. The technological development of the hydrogen compressor directly
determines the construction process of the refueling infrastructure.

The hydrogen-pressurized equipment mainly includes mechanical compression and
non-mechanical compression [14]. The mechanical compressor is the most commonly used
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type, including the diaphragm compressor, piston compressor, liquid piston compressor,
and ionic liquid compressor [14–16]. Diaphragm compressors are the most widely applied
in refueling stations due to their unique advantages of no pollution and no leakage [17].
Even so, the technology of diaphragm compressors now is still unlikely to satisfy the targets
of large-scale hydrogen refueling station construction.

The low efficiency and short life of the diaphragm are the most concerning issues of
diaphragm compressors. The low flow and efficiency of diaphragm compressors result in
high energy consumption of hydrogen refueling stations. Altukhov et al. [18] studied the
thermodynamic characteristics of diaphragm compressors and researched the effect of the
compressibility of the hydraulic fluid and dead volume in the gas cavity on the efficiency.
Lei et al. [19] discussed the factors affecting the flow rate of diaphragm compressors and
proposed solutions to these issues. Hyun et al. [20] analyzed the influence of oil density,
deflection of diaphragm, gas, and oil pressure on the flow rate during a certain period
of the compression process. Jia et al. [21] researched the effect of clearance volume on
the flow rate of diaphragm compressors through experiments and proposed a method
to increase the flow rate by reducing the dead volume of the cavity. Author [22] focused
on the influence of hydraulic oil compressibility on volumetric efficiency and proposed a
mathematical formula for the calculation of volumetric efficiency.

The short life of the diaphragm compressor, especially the easy fracture of the di-
aphragm, is a major problem in the application of the diaphragm compressor. To solve
this problem, many efforts have been made to improve the stability and life of diaphragm
compressors. Li et al. [23] studied the acoustic emission signal of diaphragm compressors in
the working process and proposed a test method that can monitor the operating conditions
and evaluate the reliability of the compressor. Altukhov et al. [24] found that the size of
the exhaust orifice and the oil-gas pressure relationship are the main factors affecting the
diaphragm life, and proposed a method to evaluate the design reliability of diaphragm
compressors. Lu et al. [25] analyzed the factors affecting the diaphragm life of diaphragm
compressors and found that the main factor is the cavity profile. Jia et al. [26] proposed an
analysis method of diaphragm stress which is combined with the small deflection and thin-
plate large deflection theories and investigated some influence factors of the diaphragm
fracture. Hu et al. [27] proposed a new generatrix for cavity profile, which can eliminate
the dead volume in the cavity and reduce the maximal and the centric redial stress of
the diaphragm by 8.2% and 13.9%, respectively. Li et al. [28] studied the characteristics
of diaphragm stress distribution during the working process of diaphragm compressors.
Furthermore, Li et al. [29–32] presented two new generatrices of the cavity profile, which
can change the stress distribution characteristics of the diaphragm, and verified the de-
sign theory through experimental and numerical methods. The new cavity profiles can
somewhat improve the stress of the diaphragm, but they do not quite address the problem.

The phenomenon of low flow and high failure of diaphragm compressors has received
the majority of research attention, while its fundamental performance, particularly thermal
management, has received less attention. The gas head cover of the hydrogen compres-
sor needs to use a hydrogen embrittlement-resistant material, which has poor thermal
conductivity, not conducive to the export of compression heat, causing the temperature
of the head cover to rise abnormally. A significant failure rate is also brought on by the
thermal stress brought on by the gas head cover’s abnormally high temperature. The high
temperature of the gas head cover can also exacerbate suction gas heating and reduces
the volumetric efficiency. Nevertheless, little research has been done on this issue. Only
Wang et al. [33,34] discussed that the thermal deformation of the gas head cover had a great
influence on the diaphragm fatigue life through the thermal-structure coupled analysis,
and proposed a method to improve the structure of the gas headcover. However, they
calculated a temperature field result by given parameters and then studied the influence of
the temperature field on the structural strength, but did not propose a universal simulation
method for the temperature field of the head cover. Analyzing the heat transfer process
and researching ways to improve it are both crucial [35–37].
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The above research mainly focused on cavity profiles and diaphragm stress. However,
the issue of poor heat dissipation of the gas head cover, which has a great impact on the life
and efficiency of the compressor, has not been well studied. The purpose of this paper is to
analyze the heat transfer process related to the gas head cover, establish a simulation model
of the temperature field, and then explore ways to enhance heat dissipation. Analysis and
experimental methods were applied to investigate and verify the method to calculate the
temperature field of the gas headcover.

2. Analysis of the Heat Transfer Related to the Gas Head Cover

The structure of the diaphragm compressor is shown in Figure 1. Three diaphragms
are fixed between the oil head support and the gas head cover. The volume enclosed
by the surface of the diaphragm and the gas head cover is the gas cavity, and the other
side of the diaphragm and the oil head support enclose the oil cavity. The oil piston is
driven by the crank connecting rod mechanism to reciprocate in the oil head support. Then,
the oil piston forces diaphragm deformation through hydraulic oil. Further, the volume
of the gas cavity is changed as diaphragms move, and the gas can be compressed and
discharged. The mechanical energy is converted into the internal energy of the gas during
the compression process, and the temperature of the gas will increase. The compression
process in the gas cavity of a diaphragm compressor is generally considered to be a
nearly isothermal process in the past because the gas head cover of traditional diaphragm
compressors is approximately a thin plate and is made of alloy steel with good thermal
conductivity. However, for diaphragm compressors used in hydrogen refueling stations,
the material of the gas head cover is generally made of stainless steel to prevent hydrogen
embrittlement, which has poor thermal conductivity. The pressure of the compressor used
in the hydrogen refueling station is relatively high, resulting in a thick gas head cover,
which is further not conducive to heat dissipation. The aforementioned factors cause the
thermal resistance of the gas head cover to be relatively high and the compression heat
released to the environment through the gas head cover to be comparatively low, leading
to a higher discharge temperature. The compression process in the gas cavity of hydrogen
diaphragm compressors is nearly an adiabatic process. These problems are subjected to
the high temperature of the discharge gas, as well as the gas head cover. High gas head
cover temperature can lead to large thermal deformation, high thermal stress, and terrible
intake heating, which affect the efficiency and life of the compressor. Therefore, it is of great
significance to study the heat transfer process and temperature distribution related to the
gas head cover to improve the performance of the diaphragm compressor.
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This study focused on the temperature distribution characteristics of the gas head
cover. The heat transfer processes related to the gas head cover are shown in Figure 2. The
main heat transfer processes and characteristics are as follows:
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2.1. Heat Transfer from Compressed Gas to the Surface of the Gas Cavity

The temperature of the gas in the gas cavity increases as compressed, and the high-
temperature gas undergoes forced convection heat transfer with the surface of the gas
cavity. It has been analyzed that the compression process in the gas cavity of the hydrogen
diaphragm compressor used in refueling stations is nearly an adiabatic process. The
temperature of the compressed gas can be calculated as:

Td = Ts

(
pd
ps

) KT−1
KT

(1)

where, Td and Ts denote the temperature of compressed gas and suction gas, respectively;
K; pd and ps represent the discharge pressure and suction pressure, respectively, MPa; KT
is the temperature adiabatic index, which is 1.41 for hydrogen.

The cycle process of the compressor includes the expansion process, the suction
process, the compression process, and the discharge process. The temperature of the gas
in the gas cavity is not always maintained at the highest temperature. The fresh gas with
a lower temperature enters the gas cavity during the suction process, and the heat will
be transferred from the surface of the gas cavity to the fresh gas. The actual average
temperature of the gas in the gas cavity is affected by many factors, such as compressor
power, operating conditions, and structural parameters. The average temperature of the
gas in the gas chamber of a reciprocating compressor is usually calculated by an empirical
formula. The authors verified that the empirical formula is also applicable in diaphragm
compressors through experiments. The average temperature can be expressed as:

Ta = Ts



1 +

2
3



(

pd
ps

) KT−1
KT − 1





 (2)

where, Ta is the average temperature in the gas cavity.
The convection heat transfer between the gas and the cavity surface is a complex

dynamic process. In a cycle process, the convective heat transfer coefficient is constantly
changing, but it is not necessary to calculate the heat transfer coefficient at each moment.
The equivalent convective heat transfer coefficient of the entire working process can de-
scribe the heat transfer between the gas and the cavity surface more intuitively. Because
the gas cavity is flat and the discharge holes are in the centre, the closer to the centre, the
more heat exchange between the gas and the cavity surface. The equivalent convective
heat transfer coefficient can be expressed as:

h1(r) = h1max(1− k
r
R
) (3)
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where h1(r) denotes the convective heat transfer coefficient at radius r, h1max is the convec-
tive heat transfer coefficient at the centre, R is the radius of the gas cavity, and k represents
the rate of decrease of heat transfer coefficient with radius which is the distance from the
gas cavity’s centre. The uncertainty around the deformation pattern of the diaphragm
results in the shape change pattern of the gas cavity being unclear, which makes the theo-
retical calculation of h1max and k impossible now. In this study, the simulation model was
corrected by the experimental results, and h1max and k are empirical values summarized
through experimental measurements [33].

2.2. Heat Transfer from the Outer Surface of the Gas Head Cover to the Environment

The temperature of the outer surface of the gas head cover without cooling can
generally reach 80 ◦C–100 ◦C when the discharge temperature is greater than 150 ◦C.
Therefore, not only the convective heat transfer but also the heat radiation should be
considered when calculating the heat transfer between the outer surface of the gas head
cover and the environment. The gas head cover is generally not air-cooled in the design of
diaphragm compressors. The form of the convective heat transfer between the outer surface
and the environment is air-natural convective heat transfer. The heat transfer coefficient of
air natural convective is 5–25 W·m−2·K−1. The heat transfer coefficient of heat radiation
can be calculated as: [38]

hr = εσ
(

Tw
3 + Tw

2Te + TwTe
2 + Te

3
)

(4)

where ε is the blackness of the surface of the gas head cover, σ is the Stefan-Boltzmann
constant, Tw and Te represent the temperature of the outer surface of the gas head cover
and the environment, respectively, K. Thus, the total heat transfer coefficient between the
surface of the gas head cover and the environment is the sum of the convective heat transfer
coefficient and the radiation heat transfer coefficient, and is given by:

h2 = hc + hr (5)

where h2 denotes the total heat transfer coefficient, and hc and hr are the convective heat
transfer coefficient and the radiation heat transfer coefficient, respectively.

2.3. Heat Transfer between the Gas and the Surface of Suction and Discharge Holes

There are some small holes under the suction and discharge valve for gas to enter and
exit the gas cavity. As shown in Figure 3, there is forced convective heat transfer between
the suction and discharge gas flow and the surfaces of the holes. The convective heat
transfer coefficient is associated with the flow velocity and working conditions of the gases.

The flow velocities of the gases flowing through the suction and discharge holes are
calculated as follows:

us =
Qo poTsZs

psT0 As
(6)

ud =
Qo poTdZd

pdT0 Ad
(7)

where us and ud express the flow velocities through the suction and discharge holes;
Qo, po, and T0 represent the volume flow rate, pressure, and temperature in standard
conditions, respectively; ps, Ts, pd, and Td are the pressures and temperatures of suction
and discharge gas, respectively; Zs and Zd are the compressibility factors in suction and
discharge conditions, respectively; and As and Ad represent the total sectional areas of
suction holes and discharge holes, respectively. Thus, the Reynolds numbers can be
calculated as follows:

Re =
ud
v

(8)
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where u and v are the flow velocity and kinematic viscosity of suction or discharge gas,
respectively, and d is the diameter of the small holes. Further, the Nusselt number can be
calculated by the Dittus-Boelter equation as follows [38]:

Nu = 0.023Re0.8Prn (9)

Therefore, the heat transfer coefficient can be expressed as:

h3 =
Nuλ

d
=

0.023u0.8Prnλ

v0.8d0.2 (10)

where h3 represents the heat transfer coefficient between the suction gas with the suction
holes or between the discharge gas with the discharge holes, u and v are the flow velocity
and kinematic viscosity of suction or discharge gas, respectively, d is the diameter of the
small holes, Pr, and λ are the Prandtl number and thermal conductivity in suction or dis-
charge conditions, respectively, which can be gained with physical property software, and
n is exponent of the Prandtl number, which is 0.3 for discharge gas and 0.4 for suction gas.
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2.4. Heat Transfer between the Suction/Discharge Nozzles and the Gas Head Cover

The temperature of the discharge nozzle is relatively high due to the continuous
discharge airflow through it. Similarly, the intake air temperature is relatively low, and
thus the temperature of the intake manifold will also be relatively low. The calculation
method of heat transfer between the gas and the suction and discharge nozzles is the
same as that of the gas and the suction and discharge holes. There is generally a gap of
about 1 mm between the suction and discharge holes and the gas head cover. However,
as shown in Figure 4, the discharge nozzle still transfers heat to the cylinder head, but the
thermal resistance will be larger. Certainly, the gas head cover also transfers heat to the
suction nozzle. There are two forms of heat transfer here: thermal radiation and conduction
through a thin layer of air. The heat transfer capacity through these two methods can be
calculated by the following equations, respectively:
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Φr = ε2C0 A1

[(
T1

100

)4
−
(

T2

100

)4
]

(11)

Φc =
2πlλair(T1 − T2)

ln(r2/r1)
(12)

where Φr and Φc represent the heat transfer capacity of thermal radiation and heat conduc-
tion, respectively, ε2 is the blackness of the surface of the hole in the gas head cover, C0 is
the black body radiation constant, A1 is the area of the outer surface of the nozzle, T1 and
T2 represent the temperature of the nozzle and the surface of the hole in the gas head cover,
respectively, r1 and r2 represent the diameter of the nozzle and the surface of the hole in
the gas head cover, respectively, l represents the length of the nozzle, and λair expresses
the thermal conductivity of air. Then, the total heat transfer capacity can be expressed
as follows:

Φt = Φr + Φc = h4(T1 − T2)A1 (13)

where h4 indicates the equivalent heat transfer coefficient between the nozzle and the gas
head cover, and can be calculated as follows:

h4 =

ε2C0 A1

[(
T1

100

)4
−
(

T2
100

)4
]
+ 2πlλair(T1−T2)

ln(r2/r1)

(T1 − T2)A1
(14)
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Figure 4. Heat transfers between the surfaces of nozzles and the gas head cover.

The simulation analysis of the temperature field of the gas head cover can be carried
out after calculating the heat transfer coefficient of each heat transfer path.

3. Finite Element Analysis of the Temperature Field
3.1. Geometric Model of the Gas Head Cover

The research objects in this study are the gas head cover, the nozzles, and the valves of
a diaphragm compressor used in a 22 MPa mother hydrogen refueling station. The gas head
cover assembly model was built by 3D modeling software, as shown in Figure 5. There is a
stepped hole in the centre of the cylinder for installing the discharge valve. The discharge
nozzle presses the discharge valve against the step of the hole, and under the valve, there
are some small holes for discharge. The suction step hole is set next to the discharge step
hole, and the structure of suction is similar to that of discharge. The structural parameters
of this model are shown in Table 1.
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Table 1. Main parameters of the gas head cover.

Parameters Values/mm

Diameter of the gas head cover 615
Thickness of the gas head cover 160

Diameter of the nozzles 54
Diameter of the hole in the gas head cover 56

Diameter of the suction and discharge small holes 4

The effect of hydrogen embrittlement must be considered when selecting the material
for the gas head cover assembly [39]. The material of the parts in contact with hydrogen
should be made of hydrogen embrittlement-resistant materials, generally stainless steel [40].
The materials of the gas head cover and the nozzles of this model were 1.4418 duplex stain-
less steel, and the valves were made of 17-4PH martensite stainless steel. Both 1.4418 and
17-4PH have excellent resistance to hydrogen embrittlement, but their thermal conductivi-
ties are extremely low, 15 W·(m·K)−1 and 16 W·(m·K)−1, respectively. This is also one of
the reasons for the poor heat dissipation of the hydrogen diaphragm compressor.

3.2. Mesh Generation

The dimensions of the different structural features of the gas head cover differ by two
orders of magnitude. The diameter of the gas head cover is 615 mm, while the diameter
of the suction and discharge small holes is only 4 mm, and it can be predicted that the
area around the discharge holes is the hottest part. The temperature of the area around
the discharge holes requires special attention. Therefore, the region of the small holes was
divided from the gas head cover for a finer mesh as shown in Figure 6. The grid length
of the mesh near the small holes was not more than 1 mm, and the other area of the gas
head cover adopted a tetrahedral mesh with a size of 2–5 mm. The suction and discharge
nozzles and valves adopted tetrahedral meshes with grid lengths of 1–2 mm.
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3.3. Thermal Loads

A steady-state thermal analysis of the gas head cover requires thermal loads to be
applied to each boundary. The simulation calculation was carried out in the Steady-State
thermal module of ANSYS 2021R2 software. The simulation example in this study is the
temperature field of the gas head cover of the hydrogen diaphragm compressor used in the
22 MPa hydrogen filling station. The simulated working conditions are that the suction
pressure is 5 Mpa, the suction temperature is 20 ◦C, the exhaust pressure is 22 Mpa, and the
ambient temperature is 20 ◦C. According to the analysis of the heat transfer of the gas head
cover in the previous chapter, the heat transfer coefficient of each heat transfer boundary of
the gas head cover can be calculated.

3.4. Mesh Independence Verification

Three meshes were generated with different numbers of elements by adjusting the
mesh grid length of the gas head cover, as well as the suction and discharge nozzles and
valves, and the number of elements is 2,200,498, 3,421,824, and 4,483,582, respectively.
The three models with different mesh numbers were calculated separately. The highest
temperature and the temperature of three feature points were taken as the comparison
values, and the calculation results under different mesh densities were compared. The
positions of the three feature points are shown in Figure 7. Point 1 was located in the
middle of the suction and discharge stepped holes, 140 mm deep from the top surface of
the gas head cover. Point 2 was located on the other side of the exhaust hole, which is
symmetrical with point 1 about the discharge stepped hole. Point 3 was located on the
inner wall surface of the discharge stepped hole, on the side away from the suction hole,
and is 115 mm deep from the top surface of the gas head cover. The calculation results are
shown in Figure 8. The highest temperature and the temperature of the three feature points
calculated with three meshes of different densities had no difference, which proved that
the mesh density did not affect the calculation results. To save computing resources, this
study adopted the mesh density corresponding to the simulation number of 3.42 million.
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4. Experimental Validation

To verify the correctness of the simulation analysis method of the temperature field,
a test rig for the temperature test of the gas head cover of the diaphragm compressor
was built, as shown in Figure 9. The experimental equipment is a two-stage horizontal
hydrogen diaphragm compressor with a rotational speed of 420 rpm used in a 22 MPa
mother hydrogen refueling station. Taking the secondary gas head cover as the research
object, the structure size of the gas head cover is the same as that of the simulation analysis
model. The second stage of the compressor was kept in the operation conditions, of
which the suction pressure and temperature were 5 MPa and 20 ◦C, and the discharge
pressure was 22 MPa. A vortex volume flowmeter was used to measure the actual flow
rate, and six K-type thermocouples were installed in the gas head cover to measure the
temperature at several special points. The uncertainty of the K-type thermocouple is
±1.5 ◦C. To measure the temperature of the internal temperature of the gas head cover,
deep holes with a diameter of 5 mm and a depth of 140 mm were machined on it, and the
thermocouple temperature measuring heads were inserted into the bottom of the holes
and filled with thermal conductive silicone grease. The thermal conductivity of the silicone
grease is larger than 6 W·(m−1·K−1). Several very fine K-type thermocouple wires were
bonded at the surface of the discharge stepped holes and the discharge small holes by
high-temperature-resistant glue.
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Figure 9. Temperature test rig.

The temperature measuring points on the gas head cover are shown in Figure 10.
Point 1 was located on the central wall of the discharge small holes. Point 2 was located in
the middle of the suction and discharge stepped holes, 140 mm deep from the top surface
of the gas head cover. Point 3 was located on the other side of the exhaust hole, which is
symmetrical with point 1 about the discharge stepped hole. Point 4 was located on the
inner wall surface of the discharge stepped hole, on the side away from the suction hole,
and is 115 mm deep from the top surface of the gas head cover. Point 5 was also located on
the inner wall surface of the discharge stepped hole, 60 mm deep. Point 6 was located at
the same depth as points 2 and 3, and was 150 mm away from the central.
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5. Results and Discussion
5.1. Finite Element Analysis Results and Comparison with Experimental Values

Figure 11 illustrates the temperature distribution in the cross-section along the cen-
terline of the suction and discharge holes and the surface of the gas head cover. The
comparison between the measured temperature and the simulated temperature of each
measuring point is shown in Table 2. There are many reasons for experiment and sim-
ulation analysis to cause the deviation between the measured value and the simulated
value. When measuring the surface temperature, e.g., Point 1, Point 4, and Point 5, one
side of the temperature measuring element is attached to the surface of the gas head cover,
and the other side is in contact with the high-temperature gas so that there is an error
between the measured temperature and the actual surface temperature. The measured
temperature values are higher than the actual surface temperature values. Especially, Point
1 is located in the centre of the discharge holes, where the surface temperature is close
to the discharge temperature. Thus, the error due to the influence of high-temperature
gas on the temperature-measuring element is smaller, and the deviation at this point is
smaller. When measuring the internal temperature, e.g., Point 2, Point 3, and Point 6, the
thermal conductivity of the filled silicone grease is smaller than that of the gas head cover
itself, and the contact surface between the two will also have contact thermal resistance, so
the measured values are slightly lower than the actual values there. In addition, the gas
cavity of the diaphragm compressor is a flat flexing space, and the thickness and diameter
of the space are also constantly changing during operation. The heat transfer coefficient
between the gas and the surface of the gas cavity is also dynamic and non-uniform. The
heat transfer coefficient between the gas and the gas cavity surface is simplified to be
uniform to calculate in this study, which also brings errors to the simulation results. But,
in general, the deviation between the measured temperature and the simulated value of
each measuring point is less than 9.1%, which is within a reasonable range. The simulation
results can reflect the actual temperature distribution characteristics of the compressor well.
This indicates that this simulation analysis method is feasible and can be used to study the
effect of different methods of optimizing heat transfer.
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Table 2. Comparison of measured temperature and simulation results.

Positions Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Measured temperature (◦C) 165.2 123.5 132.3 146.3 134.2 124.6
Simulated temperature (◦C) 162 134.8 142.5 138.3 125.1 135.4

Deviation 1.8% 9.1% 7.7% 5.5% 6.8% 8.7%

The temperature distribution graph declares that the maximum temperature of the
gas head cover is 162 ◦C, which is located in the centre of the discharge small holes. The
high-temperature gas continues to flow to the discharge nozzle through the small holes,
transferring a large amount of heat to the surface of the holes. However, the thermal
conductivity of the gas head cover is very low, and the heat around the discharge holes
is too late to conduct to the surroundings, resulting in heat accumulation in the region
of the discharge holes. This makes the temperature around the exhaust hole too high
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and the thermal deformation too large, which further aggravates the local stress of the
diaphragm and reduces the life of the compressor. The temperature distribution graph
also displays that the region of the discharge holes is the core high-temperature zone of
the diaphragm compressor, and the temperature exceeds 150 ◦C. From the discharge holes
to the surroundings, the temperature gradient decreases. The temperature of the part
of the outer surface of the gas head cover near the discharge stepped hole also exceeds
100 ◦C. These revelations demonstrate that the problem of the high temperature of the
gas head cover can be improved by two methods: augmented heat transfer of the core
high-temperature zone around the discharge holes and augmented heat transfer of the
outer surface of the gas head cover. But, it can be predicted that the former effect will
be better.

5.2. Influence of the Outer Surface Heat Transfer Coefficient on the Temperature Field of the Gas
Head Cover

The heat transfer on the outer surface was simplified in this study, and the convective
heat transfer coefficient was considered to be a constant value, which would bring certain
errors to the simulation results. To verify the influence of this error on the results, the
sensitivity analysis of the natural convection heat transfer coefficient of the outer surface
was conducted. The temperatures at several special points when the natural convection
heat transfer coefficients are 5, 10, 15, 20, and 25, are shown in Figure 12. It declares that the
highest temperature hardly changes with the change of the natural convection conversion
coefficient, and point 1 is located in the core high-temperature zone; the temperature at
point 1 is approximately equal to the maximum temperature. Point 2 and Point 3 are 55 mm
away from the centre of the discharge holes, and the temperature is slightly reduced, but the
reduction value is within 5 ◦C. The results indicate that the error of the natural convection
heat transfer coefficient has little effect on the simulation results, which is acceptable. The
heat inside the gas head cover can only be released to the environment through heat
conduction and convective heat transfer on the surface. The thermal conductivity of
stainless steel is low, and the thermal resistance of natural convection on the surface is
smaller than that of thermal conduction, so the change of natural convection heat transfer
coefficient has no significant effect on heat dissipation. The heat conduction resistance
increases with distance from the outer surface of the gas head cover, whereas the impact of
the surface convective heat transfer coefficient decreases.
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5.3. Effect of Augmented Heat Transfer of the Outer Surface and Core High-Temperature Zone

To study the effect of augmented heat transfer of the outer surface and the core high-
temperature zone, simulation analysis and experimental verification of the two methods
were carried out. Two gas head covers were fabricated, one with water grooves machined
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on the outer surface and the other with an annular water groove machined along the
discharge stepped hole, as shown in Figures 13 and 14.
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Figure 14. Structure of augmented heat transfer of the core high-temperature zone.

Figure 15 illustrates the temperature distribution of the gas head cover with augmented
heat transfer of the outer surface. The temperature in the area close to the water grooves
significantly reduces, and the temperature of the upper part of the gas head cover is lower
than 100 ◦C. However, the highest temperature at the discharge holes still reaches 160.4 ◦C,
which is only 1.9 ◦C lower than the temperature without heat transfer enhancement.
Although the internal temperature at most parts reduces significantly, the method of
augmented surface heat transfer has a limited effect on reducing the highest temperature.
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Figure 16 illustrates the temperature distribution of the gas head cover with augmented
heat transfer of the core high-temperature zone. The highest temperature is reduced to
148.2 ◦C, which is 14.1 ◦C lower than that without heat transfer enhancement, and the
area of the core high-temperature zone is also greatly reduced. The method of augmented
heat transfer with cooling water around the discharge holes can effectively reduce the
temperature of the gas head cover and solve the problem of the local excessive temperature
of diaphragm compressors.
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Table 3 lists the measured discharge temperature, as well as simulated and measured
temperatures of several special test points under different gas head cover structures. It
can be seen that the discharge temperature is also distinctly reduced with augmented
heat transfer of the core high-temperature zone, and the temperature of each point is
greatly reduced, which is of great significance for reducing thermal deformation of the gas
head cover and improving the life of diaphragm compressors. The results also show that
the simulated and measured temperatures are in good agreement for different structures
of the head cover. This means that this temperature field simulation method can be
used to evaluate the heat dissipation effect of the head cover structure when designing a
diaphragm compressor.

Table 3. Temperatures under different gas head cover structures.

Structures No Heat Transfer
Enhancement

Augmented Heat
Transfer of Outer Surface

Augmented Heat Transfer of
Core High-Temperature Zone

Measured discharge temperature (◦C) 171.5 169.2 155.4

Simulated highest temperature (◦C) 162.2 160.4 148.2

Point 1
Simulated/Measured (◦C) 162/165.2 160.1/164.7 147.9/147.2

Point 2
Simulated/Measured (◦C) 134.8/123.5 121.9/112.5 88.6/82.6

Point 3
Simulated/Measured (◦C) 142.5/132.3 127.4/121.8 93.9/89.6

Point 4
Simulated/Measured (◦C) 138.3/146.3 122.2/131.1 46.8/50.2

Point 5
Simulated/Measured (◦C) 125.1/134.2 72.7/75.1 37.9/40.3

Point 6
Simulated/Measured (◦C) 135.4/124.6 117.7/105.5 119.6/111.9

This study also demonstrates that the thermal resistance of the gas head cover is the
primary factor influencing the heat dissipation. Only through the heat conduction of the
gas head cover can the heat inside the gas head cover exchange heat with the cooling
water when the water is on the outer surface. The primary part of thermal resistance, heat
conduction via the gas head cover, has not been much addressed. When the cooling water
is close to the middle high-temperature area, the thermal resistance of the heat transfer
process is greatly reduced, and the heat transfer effect is greatly improved.

6. Conclusions

This paper analyzed the heat transfer boundary of the gas head cover of hydrogen di-
aphragm compressors, based on which the simulation analysis was carried out to obtain the
temperature distribution of the gas head cover, and a temperature test rig of a diaphragm
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compressor was built to measure the temperature of the gas head cover and verify the
accuracy of the simulation calculation model. The main conclusions are as follows.

• The temperature field simulation analysis model established in this paper can calculate
and has high accuracy to analyze the temperature distribution characteristics of the
diaphragm compressor gas head cover of hydrogen refueling stations. The deviation
between the measured temperature and the simulated value of each special measuring
point is less than 9.1%.

• The region of the discharge holes is the core high-temperature zone of the diaphragm
compressor, and the temperature exceeds 150 ◦C under the mother hydrogen refueling
station conditions with suction pressure of 5 MPa and discharge pressure of 22 Mpa.
From the discharge holes to the surroundings, the temperature gradient decreases.
This is so because the central part has the maximum thermal resistance to the outside
air and the highest temperature of the gas in contact with it.

• The temperature field simulation results of the two enhanced heat exchange head
cover structures with different enhancing heat transfer methods are in good agreement
with the measured values. This simulation method can be used to evaluate the heat
dissipation effect of the head cover structure.

• The highest temperature and discharge are reduced by 14.1 ◦C and 16.1 ◦C with
colling water around the discharge holes, respectively. This method successfully
lowers the thermal resistance of heat dissipation in the middle high-temperature area,
and significantly lowers the temperature, which can effectively solve the problem of
the local excessive temperature of diaphragm compressors and enhance the reliability
of diaphragm compressors for hydrogen refueling stations.
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Nomenclature

Td Discharge temperature, K
Ts Suction temperature, K
pd Discharge pressure, MPa
ps Suction pressure, MPa
KT Temperature adiabatic index
Ta Average temperature, K
h Convective heat transfer coefficient, W·m−2·K−1

k Rate of decrease of heat transfer coefficient
R Radius of the gas cavity
r Radius
ε Blackness
σ Stefan-Boltzmann constant
Tw Temperature of the outer surface, K
Te Temperature of the environment, K
hr Heat transfer coefficient of heat radiation, W·m−2·K−1

hc Heat transfer coefficient of air natural convective, W·m−2·K−1

us Flow velocity of the gas flowing through the suction holes, m/s
ud Flow velocity of the gas flowing through the discharge holes, m/s
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Qo Volume flow rate in standard conditions, m3/h
po Pressure in standard conditions, MPa
T0 Temperature in standard conditions, K
Zs Compressibility factors in suction conditions
Zd Compressibility factors in discharge conditions
As Total sectional areas of suction holes, m2

Ad Total sectional areas of discharge holes, m2

Re Reynolds numbers
v Kinematic viscosity
d Diameter of the small holes, m2

Nu Nusselt number
Pr Prandtl number
λ Thermal conductivity
n Exponent of the Prandtl number
Φr Heat transfer capacity of thermal radiation
Φc Heat transfer capacity of heat conduction
Φt Total heat transfer capacity
l Length of the nozzle, m
λair Thermal conductivity of air
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Abstract: Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature en-
vironment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous
alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by
using the anodic oxidation method with the conventional polished aluminum sheet as the reference.
A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on
the contact angle, specific surface area, and fractal dimension. It was found that compared with
the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due
to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong
anti-frost performance under low temperatures and high humidity. In an environment with low
surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins
with large specific areas and small fractal dimensions for the heat exchange fins of air source heat
pump air conditioning systems.

Keywords: nanoporous alumina sheet; interface effect; frosting; mechanism

1. Introduction

Air conditioning systems are widely used to adjust the comfort of a building environ-
ment. While enjoying a comfortable indoor environment, people are also worried about the
high energy consumption of buildings and serious environmental pollution. Studies have
shown that building energy consumption accounts for 30–40% of the total social energy
consumption [1]. Moreover, air conditioning energy consumption accounts for 40–60%
of building energy consumption [2,3]. Air source heat pumps constitute the most widely
used air conditioning equipment in domestic residential buildings due to their energy
saving, environmental friendliness, short investment return period, and low operating cost.
However, in severely cold winter, when the surface temperature of the fins of the outdoor
heat exchanger of the air source heat pump air conditioning system is lower than the ambi-
ent dew point temperature and is lower than the freezing temperature of the condensate
water, the surface of the fins will be frosted [4], which reduces the heat transfer efficiency of
the heat exchanger by 50–75% [5]. This is energy waste and environmentally unfriendly.
Therefore, the optimization of air source heat pump air conditioning systems and the
improvement of anti-frosting performance is a hotspot of current research, attracting many
researchers’ attention [6].

Inspired by the superhydrophobic “lotus effect” [7], a passive defrosting method was
proposed by creating a surface that can prevented the condensation/frosting of water
molecules on the surface or promoted the shedding of condensate/frost on the cold sur-
face [8]. The passive method requires low energy consumption and is environmentally
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friendly. Both hydrophilic and hydrophobic fins on the heat exchanger meet the require-
ments of passive defrosting. Liu et al. [9] demonstrated the delayed formation of the
frosting layer on hydrophilic heat exchange fins by at least 15 min compared to the ordinary
heat exchange fins with a reduced amount of frost by 40%. Okoroafor et al. [10] found
that due to the reduced water adsorption, the aluminum sheets coated with hydrophilic
layers showed good anti-frosting properties in humid air. Their frosting rate and the
thicknesses of the frost layers were 10–30% lower than that of an ordinary aluminum sheet.
Lee et al. [11] compared the frost formation on the surfaces with different dynamic contact
angles (DCA) of 23◦ and 88◦. The results showed that low-DCA surfaces had lower frost
thickness and higher frost density than high-DCA surfaces. Yang et al. [12] developed a
nanoporous hydrophilic aluminum sheet with an improved anti-frosting performance at
−15 ◦C by reducing the frosting rate by a factor of 3. Meanwhile, Wang et al. [13] found
that the superhydrophobic surface also had good anti-frosting performance under high
humidity conditions. A superhydrophobic aluminum surface with hierarchical micro–nano
structures was created via a combination of chemical etching and sandblasting [14]. The
frosting delay time was more than 10 times that of the bare substrate, and the frosting
area was significantly smaller. Lei et al. [15] used the spray coating method to prepare a
superhydrophobic coating based on silica nanoparticles and room-temperature vulcanized
silicone rubber. The experimental results showed that the superhydrophobic coating had a
strong ability to prevent frost growth. Fan et al. [16] prepared a transparent hydrophobic
surface by using a sol–gel method with the frost formation time increased by 4.5 times that
on the unmodified surface at a propagation speed of 47.5 µm/s, which was 29.6% lower
than that of the unmodified surface.

Hydrophilic/hydrophobic surfaces produced by surface coating have some shortcom-
ings. The surface coating could be structurally fragile with poor adhesion, easily falling off,
and showing poor durability [17]. The preparation of a nanoporous surface via anodization
method can avoid such shortcomings because this way, the nanoporous surface is directly
formed, giving it better durability. Wilson et al. [18] found that nanoporous surface coating
could reduce the nucleation temperature of condensed water, and the freezing property of
the coating surface was not damaged after 150 cycles of freezing/melting. Kim et al. [19]
conducted experimental tests on a nanoporous surface and found that it can promote the
condensation of water droplets and the falling off of the frost layer from the surface under
the action of its gravity, which makes up for the limitations of the hydrophobic surface in a
high-humidity environment.

The anti-frosting properties of nanoporous alumina sheets have been studied, but
their anti-frosting mechanism is seldom studied. To further study the mechanism of surface
frosting and provide a reference for the subsequent preparation of anti-frosting surfaces,
many researchers have conducted studies based on the contact angle and surface energy
of a surface. Huang et al. [20] prepared a surface with a contact angle of 96.2◦~154.9◦ by
using solution immersion. Under natural convection conditions, a comparative experiment
of frosting on the surface of ordinary copper was carried out. The results showed that
the delayed frosting time on the surface was directly proportional to the surface contact
angle. The larger the contact angle was, the better the surface anti-frosting performance
was. Piucco et al. [21] found that the initial frosting area of the surface was inversely
proportional to the surface contact angle. As the contact angle increased, a lower surface
temperature was required to produce frost crystals. Mangini et al. [22] observed the frost
layer morphology on a surface with different contact angles by using infrared thermal
imaging cameras. They found that a dense ice layer was formed on the surface with a
small contact angle while a sparsely distributed ice layer was formed on the surface with
a large contact angle. This indicated that the contact angle would affect the shape and
density of the surface frost layer and have a certain effect on the long-term frost formation
on the surface. Na and Webb et al. [23] found that a low-energy surface required a much
higher supersaturation degree for frost nucleation than a high-energy surface. Liu et al. [24]
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proposed that the retarding frost nucleation on a low-energy surface is due to a smaller
area of contact with the condensed water nuclei than on high-energy surfaces.

It is generally considered that frosting is a continuous problem and cannot be limited
to the initial stage of frosting. However, the contact angle and surface energy mentioned
above can only be used to study the initial frosting performance at the interface. The effects
on the growth of the frost layer also need to be investigated, and these have important
effects on the frosting process [25]. The growth structure of the frost layer directly affects
the density of the frost layer, the effective diffusion coefficient of water vapor in the frost
layer, and the thermal conductivity of the frost layer [26]. These three physical parameters
will adversely affect the frost structure. Due to the complexity of frosting, most current
studies are still limited to experimental tests and simple theoretical analyses. Limited
studies have been conducted on the mechanism of frosting on surfaces.

In this study, nanoporous alumina sheets were prepared by using the anodic oxidation
method with averaged pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm. The
mechanism of frosting on the nanoporous alumina sheet surfaces was explored. Focusing
on the frost layer morphology at the initial frosting stage of the nanoporous surface, the
experimental results were analyzed for Gibbs free energy, specific surface area, and fractal
dimensions, and the theoretical morphology was compared with the actual morphology
through visual observation. The subsequent research will further quantitatively analyze
the frosting properties of a nanoporous surface by combining the thickness and density
of the frosting layer. This research will help analyze the mechanistic factors that affect
surface frosting with provided performance parameters for preparing surfaces with high
anti-frosting properties. The results promote applying nanoporous material as the anti-frost
material in air source heat pumps with a potential energy-saving technology.

2. Sample Preparation and Characterization

The nanoporous alumina sheets were prepared by using an anodization process. The
pore diameters could be manipulated by controlling the intensity of the oxidation current
and the hole expansion treatment. The surface morphology, contact angle, surface energy,
and fractal dimension were observed and measured.

2.1. Preparation of the Nanoporous Alumina Sheets

The preparation process mainly involved 4 steps. Firstly, aluminum sheets (99.99%
purity) were ultrasonically cleaned in the acetone/ethanol solution for 10 min to remove
the residual grease before being dried and used as substrates. The samples were immersed
in the 1 M sodium hydroxide solution for 5 min to remove the surface oxide film. After that,
the substrate was electrochemically polished in a 400 mL 1:9 ratio perchloric acid in ethanol
solution for 2 min, using graphite as the cathode and an aluminum sample as the anode.
Finally, the electrolyte was replaced with 0.3 M oxalic acid solution for the anodization to
form nanoporous material under a DC bias. It should be mentioned that after each step
was finished, the substrate was thoroughly washed with deionized water.

A nanoporous surface with different apertures could be obtained by changing the
current amplitude, and the relationship between the surface structure parameters and the
anodization current is presented in Table 1 (‘diameter’ refers to the diameter of a nanopore,
and ‘spacing’ refers to the distance between the centers of two adjacent nanopores). The
nanoporous samples with 300 nm and 400 nm pore diameters (Samples 5 and 6) were
obtained using the hole expansion treatment by immersing the aluminum sheet with a
200 nm pore diameter in 5 wt% phosphoric acid solution for 30 min and 60 min. Alongside
this, the polished aluminum sheet (simple 1) was prepared for comparison.
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Table 1. Surface structure parameters and fabrication craft.

Simple Diameter Spacing Depth Current Size

1 0 nm 0 nm 0 µm 0 A

20 × 20 × 0.2 mm

2 30 nm 65 nm

60 ± 5 µm

0.2 A
3 100 nm 100 nm 0.5 A
4 200 nm 450 nm 1.2 A
5 300 nm 450 nm 1.2 A
6 400 nm 450 nm 1.2 A

2.2. Surface Topography

A scanning electron microscope (SEM, S-3400N, Hitachi, Tokyo, Japan) was used to
study the surface morphology, as shown in Figure 1. Uniformly distributed nanopore
structures with relatively uniform pore sizes were observed for all samples. Sample 2 has a
higher density of nanopores than sample 3. Samples 4, 5, and 6 have similar hole spacings,
while the pore diameters are increased accordingly, with the wall gradually becoming
thinner. The images below have been enlarged 50,000 times.
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Figure 1. The SEM images of the nanoporous samples: (a) sample 1, (b) sample 2, (c) sample 3,
(d) sample 4, (e) sample 5, and (f) sample 6.

The number of nanopores and the specific surface area for each sample could be
calculated according to its pore diameter, depth, and spacing (the number of nanopores
on the abscissa can be obtained by dividing the length of the surface by the spacing of
the pores, and the same method obtains the number of nanopores in the ordinate; their
product is the total number of nanopores. Specific surface area refers to the ratio of the total
microscopic area of the surface of a nanoporous alumina sheet to the macroscopic area).
The calculation results are listed in Table 2.

Table 2. The parameters of the prepared samples.

Sample 2 3 4 5 6

Number of nanopores 9.5 × 1010 4 × 1010 1.98 × 109 1.98 × 109 1.98 × 109

Specific surface area
(m2/m2) 1342.5 1697.5 187.5 282.5 375
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2.3. Contact Angle and Surface Energy

Static contact angle and surface energy were measured using an optical contact angle
measuring instrument (ZJ-7000, Shenzhen, China), with the contact angle range being
0–180◦, accuracy ±0.1◦, surface energy range 0–1000 mN/m, and accuracy ±0.01 mN/m.
It should be mentioned that surface energy is defined as the extra energy generated by the
surface of a material relative to its interior. Water droplets are spherical on surfaces with
low surface energy because low surface energy is not sufficient to break the surface tension
of water droplets. The results are shown in Figure 2 and Table 3.
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Figure 2. The static contact angles of the prepared samples: (a) sample 1, (b) sample 2, (c) sample 3,
(d) sample 4, (e) sample 5, and (f) sample 6.

Table 3. The parameters of the prepared aluminum sheets.

Sample 1 2 3 4 5 6

Contact angle
(degree) 87 40 37 31 36 56

Surface
energy (mN/m) 50 142 147 157 149 111

2.4. Surface Fractal Dimension

The fractal dimension reflects the effectiveness of the space occupied by a complex
form, which is a measure of the irregularity of a complex form. It can be used to analyze
the space occupancy efficiency of nanoporous surfaces, i.e., how many nucleation active
points water molecules have on their surfaces.

The fractal dimension was analyzed using Photoshop, Matlab, and the Fraclab toolbox
from the SEM images. The Photoshop software (Photoshop CC) was used to convert the
SEM images of the nanoporous alumina sheets into grayscale images, which were then con-
verted into binary images represented by binary numbers. After that, the Matlab software
(Matlab 2020) was used to convert the binary data into Fraclab-identifiable double-precision
numerical data. Finally, the Fraclab toolbox was used to calculate the box dimension to
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obtain the fractal dimensions of the surfaces of the nanoporous alumina sheets. The surface
fractal dimensions of nanoporous alumina sheets are shown in Table 4.

Table 4. The surface fractal dimension of nanoporous alumina sheets.

Sample 2 3 4 5 6

Fractal dimension 2.8788 2.8084 2.8643 2.7684 2.8247

3. Theoretical Analysis

The heat transfer relationship between the water vapor and the solid surface and the
morphological characteristics of the frost layer affect the frosting rate and frosting quantity
on a solid surface. The frosting mechanism of the prepared nanoporous alumina sheets
will be analyzed from their surface heat, mass transfer, and interface effects—that is, using
surface contact angles, fractal dimensions, and specific surface areas.

3.1. Thermodynamitical Analysis

The frosting nucleus is formed from a vapor embryo through condensing water
molecules. Although the saturated air is in direct contact with a cold surface whose
temperature is below 0 ◦C, the nucleation begins only after overcoming the energy barrier.

The model representing the homogeneous and heterogenous nucleation on a surface
is shown in Figure 3a,b [21] (Reproduced with permission from Hermes, Experimental
Thermal and Fluid Science, published by ELSEVIER, 2008). The vapor transformation into
nucleation is accompanied by a transition from a saturated state to a supersaturated state.
The following equation shows the free energy difference, ∆G, between the supersaturated
and saturated states [23,27].

∆G = V∆gv + γse Ase + γew Aew − γsw Aew (1)

Here, V is the volume. Aew and γew are the surface area and surface energy at the embryo–
wall interface. Ase and γse correspond to the surface area and surface energy at the
surroundings–embryo interface. γsw is the surface energy at the surroundings–wall inter-
face. ∆gv is the volume-specific Gibbs free energy deviation between the supersaturated
and saturated states, which is described in Equation (2) [21].

∆gv = ∆hlat − TS =
ρRT
M

ln
(

ωs

ωsat,e

)
(2)

Here, ωs and ωsat,e are the humidities of the surrounding air and the air at the embryo
surface, respectively. T is the embryo temperature and R is the ideal gas constant. ρ and M
are the embryo density and molar mass, respectively. Hence, the total free energy difference
can be expressed in Equation (3).

∆G =
ρVRT

M
ln
(

ωs

ωsat,e

)
+ γse Ase + γew Aew − γsw Aew (3)

Fletcher [28] assumed that the shape of the parent phase for nucleation is a spherical
segment as shown in Figure 3b. The embryo size significantly affects the Gibbs free energy
deviation. As Bai [29] mentioned, at a critical radius, r′, the Gibbs free energy to be
overcome for the initiate nucleation will be minimized. Using the Fletcher model, the
critical Gibbs free energy deviation (∆G′) can be obtained at the critical embryo size (r′).

∆G′tot =
4π

3
γse

3

[
ρRT
M ln

(
ωsat,e

ωs

)]2 (1− cos θ)2(2 + cos θ) (4)
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r′ = 2γse

[
ρRT
M

ln
(

ωs

ωsat,e

)]−1
(5)

Becker and Doring [30] proposed the following equation for the embryo formation
rate on a unit surface area for heterogeneous nucleation:

I = I0 exp(−∆G′

kTw
) (6)

Here, I is the embryo formation rate at temperature Tw. ∆G′ is scally by Volmer and
Flood [31]. I0 = 1025 embryo/(cm2 s) is the kinetic constant and k is the Boltzmann constant
(1.381 × 10−23 J/K) [28].

It could be concluded from Equations (4)–(6) that the nucleation rate of frost crystals
is inversely proportional to the surface contact angle in a certain thermal system.
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3.2. Fractal Dimension Analysis

Both the nucleation rate and the macroscopic morphology of the frost layer can affect
the formation of frost on cold surfaces. The fractal dimension is a quantitative reaction of
self-similarity and can reflect the complexity of surface microstructure [32]. The larger the
fractal dimension of the surface is, the more complex the surface structure will be, with
a more active surface containing more edges and angles and thus increasing the number
of attachment points for the initial liquid nuclei. Hou [33] and Mei [34] have discussed
the effects of a cold surface having different fractal dimensions on surface condensation
and frosting. They realized that differentiation in frost layer morphology significantly
affects the heat transfer between the frost crystals, the cold surface, and the surrounding
environment. Ding et al. [35] proposed that the smaller the fractal dimension of the surface
was, the more regular the surface morphology would be and the fewer active points the
initial liquid nucleus would need to survive, leading to a smaller number of condensing
droplets and thus reducing the surface frost crystal coverage.

3.3. Surface Adsorption

The essence of frosting is that water molecules contact a cold surface and the liquid
phase turns into frost crystals exothermically. Free collisions of water molecules and active
adsorption on the surface are involved. Physisorption is the main adsorption mechanism
at low temperatures, involving the Van der Waals forces between molecules. Studies
have shown that the Van der Waals force can be affected by the specific surface area of
a surface. The larger the surface area is, the greater the Van der Waals force is [36]. The
active adsorption of water molecules on the surface will increase the probability of water
molecules contacting the surface. Strong, active adsorption will enhance the initial frosting
on the surface. However, the long-term frosting on the surface needs to be further analyzed
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because the strong adsorption force will also affect the shedding of the frost layer and the
heat transfer efficiency of the surface.

4. Experiment and Discussion

The frosting morphologies of nanoporous alumina sheets were observed and ana-
lyzed. The influence of the interface effects (contact angle, specific surface area, and fractal
dimension) of nanoporous surfaces on their frosting properties was analyzed.

4.1. Experimental Test

The experimental test setup, shown in Figure 4, included a computer, microscope,
and semiconductor cooler. The frost topographies of the fronts and sides of the aluminum
sheets were photographed. Frontal shooting was performed with a wind speed of 0.1 m/s,
an ambient temperature of 28 ◦C, a relative humidity of 62%, and a surface temperature
of −10 ◦C. Lateral shooting was performed with a wind speed of 0.1 m/s, an ambient
temperature of 16 ◦C, a relative humidity of 58%, and a surface temperature of −15 ◦C.
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Figure 4. Frost morphology recording device on aluminum surface.

The microscope and computer were connected with a CCD, the frosting process on
the surface of each aluminum sheet was transmitted to the computer through a video cable
image, and the pictures of different aluminum sheets were taken at the same multiple. The
experimental results are shown in Section 4.1.

The following phenomena can be obtained by analyzing Figure ??.
On the surface of the polished aluminum sheet, the water molecules first condensed

into hemispherical water droplets, next, they gradually froze, and then, frost crystals
appeared on the frozen water droplets. On the surface of the 30 nm pore diameter alumina
sheet, the water molecules condensed into droplets without obvious shapes, the spreading
area was large, the heights of the droplets were smaller than the heights of the water
droplets condensed on the surface of the polished aluminum sheet, and a dense frost layer
was generated on the surface of the droplets after freezing. The surface of the 100 nm pore
diameter alumina sheet first condensed into a water film and then froze, forming frost
crystals on the surface of the frozen water film. The frosting processes of the 200 nm, 300 nm,
and 400 nm pore diameter alumina sheets were similar, and frost crystals were generated
directly on their surfaces. The amount of frost on the surface of each aluminum sheet in
the early stage of frosting could be preliminarily judged thus: polished >30 nm > 100 nm;
200 nm > 400 nm > 300 nm.
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From the results in Figure ??, the following conclusions could be obtained.
When ice was formed on the surface of each polished aluminum sheet, dendritic frost

crystals continued to grow on the surface of the ice block, and the dendritic frost crystals
increased the contact area with air and promoted the subsequent frosting process. The
surface frost crystals of the 30 nm pore diameter alumina sheet were tree-shaped. The frost
crystals grown on the surface of the 100 nm and 200 nm pore diameter alumina sheets
were needle-like, and the frost crystal density on the surface of the 100 nm pore diameter
alumina sheet was greater than that on the 200 nm pore diameter alumina sheet; from the
results of the long-term experiment, it was found that the dense needle-like frost crystals
would play a role in heat insulation and hinder the subsequent frosting process of water
molecules. The dendritic frost crystals on the surface of the 300 nm pore diameter alumina
sheet reduced the obstruction of heat exchange with water molecules and enhanced the
subsequent frosting process. A flat frost layer on the surface of the 400 nm alumina sheet
would hinder the subsequent frosting process.

4.2. Interface Effect of Nanoporous Alumina Sheets

The effects of contact angle, specific surface area, and fractal dimension on frost
morphology, supercooling degree, and embryo formation rate in the alumina sheet surfaces
were analyzed. The interface parameters of different nanoporous alumina sheets are shown
in Figures 7–9 (the data in Figures 7–9 corresponds to Tables 2–4. Each contact angle is
measured by using the optical contact-angle-measuring instrument at 3 random points
on the surface and selecting their average value. The specific surface area is calculated by
combining the surface pore size and pore spacing. The fractal dimension is calculated, by
using the MATLAB software, based on the surface topography).
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The initial frosting phenomenon was analyzed with the interface parameters of the
nanoporous alumina sheets. Morphology models representing the formations of initial
frost crystals on different aluminum sheet surfaces were built, as shown in Figure 10, based
on the photographs at the beginning of the frosting in Figure 11.
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Figure 11. Initial frost morphology images of aluminum sheets: (a) polished, (b) 30 nm, (c) 100 nm,
(d) 200 nm, (e) 300 nm, and (f) 400 nm.

(1) The surface contact angle of the polished aluminum sheet was much larger than
those of the other prepared aluminum sheets, resulting in a larger Gibbs free energy barrier
and a longer phase transition time. More water molecules would condense on its surface
before they froze. After freezing, the water molecules in the air would subject phase
changes on the ice crystals exothermally, generating frost crystals.

(2) The specific surface areas of the 30 nm pore diameter alumina sheet and 100 nm pore
diameter alumina sheet were similar and much larger than those of the other aluminum
sheets. At the beginning of the frosting process, water molecules in the moist air would
be trapped with a larger molecular adsorption force. This process would be very rapid,
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and the captured water molecules would not have time to transform into ice, forming a
liquid water film first. Since the surface fractal dimension (i.e., active surface points) of
the 30 nm pore diameter alumina sheet was larger than that of the 100 nm pore diameter
alumina sheet, the spreading area of the water film on the 30 nm pore diameter alumina
sheet would be larger. Since the contact angle on the surface of the 30 nm pore diameter
alumina sheet was greater than that on the 100 nm alumina sheet, the phase transition was
more difficult than that on the 100 nm pore diameter alumina sheet, leading to a thicker
liquid water layer.

(3) The specific surface areas of the 200, 300, and 400 nm pore diameter alumina sheets
were similarly low. The adsorption of water molecules depended on the probability of free
collision between water molecules and the nanoporous alumina sheet surfaces. Therefore,
after contacting these nanoporous alumina sheet surfaces, the adsorbed water molecules
would directly form ice crystals rather than liquid. Their fractal dimensions followed the
order of 200 nm > 400 nm > 300 nm, and so, the number of formed frost embryos would
also show 200 nm > 400 nm > 300 nm. The contact angle of the surface of the 400 nm pore
diameter alumina sheet was greater than those of the 200 nm and 300 nm pore diameter
alumina sheets. Hence, the phase transition of water molecules on the 400 nm pore diameter
surface was more difficult and slower. Therefore, the height of the frost crystal embryos
would be smaller than that of the 200 nm and 300 nm pore diameter alumina sheets. Since
the contact angles of the 200 nm and 300 nm pore diameter alumina sheets were similar,
their frost crystal embryo heights were also comparable.

By comparing Figures 10 and 11, it can be seen that the frost crystal morphology model
can reflect the initial frost crystal morphology on the surface of an aluminum sheet.

Analyzing the frost crystal morphology model, one could draw the following conclusions:

(1) The polished aluminum sheet has the best thermal conductivity. The contact area of
the surface ice crystal with air is large. Therefore, the polished aluminum sheet has
the highest average frosting rate when compared to the other aluminum sheets.

(2) The formed frost crystals on the 100 nm pore diameter alumina sheet are distributed
relatively and sparsely due to the sparsely distributed surface-active points. During
the initial stage of frosting, the ice crystals play the role of overhead insulation on the
cold surface to prevent frost formation. Hence, the 100 nm pore diameter alumina
sheet offers good anti-frosting performance even in high humidity environments.

5. Conclusions

In this study, nanoporous alumina sheets with pore diameters of 30, 100, 200, 300, and
400 nm were prepared by using the anodic oxidation method with a polished aluminum
sheet as a reference. The mechanism of surface frosting was established based on the contact
angles, specific surface areas, and fractal dimensions. Based on the influence of mechanism
parameters on frost performance, the frost morphology model in the early stage of surface
frosting was established, and the reliability of the frost morphology model was verified by
comparing it with the actual observation; moreover, the surface performance parameters of
high frost resistance were introduced to the frost morphology model to provide a reference
for the preparation of high-frost-resistance surfaces.

The alumina sheet with a 100 nm pore diameter has strong anti-frost performance at
low temperatures in a high humidity environment due to its hydrophilic surface with a
large specific area and small fractal dimension. Sparsely distributed ice crystals appear on
its surface first, and then, frost crystals grow on the ice crystals. The ice crystals form an
insulation layer limiting the growth of frost crystals.

Through theoretical analysis, in the environment of low surface temperature and high
relative humidity, it is recommended to use hydrophilic aluminum fins with a large specific
area and small fractal dimension for the heat exchange fins of air source heat pump air
conditioning systems.
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Nomenclature

A area (m2)
G Gibbs free energy (J)
G′ critical Gibbs free energy (J)
G unit volume Gibbs free energy (J)
H enthalpy (J)
I embryo formation rate (embryo cm−2 s−1)
K Boltzmann constant
M molar mass (kg mol−1)
R ideal gas constant (J mol−1 K−1)
R radius (m)
r´ critical radius (m)
S entropy (J)
T temperature (K)
V volume (m3)
Γ surface energy (J m−2)
P embryo density (kg m3)
Θ contact angle (degrees)
Ω humidity ratio (kgv kga

−1)
∆ deviation
Subscripts
E embryo
Ew interface embryo–wall
Lat latent
S surroundings
Sat saturation
Se interface embryo–surroundings
Sw interface surroundings–wall
Tot total
W wall
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