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Advancements in Power Management Systems for Hybrid
Electric Vessels

Sen Tan 1,*, Peilin Xie 1 and Rose Norman 2
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2 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;

rose.norman@newcastle.ac.uk
* Correspondence: sta@energy.aau.dk

With the growing urgency of climate change, environmental regulations governing
the maritime industry have become increasingly stringent, imposing significant restrictions
on ship emissions. In response, the industry is shifting towards hybrid and fully electric
vessels, reducing reliance on conventional diesel-based propulsion [1]. These advanced
vessels integrate diverse energy sources, including fuel cells, photovoltaic systems (PV),
batteries, and supercapacitors [2]. However, the integration of these heterogeneous en-
ergy sources, coupled with variations in electrical topologies [3], ship capacities [4], and
operational conditions [5], introduces substantial complexities to the development and
management of shipboard power systems (SPSs).

Unlike terrestrial power networks, SPSs must operate with high reliability under
diverse and often unpredictable conditions. As localized microgrids that lack the support of
a robust external power grid, ensuring stable power quality remains a critical challenge [6].
This necessitates a re-evaluation of key research questions that distinguish SPSs from
conventional terrestrial energy systems:

1. What strategies can be employed to ensure the long-term reliability and stability
of SPSs?

2. How can power quality be effectively maintained in SPSs across varying operational
scenarios and routing conditions?

3. What methodologies can optimize the efficiency of SPSs to minimize emissions and
operational costs?

This Special Issue aims to address these challenges by advancing research on critical
component reliability, with a particular focus on batteries and fuel cells, power quality
enhancements, and operational efficiency improvements. Emphasis is placed on state-of-
the-art control methodologies, including Particle Swarm Optimization (PSO) and Extended
Kalman Filter (EKF)-based control strategies, as well as optimization techniques and Energy
Management Systems (EMSs) utilizing Model Predictive Control (MPC), multi-time scale
approaches, and layered architectures. Additionally, this Special Issue explores novel
diagnostic frameworks using Long Short-Term Memory (LSTM) networks and predictive
analytics based on clustering techniques to enhance the monitoring and management
of SPS.

The first theme addresses reliability issues in critical components of SPSs, specifically
batteries and fuel cells, in terms of their prognostics and protection. Advanced diagnos-
tic techniques play a key role in predicting component degradation, enabling proactive
maintenance and extending system longevity.

J. Mar. Sci. Eng. 2025, 13, 794 https://doi.org/10.3390/jmse130407941
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A marine lithium-ion battery capacity prognostic method is presented in Contribution
1 based on LSTM and an improved Crested Porcupine Optimization (ICPO) algorithm un-
der dynamic operating conditions. Key features are extracted from battery data to facilitate
accurate capacity prognostics. Furthermore, Density-Based Spatial Clustering is introduced
in Contribution 2 using voltage data to forecast variations in battery voltage, allowing for
the early detection of potential faults. The results indicate that the DBSCAN clustering
algorithm demonstrates superior effectiveness and accuracy in identifying irregular battery
clusters. Contribution 3 proposes an attention-based prediction model utilizing Convolu-
tional Neural Networks (CNNs) for long-term power allocation, optimizing the lifespan of
fuel cells and lithium batteries by enhancing energy distribution strategies. Similarly, Con-
tribution 4 demonstrates that a trained Back Propagation (BP) neural network can create
an offline strategy library, providing intelligent energy distribution recommendations that
effectively reduce lithium-ion battery degradation by 28%.

The second theme focuses on improving power quality in SPSs, particularly in terms
of harmonic suppression and enhanced control performance, both of which are crucial
for vessel servo systems. However, the inherent nonlinearity of motor systems presents
significant challenges in achieving precise control.

To address this, Contribution 5 proposes an Extended Kalman Particle Filter (EKPF),
which combines a particle filter to identify motor resistance and inductance, thereby
improving high-precision control performance. Meanwhile, Contribution 6 introduces a
fractional-order controller tuned by PSO and the Oustaloup approximation algorithm to
suppress harmonics induced by motor operations, ensuring smoother performance.

The third theme addresses power efficiency challenges, primarily by optimizing fuel
consumption through advanced Energy Management Systems (EMSs) under dynamic
operating conditions.

For example, MPC is utilized in Contribution 7 to analyze working conditions and
dynamically adjust EMS strategies, enabling the optimal management of generators and
batteries while minimizing energy waste. To further enhance overall efficiency, the Equiva-
lent Consumption Minimization Strategy (ECMS) is employed in Contribution 8 to balance
power distribution among fuel cells, batteries, and ultracapacitors, ensuring optimal energy
utilization. Moreover, Contribution 9 explores an advanced approach that considers the
battery State of Charge (SOC) alongside power generation source characteristics across
various operating modes. This approach results in significant improvements in system
efficiency and operational reliability. Furthermore, a Bond graph is used in Contribution 10
to model the various energy sources of hybrid propulsion ships. Based on the proposed
model, optimal operational scenarios and reduction ratios are then formulated for different
maritime regions, thereby improving propulsion efficiency.

By integrating these advanced computational and control strategies, this Special Issue
seeks to facilitate the transition towards more resilient, efficient, and sustainable shipboard
power systems. Looking ahead, the future of SPSs is poised to integrate hydrogen-based
technologies [7], providing a promising avenue for further reducing emissions and enhanc-
ing energy sustainability. However, this transition presents new challenges in hydrogen
generation, onboard storage, transportation, and safe and efficient hydrogen consumption
in marine environments. Furthermore, as hydrogen becomes a primary energy carrier,
ensuring the reliability, efficiency, and stability of SPSs will require innovative control strate-
gies, advanced diagnostic frameworks, and resilient system architectures. Addressing these
emerging challenges will be essential to unlocking the full potential of hydrogen-powered
SPSs and achieving a truly decarbonized maritime industry.

2



J. Mar. Sci. Eng. 2025, 13, 794

The evolution of SPSs towards full electrification represents a transformative milestone
in sustainable maritime transport. Achieving this vision will require continuous innovation
in energy storage, power management, and system resilience to facilitate widespread
adoption and long-term viability. With advancements in battery and hydrogen technologies,
future SPSs will not only improve operational efficiency but also significantly contribute to
global decarbonization efforts, making maritime transport cleaner and more sustainable
than ever before.
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ICPO-Bi-LSTM Under Dynamic Operating Conditions
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Abstract: An accurate prognosis of the marine lithium-ion battery capacity is significant in guid-
ing electric ships’ optimal operation and maintenance. Under real-world operating conditions,
lithium-ion batteries are exposed to various external factors, making accurate capacity prognosti-
cation a complex challenge. The paper develops a marine lithium-ion battery capacity prognostic
method based on ICPO-Bi-LSTM under dynamic operating conditions to address this. First, the
battery is simulated according to the actual operating conditions of an all-electric ferry, and in each
charge/discharge cycle, the sum, mean, and standard deviation of each parameter (current, voltage,
energy, and power) during battery charging, as well as the voltage difference before and after the
simulated operating conditions, are calculated to extract a series of features that capture the complex
nonlinear degradation tendency of the battery, and then a correlation analysis is performed on the
extracted features to select the optimal feature set. Next, to address the challenge of determining
the neural network’s hyperparameters, an improved crested porcupine optimization algorithm is
proposed to identify the optimal hyperparameters for the model. Finally, to prevent the interference
of test data during model training, which could lead to evaluation errors, the training dataset is used
for parameter fitting, the validation dataset for hyperparameter adjustment, and the test dataset for
the model performance evaluation. The experimental results demonstrate that the proposed method
achieves high accuracy and robustness in capacity prognostics of lithium-ion batteries across various
operating conditions and types.

Keywords: lithium-ion batteries; capacity prognostics; all-electric ships; feature extraction; bidirectional
long short-term memory; improved crested porcupine optimizer

1. Introduction

In recent years, lithium-ion batteries, as a primary representative of clean energy,
have found widespread applications in various fields, including electric ships (which
encompass all-electric propulsion systems, conventional fuel-driven systems, and, as an
intermediate solution, hybrid drive systems) [1], as well as electric vehicles, owing to
their high energy density, absence of a memory effect, and overall reliability. Moreover,
with the development of new technologies for mobile systems, reducing the mass of
batteries has become more and more important [2], and lithium-ion batteries have been
widely used in applications requiring a light weight and high performance due to their high
energy density. For comparison purposes, Table 1 provides the key characteristics of several
battery types used in electric ships and vehicles. However, over time, the aging mechanisms
within the battery (e.g., loss of active substances) can result in performance degradation
and may even lead to safety hazards. Therefore, there is an urgent need to establish an
effective battery management system for the real-time monitoring of the lithium-ion battery
lifespan [3]. Currently, battery capacity prediction methods can be broadly categorized
into three types: experimental measurement-based methods, model-based methods, and
data-driven methods.

J. Mar. Sci. Eng. 2024, 12, 2355. https://doi.org/10.3390/jmse12122355 https://www.mdpi.com/journal/jmse5
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Table 1. The key characteristics of several battery types used in electric ships and vehicles.

Battery Capacity (Ah)
Energy Density

(Wh/kg)
Mass (kg)

Dimensions
(mm)

Charging Time
(h)

Cycle Life
(Cycles)

Lead Acid 50–200 30–50 20–60 200 × 300 × 200 6–8 300–500
Nickel–Metal

Hydride 10–40 60–120 5–15 130 × 110 × 140 4–6 500–1000

Sodium Ion 10–50 90–160 3–12 120 × 100 × 150 2–5 500–1000
Flow Batteries 50–200 30–50 50–100 300 × 400 × 500 4–6 2000–5000

Experimental measurement-based methods utilize battery parameters (e.g., resistance,
impedance, and capacity) derived from direct measurements to predict the capacity [4].
This approach, however, is costly, time-consuming, and may damage the battery, making it
unsuitable for real-time applications. Model-based methods, including equivalent circuit
models, empirical models, and electrochemical models, focus on the internal mechanisms
of the battery. These methods require the development of mathematical models to describe
the capacity degradation and use the model parameters to predict the battery’s capacity [5].
However, accurately capturing battery characteristics and operating conditions is challeng-
ing, and the complex degradation behavior of lithium-ion batteries makes it difficult for
model-based methods to fully characterize and quantify the degradation process.

With the accumulation of battery data and the rapid advancement of artificial in-
telligence, data-driven methods for battery capacity prediction have gained significant
attention [6]. These methods primarily rely on capacity decay data and characterization
data (e.g., current, voltage, and temperature) to train prediction models, which include
techniques such as support vector machines [7], recurrent neural networks [8], least squares
support vector machines [9], and long short-term memory networks [10]. These methods
do not require an in-depth understanding of the battery’s internal mechanisms and are
therefore well-suited for predicting the capacity of lithium-ion batteries [11]. In addition,
more and more researchers are now applying machine learning to a technique called
digital twins to build a model with high accuracy for battery capacity prognostics [2].
However, the accuracy of data-driven methods depends significantly on the features ex-
tracted from the data and the way the model is trained [12]. To improve the prediction
accuracy, it is essential to optimize three aspects: feature extraction, feature processing, and
model training.

A. Feature Extraction

Simplifying battery charging and discharging data into a series of features can reduce
the model’s training burden and enhance its efficiency. However, under certain dynamic
operating conditions, extracting effective features from the discharge process is challenging,
whereas the charging process typically follows a more predictable pattern, making it easier
to analyze. As such, it is more effective to extract features from charging data that reflect
the degradation of battery capacity [13]. Moreover, the variety of charging methods leads
to diverse ways of extracting features. To enhance the versatility of the prediction model, a
standardized approach for feature extraction is required. Peng [14] and others developed a
series of features that accurately represent the capacity degradation using a unified standard
based on time, energy, and incremental capacity (IC) features. To predict the battery capacity
degradation in electric vehicles (EVs), Deng et al. [15] extracted statistical features from
the charging data, ensuring both methodological consistency and a comprehensive feature
set. Guo et al. [16] combined rational analysis and principal component analysis (PCA)
to derive features from charging data that are adaptable to various operating conditions,
thus strengthening the versatility of their capacity prediction method. For high-precision
capacity prediction across different lithium-ion battery datasets, Dai et al. [17] extracted
six statistical features from charging data, determining the optimal feature combination
by comparing various combinations of these features and thus reducing computational
complexity. When effective features can be consistently extracted from charging data
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according to a unified standard, the method’s versatility is proven, and the workload
in feature extraction is minimized. However, extracting too few features may fail to
capture the full degradation process, while too many features may result in redundancy,
thereby increasing the computational burden and reducing model efficiency. Therefore, the
extracted features must accurately reflect capacity degradation across different operating
conditions while being computationally efficient.

B. Feature Processing

Selecting feature sequences that are highly correlated with the battery capacity can
significantly improve the prediction’s accuracy. In cases where two feature sequences are
highly correlated with both the capacity and each other, redundancy can be reduced by
eliminating one of the features, thus easing the computational burden. For example, in [18],
Box–Cox transformation (BCT) was used to enhance the correlation between the extracted
features and battery capacity. In [15], Pearson’s correlation coefficient and gray correlation
were employed to identify and remove redundant features, leading to the optimal set of
features. In [14], principal component analysis (PCA) and empirical mode decomposition
(EMD) were applied to the experimental curves of battery charging and discharging, as
well as the incremental capacity curves, to extract features that strengthened the correlation
between features and capacity. Furthermore, ref. [19] employed a two-step feature engineer-
ing approach—feature dimensionality reduction and seasonal fluctuation decoupling—to
select the most relevant features for the capacity prediction while eliminating interfering
components, thereby improving the model’s prediction accuracy.

C. Model Training

The battery capacity prediction based on data-driven methods is influenced not only
by the effectiveness of the extracted features but also by the choice of machine learning
algorithms and the configuration of their hyperparameters. In [16], an adaptive RVM
model based on PSO optimization was proposed, demonstrating high robustness and
effectiveness for estimating the remaining capacity of lithium-ion batteries. Gong et al. [20]
developed a battery capacity prediction model by combining empirical mode decompo-
sition (EMD) and backpropagation with a long- and short-term cyclic memory network.
In [21], a hybrid capacity estimation model was proposed by integrating the Arrhenius
degradation equation and a lightweight Transformer architecture tailored for different
operating conditions. Zhang et al. [22] employed a temporal convolutional network com-
bined with Gaussian process regression to establish a novel capacity estimation method
capable of automatically extracting capacity decay features from partial charging segments.
Furthermore, improper hyperparameter settings can significantly degrade the performance
of machine learning algorithms, thereby reducing the accuracy of capacity prediction. To
address this, ref. [23] adopted an improved dung beetle optimization (IDBO) algorithm
to optimize the hyperparameters of temporal convolutional networks (TCNs), obtaining
optimal hyperparameter combinations quickly and accurately, which notably enhanced the
accuracy of battery capacity predictions. It is important to note that if the test set is involved
in hyperparameter tuning during the model training process, the model’s performance
on the test set may exceed its true capability, leading to evaluation errors. Thus, using
the validation set for model tuning is recommended to preserve the independence of the
test set.

Building upon these principles, this paper first extracts a series of features from battery
data. The correlations between the extracted feature sequences, as well as between these
features and the capacity sequences, are then analyzed. Features that exhibit a strong
correlation with the capacity are retained, while redundant features are removed, resulting
in an optimal feature set. Subsequently, the improved crested porcupine optimization
(ICPO) algorithm is employed to optimize the hyperparameters of the bidirectional long
short-term memory (Bi-LSTM) network, thus constructing the ICPO-Bi-LSTM model for
accurate prognostics of the lithium-ion battery capacity. The dataset is divided into training,
validation, and test sets in a specified ratio. The training and validation sets are used
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for model training, while the test set is reserved for the final performance evaluation.
Finally, this paper investigates the impacts of working conditions, the dataset ratio, and the
different models on the capacity prediction results by analyzing batteries discharged under
complex and simple conditions, thus demonstrating the generality and robustness of the
proposed ICPO-Bi-LSTM method.

The main contributions of this paper are as follows:

1. A unified statistical feature extraction method is proposed, i.e., calculating the mean,
sum, and standard deviation values of current, voltage, energy, and power in the
charging data for each charging and discharging cycle of a battery. These features
apply to different batteries under complex and simple operating conditions, which
solves the difficulty of needing to adjust the feature extraction method according to
changes in battery conditions. The voltage difference between the battery before and
after the simulated operating conditions in each cycle is extracted as another type of
feature to fully reflect the capacity decay trend of the battery. The above-extracted
features show a strong correlation with the battery capacity.

2. To overcome the challenge of determining the hyperparameters of the Bi-LSTM model,
the improved crested porcupine optimization algorithm (ICPO) is proposed. This
algorithm identifies the optimal hyperparameter combination and integrates the im-
proved Chebyshev chaotic mapping initialization to ensure diversity within the initial
population. This improves the algorithm’s early-stage search speed and introduces
a random difference variance strategy to avoid local optima, thereby enhancing the
algorithm’s overall efficiency.

3. The ICPO-Bi-LSTM model is developed using the optimal feature set to predict the
capacity of lithium-ion batteries accurately. The dataset is divided into training,
validation, and test sets, with the validation set being used for model training along
with the training set. The test set is reserved exclusively for the final performance
evaluation, preventing evaluation errors.

The remainder of the paper is organized as follows: Section 2 describes the experi-
mental apparatus and dataset; Section 3 details the feature engineering process; Section 4
presents capacity prognostics based on the ICPO-Bi-LSTM method; Section 5 provides the
results of battery capacity prognostics; and Section 6 concludes the paper.

2. Battery Data Analysis

2.1. Experimental Equipment

To comprehensively analyze the operational characteristics of lithium-ion batteries
under real-world conditions, an experimental platform was developed to collect data from
various battery types. The experimental equipment used in this study is the NEWARE
CTE-4008D-5V30A tester, which is a battery test equipment manufactured by NEWARE,
and its main function is to test the capacity, efficiency, cycle life, and other performances
of the battery by simulating the battery charging and discharging process. It consists of a
battery testing system, a host computer with software (BTS Client 8.0.0.516), and a battery
under test. The physical schematic of the experimental apparatus is shown in Figure 1.
After experiments were conducted with the NEWARE CTE-4008D-5V30A tester to obtain
battery charge/discharge data, both model construction and battery capacity prognostics
were carried out using the Python 3.11 (64-bit) platform.
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Figure 1. NEWARE CTE-4008D-5V30A tester.

2.2. Description of Experimental Data

This experiment used A123 APR18650M1A LFP/C (the manufacturer is A123 Systems
LLC, Waltham, USA) batteries (B1) and OXUN IFR26650 LFP/C (the manufacturer is OXUN
Energy, Changzhou, China) batteries (B2) to simulate real-world operating conditions. The
research focused on the “Jun Lv Hao”, a 300-passenger all-electric ferry operating in Wuhan.
The ship’s battery system comprises multiple clusters connected in parallel, offering a
total capacity of 2240 kWh. The specific topology of the battery system is illustrated in
Figure 2. The battery system of the “Jun Lv Hao” ship is divided into two sections (left
and right), with each section containing six battery clusters. Once the six battery clusters
are connected in parallel, they supply power to the pod and other loads via the ship’s
DMSB. The experiment was designed to replicate the actual operating conditions of the
“Jun Lv Hao” and assess the capacity degradation of lithium-ion batteries under complex
operational scenarios based on the rated capacity of the selected batteries. To verify the
effectiveness of the battery capacity prediction method developed in this study, we also
employed LISHEN LR18650LA NCM/C (the manufacturer is Tianjin Lishen Battery Joint-
Stock Co., Ltd., Tianjin, China) batteries (B3) for a simplified discharge test under controlled
conditions. Figure 3 displays the current variation curves observed during a typical “Jun
Lv Hao” voyage and under simulated conditions. The specifications of the “Jun Lv Hao”
are provided in Table 2.

Figure 2. Network topology of the battery system.
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(a) (b) 

Figure 3. The current variation curves. (a) Actual condition; (b) simulated condition.

Table 2. The specifications of the “Jun Lv Hao”.

Parameter Specification

Type Passenger Ship
Length 55 m
Width 10 m

Draft Depth 1.6 m
Route The Yangtze River in Wuhan City

Coordinates 114◦17.414′ E′′, 30◦34.296′ N′′
Operating Mode of the Propulsion System All-Electric Propulsion System

Engaged Power of the Motor 1200 kW
Charging Time 2 h

Maximum Speed 10 knots/h
Cruising Range 118 km
Battery Capacity 2240 kWh
Battery Weight 25 tons

Number of Battery Clusters 12

The specific operation of the simulated working condition is as follows: Firstly, the
capacity value released under the actual working condition is calculated by the ampere-
time integration method, the capacity value is reduced by a certain number of times so that
it does not exceed the rated capacity of the battery used in the experiment, and then the
output current of the actual working condition is reduced by the same number of times. At
the same time, the original sampling time of the working condition is 5 s, and this paper
shortens the time to 1 s, which constitutes the simulated working condition. After that, the
capacity released under the simulated condition is calculated again using the ampere–time
integration method to ensure that the value is less than or equal to the rated capacity of
the battery used in the experiment. Additionally, to ensure the safety and efficiency of the
experiment, the charging currents and the duration of a single cycle were constrained. The
specific charging and discharging protocols for the three batteries are outlined as follows:

B1,
1© Charge the battery with a constant current of 7.7 A to a cut-off voltage of 3.26 V;
2© Charge the battery with a constant current of 5.28 A to a cut-off voltage of 3.32 V;
3© Charge the battery with a constant current of 5.28 A to a cut-off voltage of 3.33 V;
4© Charge the battery with a constant current of 4.015 A to a cut-off voltage of 3.36 V,
5© Leave the battery to stand for 5 min;
6© Charge the battery with a constant current of 4 A at 3.6 V to a cut-off current of

0.4 A;
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7© Leave the battery to stand for 5 min;
8© Apply the simulated working conditions shown in Figure 3b;
9© Discharge the battery with a constant current of 4.4 A to a cut-off voltage of 2 V;

10© Leave the battery to stand for 5 min;
11© Repeat the above steps ( 1©–10©) until 200 cycles are completed;
B2,
1© Charge the battery with a constant current of 7.2 A at 3.65 V to a cut-off current of

0.72 A;
2© Leave the battery to stand for 5 min;
3© Apply the simulated working conditions shown in Figure 3b;
4© Discharge the battery with a constant current of 14.4 A to a cut-off voltage of 2 V;
5© Leave the battery to stand for 5 min;
6© Repeat the above steps ( 1©– 5©) until 276 cycles are completed;
B3,
1© Charge the battery with a constant current of 8 A at 4.2 V to a cut-off current of

0.1 A;
2© Leave the battery to stand for 10 min;
3© Discharge the battery with a constant current of 8 A to a cut-off voltage of 2.75 V;
4© Leave the battery to stand for 10 min;
5© Repeat the above steps ( 1©– 4©) until 528 cycles are completed.
Figure 4 presents the capacity degradation curves for three types of batteries, as

obtained from the experiments described earlier. Table 3 provides the details of the battery
data experimentally obtained, which are relevant to the capacity prediction of lithium-
ion batteries.

Figure 4. Capacity degradation curves for B1, B2, and B3.

Table 3. Items of battery data.

Items Unit Resolution

Current A 0.0001 A
Voltage V 0.0001 V
Energy Wh 0.0001 Wh
Power W 0.0001 W
Cycle Time 1 Time
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3. Feature Engineering

To build a data-driven model capable of accurately predicting the capacity degradation
of lithium-ion batteries, a series of feature sequences are extracted from battery charge and
discharge data in this section. It also uses a correlation analysis to identify and remove
feature sequences that have a low correlation with the capacity sequence and eliminate
redundant features that may increase the computational burden of the model. Finally, the
optimal set of features that are highly correlated with the capacity sequence is obtained.

3.1. Feature Extraction

Charging data, including the current (I), voltage (U), energy (E), and power (P), can
be obtained experimentally. In each cycle, the mean, sum, and standard deviation values
(denoted by the subscripts ave, sum, and std, respectively) of the current, voltage, energy,
and power are calculated, resulting in 12 features.

The above series of statistical features extracted from the charging data belong to the
same type of features. To ensure that the extracted features can comprehensively reflect
the complex and nonlinear degradation trend of the battery, the voltage difference of the
battery before and after the simulated working condition (abbreviated as Udif) is extracted
as a feature in each charging and discharging cycle as well. The 13 features extracted are
shown in Table 4.

Table 4. The features extracted.

Items Charge Current Charge Voltage Charge Energy Charge Power
Voltage Data Under

Simulated Conditions

Features
Isum Usum Esum Psum

UdifIave Uave Eave Pave
Istd Ustd Estd Pstd

3.2. Correlation Analysis

In this paper, two metrics are employed, Spearman’s correlation coefficient [24] and
grey correlation [14], to assess the correlations between feature sequences and capacity
sequences. The Spearman correlation coefficient reveals the strength of the monotonic
relationship between the battery capacity sequence and the feature sequence, while the grey
correlation more effectively distinguishes the degree of correlation between the capacity
sequence and each feature sequence. Generally, the higher the correlation between the
feature sequences and the capacity sequences, the greater the accuracy of the predicted
capacity decay curves upon inputting the capacity sequences and the feature sequences
into the data-driven model.

The Spearman correlation coefficient is calculated as follows:

rs = 1 −
6

n
∑

i=1
d2

i

n(n2 − 1)
(1)

where rs is the Spearman correlation coefficient, n is the length of the feature sequence, di
is the rank difference between Xi and Yi (where Xi and Yi are the values in the ith position
in the feature and capacity sequences, respectively), and the rank of a number refers to its
position after all the numbers in the sequence have been ordered from smallest to largest,
with ranks assigned in ascending order, i.e., 1, 2, . . ., n. Note that if there are ties in the data,
the rank of each tied value is the arithmetic mean of the positions where they occur.

The steps for calculating the gray correlation are listed below.

(1) The capacity sequence and the feature sequence are normalized and the normalized
expression is given as follows:
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x′ = x − xmin

xmax − xmin
(2)

where x represents the original value, x′ represents the normalized value, and xmax and xmin
represent the maximum and minimum values in the same original sequence, respectively.

(2) Calculate the gray correlation coefficient between the normalized feature sequence
and the capacity sequence using the following formula:

ξi(k) =
min

i
min

k
|y(k)− xi(k)|+ ρmin

i
min

k
|y(k)− xi(k)|

|y(k)− xi(k)|+ ρmax
i

max
k

|y(k)− xi(k)| (3)

where ξi(k) represents the gray correlation coefficient of the ith feature sequence concerning
the capacity sequence at the kth position, and k = 1, 2, . . ., n represents the total number of
charging and discharging cycles of the battery, y(k) represents the capacity sequence, xi(k)
represents the feature sequence, and ρ is the distinguishing coefficient, which is typically
set to 0.5.

(3) The gray correlation degree of the ith feature sequence concerning the capacity se-
quence can be obtained by calculating the average of the gray correlation coefficient
using the following formula:

γi =
1
n

n

∑
k=1

ξi(k) (4)

3.3. Features Selection

Using Equations (1)–(4), the feature sequences related to the capacity sequences, along
with the Spearman correlation coefficients and gray correlations between features, can be
calculated for the batteries under the two complex conditions. Additionally, the number of
charging and discharging cycles is considered as a feature, as shown in Figure 5.

Feature sequences that exhibit a strong correlation with the capacity sequence and
a low degree of autocorrelation among different feature sequences are selected to form
the optimal feature set. In this study, feature sequences with an absolute Spearman cor-
relation coefficient and gray correlation greater than 0.8 with the capacity sequence are
considered highly correlated. If the absolute correlation coefficient between any pair of
these highly correlated feature sequences exceeds 0.9, the sequences are considered highly
autocorrelated, and one of the sequences should be removed to reduce redundancy [15].
The optimal feature sets for the two batteries, B1 and B2, for the capacity sequence can be
derived from Figure 5, as shown in Table 5. In the optimal feature set for both batteries,
common features are retained, while differing features are discarded to obtain a universally
applicable feature set, consisting of Isum, Iave, Esum, Eave, Estd, Psum, Pave, and Udif. This set
is then used as input to the data-driven model for both batteries. Figure 6 illustrates the
optimal feature set extracted from the charging data of both batteries, normalized according
to Equation (2).

Table 5. The optimal feature sets of B1 and B2.

B1 Isum Iave Ustd Esum Eave Estd Psum Pave Udif

B2 Isum Iave Usum Esum Eave Estd Psum Pave Udif
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(a) (b) 

  

(c) (d) 

Figure 5. Correlation analysis results. (a) Spearman’s correlation coefficients for B1; (b) Spearman’s
correlation coefficients for B2; (c) gray relation coefficients for B1; and (d) gray relation coefficients
for B2.
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(a) (b) 

Figure 6. Normalized optimal feature set. (a) Features of B1; (b) features of B2.

4. Battery Capacity Degradation Prediction

4.1. Bidirectional Long Short-Term Memory Network (Bi-LSTM)

As an enhanced version of the traditional recurrent neural network (RNN), LSTM
largely addresses the issues of gradient vanishing and gradient explosion that commonly
occur in standard RNNs when handling time series data by introducing input gates,
forget gates, output gates, and cell states [24]. Given that the behavior of the lithium-ion
battery capacity over time is influenced by complex, dynamic patterns, LSTM is capable
of modeling these temporal correlations more effectively than other algorithms, such as
convolutional neural networks (CNNs) or simple recurrent neural networks (RNNs), which
may struggle with long-term dependencies. The specific architecture of the LSTM model is
illustrated in Figure 7.

 
Figure 7. The structure of LSTM.
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The core steps of LSTM are as follows:

(1) Decide which information is discarded by the cell state in the forget gate ft

ft = σ(Wf · [h t−1, xt] + b f ) (5)

where σ is the sigmoid function, Wf and b f are the weight matrix and bias vector of the
oblivion gate, ht−1 is the output of the cell state at the moment t − 1, and xt is the input of
the cell state at the moment t.

(2) Decide what information is stored in the internal state.

First, update the input gate it

it = σ(Wi · [ht−1, xt] + bi) (6)

where Wi and bi are the weight matrix and bias vector of the input gate, respectively.

Next, a candidate vector
∼
Ct is obtained.

∼
Ct = tanh(Wc · [ht−1, xt] + bc) (7)

where Wc and bc are the weight matrix and bias vector of
∼
Ct, respectively.

(3) Update the cellular state.

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (8)

where Ct−1 is the cell state at the moment t − 1.

(4) Obtain the output of LSTM.

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot ∗ tanh(Ct) (10)

where ot is the sigmoid layer of the output gate, ht is the output of the LSTM at time t, and
Wo and bo are the weight matrix and bias vector of the output layer, respectively.

Bi-LSTM is an improved LSTM, which enhances the model’s context-capturing ca-
pability by computing the input sequence in two directions (frontward and backward)
separately [25]. In the capacity prediction of lithium-ion batteries, the performance of the
battery does not only depend on the current charging and discharging state, temperature,
voltage, etc., but is also affected by the historical state, as well as the future trend. Therefore,
the bi-directional structure can better capture these long-term and short-term dynamic
changes and improve the prediction accuracy. Moreover, Bi-LSTM can extract more fea-
tures from complex data by considering forward and backward time series information.
Especially for the battery capacity prediction when the aging trend of the battery needs to
be modeled, the advantage of bi-directional information flow is even more obvious, which
can capture the subtle changes and patterns in the time series more effectively than LSTM
and thus improve the accuracy of prediction models. The specific structure of Bi-LSTM is
shown in Figure 8. The input layer receives the input data and passes it to the forward layer
and the backward layer. The forward layer processes the forward time series of the input
data and the backward layer processes the reverse time series of the input data. These two
layers learn the different contextual information of the sequence separately and merge their
outputs. Eventually, the output layer generates the final prediction based on the forward
and backward outputs.
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Figure 8. The structure of Bi-LSTM.

The formula for the forward layer is as follows:

L f
t = σ(w1xt + w2L f

t−1 + bL f ) (11)

where L f
t is the output value of the forward layer, ω1 and ω2 are the weight matrices of the

forward layer, and bL f is the bias vector of the forward layer.
The equation for the backward layer is as follows:

Lb
t = σ(w3xt + w4Lb

t+1 + bLb) (12)

where Lb
t is the output value of the backward layer, ω3 and ω4 are the weight matrices of

the backward layer, and bLb is the bias vector of the backward layer.
The final output value ht is calculated as follows:

ht = w5L f
t + w6Lb

t (13)

where ω5 and ω6 are two weight matrices.
The Bi-LSTM model employs a bi-directional structure that captures hidden infor-

mation in time series data more efficiently, thereby enhancing the accuracy of lithium-ion
battery capacity predictions. The Bi-LSTM model employed in this study consists of three
layers, each containing two LSTMs, which extract deeper features from the data and thereby
improve the prediction accuracy compared to the single-layer Bi-LSTM.

4.2. Crested Porcupine Optimizer (CPO)

The CPO algorithm mimics the four defense strategies of the crested porcupine,
which are executed sequentially as the distance between the predator and the crested
porcupine decreases, including sight, sound, odor, and physical attack, and accelerates the
convergence of the algorithm by introducing a cyclic population reduction technique. The
main steps of CPO are listed below.

(1) Population initialization

→
Xi =

→
L +

→
r × (

→
U −→

L )|i = 1, 2 . . . , N (14)

where N denotes the number of populations,
→
Xi denotes the ith candidate solution in the

search space,
→
L and

→
U are the lower and upper bounds of the search, respectively, and

→
r is

a vector randomly initialized between 0 and 1.

(2) Cyclic population reduction technique

The cyclic population reduction technique means that some CPs are allowed to leave
the population during the optimization process to accelerate the convergence speed, and
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then some CPs are added to the population to improve the population diversity and
avoid falling into local minima, which ultimately achieves the purpose of accelerating the
convergence speed while maintaining the population diversity. The specific mathematical
model is as follows:

N = Nmin + (N′ − Nmin)× (1 − (
t% Tmax

T
Tmax

T

)) (15)

where T is the number of cycles, t is the number of current function evaluations, Tmax is the
maximum number of function evaluations, % is the remainder operator, and Nmin is the
minimum number of individuals in the newly generated population. In the optimization
search process, the number of populations N first reaches the maximum value and then
gradually decreases until it reaches Nmin, which represents a cycle. Then, the above cycle is
repeated many times throughout the optimality-seeking process until T times.

(3) The first defense strategy

The first defense strategy is visual intimidation, and the mathematical model is as follows:

→
x

t+1
i =

→
x

t
i + τ1 ×

∣∣∣∣2 × τ2 ×→
x

t
CP −→

y
t
i

∣∣∣∣ (16)

where
→
x

t
i is the position of the ith CP at the tth function evaluation and

→
x

t
CP is the position

of the current best CP, τ1, τ2 are two random numbers.
→
y

t
i is calculated as follows:

→
y

t
i =

→
x

t
i +

→
x

t
k

2
(17)

where
→
x

t
k is the randomly chosen position of another CP.

(4) The second defense strategy

The second defense strategy is sound intimidation, which is mathematically modeled
as follows:

→
x

t+1
i = (1 −→

U1)×→
x

t
i +

→
U1 × (

→
y + τ3 × (

→
x

t
r1
−→

x
t
r2
)) (18)

where
→
U1 is a random vector between 0 and 1, τ3 is a random number, and

→
x

t
r1

and
→
x

t
r2

are
randomly chosen positions of the two CPs.

(5) The third defense strategy

The third defense strategy is the odor attack, which is mathematically modeled as follows:

→
x

t+1
i = (1 −→

U1)×→
x

t
i +

→
U1 × (

→
x

t
r1
+ St

i × (
→
x

t
r2
−→

x
t
r3
)− τ3 ×

→
δ × γt × St

i ) (19)

where St
i is a fitness function,

→
δ is a random vector, γt is a time-dependent factor, and

→
x

t
r1

,
→
x

t
r2

, and
→
x

t
r3

are randomly selected positions of the three CPs.

(6) The fourth defense strategy

The fourth defense strategy is the physical attack, and the mathematical model is
as follows:

→
x

t+1
i =

→
x

t
CP + (α(1 − τ4) + τ4)× (δ ×→

x
t
CP −→

x
t
i)− τ5 × δ × γt ×

→
F

t

i (20)

where α is a control parameter, τ4 and τ5 are random numbers, δ is a random vector, and
→
F

t

i is a fitness-based factor.

18



J. Mar. Sci. Eng. 2024, 12, 2355

CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020),
and its performance was compared against that of three categories of existing optimization
algorithms [26] as follows: (i) the most highly cited optimizers, including the Gray Wolf
Optimizer (GWO), Whale Optimization Algorithm (WOA), Differential Evolution (DE), and
Salp Swarm Algorithm (SSA); (ii) recently published algorithms, including the Gradient-
Based Optimizer (GBO), African Vultures Optimization Algorithm (AVOA), Runge–Kutta
Method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO),
and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE,
LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis
revealed that CPO can be regarded as a high-performance optimizer due to its significantly
superior performance compared to all competing optimizers across the majority of the
test functions in the three validated CEC benchmarks. Quantitatively, CPO achieved an
improvement over rival optimizers, with percentages of up to 83% for CEC2017, 70% for
CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems.

4.3. Improved Crested Porcupine Optimizer (ICPO)

No single algorithm can be applied to all application scenarios with efficiency. When
applied to the prediction of battery capacity, the CPO algorithm can be specifically adapted
to enhance its capability in addressing the complex, dynamic characteristics of lithium-ion
battery behavior, thereby improving the prediction accuracy. In the original CPO algorithm,
the initialized population distribution is relatively random and poorly positioned, which
may result in a slower global search during the early stages of the algorithm’s iterations
or lead to convergence at a local optimum in the later stages. Additionally, during the
algorithm’s iterations, if the position of the current optimal individual differs from that
of the global optimal individual, as the number of iterations increases, individuals in
the population may mistakenly converge toward the locally optimal region, resulting
in premature convergence and a decrease in the accuracy of the global search. These
limitations of the original CPO algorithm contribute to a reduced capacity prediction
accuracy for lithium-ion batteries. Consequently, this paper improves the original CPO
algorithm in two key areas: enhanced population initialization and a refined variation
strategy, thereby establishing the ICPO algorithm, which offers high lithium-ion battery
capacity prediction accuracy.

4.3.1. Improved Chebyshev Chaotic Mapping Initialization

Chebyshev chaotic mapping [27] is a widely used chaotic mapping method for popu-
lation initialization in optimization algorithms, which is computed as follows:

xk+1 = cos(k cos−1(xk)) (21)

where k is the order, which takes the value of 4 in this paper, and x0 is a random number
between −1 and 1.

However, the traditional Chebyshev chaotic mapping may still be unable to make the
initial population fully cover the search space, which reduces the optimization effect, and
so this paper makes the following improvements to the Chebyshev chaotic mapping [28]:

xk+1 = 1 − 2(cos(2arccosxk))
2 (22)

The initialization of the CP population after the introduction of the improved Chebyshev
chaotic mapping is calculated as follows:

→
Xi =

→
L +

xk+1
2

→
r × (

→
U −→

L )|i = 1, 2 . . . , N (23)

The improved Chebyshev chaotic mapping enhances the population’s dispersion and
diversity while ensuring the randomness of the initial population distribution, greatly
improving the algorithm’s performance.
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4.3.2. Random Differential Mutation Strategy

In each iteration of the CPO algorithm, a Random Differential Mutation strategy [29] is
used to perform mutation operations on the population to generate candidate individuals
with greater potential, thus increasing the diversity of the population, which can help the
algorithm to jump out of the local optimum and optimize the effect of the optimization
search. The formula for stochastic differential variation is as follows:

→
x

t+1
i = r1(

→
x

t
CP −→

x
t
i) + r2(

→
x

t
k −

→
x

t
i) (24)

where r1 and r2 are random numbers between 0 and 1.

4.4. Developed ICPO-Bi-LSTM

In this paper, the ICPO algorithm is employed to optimize the hyperparameters of
the Bi-LSTM model, such as the number of neurons in each layer, the learning rate, the
number of iterations, and the dropout rate. Compared to the original CPO algorithm,
the ICPO algorithm enhances the global search speed during the pre-iteration phase and
addresses the issue of premature convergence. The flowchart of the ICPO-Bi-LSTM method
is illustrated in Figure 9, and the primary steps are outlined below.

Figure 9. The flowchart of the developed ICPO-Bi-LSTM.
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(1) Normalize both the capacity and the optimal set of battery characteristics according
to Equation (2), and divide them into training, validation, and test sets based on a
predefined ratio.

(2) Set the parameters of the ICPO algorithm and define the optimization ranges for
the Bi-LSTM parameters. For instance, in the ICPO algorithm, the population size,
maximum number of iterations, and optimization-seeking dimension are set to 100,
100, and 6, respectively; for Bi-LSTM, the search ranges for the number of neurons in
each layer, learning rate, number of iterations, and dropout rate are defined as [1, 500],
[0.0001, 0.001], [1, 200], and [0, 1], respectively.

(3) Introduce improved Chebyshev chaotic mapping to initialize the population, as de-
scribed in Equation (23).

(4) Calculate the fitness value for each individual in the population and rank them based
on their fitness values. The fitness function is determined using the following formula:

f it =
1
N

N

∑
i=1

(ŷi − yi)
2 (25)

where N is the number of validation set samples, yi is the actual value of the ith validation
set sample, and ŷi is the predicted value of the ith validation set sample.

(5) Obtain the fitness value and position corresponding to the individual with the lowest
fitness value, as determined by sorting the fitness values of all individuals, and update
these to the global best fitness and best position.

(6) Apply the four defensive strategies of the ICPO algorithm, along with the cyclic
population reduction strategy, to update the positions of the individuals. Subsequently,
update the positions further after each iteration by introducing random difference
variation, as described in Equation (24).

(7) After each update, check the position of each individual and adjust it back within the
boundaries using a random number if it exceeds the upper or lower limits.

(8) Calculate the fitness value for each individual after the update, and update the global
best fitness and best individual position.

(9) Determine if the loop should terminate: if the maximum number of iterations is
reached or the fitness value attains the minimum, output the optimal hyperparameter
combination for the Bi-LSTM model. Otherwise, return to step (6).

4.5. Capacity Prognostics Based on ICPO-Bi-LSTM and Feature Extraction

In this section, we propose an integrated Li-ion battery capacity estimation framework
based on the ICPO-Bi-LSTM method. As illustrated in Figure 10, the proposed framework
for capacity prediction comprises three key components: data processing, model training,
and capacity prediction.

Initially, a set of features is extracted from the data of the battery. Subsequently, the
correlations between the features and the capacity, as well as the inter-feature correlations,
are assessed using Spearman’s correlation coefficient and a gray correlation analysis. Fea-
tures exhibiting stronger correlations are selected, while redundant features are discarded
to form an optimal feature set. This optimal feature set is then used as input for the ICPO-
Bi-LSTM method. To avoid introducing bias in the performance evaluation, which could
lead to erroneous predictions during online testing, the experimental data are divided into
training, validation, and test sets. The training set is used for model parameter fitting,
while the validation set is employed for iterative hyperparameter tuning to identify the
optimal parameters for the Bi-LSTM model. Finally, the test set is used for the capacity
prediction and performance evaluation.
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Figure 10. The framework of the capacity prognostic analysis based on ICPO-Bi-LSTM and feature
extraction.

5. Results and Discussion

5.1. The Evaluation Criteria

In this paper, the mean absolute error (MAE) and root mean square error (RMSE) are
used to evaluate the capacity prediction accuracy of the established ICPO-Bi-LSTM method,
which are calculated as follows:

MAE =
1
N

N

∑
i=1

|ŷi − yi| (26)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (27)

where N is the number of samples in the test set, ŷi is the predicted value of the ith capacity
predicted by the model, and yi is the actual value of the ith capacity. If the values of MAE
and RMSE are smaller, the model’s capacity prediction is better.

5.2. Capacity Prognosis Accuracy Using Different Batteries at Various Set Ratios

In this section, the B1 and B2 batteries are used to evaluate the accuracy of the ICPO-
Bi-LSTM model’s capacity prediction under dynamic operating conditions, while the
B3 battery is employed to assess the model’s generalizability under simple operating
conditions. The training, validation, and test sets are split into ratios of 6:1:3 (case 1), 7:1:2
(case 2), and 8:1:1 (case 3) for all three batteries, respectively. Figure 11 illustrates the
capacity prognosis results for the three batteries across different dataset ratios. It can be
observed that the ICPO-Bi-LSTM method not only accurately predicts the capacity under
varying training, validation, and test set ratios but also captures the capacity regeneration
phenomenon during the aging process of the batteries with high precision. Furthermore,
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the predicted capacity closely matches the actual capacity for both simple and dynamic
operating conditions, demonstrating that the method is robust and versatile in battery
capacity prognostics under diverse discharge conditions.

 
(a) (b) 

 
(c) 

Figure 11. Capacity prognostics for different batteries at various set ratios: (a) B1; (b) B2; and (c) B3.

Table 6 displays the capacity prognosis errors for the three batteries across various
dataset scales. It is noted that all error metrics remain within 1%, with the maximum values
of the root mean square error (RMSE) and mean absolute error (MAE) recorded at 0.9622%
and 0.9145%, respectively. Additionally, the estimation errors for all three batteries decrease
as the proportion of data in the training and validation sets increases. This improvement is
attributed to the larger amount of historical data on battery capacity degradation available
in the training and validation sets, which enhances the accuracy of capacity prognostics
using the ICPO-Bi-LSTM method.
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Table 6. Capacity prognosis errors for different batteries at various set ratios.

Battery Ratios MAE (%) RMSE (%)

B1
6:1:3 (case 1) 0.6827 0.8236
7:1:2 (case 2) 0.4346 0.6027
8:1:1 (case 3) 0.1841 0.2473

B2
6:1:3 (case 1) 0.8862 0.9541
7:1:2 (case 2) 0.7627 0.8463
8:1:1 (case 3) 0.5538 0.5973

B3
6:1:3 (case 1) 0.9145 0.9622
7:1:2 (case 2) 0.6434 0.6912
8:1:1 (case 3) 0.1314 0.1386

5.3. Results of Different Prediction Methods

To further validate the superiority of the proposed ICPO-Bi-LSTM method and the
superiority of the ICPO algorithm over other algorithms, five models—LSTM, Bi-LSTM,
CPO-Bi-LSTM, PSO-Bi-LSTM, and the developed method—are employed to predict the
battery capacity and compare their performance. The dataset is divided into 80% for
training, 10% for validation, and 10% for testing for all four methods. For CPO, PSO,
and ICPO, the population size is set to 100, the number of iterations to 100, and the
optimization dimension to six. The hyperparameters of the Bi-LSTM model without
algorithmic optimization are configured with 200 neurons per layer, a learning rate of
0.0001, 150 iterations, and a dropout rate of 0.5. For the LSTM model without algorithmic
optimization, the parameters are set as follows: 50 neurons in the hidden layer, a learning
rate of 0.001, 50 iterations, and a dropout rate of 0.5.

Figure 12 presents the capacity prognosis results for the three types of batteries using
the five methods described above. The capacity curves predicted by all five methods
closely match the actual capacity curves, demonstrating that the feature set extracted in
this study accurately reflects the capacity degradation process of lithium-ion batteries
under varying operating conditions. Furthermore, the fitting accuracy of the capacity
curves predicted by the five methods, ranked in descending order as ICPO-Bi-LSTM, CPO-
Bi-LSTM, PSO-Bi-LSTM, Bi-LSTM, and LSTM, further highlights the superiority of the
ICPO-Bi-LSTM model.

The MAEs and RMSEs of the five previously discussed methods for predicting the
three cell capacities are presented as evaluation metrics in Table 7. In addition, to further
validate the advantages of the low computational effort and high efficiency of the present
ICPO-Bi-LSTM framework in model training, the time required to train the models using
different algorithms is also listed in Table 7 as an evaluation metric. It can be seen that the
final MAEs and RMSEs of all models are less than 1%, which further verifies that the optimal
set of features extracted in this paper can effectively reflect the complex degradation trend
of lithium-ion batteries. Moreover, the ICPO-Bi-LSTM method not only accurately predicts
the battery capacity under simple and dynamic operating conditions but also minimizes
the error generated by the prediction compared with other methods. On the other hand,
the LSTM model requires manual setting of hyperparameters and cannot be dynamically
adjusted according to the battery data, which limits its prediction capability and leads to
lower accuracy. In contrast, the Bi-LSTM model adopts bi-directional training, which can
effectively capture the hidden patterns in the battery time series data and thus improve the
prediction performance, which further illustrates the advantage of Bi-LSTM over LSTM
in battery capacity prediction. However, it still has the limitation of not being able to
determine the optimal hyperparameters based on the data; the PSO algorithm can search
for the optimal hyperparameter combinations of the Bi-LSTM model based on the data, and
so the optimized Bi-LSTM model using the PSO greatly improves the prediction accuracy
compared with the original Bi-LSTM model. On this basis, the original CPO algorithm
can not only dynamically adjust the hyperparameters of the Bi-LSTM model according
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to the prediction error, which solves the problem that the optimal hyperparameters are
difficult to determine, but also has a better optimization effect compared with the PSO
algorithm, thus further improving the prediction accuracy. However, the original CPO
algorithm has difficulty in determining the optimal hyperparameter combinations of the
model due to the uneven distribution of the population and the possibility of falling into
the local optimum, which leads to premature convergence of the algorithm, resulting in
the limited prediction accuracy of the model. In contrast, the ICPO-Bi-LSTM method
developed in this paper employs an improved Chebyshev chaotic mapping initialization
to ensure a more uniform initial population distribution. This improvement helps to
speed up the search rate in the initial stages of the CPO algorithm, as well as to perform
a more thorough search in the later stages. In addition, the introduction of the Random
Differential Mutation strategy after each iteration of the CPO algorithm not only shortens
the optimization search time but also helps to prevent premature convergence, which is
more conducive to determining the optimal hyperparameter combinations for the Bi-LSTM
model, and these improvements greatly enhance the accuracy of the model in predicting
the battery capacity. Finally, for the three batteries, training the Bi-LSTM model using the
original CPO algorithm not only has a higher model prediction accuracy but also takes
less time to determine the optimal hyperparameters of the model compared to training the
Bi-LSTM model using the original PSO algorithm, which demonstrates the superiority of
the CPO algorithm. The ICPO algorithm used in this paper not only optimizes the search
results but also effectively shortens the search time due to the introduction of the improved
Chebyshev chaotic mapping initialization and the Random Differential Mutation strategy,
and thus outperforms the PSO algorithm and the original CPO algorithm in terms of both
the prediction accuracy and model training time. Since the separate LSTM and Bi-LSTM
models are not trained with an algorithm, there is no training time.

Table 7. Capacity prognosis errors and training times for different batteries using different methods.

Battery Method MAE (%) RMSE (%)
Training Time

(min)

B1

LSTM 0.7922 0.8793  
 Bi-LSTM 0.6827 0.7423

PSO-Bi-LSTM 0.5246 0.6433 23
CPO-Bi-LSTM 0.3977 0.4813 18
ICPO-Bi-LSTM 0.2433 0.2758 11

B2

LSTM 0.9273 0.9827  
 Bi-LSTM 0.8427 0.8817

PSO-Bi-LSTM 0.7062 0.7423 27
CPO-Bi-LSTM 0.6213 0.6527 21
ICPO-Bi-LSTM 0.5348 0.5777 14

B3

LSTM 0.5612 0.5837  
 Bi-LSTM 0.3633 0.3849

PSO-Bi-LSTM 0.2527 0.2734 35
CPO-Bi-LSTM 0.2203 0.2276 25
ICPO-Bi-LSTM 0.1346 0.1408 18
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Figure 12. Capacity prognostics for different batteries using different methods. (a) B1; (b) B2; and
(c) B3.

6. Conclusions

Capacity prognostics using data-driven methods can be inaccurate when the extracted
features fail to sufficiently capture the degradation trend of lithium-ion batteries or when
the model’s hyperparameters are improperly specified. This paper proposes a capacity
prognostic method for marine lithium-ion batteries, which extracts features from battery
charging and discharging data collected under dynamic operating conditions and utilizes
the ICPO-Bi-LSTM model for capacity prognostics. First, a series of features are extracted
from the charging and discharging data to ensure the adequate capture of battery capacity
degradation. Then, the gray correlation degree and Spearman correlation coefficient are
calculated to select features that are strongly correlated with capacity, while eliminating
redundant features to obtain an optimal feature set. Additionally, the issues of an uneven
population distribution and slow search efficiency during the early stages of the original
CPO algorithm are addressed. The tendency of the original CPO algorithm to prematurely
converge and fall into local optima in later stages, which hinders the identification of the
optimal hyperparameter combination, is also mitigated. To this end, an improved CPO
algorithm is proposed, combining enhanced Chebyshev chaotic mapping and a Random
Differential Mutation strategy, which improve the population initialization and iterative
search strategies of the original CPO algorithm, respectively.

26



J. Mar. Sci. Eng. 2024, 12, 2355

The accuracy of our method is validated by predicting the capacities of two battery
models (B1 and B2), which are discharged under dynamic operating conditions but charged
using different methods. Additionally, we evaluate the method’s generalization ability
using a third battery model (B3), which is discharged under simpler conditions. The
experimental results confirm the method’s capacity to predict battery capacity accurately
across various training, validation, and test set ratios, as well as under different charging
and discharging conditions, demonstrating both high accuracy and robustness. Specifically,
the mean absolute error (MAE) and root mean square error (RMSE) of the predicted
capacities for the different batteries across various dataset ratios are consistently below 1%.
Furthermore, our method achieves the smallest MAE and RMSE values when compared to
other methods (e.g., CPO-Bi-LSTM, PSO-Bi-LSTM, Bi-LSTM, and LSTM), and the ICPO
algorithm used in our approach demonstrates the shortest model training time compared
to the original CPO algorithm and the PSO algorithm, resulting in the most accurate and
efficient capacity prediction. In all model comparison experiments, the maximum MAEs
and RMSEs of the predicted capacities using this method remain consistently below 0.6%.

Future work will include extensive experiments using various marine battery models
under diverse dynamic operating conditions to further validate the effectiveness of our
proposed method. We will progress from controlled laboratory environments to real-world
marine applications, assessing the method in increasingly complex and dynamic conditions.
One major challenge is the variability in battery charging and discharging conditions, which
could impact data integrity. To address this, we plan to enhance both data acquisition
techniques and the robustness of the model. Furthermore, we will investigate the effect
of ambient temperature on battery performance, particularly during the charging process.
Additionally, we aim to integrate the proposed method into an online prediction system
for continuous monitoring, with a focus on ensuring scalability and real-time performance.
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Abstract: The inconsistency of battery voltages in all-electric ships is a significant issue for electric
vehicle battery systems, leading to numerous safety concerns during vessel operation. Therefore,
timely fault diagnosis and accurate fault prediction are crucial for the safe operation of ships. This
study examines the fault alarm system of marine battery management systems in conjunction with
the unique operating conditions of ships, focusing on the system’s latency. To facilitate prompt fault
detection, a fault diagnosis method based on the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm is proposed, utilizing the voltage data of battery clusters. Results
indicate that the DBSCAN clustering algorithm demonstrates superior effectiveness and accuracy
in identifying irregular battery clusters. Furthermore, the fault prediction method based on the
iTransformer model is introduced to forecast variations in battery cluster voltages. Experimental
findings suggest that this model can effectively predict consistency faults and over-/under-voltage
conditions based on battery cluster voltage values and corresponding fault thresholds.

Keywords: marine lithium-ion battery; fault diagnosis; DBSCAN algorithm; iTransformer model;
real-world driving data

1. Introduction

Entering this century, as the global energy crisis worsens and environmental problems
intensify, addressing energy depletion and environmental degradation has become a top
priority worldwide. The gradual enforcement of the International Maritime Organization’s
(IMO) sulfur cap regulation has placed new technological and environmental demands
on the global shipping industry, making energy conservation and emission reduction an
inevitable trend for ships. Compared to traditional fuel-powered vessels, all-electric ships,
with their zero emissions, high transmission efficiency, lower operating costs, and higher
technological value, are increasingly gaining prominence in the industry and showing
broad potential for application [1,2]. The battery system is a core component of all-electric
ships, and its performance largely determines the ship’s power, safety, and endurance
during navigation [3,4]. Unlike electric vehicles, marine battery systems face far more
challenging operating conditions due to the complex and variable marine environment [5,6].
Frequent temperature changes, humidity, vibrations, and prolonged high-load operations
significantly increase the risk of system failure. In extreme conditions, such failures could
even lead to thermal runaway, posing serious threats to the safe operation of the vessel.
Recent studies have shown that voltage anomalies in batteries are a key factor triggering
system malfunctions [7–10]. These anomalies can typically be classified into four cate-
gories: overvoltage, undervoltage, rapid voltage fluctuations, and poor voltage consistency.
Among these, inconsistency is one of the most common issues in battery management
systems [11,12]. It results in uneven capacity utilization, where weaker batteries reach
their charge or discharge limits first, reducing the efficiency of other batteries and low-
ering overall system capacity utilization. Furthermore, inconsistency accelerates system

J. Mar. Sci. Eng. 2024, 12, 2253. https://doi.org/10.3390/jmse12122253 https://www.mdpi.com/journal/jmse29



J. Mar. Sci. Eng. 2024, 12, 2253

aging, leading to the premature failure of underperforming batteries, shortening the over-
all lifespan of the battery pack and increasing maintenance costs. After identifying the
inconsistencies, it is necessary to isolate certain battery cells or perform balancing charge
and discharge operations to improve the overall performance and safety of the battery
pack. Therefore, promptly detecting and addressing voltage anomalies, particularly in-
consistency issues, is crucial to ensuring the safe and efficient operation of all-electric
ships. This not only helps meet industry standards for energy savings and emissions
reduction but also plays a vital role in guaranteeing the safety of ships navigating complex
marine environments.

The main lithium battery fault diagnosis algorithms today are typically categorized
into knowledge-based, model-based, and data-driven approaches [13]. Knowledge-based
lithium battery fault diagnosis algorithms draw on historical data to extract fundamental
insights about battery behavior, which are then used for diagnosis by comparison with a
knowledge base [14]. For instance, expert systems use fuzzy logic to establish a knowledge
base that improves through self-optimization during diagnostics [15].

Model-based lithium battery fault diagnosis algorithms develop models to simulate
lithium-ion battery behavior, then compare the predicted and actual values to generate
residuals for fault detection. Kumara et al. [16] developed a connection fault diagnosis
algorithm using a Luenberger observer, creating a first-order equivalent circuit model to
simulate fault scenarios and using the observer to generate residual signals. LIN et al. [17]
applied hybrid system theory to design automata for capturing both the continuous and
discrete states of lithium battery packs, using dual extended Kalman filters to estimate
parameters and diagnose sensor and relay faults.

Data-driven methods analyze extensive offline and online operational data to establish
input-output mappings and extract diagnostic features without needing detailed battery
models, though data quality is critical. Numerous global new energy data centers now host
extensive datasets on electric vehicle performance, supporting data-driven fault diagnosis
validation [18]. Xia et al. [19] used correlations between adjacent cell voltages to diagnose
faults, while Kang et al. [20] employed a joint fault diagnostic method, combining staggered
voltage measurement topology and modified correlation analysis to detect internal and
external short-circuit faults. Sun et al. [21] used wavelet transforms to denoise voltage
data and calculated Shannon entropy to diagnose faults, validating the method’s effec-
tiveness through battery vibration tests. To address challenges with traditional Shannon
entropy, such as computational complexity and high hardware demands, Wang et al. [22]
applied an improved Shannon entropy method, using a sliding window for iterative en-
tropy calculations, and introduced a Z-score-based strategy for predictive maintenance.
Liu et al. [23] used entropy weighting to assign objective weights to battery voltage, identify-
ing anomalies through battery scoring. To address early fault-detection issues, where fault
characteristics may be subtle, Hong et al. [24] proposed an enhanced multi-scale entropy
method to accurately predict fault timing and locations, helping prevent thermal runaway.

With advancements in artificial intelligence and machine learning, effective battery
fault diagnosis and prediction now rely on inputting feature factors and labels into mod-
els. For example, Qiu et al. [25] applied a nonlinear autoregressive exogenous (NARX)
neural network for voltage prediction and fault diagnosis, while Fang et al. proposed a
noise-applied DBSCAN clustering algorithm for fault diagnosis, paired with least-squares
support vector regression (LS-SVR) for cell voltage change prediction [26]. However, much
of this research focuses on electric vehicles, with few studies specifically addressing the
unique requirements of all-electric vessels.

Existing battery voltage prediction methods have been validated primarily on electric
vehicles, with little testing on all-electric ships. This paper addresses this gap by intro-
ducing a new approach for predicting voltage and detecting potential abnormal voltage
fluctuations based on actual data from electric ships. The paper aims to make three notable
contributions and improvements to current technology:
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1. Adapting Fault Detection for All-Electric Ships: We adapt fault detection methods
traditionally used for electric vehicles to all-electric ships, using real operational data
to examine battery inconsistency.

2. Analyzing Ship Fault Alarm Mechanisms: This study investigates the delay issues
in alarm communications, proposing a voltage anomaly diagnosis method based on
battery clusters, specifically tailored to the operational context of ships.

3. Introducing an iTransformer-Based Fault Prediction Method: We propose a fault
prediction method using the iTransformer algorithm to forecast trends in battery
cluster behavior, revealing potential hazards associated with inconsistency faults.

The remainder of this paper is organized as follows: Section 2 gives a brief introduction
of the real-world driving data details. Section 3 analyzes the alarm mechanism of the ship’s
battery management system and uses real data to illustrate the delay in alarms, from which
a DBSCAN-based identification method is proposed. Section 4 utilizes iTransformer for
voltage prediction. Section 5 summarizes the main conclusions of the paper.

2. Data Description and Preprocessing

In actual ship operations, battery voltage can experience significant and random
fluctuations due to unpredictable environmental and operational factors, creating a more
complex operating environment compared to electric vehicles. The dataset used in this
study originates from a monitoring platform provided by a domestic research institute. This
platform tracks the real-time status of over ten electric ships, delivering timely feedback to
the vessels and their operators. Additionally, the platform provides IT support and data
services for electric ship companies and government agencies, enabling the collection of
extensive operational data and expanding the application potential of machine learning
techniques, such as the Transformer network architecture proposed in this paper.

The data examined in this study specifically pertains to the Junlu, an all-electric ship
developed collaboratively by the China State Shipbuilding Corporation’s 712th and 702nd
Research Institutes. Capable of carrying up to 300 passengers, it is the first large passenger
ship in China to meet the *Inspection Guidelines for All-Battery Electric Ships* set by
the China Classification Society. The ship’s battery system consists of multiple clusters
connected in parallel, providing a total capacity of 2240 kWh; the specific battery system
topology is shown in Figure 1. The battery system in the “Junlvhao” ship is divided into
two parts (left and right), each containing 6 battery clusters. After the 6 battery clusters
are connected in parallel, they supply power to the pod and other loads through the ship’s
DMSB. Additional specifications are presented in Table 1. Data collection spanned from
October 2022 to October 2023, including essential information such as timestamps, state of
charge (SoC), battery cluster voltage lists, battery consistency status, fault alarms, alarm
severity, total current, voltage, and power, as shown in Figure 2.

Figure 1. Network topology of the battery system.
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Table 1. The specifications of the electric ship studied.

Parameter Specification

Type Passenger Ship
Length 55 m
Width 10 m

Draft Depth 1.6 m
Coordinates 114–17.414 E, 30–34.296 N
Destination Wuhan Port

Battery Capacity 2240 kWh
Maximum Speed 10 knots/h

Number of Battery Clusters 12
Nominal Voltage 3.2 V
Rated Capacity 280 Ah

(a) 

(b) 

(c) 

Figure 2. Some of the data used in this article. (a) is the electric boat speed, (b) is the battery cluster
voltage sampled by the electric boat BMS, and (c) is the right pod power.

In the diagnostic phase, the DBSCAN clustering method is employed for fault detec-
tion and localization, while the iTransformer model is used for the prediction algorithm.
The operational principles, specific parameters, and further technical details of these meth-
ods are discussed in subsequent sections.
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For fault diagnosis and localization, the DBSCAN clustering method is utilized, while
the prediction algorithm is based on the iTransformer model. The system principles,
detailed parameters, and further technical specifics of these methods are discussed in the
following sections.

3. Inconsistency Fault Analysis and Diagnosis

3.1. Inconsistency Fault Analysis
3.1.1. Fault Alarm Mechanism in Marine BMS

In practical applications, the BMS alarm system primarily responds to faults caused
by individual battery cells, as the terminal voltage of individual cells is easily measurable.
To further diagnose the fault, it is essential to establish the voltage differential threshold
used for fault detection. In the battery management system, each data sample records the
relevant information of individual cells, including their voltage data. By comparing the
calculated feature factors with pre-calibrated thresholds, any value exceeding the threshold
is flagged as a fault, and the corresponding alarm thresholds and levels are outlined in
Table 2. These fault thresholds are set by the manufacturer based on specific conditions
and are defined according to national standards. In our study, the design manual of the
battery system from the Junlvhao vessel was used as the source of these thresholds.

Table 2. Common faults and thresholds.

Fault Type Level Threshold

Cell overvoltage (V)
1 3.5
2 3.6
3 3.65

Cell Undervoltage (V)
1 3.1
2 3.0
3 2.8

Cell Voltage Deviation (mV)
1 350
2 400
3 500

Cluster Overvoltage (V)
1 3.55 * N
2 3.6 * N
3 3.65 * N

Cluster Undervoltage (V)
1 3.1 * N
2 3.0 * N
3 2.8 * N

The battery management system (BMS) adopts a distributed design, as shown in
Figure 3. The distributed BMS consists of the Battery Assembly Unit (BAU), Battery
Control Unit (BCU), and Battery Management Unit (BMU), which work together to monitor
the battery pack’s status and ensure the safe operation of the battery. The BAU is the system-
level control unit responsible for the monitoring, management, and control of the entire
system. It directly monitors the status of each battery module within the battery system
and can also monitor the battery pack’s information. The BCU is a module-level control
unit, with each battery module having a corresponding BCU. The BCU is responsible
for monitoring the status of individual cells within the battery module and reporting
status information to the higher-level control unit. The BMU is the cell-level control
unit, responsible for monitoring the status of individual cells and communicating this
information to the BCU, which in turn passes it to higher-level units. The entire system
communicates through a CAN network. Therefore, when a fault occurs at the cell level, the
fault reporting process follows a hierarchical flow: from the BMU to the BCU to the BAU.
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Figure 3. Alarm flow chart of BMU, BCU, and BAU in Marine BMS.

When using the CAN network for BMS communication on ships, significant delays
often occur due to the ship’s complex system architecture and challenging operating envi-
ronment. First, ships have many interconnected subsystems, with considerable physical
distances between them. Coupled with a large number of nodes, this setup often results in
data congestion and delays. Second, environmental factors such as temperature, humidity,
and salt fog significantly impact the battery system, increasing the monitoring demand
and necessitating redundant design features, which in turn prolong the data processing
time. Additionally, interference from high-power electromagnetic equipment on board
may affect the stability of communication, and the shielding measures implemented to
ensure signal integrity can further contribute to delays.

In summary, due to the design of the ship’s BMS, the individual cell fault alarm
mechanism may have inherent delays. To address this issue, this study proposes a fault
detection method based on the voltage of the battery pack, which directly uses data from
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the BAU monitoring the battery pack voltage. This method ensures higher real-time
performance and can improve the overall fault detection process.

3.1.2. Fault Fragment Analysis

Battery inconsistency faults typically persist over an extended period, manifesting as
an increasing voltage difference between cells and battery clusters. This voltage disparity
may lead to the progression of faults from an initial level 1 to levels 2 or even 3. For instance,
in Figure 4, an alarm event that occurred at 10:00 PM on 1 January 2023, clearly illustrates
the temporal relationship between voltage difference changes and alarm states. Initially,
the figure shows that the trend of voltage difference changes began to emerge before the
alarm was triggered, indicating that voltage anomalies often serve as early warning signals
for potential faults. In the alarm segment at 10:38 PM, it was observed that the voltage
difference increased rapidly to its peak; however, the alarm did not trigger immediately
but only after the voltage difference exceeded a specific threshold. This phenomenon
indicates that the alarm mechanism relies not solely on instantaneous changes in voltage
difference but rather on the cumulative effect of voltage differences over time. Additionally,
after the voltage returns to normal levels, the alarm state persists for a period to ensure
that all anomalies have been resolved. This process highlights the persistence of voltage
anomalies in battery clusters and their critical role in fault detection. Therefore, it is evident
that the occurrence of faults is often accompanied by abnormal voltage changes in battery
clusters, which frequently precede the triggering of alarm states. These early voltage
changes provide crucial insights for the timely detection and diagnosis of battery faults.
Consequently, continuous monitoring of voltage differences in battery clusters is essential
within battery management systems, as it enhances the accuracy and responsiveness of
fault diagnostics.

Figure 4. Time-stamped ship alarm status and differential signals on 1 January 2023.

3.2. Inconsistency Fault Diagnosis

Based on Table 2, overvoltage and undervoltage faults in individual battery cells can
be detected by setting specific voltage thresholds using raw data. However, as analyzed
above, this method does not provide immediate fault detection, leading to delays in alarms
and assessments. To address this issue, this study proposes directly detecting anomalies
at the battery cluster level, significantly reducing detection latency. A DBSCAN-based
clustering method is introduced to automatically identify and classify faults across multiple
battery cluster voltage curves. Unlike K-means, this method uses outlier detection to
identify abnormal clusters.

K-means is a widely used unsupervised learning algorithm primarily employed for
clustering tasks, with the goal of partitioning a dataset into K clusters such that data points
within each cluster are as similar as possible, while data points in different clusters are
as distinct as possible. The core idea of K-means is to iteratively update the centroid of
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each cluster, optimizing the cluster assignments over time. However, K-means requires
a predefined number of clusters, K, which is often difficult to determine in practice. For
example, when diagnosing voltage anomalies in battery cells using K-means, if K is set to 2,
certain special cases may lead to underdiagnosis, requiring an increase in K to achieve more
accurate clustering results. In cases where the voltage anomaly distribution is variable,
it becomes challenging to accurately identify all anomalous cells with a fixed number of
cluster centers. Therefore, the K-means-based anomaly detection method has certain limi-
tations in such scenarios. The DBSCAN algorithm does not require setting the number of
clusters, making it more effective in identifying the occurrence of multiple fault situations.

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clus-
tering algorithm, developed by Ester M., Kriegel H.P. et al. in 1996, is a density-based
method that classifies data points with similar characteristics based on distances between
them, automatically dividing data into distinct clusters. Widely applied in fields such as
battery voltage balancing and thermal runaway diagnostics, DBSCAN is highly effective
for identifying patterns and anomalies. A cluster is formed when data points satisfy a
minimum point threshold (minpts) within a specified neighborhood (eps).

The algorithm’s operation, shown in Figure 5, classifies data points as core points,
boundary points, or noise points. Initially, minpts is set to 5, and orange-marked core
points are identified. The algorithm then expands clusters by transferring from one core
sample to neighboring points to locate additional core points, completing the clustering
task. In the figure, light red points have only three neighbors and thus do not qualify as
core points; however, they remain within reach of the core point density, classifying them as
boundary points. Blue points, which cannot be reached from any core point, are considered
noise.

Figure 5. Schematic diagram of DBSCAN clustering method.

Before implementing DBSCAN, it is essential to intelligently set the neighborhood
radius (eps) and minimum neighborhood sample count (minpts), as these parameters
directly impact clustering outcomes. The detailed steps for implementing the DBSCAN
algorithm are outlined as follows:

Step 1: Select a Core Point, p: A data point is randomly selected as a core point, p, to
begin forming a cluster.

Step 2: Form Cluster C: Using core point p as the starting point, a cluster, C, is created
by adding p and all data points within a specified radius, r (i.e., the r-neighborhood), to
the cluster.

Step 3: Expand Cluster C: For each unprocessed point in the neighborhood, the cluster
is expanded. If a neighboring point, q, also qualifies as a core point, all points within q’s
neighborhood that are not yet assigned to another cluster are added to C, continuing the
cluster expansion.
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Step 4: Repeat Expansion: This process is repeated until all points that can be included
have been assigned to a cluster, ensuring that every sample point is processed.

Step 5: Output Clusters and Noise Point: Finally, the algorithm outputs the set of
clusters, C, and any points that could not be assigned to a cluster are labeled as noise and
placed in the noise set O.

Based on data from January 2023, this study applied the DBSCAN clustering method
to analyze voltage anomalies in battery clusters within the marine BMS. Figure 6 illustrates
the correspondence between noise points identified by the method and actual fault points.
In the figure, blue solid points represent detected noise or anomaly points, while orange
hollow points denote actual labeled fault points. The figure shows that, in most cases,
potential faults within the battery clusters were detected early, as these anomalies were
marked as noise points, often preceding alerts from the ship’s BMS. Additionally, during
the period from 3 January to 18 January, several potential fault points were detected, with
timing differences from the BMS fault alarms. Around 23 January, noise points identified
by the algorithm appeared noticeably earlier than actual fault alerts, demonstrating the
clustering method’s significant predictive capability.

Figure 6. Comparison of fault points and true labels based on DBSCAN.

To conclude, the DBSCAN algorithm has proven effective in fault detection, as it can
identify potential issues in the battery system before the BMS issues an alert. This early-
warning capability provides valuable response time for maintenance personnel, enabling
timely interventions and reducing potential losses associated with delayed fault reporting.

To evaluate DBSCAN’s effectiveness in identifying abnormal voltage in battery clus-
ters, this study introduces the F1 Score, a common classification metric. The F1 Score
provides a straightforward assessment of the DBSCAN algorithm’s performance in de-
tecting voltage anomalies. Since fault anomalies are typically rare in battery systems, and
sample classes are imbalanced, relying solely on precision or recall can be misleading. The
F1 Score calculation follows these steps:

• True Positive (TP): The number of correctly clustered samples for a specific class.
• False Positive (FP): The number of samples incorrectly clustered into a specific class.
• False Negative (FN): The number of samples that belong to a specific class but were

not correctly identified.

Using these definitions, the formulas for precision, recall, and F1 Score are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1 = 2 × Precision × Recall
Precision + Recall

(3)

As shown in Figure 7, the DBSCAN clustering method’s results for detecting voltage
anomalies in battery clusters demonstrate a consistently high detection precision, with
precision values remaining at 1.0 across all months, indicating excellent accuracy in identi-
fying voltage anomalies. The recall rate, however, shows some fluctuations, particularly
in September (0.92) and November (0.92946), where recall rates are relatively lower. This
variability may relate to operational factors, such as climate, sea conditions, and mainte-
nance schedules, which could increase the complexity of anomaly patterns and contribute
to missed detections.

Figure 7. DBSCAN clustering result evaluation indicator value in each month.

The F1 score, which integrates both precision and recall, generally ranges between
0.9423 and 0.99692, indicating stable and strong overall model performance. Notably,
the F1 score approaches 1.0 in June, October, and December, reflecting optimal detection
performance during these months. In summary, the model performs well throughout most
of the year, effectively detecting voltage anomalies, though a few missed detections may
occur in certain months.

4. Inconsistency in Fault Prediction Based on iTransformer

The primary indicator for detecting inconsistency faults in large-capacity battery
clusters on ships is the voltage residual of the battery pack. In the initial stages of a fault,
before individual cell inconsistency alarm signals are triggered, the voltage range gradually
expands over time. Typically, in maritime applications, reporting of individual cell faults
is subject to delays. However, since the Battery Control Unit (BCU) directly monitors the
battery cluster voltage without passing through the CAN0 network, using cluster voltage
as a consistency indicator avoids such delays, providing a more immediate reflection of the
overall health of the battery pack. Thus, in addition to accurately diagnosing faults in ship
batteries, effectively predicting faults at the battery pack level would significantly enhance
operational safety. To address this, this study proposes an iTransformer-based predictive
method for early warning of voltage anomalies and forecasting fault progression trends.

The proposed iTransformer fault prediction method can be supported by the cloud-
based big data platform for fully electric ships. This platform enables real-time information
exchange between the ship and the platform, meaning the ship can upload relevant data to
the platform, and the platform can return the predicted signals to the ship. Cloud-based
cyber-physical systems and platform technologies provide an excellent environment for
creating self-improving models that can effectively and efficiently enhance the safety of the
ship during operation. Figure 8 demonstrates how we utilize the cloud data platform for
fault prediction.
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Figure 8. Cloud-based data platform for iTransformer fault prediction.

Our iTransformer plays a critical role in predicting voltage anomalies in large-capacity
ship battery clusters. Given the influence of environmental factors, predicting the voltage
of ship battery clusters requires capturing the complex dependencies in a multivariate time
series. Traditional Transformer architectures often struggle with long time-series data due
to performance declines and increased computational complexity. By utilizing an inverted
dimensional structure, iTransformer more accurately captures the interdependencies among
battery cells, providing greater stability in handling multivariate data. This capability aids
in the earlier identification of inconsistency faults within battery clusters and enables
effective forecasting of future voltage trends, ultimately enhancing the operational safety
of ship battery systems.

4.1. Transformer Architecture

The Transformer model is a widely popular deep learning architecture, first intro-
duced in the groundbreaking paper * “Attention is All You Need”. * Unlike traditional
sequence models such as LSTMs, the Transformer captures dependencies between input
and output elements using a self-attention mechanism, allowing it to process the entire
sequence in parallel rather than sequentially across time steps. This capability enables the
Transformer to capture long-range dependencies more efficiently, significantly enhancing
model performance. The schematic diagram of the relevant transformer principles is shown
in Figure 9. The following sections outline the key components of the Transformer model.

 
Figure 9. Transformer-related structural design diagram.
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4.1.1. Positional Encoding

In the Transformer model, the embedding process typically combines token and
positional embeddings to capture sequence order. In this study, positional and operational
embeddings are used to represent the position of battery charge and discharge curves
within the sequence, as shown by the following formula:

PEpos,2i = sin

(
pos

10,000
2i

dmodel

)

PEpos,2i+1 = cos

(
pos

10,000
2i

dmodel

) (4)

The PE refers to the Positional Embedding matrix, where pos indicates a specific
position, i represents a particular dimension, and d_model denotes the dimension of
the model.

4.1.2. Self-Attention Mechanism

The self-attention mechanism is central to the Transformer model, enabling each posi-
tion (token) in the input sequence to relate to all other positions, capturing dependencies
throughout the sequence. The self-attention mechanism follows these main steps:

1. Calculate Query, Key, and Value Vectors: For each position in the input sequence, a
linear transformation generates a query vector (Q), a key vector (K), and a value vector (V),
using the following formulas:

Qi = WQxi
Ki = WKxi
Vi = WV xi

(5)

where WQ, WK, and WV are learned weight matrices that map the input into subspaces for
query, key, and value. The Q represents the token seeking information, the K contains the
information, and the V holds the data used for the output.

2. Compute Attention Scores: The attention scores are obtained by calculating the dot
product between the query and key vectors, representing the relevance of each position to
others in the sequence.

Attention(Qi, Kj) =
QiKT

j√
dk

(6)

The Q is compared to K using a similarity measure (usually dot product) to calculate
how much attention one token should pay to another.

3. Apply Softmax Function: To normalize the attention scores into probabilities, they
are passed through a softmax function, ensuring that the weights sum to 1:

αij = softmax

(
QiKT

j√
dk

)
(7)

The attention scores are normalized with softmax, turning them into probabilities so
that they sum to 1, determining the attention weight each token should have.

4. Weighted Sum to Obtain Output: Finally, the output for each query position is a
weighted sum of all value vectors V, with weights determined by the attention scores:

Outputi = ∑
j

αijVj (8)

40



J. Mar. Sci. Eng. 2024, 12, 2253

4.1.3. Multi-Head Attention

The multi-head attention mechanism extends self-attention by allowing the model to
learn different types of dependencies in parallel across multiple subspaces. The formula
for multi-head attention is as follows:

MultiHead(Q, K, V = Concat(head1, head2, . . . , headh)WO (9)

Each head is calculated similarly to single-head self-attention:

headi = Attention(Qi, Ki, Vi) (10)

where WO is the weight matrix for the final linear transformation, and concatenation
combines the outputs from each attention head. Multiple attention mechanisms (heads)
run in parallel, each focusing on different parts of the input. The results are combined to
capture different relationships between tokens.

4.1.4. Feed-Forward Network

The feed-forward network further processes and transforms feature representations.
The formula is as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (11)

where W1 and W2 are weight matrices, b1 and b2 are biases, and ReLU is the activation
function. It transforms and refines data through two layers with a ReLU activation to learn
complex patterns.

4.1.5. Layer Normalization

To accelerate model training and improve stability, the Transformer applies layer
normalization between the input and output of each sub-layer. Layer normalization helps
mitigate issues like gradient vanishing or explosion during training and promotes faster
convergence. The layer normalization formula is:

LayerNorm(x) =
x − μ

σ + ε
· γ + β (12)

where μ and σ are the mean and standard deviation of the input, ε is a small constant
for numerical stability, and γ and β are learnable parameters. It normalizes the output to
stabilize training, improving convergence and reducing learning rate dependency.

4.1.6. Residual Connections

Residual connections directly pass the input of each layer to the next layer to avoid
information loss and ensure better gradient backpropagation. Specifically, input x is added
to the output of the layer:

Output = LayerNorm(x + SubLayer(x)) (13)

4.1.7. Final Output

The decoder’s final output is passed through a linear layer, followed by a softmax
function to produce predicted values.

Target(y|x) = softmax(HW + b) (14)

The Transformer combines self-attention, multi-head attention, feed-forward net-
works, positional encoding, layer normalization, and residual connections to build a highly
parallelized model architecture. The self-attention mechanism allows the model to focus on
multiple positions within the input sequence, capturing long-range dependencies, while
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the multi-head mechanism enhances flexibility and expressiveness. The feed-forward
network provides nonlinear transformation, positional encoding manages sequence order,
and layer normalization and residual connections ensure stability and efficient training.
Together, these components make the Transformer a powerful and widely adopted model.

4.2. iTransformer Architecture

The iTransformer model is an adaptation of the classic Transformer architecture,
designed specifically for time series prediction using an inverted dimension approach.
Unlike the traditional structure, the improved model inverts the time series dimensions,
enabling the attention mechanism and feed-forward network to operate across different
dimensions, capturing correlations and trends in multivariate time series more effectively.
The schematic diagram of the relevant iTransformer principles is shown in Figure 10. Key
iTransformer functions compared to the Transformer are as follows:

θ

μ σ

x ux
σ
−=

Figure 10. iTransformer-related structural design diagram.

4.2.1. Inverted Dimension Design and Embedding Process

In traditional architectures, the input time series X ∈ RT×N , which consists of T time
steps and N variables, is embedded so that multiple variables at each time step form a
single time-step token. This approach focuses primarily on dependencies across time
steps, potentially overlooking correlations among variables. In contrast, the iTransformer
uses an inverted dimension design, embedding each variable’s entire time series as a
separate variable token, thus allowing the attention mechanism to capture inter-variable
relationships. The embedding process is as follows:

hn
0 = Embedding(X:,n), n = 1, 2, . . . , N (15)

where X:,n represents the entire time series for the n-th variable, and hn
0 is the representation

after embedding each variable.

4.2.2. Inverted Application of Self-Attention Mechanism

In traditional models, the self-attention mechanism operates along the time dimension,
capturing temporal dependencies by calculating the relationships between each time step.
In the iTransformer, however, self-attention is applied across the variable dimension. By
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calculating correlations among different variables, the model can capture inter-variable
dependencies. The formula is as follows:

Qn, Kn, Vn = hnWQ, hnWK, hnWV (16)

Attention(Qn, Kn, Vn) = softmax
(

QnKT
n√

dk

)
Vn (17)

4.2.3. Application of Feed-Forward Network (FFN) in the Time Dimension

The FFN is applied to each variable’s time-series representation, allowing the model
to better capture temporal changes for each variable. The formula is:

Hn
l+1 = FFN(Hn

l ) (18)

4.2.4. Omitting Positional Encoding

Since the iTransformer applies attention across the variable dimension rather than
the time dimension, positional encoding is omitted. Temporal sequence information is
implicitly captured through the FFN and attention mechanism.

4.2.5. Multivariable Correlation Handling

A key innovation of this model is its ability to specifically address variable correlations
in multivariate time series. By applying attention across the variable dimension, the
model generates a multivariable correlation map, which helps capture the influence among
different variables. The attention score matrix A is calculated as follows:

Aij = softmax

(
QiK


j√
dk

)
(19)

This matrix describes the correlation between variables i and j, which is critical for
accurate multivariate time-series prediction.

4.3. Feature Selection

This section addresses the selection of features most relevant to predicting battery clus-
ter voltage. These features represent various operating conditions and state variables, such
as temperature, load, current, and voltage history. Although the self-attention mechanism
adjusts weights based on input features, selecting a higher-correlation feature set improves
model convergence and performance. The Pearson Correlation Coefficient (PCC) and
Spearman Coefficient are used for feature selection. PCC measures linear correlation with
battery cluster voltage, while the Spearman Coefficient captures nonlinear relationships.
Together, these metrics comprehensively identify features with strong relevance to the
target variable.

4.3.1. Pearson Correlation Coefficient

PCC is a standard measure of linear correlation between two variables. It is used
to select features with strong linear relationships to battery cluster voltage. The PCC
formula is:

rx,y =
∑(xi − x)(yi − y)√

∑ (xi − x)2
√

∑ (yi − y)2
(20)

where rx,y is the correlation coefficient between feature x and voltage y. PCC values range
from −1 to 1, with values closer to 1 or −1 indicating a stronger linear correlation.
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4.3.2. Spearman Coefficient

The Spearman Coefficient, a rank-based correlation measure, is suitable for selecting
features with nonlinear relationships. It assesses correlation by comparing variable ranks,
calculated as follows:

ρx,y = 1 − 6 ∑ d2
i

n(n2 − 1)
(21)

where ρx,y is the Spearman coefficient, d is the rank difference between feature x and
voltage y, and n is the sample size. Like PCC, Spearman values range from −1 to 1, with
values closer to 1 or −1 indicating a stronger correlation.

The combined use of PCC and Spearman can provide a comprehensive assessment
of both linear and nonlinear relationships. PCC effectively evaluates linear relationships,
while Spearman is suitable for identifying monotonic relationships in the data. Therefore,
the combination of both can offer a thorough evaluation of the various associations between
variables. Additionally, this approach enhances robustness, as PCC requires specific data
distribution, particularly linear relationships and normality, while Spearman does not
require normal distribution and is better suited for handling nonlinear or non-normally dis-
tributed data. Thus, the joint use of these two methods can offer more accurate correlation
analysis across different types of data.

4.3.3. Feature Selection Based on Real Ship Data

In battery voltage prediction for electric vehicle BMSs, voltage characteristics or fluc-
tuations during operation or charging may be influenced by various external factors,
including meteorological conditions, vessel operational states, and inherent battery char-
acteristics. To enhance prediction accuracy, this study comprehensively considers these
three dimensions—meteorological factors, vessel operating conditions, and battery system
characteristics—forming a more robust framework for predicting ship battery voltage.

Regarding meteorological factors, environmental conditions significantly impact bat-
tery voltage, especially in maritime applications. However, due to the variability and
unpredictability of marine weather, variables such as humidity, precipitation, atmospheric
pressure, temperature, visibility, and wind speed may not fully represent actual opera-
tional conditions, as they lack direct correlations with a vessel’s dynamic state and do not
sufficiently capture voltage fluctuation patterns. To address this limitation, this study incor-
porates a feature combination of “pod power + speed”. This pairing effectively reflects the
vessel’s power demand and operating state in complex maritime environments, indirectly
capturing real-time environmental effects on battery voltage. For example, pod power and
speed indicate current power output demands and operational conditions, providing in-
sights beyond environmental factors alone. Consequently, this feature combination enables
more precise voltage predictions under varying conditions.

At the battery system level, several features closely related to battery voltage were
selected, including voltage, probe temperature, state of charge (SOC), and current. These
variables directly represent the real-time status and health of the battery system. While
driver behavior may influence battery voltage fluctuations—especially as operational
inputs can alter battery load (e.g., sudden acceleration or deceleration)—this impact is
typically indirect and difficult to quantify. Furthermore, complex interactions exist between
driver behavior and environmental factors; for instance, different driver actions in the
same environment can uniquely impact the battery system, making precise modeling
challenging. In light of this, this study excludes driver behavior as a factor and instead
focuses on meteorological factors, vessel operating conditions, and battery characteristics,
reducing model complexity and improving predictive accuracy. Ultimately, the selected
features include SOC, temperature, current, total voltage, left pod power, right pod power,
and speed.

As shown in Figure 11, An analysis of the Pearson correlation coefficient (PCC) and
Spearman coefficient for features related to battery cluster voltage prediction reveals a
strong positive correlation between current and battery cluster voltage, with a PCC of
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0.905716 and a Spearman coefficient of 0.823703. Therefore, current should be prioritized
as a key feature. The power of the left and right pods also demonstrates significant
negative correlation, with Spearman coefficients of −0.78632 and −0.78287, respectively,
indicating strong nonlinear effects and establishing them as important predictive indicators.
The Spearman coefficient between the total voltage of the battery system and the battery
cluster voltage is 0.697869, indicating a complex nonlinear relationship, which should be
considered as an auxiliary feature. A negative linear relationship exists between speed and
probe temperature with battery cluster voltage; however, the low Spearman coefficients
suggest weak nonlinear effects, allowing these features to be considered as secondary. The
state of charge (SOC) shows low correlation, n, with battery cluster voltage, indicating that
it may not play a significant role in voltage prediction.

 
(a) (b) 

Figure 11. PCC (a) and Spearman (b) correlation coefficient calorific value map.

Although the analysis using PCC and Spearman coefficients revealed a strong corre-
lation between battery cluster voltage and the left and right pod power, potential multi-
collinearity between these features may lead to information redundancy. Multicollinearity
can affect model stability and interpretability; feature redundancy was further evaluated by
calculating the Variance Inflation Factor (VIF). VIF is a tool that assesses linear relationships
among features, calculated as follows:

VIFi =
1

1 − R2
i

(22)

where R2
i represents the coefficient of determination, showing how well a feature can be

predicted by the other features. A VIF > 10 typically indicates a strong linear relation-
ship with other features, suggesting redundancy. Our calculations yielded VIF values of
15.438989 for both left and right pod power, significantly exceeding the threshold of 10,
which suggests overlapping information. As a result, only one feature, left pod power,
was retained to reduce redundancy. The final selected features were left pod power, probe
temperature, current, system voltage, and speed.

To comprehensively evaluate model performance, three standard regression metrics
were employed:

1. Root Mean Square Error (RMSE): RMSE measures the standard deviation of predic-
tion errors, reflecting the magnitude of prediction error. The formula is:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (23)
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2. Mean Absolute Error (MAE): MAE measures the average absolute difference
between predictions and actual values, representing the actual magnitude of prediction
errors. The formula is:

MAE =
1
n

n

∑
i=1

∣∣∣∣∣ŷi − yi

∣∣∣∣∣ (24)

3. Mean Absolute Percentage Error (MAPE): MAPE evaluates prediction error as
a percentage of actual values, showing the relative magnitude of prediction error. The
formula is:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (25)

4.4. Prediction Results and Discussion

In this study, the electric ship has 12 battery clusters. Training and building sepa-
rate models for each cluster would be time-consuming, and invoking multiple models
simultaneously during real-time voltage prediction could substantially reduce prediction
efficiency. To address this issue, the data from all 12 clusters were sequentially combined
into a new, unified battery cluster voltage dataset. This combined data were then used to
train a generalized voltage prediction model. By incorporating the voltage information
from each individual cluster, this approach enabled the creation of a well-calibrated model
capable of predicting voltage across all clusters simultaneously. The prediction and fault
diagnosis responses were evaluated using an alarm scenario that occurred around 9:50 AM
on 3 January 2023, as shown in Figure 12.

Figure 12. Voltage difference in the battery cluster and fault alarm status for the fault segment on 3
January 2023.

In Figure 12, the voltage difference fluctuated over time, remaining small between
09:56 and 10:05 before gradually increasing, peaking at a significant voltage difference
around 10:10, and then slowly declining. The alarm status is indicated by a dashed line, with
0 representing no alarm and 1 indicating an active alarm. Whenever the voltage difference
increased, the alarm status shifted from 0 to 1, signifying that the system detected an
anomaly. This also illustrates the inherent delay in the alarm response.

This study combined Transformer and iTransformer models to predict short-term
voltage range variations in segments with active alarms. Each input sequence consisted
of voltage difference data across 30 consecutive time points, which were preprocessed as
input to the model, with the goal of predicting the next 10 time points’ voltage values.
During training, the Mean Squared Error (MSE) was used as the loss function, and the
model was optimized with the Adam optimizer. Learning rates were adjusted to ensure
that the model converged quickly and stabilized at an optimal prediction performance.
Transformer-based prediction results and relative error are shown in Figure 13 The analysis
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shows that the model effectively captures the overall trend of voltage changes, particularly
in periods of gradual voltage increase. However, the model’s response lagged during sharp
declines in voltage difference, resulting in a spike in error, with prediction errors reaching
up to 15 V during sudden events and alarms.

Figure 13. Voltage prediction results and errors based on the transformer model.

Applying the iTransformer model to the same alarm segment with identical sequences,
the voltage data from the previous 20 time points were used as the training sample to
predict the following 10 time points. The prediction results and errors for the sliding data
window over the fault segment are shown in Figure 14. The iTransformer model captured
fluctuations more accurately, with reduced amplitude and frequency of oscillations, indicat-
ing improved handling of noise and minor local variations. Overall, errors remained within
a 5 V range, demonstrating strong predictive accuracy when voltage differences were
relatively stable. Table 3 summarizes the model’s prediction performance across all battery
clusters, showing that iTransformer outperformed Transformer in RMSE, MAE, and MAPE,
with predictions closer to actual values, confirming its superior predictive capability.

Figure 14. Voltage prediction results and errors based on the iTransformer model.

Table 3. Model’s prediction performance.

Prediction Method RMSE MAE MAPE (%)

Transformer 1.192 0.840 0.16
iTransiformer 0.390 0.343 0.03

To predict fault alarms, the predicted results were compared with fault detection
thresholds, enabling fault identification and providing short-term predictions 90 s in
advance. In fault prediction analysis, FP, FN, TP, and TN are calculated. From these,
accuracy, recall, and F1 score are derived, which help us evaluate the model’s performance

47



J. Mar. Sci. Eng. 2024, 12, 2253

in predicting faults. Based on fault alarms recorded during a year of operations in the ship
data utilized in this study, and using iTransformer and threshold analysis, the following
evaluation metrics were obtained in Table 4.

Table 4. Model fault prediction evaluation index.

Performance Metric Value

Accuracy 93.25%
Precision 94.28%

Recall 95.47%
F1 Score 94.87%

5. Conclusions

This paper utilizes real driving data from the all-electric ship Junlv to diagnose and
predict inconsistent faults under complex operating conditions. Initially, an analysis of the
actual driving data revealed that the fault alarms of the marine BMS exhibit latency and that
faults often coincide with anomalies in battery cluster voltage. A fault diagnosis method
based on DBSCAN clustering of battery cluster voltage and a fault prediction method
using the iTransformer model are proposed. Based on real driving data, the DBSCAN
method effectively identifies the locations of fault units. Throughout the year of study, the
accuracy of this clustering method was consistently 1, with a recall rate around 0.96 and
an F1 score around 0.98, significantly outperforming the K-means clustering algorithm.
This demonstrates the superiority of the DBSCAN model in the context of this research.
Additionally, the iTransformer prediction method can diagnose faults up to 90 s in advance.
Its RMSE for voltage prediction is 0.390, its MAE is 0.343, its MAPE is 0.03%, and the
F1 score for fault diagnosis is 94.87%. Overall, this work demonstrates the potential of
integrating real data with deep learning modeling to achieve accurate predictions of real-
world physical problems characterized by hidden physics and lacking predefined initial
or boundary conditions. Timely and accurate detection and prediction of battery fault
risks under complex operating conditions are crucial for ensuring the safe operation of
battery systems in real all-electric ship environments. Future research will focus on further
optimizing detection and prediction models, as well as assessing multiple faults, including
consistency faults caused by capacity, state of charge (SoC), and internal resistance.
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Abstract: With increasingly stringent maritime environmental regulations, hybrid fuel cell
ships have garnered significant attention due to their advantages in low emissions and high
efficiency. However, challenges related to the coordinated control of multi-energy systems
and fuel cell degradation remain significant barriers to their practical implementation. This
paper proposes an innovative multi-timescale energy management strategy that focuses on
optimizing the lifespan decay synergy of fuel cells and lithium batteries. The study designs
an attention-based CNN-LSTM hybrid model for power prediction and constructs a two-
stage optimization framework: The first stage employs Model Predictive Control (MPC) for
long-term power planning to optimize equivalent hydrogen consumption, while the second
stage focuses on real-time power allocation considering both power source degradation
and system operational efficiency. The simulation results demonstrate that compared
to single-layer MPC and the Equivalent Consumption Minimization Strategy (ECMS),
the proposed method exhibits significant advantages in reducing single-voyage costs,
minimizing differences in power source degradation rates, and alleviating power source
stress. The overall performance of this strategy approaches the global optimal solution
obtained through Dynamic Programming, comprehensively validating its superiority in
simultaneously optimizing system economics and durability.

Keywords: fuel cell ships; multi-timescale energy management; lifespan decay synergy;
equivalent hydrogen consumption; power prediction

1. Introduction

As a primary mode of maritime transportation, ships serve as a foundational support
for human exploration of ocean resources. However, traditional propulsion systems relying
on fossil fuels pose significant environmental pollution challenges [1]. The International
Maritime Organization (IMO) has emphasized a future focus on the efficient utilization of
clean energy in shipping. In response, shipping enterprises worldwide are actively advanc-
ing the integration of renewable energy technologies such as solar power, wind energy,
and fuel cells to reduce carbon emissions and enhance energy efficiency [2,3]. Despite
their advantages, such as high power density and efficiency [4], fuel cells face challenges
including slow startup times and limited operational lifespan. The development of energy
storage technologies has provided solutions for power dispatch in shipboard electrical
systems [5]. Hybrid energy storage systems, combining energy-dense and power-dense
storage components, significantly improve the performance and reliability of renewable
energy-based ship power systems [6].
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Advanced energy management strategies are essential for multi-energy hybrid power
systems to achieve optimal power and torque distribution among various power sources
while coordinating electric propulsion systems and ensuring the efficient synergistic opera-
tion of multiple power sources. According to the source and implementation method of
actual energy allocation control, control strategies can be classified into three categories:
rule-based control strategies oriented to engineering applications, optimal control strate-
gies focusing on optimization modeling and solving, and learning-based control strategies
driven by data [7]. Rule-based control strategies primarily rely on predetermined rules
based on engineering experience, characterized by their simple structure and ease of im-
plementation. The rule-based control strategy in reference [8], which utilizes batteries and
shuts down engines at the minimum allowable power based on specific fuel consumption,
demonstrated superior cost-effectiveness among all tested control strategies. In comparison,
energy management strategies based on global optimization represent a more sophisti-
cated approach, leveraging optimal control theory and artificial intelligence optimization
techniques to design optimal energy allocation schemes for specific navigation conditions,
thereby achieving a balance among multiple objectives. An optimization strategy was
developed using dynamic programming (DP) in reference [9] that considered both battery
degradation and electricity costs, significantly outperforming rule-based methods. While
global optimization control strategies possess theoretical optimality, with DP strategies
frequently serving as benchmarks for evaluating the global optimality of other algorithms,
their practical application is somewhat limited due to the stochastic and unpredictable
nature of vessel operating conditions. The ECMS, initially proposed by Paganelli [10], em-
ploys an equivalence factor to convert electrical energy consumption into fuel consumption,
transforming global optimization problems into instantaneous optimization problems [11].
An efficient Energy Management System based on ECMS was proposed in reference [12],
maintaining fuel cell system efficiency above 60% under most operating conditions while
effectively suppressing fluctuations in fuel cell power output. Compared to ECMS and
DP, MPC demonstrates unique advantages in hybrid power systems by predicting system
behavior over a future time horizon while balancing computational efficiency and real-time
capability. In marine hybrid power systems, predictive control achieves an energy balance
among multiple power sources through online rolling optimization of multivariable prob-
lems. Reference [13] introduced an MPC-based coordinated control strategy that exhibited
significant advantages in reducing fluctuations while maintaining autonomous operation.
Furthermore, the energy management strategy designed based on nonlinear MPC models
in [14] reduced fuel consumption and carbon emissions within the optimization period
while maintaining robust disturbance rejection capabilities.

Furthermore, Multi-stack Fuel Cell Systems (MFCS) have attracted increasing attention
due to their advantages in reduced hydrogen consumption, minimal degradation, and
enhanced durability [15]. Power distribution strategies for MFCS primarily focus on
system efficiency and hydrogen consumption optimization [16,17]. A hierarchical EMS
was proposed for hybrid multi-stack fuel cell (FC) systems in the reference [18]. The first
layer employs Sequential Quadratic Programming to determine power distribution ratios
among multiple FC stacks while maintaining the battery State of Charge within acceptable
bounds. The second layer optimizes an objective function based on overall system efficiency
using genetic algorithms, achieving optimal power distribution among different FC stacks
within the multi-stack system. Research findings demonstrate that this hierarchical EMS
significantly reduces system hydrogen consumption. However, fuel cells are complex
multi-physical systems characterized by relatively slow dynamic response characteristics
and operational parameters that evolve dynamically with environmental variations and cell
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aging processes. This complexity can lead to performance inconsistencies among individual
stacks within MFCS [19]. Consequently, strategies that solely prioritize system efficiency
enhancement or fuel consumption optimization may not effectively sustain long-term
system performance.

Ship power demands exhibit significant variations across different operational modes,
including departure, cruising, port entry, and berthing, resulting in substantial load fluctu-
ations and uncertainties [20]. These characteristics make long-term stable power demand
prediction challenging, limiting forecasting capabilities to short-term load predictions. In
MPC-based energy management strategies, load power prediction accuracy substantially
influences power distribution effectiveness. ECMS requires dynamic calculations based on
real-time data, introducing considerable computational complexity that increases controller
burden and demands high hardware specifications. This computational load becomes
particularly pronounced under high-frequency operational variations. Moreover, ECMS
emphasizes instantaneous optimal distribution while inadequately addressing long-term
energy system states (such as battery and supercapacitor State of Charge levels), potentially
leading to the excessive utilization of energy storage devices during prolonged operation,
thereby compromising system longevity and energy allocation flexibility. Furthermore,
the EMS primarily focuses on optimizing either fuel economy or individual power source
lifetime degradation [21,22]. However, such strategies fail to adequately account for the
disparate degradation characteristics between fuel cells and power batteries. When one
power source prematurely reaches its end-of-life due to excessive utilization, it disrupts the
hybrid power system’s equilibrium, forcing the remaining power source to bear additional
loads, thereby accelerating its performance deterioration. This non-synergistic operation
not only compromises the vessel’s economic benefits but also leads to reduced durability
of the entire power system, making it challenging to achieve an optimal balance between
fuel economy and system durability.

Based on the aforementioned analysis, this paper proposes a multi-temporal energy
management strategy for fuel cell ships that considers power source lifespan decay synergy.
The primary innovations and contributions of this research include:

• A novel multi-temporal two-layer energy management strategy that achieves syn-
ergistic optimization across multiple time scales through an innovative hierarchical
architecture. The upper-level controller manages long-term power distribution plan-
ning, while the lower-level controller executes precise real-time high-frequency power
regulation, effectively balancing system economics and durability.

• An attention-enhanced CNN-LSTM power prediction model that leverages the com-
plementary advantages of CNN in feature extraction and LSTM networks in temporal
sequence modeling. The incorporation of attention mechanisms further enhances
prediction accuracy, providing reliable decision support for energy management strat-
egy implementation.

• Integration of differential fuel cell degradation characteristics and coordinated power
source lifetime management into the optimization framework: The strategy con-
siders varying degradation patterns among fuel cells and incorporates a lifetime-
synchronized power distribution approach, achieving synchronized degradation con-
trol between fuel cells and power batteries.

The paper is structured as follows: Section 2 elaborates on the topological design of
the hybrid ship power system. Section 3 presents a comprehensive examination of the
theoretical framework and implementation methodology for the proposed multi-temporal
energy management system. Section 4 validates the effectiveness of the proposed strategy

52



J. Mar. Sci. Eng. 205, 13, 34

through simulation experiments and provides comprehensive comparisons with existing
methods. Section 5 summarizes the main research findings and innovative contributions.

2. Modeling of Fuel Cell Ship Propulsion System

2.1. Hybrid Power System Topology for Marine Applications

This study focuses on the “Hydrogen Vessel No. 1” fuel cell ship, which integrates fuel
cells, lithium batteries, and supercapacitors as power sources. To enhance the economic
viability and reliability of fuel cell vessels, a multi-stack fuel cell hybrid power system was
designed based on the original power system architecture, with the primary power source
parameters detailed in Table 1. The system employs a composite energy storage system
(ESS) to replace the original single lithium battery configuration. This composite ESS
comprises supercapacitors and lithium batteries, where lithium batteries offer high energy
density but experience significant performance degradation over time and cycling. The
degradation of lithium batteries primarily stems from complex electrochemical reactions
during operation, encompassing irreversible processes such as electrode material struc-
tural changes, interfacial film growth, and active material loss [23,24]. These degradation
mechanisms necessitate the careful consideration of performance deterioration charac-
teristics in lithium battery applications. In contrast, supercapacitors, utilizing physical
adsorption principles for energy storage, demonstrate exceptional cycling stability with
negligible capacity degradation [25]. Their operational mechanism, avoiding chemical
bond breaking and reformation, enables higher charge–discharge currents and extended
operational lifetimes. The hybrid power system implements a fully active topology, as
illustrated in Figure 1. The fuel cell subsystem consists of cell stacks and auxiliary equip-
ment, including air compressors, hydrogen circulation pumps, and cooling water pumps.
The dual fuel cell system employs a parallel topology, enabling independent control of
each fuel cell stack and enhancing system stability. Each fuel cell connects to the DC bus
through a unidirectional DC/DC converter, while lithium batteries and supercapacitors
interface through bidirectional DC/DC converters. Within this architecture, the Energy
Management System (EMS) coordinates the operation of fuel cells, lithium batteries, and
supercapacitors to optimize electrical energy utilization efficiency and effectively reduce
vessel operational costs.

Figure 1. Power system topology of the hybrid ship.
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Table 1. Power device parameters.

Power Supply Device Parameter Value

Fuel cell Rated power (kW) 120

Lithium battery
Capacity (Ah) 120

Rated voltage (V) 500
Initial SOC (%) 60

Supercapacitor
Capacity (kWh) 5

Rated voltage (V) 500
Initial SOC (%) 60

2.2. Fuel Cell Model

This study employs the HYT-21-1346 Proton Exchange Membrane Fuel Cell (PEMFC).
The fuel cell model is developed based on experimentally derived Pf c − Cf c and Pf c − η f c

characteristic curves. Let Pf c represent the fuel cell output power after DC/DC conversion,
η f c represent the system efficiency, and Cf c represent the actual hydrogen consumption
rate. The relationship between these three parameters can be expressed as:

Cf c =
Pf c

η f cLHVH2

(1)

where LHVH2 is the lower heating value of hydrogen, which equals 120 MJ/kg. With the
prolonged operation of the system, fuel cell performance gradually deteriorates, leading
to a decline in system durability. The fuel cell lifetime significantly dominates the total
operational costs of the system. Generally, the factors contributing to fuel cell perfor-
mance degradation can be categorized into four main aspects: start–stop cycles, high-load
operation, low-load operation, and load fluctuations [26,27]. Therefore, fuel cell perfor-
mance degradation patterns can be quantified by analyzing operational data during system
runtime. The degradation rate of the fuel cell is defined as follows:

Df c =
d1Tlow + d2Thigh + d3Ntran + d4Nss

Vinit × 10%
(2)

where Tlow, Thigh, Ntran, and Nss denote the operational durations at low and high power
states, cumulative power variations, and start–stop cycles of the fuel cell, respectively;
d1 ∼ d4 represents the degradation rates under these four operating conditions (as shown
in Table 2); and Vinit is the initial single-cell voltage of the fuel cell, where the end-of-life
criterion is defined as a 10% voltage degradation from the initial value.

Table 2. Degradation rate of fuel cell.

Operating Conditions Degradation Rate

Low power operation d1 = 10.17 μV/h
High power operation d2= 11.74 μV/h

Variable load d3 = 0.0441 μV/kW
On-Off d4 = 23.91 μV/cycle

Due to the dynamic power output characteristics of fuel cells under varying operating
conditions, the performance degradation among individual stacks often exhibits non-
uniform patterns [28]. To investigate the impact of fuel cell performance degradation, two
operational scenarios were established for comparison: Fuel Cell 1 represents a new stack
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without degradation (healthy state SOH= 1), while Fuel Cell 2 operates in a state of health
SOH= 0.7. Here, the state of health is characterized by the voltage degradation level at the
rated current, where the maximum allowable voltage drop is defined as 10% relative to the
initial output voltage. The system efficiency and hydrogen consumption rate curves under
different SOH values were calculated using the degradation formula proposed in [29]. The
fuel cell system efficiency comprises three components, defined as follows:

η f c = η f uel · ηconv · ηelec (3)

εconv = 0.9 + 0.1 · SOH (4)

where η f uel is the fuel utilization rate, which can be approximated as 100% due to the hydro-
gen circulation mode implemented through hydrogen injectors and hydrogen circulation
pumps, η f uel= 1; ηconv represents the conversion efficiency, defined as the ratio between
the electrical energy generated by the fuel cell and the chemical energy of the consumed
hydrogen. This efficiency decreases with fuel cell degradation, and its degradation level
can be quantified by the coefficient of variation given in Equation (4); ηelec denotes the
electrical efficiency, which is determined by the DC/DC converter efficiency and parasitic
power consumption of auxiliary equipment. Its degradation level can be expressed by the
coefficient of variation as defined in Equation (5).

εelec =
ηDC/DC − Eauz

εconv ·Estack

ηDC/DC − Eauz
Estack

(5)

where ηDC/DC represents the conversion efficiency of the DC/DC converter, Eauz denotes
the parasitic power consumption of auxiliary equipment, and Estack is the stack output
power. The degradation level of the fuel cell system efficiency can be characterized by the
combined degradation of ηconv and ηelec:

η f c_degraded = εelec · εconv · η f c (6)

where η f c_degraded represents the fuel cell system efficiency after performance degradation.
The degraded fuel cell system efficiency is calculated based on Equations (3)–(6). The
hydrogen consumption rate at various net power outputs of the fuel cells is derived from
Equation (1). The system efficiency curves and hydrogen consumption rate curves of the
fuel cells are illustrated in Figure 2.

  
(a) (b) 

Figure 2. (a) Efficiency; (b) consumption rate.
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2.3. Lithium Battery Model

The lithium battery possesses dual functionality in energy storage and charge–
discharge capabilities. As an energy storage component, the battery capacity is determined
by the total charge it can transfer. The battery capacity Q can be calculated using the
following expression:

Q = I · t (7)

Equation (7) indicates that a battery with capacity Q can sustain a constant discharge
current I for a duration t. The State of Charge (SOC) of the battery is defined as the ratio
between the remaining capacity and the total capacity, expressed as:

SOC = 1 −
∫

I(t)dt
Q

(8)

In this study, the Rint equivalent circuit model is adopted for the traction battery,
which consists of an ideal voltage source in series with internal resistance, as illustrated in
Figure 3:

Figure 3. Rint equivalent circuit diagram of battery.

According to the Rint equivalent circuit model, the mathematical expression for the
battery output power is given as:

Pbatt = Uoc Ib − Rb I2
b (9)

where Uoc denotes the open-circuit voltage, while Ib and Rb represent the battery current
and internal resistance, respectively. Both the open-circuit voltage and internal resistance
are functions of the battery SOC. According to Equation (9), the current Ib is derived as:

Ib =
Uoc −

√
U2

oc − 4RbPbatt
2Rb

(10)

The dynamic behavior of the lithium battery SOC can be described by the following
expression, derived from the combination of Equations (8) and (10):

SOC(k + 1) = SOC(k)− Uoc −
√

U2
oc − 4RbPbatt

2QRb
(11)

The degradation characteristics of lithium batteries are governed by their SOC and
transient power profiles. High current operations, especially during charging processes,
lead to accelerated lifetime reduction. The rate of performance degradation exhibits a
positive correlation with the magnitude of SOC variations. The corresponding semi-
empirical degradation model [30] is formulated as:

Dbatt =
1

Qbatt

∫ t

0
|F(SOCbatt)G(ibatt)Ibatt(t)|dt (12)
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where Qbatt represents the battery capacity, F(SOCbatt) is a weighting function that pe-
nalizes battery degradation due to excessive SOC utilization, and G(ibatt) is a weighting
function that penalizes battery degradation caused by excessive transient power. These
functions are expressed as follows:

F(SOCbatt) = 1 + 3.25(1 − SOCbatt)
2 (13)

{
G(Ibatt) = 1 + 0.45 Ibatt

Ibatt_nom
, ibatt ≥ 0

G(Ibatt) = 1 + 0.55 |Ibatt |
Ibatt_nom

, ibatt < 0
(14)

where Ibatt_nom represents the rated current of the battery, and the degradation function
Dbatt ranges between 0 (beginning of life) and 1 (end of life).

2.4. Supercapacitor Model

Among the diverse equivalent circuit models available for supercapacitors, this inves-
tigation utilizes a widely adopted simplified model for analytical modeling, as depicted in
Figure 4:

Figure 4. Equivalent circuit of supercapacitor.

Based on the equivalent circuit, the mathematical expressions for the output power
and State of Charge (SOC) of the supercapacitor can be formulated as:

Psc = Usc Isc − I2
scRsc (15)

SOC =
Usc − Uscmin

Uscmax − Uscmin
(16)

where Psc represents the supercapacitor output power, Usc denotes the terminal volt-
age, Isc is the supercapacitor current, Rsc represents the supercapacitor resistance,
and Uscmax and Uscmin denote the maximum and minimum operating voltages of the
supercapacitor, respectively.

3. Proposed Energy Management Strategy

This section presents a two-stage energy management strategy based on Model Pre-
dictive Control (MPC) with multiple time scales. The strategy aims to optimize power
distribution among fuel cells, lithium batteries, and supercapacitors based on power de-
mand data during navigation (as illustrated in Figure 5), ensuring the economically efficient
operation of the ship’s hybrid power system while satisfying operational constraints. The
hierarchy of the proposed algorithm is shown in Figure 6. The comprehensive methodology
of the proposed energy management strategy proceeds as follows: Initially, future power
load profiles are predicted based on historical power data, followed by power allocation
for the predicted load data. The resulting reference power values are then dynamically
computed in conjunction with real-time load data. The strategy primarily comprises a
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prediction phase and two optimization phases: In the first optimization phase, an MPC
controller optimizes the fuel cell power and lithium battery charge–discharge power based
on low-frequency power components over extended time scales, minimizing equivalent
hydrogen consumption. The optimized battery and supercapacitor charge–discharge pow-
ers, along with the fuel cell power, serve as reference inputs for the lower-level real-time
power optimization controller. In the second phase, the lower-level real-time power opti-
mization controller performs secondary optimization of high-frequency power components
based on the reference values from the upper-level MPC. The optimized results are then
implemented as actual control outputs. Figure 7 illustrates the framework of the proposed
energy management strategy.

 

Figure 5. Fuel cell ship load power data.

Figure 6. The algorithm hierarchy of the proposed algorithm.

 

Figure 7. Energy management strategy framework.
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3.1. CNN-LSTM Prediction Model with Attention Mechanism

This section presents an attention-enhanced CNN-LSTM model for power prediction.
The model incorporates an attention-based CNN architecture that extends the standard
CNN framework with parallel attention pathways for salient feature extraction. The atten-
tion pathway employs expanded input dimensions to broaden the receptive field, thereby
comprehensively capturing temporal contextual information and effectively learning the
significance of local sequence features. By amplifying the weights of crucial temporal
features while suppressing the influence of non-essential features, the attention module
effectively addresses the limitations of traditional models in discriminating temporal fea-
ture importance. The multi-scale input approach, where both the standard CNN module
and attention mechanism module process input sequences of varying lengths, enables
the more robust extraction of short-sequence features. In terms of feature extraction, the
LSTM architecture extracts coarse-grained features from the fine-grained features obtained
from the front end, providing refined processing of multi-dimensional features. This ar-
chitectural design mitigates the memory loss and gradient vanishing problems typically
associated with extended step lengths. The attention-enhanced CNN-LSTM model achieves
comprehensive temporal data characterization [31] through the fusion of both coarse and
fine-grained features.

The architecture of the attention-enhanced CNN-LSTM model comprises five primary
layers: the input layer, CNN layer, LSTM layer, attention layer, and output layer, as
illustrated in Figure 8. Historical load data serve as the input to the CNN layer, where
convolution operations are performed to increase the depth and compress the parameter
quantity while pooling operations reduce feature dimensionality. The fully connected layer
transforms features into a one-dimensional structure, completing feature vector extraction.
The LSTM and attention layers learn the internal variation patterns of the load from the
extracted features, thereby enabling predictive functionality. The output layer generates
the prediction results. The model has been trained using historical navigation data from
the vessel and subsequently employed to predict the power profile shown in Figure 5,
with a sampling interval of 2 s and a prediction horizon of 20 s. The prediction results are
presented in Figure 9.

Figure 8. CNN-LSTM based on attention mechanism model framework.
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Figure 9. Load power prediction results.

As demonstrated in Figure 8, the predicted power demand curve closely aligns with
the actual power demand profile. The Root Mean Square Error (RMSE) is employed as the
evaluation metric for assessing the accuracy of the ship’s load power prediction. RMSE
represents the square root of the ratio between the squared deviations of predicted values
from actual values and the number of observations, as expressed in Equation (17):

RMSE =

n
∑

k=1
RMSE(k)

n

RMSE(k) =

√√√√√√
tp

∑
i=1

(p(k + i)− p0(k + i))2

tp

(17)

where n represents the number of sampling points in the operating condition, RMSE(k)
denotes the value at time k within prediction horizon tp,p(k + i) represents the predicted
value at i seconds after time k, and p0(k + i) indicates the actual value at i seconds after
time k. The prediction results for horizons of 10 s, 20 s, and 40 s were analyzed, with the
outcomes presented in Table 3. From the perspective of RMSE, prediction horizons of 10 s,
20 s, and 40 s correspond to error values of 1.01 kW, 1.87 kW, and 3.98 kW, respectively.
In terms of average prediction time, the computational requirements are approximately
20.12 ms, 57.34 ms, and 150.56 ms, respectively. While the 10 s prediction horizon exhibits
the lowest RMSE and computational overhead, it proves insufficient to fully capture power
variation trends. Conversely, although the 40 s horizon offers an extended prediction range,
its significant error accumulation and 150 ms computational latency make it unsuitable
for real-time control requirements. The 20 s prediction horizon, however, demonstrates
an optimal balance across all metrics: its RMSE is only marginally higher than that of
the 10 s horizon, its 57.34 ms computational latency remains acceptable for real-time
systems, and it provides an adequate prediction range to support energy management
system decisions. Therefore, this study adopts a 20 s prediction horizon, a selection that
ensures both prediction accuracy and compliance with the real-time requirements of marine
power systems.
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Table 3. Different time domain prediction results.

Prediction Time Domain 10 s 20 s 40 s

REMS 1.01 1.87 3.98
Average time per prediction(ms) 20.12 57.34 150.56

3.2. Model Predictive Control Principles

Model Predictive Control (MPC), emerging as an innovative computational control
algorithm in the late 1970s, is also known as receding horizon control [32]. The operational
mechanism of MPC can be succinctly characterized as follows: At each sampling instant, the
current control action is determined by solving a finite-horizon open-loop optimal control
problem, utilizing the current process state as the initial condition for the optimization.
Only the first element of the optimal control sequence is implemented. At the subsequent
sampling instant, this process is repeated, with new measurements serving as the initial
conditions for predicting future system dynamics, thereby refreshing and resolving the
optimization problem. The fundamental architecture of MPC comprises four essential
components: the prediction model, feedback correction, receding horizon optimization,
and reference trajectory [33].

The operational principle of MPC is schematically illustrated in Figure 10. Let Hp

denote the prediction horizon, Hq represent the control horizon, xr designate the reference
trajectory for state variable x, and xp represent the predicted trajectory for state variable x.
Generally, constraints must be imposed on the predicted trajectory, which are formulated
as follows:

minJk = ∑k+p
t=k L(x(t), u(t)) (18)⎧⎪⎨

⎪⎩
xmin(t) ≤ x(t) ≤ xmax(t)
umin(t) ≤ u(t) ≤ umax(t)
k ≤ t ≤ k + p

(19)

Figure 10. Model Predictive Control (MPC) principle.

In Equations (18) and (19), x(t) represents the state variable at time t,u(t) denotes the
control variable at time t, L represents the performance index at time k, and Jk denotes the
performance index at time instant k over the prediction horizon k − k + p.
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From Equation (18), it can be observed that the performance index is calculated solely
within the prediction horizon. Similarly, the performance index at time instant k + 1 can be
expressed as:

minJk+1 = ∑k+p+1
t=k+1 L(x(t), u(t)) (20)

3.3. System Constraints

At any given time instant, the total grid output power can be expressed as follows:

Ptotal = Pf c1 + Pf c2 + PBatt + Psc (21)

In the design of system operational constraints, trade-offs must be considered among
performance, lifetime, and safety. The power constraints of the fuel cell are intended to
meet load demands while preventing overload operation, thereby extending its service
life. The power constraints and SOC range of the lithium battery are employed to prevent
excessive charging and discharging cycles, thus enhancing cycle life and ensuring thermal
management stability. The power constraints and SOC range of the supercapacitor are
established to provide rapid transient power response while minimizing efficiency losses
and thermal issues. These constraints comprehensively incorporate the performance
characteristics of the fuel cell, battery, and supercapacitor, aiming to meet system load
demands while achieving an optimal balance between energy efficiency and component
longevity. The operational constraints for the fuel cell, lithium battery, and supercapacitor
are defined as follows: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0kW ≤ Pf c ≤ 120kW
−100kW ≤ Pbatt ≤ 100kW
−120kW ≤ Psc ≤ 120kW
20% ≤ SOCbatt ≤ 80%
10% ≤ SOCsc ≤ 90%

(22)

3.4. First Optimization Stage

Due to the distinct characteristics of supercapacitors and batteries, the ship’s load
power is decomposed according to frequency components. The high-frequency components
of the load power should be absorbed by the supercapacitor. In this study, low-pass filtering
is employed to decompose the high-frequency power signals. The low-pass filtering control
strategy is illustrated in Figure 11.

Figure 11. Low-pass filtering control strategy.

In the figure, T1 represents the filtering time constant, Plow and Phigh denote the low-
frequency and high-frequency components of the load power, respectively, while Pbatt, Pf c,
and Psc represent the output powers of the lithium battery, fuel cell, and supercapacitor,
respectively. A larger T1 value results in smoother low-frequency power components,
consequently directing more high-frequency power components to the supercapacitor for
absorption. The T1 value should be synchronized with the control period of the MPC in the
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primary optimization phase, where larger MPC control periods, corresponding to extended
time scales, necessitate larger τ values to achieve smoother low-frequency power profiles.

In this phase, the MPC controller focuses on optimizing low-frequency power distribu-
tion over the prediction horizon. It determines reference values for battery charge–discharge
power, supercapacitor charge–discharge power, and fuel cell power output. The optimiza-
tion objective function for this phase aims to minimize overall hydrogen consumption
while accounting for the performance degradation of both fuel cells and lithium batteries.
In this primary optimization phase, the total fuel cell power is equally distributed between
two fuel cells using a balanced allocation method, with the controller sampling time set to
2 s and the prediction horizon equal to the control horizon. The MPC controller objective
function is formulated as:

minJ1 =
N
∑

i=1
Cf c1 +

N
∑

i=1
Cf c2 +

N
∑

i=1
Cbatt +

N
∑

i=1
k f c_degCf c_deg +

N
∑

i=1
kbatt_degCbatt_deg

s.t.(21), (22)
(23)

where Cf c1 and Cf c2 represent the hydrogen consumption rates of fuel cell 1 and fuel cell 2,
respectively; Cbatt denotes the equivalent hydrogen consumption rate of the lithium battery;
k f c_deg and kBatt_deg are degradation weights that indicate the optimization priorities for
fuel cell and lithium battery degradation within the overall system performance. Based
on the data presented in Figure 2, the hydrogen consumption rate function is obtained
through quadratic polynomial fitting:

Cf c = a · P2
f c + b · Pf c + c (24)

where a, b, and c are the fitting coefficients of the fuel cell. To minimize hydrogen consump-
tion in the hybrid power system, the electrical energy consumed by the lithium battery can
be equivalently expressed in terms of the chemical energy consumed by the fuel cell [34],
calculated as:

Cbatt =

⎧⎨
⎩

kPbatt
ηdisη f c_avg LHVH2

, Pbatt ≥ 0
kPbattηchg

η f c_avg LHVH2
, Pbatt ≤ 0

(25)

where ηdis and ηchg represent the charging and discharging efficiencies of the lithium battery,
respectively; c denotes the average efficiency of the fuel cell. To ensure the lithium battery
operates within an appropriate SOC range and prevent damage from excessive charging
or discharging, a correction function k is introduced. The magnitude of k determines the
rate of convergence, where larger values indicate faster convergence and smaller values
indicate slower convergence. This can be calculated using the following expression:

k = 1 − 2μ
(SOC − 0.5(SOCmax + SOCmin))

SOCmax − SOCmin
(26)

where SOCmax and SOCmin denote the upper and lower SOC thresholds for the lithium
battery, established at 0.8 and 0.2, respectively, in this investigation, and μ represents the
balance coefficient. Recognizing lifetime degradation as a critical determinant of fuel cell
performance and system economics, this study implements an equivalence methodology
derived from the ECMS (Equivalent Consumption Minimization Strategy) to quantify fuel
cell degradation in terms of equivalent hydrogen consumption. This approach achieves
dual objectives: minimizing dynamic load fluctuations in fuel cell operation while si-
multaneously decelerating the degradation process through the explicit consideration
of performance deterioration mechanisms, ultimately enhancing overall system durabil-
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ity. The equivalent hydrogen consumption Cdeg attributable to fuel cell degradation is
formulated as:

Cdeg =
Df cc f c

cH2

(27)

where c f c and cH2 represent the unit costs of the fuel cell and hydrogen, respectively, while
Df c denotes the fuel cell degradation rate as derived from Equation (2). Since the exclusive
consideration of fuel cell lifetime degradation could result in accelerated deterioration and
premature end-of-life of the lithium battery, the objective function incorporates battery
degradation metrics. The associated degradation cost of the lithium battery is formulated as:

Cbatt_deg = DbattQbatt (28)

The objective function (Equation (23)) of the MPC controller is solved using the
Sequential Dynamic Programming (SDP) algorithm.

3.5. Second Optimization Stage

The initial solution set obtained from the first optimization phase serves as the refer-
ence power for the second phase:

Pre f =

⎡
⎢⎢⎢⎢⎣

Pre f
f c1

Pre f
f c2

Pre f
batt

Pre f
sc

⎤
⎥⎥⎥⎥⎦ (29)

The real-time power optimization controller in the secondary phase performs power
allocation based on instantaneous load demands. This phase’s optimization objective is to
achieve optimal power distribution by comprehensively considering the characteristics of
energy storage devices and high-frequency components of power demands while ensuring
fuel economy. Given the differential degradation rates among units in the dual fuel cell
system, the uniform distribution method employed in the primary phase cannot achieve
optimal efficiency. Therefore, this phase necessitates further consideration of maximizing
the overall efficiency of the fuel cell system. The objective function for the secondary
optimization phase is expressed as:

minJ2 = −α1

(
Pf c1+Pf c2
Pf c1
η1

+
Pf c2
η2

)
+ α2(Cf c_deg + Cbatt_deg) + α3

(
Pbatt − Pre f

batt

)2

+α4

((
Pf c1 + Pf c2

)
−

(
Pre f

f c1 + Pre f
f c2

))2
+ α5

(
Puc − Pre f

uc

)2

s.t.(21), (22)

(30)

where coefficients α1, α2, α3, α4, and α5 represent penalty factors. The first term aims to
maximize the efficiency of the dual fuel cell system; the second term reflects the degradation
costs of both fuel cells and the lithium battery; and the third, fourth, and fifth terms
represent the tracking requirements for reference values generated by the upper-level
controller, including fuel cell power references and charge–discharge power references for
the battery pack and supercapacitor. These tracking terms ensure the maintenance of fuel
economy optimization performance established at the macro time scale in the first phase.

The nonlinear programming problem described by Equation (30) is solved using the
GUROBI commercial optimization solver.
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4. Simulation Results

To comprehensively evaluate the optimization effectiveness of the proposed strategy,
this study conducts a multi-dimensional comparative analysis. The proposed strategy is
initially benchmarked against both the conventional single-level Model Predictive Con-
trol (MPC) strategy and the Equivalent Consumption Minimization Strategy (ECMS).
Furthermore, to validate the global optimality of the proposed strategy over the entire op-
erational cycle, comparisons are made with the Dynamic Programming (DP) strategy. This
multi-tiered comparative validation approach effectively demonstrates the optimization
performance of the proposed strategy.

4.1. Evaluation Criterion

To objectively evaluate the economic performance of the power system, this study
defines the total equivalent hydrogen consumption CH2_equ, which not only encompasses
the direct hydrogen consumption of fuel cells but also incorporates the equivalent hy-
drogen consumption derived from SOC deviations of both the lithium battery and the
supercapacitor from their initial states, as expressed in Equation (23):

CH2_equ = Cf c +
(SOCbatt_init − SOCbatt_end)Qbatt + (SOCsc_init − SOCsc_end)Qsc

η f c_avgLHVH2

(31)

where SOCbatt_end and SOCsc_end represent the final SOC of the lithium battery and super-
capacitor, respectively; η f c_avg denotes the average efficiency of the fuel cell system. To
objectively evaluate the optimization performance of various control strategies, this study
establishes a single-voyage cost assessment index for the vessel’s power system. This index
comprehensively incorporates three critical dimensions: hydrogen fuel consumption cost,
fuel cell system degradation cost, and lithium battery degradation cost, enabling a holistic
characterization of the power system’s economic performance, as shown in Equation (24).

Ctotal = CH2_equ · cH2 + Df c · c f c · Pf c_rated + Dbatt · cbatt · Qbatt (32)

where cbatt represents the unit cost coefficient, which is determined through market research
to be 35 CNY/kg for hydrogen, 3500 CNY/kW for fuel cells, and 2000 CNY/kWh for
lithium batteries; Pf c_rated and Qbatt denote the rated power of the fuel cell system and the
nominal capacity of the lithium battery system, respectively.

4.2. Power Distribution

Figure 12a–c illustrates the operational characteristics of the vessel’s hybrid power
system under four different strategies, depicting the power profiles of the fuel cell system,
lithium battery, and supercapacitor. The simulation results demonstrate that the proposed
strategy achieves optimal real-time power control based on power demand forecasting,
enabling coordinated optimization across both long and short time scales. The fuel cell
system predominantly operates in a power-following mode with enhanced operational
efficiency. This approach not only ensures sufficient power redundancy in the hybrid
system to accommodate load variations but also effectively minimizes the dynamic load
fluctuations of the fuel cell, maximizing the peak-shaving and valley-filling capabilities
of the energy storage system. The results indicate that the lithium battery power profile
exhibits relatively smooth characteristics, while the high-frequency power components
of the load demand are primarily absorbed by the supercapacitor. This effectively pre-
vents high-frequency power fluctuations in battery output, achieving the intended control
objectives. In contrast, the conventional single-layer MPC strategy, which must solve
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for both real-time and predicted power simultaneously, demonstrates suboptimal power
distribution due to prediction accuracy limitations and system constraints. This results in
underutilization of the energy storage system’s auxiliary function and increases fuel cell
power output fluctuations. The traditional ECMS strategy, which only addresses real-time
power distribution without future power information, tends to converge to local optima
during optimization. To maintain the SOC of the energy storage system, this approach
leads to higher fuel cell power output, resulting in increased power variation rates and hy-
drogen consumption. Consequently, it fails to ensure fuel economy and yields a suboptimal
overall performance.

 
(a)  (b) 

 
(c)  (d) 

Figure 12. (a) Total fuel cell power; (b) lithium battery power; (c) supercapacitor power; (d) fuel cell
power distribution.

The proposed strategy accounts for the differential degradation states of fuel cells,
with the power distribution between two fuel cells illustrated in Figure 12d. The fuel cell
with inferior performance (SOH = 0.7) exhibits a significantly lower power fluctuation
amplitude compared to the one with superior performance (SOH = 1). This demonstrates
that the proposed strategy effectively mitigates the aging rate of the Multi Fuel Cell System
(MFCS), thereby reducing the frequency and costs associated with fuel cell replacement.
Furthermore, according to calculations using Equation (33), the overall efficiency of the fuel
cell system reaches 58.5% when using the strategy proposed in this paper, while it is 57.1%
when using the equal distribution strategy. The comparison results show that the method
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in this paper improved the overall efficiency of the fuel cell system by 1.4%, effectively
enhancing the system’s energy utilization rate.

ηtotal =
∑ (PFC1 + PFC2)

∑ (
PFC1

ηFC1
+

PFC2

ηFC2
)

(33)

4.3. Energy Storage Unit State of Charge

Figure 13 illustrate the State of Charge (SOC) profiles of the lithium battery and su-
percapacitor under four different control strategies. The simulation results demonstrate
that all strategies maintain the SOC of both energy storage units within their constraint
boundaries. Specifically, the lithium battery SOC fluctuation ranges are 46.6–60% for the
single-layer MPC strategy, 26.9–60% for the ECMS strategy, and 27.1–71.2% for the DP
strategy, which exhibits the widest variation. The proposed strategy maintains the battery
SOC within 34.2–60%. As a locally optimizing approach, the proposed strategy deliberately
restricts SOC deviations from median values to reserve sufficient capacity for subsequent
power demands. The single-layer MPC strategy demonstrates a narrower battery SOC
fluctuation range compared to the proposed strategy, primarily due to increased battery
power output in the first optimization stage of our strategy, which aims to limit fuel cell
power variations. From the perspective of energy storage system performance evaluation,
the proposed strategy demonstrates favorable balanced characteristics: Regarding lithium
battery degradation, the capacity loss is only marginally higher than the single-layer MPC
strategy, indicating effective capacity loss control while maximizing battery performance
utilization. For the supercapacitor, this strategy exhibits the relatively largest SOC fluc-
tuation range, an inherent consequence of the dual-layer optimization structure. This
effectively accomplishes power smoothing for both the lithium battery and fuel cell system.
It should be noted that due to the strategy’s emphasis on mitigating fuel cell and lithium
battery degradation, there exists a significant deviation between the final and initial SOC
values of the energy storage elements. This represents a deliberate trade-off within the
system’s global optimization process.

Figure 13. (a) Lithium battery SOC; (b) supercapacitor SOC.

4.4. Comparative Analysis of Coordinated Degradation of Fuel Cell and Lithium Battery Systems

Based on Equations (2) and (12), the degradation rates of the fuel cell system and
lithium battery system were calculated. Figure 14 shows the degradation rate curves of the
fuel cell and lithium battery under four different energy management strategies. For the
DP, single-layer MPC, and ECMS strategies, fuel cell total power distribution follows an
equal allocation approach. At the end of the operating cycle, the differential degradation
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rates between the dual power sources under the proposed strategy, DP, single-layer MPC,
and ECMS are 0.0019%, 0.101%, 0.0218%, and 0.0545%, respectively.

(a) (b) 

(c) (d) 

Figure 14. Comparison of life decay rates of dual power sources: (a) Proposed strategy; (b) DP
strategy; (c) Single-layer MPC strategy; (d) ECMS strategy.

Compared to the DP, single-layer MPC, and ECMS strategies, the proposed strategy
achieves remarkable reductions in the differential degradation rates between dual power
sources of 98.12%, 91.36%, and 96.48%, respectively. This superior optimization perfor-
mance can be attributed to several key factors: First, although the DP strategy achieves the
lowest total voyage cost, it excessively relies on the lithium battery to minimize fuel cell
degradation. This leads to premature battery life depletion, failing to achieve balanced op-
timization between voyage economics and coordinated power source degradation. Second,
the single-layer MPC strategy’s insufficient utilization of the lithium battery’s regulatory
capabilities results in a fuel cell degradation rate exceeding that of the battery, thereby
exacerbating the degradation inconsistency between the two systems. Third, the ECMS
strategy, in its pursuit of minimizing equivalent hydrogen consumption, is constrained
by its tendency to converge to local optima. This limitation increases power fluctuations
in both fuel cell and lithium battery systems, consequently amplifying the disparity in
degradation rates between the two power sources.

This strategy achieves the synchronized degradation control of fuel cell and lithium
battery systems by organically integrating fuel economy with coordinated power degrada-
tion management. From the perspectives of long-term system economics and maintenance,
this coordinated control strategy has significant practical implications: First, by achieving
synchronized degradation of lithium batteries and fuel cells, this strategy can significantly
extend the overall service life of the ship’s power system. When fuel cells and lithium
battery systems degrade at similar rates, it prevents the need for complete system re-
placement due to premature failure of a single component, thereby reducing equipment
renewal costs. Second, coordinated degradation control significantly reduces maintenance
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requirements. By avoiding uneven aging between components, the frequency of main-
tenance inspections can be reduced. This not only directly saves maintenance costs but
also reduces vessel downtime for maintenance, improving operational efficiency. These
research findings demonstrate that while achieving coordinated power source degradation,
this strategy brings significant economic benefits to vessel operators and has practical
guiding significance for advancing ship power systems toward more sustainable and
economical development.

To further validate the effectiveness of the proposed strategy, the simulation results
were compared with existing experimental studies. Lu et al. [35] built a fuel cell stack
durability test platform to experimentally study the coordinated life degradation of dual
power sources. Their experimental results showed that under the CWC1 combined working
conditions, after adopting the PEMS strategy, the difference in degradation rates between
the fuel cell and battery decreased from 0.00538% to 0.00021% compared to the ECMS
strategy. The strategy proposed in this paper reduced the degradation rate difference
from 0.0545% to 0.0019%, with a relative improvement (96.48%) basically consistent with
the experimental results (96.1%). Through comparisons with experimental studies, it can
be found that the performance improvement demonstrated by the proposed strategy in
simulation and HIL testing shows good consistency with actual test results.

4.5. Comparative Analysis of Power Source Stress

Power source stress analysis primarily examines the high-frequency power output
characteristics of both fuel cell and lithium battery systems, serving as a critical factor
influencing their respective service life [36]. Lower power source operational stress, charac-
terized by the reduced frequency and amplitude of power output fluctuations, is conducive
to maintaining optimal source performance. The power source stress can be effectively
quantified through the standard deviation σ of high-frequency components obtained via
Haar wavelet transformation. Figure 15 illustrates the comparative analysis of power
source stress under different control strategies.

Under the proposed strategy, the average stress per fuel cell unit is 0.1537, while the
power source stress indices for DP, single-layer MPC, and ECMS strategies are 0.0782, 0.242,
and 0.2462, respectively. Compared to real-time optimization strategies (single-layer MPC
and ECMS), the proposed strategy achieves significant reductions in individual fuel cell
stress of 36.5% and 37.5%, respectively. While the DP strategy exhibits the lowest fuel cell
stress, this is achieved at the expense of lithium battery longevity. Regarding lithium battery
stress performance, the proposed strategy demonstrates a characteristic pattern of “superior
macroscopic optimization with elevated microscopic stress levels”. This distinctive feature
primarily stems from the strategy’s optimization mechanism: during the first optimization
phase, the lithium battery assumes the critical role of compensating for fuel cell power
fluctuations. Although this design reduces the system’s overall energy demand, it results
in a relatively aggressive battery power allocation strategy, manifested as more frequent
charge–discharge transitions, leading to higher power source stress compared to single-
layer MPC and ECMS strategies.

However, considering the online real-time optimization nature of the proposed strat-
egy, this stress distribution characteristic actually facilitates synchronized degradation
control between fuel cells and lithium batteries. Through the rational allocation of
power source stress, the strategy achieves the comprehensive optimization of voyage
economics and system durability while maintaining real-time response capabilities. These
results further validate the superiority of the proposed strategy in coordinated power
source management.
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(a) (b)

(c) (d)

Figure 15. Stress analysis and comparison of power source under different strategies: (a) Proposed
strategy; (b) DP strategy; (c) Single-layer MPC strategy; (d) ECMS strategy.

4.6. Comprehensive Performance Comparison

Table 4 presents a comprehensive comparison of key performance metrics across
different strategies. The proposed strategy achieves comparable equivalent hydrogen
consumption to single-layer MPC and ECMS strategies. Although the DP strategy demon-
strates the lowest hydrogen consumption, its high computational complexity and poor
real-time performance make it impractical for real-world applications. In this trade-off,
the proposed strategy opts to restrict fuel cell operation within high-efficiency variable
load ranges to suppress degradation, sacrificing some instantaneous efficiency while laying
the foundation for overall performance improvement. The proposed strategy significantly
reduces fuel cell degradation costs by 30.4% and 8.9% compared to single-layer MPC
and ECMS strategies, respectively. However, due to the reduced fuel cell degradation
leading to a relatively increased battery load, the battery degradation cost of the proposed
strategy is higher than that of single-layer MPC but notably lower than DP and ECMS
strategies. From an economic perspective, the proposed strategy demonstrates significant
advantages, saving 12.6% and 11.7% in costs compared to single-layer MPC and ECMS
strategies, respectively. Although the total cost is 1.6% higher than the DP strategy, the
proposed strategy overcomes the limitations of high computational complexity and poor
real-time performance associated with DP, providing a more practical solution for real-
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world applications. The proposed strategy shows far lower power source degradation rate
differences compared to other strategies, confirming its more balanced and rational energy
distribution. Additionally, the fuel cell high-frequency stress is significantly lower than
single-layer MPC and ECMS strategies, contributing to the extended fuel cell life; although
the lithium battery high-frequency stress is relatively higher, this trade-off is a necessary
compromise to achieve overall low degradation rates, as battery systems possess superior
dynamic response capabilities and better tolerance compared to fuel cells.

Table 4. Comparison of the results of each strategy.

Result
Proposed
Strategy

DP Strategy Single-Layer MPC ECMS Strategy

Equivalent hydrogen consumption (kg) 10.9 10.5 10.9 10.9
Cost of FC degradation (CNY) 251.5 149.9 361.5 275.6

Battery degradation cost (CNY) 38.2 143.5 25.5 104.7
Total cost (CNY) 672.5 661.8 769.4 761.2

Difference in attenuation rate between FC
and BAT (%) 0.0019% 0.101% 0.022% 0.054%

FC High frequency stress (σ) 0.1537 0.0782 0.242 0.2462
BAT High frequency stress (σ) 0.3593 0.4315 0.2466 0.2035

Comprehensive analysis indicates that the proposed strategy achieves multi-objective
coordinated optimization through its control algorithm: while maintaining energy effi-
ciency, it significantly improves the system’s overall economic performance through the
reasonable distribution of dynamic loads and balanced component degradation rates while
maintaining near-globally optimal control effects.

5. Conclusions

This paper presents a multi-timescale energy management strategy that incorpo-
rates coordinated power source degradation. The strategy features an innovative dual-
layer optimization architecture that synergistically integrates Model Predictive Control
(MPC)’s predictive optimization capabilities with real-time control responsiveness. An
attention-enhanced CNN-LSTM prediction model was developed, achieving high-precision
forecasting with a power prediction RMSE of merely 3.69 kW, thus providing robust de-
cision support for strategy implementation. The simulation results demonstrate that
compared to single-layer MPC strategy and the ECMS strategy, the proposed strategy
reduced total voyage costs by 12.6% and 11.7%, respectively, while mitigating fuel cell
high-frequency stress by 36.5% and 37.5%, with a performance approximating the globally
optimal DP strategy solution. By incorporating differentiated fuel cell degradation and
lithium battery aging characteristics, the strategy significantly enhanced dual power source
lifetime synchronization, reducing degradation rate disparities by 98.12%, 91.36%, and
96.48% compared to DP, single-layer MPC, and ECMS strategies, respectively. Further-
more, effective power smoothing was achieved through coordinated energy storage system
control. This research contributes a solution for fuel cell hybrid vessels that combines opti-
mization performance with real-time operability, demonstrating substantial potential for
engineering implementation.

To address the current limitations of this study, future research directions may focus
on the following aspects:

• Development of adaptive multi-mode energy management strategies tailored to differ-
ent voyage phases (departure, cruising, port entry, and berthing), enhancing system
operational efficiency throughout the entire voyage.
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• Development of adaptive power distribution strategies for multi-stack fuel cell systems
that consider differential degradation rates among individual stacks, incorporating
real-time performance monitoring and fault diagnosis capabilities to optimize both
system efficiency and longevity.

• Development of load power prediction models integrating multidimensional infor-
mation (vessel speed, heading, and sea conditions), improving prediction accuracy
and robustness.
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25. Şahin, M.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments.
Energies 2022, 15, 674. [CrossRef]

26. Ren, P.; Pei, P.; Li, Y.; Wu, Z.; Chen, D.; Huang, S. Degradation Mechanisms of Proton Exchange Membrane Fuel Cell under
Typical Automotive Operating Conditions. Prog. Energy Combust. Sci. 2020, 80, 100859. [CrossRef]

27. Schmittinger, W.; Vahidi, A. A Review of the Main Parameters Influencing Long-Term Performance and Durability of PEM Fuel
Cells. J. Power Sources 2008, 180, 1–14. [CrossRef]

28. Wang, X.; Li, Q.; Wang, T.; Han, Y.; Chen, W. Optimized Energy Management Strategy Based on SQP Algorithm for PEMFC
Hybrid Locomotive. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC
Asia-Pacific), Seogwipo-si, Republic of Korea, 8–10 May 2019; pp. 1–5.

29. Song, K.; Ding, Y.; Hu, X.; Xu, H.; Wang, Y.; Cao, J. Degradation Adaptive Energy Management Strategy Using Fuel Cell
State-of-Health for Fuel Economy Improvement of Hybrid Electric Vehicle. Appl. Energy 2021, 285, 116413. [CrossRef]

30. Ghaderi, R.; Kandidayeni, M.; Soleymani, M.; Boulon, L.; Trovao, J.P.F. Online Health-Conscious Energy Management Strategy
for a Hybrid Multi-Stack Fuel Cell Vehicle Based on Game Theory. IEEE Trans. Veh. Technol. 2022, 71, 5704–5714. [CrossRef]

31. Wan, A.; Chang, Q.; AL-Bukhaiti, K.; He, J. Short-Term Power Load Forecasting for Combined Heat and Power Using CNN-LSTM
Enhanced by Attention Mechanism. Energy 2023, 282, 128274. [CrossRef]

32. Darby, M.L.; Nikolaou, M. MPC: Current Practice and Challenges. Control Eng. Pract. 2012, 20, 328–342. [CrossRef]
33. Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on Model Predictive Control: An Engineering Perspective. Int. J. Adv. Manuf.

Technol. 2021, 117, 1327–1349. [CrossRef]
34. Truong, H.V.A.; Do, T.C.; Dang, T.D. Enhancing Efficiency in Hybrid Marine Vessels through a Multi-Layer Optimization Energy

Management System. JMSE 2024, 12, 1295. [CrossRef]
35. Lu, D. Online Optimization of Energy Management Strategy for FCV Control Parameters Considering Dual Power Source

Lifespan Decay Synergy. Appl. Energy 2023, 348, 121516. [CrossRef]
36. Wang, T.; Li, Q.; Wang, X.; Chen, W.; Breaz, E.; Gao, F. A Power Allocation Method for Multistack PEMFC System Considering

Fuel Cell Performance Consistency. IEEE Trans. Ind. Appl. 2020, 56, 5340–5351. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

73



Article

Prior Knowledge-Based Two-Layer Energy Management Strategy
for Fuel Cell Ship Hybrid Power System

Lin Liu, Xiangguo Yang, Xin Li *, Xingwei Zhou, Yufan Wang, Telu Tang, Qijia Song and Yifan Liu

The School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology,
Wuhan 430063, China; 299437@whut.edu.cn (L.L.); yxglyr@whut.edu.cn (X.Y.); 345550@whut.edu.cn (X.Z.);
wangyuf@whut.edu.cn (Y.W.); 331552@whut.edu.cn (T.T.); 299486@whut.edu.cn (Q.S.);
l2023201239@whut.edu.cn (Y.L.)
* Correspondence: xinli1005@whut.edu.cn

Abstract: Implementing energy management is crucial in the fuel cell and battery or
supercapacitor hybrid energy systems of ships. Traditional real-time energy management
strategies often struggle to adapt to complex operating conditions; to address this issue
and mitigate fuel cell fluctuations during real-time operations while extending the lifespan
of lithium-ion batteries, this paper proposes a two-layer energy management system (EMS)
based on prior knowledge of ship operation. In the first layer of the EMS, which operates
offline, dynamic programming (DP) and low-pass filtering (LPF) are used to allocate power
optimally for different typical ship operating conditions. Distribution results are then
used to train an SSA-BP neural network, creating an offline strategy library. In the second
layer, operating in real-time, the current load power is input into a support vector machine
(SVM) to classify the current operating condition. The corresponding strategy from the
offline library is then selected and used to provide energy distribution recommendations
based on the real-time load and the state of charge (SOC) of the lithium-ion batteries
and supercapacitors. The proposed EMS was validated using different ship load cycles.
The results demonstrate that, compared to second-order filtering-based real-time energy
management strategies, the proposed method reduces fuel cell power fluctuations by 44%
and decreases lithium-ion battery degradation by 28%. Furthermore, the simulation results
closely align with the offline optimization results, indicating that the proposed strategy
achieves near-optimal energy management in real-time ship operations with minimal
computational overhead.

Keywords: prior knowledge; hybrid power system; energy management strategy; fuel cell;
optimal analysis

1. Introduction

With the rapid growth of global ocean development, the continuous increases in
the types, numbers, and sizes of ships has resulted in severe marine pollution. Conse-
quently, international organizations such as the International Maritime Organization have
implemented low-carbon strategies and greenhouse gas (GHG) reduction initiatives [1–4].
Shipboard power grids face several challenges, including a limited capacity, complex op-
erating conditions, significant load fluctuations, and instability caused by shore power
connections [5–9]. Due to the greenhouse gas emissions and environmental pollution associ-
ated with traditional fossil-fueled ships, the development of hydrogen fuel cell systems has
garnered significant attention. However, fuel cells exhibit slow dynamic responses to load
fluctuations, making it difficult to adapt to the complex operating conditions of ships. As a
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result, hybrid energy storage systems (HESSs) incorporating batteries and supercapacitors
are required to stabilize the power grid and enhance grid stability [10–12]. An efficient EMS
is critical for coordinating power flows, reducing operational costs, preventing stability
issues, and ensuring safe operation [13–16].

Currently, EMS research can be categorized into three main types: rule-based control
(RBC) strategies, optimization-based control strategies, and artificial intelligence-based
strategies. For rule-based control strategies, the rules rely on expert experience or mathe-
matical calculations and include methods such as rule-based control [17,18], fuzzy logic
control [19], low-pass filter-based control [20,21], and wavelet transform-based control [22],
among others. These strategies are computationally efficient, intuitive, easy to implement,
robust, and effective in deterministic scenarios. However, they lack self-learning and
adaptive capabilities, making them unsuitable for complex operating conditions.

The second category comprises optimization-based strategies, which are more com-
plex but also more effective. They use objective functions to evaluate hybrid power system
performance, such as minimizing costs or maximizing lifespan. Examples include dynamic
programming [23], model predictive control (MPC) [24], and particle swarm optimization
(PSO) [25]. DP is an algorithm used to find the global optimal solution to a problem. Given
known operating conditions, it can solve for the optimal result of the objective function.
For instance, W. Tang et al. [26] propose a hierarchical EMS based on adaptive dynamic pro-
gramming (ADP); the proposed EMS ensures real-time planning speed and good following
performance while reducing energy consumption. Similarly, N. Xu et al. [27] propose a
global optimization framework of “information layer–physical layer–energy layer–dynamic
programming” (IPE-DP), which can realize the unity of different information scenarios,
different vehicle configurations, and energy conversions. Although DP can achieve offline
optimization, its computation time is relatively long, and when the discretized grid is too
fine, it can lead to the “curse of dimensionality” [28]. Therefore, it is necessary to apply the
offline optimal strategy in real time by combining other methods.

The third category is artificial intelligence (AI)-based strategies, which leverage ad-
vances in AI technology for energy management control. These include methods like
neural networks [29], reinforcement learning [30], and support vector machines [31]. AI
algorithms have been widely applied to vehicle energy management and are increasingly
used in hybrid power systems [32,33]. For example, C. Qi et al. [34] propose a multi-agent
reinforcement learning algorithm that incorporates vehicle operation features, enabling gen-
eralization across different vehicle models. Reference [35] developed a deep reinforcement
learning-based framework for plug-in hybrid electric vehicles (PHEVs), combining offline
training with online control. By addressing continuous state and action spaces through
Lagrange relaxation, the system effectively learned from real driving data, resolving safety
and overestimation issues while achieving an optimal energy management system.

To effectively adapt to highly dynamic conditions and ensure fuel-efficient operations
while meeting instantaneous load demands, many researchers have combined multiple
approaches. WU et al. [36] propose a predictive EMS using multiple neural networks,
where DP results trained a pattern recognition network, and a recurrent neural network
was applied for online dynamic estimation. Yang, N. et al. [37] propose a real-time EMS
for hybrid electric vehicles by integrating reinforcement learning into an MPC framework,
addressing RL’s drawbacks of a long learning time and poor adaptability, and significantly
improving MPC’s real-time performance. Waqar Waheed and Qingshan Xu [38] demon-
strate and incorporate a deep learning neural network model with time series analysis
and feature selection to forecast the complex and variable hourly load demand and in-
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volve a comprehensive comparison between the DNN approach and other alternatives for
short-term load forecasting.

After reviewing the current efforts on the development of onboard energy manage-
ment systems, it becomes evident that it is inevitable to make trade-offs among multiple fac-
tors. Considering the unique characteristics of the onboard loads, long-term regularity and
short-term unpredictability, both aspects play pivotal roles in optimizing power-sharing
decisions. The dynamic nature of real-time power demands has remained a challenge.

To solve the above problems, a two-layer EMS based on prior knowledge of the ship
is proposed. This strategy demonstrates strong adaptability to ship loads and low compu-
tational costs, enabling optimal power distribution in real time. The main contributions of
this paper are as follows:

• Proposing a two-layer EMS integrating historical operating conditions—this EMS
comprises an offline optimization layer and a real-time energy management layer.

• Leveraging historical operating characteristics—using neural networks to extract
optimal allocation results, the strategy provides near-optimal management strategies
in real time with low computational costs.

• Eliminating the need for a manual analysis of offline optimal strategies—the proposed
EMS only requires typical ship operating conditions as input for training, eliminating
the need for a manual analysis of the offline optimal strategy characteristics. This
allows the system to derive corresponding control strategies for different cruising mis-
sions and complex conditions, making it easily applicable to the energy management
systems of other ships.

The remainder of the paper is organized as follows: Section 2 presents the configu-
ration of the ship’s integrated power system and provides a model for the hybrid energy
storage system (HESS). Section 3 elaborate on the offline optimization strategy of the
first layer and the real-time energy management method of the second layer, respectively.
Section 4 validates the proposed strategy by generating random load conditions and com-
pares the performance of TLPF, LPF-DP, and the proposed two-layer energy management
model (TLM). Finally, Section 5 provides the conclusions.

2. System Modeling and Configuration

The ship studied in this paper is a hydrogen-powered vessel designed for transporta-
tion, patrolling, and emergency tasks in a specific reservoir area. This vessel uses hydrogen
fuel cells as its primary power source and adopts a twin rudder–propeller propulsion
system. It is characterized by zero emissions, silent operation, and comfort. Due to its
relatively fixed navigation routes and operational tasks, the ship’s load exhibits a consistent
pattern. The following subsections provide details of the corresponding systems.

2.1. Integrated DC Power System for Ships

The partially simplified structure of the DC grid of a hydrogen-powered ship after
modification is shown in Figure 1. The main components include the fuel cell stack, hybrid
energy storage system, power converters, thrusters, various auxiliary systems, and regional
power supply networks.
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Figure 1. Partial structural diagram of ship DC grid.

2.2. System Modeling and Parameters

The hydrogen fuel cell system mainly consists of the fuel cell power generation module,
hydrogen supply system, auxiliary devices, control and energy management devices, and
emergency shutdown device (ESD), among others. The ship is equipped with 12 sets of
70 kW fuel cell power generation modules, which convert the electrochemical reaction of
hydrogen and oxygen into electrical and thermal energy through the fuel cell stack inside
the module. The main technical parameters of the fuel cell stack are shown in Table 1.

Table 1. Fuel cell parameters.

Parameter Value

Quantity (sets) 12
Rated power (kW) 70

Size (mm) 1120 × 580 × 625
Weight (kg) ≤300

The ship’s power is provided by the fuel cell system, battery, and supercapacitor. The
power expression can be described as follows:

Pload = PFC,DC + PBAT,DC + PSC,DC (1)

The LiFePO4 battery, due to its high voltage, high specific capacity, and long cycle
life, is a good choice for the ship’s battery pack. The main parameters of the LiFePO4

battery used in this study are shown in Table 2 (Vbat,cell is the nominal voltage). The Rint
model is an equivalent circuit model with a simple structure and fewer parameters that
can effectively describe the basic situation of the battery’s terminal voltage change with
current due to internal resistance during charging and discharging, and is widely used in
research. The battery pack capacity Cbat (Ah), open circuit voltage VOC,bat, and internal
resistance Rbat can be calculated as follows, where Nbat,s and Nbat,p represent the number
of series and parallel cells in the battery system, and Rcell,bat is the internal resistance of the
battery cell:
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⎧⎪⎨
⎪⎩

Cbat = Nbat,pCbat,cell

VOC,bat = Nbat,sVbat,cell

Rbat = Nbat,sRcell,bat/Nbat,p

(2)

Table 2. Parameters of lithium–iron–phosphate battery cells.

Parameter Value

Vbat,cell (V) 3.2
Cbat,cell (Ah) 60

Cell stored energy (kW∗h) 0.192
Cell mass (kg) ~2

Similar to lithium-ion batteries, the capacitance Csc, open-circuit voltage VOC,sc, and
internal resistance Rsc of the supercapacitor pack can be calculated as follows, where Nsc,s

and Nsc,p represent the numbers of series and parallel connections, and Rcell is the internal
resistance of the supercapacitor cell:⎧⎪⎨

⎪⎩
Csc = Nsc,pCsc,cell

VOC,sc = Nsc,sVOC,sc,cell

Rsc = Nsc,sRcell/Nsc,p

(3)

The SOC of the supercapacitor is defined as follows:

SOCSC =
VOC,SC

VSC,MAX
(4)

where VOC,SC is the current voltage of the supercapacitor and VSC,MAX is the rated voltage
of the supercapacitor.

The size of the composite energy storage system in this study is based on reference [39]
and adjusted according to the configuration of the hydrogen-powered ship in this research.
The numbers of series and parallel connections for the battery are 160 and 2, respectively,
while for the supercapacitor, the numbers of series and parallel connections are 25 and 5,
respectively. The charge and discharge efficiency is set at 98%.

3. Methods

3.1. Typical Operating Conditions of the Ship

During different operational phases and mission scenarios, a ship’s load exhibits
diverse characteristics. Accurately extracting the typical operating conditions of a ship is
crucial for performance evaluation, operational optimization, and equipment maintenance.
By analyzing historical load data from the ship’s operations, the typical operating condi-
tions can be effectively summarized. Before extracting these typical conditions, performing
essential preprocessing of the raw data is necessary to remove anomalies and missing
values caused by sensor failures, communication interference, or other factors, ensuring
data quality and usability.

Key features such as the mean, variance, and variance-to-mean ratio of power fluctua-
tions are selected to characterize the ship’s operating conditions. The mean represents the
average power level, the variance measures the dispersion relative to the mean, and the
variance-to-mean ratio reflects the temporal variation of power, calculated as the difference
between each second’s power value and that of the previous second.
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The K-Means clustering algorithm, a commonly used partition-based clustering
method, is employed due to its simplicity, efficiency, and ease of implementation. Us-
ing K-Means clustering, the ship’s operating load data are classified, extracting five typical
operating conditions. Figure 2a–e illustrates these conditions: complex operating condi-
tion, stepwise power increase condition, stepwise power decrease condition, high-power
steady-state operation, and low-power steady-state operation.

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 2. Typical operating conditions of the ship: (a) complex operating condition; (b) stepwise
power increase condition; (c) stepwise power decrease condition; (d) high-power steady-state opera-
tion; and (e) low-power steady-state operation.

The vessel studied in this paper is the “Three Gorges Hydrogen Vessel No. 1” in
Chi-na. The load data shown in Figure 2, along with the corresponding ship configuration,
are sourced from this vessel.

3.2. Offline Energy Management Strategy
3.2.1. Optimization Problem

The objective of the energy management system optimization in this study is to
minimize the average fluctuations of the fuel cell and the degradation of the lithium-ion
battery pack. Additionally, a penalty function is introduced to limit the ripple of the
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lithium battery pack, thereby improving the power supply quality of the grid. Severe
fluctuations in load power transmitted to the fuel cell stack can directly cause output
voltage instability, accelerate fuel cell degradation, and reduce the efficiency of the fuel cell
stack. Power fluctuations in the fuel cell stack are often accompanied by uneven changes
in heat generation rates, leading to thermal management issues. Therefore, the power
fluctuation of the fuel cell stack is set as one of the objective functions. The expression for
the average fuel cell fluctuation can be described as follows [40]:

f1 =

T
∑

t=0
(PFC,DC(t + 1)− PFC,DC(t))

2

T
(5)

where PFC,DC(t) is the output power of the fuel cell stack at time t, and T is the running time.
The degradation of lithium battery life is reflected in its actual usable capacity being

less than the initial capacity. When the actual capacity drops to 80% of the initial capacity,
the battery is considered to have reached the end of its life. Improper cycling conditions,
such as frequent charging and discharging or high-current charging and discharging, can
accelerate battery degradation and even lead to failure. Therefore, the design of energy
management strategies must consider the cost of lithium battery life degradation. The cost
model for lithium battery life degradation can be expressed as follows [41]:

f2 =
CB · Ebat

2L(D) · D · Ebat · ηch · ηdis
· Pdis · Δt (6)

In the above equation, CB represents the average cost of batteries (USD/kWh), the
factor of 2 in the denominator represents one complete charge–discharge cycle, and Ebat is
the energy released by the battery. L(D) is the average cycle number of the lithium battery
as a function of the depth of discharge, D represents the depth of discharge (DOD), and ηch

and ηdis are the charging and discharging efficiencies of the lithium battery, respectively. Pdis

is the discharge power, and Δt is the discharge time. The charge and discharge efficiency is
set at 98% and CB is 500 (USD/kW·h).

The relationship between the typical average cycle number of a lithium battery and its
depth of discharge can be modeled as follows [41]:

L(D) = a · D−b (7)

In the above equation, a and b are the parameters obtained from fitting the life cy-
cle curve.

When the battery operates within the rated current range, the cycle number is primarily
related to the DOD. Here, the DOD is defined as the proportion of energy released during a
single discharge event relative to the total capacity of the battery, expressed as follows [42]:

D =
Edis
Ebat

=
Pdis(t) · Δt

Ebat
(8)

Substituting Equations (7) and (8) into Equation (6) and simplifying yields the following:

f2 =
CB

2a · Eb−1
bat · ηch · ηdis

· (Pdis · Δt)b (9)
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To ensure that the fuel cell stack and the EMS operate under normal conditions, the
corresponding constraints need to be applied:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SOCbat ∈ [SOCbat,min, SOCbat,max]

SOCsc ∈ [SOCsc,min, SOCsc,max]

PFC,DC ∈ [PFC,min, PFC,max]

Psc,DC ∈ [Psc,min, Psc,max]

Pbat ∈ [Pbat,min, Pbat,max]

(10)

3.2.2. DP-LPF-Based Power Splitting Strategy

When a ship operates under different conditions, its load exhibits varying fluctuation
characteristics. Under stable conditions, the load typically consists of low-frequency
fluctuations with smaller variations, while under complex conditions, the power changes
rapidly and exhibits larger high-frequency fluctuations. Therefore, a power allocation
method based on the nature of power fluctuations is more consistent with the characteristics
of shiploads. Among these methods, the low-pass filtering-based power allocation method
is the most studied and widely used. This approach divides the load into high-frequency
and low-frequency components through a low-pass filter, where the high-frequency power
is handled by the Hybrid Energy Storage System (HESS), and the low-frequency power is
managed by the fuel cell. This reduces power fluctuations in the fuel cell stack. The control
strategy is illustrated in Figure 3.

 
Figure 3. Low−pass filtering power allocation strategy.

Dynamic programming can determine the optimal control input by designing an
optimization objective function. For the battery/supercapacitor HESS, the optimization
objective in this work is to minimize battery capacity degradation while limiting the power
ripple of the lithium battery. The load power of the hydrogen-powered ship is discretized
with a 1-s step size, and the state variables and control variables are discretized into
discrete arrays. The DP algorithm is then used to solve the objective function over the
time steps. The state variables in this paper are [SOCsc, SOCbat], and the control variables
are [Psc,DC, Pbat,DC]. The initial values are set to SOCsc = 0.7 and SOCbat = 0.7. Based on
the typical operating load of the ship, the DP algorithm adopts a backward optimization
approach. After discretization, the algorithm starts from the last step’s state variables
and searches for the optimal solution at each step through the control variables, thereby
determining the optimal decision for each step. A forward solution is then performed to
obtain the overall optimal strategy for the optimization process. The goal is to minimize
lithium battery capacity degradation while incorporating a penalty function to limit the
power ripple of the lithium battery.

Based on the above strategy, the optimal power allocation modes are provided for
five typical operating conditions of the ship. The detailed allocation results are shown
in Figure 4. These results provide effective guidance strategies for the operation of the
power system.
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4. Offline power allocation under five typical operating conditions: (a) power allocation results
under operating condition 1; (b) power allocation results under operating condition 2; (c) power
allocation results under operating condition 3; (d) power allocation results under operating condition
4; and (e) power allocation results under operating condition 5.

1. The fuel cell handles the main power variations and strives to reduce power fluc-
tuations to minimize grid instability, thereby improving the power supply quality
and safety.

2. The supercapacitor manages the high-frequency components of the remaining power
filtered by the low-pass filter, handling short-term high-frequency power fluctuations.

3. The lithium battery provides power to compensate for higher low-frequency power
demands while ensuring that the SOC of the lithium-ion battery returns to its initial
level as much as possible before and after use.
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3.3. Proposed Real-Time Two-Layer Energy Management Strategy

In this paper, a two-layer energy management system based on prior knowledge is
proposed to reduce power fluctuations in the fuel cell stack, enhance the stability and safety
of the ship’s power grid, reduce the probability of power outages, and consider the service
life of the lithium-ion battery pack. The overall structure of the proposed EMS is shown
in Figure 5. This figure serves as the core representation of the research methodology
employed in this study, encapsulating the key elements and their interrelationships within
the EMS framework.

Figure 5. The EMS framework proposed in this article.

The EMS of this study focuses on a hybrid power system integrating fuel cells with a
hybrid energy storage system, including lithium batteries and supercapacitors. The fuel cell
stack serves as the primary power source, supplying the majority of the energy to the ship’s
power grid. Meanwhile, lithium-ion batteries and supercapacitors function as auxiliary
power sources to stabilize power grid performance, reduce the load on the primary power
source, and enhance energy recovery and utilization. The proposed method is designed for
application in small- to medium-sized ships equipped with electric propulsion systems.

The first layer leverages prior knowledge of the ship’s operating conditions. It begins
with the offline computation of the power distribution results for the fuel cell stack and the
hybrid energy storage system under typical operating scenarios. An improved BP neural
network is employed to learn the optimal power distribution strategies corresponding to
various typical conditions, thereby constructing an offline-trained strategy repository.

The second layer employs a support vector machine model trained using the charac-
teristic parameters of typical ship operating conditions. Real-time load data are processed
through the SVM model to identify the current operating condition of the ship. Based on
the identified operating condition, the corresponding optimal power distribution strategy
is retrieved from the offline strategy repository. Additionally, the SOC of the lithium battery
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and supercapacitor is updated in real time to ensure the reliable operation of the energy
storage system.

3.3.1. First-Layer Energy Management System

Since the DP algorithm requires prior knowledge of the entire driving condition’s
speed profile and its solving process suffers from the curse of dimensionality, which
requires significant computation time, it is challenging to apply this method to real-time
ship controllers. Therefore, extracting the optimal energy management strategy from the
offline power allocation results is necessary.

The backpropagation neural network, also known as the error backpropagation neural
network, is a multilayer feedforward neural network trained using the error backpropa-
gation algorithm. It is one of the most widely used neural network models and possesses
powerful nonlinear mapping capabilities, adaptability, and generalization abilities. It can
be applied to various fields, such as function approximation, pattern recognition, classifica-
tion, and data compression. Therefore, the BPNN can be trained in advance using offline
power allocation results, allowing it to provide timely power distribution outcomes during
real-time control based on the current ship operating conditions.

The working principle of the BPNN involves inputting data into the network through
the input layer, processing it sequentially in the hidden layer based on the connection
weights between neurons, and finally reaching the output layer to obtain the output result.
Assume the network has n inputs, m outputs, and s neurons in the hidden layer. The
output of the hidden layer is bj, the threshold of the hidden layer is θj, and the threshold of
the output layer is θk. The transfer function of the hidden layer is F1, and that of the output
layer is F2. The weight between the input layer and the hidden layer is wij, and the weight
between the hidden layer and the output layer is wjk. The output of the grid yk is then
obtained, and the desired output is tk. The output of the jth neuron in the hidden layer can
be expressed as follows [43]:

bj = F1

(
n

∑
i=1

wijxi − θj

)
(i = 1, 2, . . . , n; j = 1, 2, . . . , s) (11)

The output layer can be expressed as follows:

yk = F2

(
s

∑
j=1

wjkbj − θk

)
(j = 1, 2, . . . , n; k = 1, 2, . . . , m) (12)

The error function can be expressed as follows:

e =
m

∑
k=1

(tk − yk)
2 (13)

The BP neural network reduces network errors by continuously adjusting the weights.
Weight training generally uses the gradient descent method, which is prone to falling into
local optima and unable to achieve global optimization. The Sparrow Search Algorithm
(SSA) has strong global search capabilities and does not rely on gradient information. It
simulates the foraging and anti-predation behaviors of sparrow populations to explore the
entire solution space.

By introducing SSA, the globally minimal weights for BP neural network errors can
be obtained, improving the overall network performance. The SSA is set with an initial
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population of 30, a maximum number of 50 evolution iterations, a safety value of 0.6, and a
discoverer ratio of 0.7.

To apply the optimization results of DP, the SSA-BP neural network is used to learn
the optimal power allocation data obtained from DP. The optimization data of five typical
operating conditions are used as samples to train corresponding neural network models,
resulting in control strategies suitable for the five typical conditions. The initial, SOCsc

and SOCbat, and Pload of the ship’s typical operating conditions are taken as inputs for the
neural network, while the outputs are the supercapacitor power and lithium battery power.
The number of hidden neurons is determined through iterative optimization.

To verify the effectiveness of the SSA-BP neural network proposed in this paper, the
BP neural network and NFN [29] were used to learn the optimal power allocation data
obtained from DP, and the power allocation results output by different neural networks
were compared.

Figure 6 shows the offline optimization results and three different neural network
outputs under complex ship operating conditions. From Figure 6a, b, it can be concluded
that compared to other neural networks, the proposed SSA-BP neural network has the
highest similarity with the results obtained from offline computation. Figure 6c, d indicates
that the average absolute error and root mean square error between the output results of
SSA-BP and offline results are the smallest. Table 3 compares the two algorithms. The
computation time for SSA-BP is only 49.8 s, while that for LPF-DP is 21,092 s, indicating
that SSA-BP has a response time of just 10.9 ms, which meets the requirements for real-time
power allocation on ships. It significantly improves computation speed, with the fuel cell
fluctuation rate f1 increasing by only 11% and the lithium battery degradation cost f2

increasing by just 9.9%.

  
(a) (b) 

  
(c) (d) 

Figure 6. Comparison of offline optimization results and training results for three different neural
networks. (a) Comparison of the supercapacitor power; (b) comparison of the power of lithium-ion
batteries; (c) comparison of the average absolute error and root mean square error of the supercapac-
itor output from different neural networks; (d) comparison of the average absolute error and root
mean square error of lithium-ion battery power output from different neural networks.
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Table 3. Comparison of the results for the parameters.

Parameter LPF-DP SSA-BPNN

f1
(
ΔP2/s ) 2.7554 3.0584

f2 (USD) 1.084 1.192
Time (S) 21,092 49.8

The regression relationship between the actual power and estimated power is shown
in Figure 7. The R values of different datasets are all above 0.93, indicating a fitting accuracy
of over 93%. This demonstrates that the neural network optimized by SSA has a high
degree of fitting to the offline power allocation results, allowing it to derive near-optimal
strategies during real-time power allocation that closely match the offline calculations.

  
(a) (b) 

 
(c) (d) 

Figure 7. Neural network fitting regression diagrams. (a) Fits of the training set and dataset; (b)
fits of the verification set and dataset; (c) fits of the test set and dataset; and (d) fits of all sets and
the dataset.

3.3.2. Second-Layer Energy Management System

The second-layer energy management system is built upon the offline strategy reposi-
tory established in the first layer. First, the characteristic parameters of typical operating
conditions are input into the SVM model for training. During the real-time operation of
the ship, the real-time load is processed through the SVM model to identify the current
operating condition of the ship. Based on the identified condition, the optimal power
distribution strategy is retrieved from the offline strategy repository created in the first
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layer. Furthermore, the SOC of the lithium battery and supercapacitor is updated in real
time to ensure the stable and efficient operation of the energy storage system.

The SVM model is a widely used algorithm in the field of machine learning due to
its simplicity and broad applicability. Based on the fundamental strategy of supervised
learning, it enables the learning machine to pursue structural risk minimization, thereby
improving the generalization ability while achieving a minimal confidence range and empir-
ical risk. With its excellent performance in handling classification and regression problems,
SVM has shown significant potential in the field of ship operating condition identification.

Its core idea is to find an optimal hyperplane in the feature space that separates
samples from different classes as accurately as possible while maximizing the margin
between the two classes and the hyperplane. For a given sample S, the hyperplane is
defined as follows [44]:

g(x) = wTS + b = 0 (14)

where w is the coefficient and b is the intercept. Using the above formula, the distance
from each point to the classification hyperplane can be calculated. Suppose there is a point
O(X1, X2, . . . , XN) in the dataset, where Xi is the i variable, and n is the dimension. The
distance calculation formula is as follows:

d =

∣∣wTS + b
∣∣

‖w‖ (15)

where S = (X1, X2, . . . , XN)
T and ‖w‖ is the norm of the hyperplane. All support vectors

are searched, and the distances are calculated. The hyperplanes corresponding to all eligible
distances are compared, and the hyperplane corresponding to the maximum distance, i.e.,
when 2/‖w‖ is maximized, is retained for S and b.

For linearly inseparable datasets, support vector machines introduce a kernel function
to map the data from the original feature space to a higher-dimensional feature space, mak-
ing the data linearly separable in this new space. Commonly used kernel functions include
the linear kernel, polynomial kernel, and Gaussian Radial Basis Function (RBF) kernel.

Based on the characteristics of the ship’s operating condition identification problem, an
extended method of multi-class SVM is adopted. The load data from five typical operating
conditions of the ship are input into the SVM for training, with an 8:2 split between the
training set and the test set.

During actual ship operation, the load exhibits extremely complex variation patterns.
On one hand, the load on the power system varies significantly across different operational
phases, such as starting, accelerating, cruising at a constant speed, decelerating, and dock-
ing. Moreover, external factors such as environmental changes frequently impact the load,
making the variations even more intricate. On the other hand, sensor interference cannot
be ignored. The various sensors installed on the ship may experience signal transmission
instability and data collection deviations due to prolonged operation and the challenging
marine environment.

Given the aforementioned complexities, traditional static data processing methods
struggle to effectively handle these diverse and variable interfering factors, allowing data
noise to infiltrate and affect the accuracy of operating condition identification. Using
a rolling time window for condition identification is an effective strategy. The rolling
time window dynamically segments and analyzes the ship’s operational data based on
a predefined time range. By continuously updating the data within the time window, it
can better adapt to load variations and filter out data noise caused by various interfering
factors, thereby improving the precision and reliability of condition identification.
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The ship condition recognition in this study adopts a rolling time window, where the
time window Tl = 20 s, t is the discretized time step (set to 1 s in this study). This means
that the condition identification at the current moment is based on the common features
of data from the current moment and the preceding 19 s to determine the ship’s current
operating condition category. The SVM-based strategy achieves an accuracy of 90.2%.
This indicates that SVM can accurately identify the ship’s current operating condition
during operation.

4. Analysis of the Simulation Results

4.1. Dynamic Load Cycles of Ship

To validate the effectiveness of the proposed two-layer energy management model
control strategy, tests under dynamic load cycles are necessary. In this study, two types of
composite load cycles are provided. The first is the Random Load Cycle (RLC), constructed
by randomly splicing portions of five typical operating conditions. The second is the
Combined Load Cycle (CLC), formed by sequentially connecting the five typical operating
conditions. These two dynamic ship load cycles are employed to simulate the real-time
operational loads of ships. Figure 8 illustrates the two random dynamic load patterns used
to verify the proposed strategies in this paper. The detailed explanation of the extraction
of these five typical operating conditions is provided in Section 3.1, and the data for these
typical operating conditions comes from China’s “Three Gorges Hydrogen Boat One”.

 
(a) (b) 

Figure 8. Dynamic load cycles of the ship: (a) Random Load Cycle (RLC) and (b) Combined Load
Cycle (CLC).

4.2. Verification

To verify the effectiveness of the proposed two-layer energy management model
(TLM) for the real-time operation of ships, this study compares it with the adaptive second-
order filtering optimization method (TLFP) and the offline optimization strategy (LPF-DP)
proposed in this paper.

In hybrid power systems, ships operating under different conditions exhibit different
load fluctuation characteristics. Under stable conditions, the load primarily consists of
low-frequency power with small fluctuations, while under complex conditions, the load is
dominated by high-frequency power with rapid changes and large fluctuations.

Therefore, a power allocation method based on the nature of power fluctuations better
aligns with the characteristics of shiploads and is more suitable for the joint operation
of different energy storage components. Low-pass filtering can effectively smooth the
control process of energy flow, allocating power signals of different frequencies to the
corresponding components based on their characteristics. Compared to first-order low-
pass filters, second-order low-pass filters have stronger attenuation capabilities for high-
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frequency signals and can effectively extract low-frequency signals, facilitating dynamic
coordination. Additionally, the adaptive second-order filtering strategy achieves power
allocation for complex conditions by updating the filter coefficients in real-time.

Figure 9 shows the results of operating condition classification for dynamic load
profiles, achieving accuracy rates of 90.2% (Figure 9a) and 92.7% (Figure 9b). During
transitions between operating conditions, there is a temporary decrease in classification
accuracy. However, due to the similar characteristics shared by some operating conditions,
the offline strategy repository is still able to provide effective power distribution rules.
These results indicate that the proposed two-layer energy management strategy is capable
of accurately identifying the current operating condition during ship operation.

 
(a) (b) 

Figure 9. Real-time recognition results for the operating conditions. (a) Recognition results for RLC
and (b) recognition results for CLC.

The detailed power splitting condition of RLC is plotted in Figure 10a–e, and the
detailed power splitting condition of CLC is plotted in Figure 10f–j. From Figure 10a,f, it
can be observed that the LPF-DP achieves the smallest power fluctuation for the fuel cell
system, demonstrating the best smoothing performance. In contrast, the TLFP results in
the largest power fluctuations. The proposed TLM achieves power fluctuations in the fuel
cell system that are slightly higher than those of the offline optimization strategy but still
outperform the TLFP energy management strategy. The performance of different options in
the RLC and CLC is given in Figure 11. Under the RLC and CLC, the proposed two-layer
energy management model reduces the fuel cell power fluctuations by 44.06% and 31.32%,
respectively, compared to the TLFP strategy. However, compared to the LPF-DP strategy,
the power fluctuations increased by 9.58% and 12.9%, respectively.

From Figure 10b,c,g,h, it can be observed that the power fluctuation frequency of
the lithium battery pack under the LPF-DP and TLM is significantly lower than that
of the TLFP. Conversely, the power fluctuation frequency of the supercapacitor pack is
higher than that of the TLFP strategy. This allocation strategy aligns well with the power
characteristics of lithium battery packs and supercapacitor packs. Under the RLC and CLC,
the capacity degradation cost of the lithium battery pack in the TLM is reduced by 28.9%
and 21.49%, respectively, compared to the TLFP strategy, while increasing by 8.91% and
13.36%, respectively, compared to the LPF-DP strategy.

The computation times for different energy management strategies during the ship’s
random dynamic load tests are presented in Table 4. According to the table, the LPF-DP
requires 44,003 s and 60,783 s for the RLC and CLC conditions, corresponding to response
times of 3309.2 ms and 4026.6 ms, respectively. In contrast, the response times for the two-
layer energy management model are 9.1 ms and 9.6 ms, respectively. The TLFP requires
4.06 ms and 4.01 ms. While the DP algorithm can typically achieve optimal results, it
demands a significant amount of computational time, rendering it unsuitable for practical
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applications. The TLM substantially reduces the computational time compared to the
offline optimization strategy while achieving similar optimization results.

 
(a) (f) 

 
(b) (g) 

 
(c) (h) 

 
(d) (i) 

 
(e) (j) 

f f

sc sc

Figure 10. Power allocation results under different strategies. (a) Power allocation results for fuel cells
under the RLC; (b) power allocation results for lithium batteries under the RLC; (c) power allocation
results for supercapacitors under the RLC; (d) UC voltage comparison of the RLC; (e) Ah throughput
comparison of the RLC; (f) power allocation results for fuel cells under the CLC; (g) power allocation
results for lithium batteries under the CLC; (h) power allocation results for supercapacitors under the
CLC; (i) UC voltage comparison of the CLC; and (j) Ah throughput comparison of the CLC.
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Figure 11. Performance of different energy management strategies. (a) Optimization results for
different strategies under the RLC; (b) optimization results for different strategies under the CLC.

Table 4. Response times for a single step.

Parameters LPF-DP TLM TLFP

RLC − SponseTime (ms) 3309.2 9.1 4.06
CLC − SponseTime (ms) 4026.6 9.6 4.01

5. Conclusions and Discussion

In response to the complex operating conditions of ships and by leveraging historical
operational data, this paper proposes a two-layer energy management system for hydrogen-
powered hybrid ship systems. The first layer of the EMS is based on offline optimization,
utilizing DP and LPF to determine globally optimal strategies. Typical operating conditions
of the ship are identified, and the optimal power distribution for each condition is obtained
using optimization algorithms. These results are then used to train an improved BP neural
network, thereby constructing an offline strategy library. The second layer of the EMS
operates in real time to manage load variations. It first identifies the ship’s current operating
condition and then provides real-time power distribution strategies based on the offline
strategy library.

To validate the effectiveness of the proposed approach, a simulated load representing
complex ship operating conditions was used for testing. Compared with the LPF, the
proposed method reduces the fuel cell fluctuation rate by 44.06% and decreases the lithium
battery capacity degradation cost by 28.9%, while achieving results that are closely aligned
with those of offline optimization. Additionally, the real-time response time of the system
is 9.1 ms, meeting the real-time requirements of a ship EMS. These results demonstrate
that the proposed approach can provide efficient energy management in real-time appli-
cations, offering a novel energy management system for the real-time operation of the
maritime industry.

A traditional real-time EMS relies on analyzing historical operational data and deriv-
ing allocation parameters through complex calculations, leading to rule-based solutions that
are heavily dependent on these parameters. Such strategies struggle to adapt to diverse ship
types and complex operating conditions. In contrast, the two-layer EMS proposed in this
study bypasses the need for precise rule extraction from offline optimization and achieves
outcomes closer to offline results. While designed for hydrogen-powered ships, the pro-
posed EMS is adaptable to various vessels by utilizing their specific historical data. As more
operational data are incorporated, the offline strategy library can expand, ensuring stable
and reliable energy management under diverse cruising and environmental conditions.
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This study has certain limitations that warrant further investigation. First, the pro-
posed EMS does not fully address emergencies caused by environmental or human fac-
tors, such as sudden power fluctuations or unexpected equipment failures during ship
operations. These challenges may impact the strategy’s effectiveness and stability in prac-
tical applications. Future research should focus on enhancing the adaptability of energy
management strategies by simulating extreme scenarios and developing robust response
mechanisms to ensure safe and reliable operation under complex and dynamic conditions.

Second, the EMS in this study is based on a single fuel cell and a hybrid energy stor-
age system. However, modern ship power grids typically include multiple fuel cells and
lithium-ion battery groups, which experience varying degrees of degradation over time.
This non-uniform degradation can significantly affect the overall grid performance. There-
fore, future work should explore coordination mechanisms for multiple fuel cell and battery
groups while considering the impact of degradation on energy management strategies.
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Abstract: To address the issue of system parameter variations during the operation of a maritime
light vessel rudder permanent magnet synchronous motor (PMSM), an extended Kalman particle
filter (EKPF) algorithm that combines a particle filter (PF) with an extended Kalman filter (EKF)
is proposed in this paper. This approach enables the online identification of motor resistance and
inductance. For highly nonlinear problems that are challenging for traditional methods such as
Kalman filtering, this algorithm is typically a statistical and effective estimation method that usually
yields good results. Firstly, a standard linear discrete parameter identification model is established
for a PMSM. Secondly, the PF algorithm based on Bayesian state estimation as a foundation for
subsequent research is derived. Thirdly, the advantages and limitations of the PF algorithm are
analyzed, addressing issues such as sample degeneracy, by integrating it with the Kalman filtering
algorithm. Specifically, the EKPF algorithm for online parameter identification is employed. Finally,
the identification model within MATLAB/Simulink is constructed and the simulation studies are
executed to ascertain the viability of our suggested algorithm. The outcomes from these simulations
indicate that the proposed EKPF algorithm identifies resistance and inductance values both swiftly
and precisely, markedly boosting the robustness and enhancing the control efficacy of the PMSM.

Keywords: PMSM; particle filtering algorithm; extended Kalman particle filtering algorithm; parameter
identification algorithm

1. Introduction

In modern maritime light vessel navigation systems, the accuracy and reliability
of the autopilot system are crucial for navigational safety. As the core component of the
autopilot system, the steering gear motor is required to possess high dynamic response, high
efficiency, and precise control characteristics. Low-power permanent magnet synchronous
motors (PMSMs) have been identified as the ideal choice for steering gear motors due to
their excellent power density, efficiency, and control performance [1,2]. Over the years,
with the advancement in PMSM drive control technology, scholars both domestically
and internationally have proposed a plethora of control techniques to achieve the high-
performance control of permanent magnet motors [3–6]. Whether it is speed control,
position control, or torque control, achieving the high dynamic response and precise control
goals requires accurate motor parameters. However, these parameters are significantly
influenced by factors such as temperature, stator current, and magnetic flux saturation,
leading to substantial variations. Consequently, methods such as vector control and direct
torque control often fall short of achieving the results predicted by theoretical analysis. In
the complex marine environment, the steering gear motor must maintain high-performance
operation under various conditions. To realize efficient PMSM control, accurate parameter
identification becomes crucial [7–11], leading to the emergence of various motor parameter
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identification methods. This is of great practical significance for enhancing the performance
and reliability of the autopilot system. Depending on the operating conditions of the PMSM,
the parameter identification can be categorized into offline parameter identification or
online parameter identification. Offline parameter identification, due to its non-interference
with the online operational status of the motor and conservation of the online control
resources, has garnered widespread attention in the industrial sector. On the other hand,
online parameter identification methods can be synchronized with the motor operation,
enabling the real-time acquisition of the motor parameters. They meet the need for accurate
parameter tracking under different motor operating conditions and reflect the changes
in the motor status over time. Compared to offline parameter identification, the online
methods offer better real-time performance and flexibility [12]. The traditional online
identification methods include least squares estimation [13], model reference adaptive
control [14,15], and Kalman filtering [16,17].

Considering that the inductance parameters are influenced by the PMSM operation
status, a motor model utilizing the transient voltage equation is developed and a forgetting
factor is incorporated to enhance the least squares identification method in [18], which
can improve the algorithm’s tracking capabilities. When the forgetting factor is set to a
certain value, the least squares method may struggle to ensure robustness. Ref. [8] treats
the error between the theoretical and actual outputs as a variable and dynamically adjusts
the forgetting factor during the identification process, thereby accelerating the convergence
speed of the algorithm while ensuring good robustness. Assuming that the stator resistance
and permanent magnet flux linkage are known and constant, Ref. [19] achieves the online
identification of the d-axis and q-axis inductances through a model reference adaptive
control algorithm. Ref. [20] proposes a disturbance compensation-based model reference
adaptive system, designing a disturbance estimator to estimate the external disturbances
in real time and updating the adaptation rate based on the disturbance, thus reducing
the impact of parameter uncertainty and disturbances on the system and expanding the
application scenarios of the model reference adaptive control algorithm. The Kalman
filtering algorithm provides real-time updates of estimated values for linear systems,
achieving optimal parameter estimation. However, in cases where the noise is unknown
or the modeling error is significant, the Kalman filtering algorithm often fails to achieve
the desired effect. Since the motor system is nonlinear, many scholars have proposed
improvements to the Kalman filtering algorithm, such as extended Kalman filtering [21,
22], unscented Kalman filtering [23], and cubature Kalman filtering [24], to extend its
application scope. The prerequisite for using Kalman filtering is that the measurement
noise follows a Gaussian distribution. However, in practice, the statistical properties
of the system noise are often unknown or time-varying. In [25], an adaptive Kalman
filtering algorithm based on variational Bayesian inference is presented, which selects
appropriate conjugate distributions to estimate the covariance matrix of noise with minimal
changes, to some extent addressing the aforementioned issues. However, it is limited by the
linear Gaussian state model. The H∞ filtering algorithm has good robustness to unknown
noise but at the cost of accuracy. The H∞ filtering algorithm is only suitable for linear
systems, and, when applied to nonlinear systems, it still has many drawbacks. Therefore,
modifications of the H∞ filtering algorithm have been proposed. Xia proposes a fitted H∞
filtering algorithm based on fitted transformation to address the problems in nonlinear
uncertain systems, which shows good robustness [26,27]. Furthermore, outliers in the
system can also reduce the estimation accuracy of the H∞ filtering algorithm. Therefore,
based on the H∞ filtering algorithm, Zhao studies a series of derivative algorithms [28–30],
among which the Krein space robust unscented Kalman filter based on the generalized
maximum likelihood can effectively handle outliers [30].

In addition to the aforementioned common traditional identification methods, there
are some identification methods that are highly effective for handling highly nonlinear
systems but have not been widely applied due to certain limitations. For example, the PF
algorithm, which suffers from low computational efficiency [31], has only been applied
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with the continuous improvement in computer computational capabilities in recent years.
While the PF algorithm is relatively simple and can accurately estimate target parameters,
its limitations include high computational complexity, particle degeneracy, and potential
delays in responding to dynamic system changes. To address these issues, this paper
employs the EKPF algorithm, which combines the extended Kalman filtering algorithm
with the particle filtering algorithm, for parameter identification. This approach mitigates
problems such as particle degeneracy to some extent and improves the overall performance
of the particle filter.

2. Establishing the Parameter Identification Model for PMSM

The mathematical model of the PMSM is typically formulated in the synchronous
rotating reference frame d-q. The stator voltage equation is provided by{

ud = Rsid + dψd
dt − ωeψq

uq = Rsiq +
dψq
dt + ωeψd

(1)

The stator flux linkage equation is {
ψd = Ldid + ψ f
ψq = Lqiq

(2)

Substituting Equation (2) into Equation (1):{
ud = Rsid + Ld

d
dt id − ωeLqiq

uq = Rsiq + Lq
d
dt iq + ωe(Ldid + ψ f )

(3)

In the equations, ud and uq are the voltages along the d and q axes, respectively; id and
iq are the currents along the d and q axes, respectively; Rs is the stator resistance; ψd
and ψq are the components of stator flux linkage along the d and q axes, respectively; ωe
is the electrical angular speed of the rotor; Ld and Lq are the d- and q-axis inductances,
respectively; ψf is the flux linkage of the permanent magnet.

Selecting the components of current along the d and q axes, id and iq, and the pa-
rameters to be identified, Ld, Lq, and Rs, as state variables, we establish the state-space
equations for the permanent magnet synchronous motor. This paper primarily focuses on
surface-mounted permanent magnet synchronous motors, where Ld = Lq = Ls. Therefore,
after rearrangement, Equation (3) becomes

d
dt

⎡
⎢⎢⎣

id
iq
Rs
Ls

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
− Rs

Ls
ωe 0 0

−ωe − Rs
Ls

0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

id
iq
Rs
Ls

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

1
Ls

0
0 1

Ls
0 0
0 0

⎤
⎥⎥⎥⎦
[

ud
uq − ωeψ f

]
(4)

Due to the presence of coupling terms in the coefficient matrix of state Equation (4),
direct identification of Rs and Ls is rather complex. Therefore, we introduce intermediate
variables a and b to simplify the identification equation. Let a = Rs/Ls and b = 1/Ls,
Equation (4) becomes

d
dt

⎡
⎢⎢⎣

id
iq
a
b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 ωe −id ud
−ωe 0 −iq uq − ωeψ f

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

id
iq
a
b

⎤
⎥⎥⎦+w (5)
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The output y can be expressed as

y =

[
1 0 0 0
0 1 0 0

]⎡⎢⎢⎣
id
iq
a
b

⎤
⎥⎥⎦+v (6)

In the above two equations, w represents the process noise of the system, while v represents
the measurement noise of the system. x = [id iq a b]T denotes the state variable matrix of the
system, and y = [id iq] represents the output variable matrix of the system. By discretizing
Equations (5) and (6) with a sampling period Ts, we obtain the following equations:{

xk+1 = Fkxk + wk
yk = Hkxk + vk

(7)

In the equations, wk and vk are mutually independent white noise processes. Fk and Hk are
coefficient matrices defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
Fk =

⎡
⎢⎢⎢⎣

1 ωeTs −idTs udTs

−ωeTs 1 −iqTs

(
uq − ωeψ f

)
Ts

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦

Hk =

[
1 0 0 0
0 1 0 0

] (8)

Using the filtering algorithm, parameters a and b can be identified through the above
model. Then, by utilizing the relationship between a, b, Rs, and Ls, the identification values
of resistance Rs and inductance Ls can be obtained. The specific identification process is
illustrated in Figure 1, where the s-Function module represents the part where the filtering
algorithm program is implemented.

Figure 1. Identification process flowchart.

3. Particle Filter

3.1. Bayesian State Estimation

Assume the equation describing a nonlinear system is as follows:

xk+1 = fk(xk, wk)
yk = hk(xk, vk)

(9)
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where k is the time index, xk is the state variable, wk is the process noise, yk is the measure-
ment value, and vk is the measurement noise. The functions f k(·) and hk(·) are the process
equation and measurement equation of the time-varying nonlinear system, respectively.
The noises wk and vk are independent white noises with known probability density func-
tions. The purpose of the Bayesian estimator is to estimate the probability density of the
state xk conditioned on the measurement values y1, y2, . . . , yk. This conditional probability
density is represented as

p(xk|Yk) = The probability density of the state xk conditioned on the measurement values y1, y2, . . . , yk. (10)

At k = 1, the first measurement value is obtained. Therefore, the initial condition of the esti-
mator is the probability density function of x0 conditioned on the absence of measurement
values, denoted as Y0, expressed as

p(x0)= p(x0|Y0) (11)

Once p(xk|Yk) is computed, the most suitable estimate of xk can be determined based
on the specific problem. When the conditional probability density function p(xk|Yk) is
multimodal, the mean of xk cannot be used as an estimate.

To compute the conditional probability density function p(xk|Yk), a recursive method
is required. Prior to this, it is essential to ascertain p(xk|Yk−1), representing the probability
density of xk conditioned on all measurements up to time k. This step is fundamental in
deriving a recursive solution for evaluating p(xk|Yk). This can be expressed utilizing the
Bayes’ theorem and the properties of joint probability density functions as follows:

p(xk | Yk−1) =
∫

p[(xk, xk−1) | Yk−1]dxk−1 =
∫

p[xk | (xk−1, Yk−1)]p(xk−1 | Yk−1)dxk−1 (12)

From Equation (9), it can be observed that xk is fully determined by xk−1 and wk−1.
Therefore, p[xk|(xk−1,Yk−1)] = p(xk|xk−1), and we have

p(xk | Yk−1) =
∫

p(xk | xk−1)p(xk−1 | Yk−1)dxk−1 (13)

In the equation, the second probability density function on the right-hand side,
p(xk|xk−1), is initially unknown but becomes known at the start (refer to Equation (11)).
This function p(xk|xk−1) denotes the probability density of the state at time k, given the
state at time (k − 1), which is established. Given our knowledge of the system equation
f k(·) and the noise wk, this probability density function is ascertainable.

Now, consider the posterior conditional probability density function of xk. Express this
probability density function utilizing Bayes’ theorem and the properties of joint probability
density functions as follows:

p(xk | Yk) =
p(Yk|xk)

p(Yk)
p(xk) =

p[(yk,Yk−1)|xk]
p(yk,Yk−1)

p(xk | Yk−1)p(Yk−1)

p(Yk−1 | xk)︸ ︷︷ ︸
p(xk)

=
p(xk,yk,Yk−1)

p(xk)p(yk,Yk−1)
p(xk,Yk−1)p(Yk−1)
p(Yk−1)p(Yk−1|xk)

(14)

Multiply the numerator and denominator simultaneously by p(xk, yk):

p(xk | Yk) =
p(xk, yk, Yk−1)p(xk, Yk−1)p(Yk−1)

p(xk)p(yk, Yk−1)p(Yk−1)p(Yk−1 | xk)

p(xk, yk)

p(xk, yk)
(15)

In Equation (15), the conditional probability density function is derived several times
by utilizing the ratio of the joint probability density function to the marginal probability
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density function. This method effectively captures the relationship between the conditioned
and conditioning events; we obtain

p(xk | Yk) =
p[Yk−1 | (xk, yk)]p(yk | xk)p(xk | Yk−1)

p(yk | Yk−1)p(Yk−1 | xk)
(16)

Note that yk is a function of xk, so p[Yk−1|(xk, yk)] = p(Yk−1|xk). After rearranging,
we obtain

p(xk | Yk) =
p(yk | xk)p(xk | Yk−1)

p(yk | Yk−1)
(17)

All probability density functions on the right-hand side of the equation are known.
From the measurement equation hk(·) and the probability density function of the measure-
ment noise vk, we can obtain p(yk|xk). From Equation (13), we know p(xk|Yk−1). The
probability density function of p(yk|Yk−1) can be obtained.

p(yk | Yk−1) =
∫

p[(yk, xk) | Yk−1]dxk
=

∫
p[yk | (xk, Yk−1)]p(xk | Yk−1)dxk

(18)

yk is completely determined by xk and vk, so p[yk|(xk,Yk−1)] = p(yk|xk), and

p(yk | Yk−1) =
∫

p[yk | xk]p(xk | Yk−1)dxk (19)

From the above discussion, we can conclude that P(yk|xk) can be obtained from the
probability density function of the measurement equation hk(·) and the measurement noise
vk, and p(xk|Yk−1) can be obtained from Equation (13).

In summary, the recursive equations for the Bayesian state estimator can be summa-
rized as follows:

1. The system equation and measurement equation are as follows:

xk+1 = fk(xk, wk)
yk = hk(xk, vk)

(20)

where wk and vk are independent white noise processes with known probability den-
sity functions.

2. Assuming the probability density function p(x0) of the initial state is known, the
estimator is initialized as follows:

p(x0|Y0) = p(x0) (21)

3. For k = 1, 2, . . . , execute the following equations:
(a) Obtain the prior probability density function from Equation (13) as follows:

p(xk | Yk−1) =
∫

p(xk | xk−1)p(xk−1 | Yk−1)dxk−1 (22)

(b) Obtain the posterior probability density function from Equations (17) and (19)
as follows:

p(xk | Yk) =
p(yk | xk)p(xk | Yk−1)∫

p(yk | xk)p(xk | Yk−1)dxk
(23)

3.2. Establishment of the Particle Filter

The PF is derived from Bayesian state estimation and is used for numerically imple-
menting Bayesian filters. The concept is straightforward and intuitive. At the outset of the
estimation process, we randomly generate a specific number N of state vectors according
to the initial probability density function p(x0). These state vectors are termed particles and
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are labeled as x+
0,i (where i = 1, . . . , N). For each subsequent time step k = 1, 2, . . . , the next

batch of particles is produced using state equation f (·).

x−k,i = fk−1

(
x+k−1,i, wi

k−1

)
(i = 1, · · · , N) (24)

where each noise vector wi
k−1 is randomly generated based on the known probability

density function of wk−1. After obtaining the measurement at time k, the likelihood
probability density of each particle x−k,i, denoted as p(yk|x−k,i), is computed. For example,
if given an m-dimensional measurement equation yk = h(xk) + vk, and vk ~ N(0, R), the
likelihood probability density qi for the measurement y* under the condition that xk equals
the particle x−k,i can be computed as follows:

qi = p
[
(yk = y∗) | (xk = x−k,i)

]
= p

[
vk = y∗ − hk

(
x−k,i

)]
∼ 1

(2π)m/2
∣∣∣R∣∣∣1/2 exp

(
−[y∗−h(x−k,i)]

T
R−1[y∗−h(x−k,i)]
2

)
(25)

In the above equation, “~” indicates that this probability density function is propor-
tional to the expression on the right-hand side. If this equation is applied to all particles
x−0,i (i = 1, . . . , N), then the “relative” likelihood probability density of the state being equal
to each particle will be correct. Normalize the likelihood probability density obtained from
Equation (25).

qi =
qi

∑N
j=1 qj

(26)

This guarantees that the total of all likelihood probability densities sums to 1.
Next, we perform resampling. The resampling process entails discarding particles

with minimal weights and concentrating on those with larger weights. By resampling, we
amplify the presence of particles with substantial weights, thereby better representing the
posterior distribution using particles and their associated weights. Resample particles from
the computed likelihood probability density functions; i.e., randomly generate a new set of
particles x+

k,i based on the likelihood probability density function qi. There can be several
different resampling methods; one of the most direct methods is as follows. For 1, . . . , N,
perform the following two steps:

1. Generate a random number r from a uniform distribution in the interval [0, 1].
2. Accumulate the likelihood function qi until the cumulative sum is greater than r.

That is, for ∑
j−1
m=1 qm < r, but ∑

j
m=1 qm ≥ r, the new particle x+

k,i is set equal to the old
particle x−k,j.

As the sample size N tends to ∞, the set probability density function of the new
particles x+

k,i approximates p(xk|yk).
The steps of resampling can be summarized as follows:

x+k,i = Probability of x−k,j in terms of qj (27)

The resampling process diagram is as Figure 2.

Figure 2. Resampling process flowchart.
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The primary bottleneck of the PF is often computational complexity. To address this,
more efficient resampling techniques can be used. With particles x+

k,i now distributed
according to p(xk|yk), arbitrary statistical properties of this function can be computed.

In summary, the steps of particle filter can be summarized as follows:
1. The system equation and measurement equation are as follows:

xk+1 = fk(xk, wk)
yk = hk(xk, vk)

(28)

where wk and vk are independent white noise processes with known probability den-
sity functions.

2. Assuming the probability density function p(x0) of the initial state is known, N
initial particles x+

0,i(i = 1, . . . , N) are randomly generated based on p(x0). The parameter N
serves as a trade-off between computational load and estimation accuracy.

3. For k = 1, 2, . . . , execute the following steps:
(a) Execute time update using the known process equation and the probability density

function of the process noise to obtain the prior particles x−k,i:

x−k,i = fk−1

(
x+k−1,i, wi

k−1

)
(i = 1, · · · , N) (29)

where each noise vector wi
k−1 is randomly generated according to the known probability

density function of wk−1.
(b) Compute the likelihood probability density qi for each particle x−k,i given the

measurement yk. This can be obtained by estimating p(yk|x−k,i) using the probability
density function of the nonlinear measurement equation and the measurement noise.

(c) Normalize the obtained likelihood probability density as follows:

qi =
qi

∑N
j=1 qj

(30)

Now, the sum of all likelihood probability densities equals 1.
(d) Perform resampling, i.e., randomly generate a set of posterior particles x+

k,i based
on the likelihood probability densities qi.

(e) Now that we have a set of particles x+
k,i distributed according to the probability

density function p(xk|yk), arbitrary statistical properties of this probability density function
can be computed.

4. Extended Kalman Particle Filter

PF has many advantages, such as being a statistical and effective estimation method
for highly nonlinear systems, often yielding good results. However, achieving good
performance with PF comes with significantly increased computational complexity. Addi-
tionally, when the regions of high probability density for the state-space probability density
functions p(yk|xk) and p(xk|yk−1) do not overlap, sample degeneracy occurs, causing all
particles to converge to a single value. This issue can be mitigated by increasing the number
of particles N, but this rapidly leads to a large computational burden and typically only
delays sample degeneration. Sample degeneration and other factors may prevent PF from
promptly reflecting system dynamics.

Improving the performance of the particle filter can be achieved through combination
with other filters. In this study, we adopt the EKPF, which integrates the EKF with the PF to
enhance its performance and mitigate the issue of sample degeneration. In this approach,
at each measurement instant, the EKF iterates over the particles, and these measurements
are used to resample the particles. This is akin to running N Kalman filters concurrently
and performing one resampling step after each measurement. After obtaining x−k,i as per
Equation (24), x+

k,i can be iteratively obtained from x−k,i using the iteration equations of
the EKF [32].
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P−
k,i = Fk−1,iP+

k−1,iF
T
k−1,i + Qk−1

Kk,i = P−
k,i H

T
k,i

(
Hk,iP−

k,i H
T
k,i + Rk

)−1

x+k,i = x−k,i + Kk,i

[
yk − h

(
x−k,i

)]
P+

k,i = (I − Kk,i Hk,i)P−
k,i

(31)

Kk,i represents the Kalman gain for the i-th particle, and P−
k,i denotes the a priori estimate

error covariance for the i-th particle. The matrices F and H, representing the partial
derivatives, are defined as follows:

Fk−1,i =
∂ f
∂x

∣∣∣
x=x+k−1,i

Hk,i =
∂h
∂x

∣∣∣
x=x−k,i

(32)

Next, following the procedure in Section 3.2, resample x+
k,i and its corresponding co-

variance matrix P+
k,i. This method, which updates prior particles x−k,i based on the

measurement at time k before resampling, helps to mitigate particle degeneracy.
In summary, the EKPF is as follows.
1. The system equation and measurement equation are as follows:

xk+1 = fk(xk, wk)
yk = hk(xk, vk)

(33)

where wk and vk are independent white noise processes with known probability den-
sity functions.

2. Assuming the probability density function p(x0) of the initial state is known, N
initial particles x+

0,i are randomly generated based on p(x0), with corresponding covariance
matrices P+

0,i = P+
0(i = 1, . . . , N). The choice of N should balance computational complexity

and estimation accuracy.
3. For sampling time k = 1, 2, . . . , follow these steps:
(a) Based on the process equation and the probability density function of the process

noise, obtain the prior particles x−k,i and covariance P−
k,i through the time update equation:

x−k,i = fk−1

(
x+k−1,i, wi

k−1

)
P−

k,i = Fk−1,iP+
k−1,iF

T
k−1,i + Qk−1

Fk−1,i =
∂ f
∂x

∣∣∣
x=x+k−1,i

(34)

Here, each noise vector wi
k−1 is randomly generated based on the known probability

density function of wk−1.
(b) Update the posterior particles and their covariance matrices based on the prior

particles and their covariance matrices:

Hk,i =
∂h
∂x

∣∣∣
x=x−k,i

Kk,i = P−
k,i H

T
k,i

(
Hk,iP−

k,i H
T
k,i + Rk

)−1

x+k,i = x−k,i + Kk,i

[
yk − h

(
x−k,i

)]
P+

k,i = (I − Kk,i Hk,i)P−
k,i

(35)

(c) Compute the likelihood probability density qi for each particle x+
k,i conditioned

on the measurement yk. The likelihood probability density p(yk|x+
k,i) can be estimated

based on the nonlinear measurement equation and the probability density function of the
measurement noise.

(d) Normalize the probabilities obtained in the previous step:
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qi =
qi

∑N
j=1 qj

(36)

At this point, all likelihood probabilities sum to 1.
(e) Correct the posterior particles x+

k,i and their corresponding covariance matrices
P+

k,i based on the probabilities qi. This constitutes the resampling process.
(f) Now that we have a set of posterior particles x+

k,i and covariance matrices P+
k,i,

we can compute statistical quantities based on these.

5. Simulation Analysis and Comparison

To confirm the feasibility of the proposed parameter identification algorithm, this
chapter carries out relevant simulation verification. In the simulation process, a simulation
model is built using MATLAB/Simulink, and the two methods mentioned above are
implemented in the s-Function module of Simulink. The flowchart of the s-Function
module is shown in Figure 3.

Figure 3. s-Function flowchart.

The s-Function module is implemented using a non-graphical method to create a
dynamic system. In this module, the input variables needed for the motor control system
are obtained in real time, the state variables are updated in real time, and, thus, the real-time
identification of the motor parameters in the control model is achieved. The selected input
variables are u = [id iq ωe ud uq], state variables are x = [id iq a b] (where a = Rs/Ls and
b = 1/Ls), and output variables are y = [id iq]. The chosen number of particles N is 2000.
The particle cloud is generated by providing an initial particle and standard deviation of
the initial particle cloud using the “randn” function. The motor parameters used are shown
in Table 1.

Table 1. Motor parameters used in the present study.

Electromagnetic Parameters Value Unit

DC voltage 24 V
Stator resistance 0.84 Ω

d-axis inductance 3 mH
q-axis inductance 3 mH

Flux linkage 0.01 Wb
Number of pole pairs 4 -
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In the first part of this section, simulation analysis is conducted on the PF algorithm to
verify its performance and identify any limitations. In the second part, simulation analysis
is performed on the EKPF algorithm. Firstly, steady-state condition parameter identification
simulation is conducted to validate the effectiveness of the method. Subsequently, to assess
the robustness of the EKPF algorithm, simulation analyses are performed under three
different operating conditions: variations in motor load, alterations in stator resistance, and
changes in stator inductance.

5.1. PF Simulation Analysis

In this section, the PF algorithm is simulated with the following parameter settings:
initial particles are set to [0; 5; 208.696; 434.78], initial standard deviation of particle cloud
is set to [2; 8; 30; 60], process noise covariance matrix Q is diag([0 0 0.9 1.18]), measure-
ment noise covariance matrix R is diag([1 1]), motor load is set to 0.3 N·m, and motor
speed is set to 900 rpm, as shown in Figure 4. Three scenarios are simulated: (1) resis-
tance and inductance remain stable; (2) resistance changes abruptly from 0.84 Ω to 1.2 Ω;
(3) inductance changes abruptly from 3 mH to 4 mH.

Figure 4. Load torque and speed.

(1) Resistance and inductance remain stable. The simulation results are shown in
Figure 5.

Figure 5. Identification of Rs and Ls under steady state.

From Figure 5, it can be observed that, for stable parameters, the PF algorithm achieves
fast and accurate identification of Rs and Ls.

(2) When the resistance changes abruptly from 0.84 Ω to 1.2 Ω, the simulation results
are shown in Figure 6.

(3) The inductance abruptly changes from 3 mH to 4 mH, as shown in the simulation
results in Figure 7.

From Figures 6 and 7, it can be observed that, when the stator resistance or stator
inductance undergoes a sudden change, the identification process fails to promptly reflect
the dynamic changes in the system.
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In summary, the PF algorithm can perform identification relatively quickly and accu-
rately to some extent. However, due to the issue of particle degeneracy in the PF algorithm,
it may fail to respond promptly to dynamic changes in the system.

Figure 6. Illustrates the parameter identification of Rs and Ls under the sudden change in stator resistance.

Figure 7. Depicts the parameter identification of Rs and Ls under the sudden change in inductance
from 3 mH to 4 mH.

5.2. EKPF Simulation Analysis

In this section, simulations are conducted to analyze the EKPF algorithm. The pa-
rameter settings for the identification algorithm are as follows: the initial particles are set
to [0; 5; 208.696; 434.78], the standard deviation of the initial particle cloud is [2; 8; 30; 60], the
process noise covariance matrix Q is diag([0 0 0.9 1.18]), the measurement noise covariance
matrix R is diag([1 1]), and the estimation error covariance matrix P0 is diag([0.01 0.1 3 3]).
The performance and robustness of the algorithm are validated separately for steady-state
and dynamic conditions.

5.2.1. Steady-State Performance

The motor operates under steady-state conditions with a load torque of 0.3 N·m and a
speed of 900 rpm, as shown in Figure 8, while the stator resistance and stator inductance
remain constant at 0.84 Ω and 3 mH, respectively. The simulation results are shown in
Figure 9.

From Figure 9, it can be observed that the EKPF algorithm achieves parameter identi-
fication of resistance and inductance in a short time, with the final identification results
deviating by around 3% from the actual values. This demonstrates the effectiveness of the
parameter identification algorithm.
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Figure 8. Load torque and speed when torque remains constant.

Figure 9. Parameter identification of Rs and Ls.

5.2.2. Robustness Verification

(a) Load Torque
The motor speed is maintained at 900 rpm, while the torque is adjusted from 0.2 N·m

to 0.4 N·m within a span of 0.5 s. The outcomes of this simulation are displayed in Figure 10.

Figure 10. Load torque and speed when torque changes.

From Figure 11, it can be observed that the EKPF algorithm ensures parameter identi-
fication even when the torque changes (doubles). The difference between the identification
results before and after the change is within 2%, demonstrating the robustness of the EKPF
parameter identification algorithm to torque variations.

(b) Stator Resistance
In this section, simulations were performed under two conditions: abrupt changes

in resistance due to motor faults and gradual increases in resistance from factors such
as temperature rise. The stator resistance shifts suddenly from 0.84 Ω to 1.2 Ω and then
increases gradually to 1.2 Ω. The motor speed is fixed at 900 rpm, with the motor load set
at 0.3 N·m. The outcomes of these simulations are presented in Figure 12.
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Figure 11. Parameter identification of Rs and Ls under load torque variation.

Figure 12. Parameter identification of Rs and Ls under stator resistance variation: (a) sudden resistance
change due to motor faults; (b) slow increase in resistance due to factors such as temperature rise.

From Figure 12, it can be observed that the EKPF algorithm ensures parameter identi-
fication during resistance changes, and it maintains a satisfactory response speed during
sudden resistance changes, demonstrating the robustness of the EKPF parameter identifica-
tion algorithm to resistance variations.

(c) Stator inductance
In this section, simulations were conducted for the inductance change conditions

corresponding to the previous section: sudden inductance change due to motor failure and
gradual increase in inductance due to improper design. The stator inductance changed
abruptly from 3 mH to 4 mH, and gradually increased to 4 mH. The motor speed was
established at 900 rpm, and the motor load was configured at 0.3 N·m. The results of the
simulation are depicted in Figure 13.

From Figure 13, it can be observed that the EKPF algorithm ensures parameter identi-
fication during inductance changes, and it maintains a satisfactory response speed during
sudden inductance changes, demonstrating the robustness of the EKPF parameter identifi-
cation algorithm to inductance variations.
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Figure 13. Parameter identification of Rs and Ls under stator inductance variation: (a) sudden
inductance change; (b) gradual increase in inductance.

6. Conclusions

PMSMs are widely used in various fields, such as vessel autopilots. To achieve efficient
PMSM control, the accurate identification of motor parameters is particularly important.
This paper combines the PF algorithm with the EKF algorithm to form the EKPF algorithm
for the online identification of motor resistance and inductance. The theoretical analysis
and simulation results show that, compared to the PF algorithm, the EKPF algorithm can
identify results more quickly and accurately, and its robustness is significantly improved.
When the parameters to be identified change, whether suddenly or gradually, the EKPF
algorithm maintains good identification accuracy and fast convergence speed.
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Abstract: To address the control performance and harmonic suppression issues in maritime vessel
rudder permanent magnet servo systems, a fractional-order PID controller was introduced into the
existing improved repetitive control strategy. We used the Oustaloup approximation algorithm and
particle swarm optimization for tuning the fractional-order PID controller. The optimized parameters
substantially improved the control performance. By integrating the fractional-order PID controller
with the improved repetitive controller, a composite fractional-order PID repetitive control strategy
was formed. Finally, MATLAB/Simulink simulations were conducted to compare and verify the
disturbance rejection and harmonic suppression capabilities of the improved control strategy. The
results demonstrate its superior control performance, thereby increasing the practicality of the control
system in dealing with various situations.

Keywords: permanent magnet servo system; harmonic suppression; repetitive control; fractional-
order PID control

1. Overview

1.1. Introduction

With the development of modern production technology, permanent magnet servo
systems have been widely applied in servo robots, high-precision industrial equipment,
aerospace, and other fields. In recent years, the application of permanent magnet servo
systems in the shipbuilding and marine industries has also gradually increased, partic-
ularly excelling in autopilot systems and precision control equipment. To maintain safe
and stable operation under various complex application scenarios, the primary focus is on
improving the control performance of permanent magnet servo systems. When navigating
in the marine environment, vessels must cope with changing sea conditions and stringent
operational requirements, which place higher demands on the control accuracy and relia-
bility of permanent magnet servo systems. Current harmonics are key factors affecting the
energy utilization and control performance of permanent magnet servo systems, making
harmonic suppression a major research direction. For maritime vessel autopilot systems,
current harmonics not only affect motor efficiency and temperature increase but also neg-
atively impact the precise control of the steering gear, thereby affecting the ship’s course
stability and steering sensitivity. In this context, researching efficient current harmonic
suppression methods becomes particularly important. With the advancement of industrial
technology and control theory, harmonic suppression methods are primarily divided into
two categories: one approach focuses on motor structure design, optimizing defects in
the stator skew slot and skewed pole, and the shape of the rotor’s permanent magnets
to improve the distribution of the magnetic field of the permanent magnets, enhance the
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sinusoidal nature of the back electromotive force (EMF), and reduce the harmonic content
of the back EMF. The other approach focuses on control strategies, where optimized control
methods compensate for current harmonics, thereby improving the current waveform and
enhancing the harmonic suppression capability of the servo system [1–3].

In order to suppress cogging torque, an innovative approach was proposed in refer-
ence [4], which involves introducing auxiliary slots in the stator teeth and using a strategy
combining a response surface model with the particle swarm algorithm to optimize and
adjust the structural parameters of the auxiliary slots. Variance analysis of the constructed
multidimensional quadratic response model was conducted to examine the interaction
effects among variables and determine the optimal combination of structural parameters.
The experimental results demonstrated its positive effect on suppressing cogging torque.
Research on permanent magnet servo control systems has shown that improving con-
trol strategies can effectively suppress current harmonics and torque fluctuations. The
Proportional Integral (PI) controller, as an effective current control method, can achieve
zero steady-state error tracking of the system and has good robustness. Therefore, in
permanent magnet servo systems, PI controllers are generally used as closed-loop feed-
back controllers [5]. However, traditional PI controllers can only achieve zero steady-state
error tracking for DC signals and struggle to eliminate AC harmonic components [6]. To
mitigate AC harmonics and reduce their impact on permanent magnet servo systems,
various control methods such as sliding mode control, fuzzy control, repetitive control,
fractional-order Proportional Integral Derivative (PID) control, etc., have been applied in
servo control systems. Sliding mode control can enhance system disturbance rejection and
is widely used in permanent magnet servo systems. In order to reduce the influence of
external disturbances, parameter variations, and other uncertainties on the system control
performance, reference [7] combines adaptive control with sliding mode control, proposing
an adaptive sliding mode control strategy. The strategy adjusts system parameters online
using adaptive laws and introduces hyperbolic tangent functions to reduce chattering.
Subsequently, the adaptive laws are corrected via a projection factor to limit the range of
adaptive gains. The system’s disturbance rejection capability and dynamic response speed
are verified through simulation. Reference [8] presents a continuous fast nonsingular termi-
nal sliding mode tracking control scheme based on an uncertainty observer and utilizes
finite-time exact observers to simplify the setting of control gain parameters. It achieves
rapid convergence and high tracking accuracy under parameter uncertainties, exhibiting
excellent disturbance rejection performance. Sliding mode control has good robustness but
involves complex controller design. From the perspective of application effectiveness, fuzzy
control demonstrates robustness but struggles to meet the requirements of high-precision
control scenarios and generally needs to be combined with other algorithms. To address
the balancing issue between the dynamic response and steady-state error of traditional PI
controllers, reference [9] combines fuzzy control with PI control, designing a PI–fuzzy hy-
brid controller. This controller balances a low settling time and high steady-state accuracy,
eliminates overshoot, and improves the system’s dynamic performance.

1.2. Objectives

In practice, improving the motor structure for higher machining accuracy poses sig-
nificant challenges, making implementation difficult. Therefore, it is generally achieved
through control strategies to suppress current harmonics [10–13]. However, the aforemen-
tioned control strategies cannot simultaneously improve controller effectiveness while
maintaining low system complexity. Currently used harmonic suppression strategies in-
clude PI control, PID control, fractional-order Proportional Integral Derivative (FOPID)
control, sliding mode control, fuzzy control, repetitive control (RC), etc. [14–19]. Among
them, repetitive control demonstrates high control accuracy and strong disturbance re-
jection capability, making it widely used in harmonic suppression in control systems.
Fractional-order PID control, on the basis of the simple structure and robustness of PID
controllers, introduces fractional order theory, thus offering broader applicability [20–23].
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Based on the background mentioned above, this paper focuses on a permanent magnet
servo system utilizing a combination of repetitive control and fractional-order PID control.
The aim is to reduce overshoot, enhance the practicality of the control system under various
conditions, and improve the system’s harmonic suppression capability.

1.3. Paper Organization

The main research and overall research approach included in the paper are as follows.
For addressing the control performance and current harmonic suppression issues of

the permanent magnet servo system, first, a fractional-order PID controller is introduced
into the existing improved repetitive control strategy, with the fractional calculus operator
approximated using the Oustaloup approximation algorithm. Then, the parameters of
the fractional-order PID controller are tuned using the particle swarm optimization al-
gorithm, selecting the optimal control result as the controller parameters. Furthermore,
the fractional-order PID controller is combined with the improved repetitive controller to
form a composite fractional-order PID repetitive control strategy. Finally, the improved
control strategy’s disturbance rejection and harmonic suppression capabilities are tested
through simulation.

2. Fractional-Order PID Controller Design

The fractional calculus theory serves as the theoretical foundation for the fractional-
order PID controller. It extends traditional calculus by incorporating fractional-order
differentiation and integration operators, denoted as sλ and sμ, respectively. By adjusting
the orders of these operators, transformations between controllers can be achieved. How-
ever, in the fractional-order PID controller, the differentiation and integration operators are
irrational functions. Therefore, to implement the functionality of these operators within the
controller, rational approximation is necessary.

Common approximation methods include the power series approximation of the
Euler operator, the continued fraction approximation of the Tustin operator, and indirect
approximation methods such as Carlson’s method and Oustaloup’s method. Among these,
the Oustaloup approximation method exhibits a superior approximation performance and
is more desirable. Hence, in this study, the Oustaloup approximation method is employed
to approximate the differentiation and integration operators as rational functions.

2.1. Principle of Integer-Order PID Controller

The integer-order PID controller is typically employed in situations where accurate
modeling of the system can be achieved. Its closed-loop control principle is as follows: the
error E(s) between the target signal iref(s) and the actual output signal ig(s) of the system is
adjusted by the proportional gain Kp, integral gain Kis−1, and derivative gain Kds of the
integer-order PID controller. The output control signal Y(s) is then used as the input signal
to the controlled object, resulting in the actual output signal. The control principle of the
integer-order PID controller is illustrated in Figure 1.

 
Figure 1. Schematic diagram of the integer-order PID controller control principle.

The transfer function of the integer-order PID controller can be expressed as follows:

GI(s) =
Y(s)
E(s)

= Kp +
Ki

s
+ Kds (1)
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where E(s) and R(s) represent the input and output of the integer-order PID controller,
respectively, while Kp, Ki, and Kd are the proportional, integral, and derivative coefficients,
respectively. The time-domain expression of the integer-order PID controller is as follows:

Y(t) = Kp

[
e(t) +

1
Ni

∫ t

0
e(t) + Nd

de(t)
dt

]
= Kp + Ki

∫ t

0
e(t) + Kde(t) (2)

where Ni and Nd respectively denote the integral time constant and the derivative time
constant, satisfying Ni = Kp/Ki and Nd = Kp/Kd.

The proportional coefficient Kp allows adjustment of the error signal’s magnitude to
enhance the controller’s response speed. The integral component integrates the error signal,
and adjusting the integral coefficient Ki can improve the stability of the control system. The
derivative component differentiates the error signal, influencing its rate of change, and
adjusting the derivative coefficient Kd can shorten the adjustment time. By appropriately
tuning these three coefficients, the control action of the integer-order PID controller can
be realized.

2.2. Principle of Fractional-Order PID Controller

In practical applications, it is often challenging to accurately model the controlled
system, making it difficult to achieve the ideal control performance of integer-order PID
controllers. The emergence of fractional-order PID controllers addresses this issue. In prin-
ciple, the fractional-order PID controller represents an innovative adaptation of fractional
order theory to the traditional integer-order PID controller. Structurally, the fractional-order
PID controller introduces the additional fractional orders λ for the integral component
and μ for the derivative component. This not only enhances robustness but also provides
greater flexibility and applicability.

Similar to the control principle of the integer-order PID controller, the fractional-order
PID controller adjusts the error signal through the proportional gain Kp, integral gain
Ki/sλ, and derivative gain Kd·sμ. The control principle diagram for the fractional-order
PID controller is illustrated in Figure 2.

 

Figure 2. Schematic diagram of the fractional-order PID controller control principle.

From the figure, it can be observed that the transfer function GF(s) of the fractional-
order PID controller can be represented as follows:

GF(s) = Y(s)
E(s) = Kp + Ki

sλ + Kdsμ λ > 0, μ > 0 (3)

where E(s) and R(s) represent the input and output of the fractional-order PID controller,
respectively, while sλ and sμ represent the integral and derivative operators, respectively.
According to Equation (3), the expression of the PIλDμ controller in the time domain can be
obtained as follows:

Y(t) = Kp + KiD−λe(t) + KdDμe(t) (4)

Figure 3 shows the range of values for the orders of the integer-order PID controller
and the fractional-order PID controller. From the figure, it can be observed that the orders
λ and μ of the integer-order PID controller can only be 0 or 1, corresponding to the four
combinations on the graph: P, PI, PD, and PID controllers. In contrast, in the fractional-order
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PID controller, λ and μ can take any value greater than 0, as indicated by any point within
the shaded area on the graph, including the boundaries and endpoints. Therefore, the
fractional-order PID controller exhibits greater flexibility, allowing for specific adjustment of
the values of λ and μ according to the actual situation to achieve better control performance.

  
(a) (b) 

Figure 3. Controller calculus order value range. (a) Integer-order PID controller order value range.
(b) Fractional-order PID controller value range.

In the fractional-order PID controller, when λ = 1 and μ = 1, GF(s) = Kp + Ki/s + Kds, ex-
hibiting the form of an integer-order PID controller; when λ = 1 and μ = 0, GF(s) = Kp + Ki/s,
exhibiting the form of an integer-order PI controller; when λ = 0 and μ = 1, GF(s) = Kp + Kds,
exhibiting the form of an integer-order PD controller; when λ = 0 and μ = 0, GF(s) = Kp,
exhibiting the form of a proportional controller; when λ > 0 and μ = 0, GF(s) = Kp + Ki/sλ,
exhibiting the form of a fractional-order PIλ controller; and when λ = 0 and μ > 0,
GF(s) = Kp + Kdsμ, exhibiting the form of a fractional-order PDμ controller.

2.3. Oustaloup Approximation for Fractional-Order Calculus Operators

The approximation methods for fractional-order calculus operators can be categorized
into direct approximation and indirect approximation methods. The difference between
indirect and direct methods lies in the approach: indirect methods approximate first and
then transform, meaning that the transfer function is first approximated into an integer-
order form in the complex frequency domain s, followed by a transformation from the s
domain to the z domain. In indirect approximation methods, the Oustaloup approximation
method exhibits superior approximation performance. Therefore, this paper adopts the
Oustaloup approximation method to approximate the fractional-order calculus operators
sλ and sμ in the fractional-order PID controller.

The Oustaloup filter transfer function can be expressed as follows:

sα = H(s) = K
N

∏
k = 1

s + ω
′
k

s + ωk
(5)

K = ωα
h, ω

′
k = ωb

(
ωh
ωb

) 2k−1−α
2N , ωk = ωh

(
ωh
ωb

) 2k−1 + α
2N (6)

where α represents the fractional order, N denotes the approximation order, and ωh and ωb
respectively denote the upper and lower limits of the approximation frequency band.

2.4. The Orders λ and μ of the Fractional-Order PID Controller’s Calculus Operators Affect the
Control System

In order to gain a visual understanding of the effects of the orders λ and μ of the
fractional-order PID controller’s integral and derivative operators on the control system,
this paper employs the fractional-order system from reference [24] as the controlled object.
Through simulation and comparative analysis, the effects of increasing or decreasing
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parameters on the system are studied. The transfer function of the fractional-order system
in integer-order form can be represented as follows:

GFs(s) =
1

0.8s2.2 + 0.5s0.9 + 1
(7)

Utilizing the method of least squares, the integer-order form of the fractional-order
system can be approximately obtained as follows:

GIs(s) =
1

0.7414s2 + 0.2313s + 1
(8)

The corresponding transfer function of the fractional-order PID controller can be
obtained as follows:

GF(s) = 138.18 + 2.89s−0.2 + 12.38s1.1 (9)

The step response waveforms of the controlled fractional-order system and the con-
trolled fractional-order system using the fractional-order PID controller are depicted in
Figure 4. From the graph, it can be observed that in the step response curve of the fractional-
order system with the application of the fractional-order PID controller, the overshoot is
significantly reduced, the amplitude of the curve fluctuation is decreased, and the settling
time is notably shortened, enabling a faster attainment of stability.

 
Figure 4. Comparison of system step response.

From references [25,26], it can be inferred that selecting the appropriate orders λ and
μ for the integral and derivative operators can positively influence the system stability.
However, if the values of λ and μ are excessively large, it may instead have a negative
impact on the control performance of the fractional-order PID controller, reducing the
system’s stability. Therefore, typically, λ and μ are chosen to be within the range of (0, 2) to
maintain good control performance.

3. The Improved Fractional-Order PID Repetitive Controller

Based on the analysis above, it is evident that reasonable selection of the parameters for
the fractional-order PID controller can have a positive impact on the system’s stability. In
order to enhance the system stability while maintaining harmonic suppression performance
and better suppressing periodic disturbances, this section applies the fractional-order PID
controller to improve the repetitive controller, proposing a compound repetitive controller.

To achieve the desired control performance of the fractional-order PID controller, it is
necessary to tune its parameters. Classical tuning methods for fractional-order controllers
include time-domain and frequency-domain tuning methods, such as the dominant pole
method and the gain and phase margin method. However, due to the complexity of
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traditional fractional-order PID controller parameter tuning, the introduction of various
constraint formulas increases the computational complexity, resulting in a slow tuning
speed. Moreover, the parameters obtained after tuning are often not accurate and may
deviate from the ideal values.

Intelligent algorithms, such as particle swarm optimization, have been increasingly
used for tuning fractional-order PID controllers. By setting objective functions, optimization
solutions can be quickly found, and the tuned parameters are often more optimal, meeting
the control performance requirements of the controller. Common intelligent algorithms
include ant colony optimization, grey wolf optimization, particle swarm optimization, etc.
In this section, the particle swarm optimization algorithm is introduced to tune the five
parameters of the fractional-order PID controller.

3.1. Particle Swarm Optimization Algorithm

In 1995, American scholars Kennedy and Eberhart proposed the particle swarm
optimization (PSO) algorithm based on modeling and simulation of the foraging behavior
observed in bird flocks. Inspired by the decision-making process in human behavior, the
PSO algorithm simulates the cooperation and information sharing among particles in a
swarm to find the optimal solution to a given problem. With its versatility and effectiveness
in optimization, the PSO algorithm has been widely applied in solving optimization
problems associated with nonlinear and high-order systems. The iterative process of
particles is illustrated in Figure 5.

 

Figure 5. Diagram of the iterative process of particles.

From the above diagram, it can be intuitively understood how the positions and
velocities change from the i-th optimization iteration to the (i + 1)-th optimization itera-
tion. The red star denotes the global optimum; v1 represents the velocity influenced by
the particle’s own movement history, directing it towards its personal best position; v2
represents the velocity influenced by the collective movement experience of the entire
population, directing the particle towards the global best position; and v3 represents the
particle’s original velocity in the i-th iteration.

In a population optimization space set to N-dimensional space, comprising M particles,
the updated formula for the particle swarm algorithm can be expressed as follows:

vk(i + 1) = wvk(i) + c1r1(pk(i)− xk(i)) + c2r2(gk(i)− xk(i)) (10)

xk(i + 1) = xk(i) + vk(i + 1) (11)

where w represents the inertia weight, indicating the degree to which the velocity of
particles in the next iteration inherits from the current iteration velocity; pk(i) denotes the
individual best position at the i-th iteration; gk(i) signifies the global best position at the
i-th iteration; r1 and r2 are random numbers within the interval (0, 1); and c1 and c2 are
learning factors, representing the degree to which particles learn from the individual best
position and the global best position, respectively [27].

The basic process of PSO for optimization is illustrated in Figure 6.
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Figure 6. Basic flowchart of particle swarm algorithm.

3.2. Fractional-Order PID Controller Parameterization

In this section, the five parameters of the fractional-order PID controller are tuned
using the particle swarm optimization algorithm to achieve the desired control performance.
The schematic diagram of tuning the controller parameters using the particle swarm
optimization algorithm is shown in Figure 7.

 

Figure 7. Particle swarm algorithm-rectified fractional-order PID controller structure.

The evaluation stage in the figure assesses the quality of errors during the particle
swarm optimization tuning process. By setting error metrics, the problem of finding the
optimal parameters for the fractional-order PID controller is transformed into minimizing
the error performance index problem. To achieve better selectivity, performance indices
such as ISE, ITSE, IAE, ITAE, etc., are commonly used in research as evaluation criteria. In
order to enhance the disturbance rejection capability of the control system, this paper selects

119



J. Mar. Sci. Eng. 2024, 12, 1108

ITAE along with overshoot as performance criteria for tuning the controller parameters.
The ITAE criterion can be expressed as follows:

J =
∫ ∞

0
t · |e(t)|dt (12)

Evaluation indicators can be expressed as follows:

Je = J + Jo =
∫ ∞

0
t · |e(t)|dt + 0.001 · max(eo) (13)

where Jo denotes the criterion for evaluating the criterion as an overshooting quantity and
eo denotes the overshooting quantity.

The parameter tuning process can be implemented by combining simulation models
with MATLAB files. The specific implementation process is as follows: First, a certain
scale of particle swarm is generated through the particle swarm optimization algorithm
and transmitted to the Simulink model via MATLAB files to initialize the parameters.
Then, the simulation model is executed, and the fitness values are updated based on error
performance metrics. Finally, the fitness values are returned to the particle swarm algorithm
for iteration through the program. This process continues iteratively until the algorithm
termination conditions are met, thereby concluding the tuning process.

In the process of parameter tuning, the inertial weight w is set to 0.7, and the learning
factors c1 and c2 are set to 2. These parameters are used to adjust the fractional-order PID
controller applied to the specified controlled object. After multiple iterations of parameter
tuning, the following set of parameters are selected as the controller parameters: Kp = 2.1574,
Ki = 200.0125, Kd = 0.7, λ = 1.1, and μ = 0.2.

3.3. Improved Fractional-Order PID Repeat Controller

The tuned fractional-order PID controller is integrated into the control loop by replac-
ing the current PI regulator, forming a parallel combination with the improved discrete
Fourier transform repetitive controller [28]. This integration results in the formation of
an improved fractional-order PID repetitive controller. The structure of the improved
fractional-order PID repetitive controller is illustrated in Figure 8.

 

Figure 8. Structure diagram of fractional-order PID repetitive controller.

In the figure, GFP(z) denotes the transfer function of the fractional-order PID controller.
From the diagram, we can derive the relationship between the current control error

E(z) and the input signal iref(z) as follows:

E(z)
iref(z)

=
1

1 + [D(z) + GFP(z)]PA(z)
=

1

1 +
[

krGDFT(z)
1−z−Nb GDFT(z)

+ GFP(z)
]

PA(z)
(14)
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From the above equation, we can obtain the characteristic equation of the permanent
magnet synchronous motor (PMSM) drive system using the improved fractional-order PID
repetitive controller as follows:

1 + [D(z) + GFP(z)]PA(z) = [1 + GFP(z)PA(z)]
[
1 + D(z) PA(z)

1 + GFP(z)PA(z)

]
= [1 + GFP(z)PA(z)][1 + D(z)GM(z)]

(15)

where GM(z) represents the equivalent controlled object of the improved fractional-order
PID repetitive controller.

Similarly, when all the characteristic roots of the characteristic equation lie within the
unit circle of the Z-plane, the control system is stable. Therefore, the improved fractional-
order PID repetitive controller should satisfy the following stability conditions:

(1) All roots of 1 + GFP(z)PA(z) = 0 lie within the unit circle.
(2) |1 + D(z)GM(z)| �= 0.

Based on stability condition (1), by analyzing the pole distribution of PA(z), the position
of the roots for condition (1) can be determined. The pole distribution of PA(z) is illustrated
in the figure on the left side of Figure 9.

Figure 9. Pole-zero plot of PA(z) and Nyquist plot of N(z).

From the pole-zero plot of PA(z), it can be observed that the poles of PA(z) are dis-
tributed within the unit circle, thus satisfying stability condition (1). According to the
minimum gain theorem analysis, the establishment condition of stability condition (2) can
be expressed as follows:

N(z) =
∣∣∣GDFT(z)[z−Nb − krGM(z)]

∣∣∣< 1 (16)

The Nyquist plot N(z) is depicted in the figure on the right side of Figure 9, showing
that the trajectory of N(z) closely approximates that of F(z), with only a slight expansion
by 0.5 along the real and imaginary axes, remaining within the unit circle. Additionally,
the root trajectory maintains a certain margin from the unit circle, indicating that the
proposed improved fractional-order PID repetitive controller possesses a certain degree of
stability margin.

4. Experimental Analysis and Comparison

In this section, the construction of a simulation model of a PMSM on the Simulink
platform is described, with the traditional PI current regulator replaced by a fractional-
order PID controller. This model was utilized to evaluate the control performance of the
permanent magnet synchronous motor equipped with the improved fractional-order PID
repetitive controller. The motor drive schematic is shown in Figure 10. The permanent
magnet servo systems defined using the PI controller, the improved DFT repetitive con-
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troller, the fractional-order PID controller, and the improved fractional-order PID repetitive
controller are denoted as PMSS1, PMSS2, PMSS3, and PMSS4, respectively.

Figure 10. Motor drive schematic diagram.

4.1. Steady-State Performance Analysis

In this subsection, a comparative analysis of the steady-state performance of PMSS1,
PMSS2, PMSS3, and PMSS4 under the same operating conditions is conducted. The refer-
ence speed was set to 1500 rpm, and the reference torque was set to 1.0 N·m. The torque
waveform, phase A current waveform, and current spectrum analysis plots of PMSS1,
PMSS2, PMSS3, and PMSS4 are shown in Figures 11 and 12.

 
Figure 11. Comparative analysis of PMSS1, PMSS2, PMSS3, and PMSS4 torques.
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Figure 12. Graph of comparative analysis of current total harmonic distortion (THD) for PMSS1,
PMSS2, PMSS3, and PMSS4.

The steady-state performance parameters of the permanent magnet servo systems
using different controllers are presented in Table 1.

Table 1. Steady-state performance parameters of PMSS1, PMSS2, PMSS3, and PMSS4.

Stability Performance
Parameters

PMSS1 PMSS2 PMSS3 PMSS4

Torque ripple (N·m) 0.21 0.16 0.18 0.12
Average torque (N·m) 0.98 1.01 0.99 1.00

Current THD 7.37% 5.46% 6.86% 4.67%

The simulations show that PMSS3’s torque ripple decreased by 9% and the harmonic
distortion by 6.91% compared to PMSS1. Similarly, PMSS4 exhibited a 25% reduction in
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torque ripple and a 14.47% reduction in current harmonic distortion compared to PMSS2.
Therefore, the fractional-order PID controller and the improved fractional-order PID repeti-
tive controller outperformed the PI controller and the PI-DFT-RC controller, respectively,
demonstrating superior torque and harmonic suppression performance and exhibiting
excellent control capabilities.

4.2. Dynamic Performance Analysis

To verify the dynamic performance of the improved fractional-order PID controller,
simulations of acceleration and deceleration were conducted for PMSS1, PMSS2, PMSS3,
and PMSS4. A torque of 0.8 N·m was set, and a step change from 1200 rpm to 1500 rpm
was applied to the reference speed, followed by a decrease from 1500 rpm to 900 rpm. The
simulation results are depicted in Figure 13.

 

Figure 13. Comparative analysis of dynamic performance of PMSS1, PMSS2, PMSS3, and PMSS4.

Based on the simulated waveform data, a summary calculation was performed to
derive the experimental results, as presented in Table 2.
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Table 2. Comparative table of transient performance of PMSS1, PMSS2, PMSS3, and PMSS4.

Performance Parameters PMSS1 PMSS2 PMSS3 PMSS4

Rise time of speed/s 0.0051 0.0035 0.0043 0.0029
Speed fluctuation/rpm 62 38 49 31
Overshoot in speed/% 4.13 2.53 3.27 2.07

Steady-state time
in speed/s 0.048 0.03 0.04 0.025

Combining Figure 13 and Table 2, the speed settling times for PMSS1, PMSS2, PMSS3,
and PMSS4 were 0.048 s, 0.03 s, 0.04 s, and 0.025 s, respectively, with speed fluctuations of
62 rpm, 38 rpm, 49 rpm, and 31 rpm, respectively. PMSS3 and PMSS4 also exhibited smaller
speed overshoot compared to PMSS1 and PMSS2. Through comparative analysis, it can be
concluded that the fractional-order PID controller and the improved fractional-order PID
repetitive controller have stronger disturbance rejection capabilities and superior dynamic
stability performance compared to the PI controller and PI-DFT-RC controller.

5. Conclusions

Early studies demonstrated that an improved control strategy can significantly reduce
current harmonics and torque ripple, although most studies have not considered the ap-
plication of the composite fractional-order PID repetitive control method. Therefore, this
paper proposed a composite repetitive control strategy. Through simulation verification, it
was found that the proposed composite fractional-order PID repetitive controller exhibits a
superior harmonic suppression capability and dynamic stability performance compared to
the conventional fractional-order PID repetitive controller, with stronger signal tracking
performance. The results indicate that the proposed composite controller possesses excel-
lent disturbance rejection, harmonic suppression, and dynamic-static stability capabilities,
thereby improving the overall control performance of the system to a certain extent.

The controller proposed in this paper has good harmonic suppression capabilities and
improved the system’s control performance to some extent, but there are still some short-
comings that need to be addressed. For example, the Oustaloup approximation algorithm
used performs poorly at both ends of the approximation frequency band. Therefore, further
research can be conducted on better approximation methods to improve the accuracy of
the approximation and obtain more ideal controller parameters.
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Abstract: Hybrid power technology for ships is an effective way to promote the green and
low-carbon development of the maritime industry. The development of pattern recognition
technology provides new research ideas for the rational allocation and utilization of energy
in hybrid power ships. To reduce fuel consumption, a nonlinear model predictive control
energy management strategy based on working condition identification is proposed for
optimal energy management to solve the problem of real-time optimal adjustment of gen-
erators and batteries. The core of the strategy is to identify the ship’s working conditions
and the nonlinear model predictive control algorithm. Firstly, to achieve the working
condition identification task, a ship working condition dataset based on a hybrid supply
power ship data is constructed. The labeled dataset is trained using deep learning tech-
niques. Secondly, based on the identification results, a nonlinear model predictive control
algorithm is designed to adjust the generator speed and the battery current to achieve
energy optimization control under constraints. Finally, the effectiveness of the proposed
strategy in optimizing energy control and reducing fuel consumption is verified through
simulation. The proposed strategy can reduce the generator fuel consumption by 5.5%
under no noise disturbance when compared with conventional predictive control. Under
10% noise disturbance, it is still able to reduce the fuel consumption by 2.6%.

Keywords: hybrid power ships; energy management; working condition identification;
nonlinear model predictive control; deep learning technology

1. Introduction

In 2018, the International Maritime Organization (IMO) adopted a greenhouse gas
reduction strategy, marking the shipping industry’s entry into carbon reduction efforts. By
2023, IMO passed a series of amendments aimed at reducing air pollution and improving
ship energy efficiency [1], highlighting the industry’s increasing demand for energy-saving
and emission-reduction technologies. Clearly, further development and improvement of
energy control technologies to meet the requirement of reducing ship fuel consumption
remains a key direction for the industry. Hybrid power technology is driving the ship-
ping industry toward greener development [2–4]. The integration of operating condition
identification technology and energy management strategies (EMS) for hybrid ships has
provided new opportunities for reducing fuel consumption [5].

In the field of hybrid vehicles, many studies suggest that identifying vehicle work-
ing conditions provides valuable decision-making information for energy management
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strategies, enabling the reduction of fuel consumption. Experimental validations show that
accurate identification of working conditions positively impacts the reduction of vehicle
operating costs [6–9]. However, for hybrid ships, distinguishing working conditions is
more challenging due to the complexity of the water environment and ship operations. This
presents difficulties and challenges in applying operating condition identification technol-
ogy to optimize fuel consumption in hybrid ships. On one hand, the lack of comprehensive
operating condition datasets hinders the analysis of ship operation patterns and anomaly
detection. On the other hand, the low accuracy of operating condition identification impairs
the performance of energy management strategies, leading to poor optimization and in-
creased fuel consumption, which in turn exacerbates carbon and nitrogen oxide emissions,
resulting in significant environmental pollution.

Numerous scholars have conducted research on EMS and operating condition identi-
fication technologies, aiming to effectively coordinate multiple power sources in hybrid
systems to reduce fuel consumption and lower emissions. EMS can be categorized into
rule-based, global optimization-based, and instantaneous optimization strategies [5]. Rule-
based EMS often relies on fuzzy logic rules, but such strategies lack flexibility and may
not adapt well to complex environments and changing energy demands [10–12]. EMS
based on global optimization is difficult to implement and is not conducive to practical
engineering applications [13,14]. Instantaneous optimization strategies, such as model
predictive control (MPC), equivalent fuel consumption minimization, and swarm intelli-
gence algorithms, require real-time performance and high computational speed [15,16].
Operating condition identification methods can be divided into physics-based and data-
driven approaches. Physics-based methods require a deep understanding of the equipment
and system, involving significant prior knowledge and computation. For example, in [16],
nonlinear model predictive control (NMPC) was used to reduce fuel consumption and
optimize CO2 emissions by considering the impact of random waves on the propeller load
of hybrid ships. In contrast, data-driven methods rely on large datasets for training and
validation and do not require an accurate pre-established system model. These methods
can be further categorized into supervised and unsupervised learning. Both types rely on
data as a foundation [17]. However, unsupervised learning methods are highly depen-
dent on data quality and features, and the resulting models may be difficult to interpret
or apply to all datasets [18,19]. Supervised learning has the advantage of allowing for
model correction and optimization, but it requires manual data labeling [20]. For instance,
in [20], Least Squares Support Vector Machine (LSSVM) was used to distinguish between
fast-varying and slow-varying conditions, and RBF neural networks and Markov Chain
models were applied to predict load demands, but without addressing energy management
optimization. In [21], a hierarchical distributed control method for hybrid systems was
proposed to reduce battery current fluctuations and stabilize bus voltage. Yuan et al. [22]
applied Support Vector Machine (SVM) models for operating condition identification and
used multi-step Markov Chain models to predict power demands under various conditions,
though with relatively low accuracy.

Overall, previous research has rarely focused on utilizing operating condition identifi-
cation technology to provide decision-making information for the Energy Management
System (EMS) of hybrid ships. On one hand, much of the existing research on ship working
conditions has concentrated on prediction and analysis. On the other hand, the integration
of operating condition identification with EMS has not been sufficiently explored, and
the low accuracy of identification hinders effective energy optimization under varying
operating conditions. The model accuracy rates of Gao et al. [20] and Yuan et al. [22]
are 41.5% and 90.88%, respectively. The accuracy of the models still needs to be further
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improved. Therefore, the focus of this study is on improving the accuracy of operating
condition identification using deep learning techniques and integrating it with NMPC to
optimize the energy control of hybrid ships, to reduce fuel consumption. The research
begins by analyzing ship operational data and creating an operating condition dataset. To
enhance identification accuracy, a deep learning approach utilizing Convolutional Neural
Networks (CNN) is employed to train an operating condition recognition model, incorpo-
rating Efficient Channel Attention (ECA) [23–27]. In terms of energy management, NMPC
is used as the core strategy to address real-time performance requirements and nonlinear
system constraints.

The proposed method integrates operating condition identification with EMS, enabling
the identification of operating conditions to provide valuable decision-making information
for EMS. Furthermore, this approach has significant implications for reducing fuel con-
sumption in hybrid ships and is expected to contribute to advancing future research on
ship working conditions.

The main contributions of this paper are as follows:

1. A working condition dataset was constructed based on the historical data of a hybrid
supply vessel. The dataset was classified using clustering methods, and the ship’s
status corresponding to each category was analyzed.

2. An offline working condition identification model was trained based on CNN, with
an identification accuracy of up to 99.8%.

3. Taking a hybrid supply vessel as the research object, this study emphasizes practical
engineering applications. The speed of the diesel generator and the output current of
the energy storage battery are set as control objectives, aiming to optimize fuel con-
sumption. The NMPC-based EMS achieves optimal control under different working
conditions, reducing fuel consumption by 2.6–5.5%.

This study is structured as follows: Section 2 introduces the research object and scheme.
Section 3 elaborates in detail on the case ship power system model. Section 4 presents the
EMS based on the working condition identification, and Section 5 shows the simulation
results and analysis. Section 6 presents the conclusions and offers future perspectives.

2. Research Object and Scheme

2.1. Research Object

In this study, a hybrid supply power ship is used as the research object, named
“CNOOC 257”. The ship mainly navigates between docks and offshore oil platforms. It is
tasked with supplying and transporting workers to and from the platforms. Its propulsion
system features dual propellers and engines in a parallel arrangement, composed of pro-
pellers and bow thrusters. The main diesel engines provide the propulsion power, while
the thrusters, via an AC bus, offer lateral movement capabilities. The key parameters of the
ship such as length, breadth, and draft are listed in Table 1.

Table 1. Ship parameters.

Description Value

Ship length 79 m
Ship breadth 16 m

Draft 8 m
Mass 15,000~20,000 ton

The topological structure of the power system is shown in Figure 1; shaft generators,
auxiliary generators, and the energy storage battery are the power supply equipment in the
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grid. The shaft generators are SG1 and SG2. The auxiliary generators are DG1, DG2, and
DG3. There is a 1021 kWh energy storage battery equipped with this power management
system, which can handle a maximum input and output power of 400 kW through a
bidirectional DC/AC converter.

Figure 1. Hybrid power system electrical and dynamic system topology for CNOOC 257.

BUS A, BUS B, BUS C1, and BUS C2 serve as the ship’s AC buses. Power for the energy
storage battery is typically supplied from shore or a shaft generator SG1 or SG2. It can be
provided flexibly and independently to shipboard electrical equipment via any AC bus.
The power system structure includes two main thrust propellers and three thruster units
with two bow thrusters. Thruster units BT1 and BT2 and one stern thruster, ST, are shown
in Figure 1.

In Figure 1, the operations of the hybrid power ship are more complicated and are
summarized as follows: (1) The propellers that provide forward power are driven by the
diesel main engines. (2) The shaft generator, auxiliary generator, and energy storage battery
can provide electricity to the thruster units. However, the shaft generators only work in
power take-off operating mode and only run when the ship is being propelled, thereby
increasing fuel consumption as power is supplied to electrical devices through the AC
buses. (3) The power topology is complex, and the power difference between the shaft
generator and the auxiliary generator is huge and does not allow parallel operation for a
long time. These working conditions pose challenges in reducing fuel consumption and
maintaining ship stability, necessitating an effective EMS.

2.2. Scheme

Simplified operation: Setting up the shaft generator does not participate in the power
supply of the side-thrust device but only charges the energy storage battery.

The proposed scheme in this paper is shown in Figure 2. Reducing diesel fuel consump-
tion is the research goal and motivation of this paper. It achieves this by identifying the
working conditions to maintain the stable operation of the hybrid power ship. The method-
ology involves modeling the electrical system, utilizing operating condition identification
methods, and implementing an NMPC energy management strategy for optimal control.
Finally, the contribution is demonstrated by validating the effectiveness of the proposed
strategy through energy consumption analysis and real-time performance indicators.

Working condition identification is achieved through deep learning technologies. To
begin with, a ship working condition dataset will be established, and then a CNN-based
model will be trained for the identification task. Then, the proposed strategy can adjust
in real time based on the identification results to complete the task of energy allocation
under different conditions. At the same time, the optimal control of the ship is also realized.
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Finally, the effectiveness of the working condition identification on the EMS will be verified
by Simulink simulations. Fuel consumption, battery state of charge (SOC), and real-time
performance metrics will be analyzed to evaluate the strategy.

 

Figure 2. Energy management scheme based on working condition identification.

3. Model Establishment

The ship power system model will be established from the point of view that the
hybrid ship power system conforms to the conservation of energy. The hybrid power
system topology for CNOOC 257 is shown in Figure 1. At the same time, the model
of the energy storage battery and auxiliary generator will be constructed by the data
fitting method.

3.1. Hybrid Power Ship Power System Model

The ship’s thruster is powered by the auxiliary generator, an energy storage battery.
Based on the law of conservation of energy, and ignoring mechanical losses and some
electrical losses, the model description of its power can be expressed by{

Pload = Pdg + Pbat, Pbat ≥ 0∣∣Pbat
∣∣= Psg, Pbat < 0

(1)

wherein Pload is the power demanded by the ship’s thrusters and on-board electrical
equipment. Pdg is the power provided by the auxiliary generator. The ship’s energy storage
device is a lithium iron phosphate power battery. Pbat is the power provided by the battery.
When Pbat is greater than zero, the battery is discharged and outputs power. Otherwise, the
battery is charged and inputs power. Psg is the power provided by the shaft generator. This
is used here to illustrate the energy source of the energy storage battery.

3.2. Energy Storage Battery

The internal resistance equivalent model is adopted as shown in Figure 3. Its current
is calculated as follows [13]:

Ibat =
Voc −

√
V2

oc − 4PbatR0

2R0
(2)
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wherein Voc is the open circuit voltage of the internal resistance model. Pbat is the output
power of the storage battery. R0 is the internal resistance of the storage battery.

Figure 3. Equivalent circuit of the battery.

The SOC of the battery is calculated as follows:

SOC = SOC0 −
∫ t

t0
Ibatdt

3600Q
(3)

wherein SOC0 is the initial state of charge. Q is the battery capacity. Ibat is the energy
storage battery current.

The powers of the battery are constrained as follows:

Pbat,min ≤ Pbat ≤ Pbat,max (4)

wherein Pbat,min is the minimum charging power. Pbat,max are the maximum charging power.
The limits for battery SOC and current are constrained as follows:

SOCmin ≤ SOC ≤ SOCmax

Ibat,min ≤ Ibat ≤ Ibat,max
(5)

The ship’s energy storage battery has four operating modes, as shown in Figure 4: (a)
Mode 1 denotes the operating mode where the shaft generator charges the energy storage
battery through BUS A; (b) Mode 2 denotes the operating mode where the shaft generator
charges the energy storage battery through BUS B; (c) Mode 3 denotes the operating mode
where the energy storage battery provides power through BUS C1; and (d) Mode 4 denotes
the operating mode where the energy storage battery provides power through BUS C2 to
provide power.

Figure 4. Energy storage battery’s operating modes.
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3.3. Auxiliary Generator Model

The auxiliary generator primarily consists of a diesel main engine and generator. The
output power of the diesel generator is related to the engine speed and exhibits a nonlinear
relationship. The rotational speed and output power of the auxiliary generator are fitted
by the scheme of modeling the auxiliary generator in reference [13]. The formula for
calculating the output power of the auxiliary generator is denoted as follows:

Pdg =
3

∑
i=0

aiω
i
dg (6)

where ωdg is times the rotational speed of the generator, and ai and i are the coefficients
and exponents of the approximate polynomial, respectively.

The specific fuel oil consumption (SFOC) of the diesel engine and the auxiliary genera-
tor output power are calculated by the following formula [13]:

m f =
3

∑
j=0

bjP
j
dg (7)

where Pj
dg is the output power of the auxiliary generator, and bj and j are the coefficients

and exponents of the approximate polynomial, respectively.
The constraints of the diesel generator are shown by:

Pdg,min ≤ Pdg ≤ Pdg,max (8)

wherein Pdg,min is the minimum output power. Pdg,max is the maximum output power.

4. EMS Based on Working Condition Identification

The EMS is regarded as the core of energy distribution schemes for hybrid power
ships. Working condition identification can obtain the current condition of the ship and
provide decision-making information for the EMS, but it has rarely been considered in
previous literature. To address this challenge, this paper combs and classifies the data of
the supplying ship to train the identification model. To cope with the energy optimization
problem under different conditions, this paper targets the relevant parameters from diesel
generators and batteries and uses NMPC for rolling optimization.

4.1. Working Condition Identification

Due to the complexity of ship operation conditions, the IMO has not established a
unified standard of working conditions for ships, which is very unfavorable for the research
on the working conditions of ships. However, identifying the ship’s condition only from
the status of the shipboard equipment is not able to incorporate the subjective initiative of
human beings. Therefore, the study from the perspective of data is an effective method.

4.1.1. Working Condition Dataset for Hybrid Power Ship

The operational data of the vessel “CNOOC 257” was collected and analyzed through
hifleet.com (accessed on 27 April 2023). On average, the vessel spends 2.24 h per day in
port, 13.6 h offshore, and 8.16 h sailing. A ship operating condition dataset was created
by collecting the vessel’s operational data over a week. The sampling frequency was set
to 1 Hz, and key feature parameters included ship speed, load power, load voltage, load
current, propulsion power, propulsion voltage, propulsion current, and propulsion torque.
This dataset comprises 98,143 data entries.
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The K-means clustering algorithm and clustering evaluation methods were applied to
determine data categories. The elbow method was used as the clustering evaluation algo-
rithm. This method evaluates clustering performance by calculating the sum of squared
errors (SSE), which measures the squared distance between each data point and its respec-
tive cluster center, across different numbers of clusters. The “elbow” is identified as the
point where the SSE curve shows a significant reduction, indicating the optimal number
of clusters.

Figure 5 illustrates the clustering results using the elbow method. As shown in this
figure, a distinct elbow point occurs when the number of clusters is four. Thus, four clusters
were chosen as the basis for classification.

Figure 5. Elbow method.

As shown in Figure 6, the ship speed and load power data for the four categories
are presented. Ship speed and load power are two critical factors for determining the
operational state of the vessel. Statistical analyses were performed for the four categories
of data. The power range for Type 1 is approximately 0–300 kW, and the ship speed is
around 0–7 Kn. The power range for Type 2 is between 280–800 kW, and the ship speed
is 0–7 Kn. For Type 3, the power range is approximately 0–300 kW, and the ship speed is
around 6–14 Kn. Type 4 has a power range of approximately 150–450 kW, and the ship
speed is around 7–14 Kn.

Figure 7 illustrates the median, mean, and proportion of ship speed and demand
power within the dataset for the four operating conditions. These metrics provide a
comprehensive overview of the characteristics of each operational category. As shown in
Figure 7, the proportions of operating conditions of Type 1 and Type 4 are relatively large,
while those of Type 2 and Type 3 are relatively small. By comparing the mean and median
values, the differences for operating conditions of Type 1 and Type 3 are relatively small,
while the differences for Type 2 and Type 4 are more significant. This indicates that the
power and ship speed data of operating conditions of Type 2 and Type 4 show a skewed
distribution. Additionally, the average demand power for operating conditions of Type 2
and Type 4 is around 400 kW, while the average power demand for operating conditions of
Type 1 and Type 3 is 100 kW or less.

Through cluster analysis and detailed examination of each data category, the ship’s
status was linked to each data type based on two critical indicators: ship speed and load
power. The results are presented in Table 2.
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Figure 6. The ship’s working condition dataset.

 

Figure 7. Data statistics of the ship’s working condition dataset.

Table 2. Working condition information and number.

Conditions Description Ship Status

Type 1 The shipload power is low,
and the speed is low.

Mooring operations or
low-speed navigation

Type 2 The shipload power is high,
and the speed is low.

Accelerating navigation and the
operating equipment running

Type 3 The shipload power is low,
and the speed is high. Ship’s high-speed navigation status

Type 4 The shipload power is high,
and the speed is high.

High-speed navigation
operational equipment running

135



J. Mar. Sci. Eng. 2025, 13, 269

4.1.2. Working Condition Identification Model

The core of the operating condition identification model is a CNN model enhanced
with an ECA attention mechanism. CNN, as a representative algorithm in deep learning, is
known for its feature learning capabilities. It can perform translation-invariant classification
of input data based on its hierarchical structure, making it suitable for learning from
the dataset established in this study. Moreover, numerous studies have demonstrated
that attention mechanisms can help models focus on important features and improve
generalization performance. Therefore, this study employs ECA-net, whose principle
is based on a dimensionality-preserving local cross-channel interaction strategy and an
adaptive method for selecting the size of one-dimensional convolution kernels, thereby
enhancing model performance [24–26].

The following steps describe the training and prediction process of the proposed
operating condition identification model using the ship operating condition dataset:

1. Split the dataset into a training set and a validation set with an 8:2 ratio.
2. Normalize the data, and train the classification model.
3. Normalize the test dataset, and use the trained model to make predictions, evaluate

the model, and obtain the results.
4. Normalize the collected ship operating condition data or test dataset, use the trained

classification model to make predictions, and evaluate the model.

The CNN model used in this study is based on the models proposed by Wang et al. [26],
Yang et al. [27], and Zhang et al. [28]. Through multiple experiments, the structure of the
CNN is determined. The criteria for the structure are twofold: firstly, the training time
should be as short as possible, and secondly, the identification should be accurate. Therefore,
the identification model consists of one input layer, three convolutional layers, two ECA-
net modules, three pooling layers, and two fully connected layers. The details of dataset
preprocessing, the structure of the CNN model, and its parameter settings during training
are shown in Figure 8.

 

Figure 8. Structure, parameters, and training process of the proposed identification model.

4.2. NMPC-Based EMS Based on Working Condition Identification

In this study, NMPC is selected as the optimization algorithm for energy management
strategies, which is the main representative algorithm for transient optimization strategies.
The core of NMPC is its rolling optimization capability, and its cost function can be given
by a non-quadratic programming form, unlike the MPC. However, the design of the NMPC
cost function affects the optimization results. At each moment, NMPC solves the optimal
control sequence of the optimization problem takes the first set of values in the solved con-
trol sequence as control inputs and then repeats the process at the next moment. Therefore,
in this paper, the SOC of the battery and the instantaneous fuel consumption of the auxil-
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iary generator are taken as the main optimization objectives, and the diesel generator and
the battery are used as the control objects, the state variables x(k) = [SOC, m f ]

T , control

variables u(k) = [Ibat, ωdg]
T , output variables y(k) = [SOC, m f ]

T . The nonlinear model is
given by the following:

x(k + 1) = f (x(k), u(k)) =

⎡
⎢⎢⎣

x1(k)−
∫

u1(k)dt
3600Q

3
∑

j=1
bj

(
3
∑

i=1
ai(u2(k))

i
)j

⎤
⎥⎥⎦ (9)

The cost function is designed in the following form:

minJ = β1,w
i=1
∑

N−1
(SOCi − SOCre f )

2 + β2,w
i=1
∑

N−1
m2

f ,i + μ1,w
i=1
∑

N−1
P2

bat,i

+μ2,w
i=1
∑

N−1
P2

dg,i + ϕ1,w

(
SOCN − SOCre f ,N

)2
+ ϕ2,wm2

f ,N

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

um,min � um � um,max
.

um,min � .
um � .

um,max

SOCmin � SOC � SOCmax

Pload = Pbat,i + Pdg,i

(10)

wherein
(

SOCi − SOCre f

)2
is a penalty for battery SOC deviation, which ensures avoiding

excessive battery discharge variations in energy demand throughout the entire operat-
ing cycle. SOCre f is the reference input for the battery SOC. m2

f c,i is the penalty term

for minimizing the fuel consumption. P2
bat,i and P2

dg,i are minimizing system inputs.(
SOCN − SOCre f ,N

)2
and m2

f ,N are terminal constraints. β1,w, β2,w, μ1,w, μ2,w, ϕ1,w, ϕ2,w

are the penalty coefficients. Their values are determined by the working condition type w.
um is the control variable, which should satisfy the constraints of (4) and (8). Meanwhile,
to keep the control variables from changing too drastically and to keep the rate of change
within a certain range, the energy storage battery SOC is constrained by (5). Finally, the
energy conservation of the ship is incorporated into the control strategy in the form of
equation constraints.

Based on the results of operating condition identification, the adjustment of the penalty
coefficient is determined by the different motion states of the vessel under various oper-
ating conditions. These differences affect the proportion of power output from the diesel
generator and the battery. The selection of penalty coefficients is performed manually.
Through the Monte Carlo experimental method, 1000 sets of penalty coefficients are ran-
domly generated. For each set of penalty coefficients, the objective function values are
calculated based on the mean load power under different operating conditions and the
fuel economy range of the auxiliary generator. Statistical analysis is then performed on
these objective function values. Ultimately, a set of penalty coefficients is determined for
each type of operating condition. In the Type 1 operating condition, for example, the
battery output should be increased, while the diesel generator’s power output should be
reduced accordingly.

The identification must match the computational speed of the EMS, and the time series
of the proposed strategy is shown in Figure 9, with the time units in seconds. The time
required for one calculation of the experimental platform is as follows:

Δt = Δt1 + Δt2

s.t.Δt ≤ 1
(11)
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wherein Δt1 represents the working condition identification time, and Δt2 represents the
solution time for the NMPC controller.

Figure 9. Time series of the proposed strategy.

The block diagram of the proposed EMS based on working condition identification is
shown in Figure 10. It is mainly divided into the working condition identification module,
the NMPC controller, and the controlled system consisting of the diesel generator and the
energy storage battery.

 

Figure 10. Block diagram of NMPC control based on working condition identification.

The inputs to the condition identification module are the eight data parameters men-
tioned in Section 4, i.e., ship speed Ŝ(k), load power P̂load(k), load voltage V̂load(k), load
current Îload(k), propulsion power P̂propulsion(k), propulsion voltage V̂propulsion(k), propul-
sion current Îpropulsion(k), and propulsion torque T̂propulsion(k), which are fed back from
the controlled system. Its output is the result of the four types of conditions described,
called w. The results of the identification are used to adjust the constraints and the penalty
coefficients of the cost function.

The NMPC controller is used for rolling optimal control of the energy control of the
auxiliary generator, P̂dg(k) and storage battery, P̂bat(k). The controlled system feeds back
the measured output power of the auxiliary generator and the measured output power of
the storage battery to the NMPC controller to complete the closed-loop control.

5. Experimentation and Analysis

The experimental platform is equipped with a GPU, NVIDIA GeForce RTX 4060, and
a CPU, Intel Core i7-13700H. The construction and training of the identification model are
both carried out in MATLAB software (R2022b).

5.1. Accuracy of the Working Condition Identification Model

The performance of the model based on deep learning technology on the ship condition
dataset can be evaluated through indicators such as the confusion matrix, accuracy, and
loss. The confusion matrix is an important indicator for evaluating the classification model.
As shown in Figure 11, it includes the number of true positives (TP), true negatives (TN),
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false positives (FP), and false negatives (FN). Therefore, when analyzing and evaluating
the working condition identification model using the confusion matrix metrics, certain
conclusions can be drawn from the proportion of the diagonal elements TP and TN in
Figure 11.

Figure 11. Confusion matrix.

The definition and calculation formula for the model’s accuracy are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

wherein TP, TN, FP, and FN are consistent with the definitions in Figure 11, respectively.
One of the important indicators for measuring the training process of deep learning is

the loss, calculated as follows:

Loss = −
n

∑
i

yi log(pi) (13)

wherein yi is the data sample label. When the data sample belongs to the class i, yi is 1;
otherwise, it is 0. pi is the probability that the data sample belongs to the class i. As the
name suggests, the smaller the loss of the model, the better the model performance on the
dataset, and the better the model fits the data.

The loss and accuracy during the training of the proposed identification model are
shown in Figure 12. As the number of training increases, the accuracy of the model
increases, and the loss degree decreases. The loss of the model can decrease to 0.035; the
accuracy can increase to 98.6%.

Figure 12. Degree of loss and accuracy of the training process.

The comparison of the training set and test set prediction results is shown in Figure 13.
The training set contains a total of 78,514 data entries, and the test set includes a total of
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19,629 data entries. The proposed identification model achieves an accuracy of 99.8268%
for both datasets, predicting a result different from the actual situation for only a small
number of data entries.

 

Figure 13. The proposed identification model training set and test set prediction results.

For further analysis, the confusion matrices of the training set data and the test set
data are plotted in Figure 14. In Figure 14a, the training set contains 25,036 data entries for
condition Type 1, of which 24,996 are correctly identified, 10 are incorrectly identified as
Type 2, and 30 are incorrectly identified as Type 3. There are 4808 data entries, of which
4799 are correctly identified and 9 are incorrectly identified as Type 1; for condition Type 3.
There are 16,329 data entries, of which 16,095 are correctly identified and 234 are incorrectly
identified as Type 1. For condition Type 4, there are 32,341 data entries, all of which are
correctly identified.

Figure 14. Confusion matrix based on the proposed model.

Figure 14b indicates that in the test set, there are 6352 data entries for condition Type 1,
of which 6341 are correctly identified, one is incorrectly identified as Type 2, and 10 are
incorrectly identified as Type 3. For condition Type 2, there are 1186 data entries, with 1180
correctly identified and 6 incorrectly identified as Type 1. For condition Type 3, there are
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4083 data entries, with 4028 correctly identified and 55 incorrectly identified as Type 1. For
condition Type 4, there are 8080 data entries, all of which are correctly identified.

In summary, the identification accuracy of working conditions Type 1, Type 2, and
Type 4 is higher than 99%; Type 3 has 98% identification results. Type 1 has 1% of the
data classified as Type 3. Type 3 has 1.4% of the data classified as Type 1. Due to the low
number of incorrectly identified data, it can be recognized as a small probability event.
From the analysis, the proposed identification model can accomplish the working condition
identification task.

5.2. Computational Time of Working Condition Identification

The proposed identification model must match the computational speed of the EMS.
For this reason, the identification speed of the working condition identification model is
evaluated through comparative experiments. They are divided into two parts: (1) testing
the time required to train the model and (2) the time required to use the model to com-
plete the working condition identification task. This study designs two sets of controlled
experiments on the same experimental platform, comparing the models based on the SVM
identification model and the proposed model used in this paper.

• Experiment 1: This sets the parameters of the identification model proposed as shown
in Figure 8. The identification model is based on SVM, and the RBF function is chosen
as the kernel function. Both models are trained 100 times. The training time of each
time is counted as a comparison term.

• Experiment 2: Among the two identification models trained in Experiment 1, the two
models with relatively good accuracy are selected. Select 1000 pieces of data from the
ship’s working condition dataset to form the test data of Experiment 2, with condition
types 1, 2, 3, and 4 each accounting for 25% of the test data. Record the time required
for each identification model to complete the identification task.

The statistical results of the experiments are shown in Figure 15. The training time
of the proposed model in this paper ranges from 30 to 90 s in Figure 15a, with an average
training time of 58.76 s. The training time of the SVM-based model for the identification
ranges from 1 to 7 s, with an average training time of 2.48 s. In Figure 15b, the time required
for the model used to identify the test data of Experiment 2 ranges from 0.01 to 0.4 s, with
an average identification time of 0.08 s. The identification time of the SVM-based model
ranges from 0.05 to 3.5 s, with an average identification time of 1.31 s.

 
Figure 15. Comparison of model training and identification time.

Scheme 1 and 2 are shown in Table 3. Considering that working condition identi-
fication only needs to be performed offline, the training time is used as a reference for
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evaluating the models. The accuracy and real-time performance are the focus of the com-
parison experiments. In summary, it can be seen that the experimental results of the
model used in this paper are all better than those of the SVM-based identification model.
Therefore, the proposed identification model in this paper can improve the accuracy and
real-time performance of working condition identification and better complete the task
of identification.

Table 3. Results of the identification experiments.

Model Real-Time Performance

SVM 0.05–3.5 (1000 times/s)
The proposed method 0.01–0.4 (1000 times/s)

5.3. Experimentation and Analysis of EMS Based on Working Condition Identification

To validate the optimization effect and fuel economy of the proposed strategy, sim-
ulation experiments were conducted using MATLAB software. The simulation model
parameters and control parameters are shown in Tables 4 and 5.

Table 4. Simulation model parameters.

Description Parameter Symbol Value

Battery
Capacity Q 1100 kWh

Internal resistance R0 0.0065 Ω
Maximum voltage Voc 750 V

Diesel
generators

Speed range ωdg 0–1800 RPM
Efficiency ηdg 0.98

Fitted coefficient ai, i = 0, 1, 2, 3
bj, j = 0, 1, 2, 3

[−409.3, 1.599× 10−1, 6.458× 10−4,−2.608× 10−7]
[302.3, 4.78 × 10−1, 1.36 × 10−3,−1.213 × 10−6]

Table 5. Results of the experiments.

Description Symbol Value

Battery initial SOC SOC0 0.9
Battery maximum SOC SOCmax 0.99
Battery minimum SOC SOCmin 0.20

Battery maximum current Ibat,max 600 A
Battery minimum current Ibat,min −600 A

Coulombic efficiency ηbat 0.98
DG maximum output power Pdg,max 450 kW
DG minimum output power Pdg,min 0 kW

DG maximum speed ωdg,max 1800 RPM
DG minimum speed ωdg,min 0 RPM

The load demand of the simulated ship is shown in Figure 16, with a sampling
frequency of 1 Hz. The load power covers the four types of working conditions, with each
type accounting for approximately 25%. This setup was used to test the effectiveness and
real-time performance of the working condition identification NMPC-based EMS. In the
simulation experiment, at each sampling point, the eight feature data including load power
were either test set data or data generated by interpolation from the test set data. The source
of the ship speed data is based on the analysis of ship speed shown in Figures 6 and 7.

To test the robustness of the proposed strategy, the method from reference [21] is
used to add 80 dB of Gaussian noise to the load demand, which accounts for 10% of the
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maximum demand power. Simulations are performed under this condition using the
conventional NMPC strategy and the proposed strategy. The power tracking of the ship
demand power is performed using the NMPC-based EMS and the strategy proposed, with
the simulation results shown in Figure 17.

Figure 16. Ship demand power load and speed.

Figure 17. Comparison of energy optimization control.
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As in Figure 17a,b, it shows the diesel generator output power and battery output
power of the proposed strategy versus the conventional NMPC strategy when tracking the
demand power. It is seen that the diesel generator and battery can meet the demand power
at all times, with relatively stable output power. Figure 17c,d depict the SFOC and battery
SOC changes; compared to each other, the proposed strategy can reduce SFOC, with the
end SOC differing by about 10%. In Figure 17e,f, the output current of the battery and the
speed of the diesel generator are shown. In Figure 17g, the computation time required for
each sampling point is shown. It is seen that the average computation time of the proposed
strategy in this paper is less.

Comparing the NMPC EMS and the strategy proposed in this study for power tracking
the demand power of the ship with 10% noise, the simulation results are presented in
Figure 18.

 

Figure 18. Comparison of energy optimization control with 10% noise.

In Figure 18a,b, the diesel generator output power and the battery output power using
the NMPC strategy and the strategy proposed in this paper are shown. It is seen that the
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diesel generator and battery can meet the demand for power with 10% noise. In Figure 18c,d,
the instantaneous fuel consumption and battery SOC variations are demonstrated. It is
shown that the SOC values at the end of the simulation do not differ much, but the proposed
strategy significantly reduces fuel consumption. In Figure 18e,f, the battery output current
and diesel generator speed cases are displayed. The proposed strategy has a sudden
decrease in generator speed and battery current at the 2000th and 5000th sampling points.
But the sudden increase and decrease in this case is not significant. In Figure 18g, the
computation time required at each sampling point is shown.

The rule-based control strategy proposed by Khan et al. [10] is applied to the ship
in the case study. The rules are set as follows: (1) When the battery’s SOC is above 50%,
the diesel generator and the battery bear 40% and 60% of the load power, respectively.
(2) When the SOC is lower than 50% but higher than 20%, the diesel generator and the
battery bear 60% and 40% of the load power, respectively. (3) When the SOC is lower than
20%, the battery stops working, and the load power is borne by multiple diesel generators.
The simulation results are summarized in Table 6.

Table 6. Comparison results of different strategies.

Method Noise
Fuel

Consumption
Final SOC

Real-Time
Performance

Rule-based
no noise 2056.809 kg 56.17% 1.7 × 10−5 s

10% noise 2057.435 kg 56.18% 1.9 × 10−5 s

NMPC
no noise 1973.789 kg 40.30% 2.6 × 10−3 s

10% noise 1923.495 kg 45.70% 4.0 × 10−3 s

The proposed no noise 1865.518 kg 48.10% 1.16 × 10−3 s
10% noise 1874.001 kg 47.15% 6.0 × 10−4 s

Based on the simulation results of Figures 17 and 18, the cumulative fuel consumption
data, battery SOC, and real-time performance for different scenarios are summarized in
Table 6.

In scenarios where demand power is free from noise interference, the proposed EMS
achieves a fuel consumption reduction of 209.366 kg compared to the rule-based strategy,
corresponding to a decrease of 10.2%. In scenarios where demand power is affected by
noise interference, the proposed EMS reduces fuel consumption by 183.434 kg compared to
the rule-based strategy, resulting in a decrease of approximately 8.9%. However, regarding
the final SOC value and real-time performance, the proposed method does not perform as
well as the rule-based strategy. If the SOC difference between the rule-based control and the
proposed method is higher, at 8.07% and 9.03%, respectively, after converting the energy
and translating it into fuel consumption, the fuel consumption is still higher than that of
the method proposed in this study. The proposed method inherently requires a certain
amount of computation. Therefore, compared to the rule-based strategy, the proposed
method can reduce fuel consumption, but it performs poorly in terms of final SOC and
computation time.

In the scenario without noise interference in demand power, the proposed EMS
reduces fuel consumption by 108.271 kg compared to the conventional NMPC strategy, a
decrease of 5.5%. In the scenario with noise interference in demand power, the proposed
EMS reduces fuel consumption by 49.494 kg compared to the conventional NMPC strategy,
a decrease of approximately 2.6%. In terms of battery SOC changes, the final SOC value of
the proposed strategy is higher than that of the conventional NMPC strategy. In terms of
real-time performance, the working condition identification helps to reduce the solution
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time of the NMPC controller and meets the constraints. In the scenario without and with
noise, the identification time accounts for 34.4% and 13.3% of the entire solution time,
respectively. Overall, the proposed strategy outperforms the conventional NMPC strategy.

Experimental simulations were conducted in this study. The effectiveness of the hybrid
power ship in real-time identification of working conditions that can provide decision-
making information to the EMS is verified. In addition, the effectiveness of the proposed
strategy is also demonstrated from the perspective of cumulative fuel consumption. The
identification model proposed in this paper shows better accuracy, which may be due to
two main reasons: Firstly, the self-constructed dataset used in this paper contains more
data features. Secondly, the experimental platform used in this paper is superior, which
makes the model performance and real-time computational capability better.

6. Conclusions

Aiming at the problem of energy optimization control of hybrid power ships, a nonlin-
ear model predictive control EMS based on working condition identification is proposed.
Data acquisition, processing, and analysis were carried out based on the ship operation
process. Data labeling work was performed to construct a ship working condition dataset.
A condition identification model based on CNN was established, and the model was
trained and tested using the dataset for offline identification of ship conditions, provid-
ing decision-making information for the EMS. Finally, by constructing the NMPC-based
EMS, the energy optimization control of shipboard generators and the battery under dif-
ferent working conditions was realized, effectively reducing fuel consumption. The main
conclusions are as follows:

(1) The study takes the CNOOC 257 supply ship as its object, collects data about the
ship operation process, creates a working condition identification dataset, and uses
the proposed identification model to complete the task of identifying the working
conditions of the ship, with an accuracy rate of over 99%.

(2) Simulation results show that the EMS based on working condition identification using
NMPC can reduce fuel consumption by 5.5% compared to the conventional NMPC
strategy. Under the condition of adding 10% noise to the demanded power, it can
further reduce fuel consumption by 2.6%. Additionally, the proposed strategy is able
to meet the real-time requirements.

This study compares fuel consumption, battery SOC variation, and real-time per-
formance. There is also a possibility that the identification may be disturbed by the
environment in real applications. In the future, more factors will be considered in our work.
For example, resistance to environmental interference, simulation scenario realism, and
multi-model fusion to improve the accuracy of working condition identification.
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IMO International Maritime Organization
EMS Energy Management Strategy
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
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CNN Convolutional Neural Networks
ECA Efficient Channel Attention Networks
AC alternating current
DC direct current
SOC battery state of charge
SFOC specific fuel oil consumption
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Abstract: Configuring green power transmissions for heavy-industry marines is treated as a crucial
request in an era of global energy and pollution crises. Following up on this hotspot trend, this
paper examines the effectiveness of a modified optimization-based energy management strategy
(OpEMS) for a dual proton exchange membrane fuel cells (dPEMFCs)-battery-ultra-capacitors (UCs)-
driven hybrid electric vessels (HEVs). At first, the summed power of the dual PEMFCs is defined
by using the equivalent consumption minimum strategy (ECMS). Accordingly, a map search engine
(MSE) is proposed to appropriately split power for each FC stack and maximize its total efficiency.
The remaining power is then distributed to each battery and UC using an adaptive co-state, timely
determined based on the state of charge (SOC) of each device. Due to the strict constraint of the energy
storage devices’ (ESDs) SOC, one fine-corrected layer is suggested to enhance the SOC regulations.
With the comparative simulations with a specific rule-based EMS and other approaches for splitting
power to each PEMFC unit, the effectiveness of the proposed topology is eventually verified with the
highest efficiency, approximately about 0.505, and well-regulated ESDs’ SOCs are obtained.

Keywords: energy management strategy; optimization; equivalent consumption minimum strategy
(ECMS); hybrid electric vessels; multi-stack PEMFC

1. Introduction

Recently, the marine industry and vessel traffic services have facilitated economic
growth, global trading markets, ecosystem stabilization, and so on. They have been
recognized internationally as an aid to the safety of life at sea [1] and fueled an efficient
movement for the cross-border trade of merchandise on an unprecedented scale. However,
the transportation sectors, in general, and vessel services in particular, are facing the
challenges of a full-blown global energy crisis and environmental pollution from the heavy
use of fossil fuel and oil scarcity [2]. Although an energy storage device was integrated for
hybrid vessels [3,4], the mentioned prototypes still employed traditional diesel engines. As
a result, identifying an alternative power source for the industry’s shift away from fossil
fuels is crucial sustainable development.

Proton exchange membrane fuel cells (PEMFCs) have been acknowledged as a prefer-
able alternative to traditional fuels and realistically put into small-scaled and large-scaled
installations [5], due to their properties of high efficiency, high power density, low operating
temperature, low noise, and zero emission. In terms of the shipping sector, the PEMFCs are
viewed as the most promising clean resource and as friendly to the marine ecosystem [6],
and their use sees increasing growth [7] on ships that currently make coastal voyages.
Nevertheless, the complex operations of naval vessels against the severe fluctuations of
propulsion load and environmental impacts pull the standalone PEMFC lifetime down due
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to its slow dynamic response. Additionally, the required quick start-up time and regen-
erating excessive power also represent challenges for the standalone PEMFCs, requiring
significant effort.

To overcome these inherent demerits, the hybridization of the PEMFCs with one or
more energy storage devices (ESDs) has been switching into an upward trend for the
research community in terms of designing feasible hybrid configurations and developing
effective energy management strategies (EMSs) for practical realization. Various EMSs
with enhancements have been proposed such as [8,9], fuzzy logic-based state machine
EMS [10,11], equivalent consumption minimum strategy (ECMS) [11–13], model predictive
control [14], and a learning-based algorithm with the balance-of-plant [15] for the hybrid
electric ships and vessels powered by an integrated PEMFC battery power source. Ex-
tended to a hybrid topology of PEMFC, battery, and ultra-capacitors (UCs), Peng et al. [16]
constructed a particle swarm optimization (PSO)-based EMS with a wavelet transform
technique to obtain an optimal power reference for each device. Other achievements can
be referred to in the literature [17–19]. Moreover, it has been established that a single-stack
PEMFC hardly satisfies the heavy marine load request regarding the recently gained tech-
nology. It is estimated that the required propulsion power for vessels usually varies from
18 MW to around 30 MW and may be up to higher than 80 MW [20], which exceeds the
workability of the latest PEMFCs [21]. Consequently, the single-stack PEMFC has been
turned into multi-stack PEMFC for further compatible realization and developments. Yet,
appropriately splitting power for each PEMFC stack and retaining high efficiency has been
an increasingly active focus in the related fields.

The research on designing EMSs for multi-stack PEMFC hybrid power sources has
been ongoing for several hybrid electric transportations. Generally, there are three method-
ologies for power-sharing on a multi-stack PEMFC: equal distribution (EqD), daisy chain,
and instantaneous optimization-based method [22]. The first approach offers simple cal-
culation with equally distributed power for each stack; however, the overall efficiency
was recorded as low. The daisy chain method manipulates all stacks in sequential op-
erations. The overall efficiency was improved only at low-power operation compared
to the former. At the high-power range, the former outperformed the daisy chain [23].
Based on the demerits of each method, adaptive control was proposed. In [24], the authors
developed an adaptive state machine to allocate power for multi-stack PEMFC. In [25], the
authors introduced a degree of performance degradation with virtual resistance to assist
the power-sharing process. Other techniques of using a fuzzy logic-based state machine
and hierarchical EMS approaches for a multi-stack PEMFC battery–UCs power system,
realized on hybrid tramways, can be referred to [26,27]. Although the overall efficiency
was improved, the mentioned studies could not achieve the optimal power reference and
maximize the overall efficiency.

On the contrary, the optimization-based category is able to achieve the optimal solution
for power coordination, enhance efficiency, and prolong the durability and lifetime of all
PEMFC stacks [28]. This approach can be classified into offline control, well known as
global optimization, and real-time control, known as local optimization. As the existing
demerits of offline control are burdensome computation, being time-consuming, and it
being impossible to instantly change updates in real time [29], real-time control is preferable
with various accomplishments recorded. In [30], the authors first built the efficiency map
and established an online control to define the optimal power reference for each stack
through equivalent dual-power for hybrid locomotives powered by multi-stack PEMFC
interconnected with supercapacitors. Subsequently, on the basis of the map-search engine
(MSE), an Extremum-seeking-based EMS was exploited to optimize the PEMFC power by
seeking out the highest efficiency for each PEMFC primary source [31]. Similarly, in [32], Do
et al. developed an ES-based EMS with an enhanced map-search method to split power for
dual PEMFCs at which each PEMFC stack could operate in their highest efficiency regions.
The effectiveness of these contributions was realized on hybrid electric locomotives and
tramways. In the field of marine vessels, the authors in [33] initiated an optimization-based
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multi-layer EMS for passenger ships driven by a hybridization of multi-stack PEMFC and
battery. Unfortunately, the proposed method followed the daisy chain method, which
returns low total efficiency and causes the possibility of increased stack degradation. As
observed, the emergence of dual PEMFCs into the optimization-based EMS, with the
effective use of the power distribution, has not garnered much attention from scholars and
has been limited to hybrid vessels.

Comprehensively motivated by the existing research gaps, this paper aims at conduct-
ing a multi-layer optimization-based EMS (MOEMS) for vessels driven by dual-PEMFC
(dPEMFC) battery–UCs hybrid power sources. In this manner, the dPEMFC functions as a
primary source while the battery and UCs are supplements and all devices are intercon-
nected, in parallel, to a DC bus via DC/DC converters. The MOEMS is established based
on the hybrid off–online algorithm to exert the highest efficiency and prolong the dPEMFC
lifetime. For this purpose, an ECMS framework is first utilized as an online control in
the upper layer to optimize the equivalent power of the dual stacks. Subsequently, an
MSE, obtained through offline data acquisition, is integrated into the mediate layer to
appropriately share power for each primary unit. An adaptive co-state is introduced to
distribute the remaining load to supplements, whose dynamics are derived based on the
instant battery and UCs’ state of charge (SOC). The determined reference power is then
designated to a lower layer for the pulse-width modulation (PWM). The effectiveness of
the proposed control scheme is validated via numerical simulations on a specific vessel
model with another rule-based benchmark.

The remainder of this paper is organized as follows: Section 2 describes the modeling
of the system, including DC/DC converters dynamics. Then, Section 3 dedicates the
proposed EMS for appropriate power allocation. The feasibility of the proposed method is
certified by comparative simulation in Section 4. Finally, Section 5 summarizes key points
and suggestions for further development.

2. System Configuration and Modeling

2.1. Overview of the Hybrid Vessel Power System

The proposed hybrid vessel power system integrates multiple energy sources to
meet the varied power demands of maritime operations while prioritizing efficiency and
environmental sustainability. The configuration of the dual FC/BAT/UC vessel is depicted
in Figure 1, with the Alsterwasser passenger vessel, the world’s first hydrogen fuel cell
passenger vessel involved in the examined objective, whose dynamics and characteristics
are detailed in [34], for the proposed EMS implementation. The core of this system are two
PEMFC stacks, which serve as the primary power source while a battery pack and a UC
bank are complemented to provide auxiliary power and energy storage capabilities.

The dual PEMFC configuration allows for greater power output and operational
flexibility compared to single-stack systems. Each PEMFC stack is connected to the DC bus
through a unidirectional DC/DC converter, which steps up the fuel cell output voltage to
match the bus voltage. This arrangement enables efficient power delivery from the fuel
cells to the vessel’s electrical systems.

The battery pack and UC bank are both integrated into the system via bidirectional
DC/DC converters. This configuration allows these components to either supply power to
the DC bus or absorb excess energy for storage, depending on the vessel’s instantaneous
power requirements and the state of the overall system. The DC bus serves as the central
power distribution point, connecting to an inverter that converts the DC power to AC for
use by the vessel’s electric propulsion motor and other onboard systems. This architecture
provides a flexible platform for implementing sophisticated energy management strategies
to optimize power flow and system efficiency.
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Figure 1. Configuration of dual PEMFC/battery/UCs hybrid vessels.

An energy management strategy is then designed and validated based on this model
to meet the power needs of the hybrid vessel, as shown in Figure 2.

Figure 2. Part of the power requirement of hybrid electric vessels.

2.2. Component Modeling

To effectively analyze and optimize the hybrid vessel power system, it is crucial to have
accurate mathematical representations of each component. This section outlines the models
used for the key elements of the system: fuel cells, batteries, UCs, and DC/DC converters.

2.2.1. Fuel Cell Model

The fuel cell model captures the complex electrochemical processes occurring within
the PEMFC. A simplified electrical equivalent circuit represents the fuel cell, as illustrated
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in Figure 3. The output voltage of the fuel cell is determined by several factors and can be
inheritably expressed based upon [35–38] as

Vcell = ENernst − Vact − Vohm − Vconc (1)

In this equation, ENernst represents the thermodynamic potential, while Vact, Vohm, and
Vconc account for activation, ohmic, and concentration voltage losses, respectively.

Figure 3. A simplified model of the FC.

Each of these terms is further defined by equations that incorporate factors such as
temperature, pressure, and current density. The model also includes dynamics related to
the double-layer capacitance effect and reactant flow rates.

The Nernst equation provides the reversible thermodynamic potential:

ENernst = 1.229 − 8.5 × 10−4(TFC − 298.15) +
RTFC

2F
ln
[

p′H2
(p′O2

)
0.5

]
(2)

where p′H2
and p′O2

are partial pressures of hydrogen and oxygen, TFC is the cell temperature,
R is the universal gas constant, and F is the Faraday constant.

Ohmic voltage loss is estimated by

Vohm = iRohm (3)

where i is the cell current and Rohm is the internal resistance of the electrolyte membrane.
Activation voltage loss is characterized as

Vact = ξ1 + ξ2TFC + ξ3TFC ln
(
c′O2

)
+ ξ4TFC ln(i) (4)

where c′O2 is oxygen concentration at the cathode/membrane interface, and ξ1, ξ2, ξ3, ξ4 are
parametric coefficients.

Concentration voltage loss is approximated by

Vconc =
RTFC

nF
ln
(

(i/A)L
(i/A)L − (i/A)

)
(5)

The voltage drop, Vdrop, due to the double capacitor layers’ effect, is calculated
as [37,38]

C
dVdrop

dt
= i − Vdrop

Ra
(6)

where Ra is the sum of activation and concentration resistances.

Ra =
Vact + Vconc

i
(7)

Then, the voltage output of a single cell can be calculated by

Vcell = ENernst − Vdrop − Vohm (8)
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The total voltage output for a stack of N cells is given by

Vstack = NVcell (9)

The dynamics of reactant flow within the fuel cell are crucial for accurate modeling.
For the anode, one has

Va
dp′H2

dt
= (

.
mH2,in − .

mH2,out − Ni
2F

)RTFC (10)

where Va is the anode volume,
.

mH2,in and
.

mH2,out are hydrogen inlet hydrogen outlet flow
rates through the PEMFC stack, and F = 96,485 (C mol−1) is the Faraday constant.

The hydrogen outlet flow rate is given by

.
mH2,out = ka

(
p′H2

− pamb

)
(11)

where ka is a flow constant for the anode and Pamb is the ambient pressure.
Similarly, for the cathode:

Vc
dp′O2

dt
= (

.
mO2,in − .

mO2,out − Ni
4F

)RTFC (12)

where Vc is the cathode volume, while
.

mO2,in and
.

mO2,out are oxygen inlet and outlet flow
rates through the FC stack.

.
mO2,out = kc

(
p′O2

− pamb

)
(13)

The total power input to the system is proportional to the hydrogen consumed:

Ptot =
.

mH2,usedΔH =
Ni
2F

ΔH (14)

where ΔH is the enthalpy of combustion for hydrogen.
For the dual fuel cell system, the individual and total power output are

PFC,i = Vstack,iii (15)

PdFC = PFC,1 + PFC,2 (16)

where PFC1 and PFC2 are the output power of PEMFC-1 and PEMFC-2.
The average efficiency of the dPEMFC system is calculated as (only when at least one

PEMFC runs)

ηFC_total =
PFC,1 + PFC,2
PFC,1
ηFC1

+
PFC,2
ηFC2

(17)

where ηFC1 and ηFC2 are the efficiencies of PEMFC-1 and PEMFC-2, respectively (obtained
from calculating the ratio between the output net power and total power that includes
power for auxiliaries such as pump, fan, compressor, and so on, i.e., ηFCi =

PFC,i
Ptot,i

).
The hydrogen consumption rate can be derived from the power output and efficiency

of each fuel cell [39]:
.

mH2_total =
PFC,1

ηFC1LHV
+

PFC,2

ηFC2LHV
(18)

where LHV is the lower heating value of hydrogen.
The efficiency map of each PEMFC system is displayed in Figure 4.
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(a) (b)

(c)

Figure 4. Efficiency maps of FC systems: (a) PEMFC-1 (120 kW), (b) PEMFC-2 (60 kW), (c) comparison
of their efficiency maps.

2.2.2. Battery Model

In hybrid power systems, the battery serves as a critical energy buffer, complementing
the fuel cell during periods of high power demand or when rapid load changes occur.
To effectively design an energy management system (EMS), it is essential to develop an
accurate battery model that captures key parameters and operational states. This model
provides the foundation for implementing efficient control strategies.

The battery can be represented as a controlled voltage source, with its behavior
described by several key equations [40]:

E = E0 − K
Qmax

Q
+ AeB(Q−Qmax) (19)

where Q and Qmax represent, in turn, instant and maximum battery capacity, E0 is the
free-load open-circuit voltage, A is a constant, B is a constant of battery exponential capacity,
and K signifies the polarized factor.

The battery voltage (Vbat) is then obtained as a function of its open-circuit voltage,
internal resistance, and current flow:

Vbat = E − Ri (20)

with R (Ω) being the battery internal resistor and i (Amp) is the instant current flow.
To relate the battery voltage to its state of charge (SOCbat), we can rewrite the equation

as [41]

E = E0 − K
1

SOCbat
+ AeBQmax(SOCBat−1) (21)
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The energy released from the battery during discharge can be calculated using:

Erelease = E0 − K
1

SOCbat
× it − Ri + AeBQmax(SOCbat−1) − K

1
SOCbat

× i∗ (22)

where i* denotes the low-frequency filtered current, and t is the time parameter.
The battery’s output power is determined by

Pbat = Vbati (23)

Then, the state of charge SOCbat is a crucial parameter that indicates the battery’s
remaining capacity. It can be derived from the charging current and the battery’s maxi-
mum charge:

SOCbat =
Qmax − it

Qmax
(24)

To account for battery degradation over time, a capacity loss model is employed:

Qloss(σ, Ah) = σ(Ic, θ, SOCbat)Ahz (25)

where Ah is the accumulated charge throughput, z is the power law exponent representing
Ah throughput dependence, σ is a nonlinear function of severity factors, Ic is the charging
current, θ is the test temperature, and σ can be expressed as

σ = (AbatSOCbat + Bbat) exp
( −Ea + η Ic

Rg(273.15 + θ)

)
(26)

where Abat, Bbat, and η are constants determined through curve fitting, η = −63.54,
Abat = −74.99, Bbat = 12895.92, Rg is the universal gas constant and equals 8.314 J/mol/K,
and Ea is the activation energy that equals 31,700 J/mol [42].

The accumulated charge throughput (Ah), which represents the battery capacity loss,
is calculated as

Ah =

t∫
0

σ|Ic(t)|dt (27)

Finally, the State of Health (SOH) of the battery can be determined using

SOH(t) =
Qnom − Qloss(t)

Qnom
(28)

where Qnom is the nominal capacity of the battery.

2.2.3. Ultra-Capacitor Model

Ultra-capacitors (UCs) are incorporated into the system as secondary power units
due to their exceptional characteristics, including high power density, rapid charge and
discharge capabilities, and impressive power release. The integration of UCs alleviates the
burden on fuel cells and batteries during high peak power demands, thereby enhancing
overall system performance, extending component lifespans, and potentially reducing
system size and costs [43]. The UC model employed in this study is based on an equivalent
circuit approach [44]. Each UC unit cell consists of two parallel RC branches, as illustrated
in Figure 5 [45,46]. This configuration effectively captures the device’s electrical behavior
under various operating conditions.
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Figure 5. A simplified model of one UC.

The immediate branch, represented by R1C1, accounts for the rapid response during
short-duration charge or discharge events. The delayed branch, denoted by R2C2, models
the charge redistribution phenomenon that occurs after the initial charge/discharge process.
A leakage resistor Rf is included to represent self-discharge behavior, although its impact is
often negligible due to the typically low leakage current in high-capacity UCs.

The energy stored in a UCs bank at voltage Uuc is given by

Euc =
1
2

CeqU2
uc =

1
2

Np_uc

Ns_uc
CucU2

uc (29)

where Ceq is an equivalent capacity of the UCs, Np_uc and Ns_uc represent the parallel
branches and the serial connection of the UCs, respectively, and Cuc is the capacitance of a
single UC unit.

The voltage across the UC bank can be determined by considering the characteristics
of a single UC pack:

Uuc = Ns_uc

(
v1 + R1

Iuc

Np_uc

)
(30)

where Uuc and Iuc are the voltage and current of the UC bank, while vuc and iuc represent
the voltage and current of an individual UC unit.

The voltage across the secondary capacitor C2 is described by a non-linear function of
its capacitance and resistance R2:

v2 =
1

C2

∫ 1
R2

(v1 − v2)dt (31)

The rate of change in the instantaneous charge of C2 is proportional to the current i2:

d
dt

Q2 = i2(t) (32)

The current through the main capacitor C1 can be expressed as a function of its
charge Q1:

i1 =
dQ1

dt
= C1

dv1

dt
= (C0 + Cvv1)

dv1

dt
(33)

where the charge Q1 is calculated using the equivalent capacitance C1 and the voltage
across it:

Q1 = C0v1 +
1
2

Cvv2
1 (34)

From this, we can derive the voltage v1 across C1:

v1 =
−C0 +

√
C2

0 + 2CvQ1

Cv
(35)
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A critical parameter for UC operation is its state of charge (SOCUC), which is defined
as the ratio of its current capacity to its maximum capacity:

SOCUC =
1

QUCmax

t∫
t0

IUC(τ)dτ (36)

where IUC is the charging current and QUCmax is the maximum capacity of the UC.
This SOCUC value serves as a crucial indicator for evaluating the state of the UC bank

and plays a significant role in energy management strategies.

2.2.4. DC/DC Converter Model

In the hybrid power system under consideration, DC/DC converters play a crucial
role in managing power flow between various components. Specifically, two DC/DC boost
converters are employed to interface the PEM fuel cell system with the high-voltage DC bus,
facilitating the necessary voltage step-up. Additionally, a bidirectional DC/DC converter
is positioned between the battery and the DC bus, enabling both power distribution
and regenerative energy capture [37,40]. When modeling these converters for energy
management purposes, it is important to consider the different time scales at which various
system components operate. The power management layer typically functions at a lower
frequency compared to the local control loops of individual converters. This separation of
time scales allows us to make certain simplifying assumptions in our model. Given that the
switching frequency and modulation rate of modern DC/DC converters are significantly
higher than the time constants of other system components (such as the inductor), we can
employ an averaged model approach. This method effectively captures the converter’s
behavior from the perspective of the energy management system without the need to model
high-frequency switching dynamics. Furthermore, assuming well-designed inner control
loops, we can expect the converter to respond rapidly to reference changes. This allows us
to further simplify our model by reducing the fast dynamics of the DC/DC converter to an
equivalent static model.

The resulting simplified model for the DC/DC converters can be expressed using the
following set of equations [47]:

VI = Vh + L
diL
dt

+ iLRL (37)

VO =
Vh
κ

(38)

ηβ =
iO
κiL

,

⎧⎨
⎩

β = 1, for boost converter
or for bidirectional converter with iOVO ≥ 0

β = −1, for bidirectional converter with iOVO < 0
(39)

where VI and VO represent the input and output voltages of the converter, respectively.
L and RL are the inductance and resistor of the inductor, κ denotes the conversion ratio of
the converter, iL, and iO are the input (inductor) current and output current, respectively,
and η represents the converter’s efficiency.

This model, while simplified, captures the essential behavior of the DC/DC converters
from an energy management perspective. It accounts for the voltage conversion ratio,
current transformation, and power transfer efficiency, which are the key parameters of
interest for system-level energy management strategies. By using this static equivalent
model, we can effectively represent the DC/DC converters in the overall system simulation
without the computational burden of modeling high-frequency switching dynamics. This
approach strikes a balance between model fidelity and computational efficiency, making it
well-suited for energy management system design and optimization.
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It is worth noting that, while this model is adequate for many energy management
studies, more detailed models may be necessary for analyzing specific phenomena such as
transient responses, or for designing the converters’ internal control loops. However, for
the purposes of system-level energy management, this simplified model provides a solid
foundation for strategy development and evaluation.

3. Enhanced Equivalence Consumption Minimum Strategy

In this section, the multi-layer EMS for vessels driven by the hybrid dPEMFC battery–
UCs is dedicatedly discussed. The comprehensive control architecture is illustrated in
Figure 6.

Figure 6. Comprehensive multi-layer EMS for vessels.

3.1. Upper Layer: ECMS-Based EMS for Optimal Power Observation
3.1.1. Optimal Power for Dual PEMFCs

In this manner, the ECMS is employed for seeking out the optimal working point of
the dPEMFC (optimal power) while concerning the supplements SOCs. This methodology
has been broadly applied and verified on various systems. In this manner, the total
consumption is first calculated by converting the electric consumption of the battery and
UCs into equivalent hydrogen consumption. Thus, the objective function can be defined as

min
(
mH2 + KBatγBatPBat

)
, (40)

subject to ⎧⎨
⎩

Pmin
FC,1 ≤ PFC,1 ≤ Pmax

FC,1
Pmin

FC,2 ≤ PFC,2 ≤ Pmax
FC,2

SOCmin
Bat ≤ SOCBat ≤ SOCmax

Bat

, (41)
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where mBat denotes the battery equivalent consumption, γBat is the battery state-dependent
coefficient, and KBat represents the penalty coefficient of battery. Regarding [48], the
penalty coefficients KBat should be constrained between the initial SOCBat(t0) and current
SOCBat(t). The coefficient γBat is performed as

γBat = 1 − σ
2SOCBat −

(
SOCmax

Bat + SOCmin
Bat

)(
SOCmax

Bat + SOCmin
Bat

) , (42)

where σ, conventionally designed by 0.6 [29], denotes an adjustable balance coefficient.
The battery’s equivalent consumption can be defined as [48]

mBat = βBatPBat
mdFC

PdFC
(kg), (43)

where mdFC (kg) is the average hydrogen consumption, PdFC (kW) is the average power of
the dPEMFC, and βBat is the battery equivalent conversion coefficient, which is expressed
by [29]

βBat =

{ 1
ηchgηdischg

PBat ≥ 0

ηchgηdischg PBat < 0
, (44)

with ηchg and ηchg being, in turn, the charged and its average coefficients; ηchg and ηchg
being, in turn, the discharged and its average coefficients of the battery, whose dynamics
are specified by [29]

ηchg/dischg =

⎧⎪⎪⎨
⎪⎪⎩

0.5
(

1 +
√

1 − 4RchgPaux

V2
OC

)
Paux ≥ 0

2/
(

1 +
√

1 − 4RdischgPaux

V2
OC

)
Paux < 0

, (45)

where Rchg and Rdischg are, in turn, internal charged and discharged resistors (Ω), VOC is an
open circuit voltage (V), and Paux is the auxiliary power (kW).

The optimal solution for the battery can be computed by the following [49]:

Popt
Bat =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UDC,min
(EBat − UDC,min)

Rdischg
,K1 ≤ αχmin

E2
Bat

(1 − K1/α)

4Rdischg
,αχmin ≤ K1 ≤ α

0,α ≤ K1 ≤ α

ηchgηdischg

E2
Bat

{
1 − (K1ηchgηdischg/α)2

}
4Rdischg

,
α

ηchgηdischg
≤ K1 ≤ αχmax

ηchgηdischg

−UDC,max
(UDC,max − EBat)

Rchg
,K1 ≥ αχmax

ηchgηdischg

, (46)

where K1 is determined based on the battery charged and discharged status as follows:

• Discharged (PBat ≥ 0):⎧⎪⎨
⎪⎩

K1 = γBatmH2
1

ηchgPdFC

χmin =

√
1 + 4UDC,min

E2
Bat

(UDC,min − EBat)
, (47)
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• Charged (PBat < 0): ⎧⎪⎨
⎪⎩

K1 = γBatmH2

ηdischg

PdFC

χmin =

√
1 + 4UDC,max

E2
Bat

(UDC,max − EBat)
, (48)

Subsequently, the dPEMFC optimal power can be obtained by

Popt
dFC = max

{
min

(
Pload + Paux − Popt

Bat , Pmax
dFC

)
, Pmin

dFC

}
, (49)

It is worth noting that, following the optimal control above, the battery power is
optimized in such a way that the dPEMFC operates in the highest-efficiency region and
the battery SOC, SOCBat, is strictly constrained within the pre-set interval, constrained by
SOCmin

Bat ≤ SOCBat ≤ SOCmax
Bat . As a result, the optimal solution Popt

Bat varies with positive
and negative values to stabilize the SOCBat and Popt

dFC.

3.1.2. Reference Power for Battery and UCs

Despite the optimal power for dPEMFC and battery defined regarding the above
calculations, the battery may not fulfill the abrupt or sudden load change as its slow
dynamic. Hence, to tackle this problem, the computed Popt

Bat is considered the pre-optimal
power, or the remaining load, Premaining, in other words. Hence, a frequency decoupling
mechanism is applied to decouple high frequency and low frequency. Thereby, the filtered
remaining load is handled by the battery while the high-frequency load is tackled by the
UCs. The frequency decoupling mechanism is initiated as shown in Figure 7:

Figure 7. Frequency decoupling mechanism.

The UCs aim at not only addressing the high-frequency load but also compensating
for the deviation between the computed optimal power references and their rated limits for
safety operation. These errors are summed into the input reference of the UC and tackled
in the lower layer.

3.2. Correction Reference Power for SOC Regulation

Despite the optimal power for each source defined, the SOCs of the ESDs may not
be strictly constrained within the desired intervals. Hence, instead of directly designating
these optimal parameters to the middle and lower layers, the optimal reference power of
the dPEMFC and battery are fine-corrected to regulate the SOCs in such a way that the
final SOCs at the end of a driving cycle should be equal to the initial ones, as displayed in
the “Corrected layer” in Figure 1.
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The structures of the fine-corrected power are illustrated in Figure 8. In this manner,
the fine-corrected power of the optimal dPEMFC and battery power, namely Pre f

dFC and Pre f
Bat,

are computed as follows:

Pre f
dFC = Popt

dFC + γb
1Δ1(t) + γb

2

t∫
0

Δ1(τ)d(τ) + γb
3

dΔ1(t)
dt

, (50)

Pre f
Bat = Popt

Bat + γuc
1 Δ2(t) + γuc

2

t∫
0

Δ2(τ)d(τ) + γuc
3

dΔ2(t)
dt

(51)

where Δ1(t) � SOCre f
Bat − SOCBat(t) with SOCre f

Bat and SOCBat(t) being the reference and
currently time-varying battery’s SOC; γb

1, γb
2, and γb

3 are positive constants for the battery’s

SOC regulation. Δ2(t) � SOCre f
UC − SOCUC(t) with SOCre f

UC and SOCUC(t) being the refer-
ence and currently time-varying battery’s UC; γuc

1 , γuc
2 , and γuc

3 are positive constants for
the battery’s SOC regulation.

γ1
b

d
dt

∫

γ2
b

γ3
b

γ1
uc

d
dt

∫

γ2
uc

γ3
uc

Figure 8. Correction of the power reference for each source.

3.3. Middle Layer: Map Search Engine

To meet the calculated power requirements for the dual fuel cell system, it is essential
to implement an efficient energy allocation strategy. The MSM is used to enhance the
performance of the dual PEMFC system and reduce hydrogen consumption. As presented
in Equation (16), there are numerous power distribution combinations between the two
fuel cells that still meet the required power of the dual FC system. Enhancing the efficiency
of each FC not only improves the overall efficiency of the dual FC system but also reduces
energy consumption (as shown in Equations (17) and (18)). In this study, the output power
of the dual FC system ranges from 0 to 150 kW, divided between two FCs of different
capacities: 60 kW and 110 kW. For each power requirement, the MSM seeks the optimal
distribution between FC 1 and FC 2, ensuring that the combined output meets the required
power while achieving maximum efficiency.

Consequently, power allocation curves for PEMFC-1 and PEMFC-2 are established
based on the power demand, and the average efficiency of the dual FC system is determined
(Figures 9 and 10).
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Figure 9. Power output distribution for each PEMFC illustration using the MSM method.

Figure 10. The average efficiency of the dual FC system.

3.4. Lower Layer: Pulse-Width Modulation

In this layer, the input duty cycles to DC/DC converters are generated through pulse-
width modulation (PWM) generation to regulate the output power of each source to meet
the determined reference one. Moreover, the voltage of the DC bus should be regulated to
guarantee the control performance. In accordance with each device’s characteristics, the
battery is designated to maintain the DC bus voltage. In this scenario, the proportional–
integral–derivative (PID) controls are employed due to their simplicity and robustness.

3.4.1. Duty Cycle for the Individual PEMFC

DFC,i is defined as the duty cycle input to the boost DC/DC converter of the i-th
PEMFC. Thus, DFC,i is specified as

DFC,i = fa−PWM(OutFC,i), (52)

Herein, OutFC,i is the output of the PID control for the PEMFC current regulation as

PWMFC,i = KP
FC,i

(
Id
FC,i − IFC,i

)
+ KI

FC,i

t∫
0

(
Id
FC,i(τ)− IFC,i(τ)

)
dτ + KD

FC,i

d
(

Id
FC,i − IFC,i

)
dt

, (53)
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where KP
FC,i, KI

FC,i, and KD
FC,i are positive constants; IFC,i is the measured current of the i-th

PEMFC; and Id
FC,i is the desired current, which is obtained by

Id
FC,i = rate-limit

(
Ire f
FC,i

)
, (54)

with Ire f
FC,i being directly obtained from the individual i-th PEMFC reference power (fine-

corrected optimal power) and reference DC bus voltage Ure f
DC.

Moreover, due to the use of the rate limit operator, there exists a deviation between
the optimal current Iopt

FC,i and desired current Id
FC,i as εFC,i = Iopt

FC,i − Id
FC,i, which will be then

addressed by the UC later. The control structure for the DFC,i is illustrated in Figure 11.

KFC,i
P

d
dt

∫

KFC,i
D

KFC,i
I

 

Figure 11. PWM generation for individual PEMFC.

3.4.2. PWM for the Battery and DC Bus Voltage Regulation

Define DBat is the duty cycle input to the bi-directional DC/DC converter of the battery.
Thus, DBat is specified through an analog-PWM operator as

DBat = fa−PWM(OutBat), (55)

OutBat is the output of the PID control for the battery current regulation as

OutBat = KP
Bat

(
Id
Bat − IBat

)
+ KI

Bat

t∫
0

(
Id
Bat(τ)− IBat(τ)

)
dτ + KD

Bat

d
(

Id
Bat − IBat

)
dt

, (56)

where KP
Bat, KI

Bat, and KD
Bat are positive constants; IBat is the measured current of the battery;

and Id
Bat is the desired current, which is obtained by

Id
Bat = rate-limit

(
Ire f
Bat

)
, (57)

with Ire f
Bat being attained from the sum of the battery’s optimal power and output of the DC

bus voltage regulation Iout
DC, obtained by

Iout
DC = KP

Udc

(
Ure f

DC − UDC

)
+ KI

Udc

t∫
0

(
Ure f

DC(τ)− UDC(τ)
)

dτ + KD
Udc

d
(

Ure f
DC − UDC

)
dt

, (58)

with UDC being the measured DC bus voltage, KP
Udc, KI

Udc, and KD
Udc are the proportional,

integral, and derivative gains, respectively.
Moreover, due to the use of the rate limit operator, there exists a deviation between

the optimal current Ire f
FC,i and desired current Id

FC,i as εBat = Ire f
Bat − Id

Bat, which will be then
addressed by the UCs later. The control structure for the DBat is configured in Figure 12.
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KBat
P

d
dt

∫

KBat
D

KBat
I

KUdc
P

d
dt

∫

KUdc
D

KUdc
D

Figure 12. Control architecture for DC bus voltage regulation and PWM generation for the battery.

3.4.3. PWM for the UCs

Similarly, DUC is the duty cycle input to the bi-directional DC/DC converter of the
UCs, which is specified through an analog PWM operator, as illustrated in Figure 13. Thus,
one has

DUC = fa−PWM(OutUC). (59)

OutUC is the output of the PID control for the UC current regulation, expressed by

OutUC = KP
UC

(
Id
UC − IUC

)
+ KI

UC

t∫
0

(
Id
UC(τ)− IUC(τ)

)
dτ + KD

UC

d
(

Id
UC − IUC

)
dt

, (60)

where KP
UC, KI

UC, and KD
UC are the proportional, integral, and derivative gains, respectively;

IUC is the measured current of the UC; and Id
UC is the desired current, which is obtained by

Id
UC =

PUC

Ure f
DC

+
2

∑
i=1

εFC,i + εBat, (61)

KUC
P

d
dt

∫

KUC
D

KUC
I

Figure 13. Control architecture of PWM generation for UCs.

4. Comparative Simulations and Discussions

Regarding the examined topology in Figure 1, in this simulation setup, two differ-
ent characteristics of PEMFCs are employed: one with the maximum power of 120 kW
(PEMFC-1) and another one with the maximum power of 60 kW (PEMFC-2). The reason
is to demonstrate the MSE effectiveness compared to other conventional methods of EqD
and daisy chain in splitting power. If two PEMFC stacks have the same specifications, then
the MSE and EqD approaches have the same performance since the power for each stack
is simply half that of the dPEMFC power. Therefore, two different PEMFCs should be
considered for validating the MSE superiority in appropriately allocating power for each
PEMFC power source.

The parameters of the hybrid power source are selected as shown in Tables 1–3 with
the sampling time of ts = 0.01 s, subject to the load profile shown in Figure 8.
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Table 1. The 120 kW PEMFC system parameters [36,37].

Parameters Symbol Value Unit

Cells number
PEMFC-1 30
PEMFC-2 18

Rated power PEMFC-1 110 kW
PEMFC-2 60 kW

Membrane thickness 178 μm
Area S 232 cm2

Coefficients

ξ1 −0.948 -
ξ2 0.00286 + 2 × 10−4 ln(S) + 4.3 × 10−5

ln(cH2)
-

ξ3 7.6 × 10−5 -
ξ4 −1.93 × 10−4 -

Membrane resistivity parameter 12.5 -
Fuel cell capacitance Cdl 0.035 × 232 F

Cathode
Pressure PO2 3 atm

Flow constant ka 0.065 mol/s/atm
Volume Va 0.01 m3

Anode
Pressure PH2 3 atm

Flow constant kc 0.065 mol/s/atm
Volume Vc 0.005 m3

Hydrogen enthalpy of combustion 285.5 × 103 kJ/mol
Thermal resistance 0.115 C/W

Total energy (for 6 h) 302.522 kW

Table 2. Battery’s parameters [36,37].

Parameters Value Unit

Capacity 6.5 Ah
Rated voltage 1.2 V

Constant voltage 1.2848 V
Internal resistance 0.0046 Ω

Number of batteries 360 -
Exponential zone amplitude 0.144 V

Exponential zone time constant inverse 2.3077 (Ah)−1

Polarization resistance constant 0.01875 Ω

Table 3. Bank of UCs’ parameters [36,37].

Parameters Value Unit

Number of UC 80
Rated voltage 2.7 V

Absolute maximum voltage 2.85 V
Absolute maximum current 1900 A

Rated capacitance 3000 F

Capacitance in the main cell 2100 F
623 F

Capacitance in the slow cell 172 F
Resistance in the main cell 0.036 × 10−3 Ω
Resistance in the slow cell 1.92 Ω

Moreover, to further evaluate the effectiveness of the proposed topology in effectively
sharing power with each source, we consider the following algorithms in the compara-
tive simulation:

• A1: Rule-based EMS for sharing power to each unit and MSM for splitting power to
each PEMFC stack.
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• A2: Optimization-based EMS with the daisy chain method for distributing com-
manded power for each PEMFC stack. In this setup, the PEMFC-1 (110-kW) first
supplies power to the load until it reaches its maximum value; then, the PEMFC-2
(60-kW) enters the system.

• A3: Same as A2, but the PEMFC-2 (60-kW) supplies power to the load first until it
reaches its maximum value; then, the PEMFC-1 (110-kW) enters the system.

• A4: Optimization-based EMS with equal distribution for sharing power to each
PEMFC stack. In this setup, the reference power for each PEMFC stack is half that of
the optimal power, i.e., Pre f

FC,i = 0.5Popt
dFC.

• A5: Optimization-based EMS with MSM for sharing power to each PEMFC stack
without fine-corrected optimal power. In this manner, the reference power of the dual
PEMFC and battery are the same as their optimal power.

• A6 (proposed): Optimization-based EMS with MSM for sharing power to each PEMFC
stack with fine-corrected optimal power.

Generally, all examined control strategies could fulfill the load demand, as shown in
Figure 14. Herein, it should be noted that the optimal power of the dPEMFC and battery and
the calculated power of the UCs under A2, A3, A4, and A5 are similar to each other since
they are obtained regarding the optimization-based EMS. Only the power-sharing under
A1 and A6 is different due to the different algorithms. Thus, to facilitate the observation,
only four power efforts were plotted: demand load and power performance under A1, A2,
and A6.

Figure 14. Power tracking qualification under different algorithms.

Figure 15 shows the total power efforts of the dPEMFC (top) and individual PEMFC
power (bottom). Figure 16 displays the total efficiency of the dPEMFC system (top) and
each primary supply’s efficiency (bottom). Subsequently, the reference battery and UCs
power were obtained concerning the frequency decoupling technique, as performed in
Figure 17. As mentioned above, since the optimal power of the dPEMFC and battery and
the calculated power of the UCs under A2, A3, A4, and A5 are the same as each other, only
three power efforts of A1, A2, and A6 were plotted in the top sub-Figures 15 and 17.

As seen in Figure 15, as the heuristically designed rules, the power reference of the
dPEMFC varied depending on the load demand, as shown. Although the rules were
designed such that both PEMFC stacks were constrained to operate within the highest
efficiency regions, they could not be manipulated at the optimal working point. Accord-
ingly, the highest total efficiency could not be exhibited, as displayed in Figure 16, in
which the efficiency of each PEMFC varied following their power behaviors. The average
efficiency was about 0.488 for the dPEMFC, and 0.4833 and 0.498 when distributed for each
PEMFC-1 and PEMFC-2, respectively. Moreover, by not operating at the optimal point, the
battery and UCs were charged and discharged arbitrarily, which accordingly resulted in an
overcharge, as shown in Figure 17.
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Figure 15. The power performance of the dPEMFC and individual PEMFC systems under differ-
ent algorithms.

Figure 16. Efficiency of PEMFCs under difference algorithms: (Top) overall efficiency of dPEMFC,
(Middle) efficiency of PEMFC-1, (Bottom) efficiency of PEMFC-2.
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Figure 17. Reference power of the battery and UCs under different algorithms.

On the contrary, other algorithms (A2 to A6) could manipulate the dPEMFC system
such that the adjacently highest efficiency was exhibited, as disclosed in Figure 15 thanks
to the use of the optimization to seek out the optimal working point. Despite achieving the
optimized reference power, in theory, the actual behaviors among them are different.

Despite being obtained through the optimization-based technique, the daisy chain
approaches, A2 and A3, exhibited the worst performance. Since the dPEMFC optimized
power was around 78 kW, if prioritizing using the 110 kW PEMFC (A2), it could sufficiently
support the dPEMFC required to load and thus the 60 kW PEMFC was maintained with
the minimum power to run the auxiliary systems (pump, fan, temperature system, and
so on); thus, returning the lowest efficiency of about 0.16 and the overall efficiency was
about 0.4945 as a result. Likewise, under A3, the 60 kW ran first to supply power to the
system. In our design, its acceptable maximum power supply of 50 kW was selected for
safety. Therefore, the 110 kW was entered to handle the remaining 28 kW. Consequently,
the efficiency was just about 0.3835 for the 110 kW PEMFC and 0.4405 for the 60 kW
PEMFC because those operating points are out of the high-efficiency regions with the
overall efficiency being only 0.4268. Meanwhile, A4 could improve the overall efficiency
a little (0.4996). With the halved power required of 39 kW for each PEMFC, as depicted
in Figure 10, the 60 kW PEMFC unit operated in the high-efficiency region at which the
efficiency of 0.5032 was exhibited. Meanwhile, the 110 kW operated in the low-efficiency
region at which the efficiency of this source was approximately 0.495.

A5 and A6, owing to using the MSE, returned the best performance in which both
PEMFC systems could operate in their highest efficiency regions compared to A2, A3, and
A4. With the MSE, the optimized power was appropriately allocated to each device based
on its characteristic and efficiency map by which the reference power for the PEMFC-1 was
determined at about 50 kW and for the PEMFC-2 at around 28 kW.

However, the superiority of the proposed methodology, A6, is governed by not only
the overall efficiency of the dPEMFC and hydrogen consumption but also the SOC regula-
tion of the ESDs, as shown in Figures 17 and 18. As observed, the proposed methodology
could well constrain the SOC of the battery and UCs compared to other optimization-
based methods (A2 to A5). These accomplishments came from the fine-corrected power
development to force strictly regulate the SOCs by adjusting the reference power of the
dPEMFC and battery. The deviation of the SOCUC from its reference SOCre f

UC was corrected
by manipulating the battery reference power; however, this may also cause the deviation
of the SOCBat from its reference SOCre f

Bat to increase. Therefore, the battery reference power
was corrected by regulating the dPEMFC power as expressed in (50) and (51). The SOCs
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of the ESDs were critically controlled such that the final SOCs were the same as the initial
ones at the end of the driving cycle (about 0.7692 for the battery’s SOC and 0.6 for the
UCs) As a result, with well-regulated ESD behaviors, only the proposed method A6 could
satisfy the load demand regarding the real driving cycle [34]. In brief, the superiority of the
proposed control algorithm compared to others is summarized in Table 4.

Figure 18. SOCs of the battery and UCs under different algorithms.

Table 4. Control performance summary.

EMSs
Average Power (kW) Average Efficiency

dPEMFC PEMFC-1 PEMFC-2 dPEMFC PEMFC-1 PEMFC-2

A1 76.36 51.72 24.63 0.488 0.4833 0.5004
A2 76 76 Off 0.4947 0.4947 0.16
A3 76 16 60 0.4269 0.3835 0.4404
A4 76 38 38 0.4996 0.4953 0.5031
A5 76 51 25 0.5035 0.5067 0.5033
A6 78.6 52.93 25.5 0.5056 0.0587 0.05045

5. Conclusions

This paper proposed a novel topology of using the hybrid power sources of dual
PEMFCs interconnected with battery and UCs to supply the HEV powertrain. Of the setup,
the optimization-based hierarchical EMS was established to appropriately allocate optimal
power for the dual PEMFC systems and battery such that each PEMFC unit could operate
in the high-efficiency region. By using two PEMFC sources, the MSE was then initiated to
split the optimal power for each unit properly. Moreover, as the risk of balancing the ESDs’
behaviors, a fine-corrected layer was introduced to strictly regulate the SOCs of the battery
and UCs varying around desirable values. In this design, the UCs’ SOC was controlled
by the battery power whereas the dPEMFC power manipulated the battery’s SOC. As a
result, not only the optimal power was exhibited and allocated to each supply but the
ESDs’ SOCs were also well constrained as demonstrated through comparative simulations.
Moreover, with the optimal power obtained, the PEMFC systems operated in the highest
efficiency regions, which consumed the lowest fuel; thus, prolonging the lifetime of all
devices. However, some related problems, such as system degradation, remaining useful
life, ESDs behavior constraints, state-of-health, and so on, have not yet been taken into
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consideration. Therefore, these existing regards motivate us to keep going for further
developments of control strategies to enhance the overall system performance.
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Abstract: Advancements in the reduction of carbon dioxide emissions from ships are driving the
development of more efficient onboard power systems. The proposed non-equivalent parallel run-
ning operation system is explored in this study, which improves the efficiency of the main power
generation source compared with traditional equal load-sharing methods used in power management
systems. However, the asymmetric method reduces the efficiency of the auxiliary power sources. To
address this issue, we propose a control method that integrates a battery system with an efficiency-
based algorithm to optimize the overall system performance. The proposed approach involves
establishing operation command values based on the characteristics of the power generation source
and adjusting these commands according to the battery’s state of charge (SOC). MATLAB/Simulink
simulations confirmed the effectiveness of this method across various operating modes and revealed
no operational issues. When applied to a ship’s operating profile over 222 h, the method reduced
fuel consumption by approximately 2.98 tons (5.57%) compared with conventional systems. Over
38 annual voyages, this reduction equates to savings of 115.96 tons of fuel or approximately 96.47 mil-
lion Korean won. This study demonstrates that integrating an optimal efficiency algorithm into the
energy management system significantly enhances both the propulsion and overall energy efficiency
of ships.

Keywords: optimal efficiency algorithm; power management system; energy management system;
carbon dioxide emissions; battery management system

1. Introduction

Various research projects on enhancing the energy efficiency of ship systems and
reducing greenhouse gas emissions are being conducted [1–3]. In addition to advance-
ments in propulsion systems, a significant amount of research has focused on improving
the power system efficiency, including the use of onboard hybrid power sources [4–6].
Integrating photovoltaic generation, fuel cells, or renewable energy into conventional
power systems has been shown to reduce greenhouse gas emissions and air pollutants,
while offering cost savings compared with the use of traditional gas turbines and internal
combustion engines [7,8]. However, these systems have high initial installation costs and
technological limitations [5,9]. Hybrid systems combining diesel generators with battery
systems have been introduced to enhance the efficiency of conventional electric propulsion
systems [10,11]. Supercapacitors and variable-speed engine generators have demonstrated
improvements in energy efficiency and a reduction in pollutant emissions [12–14]. Ad-
ditionally, integrating a solar hybrid power system into a built-in energy storage system
and a conventional diesel generator has been shown to reduce fuel consumption and
carbon dioxide emissions [15,16]. A hybrid system that includes molten carbonate fuel
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cells (MCFCs), batteries, and diesel generators has been found to be effective at reducing
carbon dioxide emissions compared with conventional diesel generators [17]. An efficient
power management system is essential for integrating multiple energy sources and storage
systems into a microgrid with renewable energy and storage devices [18]. Consequently,
several control techniques and power management strategies have been developed, in-
cluding a new power distribution control strategy based on logical thresholds [19,20].
The application of optimal power management methods to the electric power system of
an electric propulsion vessel has been shown to minimize the operating costs and meet
greenhouse gas (GHG) emission limit criteria [21,22].

In hybrid electric propulsion systems that incorporate various power generation
sources, the design of the controller is crucial for the efficient operation and control of
these sources based on load demands [23,24]. In addition, integrating the controller with
an energy management system along with the existing power management system is
essential [25–27]. One study focused on a hybrid electric vessel powered by a dual proton
exchange membrane fuel cell (PEMFC), a battery, and an ultracapacitor (UC). In this study,
an equivalent consumption minimization strategy (ECMS) was employed to optimize the
total power output of a PEMFC [9,27]. A map search engine was used to maximize the
efficiency and the power distribution to the battery, and the UC was managed based on the
state of charge (SOC) of each component. Simulations demonstrated a high efficiency for
this configuration [28].

Simulations of a hybrid system combining liquefied natural gas (LNG) and batteries
on a tugboat, integrated with an energy management system using rule-based control,
demonstrated that CO2 emissions and daily fuel costs could be reduced when compared to
a system without such a control strategy [29].

An analysis of a hybrid power system containing a fuel cell was conducted using
an adaptive equivalent consumption minimization strategy (A-ECMS) and state-based
and fuzzy-logic-based EMS (Energy Management System). The results indicate that the
A-ECMS strategy can maintain a system efficiency of above 60% under most operating
conditions and significantly reduce the fluctuations in the output power of the fuel cell [30].

A distributed variable sag slope control strategy was implemented to enhance the SOC
equalization of vessels equipped with a fuel cell (FC) as the energy source and batteries,
and supercapacitors as the energy storage system (ESS). This approach improved the speed
and accuracy of the SOC equalization, optimized the characteristics of different energy
storage devices, and reduced the degradation of these devices [31].

In a battery hybrid power system, a rule-based control method utilizing an ECMS
is used to train a neural network. Simulations confirmed the accuracy of this method,
demonstrating that the stability of the system was maintained by effectively controlling the
speed, voltage, and current of the propulsion motor under varying battery SOC levels and
rapidly changing ship loads [32].

A simulation of the battery hybrid method was conducted to compare and analyze its
performance with those of conventional diesel-powered ships in terms of carbon dioxide
emissions. The results demonstrate that the battery hybrid method effectively reduces
carbon dioxide emissions compared with the use of a controller that implements load-
sharing optimal control. Additionally, a life cycle assessment (LCA) confirmed that the
proposed system is environmentally friendly throughout the energy generation process [33].

An energy management framework based on model predictive control (MPC) was
developed for a ship’s hybrid power generation system with a battery system by incorpo-
rating an advanced shipboard energy management strategy (EMS). Simulations that had
the aim of ensuring safe voyages and a long battery life while considering battery capacity
and SOC values showed that the proposed framework could achieve a 3.5% reduction in
energy consumption [34].

A hybrid optimization algorithm combining chaotic algorithms and gray wolf op-
timization (GWO) was used to design an energy management strategy with non-linear
model predictive control (NMPC). The study found that NMPC based on the GWO al-
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gorithm could reduce fuel consumption by approximately 26% and carbon emissions by
approximately 56%, compared with other algorithms [35].

The operation of a ship’s DC microgrid model, consisting of equipment, a controller,
and a communication network, was simulated and the results with and without a secondary
control strategy were compared. The results demonstrate that the secondary control strategy
effectively addressed the problem of unbalanced SOC in the energy-storage module. The
SOC of the battery gradually converges under the secondary strategy, proving that it is
both reasonable and efficient [36].

A study was conducted on the electrification of low-tonnage vessels operating on
short cycles with high-power demands; a situation which presents significant technical
challenges. The study involved the real test case of the Seine River ferry with an installed
propulsion power of 330 kW. The supercapacitor and battery-based hybrid structures were
compared with those of a conventional propulsion system. The results showed that the
hybrid structures achieved reductions in the CO2 emissions of 18% and 29.7%, respectively,
compared with the conventional method, corresponding to reductions of approximately
382 and 626 t of CO2 over 20 years of operation [37].

For the optimal energy management system of the generator non-equivalent parallel
running operation system proposed in this study, a load-sharing algorithm was designed
based on the generator’s optimal efficiency operation. This approach aims to improve upon
previous methods that only partially enhance the efficiency. Using MATLAB/Simulink,
we modeled an actual operational ship by linking the energy storage system to an existing
power system to maximize the energy efficiency. An algorithm was developed to operate
at the optimal efficiency point based on fuel consumption characteristics relative to the
power output of the diesel generator. The goal of the control algorithm designed to operate
at this optimal point is to maximize the energy efficiency of the ship. The proposed control
method is compared with existing methods to verify its effectiveness, with the goal of
reducing fuel consumption and greenhouse gas (GHG) emissions.

2. Methodology

The ship’s specifications and system requirements were selected to assess the effective-
ness of the proposed generator non-equivalent parallel running operation system (NEQP).
The optimal operating point of the engine was determined based on the design of the
control rules and operation modes. These were subsequently applied to the load profile
of an actual ship, and the proposed NEQP method was compared with a conventional
control method using MATLAB(R2021b)/Simulink. The optimal efficiency criteria for the
generator were established to design rules for minimizing fuel consumption. An optimal
operating point efficiency of 85% was selected considering the SFOC (Specific Fuel Oil
Consumption) of the target ship and the stability of the generator engine. For the battery,
charging and discharging limits were set to ensure safety and a long battery life. In this
configuration, the generator provides a constant power output at the optimal efficiency
point to satisfy the load requirements of the ship, and charges the battery whenever excess
power is available. If the power output of the generator is insufficient for handling the
system load, the controller is designed to release the energy stored in the battery to support
part of the load.

Step 1. Selection of the system specifications.
The generator–battery hybrid system was evaluated using a vehicle carrier as the

target ship and a 1500 kW battery system. The characteristics of, and basic information
on, the diesel generators of the target ship are summarized in Table 1, and these data were
used for the modeling. The target ship was equipped with three identical 1330 kW diesel
generators produced by HYUNDAI-HiMSEN (Manufacturer: Hyundai Heavy Industries,
Ulsan, Korea).

176



J. Mar. Sci. Eng. 2024, 12, 1755

Table 1. Specifications of diesel generator on the vessel.

Maker HYUNDAI-HiMSEN

Type 7H21/32

Engine power 1415 [kW]

Generator power 1330 [kW]

Engine speed 900 [rpm]

Engine set 3 [sets]

The Specific Fuel Oil Consumption (SFOC) required to calculate the fuel consumption
based on the diesel generator’s load is summarized in Table 2. The data were derived from
the manufacturer’s factory test operation report provided when the target ship was built.

Table 2. Specific fuel oil consumption value of diesel generator.

Engine power [%] 10 25 50 75 100

SFOC [g/kWh] 322.3 240.8 203.3 196.7 192.2

As illustrated in Figure 1, operating the generator at low loads results in a higher
fuel oil consumption than operating it at relatively high loads. This indicates that the fuel
efficiency varies with the load, with a noticeable difference between low- and high-load
operations. For loads above 50%, there was little variation in the efficiency. However,
for loads below 50%, the efficiency decreased sharply, as indicated by the steep slope. A
simulation model was constructed considering these characteristics.

 
Figure 1. Specific fuel oil consumption value of diesel generator.

The optimal operating point of the engine, based on the lowest Specific Fuel Oil
Consumption (SFOC) at 100% load, poses a risk of blackout due to the additional load
when the generator runs at full capacity. To ensure safety, the Power Management System
(PMS) activates a standby generator when the load exceeds 85%, reducing the strain on the
main generator. Therefore, this paper designates 85% load as the point of highest efficiency
with safety assured.

Step 2. Design of the energy management system.
To use the controller, the generator load-sharing criteria were set according to the

system load size and battery SOC, which was designed by setting the rules for the energy-
optimal control criteria for the optimal operation mode of the NEQP as an energy man-
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agement system. As shown in Equation (1), the load is defined as the sum of the power
output of the power generation source and the SOC of the battery. The command states of
the generator output are divided into DGstop, DGmin, DGopt, and DGmax.

The optimal operating point (DGopt) for efficient operation was selected, and the load
of the system and the power balance of each generator and battery were equal to the sum
of the power outputs of the three generators and the capacity of the battery with respect to
the load of the ship.

Wload = WDG1 + WDG2 + WDG3 + Wbatt (1)

Wload: Required load [kW] on electrical power system
WDG1: Output [kW] of No. 1 diesel generator
WDG2: Output [kW] of No. 2 diesel generator
WDG3: Output [kW] of No. 3 diesel generator
Wbatt: Output [kW] of battery
DGstop: 0 [%]
DGmin: 50 [%]
DGopt: 85 [%]
DGmax: 100 [%]

The control rules were designed to ensure that each generator operates at its optimal
efficiency point for each mode. The optimal energy control rules for minimizing the energy
consumption while adhering to the control logic criteria based on the ship’s load and
battery SOC conditions are outlined in Table 3. As indicated in the table, the generators
operate in the optimal mode in 10 of the 12 operating modes. The rules for each load zone
were as follows: the battery is charged only when the SOC is below 30% and discharged
only when the SOC is above 80%. When the SOC is between 30% and 80%, the battery is in
a normal state, and charging/discharging rules are applied based on the system load. In
this zone, all generators operate at their optimal efficiency. When the battery SOC is 80% or
higher, charging is not allowed, and if the power load required by the ship is less than the
generator’s optimal output, the fuel consumption per unit horsepower will increase owing
to the low-load operation.

Figure 2 shows the operating states of the power generator and battery based on the
control rules.

Figure 3 presents a flowchart of the control rules based on the operational mode and
control rules. Using the ship load and battery SOC as input values, the power output
command of the generator was determined according to these control rules. Commands
M1, M2, M3, Mmax, and Mvar vary based on the SOC of the battery, and the power output
command of the generator is adjusted according to the current operating load.

Step 3. Selection of the load profile
To verify the reliability of the diesel generator–battery hybrid system model with the

optimal efficiency algorithm-based control method, several scenarios were constructed
using actual operational data from the target ship, and simulations were conducted. As
shown in Figure 4, the sailing route of the target ship was as follows: after docking at
the port of call for approximately 19.2 h, the ship departed and sailed for about 72 h. It
then entered the next port and docked for 62.4 h for cargo loading and unloading, before
departing again and sailing for 60 h. As depicted in Figure 5, the system load records from
the actual ship, covering approximately 222 h (800,000 s) of operation, were extracted and
converted into load profiles for constructing the simulation scenarios. The fuel consumption
was then calculated using MATLAB/Simulink software (R2021b).
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 2. Operating status of proposed NEQP optimal efficiency algorithm. (a) M1, (b) M2, (c) M3,
(d) Mmax, (e) Mvar.

The sections labeled “In Port” or “Sailing” include the loads required for sailing,
operating equipment during cargo loading and unloading, and maintaining the ship’s
living quarters. These are the basic load sections at which a ship can operate normally. The
three high-load sections labeled “Arrival” or “Departure” represent periods of maximum
power consumption due to large loads such as bow thrusters when entering or leaving a
port. Data were collected and stored in 10 s intervals during the voyage, with each 10 s
interval assuming that the values retained the previous data.
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Figure 3. Block diagram of operation sequence for proposed NEQP optimal efficiency algorithm.

 

Figure 4. Voyage route of reference vessel.

Step 4. Simulation
The simulations were performed to verify the reliability of the diesel generator–battery

hybrid system model with the optimal efficiency control method applied to the existing
power system using MATLAB/Simulink. The controller inputs, which vary in real time,
include the total load of the ship and the battery state of charge (SOC). The output was
the power output command of the generator engine. As shown in Figure 6, the system
was configured by integrating the battery system with the existing power system of the
target ship, which consisted of three engine generators. Simulations were conducted using
symmetric and asymmetric load-sharing methods, and the results were compared. The
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system load was managed using a MATLAB/Simulink block that facilitates real-time
load variations.

 

Figure 5. Operating load profile of reference vessel.

 

Figure 6. System configuration of generator–battery hybrid system.

As depicted in Figure 7, the generator operation characteristics of the target ship
were applied to the model to extract data, such as the generator’s power output, fuel
consumption, voltage, and current relative to the load. The model included three generators
with a battery capacity set greater than that of the generators. The initial SOC value [%]
was set using a block. A scenario simulating the power load required for the actual
operation of the target ship was input as the load. Additionally, a data collection system
was modeled to extract and store the load data over time according to the scenario. A
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controller implementing both symmetric and asymmetric control methods was added to
compare the proposed NEQP control method with existing methods.

 

Figure 7. Simulation model of a generator–battery hybrid architecture.

3. Results

Based on the selected load profile, the simulation results for systems with symmetric
load sharing, asymmetric load sharing, and the proposed NEQP controller were compared,
as shown in Figure 8. In the symmetric load-sharing method, the system operated with
medium-to-low loads in the 50–60% range, with power outputs equally distributed between
the two generators, resulting in a lower efficiency. No. 3 DG was activated to handle peak
loads during port arrivals and departures, demonstrating that the load was shared through
parallel operation. Adding a sufficiently large battery to this system and connecting it to
the grid can mitigate efficiency losses by using the stored energy for temporary peak and
partial loads, thereby reducing the need for frequent parallel operations.

When operating with an asymmetric load-sharing controller, No. 1 DG functions at its
optimal operating point of 85% (1130.5 kW), whereas the remaining load is managed by
No. 2 and 3 in parallel operation. No. 2 DG operates at its lowest efficiency, handling a
load of approximately 0–35% (0–400 kW) of its optimal capacity. No. 3 DG is activated to
address the peak loads that arise during port arrivals and departures, with the load shared
through a parallel operation. Consistently operating one generator at a high efficiency is
advantageous for improving the overall efficiency and reducing fuel consumption. How-
ever, the remaining load is handled by another generator operating at a lower efficiency,
and all changing system loads are handled in the low-load state. Thus, while a longer load
scenario duration and a larger efficiency operating point based on load sharing can be
beneficial, the system efficiency decreases as the operating point deviates from the optimal
point compared with symmetric load operation. To enhance the efficiency of this system, a
sufficiently large battery could be added and connected to the grid. In this scenario, the
energy stored in the battery can be used for low and temporary peak loads handled by No.
2 DG, thereby compensating for the reduced efficiency.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

  
(j) (k) 

Figure 8. DG power, battery power, and SOC for operation modes. (a) No. 1 DG power in symmetric
load sharing, (b) No. 2 DG power in symmetric load sharing, (c) No. 3 DG power in symmetric load
sharing, (d) No. 1 DG power in asymmetric load sharing, (e) No. 2 DG power in asymmetric load
sharing, (f) No. 3 DG power in asymmetric load sharing, (g) No. 1 DG power in proposed NEQP
method, (h) No. 2 DG power in proposed NEQP method, (i) No. 3 DG power in proposed NEQP
method, (j) Battery power in proposed NEQP method, (k) Battery SOC in proposed NEQP method.
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The simulation of a generator–battery hybrid system, in which an additional battery is
connected to the existing power system, demonstrates that the generators operate at their
optimal points depending on the system load and battery SOC, whereas the battery assists
with loads followed by charging and discharging. No. 1 DG operates at its optimal point of
85% (1130.5 kW), handling most of the power system load. The remaining load is managed
through a parallel operation with Nos. 2 and 3, and some of the load is handled by the
battery. All three generators operated at their optimal efficiency points. When No. 1 DG
does not operate at its optimal point, the system, as shown in the battery SOC graph, is
controlled to protect the battery when the SOC reaches 80%. In these cases, the generator
operates at a variable load rather than at its optimal point, and the battery stops charging.
During these periods, the system load is managed by a single generator, and the power
output fluctuates according to the load changes. No. 3 DG is activated to handle peak
loads during port arrivals and departures, with the load being shared through a parallel
operation. The simulation results indicate that the generators operate at their optimal
efficiency points in all zones, except those set for battery protection based on the battery
SOC. The generators operate in parallel according to the load size, and the battery charges
and discharges smoothly. When the generator operates at its optimal point, the charged
battery discharges to manage the additional load above the optimal efficiency point. In the
two zones in which the battery SOC reached the upper limit of 80% (1200 kWh), the battery
stopped charging and discharged slightly but steadily, as indicated by the power input and
output. When the SOC reached the lower limit of 30% (450 kWh), the battery immediately
started charging again.

Table 4 provides details of the fuel oil consumption of each generator and the combined
fuel oil consumption of all three generators throughout the simulation. At the end of the
approximately 222-h simulation, the cumulative fuel consumption for the symmetric load-
sharing controller was 53.49 t. The fuel consumption distribution was approximately 60%
for generator 1, 40% for No. 2 DG, and approximately 0.1% for No. 3 DG, which handled
the peak load. In total, 53.49 t of fuel oil were consumed.

Table 4. Total fuel oil consumption (unit: [ton]).

Load Sharing Method

DG No.
No. 1 No. 2 No. 3

Grand
Total

Symmetric 32.17 21.25 0.07 53.49
Asymmetric 47.49 4.44 0.06 51.99

NEQP 47.89 2.55 0.06 50.5

For the asymmetric load-sharing controller, the total fuel consumption was
51.99 t. No. 1 DG operated at its optimal efficiency point and handled most of the system
load, while No. 2 DG operated at a low efficiency and load and managed the remaining
load. The cumulative fuel consumption of No. 1 DG was 47.49 t, which represented approx-
imately 91.3% of the total cumulative fuel consumption. The cumulative fuel consumption
of No. 2 DG was 4.44 t, accounting for approximately 8.5%, while that of No. 3 DG was
approximately 0.1%. The total fuel oil consumption in the asymmetric load-sharing control
mode was 51.99 t. The cumulative fuel consumption of No. 1 DG, which constitutes approx-
imately 91.3% of the total fuel consumption, represents a significant reduction compared
with that of the symmetric load-sharing control mode. This efficiency improvement results
in fuel savings of approximately 1.5 t. By segmenting the system load into specific zones,
one or more generators can operate at their optimal efficiency points, thereby reducing the
fuel oil consumption and pollutant emissions. However, the remaining generators often
operate at very low efficiencies in low-load zones, which can increase fuel consumption
and pollutant emissions. These results may vary depending on the load profile and the
operating time.
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The final cumulative fuel consumption of the system with the proposed NEQP con-
troller was 50.5 t. All generators operated at their optimal efficiency points and operated
in conjunction with a battery to manage the power system load. No. 1 DG handled most
of the power system load with a cumulative fuel consumption of 47.89 t, accounting for
approximately 83% of the total fuel consumption. The cumulative fuel consumption of No.
2 DG was 2.55 t, or approximately 5%, while that of No. 3 DG was minimal at approxi-
mately 0.12%. Because all generators operated at their optimal efficiency points, the total
fuel consumption was reduced compared with previous simulations. Despite No. 1 DG
having the highest cumulative fuel consumption of 47.89 t, which is approximately 83% of
the total, the overall fuel consumption was lower because Nos. 2 and 3 DG also operated
efficiently, and the battery was connected to the grid to handle part of the load.

4. Discussion

4.1. Analysis of Results through Comparison

Figure 9 illustrates the fuel oil consumption of the generator–battery hybrid sys-
tem with the proposed NEQP optimal efficiency control method compared with those of
the conventional symmetric and asymmetric load-sharing control methods. The results
demonstrate that the fuel consumption is the lowest with the proposed NEQP optimal
efficiency algorithm.

Figure 9. Total fuel oil consumption for the load sharing method.

Table 5 presents a comparison of the total fuel consumption for each control method
based on the simulation results. The symmetric load-sharing method resulted in a total
fuel consumption of 53.49 t, which is about 2.99 t higher than the 50.5 t consumed using
the proposed NEQP control method. This indicates that the proposed method achieves a
higher efficiency than conventional methods.

Table 5. Comparison of total fuel oil consumption for the load sharing method.

Load Sharing Method
Symmetric Asymmetric

Total FOC [ton] 53.49 51.99

NEQP 50.5 2.99 [ton]
(5.59 [%])

1.49 [ton]
(2.87 [%])

While adding a battery to the existing power system and applying NEQP is the
most effective solution, the cost of adding the battery must be considered. In contrast,
implementing symmetric and asymmetric load sharing methods in the existing power
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system may only require changes to the control logic, with no need for additional equipment
installations.

4.2. Economic Benefits of Applying NEQP

Additionally, maintaining generators at their optimal operating points simplifies the
prediction of maintenance cycles and is expected to yield significant economic benefits
through reduced fuel and maintenance costs. Table 6 shows that if a ship using low-
sulfur oil completes approximately 38 voyages per year, the NEQP optimal efficiency
control method could save 115.96 t of fuel oil. This translates to an expected cost saving of
approximately USD 69,807 or approximately KRW 96.47 million [38].

Table 6. Analysis of fuel savings and economic benefits per year depending on fuel type.

Type of Fuel

High-Sulfur
Fuel Oil
(3.5 [%])

Low-Sulfur
Fuel Oil
(0.5 [%])

LNG

USD per ton [USD] 520 602 708

Savings of fuel per year [ton] 115.96 115.96 115.96

Savings of USD per year [USD] 60,299.2 69,807.9 82,099.7

Savings of KRW per year [10 K KRW] 8333.35 9647.45 11,346.18

This reduction translates to expected fuel savings of approximately 115.96 t for 38 voy-
ages per year, equating to cost savings of approximately USD 69,807. The savings are
anticipated to be even greater when using LNG, and the economic benefits are expected to
increase if marine fuel oil prices rise in the future or if the supply price of carbon-free fuel
exceeds that of LNG.

4.3. Limitations and Future Research

1. This study has limitations due to the use of simulated data based on the actual load
profile of a ship’s voyage. Therefore, it is essential to conduct further research by
installing and validating the proposed control methods on software and equipment
in actual operational ships.

2. Further research is needed to explore different system designs to determine if the
C-rate of the battery system can handle peak loads during port arrival and departure,
and if the ship’s operational capability can be maintained without reserving auxiliary
power for rapidly changing onboard loads. The use of dual-battery systems, super-
capacitors, and advanced control methods should also be investigated to ensure the
safety of the power systems under peak loads.

3. This paper acknowledges certain limitations, such as not considering the battery’s
price, weight, and safety in the event of a fire. Future research should address these
issues through a comprehensive review of both economic and safety implications.

4. The study also focuses on long time-scale simulations, meaning it does not include
components that capture transient states, such as Automatic Voltage Regulators (AVR).
Future developments will need to address these transient states, presenting a new
challenge for model enhancement.

5. The reduction in fuel consumption can lead to verified reductions in CO2 emissions,
which presents another potential avenue for expanded research.

5. Conclusions

To improve the efficiency of the existing power system, three control methods were
compared and analyzed. A model was developed using MATLAB/Simulink, and a simula-
tion was conducted based on 222 h of real ship operation data.
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1. When the symmetric load-sharing control method was applied, the number of gener-
ators operating was determined based on power loads of 85%, 170%, and 255%. It
was observed that the load was evenly distributed among the generators operating in
parallel. During the simulation, a total of 53.49 tons of fuel was consumed.

2. With the asymmetric load-sharing control method, the number of generators was also
determined based on the size of the power load. However, in parallel operation, one
generator operated at its optimal efficiency point, with the remaining load distributed
among the other generators. This resulted in a total fuel consumption of 51.99 tons
during the simulation.

3. When the NEQP control method proposed in this study was applied, the battery was
charged or discharged depending on the defined load range and the battery’s state of
charge (SOC). This enabled the generators to maintain optimal efficiency for a longer
period compared to the previously mentioned control methods. As a result, the total
fuel consumption was reduced to 50.5 tons, the lowest among the control methods.

4. The simulation results demonstrated a reduction in generator fuel consumption of
approximately 2.99 tons, or 5.59%, over 222 h of operation.
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Abstract: Recently, environmental regulations have been strengthened due to climate change. This
change comes in a way that limits emissions from ships in the shipbuilding industry. According
to these changes, the trend of ship construction is changing installing pollutant emission reduction
facilities such as scrubbers or applying alternative fuels such as low sulfur oil and LNG to satisfy
rule requirements. However, these changes are focused on large ships. Small ships are limited in
size. So, it is hard to install large facilities such as scrubbers and LNG propulsion systems, such as
fishing boats that require operating space. In addition, in order to apply the pure electric propulsion
method, there is a risk of marine distress during battery discharge. Therefore, the application of the
electric–diesel hybrid propulsion method for small ships is being studied as a compromised solution.
Since hybrid propulsion uses various energy sources, a method that can estimate effective efficiency
is required for efficient operation. Therefore, in this study, a Bond graph is used to model the various
energy sources of hybrid propulsion ships in an integrated manner. Furthermore, based on energy
system modeling using the Bond graph, the study aims to propose a method for finding the optimal
operational scenarios and reduction ratios for the entire voyage, considering the navigation feature
of each different maritime region. In particular, the reduction gear is an important component at the
junction of the power transmission of the hybrid propulsion ship. It is expected to be useful in the
initial design stage as it can change the efficient operation performance with minimum design change.

Keywords: bond graph; hybrid propulsion; ship efficiency; energy system modeling; green ship

1. Introduction

Recently, environmental regulations, such as carbon neutrality, are on the rise due
to climate change, and this trend is also applied to shipping industry [1]. As a result,
regulations and rules governing ship emissions, ranging from NOx and SOx to CO2, are
being strengthened or newly established, primarily under the auspices of the Marine
Environment Protection Committee (MEPC) of the International Maritime Organization
(IMO). In response to these demands of the times, the construction trend of ships is changing
with a propulsion method using eco-friendly fuels. Looking at the trend, it was initially
shown that facilities such as scrubbers were added to existing ships to satisfy the rule and
regulation on SOx emission restrictions, etc., to install engines applied with low sulfur
oil on new ships [2,3]. In addition, it has been expanded from using BOG (boil-off gas) of
LNG carriers as propulsion fuel to pure LNG propulsion ships [4,5]. Recently, research on
discovering new fuels such as LPG, DME, and ammonia and applying them to ships has
been actively conducted [6–8].

However, this transition to eco-friendly ships is concentrated on medium and large-
sized ships. The constraint in the transition of small ships to eco-friendly ships is due to
the weak R&D base of small shipyards, but the main reason is the small size of the ship.
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Compared to the existing heavy fuel oil (Bunker C oil), the size of the fuel tank is bound
to increase because the energy density per volume is small. Therefore, there is a limit to
the application of small ships with space restrictions [9]. In particular, the majority of the
Republic of South Korea’s 72,000 vessels, with most being fishing vessels (around 64,000),
are subject to legal size restrictions aimed at preventing the overexploitation of marine
resources [10,11]. Among them, coastal fishing boats (about 61,000 vessels) cannot be built
in excess of 10 tons (tonnage) [12,13]. Additionally, fishing vessels, unlike cargo ships,
require operational spaces for lowering and retrieving nets, and treating and sorting fish at
sea. In other words, considering the ship owner’s demand to have as wide a workspace as
possible for fishing on the main deck, designs such as installing LNG tanks on deck are less
field-soluble. In addition to the size restrictions and the necessity for operational space for
fishing operations, small fishing vessels have distinctive features that contrast with large
ships. In accordance with fishing methods, there are around 40 different types of vessels,
each customized to the characteristics of the East, West, and South Sea areas surrounding
the Republic of Korean Peninsula. As a result, the owner’s needs for ship design also
vary to consider target fish, which act as constraints during construction. Additionally,
despite occupying a significant portion of Korea’s domestic shipbuilding industry due to
its strong domestic market, such as the construction of more than 2000 new ships per year,
it is challenging to conduct research and development independently because most of them
are built in small shipyards. It is challenging to acquire the same fundamental technology
as an eco-friendly ship because these small shipyards are designed in a way that slightly
modifies their existing designs.

In such circumstances, considering electric propulsion methods for small fishing
vessels could be an option for transitioning to green ships [14]. However, considering that
electric power consumption to operate facilities such as fishing gear takes one to two days
per navigation, there is a risk of distress when the battery runs out, so there is a limit to
the application. Therefore, as a national study in the Republic of Korea, research is being
conducted to apply a hybrid propulsion method in which electric batteries are applied to
existing diesel engines for small fishing vessels that are less than 10 tons [15].

As the hybrid propulsion method is applied, the propulsion system becomes more
complex and creates another design problem. Previously, the design was carried out by
estimating the main engine according to ship resistance on design speed, but when the
hybrid propulsion method is applied, a new question arises as to what mode should
be applied for each operation scenario to consider the entire navigation. For example,
when moving to the port and the operating site, the target ship speed is different, and
at this time, it is necessary to decide which of the hybrid propulsion methods to adopt.
Hybrid propulsion in the automotive industry, now widely adopted, also distinguishes
itself. Unlike cars, which typically find it difficult to determine fixed routes and target
speeds, ships operate with defined routes and target speeds. To solve this problem, it can
be used as a basis for determining the decision by measuring the efficiency for each mode
of operation scenario. Currently, there are methods such as the Energy Efficiency Existing
Ship Index (EEDI), which is the ratio for CO2 emissions to a ship’s transport capacity, to
assess efficiency [16]. In addition, the efficiency of the ship can be reviewed as the ratio
of effective power to indicated power, but it is difficult to calculate the hybrid power
conversion process incorporating various energy sources. Therefore, it is necessary to
consider a methodology that can comprehensively model a hybrid propulsion method with
various energy sources and effectively analyze energy flow. In a previous study, changes
in voltage and power were analyzed using a Bond graph in a ship propulsion system
where a generator engine and a battery are connected by a single motor [17,18]. Previous
research is actually a study on ships using only electricity as an energy source, which is
different from the subject of this study on ships propelled by diesel engines and motors
connected to electric batteries. In summary, there are not many studies that apply the Bond
graph to ship propulsion systems, and similar prior studies are difficult to apply to hybrid
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propulsion ships with diesel engines and electric batteries, and there is no approach to
efficiency estimation.

However, the Bond graph method used in previous studies can model targets in
various areas such as machinery, electricity, and hydraulic pressure, effectively modeling
the energy system of ships propelled by motors through electric batteries and diesel
engines [19]. In addition, Bond graphs have the advantage of efficiently analyzing complex
subjects by connecting each element to power, allowing for the calculation of energy flow,
while also enabling the understanding of physical connection structures similar to the
block diagram. In other words, since the Bond graph enables computational modeling and
physical modeling at the same time, it can be used to analyze objects and, conversely, can
be used as a means of optimization.

Therefore, in this study, a Bond graph was used to model the energy system for
the propulsion system of a 9.77 tons hybrid propulsion (diesel engine + electric motor)
coastal gill net fishing vessel. We try to judge the usefulness with a methodology that
can analyze energy flow. Furthermore, the aim of the research extends beyond previous
studies to establish a foundation for identifying the optimal operation mode of each hybrid
propulsion system, and to select the optimal equipment specifications for this purpose. For
reference, information related to the 9.77-ton coastal gill net vessel and relevant fishing
regulations can be verified by searching on the National Institute of Fisheries Science
website [20]. The general main specifications are shown in Table 1. Additionally, additional
information on fishing vessels can be checked through the “Illustrations of Korean Fishing
Vessels (2018)” published by the National Institute of Fisheries Science [21]. Previous
research has focused on the performance evaluation of ships with a single energy source.
In contrast, this study presents optimal operational power and equipment specifications for
ships applying various energy sources. This is a key difference. In summary for this study,
ships follow set navigation patterns, and the entire voyage can be divided into multiple
navigation scenarios. When a hybrid propulsion system is applied, appropriate navigation
modes and optimal power must be determined for each scenario. Additionally, suitable
equipment capable of achieving these performances must be selected. This is illustrated in
Figure 1.

Table 1. Normal principal dimension of 9.77 ton coastal gill net fishing vessel.

Tonnage Length (m) Breadth (m) Depth (m) Knots

9.77 11.5~17.46 2.52~4.52 0.79~1.66 10~12

 

Figure 1. Concept of problem.
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2. Fundamental of Bond Graph

2.1. Overview of Bond Graph

The Bond graph is a method proposed by Prof. Paynter in 1959 to structure each
element of the analysis by connecting it with power [22]. It has started and developed
by defining power exchange and energy flow between each element as a Bond graph
methodology.

The core principle of the Bond graph can be said to be energy conversion based on the
conservation law. Since energy is only transformed and preserved in shape, the Bond graph
can be expressed in an integrated way for various domains such as machinery, electricity,
heat, and fluid power. Therefore, it can be said that the Bond graph presents a method
of effectively dealing with energy conversion based on a unified notation. In order to
effectively understand the Bond graph based on these core principles, it is necessary to
understand the variables, elements, causality between variables, and notation that make
up the Bond graph [23,24].

2.2. Variable of Bond Graph

Variables in the Bond graph are categorized into power variables and energy variables.
Power variables are again distinguished into effort (e) and flow ( f ), while energy variables
are divided as momentum (p) and displacement (q). A power variable is a constituent
variable of a bond that connects each element. All elements are connected by a bond, and
the bond consists of effort (e) and flow ( f ). Power is defined as the product of effort (e) and
flow ( f ) [power = effort (e) × flow ( f )]. The reason why the variables are newly defined as
effort (e) and flow ( f ) in the Bond graph is to unify and distinguish the variables that make
up power for objects in various domains into effort (e) and flow ( f ). As some examples,
variables for each domain are divided into effort (e) and flow ( f ) as shown in the following
Table 2.

Table 2. Power variable and energy variables of various domains.

Description Domain Effort (e) Flow (f)

Power
variable

Mechanics translational Force F [N] Velocity v [m/s]
Mechanics rotational Angular moment M [N·m] Angular velocity ω [rad/s]

Electronics Voltage u [V] Current i [A]
Hydraulic Pressure P [N/m2] Volume flow Q [m3/s]

Energy
variable

Mechanics translational Momentum P [N·s] Displacement x [m]
Mechanics rotational Angular Momentum pω [N·ms] Angle θ [rad]

Electronics Linkage flux λ [V·s] Charge q [A·s]
Hydraulic Pressure Momentum pp [N/m2 s] Volume V [m3]

The reason for distinguishing energy variables is momentum (p) and displacement
(q) is for conversion between effort (e) and flow ( f ) in the Bond graph. After modeling
with the Bond graph, effort (e) and flow ( f ) values in all connections (bonds) should be
computed. At this time, the value regarding the specification of each element of effort (e)
and flow ( f ) becomes known, while the energy storage element becomes unknown as a
variable because it changes with time. Therefore, it is necessary to find the unknown term
through the known term, and in this process, the conversion between effort (e) and flow
( f ) is required. Variables used in this transformation process are energy variables namely
momentum (p) and displacement (q). Each definition is as below in Table 3, and a detailed
transformation process will be described in causality between variables.

Table 3. Generalized momentum (p) and displacement (q).

Generalized Momentum (p) Generalized Displacement (q)

p(t) = p(t)0 +
∫ t

0 e(t)dt) q(t) = q(t)0 +
∫ t

0 f(t)dt
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2.3. Element of Bond Graph

In the Bond graph, elements are divided into sources, storage, transform, converter,
dissipator, and distribute. Examining each category is as follows. The source (Se) is an
element that supplies power to the entire system and includes, for example, engine torque
and battery current. Storage (I) is an element that stores power and includes inertia, which
stores rotational inertia, and capacity for electric power. Transform (TF) is an element that
transforms effort to effort or flow to flow in a constant ratio, and a representative example
is gear. The changes in Effort (e) and Flow (f) by Transform (TF) are shown in Table 4.
Convert (GY) is an element that converts between effort to flow or flow to effort at a certain
ratio. If motor is idealized, it can be said that this is the case. The change effort (e) and
flow ( f ) by converter (GY) is defined as Table 4. Dissipator (R) is a resistive element that
causes energy loss in the entire system. Typical examples are electrical resistance or friction
loss. Distribute is an element that connects previous elements and distributes power. It is
classified into 0 Junction and 1 Junction, and all elements connected to 0 Junction have the
same effort, and all elements connected to 1 Junction have the same flow.

Table 4. Transform, convert and junction.

Transform Convert

e1 = TF × e2, f2 = TF × f1 e1 = GY × f2, e2 = GY × f1

0 Junction 1 Junction

e1 = e2 = · · · = en
f1 = f2 + · · ·+ fn

f1 − f2 − · · · − f = 0

 

f1 = f2 = · · · = fn
e1 = e2 + · · ·+ en

e1 − e2 − · · · − en = 0
 

2.4. Causality of Bond Graph

The transformation on the Bond graph between variables follows causality. Causality
is classified into integral and differential types, and the transformation between variables
is schematically expressed in Figure 2. Note that when calculating effort and flow, the
integral type or differential type should be applied according to the model characteristics,
but it should be applied uniformly without mixing [25].

Integral causality Di erential causality 

  

Figure 2. Integral causality vs. differential causality.

3. Analysis of the Research Vessel

3.1. Overview of the Research Vessel

The target vessels for this study are 9.77 tons of coastal gillnet fishing boats, which
have the following main characteristics. Among the 72,000 vessels in the Republic of Korea,
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fishing boats account for 64,000, of which 61,000 coastal fishing boats’ maximum size is
limited to 10 tons (tonnage) in order to protect fishery resources in accordance with the
“Fisheries Act”, which is the domestic law [12,13]. In other words, the target vessels in this
study are small in size, but they occupy an important position as they constitute most of
the ships in the Republic of Korea [10]. In addition, gill netting is a fishing method that
is caught by getting entangled in a net, and facilities such as a winch (fishing gear) are
required to lift the net [21]. It is generally made of FRP (fiberglass-reinforced plastic), and
it takes about 1 day for one voyage with 10 to 12 knots, and the number of crew is about
two to three members [21]. Currently, the development of diesel and electric complex
propulsion fishing vessels is in progress to convert to eco-friendly fishing boats (Ministry
of Oceans and Fisheries of the Republic of Korea (hereinafter referred to as MOF), research
project on the development of energy-efficient eco-friendly fishing vessels, ‘21~25’). This
study modeled the energy system using a Bond graph based on the fishing vessel under
development.

3.2. Operational Scenarios of the Research Vessel

Currently, the development of diesel and electric complex propulsion fishing vessels is
in progress to convert to eco-friendly fishing boats (Ministry of Oceans and Fisheries of the
Republic of Korea (hereinafter referred to as MOF), research project on the development
of energy-efficient eco-friendly fishing vessels, ‘21~25’). This study modeled the energy
system using a Bond graph. In order to model the energy system of the ship to be studied,
the operation scenario was analyzed based on one voyage of the ship to identify the
required power. The operation scenarios per voyage can be largely categorized into in-port
operation, operation when moving to the operating site, and operation on site. In addition,
since fishing vessels typically do not engage in ballasting, it is assumed that it is a reverse
process at the time of departure in consideration of the consumption of fuel and fresh water
and increased catches at the time of return. In other words, it is assumed that there are
three operation scenarios (in-port navigation, navigation when moving to fishing grounds,
and navigation during fishing operations) based on the fishing vessel under development.
First, in order to model the propulsion system as a Bond graph and verify the modeling
results, a load for each operation scenario is required. Therefore, the design load for each
operation scenario of a ship under development (MOF, energy-efficient and eco-friendly
fishing vessel development research project, ‘21~25’) is used as a value for calculation
verification, and the value is shown in Table 5. In addition, the load is shown together
because it must be converted into a value obtained by dividing the torque by RPS in order
to be applied as a resistance factor to the Bond graph modeling.

Table 5. Load cases according to operation scenario.

Operation Scenario
Torque [N·m]

(A)
RPS
(B)

Torque/RPS
(A/B)

In port 5787.6 38.88 148.87
Transfer from port
to fishing ground 10,403.4 53.83 193.27

Working (fishing) 8292.99 44.86 184.88

3.3. Research Vessel’s Propulsion Modes

The target vessel for this study is a hybrid propulsion method that is propelled by
a diesel engine and electric motor supplied with power from the battery. Basically, there
may be engine propulsion, electric motor propulsion, and engine–electric motor complex
propulsion methods. However, if the electric motor propulsion is used only as much as the
battery is charged on shore, the use time of the electric motor propulsion is limited, so it is
necessary to be able to charge the battery in consideration of the power required for each
operation scenario when promoting the diesel engine. Therefore, there are four mode cases
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in the ship to be studied: hybrid mode, engine mode, motor mode, and charging mode
which use both the engine and the motor.

3.4. Analysis of Research Vessel’s Specifications

The ship to be studied was assumed to be based on the specifications of the diesel
and electric complex propulsion fishing vessel under development (MOF, energy-efficient
and eco-friendly fishing vessel development research project, ‘21~25’), and unconfirmed
information was assumed by referring to the specifications of existing similar ships. In
addition, it was assumed that the power required for the fishing gear during operation was
supplied by electricity produced by a generator engine and was independent of the battery
for propulsion. The variables constituting the Bond graph modeling of the propulsion
system of the ship to be studied are summarized in Table 6.

Table 6. Equipment specification for Bond graph modeling.

Description Mechanical Electrical

Source
(S)

Se(Engine Torque):
2461.6 [N·m]

Se(Battery Voltage):
671.6 [V]

Storage
(I)

JF(Inertia of engine flywheel):
1.612 [kg·m2]

JR(Inertia of motor rotor):
0.84 [kg·m2]

L(Inductance on PTI *†):
0.000659 [H]

*† Power Take In(PTI) of motor

Resister
(R)

T(Load according to operation
scenario):

Refer to “Torque/PRS” on Table 5
α(Load of battery charing)

|: 6.516 [N·m/(rad/s)]
β(Resistance of stern tube)

|: T|x|0.005 *† [N·m/(rad/s)]
*† Friction coefficient

γ(Resistance of motor bearing)
‖: 0.0038|[N·m/(rad/s)]

RE|(Resistance of motor coil on
PTI)

: 0.162|[Ω]
RC|(Resistance of converter coil):

0.145|[Ω]

Transformer
(TF)

TF(Gear ratio):
1:3.5 (N2 > N1 , N1 = m1, N2 = m2)

Gyrator
(GY)

KC(Convertor):
3.86 *†

*† |671.6 battery voltage(effort)
change to 174 convertor

ampere(flow)
⇒ 671.6 / 174 = 3.86

KM(Motor):
3.23 *†

*† |172.4 motor ampere(flow)
changed to 557 motor

torque(effort)
⇒ 557 / 172.4 = 3.23

4. Modeling Using Bond Graph

The Bond graph modeling was conducted in the flow as shown in Figure 3, and the
detailed process of Bond graph modeling for the target ship is described sequentially
as follows.

The propulsion system of the research vessel is described as a 3D image, the Scheme
and Bond graph modeling results are described sequentially as follows. Figure 4 is the
expression of the propulsion system of the research vessel as a 3D image, and it is revealed
that it is only an illustration for effective explanation and not actual information used in
this study.

Since it is difficult to model directly with a Bond graph in the state of Figure 4, each
component from the engine and battery to propeller is converted into an element for Bond
graph modeling, and the scheme is created in Figure 5 [26].
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1. Analyzing the characteristics of the object 
 

2. Decompose each piece of equipment into elements of the Bond graph and create  
a schematic 

 
3. Based on the schematic, connect all the elements to complete the Bond graph 

 
4. Set the storage element as a state variable and assume it as a given input 

 
5. Calculate the e ort and ow of each bond (Calculation step 1) 

 
6. Organize equations for the state variables (Calculation step 2) 

 
7. Solve the coupled nonhomogeneous di erential equations for the state variable  
(Calculation step 3) 

8. Substitute the calculated state variables into e ort and ow and then compute  
the power for all bonds 

 

Figure 3. Bond graph modeling flow chart.

 

Figure 4. Three-dimensional modeling of energy system.

Figure 5. Scheme of energy system for Bond graph modeling.
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Based on the above scheme, if the propulsion system of the target vessel for this study
is idealized with a Bond graph, the following results are obtained [27].

5. Energy Flow Calculation

As depicted in Figure 6, the propulsion system of the research vessel was modeled
using a Bond graph. Next, the effort and flow of each bond in the model represented in
Figure 6 will be calculated to understand the energy variations. In this process, it is crucial
to set the energy variable of the storage element as a state variable, assuming the unknowns
as known variables. Subsequently, organizing equations for the state variables leads to a
system of ordinary differential equations. By assigning initial values and solving, the effort
and flow for all bonds can be obtained. Calculations for the most complex hybrid mode of
the research vessel are presented below. The subscript numbers in the following calculation
represent the respective bond numbers. Sequential calculations from bond 1 to 19 are as
follows.

 
 

 
 

 

Figure 6. Bond graph modeling of energy system.

As shown in Figure 6, the propulsion system of the ship to be studied was modeled as
a Bond graph. Next, the effort and flow of each bond according to the modeling of Figure 6
are calculated so that energy changes can be identified. The most important thing in this
process is to assume that the unknown term is known by setting the energy variable of
the storage element as a state variable. After that, if the equation for the state variable is
summarized, it results in a simultaneous ordinary differential equation. At this time, if the
initial value is substituted to obtain the solution, the effort and flow for all bonds can be

199



J. Mar. Sci. Eng. 2024, 12, 903

obtained. The calculation for the most complex hybrid mode among the operation modes
of the research vessel is as follows. In the calculation process below, the subscript number
represent the respective bond numbers. Sequential calculations from bond 1 to 19 are
as follows.

<Calculation for Bond graph modeling—Step1.>

e1 = Se(Battery)

f1 : e2 = KC × f1, f1 = e2
KC = 1

KC

(
RC × p6

L + RE × p6
L +

.
p6 + KM × p10

JR

) (1)

e2 = e3 + e4 = RC × p6
L + RE × p6

L +
.

p6 + KM × p10
JR

f2 = p6
L (∴ f2 = f3 = f4 = f5 = f6 = f7) , f2 = e1

KC =
Se(Battery)

KC (∴ e1 = KC × f2)
(2)

e3 = R × f3 = RC × p6
L

f3 = p6
L =

Se(Battery)
KC

(3)

e4 = e5 + e6 + e7 = RC × p6
L +

.
p6 + KM × p10

JR

f4 = p6
L =

Se(Battery)
KC

(4)

e5 = R × f5 = RE × p6
L

f5 = p6
L =

Se(Battery)
KC

(5)

e6 =
.

p6

f6 = p6
I = p6

L =
Se(Battery)

KC
(6)

e7 = KM × f8 = KM × p10
JR

f7 = p6
L =

Se(Battery)
KC

(7)

e8 = KM × f7 = KM × p6
L

f8 = p10
JR

(∴ f8 = f9 = f10 = f11)
(8)

e9 = R × f9 = γ × p10
JR

f9 = p10
JR

(9)

e10 =
.

p10
f10 = p10

I = p10
JR

(10)

e11 : e8 = e9 + e10 + e11, e11 = e8 − e9 − e10 = KM × p6
L − γ × p10

JR
− .

p10

f11 = p10
JR

(11)

e12 = N2
N1

× e11 = N2
N1

(
KM × p6

L − γ × p10
JR

− .
p10

)
f12 = N1

N2
× f11 = N1

N2

p10
JR

(∴ f12 = f13 = f14 = f15)
(12)

※ Reduction Gear ratio

N2 > N1 (N1 = m1, N2 = m2)

N2 × e11 = N1 × e12 → e12 = N2
N1

× e11 / N1 × f11 = N2 × f12 → f12 = N1
N2

× f11

e13 = R × f13 = β N1
N2

p10
JR

f13 = N1
N2

p10
JR

= m1
m2

p17
JF

(13)

e14 = R × f14 = T N1
N2

p10
JR

f14 = N1
N2

p10
JR

= m1
m2

p17
JF

(
→ p10

JR
= p17

JF

) (14)

e19 = Se(Engine)
f19 = p17

JF
(∴ f 16 = f17 = f18 = f19)

(15)
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e18 = R × f18 = α N1
N2

p17
JF

f18 = p17
JF

(used to charging mode only)
(16)

e17 =
.

p17
f17 = p17

I = p17
JF

(17)

e16 : e19 = e17 + e16, e16 = e19 − e17= Se(Engine) −
.

p17
f16 = p10

JR

(18)

e15 = m2
m1

× e16 = m2
m1

(
Se(Engine) −

.
p17

)
f15 = m1

m2
f16 = m1

m2

p17
JF

e12 + e15 = e13 + e14
N2
N1

(
KM × p6

L − γ × p10
JR

− .
p10

)
+ m2

m1

(
Se(Engine) −

.
p17

)
= β N1

N2

p10
JR

+ T N1
N2

p10
JR

(19)

Based on the effort and flow calculations of each bond [Equations (1)~(19)], the equations
for the state variables are summarized [Equation (22)], ultimately leading to the derivation
of a matrix form system of coupled differential-algebraic equations [Equation (23)]. The
relationship equation between the state variables p10 and p17 is derived using Equation (19).
After that, rearranging Equation (20) with respect to p10 and similarly rearranging with
respect to p17 results in the following.

<Calculation for Bond graph modeling—Step2.>

e12 + e15 = e13 + e14
N2
N1

(
KM × p6

L − γ × p10
JR

− .
p10

)
+ N2

N1

(
Se(Engine) −

.
p17

)
= β N1

N2

p10
JR

+ T N1
N2

p10
JR

(∴ N1 = m1, N2 = m2)

(20)

.
p10 =

(
1

1+JF/JR

)
KM
KC Se(Battery)

−
(

1
1+JF/JR

)
1
JR

[
γ + (β + T)

(
N1
N2

)2
]

p10 +
(

1
1+JF/JR

)
Se(Engine)

(21)

.
p17 =

(
1

JR/JF+1

)
KM
KC Se(Battery)

−
(

1
JR/JF+1

)
1
JR

[
γ + (β + T)

(
N1
N2

)2
]

p10+
(

1
JR/JF+1

)
Se(Engine)

(22)

Equations (21) and (22) can be expressed as a coupled ordinary differential equation
in matrix form, as follows:

<Calculation for Bond graph modeling—Step3.>

[ .
p10.
p17

]
=

⎡
⎢⎢⎣

−1
(1+JF/JR)JR

[
γ + (β + T)

(
N1
N2

)2
]

0

−1
(JR/JF+1)JR

[
γ + (β + T)

(
N1
N2

)2
]

0

⎤
⎥⎥⎦
[

p10
p17

]
+

[ 1
(1+JF/JR)

KM
KC

1
(1+JF/JR)

1
(JR/JF+1)

KM
KC

1
(JR/JF+1)

][
Se(Battery)
Se(Engine)

]
(23)

Since the initial condition of the engine and motor is in a stationary state, if the
coupled ordinary differential equations are solved by setting the initial value to 0 for
time, the solution becomes the value of a state variable. In this way, since the effort and
flow values of all bonds were obtained, the power of each bond can be computed. In
summary, it means that the energy change for the propulsion system of the research vessel
can be determined. The modeling results of hybrid mode, engine mode, motor mode, and
charging mode are calculated for each mode in the same way as the previous calculation.
However, since the load for each operation scenario is different in each mode, there are four
modes (hybrid mode, engine mode, motor mode, and charging mode), and three operation
scenarios (in-harbor navigation, transit to fishing ground navigation, and fishing operation
navigation) exist. So, there are a total of 12 cases. The results of modeling in the Bond graph
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for hybrid mode, engine mode, motor mode, and charging mode are shown in Figures 7–10,
respectively.

Figure 7. Bond graph modeling of hybrid mode.

Figure 8. Bond graph modeling of engine mode.

Figure 9. Bond graph modeling of motor mode.

Figure 10. Bond graph modeling of charging mode.

6. Validation of Calculations

Next, the previous Bond graph modeling calculation result is verified. The verification
method is determined by using the commercial software “20-sim 5.0” to model the same
and comparing the value of the state variable [28]. However, it is essential to emphasize
the difference between this study and commercial software before calculation verification.
The commercial program only provides an environment for modeling by combining the
concept of the Section 2. Bond graph and the elements introduced in the main contents but
does not create the scheme of Figure 5 or provide modeling such as in Figure 6. In addition,
the commercial program can be used universally, but it does not provide detailed analysis
results for the propulsion system of the hybrid propulsion ship. Therefore, in this study, the
performance estimation and energy flow can be calculated using the Bond graph modeling
results for use in the initial design. The meaning of this study compared to the commercial
program will be explained again in the results analysis. The following, Figure 11, shows
the results of modeling hybrid modes using “20-sim 5.0” among the four modes.
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Figure 11. Bond graph modeling of hybrid mode by 20-sim 5.0.

In the case of using hybrid mode when moving to the fishing ground, the results of the
study using the state variable value calculated through “20-sim 5.0” and the simultaneous
ordinary differential equation derived through the energy flow calculation introduced in
Section 5 (using the SciPy package(version 1.11.4) implemented by the Runge–Kutta 4th
order method [29,30]) are compared as Figure 12.

 

Figure 12. Result of 20-sim 5.0 (left) and study for Bond graph modeling (right).

The state variable corresponds to the variable bond 17(p17) and the variable bond
10(p10), and the physical meaning represents the energy stored in the rotational inertia of
the engine flywheel and rotational inertia of the motor rotor, respectively. As a result of
“20-sim 5.0”, bond 17(p17) is �298.3� and bond 10(p10) is �155.4�, and the results of this
study calculation using Bond graph modeling were found to be bond 17(p17) as �306.4�
and bond 10(p10) as �160.3�, respectively. For hybrid mode, engine mode, motor mode, and
charging mode, the load conditions of each operation scenario (in-port operation, transit
to fishing grounds, and fishing operation) are substituted and the results of this study are
compared as follows. Table 7 shows that the average error for all 12 cases is around 2.8%.
The reason for these differences is difficult to precisely ascertain due to the unknown solver
of the commercial program. However, it is estimated to be attributed to differences in the
solver used for solving ordinary differential equations.

Table 7. Comparison of “20-sim 5.0” and study result.

Mode Operation Energy Variable No. 20-sim Study Result Error (%)

Hybrid

in port p10 201.8 208.2 3.2%
transfer p10 155.4 160.3 3.2%
working p10 162.5 167.6 3.1%
in port p17 387.3 398.2 2.8%
transfer p17 298.3 306.4 2.7%
working p17 311.8 320.3 2.7%
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Table 7. Cont.

Mode Operation Energy Variable No. 20-sim Study Result Error (%)

Engine
in port p17 315.4 324.9 3.0%
transfer p17 242.9 250.3 3.0%
working p17 253.9 261.6 3.0%

Motor
in port p10 37.5 38.6 2.9%
transfer p10 28.9 29.8 3.1%
working p10 30.2 31.1 3.0%

Charging
in port p17 207.8 211.9 2.0%
transfer p17 173.6 177.4 2.2%
working p17 179.2 183.0 2.1%

Average 2.8%

7. Formalization of the Optimization Problem

In this study, the Bond graph modeling of a hybrid propulsion system is used to
propose that it can be used in the initial design. To this end, it is necessary to set the objective
function and related design variables with the aim of improving the performance of the
ship. First of all, the objective function aimed to evaluate the overall voyages by integrating
three distinct operational scenarios as the voyages scenarios of the research vessel are
divided into “in-port navigation”, “transit between operation sites”, and “operation at site”.
To achieve this, the value that can determine the performance in each operational scenario
and the proportion (weighing factor) of the corresponding operational scenario in the total
voyages were multiplied. In addition, in order to evaluate the overall voyages, the objective
function was set to be maximized by summing up the values of each operational scenario.
At this time, the value that can determine the performance in each operational scenario
was set as the ratio of the required energy for propulsion to the energy input from the bond
on the engine (or motor, or a combination of both) side in each operational scenario. This is
expressed as an equation in the object function in Table 8.

Table 8. Formulation of optimization.

<Object Function>

F(x) = max
[

a ∗ fport(x1 , x4 ) + b ∗ ftrans f er(x2 , x4 ) + c ∗ fworking(x3 , x4)

= max
[

a ∗ fport
(
Tport , TF

)
+ b ∗ ftrans f er

(
Ttrans f er , TF

)
+ c ∗ fworking

(
Tworking , TF

)
x1 (T port

)
: Power Consumption during In-port Navigation

x2 (T transfer): Power Consumption during Transit between Operation Sites

x3

(
Tworking

)
: Power Consumption during Operation at Site

x4 (TF ): Reduction ratio
a: Weighted by Intra-port Navigation Time (In-port Navigation Time/Total Voyage Time)
b: Weighted by Transit to Operation Site Time (Transit to Operation Site Time/Total Voyage Time)
c: Weighted by Operation at Site Time (Operation at Site Time/Total Voyage Time)
fport: Ratio of energy demanded during In-port Navigation to the energy input in the bond of the engine
ftrans f er: Ratio of energy demanded during Transit to Operation Site to the energy input in the bond of the “engine + motor”
fworking: Ratio of energy demanded during Operation at Site to the energy input in the bond of the engine

<Constrains>

1. (x1+ Loadcharging) < Engine Power/rps2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . physical conditions
2. x2 < (Engine Power + Motor Power)/rps2. . . . . . . . . . . . . . . . . . . . . . . . . . . physical conditions
3. x3 < Engine Power/rps2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . physical conditions
4. 1 < x4 < 5.91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . system characteristics
5. Engine Power < [ a ∗ x1 + b ∗ x2 + c ∗ x3 ] . . . . . . . . . . . . . . . . . . . . . system characteristics
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The optimization variables for the above objective function were set to four types:
“Reduction ratio”, “Power consumption during in-port navigation”, “Power consumption
during transit to operation site”, and “Power consumption during operation at site”. When
the engine and motor variables are set as optimization variables, there are many input
variables for engine and motor specifications in the process of calculating the Bond graph,
so if the variables of a specific part are optimized, it means that the engine and motor must
be manufactured separately rather than off-the-shelf products. This is due to the lack of
practicality, so in this study, a reduction gear was set as an optimization target. This is
because the reduction gear is not only applied independently when calculating the Bond
graph but also can effectively change the performance because it is at the contact point of
all power transmission.

In addition, the design values of power consumption for each operational scenario are
fixedly applied to the research target vessels under development (conducted by the MOF,
energy-efficient and environment-friendly fishing vessel development research project,
‘21~25’). However, small fishing vessels have various operating patterns depending on
the type of fish the vessels target and the maritime area. Therefore, in order to apply it
practically to various ships, the optimized power consumption should be obtained by con-
sidering the operating time of each operational scenario. Therefore, the power consumption
for each of the three operations—“power consumption during in-port navigation”, “power
consumption during transit to operation site”, and “power consumption during operation
at site”—were set as design variables for the optimization problem.

In summary, the core of this research formulation is to find the optimal power con-
sumption for each operational scenario that can achieve maximum performance and the
optimized reduction ratio when the operational scenario (in-port, transit to operation
site, and operation at site) is determined according to type of fish the vessel target and
maritime area.

Next, the constraints were set so that they did not violate physical conditions and
system characteristics. First of all, the physical conditions are as follows. 1. During in-port
navigation, the engine output is expected to exceed the sum of power consumption during
in-port navigation and the charging load since the battery is charged during this state.
2. Since hybrid mode is used when moving to the operation site, the sum of engine and
motor output will be greater than the power consumption during transit to the operation
site. 3. Since only the engine is used during operation on the fishing ground, the engine
output will be greater than the power consumption during operation in the working site.

Constraints according to the characteristics of the system are as follows. 4. In vessels,
since the torque is increased and rotation speed is reduced through the reduction gear (to
improve thrust and reduce cavitation), the reduction ratio will be greater than 1. Simul-
taneously, the reduction ratio should not exceed the maximum value for the reduction
gear used in small vessels (up to a maximum of 5.91 for the tonnage of the specific vessel).
5. Since the entire voyage is evaluated, the representative value of the voyage is set to the
sum of the product of the power consumption for each operational scenario and the ratio of
usage time for each operational scenario (operational time for each scenario/total voyage
time). This value is set to be greater than the engine output (if it is less than the engine
output, it means the vessel can operate solely with the engine, rendering the hybrid mode
unnecessary, indicating a mismatch with the system characteristics, and hence, setting a
constraint). The above constraints are summarized as shown in Table 8 above.

8. Derivation of the Optimal Solution

The differential evolution method was employed for the optimization problem [31].
In order to find the optimal solution, it is necessary to be able to consider both physical
constraints and constraints during Bond graph calculations. Moreover, in order to derive
the global optimum, the differential evolution method was used because it had to be
possible to find the optimal value by changing the initial value. Next is the evaluation
criterion for convergence. The analysis result was judged to converge when the two criteria
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were satisfied. The first was judged to show the same result while increasing the population
size in consideration of repetitive reproducibility. Second, the convergence was evaluated
by monitoring how the optimal value responded to changes in inputs. As the purpose
of this study is to use it for the initial design stage in consideration of the characteristics
of different types of fish that vessels target and maritime areas, the input value is the
usage time for each regional operational scenario. Therefore, the usage time for each
regional operational scenario was investigated based on the interview with fishermen,
and the results are shown in Table 9. In other words, it was applied as a criterion for
determining whether the constraints to be activated change when the time value of the
regional operational scenario is changed as shown in Table 9. This is because the objective
function or constraint is inappropriate if only the same constraint operates according to the
change in the input value. To summarize the contents so far, the problem can be expressed
as shown in Figure 13.

Table 9. Operation scenario (A: operation time in port, B: operation time during transfer, C: operation
time at working on site).

Description
Total Time

(T) [h]

In Port Transfer Working

Time
(A) [h]

Non-
Dimensional

(A/T)

Time
(B) [h]

Non-
Dimensional

(B/T)

Time
(C) [h]

Non-
Dimensional

(C/T)

West Sea 9.00 0.25 0.03 3.25 0.36 5.50 0.61

South Sea 13.75 1.25 0.09 3.50 0.25 9.00 0.65

East Sea 16.4 1.5 0.1 3.9 0.24 11 0.67

Accordingly, as a result of optimization, the “Reduction ratio”, “Power consumption
during in-port navigation”, “Power consumption during transit to operation site”, and
“Power consumption during operation at site” for each operation scenario change in each
region are shown in Table 10.

Table 10. Result of optimization for load and reduction ratio.

Description

Optimum Load [N·m/(rad/s)]

Reduction Ratio
In Port

Transfer from Port
to Fishing Ground

Working
(Fishing)

West Sea 194.6 196.4 204.0 3.72

South Sea 209.9 196.4 224.2 4.09

East Sea 206.6 196.4 219.7 4.01

Table 10 corresponds to the effort value of bond 14 on the Bond graph and is converted
into a power unit by multiplying the flow value of bond 14 as shown in Table 11. Bond 14
flow can be calculated according to Equation (14).

Table 11. Result of optimization for load and reduction ratio(convert to KW).

Description

Optimum Load [kW]

Reduction Ratio
In Port

Transfer from Port
to Fishing Ground

Working
(Fishing)

West Sea 125.9 106.9 167.4 3.72

South Sea 123.6 117.4 184.0 4.09

East Sea 124.1 115.1 180.3 4.01
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9. Analysis of Results

In order to analyze the trend for the optimization result, it is necessary to visualize
the result. However, since there are four optimization design variables, they cannot be
expressed at once. Therefore, it was visualized by dividing the contour graph into six
sections so that the objective function value for the two optimization design variables (x,y)
became z, and the results are shown in Figures 13–15. The results include the values of the
objective function corresponding to changes in two optimization design variables, along
with the optimal values of each design variable and the regions of the constraints. In each
figure, “TF” is the reduction ratio, and “T” denotes the power [N·m/(rad/s)] consumed
as the “T value” in Figure 6. “Tc_pt” and “Te_wk” are the same “ T value” in Figure 6 when
calculating the Bond graph, but “ T “, “Tc_pt”, and “Te_wk” mean the power consumed
during transit, power consumption during in-port navigation, and power consumption
during operation in site, respectively.

Let us first look at the general trend and analyze the differences according to the
regional operational scenarios. The general trend is as follows.

The graphs � to � of Figures 13–15 show the relationship between the reduction
ratio (TF) and power consumption during in-port navigation (Tc_pt), transit power con-
sumption (T), and operation in site power consumption (Te_wk). It can be seen that the
objective function tends to be maximized when the reduction ratio (TF) is maximized while
minimizing each power consumption. This trend is consistent with the general trend of
increasing the propulsion efficiency by increasing the reduction ratio while minimizing
the power consumption for operation. In addition, when looking through the area of the
constraints displayed in white, the transit power consumption (T) is not sensitive to the
constraints, but the power consumption during in-port navigation (Tc_pt) and operation
in site (Te_wk) are affected by the constraints. In particular, it can be seen that the optimal
point for power consumption during in-port navigation (Tc_pt) is located near the constraint
region and is most affected by constraints. It can be said that the efficiency of operation
is affected in the entire voyage according to the hybrid propulsion, which also serves the
energy charged in charging mode within the port for movement to the fishing ground,
concurrently employing the motor.

The graphs � to � of Figures 13–15 are the results of analyzing the effects on power
consumption during intra-port navigation (Tc_pt), transit power consumption (T), and
operation power consumption (Te_wk). When evaluated by the slope of the contour lines, it
can be seen that the slope is sharp in the relationship between operation power consumption
(Te_wk) and transit power consumption (T), and the impact of thetransit power consumption
(T) is large. Second, the power consumption during in-port navigation (Tc_pt) and transit
power consumption (T) have similar effects when looking at the slope of the graph. Third,
looking at the relationship between power consumption during in-port navigation (Tc_pt)
and operation in site power consumption (Te_wk), it can be seen that the slope of the contour
lines is gentle, and the influence of power consumption during in-port navigation (Tc_pt)
has a significant impact.

In addition, the difference according to the operational scenario of each maritime
region is analyzed as follows. The contour lines for each sea area have similar results.
However, in the case of the West Sea, the operating distance and operating time are short
depending on the sea boundary with China. Therefore, the preparation time for departure
from the port is short, and looking at the fifth graph in Figure 13 (West Sea), it can be seen
that the slope of the contour lines of the power consumption during in-port navigation
(Tc_pt) and transit power consumption (T) is gentle compared to other maritime regions. In
other words, in this hybrid propulsion method, how much battery is charged in the port is
an important part of efficient operation for the entire voyage.

In addition, it was observed that the optimal reduction ratio was derived differently
depending on the operation scenario of each maritime region. It is judged that this can
contribute to the performance improvement of the ship by reviewing the operation time
during the initial design stage and determining the optimal reduction ratio.
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Figure 13. Contour of optimization for West Sea.
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Figure 14. Contour of optimization for South Sea.
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Figure 15. Contour of optimization for East Sea.
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10. Conclusions

The supply of hybrid propulsion (diesel and electric complex propulsion) ships is
expected to increase in accordance with the demand for eco-friendly ships. This is because
small ships have a limitation of space to install an LNG propulsion system, etc., and the
risk of accidents at sea is increased when the battery is exhausted to apply only battery
propulsion.

However, the design of most small ships, including fishing vessel, is generally com-
pleted in a way that slightly changes the design by reflecting the requirements of the order
based on the design information of reference ship. Also, it is very rare to have an R&D base.
Therefore, if hybrid propulsion ships such as the research target ship (MOF, energy-saving
and eco-friendly fishing boat development research project, ‘21~25’) are distributed, it is
expected that there will be difficulties in changing the design because there is no reference
ship and R&D base.

Therefore, in the results of this study, when the ratio of the usage time for each
operation scenario per vessel is input, the optimized reduction ratios and operation point
(power consumption) can be derived. Since the reduction ratio is a key design variable of
the reduction gear and is at the contact point (Node) when all power is transmitted, an
efficient performance change can be expected while minimizing design changes compared
to modifying other factors in the propulsion system.

In addition, considering the design conditions of small ships with limited scale and
R&D capabilities, it is expected to be practical because the performance of the ship can
be changed in consideration of the operating characteristics of each maritime regions and
catching methods for target fish with minimal design change in the reference ship. In
addition, this study is expected to be useful in contributing to the widespread adoption
of hybrid propulsion ships because it can recommend efficient operational points for the
entire voyage to users by presenting the required power for each operation scenario.

In summary, the transition to eco-friendly ships, such as small vessels like fishing
boats, is expected to involve the application of hybrid electric propulsion systems. The
studies related to hybrid electric propulsion vessels are currently underway to develop
models optimized for specific tonnages and vessel types. However, utilizing the findings
of this study could maximize the utility of eco-friendly vessels by enabling more efficient
navigation, considering the characteristics of various maritime regions and vessel types.
Nevertheless, due to the lack of comprehensive data on equipment specifications for various
model such as engines and motors, this study was limited to optimizing specifications for
reduction gear only. It is anticipated that future studies will be able to expand optimization
targets to include engines, motors, and other equipment if more information becomes
available. This would enable subsequent studies to select various equipment.
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Abbreviations

ei Effort (power variable)
fi Flow (power variable)
GY Convert element (convert effort to flow, flow to effort)
I, C Storage element
pi Momentum (energy variable)
qi Displacement (energy variable)
R Dissipator element
se, sf Source element
TF Transform element (transform effort to effort, flow to flow)
0 Junction Distribution element (all effort is distributed as same)
1 Junction Distribution element (all flow is distributed as same)
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